-

)

| National Lib
. L4 | ofac'gﬂida' -

Bnbhothéque natnonale

. du Canada ‘ ‘ _ 7 .
L LA “ : ‘
Canadlan Theses Serwce Service des théses canadaennes S } -
s Otawa, Canada . ol ' o
- K1A ON4 ' |
o ‘)
t
) K o A
B .) .
. % ' . <
~ NOTICE - R AVIS

~ The quahty of this microform s heavily dependem upon the
*%yahty of the original thesis submitted for microfilming.
ery effort has been mdde to ensure the hg(hest qualltyaot
reproduction possmle

' .prc?es are missing, contact the umversnty WhICh gramed
- the degree. ,

Some Fages may have mdlstmct print especnall xf fhe
- origina
if the unlversuty sent us an inferior photocopy

oA

" Previously copyrighted: materials’ (journal amcles pub
lished tests, etc) are not filmed. ,

Reproductlon in fuII orin pan of this microform s governed
by the Canadnan Copynght Act,-R.S.C. 1970, c. C-30.

NL-339 (r. 88/04),

N

, lumversnte quia conléré le grade.

pages were typed with & poor typewriter ribbon or .. - désirer, surtoul siles pages originales o

La qualité de cette’microfo?mg dépend gjmndam&n dela
qualité de la these soumise au microlilmage. Nous avons
tout fait- pour assurer une qualité supéricure do e produ(.
tion: .

(;r,
S'il- manque des. pages, veuillez cd jquer avee
La qualité d'impression de certaines pages Nyut laisser a
phiées a l'aide d'un ruban usé ou si l'univers

‘ v J : @ nous. a lat
parvenir une photocopie de qualilé inferie i

© Les documents qujpfont déja robjet d'un droit d'auteur

(articles de revug, tésts publi¢s, etc.) ne. sont pas

- microfilmés. N

La reproductlon méme parhelle de cefte microforme est
soumise a 1a Loi canadienne sur Ie droit daut(*ur SRC
1970 c. C-30. '

Canad"'

j dactylogra-*

v R . . -

R

" THE UNIVERSITY OF ALBERTA

: k . . ‘--. ¢ [ch“‘AGCI.‘l/—\'A chical-‘Ana,lyzcr Gen::rator
‘o -) ‘ ' o | ‘ ‘ ‘
T (g) . RedyWG.Ng

o S : . A thesis "
/- . .« o o ‘.‘ e e

\ ‘

subntitted io the Faculty of Graduate Stﬁdi'cs and Research B

 in partial fulfillment of the requireménts for the degree
| P of Master of Science -
L . :) ’

-

, '.Di'épart'n‘ieﬁtv of Computing Science

e

¢

B Edmbnton. Alberta

Fal' 1988 . . Q.. B

o

o .

- [}

»~Permissien ‘has Been. granted
_.to the National Library of
Canada - .
.thesis arnd to -lend or sell”

to ﬂlcrofilm this

' copies of the,film.,,'

fa?._ '4

'The author (copyright ownef)'

"h as

' publica.
.n@ither-
~extensive extracts .
. may be printed.or otherwise .
. reproduced without his/her'~
-written permission.__v : s

Teserved
on.
the

‘ther
rights,,'and
thesis nor
~from. it

e

L autorisation a été accotdée_
- 4 la Bibliothdque naticnale
. ~du

cette théae et . de»prétet ou ,

‘de‘ vendre dea exempl&ires du -
Cfiim,s : S R

ISBN -315-45533-0

au orisatién écrite.

Canada de microfilmer

4

L auteur (titulaire du dtoit
" d'auteur) o
. autres droits»de publication;

R % O

‘se réserve‘ les

_ la thése ni de. longs
.,extraits' de celle- ci
&tre ‘imprimés -

ivent .
trement reproduits sana pon

ne__‘"'

e

®

. s THE UNIVERSITY OF ALBERTA "
P RELEASE FORM
. / / - -) . , 7‘
NAME OF AUTHOR: RandyWG Ne .

. TITLE OF TI-IESIS ‘LexAGen —A Lexlcal Analyzer Generator

~

"'._;DEGREE Master*of Scxence _

. 5

L
o

YENR THIS DEGREE GRANTED 1988

. : .
..l’I_ * » S C o

Pcrxmssmn is hcrcby grantcd to ‘I‘HE UNIVERSITY OF ALBERTA LIBRARY to

| mproducc smglc cdpxcs of this thesm and to Iend or sell such copxes for pnvatq, sqmlarly

EE
-

“or scxenuﬁc rcscarch purposes only

3...

Thc author rescrvcs othcr pubhcanon nghts, and ncxther thc thcsxs nor cxtenswd

cxtracts from 1t may bc pnntcd or othcrwxsc rcproduccd wnhout the author s wnttcn per-

: : P L : L &
-~ lmSSIOn’) o ‘ - 9 .. "‘Q.t;" : * ,».. ,.) "3« :

svf oL g
' _ . (Signed)........ ‘ ﬂw V\g/\/‘j/

K . ‘ ".)

o P.crmancnt AddrcSS'

ﬁ : _22 30 'I‘a1 Wong Strcct East

. "2/F,FlatB" -
- Wanchai’
. - Hong Kong -~
* <7 ’ ’

DawdJuly26,1988

" THE UNIVERSITY OF ALBERTA

_ FACULTY OF GRADUATE STUDIES AND RESEARCH

[.

. Thc undcrmgncd ccrnfy that thcy havc rcad and recommcnd to thc Faculty of Gra-.
- duate StlldlCS and Rcsearch for acccptancc a thc51s cnutlcd LexAGen — A Lexnca! -

: Analyzer Generator subrmttcd by Randy W G. Ng m pamhl fulﬁllmmt of thc rcqulrc-,

mcnts for the dcgrec of Master of Sclence

» i
. | o
o //éf’?é /}?’??ﬁ;»«‘
o T y

.\?‘

= 4

A The compxlauon proccss vconsxsts of sourcc program analysns trnd code ’gc.norauon How- -
' cver duc to 1ts complcxnty, source program analysxs is furthcr decomposcd mlo lcxxcal' -
arlalys1s, syntax analyms, and semannc analysxs Thxs thcsxs descnbcs the automanc gen-
‘,j.cratxon of lexxcal analyzers Threc .major ontena for lcxxcal analyzcr gcncrators are
"1dcnt1ﬁcd gcncrahty, user 1ntcrfa&e desxgn and speed Most current lcxxcal analyzcr gcn- B
..emtors are dcﬁc1cnt in at.levast onc of these aspccts Thts thcsw prcscntsjw lcxncal-
g analyier gcncrator called chAGcn which satisfies all thrcc of these cntcna chAGcn is.

" an mtegratcd programmmg cnvuonmcnt whlch mcremcntally creates a lcxlcal analyzcr

and reports errors 1mmcd1atcly as thcy occur

S .

oy

et

Acknowledgement RS

I thank God for his gracdan’?‘prbvisbns through all these years' of studying over-

- seas. LN

B I would hkc to thank my supemsor Dr. Duane Szafron for his tcchmcal and moral
: support especxally for the long hours of discussion he spent. with me that gave thxs thesis
: 'some rcal substancc and many of the 1deas init. I would also like to thank Bnan Wilker-
: son of thc Softwarc Productivity Twhnologlcs group at the Tcktromx whosc ;nspu'atlon.
band valuablc ideas gave me many 1n51ghts into thls thcsxs And I would hkc to thank DQ;
- Jlm Hoovcr who madc ‘many good commcnts and suggestions after readmg the ﬁrst (‘!.raft. _
’ of this thesxs Hxs lmmchatc fecdback is grcatly apprcc1atcd Furthermore I would I1ke

to thank Dr, Jonathan Schacﬂ‘cr and Dr. Wemer Joerg for thcxr careful, exarmnanon of thc

ﬁnal draft of t.hlS thesm and for thclr many good comments.

Lastly, but not the lcast, I would like to cxprcss my deepest apprccmuon to Mc:1 yuk ‘
: tcung who through her gcnume concern and praycr support cncouraged me all thesc)

v

vi

T

. B) R B

S [:. _ ' »TablevofC(v)ntevnts.' B) -‘.'

..............................

| \ ' 2 4, Approachcs to Lexxcal Analy51s Using Fxmte Automata

..;..............a..

...

....
--l-o-‘tbu.qg-l¢nto-—un.-c-olu...ouo-.-v-;onu ----------------------------
..;...:.............,.....................
et ettt et tut e bttt an et risentasenetasastessnbrienenans
"ﬂ""""""""""""”"""""""';""""""""""f'
...
..
...
L
et ettt iiatitianetetastirsistratnsnncsstoncnretaniesn

M T

..

...

| __4._2.1._Us¢r Intcrt‘acc Paradlgm

ettt a s ettt ettt eartrnentetaantttanatenacntsarenne -
s

...

...

Cth

o o N9 o

5.1 'I‘hclnﬁuenccomealltalk -' a2

5.1 1. The Smalltalk Envxronment ' /' » ' 4'2' _' :
il 2 The Smalltalk Languagc - /, ‘v 43 o
5.2. Data chrcscntatlon and Implcmentanon _ S 44
5.2.1. The Browser e 84
| ' S . 45
46
@
ag
-_ 48'.
49
50
5.2.2.3.2. Altcmanon | S - - . i Lirinr s 51
52 3. The chAGcn Stratcgy for Incrcmental Analysxs 56
5.2.4, "The Codcr 59
Chaptcr 6. Kcyword Idcmlﬁcauon 64
6.1. Ovcrvxcw of thc Tne-Based Mcthod .. 65
6.1.1, Spccxal Tries .. Ftneie e es e ssereneneesa i ens 66
6.1 2 Example of a Pruncd O-Tnc S S 67
" 6 1.3. Searchmg Time fora Pruned O-Trie Forcst srrsareasnens 69
- 62 Tne-lndcx Conscrucnon e saeaans A ereeeeisbderenan 71
6.2. L Algonthm fqr- Pruncd O-Trie Constmbtion ... | 72

C
o

“viii ST

. ¥ ’

7.5, Spced Analyms

B Chaptcr 8. Concluswn

””Rg:fcrcnces e ‘-“f: ' , ' , . oo

oM
‘e . .
s - _—
. th
1
a v
[N
©
. .
_p .
“ o
. . ~
Y
-~ »
; .

2]

. Listof Tables
Tablc l 1. Strcngths and Dcﬁcxcncxcs of Somc Lexical- Analyzcr Gcncrators ceeneeeans 3
" 'I‘able 6 L Charactensncs for Several Programmmg Languages ceserree e nseseneseeseneesie ‘78.
_Tablc‘7 1, Summary of thc Four Scanncr Gcncrators v 80
-"ATablc 7.2 Charactcnsucs of thc Input Dataoc..o....... 86
; Ty ‘
,

'I_;ist of Figures - | e
- Frgurc 2.1, A Typxcal Transition Dxagram Accepting "8 b" 6r "abe" i, 7
| Flgure 2.2. Mcrgmg Usmg Altemanon -and Concatenanon Operatxons KR veiesans 10
| i Fxgure 2 3. Skelcton Program for Interprctmg’fauxomata 12
‘ Flgurc 3.1. Gcneral Format of bex Source R 17
| Figure 3. 2 Lex1cal Analysxs Algonthm for GLA- Scanncrs e e 7’.11
Fxgure 3.3, Exccrpts from a GLA Spcc1ﬁcanon for Modula-2 e 23
Flgurc 34. Implrcrt State Varxablc Implcmentauon of Fxmtc Automata 25
Frgurc 4. 1 BNF Spccrﬁcatron of Idenuﬁcrs .. 27
Figure 4 2.A Typxcal Automata Browscr .. 33
Figure 4. 3 Drﬁ’ercnt Context- Sensmvc Menus for the cht Pane ...l 34
Frgure 4. 4. Gcncral and Specral Dlalog Wmdows .. 35
Frgure 4.5. Error Reporung Mcchamsm ... 38
Flgure 4.6. A Typrcal Dctcrrmmstrc Frmtc AULOMALON. ... 40
Fxgm'e 5. 1 Class Structure of the Deterrmmsue Finite Automata Modcl 49
Fxgufb S. 2 Concatenati. Opcranon estanteertrteeteesranteenteete s e srannans - St
Flgure 5. 3 kkcmanon Through Mergingoovvovvooriioooo ST DTN 53
Flgum 5 4 Mergmg In\volvmg Non-Tcmnnal ' 54
Figure 5.5. Ordered Depcndency Graph .. persesriiesteaaens 58
Flgurc 5.6, Full Expanded Form of a DFA Civvneeie et s et oo oo 60
Fxgurc 5.7. Class Structurc of the Codcr e, | 61
Frgure 5 8. Samplc C Sourcc Codes Gcncratcd .. 62
Flgure 6.1: A Full Trie. O U PSS N grerenirb e sasasiersisnnererans 67
Figure 6.2. A Pruned Triececomrswnnronooss foom 68
“Figure 6. 3, A Pruned O Tne ... 6?
. Frgure 6 4. A Pruned’ O- Trie Forcst .. 70

SRR anurc 6.5. Implementation of a Pruned O-Trig;. e X = 77

R T

’
’ . ») ' -
v B . . " .
. | o L e .
4 ' oy) -) .
. L e Y : .
N .
.
.
-
.
- i)
P . .
.
! .
- - - .
K
- .
-~ -
- . -
-\ F "
- . . .
.
* 4 - " l. .
N]
. s A
, - - -
S ~ ,
r ’ .
. ot Y - ' o
S . - A
. s
v, ’ -
e
: .
.
- .
13 M -
- »
- f . ,
. . s . \4
\ -

. b »
- ~» B N .
L] N 4
.
, . “’,‘ 1
' I
3 Sl . -~
' ’ ORI
R R ¢
‘. .V»
.- T .
. -
s , .
; - _ .
.
]
s
»
.
.
!
_ |
’ !
i . .
. ,
»
- E L.
N .
. 4 -
. L 4
, .
. {
v
N
. ;
’ 1
.

Chapter1 o

[.
. Introduction

The compxlanon process can be dccomposed mto dource program analysis and codc
- gencranon Howcver source program analysxs is snll a complcx task and it can be
su‘nplxﬁcd by furthcr dexposmon mto lexlcal analysm syntax analysxs ang scmanns -
analysis. Lexical analysxs is the proccss of 1dcnt1fymg the lowcst lcvcl languagc co‘n- :

structs (such as identifiers, kcywords labcls and opcrators) This thcsxs discusses thc

, automanc generauon of lcxrcal analyzers.

Two aspccts of lcx1ca1 analyzers are of concern: thc methods of dcscnpnon or
’ spccrﬁcauon for the tokcns to /_;ccoﬁlzcd and the mcthods of rccognmon itslf. There
are scvcral spccrﬁcauon mcthods in use, 1nc1udmg rcgular cxprcssmns pattern matchmg
tcmplatcs, BNF notanons and srmplc menus. On thc recognition s:dc automata con-

- tinuation tables, ahd sunple branchmg are used. . B a o | E

M

Many lex1ca1—analyzcr gencrators exist, cspccxally as parts of compxlcr wnnng Sys-
" tems [Lcsk75] (Gigg79] [Nurm82] Perhaps thc bcst known of thcm is Lex [Lcsk75]' |

o whxch can bc uscd togct_hcr wnh the compllcr-compxlcr Yacc [John75] in» most UNIX™

‘systems. - o . |

" This thesis identifies three major criteria which ‘are important for lexical-analyzer
Gf

TLT

generators. They are:

. §1:) ngcrality —In this thesis, generality is a measure of thc_cxprcsSivs powcr

R 4

2 .
of the grammar of the language ‘which a'lexical 'analy,zer can recognize. Most
lexical analyzers can recogmze languages based on regular grammars How- "
ever, many have some restrxcnons as well as some lmuted extensmns There; ,'

fore, the generallty measure is a measure of these restrictions and extensions.

() .User interface deslgn — _Therc are ﬁve aspects thataffect ease of use. They
- are: batch Versus’ mteractlve mode 1ncremental dcvelopment the amouny - |

' and form of! feodback when errors are made the amount of gu1dance and "~
help provxded and the avallabtllty of 1mmed1ate execution to theck for "
R ' R S

specxﬁcauon correctness.

.

(3) Speed — Lexrcal analysxs is time consummg A large amount of time is
spent reading the source program and partmomng it into the lowest level
language conﬁ'ucts Some measurements have md1cated that about 50 per

© cent of the compxlauon time is spent tokemsmg the input text [Wa1t86a]

ThlS thesis also advocates the view that most current lexical- analyzer generators are -
dcﬁcxent in at least one of these aspects For example, some generators are capable of,
generanng fast, specxahsed lexlcal analyzers whtle others are capable of generatlng slow K

: & ‘
but general ones. Most have poor user 1nterfaces and error reportmg fac111t1es Further-
. mone, this thesis reviews three lexxcal analyzer generators in use today and evaluates :

thcm based on these thnee ¢riteria. They are: Lex [Lesk75] GLA [Wait86b], and Mkscan

= "J[Hors87] Table 1. 1 shows the strengths and deﬁcxencws of these generators

This thes1s presents a new lexxcal analyzer Pgenerator c’alled LexAGen whtch

_ S : sausﬁes all three of these cntena In fact these criteria served as the de51gn goals of Lex-

B

Generalityv User Interface - - ‘Speed

IR . . Easeof Use - .
- Lex - B "‘, S s
o6LA L - 4
+ - Mkscan - L+

: Té_zble L. ‘Streng:tits and Deficiencies of Sqme Lexical-Analyzer Génerarors :
- B v ' - .

