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Abstract 

Over 25% of the world population suffer from chronic liver disease. Most common causes 

are long-term viral infections, alcohol abuse, and non-alcoholic fatty liver disease (NAFLD) 

associated with obesity, diabetes or hyperlipidemia. Chronic liver disease due to any cause is 

characterized by repetitive or long-lasting liver injury which may result in liver fibrosis. 

Regardless of underlying etiology, advanced liver fibrosis is the final common pathway that 

eventually leads to poor clinical outcomes. Histopathology assessment of liver biopsy plays a 

central role in evaluating liver fibrosis, but it is subjective, suffers from suboptimal reproducibility, 

and, more importantly, cannot predict fibrosis progression. The natural history of fibrosis 

progression varies, with a high degree of heterogeneity among patients. The factors that drive this 

diversity are unknown. In addition, it is unclear if there is a common molecular signature for 

progressive fibrosis independent of its etiology. This thesis aims to identify a common molecular 

signature associated with advanced fibrosis that is shared by different liver diseases in humans, 

and to translate this knowledge to develop a surrogate biomarker test for clinical use.  

To identify a common molecular signature of advanced fibrosis, I analyzed 304 Affymetrix 

genome-wide microarrays of fresh livers from 312 patients with various chronic liver diseases 

(NAFLD, alcoholic liver disease, viral hepatitis B or C) available in open access databases. Using 

a discovery set (n=70), I defined a 48-gene signature with the highest discriminate ability for 

advanced fibrosis using multiple machine learning class prediction algorithms and class 

comparison methods. The 48-gene signature was validated in three independent validation sets 

(n=70, 91, and 73) with over 0.96 area under the receiver operating characteristic curve and over 

93% accuracy for histologically-proven advanced fibrosis.  
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As a clinical translational approach, the 48-gene signature was then analyzed in 348 

formalin-fixed paraffin-embedded (FFPE) clinical liver biopsies and 15 paired fresh and FFPE 

explant livers by a digital direct nucleic acid profiling method (NanoString assay) to understand if 

multiplex gene expression quantification in clinical liver biopsies is a feasible and reliable 

approach. NanoString gene expression levels were strongly correlated between paired fresh and 

FFPE livers (r=0.944, p<0.001). NanoString gene expression measurements were highly 

reproducible in repeat runs with different RNA input quantities (r=0.946-0.995, p<0.001), different 

operators (r=0.949-0.992, p<0.001), and different lots of reagents (r=0.998-0.999, p<0.001). 

To see if gene signatures in liver biopsies can predict fibrosis progression, the 48-gene 

signature in FFPE clinical liver biopsies was analyzed in 299 patients with different liver diseases 

(122 patients with recurrent viral hepatitis C, 76 with autoimmune hepatitis, and 101 with 

NAFLD). Patients with a high 48-gene signature had a significantly higher probability of fibrosis 

progression compared to patients with a low 48-gene signature in all three liver diseases, but the 

probability of fibrosis progression was similar across different histological fibrosis stages. The 

results supported that the 48-gene signature can predict progressive fibrosis earlier than histology 

in different liver diseases. 

For protein level validation, two of the genes in the 48-gene signature were analyzed by 

immunohistochemistry in 94 patients with available liver tissue after NanoString assay. The 

increase in mRNA expression of the two genes led to an increased expression of the corresponding 

protein. Patients with a high protein expression of the two genes had significantly higher 

probability of fibrosis progression compared to patients with a low protein expression. 

The research presented in this thesis is the first comprehensive collection of a gene 

expression signature that drives advanced liver fibrosis in humans in the context of various 
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common causes of chronic liver disease. The 48-gene signature may serve as a prognostic 

biomarker for fibrosis progression in patients with different chronic liver diseases. This biomarker 

test can be easily implemented as a clinical assay.
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1.1 – The liver 

1.1.1 – Gross anatomy and blood supply 

The liver is the largest visceral organ that weighs about 1500 g (up to 2.5% of the 

total body weight in an average human adult) (1). It is located within the upper right quadrant 

of the abdominal cavity beneath the right hemidiaphragm. Anatomically, the liver is divided 

into two large lobes – the right and the left – and two smaller lobes, the quadrate and caudate 

(2). Functionally, the liver can be divided into eight segments based on Couinaud segmental 

classification (Figure 1.1) (3). Each liver segment has its own vascular inflow, outflow, and 

biliary drainage. 

The liver is a very vascular organ that receives a dual blood supply by two main blood 

vessels in each segment: the hepatic artery and the portal vein, receiving approximately 25% 

and 75% from the total blood supply, respectively (4). The hepatic artery carries oxygenated 

blood that supplies the liver cells for aerobic respiration and the portal vein carries partially 

oxygenated blood and nutrients drained from the gastrointestinal tract and spleen (4). The 

hepatic artery and portal vein coalesce at the edge of the portal triad before draining into the 

hepatic sinusoids, which are low pressure vascular channels running between rows of 

hepatocytes, carrying blood from the terminal branches of the hepatic artery and portal vein 

to the terminal hepatic vein (central vein) (Figure 1.2). The central veins coalesce into hepatic 

veins that accumulate the blood leaving the liver and bring it to the heart. 

1.1.2 – Histology 

Microscopically, the liver is composed with tens of thousands of repeating functional 
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units that are uniformly distributed around the portal triads and central vein (Figure 1.2). The 

two most widely accepted functional unit structures are the hepatic lobule and hepatic acinus 

proposed by Kiernan and Rappaport, respectively (Figure 1.3) (5, 6).  

The hepatic lobule is hexagonal that consist of hepatocytes and sinusoids radiating 

out in branches (Figure 1.2) (1). The central vein is found at the center of the lobule and the 

portal triads (contain portal venule, portal arteriole, and bile duct) are found at each corner 

of the hexagon. Compared with the hepatic lobule, hepatic acinus is more difficult to 

visualize. The hepatic acinus is a diamond shaped structure with the portal triads and central 

veins are at the periphery of the diamond (Figure 1.3) (6). The acinus can be subdivided into 

zones 1 (periportal), 2 (mediolobular), and 3 (centrilobular) with decreasing oxygenation and 

increasing susceptibility to ischemia and toxic injury. 

1.1.3 – Metabolic functions 

The liver is a metabolically active organ contributing to the following major functions 

(7): 

 Carbohydrate metabolism: Carbohydrates are stored as glycogen in the liver that 

can be broken down into glucose and drained into the bloodstream to maintain normal 

glucose levels. 

 Bile production: Bile is made by the liver that can be released to the small intestine 

to help break down and absorb cholesterol, fats, proteins, and fat-soluble vitamins (A, 

D, E, K). 

 Blood protein synthesis: The liver is responsible for synthesizing coagulation 

factors, fibrinogen factors, albumin, complement proteins, and protease inhibitors. 
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 Ammonia metabolism and urea synthesis: A byproduct of amino acid catabolism 

is ammonia, which is toxic. The liver can convert ammonia into a less toxic substance 

called urea which is released into the bloodstream, and makes its way to the kidney 

and to be excreted as a component of urine. 

 Filters the blood (detoxification): The liver is the organ for phase I (cytochrome p-

450 mediated oxido-reduction reactions) and phase II enzyme mediated conjugation 

reactions; together, these cascade of reactions break down toxic substances such as 

alcohol, chemicals, heavy metals, and other drugs. 

 Storage: The liver stores several substances that include iron, vitamins A, D, B9, and 

B12. 

1.1.4 – Cells  

The liver mass is composed of approximately 80% parenchymal cells and 20% non-

parenchymal cells (8). Parenchymal cells are composed of hepatocytes and non-parenchymal 

cells are composed of hepatic stellate cells (HSCs), Kupffer cells (hepatic macrophages), 

sinusoidal endothelial cells, hepatic progenitor cells (HPCs), bile duct epithelial cells, and 

other rare cell types (e.g. pit cells) (8). 

Hepatocytes 

Hepatocytes are organized into sponge-like plates that separate sinusoidal blood from 

the bile duct (Figure 1.4) (1). They normally express keratin 9 and 18 and play pivotal 

function roles in metabolism, protein synthesis, and detoxification of substances absorbed 

into the blood aforementioned in section 1.1.3 (9). In the event of liver injury, hepatocytes 

are capable of natural regeneration. The regeneration is observed predominantly in the 
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periportal hepatocytes in mild injury and throughout the parenchyma in severe injury (10). 

Hepatic stellate cells 

HSCs, previously called lipocytes, perisinusoidal cells, or Ito cells, are located 

between the sinusoidal endothelial cells and hepatocytes (space of Disse) (Figure 1.4) (11). 

They represent about 10% of all resident liver cells (12). Under physiological conditions, 

HSCs maintain a quiescent phenotype and storage retinoids in lipid droplets (11). HSCs 

participate in angiogenesis, metabolism, and immune regulation. They are best known as a 

major source of liver fibrosis. The roles of HSCs in liver fibrosis are introduced in Chapter 

1.4.1. 

Kupffer cells 

Kupffer cells are specialized macrophages in the liver that reside within the lumen of 

the liver sinusoids (Figure 1.4). The major function of Kupffer cells is to remove or 

phagocytose protein complexes, bacteria, senescent red blood cells, small particles, and cell 

debris from portal blood flow (13). Following liver infection or injury, Kupffer cells are 

activated and release an array of inflammatory mediators (e.g. interleukin-6, tumor necrosis 

factor alpha ([TNFα]) and reactive oxygen species (e.g. nitric oxide, superoxide) (14). These 

inflammatory mediators can stimulate activation of HSCs and promote liver fibrosis (15). 

Sinusoidal endothelial cells 

 Sinusoidal endothelial cells represent the interface that separate blood cells on the 

one side and hepatocytes and HSCs on the other side (Figure 1.4). They represent the most 

abundant non-parenchymal cell population and play a role in filtration and endocytosis in 

the sinusoids (16).  
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 Filtration: Liver sinusoidal endothelial cells are comprised of pores, called 

fenestrations, which allow the transfer of macromolecules, lipoprotein, and water 

between the blood and the space of Disse, where they are taken up by the hepatocytes 

(17).  

 Endocytosis: Liver sinusoidal endothelial cells have one of the highest endocytic 

capacity in the human body mediating clearance of soluble waste macromolecules 

and colloid materials (18). 

Hepatic progenitor cells 

HPCs are located in the periportal regions of the liver that show dual characteristics 

of both hepatocytes and bile duct epithelial cells (10). In severely injured livers where the 

proliferative capacity of hepatocytes is compromised, progenitor cells will be activated and 

repopulate the hepatocytes and bile duct epithelial cells (19). 

Bile duct epithelial cells 

Bile duct epithelial cells contribute to bile secretion via the net release of bicarbonate 

and water. Compared to hepatocytes, bile duct epithelial cells express keratin 7 and 19 in 

addition to keratin 8 and 18 (9). Following liver injury, bile duct epithelial cells proliferate 

and release fibrosis mediators including TNFα, transforming growth factor-β (TGFβ), 

platelet-derived growth factor (PDGF), connective tissue growth factor (CTGF), and 

interleukin-6 (20). 

1.2 – Cirrhosis 

Cirrhosis is a late stage of scarring (fibrosis) of the liver caused by many diseases and 
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conditions (21). It is the end-stage pathological phenotype of almost all chronic liver 

diseases, such as alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), 

viral hepatitis B (HBV), viral hepatitis C (HCV) infections, and autoimmune liver disease 

(22). Cirrhosis is a life-threatening condition that causes 1.03 million deaths per year 

worldwide (23). It is the number one cause of hepatocellular carcinoma (HCC) (24). Early 

diagnosis of advanced fibrosis/cirrhosis is difficult as most chronic liver diseases are 

asymptomatic until cirrhosis with clinical decompensation (ascites, variceal hemorrhage, 

hepatic encephalopathy, hepatorenal syndrome) occurs. 

1.2.1 – Pathology of cirrhosis 

Macroscopically, the surface of a cirrhotic liver is irregular with a firm consistency 

and multiple yellowish nodules on the external surface. Depending on the size of nodules, a 

cirrhotic liver can be classified into three macroscopic subtypes: micronodular (nodules 

<3mm), macronodular (nodules ≥3mm), and mixed patterns (contains both micro- and 

macro-nodules) (25). Common causes of micronodular cirrhosis include ALD and NAFLD, 

whereas macronodular cirrhosis is usually seen in chronic HBV and HCV (26). 

Histologically, cirrhosis is characterized by regenerative nodules surrounded by 

fibrotic septa that bridge from portal to central (Figure 1.5) (27). These septa are not only 

simple areas of fibrosis but also contain also altered hepatic vascular architecture. When 

cirrhosis develops, a considerable portion of the blood bypasses hepatocytes and flow 

directly to the hepatic veins via the fibrovascular septa (28). As a result, xenobiotics are not 

completely removed from the circulation to the hepatocytes and vice-versa, blood protein, 

such as coagulation factors and albumin produced by the hepatocytes, do not enter the 
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circulation. This hepatic fibrovascular septa causes increased hepatic resistance and therefore 

results in portal hypertension and hepatic synthetic dysfunction. 

1.2.2 – Regression of cirrhosis 

Cirrhosis was considered as a terminal disease state that leads to death unless liver 

transplantation is done. However, several studies revealed histological evidence for 

regression of advanced liver fibrosis or even early cirrhosis after curing the underlying liver 

disease (29, 30). Therefore, if advanced liver fibrosis is predicted early and the cause is 

treated, early fibrosis can be reversed, and further damage can be limited. This means 

prevention of end-stage liver disease, HCC, and liver-related mortality. Currently, there is 

an unmet clinical need for early prediction of advanced liver fibrosis. 

1.3 – Chronic liver disease 

The burden of liver disease is rising in Canada and worldwide. Currently, there are 

more than two billion patients worldwide who suffer from chronic liver diseases, including 

over 8 million Canadians (every 1 in 4) (31-33). Chronic liver disease is a persistent, long-

lasting condition that can be caused by different etiologies and involve a process of 

progressive damage and regeneration of the liver parenchyma (34). Most common causes 

worldwide are NAFLD, HBV, ALD, and HCV, with prevalence rates of 25.24%, 3.61%, 

2.05% and 1.00%, respectively (31, 35-37). Other relatively rare causes include autoimmune 

hepatitis (AIH), primary biliary cholangitis, primary sclerosing cholangitis (PSC), drug-

induced liver disease, and liver disease caused by ductal plate malformations (e.g. congenital 

hepatic fibrosis and Caroli disease). Despite different causes, advanced liver fibrosis is the 
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common final pathway, which eventually leads to cirrhosis and poor clinical outcomes (liver 

decompensation, HCC, need for liver transplantation, or liver-related death) (38).  

1.3.1 – Non-alcoholic fatty liver disease 

NAFLD is characterized by evidence of hepatic steatosis without secondary causes 

of hepatic fat accumulation (39). It is currently the most common chronic liver disease that 

affect over 25% of the population worldwide (31). Risk factors for advanced liver disease 

include obesity, type 2 diabetes, hyperlipidemia, hypertriglyceridemia, and hypertension 

(31). NAFLD is a spectrum of liver damage, ranging from simple fat accumulation (simple 

steatosis) to inflammation with or without fibrosis to cirrhosis (40). About 20-30% of 

patients with simple steatosis develop non-alcoholic steatohepatitis (NASH) and 

approximately 20% of patients with NASH progress to cirrhosis (41). Simple steatosis is 

defined as presence of ≥5% of hepatic steatosis with no or mild nonspecific inflammation 

(39). NASH is a progressive form of simple steatosis that is defined as presence of ≥5% of 

hepatitis steatosis, inflammation, and hepatocellular injury with varying degrees of fibrosis 

(39). Recent studies identified that among all histological features, fibrosis is the only and 

strongest predictor for poor clinical outcomes in patients with NAFLD (42, 43). Therefore, 

predicting advanced fibrosis at early disease stage is critical to prevent poor clinical 

outcomes. 

1.3.2 – Chronic viral hepatitis B 

Chronic HBV is a viral infection that attacks the liver. It is the second common 

chronic liver disease, affecting about 248 millions of individuals worldwide with a large 

regional variation (36). The Africa region and West Pacific region have the highest 
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prevalence of chronic HBV (range 5-9% of adults) and most were infected during infancy or 

at a young age (36). Countries in North America (Canada, USA, Mexico) have mostly low 

endemicity levels (0.2%-0.8%) (36). Risk factors for advanced liver disease include older 

age, male gender, alcohol consumption, elevated alanine aminotransferase (ALT) levels, 

high HBV DNA levels, and co-infection with HCV or human immunodeficiency virus (44). 

