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Abstract

Increasingly many complex processes from the diferent Ąelds of biological systems,

engineering or econometrics are often required to be controlled. Hence, in such cases,

we deal with identiĄcation of underlying complex processes which is essential for

control design, optimization, and process monitoring. However, developing models

for complex processes purely based on Ąrst principles is a tedious task and sometimes

infeasible. Data driven modelling which makes inference about the underlying process

based on observations has been considered as a promising alternative in such scenarios.

In data driven modelling, a mathematical model describing the relationship between

observed measurements is obtained and thus identiĄed model can be utilized to derive

equations for prediction of unobserved values. In this thesis, Gaussian process (GP)

as a non-parametric model which is a powerful approach to modelling of complex

datasets is investigated from a Bayesian point of view.

One of the most important applications of Gaussian process models is in regres-

sion problems, wherein the output noise is commonly assumed to follow a normal

distribution. However, in many practical problems, this assumption is not always re-

alistic. Thus, we propose robust Bayesian methods to reduce the diference between

the underlying process and the model, arising from outliers or other disturbances.

We propose a mixture of two Gaussian distributions as a non-Gaussian likelihood for

the noise model to capture both regular noise and irregular noise, so-called outliers,

thereby making the regression model to be robust to the occurrence of outliers. We

present an Expectation Maximization (EM) algorithm-based approach to making ap-

proximate inference possible for learning the proposed robust GP regression model.

The proposed method is compared with other robust regression GP existing in the

literature from a predictive performance perspective.

In this thesis, we also explore the problem of a new robust GP regression in
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which the input presented to the model is noisy. To address this problem, we assume

that the input noise is of an independently and identically distributed (i.i.d.) Gaus-

sian noise and the output noise model is assumed to be distributed according to a

mixture of two Gaussian distributions to capture both regular and irregular noises.

We utilize the Expectation Maximization (EM) based algorithm that involves the

errors-in-variables (EIV) to approximate the predictive distribution with a Gaussian

process whose kernel function relies on both the input noise and the output noise

hyper-parameters. Further, the improved performance of our proposed method is

demonstrated by several illustrative examples.

The proposed robust GP with a Gaussian mixture noise model is also utilized

for modelling nonlinear dynamic systems. In time series models based on the robust

GP, we assume that the underlying process maps past observations and external

inputs to the current observation, wherein the proposed robust GP with noisy input

is employed for the multiple steps ahead prediction. It means that the whole predictive

distribution of the output at any time step is fed back into the model for the next time-

step which is considered as a noisy input to the model. Thus, the proposed model for

nonlinear functions with input and output noise is used to learn true dynamics of the

system which has been corrupted by outliers and to predict the output for multiple

steps ahead in time. The efectiveness of the proposed approach is illustrated on both

synthetic data and simulated Mackey-Glass chaotic time-series.
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Chapter 1

Introduction

1.1 Motivation

In the Ąeld of control theory, the main interest is to develop a model for the control

of engineering processes. Control models can be characterized by diferent modelling

techniques such as (i) mathematical models based on Ąrst principles (so-called knowl-

edge driven modelling) whereby a control law is derived, and (ii) empirical models

which make inference about the unknown underlying process based on time series

analysis not from physics of the process (so-called Data driven modelling). We are

often dealing with complex systems in chemical engineering which cannot be mod-

elled with a simple mathematical model. Hence, data driven modelling from the Ąeld

of machine learning is brought up in control community to enable us to control the

complex systems, which is the motivation for this thesis.

Data driven modelling is usually based on parametric or non-parametric mathe-

matical models. In this thesis, we focus on Gaussian process (GP) as a non-parametric

model. In the traditional GP, the noise distribution model is of a Gaussian distribu-

tion. However, many processes may be afected by outlying observations or any other

disturbances, resulting in a signiĄcant discrepancy between the true process and the

model. The Ąrst objective of this thesis which is included in Chapter 2, is to increase

the accuracy of the data driven modelling using a robust GP wherein we assume a

mixture of two Gaussians noise model to capture both regular noise and outlying

observations.

The motivation for the work to be presented in Chapter 3 is the fact that, in

practice, a fault or malfunction in sensors, may lead to deĄciency in the input mea-
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surements. The identiĄcation model with noisy input has been studied in many

statistic literature under the name of Error in variable (EIV) (Fuller [2009] ;Cheng

et al. [1999]). The second objective of this thesis is to address this problem by the

identiĄcation of a robust GP regression model with noisy input.

For control application, dynamic systems are required to be modelled by a math-

ematical relationship between past and current observations. Thus, we employ our

aforementioned works for dynamic modelling in Chapter 4 to learn dynamics of the

system which is corrupted with outliers.

1.2 Thesis Contributions

This thesis contributes mainly to the identiĄcation of both static and dynamic system

using robust Gaussian process (GP) with a mixture of Gaussian likelihoods. Detailed

contributions of this thesis can be summarized as follows:

1. Proposed a robust GP model with a mixture of two Gaussians noise model.

This non-Gaussian likelihood as a noise model capture both regular noise and

outliers. Further, An EM algorithm based approach as an alternative to max-

imum likelihood estimation (MLE) approach is proposed to learn the hyper-

parameters of the GP and mixture noise by constructing a lower bound to

MLE. Thus, the predictive distribution for unobserved measurements is found

based on the parameters estimated by EM.

2. Considered a new robust GP model in which both input and output are cor-

rupted by the two types of noises. We used the normal distribution to describe

the input noise and a mixture of two Gaussian distributions to represent the

output noise for considering both outlying observations and regular noises in

output. Then, a novel learning scheme based on EM algorithm and error in

variables modelling is proposed.

3. Utilized the proposed robust GP regression with a mixture of two Gaussians

noise model for identiĄcation of nonlinear dynamic systems. We considered

NARX model wherein the proposed robust GP is placed as a prior on the non-

linear function mapping regressors including past outputs and external inputs
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to the current output. Using this robust identiĄcation method, we can deal

with a time series which is corrupted by outliers and learn the true dynamics

of this system.

1.3 Thesis Outline

The layout of the thesis is organized as follows:

In Chapter 2, we propose a robust GP regression model with a mixture of two

Gaussians noise model. An EM algorithm based approach is employed to learn op-

timal point estimation of the hyper-parameters of the proposed robust GP. Further,

the Ąrst and second moment of the predictive distribution for unobserved values are

derived.

Chapter 3 introduces the task of modelling with a robust Gaussian process with a

mixture of two Gaussians noise model in the presence of a noisy input. This problem

is solved by taking an EM-based approach that consists of approximating the prior

on the underlying process with a new Gaussian process.

In Chapter 4, the proposed robust GP with a mixture of two Gaussians noise

model is utilized for Dynamic system modelling within NARX structure as a robust

system identiĄcation which targets the data with outlying observation.

Chapter 5 concludes the main results of the thesis and suggests some opportunities

for future work.

This thesis adopts the paper format. Each chapter will have its own introduction,

literature review and conclusion sections.
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Chapter 2

Robust Gaussian Process

Regression with a Gaussian

Mixture Likelihood using Em

Algorithm 1

Gaussian Process (GP), as a probabilistic nonlinear multi-variable regression model,

has been widely used in non-parametric Bayesian framework for the data based mod-

elling of complex processes. The output noise in Standard GP regression is assumed

to follow a Gaussian distribution. In this setting, the point estimation of the model

parameters can be obtained analytically using the maximum likelihood (ML) ap-

proach in a straight forward fashion. However, in practical scenarios, processes may

have been corrupted by the outliers and other disturbances or have multiple modes

of operation, resulting a non-Gaussian data likelihood. In this work, to model such

scenarios, we propose to employ a mixture of two Gaussian distributions as the noise

model to capture both regular noise and irregular noise, thereby enhancing the ro-

bustness of the regression model. Further, we present an Expectation Maximization

(EM) algorithm-based approach to obtain the optimal parameters set of the proposed

GP regression model. The predictive distribution can then be found according to the

estimated hyper-parameters from the EM algorithm. The eicacy and practicality

of the proposed method are illustrated with two sets of synthetic data, a simulated

example, as well as an industrial data set.

1Submitted as A. Daemi, , K. Hariprasad, B. Huang,”Gaussian Process Modelling with Gaussian

Mixture Likelihood”. Journal of Process Control.
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2.1 Introduction

Modelling of complex processes is essential for optimization, control, and process

monitoring. However, developing Ąrst principles based models for complex chem-

ical processes is a tedious task. Hence, data based models have been considered

as a promising alternative in such scenarios. Recently, signiĄcant attention has been

drawn into data-driven non parametric models as well. Some popular non-parametric

regression models include Gaussian Process Regression (GPR), Support Vector Re-

gression (SVR), ArtiĄcial Neural Network(ANN), among others. Non-parametric

models can learn any functional form of models from the training data without any

prior knowledge. They require only input-output sets of data alone for the modelling

[Russell et al., 1995]. For instance, SVR, proposed by Vapnik [1995] as a regression

method, constructs a hyperplane to maximize the separation between data points.

Neural network models are typically structured in layers which include a number of

interconnected nodes mimicking biological neural networks [Demuth et al., 2014].

Gaussian Process (GP), a non-parametric modelling paradigm, was initially in-

troduced in the Ąeld of geo-statistics in the name Şkriging” [Krige, 1951]. Kriging

calculates the weights based on the inverse distance between the predicted values and

the measured inputs as well as the spatial auto correlation of the measured inputs.

The basic underlying assumption of GPR is that, a collection of any arbitrary function

values can be modelled using multivariate Gaussian distribution [OŠHagan and King-

man, 1978]. It was shown by Neal [1995] that Bayesian neural networks with inĄnite

hidden nodes in one layer is equivalent to GPs. Hence, it can be viewed as Ćexible

and interpretable alternatives to neural networks. GP can also be derived from other

models such as Bayesian kernel machines, and linear regression with basis functions

[Williams, 1999]. Due to the computational diiculty of Bayesian analysis of neu-

ral networks [MacKay, 1992, Neal, 1993], GP was used by Williams and Rasmussen

[1996] as a regression model to make the predictive Bayesian analysis straightforward.

The Bayesian interpretation of GPs was further enriched and extended due to Neal

[1997] and Gibbs [1998].

The ability to model complex data sets makes GPR promising in the area of data

based process modelling. For instances, spectroscopic calibration [Chen et al., 2007],
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development of soft sensors [Liu et al., 2015], state estimation of Lithium-ion bat-

teries [He et al., 2015] and model predictive control [Murray-smith et al., 2004] have

found itŠs application. A natural way to model such industrial data is by attributing

Gaussian distribution to the noise. The fully Bayesian framework of GP is compu-

tationally tractable for the Gaussian noise model. However, in realistic scenarios,

the industrial data seldom follows Gaussian distribution as it may contain outliers

due to sensor malfunctions and process disturbances or due to data emanating from

multiple operational modes of process. To deal with such scenarios, a possible work

around is to employ non-Gaussian distributions for modelling the noise dynamics re-

sulting in a more robust model [Box and Tiao, 1962]. Various approaches have been

followed by diferent researchers for accommodating outliers while modelling the in-

dustrial process data. For instances, OŠHagan [1979] has discussed the distributions

with thick tails and termed them Şoutlier- prone” as they reject outlying observa-

tions, and Jaynes [2003] proposed a two-model strategy containing a good and a bad

sampling distribution to model regular and outlying observations. Further, in similar

lines, use of StudentŠs-t distribution, as a heavy tailed distribution to accommodate

outliers, has been described by West [1984], a mixture of two Gaussian distributions

is introduced by Box and Tiao [1968], and Laplace distribution was also used as a

noise distribution in Rousseeuw and Leroy [2005].

In the context of GPR, Kuss [2006] investigated the possibility of StudentŠs-t dis-

tribution for describing the noise model. Kuss [2006] applied variational inference,

Expectation propagagation (EP) and Markov chain Monte Carlo(MCMC) methods

for inference of the GPR model with StudentŠs-t likelihood. This work is a further ex-

tension of approximate variational framework for regression [Tipping and Lawrence,

2005]. Moreover, Vanhatalo et al. [2009] used the LaplaceŠs approximation for ap-

proximating log-marginal likelihood of the complete data, while Jylänki et al. [2011]

proposed expectation propagation (EP) for the approximate inference of the GPR

model with StudentŠs t likelihood.

Recently, Ranjan et al. [2016] proposed an EM algorithm based approach for

robust GPR identiĄcation using non-Gaussian noise distributions, namely, StudentŠs-

t and Laplace distribution.

In this work, we develop a GPR model with a mixture of two Gaussian distri-
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butions as data likelihood. The considered model would capture scenarios like, data

with outliers from a contaminated distribution as well data obtained from a process

operating in multiple modes, which are not uncommon in chemical processes. Fur-

ther, we propose to use EM algorithm to learn hyper-parameters of the proposed GPR

model. The EM algorithm is a powerful approach for obtaining maximum likelihood

estimates (MLE) and is useful when the observed data is incomplete or containing

hidden or latent variables[Dempster et al., 1977]. Even though Kuss [2006] investi-

gated the scenario for a mixture of two Gaussian noises model in GPR, the entire

focus was on inference rather than determining the modelŠs hyper-parameters. In this

work we address this lacunae by deriving parameter estimates of GPR model for a

mixture of Gaussian likelihood. To the best of the authorsŠ knowledge, there exists

no approach in literature to estimate the parameters of the GPR with a mixture of

Gaussian likelihood. Finally, we also validate our results with two synthetic data sets,

a simulated CSTR example and an industrial data set.

The rest of this chapter is organized as follows: Section 2.2 provides a revisit of

GPR. The problem is described in Section 2.3 . In Section 2.4, an EM algorithm based

approach is derived to estimate hyper-parameters of GPR. After learning the hyper-

parameters, a procedure for prediction using test data is discussed in Section 2.5.

Section 2.6 presents an algorithmic Ćowchart for the estimation of hyper-parameters.

In Section 2.7, three validation studies are presented to verify the eiciency of the

proposed GPR model. Summary of our Ąndings and conclusions are provided in

Section 2.8.

2.2 Revisit of GPR

The GPR modelling paradigm tries to Ąnd a distribution over a set of possible non-

parametric functions for modelling a set of input and output data-sets. Traditionally,

this relationship was characterized by various classes of parametric functions. Suppose

we observe some inputs xi and some outputs fi, where fi = f(xi) represents the

unknown underlying mapping function.

Let xi ∈ R
d be the set of inputs for the ith training sample. Then we deĄne a new
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Table 2.1: Gaussian Process Kernel And Mean Options
Kernel Function Mathematical Expression, k(x, x′)
Constant σ2

Linear x.x′

Polynomial (x.x′ + C)p

Squared Exponential or RBF exp[− ♣x−x′♣2

2l2
]

Matérn 21−ν

Γ(ν)
(
√

2ν♣x−x′♣

l
)νKν(

√
2ν♣x−x′♣

l
)

Exponential exp[− ♣x−x′♣
l

]
γ-exponential exp[−( ♣x−x′♣

l
)γ]

Rational Quadratic (1 + ♣x−x′♣
2αl2

)−α

Mean Function Mathematical Expression, m(x)
Zero 0
Constant c
Linear x.αT

Polynomial
∑

m αT
m(x)m

variable X for the collection of n training samples, having d dimensions as follows:

X =

⋃

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⨄

x11 x12 x13 . . . x1d

x21 x22 x23 . . . x2d

x31 x32 x33 . . . x3d
...

...
... . . . ...

xn1 xn2 xn3 . . . xnd

⋂

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⋃

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⨄

x1

x2
...

xi
...

xn

⋂

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A GP assumes a prior over the fi at a Ąnite set of points, f = (f(x1), f(x2), ..., f(xn))

as

P (f ♣X, θGP ) ∼ N (m(X), K(X, X)), (2.1)

to be jointly multivariate Gaussian [Ebden, 2015]. Any element of covariance matrix

is given by Kij = K(xi, xj), where k(.,.) is a positive deĄnite kernel matrix. A kernel

is a similarity function by which if xi and xj are considered similar, the output of

the function at those points are expected to be similar. Most commonly used form

of Kernel function is exponential. The table 2.1 provides some common kernel and

mean functions. The interested readers, for details regarding various Kernel functions

used in GP, are referred to Rasmussen and Williams [2006].