AGen Alt.hough LexAGen has been developed asa sxand alone tool for general use, it is

especxally well suited for the recogmtlon of common programmmg languages. LexAGen_" |
‘ :

- is not batch-onented in whrch a spemﬁcatlon is translated into a drrectly executable lexi-

~cal analyzer after speclﬁcauon Instead I_chGen mcorporates thc phrlosophy of

N\

mtegrated programmmg env1ronments which mcrementally create a software product and

| report errors as they occur.. C
LexAGen uses .its graphrcal user mterface to xmplement thrs 1ncremental process ;
The user specrﬁes a lexlcal analyzer usmg BNF productlons and LexAGen mcrementally

V 1mplements thrs specrﬁcauon asa determxmstxc ﬁmte automaton wnttcn in C,

| Chapter 2 of this thesxs mtroduces the process of lexical analys:s and desenbes ﬁmte |
automata asa model for the process Chapter 3 presents the three lexlcal an'z'ilyzer genera-
tors whxch are a- representatlve sample of existing lextcal analyzer gencrators Lex ,
represents lexrcal analyzer generators Wthh are mterpretatxve Both GLA and Mkscan
k.\‘ represent lexrcal analyzcr generators which are dxrectly executable thle GLA is batch-'

-

' onented Mkscan uses a full-screen user interface for speCtﬁcatlon

Loy .) L}
RS

Chaptcr 4 mtroduccs thc chAGcn cnvuronmcnt from a uscr s pomt of v1cw

Chaptcr 5 focuscs on the 1mplcmcntanorf of chAGen Chaptcr 6 presents a new

approach to kcyword 1dcnt1ﬁcanon and dcscrlbcs how this approach is 1mplcmcntcd in
chAGcn Chaptcr 7 descnbcs the strengths and dcﬁcxcncws of thc threc lcxlcal analyzcr_

| generators in. Chaptcr 3 as well as thc strengths and deﬁcwncnes of chAGen Fmally, '_

Chaptcr 8 concludcs w1th a summary and some suggcsnons for future enhanccments to‘ '

o "',chAGcn o

-Cha'p't‘evr 2

Lexical Analysis —~ S -

is the first phase of compllanon Its main task i is to
xr

~ Lexical analysis, or scanning,
transform an unstructured stream of mput charactcrs ina sourcc program into fundamcn-
" and "<>" are the "as‘s'ignmcnt'tokcn,"

v

| tal program umts called tokcns For cxample
"not __cqual token" 1n MOdula-Z," rcspccti\icly."

Smce lexxcal /analys1s 1nvolvcs readmg the sourcc pmgram from disk, character by
| or\xaracter 1t is usually consrdcrcd to bc one of thc most umc-consummg tasks camcd out
by a compller [Wa1t86a] Therefore, a kcy desxgn goal of lcxlcal analysrs algonthms is
rmmmrsauon of drsk rcads and chara tcrtouc‘,hcs. Specrahscd buffo_nng tcchniqvubcs:for o
tolréns can sigrriﬁcan"tly ixrrprovc the péxforrnanoc

rcadmg mput charactcrs arrd proccssm

of a compller [Ah086]
Finite automata serve as a good modcl for thc scanmng proccss whcrc cach mput

oharactcr rcprcscnts a transmon and cach state corrcsponds to a parual tokcn Complctcd
tokcns arc mprescntcd by final sates. In fact most gcncratcd scanncrs are 1mplcmcntcd »
as ﬁmtc ‘automata. ThlS chaptcr dcscnbes the scanmng process usmg mtc automata .
| ‘ Although ﬁmtc automata are uscd- as a» modcl for scarrncrs an-' in tﬁcx?xmplcmcnta-
tion, regular cxprcssrons are oftcn uscd to spccrfy scanncrs Thxs chaptcr glvcs the

dcﬁmuon of rcgular cxprcssmns and illustrates how Lhcy are cqunva]cnt to ﬁmtc auto-
: f

i

- mata. This chapter concludcs with a dxscussnon of two unplcmcntauons of ﬁmtc automata

=y

. - 5 » . N e

which are used in scanners.

2.1. Finite Aguto‘_‘matav
. A-finite automaton is a mathcmathal model that can recognize strmgs ina language

over some ‘alphabet L. Informally, a ﬁmte automaton consists of a ﬁmte number of states
>

and transitions. Each state contams zero or more transmons to other states Each transi-

tion consrsts of a label and connects exactly two states. At any time, the automaton has

L 4 .
_ one current state One state of the automaton is labeled as the start state, and it is used as

P

~the current state before pnocessmg a string. As each character of the strmg is read, the PRRY

_* transition labeled by the i 1nput character is used to move from state to state.

Every state is classtﬁed as etther an acceptmg state ora non-accepnng state. Thts . |
classxﬁcatton is used to determme ifa smng should be accepted as part of the language or
‘not. Consider the srtuatton in whtch AN mput character is encountered and no transmon_
' labeled w1th that character CXJStS for the current state, or the s1tuatton in whtch no. more\ S
- mput characters exist in the strmg In etther case, the stnng is acce‘pted if the current state

lS an acceptmg state and re_]ected if the cument state is a non- acceptmg state

' thte automata arc typrcally represented by transmon dlagrams where non-
| acceptmg states am denoted by cxrcles. acceptmg states are denoted by double cmcle§

and transmonsqare denoted by arcs thure 2 1 shows a transmon dlagram for a ﬁmte

"automaton whtch nepresents the language whose vahd stnngs are: “ab" and "abc" '

~Each ﬁmte automaton is etther detemumsuc, in that there is at most one transmon

from a state for each input symbol or nondetemumsnc, in that more than one transmon

| 3 from a state can be labeled by . the same: mput symbol Although the same set of

" Figure2'1. A Typical Transition Diagram Accepting "ab" or “abc”

languages can be recogmzed by both detenmmsue and nondetenmmsnc ﬁmtc automata
. there 1s a nme-space trade-oﬂ' between the two. Deterrmmsuc ﬁmte automata are typi-

' cally faster than equlvalent nondetcmnmsnc ones, but they are much blgger |

Someumes an empty transition between states is useful _That is, the automaton can ‘-
pass from one state to another thhout consummg an mput character Such a transmon is

A called an eps:lon tranSmOn
2.1.1. Forrnal Déﬁnitions of Finite Autbmata
* Definition2.1. A ﬁmte automaton (FA) is a Sptuple (S 2 M So, F) where

©.[1] Sisa ﬁmte, non-empty set of states;

. o o 2] szaﬁnite set of input symbols (i.e. the input alphabet);

.

3] Misa mapuing (depending on the type of FA);
[4] S0 € Sis the startmg state and

L [5] FcSis the set of ﬁnal states.

Definition 2.2. A deterministic ﬁnite automaton (DFA_) is a finite automaton with

M:SxZ-S.
: Definition 2.3. A r;ondetemumsttc finite automaton (NFA) isa ﬁmte automaton with

M: S xZ - P(S)
where P(_S) is the power set of S.
Deﬁnition 24 . A ndndeteﬁninistic ﬁru‘te automaton with -e-trans_itions ‘is a finite auto-.
- maton with ‘ | o , '
M: S x (}.‘.u (e]) - P(S)

" where P(S) is the power set of S.

- 2.2, ,Regular _EXpressi'ons
A regular expressron spec1ﬁes a set of strmgs in a language over some alphabet ‘Z A
negular expressron contams hteral text characters and operators The text characters are
matched wrth correspondmg characters in an input strmg, whereas the operators arc used
to specrfy repetmons and chorces Regular expressrons make use of three operauons 25

»

concatenatmn altemauon and closure

Deﬁmtxon 2.5, Grven an alphabet, Z,a regular expressron over E can be constructed

usmg the rules :
[l] € isa regular expression that denotes (g}, i.e. the set'con_ta,ini_ng_ ,

the ’empty string.

[2] If a 1s a symbol in z then aisa regular express1on that denotes

S ‘.”,[a} ie. the set contammg the string a.

' _[3]' : Suppose vfthat r, and r2 are regular1"expressi_ons‘:'denoting the

R

e

P o g
B -!anguagCS L(h) and _b(r";) rcspcétivcly. Then “

.sw '_ S @ ¢ Ir,) 1s aregular cxpncssmn dcnonng L(r,) UL(r) -
(b) (r,) (rp)i 1s a rcgular cxprcssmn dcnonng L(r)) L(rz))

(c) (r,) is a rcgular cxprcssxon dcnonng (L(r,))

whcrc L(r) L(rz) dcnotcs thc set of all stnngs which are concate-

-nations of a stnng from L(r,) and a strmg from L(rz), and (r,)
o
' stnngs from L(r,)
/ .
o For eiamplé; the regular expression, "(alb) c", spcc1ﬁcs the languagc conSlsﬁng of
- E “ \
all strings whxch consxst of any numbcr of a’s or b’s followcd by a smglc c. That i 1s. thc

strmgs bac and abaac, are both in the languagc along with an mﬁmtc numbcr of othcr .

«

stnngs It should bc notcd that Tegular cxprcssxons provndc a means. of gwmg a ﬁmtc

- spccxﬁcauon for a languagc w1th an mﬁmtc numbcr of strmgs

- 2 3. Equlvalence of Regular Expressnons and Flmte Automata

In gcneral ‘a rcgular cxprcssmn can be convcncd into a DFA by first using transmon .
v‘:.’dxagrams to convcrt thc regular -expression mto an NFA w1th e—tmnsmons and thcn by :
: convcrtmg thc NFA into a DFA The convcrsxon proccss makcs usc of a dlﬁ'crcm tranisi-

tion d1agram for cach of the threc opcrauons deﬁncd for rcgular cxprcssxons Howcvcr :

. ‘.the closurc operauon has bccn ommed for brcvuy

Consxdcr the opcrauons of altcrnauon and concatcnanon vacn two rcgular cxpres-A E

A

' sions, rl g,nd r2, and the ﬁmte automata whxch reprcscnt thcm an NFA with e-transmons

can be constructcd whcn cnthcr of thc Opcranohs is apphcd In clthcr casc, a nqw stamng _,

"¢‘ >

dcnotcs thc set of stnngs whxch are concatcnatlons of zero or morc“

N g
- SR 0
m"‘ "a‘ 8 e
& _
start
S - F
b2 T .
€ £
n
.+ (a) Alternation
_ ' o e
start £ o £ :
E ’ rl' ’ .rz_
(b) Concatenation . - -,

Figure22. Merging Using Alternation and Concatenation Operations

statc S and a new. ﬁnal state F are creatcd These new states are not part of the ﬁmte auto-

.. -.mata repn:scntmg rl and s

Altcmanon is donc by tnscrtmg e-transitions fronkAto r1 and T and from rl and r2

to F. Concatcnanon is: donc by conncctmg S to r,, rl to T and r2 to F usmg s-transmons

' Fxgure 2. 2 shows thc transmon dxagrams for altematlon and concatenauon "” -

. [S
\V

Thcsc equxvalcnccs of DFA and rcgular cxprcssxons are cstabhshcd by thc followmg v |

theorcms Thc proofs of thcsc theorems and methods for constructlon -are glven in

[’l‘rem85 pp. 156-176]

\ "5"

10

11
Theorem l vaen a regular cxpn:ssxon R, thcre cxlst\s an NFA wnth € ~

¢

transmons F, that acccpts the language gencrated by R

_ Theorem"z Let F be an NFA thh e-transmons on‘a language L Thcn there

: '_ex1sts an NFA W1thout e—transmons F’, such that L(F) = L(F).

" "theorem 3. Let F be an NFA without e-transitions on a languagc L 'I'hen there
| exists a DFA, " such that L(F) = - L(F).
Note that the number of states in F* blows up exponennally in terms of thc number of
states in F \ | ' | |

3

R ‘ sxze (F’) 0(2"“’("'))

‘ LexAGen uses DFAs smce the speed of a‘scanner 1s~much more 1mportant than its sxze' -

2 4 Approaches to Lexlcal Analysns Usmg lete Automata |

Aﬁ’mte automaton prov1des a s1mplc model for lextcal analysns In fact lcxxcal B
analysxs 1s a classwal appllcanon area of ﬁmte automata theoty Fust a transmon"-
‘diagram « can be easxly denved from the lex1cal speclﬁcauon of a programrmng languagc
| Sccondly, a transmon dlagmm corresponds closely to the syntax graph that dcscnbes the

' structure of the tokcns ina programmmg language

> In general there are two approaches that can be talg:n when ﬁmte automata are used

for lexlcal analysxs These approaches are called mrerpretduon and direct execunon

2,-4.1; ~Interpretati0n . Approach""" ‘
All transmons are gl'Oupcd togcther and representcd by a smglc matnx table[state 3

symbol], whlch is mter}‘rqted durmg lexical analysrs by a dnvmg program For example,

e

12

while (/* basxc symbol not complctc XN
switch (state = table(state, nextCharacter]) (-
case state : ‘
 /*code for actlons to be performcd in cach state */_
_ break _ .

" Figure 23 - Skeleton Program f_orlnterp'rgting Automata

if the current statc is s, and the mput symbol is c,, thcn thc new currcnt - state would be =

'thc state storcd in tabIe[s,, cl. “An 1mmed1atc and i 1mportant observanon is that asingle
‘algonthm can bc used as thc basxs for mtcrprctmg the transmon tablc of all ﬁmtc auto- -
‘ .mata Thc algonthms dlﬁ'cr only in thc tablc and thc acuons that rnust be taken for cach

. ‘4
statc changc

Thus, this approach allows a lcxlcal-analyzcr generator to produce an 1mp1cmenta-

~ tion. of thc automaton dcﬁned by an arbm‘ary rcgular language by prov1d1ng a skeleton

. mtcrprctcr whlch is augmcntcd by a tablc and actions for thc languagc speaﬁcd Flgure‘

2. 3 shows such a skcleton mtcrprctcr prog:gm N
2. 4 2. Dlrect Executton Approach A

A ﬁmtc automaton can be du'cctly 1mplcmcntcd as a hxgilevcl languagc program
o Yy :
‘ whcre the statcs are ncprescntcd as dtffercnt locatlons in the code and the transition lS :
rcpmscnted by case statcmcnts Therc are two ma_]or advantagcs to thxs approach and one -

v

dtsadvantagc o .

13
- One advantagc is that only the non-error cntnes in the transmon table need to bcl‘- o
programmcd The second advantage is that thls appmach prov1des supenor pcrformance

" in tenns of speed [Heur86] [Wa1t86a]

The d1sadvantage is that the dxrectly cxecutablc nature. of this appmach lmposce :
some restncuons on the basic symbol set Wthh can’ be rccogmzed 1f specd is desued' .
. For- example vanablc namcs should not stz:n with dxgxts but lctters othcrwxsc. it

becomes dJﬂicult to dlstmgulsh between 1denuﬁcrs and numbers Thxs means that the

_ 1mplementauon of an arbxtrary automaton usualIy requtrcs ex;enswe hand codmg

Fortunately this dlsadvantagc can be addressed Although du'ect executxon limits thc

basic symbol set common programmmg languages are not arbxtrary and thetr spccxahscd ,
" nature reduces the impact of thls resmcnon For cxamplc 1dcnnﬁers start thh lctters and .

fol]ow by zero or more letters or dlglts

‘e

s -)

o -

F

- | C‘h_apter 3
e - |
A Survey of. Lexical-Anfalyzer Generators -

[R

e

For the sake of eﬂicxency, lexical analyzers for productxon compllers are often. . X
hand- coded However lexical- anal):zer gencrators can produce efﬁcxent | scanners '
[,')86] [MCSssSG] In addmon generated scanners have certam advantages Generated
. scanners can be produced qulckly and eastly For example although SCanner generators A
utlhse the best pattem matchtng algonthms the mdlvxdual who uses one needs to know : |
nothmg about pattern matchmg Automatxcally generated scanners' also have fewer pro-
gmmmmg bugs Furthermore the lexical descnpuon used to produce a generated scanner’

' is. not only a spec1ﬁcanon but also serves as valuable documentatmn for the generated.

' lex:cal analyzer

In thxs chapter several lexxcal analyzer generators w1ll be exarmned closely in terms .' :

-

of thetr desxgn and methodology of spec1ﬁcat10n wh1ch they use.: Although many other

‘

. scanner generators are in use today, the three generators descnbed in this chapter are a
. : ‘

: representauve cross-section. In chapter 7 of this thesis, .the. performance of scanners gen-
.erated by these scanner generators will be compared to the performance of scanners gen-

erated by LexAGen

3.1, Lex -_—'A Lexical' Analyzer Generator
The best known and most wxdely used scanner generator is Lex [Lesk75]. Lex is a

general-purpose lextcal analyzer generator des1gned to. accept a hlgh level, problem-

14

c /
‘automaton from the regular cxprcssnons given in thc sourcc and thc gcncratcd automaton '

X,
is interpreted. ch can bc uscd alonc for s1mplc transformatlons, or _for analysis and

oncntcd spectﬁcanon for character stnng matchmg It gcncratcs a dctcnmmstxc finit

v

'statlstlcs gathermg on thc lcxtcal level S , - o . »

3.1‘.1.. D,ésign t)f Lex

Lex was desi-gncd to generate scanners for gener&l applicatio’ns That is,‘ it is'not res-
- tnctcd to scanners for progmmmmg languagcs For cxamplc it is wcll suttcd for editor- i)

scnpttypctransfoxmatmns - A L
'I‘hc gencrahty of ch can be seen in thc frccdom that ch allows its users to exer-

- Cise. The Lex specxﬁcauon (sourcc) ﬁlc is composcd of a table of regular cxprcsstons '
(rulcs) and associated program fragmcnts called actions. ch generates a scanncr Wthh
cxccutcs an actton cach time its associated cxpressmn acccpts a token. A tokcn is usually

: retumedasavaluc : | : | *

{.

Lgx can generate a lcxxcal analyzer for an amblguous spec1ﬁcat10n thn more than ‘

. one cxprcssmn can be used to accept the currcnt input smng, Lex chooses one pf the

rules act:ordmg to th“c. mcta—mles: ?
[1]’: . Usc_thé xv'h.lc whtc .acccpt.As the tokcri of grcatcst lcngth.
2] 'If two rules catn . uscd to‘accept a single stt1ng as two dtﬁ”crcnt tokcns of
ﬁthc same lcngth thcn use thc rule which appears first in-the spcctﬁcattt)n

The sccond mcta-rule can bc‘ used to dlsnngulsh rcscrvcd words from 1dcht1hcrs ina

programmmg language whcn the reserved words meet thc gcncral criteria for 1dcnuﬁcrs '

This is accomphshcd by ensuring that the rules for thc» individual reserved words precede

the rules for gcneral identifiers:
e .
ch supportshnulnple-character. lookahead However the mput stream w1ll be

backed up to where the end of the acceptcd token is, and all of the. looka?hcad characters
: must be touched (rcad) agam. L‘okahead can be delxberately mvoked by thc user to per-' '

form complex ;ﬁttem matchmg A good example of this is the DO-statement in FOR- _

TRAN Since blanks are 1nsngmﬁcant outsnde of comments and Hollenth strings in FOR- ~

TR’AN a DO-statement and an assxgnment statement startmg with DO are drﬁicult to dls~ o

ungulsh For example after removmg 1n51gmﬁcant blanks the DO-statement:
3, \) . ‘ -~
S DOIOOI=1,5
- andthe ASSI?N_MEN;I‘ statement:
' 'DO100I=1.5
.can be dxﬁ‘érennated usmg lookahead In Lex the DO keyword can be spec1ﬁed by

DO/ (d1g1t}+ ([letter} | {dlgxt})* = ({letter) | {dxglt})+

where the character, /, is the lookahead operator thn the comma is read by Lex, the -

DO is retumed as the keyword token and mput is backed up to the character following
the character O in DO. Substantial lookahead can be said to be a virtue in Lex smce it

can ﬁnd context. sensmve tokens

3.1.2. Lex So_ur_c‘e Spec"iﬁcation |

The general format of Lex source consists of three 'parts: declarations, rules, and

A »

" user su‘broutine_s [Lesk75.'p.8]. This fon'nat 'is shown in Fi'gnre 3.1. E

- The declaranon secuon mcludes declaranons of vanables mamfest constants and
N 4

regular deﬁnmons A vanable declaration is that of a target language variable Wthh is

ﬂlff‘;enclosed by the delumters { and) for example {dxgn]

- {declaranons}
%%
{translation rules}
, %%
{auxxlxary funcnons}

Figure3.1. Gereral Format of Lex Source, -

used in the.cdde for actions, for example:

~“char buﬁ'er[1024]

§

where the vanable deﬁmtlon must be: (1) preceded exther by 3 space or tab, or- (2)

enclosed by the dchrmters, % { and %}.