Approximately up to 40% of patients will progress to cirrhosis if untreated (45, 46). Chronic 

HBV infection can be divided into four phases: immunotolerance, HBeAg-positive 

immunoactive disease, HBeAg-negative inactive disease, and HBeAg-negative 

immunoactive disease (47). Patients in the immunotolerance and HBeAg-negative inactive 

phases are usually asymptomatic, whereas patients in the HBeAg-positive immunoactive and 

HBeAg-negative immunoactive phase can range from asymptomatic to cirrhosis with liver 

failure (47). Thus, several biomarkers are used in the clinic to determine the disease phase. 

These biomarkers include detecting the presence or absence of HBeAg and anti-HBe, HBV 

DNA level, and ALT level. However, none of these biomarkers are accurate to predict who 

is at high risk of progression to advanced fibrosis or poor clinical outcomes (48). 

1.3.3 – Alcoholic liver disease 

ALD results from excessive and long-term alcohol use and is characterized by the 

resulting spectrum of liver injuries ranging from simple steatosis to steatohepatitis with or 

without fibrosis to cirrhosis (49). It is the third common chronic liver disease that affect about 

2% of the population worldwide (35). Risk factors for ALD include the amount of alcohol 

intake, gender (women are with a greater risk), obesity, and smoking (50). ALD can be 

categorized into three histological stages: (1) simple steatosis; (2) alcoholic hepatitis 

(steatohepatitis) with or without fibrosis; and (3) alcoholic hepatitis with advancedfibrosis 



11 
 

or cirrhosis (51). Up to 50% of patients who are diagnosed with alcoholic hepatitis will 

progress to cirrhosis if continue to drink alcohol (52, 53). However, abstinence from alcohol 

does not guarantee the stop of fibrosis progression. About 18% of patients with alcoholic 

hepatitis will still progress to cirrhosis after abstinence from alcohol (54). Therefore, there is 

a need to early predict patients early in the disease trajectory who are at high-risk of 

progression to advanced fibrosis/cirrhosis to prevent poor clinical outcomes. 

1.3.4 – Chronic viral hepatitis C 

Chronic hepatitis C is known as long-term infection with the hepatitis C virus. It is 

the fourth common chronic liver disease that affect about 252 thousand Canadians and over 

70 million people worldwide (37, 55, 56). Risk factors for advanced liver disease include the 

duration of infection, age at infection, co-infection with hepatitis B or human 

immunodeficiency virus, alcohol consumption, and obesity (57). It was estimated about 20% 

of chronic HCV patients will develop liver cirrhosis and 5% will develop HCC within 20-30 

years (58). Early diagnosis and antiviral treatment can prevent development of liver cirrhosis 

and liver-related complications. With the new direct-acting antiviral treatment, the rate of 

achieving sustained virological response (SVR) (virological cure) have tremendously 

increased from 50% to over 95% across all HCV genotypes with reduced side effects when 

compared to previously used interferon-based regimens (59). Most patients show reversal of 

liver fibrosis after SVR; however, a portion of patients (1%-14%) still progress to advanced 

fibrosis and cirrhosis despite achieving SVR (59). Predicting progressive fibrosis after SVR 

is still an unmet clinical need. 



12 
 

1.3.5 – Autoimmune hepatitis 

AIH is an immune-mediated inflammatory liver disease characterized by 

hypergammaglobulinemia, presence of circulating autoantibodies, interface hepatitis on liver 

histology, and response to immunosuppression treatment (60). It is a rare chronic liver 

disease, with prevalence ranging from 15 to 25 cases per 100,000 people with large variance 

across different ethnicities (61). Patients are usually subscribed of immunosuppressive 

treatment to prevent progression of liver disease and the dosage of treatment should be 

adapted to the activity of the disease (61). A previous study reported fibrosis score decreased 

by 53% of treated AIH patients during a mean of 57 months of follow-up (62). However, 

another study reported cirrhosis develops in up to 40% in 10 years of follow-up despite of 

immunosuppressive treatment (63). Previous research had identified several common risk 

factors of fibrosis progression in AIH, including the presence of human leukocyte antigen 

DR3 and higher histology activity index (64). However, no single clinical variable is accurate 

to predict who is at high-risk for fibrosis progression at disease onset. Identifying high-risk 

patients can help guide clinical management to prevent fibrosis progression.  

1.4 – Pathogenesis of liver fibrosis 

Liver fibrosis is characterized by excessive accumulation of extracellular matrix 

(ECM), such as collagens, laminins, and elastins (65). Excessive deposition of ECM in the 

liver forms fibrotic scars. In a healthy liver, scar tissue removal (fibrolysis) and scar tissue 

deposition (fibrogenesis) are in balance. However, during chronic liver injury, the 

equilibrium between deposition and dissolution of scar tissues is disrupted, which leads to 

accumulation of scar tissue in the liver. The distribution of scar tissues in the liver differs in 
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different diseases. In chronic viral hepatitis and cholestatic disorders, the scar tissues are 

initially located around the portal tracts. In ALD and NAFLD, fibrosis is initially located in 

pericentral and perisinusoidal areas (66). As liver disease progresses and more scar tissues 

deposit in the liver, cirrhosis develops and eventually affect liver function. At this stage, the 

liver contains about 6 times more ECM proteins than a normal liver (38). These ECM 

proteins are composed of fibrillar collagens, elastins, fibronectins, undulins, hyaluronan, and 

proteoglycans (38). Cirrhosis is well-known as the final common pathway of chronic liver 

diseases. Moreover, the structural components of ECM, growth factors, chemokines, and 

cytokines, as well as central signaling cascades in fibrogenesis, are similar across other 

organs, such as lungs, hearts, and kidneys (67, 68). In the liver, it is yet unknown if there is 

a common molecular signature of progressive liver fibrosis that is shared by a variety of 

chronic liver diseases in humans.  

1.4.1 – Cellular pathways of liver fibrogenesis 

Multiple cells of the liver contribute to the deposition of ECM. The major matrix-

producing cells in the liver are activated myofibroblasts, which are characterized by cells 

that express α-smooth muscle actin (SMA) (69). Activated HSCs are the major source of 

activated myofibroblasts (70). Other sources of myofibroblasts include portal fibroblasts, 

hepatocytes and bile duct epithelial cells undergoing epithelial-to-mesenchymal transition 

(EMT), and fibrocytes (70). Non-myofibroblastic fibrosis contributors include HPCs, 

sinusoidal endothelial cells, and macrophages. 

Hepatic stellate cells 

HSCs are non-proliferative and quiescent in a normal liver. Following liver injury, 
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increased hepatic levels of profibrogenic cytokines and chemokines such as TGFβ1 stimulate 

HSCs activation and cause quiescent HSCs transdifferentiate into myofibroblasts, which 

synthesize and deposit increasing amounts of ECM (65, 71). The major profibrogenic 

cytokines and chemokines that stimulate HSCs activation are reviewed in Chapter 1.4.2. 

Portal fibroblasts 

Portal fibroblast refers to any fibroblast in the portal region (72). In the normal liver, 

portal fibroblasts surround the portal vein to maintain the integrity of the portal tract (73). In 

response to chronic injury (mostly in biliary diseases), portal fibroblasts proliferate and 

differentiate into portal myofibroblasts, which is defined as any myofibroblast in the portal 

area that is not derived from HSCs and synthesize ECM (72, 73). 

Epithelial-to-mesenchymal transition 

Epithelial-to-mesenchymal transition (EMT) is a biological process in which 

adherent epithelial cells undergo multiple biochemical changes and convert to a 

mesenchymal cell phenotype (74). The mesenchymal cell phenotype is characterized by 

increased cell motility, invasiveness, and production of ECM components (74). 

Mesenchymal cells participate in tissue repair and pathological processes, which include 

tissue fibrosis, tumor invasiveness, and metastasis (75). Therefore, EMT occurs when tissues 

are being built or remodeled. It can be categorized into three different subtypes based on the 

biological context: embryogenesis and organ development (type 1); chronic fibrogenic 

disorders (type 2), and carcinogenesis (type 3) (76). During liver injury, liver epithelial cells 

undergo type 2 EMT and acquire myofibroblastic features that generate fibrosis (75). In the 

meantime, some epithelial-derived mesenchymal cells undergo mesenchymal-to-epithelial 

transition, which revert mesenchymal cells to normal hepatocytes or cholangiocytes and 
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result in fibrosis regression (75). EMT was proposed as one of the important mechanisms of 

fibrogenesis. However, the importance of EMT in liver fibrosis has been actively debated 

(75, 77, 78). 

Fibrocytes  

Fibocytes are circulating bone marrow-derived, spindle-like shape cells that have co-

expression of progenitor and hematopoietic cell markers (79, 80). Following liver injury, 

fibrocytes downregulate the expression of hematopoietic markers and differentiate into α-

SMA-expressing myofibroblasts that produce ECM proteins (79). Fibrocytes are involved 

not only in liver fibrosis but also in skin, lung, and kidney fibrosis (81). 

Hepatic progenitor cells 

HPCs, located within the canals of Hering, are bipotential adult stem-like cells that 

can differentiate to hepatocytes and cholangiocytes during liver injury (82). In a normal liver, 

HPCs are non-proliferative and quiescent. During liver injury, quiescent HPCs become 

activated and stimulate increased numbers of ductules (ductular reaction), which represent a 

regenerative response of the liver and these proliferating ductules express keratin 7 (83). 

Ductular reaction produces also profibrogenic factors, such as TGFβ, that exacerbate ECM 

deposition (84). Ductular reactions was found to be correlated with the severity of fibrosis in 

different chronic liver diseases, including chronic HCV (85), ALD (86), and NASH (83).  

Sinusoidal endothelial cells 

In response to liver injury, sinusoidal endothelial cells undergo morphological 

changes with significantly increased production of basement membrane proteins including 

type IV collagen, perlecan, entactin, and laminin (16). These proteins play an important role 
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in the capillarization of the sinusoids during liver injury (87). Capillarization is a process 

characterized by progressive loss of fenestrae and transformation to a vascular phenotype 

(87). This is an early event during liver injury that precedes activation of HSCs and 

macrophages and therefore suggesting it could be a preliminary step of fibrogenesis (88). 

Macrophages 

Macrophages are the largest non-parenchymal cell population in the liver. It is 

composed of Kupffer cells and circulating monocytes. These cells are involved in the 

pathogenesis of liver inflammation and fibrosis (89). During liver injury, macrophages 

become activated and phagocyte necrotic liver cells, which causes secretion of 

proinflammatory cytokines and chemokines such as TNF, TGFβ1, and PDGF (90).  These 

cytokines and chemokines can stimulate HSCs transdifferentiate into activated 

myofibroblasts, which cause fibrosis deposition (91). 

1.4.2 – Molecular pathways of liver fibrogenesis 

The molecular processes driving liver fibrosis are wide-ranging and complex. Of all 

the molecular pathways that contribute to liver fibrosis, TGFβ is one of the major contributor 

(68). Other important molecular pathways that contribute to liver fibrosis include integrins, 

PDGF, CTGF, and vasoactive peptides such as angiotensin II and endothelin-1 (68). 

TGFβ 

TGFβ signaling is present in all phases of liver injury, from inflammation and 

fibrosis, to cirrhosis and cancer (92). It is secreted by inflammatory and fibrogenic effector 

cells, which include fibroblasts, fibrocytes, and myofibroblasts (93). TGFβ signaling shows 

its effects on fibrogenic effector cells by binding to TGFβ receptors on the cell surface and 
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the signal is transmitted through the membrane to activate SMAD transcription factors (68). 

Activated SMAD proteins induce transcription of profibrotic molecules (collagens, 

fibronectin, and α-SMA) and causes myofibroblast activation (92). Activation of 

myofibroblasts stimulate synthesis of ECM proteins and result in fibrosis progression (94).  

Integrins 

Integrins are a large family of cell surface receptors that mediate interactions between 

cells and ECM (95). These receptors can relay information from cell interior to ECM (inside-

out signaling) and from ECM to cell interior (outside-in signaling) (96). Integrins consist of 

non-covalently linked α- and β-subunits that can form over 24 different combinations of 

subtypes (97). These different subtypes of integrins are differentially expressed by various 

liver cell types and some can contribute to liver fibrosis (97). For example, αvβ6 and αvβ8 

integrins can activate TGFβ1, which is a strong regulator of ECM by HSCs, and cause 

enhanced matrix deposition (98). On the other hand, αvβ3 and αvβ5 integrins can upregulate 

ECM-degrading proteases matrix metalloproteinase (MMP) -2, -3, and -9 and result in 

enhanced matrix degradation. Clinical studies found abnormal expression of integrins in 

patients with different chronic liver diseases. In patients with HCV, the expression of α1, α5, 

α6, β1 integrins were significantly upregulated in histologically-proven advanced fibrosis 

when compared to no or mild fibrosis (99). The expression of β6 integrin was found to be 

significantly increased in patients with HBV, HCV, and ALD (100). These results showed 

integrins are involved in liver fibrosis regardless of the underlying etiology. 

Platelet-derived growth factor 

PDGF signaling plays an important role in activated HSCs and portal fibroblast 

proliferation (101). When the liver is injured, fibrotic mediators such as TGFβ and TNFα are 
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released and stimulate activation of PDGF and its receptor (102). The PDGF family is 

composed of four different polypeptide chains encoded by four different genes (PDGF-A, 

PDGF-B, PDGF-C, and PDGF-D) (103). These polypeptide chains can be assembled into 

five different disulphide-linked dimers (PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC, and 

PDGF-DD) (103). Of these isoforms, PDGF-BB is the major stimulus for HSCs and portal 

fibroblast proliferation, and the corresponding PDGFβ receptor is primarily involved in this 

cellular effect of PDGF (101).  

Connective tissue growth factor 

CTGF is a central mediator of tissue remodeling and fibrosis. It induces formation of 

myofibroblasts through transdifferentiation of stellate cells (104), portal fibroblast (105), and 

fibrocytes (106). CTGF also participates in myofibroblast activation and stimulate deposition 

of ECM proteins that leads to tissue remodeling and fibrosis (107). If the tissue remodeling 

happens in the blood vessels, it can create local portal hypertension and induce increased 

CTGF expression, which leads to more tissue remodeling (108). CTGF also induces 

increased expression of a variety of cytokines involved in liver fibrosis (109). These multiple 

positive feedback loops demonstrated CTGF is one of the central mediators of liver 

fibrogenesis. 

Angiotensin II 

Angiotensin II, a vasoconstrictor peptide, is the main effector of the renin-angiotensin 

system. The renin-angiotensin system regulates key steps in tissue remodeling through 

angiotensin type 1 receptors (110). During liver injury, the components of the renin-

angiotensin system are expressed in myofibroblasts and generate angiotensin II (111). 

Angiotensin II can induce an array of fibrogenic actions in activated HSCs, including 
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myofibroblast proliferation, secretes fibrogenesis cytokines such as TGFβ1, and promotes 

collagen synthesis (112, 113). 

Endothelin-1 

Endothelin-1 is a vasoconstrictor peptide, which is produced by sinusoidal 

endothelial cells, with a potent effect on endothelin receptors. Endothelin receptors are 

present mostly in HSCs, but also in hepatocytes, sinusoidal endothelial cells, and Kupffer 

cells (114, 115). Endothelin-1 can induce activation of myofibroblasts from HSCs, portal 

fibroblasts, epithelial cells, and fibrocytes (116). A study revealed patients with cirrhosis 

have three times higher plasma endothelin-1 concentrations compared to patients without a 

liver disease (117). Cirrhotic patients have enhanced expression of endothelin receptors on 

HSCs and the expression is correlated to the degree of portal hypertension (118, 119). The 

enhanced concentration of endothelin-1 acts on endothelin-1 receptors on the HSCs and 

induces increased fibrosis deposition and intrahepatic sinusoidal resistance, which results in 

portal hypertension (120). 