The complete speciĄcation of function f(.) is provided by maximizing log marginal

likelihood of the observation towards the parameters of mean and covariance function.
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The joint distribution of unobserved output f+ at a test input set X+ based on

characterization of the GP can be written as,
⎟

f

f+

]

∼ N (

⎟

m(X)
m(X+)

]

,

⎟

K(X, X) K(X, X+)
K(X+, X) K(X+, X+)

]

) (2.2)

where covariance matrix and vector of means are constructed according to the spec-

iĄed parameters obtained from training. By the probability rules for conditioning

Gaussian (refer to A.1), the posterior has the following form[Rasmussen, 1996]:

p(f+♣f , X, X+, θ) ∼ N (n+, S+)

where n+ = m(X+) + K(X+, X) K(X, X)−1(f − m(X)),

S+ = K(X+, X+) − K(X+, X) K(X, X)−1
K(X, X+)

(2.3)

As an example, the GP posterior of the function x0.5 cos x + cos x2 is graphically

presented in Fig.(2.1). As observed from Fig.(2.1), the advantage of GP modelling

approach is that it also provides us with the uncertainty over prediction which is

shown as the level of conĄdence in the predicted output[Pedregosa et al., 2011].
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Figure 2.2: A schematic of GPR with a mixture of two Gaussian noises
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2.3 Problem Statement

This section is allocated to describing the problem statement. Fig.(2.2) shows the

graphical model for GPR with a mixture of two Gaussian noises. The GPR in Eq.(2.4)

assumes that the existence of a latent function f(x, θ) mapping the the deterministic

input x to the noise free output,f , where θ are the set of underlying hyper-parameters.

Also, y denotes the observed output which is disturbed by a noise. In this case the

noise, ϵ, is assumed to be a mixture of two Gaussian distributions, as given below:

y = f(x, θ) + ϵ (2.4)

The actual output (f) from process has been corrupted with a mixture of Gaus-

sian distributions noise (ϵ) resulting the noise corrupted output (y). For the sake of

simplicity in the analytics we limit the number of Gaussian components to be two

with zero mean and diferent variances σ2
1 and σ2

2 as below,

ϵ ∼

⎧

⎪⨄

⎪⋃

N
(

0, σ2
1

)

w.p. α1

N
(

0, σ2
2

)

w.p. α2

(2.5)

In this setting, the observed data (Cobs) include X and y = [y1 y2 y3 . . . yn]T

where yi ∈ R is a scalar output. The missing (or hidden) data (Cmis) include f =

[f1 f2 f3 . . . fn]T where fi is the value of the latent function at input xi , and the mode

identity of the noise at diferent samples, i.e., I = [I1 I2 I3 . . . In]T where Ii indicates

that the noise of the ith sample point is attributed to which noise component. For a

Gaussian mixture distribution with two noise components as in our case, Ii ∈ ¶1, 2♢.

We assume the distribution of errors is a mixture of a model with relatively high

variance σ2
1 accounting for the outlier distribution and a second model for the regular

noise which has a small variance σ2
2 compared to the variance of outliers. We use

αj to denote the probability of occurring of outliers or regular noises, resulting in
2∑

j=1
αj = 1. Eq.(2.6), presented below, shows the expression of Gaussian mixture

noise model considered for this study:

P (yi♣fi; θn) =
2∑

j=1

αIi=j
1

√

2πσ2
Ii=j

exp[−(yi − fi)2

2σ2
Ii=j

] (2.6)
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where θn = [α1, σ2
1, σ2

2] denotes the hyper-parameters involved in the Gaussian mixture

noise model. The noise distribution for each sample i = 1, ..., n given the noise mode

identity Ii = j, can be written as,

P (yi♣fi, Ii = j; θn) =
1

√

2πσ2
Ii=j

exp[−(yi − fi)2

2σ2
Ii=j

] (2.7)

where σ2
Ii=j is variance for the distribution with noise mode identity j. The equation

can be further rewritten considering all the n samples, in the multivariate vector form,

as below:

P (y♣f , I; θn) =
1

√

(2π)n♣diag(σI)♣
exp[−

(y − f)T
(

diag(σI)
)−2

(y − f)

2
] (2.8)

In a GP model, the conditional distribution of f ♣X is assumed to follow a multi-

variate Gaussian which is completely characterized by its Ąrst and second moments,

i.e. mean function m(X) and the covariance function K(X, X) presented in Eq.(2.1),

whose covariance function, in this work, is assumed to be the squared exponential

(SE) kernel,[Murphy, 2012]

kSE(xi, xj) = σ2
f exp(−1

2
(xi − xj)T Λ−1(xi − xj)) (2.9)

where θGP denotes all the hyper-parameters of a GP that includes mean parameter,

signal variance σ2
f , and length-scale diagonal matrix, Λ = diag([l 2

1 , l 2
2 , .., l 2

d ]) where

d denotes the input-space dimensions. The covariance function k(X, X) speciĄes the

covariance between pairs of the outputs as a function of inputs. Then the prior

distribution on f can be rewritten as:

P (f ♣X; θGP ) =
1

√

♣2πK(X, X)♣
exp[−(f − m1)T (K(X, X))−1(f − m1)

2
] (2.10)

where m is a scalar value for the constant mean function and K(X, X) ∈ R
n×n is a

matrix and 1 represents a vector of ones with appropriate dimensions.

Let the complete set of the hyper-parameters be ϑ = [θGP , θn]. If we employ ML

estimation to estimate the parameter set ϑ, we will have the following results:
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ϑ̂ = arg max
ϑ

P (y♣X, ϑ) (2.11)

and by marginalization and Chain rule of probability,

= arg max
ϑ

∑

I

∫

f
P (y, f , I♣X, ϑ) df (2.12)

= arg max
ϑ

∑

I

∫

f
P (y♣f , I, X, ϑ)P (f ♣I, X, ϑ)P (I♣X, ϑ) df (2.13)

= arg max
ϑ

∑

I

∫

f
P (y♣f , I, ϑ)P (f ♣X, ϑ)P (I♣ϑ) df (2.14)

In Eq.(3.5), the likelihood of I♣ϑ follows binomial distribution for the mixture of

two Gaussian components. As there are two possibilities for each observation, for

n samples, a total of 2n number of combinations need to be enumerated, leading to

combinatorial problems. Therefore, the evidence likelihood is analytically intractable,

and the parameters cannot be directly estimated through the ML approach. Hence, as

an alternative, Expectation-Maximization (EM) algorithm is employed in this work

to iteratively obtain the ML parameter estimates. After obtaining all the hyper-

parameters, the posterior predictive distribution can be determined. These steps are

presented in detail in the next section.

2.4 Parameter Estimation using the EM algorithm

The EM algorithm consists of the following iterative steps, which are repeated till

convergence (Lu and Huang [2014];Guo et al. [2017]) to obtain approximate ML es-

timates:

• E-Step: In this step, the expectation of the logarithm of the likelihood proba-

bility of all hidden and observed data with respect to conditional distribution of

hidden data given observed data and current estimate of the hyper-parameters,

called Q-function, will be derived:

Q(ϑ; ϑ(t)) = ECmis♣Cobs,ϑ(t) [log(P (Cobs, Cmis♣ϑ))] (2.15)

• M-Step: In this step, the Q-function is maximized to obtain the parameter

estimates:

ϑ(t+1) = arg max
ϑ

Q(ϑ; ϑ(t)) (2.16)
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where ϑ(t) refers to the parameters estimated in t-th iteration. For detail information

regarding EM algorithm, readers are referred to(Borman [2004]).

2.4.1 E-Step

The Q function of our problem can be formulated as,

Q(ϑ; ϑ(t)) = Ef ,I♣y,X,ϑ(t) [log(P (y, f , X, I♣ϑ))] (2.17)

By factorizing the joint probability distribution of P (y, f , X, I♣ϑ) according to

chain rule,

P (y, f , X, I♣ϑ) = P (y♣f , X, I, ϑ)P (f ♣X, I, ϑ)P (I♣X, ϑ)P (X♣ϑ)

= P (y♣f , I, θn)P (f ♣X, θGP )P (I♣θn)
(2.18)

Substituting Eq.(2.18) into Eq.(2.17) and using the properties of the log operator,

the Q function becomes,

Q(ϑ; ϑ(t)) = Ef ,I♣y,X,ϑ(t)¶log(P (y♣f , I, θn)) + log(P (f ♣X, θGP )) + log(P (I♣θn))♢
(2.19)

The expectation calculation (2.19) can be broken down into two parts. First, the

expected value of each term with respect to the posterior f ♣y, I, X,ϑ (t) is calculated;

then the expectation over I♣y, X,ϑ (t) is performed, as below,

Q(ϑ; ϑ(t)) = EI♣y,X,ϑ(t)

∮

Ef ♣y,I,X,ϑ(t)¶log(P (y♣f , I, θn))♢ + Ef ♣y,I,X,ϑ(t)¶log(P (f ♣X, θGP ))♢

+ log(P (I♣θn))

⨀

(2.20)

By substituting Eq.(2.8) and Eq.(2.10) into Eq.(2.20), the Q(ϑ; ϑ(t)) function is
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derived as,

Q(ϑ; ϑ(t)) = EI♣y,X,ϑ(t)

∮

Ef ♣y,I,X,ϑ(t)

{

− n

2
log 2π − log ♣diag(σI)♣

−
(y − f)T

(

diag(σI)
)−2

(y − f)

2

}

+ Ef ♣y,I,X,ϑ(t)

{

− 1
2

log ♣2πK♣

− (f − m1)T (K)−1(f − m1)
2

}

+ log(P (I♣θn))

⨀

= EI♣y,X,ϑ(t)

∮

− n

2
log2π − log ♣diag(σI)♣ − 1

2
log ♣2πK♣

− Ef ♣y,I,X,ϑ(t)

{(y − f)T
(

diag(σI)
)−2

(y − f)

2

}

− Ef ♣y,I,X,ϑ(t)

{(f − m1)T (K)−1(f − m1)
2

}

+ log(P (I♣θn))

⨀

(2.21)

To Ąnd the expected value of Q function with respect to f , the posterior distribu-

tions, P (f ♣y, I, X,ϑ(t)) and P (I♣y, X, ϑ(t)), need to be derived. Hence, we now proceed

to derive P (f ♣y, I, X,ϑ(t)) according to BayesŠ rule,

P (f ♣y, I, X,ϑ (t)) =
P (y♣f , I,θ (t)

n )P (f ♣X, θ
(t)

GP )
P (y♣I, X, ϑ (t))

(2.22)

where the denominator in Eq.(2.22) is the normalizing constant, which is independent

of the function values. As a result, the posterior distribution over f , will only have

the functional dependencies on the likelihood and the prior, as follows,

P (f ♣y, I, X,ϑ (t)) ∼ P (y♣f , I, θ (t)
n )P (f ♣X, θ

(t)
GP ) (2.23)

As we assume mixtures of Gaussian noise proĄle, the probability distribution of

the observation given hidden noise mode identity is given as,

P (y♣f , I, θ (t)
n )) ∼ N (y♣f ,

(

diag(σ (t)
I )

)2
) (2.24)

where σI = [σI1σI2 ...σIn
] represents noise variances for n observations. For a mixture

of two Gaussian noise components, σIi
∈ [σ1, σ2]. Since the likelihood and the prior are

both Gaussian, the posterior over f is tractable and can be determined analytically.

By performing completing the square method, we obtain,
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P (f ♣y, I, X,ϑ (t)) ∼ N (y♣f ,
(

diag(σ (t)
I )

)2
)N (f ♣m (t)1, K (t)) (2.25)

∼ exp

⋃

⨄− 1
2

(

(y − f)T
(

diag(σ (t)
I )

)−2
(y − f)

+ (f − m (t)1)T K (t)−1(f − m (t)1)

⎜⋂

⎦ (2.26)

∼ exp

⋃

⨄− 1
2

(

yT
(

diag(σ (t)
I )

)−2
y + fT

(

diag(σ (t)
I )

)−2
f

− yT
(

diag(σ (t)
I )

)−2
f − fT

(

diag(σ (t)
I )

)−2
y + fTK (t)−1

f − m (t)1TK (t)−1
f

− fTK (t)−1
m1 + m (t)1TK (t)−1

m (t)1

⎜⋂

⎦ (2.27)

∼ exp

⋃

⨄− 1
2

(

fT
(

K (t)−1
+
(

diag(σ (t)
I )

)−2
)

f − fT
((

diag(σ (t)
I )

)−2
y

+ K (t)−1
m (t)1

)

−
(

yT
(

diag(σ (t)
I )

)−2
+ m (t)1TK (t)−1

)

f

+ yT
(

diag(σ (t)
I )

)−2
y + m (t)1TK (t)−1

m (t)1
  

⎜⋂

⎦ (2.28)

After reorganizing all terms, we drop terms in the under-brace in Eq.(2.28), which

do not involve f . Letting A = (K (t)−1
+ diag(σ (t)

I )−2) and B = (diag(σ (t)
I )−2y +

K (t)−1
m (t)1), Eq.(2.28) becomes,

P (f ♣y, I, X,ϑ (t)) ∼ exp[−1
2

(fTAf − fTB − BTf)] (2.29)

By doing some straightforward algebraic manipulations on Eq.(2.29), the following

expression can be obtained,

P (f ♣y, I, X,ϑ (t)) ∼ exp[−1
2

(f − A−1B)T A(f − A−1B)] (2.30)

We now introduce new notation for the compact representation of the equations.

Let Σn = A−1 and µn = A−1B, respectively, be the covariance and the mean of

f ♣y, I, X,ϑ (t). As a result Eq.(2.30) can be rewritten as below,

P (f ♣y, I, X,ϑ (t)) ∼ exp[−1
2

(f − µn
(t))T Σ (t)

n
−1(f − µn

(t))] (2.31)
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where Σ (t)
n =

(

K (t)−1
+
(

diag(σ (t)
I )

)−2
)−1

and µ (t)
n =

(

K (t)−1
+
(

diag(σ (t)
I )

)−2
)−1

∗
((

diag(σ (t)
I )

)−2
y + K (t)−1

m (t)1

)

, resulting the expectation of the quadratic form

and having the posterior distribution of P (f ♣y, I, X,ϑ (t)) ∼ N (f ♣µ (t)
n , Σ (t)

n ).

The posterior distribution P (I♣y, X, ϑ(t)) is now derived using BayesŠ rule to get

the complete form of Q function,

P (I♣y, X, ϑ(t)) =
P (y♣I, X, ϑ(t))P (I♣θ(t)

n )
∑

I P (y♣I, X, ϑ(t))P (I♣θ(t)
n )

(2.32)

where the conditional probability of P (y♣I, X, ϑ(t)) can be obtained through marginal-

ization of Eq.(2.33) over f ,

P (y♣I, X, ϑ(t)) =
∫

P (y♣f , I, X, θ(t)
n )P (f ♣X, θ

(t)
GP ) df (2.33)

Eq.(2.33) is further simpliĄed using the properties of Gaussian integrals (A.2),

P (y♣I, X, ϑ(t)) =
∫

N (y♣f ,
(

diag(σI)
)2

)N (f ♣m1, K) df (2.34)

= N (y♣m1,
(

diag(σI)
)2

+ K) (2.35)

Since there are 2n total number of possible combinations to be enumerated due

to n samples and 2 components for the calculation of denominator of posterior prob-

ability of P (I♣y, X, ϑ(t)), we need to do some approximations to avoid combinatorial

solutions. First, we are approximating the possibility of occurrence of the noise mode

identity Ii as random and does not depend on the occurrence of other model identities

Ij, j ̸= i, which leads to following approximation for P (I♣y, X, ϑ(t)) as,

P (I♣y, X, ϑ(t)) =
n∏

i=1

P (Ii♣yi, xi, ϑ(t)) (2.36)

Further, the posterior probability of P (Ii♣yi, xi, ϑ(t)) can be written as,

P (Ii = j♣yi, xi, ϑ(t)) =
P (yi♣Ii = j, xi, ϑ(t))P (Ii = j♣θ(t)

n )
∑2

j=1 P (yi♣Ii = j, xi, ϑ(t))P (Ii = j♣θ(t)
n )

=

1√

2πσ
(t)2

j

exp[− (yi−f
(t)
i

)2

2σ
(t)2

j

] α
(t)
j

∑2
j=1

1√

2πσ
(t)2

j

exp[− (yi−f
(t)
i

)2

2σ
(t)2

j

] α
(t)
j

≜ γ
(t)
ij

(2.37)
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While deriving Eq.(2.37), we have also employed the following approximation:

P (y♣x, I, ϑ(t)) follows univariate Gaussian, and the deterministic part of GP, i.e. f
(t)
i

can be replaced with µni
, from the vector µ(t−1)

n = [µ(t−1)
n1

, µ(t−1)
n2

, . . . , µ(t−1)
ni

, . . . , µ(t−1)
nn

]

which is the mean value of posterior probability of P (f ♣y, I, X,ϑ (t−1)) obtained from

the last iteration in the E-step.