A mamfest constant is a constant declaranon u5cd in the target language for exam-

ple:

 #define EQI

where the .constant declaratmn must begm in column 1. Since the above statement is a

L

prepmcessor stzﬁeﬁ;cnt two lines contammg the delumters % { and %}, are required to

preccde and follow the above statement respecuvely

A regular definition i isa name which.is bound*to an expressxon so that the name can

be used in place of the expressmn in the rules. This allows the same expresswn to'be used -

in dlfferent rules thhout repeatmg it, for example:

digit [0- 9]

o ‘where’ the regular deﬁmuon must begln in column l thn used the name must be

ﬂ,‘p:

>

x¥a

4

€.

18
Thc translauon rules rcprcscnt the uscr 's contml dccxsxons Each transmo% rule con-
- sists of a regular cxprcssnon and an actIon Thc dcﬁmtxons of rcgular cxpressmns are)

, sumlartothosc in the prevnous chaptcr C c .

Classcs of charactcrs can bc specxﬁed using the opcrator p {). For exampl% the ,
cxprcssxon [abc] matchcs a smglc character whlch may bc an a,b, or c. Thc operator, -
mdrcatcs a charactcr range. For cxamplc [a- d] is cqulvalcnt to [abcd]
g chctmon is spccxﬁcd usmg the chcnc star * and Kleene plus +, opcrators 'I'hc '
, .star’ means _‘zero or more rcpeuuons and the plus mgmﬁes' one or more rcpctmons For L
'. cxamplc [A-Za z][A-Za-ZO 9]* represents all alphanumeric strings whxch stan w1th an
alphabctlc charactcr, whxlc the expression, [0-9]+, spcmﬁes thc set of all unsigncd"
mtcgcrs Notice that concatcnauon is spcmﬁcd by Juxtaposmon In addmon to the opcra—
tors, *, +, [], and - Lhcn: are many other opcrators The complctc set of opcrators is gwcn -
in. [Lcsk75 pp.3-5): | |
NI A0S/ ()% <>
" For c:ramplc. parcnthese/s are used for groupmg and the opcrator |, is used for altemauon

To use any op;rator as a text character it must be escapcd with the charactcr \

3.2. GLA—A Generator for Lexlcal Analyzers '

GLA [Wmt86b] is a tool dcsxgncd to bu11d fast, dxrectly cxccutablc lexical analyzers
from a spccxﬁcanon of basxc symbols found in the languagc gp be rccogmzcd GLA is not -

a gcncral-purposc lexical- -analyzer. gcncrator Unlike Lex afd other gcncral‘purposc

-a

’:.‘1

lcxlcal analyzcr gcncrators whnch acccpt arbltrary rcgular cxprcssxons and acnons GLA ‘

lmposcs some restrictions on the structure of the source language to bc recogmzcd

| . | 19
3.2.1. Design of GLA .

GLA parunons all basxc symbols uscd in programmmg languages into threc_

catcgoncs 1dcnuﬁcrs, dcnotauons and dchmxtcrs Idcntlﬁcrs are entities whosc mean-

: mgs are determined by the parser. For cxample, an 1dennﬁer ina dcclaranon an 1dcnuﬁcr |

in an assignment statcmcnt and a kcyword are trcatcd m a sxmxlar fashlon by the gen-

-

crate_d scanner

Denotauons rcprcsent constant valucs in the umvcrsc of thc sourcc languagc For

example, 3.5, ’Hellcr‘”World’ and TRUE are denotations i in Modula-2

Delumters arc op tors or program structunng symbols that carry no information

LY

' 'bcyond thelr rccognmon by the compllcr For cxamplc’ comment dchmltcrs strmg dcl- | .

imiters, parcnthcscs and whltc spaqc are delimiters. ,@

A GLA token is not sunply a value, It isa rccord contammg other information about

the tokcn Each token also contains its coordmatcs (lme numbcr and charactcr position)

in the sourcc program for ¢ error rcportmg, its corrcspondmg tcrmmal codc (tokcn value),
and an mtnns:c attnbute if it exists. Idcnnﬁcrs have a symbol tablc entry as an attribute, -

and denotauons havc an cnuy into a constant table as an attnbutc

In addmon to the lcxlcal analysxs modlxlc whlch contams the algonthm for rccogmz-

ing basm symbols GLA makes use of four othcr supporung modules which prqvndc ser-

1
vices to the lcxlcal analysis modulc Thc four supporting modules are: the source text

. module the symbol table’ module, the constant table modulc and thc crror-rcportixig ,

. modulc

-'I"hc source text module represents the source program as a stream of characters and

N v‘ \
(- ‘ -\'1_ ' _ 20

' pmVIdcs thcsc charactcrs to thc scanner as rcqulrcd This modulc provides the cﬂiment
‘ . ® 4

dxsk access rcqulrcd by the scanner.

-The symbol table module stores the set of dxsunct 1dcnuﬁcrs uscd m thc program,

- including kcywords if th;y are lcxlcally the same as thc ldcnuﬁcrs Thc symbol tablc is

actually prc-loaded with thc\kcywords dcﬁncd for the source languagc. cach of which is

gwcn a propcr tcmnnal code and a null intrinsic attnbutc

The constant table modulc mamtams thc valucs of the constants - uscd in thc source

~ program. For cxamplc hteral strmgs, mtcgcrs, and ﬂoatmg pomt numbers can be stored

The crror-rcpomng module contains the set of €rror messages appropnatc for the

sourcc languagc These include. thc error mcssagcs gcneratod durmg scannmg as well as .

. those gcncrated dunng othcr phascs of compllatxon

The s_g'atcgy of thc lcxxcal ana]ysm algonthm is to select a subautomaton on the

AN
N

——re

' basxs of thc class Gf a token’s ﬁr3 character. Basw symbols found i in most progmmrmngT '

' languagcs canbcgroupcd into six'classes; ' C | | "‘%_ ‘
% : .A[l] -charactcrs Qf'u'chb'cgin idcntiﬁcrs;
_- [2] | rcharactcrs Wthh bcgm mtegcr anri ﬂoatmg pomt numbers
‘:[3]'4 character(s) whxch begin stnngs
t4] 'charactcr(s) whlch ‘bc‘gih.'commcnts; |

[51 . sin'glo-qhziractcr.ndn4alphanumcric symbols;

- {6:] multiplc-c'har'actcr, non-alphanumeric symbols.

“This selection of subautomaton is controlled by a character-indexed table Called

do {
/* skip white spacc */
switch (terminal = chtbl[currentCharacter]) {
‘case NULT: /* any other characters */ - o
- /* check for line and file terminators, and illegal characters */ -
break; . T
case IDNT ;- T S
% while (scantbl 1denuﬁer[currentCharacter])
: advance one character; .

% break;

}
} while (/* terminal is NULT */);

 Figure 3.2. . Lexical Analysis Algorithm for GLA-Scanners-

chth, each element of which spcniﬁcn a terminal code (tokcn'\;aluc)'fon'somc basic sym-
bol bcgmmng wnh the indexing charactcr Aftct sclcctmg a subautomaton from one of
- the ﬁrst four classcs, further automaton actions are dctcmnncd by anothcr charactcr-‘

'mdcxed context table, scantbl For cxamplc Pascal needs 66 tcmunal codcs and fgur .
: contexts scantbl 1dent1ﬁer scantbl. mtegcr scantbl string, and scantbl commcnt Addl-

tlonal contexts may be nocded for dcnotauons for example, ﬂoatmg pomt numbers,

S g
binary numbcrs andsoon. @ " ~

Thls table contains contexts of bmary clcments which mdxcatc whcthcr the mdcxmg
Character is a vahd conunuanon for a token of the appropnatc type. Flgurc 3. 2 shows

’ .somc GLA skeleton code for scanmng mcludmg the use of chtbl and scantbl

For the remalnmg two classcs [5] and [6] furthcr acnon lS dctcrmmcd by the naturc

- 'of thc symbols in thcsc classcs

Y

| SR 7
3.2.2. GLA Source Speclﬁcatlon | ST .@;
GLA uses a vcry hxgh -level sp@clﬁcatxon languagc It obtains information about the

form and codmg of bas1c symbols from two sourccs

[¢)) Tokcn dcﬁmnons A spccxﬁcauon of the basw symbols havmg intrinsic attri-
\ butcs the dcsucd foxms of comments, and specxal optxons not otherwise-

appcarmg htcrally in thc hst of basxc symbols as dcscnbcd in (2)

) Basxc symbol list: A’ hst of all basic quoted/ and unquotcd symbols (to bc i
described later) of thc source languagc possxbly w1th a tcrmmal code (tokcn

valuc) attachcd to each.

The tokcn definitions contain one hne for cach basnc symbol with mmnsxc aﬁn-
butcs two lmcs for each desired form of commcnt, and one line for each opuon to be
exercised. Each line, in tum consists of a kcyword that defines thc purposc .of the lmc,
‘plus othcr clcments (maybc mtcgcrs, strings, or sets) necdcd to complctc thc dcﬁmuon

¥
Th; basic symbol list consists of two kmds of tcrminals- quotod and unquotcd ter-
mmals A quotcd tcrmmal rcprcscnts a smglc symbol appcanng htcrally in the source
program whllc unquoted tcrmmals rcprcscnt sets of symbols. For cxamplc '+ and |
'BEGIN’ a'rc quotcd basic symbols while Namc and Real Number are unquoted bas1c

~

symbols rcprcscnung vanablc names and real numbers respccuvely

Fxgung 3 contains cxcerpts from a- GLA spccxﬁcauon for Modula-2.

3.3. Mkscan — An Interacti\fe Scanner Generator

| Mkscan [Hors87] xs a tool for generating and 'cdlﬁng scanricrs.’It is not batch-

-

23

-
-
.

“

. .
2

» 'BEGIN".
b .~ % 'END’.

v 3 Modula ’i‘dcntiﬁcp" "
" Modula. _integer.. " ¢,

\ » .‘ ; ‘ &1 MOdu.]a Smng - ’ ~ s
" (a) Basic Symbol Ltst

- IDENTIFIER Modula 1dcnt1ﬁcr [A-Za-z] [A Za z0:9]
. INTEGER Modula_integer [0-9]*[0- 9A-Fa-f] [BCH]
REAL Modula_real [E] [0-9]
STRING Modila_string [*"]
BEGINCOMMENT 1 (*
ENDCOMMENT 1 *)
(b) Token Definitions

F igur,e 3 .3 . - Excerpts Jfrom a GLA Specification Jfor Modula-Z

oncnted like Lex and’ GLA Instcad it'is an mtcmcuvc tool wnh a full scmcn uscr mtcr-

face. Like GLA Mkscan has bccn tallorcd to suit thc lcxxcal structurc of common pro- .-

L

gramming languages, - P o R
3.311. Design of Mkscan
Mkscan is easy to use. It requu'cs no pnor knowledgc of rcgular languagcs or othcr

aspects of compiler thcory Instead, it guides the uscr through a series of choxccs in an\

mtcracnve manner. o o B o -

"4,

%- 24
'I'o accompllsh thxs mtcracnon style, it was necessary to sacnﬁce generahty In par- '

| ticular, Mkscan assumes Lhat mput processmg will be pcrformed ina free format mode

Furthermore tokcns‘are classrﬁed accordmg to their common use in programrmng

o languages and grouped into four categones 1dent1ﬁers, keywords numbers, and specxal

symbols o - ' ’ - y ‘ - -

e,

Mkscan makes }(_?asy to’ modrfy previously generated scanners. It does this by stor—
mg mformanon about the scannér as comments at the beginning of the file which con-
- ‘tains. the scanner. If a user w1shes to modify a scanner the scanner’s file is read by

" Mkscan and the comments sed as the S 1ﬁcatxon Nothe that when a scanner is
pec

L , gencrated thc user gets the specxﬁcauon’ along thh the scanner.

Mkscan generatcs scanners Wthh .e compact and fast with ﬁexlble mterfaces for
external programs The scanners are 1mplemented as ﬁmte automata usmg a dmect execu-.
uon approach To be more precrse Mkscan has addbpted an lHlpllClt state vanable unple- :

mentanon of ﬁmte automata as shown in Flgure 34.
3.3.2. Mks_can Source }Speciﬁ’c"at-ion ‘_

'Mkscan guxdes the user thmugl': a senes of menu pages orgamsed in a hlerarchxcal '
manner At the top lcvel thc main’ menu contarns choices for (1) mput of a prevrously ._

generated scanner, (2) edmng of an exlsung (or new) scanner, and (3) output of the_

" scanner.

_ The procéss;

" corresponds _p a class ,Qf,lexxcal tokens or spme other main lexrcal feature of scanmng :

'Mks

sumes that the mput stmam ‘will contain 1dent1ﬁers wrth a certain and regular
- ﬁ‘ 5% o . *

ol ﬁmng is broken down into several submenus Each submenu A' .

State X: R -
 switch (currentCharacter) { .
: : case 'a’ : goto State Y; . - -
i o T return; - h ‘ ,
* ‘ State Y: : é , .

Figure 3.4. Implicit State Variable Implementation of Finite Automata
: e D v :

structure It has assumcd that an 1dcnt1ﬁcr con31sts of one or more charactcrs whcrc thc
first charactcr is drawn from one set of. charactcrs and the rcmammg characters from :
‘ ..anothcr set of characters Morcover kcywords are assumcd to satisfy thc rulc for

| 1dent1ﬁcrs That is, a keyword must bc a vahd 1dcnuﬁcr in itself. A hashmg tcchmquc is

uscd to determine if an- 1dcnt1ﬁcr found is actually a kcyword spccxﬁcd by thc user.

- Chapter 474 -

S ‘V i . A
Introduétlon to the LexAGen Envnronment

T
ki
4

chAGcn is an 1nteracuvo software cnvuonmcnt for thc destgn codmé, and tcsung‘
of lexical analyzcrs It %capablc of producmg fast gencml purpose lcxxcal analyzers
Howcvcr chAGcn has also been doitgncd to copc with lcx:cal structurcs in programr .
. ming languagcs Unhkc most gcncral-purposc lcxtcal-analyzcr gcncrators, chAGen-
doe \ﬁtbusc rcgular cxprcsswns for spccxfymg lexical analyzcrs Instead, it unllscs ares-
tricted rm of BNF as a conccptual framcwork for specxfytng tokens hkc ldCl'ltlﬁCI‘S ‘
: stnngs and oommcnts found in common programxmnﬁ/l/anguages 'I'hc user %racnvcly |

cdxtsBNFproducttonstospcc1fyascanner S A @

“This chaptcr bcgms by dcscnbmg the basxs for the spcc1ﬁcatton notauon used in -

chAGcn However, the ‘most 1mportant innovation in chAGcn is thc extent of assis-,

L tancc lt prowdcs to gmdc the user through the process of dcsxgn, codtng, and tcstmg This <

(

assistance is bascd on a graphtcal user mterface and +his chaptcr describes the spccxal

fcaturcs of chAGcn whtch are based on that mtcrfacc ’ _ ¥

4. l Token Speclﬁcatlo%smg BNF N
¢t

Usually. the lexical structurc of a programmmg languagc is specxﬁcd by usmg a reg-
.

“ular grammar, in which tokens are ‘built accordmg to some simple syntactic rules. ch-'

AGcn uses the formahsm of BNF to dcﬁnc its tokens for threc reasons. Firstly, BNF has

_ _been used cxtcnsxvcly in the formal dcﬁmuon of the syntax %most programming

26" o

27

v
r !

 <identifiers> , = <lcttcr> l <lcttcr> <alphanumcnc charactcrs>
" <alphanumeric ch’aracters> 1= <letter>

| <letter> <alphanumeric characters>

I <digits v
o - -<digit> <alphanumenc characters>
- <letter> : = Al 1Ztlal..lz

<digit> o - u=01..19

o r
where tg/c ellipses represent a short-hand notation of ranges.

Figure'd.I. BNF Specification of Identifiers

;langua'gc's,) most uscrs arcfaxmlxarwnh il ScCOnclly, BNF is often used in parser
spec1ﬁcatlon thus, there is r/:o need to mtroducc a new. notanonal framcwork whcn parscr‘h :
‘gcncrauon is mtcgrated wnh chAGen And lastly, the DFA rcprcscntatxon uscd in ch-‘ ,
AGen is closer to BNF so that futurc dlrcct computauon of DFAs would be much casier

to undcrstand if BNF is used. In fact LexAGen uses a rcsmctcd form of BNF togcthcr

with some specxal mcchamsms .
©,
2y

411 Restricted BNF Notation

| In BNF notauon, thcrc are two kinds of symbols, tcrmmal symbols whxch are
stnngs of characters and non- tgrmmal symbols which are symbols that represent thc
a.ltcmanon of . the: concatenanon of other terminal and non- tcnmnal symbols Non-

: tcrmmal symbols are enclosed in anglc brackcts <>, 50 thcy can bc differentiated from

thc temnna.l symbols

- Bcsides the angle brackcts, two other meta-symbols are used. 'I‘hc' vertical bar, |, is ._

used to ‘represent altcmauon and the meta-symbol, ::=, is used to define non- terminals,

e

- 28

Each non- termmal definition is callcd a producuon Flgure 4.1 includes four BNF pro«-

~ ductions whlch together deﬁne ldentrﬁcrs in Pascal or Modula-2;

The use of BNF notation docs not overly restnct the expressrve power of the

« i

) lcxlcal analyzet gcnerator BNF oﬁ”ers a good notanonal framework for. context free .

grammars, Smce context-free grammars are a superset of regular grammars BNF is actu-

ally more gcineral than r ular expressxons However in LexAGen the BNF productlons

are rcstncted in that ecursive non- terrrunals can only appear as the nghtmost symbol ina *f :

& ,
productxon Thls means that the context-frec grammars are rcsmcted 10 be nght-lmcar

Wthh are equxvalent to regular grammars [Reve83] Thc restnctlon of nght lmeanty
, .

| sgrves to clumnate cycles in the DFA ncpresentauon of the spemﬁcauon

i

Extended BNF notation is one altcmattve to BNF notatlon Extended BNF mcludes

the Kleenc cross, C+ whxch means a sequence of one or more strings from the sy actlc
ﬁ +
category, C Another such extensxon 1s the Kleene ‘star, C*, which stands for a sequence .