1.5 – Assessment of liver fibrosis 

Current available methods for assessing liver fibrosis can be subcategorized into two 

main categories: (1) invasive technique (histopathological assessment of liver biopsy) and 

(2) non-invasive techniques (imaging tools and serological biomarkers). 

1.5.1 – Histopathological assessment of liver biopsy 

Histopathological assessment of liver biopsy has three major roles in clinical 

management: (1) for diagnosis, (2) for assessment of prognosis, and (3) to assist clinicians 
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in making therapeutic/clinical management decisions (121). This is currently the gold 

standard method to assess liver fibrosis (122). Biopsy samples are routinely scored by a 

pathologist using activity grading and fibrosis staging systems. There are several different 

proposed scoring systems for chronic liver diseases. The Metavir and Ishak systems are most 

commonly used for grading and staging viral hepatitis and autoimmune hepatitis (123, 124). 

The Metavir grade represents the degree of inflammation, which is evaluated by the 

combination of the degree of piecemeal necrosis (aka interface hepatitis) (scale 0-3) and 

lobular necrosis (scale 0-2) (Table 1.1). The Metavir stage represents the degree of fibrosis, 

which is scaled from 0 to 4. The Ishak system is a more complex system that grade the degree 

of inflammation scaled from 0 to 18 and fibrosis staging scaled from 0 to 6 (Table 1.2). 

NAFLD is usually scored by the NAFLD activity score and staging system (125). NAFLD 

activity score is the sum of the separate scores for steatosis (0-3), lobular inflammation (0-3) 

and hepatocellular ballooning (0-2). NASH is usually defined as patients having a NAFLD 

activity score of ≥5 (Table 1.3). NAFLD fibrosis stage scores fibrosis at a scale from 0 to 4 

(Table 1.3). 

Despite histological assessment of liver needle biopsy is the gold standard for 

assessing liver fibrosis, liver biopsy is an invasive procedure and has several limitations 

(126-128). It only represents 1/50,000 of the liver (129) and suffers from sampling variability 

and both inter- and intra-observer variability. According to previous studies, over 33% of 

biopsy samples from patients with HCV or NAFLD have discordance in fibrosis staging 

between different pathologists (130, 131). Even very large needle biopsy samples (>2.5cm) 

could not exceed 75% accuracy in assessing fibrosis in patients with HCV (127). More 

importantly, histology cannot accurately predict the risk of a patient for fibrosis progression 
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(132). The invasive nature and limitations of liver biopsy led to the development of non-

invasive methods to assess liver fibrosis. 

1.5.2 – Imaging methods 

The most promising imaging methods for assessing liver fibrosis non-invasively are 

transient electrography (Fibroscan), acoustic radiation force impulse (ARFI) imaging and 

magnetic resonance electrography (MRE). 

Fibroscan  

Fibroscan was the first introduced ultrasound-based technique to measure liver 

stiffness in 2003 (133). It measures the velocity of a low-frequency (50Hz) elastic shear wave 

propagating through the liver and the velocity is directly related to liver stiffness. The results 

range from 2.5 to 75 kilopascals, with a normal value around 4-6 kilopascals and presence 

of advanced fibrosis or cirrhosis (Metavir fibrosis stage 3 or 4) >10-14 kilopascals (134, 

135). A valid, accurate result is based on the median value of at least 10 validated 

measurements, with at least 60% of success rate (the ratio of valid measurements to the total 

number of measurement) and interquartile range (IQR) less than 30% of the median value 

(136). Fibroscan is currently the most widely used and best-validated technique for 

noninvasive assessment of liver fibrosis. However, liver stiffness measurement confounds 

with several factors such as obesity, inflammation, cholestasis, and congestion (137). Other 

important limitations of Fibroscan include it cannot discriminate intermediate stages of 

fibrosis and predict fibrosis progression (138). Although Fibroscan cannot reliably predict 

fibrosis progression, it is widely used to diagnose advanced fibrosis or cirrhosis in clinic. 

Acoustic radiation force impulse imaging  
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ARFI assesses liver stiffness by evaluating the wave propagation speed through a 

region of interest in the liver using a ultrasound scanner with a conventional probe without 

external compression (139). The results are usually reported in meters per second, with 

advanced fibrosis >2.2 meters/second (135). ARFI has a significantly lower failure rate than 

Fibroscan (2.9% vs. 6.4%, p<0.001) and both have similar performance for advanced fibrosis 

and cirrhosis (138, 140). However, ARFI also cannot discriminate intermediate stages of 

fibrosis nor can predict fibrosis progression (138). 

Magnetic resonance electrography 

MRE assesses the whole liver stiffness by evaluating propagating mechanical shear 

waves using a conventional magnetic resonance system with added hardware to generate 

mechanical waves (141). The results are usually reported in kilopascals, with a normal value 

less than 3 kilopascals and presence of advanced fibrosis or cirrhosis > 5 kilopascals (135, 

142). MRE has higher applicability for patients with ascites or obesity and has better 

performance to discriminate intermediate stages of fibrosis compared to Fibroscan (138). 

However, MRE is too costly and time consuming to be used in routine practice (138). It also 

cannot reliably predict fibrosis progression. 

1.5.3 – Serum biomarkers 

Current serum biomarkers algorithms adopted into the clinical setting for assessment 

of liver fibrosis usually include a combination of direct markers, which measure proteins 

related to scar tissue components (138), and indirect markers, which are simple biochemical 

tests that reflect disease severity and liver function (143). Many scores or algorithms have 

been proposed in different chronic liver diseases for staging liver fibrosis and they are 
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summarized in Table 1.4. Five are protected by patents and commercially available: the 

Enhanced liver fibrosis score, the Fibrometer, the Fibrotest, the FibroSpectII, and the 

Hepascore (Table 1.4). The advantages of serum biomarkers include high applicability, good 

inter-laboratory reproducibility, and potential widespread availability (non-patented) (144, 

145). However, serum biomarkers cannot reliably predict fibrosis progression and have 

limitations such as not being liver-specific, inability to differentiate intermediate fibrosis 

stages, and confounder effect of liver inflammation and steatosis (146).  

1.6 – Treatments of liver fibrosis 

Despite many encouraging findings of effective antifibrotic drugs in preclinical 

models, currently, none were successfully translated and applied in clinic. The antifibrotic 

therapeutic approaches can be classified into four main categories: (1) control the underlying 

liver disease; (2) inhibit activation of fibrosis promoter cells; (3) inhibition of profibrogenic 

pathways; and (4) promote resolution of fibrosis (147). A list of antifibrotic clinical trials in 

liver fibrosis searched on ClinicalTrials.gov are summarized in Table 1.5. These clinical 

trials are most relevant to NAFLD, as this disease affects over 25% of the population 

worldwide and the role of underlying metabolic risk factors such as diabetes or 

hyperlipidemia are recognized but several yet undefined etiological factors contribute to the 

disease and hence a targeted therapy remain elusive.  

1.6.1 – Control the underlying liver disease 

Removing the cause of liver injury is the most effective way to prevent fibrosis 

progression. Previous published data have established that clearance of HCV, suppression of 
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HBV, alcohol abstinence in ALD, and reduced lipid synthesis, cholesterol, and triglycerides 

in NASH can prevent fibrosis progression and possibly lead to fibrosis regression (148, 149). 

This strategy can reverse fibrosis at all stages. However, not all patients cured from the 

underlying liver disease demonstrate fibrosis regression, especially patients with NAFLD 

due to metabolic diseases (i.e., diabetes) or cirrhosis. Reversal of cirrhosis depends on the 

duration the patient has cirrhotic liver, the cellularity of the scar, the degree of vascular 

remodeling, and the degree of collagen cross-linking (150). Therefore, drugs with direct 

therapeutic targets of liver fibrosis have been developed and several are currently being 

evaluated in clinical trials (Table 1.5). 

1.6.2 – Inhibit activation of fibrosis promoter cells 

During liver injury, multiple cells of the liver contribute to activation of 

myofibroblasts that stimulate fibrosis deposition. Activated HSCs are the primary source of 

liver myofibroblasts and therefore inhibit activation of HSCs is a key aspect to prevent 

fibrosis progression (65). Several antifibrotic drugs were developed to inhibit activation of 

HSCs such as Elafibranor, Pamrevlumab, and GR-MD-02 (Table 1.5) (107, 151, 152). These 

drugs can inhibit activation of HSCs and have other biological effects to reduce fibrosis. 

Elafibranor is a peroxisome proliferator-activated receptor-alpha and -delta agonist that has 

hepatoprotective effects by regulation of metabolic homeostasis, inflammation, and cell 

differentiation. This drug is currently in a phase III clinical trial for NASH (153). 

Pamrevlumab is a CTGF agonist that can reduce activation of HSCs and ECM deposition 

(107). GR-MD-02 is a Galectin-3 agonist that reduce inflammation, fibrosis and the number 

of galectin-3-positive macrophages (151). 
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1.6.3 – Inhibition of profibrogenic pathways 

The major molecular pathways involved in fibrogenesis were discussed in Chapter 

1.4.2. Drugs in this category include Selonsertib, Oltipraz, and BMS-986263 (Table 1.5). 

Selonsertib is an inhibitor of apoptosis signal-regulating kinase 1 (ASK1) that is currently in 

a phase III clinical trial for NASH. Activation of ASK1 mediates phosphorylation of c-Jun 

N-terminal kinase and p38 mitogen-activated kinase, which leads to hepatocyte apoptosis, 

hepatic inflammation, and myofibroblast activation (154). Oltipraz is a nuclear factor 

(erythroid-derived 2)-like 2 activator that inhibits TGFβ1 in activated HSCs (155). In a phase 

II clinical trial with HBV and HCV patients, Oltipraz decreases plasma TGFβ1, but no 

significant histological improvement in fibrosis (156).  BMS-986263 is a vitamin A-coupled 

lipid nanoparticle containing a small interfering ribonucleic acid that inhibits the production 

of heat shock protein 47 (HSP47) in HSCs (157). Inhibition of HSP47 was discovered to 

inhibit collagen deposition and collagen fibril formation in preclinical models (158). This 

drug is currently in a phase II clinical trial recruiting patients that are cured of HCV with 

advanced liver fibrosis. 

1.6.4 – Promote resolution of fibrosis 

Promote resolution of fibrosis could be achieved by preventing collagen cross-

linking. Cross-linking of collagen is largely mediated by lysyl oxidase-like molecule 2 

(LOXL2) (159). Simtuzumab, a humanized monoclonal antibody targeting LOXL2, can 

promote the degradation of fibrosis in different preclinical models by preventing collagen 

cross-linking (160). This drug was further tested in advanced fibrosis patients with different 

chronic liver diseases (NASH, HCV, PSC) (Table 1.5). Despite the encouraging results in 
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the preclinical models, Simtuzumab was ineffective to reduce fibrosis in NASH, HCV, and 

PSC (161-163). This reflects inhibiting LOXL2 may be insufficient to reduce fibrosis as 

there are other LOX isoforms that may also mediate collagen cross-linkage (164).  

1.7 – Molecular studies of liver fibrosis in humans 

The understanding of molecular mechanisms underlying liver fibrosis has greatly 

advanced in the recent 20 years. These understandings led to the development of biomarkers 

to assess liver fibrosis and discovery of new antifibrotic drug targets. However, very limited 

findings in preclinical models were successfully translated and applied to the clinic. This is 

because there is lack of single, highly relevant animal model of human liver fibrosis (165). 

Commonly used rodent models such as CCL4, common bile duct ligation, and methionine-

choline-deficient diet are effective in establishing advanced fibrosis, but they do not 

faithfully represent key elements of fibrosis progression in humans. These models usually 

result in cirrhosis in a few weeks, whereas it takes years to decades for a patient with chronic 

liver disease to progress to cirrhosis, and the animal models do not simulate the comorbidities 

experienced by humans (166). Therefore, there is a need to understand if the molecular 

findings of liver fibrosis through access to highly annotated liver biopsy specimens from 

various stages of the disease trajectory and access to publicly available data sets help 

reanalyze different end points, not effectively addressed in the original study cohorts. Current 

methods of genome-wide transcriptomic and genome-wide association studies potentially 

offer a holistic approach to understand the heterogeneity and underlying biological 

mechanisms of liver fibrosis. Gene expression profiling and genetic association studies of 

sampled liver biopsies or blood samples at various stages of fibrosis may help delineate 
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mRNAs that are differentially expressed and reveal gene variants (single nucleotide 

polymorphism [SNP]). Several previous studies analyzed the global transcriptomic changes 

associated with fibrosis in human livers. However, most of them addressed only a single type 

of liver disease. Here, I will summarize the important findings of gene expression profiling 

and genetic variants of liver fibrosis in humans with chronic liver disease.  

1.7.1 – Non-alcoholic fatty liver disease 

Gene expression profiles of advanced fibrosis 

The first gene expression profiling study to delineate the gene expression patterns of 

advanced fibrosis in NAFLD was conducted by Moylan et al. in 2014 (167). They used whole 

genome transcriptomics approach (Affymetrix microarrays) to characterize differentially 

expressed genes in liver needle biopsies between mild NAFLD (no or mild fibrosis, n=40) 

and severe NAFLD (advanced fibrosis, n=32). They identified a 64-gene expression 

signature that distinguishes NAFLD patients with advanced fibrosis from those with no or 

mild fibrosis, with 93% accuracy for histology-proven advanced fibrosis. This 64-gene 

signature was validated in a second, independent cohort (n=17), with 82.4% accuracy for 

histology-proven advanced fibrosis. Limitation of this study was they had a small validation 

set and their findings were not yet replicated by other groups, nor does these findings address 

other liver diseases culminating in fibrosis. 

Genetic variants of advanced fibrosis 

In 2008, Romeo and colleagues analyzed the association between 9229 coding SNPs 

and liver steatosis in 2111 adults of diverse ethnicities (168). They discovered a strong 

association between a common non-synonymous polymorphism (rs738409 C>G) in the 



28 
 

patatin-like phospholipase domain containing 3 (PNPLA3) and NAFLD. This finding was 

replicated by several other groups and they extended the association of this SNP to NASH, 

fibrosis, and cirrhosis. (169-173). This finding was one of the most robust discoveries in the 

field of genetic predisposition of cirrhosis in NAFLD. Later in 2014, Kozlitina et al. did an 

exome-wide association study and analyzed the association of 138,374 SNPs and hepatic 

triglyceride content in 2,736 adults of diverse ethnicities (174). They verified the sequence 

variant of PNPLA3 (rs738409) and discovered a new common non-synonymous 

polymorphism (rs58542926 c.499 C>T) in the transmembrane 6 superfamily 2 (TM6SF2) 

was strongly associated with hepatic triglyceride content. This discovery was replicated by 

Liu et al. and they found this variant was also associated with fibrosis progression in NAFLD 

(175).  

Despite the strong and reproducible association between these two gene variants and 

advanced fibrosis in patients with NAFLD, whether these markers can serve as a potential 

predictor for advanced fibrosis in clinical practice is unknown. The strong association 

between gene variants and advanced fibrosis was based on an odds ratio (OR) greater than 2 

per risk allele, which is a prominent magnitude for a common variant (176). However, large 

ORs do not necessarily assure that the variants are clinically relevant, nor a single variant 

associated with disease can explain the multitude of phenotypes associated with the 

polygenic disease (177). The premise of SNP association studies is that multiple variants, 

each conferring a small but finite risk with disease or phenotype may eventually help explain 

the heritable basis for risk but do not address the environmental factors nor the gene-

environmental interactions in conferring the risk. The SNP based association studies help 

identify hitherto unidentified and uncharacterized genes in capturing the heritable component 
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of the disease. Population based SNP association studies and fine mapping of disease loci 

may help identify the causal gene(s) in polygenic diseases which are not amenable to linkage 

or pedigree-based association studies which are appropriate for monogenic diseases. 

Therefore, other classification parameters such as sensitivity, specificity, positive predictive 

value (PPV), negative predictive value (NPV), and area under the receiver operator 

characteristic curve (AUROC) are needed to test the predictive value of a genetic variant 

(177, 178).  Moreover, since NAFLD as explained above is a multisystem disease, and it is 

unlikely that two SNPs alone can accurately predict advanced fibrosis in all patients (179). 