Using the result of Eq.(2.31) in the Q function expression Eq.(2.21), we obtain,

Q(ϑ; ϑ(t)) = −n

2
log 2π − EI♣y,X,ϑ(t)

⎭

log ♣diag(σI)♣
}

− 1
2

log ♣2πK♣

− 1
2

EI♣y,X,ϑ(t)

∮

Tr
((

diag(σI)
)−2

Σ (t)
n

)⨀

− 1
2

EI♣y,X,ϑ(t)

∮

(y − µ (t)
n )T

(

diag(σI)
)−2

(y − µ (t)
n )

⨀

− Tr(K−1Σ (t)
n ) + (µ (t)

n − m1)T K−1(µ (t)
n − m1)

2

+ EI♣y,X,ϑ(t)

∮

log(P (I♣θn))

⨀

(2.38)

Enumerating each expectation term with respect to I in the Q function (2.38)

yields:

EI♣y,X,ϑ(t)

⎭

log ♣diag(σI)♣
}

= EI♣y,X,ϑ(t)

⎭ n∑

i=1

log σIi

}

=
2∑

j=1

n∑

i=1

P (Ii = j♣yi, xi, ϑ(t)) log σIi=j

(2.39)

EI♣y,X,ϑ(t)

∮

Tr
((

diag(σI)
)−2

Σ (t)
n

)⨀

= EI♣y,X,ϑ(t)

∮
n∑

i=1

Σ (t)
n ii

σ2
Ii

⨀

=
2∑

j=1

n∑

i=1

P (Ii = j♣yi, xi, ϑ(t))

(

Σ (t)
n ii

σ2
Ii=j

⎜ (2.40)

EI♣y,X,ϑ(t)

∮

(y − µ (t)
n )T

(

diag(σI)
)−2

(y − µ (t)
n )

⨀

= EI♣y,X,ϑ(t)

∮
(yi − µ (t)

n
i

)2

σ2
Ii

⨀

=
2∑

j=1

n∑

i=1

P (Ii = j♣yi, xi, ϑ(t))

(
(yi − µ (t)

n
i

)2

σ2
Ii=j

⎜

(2.41)
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EI♣y,X,ϑ(t)

∮

log
(

P (I♣θn)
)
⨀

= EI♣y,X,ϑ(t)

∮

log
(

P (Ii♣θn)
)
⨀

= EI♣y,X,ϑ(t)

∮

log(αi)

⨀

=
2∑

j=1

n∑

i=1

P (Ii = j♣yi, xi, ϑ(t)) log αIi=j

(2.42)

Finally, by deploying Eqs.(3.27)-(2.42) on Eq.(2.38), the Q function is derived as,

Q(ϑ; ϑ(t)) = −n

2
log 2π −

2∑

j=1

n∑

i=1

γ
(t)
ij log σIi=j − 1

2
log ♣2πK♣

− 1
2

2∑

j=1

n∑

i=1

γ
(t)
ij

(

Σ (t)
n ii

σ2
Ii=j

⎜

− 1
2

2∑

j=1

n∑

i=1

γ
(t)
ij

(
(yi − µ(t)

n
i
)2

σ2
Ii=j

⎜

− Tr(K−1Σ (t)
n ) + (µ (t)

n − m1)T (K)−1(µ (t)
n − m1)

2

+
2∑

j=1

n∑

i=1

γ
(t)
ij log αIi=j

(2.43)

As we have now derived the Q function, next subsection illustrates the M-step,

where the derivations of the parameter update expressions are carried out.

2.4.2 M-Step

In the M-step, we maximize the Q function with respect to ϑ, that is, θGP and

θn, respectively, to obtain the updated estimate of the parameters. We obtain the

following expressions by calculating the gradient of Q function with respect to GP

hyper-parameters (θGP = [θcov, θmean]),

∂Q(ϑ; ϑ(t))
∂θcov

= − 1
2

tr(K−1 ∂K

∂θcov

) +
1
2

(µ (t)
n − m1)T K−1 ∂K

∂θcov

K−1(µ (t)
n − m1)

+
1
2

tr(K−1 ∂K

∂θcov

K−1Σ (t)
n )

∂Q(ϑ; ϑ(t))
∂θmean

=1T K−1(µ (t)
n − m1)

(2.44)

As the above expression does not have a closed form solution, we resort to numer-

ical solutions. Solutions of Eq.(3.31) by gradients descent method provide the value
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of θGP that maximizes the Q function. By setting the derivative of Q function with

respect to the noise hyper-parameters to zero and solving for parameter values, the

update equation for the variances of noise components, σ2
p ∈ [σ2

1, σ2
2] is obtained as,

∂Q(ϑ; ϑ(t))
∂σ2

p

= 0 ⇒ σ2
p

(t+1) =
∑n

i=1 γ
(t)

ip (Σ (t)
nii

+ (yi − µ (t)
ni

)2)
∑n

i=1 γ
(t)

ip

(2.45)

Maximization of the Q function to calculate αp becomes a constrained optimiza-

tion problem, where
∑2

j=1 αj = 1 is the constraint that should be satisĄed. To solve

this constrained optimization problem, the Lagrangian multiplier should be intro-

duced, and the derivative of Lagrangian expression over αp and Lagrange multiplier

is set to be zero [Vapnyarskii, 2001]. We omit the detail steps for brevity and the

update equation for αp is given as,

α (t+1)
p =

∑n
i=1 γ

(t)
ip

n
(2.46)

This completes the M-step, as we have derived the update expressions for all

the parameters. The E-step and M-step are solved in iterative manner, until the

converged parameters are obtained.

2.5 Prediction with proposed GPR model

After convergence of EM algorithm, the parameter estimates of the proposed GPR

model are obtained, which can be further employed for prediction. To make predic-

tions for given test data, we compute the conditional distribution of function values

f+ corresponding to test input data X+. To compute the posterior predictive distri-

bution of f+♣y, we need to Ąrst calculate the joint distribution of f+, y as,

P (y, f+♣X, X+,ϑ) ∼ N (

⎟

m1

m+1

]

,

⋃

⨄
K(X, X) +

(

diag(σI)
)2

K(X, X+)
K(X+, X) K(X+, X+)

⋂

⎦) (2.47)

where
(

diag(σI)
)−2

is the estimated noise covariance, K(X+, X+) is the prior co-

variance matrix of f+, and K(X, X+) is the covariance between f+ and y. Based on

the results provided in A.1, the of conditional distribution P (f+♣y, X, X+,ϑ) can be
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derived as,

P (f+♣y, X, X+,ϑ) ∼ N (n+, S+)

where n+ = m+1 + K(X+, X)
(

K(X, X) +
(

diag(σI)
)2
)−1

(y − m1),

S+ = K(X+, X+) − K(X+, X)
(

K(X, X) +
(

diag(σI)
)2
)−1

K(X, X+)

(2.48)

2.6 Algorithm

Fig.(2.3) presents the Ćow-chart of the proposed GPR model parameter estimation

for prediction. The Ąrst step of the algorithm is to set the initial value for both

Gaussian process hyper-parameters and noise likelihood hyper-parameters. Further,

a standard GP is used to train the model from the training dataset and the predictive

mean thus obtained, is set as an initial value for f . In the E-step, the posterior

probability of P (f ♣y, X, I) and P (I♣y, X) is inferred. Then, noise mode identity vector

is constructed by comparing the probability in Eq.(3.27) for each component, and the

component that has the largest probability will be chosen as a noise mode identity of

that sample. In the M-step, using the posteriors obtained in the E-step, we maximize

the Q function as a function of ϑ (t), and the hyper-parameters are updated using

Eq.(3.31) to Eq.(3.32). The E-step and M-step are alternated until convergence. In

the last step of the algorithm, the GPR with the trained hyper-parameters will be

used to predict response for a given test data using Eq.(3.46).
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Figure 2.3: Algorithm of the Proposed robust Gaussian process
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2.7 Examples

To evaluate the eicacy of the presented GPR in this chapter, we provide simulation

examples for various cases, namely, (i) two synthetic data sets with one dimensional

and multidimensional inputs, respectively, (ii) a simulation example using continuous

stirred tank reactor (CSTR) and (iii) an industrial example. To statistically charac-

terize the performance, we employ three metrics, namely, mean absolute error (MAE),

root mean square error (RMSE), and negative log of predictive probability (NLP) as

formulated below [Kuss, 2006]:

• Mean absolute error:

MAE =
∑N+

i=1 ♣f̂+i
− f+i

♣
N+

(2.49)

• Root mean square error:

RMSE =




√

∑N+

i=1(f̂+i
− f+i

)2

N+

(2.50)

• Negative logarithm of predictive probability

NLP = −
∑N+

i=1 log P (f+i
♣y, X, x+)

N+

(2.51)

where f̂+ and f+ are the predicted value and the reference respectively while N

denotes the number of samples in test data set.

2.7.1 Numerical Example

Neal example

As a Ąrst example, one dimensional problem is considered, which is adopted from

Neal [1997]. The input signal for the training part, x, was drawn from a Gaussian

distribution with zero mean and unit variance, and the corresponding target value

was calculated using the function given below,

f(x) = 0.3 + 0.4x + 0.5 sin(2.7x) +
1.1

1 + x2
(2.52)
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We injected measurement noise to the target value where noise was drawn from

a Gaussian mixture model where 85% of the noise realizations were generated from

N (0, 0.01), and the remaining 15% of the noise realizations were generated from

N (0, 1.5). In our example, training data set contains 100 samples, and test data set

contains 1000 samples. The data set was modelled using the proposed method and

the results are compared with other models in the existing literature such as, standard

GP with Gaussian noise, GP with StudentŠs t-distribution likelihood, and GP with

Laplace noise distribution. We use standard GP to refer to GPR with single Gaussian

noise whose parameters are estimated by maximum likelihood estimation, and GPL

via VB and GPT via VB stand for GPR with Laplace noise and with student-t noise,

respectively, which are implemented using Variational Bayesian inference simulated

using GPML toolbox [Rasmussen and Nickisch, 2010]. GPM via EM denotes the

proposed method of this chapter.

We have used SE kernel function, which is formulated for one dimensional input

as below,

kSE(xi, xj) = σ2
f exp

(

− (xi − xj)2

2l2

⎜

(2.53)

The 100 training cases and the result of cross validation of these four models on

the test data set are presented in Fig.(2.4). Table 2.2 shows the RMSE, MAE, and

NLP of four diferent regression models. The following are the set of hyper-parameters

computed by the proposed method:

ϑ = [log(l), σf , α1, α2, σ2
1, σ2

2] = [0.9439, 1.3928, 0.8761, 0.1239, 0.0074, 1.5521] (2.54)

Table 2.2: Prediction Performance of Neal
Method MAE RMSE NLP
Standard GP 0.2069 0.3006 0.3412
Robust GP with a mixture noise 0.0420 0.0528 −1.7488

Robust GP with T-student likelihood 0.1975 0.4722 -0.3668
Robust GP with Laplace likelihood 0.1763 0.411 -0.1278

As it is evident from the results that the proposed method outperforms the other
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Figure 2.4: The predictive mean using the four models on Neal example
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methods in terms of prediction performance while the estimated noise likelihood pa-

rameters are also very much close to the true values.

Furthermore, we investigate how the proposed method works in this example if the

injected noise was drawn from a single Gaussian noise with zero mean and variance

0.1. The Table 2.3 illustrates the estimated parameters using the proposed method

and Standard GP.

Table 2.3: Estimated parameters for Neal example with single Gaussian noise

`
`
`
`
`
`
`

`
`

`
`
`
`
`̀

Method
parameters Variances Mixture weights

σ1 σ2 α1 α2

True value 0.1 NA 1 0
Standard GP 0.1070 NA 1 0
GPGMM 0.1102 0.1008 0.5564 0.4436

Using Fig. (2.5) and Table 2.4, we can compare the results from prediction per-

formance perspective for the case with single Gaussian noise. As it is evident from

the results, the proposed method has better prediction performance even in the case

with single Gaussian noise.

Table 2.4: Prediction Performance of Neal example with single Gaussian noise
Method MAE RMSE
Standard GP 0.1361 0.2280
Robust GP with mixture noise 0.1358 0.2276

Friedman data set

Friedman [1991] described the following nonlinear model in Eq.(2.55) that contains

10 covariates in the data (x = x1, x2, ..., x10). However, the function that describes

the response f(x) is dependent only on the Ąrst Ąve dimensions (x1 to x5),

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 (2.55)

10 training data sets of size of 100 × 10 are generated as 100 by 10 array of

random numbers between 0 and 1 sampled from continuous uniform distributions.

After obtaining the corresponding function values from this model, we normalize data
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Figure 2.5: The mean prediction on Neal example with single Gaussian noise
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set, and the noise from a mixture of two Gaussians is added. For generating noise,

we assumed that 70 percent of noise realizations comes from N (0, 0.002) and the

remaining noise realizations are sampled from N (0, 1.08). To evaluate the proposed

model, we generate a test data set of 10000 function values from the Friedman model.

We use the SE kernel function with 10 dimensional inputs,

kSE(xi, xj) = σ2
f exp

[ 10∑

d=1

(

− (xid − xjd)2

2l2
d

⎜]

(2.56)

Fig.(2.6) and Fig.(2.7) show MAE and RMSE on the 10 diferent data sets where

we observe that the proposed model performs better than the other models and

gives more accurate prediction. For further comparison, the scatter plot of the four

model predictions is also provided based on one of the training sets in Fig.(2.8). The

estimated GPR parameters values for the data are given below:

ϑ = [log(l1), log(l2), log(l3), . . . , log(l9), log(l10), σf , α1, α2, σ2
1, σ2

2]

= [0.4284, −0.7027, −0.1624, 0.5143, 1.2521, 10.5515, 10.4032, 10.5210, 2.8724, 9.4514,

1.6725, 0.2506, 0.7494, 1.0849, 0.0143]
(2.57)

where the log scale values are large for the inputs from x6, . . . , x10 which shows the

proposed approach can qualitatively describe the relevant characteristics of Eq.(2.55).

Furthermore, we can also observe that the estimated parameters for the noise are

very close to the true noise parameters.

2.7.2 Continuous stirred tank reactor

The reactor considered here is a CSTR with an irreversible and exothermic reaction

A → B having the mass and energy Balances as follows [Morningred et al., 1990],

dCA(t)
dt

=
F

V
(CAf (t) − CA(t)) − k0CA(t) exp(− E

RT (t)
) (2.58)

dT (t)
dt

=
F

V
(Tf (t) − T (t)) − (−∆H)k0CA(t)

ρCp

exp(− E

RT (t)
)

− ρcCpc

ρCpV
Fc(t)

⎭

1 − exp[
−hA

Fc(t)ρcCpc

]
}

(T (t) − Tj(t))
(2.59)
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Figure 2.6: Box plot of the RMSE on the 10 data sets
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Figure 2.7: Box plot of the MAE on the 10 data sets
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Figure 2.8: Scatter Plot on one of the data sets
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Figure 2.9: Input-output data-set used for training the CSTR model

The parameters of the model are listed in Table 2.5. This CSTR example has one

input, coolant Ćow rate (FC), and two outputs including: product concentration of

component A (CA), and Reactor temperature (T ). However, in this simulation, we

attempt to Ąnd the underlying function which maps the input to one of the outputs,

i.e. product concentration of component A (CA). The training data set used in this

simulation is depicted in Fig.(2.9).