Y4

of Zero or more elements of the class C These two notauons have made thc extended

ﬁBNF notatxon a httlc more dcscnpuve however, one can casﬂy employ thc BNF notation

to’ expncss tgg same 1dcas usmg recursxve deﬁmuons That is, thc cxpressrve power of

BNF is equlvalent to the expnessxvc power of the extended BNF

4.1.2. Usmg BNF to Speclfy Tokens
¥ ®_ '
When BNF is used to specxfy tokens one addmonal pmr of "netacharacters is

needed Whlle some non-termmals represent tokens others are used to make the

: deﬁnmons more readable or. to glvc names to commonly occurnng expressrons The two

. types of non- temunals must be dtfferennated since. ‘the gencrated scanner must only

-~ O ’ - r N .

0

29

return tokens. The metacharacters << and >>, can be uscd to identify those non- terminals

whxcharetokcns o , L .

chAGcn has been dc51gncd to cope wuh the Iexical structure of programmmg

languages Unfortunatcly, the restricted BNF notanon is not capable of rcprcscnung all of -

“the tokcns whlch are commonly found in programmmg languagcs For this reason, addi-

-

uonal mcchamsms are necded to spec1fy thesc 'Specxal tokcns

Thcrc are: bas1cally thrcc kmds of spccxal tokcns Thc first kind of spccxal tokcn is

'uscd to spcafy 1dent1ﬁcrs and kcywords An xdcnuﬁcr in 1tsclf isa gcncral token Wthh“ '

~

. may be spccxﬁcd using BNF Howcvcr whcn uscd in. conjuncuon with- gpgrammmg
languagcs, 1dcnt1ﬁers can be spccxal tokcns since kcywords often havc to sansfy the
.spcc1ﬁcat10n for 1dcnt1ﬁcrs and. yet must be mﬁ'crcnuatcd as dlffé?c—r# tokens. chAGcn

pmwdcs a mcchamsm for spcctfymg 1dcnuﬁcrs and kcywords |

The sccond lqnd of spccxal token i is uscd to specxfy strings and comments. Somc-

times, 1t is necessary.. to cxclude somc charactcrs from thc semantlc valuc of a tokcn A

' strmg is such a tokcn, in that the cnclosmg quotcs are not part of thc stnng tcxt Some-. -

M
umes on the other hand itis ncccssary to 1gnorc somc text when scckmg thc next token.

A commcnt is such an entity. Although sunple comments can bc spccxﬁcd usmg the res-

tncted BNF notauon nested comments cannot. Since some programmxng languages- (hkc
Modula—2) allow ncstcd comments, a_special mccha.msm must bcysed to spccxfy thcm
LexxGen allows both strings and nested commcnts to be specified. ’I‘hc kcy to rccogmz-

ing nested comments is to keep tmck of thc nesnng lcvel

The thxrd kind of spccxal token is one: in whxch snmplc lookahead is rcqulrcd to

‘ o o | 30
resolve a.mbxgulty For example the'sequence ">=" may be mterpreted either as smgle |
' token or as two tokcns, "> and "=" As is the case wrth most lexrcal-analyzer generators, |

LexAGcn resolves this kmd of ambrguxty by choosmg the longest match (i.e. by recog-
nizing the token ">="in this example) In some other cases, however, thxs method is not
_ appropriate .or adequate In Modula-2, for instance, the scquence "123.." would be recog-‘
‘ mzed as the real constant "123 " and the decimal constructor "." However the correct
mterpretatron should be the cardmal constant "123" and the range operator “..". This

problem has been addressed and solved in the Alex scanner generator [Moss86].

In LexAGen the user can force this nesult by attachmg two lookahead characters to’
the end of an altematlve of a pI'OdUCtIOﬂ When the last lookahead character is found itis -
left in the input stream (as untouched). In addmon the i mput stream is rewound one char-
- acter, and thelcontents of the token bu&’cr are ﬁlled thh characters since the last match -
; and up to (but not including) the rewound character The producuon s token value is |
retumed, Consider the followmg producuon for <card1n,al>
<cardmal> = <uns1gned mteger><' |

“where the metacharacter <, has been used to mdrcate that the next two characters arethe
lookahead characters Thxs producnon can be used to solve the rangc operator problem of
‘Modula-2 When the first dot 1s found the next character 1s exammed in the usual'-
’ manner If it 1s a dot then the lookahead is successful Thus the second dot is left
untouched whrle the i mput stream is rewound The ﬁrst dot becomes the current charac-
 ter. The contents of the token buﬂ'er consist of the strmg "123", and the token value
_ CARDINAL, is retumcd to the cltent apphcatron The next token found w1ll then be the

: range operator " Nouce that this mechanism is really a two—character lookahead since -

-

)
both dots are cxarrﬁncd in capturing the token, "123", while the mochanism of longest

match éssqntially inyolvcé one-character lookahcad

LexAGen i 1s currently restricted to this two—charactcr lookahcad schcmc since two—
charactcr lookahcad is basically su/tﬁcncnt for most modcm common programmmg con-
’structs Howcvcr it is gcncrally casy to adapt othcr fixed- lcngth lookahcad schcmcs |
Although Lex can solvc the Modula-2 rangc opcrator problcm usmg its multtplc-
" character 'lookahcad facility, Mkscan and GLA must use special, 'rcstncttvc built-in .
mochaniSms.b | .‘

4.2, Features of the LexAGen Envnronment

d . . . o
- To discuss thc way in whrch the BNF bascd spccrﬁcatron }s uscd in chAGcn. it is -

,noccssa.ry to look at the environment as 8. wholc LcMGcn is thc ﬁrst componcnt of an
) envisioned integrated comprlcr generation environment. As such it cax} be vxcwcd as thc ‘
first component of a. spccrahscd programming cnvuonmcnt Intcgratcd programmtng

environments are usually dcscnbcd as those that support software crcanon modxﬁcatton
. .

| cxecutfbn and debuggmg One goal of mtcgratcd programming cnvuonmcnts is to buxld'_: o

_~tools that sharc a common mtemal rcprcsentatron of thc undcrlymg software structurc A .‘
| seoond goal is to prcsent a qonsrstent user mtcrfacc across tool boundancs Howcvcr |
thm'c is a thmd goal Wthh is often mrssmg An 1ntcgratcd programmmg cnvmonmcnt
'cncapsulatcs the mcchamsms used to 1mplcment thc cnv1ronmcnt s functtonahty For

cxample thc same syntax chcckmg mcchamsm can bc uscd throughout thc cnvu’onmcnt

Thc graphical user. mtcrfacc of LexAGen is an cxamplc of such an cncapsulatJon

mechamsm In gcncral graplucal user mtcrfaccs can have many posmvc cﬁ'ccts on

'programrmng environments: error _reduction, sxmphﬁed mcremental analysxs and
_‘ efficient debuggmg [De1184] LexAGen is unique among scanner generators in applymg

these benefits to scanner generation. . o - a

4.2.1. User Interface Paradigm ;
LexAG;n is 1mplemented in Smalltalk 80 [Gold85], and the user mterface is. based

on the Smalltalk- 80 mtcrface The user interacts w1th LexAGen using a spemal browser

' pop-up menus [Gold84] and dxalog wmdows [Szaf86]

The browser is dmded into the left and nght panes Each pane represents a dlﬁ’erent
context in whrch the user can perform»specrﬁc tasks appropnate for the overall proccss of
E developlng a lexical analyzer The names of non-terminals appear in the left pane At any

; time, a single producnon from the left pane 1s hlghhghted and the altemauves for that |
non- termmal appear in the right pane Dxﬁ'erent non- terrmnals can be selected by clxck-

" _-ing the mouse on the desrred non-terminal in the left pane Fxgure 4. 2 shows the browser

e ’_ Commands are ngen to LexAGen. through the use of pop up menus. Each browser L

S

context (pane or wrndow contammg the cursor when the menu pops up) and the current

: mtemal state of the context. Thrs allows LexAGen to display those menu operauons that

32

Ed ;__'panc or dxalog wmdow has amenu assocnated w1th it. The menus are sensitive to both the

: are apphcable at a given time for a given context. This reduces the number of errors

- which can be made by the user. For example, Flgure 4 3 shows two drﬁ'erent pop up

) menus for the same pmducnon selécted in the left pane m whlch the selected pmducuon
(I) has not been and (2) has been deﬁned asa token Note that the second pop up menu is -

.ahxerarchxcalone T L '\.(r o
A T o s

<alphanumoric) <letter> L _ k T

o H <real).
<unsigned integer)

- ——— e - ——————— — -

' Figure42. - ‘A Typical Automata Browser

Each command takes a ﬁxed number of arguments. If a command has several fixed

opuons then LexAGen presents a. hlcmrclucal menu with the appropnatc opuons If a
command requires. mput from thc user, chAGcn then prcscnts a dialog box to thc uscr

~

rcqucstmg the ncccssaxy mput. anurc 4.4(a) shows such a d;alog box..

To cntcr a ncw producnon the 1 uscr chooscs thc "add new producnon command

fmm thc lcft pane mcnu A general dxalog box appears, and thc user typcs thc name of the’

.33

' non-tcnmnal When thc acccpt" command is chosen from thc menu for thc dmlog wm-' R

.‘ : dow (or the return kcy is prcssed), the name -appcars in.the lcft panc 'of Lh.ejibmws‘cr md is

34

U , , add new production
- I ' .remove production
: renama production
add new production copy production
remove production _|paste system production
-ranama production _ generate scanner -
copy production , exaecute >
;1. paste system production - __display - . p»
Q@Xx@cute current production . _set token_value
| display current production | efine non-token
' show P identifier
turn white space on ‘turn white space on ’
resat system ' reset system
inspect . inspect [T
(a) Producuon is nota token (b) Productlon is a token 5

L3

Figure43. Different Context-Sensitive Menus for the Left Pane ('\

[w]

hxghhghtcd. To cntcr a BNF cxpressxon for this n%n-tcnmnal ‘the user chooscs the "cdxt

altcmatlvcs" command fmm thc nght pane menu. A special dJalog wmdow as shown in
3 Fxgure 4 4(b). appcars and thc user typcs the cxprcssxon in the tzop tcxt-cntry vu:w z\md
‘chooscs thc accept" ‘command from the text mcnu (or presses return). 'I'hc cxpmsclon‘ |
wxll appcar in the bottom sclection view of the dlalog window and in thc nght hand panc.. .

of t.hc browscr If othcr speclal dmlog windows - are opcncd for thc current producuon

' : thcy are also updated to n:ﬂcct this addmon of a new cxprcssmn

Thc set of menus n:spondmg to the bottom sclccuon view of thc spcc:al dxalog box

s C“CUY the same as the’set of menus rcspondmg to the nght hand panc of thc bmwscr

* This allows thc uscr to cmcr muluplc expressions for the samc pmducuon wnhout havmg

Enter name for a production

4

(a) Gcncral Dlalog Box

Altamdtl\/ug (,ollnctor

(b) Special Dialog Box = ‘ : })

"Figure 44. G@nerd‘and Sp'ec"ial".Dia'log Windows

to ckhoosc thc “add new altcmauvc many times (dus.was thc ongmal command avmlablc .
in thc nght pane instead of thc "edxt alta-nauvcs" COmmand) Figure 4. 4(b) shows a spe-
cial dmlog wmdow in which an error mcssagc has been mscrtcd in thc text view to rcport
asyntaxcrmr v : .
Notc also that the gtaphxcal user mtcrfacc obvmtcs the need for thé altcmauon mcta-'
vcharactcr I, and the non- tcrmmal dcﬁmng mcta—symbol =, Although the user must sup-
ply the mctacharactcrs, < and P to dl!‘crcnnatc bctwccn non tcrmmals and tcrrmnals in’
: thc nghtgnc chAGcn supphcs thc f ckets i m lhc left panc chAGcn uses an cscapc

mctacharactcr backslash \ so that an anglc brackct, <, can be, cmcrcd as a lncral Ot;

36
course, to enter a hteral backslash, two backslashcs must be. used As a desxgn decision,

LexAGen generates scanners which assume free- format 'I’hat is, white spaces (one or
'

more blanks, tabs, or newlme charactcrs) are token separators SO thcy cannot bc escapcd
They arec s1mply 1gnoned |

‘When the name of a non- termmal appears in the left panc a pair of single angle
brackcts is supphed automaucally by thc browser to denote that the non-termmal is non-
) token by dcfault. Howevcr thcre is a menu command WhJCh the user can use to declare

that the non-tcnmnal is really a token When this command is executed the smgle angle

-

_ brackcts are replaccd by a pair of double angle brackets to denote that the non-terrmnal is
now a token Note that the user can also un-declare a tokcn at any time by choosmg the

appropnatc menu command
For each token. the user can also specrfy a token numbcr to be retumcd by the ﬁnal :

lexrca.l analyzer If no token number is assrgned by the user, then a default value is pro-

o ' _ ("‘:’i"":)'
vided. | s o

4.2.2. Incrementality)
Graplucal user. mtcrfaces have an unmedxate 1mpact on thc 1ssue of rncrementahty

in pnogra.mmmg envxronments They can sxmphfy the problcms of incrémental analysis
by nequlnng the user to enter mformauon in spec1a1 dtalog boxes (entry wmdows) As

comect mformauon is acccpted it can be transferred to other windows Wthh maintain a °
mpmsentauon of correct stmctures Incorrect mform:non can srmply be Ieft m~the cntry
wmdows unttl other changcs rcsult m its final correctness [Szat‘86] For example an
expressnon whlch tmght rcsult ina conﬂicnng token dcﬁmuon mxght have to remain in an

v. Ty "

» i \A
’ A
B 7

°W wxndow unul other cxprcssxon(s) or producuon(s) is (anc) dclctcd to removc the
potential conﬂlcts Thxs helps the undcrlylng cnvmonmcnt not only copc with incorrect
'mformatm_n easrly, but more 1mportantly a correct rcprcscntanon of thc mtemal structure
1s always maxntamcd An addmonal advantage of this approach is that the user receives
. 1mmed1atc feedback as to the coxrcctncss ofa spcc1ﬁcatxon

) LchAGcn uses ths approach to chrmnatc both synta» errors and token’ spcclﬁcanon
conﬂxcts Flgurc,ﬁ S(a) shows an error rncssagc whxch results from an attcmpt to dcclarc a .
,conﬂxcnng productmn as a tokcn Howcvcr, some spcclﬁc mcorncct mfonnauon is
accepted in Lc:d\Gcn namely undeclared production names which are used in the nght

© pane of the browser. For examplc thc productxon <binary d1g1t> may be used in the
. nght hand side of a producuon, even though the namc, "bmary dlgxt" | h_as 'nor yct bccn

dcﬁncd in the left hand pane.

Thxs behavmr has been allowcd for user convenience. \In fact, declared and undc- »
clared rcferences share the same mtcrnal repre,sentatxon but thcy are kcpt scparatcly

Thclr existénce does not harm the process of mcrcmcnta.l analysxs, nor the final rccogm- »

tion of cxprcssxons At any time the user may issue a command which lists all the names

which are cum:ntly undeclared.

The simplcst approach to thc problem of incremental analysis is to determine the

rmmmal scparatc umt of mcrementallty Thc major goal of incremental analysns is to
. g

avoid nc-analyzmg the entire-structure or large portions of 1t whcncvcr small changcs are -

‘made. In othcr words, thc time to updatc thc mtcmal state of thc systcm should bc

mxmmal whcn a small changc takes placc

Alternatives Callzctor §

AutomataBrowser(Object)>>orror
AutomataBrowserd>arrorConflict
AutomataBrowser>>defineToken v
‘ , SelectlonanstController))yellowBut#’
: SelectionlnListControl[er(MouseMen

e conflict =) [

—— e ————— ——

(a) Err_or Reported . | . (b) Error Inserted

The smgle underlymg mtemal and intermediate representanon of LexAGen is the
| detclmmxstw finite automaton (DFA) Each production i is represented as a DFA whose
structure ts the smaliest unit of tncrementahty When the user adds an altemauve to a
pmducnon. syntactic analysts is performed to check for the alternauve s correctness and
semanuc analyses are performed to update the producuon and other productlons depen-
dent on the pmducuon being m—deﬁned. The latter analyses are necessary to ensure that
all DFAs aﬂ'ected remain detenmmsuc thmugh updatmg Furthermone 1f the aﬁ"ected
'DFAs tnclude the DFA repvesentmg the scannc&: updatmg pnocess is to‘ensurc the

-overall conectness of the scanner.

38 - -

Consxdeﬁhe productmn A whxch has been defined as <<A>> :=ablband the = ..

pmducnon. C, whxch has been deﬁned as <<(>> = cb Note that both A and C are
' tokens Suppose the user wants to deﬁne B as =cC. Smce Ais dependent on B ivis ‘

‘ nooessaxy to update the DFA representmg A and check for the oom:ctness of. the DFA

39

e n:prescntmé the scanncr with thc new dcﬁmuon of B. Now, there is a conﬂxct rc‘sultmg‘
from thc fact that when B is cq(pandcd“ in the deﬁnmon of A, there are two tokens, A and
C, which match thc stnng “cb". This prohibits the token definition of B as A would have
been madc mcormct So, thc expression, "c", is lcft in thc tcxt-cntry view of the specxnlv

d1alog wmdow Fxgurc 4.5(b) shows the dialog wmdow in whxch an error mcssagc has .