Combination of other genetic variants and environmental factors are needed to generate a 

good predictive model. Danford and colleagues used a combination of age, genetic variants 

of PNPLA3 and TM6SF2, and insulin resistance to build a model for advanced fibrosis using 

177 NAFLD patients with various fibrosis stages (180). The model had an AUROC of 0.82 

for advanced fibrosis. 

1.7.2 – Chronic viral hepatitis B 

Gene expression profiles of advanced fibrosis 

Wang and colleagues conducted a gene expression profiling study to identify 

differentially expressed genes in HBV patients with various fibrosis stages (181). They found 

the expression of integrin subunit β like 1 (ITGBL1) (R2=0.51, p<0.001), doublecortin 

domain containing 2 (DCDC2) (R2=0.49, p<0.001), platelet-derived growth factor D 

(R2=0.48, p<0.001), and ETS homologous factor (EHF) (R2=0.48, p<0.001) were 

significantly correlated with histological fibrosis stages. However, the diagnostic 

performance of these genes for advanced fibrosis or cirrhosis were not reported. 
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Genetic variants of advanced fibrosis 

Despite a remarkable progress in understanding the natural history of chronic HBV, 

the host genetic factor(s) associated with fibrosis progression of chronic HBV are not well 

addressed. Eslam and colleagues conducted a large cohort of study that included 555 chronic 

HBV patients and they discovered SNP (rs12979860) in the intronic region of interferon-λ4 

was significantly associated with progression to advanced fibrosis (182). However, the 

results have not yet been replicated by other groups and the predictive performance of this 

SNP for fibrosis progression is currently unknown. 

1.7.3 – Alcoholic liver disease 

Gene expression profiles of advanced fibrosis 

The first gene expression profiling study to delineate gene expression patterns of 

advanced fibrosis in ALD was conducted by Seth et al. in 2003 (183). They used preselected 

genes represented on human 6K cDNA glass microarrays and not whole genome array to 

characterize differentially expressed genes in liver biopsies between non-diseased donor 

livers (n=7) and explant ALD cirrhotic livers without other liver diseases (n=7). They 

discovered several fibrotic associated genes (α-SMA, collagen type IV, CTGF, tissue 

inhibitor of metalloproteinase 2 [TIMP2]) were significantly up-regulated in cirrhotic livers. 

As these differentially expressed genes were generated by comparing between biopsies with 

very extreme phenotypes, it is unknown if these genes are applicable for advanced fibrosis 

in patients with ALD. 

Genetic variants of advanced fibrosis 

In 2009, Tian and colleagues conducted a large candidate gene study in 1221 heavy 



31 
 

drinkers at various stages of ALD (184). They found rs738409[G] in PNPLA3 was strongly 

associated with alcoholic cirrhosis. This association was further replicated in other 

independent cohorts of patients with ALD (185, 186). In 2015, Buch et al. conducted a 

genome-wide association study comparing 1426 heavy drinkers without liver injury to 712 

patients with alcoholic cirrhosis (187). They confirmed PNPLA3 and identified TM6SF2 

polymorphism, the same loci in NAFLD, were associated with alcoholic cirrhosis. Despite 

the strong and reproducible association between these two gene variants and cirrhosis in 

patients with ALD, whether these markers can serve as a potential predictor for advanced 

fibrosis or cirrhosis in clinical practice is unknown. 

1.7.4 – Chronic viral hepatitis C 

Gene expression profiles of advanced fibrosis 

In 2003, Smith and colleagues conducted the first gene expression profiling study to 

identify differentially expressed genes between HCV-infected cirrhotic liver explants (n=8) 

and non-diseased livers (n=4) (188). In this limited sample size, they found 87 genes were 

significantly upregulated in cirrhosis and these genes were mostly involved in ECM 

remodeling, activated lymphocytes and macrophages. As the genes were generated by 

comparing between biopsies with extreme phenotypes, the performance of these genes for 

advanced fibrosis in patients with HCV is unknown. 

Later in 2006, Smith and colleagues conducted another gene expression profiling 

study analyzing liver tissues from 13 liver transplant patients (11 infected and 2 uninfected 

with HCV) and identified fibrotic genes by comparing patients with and without fibrosis 

progression (189). They identified 21 genes were upregulated in patients who had fibrosis 
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progression compared to non-progressors in the first-year post-transplantation. Of the 21 

genes, 15 were encoded for markers of myofibroblasts and myofibroblast cells. Their data 

suggest that early fibrosis progression may be associated with a reduction of quiescent HSCs 

and increased number of myofibroblast-like cells. Due to the small sample size and lack of 

independent replication of findings, the performance of these genes for fibrosis progression 

is unknown. 

Genetic variants of advanced fibrosis 

Variants in the PNPLA3 region were also analyzed in patients with HCV. A 

significant association of rs738409[G] with advanced fibrosis were found in several 

European cohorts after adjustment for other known environmental factors (190-192). Despite 

the strong association of PNPLA3 variant with fibrosis, the performance of this variant for 

advanced fibrosis in HCV is unknown. 

In 2006, Huang and colleagues analyzed 24,832 putative functional SNPs in 916 

patients with HCV from two centers (193). They identified a missense SNP in DEAD box 

polypeptide 5 gene was associated with an increased risk of advanced fibrosis in both cohorts 

(OR=1.8 and 2.0). Moreover, they found a carnitine palmitoyltransferase gene was 

associated with a decreased risk of advanced fibrosis in both centers (OR=0.3 and 0.6). 

However, no classification parameters were reported in this study. Later in 2007,  Huang et 

al. identified and validated a seven-gene cirrhosis risk score (seven SNPs combined into a 

scoring system) is strongly associated with progression to cirrhosis in patients with HCV, 

with 0.75 and 0.73 of AUROC in the training cohort (n=420) and an independent validation 

cohort (n=154), respectively (194). The seven-gene cirrhosis risk score was further validated 

in 271 HCV patients with initially no or minimal to moderate fibrosis and the patients were 
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follow-up for at least 60 months (195). They found the mean seven-gene cirrhosis risk score 

was significantly higher (p=0.005) in patients with fibrosis progression compared to patients 

without fibrosis progression. However, this study did not report the classification 

performance of the seven-gene cirrhosis risk score for fibrosis progression. 

1.7.5 – Autoimmune hepatitis 

Several candidate genetic-association studies were performed in patients with AIH, 

mostly focused on predicting treatment outcomes or identifying gene variants associated 

with AIH (196-199). One study found a SNP in the FAS gene at position -670 was associated 

with cirrhosis at presentation (197). This study analyzed 149 AIH patients with 179 matched 

controls, patients with adenosine/adenosine or adenosine/guanine genotypes had a higher 

prevalence of cirrhosis at presentation than in those with the guanine/guanine genotype (29% 

vs 6%). However, the results have not yet been replicated.  

1.8 – Thesis overview and objectives 

1.8.1 – Rationale 

Liver fibrosis causes significant morbidity and mortality worldwide. Liver damage 

due to a variety of etiologies may result in advanced fibrosis, which is the common final 

pathway of different chronic liver diseases. Furthermore, advanced liver fibrosis is the major 

prognostic factor driving poor clinical outcomes. However, the natural history of fibrosis 

progression varies, with a high degree of heterogeneity among patients. The factors that drive 

this diversity are unknown. It is also unclear if there is a common molecular signature of 

progressive liver fibrosis independent of its etiology. Understanding the common molecular 
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signature of progressive liver fibrosis can help to develop a surrogate biomarker test to 

accurately identify patients that are at high-risk for progressive fibrosis. This biomarker test 

can identify patients who may benefit from drug treatments to prevent further liver damage 

and poor clinical outcomes. Stratification of patients who are at high-risk for progressive 

liver fibrosis by incorporating molecular biomarkers may help better clinical trial designs. 

This thesis aims to identify a common molecular signature associated with advanced fibrosis 

that is shared by different chronic liver diseases in humans, and to translate this knowledge 

to develop a surrogate biomarker test for clinical use.  

1.8.2 – Hypothesis 

Biological mechanisms underlying liver fibrosis induce a common multiple gene 

expression signature in human livers and quantitative measurement of this multigene 

signature in liver biopsy tissues identifies fibrosis progression and poor clinical outcomes in 

patients with chronic liver disease. 

1.8.3 – Objectives 

To test the hypothesis, this research proposes five specific objectives: 

1. To discover and validate a molecular fibrosis signature in fresh human liver tissues 

with a variety of chronic liver diseases by genome-wide microarrays.  

This topic is covered in Chapter 2, wherein I studied publicly available genome-

wide Affymetrix microarrays of fresh human liver tissues with different chronic liver 

diseases and various fibrosis stages to discover and validate a common molecular 

signature for advanced liver fibrosis.  
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2. To translate and validate the molecular signature in formalin-fixed paraffin-

embedded (FFPE) liver needle biopsies using the NanoString platform.  

This topic is covered in Chapter 3, wherein I analyzed the feasibility of gene 

expression analysis in FFPE liver needle biopsies on NanoString and compared the 

measured gene expression between paired fresh and FFPE biopsies.  

3. To investigate if the molecular fibrosis signature can identify progressive fibrosis in 

patients with different chronic liver diseases.  

This topic is covered in Chapters 4, 5, and 6, wherein the molecular fibrosis 

signature was used to predict progressive fibrosis in patients with recurrent HCV, 

AIH, and NAFLD, respectively. 

4. To investigate if the molecular fibrosis signature can predict poor clinical outcomes 

in patients with different chronic liver diseases.  

This topic is covered in Chapters 4, 5, and 6, wherein the molecular fibrosis 

signature was used to predict poor clinical outcomes in patients with recurrent HCV, 

AIH, and NAFLD, respectively. 

5. To analyze if the protein expression of the molecular fibrosis signature can predict 

progressive fibrosis and poor clinical outcomes.  

This topic is covered in Chapter 7, wherein the protein expression of the molecular 

fibrosis signature was measured in liver biopsies with recurrent HCV, AIH, and 

NAFLD that were included in Chapters 4, 5, and 6, respectively. 
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Table 1.1. Metavir grading and staging system 

Activity grade Fibrosis stage 

A0 PMN=0 and LN=0 F0 No fibrosis 

A1 PMN=0 and LN=1 

PMN=1 and LN=0-1 

F1 Portal fibrosis without septa 

A2 PMN=0 and LN=2 

PMN=1 and LN=2 

PMN=2 and LN=0-1 

F2 Portal fibrosis with rare septa 

A3 PMN=2 and LN=2 

PMN=3 and LN=0-2 

F3 Numerous septa without cirrhosis 

 F4 Cirrhosis 

PMN, piecemeal necrosis: 0, none; 1, mild; 2, moderate; 3, severe; LN, lobular necrosis: 

0, no or mild; 1, moderate; 2, severe; A, histological activity grade: 0, none; 1, mild; 2, 

moderate; 3, severe. Reference (123). 
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Table 1.2. Ishak grading and staging system 

Activity grade Fibrosis stage 

Periportal or periseptal interface hepatitis 

  Absent: 0 

  Mild (focal, few portal areas): 1 

  Mild/moderate (focal, most portal areas): 2 

  Moderate (continuous around <50%): 3 

  Severe (continuous around >50%): 4 

Stage 0  

No fibrosis 

Stage 1 

Fibrous expansion of some portal areas, 

with or without short fibrous septa 

Confluent necrosis 

  Absent: 0 

  Focal: 1 

  Zone 3 necrosis in some areas: 2 

  Zone 3 necrosis in most areas: 3 

  Zone 3 necrosis + occasional P-C bridging: 4 

  Zone 3 necrosis + multiple P-C bridging: 5 

  Panacinar or multiacinar necrosis: 6 

 

Stage 2 

Fibrous expansion of most portal areas, 

with or without short fibrous septa 

 

Stage 3 

Fibrous expansion of most portal areas, 

with occasional P-P bridging 

Focal lytic necrosis, apoptosis and focal 

inflammation   
  Absent: 0 

  One focus or less per 10X objective: 1 

  Two to four foci per 10X objective: 2 

  Five to ten foci per 10X objective: 3 

  More than ten foci per 10X objective: 4 

Portal inflammation 

 

Stage 4 

Fibrous expansion of most portal areas, 

with marked P-P and P-C bridging 

 

Stage 5 

Marked P-P and P-C bridging with 

occasional nodules 

  None: 0 

  Mild, some or all portal areas: 1 

  Moderate, some or all portal areas: 2 

  Moderate/marked, all portal areas: 3 

  Marked, all portal areas: 4 

 

Stage 6 
Cirrhosis 

P-C, portal to central. P-P, portal to portal. Reference (124). 
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Table 1.3. NAFLD activity scoring and fibrosis staging system 

Activity score Fibrosis stage 

Steatosis 

  <5%: 0 

  5-33%: 1 

  34-66%: 2 

  >66%: 3 

Stage 0  

No fibrosis 

 

Lobular inflammation 

  None: 0 

  <2: 1 

  2-4: 2 

  >4: 3 

Stage 1 

Zone 3 perisinusoidal fibrosis 

 Mild: 1a 

 Moderate: 1b 

 Portal/periportal: 1c 

Hepatocyte ballooning 

  None: 0 

  Few ballooned cells: 1 

  Many ballooned cells: 2 

Stage 2 

Both perisinusoidal and portal/  

periportal fibrosis 

NAFLD activity score (sum of steatosis, lobular 

inflammation, and hepatocyte ballooning) 

  <3: not NASH 

  ≥5: NASH 

Stage 3 
Bridging fibrosis 

 Stage 4 
Cirrhosis 

Reference (125).  



39 
 

Table 1.4. Serum biomarkers for assessing liver fibrosis 

Name Formula Etiology Ref 

AST to platelet 

ratio 
AST (ULN)/PLT (109/L) x100  HCV (200) 

BARD score 
(BMI ≥28 = 1; AST/ALT ratio ≥0.8 = 2; diabetes = 

1; score ≥2, odds ratio for advanced fibrosis = 17) 
NAFLD (201) 

Enhanced liver 

fibrosis score 

Patented formula combining age, hyaluronate, 

MMP3, and TIMP1 
Mixed (202) 

Fibroindex 
1.738-0.064 x PLT (109/mm3) + 0.005 x AST 

(IU/L) + 0.463 x (gamma globulin [g/dl]) 
HCV (203) 

Fibrometer 

Patented formula combining PLT, prothrombin 

index, AST, α-2-macroglobulin, hyaluronate, urea, 

and age 

Mixed (204) 

Fibrosis 

probability 

index 

10.929 + (1.827 x ln[AST]) + (0.081 x age) + 

(0.768 x past alcohol use*) + (0.385 x HOMA-IR) 

– (0.447 x cholesterol) 

HCV (205) 

Fibrotest 

Patented formula combining α-2-macroglobulin, 

γGT, apolipoprotein A1, haptoglobin, total 

bilirubin, age and gender 

HCV (206) 

FibroSpectII 
Patented formula combining α-2-macroglobulin, 

hyaluronate and TIMP-1 
HCV (207) 

FIB-4 
age (year) x AST (U/L)/(PLT (109/L) x (ALT 

[U/L])1/2 

HIV-

HCV 
(208) 

Forns index 
7.811 – 3.131 x ln(PLT) + 0.781 x ln(GGT) + 

3.467 x ln(age) – 0.014 x (cholesterol) 
HCV (209) 

Goteborg 

university 

cirrhosis index 

AST x prothrombin – INR x 100/PLT HCV (210) 

HALT-C model 
-3.66 – 0.00995 x PLT (103/ml) + 0.008 x serum 

TIMP-1 + 1.42 x log(hyaluronate) 
HCV (211) 

Hepascore 
Patented formula combining bilirubin, GGT, 

hyaluronate, α-2- macroglobulin, age and gender 
HCV (212) 

Hui score 
3.148 + 0.167 x BMI + 0.088 x bilirubin – 0.151 x 

albumin – 0.019 x PLT 
HBV (213) 

Lok index 
-5.56 – 0.0089 x PLT (103/mm3) + 1.26 x 

AST/ALT ratio = 5.27 x INR 
HCV (214) 

NAFLD 

fibrosis score 

-1.675 + 0.037 x age (year) + 0.094 x BMI (kg/m2) 

+ 1.13 x IFG/diabetes (yes = 1, no = 0) + 0.99 x 

AST/ ALT ratio – 0.013 x PLT (x109/L) – 0.66 x 

albumin (g/dl) 

NAFLD (215) 

MP3 
0.5903 x log(PIIINP [ng/ml]) – 0.1749 x 

log(MMP-1 (ng/ml) 
HCV (216) 

SHASTA index 

-3.84 + 1.70 (1 if HA 41-85 ng/ml, 0 otherwise) + 

3.28 (1 if HA >85 ng/ml, 0 otherwise) + 1.58 

(albumin <3.5 g/dl, 0 otherwise) + 1.78 (1 if AST 

HIV-

HCV 
(217) 
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>60 IU/L, 0 otherwise) 

Zeng score 

-13.995 + 3.220 log(α-2-macroglobulin) + 3.096 

log(age) + 2.254 log(GGT) + 2.437 

log(hyaluronate) 

HBV (218) 

* Graded as 0-2. 