To assess the eiciency and performance of the proposed model, a mixture of two

Gaussian noises is added to the output of the CSTR simulation. This mixture noise

is generated using Gaussian distributions with zero mean and the variances 4 × 10−5

and 9 × 10−3 , respectively. The prediction performance of the model is presented in

Fig.(2.10). Table 2.6 shows the magnitudes of MAE for the standard GPR and the
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Table 2.5: Parameters of the CSTR system
Description Notation nominal Value
Process Ćow rate F 100 L

min

CSTR volume V 100 L
Feed Concentration of component A CAf 1 mol

L

Reaction rate constant K0 7.2×1010 min−1

Activation energy E/R 1×104 K
Feed temperature Tf 350 K
Inlet coolant temperature Tj 350 K
Heat of reaction ∆H -2×105 cal

mol

Liquid densitis ρ, ρC 1×103 g
L

SpeciĄc heats Cp, Cpc 1 cal
g.K

Heat transfer term hA 7×105 cal
min.K

proposed GPR model, which clearly indicate the superiority of the proposed approach.

Table 2.6: Prediction Performance of CSTR
Method MAE on Validation data MAE on Training data
Standard GP 0.0088 0.0050
Robust GP with a mixture noise 0.0027 0.0019

2.7.3 Industrial Process modelling

The efectiveness of our proposed method is further investigated through an industrial

modelling problem. The steam assisted gravity drainage (SAGD), a process which

is used to extract heavy oil or bitumen from underground, in Northern Alberta,

Canada, is considered in this section. Due to high viscosity of heavy oil or bitumen,

non conventional oil recovery techniques such as SAGD improve the Ćow properties

of bitumen by reducing the viscosity, thereby, aiding the extraction. This procedure

involves the drilling of two horizontal well placed one over the other. Low pressure

steam is injected into the upper well named injection well. As the steam Ćows upward

a cone-shaped steam chamber is formed. Steam causes the bitumen to heat up, which

reduces its viscosity, and enables the bitumen to Ćow downward into production well

by the force of gravity, forming oil in water emulsion. The emulsion Ćow that measures

water and oil mixture Ćow is a key variable in a SAGD process and its prediction is

deemed to be critical.
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Figure 2.10: Cross-validation for CSTR data
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Figure 2.11: The process diagram of Emulsion Ćow soft sensor

We consider measurements of four most informative inputs for predicting emul-

sion Ćow (EF) rate. The measurement is averaged over 5 hours to remove unwanted

peaks in process variables as part of pre-processing. Further, the data is normalized

to preserve propitiatory information. The process schematic of SAGD process with

relevant inputs and output is illustrated in Fig.(2.11). Standard GP and the pro-

posed GP with the mixture likelihood is applied to model the EF rate. A statistical

comparison of our proposed method with the standard GP is presented in Table 2.7.

Also, Fig.(2.12) shows the cross validation results. The results presented above show

the advantage of the proposed approach.
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Figure 2.12: Cross-validation of the two models on SAGD Process
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Table 2.7: Prediction Performance of SAGD Process
Method MAE for validation data MAE for training data
Standard GP 0.1260 0.0700
Robust GP with a mixture noise 0.1221 0.0639

2.8 Conclusion

In this chapter, a Robust GPR with a mixture of Gaussian likelihood has been pro-

posed to model the processes afected by multi-modal noise. Further, we presented

an approach based on EM algorithm to obtain the point estimation of the proposed

model parameters. Two numerical examples and a simulated chemical process have

been used to demonstrate the advantage of the proposed method. In addition, the

method is applied to model industrial data from SAGD process, which further veriĄed

efectiveness of the proposed approach.
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Chapter 3

Robust Gaussian Process

Regression with Noisy Input using

EM Algorithm

In the traditional formulation of Gaussian Process Regression (GPR), the input data

is not corrupted by noise. However, this assumption is not realistic in many practical

problems. A new robust GPR model is introduced in this chapter where the input

and output are both corrupted by noise. To address this problem, the output noise is

modelled using a mixture of two Gaussian distributions and the input noise is assumed

to be an independently and identically distributed (i.i.d.) Gaussian noise. The out-

liers are taken into account by considering a mixture of two Gaussian distributions

for the output noise. Note that this consideration renders the model to be robust

against outliers. A learning scheme based on the errors-in-variables (EIV) model and

the Expectation Maximization (EM) algorithm is proposed to derive a new Gaussian

Process model whose kernel function is dependent on hyper-parameters in both the

input and output noises. The Ąrst and second moments of the predictive distribution

are obtained based on the learned hyper-parameters through the proposed algorithm.

The numerical and simulation examples presented here demonstrate the practicality

of the proposed method and its superiority to other existing methods.

3.1 Introduction

Nonlinear regression analysis arises in a broad class of scientiĄc disciplines, such

as engineering, statistics, biology, etc. It is performed by placing a prior on the
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underlying function followed by data observation to obtain a posterior. Gaussian

process regression (GPR) models are an alternative approach to traditional regression

analysis, in which a multivariate Gaussian distribution is assumed as a prior for the

underlying function that can be updated as data are observed to produce the posterior

distribution over the function [Murphy, 2012]. Rasmussen [1999] has shown that

Gaussian process (GP) is a good method for nonlinear regression and outperforms

the other regression methods.

Standard GPs have been utilized successfully in regression analysis by considering

two assumptions about the noises in the data; (i) the input data are noise free, and

(ii) the output data are corrupted by the noise following an independent, identically

distributed Gaussian distribution with constant variance [Rasmussen and Williams,

2006]. However, these assumptions might not lead to a good predictive performance in

many practical regression problems, due to sampling errors, the occurrence of outliers

and non-Gaussian distributed measurement errors.

Following other robust regression models, a noise likelihood with heavier tails was

adopted rather than a Gaussian distribution (which violates the second assumption

of Standard GP) in order to render the GP regression model robust with respect to

the occurrence of outliers. Hyper-parameters for GP regression were determined by

maximizing the log marginal likelihood. However, in the case of using heavy-tailed

distributions, the maximization of the log marginal likelihood is intractable. Many

published articles in literature have focused on learning GPR with non-Gaussian

likelihood such as in Neal [1997] where the output noise is assumed to follow a t-

distribution and the regression model is implemented using the Markov Chain Monte

Carlo (MCMC) method. Further, Kuss [2006], Ranjan et al. [2016], Vanhatalo et al.

[2009], and Jylänki et al. [2011] proposed other approximate Bayesian inferences such

as: Expectation Propagation (EP), Laplace approximation, and Variational Inference

to implement GPR with a student-t distribution likelihood. In Chapter 2, the GPR

model was made robust to the outliers by using a mixture of two Gaussian distri-

butions for the output noise and an EM algorithm-based approach was proposed for

learning hyper-parameters.

On the other hand, error-in-variables (EIV) methods study the violation of the

Ąrst assumption. In this case, both input and output are contaminated by noise.
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There are two types of EIV models: (i) Classical model (ii) BerksonŠs model. In the

classical model, the errors arise due to the measuring device and the measurements are

the noise-corrupted version of the true value; while in BerksonŠs model the observed

values are assumed to be certain and the unobserved true values vary around the

certain value due to an error independent from the observed value [Carroll et al.,

2006]. EIV regression models have been extensively studied in the literature. Fuller

[2009] and Cheng et al. [1999] investigated the classical analysis of EIV regression

models wherein maximum likelihood and least squares solution were discussed. The

maximum likelihood approach for estimating the EIV model parameters was Ąrst

utilized by Lindley [1947] and has been adopted by many other researchers since then.

Furthermore, the total least squares method that is also used for estimating the EIV

model parameters was Ąrst introduced by Golub and Van Loan [1980]. In Dellaportas

and Stephens [1995], the MCMC technique was employed to analyze nonlinear EIV

regression for both the Berkson and Classical models. It should be noted that the

EIV models for nonlinear regression are discussed in Carroll et al. [2006].

To the best of our knowledge, there are few works on the simultaneous consid-

eration of input and output data uncertainties in nonlinear regression. The authors

in Tresp et al. [1994] trained a neural network with uncertain inputs and derived

the closed form solution for a certain Gaussian basis function. Their solution sepa-

rately estimated the input density with a Gaussian mixture model (GMM) and the

conditional density with a feed-forward network. Also, a new robust support vec-

tor regression model with uncertain input and output for both linear and nonlinear

cases, has been derived in Huang et al. [2012]. Girard and Murray-Smith [2003] fo-

cused on learning a GP model with uncertain inputs. They approximated the GP

latent function f about an input using a Taylor series. Then, a new Gaussian process

was deĄned with a corrected covariance function which accounts for the input noise.

For prediction at a new random input, Girard and Murray-Smith [2003] utilized two

equations for the mean and variance of the predictive distribution which has been

derived in more detail in Girard et al. [2002] and Girard et al. [2003a]. McHutchon

and Rasmussen [2011] also considered a GPR model with noisy input wherein some

approximations were made to make the model tractable. Similar to Tresp et al.

[1994], McHutchon and Rasmussen [2011] takes advantage of a local linear expansion
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to transform the input noise into the output noise. They referred the input noise to

output in order to reshape all the noises as output noise, leading to the output noise

variance changes along with the input space (so-called heteroscedasticity). Tran et al.

[2015] studied the GPR with noisy input and output for a speciĄc problem that dealt

with temporal data. In Tran et al. [2015], a variational inference-based approach was

used to estimate the model, by assuming a new constraint for the problem. In the

statistics literature, the case of input-dependent noise for regression models has been

examined under the name of heteroscedasticity. For instance, Goldberg et al. [1998]

utilized a second GP to model the noise variance, thereby employing two GPs to

make predictions.

Even though there are various works on learning GPs with noisy input (Girard

and Murray-Smith [2003], McHutchon and Rasmussen [2011]), the problem of robust

GP with noisy input in the presence of outliers has not been considered, although

practical data are often corrupted by outliers. In this chapter, a robust GPR model

with noisy input is proposed. It should be noted that the formulation in (Girard and

Murray-Smith [2003], McHutchon and Rasmussen [2011]) considered that both input

and output measurements are corrupted by i.i.d. Gaussian noise. Here, we extend

these researches to the case which is robust to the outliers using a mixture of two

Gaussian distribution. Further, we develop the EM algorithm formulation to learn

hyper-parameters of the proposed robust GPR model with noisy input. Parameters of

a model can be estimated by maximum likelihood estimation (MLE). However, when

the observed data is incomplete or contains hidden or latent variables, the marginal

likelihood function can be maximized using the EM algorithm [Dempster et al., 1977].

Finally, we validate our results with synthetic data and a simulated example.

The rest of this chapter is organized as follows: the problem is described in Section

3.2. In Section 3.3 some methods for approximating the underlying process with a new

GP are introduced. An EM-based approach is proposed in Section 3.4, in which the E

step and the M step are presented to learn all the hyper-parameters. The predictive

distribution model based on the learned hyper-parameters is also discussed. In order

to verify the performance of the proposed regression model, one numerical example

and one simulation example are presented in Section 3.5 and the results are discussed.

Some concluding remarks are presented in Section 3.6.
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3.2 Overview of the Problem

Consider a dataset D made up of each data vector, xi = [xip] ∈ R
d where p =

[1, 2, . . . , d], with the corresponding outputs yi ∈ R:

D = ¶(xi, yi)♣i = 1, 2, . . . , n♢

X = ¶xi♣i = 1, 2, . . . , n♢

y = ¶yi♣i = 1, 2, . . . , n♢.

where the observed data, D, includes X and y which are an n×d matrix and an n×1

column vector, respectively. Given this dataset, we consider the following nonlinear

regression model:
yi = f(ui) + εyi

ui = xi + εxi

(3.1)

where εyi
is a random variable representing noise in the output, εxi

is the input noise

and ui = [uip] ∈ R
d is a vector of the actual input variables to the process, which

are not observed. In this setting, D are the noise-free versions of actual inputs to

the process and the noise-corrupted outputs of the process. The output noise here

is assumed to be a mixture of Gaussian distributions to account for outliers along

with regular noise. We further assume that the input noise for each input dimension

follows an i.i.d Gaussian distribution,

εxi
∼ N (0, Σx) and εyi

∼

⎧

⎪⨄

⎪⋃

N
(

0, σ2
1

)

w.p. π1

N
(

0, σ2
2

)

w.p. π2

(3.2)

where Σx is a diagonal matrix with entries σ2
x on the main diagonal of the matrix,

σ2
1 denotes a high variance accounting for the outlying observations and σ2

2 is the

symbol for regular noise variance. I = [I1, I2, . . . , Ii, . . . , In] is a vector of the model

indicator in diferent samples as in our case Ii ∈ ¶1, 2♢, representing the identity of

the mixture component that has generated the output noise for any sample. πq is

used to denote the probability, P (Ii = q); q ∈ [1, 2], that are the mixture weights.

Since these mixture weights represent the probability of occurring each of outliers

and regular noise,
2∑

q=1
πq = 1 holds. We assume a GP prior on f(.), which means

that any Ąnite number of the actual outputs of the process evaluated from f have a

multivariate normal distribution that is entirely deĄned by its mean and covariance
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The challenge resulting from the presence of the input noise is due to the nonlinear

dependencies of the covariance function of the prior on the latent actual input. There-

fore, the probability distribution of P (f(U)♣X, φ) will be of a non-Gaussian distribu-

tion, which makes the exact inference for Eq.(3.5) analytically intractable. Likewise,

the mixture noise model also makes the log evidence non-Gaussian since the noise

distribution is not log-concave. Hence, in this work, we have to resort to approximate

P (f(U)♣X, φ) with a Gaussian distribution and then the Expectation-Maximization

(EM) algorithm is employed to estimate the optimal parameters. After the learning

part, the predictive distribution is derived based on the best-Ąt hyper-parameters.

The detailed derivation of these steps is presented in the following sections.