~ been mscrted beforc the cxprcssmn et

423 Debugg_ing in LexAGen

Graphlcal mtcrfaces can also have a s1gmﬁcant impact on thc run-time fcstums of‘ :

pmgrammmg cnvuonmcnts cspccxally debuggmg [Szaf86]. chuggmg consists of thrcc :
- major, actlvmes selecuon viewing, and modxﬁcanon of thc softwarc s mtcmal statc

-Even though LexAGen is'a spccxal-purposc programrmng cnvuonmcnt dcbuggmg isa

" necessary. part of thc process of gcncraung a scann@ The graphlcal uscr mtcrfacc is uscd _'

to enhance the productmty of thc user and, thcrcforc spceds up thc process of scanncr

_generation. ‘ |

: ":.Irr‘vgcnsml a'mouse and a bn-mappcd dxsplay can bc uscd to allow arbxtrary pro-

' | glammmg structurcs to bc sﬂectcd cxccutcd and modlﬁcd In chAGcn the user is ablc .'
to sclcct a DFA formqwjmgvcand cxccuung A sclccnon may bc an altcmauvc in the nght |

L3

pane Of th brow%'ex‘ or: a,'vdcﬁmuon of producuon in thc left panc Two spccnﬁc menu -

._.m .)Fq .M": ‘;‘»‘l -

commandé‘ "display" and "execute" havc been prowdcd to drsplay thc appropnatc DFA'IL,

in a dc51gnatcd wme\’{'/ and to allow the user 1o test the cxprcssmns whxch it can rccog-
nize. Fxgurc 4, 6 shows the DFA for a producnon If thls DFA was cxccutcd ‘then thc

e asked for Lhc mput strmg and a scqucncc of tokcn yalucs and token strings

-

L%

. '1dcnnﬁcrs This is done by usmg a menu in the left pane After this productlon has becn,,f' o

40

where A represents the tokcn value to be returned

.F
J

Figure 4. 6 A Typzcal Determzmsnc Fi uute Automaton

m
o,

are prcscntcd to the user in another dcsxgnated wmdow

At prcscnt chAGcn d1$plays a textual represenmuon of a DFA instead of a- graphl—

cal one, chcrthclcss this dlsplay has proven to be useful for(f%tware testmg, espcc1ally

| durmg thc dcvclopmcntal stagcs of chAGcn 1tsclf Moreover, chAGcn pI‘OhlbltS_

modification of a DFA du'cctly in the dxsplay, since these DFAs are the smallest incre-
mental units, Héwever 1t may be pos31blc to relax this restriction by employing a
graphlcs-m‘cﬂ/dxsplay and cxtcndmg the smallest incremental unit to a ﬁmtc state inter- -

nal to the DFA’s structurc

- 4.24. Specnal Tokens in LexAGen

chAGcn allows the user to chIgnatc one (and only one) productlon as the rule for

chosen, a menu sclccnon can now be uscd to enter kcywords Wthh are: lex1cally

equxvalcnt to 1dcnt1ﬁcrs Each kcyword cntered is checked to ensure that 1t sansﬁes the -

mlc for identfiers, Kcywords Wthh -are lcxlcally the same as 1dcnt1ﬁers but not reserved

‘ NI) |

(hkc standa;rd 1dcnt1ﬁcrs In Pascal) can be dealt wnh by the mvokxng parser (or other user
A '

application). 'I‘hcy will be trcatcd by thc scanner as though thcy were reserved. On the

other hand, kcywords which are not lcxxcally the samc as Jdcnnﬁcrs (hkc Algol’s) can be

spcc1ﬁcd as gcneral tokcns

Stnngs and commcnts ~are specified by choosmg commands from the left pane
menu, and the dchrm,tcrs are cntcrcd in dialog windows. 'Lookahead for an altcmativc is
spcmﬁed by choosmg a command from thc nght pane menu, and the lookahcad charac-

' ters are cntcrcd in a d1alog window. The lookahcad charactcrs arc thcn machcd to thc end -

of the altematwe with the metacharacter < prefixing them | -

SN . k

& .
X e L S 'g‘q
SO RN 3 » 2} .

}Ch‘apter 5

' " v ’ , ' . . A‘ . .» ‘ ‘(M
Implementation of the LexAGen Environment

N

This. chapter descnbes the 1mplementanon of the LexAGen env1ronment There '

I

were two specific desrgn goals that mﬂuenc.ed both the funcuonahty of the environment
. 2

7
and its implementation. The first goal was to design an integrated software environment.

&
- The second goal was to represent a specification by a general umform and mcrementally
. editable data structure which could be translated in a stralghtforward manner to a com-

-pact, cﬁicxcnt scanner

Thc first des1gn goal was rcahzed by basing LexAGen on thc Smalltalk-80 env1ron- .
)} ment and user: mterface parangm I‘he second design goal was neahzed by using deter-
»

‘ministic finite automata (DFAs) to reprcsent spccrﬁcanon of productions, 1mplement1ng

thcm in Smalltalk 80 and generatmg a C-code scanner

5.1. _The Inﬂuence of Smalltﬂk ‘ : : o | F

Smce LexAGen is 1mplemented in Smalltalk-80 it is necessary to understand some-
,thmg about the Smalltalk 80 envxronment and language in order to understand the unple~
mentation of LexAGen.
5.1.1.' The Small_talk Environment

. 4

’ The most profound mﬁuencc that Smal}talk 80 has had on the LexAGen envrron-

Iment comes from ‘the structure of the Smalltalk-SO user mtcrface This structure is

42

@
referred o as the model-view-controller (MVC) pmdtgm [Szaf88] Although o
Smalltalk 80 user is not ‘strictly forced to use thxs scheme, thc.support provndcd makos ,
~ user interface construction n:latwely straxghtforward | |
\J As the tcnmnology suggcsts cach component of thc user interface is divided into
threc parts The ﬁmt part is thc modcl which rcprcscnts the apphcanon in the tradmonal
schcmc of UIMS (User- Intcrface Manag fment Systems). The rgodcl contam? all of the

- application dcpendent mformatlon and code The view and controllcr compose what is
traditionally refcn'ed to as the user mtcrfacc Thc view componcnt is responsxblc for
displaying mformauon on the screen. Thc controller is rcsponsxblc for acccptlng uscr
;mput mcludmg thc dxsplay of pop-up menus, cursor tracking, and mapping user inputs

into mcssages for the application. | |

_Tho two-pano btowsér is an cxnmplc of thc MVC p;.radlgmm LexAGen. The model
is a data structurc which contains production mformanon Thcrc is one view for cach-.
pane whcrc the left view dlsplays producuon names and thc nght view displays produc- -
uon altemauves Thc contmllcr dxsplays thc contcxt-scnsmvc menus by qucrymg the
browser for mfoxmanon about the selccted structurcs It also translatcs menu sclections.

. |
into messages tao the browser, some of which rcsult in the rnanipulation of individua] pro-

- ductions.

5.1.2. The Sma‘lltélk L"anginage , I - I
Smalltalk-80 is an Objwt'omf!wd languagc [Wegn87). An object is an abstract

entity that consmts of two pans its statc and its behavior (the set ot‘ mcssagcs to whtch it
».

- can mspond) 'I‘hc state of an object 1s represented by i mstancc vanablcs whosc values arc

v

..Q,§'

X blc for code gcncrauon

4

other objects. Behavior is spcciﬁcd using thc mnceﬁt o'f‘classes That is, every object is

e

"an mstance of a class and the behavxor of‘thc ochct is Qthrmmcd by that class. Fmally,

/ .

A Smalltalk 80 orgamscs its classes usmg a u;pe-stmcturcd mhcnt}uce mcchamsm, whcrc

v L4

classes mhcnt bchavxor from their parent classes:

4

Classcd ochcts which mhcnt bchavxor havc been used throughout thc chAGcn |

most unportant classcs are thosc mprescntmg DFAs. Instances of automata are uscd to

Y

represent- componcnts of scanner spcc1ﬁcauons Incremcntal cdmng of DFA 1s aclucvod

by defining a set of opcrauons which are implemented as mcssagcs Although thc DFA

ncprcscnts components of the spcc1ﬁcat10n it also represcnts thc scanner as wcll since in ‘

the end, it is uscd to gcncratc C code.

5.2. 'Data 'Représentation' and Impleméntafion |

In chAGen therc are three levels of data repmscntann The ﬁrst levcl 1mplomcnts

o T . ®

the user mtcrfacc and assxstancc The sccond the hcan of the system rcprescnts the

scanner spcctﬁcanon and ultimately the scanner 1tsclf Fmally, thc th1rd lcvcl is' rcsponsx-

4

5,2.1. The Brow's'er | .
/

Recall that thc browscr is a model componcnt from the MVC paradigm. The

browscl\ds the link bctwccn the user and thc mtcmal represcntauon of the scanncr C‘

JA'

specification. It mamtams a number of mtqmal tablcs Two tablcs are used for tge pur-

of prcscntmg a consxstent uscr mtcrface one for thc lcft panc and onc f0r the nght.

.
R L 0 R
° q -

S . . T

: cnvuonmcnt Although objects are used for the user mterface and code generauon thc ': ‘

o
A

ST

The other tablcs are uscd to access spccxﬁc propcmcs of the scanner being gencratod
: ’4
In addmon thc browser maintains a set of contcxt-scnsmvc menus, two bclongmg

to thc left pane and two to the right. For cach panc, th ; xs an mmal and a ﬁnal menu,

The initial menu is uscd when therc is no sclccnon ? whcreas thc ﬁnal menu is

'i.«
.

-uscd when a sclccnon has bccn madc o gt v

5.2.1.1. The Left Pane

In the left pane, both the initial and ﬁnal menus consist of two pans statxc and

r

-dynamlc parts The static pan of the menus contains those commands whxch always

appcar whxlc the dynanuc part consists of a composition of contcxt—scnsinvq com-

- poncnts

The context-sensmve commands are dependent upon the status of the | nem sclcctcd ,
For i mstancc whcthcr zthc name of a pmducnon is a token or not. If the name 1s not a |
tokcn tncn the command "define. tokcn" w1ll appear so that it may be specified as a
tokcn If thc name is alrcady a tokcn on thc other hand thc command "dcﬁnc non-token"

will appcar so that its tokcn status may be ncmovcd

"I'he commands are also depcndcnt upon the status of the overall structure. For
mstancc, whether there are tokens already dcﬁncd or not. If no tokcns are defined, then '
the commands ' ‘execute current producnon and "cxccutc scanner” wxll appcarrothcr- o
wise, only the command ' exccutc scanncr" will appcar |

Furthermore, thcvsc menus are hxerarchlcal mcnus That is, whcn some commands
are chosen, submenus appear dcpcndmg on thc context of use. For: cxamplc thc above

-~

_two commands "cxccutc production” and "execute scanner” are neplaced by this singlc

3

Fé 7 T
: command "cxccutc" that when choscn a submcnh contatmng thcsc two items "current
° Y Y g
production” and’ "scanncr are prcscntcd to the user.)

‘Q

Thc ﬁrst tablc mamtamed by the browscr is. usod for ﬂ,tsplaymg the lcft pane. Itis

' ‘csscntlally a symbol tablc unplcmcntcd as a Smalltalk 8Q Dxcuonaty [Gold85] It main-

»

~ tains all mformauon associated w1th uscr-dcﬁned productton names. Each kcy is a pro- ‘

‘ 'ductxon name and cach value i Is a namcd automdton rcprcscntmg all the altematlves for
¥ . l ";A

that namc Thc v1cw for thc ltbft pane of the. browscr sunply displays the kcys of the table. -

¢
2 . C o«

5.2.12. The Rigt;t Pane .

* 1

The purposc of the nght panc 1s to add, deletc, or edit altematlvcs to thc productxon .

!

L whosc namc appcars in thc lcft pane! Smcc thcre can only be one active context at a time

(thc producuon whose name is sclcctcd in thc lcft panc), both thc 1mt19.l and final menus
in thc nght panc are static. ﬁhesc static commands corrcspond to thc basw opcrauons that
can be pcrformed on cach sclcotcd productton for cxamplc addmg, dcletmg. cdmng, ;

: dtsplaymg, orcxccutmganaltcmattve S $

\Thc second table that thc browscr mamtams is for dxsplaymg the nght panc Itis
' 'basmally a mcmory cachc 1mplcmcntcd as a dxcuonary, where each kcy is a htcra.l
" cxpres;ton rcpn:scnqu thc nght hand side of a smgl? alternative and cach value is a sxm- v
' “ple automaton rcpresennng that altemattvc thnever a name is sclected in the left pane, |
_the browscr consults - thc correspondtng productlon for all of its altcmatlves and records
all mfonnauon about thc altcmanvcs (x e. hteral and mtemal forms) in tlus table thn-

' cvcr a lttcral cxprcssxon 1s sclectcd in the nght pane, thts mcmory cache table is used to

_ acccss the corrcspondmg automaton For cxamplc, if the name <AS5 had an altcrnauvc_

D A R ¥
b, then the litcnil "b" would be a kcy i the mcmory cachc table and its value '_
’ »
h v &
&

The browscr COuld consult the selectcd productxon for the aIternanvcs cach umc the - -

would bc the automaton mprcsentmg b.

user makes a sclecnon in thc right pane of thc browscr However duc to thc high frc-
quency of activities in the nght pane, th&crcascd lookup speed is wor:h thc extra space

k ¢

_taken by the memory cache,

S. 2/1-s3/ Other Browser Tables ‘. v

\Thc browser also maintains othcr tablcs to assist ﬁc user in dcvclopmg the final
product. Fust, a tablc is used to rccord thc names "of 'undeclared q;pducuons That is, |
non-;ermmalsﬂ Wthh have been refercnce_d in productions but dq not appcar in thc lcft
_.pane. | | |
Anotﬁcr 'dictidnary is used to store informatiéh about the values to be returmed upoh
’ succcssful .recognition of tokens. The keys are tokcn@namcs and thc values arc the

:‘f &
o' it i
numeric token values to be rctumcd by thc, gcncratcd scanncr ’ ‘ x&.n,

R wuo

The bmwscr also mamtams two tablcs which scrchas spocnﬁcauon hbrancs The |
first hbrary contams a collecnon ofpmducuons that are commonly used in programrmng
| languagcs Some cxamplcs are: <dxg1t> <lowcrcasc letter>, <uppercase letter>, <letter>,
F 0
'and <wh1tc space>. ThlS library is read-only, and 1t prowdcs a quxck access to common
producuons that require extcnsnvc cnumeratlons {hc sccond hbrary is a save area for
uscr-dcﬁncd producuons whnch are general cnough th{t thcy may- be uscd in morc thanﬂ :

‘one scanner. Both of these hbrancs are 1mplcmcntcd as dxcnonancs wﬂn the same struc- '

. ture as thc product:xon-namc symbol table described prcvxously

s

.) | o a8

Finally, the brpws‘cr stores infqniwfion about the gcncra‘tcd scanner in the form of a -
single grﬁnd 'automatﬂ and maintains a number of spccial data st.mcturesk"\'vhich‘ arc used

in this scénner. As’ mcnnoncd in Chapter 4, LexAGen has xncorporatcd certain program-
mmg languagc constructs. Spccxﬁcally, the followmg mformauon is mmntm;lcd the pro-.
'ducnon whlch dcﬁncs identifiers, the set of kcywords, comment dchmners. and smng

delimiters.

 5.2.2. The Speciﬁcatib Scanner

The seépnd levci of representation uses dctérrﬁinistic finite automata to repre'séht
scanner producnons A collection of specialised classes are used to 1mp1cmcnt the detcr-'
ministic finite automata. There are two classcs Automata and AutomataStatc along thh
' 'sub(:lasscs of thcsc classes. The Smalltalk—80 class structure of these classes is shown in
Figure 5.1. |
, | . , . ny
5.2.2.,1; Class Automata |
Instanccs of thc class Automata denote: determuusnc ﬁnﬁe automata. Each automa-
- ton has two mstancc vanablcs lexlcs and startState The vanablc, lex1cs refers t§ the
htcral form of the undcrlymg automaton. - For example, an automaton that rccogmzcs
ab<C>, whcrc a and b are terminal characters and <C> is a non- temunal would be h
rcprcscnted by an mstancc of the class Aulomata in whlch the mstancc vanablc, lexxcs,_
would have the value "ab<C>" Recall ﬁ‘om the description on ﬁmtc automata in Chaptcr
2, that cach automaton ha$ a start statc The instance- vanablc, startStatc, ,contams this

specml state. Instancc& of the class Automata arc used to- rcpn:scnt ordmary DFA For

examplc, a single -altcrnauve of a production can be represented 'by a DFA. On the other "

~ . nation of all of thc sub-automata

49

- Coy
' : ; Wy ;
Automata (lexics startState)

Namchutomata (subAutomata dcpcndcnts pnority sclﬂ{cfcmnccd)

AutomataStatc (transitionsTable tokchaluc)

LookaheadS;atc 0

Figure S.1. Class Structure of the Deserministic Finite Automata'Model

hand, the cnurc scanner could be rcprcscntcd byba single instance of the class Auto?nata,
_aswcll o) _f'%

Instances of thc class NamedAutomata are used to represent complctc producnons
that dcnotc named producnons That 1s, an instance of Namchutomata isa structured

-object which. contams many mdxvxdual automata as a]tcmauvcs 'I‘hc class Namchuto- .

mata is a subclass of the class Automata. Instanccs of Namchutomata contain four addl-

startState, has as its Wi¥fe the start state of a smgle automaton, whxch represents thc alter-

5.2.22. ClassrAutomataState

An instance of the class AutomataStatc rcpncscnts a smglc state in a deterministic
ﬁmtc automaton and has two mstancc variables: tmnsmonsTablc and tokchaluc The

mstancc vanablc. transmonsTablc, is a dictionary of transitions lcading out of the state,

7

s d

The kcys If the dxcnonary are thc labels of thc dlrccted arcs 1n the t tmnsmon dxagram and

the valucs

¢ the states to whlq['y these transmons lead. s “ ,,»'::’
) ‘ k . i.

s , P . : . y‘
The second instance vanablc, t01“:'1\/!111!&‘—. contains thc value of the token whxch is
@ctumed by the gcncratcd scanner whcn the next mput charactcr dogs not comespor/ld to a

legal transition or when thcrc is no more lnput. If the state is not an acceptmg state, then

the tokchaluc is.the Smalltalk constant, nil. | o

:/ . 2

A subclass of AutomataStatc callcd LookahcadStatc, is uscd to 1mplcmcnt the two-
character lookahcad dcscnbed in Chaptcr 4, Thc behavior of thxs state dxffcrs from the
. class AutomataStatc in that an input character is examined without being read, and the -

previously read character is re-inserted into the input stream.

5.2.2.3. The Construction Pi-pcés:s for DFAs
o - : = ,

' In chAGen the construction proctis is pcrfdnhed on the level of states and con--
sists of two opcranons concatcnauon and altcmauon Concatcnanon isa stralghtforward ’
operauon whmh 1s performed on thc components of cach single altcmaIJvc Altcrnauon is
the proccss of eombuung altcmauvcs, and it is thc core part of thc construcuo;x process
S.2.2.3.1. 'Co_ncatena'tion | - A | B ,/ '

© ~As an éxamp_lc of cdncatcnation COhsidcr the addition of thc alternative, "abc” to a
| production. A start state and“three other statcs thh transmons represcntmg the symbols

a, b, andc, are concatcnated to form an automaton as shown in Fxgum 52.