Abbreviations: AST, aspartate aminotransferase; ALT, alanine transaminase GGT, 

gamma-glutamyl transferase; HA, hyaluronic acid; HIV, human immunodeficiency virus; 

HOMA-IR, homeostasis model assessment of insulin resistance; INR, international 

normalized ratio; MMP, matrix metalloproteinase; PIIINP, type III procollagen; PLT, 

platelet; Ref, reference; TIMP, tissue inhibitor of metalloproteinases. 
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Table 1.5. Selected antifibrotic trials registered at ClinicalTrials.gov 

Drug (drug trial 

identifier) 

Drug target (drug 

mechanism) 

Type of 

disease 

(phase) 

N of 

patients 

in trial 

Drug trial 

results 

Antifibrotic 

strategy 

Candesartan 

(NCT00990639) 

Angiotensin II 

receptor, type 1 

(AGTR1 inhibitor) 

ALD (1/2) 85 

Improvement 

in fibrosis 

(219) 

Inhibit activation 

of fibrosis 

promoter cells 

Losartan 

(NCT01051219,  

NCT00298714) 

Angiotensin II 

receptor, type 1 

(AGTR1 inhibitor) 

NASH (3) 45 

Recruited 

insufficient 

patients (220) 

Inhibit activation 

of fibrosis 

promoter cells 
HCV (4) 20 

No change in 

fibrosis (221) 

Irbesartan 

(NCT00265642) 

Angiotensin II 

receptor, type 1 

(AGTR1 inhibitor) 

HCV (3) 166 Pending 

Inhibit activation 

of fibrosis 

promoter cells 

Timolumab 

(NCT02239211) 

Amine oxidase copper 

containing 3 (AOC3 

inhibitor) 

PSC (2) 41 Pending 

Inhibit activation 

of fibrosis 

promoter cells 

Cenicriviroc 

(NCT03028740) 

C-C Motif chemokine 

receptor 2,5 

(CCR2/CCR5 

inhibitor) 

NASH (3) 2000 Pending 

Inhibit activation 

of fibrosis 

promoter cells 

Pamrevlumab 

(NCT01217632) 

Connective tissue 

growth factor (CTGF 

inhibitor) 

HBV (2) 114 Pending 

Inhibit activation 

of fibrosis 

promoter cells 

BMS-986036 

(NCT03486899,  

NCT03486912) 

Fibroblast growth 

factor 21 (analogue of 

FGF21) 

NASH (2) 160 Pending Control the 

underlying liver 

disease 
NASH (2) 100 Pending 

Tropifexor 

(NCT03517540) 

Farnesoid X receptor 

(FXR agonist) 
NASH (2) 200 Pending 

Control the 

underlying liver 

disease 

Obeticholic acid 

(NCT01265498, 

NCT02548351) 

Farnesoid X receptor 

(FXR agonist) 

NASH (2) 283 

Improvement 

in fibrosis 

(222) 
Control the 

underlying liver 

disease 
NASH (3) 2370 

Improvement 

in fibrosis 

(223) 

GR-MD-02 

(NCT02421094, 

NCT02462967) 

Galectin 3 (LGALS3 

inhibitor) 

NASH (2) 30 Pending Inhibit activation 

of fibrosis 

promoter cells 
NASH (2) 162 Pending 

Simtuzumab 

(NCT01672866,  

NCT01672879, 

NCT01707472,  

NCT01672853) 

Lysyl oxidase-like 

molecule 2 (LOXL2 

inhibitor) 

NASH (2)  222 
No change in 

fibrosis (161) 

Promote 

resolution of 

fibrosis 

NASH (2) 259 
No change in 

fibrosis (161) 

HCV (2) 18 
No change in 

fibrosis (162) 

PSC (2) 235 
No change in 

fibrosis (163) 

Selonsertib 

(NCT02466516, 

NCT03449446, 

NCT03053063,  

NCT03053050) 

Apoptosis signal-

regulating kinase 1 

(ASK1 inhibitor) 

NASH (2) 72 

Improvement 

in fibrosis 

(154) 
Inhibition of 

profibrogenic 

pathway 
NASH (2) 350 Pending 

NASH (3) 883 Pending 

NASH (3) 808 Pending 
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Oltipraz 

(NCT00956098) 

Nuclear factor 

(erythroid-derived 2)-

like 2 (NFE2L2 

activator) 

HBV and 

HCV (2) 
81 

No change in 

fibrosis (156) 

Inhibition of 

profibrogenic 

pathway 

Elafibranor 

(NCT02704403) 

Peroxisome 

oroliferator activated 

receptor alpha and 

delta (PPARA and 

PPARD agonist) 

NASH (3) 2000 Pending 

Inhibit activation 

of fibrosis 

promoter cells 

Farglitazar 

(NCT00244751) 

Peroxisome 

proliferator activated 

receptor gamma 

(PPARG agonist) 

HCV (2) 265 
No change in 

fibrosis (224) 

Inhibit activation 

of fibrosis 

promoter cells 

Aramchol 

(NCT02279524) 

Stearoyl-CoA 

desaturase-1 (SCD 

inhibitor) 

NASH 

(2/3) 
247 Pending 

Control the 

underlying liver 

disease 

Volixibat 

(NCT02787304) 

Solute carrier family 

10 member 2 

(SLC10A2 inhibitor) 

NASH (2) 197 Pending 

Control the 

underlying liver 

disease 

BMS-986263 

(NCT03420768) 

Heat shock protein 47 

(HSP47 inhibitor) 
HCV (2) 165 Pending 

Inhibition of 

profibrogenic 

pathway 

Metadoxine 

(NCT02541045) 

5-Hydroxytryptamine 

receptor 2B (5-HT2B  

inhibitor) 

NASH (3) 108 

Suspended 

(lack of 

finance 

resources) 

Control the 

underlying liver 

disease 

Abbreviations: ALD, alcoholic liver disease; HBV, hepatitis B virus; HCV, hepatitis C virus; NAFLD, non-

alcoholic fatty liver disease NASH, non-alcoholic steatohepatitis; PSC, primary sclerosing cholangitis. 
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Figure 1.1. Couinaud classification of the liver. 

Reprinted from BodyParts3D/Anatomography (https://lifesciencedb.jp/bp3d/) generated 

by  Database Center for Life Science (https://dbcls.rois.ac.jp/index-en.html). This figure 

is licensed under Creative Commons Attribution-ShareAlike 2.1 Japan 

(https://creativecommons.org/licenses/by-sa/2.1/jp/deed.en). 

https://lifesciencedb.jp/bp3d/
https://dbcls.rois.ac.jp/index-en.html
https://creativecommons.org/licenses/by-sa/2.1/jp/deed.en
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Figure 1.2. Microscopic anatomy of the liver. 

Reprinted from Figure 23.25, Anatomy & Physiology, connexions web site 

(https://openstax.org/details/books/anatomy-and-physiology) by  OpenStax College 

(https://cnx.org/). This image is licensed under Creative Commons Attribution v4.0 

(https://creativecommons.org/licenses/by/4.0/). 

https://openstax.org/details/books/anatomy-and-physiology
https://cnx.org/
https://creativecommons.org/licenses/by/4.0/
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Figure 1.3. Schematic diagram of hepatic lobule and hepatic acinus. 

“Schematic of liver operational units: the classic lobule and the acinus”, is reprinted from 

20.201 Mechanisms of Drug Actions, Fall 2005 by MIT OpenCourseWare 

(https://www.flickr.com/photos/mitopencourseware/3694426132). This is licensed under 

Creative Commons  Attribution-NonCommercial-ShareAlike v4.0 

(https://creativecommons.org/licenses/by-nc-sa/4.0/). 

  

https://www.flickr.com/photos/mitopencourseware/3694426132
https://creativecommons.org/licenses/by-nc-sa/4.0/
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Figure 1.4. Cells in the liver. 

Reprinted from reference (225). Articles and accompanying materials published by this 

journal (PLOS biology) are licensed under Creative Commons Attribution v4.0 

(https://creativecommons.org/licenses/by/4.0/). 

https://creativecommons.org/licenses/by/4.0/
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Figure 1.5. Histopathology of cirrhosis. 

Reprinted from  

https://commons.wikimedia.org/wiki/User:Nephron/Gallery#/media/File:Cirrhosis_high_

mag.jpg created by Nephron (https://commons.wikimedia.org/wiki/User:Nephron). This 

image is  licensed under Creative Commons Attribution-Share Alike 3.0 Unported 

(https://creativecommons.org/licenses/by-sa/3.0/). 

https://commons.wikimedia.org/wiki/User:Nephron/Gallery#/media/File:Cirrhosis_high_mag.jpg
https://commons.wikimedia.org/wiki/User:Nephron/Gallery#/media/File:Cirrhosis_high_mag.jpg
https://commons.wikimedia.org/wiki/User:Nephron
https://creativecommons.org/licenses/by-sa/3.0/
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2.1 – Introduction 

 The burden of liver disease is rising worldwide. Currently, there are more than two 

billion patients worldwide who suffer from chronic liver disease (1, 2). Most common causes 

are non-alcoholic fatty liver disease (NAFLD), viral hepatitis B, alcoholic liver disease 

(ALD), and viral hepatitis C (HCV) with prevalence rates of 25.24%, 3.61%, 2.05%, and 

1.68% worldwide, respectively (1, 3, 4). Advanced fibrosis is the common final pathway of 

different chronic liver diseases, leading to cirrhosis (end-stage liver fibrosis) and poor 

clinical outcomes (liver decompensation, need for liver transplantation, premature death) (5). 

Despite being the cardinal pathology consequence of a variety of chronic liver diseases, it is 

unknown if there is a common molecular pathway for advanced liver fibrosis in humans.  

 Although several previous whole genome transcriptomic had identified hepatic gene 

expression profiles for advanced liver fibrosis in humans, most addressed only a single liver 

disease at a time, and therefore, their fibrosis gene signatures may not be applicable to other 

liver diseases (6-10). Of these studies, only one conducted a whole genome transcriptomics  

study in patients with different chronic liver diseases (55 with chronic HCV, 12 with 

NAFLD, and 2 with ALD) at a time (10). They identified expression of 12 fibrosis genes 

were significantly correlated with serum enhanced liver fibrosis score (r2=0.39-0.50) (10). 

However, 80% of samples were chronic HCV and thus it is questionable if the genes they 

discovered can represent the common fibrosis genes in different chronic liver diseases, or 

only specifically to chronic HCV. There is a need for a comprehensive analysis including a 

larger sample size and a diverse types of chronic liver diseases to identify a common fibrosis 

gene signature for advanced fibrosis in humans. 
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 There is a significant diversity in outcomes among patients with chronic liver 

diseases. Approximately 20-30% of patients with chronic liver disease progress to advanced 

fibrosis/cirrhosis, whereas others remain stable (11-13). Cirrhosis is responsible for 1.03 

million deaths each year and this is why recent guidelines strongly recommended 

consideration of pharmacotherapy in patients with advanced fibrosis or without advanced 

fibrosis but at high-risk for fibrosis progression (14, 15). Although currently there is no Food 

and Drug Administration (FDA) approved drug for liver fibrosis, there are several liver 

antifibrotic drugs in phase 3 or 4 clinical trials, of which some are expected to report the 

initial study results around 2021 (16). These therapeutic approaches are most relevant to 

NAFLD, as there is no cure nor a unified approach to entirely eliminate the underlying 

metabolic risk factors such as diabetes or hyperlipidemia. Since there is a huge heterogeneity 

for disease outcomes, there is an unmet clinical need for a surrogate biomarker test to 

accurately identify high-risk patients who may benefit from upcoming drug treatments to 

prevent liver damage and adverse outcomes. Transcriptomics of sampled liver biopsies with 

different liver diseases at various stages of fibrosis may help delineate genes (mRNA level) 

that are differentially expressed and what pathways they might regulate. 

 This chapter aim to discover and validate a common molecular signature associated 

with advanced fibrosis that is shared by different liver diseases in humans using a systematic, 

unbiased, multi-centered, microarray based transcriptomic analysis of normal livers and 

livers with different chronic liver diseases.  
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2.2 – Materials and methods 

2.2.1 – Search for microarrays of human liver tissue 

 I conducted a web-based search using the National Center for Biotechnology 

Information Gene Expression Omnibus datasets, with “liver” and “fibrosis” as keywords and 

identified files from Affymetrix Human Genome U133 Plus 2.0 Arrays of normal or chronic 

liver disease adult human liver tissues with individual-patient level of histological fibrosis 

staging in October 2014 (Figure 2.1). Liver tissues with hepatocellular carcinoma (HCC) or 

dysplastic nodules were excluded. Based on these criteria, five independent studies 

(GSE49541, GSE7741, GSE17548, GSE6764, GSE28619) were identified and included for 

a total of 140 microarrays of livers from 148 patients. These raw microarray files were 

downloaded from National Center for Biotechnology Information Gene Expression Omnibus 

datasets (6, 7, 17-19). After data preprocessing, 140 microarrays were separated equally and 

randomly based on disease label and fibrosis stage into a discovery set (n=70) and an 

independent validation set 1 (n=70) (blinded to the molecular results). A common molecular 

signature for advanced fibrosis was defined in the discovery set and validated in validation 

set 1. To analyze if the common molecular signature can be validated in different batches of 

microarrays from the same and different microarray platforms, two additional series of liver 

gene expression data set from 91 patients with viral hepatitis (GSE84044, platform: 

Affymetrix Human Genome U133 Plus 2.0 Array) and 73 patients with ALD (GSE103580, 

platform: Affymetrix Human Genome U219 Array) were included for use as an independent 

validation set 2 and validation set 3, respectively (9, 20). 

 Microarrays were characterized into two groups based on the severity of fibrosis: no 
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or mild fibrosis and advanced fibrosis. No or mild fibrosis was defined as histological 

examination without fibrosis or any degree of fibrosis without bridging fibrosis and advanced 

fibrosis was defined as the presence of bridging fibrosis or cirrhosis. 

2.2.2 – Data preprocessing 

 Microarrays in the discovery set and validation set 1 were pooled in one batch and 

preprocessed using robust multi-array averaging method (Figure 2.2). Validation set 2 and 3 

were processed independently using robust multi-array averaging method. Probe sets with 

less variability across the microarrays in each batch were removed using the procedure as 

follows (21): 

 Step 1. Calculate the median expression value of each probe set in each batch. 

 Step 2. Divide each probe set expression value by the median expression value to 

obtain a fold-change value. 

 Step 3. If less than 20% of microarrays have a >1.5 or <-1.5 fold-change value, the 

probe set was excluded.  

 Next, to select the best probe set for a gene, the maximally expressed probe set 

measured by average intensity in a batch was used to represent the gene. 

2.2.3 – Machine learning classifiers development, cross-validation, and external 

validation 

 To avoid the idiosyncrasies of any particular machine learning method, seven 

different machine learning methods (Compound Covariate Predictor, Diagonal Linear 

Discriminant Analysis, 1-Nearest Neighbor Predictor, 3-Nearest Neighbors Predictor, 
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Nearest Centroid Predictor, Support Vector Machine Predictor, and Bayesian Compound 

Covariate Predictor) were applied to build classifiers for identifying histologically-proven 

advanced fibrosis using the discovery set (22). The threshold of predicted probability for a 

sample being assigned to a class in Bayesian Compound Covariate Predictor was 0.8 (23). 

Diagnostic performance of classifiers in discovery set was obtained using 10-fold cross-

validation and validated in validation set 1. The 10-fold cross-validation method was used 

as follows:  

 Step 1. Microarrays in the discovery set were randomly partitioned into 10 equal-

sized subsets. 