3.3 Approximation of the prior with a new Gaus-

sian process

3.3.1 Local linear expansion of the latent function about each

observed input point

The prior on f has been assumed to be a GP which has the kernel form, Cov(f(ui), f(uj)),

as Eq.(3.2). Since the actual input U is latent, the deĄned covariance function is a

nonlinear function of the latent variable resulting in p(f(U)♣X, φ) being analytically

intractable. Then, we resort to approximate this prior with a new Gaussian pro-

cess whose Ąrst and second moments are derived from the Taylor series of the latent

function f(ui) at point xi as, [McHutchon and Rasmussen, 2011]

f(ui) ≈ f(xi) + εT
xi

∂f(ui)
∂ui

\
\
\
\
ui=xi

(3.6)

From this assumption, the input noise is of a Gaussian distribution with zero

mean E[εxi
] = 0. Then, the expectation calculation of this expression is obtained as

follows,

E[f(ui)] ≈ E[f(xi)] + E[εT
xi

].E[
∂f(ui)

∂ui

\
\
\
\
ui=xi

]

E[f(ui)] ≈ E[f(xi)] (3.7)

It is clear from the Eq.(3.7), that the mean function of the new GP prior has the

same value as the mean function of the former GP prior m(U) = m(X). The second
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moment of the new GP, covariance matrix Cov(f(ui), f(uj)), for entries on the main

diagonal (i = j) is derived as follows,

V ar[f(ui)] ≈ V ar[f(xi) + εT
xi

∂f(ui)
∂ui

\
\
\
\
ui=xi

] (3.8)

V ar[f(ui)] ≈ V ar[f(xi)] + V ar[εT
xi

∂f(ui)
∂ui

\
\
\
\
ui=xi

] + 2Cov(f(xi), εT
xi

∂f(ui)
∂ui

\
\
\
\
ui=xi

)

(3.9)

V ar[f(ui)] ≈ V ar[f(xi)] + E[εT
xi

]T V ar[
∂f(ui)

∂ui

\
\
\
\
ui=xi

]E[εT
xi

]

+ E[
∂f(ui)

∂ui

\
\
\
\
ui=xi

]T V ar[εT
xi

]E[
∂f(ui)

∂ui

\
\
\
\
ui=xi

] + V ar[εT
xi

]V ar[
∂f(ui)

∂ui

\
\
\
\
ui=xi

]

+ 2Cov(f(xi), εT
xi

∂f(ui)
∂ui

\
\
\
\
ui=xi

) (3.10)

V ar[f(ui)] ≈ V ar[f(xi)] + E[
∂f(ui)

∂ui

\
\
\
\
ui=xi

]T ΣxE[
∂f(ui)

∂ui

\
\
\
\
ui=xi

]

+ Tr(Σx.V ar[
∂f(ui)

∂ui

\
\
\
\
ui=xi

]) (3.11)

Cov[f(ui), f(ui)] ≈ Cov[f(xi), f(xi)] + E[
∂f(ui)

∂ui

\
\
\
\
ui=xi

]T ΣxE[
∂f(ui)

∂ui

\
\
\
\
ui=xi

]

+ Tr(Σx.V ar[
∂f(ui)

∂ui

\
\
\
\
ui=xi

]) (3.12)

k(ui, ui) ≈ k(xi, xi) + E[
∂f(ui)

∂ui

\
\
\
\
ui=xi

]T ΣxE[
∂f(ui)

∂ui

\
\
\
\
ui=xi

]

+ Tr(Σx.V ar[
∂f(ui)

∂ui

\
\
\
\
ui=xi

]) (3.13)

Since the input noise is modelled independently for diferent samples, all the terms

except the Ąrst term in Eq.(3.15) are evaluated to be zero. The covariance matrix

of-diagonal elements are obtained as,

Cov

⋃

⨄f(ui), f(uj)

⋂

⎦ ≈ Cov

⋃

⨄f(xi) + εT
xi

∂f(ui)
∂ui

\
\
\
\
ui=xi

, f(xj) + εT
xj

∂f(uj)
∂uj

\
\
\
\
uj=xj

⋂

⎦

(3.14)

≈ Cov

⋃

⨄f(xi), f(xj)

⋂

⎦+ Cov

⋃

⨄f(xi), εT
xj

∂f(uj)
∂uj

\
\
\
\
uj=xj

⋂

⎦

+ Cov

⋃

⨄εT
xi

∂f(ui)
∂ui

\
\
\
\
ui=xi

, f(xj)

⋂

⎦
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+ Cov

⋃

⨄εT
xi

∂f(ui)
∂ui

\
\
\
\
ui=xi

, εT
xj

∂f(uj)
∂uj

\
\
\
\
uj=xj

⋂

⎦ (3.15)

≈ Cov

⋃

⨄f(xi), f(xj)

⋂

⎦ = k(xi, xj) (3.16)

Thus, the probability of p(f(U)♣X, φ) is approximated by a new GP given as

follows,

p(f(U)♣X, φ) ∼ N
(

0, S(X, X)
)

(3.17)

where all the elements of the covariance matrix for the new GP prior are approximated

as follows,

s(xi, xj) ≈ k(xi, xj) + cc(xi, xj) (3.18)

In this approximation method, cc(xi, xj) is derived using Eq.(3.13) and Eq.(3.16)

as given below,

⎧

⨄

⋃

cc(xi, xj) = Ωi i = j

cc(xi, xj) = 0 i ̸= j
(3.19)

where Ωi = E

⋃

⨄∂f(ui)
∂ui

\
\
\
\
ui=xi

⋂

⎦

T

.Σx.E

⋃

⨄∂f(ui)
∂ui

\
\
\
\
ui=xi

⋂

⎦ + Tr

∏

∐Σx.V[∂f(ui)
∂ui

\
\
\
\
ui=xi

]

∫

ˆ is the cor-

rected covariance term obtained using Eq.(3.13). We need to make another approx-

imation here since the problem cannot be solved analytically. McHutchon and Ras-

mussen [2011] approximated the expectation and variance of the derivative of GP

with the derivative of the GP posterior mean and variance. This method for approxi-

mating the prior on f is deployed in EM derivations, as well as another approximation

method proposed in the following section.

3.3.2 Expectation of Taylor series expansion for the Covari-

ance function

In this method, the Taylor series expansion for the covariance matrix k(ui, uj) =

k(xi + εxi
, xj + εxj

) is used. Since the expected value of the covariance matrix is

directly intractable, the Taylor series up to order 4 about the point (ui, uj) is written
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as follows,

k̃(ui, uj) = k(xi, xj) + εT
xi

∂k(xi, xj)
∂xi

+ εT
xj

∂k(xi, xj)
∂xj

+
1
2

εT
xi

∂2k(xi, xj)
∂xi

2
εxi

+
1
2

εT
xj

∂2k(xi, xj)
∂xj

2
εxj

+ εT
xi

∂2k(xi, xj)
∂xi∂xj

εxj
+ . . .

] (3.20)

The expectation of the approximated covariance matrix via Taylor series is derived

as follows,

E(k̃(ui, uj)) = k(xi, xj) +
1
2

Tr(
∂2k(xi, xj)

∂xi
2

Σx) +
1
2

Tr(
∂2k(xi, xj)

∂xj
2

Σx)

+
σ4

x

4!

[

3Tr(
∂4k(xi, xj)

∂xi
4

) + 3Tr(
∂4k(xi, xj)

∂xj
4

) + 6Tr(
∂4k(xi, xj)
∂xi

2∂xj
2

)
] (3.21)

Once the Ąrst and second derivatives of the kernel function are determined, the

following relationship can be obtained, ∂2k(xi,xj)

∂xi
2 = ∂2k(xi,xj)

∂xj
2 and for fourth derivative

we can see this relationship ∂4k(xi,xj)

∂xi
4 = ∂4k(xi,xj)

∂xj
4 = ∂4k(xi,xj)

∂xi
2∂xj

2 holds. By deploying these

relationships and the second and fourth derivatives of kernel function into Eq.(3.21),

the Ąnal form of the approximation for kernel function is derived as,

E(k̃(ui, uj)) = k(xi, xj) + σ2
xTr(

∂2k(xi, xj)
∂xi

2
) + σ4

xTr(
∂4k(xi, xj)

∂xi
4

)

= k(xi, xj) + σ2
x[

∂2k(xi, xj)
∂x2

i1

+ . . . +
∂2k(xi, xj)

∂x2
id

] + σ4
x[

∂4k(xi, xj)
∂x4

i1

+ . . . +
∂2k(xi, xj)

∂x4
id

]

= k(xi, xj) + k(xi, xj)[σ2
x

d∑

p=1

(
(xip − xjp)2

l4
p

− 1
l2
p

) + σ4
x

d∑

p=1

(
(xip − xjp)4

l8
p

− 6(xip − xjp)2

l6
p

+
3
l4
p

)

  

cc(xi,xj)

]

(3.22)

In this case, the new GP prior has also the form as Eq.(3.17), wherein the covari-

ance matrix term entries can be presented as,

s(xi, xj) ≈ k(xi, xj) + cc(xi, xj) (3.23)

Fig.(3.2), shows a schematic of the proposed regression model with input and

output noise which introduces a new pathway to inference the input noise parameters,

as well as GP and output noise parameters for the two approximation methods.
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where A = V

(

(diag(σI))−2y

)

and V =
(

S(X, X)−1+(diag(σI))−2

)−1

. The posterior

of I is also written using BayesŠ rule as follows,

p(I♣D, φ(t)) =
p(y♣X, I, φ(t))p(I♣φ(t))

p(y♣X, φ(t))

=
p(y♣X, I, φ(t))p(I♣φ(t))

∑2
I1=1

∑2
I2=1 . . .

∑2
In=1 p(y♣X, I, φ(t))p(I♣φ(t))

(3.26)

where the vector I has entries Ii, which is the noise mode identity for any sample. For

mixture of two Gaussian noises, each entry can take two values which are 1 or 2. Then,

there exist 2n ordered arrangements of the elements of a set I with length n. In order

to make the problem analytically tractable, this posterior must be approximated.

We assume elements of the latent variable I are mutually independent and each is

governed by a distinct density.

P (Ii = q♣Di, φ(t)) =

1√

2πσ
(t)2
q

exp[− (yi−f̃
(t)
i

)2

2σ
(t)2
q

] α(t)
q

∑2
q=1

1√

2πσ
(t)2
q

exp[− (yi−f̃
(t)
i

)2

2σ
(t)2
q

] α
(t)
q

≜ λ
(t)
iq (3.27)

where during deriving this approximated posterior for Ii, we further assume that the

approximate value of f̃i can be replaced with the mean of the posterior of f(ui), which

is A(t−1)
i .

Given the posterior distribution of the hidden variables was obtained, Eq.(3.5) is

revisited, and a lower bound for the marginal likelihood is constructed as below,

log p(y♣X, φ) = log
∑

I

∫

f(U)
p(y, f(U), I♣X, φ) df(U)

= log
∑

I

∫

f(U)
p(f , I♣D, φ(t))

p(y, f(U), I♣X, φ)
p(f , I♣D, φ(t))

df(U)

= logEp(f ,I♣D,φ(t))

[
p(y, f(U), I♣X, φ)

p(f , I♣D, φ(t))

]

Based on JensenŠs inequality,

⩾ Ep(f ,I♣D,φ(t))

[

log
p(y, f(U), I♣X, φ)

p(f , I♣D, φ(t))

]

= Ep(f ,I♣D,φ(t))

[

log p(y, f(U), I♣X, φ)
]

  

F(φ;φ(t))

−Ep(f ,I♣D,φ(t))

[

log p(f , I♣D, φ(t)))
]

  

⩾0

(3.28)
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Thus, F(φ; φ(t)) is a lower bound of marginal likelihood which is obtained as

follows:

F(φ; φ(t)) = Ep(f ,I♣D,φ(t))

[

log
[

p(y♣f(U), I, φ)p(f(U)♣X, φ)p(I♣φ)
]]

First, f(U) is estimated by its conditional expectation as derived below,

= −n

2
log 2π − Ep(I♣D,φ(t))

⎭

log ♣diag(σI)♣
}

− 1
2
Ep(I♣D,φ(t))

∮

Tr
((

diag(σI)
)−2

V
(t)
)⨀

− 1
2
Ep(I♣D,φ(t))

∮

(y − A
(t))T

(

diag(σI)
)−2

(y − A
(t))

⨀

− 1
2

log ♣2π(S(X, X))♣ −
Tr
(

(S(X, X))−1
V

(t)
)

2

− A
(t)T

(S(X, X))−1A
(t)

2
+ Ep(I♣D,φ(t))

∮

log(P (I♣θn))

⨀

(3.29)

Second, using the conditional expectation of Ii, the hidden Ii is approximated.

The Ąnal form of the lower bound after taking the expectation is given below,

F(φ; φ(t)) = −n

2
log 2π −

2∑

q=1

n∑

i=1

λ
(t)
iq log σIi=q − 1

2

2∑

q=1

n∑

i=1

λ
(t)
iq

(

V (t)
ii

σ2
Ii=q

⎜

− 1
2

2∑

q=1

n∑

i=1

λ
(t)
iq

(

(yi − A(t)
i )2

σ2
Ii=q

⎜

− 1
2

log ♣2π(S(X, X))♣ −
Tr
(

(S(X, X))−1V
(t)
)

2

− A
(t)T

(S(X, X))−1A
(t)

2
+

2∑

q=1

n∑

i=1

λ
(t)
iq log αIi=q (3.30)

3.4.2 M-Step derivation

Let ϕ be the set of all parameters except output noise parameters, [ϕGP , ϕIN ]. Thus,

the derivative of the lower bound presented in Eq.(3.30) w.r.t ϕ can be derived as:

∂F(φ; φ(t))
∂ϕ

= − 1
2

Tr(S−1 ∂S

∂ϕ
) +

1
2

(A (t))T S−1 ∂S

∂ϕ
S−1(A (t))

+
1
2

Tr(S−1 ∂S

∂ϕ
S−1

V
(t))

(3.31)
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Update equations using the local linear approximation method

This section includes the update equations for the case with the covariance matrix

entries as derived in Eq.(3.18). Since the hyper-parameters of GP introduced in

Section 3.2, ϕGP , include [ℓ1, ℓ2, . . . , ℓd
  

Λ

, σf ], the partial derivative of the covariance

matrix obtained from Eq. (3.18) with respect to GP hyper-parameters would be
∂S

∂ϕGP
= G ∈ R

n×n×(d+1) that is derived as follows,

G1:n,1:n,d+1 = ∇log σf
S =

∂[K(X, X) + CC(X, X)]
∂ log σf

= 2K(X, X) (3.32)

where G1:n,1:n,d+1 = [gi,j,(d+1)], i = 1, 2, . . . , n; j = 1, 2, . . . , n is an n × n matrix with

the elements are given below,

gi,j,(d+1) = 2k(xi, xj) (3.33)

The partial derivative of the covariance matrix with respect to the length scale

parameters is derived as below,

G1:n,1:n,1:d = ∇log ΛS =
∂[K(X, X) + CC(X, X)]

∂ log Λ
(3.34)

where G1:n,1:n,1:d = [gi,j,k], i = 1, 2, . . . , n; j = 1, 2, . . . , n; k = 1, 2, . . . , d is a 3D

matrix n × n × d with the following elements,

gi,j,k =
1
l2
k

(xik − xjk)2k(xi, xj) (3.35)

The partial derivative of the covariance matrix with respect to the input noise

parameter would be ∂S
∂ϕIN

= H ∈ R
n×d which is derived as follows,

H1:n,1:d = ∇log σx
S =

∂[K(X, X) + CC(X, X)]
∂ log σx

(3.36)

where H1:n,1:d = [hi,k], i = 1, 2, . . . , n; k = 1, 2, . . . , d is an n × d matrix. Its elements

is derived as follows,

hi,k = 2σ2
x

∏

∐

⋃

⨄
∂E[f(uik)]

∂uik

\
\
\
\
uik=xik

⋂

⎦

⋃

⨄
∂E[f(uik)]

∂uik

\
\
\
\
uik=xik

⋂

⎦

T

+[
∂V[f(uik)]

∂uik

\
\
\
\
uik=xik

]T
∫

ˆ

(3.37)
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Substituting Eqs.(3.32),(3.34), and (3.36) respectively, into Eq.(3.31) and solving

using the gradient descent method, the optimal values of ϕ = [θGP , θIN ] maximizing

the F function is obtained. The closed form of the update equations for the output

noise parameters is obtained by setting the derivative of the F function with respect

to the output parameters to zero. After a little algebra, the update equations for

the noise components variance, σ2
q ∈ [σ2

1, σ2
2] are obtained. For the sake of brevity,

we omit the details of derivation. Deriving the update equation for αq results in a

constrained optimization problem with an additional constraint:
∑2

q=1 πq = 1. The

Lagrangian multiplier is utilized to solve this constrained optimization problem. The

update equations for σq and αq are given below,

∂F(φ; φ(t))
∂σ2

q

= 0 ⇒ σ2
q

(t+1) =
∑n

i=1 λ
(t)

iq (V (t)
ii + (yi − A(t)

i )2)
∑n

i=1 λ
(t)

iq

(3.38)

α (t+1)
q =

∑n
i=1 λ

(t)
iq

n
(3.39)

Since the update expressions for all the parameters, have been derived, the E and

M steps are iteratively solved until the converged parameters are obtained.