Concatcnanon is not a batch opcratxon Concatcnauon -of a smgle altemauve is

_mvoked by the bmwscr 1tcrauvcly after chcckmg for mput correctness. 'I‘hc/ browser

-

- E
Automata Object "~ ‘ cu

Figure 5.2. Concatenb;ion' Operation

Y,}

parses the input cxpressxon into a scqucncc of syntacucally correct labcls cither termi-
nals (smgle—charactcr Symbols hkc a and b) or non-tcrmmals (hkc <lcttcr> and <dxg1t>)
-If a syntax error is found, then it is reported lmmcdxatply. For cxamplc, the sm_ng- "ab<C"

contajns a syntax error.
- ’,

Ifa stnng is syntactically correct, then a start statc is created as the current state. For
7z
each label, a new state is created and the current state is conncctcd to the new state using

the label as the transmon

5.2.23.2. Alternation

The altcrnatlon opcratJon is a proccss of merging two DFAs and optimizing thc
n:sultmg DFA to collapsc ‘common states. Usually, onc DFA is a production and the

other is a new altcmanvc for that production. First thc sta(t states of the two DFAs are

\

- mcrgcd Thcn the transitions from thc start $tate of the sccond DFA a{: added to the start

"y

state of the ﬁrst DFA. If thcrc were transitions whose labcls werc common to the start ,

states of the two DFAs, then thcsc states must be mcrgcd subscquently as wcll and this ;

-~

process continues until Qe two DFAs have been trietged. After merging, the result is
.‘ e : , \ :

optimized.

‘5»2';

Consxder the producuon A which has been deﬁncd as <A> = bsd Suppose the user | ,

-

wants to define an alternative for A which is the expressxon "bbc" After the alternatwe
- has been converted into a DFA, 1t is merged w1th the DFA of the production. A success-

ful merging results in a new. start state of the producuon s DFA while leavmg the start

- state of the altcmanve s DFA unchanged Figure 5.3 shows the two DFAs, the merged -

result and the result of opumxzmg the merged DFA. Smce the start states of both DFAs

- .

contained a transmon on the common tenmnal "b" the two- states wnh input "b" were

-

merged. Smce the labels of the transmons leavmg this newly merged state were "s" and

"b" ‘the next two states were not merged Fmally, since the merged DFA contamed two:

'ldenucal states (two acceptmg states with token value A and no transmons), the opnm-

izer merged these two states.

When the tmnsmons of he two DFAs being merged -onsist only of termmals, the

mergmg operauon is quif anmple However if some of the tramsmons are non-terminals,

the process is more corzplex. It is possible that some of the non-terminals may need to be

i expanded to prevent the merging process from resulting in a nondetemumsuc ﬁmte auto-

'maton For example, coasider the productions <A> =c2z and :=cb. If the alierna— v

tive <A> = d is added to producuon <A> without »xpandmg it, then the result is the

nondetemunistic ﬁnite automaton shown at she op of Figure 54. This autorhaton is non-

deterministic’ since the start state of the merged automaton has tmnsmons on ¢ and , -

but has C as its ﬁrst transition. If the non—tenmnal , is expandcd during the

mergmpp?ss, then the resultmg aut_omaton is the detcnninistic finite automaton

53

. "v
M.
,"». “.

A

T

.',

W

"

.54

: : - (b) Deterministic Automaton o
Y oo _‘ :) » . : :ﬁw‘%

Figure54. Merging Involving Non-Temziniz?;iﬁ;u’: Q? Y L

shown at the bottom of Figure 5. 4' | k\ BT,
‘) .‘;’, ‘
On the other hand not all of the: non-tcrmmals should be cxpanded when mcrgmg

automata, since the cxpansmns reduce the: cﬁ‘icxcncj}bf cdmng For cxamplc consxdcr the

producnon <A> = a, whcm the producuon isa complex automaton with many °

' altemanvcs If <A> was stored in cxpanded form, then any changc to wéuld havc to -

be re-crcatcd in <A> Thencforc m chAGen non-terminals are Only expanded Whén. .

ncccssary » - o |
Thcrc is one Othcr consxdcrauon when mcfgmg two DFAs If two DFA states '

rcpresent acccptmg statcs and havc dxﬂ’ercnt token ‘values, thcn thcy cannot be mcrgcd

55

Thc interface ensures that dlﬂ'crcnt alternatives for the same production share a common _

£

tokcn valuc 'I'hat is, if thc user wants to add an altcmatxvc to a productxon whose name is - _

A, thcn the tokcn value of A is automancally uscd for the acccptmg state gcncrated by

the alternative. Howcvcr there is a gmnd automaton which is mamtamed and it can con-

* tain acccptmg states thh different token values like identifiers and integers. When merg-

i
ing two st@tes m thQ grand automatbn, such a conflict can occur.

For cxamplc cons1dcr a producuon <A> u=ca thh a token value of A and a pro-

duction <Bx ::= cb wnh a tokcn valuc of B. If the user tries to add thc altcmauvc,

= ca, then there is no problem in mcrgmg the two alternatives for Howevcr the

gxand automaton would contam two conﬂxctmg states smcc the string ca" 'would be
. acccpted Wlt.h two tokcn values, A and B. chAGen detects conﬂxcts dunng thc mcrglng

proccss when the grand automaton is updated as thc result of an cdxtmg process. If a

<z

COIlﬂlCt should occur, then an error is reported to the user and thc edmng operation is

dlsallowcd

3

Based on thesc considerations, the followmg algonthm is used for mcrgmg the

states of two DFAs. Thc set FIRST(X) is dcﬁncd [Ah086] as. the set of tcrmmals that

begin stnngs which are derived from X

Algorithm 5.1 Mérge

Given two states, S, and S,:

[1] IfS, ands, have different token values, then a conflict would exist and so anerror is 7

reported. Otherwise, apply step [2].

g;‘

b

1 S
I[2] Add all the transitions of S, to Sy, one at a time, according to:

56

Let T be a transition of S, that cdnsists of a label, L (terminal or noh-tcrminal),‘ anda
~ state, S. |
(a) If‘S, contains L,' then merge S with the std;c m S, oonnt-:cfcd .td L.
\®) If S, contains a label, M (rerminal of non-terminal), such that
| % FIRSTOD) ~BRSTQ) 22,
thcn:". | e |

(1) If Misa dcpcndcnt of L (i.e. M is dcﬁncd in terms of L), then cx.pand M in

S, andtrytoadd"TtoS agam

(ii) Othcrw1sc, create a new statc, R (so that 82 is not aﬂ”cctcd) and add T to R.

Thcn cxpand Lin R and merge R with S,

©) Othcrwxsc add Tto S1 since S, does not contain L either exphcxtly or 1mp11c1tly

. in a non-terminal. I

,[: 5 23. The LexAGen Strategy for Incremental Analysns

| In chAGcn, thc incremental analysm is the process by Wthh affected DFAs’ are

| updated aftcr changcs have been madc to thc specnﬁcanon Spec1ﬁcally, mcremental

d analysxs involves rc-analyscs of all depcndent DFAs when some DFA 1s changed For .

- example, supposc that some non-tcrmmal A, has bcen defined in terms of the- non-
d@;{rmnals B, C. and D *fso supposc that'B and C have been deﬁncd in tcrms of thc

;-q non-tcrmmal D, respec’txvé’l?oﬂnally, asSumc that the user tries to add an altcrnauve to

- D. Smcc D changcs, all the pmducnons whxch havc been deﬁncd du'ectly or mduectly in

) tcxmsof;t mustbeupdatod That is, A, B andeustbcupdatcd FxgureSSshowsa

T’

\

._ \‘

57

: dcpcndcncy graph' for A, B, C, and D. If at any point, an update would result in a conflict

in the grand automaton (as dcscnbed in the prevrous secnon), then chAGen dlsallows
the initdal" altcmauvc to "be added to D and Teports an error. Note that as mentioned in

|

Chaptcr 4, cycles will not exist in the dcpcndcncy graph used for updanng DFAs.

J The lmplcmcntauon of this mcrcmcntal re- analysxs is based on dcpcndcncxes %n

Sxyznalltalk—80 In Smalltalk 80 an object can bc made a’ dcpendcnt of any othcr objcct

4

thn an object changcs, it sends itself a "changed" message which c&:scs "update” mes-

' sagcs to be broadcasted to all of its depcndcnts .Since dependents may have dcpcndcnts

a graph structure of "updatc" messages rcsults

}

In-such a process it is posmblc for an obJect to receive many updatc mcssagcs

For example, consrdcr the srtuanon 3f Flgurc 54. If nW) changes, then it will scnd an

o updatc" message to A, B, and C. Nodes B and C will subscqucntly send two rcspccnvc

’graph Each named DFA maintains an mtcmal pnonty flag whnch has an initial value of zw

"update"” mcssages to their. dependent, A. As a result, A receives two such messages."

.. Such rcdundant dependcncxcs are common in scanner spoc1ﬁcauons and could result in

slow updatmg To solve thls problcm, chAGcn rcplaccs the standard dcpcndcncy graph

by an ordered dcpcndency graph

L‘chGcn uses a two-pass approach to 1mplcmcnt the ordcnng of thc dcpcndcncy

negative one. A changcd DFA scts xts mtcrnal pnonty flag to zero and then broadcasts ar
[}{!

prc—updatc mcssagc to al] of its depcndents 'I‘hxs “pre- updatc" mcssagc contams a

| priority parametcr which is one grcater than the mternal pnonty ﬂag of the scndmg DFA.

thn a DFA receives a "prvc-updatc message, it comparcs its internal priority flag to. ,thc,

f E . o

&y .

58

Figure 55. Ordered Dependency Gfaph

I,l'
pnonty ﬂag to thc priority paramctcr If the pnonty paramctcr is hlghcr thcn it resets its
o internal priority ﬂag to the value of thc pnonty paramcter and broadcasts a "pne updatc"

»

'mcssagc to its dcpendgnts w1th a pnonty paramctcr oqual to&ns mtcmal pnorxty ﬁag plus

b
one.
»

Tlus algomhm orders thc dcpendcncy graph by assxgmng to each node, a pnonty
‘value wluch is cqual to its level in the gmph For cxamplc in the case of the DFAs shown |
in Figure 5.5, the pnonucs would bc zero for D one for C one for B, and two for A
That is, cvcry DFA has a pnonty flag whosc value is greater than the values of the pnor- .

ity ﬂags of all of thc D As on whlch it dcpcnds

Once the ﬁrst pass has becn complcted, the DFAs are updated in a breadth-first
order That 1s. thc ongmal DFA broadcasts> &n " #gdatc ‘mcssagc whlph asks its dcpcn-

.dcnts to updatc thcmsclvcs accordmg to thcn' pnonty counts from lowest to hlghcst. Thc

.

root DFA broadcasts an "update” message with priority one. All dependents with imemal

“

priority flag values of one, update'lhemsclves and broadcast an "update” message with

e

priority two. This continues until all dependents have been updated. Nonce that each |

. dependent(;s only updated once and that the update occurs after all of the producuons on

&
which it depends

5.2.4. The Coder .

The third level of represeutation is the c0der, whlch is responsxble for codc genera-

uon When the user requests the code for a spec1ﬁcanon LexAGcn asks the grand auto-

‘maton to expand itself and then translates the expanded automaton into intermediate -

code. The_ mtermediate code is then translated into the target languagc Figure 5.6 shows
the tmnsmon dlagrams for an automaton A and the expanded form of the automaton A,

NotethatA1sdeﬁnedas<A> —ala<A>ldandB1sdeﬁnedas —blbc

'I'he coder i is 1mplemented by the clpss AutomataCode and 1ts nine subclasses. An

instance of the class AutomataCode has one instarice vanable, operatmns which

‘. represents a stack of operauons to be performed Each subclass represents a smgle kind"

of operauon to. be translated into the target language Instances of these subclasses '

59

8

represent the mtermedlate code The Smalltalk 80 class structure of the.class Automa- ;.. -

“ taCode is shown in Flgure 5.7.

' Currently the target language is C but coders for other languages can be constructed
easily. This can be done by changmg the behavmr of the. subclasses Wthh represent the
mtcrmedaate code, so that they are translated into a different targct language Figure 5.8

shows the executable C-programi produced by the coder'for the automaton shown in

60

Expanded Form ofA v T s
whcnc has bccn dcﬁned as :=b Ibc '

SR ‘ Figure 5.6.. Full Expanded Form of a DFA

anure 5 6. 'I'hxs progmm Yis: composcd of ncstcd case statements Wthh reserqble the.

-exact structure of thc automaton bcmg gcnerated

In fact, the coder gcncratcs a complctc modulc for thls program with its own pro-
gmm interface (namc is given by thc user) In addition, the- coder produces a ﬁle of token

values as an mcludc file to the module o that tlus mclude ﬁlehnay be uscd by other -

61

AutomataCode (operations) -
B AutomataAdvance ()
) '_AutomatﬁBrcak 0

- AutomataBackup ()
'. AutomataCase (labef;‘;’
Autogiatal‘)‘ét;ault‘() | T
& : AutomataGoto 0 B "

AutomataLabcl 0
-~ AutomataSwitch ()

", AutomataToken ()

Figure5.7. Class Structure of the Coder

#ppﬁcaﬁon programs (forv‘i:n tance, a pax;scr) A hbmmy is also pmwdcd to support thc _
gcrjxcm'wd‘scanncr For cxa‘mhc hbraxy mcorporatcs a spccmhscd buﬂ'cnng techmque
for readmg input charactcrs Furthcrmorc thc lxbrary mmntams a token buffer to stom '
' the sequence of charactcrs in thc sourcc program that is matched by thc ;;ancm for 8..)

token. So, a client program is provided with two kmds of mformauon upon cach success- -

ful recognition: a tokcn and its correspondmg smng (scmannc valuc)

This apprOach of nested case statcmcnts can sometimes result in (umc) inefficient
code [Wa1t86a] Incﬂicu:nt code is generatcd whcn a compllcr tmnslatcs thcsc case statc-

mcnts mto y as 1f-then-elsc statcmcnts mstcad of as Jump tablcs Most com- o

. 62

- switch ("‘p) (/* examine current character ¥/ -
case ’a’
LABELO
~ switch (*++p) {r* exammc next character */
~case’a’:
goto LABBLO;
case’b’: :
switch (*-H-p) (/* examine next character */
case’c’
Co ' sw1tch (*++p) { /* examine next charactcr */
=) ‘ case ’d’:
' Y - ++p; /* advance to next character */
return(A); /* accept token */ -
} --p; break; /* backup by one character */ 4
case’d’: :
+4+D; /* advance to next charactcr */
return(A); /* accept token */ -
: } --p; break; /* backup'by one character */
} . -
return(A); /* acccpt token */
case’b’ :
switch (*Hp) { /* examine next charactcr */
case 'c’
sw1tch (*++p) { /* exarmne ncxt character "'/
. 'd’ N .
++p; /*-advance to next charactcr */
return(A); /*‘accept token */ -
"} --p; break; /* backup by one character */
; - case’d’ s /
’ ++p; /* advance to next character *
return(A); /"' accept token */
} break; T
. default : ++p; /* advancc to next character */ “
} _ .
nctum(NIL) Vad acccpt no tokcn "'/ B

F igure 5.8. - Sample C Source Codes Generqtéd

T

’

)

N

.'\

jllmp table 1mplementanon Currently, LexAGen docs not generate a full set of cases. - :

- ,z_“

63

pllers w1ll not use Jump tables if the character codes of the labels 1n a case Statement are

w1dely~ separated. For example, a case statement mvolvmg all of the’ letters from 8’ to ’

e 2 w1ll be translated mto a Jump table. whtle a case statement mvolvmg the letters '#' 4

¥t .tvlf 3 3
: @
the ﬁuse‘,o}' char&cter tables ”Each ytable encodes mteger values for each character of the
’T E i ’;.)J ‘e

:.
e ‘| 2 ot

character set m use ‘fpr»mstance the ASCII character set) The table values are assigned

i so that characters 1n the same case clause have the same values Thpse values are used in

Q@a case statement whrch 1s sure to be translated mto a jump table, smce the values are

. can exphcrtly generate cases for all ASCII character codcs to force the compxler to usc a’sl'

,butxtcaneastlybemodlﬁed‘)dothxs | o o R

,*;(v

chosen conﬁnuously For example the table may map all of the characters a' to 'z’ and
‘0 -

/\ to ’Z to a smgle value, say, 1 represcntmg the ﬁrst character of an 1dent1ﬁer It may

‘ also map all of the characters, ’O’ to ’9’, tp a smgle value, say, 2 repnesentmg the ﬁrst

character of a number R o

&

The drsadvantage of usmg character tables is that an extra level of mdrrecuon 1s' N
requmed (the table lookup) and this can slow down the 3 scanner consxderably A betteﬁ' '
approach is to- use case statements and forcé the compxler to unplement them w1th jump '

“ tables Ifa compller does not have a switch)Vthh can be set to do so, a scanner generator _

. ‘.) ‘L - v,

g, An altmmnve approach (whxch 1s sull m the category of dtrect execution) mvolves -

Chapter 6 . R @o .
Keyword Identiﬁcation

LS

Keyword identification is the prog:ss of searching a list of pre-deﬁned keywords to

deterrmne if a general 1denuﬁer is really a language keywond As was stated in Chapter 4,

LexAGen generates a scanner WhJCh dlstmgurshes keywords fr'om general 1dem1ﬁers o
This chaptcr dxscusses keyword 1dent1ﬁcatlon in general and presents the keyword__ o
1dent1ﬁcauon algonthm developcd for LexAGen "

‘ S v
Searchlng a list of data, 1tems has always been a ubiquitous activity and the htémmre :

o is full of search algonthms Howcver most eﬂicrent search algonthms take advantage of .

specrﬁc attnbutes of ‘the set- of data items being searched. In the case of keyword a

I

identification, the efficienicy of such searches is dependent on the specific keywords for

the language

Hand coded lexical analyzers can be casrly taxlored to take advantage of the attri-
butes of a pamcular st of kcywords Howevcr lexxcal-analyzer generators must be capa-)
ble of generatmg scanners for languages with dlﬂ'erent sets of keywords Vanous solu- -

¥

uons to thxs problern have been proposed. For mstance postscan hashmg [Hor387] and o

o preloaded symbol tabfe [Wait86a] have been used. The problems w1th postscan hashmg

are descnbed in [Sebe85] Essenually, the problem is to ﬁnd a rmmmal perfect hash func- i '

non m terms. of collisions and table size. Th:Zmn problem with preloaded symbol tables-:

!

: is’ that no logrcal dlsuncnon is made betw na user-deﬁned 1dem]ﬁer and a language)

keyword

" . _’ 4'

of kcywords for a languagc ‘a data structure called a pruned O-tne forest is constructed. {' \». A

Thc forcst 1s thcn uscd to genemtc code Wthh 1dcnuﬁcs the. kcywords for that spccxﬁc
languagc This chapter presents a- dynaxruc programmmg construcnon of an opumal '
' pruned’ O-mc forest. LexAGen uses this algorithm to produce kcyword ldcnuﬁcanon

- codc to serve as thc last phase of i 1ts gcncratcd scanners.