 Step 2. A single subset was retained as the validation data. The remaining nine 

subsets were used to develop classifiers and predict the retained single subset.  

 Step 3. Repeat step 2 ten times. Each of the 10 subsets was predicted exactly once, 

so that by the end of the procedure, all the microarrays in the discovery set had a single 

prediction result. 

2.2.4 – Performance measurements of the classifiers and biomarker test for 

advanced fibrosis 

Sensitivity, specificity, positive predictive value, negative predictive value, accuracy, 

and area under the receiver operating characteristic curve (AUROC) values were calculated 

for the classifiers and biomarker test. 

2.2.5 – Pathway and functional enrichment analysis 

Pathway and functional enrichment analysis were conducted using the Database for 
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Annotation, Visualization and Integrated Discovery (v6.7, http://david.abcc.ncifcrf.gov/) 

and Ingenuity Pathways Analysis (Ingenuity systems, Inc., Redwood City, CA, 

www.ingenuity.com).  

2.2.6 – Molecular interaction analysis 

ConsensusPathDB (http://cpdb.molgen.mpg.de/) was used to analyze the high 

confidence protein-protein interactions, gene regulatory interactions, biochemical reactions, 

and drug-target interactions. ConsensusPathDB combines 32 public databases for 

interactions and interactions curated from peer reviewed literature. Analyzed results were 

visualized using Cytoscape (http://www.cytoscape.org/). 

2.2.7 – Cellular origin of the molecular fibrosis signature  

 The molecular fibrosis signature was linked to liver cell types using two human liver 

cell atlases via single cell RNA sequencing (24, 25). One atlas contained nine normal liver 

tissues (http://human-liver-cell-atlas.ie-freiburg.mpg.de/) and the other contained five 

normal liver tissues and five cirrhotic liver tissues (2 with NAFLD, 2 with ALD, and 1 with 

primary biliary cholangitis) (http://www.livercellatlas.mvm.ed.ac.uk/). 

The atlas of nine normal liver tissues comprises clusters of major liver cell types 

including hepatocytes, EPCAM+ cells and cholangiocytes, liver sinusoidal endothelial cells, 

macrovascular endothelial cells, hepatic stellate cells (HSCs) and myofibroblasts, Kupffer 

cells, and nature killer, nature killer T, and T cells (24). A gene was labeled as up-regulated 

in a specific cluster of cell type if the gene expression was significantly up-regulated 

(Benjamini-Hochberg’s corrected p-value <0.05) when compared to all other clusters of cell 

http://david.abcc.ncifcrf.gov/
http://www.ingenuity.com/
http://cpdb.molgen.mpg.de/
http://www.cytoscape.org/
http://human-liver-cell-atlas.ie-freiburg.mpg.de/
http://www.livercellatlas.mvm.ed.ac.uk/
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types. 

 The atlas with normal and cirrhotic liver tissues comprises clusters of major liver cell 

types including B cells, cycling cells, endothelial cells, epithelial cells, innate lymphoid cells, 

mast cells, mesenchymal cells, mononuclear phagocytes, plasmacytoid dendritic cells, 

plasma cells, and T cells (25). They conducted differential gene expression analysis between 

single cell types from cirrhotic versus normal liver using the standard AUROC classifier to 

assess significance. 

2.2.8 – Statistical analysis 

Continuous variables were presented as mean ± standard deviation and categorical 

variables were presented as number and percentage. All data were compared between groups 

using independent t-test, Mann-Whitney U-test or Wilcoxon signed-rank test for continuous 

variables, where appropriate, and Fisher’s exact test for categorical variables. P-values for 

multiple testing were corrected by Benjamini-Hochberg’s method to control the false 

discovery rate at 5%. Correlations between variables were evaluated using Spearman's rank 

correlation coefficient. All tests with two-sided p-value <0.05 were considered significant. 

All analyses and figures were performed generated using the SPSS 25 statistical software 

(IBM, Armonk, NY, USA), Excel 2010 (Microsoft Corporation, Redmond, WA), BRB-

ArrayTools (version 4.5.0 - stable) (http://linus.nci.nih.gov/BRB-ArrayTools.htm), or R-

program (version 3.3.2; http://www.r-project.org) with the following packages: ggplot2, 

gplot, pROC, and corrplot. 

http://linus.nci.nih.gov/BRB-ArrayTools.htm
http://www.r-project.org/
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2.3 – Results 

2.3.1 – Clinical characteristics of the study population 

 A total of 304 microarrays of livers from 312 patients with different liver diseases 

were analyzed. These microarrays included 72 NAFLD, 88 ALD, 122 viral hepatitis, 5 

cryptogenic hepatitis, and 17 normal livers (Figure 2.1 and 2.3, Table 2.1). Of 312 livers, 

262 were obtained by needle biopsy and 50 by resection. Each microarray was hybridized 

with one RNA sample of a liver from a patient except for the three microarrays from center 

2 (Figure 2.3). Of these three microarrays, two were hybridized with a pool of liver RNA 

samples from four patients and one was hybridized with a pool of liver RNA samples from 

three patients (6). The liver tissues that were pooled together were in the same histological 

fibrosis group. Of total 304 microarrays, 127 had no or mild fibrosis and 177 had advanced 

fibrosis (Figure 2.3). 

2.3.2 – Development and validation of machine learning classifiers for 

identifying advanced fibrosis 

Seven different classifiers were developed to identify advanced fibrosis in discovery 

set and then the classifiers were validated in validation set 1 (Figure 2.4). To avoid bias in 

gene selection, two sets of genes were used to develop classifiers: all 6,951 genes that passed 

data preprocessing and 1,294 differentially expressed genes between advanced and no or 

mild fibrosis (independent t-test, p<0.001) in the discovery set. In the discovery set, 

classifiers with 1,294 differentially expressed genes had significantly higher accuracy for 

histology-proven advanced fibrosis compared to classifiers with 6,951 genes (mean 83% vs. 
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74% accuracy, respectively, p=0.018) (Figure 2.5). In validation set 1, classifiers with 1,294 

differentially expressed genes also had significantly higher accuracy for histology-proven 

advanced fibrosis compared to classifiers with 6,951 genes (mean 83% vs. 75% accuracy, 

respectively, p=0.016) (Figure 2.5). Among the seven different classifiers with 1,294 

differentially expressed genes, the Support Vector Machine Predictor had the highest 

accuracy for histology-proven advanced fibrosis in both the discovery set (94%) and 

validation set 1 (94%). 

2.3.3 – Use of classifiers to develop a biomarker test for advanced liver fibrosis 

Despite the robust performance of machine learning classifiers, it may be difficult 

and costly to measure the expression of 1,294 genes in a clinical biomarker test. To shorten 

the gene list, I identified a top 50-gene subset of the most differentially expressed genes (top 

50 genes with smallest Benjamini-Hochberg’s false discovery rate corrected p-value) 

between advanced vs. no or mild fibrosis in the discovery set (Table 2.2). Of these 50 genes, 

48 were up-regulated and two were down-regulated in advanced fibrosis. To achieve the best 

performance for advanced fibrosis, I analyzed three different subsets of genes: top 50 

differentially expressed genes (up-regulated and down-regulated), top 48 up-regulated, 

differentially expressed genes, and top 51 to 100 differentially expressed genes (Figure 2.4). 

A molecular score was assigned for each sample by calculating geometric mean expression 

of the genes in each subset. The 48 up-regulated genes had the best diagnostic performance 

(AUROC = 0.994) for advanced fibrosis (Figure 2.6A) compared to the top 50 differentially 

expressed genes (AUROC = 0.993) (Figure 2.7A) and the top 51 to 100 differentially 

expressed genes (AUROC = 0.987) (Figure 2.8A). Unsupervised hierarchical analysis of the 

48 up-regulated genes clustered patients into advanced fibrosis or no/mild fibrosis with high 
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accuracy (Figure 2.6A and 2.6B). A 48-gene signature score cutoff (Youden index = 6.185) 

for advanced fibrosis was derived by the receiver operating characteristic curve analysis in 

the discovery set (Figure 2.6A). This cutoff (geometric mean expression of 48 genes = 6.185) 

had 95% sensitivity, 97% specificity, 98% positive predictive value, 93% negative predictive 

value, 96% accuracy, and 0.994 AUROC (95% confidence interval 0.983-1.000) for 

advanced fibrosis. Based on the selected cutoff, only 3 out of 70 (4%) samples were 

misclassified compared to the histological label. (Figure 2.6C). The 48-gene signature had a 

better performance (AUROC = 0.994) for histology-proven advanced fibrosis than any 48 

individual genes in the discovery set (AUROC range 0.894-0.982) (Table 2.2). 

2.3.4 – External validation of the biomarker test 

 The molecular score cutoff of three subsets of genes derived in the discovery set were 

validated in validation set 1. Validated results showed the 48-gene had the best diagnostic 

performance (AUROC = 0.994, Figure 2.9A) for advanced fibrosis when compared to the 

top 50 differentially expressed genes (AUROC = 0.992, Figure 2.7B) and the top 51 to 100 

differentially expressed genes (AUROC = 0.991, Figure 2.8B). Unsupervised hierarchical 

analysis of 48 up-regulated genes clustered patients into advanced fibrosis or no/mild fibrosis 

with high accuracy (Figure 2.9A and 2.9B). The 48-gene signature score cutoff (6.185) 

derived in the discovery set had 95% sensitivity, 97% specificity, 98% positive predictive 

value, 93% negative predictive value, 96% accuracy, and 0.994 AUROC (95% confidence 

interval 0.983-1.000) for advanced fibrosis in validation set 1 (Figure 2.9A). Based on 

discovery set derived cutoff, only 3 out of 70 (4%) samples were misclassified compared to 

the histological label (Figure 2.9C). The 48-gene signature had a better performance 

(AUROC = 0.994) for histology-proven advanced fibrosis than any 48 individual genes in 
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the validation set 1 (AUROC range 0.795-0.985) (Table 2.3). 

 The 48-gene signature was further validated in validation set 2 (91 patients with viral 

hepatitis) and validation set 3 (73 patients with ALD) and had robust performance for 

histology-proven advanced fibrosis in both sets (validation set 2: AUROC = 0.964, 93% 

accuracy, Figure 2.10A; validation set 3: AUROC = 0.993, 99% accuracy, Figure 2.10B). 

The robust performance of the 48-gene signature for histology-proven advanced fibrosis in 

all three validation sets with different chronic liver diseases supported that the 48-gene 

signature is a common molecular signature for advanced liver fibrosis and independent to 

the etiologies. 

2.3.5 – Pathway and functional enrichment analysis 

 Gene Ontology identified the 48-gene signature was enriched in a variety of 

biological functions, mostly involved with extracellular matrix, such as extracellular matrix 

organization in the biological process category, extracellular matrix in the cellular 

component category, and the extracellular matrix structural constituent in the molecular 

function category (Table 2.4). Collagens, which play an important role in liver fibrosis, were 

involved in almost all biological functions. The only function without a collagen gene was 

calcium ion binding, which was equally important in cellular signaling cascades and may 

play a prominent role in fibrosis. Kyoto Encyclopedia of Genes and Genomes pathway 

analysis indicated that the 48-gene signature was most significantly enriched for extracellular 

matrix-receptor interaction (Table 2.5). 

Ingenuity Pathways Analysis was used to identify the biological processes that were 

overrepresented in the 48-gene signature (Table 2.6). All of the 48 genes were associated 
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with cancer and 36 were associated with liver hyperplasia/hyperproliferation. This was 

reasonable because advanced liver fibrosis is known as a major risk factor for HCC and 

cirrhosis is characterized by regenerative liver cell nodules. Ingenuity Pathways Analysis 

identified that transforming growth factor-β 1 (TGFβ1), an important fibrogenic mediator, 

was a significant upstream regulator in the 48-gene signature (p=1.57 x 10-7) (Figure 2.11). 

All these results supported that the 48-gene signature was significantly involved in liver 

fibrogenesis. 

2.3.6 – Protein and transcription factors interaction analysis 

 To investigate the mechanisms that regulate the protein functions of the 48-gene 

signature, the protein-protein interactions were analyzed via consensusPathDB (Figure 

2.12A). Overall, the corresponding protein of the 48-gene signature interacted with proteins 

that were involved in liver fibrogenesis, such as hepatic stellate cells (HSCs) activation or 

proliferation (SAA1, HABP2, PDGFB) (26, 27), liver fibrogenesis (TGFβ1, OSM, LTBP2, 

SERPINE2, collagen genes) (28, 29), collagen cross-linkage (LOX) (30), and  hepatocyte 

proliferation (hepassocin) (31). These results supported that the 48-gene signature played an 

important role in liver fibrogenesis at protein level. 

 I also analyzed gene regulatory interactions and biochemical reactions of the 48-gene 

signature and found microRNA 29 (has-miR-29) members reacted with several collagen 

genes in the 48-gene signature (Figure 2.12B). has-miR-29 members could silence the 

expression of collagen genes and were known to be significantly down-regulated in advanced 

liver fibrosis (32). This gave an insight that has-miR-29 might be a potential biomarker for 

advanced liver fibrosis and activating has-miR-29 may reduce liver fibrosis. 
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2.3.7 – Cellular origins involved in hepatic fibrosis 

The proposed cellular sources of extracellular matrix accumulation during chronic 

liver injury are driven by a heterogeneous population of cells in the liver, majority from 

HSCs and hepatic progenitor cells (HPCs) (33, 34). However, most of the data were derived 

from rodent or in vitro experimental models, thus cellular origins of liver fibrosis in humans 

remains elusive. Here, I investigated the correlation between the expression of 14 HSC and 

10 HPC markers (literature-selected) vs. the expression of the eight collagen genes in the 48-

gene signature (Table 2.7). Two HPC markers, CD24 and KRT7, which were in the 48-gene 

signature, had a high correlation (r > 0.7) with the geometric mean expression of 8 collagen 

genes in all four datasets (discovery set, validation set 1, validation set 2, validation set 3). 

Interestingly, none of the HSC markers had high correlation (r>0.7) with the geometric mean 

expression of the collagen genes. Some well-known HSC markers (desmin, GFAP, 

synaptophysin) were excluded after data preprocessing and this meant the expression of these 

markers did not alter in different fibrosis stages (Table 2.7). Specifically, I compared the 

expression of each cellular origin marker gene with each collagen gene and found that CD24 

and KRT7 had significant positive correlation with all eight individual collagen genes in all 

four datasets (Table 2.8). Correlation heatmap showed the expression of HPC markers had 

significantly higher correlation with the collagen genes than HSC markers in the discovery 

set (mean correlation 0.575 ± 0.183 vs. 0.232 ± 0.404, p<0.001), validation set 1 (mean 

correlation 0.664 ± 0.205 vs. 0.225 ± 0.393, p<0.001), validation set 2 (mean correlation 

0.629 ± 0.141 vs. 0.369 ± 0.296, p<0.001), and validation set 3 (mean correlation 0.422 ± 

0.213 vs. 0.193 ± 0.370, p<0.001) (Figure 2.13). These results suggest that HPC proliferation 

may play a major role in human liver fibrogenesis and HPC markers such as CD24 and KRT7 
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may serve as potential biomarkers for advanced fibrosis, independent of etiologies. 

2.3.8 – Cellular origins of the 48-gene signature  

The 48 fibrosis genes were analyzed in a human single liver cell RNA sequencing 

atlas derived from normal liver tissues and a HSC gene signature reported by Zhang et al. 

(24, 35). Of the 48 fibrosis genes, most of the genes were up-regulated in EPCAM+ cells and 

cholangiocytes (35%), followed by HSCs and myofibroblasts (27%), macrovascular 

endothelial cells (21%), sinusoidal endothelial cells (13%), Kupffer cells (2%), nature killer, 

nature killer T, and T cells (2%), and hepatocytes (2%) (Figure 2.14, Table 2.9). 

 The 48 fibrosis genes were also analyzed in another human single liver cell RNA 

sequencing atlas constructed using five normal and five cirrhotic liver tissues (25). Of the 48 

fibrosis genes, most of the genes were significantly up-regulated in epithelial cells (19%) in 

cirrhotic livers, followed by mesenchymal cells (vascular smooth muscle cells, HSCs, 

fibroblasts) (13%), and endothelial cells (10%) (Figure 2.15, Table 2.10). 