Update equations using the expectation of the Taylor series of covariance

function:

In this section, the update equations are derived based on the case with the covariance

matrix entries given in Eq.(3.23). The derivative of the lower bound is the same as

the previous case in Eq.(3.31). The derivative of the covariance matrix obtained from

Eq.(3.23) w.r.t all the GP parameters and input noise standard deviation is derived

as,

G1:n,1:n,d+1 = ∇log σf
S = 2

[

S(X, X)
]

(3.40)
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where G1:n,1:n,1:d = ∇log ΛS = [gi,j,k], i = 1, 2, . . . , n; j = 1, 2, . . . , n; k = 1, 2, . . . , d is

a 3D matrix n × n × d with elements,

gi,j,k =
[

k(xi − xj) + cc(xi − xj)
](xik − xjk)2

l2
k

+ k(xi − xj)

(

σ2
x[−4

(xik − xjk)2

l4
k

+
2
l2
k

]

+ σ4
x[−8

(xik − xjk)4

l8
k

+ 36
(xik − xjk)2

l6
k

− 12
l4
k

]

⎜

(3.41)

The partial derivative of the covariance matrix with respect to the input noise

parameter would be ∂S
∂ϕIN

= ∇log σx
S = H ∈ R

n×n where H1:n,1:n = [hi,j], i =

1, 2, . . . , n; j = 1, 2, . . . , n is a matrix n × n with elements as follows,

hi,j = k(xi, xj)[2σ2
x

d∑

p=1

(
(xip − xjp)2

l4
p

− 1
l2
p

) + 4σ4
x

d∑

p=1

(
(xip − xjp)4

l8
k

− 6(xip − xjp)2

l6
p

+
3
l4
p

)]

(3.42)

The derivatives of the lower bound w.r.t output noise parameters are the same as

the former case.

3.4.3 The predictive distribution

Using the linear expansion of latent function

Once the set of all parameters is estimated from update equations for the Ąrst case,

the predictive distributions can be constructed based on the Ątted parameters. In

order to compute the predictive distribution model, we need to Ąrst derive the joint

distribution of the predicted value at the new points and observed value given the

inputs and the parameters estimated from M-step as,

P (y, f∗♣X, X∗,Φ) ∼ N (

⎟

0

0

]

,

⋃

⨄
S(X, X) +

(

diag(σI)
)2

K(X, X∗)
K(X∗, X) S(X∗, X∗)

⋂

⎦) (3.43)

where S(X∗, X∗) is the approximated covaraince matrix of f∗ , whose entries are

derived using Eq.(3.18), and K(X, X∗) is the covariance between f∗ and y. By the

probability rules for conditioning Gaussian, the predictive distribution can be derived
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as,

P (f∗♣y, X, X∗,Φ) ∼ N (n∗, V∗)

where n∗ = K(X∗, X)
(

S(X, X) +
(

diag(σI)
)2
)−1

y,

V∗ = S(X∗, X∗) − K(X∗, X)
(

S(X, X) +
(

diag(σI)
)2
)−1

K(X, X∗)

(3.44)

Using Expectation of Taylor series for covariance matrix

For the second case, like the former case, Ąrst, the joint distribution and then the

predictive distribution is obtained as given below,

P (y, f∗♣X, X∗,Φ) ∼ N (

⎟

0

0

]

,

⋃

⨄
S(X, X) +

(

diag(σI)
)2

S(X, X∗)
S(X∗, X) S(X∗, X∗)

⋂

⎦) (3.45)

P (f∗♣y, X, X∗,Φ) ∼ N (n∗, V∗)

where n∗ = S(X∗, X)
(

S(X, X) +
(

diag(σI)
)2
)−1

y,

V∗ = S(X∗, X∗) − S(X∗, X)
(

S(X, X) +
(

diag(σI)
)2
)−1

S(X, X∗)

(3.46)

where S(X, X), S(X∗, X) = S(X, X∗)
T , and S(X∗, X∗) are the approximated covari-

ances between training data and themselves, the testing and training dataset, and the

test dataset and themselves respectively, whose entries are derived using Eq.(3.23).

3.5 Examples and Results

3.5.1 Numerical example

For a Ąrst example, we consider the following nonlinear function in Eq. (3.47). The

signal input was generated as a linearly spaced vector, then we corrupted the input

signal by a normal distribution with standard deviation 0.2 and mean zero. The

corresponding target value function is calculated by the equation below,

f(x) = sin(x) + 0.5 ∗ sin(2.7 ∗ x) (3.47)
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In order to check the performance of the proposed model, we also corrupt the tar-

get function values of the training data set by a Gaussian mixture measurement noise

where 70% of the noise data were generated from N (0, 0.1732), and the remaining

30% of the noise data were generated fromN(0, 1.2252). Training dataset includes 100

samples, and testing dataset includes 1000 samples. The generated training dataset

was modelled with the proposed robust GP with noisy input (NIGPGM) and pre-

dicted value was compared with validation data, as well as the existing methods in

the literature. The noise hyper-parameters including input noise parameters, output

noise parameters are computed by the proposed method and other methods and the

results are presented in Table 3.1,

Table 3.1: Comparing the estimated hyper-parameters using three methods with their
true value
h
h
h
h

h
h

h
h
h
h
h
h
h
h
h
h
hh

Methods
Hyper-parameters

α1 α1 σ1 σ2 σx

True value 0.3 0.7 1.225 0.173 0.2
Standard GP 1 0 0.7425 Not available Not available
NIGP 1 0 0.6816 Not available 0.2553
NIGPGMM 0.2307 0.7693 1.421 0.238 0.1758

We can observe that the estimated parameters from the proposed method, are

close to the true value of injected input and output noise hyper-parameters. We

compared the performance of the proposed method and that of two methods including

standard GP and standard GP with noisy input. Table 3.2 shows the performance of

these methods in terms of mean absolute error (MAE) and root mean square error

(MRSE).

Table 3.2: Prediction Performance using three methods
Method MAE MRSE
GP 0.1673 0.1981
NIGP 0.1392 0.1619
NIGPGM 0.0772 0.0900

Fig.(3.3) and Fig.(3.4) present the mean prediction of the proposed method (NIGPGM),

GP, and NIGP. It is clear that the proposed method outperforms the other two meth-

ods.
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Figure 3.3: The mean prediction of NIGPGM and GP methods on the validation
dataset

Figure 3.4: The mean prediction of NIGPGM and NIGP methods on the validation
dataset
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3.5.2 Simulation

As a second example, we consider the CSTR simulation example from Chapter 2.

In this simulation example, we attempt to Ąnd the underlying function which maps

the input,coolant Ćow rate (FC), to one of the outputs, i.e. product concentration of

component A (CA). Here, we injected a Gaussian noise distribution N (0, 0.22) to the

input signal. Then, this noisy input is used as an input to the CSTR simulation to

get the simulated value of the output. The output signal generated by the simulation

was corrupted with the following Gaussian mixture noise:

ϵ ∼
⎧

⨄

⋃

N (0, 4.0000e − 5) w.p 0.7

N (0, 0.009) w.p 0.3
(3.48)

The input and output pairs for the training part are illustrated in Fig.(3.5).

Figure 3.5: The noisy input and output dataset used for training the CSTR model

The prediction performance of the proposed model (NIGPGM) is presented in

Fig.(3.6). Table 3.3 presents the magnitudes of MAE for the standard GPR and

the proposed NIGPGM model, which clearly verify that the proposed method has

a better prediction performance. Further, the estimated hyper-parameters are very
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close to their true value as well which are as follows,

[α1, α2, σ2
1, σ2

2, σx] = [0.7257, 0.2743, 0.01866, 2.3141, 0.2777]

Figure 3.6: The mean prediction of NIGPGM and GP methods on CSTR dataset

Table 3.3: Prediction Performance of CSTR
Method MAE MSE
GP 0.00628 0.00628
NIGPGM 0.0018817 0.0022813

3.6 Conclusion

In this Chapter, we proposed a new robust GPR model in which the input noise is

modelled with a Gaussian distribution and the outputs are corrupted by a mixture

of two Gaussian distributions noise to model processes afected by both the input

and output noise. Further, using two diferent approaches we approximated the GP

prior with a new GP model whose kernel function is dependent on both the input

noise and the output noise hyper-parameters. Then we presented a method based

on EM algorithm to Ąt the parameters of the proposed model, thereby the predictive
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distribution model is constructed. Numerical and simulation examples have been

used to demonstrate the efectiveness of the proposed method.
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Chapter 4

Modelling of Dynamical Systems

with Robust Gaussian Process

Regression

In time series analysis, since data is collected over time and is of sequential nature, the

main goal is to extrapolate previously observed values into the future values and to

characterize the dynamical properties of the data. In this chapter, a robust Gaussian

process is utilized as a novel approach to identify nonlinear dynamic systems. Using

a robust Gaussian process regression (GPR) model with a mixture of two Gaussians

noise model, presented in the two previous chapters, the iterative one step ahead

prediction is made. Within this framework, it is assumed that the underlying function

that maps regressors to the current output is modelled by a robust identiĄcation

method to learn the true dynamics of the system that has been corrupted by outliers.

In order to demonstrate the efectiveness of the proposed method, a simulated data

set and a Mackey-Glass chaotic time series data set are investigated.

4.1 Introduction

Dynamic system identiĄcation describing mathematical models that govern the sys-

temsŠ dynamics given the observed data has attracted the attention of control system

engineers for many years. Depending on the form of the systemsŠ dynamics, linear

or nonlinear system identiĄcation methods are employed to describe the behaviour of

the systems [Billings, 2013]. Linear system identiĄcation is utilized for systems that

satisfy the superposition property. It is commonly represented by the autoregres-
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sive moving average with exogenous input (ARMAX) model, and other models that

are the subset of the ARMAX, such as AR (autoregressive), ARMA (autoregressive

moving average), and ARX(autoregressive with exogenous input) models. ARMA

model, which was Ąrst introduced in Whitle [1951], is composed of both the autore-

gressive(AR) and moving average (MA) models. Interested readers are referred to

Box et al. [1970], Ljung and Söderström [1983], Ljung [1987], and Soderstrom and

Stoica [1989] for the detailed description of these identiĄcation methods.

Nonlinear system identiĄcation has been widely studied with a focus on nonlinear

systems that do not satisfy the superposition principle. An extensive class of nonlin-

ear systems can be represented by the nonlinear autoregressive moving average with

exogenous input (NARMAX) model, which was Ąrst introduced in Billings and Leon-

taritis [1980]. Other representations for nonlinear systems, such as Volterra series,

block structured, and neural network models can be viewed as subsets of NARMAX.

Local modelling approach has also been utilized in the nonlinear dynamic modeling,

wherein a complex nonlinear system is divided into subsystems that are indepen-

dently modelled [Johansen et al., 1999]. Most traditional approaches to nonlinear

system identiĄcation are based on parametric methods. Furthermore, non-parametric

probabilistic approaches, namely, fuzzy model [Takagi and Sugeno, 1985] and neu-

ral network [Narendra and Parthasarathy, 1990] have been extensively used as the

nonlinear modelling approaches. Back propagation neural network, which has been

used by (Lapedes and Farber [1987];Principe et al. [1992]) in nonlinear system iden-

tiĄcation of time series, has produced more accurate results compared to traditional

methods.

The Gaussian process (GP) model, one of the non-parametric alternatives to static

modelling, outperforms the other non-parametric models according to a study by

[Rasmussen, 1999]. In the context of nonlinear dynamic modelling, GP has also

been explored in several studies. For instance, due to several limitations of multiple

local modelling techniques in some applications, Murray-Smith et al. [1999] modelled

a nonlinear problem by proposing a multiple local models approach including non-

parametric GPs as a prior in of-equilibrium regimes and linear sub-models in areas

around equilibrium. Leith et al. [2002] has also used a hybrid approach, which is a

combination of a local linear modelling approach and a non-parametric GP, to reduce
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the of-equilibrium problem. They have mentioned that a non-minimal realization

might be required to accurately capture the dynamics of a system. As an extension

to Leith et al. [2002], Ažman and Kocijan [2011] explored the feasibility of the method

for higher order dynamic systems. Further, Gregorcic and Lightbody [2007] proposed

a local model network based-algorithm for nonlinear system identiĄcation, wherein a

global GP with a nonlinear kernel function is used to identify the structure.

As shown in OŠHAGAN [1992], the derivative of a GP is also a GP. Solak et al.

[2003] used this property to model nonlinear dynamic systems by incorporating the

derivative and function value observations. Girard et al. [2003b] and Damianou and

Lawrence [2015] developed diferent approximation methods for learning a standard

GP with uncertain inputs in which the uncertainty across multi-step ahead prediction

was propagated. Inspired by GP latent variable model (GPLV), Wang et al. [2006]

proposed a GP dynamical model to capture the dynamics of high dimensional data.

All of the previously mentioned works utilized a structure for creating an internal

memory to exhibit temporal patterns, i.e. recurrent models. Similar to recurrent

neural networks (RNNs), Mattos et al. [2015a] presented a recurrent GP (RGP) and

developed recurrent variational Bayes (REVARB) framework that propagates the

uncertainty across the RGP states. Following Mattos et al. [2015a], a recurrent deep

GP-based approach was proposed for identiĄcation of dynamic system in Mattos

et al. [2017]. Their proposed approach introduced two groups of networks containing

multilayer and recurrent methods in a novel interconnected algorithm to identify the

dynamics of a system. A similar work has been previously published by Narendra

and Parthasarathy [1990] in the neural network context.

State-space models (SSMs) and nonlinear auto-regressive with exogenous input

(NARX) models are widely used in the context of nonlinear system identiĄcation.

SSM time-series has been studied by Frigola et al. [2014] wherein variational sparse

GPs were employed to approximate a tractable posterior over nonlinear dynamical

systems. Further, Kocijan et al. [2005] modelled the dynamics of the system by

employing the standard GP model with Gaussian likelihood in NARX structure model

as another well-known time series.

Most aforementioned works assumed that the measurement noise adopts a Gaus-

sian distribution. However, in reality, observations which have been corrupted by
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outliers or other disturbances contain non-Gaussian noise. In order to accommodate

outliers, a heavy-tailed distribution such as the Gaussian mixture distribution, t-

distribution, and Laplace distribution is employed as a noise likelihood to render the

model robust to outliers. Unlike standard GP, the inference of the robust GPR models

is intractable and several approximate inference methods have been developed in the

literature, including Kuss [2006] and Tipping and Lawrence [2005]. Moreover, Mattos

et al. [2015b] employed these robust GPR models with t-distribution and Laplace dis-

tribution likelihood in nonlinear dynamical system identiĄcation and compared the

results with the standard GP-based approach. The NARX structure was changed in

Mattos et al. [2016] and the latent autoregressive Gaussian process model (GPLARX)

that considers the additional uncertainty caused by feed-backing the noisy input into

the model was proposed.

In this chapter, we investigate the identiĄcation of nonlinear dynamical systems

with the NARX structure that uses a robust GPR model with a Gaussian mixture

noise model in order to obtain a more accurate solution for the identiĄcation of the

dynamical systems with outliers. By assuming a mixture of two Gaussian noises,

the regular noise is captured by the Gaussian distribution with smaller variance, and

outliers or other disturbances are modelled by the second normal distribution with

higher variance. The inference of this robust GPR is analytically intractable, and

the approximate learning for this regression model was established in Chapter 2 of

this thesis. Further, we employ the learning approach from Chapter 3 in the noisy

input case to consider the uncertainty resulting from feed-backing the noisy data into

the model. Finally, we compare the results with standard GP-based identiĄcation in

order to illustrate the improvements.