{ 61 Overview of the Trie-Based Method

A trie-based method, gcncrally spcakmg, is an mdcxmg scheme that v1cws an alpha-
‘ ‘ bctxc key as composed of a scqucncc of charactcrs In csscncc a trie-based method -
resemblcs closely to . a key-companson based mcthod or a B ~tree scarch schcmc
[Bayc72] Howevcr tnc—based methods do not rely on thc notion of comparmg wholc
, kcys m constant time. As a consequcncc companson of keys is no longcr the clcmcntary

opcrauon for standard measurcs of complexlty

rd

For cxample the length of a key can be used as an attribute so that a set of data

‘ items can be split mto subsets of equal- lcngth keys. Indxvxdual charactcrs in fixed posi- -

L

tibns can also bc used as attnbutcs For i mstancc, the kcys "DIV" 'and "DO" can be dis-
‘ tmgulshed in the second posmon using the charactcrs I’ and '0',. Of coursc, cach ﬁxcd
' ‘ posxdon choscn is regarded as a dlfferent attrib_ute.' : |

"_The k-ary u'es structure created s'by "‘sucdgssivcly dis/iding kcys.info sma]lcrb sets

using diﬁ'cren’t attributes is called a trie (pmnounccd as try) [Bria59] [Frcd60].

-

66
© 6.1.1. Special Tries

Given a set of data items, whcre.k is &c maximum of the lengths of the data items, a
full trie isk a tree of deixtﬁ no more than k such that: |

(1)" All paths from the root to the léaves are distinct.

(2) There-is a unique path from the root to cach leaf node corrcspondmg to an

item in the set _

‘An cxamplc ofa full trie is shown in ﬁgurc 6.1 for the re&rvcd words, delay, delta end

‘and cntry in Ada.

A pruned tria s a full trie with no redundant non-1 nodes along any leaf chain.

Redundant non-leaf nodes are those consecutive single-suil sor nodes that lead to a

leaf. Figurc 6.2 contains a pruhcd trie.

A pruned O-trie is. a gcncrahsatlon of a pruned trie where different paths from the

root may use different attnbutcs Flgurc 6.3 shows a pruncd O-trie m ‘which thc path

from the root to thc lcaf labcled 'delay"” uses character Ppositions 1 and 4, while the path

from thc root to the leaf labclcd “"end" uses character positions 1 and 3.

In the LexAGen cnvu‘onmcnt, the lcngth of- key attribute is used to divide the keys
- mto sets of equal lcngths and then charactcr positions are used for the rest of the attri-
butes. To increase cﬁicicncy, diﬂ'crcnt paths use diﬂ'c'rcnt positidns To suppon this algo—
rithm, a pruned O-trie forest is defined as a collccuon of pruned O- -tries with the property

that. cach pruncd O-mc represents a subset of cqual -length data items.

e
2

67

delay delta o - cntry“

- where numbers in circle indicate character positions

Figure6.1. A Full Trie’

+6.1.2. Example of a Pruned O-Trie Fdres‘i_

Consider the following reserved words from'Ada:

v

68

~delay - delta

. o,
Figure 6.2. A Pruned Trie:

delay, delta, entry, if, in, of, raise, range. .
These keys-can be tixvrded mto two subsets where one subset consists of keys of length
two and the other contains keys of length five. As shown i Frgure 6.4, the tree of
length -two keys uses the attributes: character position one and t};en character position
M “ two to pnoduce a pruned trie. The tree composed of length five kcys uses the attribute:
character posmon one and then.either character posmon three or character posmon four

%

69

ldelay delta , end‘é& entry

Figure 6.3. A Pruned O-Trie

NEC o

depending on the path chosen.

Thus tnstead of testing all characters or attnbutes In a string, the search actually fol-
lows along a pruned cham that leads to a leaf node [Come76]. An additional string com-‘ -
- parisonis then done to verify that the string matches the contents of the leaf node. Nouec
- ;.that in the example’usted ln Figure 6.4, a tree of smaller depth (depth one) could have :
’been constructed for the keywords of length five if character position four had been uscd

as the first attribute 1nstead of character position one. The algonthm prcsentcd in thts

chapter finds a tree of minimal cost (or depth) by usmg some heuristics to improve speed

6.1;3. Searching Time for a Pruned.O;Trie Forest

Lookmg for an 1dent1ﬁer Ina pruned O- tne forest consists of identifying the pruned =

O tne correspondmg to the. length of the identifier and searchmg the trie on a path from

o

o

if - in " delay delta raise _ range
. . ‘ . 4 R X . 1

. "Fiéur'e 64. A Pruned O-Trie Forest

t'ge root . to a leaf If it’is assumed that the correct pruned O-trie can be located in the

-

fore§t in cons!unt tlme (say, usmg a Jump table unplementa’uon of a case) then it is

/ ;& _i‘

straxghtforward to‘show that the worst-case searchmg ume for a pruned O-trig- forest 18, of

% s

the on:ler of the maxunum length of the keywords

. -

Lemma l . The depth of a pruned O -trie for a set of n- length keywords is at most n,

v “ Lo’

N 3‘ . Thene 1s only ONE mtmal node that leads to the leaf nodes con-

L

> - | o tammg the keywords SO the depth is I, -

R R

I

Cah

U

' - ! . R y
wherenZl ry a. : .
v Proof (Inductlon) g _ R)

.? . . ’;» N . N ! R '." ‘_' -) .
» % @J (1) »Basxs n-l R ’ R
e .

.“"

Lemma 2

. Lemma 3

2

for an arbm'ary collecnon of keywords ThlS algonthm is desrgned to be used as the last

/ .

4

6.2..Trie Index Construction Y

‘phaseoflex1cal analysxs ,,, PP _ '_%:'(‘;';,--':" PR

7

“(2) Induction step: Assume true for n SN (some constant)

‘For-lcngth of n + 1, the worst case’ is. ghat one of the tntcmal

node next to the root node is a n-node subtnc Stnce the depth of

the n-node subtrie is at most n, the depth of the (n + I)-node trie

o A

is at most (n + LI).

The wor§t-case searchtng time of a pruned O-trie for a set of n- lcngth key-

4\ ~

words is O(n)

Proof The searchmg tlme of a- pruned O-trie lS bound by the depth of the

pruned O tne But thts depth is at mosten by Lemma 1, and # is
O(n). * .

{ - - . . : ‘

.The worst-case searchlng ttme of a pruned O tne forest is

. . -,;_:1 ‘_A;
v O(max[ml,,_,mk})A i _

where my, ..., m are lengths of data 1tems of k equal length subsets

»

: ‘Proof By Lemma 2 wakes O(m) time to ﬁnd a keyword in a pruned O-'

trie, where m;is, the length of keywords in the pruned O-trie.

A branch and- bound algorlt.hm has been devrseti to construct a pruned ©O- tne forest

R

N
'r
RO . -
. . .

L4

Stnce the tne mﬁx construcuon problcm is NP comp]ete [Come76] thts algonthm L

1s not necessanly fast. 'I‘hat ig, this. algonthm may take exponenihal time. However this

. -

L

.

- depths of each of its leaves.

72
algomhm always retums a minimal-cost (mlmmal-depth) pruned O-trie. forest If it is
assumed that the probabxllues of all keywords are equa] then the prqbabllmes of all leaf. _

nodcs in thc forest are cqual such that this algomhm yields an opumal forest (i.e. a forest

: ~
_ which generatcs the most efficient search). , »
. T S . G .
‘Note that in this algorith;'n the cost of A pruned O-trie is dgfined as thesum of the
’ ’ . .) v . » ‘

4

621 Algorithmrfor Pruned O-Trie Construction

(1], Split the set of keyw‘grds.into subsets of equal—lengthdata itefns.

Exemple: : Cofisider the keywords for a hypothetical language, H.

[2] For each of these subsets, apply step [3] with depth equal to 1.

' _Example: Consxdcf the keywords from kl of length 3:1 ahd, end, mod eot, any) o

]
] /
[.

(3] vacn a set of n, m-length data 1tems at.depth d create a decmon table thh-

m enmes correspondmg to the chhracters in posmons 1 to m. The dec1smn-_ :

e table entry at ldcauon iisa dlchnary whose key&are all of the ith ch cters . -

from all of ihe" A data items. The v:alue of each kcy at. locauon i mthe subset

. C O R .
' ' _of data 1tems which ;:ontam the key character at location i. If the numbcr of -

entnes in any one dlcuonary 1s equa-l to n, then return to the callmg step W1th)

(o i - .
> duct of n and d, and thé 1“’ dlcuonary Othermse go on’to step [4] and [5]

and rcturn the results to the callmg step. -
E:;emple: Decision ta’bl_e (m=5m=3,d=1);

.

‘a threeﬂcomponent record contammg the value of i, a cost Wthh is the pro-‘

<i=L [(a. (and,any)), (e, (end, o)), (m, (mod))]> . . . ¢ ..
<i=2, [(n, {and, any, end}),\o, {eot, mod).)‘]>' |
<i=3, (. (and, end, mod}), (&, (eot)), (y, (any})}>

Since none of the dictionaries contains a five-element value set, go on to step

4l

[4] From the decision table create two control stacks A and E, which store

. the lcast cost: value among all the tries in the stack) Thc cost of

- records of thc form dcﬁncd in [3], whcrc tllc cost is cuhcr an actual minimum

cost or an expected minimum cost. Both stacks are sorted by cost in ascend-

ing order (i.e. the top-of-stack record corresponds to the pruned O-trie with

uonary is defined to be thc sum of thc mdmdual costs associd

data 1tcms in 1ts valuc sets. If th;: size of a valuc set is equal to one, thcn its

- N

cost is cqual to thc dcpth d; othcrw1sc its cost is cqual to the product of its .

‘size and (d + 1. If thc sxzc of any value sets is. grcatcr than two, thcn the cost.

~—,

- isah cxpcctcd minimum cost; otherwxsc thc cost is an actual ‘minimum cost»

’

Rcc0rds Wthh contain actual costs arc pushcd o)t‘o thc A stack and rccords

. whxch contam cxpccted costs are pushcd onto the E stack As thc algonthrﬁ A

' procccds and expectcd costs arc reﬁncd mto actual costs, the E stack will -

. -~
.shnnk and the A stack \X'tll grow.. Go 10 stcp [SJ L T
3 U m N , ..,4.-. 7\ _'_* . - " s o
: The A stack contams one record with contents: j:; v) E
: <1-1 (§_2*2+2*2+1—9 [(a, {and any}) (c ‘{@d,“cot)) (m (mod }()]>

Thc E stack contams two records thh contcnts

<i=3, c_3*2+1+1 =8, [(d {and end, modl),, @ (cot]) (y, (any})]>

Ed
. o

:,é’_". ‘ »

¢

. . oA % S 74 |
. <1-2 C—3*2+2*2-10 [(n, {and, any. end)) (o {cot mod})]> . '

(5] a) If (Stack E is cmpty) or (Stack A is non-empty and thc top-of-stack
record- in Stack A has a cost whtch is less than the cost in the top-of- '
;stack record in Stack E), then return the top of—stack record from A to

-

’_ . step [3).

b) Otherwxsc pop Stack E and rcplace tts cost and dlctronary components
I | . usmg (6]. Push the resultmg record onto thc A stack singe the cost will

o

" now be actual Repeat step [5). -
Example: a) does not apply since the top-of-stack record for Stack A has cost 9 and the
top-_of-,staclc record for Stack E h'as cost §; so'vus_e b). B |
Step [6] returns the replacement record'é o | | o
—3 C=8, [(d <i=1, [(ﬂ {and]) (e, {cnd}) (m {mod})]>). (Q {COI}) (y
Ve (any 1>
| | ;So StackAco‘n'tains‘thc record's';‘ o

<i=3, C—8 {(d <i=l, [(a, (md]) 3 {cnd]), (m, {mOd})]>) (c [COt}) ()'

iyl ST

U 10, (@, (ahd, any)) e, dleo. (m. (modp>

'TheEstack%tams o:c rccord thh comq.nts R Lo
w0 <i=2,6=101G, (and' any, end)), (o {eot, mod})]> °}' et
: N . ..‘) 5 . < v
. Now a) appltes smce the top of-stack‘ record for Stack A h@s cost 8 and the v

o ﬁ .
o top—of—stack record' for Stack E has cost 10; so retum the t0p{ of—stack record _

- " from A to stcp [3]

S
PR

75

[6] Reset the cost component of the curr‘ent recond to zero. Apply' step [3] 1o .each

-~ value set of the current record whose cardmahty is greater than one. Use a

o

Example

| <i=3, C=0, [(d, {and cnd mod}), (t (eot)), (y, {any])]>.

L 4

' thxs set returned. by step [3] I I n

- v

depth of d + I(Rfmove the cost component of the rel:ord retumed by step (3]

and add the tost componenst 0 'the cost comp\onent of the current record

, value set of size one. Return the rgodtﬁed record to step [5} :“ Lo

S . ¢
Resct the cost component of the current record to zero:

¥

4

The current record contaxns one value set of sxze greater than one: {and, end,
& O
~mod]}. So apply step [3] to this set wrth a depth of 1.+'1 =2, The record for
<i=1, C=3%2=6, [(a {and}) e, [end}) (m, [mod])]> R o
& ‘\w

Remove the cost component fmrn the above,:ﬁ%rd and add to,?he cost com- ,'

ponent of the Current record; also, replace the value set by the record returned

by step [3] with the cost component removed

»

~ ot

{ any})]>

“

The current recbrd contams two value sets of sxzé one: {eot} and {any} So :

. add 2*1 2 fo, the cost component of the current record and return thc

, modlﬁed record to step [5]

<1—3 C-—8 [(d <i=l, [(a {and}) (e, [end}) (m {mod})]>) (e. {eot]) (y f

N

<1_3 C—6 [(d <;-1 [(a {and]) (e {end}), (m {mod})]>), (c; {eofl), oo

)

L
'

o

—

.

“is shown in Figure 6.5.

scvcral programmmg languages e ,;"" St S

' twq:

7‘6 ‘
{(any])]>.

@

s

6.2. 2 Implementatlon

Y

The chAGen envuonment produces C code which unplements the optrmal pruned
‘()

v '
- O-trie forest produced by the algonthm Each non- leaf node is represented by a case

statement of character abels, where the 'labels are those characters which identify the

those character labels riot prevrously peared in the non-leaf nodes along any leaf chain.

The code for the opumal pruned’ O -trie for the Modula-2 reserved words. of length

BY DO{F INOF ORTO
Pumng aslde the complexrty of the constructron algonthm an 1mportant observatmn o

about the resultmg mrmmal depth pruned O trie forest is that in theory, its access trme is

E . independent of the number of keywords and depends lmearly on the maxrmum length of

the keywords In praetice, however the average depth of a rmmmal dept.h pruned O -trie

forest is consrderably s;naller than the maximum length of the keywords especrally grven

R large lengtli In fact the de,pth is usuaUy ORE.OT twO. Table 6 1 shows the'sizes of thej T

A

. sets of equal length keywords and the depths of the correspondmg pruned O tries for*

v

. N . ' .“ .
l « : : v
- . N .

.sw1tch (strlcn(aStnng)) (/* length of the smng "‘/

)
* return(IDENT IFIER);-

4 '3 f
case 2 : , U
switch (aStnng[O])(: e
case 'B’ : S
* switch (aString[1]) {
case 'Y’ : o
return(BY); } .
return(IDENTIFIER);
case'D’ :
switch (aSmng[l]) {
case 'O’
return(DO);).
returg(IDENT IFIER)
case T .
" switch (aSmng[l]) {
case 'F’:
- return(IF); , .
S case’N’: o o
- return(IN); } o
rcturn(IDENTIFIER)
case 'O’ :
_ " switch (aSmng[l]) {
© « case'F’:
‘ rcturn(OF)
case ‘R .
return(ORY);)
return(IDENTIFIER);
_ casepd” :
- sthch (aSmng[l])(' L
’ casc‘ 0 T
. rewrn(TO), }
rctum(IDENTIFIER)- . .

. .

)
: rctum(IDENTIFIE-R-),

}F igure 6.5. © Implementation of a Pruned O-Trie. -

| . length

2

NN - . R

10

11
12
13
14

. Pascal
. size depth

COm = m RPN

P = N 1 = O\ O\ 00 00 <)

1

Modula-2 -
size depth

2

1
1
1
2
"0
1
0

0

Siz-é
12

10

, Ada: : '

7

12

8

W W o

~dep

— = NN NN

th R

Table6.1. 'Characteris:ics for Several _P'rogran'vnir‘zg Languages.

£

A

A

Chapter 7

A Comparison of LexAGen with Other Scanner Generators

.
J

i

This chapter evaluates the scanner generat“or‘s mentioned in this thesis: Lex, GLA,
_Mkscan, and LexAGen Table 1 summarizes the advantages -and dlsadvantages of the
four scanner generators based on the three criteria: generality, user interface deSign. and
7.1. Evaluation:of Lex

Lex is capable of ggneratmg general scanners It supports full regular grammars and

provxdes a general scheme of extensrons The generalxty of Lex can be seen in the free-;

P

dom Lex allows 1ts users to exerc1se through regular exprcssxons The multtple character

lookahead scheme adds to Lex some degree of context sensmvnty whtch is useful for
l) ~
L modern programrmng languages -

A

')However this capabxlxty cames a pnce Flrstly, users who want to generate a sxmplc ‘

!

scanner and do not need the gencrallty of bex are préxnt‘ '

w1th large scanne?s For

.example a sxmple scanner for. 1dent1ﬁers and m}egers lS 'sually translated mto several

hundred lmes of C source code which executes qune slowly when compared to an

' -

equwalent hand—coded scanner whrch requrres much less than a hhndred lmes of C source

code. & N

Secondly, most users who need o specxfy only srmple pattems havc to leam the
:'full general express:on notauom used by Lex An apparently srmple pattem at lcast when

N

.