These results support the correlation analyses in section 2.3.7 that single cell RNA 

data suggest that HPCs followed by myofibroblasts/HSC and endothelial cells are the major 

cellular origin of the 48-gene signature of advanced liver fibrosis. 

2.3.9 – The expression of liver antifibrotic drug targets in the datasets 

Currently, no animal models can faithfully represent the hepatic features of human 

liver disease and there is lack of molecular data of liver fibrosis in human. This explains the 

positive findings from an antifibrotic therapies developed in animal models, but same drugs 

were not effective in humans. Transcriptomic analyses in human liver tissues may overcome 

this gap to identify drugs that are already in trials and see if any of these drugs can be 
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repurposed or to offer explanation as to why certain drugs failed to prevent fibrosis in a 

clinical setting. Here, I selected antifibrotic drugs searched on ClinicalTrials.gov that had a 

primary molecular target and showed the molecular target gene expression fold-changes 

between advanced and no or mild fibrosis in NAFLD, viral hepatitis, and ALD samples. This 

was used as a representative of human hepatic fibrosis molecular data (Table 2.11). I found 

the expression of CCR2 and CCR5 (molecular target of Cenicriviroc, an antifibrotic drug in 

phase 3 trial for treating non-alcoholic steatohepatitis [NASH]) were significantly 

upregulated in NAFLD samples with advanced fibrosis. The fold-change for CCR2 and 

CCR5 was 1.33 (p=0.002) and 1.17 (p=0.016), respectively (Table 2.11). The expression of 

CCR2 and CCR5 were also significantly up-regulated in viral hepatitis samples with 

advanced fibrosis, with a fold-change of 1.16 (p<0.001) and 1.15 (p<0.001), respectively. 

These results supported that CCR2 and CCR5 were significantly up-regulated in advanced 

fibrosis and could be a driver for fibrosis progression in both NAFLD and viral hepatitis. 

The expression of several antifibrotic drug targets in NASH phase 3 trials (Losartan, 

Obeticholic acid, Selonsertib, Elafibranor, Aramchol, Metadoxine) had no significant 

difference between advanced and no or mild fibrosis in the NAFLD samples (Table 2.11). I 

also found the expression of LOXL2, the molecular target of Simtuzumab, was not 

significantly upregulated in viral hepatitis samples with advanced fibrosis and this may be 

the reason of Simtuzumab was ineffective in decreasing liver fibrosis in a phase 2 clinical 

trial of patients with HCV, as the expression of LOXL2 was similar between advanced and 

no or mild fibrosis (36). However, LOXL2 was significantly upregulated in NAFLD samples 

but Simtuzumab was also ineffective in decreasing liver fibrosis in a phase 2 clinical trial 

(37). This could be explained as although LOXL2 was significantly up-regulated in advanced 
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fibrosis, inhibition of LOXL2 was insufficient to reduce liver fibrosis. 

2.3.10 – Multicenter impact of the 48-gene signature 

The 48-gene signature with the same liver disease and fibrosis group from different 

centers was assessed for multicenter impact. Only normal and viral hepatitis samples were 

compared because they were analyzed by the same microarray platform and had samples 

from multiple centers. The 48-gene signature in both normal and viral hepatitis samples were 

similar across different centers (Figure 2.16). This showed that the 48-gene signature was 

not impacted by different centers. 

2.4 – Discussion 

This is the first comprehensive collection of gene expression signatures that drives 

advanced liver fibrosis in the context of various common causes of liver disease in humans. 

I analyzed 304 microarrays of livers from 312 patients and identified a 48-gene signature 

associated with advanced liver fibrosis that is shared by different chronic liver diseases. The 

48-gene signature was identified in a discovery set and validated in three independent 

validation sets with over 93% accuracy for advanced fibrosis. Pathway and functional 

enrichment analysis revealed the 48-gene signature is significantly involved in hepatic 

fibrosis, HSCs activation, and HCC. Molecular interaction analysis also revealed the 48-gene 

signature is involved in HSCs activation and HPCs proliferation. These results supported 

that the 48-gene signature is a common molecular signature for advanced fibrosis in different 

chronic liver diseases. 

During the search in the National Center for Biotechnology Information Gene 
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Expression Omnibus, I found six other human liver studies that used different microarray 

platforms to analyze the relation of gene expression and different severity of fibrosis (8, 38-

42). These microarrays were not included as an external validation set in this chapter due to 

small sample size. Three studies identified differentially expressed genes between advanced 

and no or mild fibrosis in patients with HCV (8, 38, 41). The fibrosis genes that they 

discovered had no overlap with the 48-gene signature. This might be caused by the small 

sample size (n=9, 18, 16 patients analyzed in reference 8, 38, and 41, respectively) with less 

than 10 patients in each fibrosis subgroup when identifying differentially expressed genes 

and resulted in limited statistical power (8, 38, 41). Two studies identified differentially 

expressed genes between normal and cirrhotic liver tissues (40, 42). As they compared 

normal vs. cirrhotic livers, I would expect collagen genes as the top differentially expressed 

genes in their gene list. However, no collagen genes were present in both studies. This could 

also be caused by small sample size (n=42, 22 patients analyzed in reference 40 and 42, 

respectively), which cause limited statistical power (40, 42). One study identified genes that 

were differentially expressed between normal and different severity of NAFLD in 63 patients 

(39). However, they did not have patients with advanced fibrosis (≥F3). Due to the 

abovementioned, these datasets were not used to validate the 48-gene signature.  

Of the 48 fibrosis genes, 35 were previously associated with liver fibrosis and 13 are 

novel targets (Table 2.2). In our study, KRT7, CD24 and EPCAM are among top upregulated 

genes in advanced fibrosis and they are known to be expressed by HPCs and biliary epithelial 

cells. When the liver is injured, the expression of HPC markers may be increased due to 

ductular proliferation, as ductular reaction has been reported in some forms of chronic liver 

disease and is a common feature in nonbiliary type of cirrhosis. Moreover, the expression of 
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these three genes were significantly and highly correlated with the expression of collagen 

genes in all discovery and validation sets (Table 2.7). Currently, it is yet unknown if matrix 

deposition is beneficial for HPC-associated regenerative response or whether fibrosis is 

exacerbated by the HPC activation (33). The significant correlation between the expression 

of HPC markers and collagen genes suggests that HPC activation may cause exacerbation of 

fibrosis and this is a shared feature of different chronic liver diseases in humans. 

In upstream analysis, TGFβ1 was a significant upstream regulator in the 48-gene 

signature (Figure 2.11). There are antifibrotic drug trials targeting mediators in the TGFβ1 

signaling pathway to inhibit fibrogenesis in liver fibrosis (clinical trial identifier: 

NCT01217632) and idiopathic pulmonary fibrosis (NCT01371305, NCT03573505). 

Targeting mediators of TGFβ1 may be an effective antifibrotic strategy because it is an 

upstream regulator of many pathways involved in liver fibrogenesis.  

miRNAs can regulate the expression of multiple gene transcripts. In the molecular 

interaction analysis, hsa-miR-29 emerges as an important regulator molecule for the 48-gene 

signature (Figure 2.12B). Down-regulation of hsa-miR-29 was reported to induce HSC 

activation and liver fibrogenesis (32). Hence, hsa-miR-29 might be a potential therapeutic 

target for liver fibrosis. A hsa-miR-29 mimic, MRG-201, is tested in a phase 1 clinical trial 

as an antifibrotic therapy for skin fibrosis (NCT02603224). 

The 48-gene signature could be used to stratify patients as predictive or surrogate 

biomarker test in antifibrotic drug clinical trials. Individually, the 48 genes could also be 

explored as targets for novel therapeutics development. In phase 3 clinical trials for treating 

NASH, Farnesoid X receptor (FXR) and apoptosis signal-regulating kinase 1 (ASK1) were 

selectively targeted by Obeticholic acid and Selonsertib, respectively. I found the expression 
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of FXR and ASK1 had no significant difference between advanced and no or mild fibrosis 

samples with NAFLD (Table 2.10) in this chapter. In a NASH phase 2 trial, NASH patients 

with diabetes treated with Obeticholic acid had a significant fibrosis improvement (odds ratio 

[OR] = 4.6, 95% confidence interval [CI] 2.0-10.6, p=0.0003), but not in patients without 

diabetes (OR = 2.0, 95% CI 0.8-4.7, p=0.12) (43). Of the NAFLD samples in this chapter, 

only 37.5% (27 of 72) had diabetes (7), and this could be the reason of why FXR expression 

was similar between advanced and no or mild fibrosis. In a Selonsertib phase 2 trial, 43% 

(13 of 30) of NASH patients treated with 18 mg of Selonsertib daily had improvement in 

fibrosis compared to 30% (8 of 27) treated with 9 mg of Selonsertib and 20% (2 of 10) in the 

placebo group (44). However, the improvement was not statistically significant. Based on 

the expression of FXR and ASK1 in the NAFLD samples included in this chapter, these 

drugs may not be effective enough to yield a significant therapeutic response to reduce 

fibrosis. In phase 2 clinical trials, Simtuzumab, an LOXL2 inhibitor, was ineffective for 

patients with NASH, HCV, and primary sclerosing cholangitis (36, 37, 45). The expression 

of LOXL2 was similar between advanced and no or mild fibrosis in viral hepatitis samples, 

but significantly upregulated in NAFLD samples with advanced fibrosis. This could reflect 

expression levels of LOXL2 increase in NAFLD patients with advanced fibrosis but 

inhibiting LOXL2 was insufficient to reduce fibrosis as there are other LOX isoforms that 

mediate collagen cross-linkage. Moreover, fibrosis progression in NAFLD has diverse 

mechanisms (e.g. modulation of different metabolic pathways, different inflammatory 

cascades, myofibroblast activation, collagen cross-linkage) of liver injury that differ between 

individuals but may present with a similar histological phenotype. Therefore, single 

antifibrotic therapy is unlikely to be effective in all patients with NAFLD. Combining 
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therapies that engage different targets which were significantly upregulated in advanced 

fibrosis may provide a synergistic antifibrotic benefit. 

The 48-gene signature has the potential to develop novel non-invasive biomarkers as 

surrogates for liver biopsy to assess liver fibrosis. Current serum-based approaches lack 

specificity, as they could detect fibrogenic activity in other organs as well. Diagnostic 

performance of these approaches could vary in patients with different chronic liver diseases 

and had only AUROC scores of ~0.8 for advanced fibrosis (46). The 48-gene signature could 

reflect changes of fibrogenic activity in different chronic liver diseases. The 48-gene 

signature had at least 0.96 AUROC for advanced fibrosis in three validation sets, which was 

better than any previous reported non-invasive approaches. The 48-gene signature could be 

further tested on specimen that can be obtained noninvasively, such as serum samples, to 

assess which gene is able to translate to protein and which of these proteins are detectable in 

blood circulation to accurately reflect liver tissue pathology. 

Despite its merits, this chapter had a limitation that is important to acknowledge. The 

samples analyzed in this chapter had extreme histology phenotype (F0-F1 versus F3-F4) and 

lack of samples with intermediate level of fibrosis (F2). F2 fibrosis samples were excluded 

because they have mixed molecular phenotype and excluding them could increase the power 

to identify a more significant fibrosis gene signature. This line of reasoning also has its merits 

in that extremes of phenotypes are often preferred in single nucleotide polymorphism (SNP) 

based association studies, and gene expression-based studies are no exception. However, the 

concern if the 48-gene signature is also effective in fibrosis progression in chronic liver 

disease patients with F2 fibrosis still needs to be addressed. Therefore, I present a 

multicenter, longitudinal study of total 299 patients with recurrent HCV (post-transplant, 
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Chapter 4), autoimmune hepatitis (Chapter 5), and NAFLD (Chapter 6) with all fibrosis 

stages (F0 to F4) to validate the results. 

In this chapter, I identified and validated a common 48-gene signature that drives 

advanced liver fibrosis in various chronic liver diseases. This new understanding defines a 

quantitative surrogate biomarker for advanced liver fibrosis. The 48-gene signature can be 

beneficial if incorporated into future clinical studies of the natural history of liver fibrosis 

and therapeutic intervention. 
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Table 2.1. The condition of microarrays in the discovery and validation sets 

Condition 

Discovery set Validation set 1 Validation set 2 Validation set 3 

Total No or 

mild 

fibrosis 

Advanced 

fibrosis 

No or 

mild 

fibrosis 

Advanced 

fibrosis 

No or 

mild 

fibrosis 

Advance

d fibrosis 

No or 

mild 

fibrosis 

Advanced 

fibrosis 

Normal, n 8 0 9 0 0 0 0 0 17 

NAFLD, n 20 16 20 16 0 0 0 0 72 

Alcoholic liver 

disease, n 
0 8 0 7 0 0 6 67 88 

Viral hepatitis, n 1 14 0 16 63 28 0 0 122 

Cryptogenic 

hepatitis, n 
0 3 0 2 0 0 0 0 5 

Total 29 41 29 41 63 28 6 67 304 
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Table 2.2. The list of top 50 differentially expressed genes and fold-changes between 

advanced and no or mild fibrosis in the discovery set 

Gene Official gene name Function 
Fold 

change 

Corrected 

p-value 
AUROC 

Link to 

fibrosis 

BICC1 
BicC family RNA binding 

protein 1 
Wnt signaling ↑4.33 2.08x10-15 0.982 

Previously 

reported (7) 

NALCN 
Sodium leak channel, non-

selective 
Ion transporter ↑2.53 9.60x10-15 0.976 

Previously 

reported (7) 

THBS2 Thrombospondin 2 
Contribute to the structural 

integrity of the ECM 
↑3.49 1.27x10-14 0.976 

Previously 

reported (7) 

DCDC2 
Doublecortin domain 

containing 2 
Wnt signaling ↑4.73 2.63x10-13 0.966 

Previously 

reported (7) 

LTBP2 
Latent transforming growth 

factor beta binding protein 2 

Contribute to the structural 

integrity of the ECM 
↑1.79 8.47x10-11 0.960 

Previously 

reported (10) 

ITGBL1 Integrin, beta-like 1 Integrin binding ↑3.18 4.92x10-13 0.958 
Previously 

reported (7) 

COL4A4 Collagen, type IV, alpha 4 
Contribute to the structural 

integrity of the ECM 
↑2.41 8.74x10-12 0.955 

Previously 

reported (5) 

COL1A1 Collagen, type I, alpha 1 
Contribute to the structural 

integrity of the ECM 
↑5.06 2.22x10-13 0.954 

Previously 

reported (5) 

EPCAM 
Epithelial cell adhesion 

molecule 

Cell proliferation and 

differentiation 
↑7.40 6.28x10-11 0.954 

Previously 

reported (7) 

MAP1B 
Microtubule-associated 

protein 1B 
Microtubule binding ↑2.46 2.40x10-12 0.954 

Previously 

reported (7) 

CD24 CD24 molecule 
Cell proliferation and 

differentiation 
↑4.37 7.66x10-13 0.952 

Previously 

reported (7) 

CXCL6 Chemokine ligand 6 Inflammatory response ↑6.79 7.15x10-12 0.944 
Previously 

reported (7) 

SOX9 
SRY (sex determining 

region Y)-box 9 

Cell proliferation and 

differentiation 
↑3.37 1.10x10-10 0.944 

Previously 

reported (7) 

KRT7 Keratin 7 
Cell proliferation and 

differentiation 
↑3.01 1.17x10-9 0.943 

Previously 

reported (10) 

C1orf198 
Chromosome 1 open reading 

frame 198 
Unknown ↑2.12 3.68x10-10 0.942 

Previously 

reported (7) 

ANTXR1 Anthrax toxin receptor 1 Interact with collagen  ↑2.45 1.05x10-11 0.940 
Previously 

reported (7) 

HEPH Hephaestin Ion transporter ↑1.88 1.44x10-11 0.940 Novel 

SLC38A1 
Solute carrier family 38, 

member 1 
Amino acid transporter ↑3.50 1.09x10-10 0.939 Novel 

COL1A2 Collagen, type I, alpha 2 
Contribute to the structural 

integrity of the ECM 
↑3.40 6.38x10-11 0.937 

Previously 

reported (7) 