The rest of this chapter is organized as follows; the problem statement is described

in Section 4.2. In Section 4.3, we formulate the proposed robust GPR and deploy

it to the NARX model. In Section 4.4, we report and discuss the simulation results

for a simulated data set, as well as Mackey-Glass chaotic time series data obtained

using the proposed robust system identiĄcation with the existing system identiĄcation

method based on the standard GP. Conclusions are provided in Section 4.5.
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4.2 Basic problem description

Consider the learning task of an underlying temporal pattern which has been struc-

tured by a NARX model comprising a mapping from the regressor to the observed

output. This dynamic system model relates the current output to previously observed

outputs and control inputs by an unknown nonlinear function. The proposed model

structure for the set of data can be written as follows:

y(t) = q(ϑ(t)) + ε(t)

where ϑ(t) = [y(t − 1), u(t − 1), y(t − 2), u(t − 2), . . . , y(t − Ly), u(t − Lu)],
(4.1)

Ly and Lu are the number of delayed outputs and control inputs, respectively; ϑ(t)

denotes the regressor which is in principle comprised of Ly delayed outputs and Lu

delayed control inputs prior to time t; y(t) denotes the current output; and q(.)

represents the underlying nonlinear function. The measurement noise, ε(t), of this

dynamic model follows a mixture of two Gaussian distributions as,

ε(t) ∼

⎧

⎪⨄

⎪⋃

N
(

0, σ2
1

)

w.p. π1

N
(

0, σ2
2

)

w.p. π2

(4.2)

where σ2
1 denotes the variance of the regular noise distribution with a small value

and σ2
2 with a relatively large value presents the variance of the outliers distribution;

πj denotes the probability of the occurrence of outliers or regular noises, resulting in
2∑

j=1
πj = 1. By using the aforementioned model for the noise likelihood, the potential

presence of outliers is addressed, which makes the identiĄcation task robust to large

random errors. In this setting, we wish to Ąnd the underlying process q given a

time-series up to time n:

D = ¶y, V♢

V = ¶ϑ(t)♣t = 1, 2, . . . , n♢

y = ¶y(t)♣t = 1, 2, . . . , n♢.

(4.3)

where the regressor vector is assumed to be d-dimensional: ϑ(t) ∈ Rd. We place a GP

as a prior knowledge on q(V) = ¶q(ϑ(1)), q(ϑ(2)), . . . , q(ϑ(n))♢ function. Fig.(4.1)

illustrates the graphical model for the proposed robust system identiĄcation using

GPR with a mixture of two Gaussians noise model.
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discussed in Chapters 2 and 3. By modelling this dynamic system using the proposed

robust GP with a Gaussian mixture noise model, we can make multi-step ahead

predictions for some unobserved data based on one step ahead prediction iteratively.

These steps are presented in detail in the next section.

4.3 K-steps ahead prediction based on the dynamic

system identification using the proposed ro-

bust GPR

In this section, the K-step ahead prediction through the iteration of each successive

prediction for two diferent cases are discussed: (i) We only feed back the mean

prediction,(ii) We feed back the predictive probability density to involve the variance

prediction as well as the mean prediction. As mentioned in Section 4.2, y(t) =

q(ϑ(t)) + ϵ(t) where ϑ(t) = [y(t − 1), . . . , y(t − Ly), u(t − 1), . . . , u(t − Lu)]. For

simplicity in notation, q(ϑ(t)) will be denoted by q(t). As the time series is assumed

to be known up to time t = n and Ly > Lu, the identiĄcation data comprised of the

input (V) and the corresponding output (y) for the NARX model, based on GPR

with a Gaussian mixture noise model, (GPGM-NARX) can be formulated as,

y =

⋃

⎢
⎢
⎢
⎢
⨄

y(n)
y(n − 1)

...
y(Ly + 1)

⋂

⎥
⎥
⎥
⎥
⎦

V =

⋃

⎢
⎢
⎢
⎢
⨄

y(n − 1) . . . y(n − Ly) U(n − 1) . . . U(n − Lu)
y(n − 2) . . . y(n − Ly − 1) U(n − 2) . . . U(n − Lu − 1)

... . . . ...
... . . . ...

y(Ly) . . . y(1) U(Ly) . . . U(Ly − Lu + 1)

⋂

⎥
⎥
⎥
⎥
⎦

=

⋃

⎢
⎢
⎢
⎢
⨄

ϑ(n)
ϑ(n − 1)

...
ϑ(Ly + 1)

⋂

⎥
⎥
⎥
⎥
⎦

In the remainder of this chapter, we assume a GP as a prior on q = [q(1), . . . , q(n)]

with zero mean (as the prior mean function) and the squared exponential kernel

function (as the prior covariance function). Since the noise model follows a mixture

of two Gaussian distributions to account for the outliers in industrial data, we use

the formulation from Chapter 2. Using the above datasets, we train the hyper-

parameters of Gaussian process and mixture noise parts. After learning the complete
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set of hyper-parameters, the predictive distribution of the unobserved output y(n+1)

corresponding to the input ϑ(n + 1) can be derived as,

P (y(n + 1)♣V, y, ϑ(n + 1)) ∼ N
(

m(ϑ(n + 1)), S(ϑ(n + 1))
)

(4.5)

4.3.1 Naive approach

In the Ąrst case, we only consider that the mean predictions, m(ϑ(n + 1)), are fed

back into the model. Using the estimated value, ŷ(n+1) = m(ϑ(n+1)), we construct

a new regressor vector as follows,

ϑ(n + 2) = [ŷ(n + 1), y(n), . . . , y(n − Ly + 2), U(n + 1), U(n), . . . , U(n − Lu + 2)]

= [m(ϑ(n + 1)), y(n), . . . , y(n − Ly + 2), U(n + 1), U(n), . . . , U(n − Lu + 2)]
(4.6)

to obtain the predictive distribution of P (y(n + 2)♣V, y, ϑ(n + 2)) ∼ N
(

m(ϑ(n +

2)), S(ϑ(n + 2))
)

. Again, the mean of the predictive distribution is utilized as the

point estimation of ŷ(n+2) which is derived by the formulation from Chapter 2. This

step is repeated in order to obtain the point estimation for y(n + K) which is the K-

step ahead prediction (K > Ly). The regressor for this step, similar to the previous

steps, will be derived using the formulation for mean prediction from Chapter 2 as,

ϑ(n + K) = [ŷ(n + K − 1), ŷ(n + K − 2), . . . , ŷ(n + K − Ly), U(n + K − 1), . . .)]

= [m(ϑ(n + K − 1)), m(ϑ(n + K − 2)), . . . , m(ϑ(n + K − Ly)), U(n + K − 1) . . .]
(4.7)

This regressor is used to get the predicted value for y(n + K) as,

P (y(n + K)♣ϑ(n + K), V, y, θ) ∼ N (m(ϑ(n + K)), S(ϑ(n + K)))

where m(ϑ(n + K)) = K(ϑ(n + K), V)
(

K(V, V) +
(

diag(σI)
)2
)−1

y
  

α

,

S(ϑ(n + K)) = K(ϑ(n + K), ϑ(n + K))

− K(ϑ(n + K), V)
(

K(V, V) +
(

diag(σI)
)2
)−1

K(V, ϑ(n + K))

(4.8)
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4.3.2 Exact Approach

In this case, we feed back the predictive distribution into the model to propagate

uncertainty resulting from each successive prediction. Then, the predictive distribu-

tion of y(n + 1) similar to the former case, can be obtained based on the formulation

provided in Chapter 2,

P (y(n + 1)♣V, y, ϑ(n + 1)) ∼ N
(

m(ϑ(n + 1)), S(ϑ(n + 1))
)

(4.9)

By using this predictive distribution, we construct a new regressor vector for the

next prediction step as,

ϑ(n + 2) = [ŷ(n + 1), y(n), . . . , y(n − Ly + 2), U(n + 1), U(n), . . . , U(n − Lu + 2)]

[N
(

m(ϑ(n + 1)), S(ϑ(n + 1))
)

, y(n), . . . , y(n − Ly + 2), U(n + 1) . . . , U(n − Lu + 2)]
(4.10)

where ϑ(n + 2) is the noisy input which is fed back into the model. Since we wish to

predict its corresponding output, we should be able to derive the predictive distribu-

tion of p(y(n + 2)♣V, y, ϑ(n + 2)) for the normally distributed input, ϑ(n + 2), which

can be represented by,

ϑ(n + 2) = x(n + 2) + N (0, Σx) (4.11)

where x and Σx denote noise free input and the covariance matrix of the input noise,

respectively, and in the second step both can be obtained as,

x(n+2) =
[

m(ϑ(n + 1)) y(n) . . . y(n − Ly + 2) U(n + 1) . . . U(n − Lu + 2)
]

Σx =

⋃

⎢
⎢
⎢
⎢
⨄

S(ϑ(n + 1)) 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . 0

⋂

⎥
⎥
⎥
⎥
⎦

The approximated predictive distribution for y(n + 2) is derived by the results

from Chapter 3 as follows:

p(y(n + 2)♣V, y, ϑ(n + 2)) ∼ N
(

m+(ϑ(n + 2)), S+(ϑ(n + 2))
)

(4.12)
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We iterate these steps in order to obtain the predictive distribution of y(n + K)

for K steps ahead in time from n. Its regressor will be formulated as,

ϑ(n + K) = [ŷ(n + K − 1), ŷ(n + K − 2), . . . , ŷ(n + K − Ly), U(n + K − 1), . . .]

[N
(

m+(ϑ(n + K − 1)), S+(ϑ(n + K − 1))
)

, . . .

, N
(

m+(ϑ(n + K − Ly)), S+(ϑ(n + K − Ly))
)

, U(n + K − 1), . . . , U(n + K − Lu)]
(4.13)

In this step, the noise free input and the covariance matrix of the input noise are

as follows,

x(n + K) =
[

m+(ϑ(n + K − 1)) m+(ϑ(n + K − 2)) . . . m+(ϑ(n + K − Ly))

U(n + K − 1) U(n + K − 2) . . . U(n + K − Lu)
]

(4.14)

Σx =

⋃

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⨄

Cov(y(n + K − 1), y(n + K − 1)) . . . Cov(y(n + K − 1), y(n + K − Ly))
... . . . ...

Cov(y(n + K − Ly), y(n + K − 1)) . . . Cov(y(n + K − Ly), y(n + K − Ly))
Cov(U(n + K − 1), y(n + K − 1)) . . . Cov(U(n + K − 1), y(n + K − Ly))

... . . . ...
Cov(U(n + K − Lu), y(n + K − 1)) . . . Cov(U(n + K − Lu), y(n + K − Ly))

Cov(y(n + K − 1), U(n + K − 1)) . . . Cov(y(n + K − 1), U(n + K − Lu))
... . . . ...

Cov(y(n + K − Ly), U(n + K − 1)) . . . Cov(y(n + K − Ly), U(n + K − Lu))
Cov(U(n + K − 1), U(n + K − 1)) . . . Cov(U(n + K − 1), U(n + K − Lu))

... . . . ...
Cov(U(n + K − Lu), U(n + K − 1)) . . . Cov(U(n + K − Lu), U(n + K − Lu))

⋂

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.15)

As the regressor vector is assumed to be d dimensional, the input covariance

matrix, Σx, is d × d. Each entry of the input covariance matrix on the main diagonal

can be split into two parts, Cov(y(n + K − i), y(n + K − i)) for i = 1, 2, . . . , Ly and

Cov(U(n + K − i), U(n + K − i)) for i = 1, 2, . . . , Lu which are derived as below,

Cov(U(n + K − i), U(n + K − i)) = V ar(U(n + K − i)) = 0 (4.16)

Cov(y(n + K − i), y(n + K − i)) = V ar(y(n + K − i)) = S+(ϑ(n + K − i)) (4.17)
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Based on the NARX model, exogenous input, U , is usually known and determin-

istic; there is no uncertainty on the external input, and its variance is zero. The

covariance between every feed-back output and itself is calculated by the formulation

provided in Chapter 3. Further, the covariance between external(exogenous) inputs

and the feed-back outputs is derived as,

Cov(U(n + K − i), y(n + K − i)) = Cov(y(n + K − i), U(n + K − i))

= E[y(n + K − i).U(n + K − i)] − E[y(n + K − i)]E[U(n + K − i)]

= U(n + K − i) ∗ E[y(n + K − i)] − U(n + K − i) ∗ E[y(n + K − i)] = 0

(4.18)

In the Ąnal step, we obtain the cross-covariance between the feed-back outputs,

Cov(y(n + K − i), y(n + K − j)) for i = 1, 2, ..., Ly − 1 and j = i + 1, 2, ..., Ly,

by computing the covariance between every output and its corresponding regressor,

Cov(y(n + K − i), ϑ(n + K − i)). For i = 1, we ignore both the last term of the

regressor related to the feed-back output and the whole elements to the external

inputs in the regressor vector. Similarly, for i = 2, the last two terms of the regressor

are disregarded. Similarly, for i = Ly − 1, we again disregard the last Ly terms of the

regressor. In the following, for simplicity in the notation, we utilize l = K − i, and

derive the cross-covariance as given below,

Cov(y(n + l), ϑ(n + l))

= E[y(n + l)ϑ(n + l)] − E[y(n + l)]E[ϑ(n + l)]

= E[y(n + l)ϑ(n + l)] − m+(ϑ(n + l))X(n + l)

(4.19)

The Ąrst expectation term in Eq.(4.19) will be formulated as follows,

E[y(n + l).ϑ(n + l)]

=
∫ ∫

y(n + l).ϑ(n + l)p(y(n + l).ϑ(n + l))dy.dϑ(n + l) (4.20)

=
∫ ∫

y(n + l).ϑ(n + l)p(y(n + l)♣ϑ(n + l)).P (ϑ(n + l))dy.dϑ(n + l) (4.21)

where the underlined terms are the deĄnition of the expected value of y(n + l) w.r.t
p(y(n + l)♣ϑ(n + l)) which is denoted by Ep(y(n+l)♣ϑ(n+l))[y(n + l)],

=
∫

ϑ(n + l).Ep(y(n+l)♣ϑ(n+l))[y(n + l)].P (ϑ(n + l)).dϑ(n + l) (4.22)
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=
∫

ϑ(n + l)m(ϑ(n + l)).P (ϑ(n + l)).dϑ(n + l) (4.23)

By deploying the expression of m(ϑ(n + l)) =
∑

i αiK(ϑ(n + l), ϑ(i)) according
to Eq.(4.8), Eq.(4.23) can be further written as,

=
∑

i

αi

∫

ϑ(n + l)K(ϑ(n + l), ϑ(i)).P (ϑ(n + l)).dϑ(n + l) (4.24)

Based on the Gaussian covariance function, K(ϑ(n + l), ϑ(i)) =
(2π)D/2♣Λ♣1/2σf
  

c

Nϑ(n+l)(ϑ(i), Λ), we have;

= c
∑

i

αi

∫

ϑ(n + l)Nϑ(n+l)(ϑ(i), Λ).P (ϑ(n + l)).dϑ(n + l) (4.25)

and by replacing p(ϑ(n + l)) with Nϑ(n+l)(x(n + l), Σx), Eq.(4.25) is written as,

= c
∑

i

αi

∫

ϑ(n + l)Nϑ(n+l)(ϑ(i), Λ).Nϑ(n+l)(x(n + 1), Σx).dϑ(n + l)

(4.26)

Using the product of the Gaussian (refer to Appendix), Eq.(4.26) can be further
written as,

= c
∑

i

αi

∫

ϑ(n + l)Nx(n+l)(ϑ(i), Λ + Σx).Nϑ(n+l)(d(i), (Λ−1 + Σ−1
x )−1

  

D

).dϑ(n + l)(4.27)

where d(i) = D(Λ−1ϑ(i) + Σ−1
x x(n + l)). Then, Eq.(4.27) can be rewritten as below,

= c
∑

i

αiNx(n+l)(ϑ(i), Λ + Σx)
∫

ϑ(n + l).Nϑ(n+l)(d(i), D).dϑ(n + l)
  

(4.28)

where the term in the under-brace in Eq.(4.28) is the expected value of ϑ(n + l),

= c
∑

i

αiNx(n+l)(ϑ(i), Λ + Σx)d(i) (4.29)

= c
∑

i

αiNx(n+l)(ϑ(i), Λ + Σx)(Λ−1 + Σ−1
x )−1(Λ−1ϑ(i) + Σ−1

x x(n + l)) (4.30)

Finally, by substituting the resulting Eq.(4.30) in Eq. (4.19), the cross-covariance

matrix terms are given below,

Cov(y(n + l), ϑ(n + l))