Generality User Interface. ~ Speed

_ . Ease of Use :
Lex A S - - ' !
GLA - - ++ '

.-~ Mkscan - + _ +

- LexAGen + o ++ ' +

_' ‘Table‘7.1 . Summary?a{ the Four Scanner Generators -

c

stated verbally, may bc‘_,translated into&rclau’vely complicated reg lar\ expression. The -

regular expression for a C comment is a good iHustration of this. The lex regular expres-
'sion for a Comment is as follows:
ll/*" [“*]* ("*ll [‘*]*)* 'll*/"
_ o . -
whcrc it is pcnmssxble fora commcnt to contam the characlcr "*' or’/’ as long as they do-

not appcar togcthcr and form the ; ';

i S N
’”a-'i."" v;) '
Anothcr shortcommg of Lex‘;s that iti 1s batch onemed User xm.bractwn is v1rtually

: noncxistcnt. 'That is;*thc usc-r must supplx#:e.ﬁnnre scanner, spcc1ﬁcat10n bcforc Lex is-

Vbr

e
1s, cbu&d with 4 poor dxagnosue capabllmcs m'akcs ch,

relanvcly hard 10 use by nov1ccs~ -

mvokcd to look for en’qrs.%h

U s.‘

Hchvcr n should be: nc ORI AT
» N s.
.,tool chpxtc the mhcrcntly slow executxon of 1?{ gdncrated sé‘m;mcrs Lex was an expcn—

ment that was succcssful and it paved the way fqr morc modcm scarmcr generators.

7:2. Evaluation of GLA

GLA was desxgned to generate fast scanners for programmmg langunges and. th\s

b

was achleved by sacnﬁcmg generahty It only supports a subset of mgular lang i ges plus

some limited extensmns To achieve this, GLA 1mposcs constramts on the 'al{iowable-

LY -,
, symbol sets for its specifications. Users make use of a collecnon of bunlt -in conccpts .

4 ',7

(mtegers ﬂoaung pomt numbers comments strings, 1déj;uﬁcrs ‘and so. on). Because of

y

thesc I'CSII’ICthﬂS GLA generates scanners which h are fast R o T

Unfortunatcly, GLA is too :.leS,tI'iCtiVC to speci,fy many of tbc tokens in standard pro-

. grammmg languages. For example con51der ﬂoaung numbers. GLA allows the’ user some
- freedom in spemfymg a ﬂoaung point number (the initial charactcr set, the continuation -
character set, and so on) Surpnsmgly howevcr GLA does not prov1de enough frecdom
to correctly specxt:y ﬂoaung pomt numbers in Pascal or Modula 2 GLA requxres that the

decxmal pomt for floating numbers be preceded by an initial or continuation character and

 that ubefoll_owcd.byacommuation character. o 3 ERREPEAL

For example GLA docs not allow the user to specrfy Lhat “12e5"is a legal Pascal

; . vﬂoanng pomt number In addmon GLA requ1res that "12 12e" is a lcgal ﬁoatmg point

1

' number in all languages 1f the character e’ has been desxgnated as the exponent charac-
ter. But this is nota legal ﬂoatmg pomt number in Pascal or Modula 2. Finally, GLA is
incapable of-speclfy-mg that "12.'_' fs- alegal ﬂoaélg point numbe'r, even though this is the

'Case in Modula-’2. B | |

As a second example GLA does not allow C- -style hexadec:mal constants. llkc

"0x123" Jto be specified. As a thlrd example GLA does not support the nested comments

82

““in Modula-2. Even though GLA could be modxﬁed to support all of the tokens in all

&

_ ,extstmg programmmg languages there is nothmg to prevent future languages from using '

| -reasonable constructs which GLA could not supporL The problem is that a scanner gen- -

-

erator needs @ mechanism for specrfymg general tokens.

In addmon to the token resfrictions; GLA is not ﬂexrble or easy to learn and use- "lt

e

uses .a batch onented -hlgh level specrﬁcatlon language Along with the specrﬁcatton .

: language users must also learn the functlons of a collection of supportmg modules which
. il
W s ok sk W e :

.. are mcorpomted w1th the generated scanner The symbol table module 1s an example of

such _a supportlng module. ThlS is ,satlsfactory for users who are generating scanners

. whlch are to be used w1th parsers generated hy tradmonal parser generators However it

S

is too comphcated for 1 users who are generatmg stand-alone scanners or scanners o be

) used w1th non-tradmonal parse_rs (say, incremental parserS) where the supporting

.

modulcs may be redundant or simply not requu'ed Like Lex, user interaction is nonex-

: istent.

7.3 Ev’aluationrof 'Mkscan

Ltke GLA .Mkscan is mtended for programmmg language scanners Thxs me,ans :

. that Mkscan also supports a subset of regular languages plus some limited extensions. It ,

lmposcs certam restnctlons on the scanners it can generate and it is especnally biased

'towards the farmly of Pascal like languages As an example of its resmctweness to pro-

-gramrmng language scanners Mkscan cannot generate a scanner if the user. does not .

¢

| \ “ '
specxfy identifiers (unfortunately, no wammg or error messages arc reported in thrs case)

.83
{ ,

Also ltke GLA Mkscan has some . resmctlons which prevent standard languages
.from being specxﬁed For example Mkscan requlres that allQeywords be vultd'
1dent1ﬁers This prevents the generation of scanners which dlfferentlate keywords by case

ora specml prefix symbol (most Algol compllers) Nested comments are also dxsallowed

%
S0 a correct Modula 2 stanner cannot be generated

'Mkscan advocates that the nbtxon of g regular e 1Ipressmn is _]llS[one panmular way ‘
e B S gl AR _
: of conceptuahsmg tokens and therefonc 15 mOre . plementauon than of

L.

the spec1ﬁcat10n However Mkscan employ;
tion that is equivalent to regular expres‘
represent any decimal digit in th_e range Bkibes a sequence of

one or more decimal digits. One current &

terns to describe all yariations of a token spé& N, Thxs can be rather taxmg in some

cases. For example the spemﬁcat:lon for lsascal floaung point numbers must mclude
| 19999 9% 99.99¢99 99.99¢+99

“where the character’+’ means 'plus or minus.

S

Mkscan is very easy to use since it uses full-screen lnteractlve menus to gunde the o |
user through a series of ch01ces and in 1 most cases glves 1mmedtate feedback as early as
possible. Yet, Mkscan does not support full scale user interaction. For 1nstance the
’amount and foxm of feedback when errors are made is minimal in Mksc.m l'unhermore

Mkscan does not support 1mmed1ate executlon even though it could uultse its full screcn

user mterface to do SO.

~

7.4, Evaluat,ion“of' LexAGen

~ 1

‘ R) .) e .
o v - . . .o
1At - ‘ , ' M . . . 34

LexAGen is the re'sult"oﬂ an attempt to provrde a scanner gcncrator which is casy to

r o ’

‘use and wh;ch generates fast scanners for gencral spccrﬁcatrons The gcncmlrty of ch-

\

‘ AGen comes from its abxlrty to support the full set o>regular ianguages plus some *gen-

~ N 'Y
eral extensrons which are sufﬁcxent for most: modern programmmg constructs L(chGcn '

~

" 1s also umque among other scanner generators in applying many beneﬁts of graphtcul

user mterfaces tcﬁscanner gencratron For mstance LexAGen is ‘the ﬁrsu(and only)
scanner generator that mcorporates mcnemental dcvelopment Furthermorc chAGen

prov1des full—scale hiser mteractlon ranging from lmmedtate _error rcpomng «to-

' speclﬁcanon execution..

-

Neverthe‘less, LexAGen is not pe‘i’@ct, Although its graphical interface makes Lex-

AGen easyyto use, its generalify requires that the users be familiar with BNF gra'rnrnar.-.. S

notation. This takes some practice. Far eXample, consider the following BNF dcﬁnition:'

) <A> ::¥a 1 a<A> 1 bibeA> R

- where A is recursively defined in terms of itself. Novices may incorrectly interpret this-

- specification as "one of more a’s or oge of more b’s". However, the correct int_crpretation_‘

slt.ould' be “one br more a’s orb’s interr'nixed"Q '
s% . - .
Another shortcormng of LexAGen is its- spced of mcrcmegal analysxs Although; ,.

H

-

LexAGen is capable of perforrmng mcremental construction of DFAs and detectmg any o
e L .

& state confhcts at the'tlmc of deﬁnition; it takes tir’n‘c. Since the Smalltalk-SO’systcm-‘in_

which it s 1mplemented is n0t a multl -processing system the user must wait dumg thcse ’

mermen&l pI'OCCSSCS

EYRE o o e

Ae:

k : As far as relatrve sizes atrd §peeds of generatcd scanners are conoemed LexAGen

has achleved its goal to produce general and eﬂ‘icnent’ scanners In an expenment, a

/

scanner for Pascal was chated usmg LexAGen‘ GLA Mkscan and Lex The four

- scanners were comprled on a- SUN 2/50 under the 4. ZBSD UNIX system When com- .

1
- plled the object code ,sxzes for the four scanners are 9 O7K 24 981(4. 68K and 10 74K :

T bytes, mSpectivcly RN
The large srze of the GLA generated scanner 1s atmbuted tQ, the exlstence of supi! :
‘ ;: o pomng modules It should also be noted that both ‘LexAGen and Lex mclude the keyWord

.t."f S : ' ST

= . {vwcre made under thc 4 ZBSD\JNIX system on the same machme where the scanners -

N : iR :
- q.

were complled Although-ltiwas run in: mulu-user mode dunng the expenment nmmgs- P

: were taken only when no othe AUSers were log;,ed on AR ‘“" o

o Each tcst was run 10 nmes and the mean of those sampjes was used The time was

the sum of the total amount of ume spent exccunng in user mode and system mode (exe-

- .
1 &

,cuung system calls for the scanners) The executlon speed rankmg of the generated&,_\

. o v .g'.; . R
o o . B . B e

et B : : . ' ’
) . . o .

. Otcurrences A L

Single spaces 13,700, _

«~ Newline characters 12,000

Identifiers . = 11,700 . (638 o
Keywords 2 7900 @38y Ly,
oo ~ ‘ 4,000 '. o B
Integers .- - . .723000 . @7) .. -,
) T r 2000 B
Space pairs " " . 1,900 B IR
=, S 1,800 - =
Comments - - 1,600 (81.56). .
S o 1500
S 1,100. .. -
Space triples - Looo- o
Reals = - - 900 (15.67)
. Swings 700, 7 (100) -
S L 300~
300 - -

300

200 |
S I2000
) 100 | R
S L1000

> r--w‘:‘~

where numbers in paratheses indicate average lengths.in characters.
‘Table 7.2. Characteristics of the Input Data- -

IR

N

1 - /’)

RO _'.-*?" R gt
scz\i‘nncrs is: GLA chAGcn Mkscan and Lex. 'I'hc rauos of LexAGcn Mkscan and Lex B
e GlAare | 1.04, 1. to and 2.69, ?tespccnvcly

{

Lt

., .. Chapter8 = - . IR
- Conclusion

[N
- . . [.
- : o .\

Scanner genetators are sull seldom used in pracuce because handwoded scanncrs

] v

are shghtly more: et’ﬁcxent than generated ones l-lowever the advantages of generated |

B

scanners should not be 1gnored Scanner‘generators can construct correct scanncrs”

qutclcly The input to a scanner generator is a precxse spectﬁcatxon and serves as good ——

3

documentatlon of the generated scanner. For prototypmg, or on fast computers where

small savmg‘s in executxon time are not of paramount 1mportance scanner generators may_

s . -
g . . . R

be very useful _

Current scanner generators are either too slow or not general enough for gcneratmg

L,

programmmg language scanners In exther case they are often dtﬁ‘icult to use. and provnde

. reporung wh1ch can generatc eﬂiment scanners for programmmg languages In fact

3

: | (1) LexAGen generates lexxcal analyzers Wthh are almost as fast as those gen-

erated by GLA, Wthh are programmmg language spec:ﬁc
™

(2) LexAGen supports full regular grammars and en ugh extensxons for modem ’
progmmmtng languages ,' - - | - a

. (3) LexAGen has an outstandmg graphlcal user mterface and is the only scanner :

generator whlch generates scanners mcrementally

There are two areas of LexAGen that c'ould be enhanced faster~i_ncremental_analysi"s |

B R L8

pos

| ,"‘_'and multl charactcr lookahcad capablhty In addmon as mcnuoncd in Chaptcr 4, L}:x- -

AGcn currcmly dlsplays its DFA tcxtually A graphlcal dlsplay of DFAs could provldc"

} 'an altc?natlvc spccxﬁcatlon tcchmquc The user could mampulate DFAs dxrcctly mstcad'

" of. usmg BNF notauon Thas would make LexAGen ech casncr to use o . W

v

Furthcrmorc chAGon could utilise dxffcrcnt fonts of text to dlsplay the nameg: of

A

: producnons in thc lcft hand panc of the browsc:r, for cxamplc 1tallc for non- -tokens and' '

»

,',bold for tokens Also chAGcn may allow thc user to enter non- termmals in the nght e

panc through specxal contrdl scqucnccs or menu commands and dxsplay them in 1ta11cs

)

9

- _'__ s

v gcncrauon envuonmcnt, othcr toois hkc symbol table gcncrator an -error rcpomng gen- o

crator andaparscr gcnerator must bebuxlt B

~) -

/

4 R .. . Y

Fmally, since chAGen is- thc ﬁrst componcnt of an envisioned mtcgratcd compller :

~References @

’ /s ' ' \ - ' .
[Ah086] Aho A V R Sethr and J. D. Ullman, Compzlers Prmaples, Techmques, and

e Tdols Addrson Wesley, Readmg, MA (1986)

[Baye72] Bayer R and E. McCrerght Orgamsauon and Mamgenance of Largc'

Ordered Indexes," Acta lnformanca l 173 189 (1972)

[Bria59) de la Bnandaxs, R., "File Scarchmg Using. Va"ablc Length Keys" Proc.

' WJCC 295-298 (1959)

' ICrchSO] Clchelh RJ, "Mxmmal Perfect Hash Funcnons Made Srmple Commumca-

ttons ofthe ACM 23(1) 17-19 (1980)

. [Come76] Comer D and R Sethx "Complexrty of Tne Index Construcuon (cxtendcd
abstract)," Proc I7th Ann. Symp. on Foundauon.srof Computer Scrence IEEE o

Computer Soc1ety, Long each, CA, 197 207 (1976)

" [Coop83] Cooper D Standard Pas al User Reference Manual W. W, Norton NY

. (1983).

[Deli84] Dehslc N M., D. E Memcosy, and M D Schwartz, ,Vi'ewing a Programming’

o Envrronment asa Smglc Tool," ACM SIGPLAN Nonces 19(5) 49-56 (1984) ‘
[Denn78] Dcnmng PJ J.B. Denms and J.E. Quahtz Machmes Languages ‘and Com-

, putatlon Prennce Hall; Englewood Clxﬁs, NJ (1978)

[Fred60] Fredkrn E I'Tne M%mory," Commumcauons .of ‘the. ACM 3(9), 490- 499 ’

(1960)

(Gie g79]

- TUM-INFO] U Miinchen, 1979

[Gold84)

Glcgcnch R, "Intrpdnot&r;to the Compllcr Gcncranng Systcm MUG2,"

~ i

Goldcrg,(A Smalltalk-80 The lntwcu\le Programmmg Envzronment ,

_ Addlson-Wcslcy, Rcadmg, MA (1984)

1[Gold85]

| [Goug88]

- (1988).

[Heur86]

' [Hors87]

‘[John75]

[Lesk75]

, [MossS6]

Goldcrg, A.and D Robson Smalltalk-80 The. Language and Its Implementa-

,

tion, Addlson Wesley, Readmg, MA (1985)

Gough k J., Syntax Analyszs and Software Tools AddlSOﬂ Wcslcy, Sydney

1]
Heuring, V.P., "Autdmatic Generation of Fast chical_ Analyzers," Software

— Practice & Experience ’ 16(9),. 801-808 (1986).

Horspool R.N. and M. R Levy, Mkscan — An Interactive Scanner Genera-

tor,’ Software——Practl_ce & Experzence , 17(6) 369-378 (1987).

Johnson S. C "Yacc -—'th Another Compxlcr-Compxler " Compunng Scz-.v

ence Techmcal Report 32 Bell Tclcphone Laboratoncs Muxray Hlll NJ_

».(1975) ' .

Lesk, M.E. and E. Schmids, "Leg— A Lexica Analyzer Generator,” Comput-
ing Science Technical Report 39, Bell .Telephone Laboratories, MUrrny Hill,
NJ (1975) |

Mbsscnbbcka, H "Alcx — A Sxmplc and Efficient Scanner Generator " ACM o

o | SIGPLAN Nonces 21(5), 69 78 (1986).

_ [Nurms2]

Nurmi O., M. Sax]akoskx and S Sxppu "Systcm HLP84 — A Tool for Com- o

pnlcr Wrmng," Manuscrzpt Dcpartmcnt of Computcr Scxencc Umversxty of -

[Reis84]

[Reve83}

 [Sebess]

. [S2af86]

'[Szaf_8lS].

B

 [leits1] |

[Trcm85]

Hclsinki (1982). | \

chss SP "An Approach to Incrcmental Comptlauon " ACM SIGPLAN

Nottces 19(6) 144- 156(1984)

Révész G E., Introduction fo Formal Languages McGraw Hill, NY (1983)

Sebcsta RW and MA Taylor "Mmtmal Pcrfcct Hash Functtons."_ ACM

' S[GPLAN Nottces 20(12), 47-53 (1985)

Szafron D and B. thkerson "Some Effects of Graphxcal User Interfaccs on

Programmmg Env1mnments," Proceedtngs of the CIPSIACI Congress f86.

i (1986) .

‘Szafron D. and B Wllkcrson "The Smalltalk- 80 MVC Paradlgm with Plug-
; ablc VchS " Techmcal Report TR 88 8 Departmcnt of Computmg Scu:n(:c

Umvcrsny Qf Albcrta Edmonton AB (1988)

Tcxt.clman W. and L. Malstcr "Thc Intcrllsp Programmmg Envnronmcnt "

Computer 14(4) 25 34(1981)

Tremblay, J P. and P G. Sorcnson Theory and Practtce f C’ompil—rW'mng -

e McGraw Hill, N (1985).

 [Waitgs]

Walte WM "Trcatment of Tab Chamcters by a Comptler " Sofrware —v_ o

- 'Pracuce& Experience , 15811), 11211123 (1985)

SN

[Walt86a] Waite, W M "Thc Cost of chxcal Analysns Software — Practtce & Expert- -

'"l

: [Wa1t86b] Wa1te w. M., V.P. chnng, and R.W, Gray,‘ "GLA —A Gcncrator for chx- -

. ence, 16(5), 473-488(1986)

' cal Analyzcrs " Software Engtneermg Group Report No 86 1-1, Dcpartmcnt

o ; 93

of Electrical and Computer Enginccrihg, Univcrsity of CQZymdo, Bo,ujder, co "

aose). e T

AN

[Wegn87] Wegner, P:, "Dillhgnsibns of (d*Languag Dcsng,n,"OOP.SLA'87 R

. Proceedings ' 168-182 (October 1