= c
∑

i

αiNx(n+l)(ϑ(i), Λ + Σx)(Λ−1 + Σ−1
x )−1(Λ−1ϑ(i) + Σ−1

x x(n + l)) − m+(ϑ(n + l))x(n + l)

(4.31)
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where m+(ϑ(n+l)) is calculated using the results from the previous chapter. However,

Girard et al. [2003a] discuss the predictive distribution for the Gaussian distributed

testing data with known mean and variance, which can be exactly computed. It is

the learning of noisy inputs which is not analytically tractable and we have to resort

to some approximations which have been illustrated in the previous chapter. Thus,

instead of using the results from Chapter 3, we can use the predictive distribution

for the uncertain testing data with known mean and variance and extend them to

the case with the mixture of two Gaussians noise model. Below, we derive the exact

moments of the predictive distribution for an uncertain input at time step n + l, that

is, ϑ(n + l),

p(y(n + l)♣V, y, ϑ(n + l)) ∼ N
(

m+(ϑ(n + l)), S+(ϑ(n + l))
)

(4.32)

and its moments are formulated as,

m+(ϑ(n + l)) =
∑

i

αiEϑ(n+l)[K(ϑ(n + l), ϑ(i))]

S+(ϑ(n + l)) = Eϑ(n+l)[K(ϑ(n + l), ϑ(n + l))]

−
∑

i,j

(Kij − αiαj)Eϑ(n+l)[K(ϑ(n + l), ϑ(i))K(ϑ(n + l), ϑ(j))] − m+(ϑ(n + l))2

(4.33)

with α =
(

K(V, V ) + (diag(σI))2

)

y. According to the Gaussian Kernel formulation,

we can directly obtain Eϑ(n+l)[K(ϑ(n + l), ϑ(n + l))] = σf . Within the derivation of

the Ąrst moment of the predictive distribution Eq.(4.34), we reformulate the Gaussian

kernel function as a normal density and use the product of the Gaussian. The Ąrst

moment formulation is obtained as,

m+(ϑ(n + l)) =
∑

i

αiEϑ(n+l)[(2π)d/2♣Λ♣1/2σf
  

c

N(ϑ(n + l)♣ϑ(i), Λ)]

= c
∑

i

αi

∫

N(ϑ(n + l)♣x(n + l), Σx).N(ϑ(n + l)♣ϑ(i), Λ)dϑ(n + l)

= c
∑

i

αiN(x(n + l)♣ϑ(i), Λ + Σx)

(4.34)

In deriving the predictive distribution variance Eq. (4.35), we utilize the product
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of the Gaussian. The below formulation is obtained for the prediction variance:

S+(ϑ(n + l)) = Eϑ(n+l)[K(ϑ(n + l), ϑ(n + l))]

−
∑

i,j

(Kij − αiαj)Eϑ(n+l)[K(ϑ(n + l), ϑ(i))K(ϑ(n + l), ϑ(j))] − m+(ϑ(n + l))2

= σ2
f − c2

∑

i,j

(Kij − αiαj)N(ϑ(i)♣ϑ(j), 2Λ).N(x(n + l)♣ϑ(i) + ϑ(j)
2

, Σx +
Λ
2

)

− c2
∑

i,j

αiαjN(ϑ(i)♣ϑ(j), 2(Λ + Σx)).N(x(n + l)♣ϑ(i) + ϑ(j)
2

,
Σx + Λ

2
)

(4.35)

Thus, according to the above derivations, both moments of the predictive dis-

tribution are analytically obtained. m+(ϑ(n + 1)) can be replaced with the exact

moments derived by equations Eq.(4.34)-Eq.(4.35). Further, during our derivation,

the exogenous inputs were assumed to be deterministic. However, the above deriva-

tions can be extended for the stochastic inputs as well, and we treat them the same

as the feed-back outputs which are also uncertain.

4.4 Examples

4.4.1 Simulated Example

We consider the example 3 in Narendra and Parthasarathy [1990] as our Ąrst example

which is described by the following equation:

y(t + 1) =
y(t)

1 + y2(t)
+ u3(t) (4.36)

where u(t) is the input signal and y(t) is the output signal. This model can be

considered as the following the NARX model,

y(t + 1) = f(y(t), u(t)) (4.37)

where function f(.) is modelled by a Gaussian Process with zero mean and squared

exponential covariance function. The delayed input and output signals are chosen

as regressors. We generated the input u(t) using a pseudo-random signal between a

speciĄc range and assumed that the initial state of the system is y(0) = 0. Using

the generated input and Eq.(4.36), the output y(t + 1) is also generated. In our case,

the identiĄcation is done by 100 data samples, where the regressor matrix dimension
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is 100 × 2, and the corresponding output vector is 100 × 1. The output vector was

corrupted by a mixture of two Gaussian noises. For generating noise, we assumed that

70 percent of the noise realizations come from a normal distribution with standard

deviation 0.05 and the remaining noise realizations are sampled from another normal

distribution with standard deviation 0.7 . The dataset was modelled using the robust

GP with mixture Gaussian likelihood. After identiĄcation, we can observe the noise

hyper-parameters: α = [0.84, 0.16] and σ = [0.067; 0.82] are very close to parameters

of the injected noise. Then, we made a 200-step ahead prediction using both the

naive and the exact approaches, and compared the results with standard GP in terms

of mean absolute error (MAE), mean squared error (MSE) and log predictive density

(LPD). Table 4.1 summarizes the performance criteria for GPGMM and GP using

naive approach. In the naive approach, we can observe that the proposed method

outperforms the standard GP.

Table 4.1: Prediction Performance using the Naive approach
Method MAE MSE LPD
GP Naive 0.26854 0.11006 0.29405
GPGMM Naive 0.11122 0.036906 4.7674

Fig.(4.2) shows the mean prediction from 1 to 200-step ahead prediction using the

naive approach. This means that the mean prediction is fed back as delayed output in

constructing the regressor vector. It is clear from Fig.(4.2) that the proposed method

has a better prediction than GP, and the squared error for each of the 200 predicted

points is illustrated by Fig.(4.3).

The exact approach is implemented for the proposed method (GPGMM) as well as

the standard GP method. In both methods, the predictive probability including mean

and uncertainty is fed back as delayed output to construct the next step regressor

vector. The proposed method also has better performance in exact approach than

the standard GP which has been demonstrated in Fig.(4.4).

From comparing Fig.(4.5) and Fig.(4.6), we can notice that the predictive mean

calculated from the exact approach is closer to the system than the naive approach.

Moreover, the exact approach provides us with more accurate information about

uncertainty which shows the level we can trust the mean prediction.
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Figure 4.2: The predictive mean using Naive approach

Figure 4.3: The Squared error for each of the 200 predicted points using Naive ap-
proach
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Figure 4.4: The predictive mean using exact approach

Figure 4.5: The predictive mean and error bars from t+1 to t+200 using GPGMM
naive approach
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Figure 4.6: The predictive mean and error bars from t+1 to t+200 using GPGMM
exact approach

4.4.2 Mackey-Glass chaotic time series

In this last example, we consider Mackey-Glass time series which is a chaotic time-

series to investigate the ability of the proposed robust GP for k-step ahead prediction.

The Mackey-Glass time-series can be described by the following nonlinear time-delay

diferential equation,

dy(t)
dt

=
βy(t − τ)

1 + y(t − τ)n
− λy(t) (4.38)

where the parameters of this equation: β, τ , n, and λ are real numbers and depen-

dent on their values. This equation shows a diferent range of chaotic and periodic

dynamics. The time delay, τ , should be more than 17 to show chaotic behaviour.

Here, we assume τ = 17, β = 0.2, λ = 0.1, n = 10 and also the initial condition is

assumed to be y(0) = 1.2. We have used the existing data in MATLAB which has

been generated from this time series.

A nonlinear auto-regressive (NAR) model is assumed, suggesting past observations

might predict current observations, and has the following form,

y(t + 1) = f
(

y(t), y(t − 1), ..., y(t − P )
)

(4.39)
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where for the above time-series with a time delay equal to 17, the model order is

P = 16. The output y(t+1) was corrupted by a mixture of two Gaussian noises

where 85% of the noise realizations were generated from N (0, 0.001), and the remain-

ing 15% of the noise realizations were generated from N (0, 0.01). After constructing

the input and the corresponding output pairs which are taken at random from the

above time series, we train the model using the robust GP with mixture Gaussian

likelihood. After learning the complete set of hyper-parameters, we start to make the

50-step ahead prediction (from time 72 to 121) using both the naive and the exact

approaches and compare the result with the standard GP. Table 4.2 indicates the

three aforementioned performance criteria for GPGMM and GP using the naive ap-

proach whereby we can notice that GPGMM has an improved prediction performance

compared with GP.

Table 4.2: Prediction Performance on Mackey Glass time series using the Naive ap-
proach

Method MAE MSE LPD
GP Naive 0.05784 0.0042352 -1.2401
GPGMM Naive 0.023051 0.00076725 6.7602

The mean prediction (from 1 to 50-step ahead) using the naive approach by

GPGMM and standard GP is presented in Fig.(4.7), and Fig.(4.8) illustrates the

squared error for each of 50 steps ahead prediction using both methods. As it is

evident from the Ągures and the table, the proposed method outperforms the GP in

terms of prediction performance.

Now, we proceed to make the exact prediction for the proposed method (GPGMM)

as well as the standard GP method. Table 4.3, Fig.(4.9) and Fig.(4.10) show the

improvement of the proposed method compared to GP using the exact approach.

Table 4.3: Prediction performance on Mackey Glass time series using the exact ap-
proach

Method MAE MSE LPD
GP Exact 0.086562 0.0086846 -0.74698
GPGMM Exact 0.023827 0.0009535 15.7131

Fig.(4.11) and Fig.(4.12) present the mean prediction and conĄdence interval for

the proposed method using naive and exact approaches.
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Figure 4.7: The predictive mean using the naive approach

Figure 4.8: The Squared error for each of the 50 steps ahead prediction using the
naive approach

80



Figure 4.9: The predictive mean using the exact approach

Figure 4.10: The squared error for each of the 50 steps ahead predictions using the
exact approach
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Figure 4.11: The predictive mean and error bars from t+1 to t+50 using GPGMM
Naive approach

Figure 4.12: The predictive mean and error bars from t+1 to t+50 using GPGMM
exact approach
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As it is clear from Fig.(4.11), however, the naive approach provides better pre-

dictions than the exact approach, and the conĄdence interval (green area) for the

naive approach is too narrow which cannot even include the true value. Hence, the

naive approach is over conĄdent about the predictive means in some regions where

the performance of predictions is poor. The exact approach represented by Fig.(4.12),

unlike the naive approach, provides more informative uncertainty.

4.5 Conclusion

In this chapter, we presented a new robust system identiĄcation method based on

the proposed GPR with a Gaussian mixture noise model and showed how this robust

GP could be utilized for the nonlinear dynamical modelling of the identiĄcation data.

SpeciĄcally, we derived the approximate predictive distribution for an unobserved

output at time t+k by the iterative prediction of a one-step ahead from time t+1

up to time t+K. We used the results from the previous chapters to propagate the

uncertainty resulting from the noisy values which have been fed back to the model.

To illustrate the performance and practicality of the proposed robust approach, we

explored one simulated example as well as Mackey-Glass chaotic time series with an

injected mixture of two Gaussian noises. Then, we compared the multi-step ahead

prediction of the proposed method with Standard GP-based dynamical model.
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Chapter 5

Conclusions

5.1 Summary of This Thesis

This thesis investigated a number of extensions to the Gaussian Process (GP), to

improve the accuracy of data-driven based modelling.

In Chapter 1, we explained the frequent challenges encountered in practice for

control of complex processes. These challenges motivated us to focus on Gaussian

Process Regression(GPR) as a non-parametric model.

Since industrial data may be corrupted by outlying observation, Chapter 2 con-

siders a robust GP with a mixture of two Gaussians noise model whereby one of

the normal distributions with the lower variance captures the regular noises, and the

other normal distribution with relatively high variance captures irregular noises. As

there are two possibilities for each sample, the problem turns out to be a combi-

natorial problem. Thus, this robust GP model cannot be learned using maximum

likelihood estimation, unlike the standard GP. An EM-based algorithm was discussed

in this chapter, to construct a lower bound to maximum likelihood estimation whereby

all the hyper-parameters including both GP parameters and noise parameters were

learned. The performance of the proposed method was then evaluated on two syn-

thetic datasets-Neal and Friedman datasets, and compared with other robust GP

method existing in the literature. Further, a CSRT simulation example, as well as

industrial datasets from SAGD process was explored to show the efectiveness of the

proposed method in complex chemical processes.

In Chapter 3, a new robust model was suggested to account for the noise in in-

puts. Thus, we extended the proposed robust GP in Chapter 2 to the case with

84



noisy input. We derived an algorithm wherein the prior on the underlying process

was approximated with a new Gaussian process that involves the input noise vari-

ance in its kernel function. Then, the input noise parameters along with all the other

hyper-parameters were trained using the proposed algorithm based on EM approach,

whereby the Ąrst and second moment of the posterior predictive distribution is com-

puted (Gaussian approximation). To investigate the performance of the proposed

method, we applied the method on a synthetic data set as well as a CSRT simulation

example and compared the simulation results with standard GP.

In Chapter 4, the application of the methods from previous chapters was consid-

ered for identiĄcation of nonlinear dynamic systems. Further, we made a multiple

steps ahead prediction using iterative calculations. We started with one step ahead

prediction given past outputs and external inputs in addition to a NARX structure

model, wherein the proposed robust GP regression was utilized to feed back the pre-

dictive distribution for each delayed output. Then, this algorithm was veriĄed with

Mackey Glass chaotic dataset and a synthetic example.

5.2 Directions for Future Work

In this thesis, a Gaussian Process was used as prior on latent function values, which is

characterized by zero or constant mean function and the squared exponential kernel

function. There are several avenues for further research that are listed as follows;

1. A promising future direction would be to develop our derivation for more so-

phisticated covariance functions or any kind of mean functions. We would also

consider another method such as variational method rather than EM to derive

the distribution on the latent variables instead of point estimation.

2. Another possibility for further research would be to incorporate non-stationary

kernels in the proposed robust GP for the cases wherein the smoothness changes

with location (so-called spatial smoothness). Another potential extension is to

enhance our formulation and implementation, for multiple outputs and corre-

lated measure outputs.

3. This thesis considered the identiĄcation of nonlinear dynamic systems using
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the proposed robust GP. Another potential avenue to further research would

be to use multiple robust Gaussian process models to the identiĄcation of the

underlying dynamic systems mapping the large data sets.

4. Further, we can incorporate time into the model which means that for example

the covariance function and mean function parameters are dependent on time.

Using this extension, the time-varying dynamics system can be modelled.

5. We can also consider state-space modelling with the proposed robust Gaussian

process such that the proposed robust GP can be utilized as transition models

with a state-space model to get an inside of nonlinear dynamic systems for

control application.
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Appendix A

Mathematical Background

A.1 Marginal and conditional probabilities of mul-

tivariate normal distribution

Assume that a D-dimensional vector x has a normal distribution N (µ, Σ). Let x be

partitioned such that,
⎟

xA

xB

]

∼ N (

⎟

µA

µB

]

,

⎟

ΣAA ΣAB

ΣBA ΣBB

]

) (A.1)

where xA and xB are two subvectors of x. The marginal distributions for xA and

xB is,

xA ∼ N (µA, ΣAA)

xB ∼ N (µB, ΣBB)
(A.2)

and the conditional probability of xA given xB are:

xA♣xB ∼ N (µA − ΣABΣ−1
BB(xB − µB), ΣAA − ΣABΣ−1

BBΣBA) (A.3)

A proof for this property was given in VON MISFS [1964].
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A.2 Gaussian Integral

Let y, f , and g be vectors of size m by 1, and also F, and G be covariance matrices

with m by m size. Then we have:

∫

N (y♣f , F ).N (f ♣g, G) da = N (y♣g, F + G) (A.4)
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