CACNA2D1 

Calcium channel, voltage-

dependent, alpha 2/delta 

subunit 1 

Ion transporter ↑2.08 1.20x10-10 0.936 Novel 

COL6A3 Collagen, type VI, alpha 3 
Contribute to the structural 

integrity of the ECM 
↑2.19 1.03x10-10 0.935 

Previously 

reported (7) 

TMEM200A 
Transmembrane protein 

200A 
Unknown ↑2.24 1.86x10-9 0.934 Novel 

FBN1 Fibrillin 1 
Contribute to the structural 

integrity of the ECM 
↑2.33 4.06x10-10 0.932 

Previously 

reported (7) 

SH3YL1 
SH3 and SYLF domain 

containing 1 

Regulation of ruffle 

assembly 
↑2.54 3.41x10-9 0.932 Novel 

C7 Complement component 7 Complement activation ↑2.47 1.23x10-9 0.931 
Previously 

reported (7) 

COL4A1 Collagen, type IV, alpha 1 
Contribute to the structural 

integrity of the ECM 
↑2.56 1.67x10-9 0.931 

Previously 

reported (7) 

DKK3 
Dickkopf WNT signaling 

pathway inhibitor 3 
Wnt signaling ↑2.89 1.37x10-11 0.929 

Previously 

reported (7) 

AQP1 Aquaporin 1 
Cell proliferation and 

differentiation 
↑4.24 1.62x10-10 0.928 

Previously 

reported (7) 

EPHA3 EPH receptor A3 Inflammation ↑3.92 1.17x10-11 0.925 
Previously 

reported (7) 
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MAP2 
Microtubule-associated 

protein 2 
Microtubule binding ↑2.00 3.71x10-10 0.924 

Previously 

reported (10) 

DTNA Dystrobrevin, alpha Dystrophin ↑2.95 2.99x10-10 0.923 
Previously 

reported (10) 

EFEMP1 

EGF containing fibulin-like 

extracellular matrix protein 

1 

Contribute to the structural 

integrity of the ECM 
↑5.60 7.52x10-12 0.923 

Previously 

reported (7) 

COL3A1 Collagen, type III, alpha 1 
Contribute to the structural 

integrity of the ECM 
↑2.44 1.25x10-10 0.920 

Previously 

reported (7) 

CDH11 
Cadherin 11, type 2, OB-

cadherin 

Contribute to the structural 

integrity of the ECM 
↑3.53 1.79x10-10 0.918 Novel 

NAV3 Neuron navigator 3 Microtubule binding ↑1.85 2.30x10-9 0.917 Novel 

RCAN2 Regulator of calcineurin 2 Nucleic acid binding ↑2.57 5.63x10-10 0.917 Novel 

JAG1 Jagged 1 
Mediation of Notch 

signaling 
↑2.52 4.48x10-9 0.916 

Previously 

reported (7) 

LAMB1 Laminin, beta 1 
Contribute to the structural 

integrity of the ECM 
↑2.45 6.28x10-10 0.915 

Previously 

reported (47) 

COL14A1 Collagen, type XIV, alpha 1 
Contribute to the structural 

integrity of the ECM 
↑2.22 2.07x10-9 0.910 

Previously 

reported (7) 

COL4A2 Collagen, type IV, alpha 2 
Contribute to the structural 

integrity of the ECM 
↑2.60 5.37x10-9 0.909 

Previously 

reported (5) 

FAM169A 
Family with sequence 

similarity 169, member A 
Unknown ↑2.42 1.10x10-9 0.909 Novel 

FAT1 FAT atypical cadherin 1 
Epithelial to mesenchymal 

transition 
↑2.83 4.43x10-10 0.905 Novel 

EHF Ets homologous factor 
Epithelial to mesenchymal 

transition 
↑2.69 3.59x10-9 0.903 

Previously 

reported (7) 

LUM Lumican 
Contribute to the structural 

integrity of the ECM 
↑2.69 2.60x10-9 0.903 

Previously 

reported (7) 

IGFBP7 
Insulin-like growth factor 

binding protein 7 

Contribute to the structural 

integrity of the ECM 
↑2.00 1.70x10-9 0.902 

Previously 

reported (7) 

GPRC5B 
G protein-coupled receptor, 

class C, group 5, member B 
Signal transduction ↑2.07 4.85x10-9 0.898 Novel 

MOXD1 
Monooxygenase, DBH-like 

1 
Ion binding ↑2.36 7.41x10-10 0.898 Novel 

GSN Gelsolin Regulation of apoptosis ↑2.83 1.97x10-9 0.894 Novel 

THOP1 Thimet oligopeptidase 1 Peptide degradation ↓0.51 3.22x10-9 0.107 Novel 

CYP2C19 
Cytochrome P450, family 2, 

subfamily C, polypeptide 19 
Ion binding ↓0.18 1.90x10-9 0.101 Novel 

50-gene 

signature  

 
 ↑2.66 <0.0011 0.993  

48-gene 

signature2 

 
 ↑2.88 <0.0011 0.994  

1 Unadjusted p-value. 2 The 48 up-regulated genes in advanced fibrosis. 

Abbreviations: AUROC, area under the receiver operating characteristic curve. ECM, extracellular matrix. 
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Table 2.3. The area under the receiver operator characteristic curve (AUROC) of the 48-gene signature for advanced fibrosis in the 

validation sets 

Gene Official gene name 
Validation set 

1 AUROC 

Validation set 

2 AUROC 

Validation set 

3 AUROC 

ANTXR1 Anthrax toxin receptor 1 0.949 0.769 0.769 

AQP1 Aquaporin 1 0.950 0.925 0.925 

BICC1 BicC family RNA binding protein 1 0.985 0.965 0.965 

C1orf198 Chromosome 1 open reading frame 198 0.936 0.918 0.918 

C7 Complement component 7 0.950 0.980 0.980 

CACNA2D1 Calcium channel, voltage-dependent, alpha 2/delta subunit 1 0.944 0.910 0.910 

CD24 CD24 molecule 0.976 0.882 0.882 

CDH11 Cadherin 11, type 2, OB-cadherin 0.968 0.781 0.781 

COL14A1 Collagen, type XIV, alpha 1 0.901 0.876 0.876 

COL1A1 Collagen, type I, alpha 1 0.927 0.813 0.813 

COL1A2 Collagen, type I, alpha 2 0.897 0.846 0.846 

COL3A1 Collagen, type III, alpha 1 0.937 0.846 0.846 

COL4A1 Collagen, type IV, alpha 1 0.948 0.915 0.915 

COL4A2 Collagen, type IV, alpha 2 0.897 0.970 0.970 

COL4A4 Collagen, type IV, alpha 4 0.873 0.726 0.726 

COL6A3 Collagen, type VI, alpha 3 0.911 0.756 0.756 

CXCL6 Chemokine ligand 6 0.947 0.866 0.866 

DCDC2 Doublecortin domain containing 2 0.944 0.828 0.828 

DKK3 Dickkopf WNT signaling pathway inhibitor 3 0.966 0.761 0.761 

DTNA Dystrobrevin, alpha 0.899 0.928 0.928 

EFEMP1 EGF containing fibulin-like extracellular matrix protein 1 0.984 0.940 0.940 

EHF Ets homologous factor 0.936 0.799 0.799 

EPCAM Epithelial cell adhesion molecule 0.958 0.908 0.908 

EPHA3 EPH receptor A3 0.939 0.935 0.935 

FAM169A Family with sequence similarity 169, member A 0.839 0.734 0.734 

FAT1 FAT atypical cadherin 1 0.893 0.801 0.801 

FBN1 Fibrillin 1 0.927 0.887 0.887 
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GPRC5B G protein-coupled receptor, class C, group 5, member B 0.944 0.861 0.861 

GSN Gelsolin 0.881 0.784 0.784 

HEPH Hephaestin 0.951 0.697 0.697 

IGFBP7 Insulin-like growth factor binding protein 7 0.902 0.908 0.908 

ITGBL1 Integrin, beta-like 1 0.950 0.787 0.787 

JAG1 Jagged 1 0.931 0.928 0.928 

KRT7 Keratin 7 0.929 0.841 0.841 

LAMB1 Laminin, beta 1 0.837 0.893 0.893 

LTBP2 Latent transforming growth factor beta binding protein 2 0.940 0.970 0.970 

LUM Lumican 0.976 0.960 0.960 

MAP1B Microtubule-associated protein 1B 0.958 0.915 0.915 

MAP2 Microtubule-associated protein 2 0.900 0.873 0.873 

MOXD1 Monooxygenase, DBH-like 1 0.947 0.886 0.886 

NALCN Sodium leak channel, non-selective 0.982 0.704 0.704 

NAV3 Neuron navigator 3 0.926 0.863 0.863 

RCAN2 Regulator of calcineurin 2 0.795 0.886 0.886 

SH3YL1 SH3 and SYLF domain containing 1 0.897 0.749 0.749 

SLC38A1 Solute carrier family 38, member 1 0.836 0.960 0.960 

SOX9 SRY (sex determining region Y)-box 9 0.953 0.965 0.965 

THBS2 Thrombospondin 2 0.970 0.945 0.945 

TMEM200A Transmembrane protein 200A 0.927 0.597 0.597 

48-gene 

signature   

 
0.994 0.964 0.993 
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Table 2.4. The significant biological functions associated with the 48-gene signature 

Gene 

Ontology 

category 

Gene Ontology 

description 

Number of genes 

involved in a 

biological function  

Genes -log (p)1 

Biological 

process 

Extracellular 

matrix 

organization 

12 
COL4A4, COL4A2, COL14A1, COL4A1, LUM, COL3A1, 

COL6A3, FBN1, COL1A2, COL1A1, SOX9, LAMB1 
9.10 

Collagen 

catabolic process 
7 

COL4A4, COL4A2, COL4A1, COL3A1, COL6A3, COL1A2, 

COL1A1 
5.52 

Cell adhesion 10 
FAT1, IGFBP7, COL6A3, COL1A1, CD24, LAMB1, THBS2, 

ITGBL1, EPHA3, CDH11 
3.52 

Collagen fibril 

organization 
5 COL14A1, LUM, COL3A1, COL1A2, COL1A1 3.48 

Skeletal system 

development 
6 COL3A1, FBN1, COL1A2, COL1A1, SOX9, CDH11 2.63 

Cellular response 

to transforming 

growth factor 

beta stimulus 

4 COL4A2, FBN1, COL1A1, SOX9 1.76 

Cellular response 

to amino acid 

stimulus 

4 COL4A1, COL3A1, COL1A2, COL1A1 1.75 

Cellular response 

to retinoic acid 
4 COL1A1, SOX9, AQP1, EPHA3 1.37 

Cellular 

component 

Extracellular 

matrix 
14 

COL4A2, COL4A1, LTBP2, LUM, IGFBP7, FBN1, 

EFEMP1, COL3A1, COL14A1, COL6A3, COL1A2, 

COL1A1, LAMB1, THBS2 

10.46 

Extracellular 

region 
21 

COL4A4, C7, COL4A2, COL4A1, LUM, IGFBP7, COL3A1, 

FBN1, EFEMP1, JAG1, CXCL6, EPHA3, ITGBL1, DKK3, 

COL14A1, GSN, COL6A3, COL1A2, COL1A1, LAMB1, 

THBS2 

7.47 



105 
 

Endoplasmic 

reticulum lumen 
8 

COL4A4, COL4A2, COL14A1, COL4A1, COL3A1, 

COL6A3, COL1A2, COL1A1 
4.74 

Proteinaceous 

extracellular 

matrix 

8 
COL4A4, COL14A1, LTBP2, LUM, COL6A3, EFEMP1, 

FBN1, COL1A2 
4.08 

Extracellular 

space 
15 

LTBP2, LUM, IGFBP7, COL3A1, FBN1, EFEMP1, CXCL6, 

GPRC5B, DKK3, COL14A1, GSN, COL6A3, COL1A2, 

COL1A1, LAMB1 

4.06 

Collagen trimer 6 COL4A4, COL14A1, COL3A1, COL6A3, COL1A2, COL1A1 4.04 

Extracellular 

exosome 
21 

C7, COL4A2, CACNA2D1, LTBP2, LUM, IGFBP7, FBN1, 

EFEMP1, GPRC5B, AQP1, EPCAM, COL14A1, GSN, 

KRT7, FAT1, COL6A3, COL1A2, ANTXR1, SLC38A1, 

LAMB1, CDH11 

3.97 

Collagen type IV 

trimer 
3 COL4A4, COL4A2, COL4A1 2.93 

Basement 

membrane 
4 COL4A1, FBN1, LAMB1, THBS2 1.93 

Collagen type I 

trimer 
2 COL1A2, COL1A1 1.32 

Molecular 

function 

Extracellular 

matrix structural 

constituent 

10 
COL4A4, COL4A2, COL14A1, COL4A1, LUM, COL3A1, 

FBN1, COL1A2, COL1A1, LAMB1 
11.36 

Platelet-derived 

growth factor 

binding 

4 COL4A1, COL3A1, COL1A2, COL1A1 3.97 

Calcium ion 

binding 
8 

LTBP2, GSN, FAT1, EFEMP1, FBN1, JAG1, THBS2, 

CDH11 
1.31 

1Fisher exact test Benjamini-Hochberg’s corrected p-values are shown as –log (p). 
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Table 2.5. The significant pathways associated with the 48-gene signature 

KEGG description 
Number of genes 

involved in a pathway  
Genes -log (p)1 

Extracellular matrix -

receptor interaction 
9 

COL4A4, COL4A2, COL4A1, COL3A1, COL6A3, COL1A2, 

COL1A1, LAMB1, THBS2 
8.30 

Protein digestion and 

absorption 
8 

COL4A4, COL4A2, COL14A1, COL4A1, COL3A1, COL6A3, 

COL1A2, COL1A1 
6.90 

Focal adhesion 9 
COL4A4, COL4A2, COL4A1, COL3A1, COL6A3, COL1A2, 

COL1A1, LAMB1, THBS2 
5.79 

Amoebiasis 7 COL4A4, COL4A2, COL4A1, COL3A1, COL1A2, COL1A1, LAMB1 5.16 

PI3K-Akt signaling 

pathway 
9 

COL4A4, COL4A2, COL4A1, COL3A1, COL6A3, COL1A2, 

COL1A1, LAMB1, THBS2 
4.31 

Small cell lung cancer 4 COL4A4, COL4A2, COL4A1, LAMB1 1.81 
1Fisher exact test Benjamini-Hochberg’s corrected p-values are shown as –log (p).  

KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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Table 2.6. Ingenuity Pathways Analysis 

Top diseases and biological functions p-value1 Genes (n) 

  Diseases and disorders 

    Cancer 

    Connective tissue disorder 

    Organismal injury and abnormalities 

    Reproductive system disease  

    Endocrine system disorder 

 

4.85 x 10-11 – 5.53 x 10-2 

4.85 x 10-11 – 4.83 x 10-2 

4.85 x 10-11 – 5.53 x 10-2 

4.85 x 10-11 – 5.10 x 10-2 

1.46 x 10-11 – 5.21 x 10-2 

 

48 

19 

48 

43 

31 

  Molecular and cellular functions 

    Cellular movement  

    Cellular assembly and organization 

    Cellular function and maintenance 

    Cellular development 

 

6.06 x 10-8 – 5.21 x 10-2 

7.79 x 10-6 – 4.83 x 10-2 

7.79 x 10-6 – 4.83 x 10-2 

4.22 x 10-4 – 5.21 x 10-2 

 

24 

14 

17 

16 

  Physiological system development and function 

    Tissue development 

    Embryonic development 

    Hair and skin development and function 

 

4.22 x 10-4 – 5.21 x 10-2 

1.47 x 10-3 – 5.21 x 10-2 

1.47 x 10-3 – 4.83 x 10-2 

 

20 

11 

7 

Top toxicological functions   

  Hepatotoxicity 

  Liver hyperplasia/hyperproliferation  

  Hepatocellular carcinoma 

 

1.93 x 10-3 – 1.11 x 10-1 

9.91 x 10-3 

 

36 

9 

Top canonical pathways 

    GP6 signaling pathway 

    Hepatic fibrosis / hepatic stellate cell activation 

 

1.51 x 10-7  

2.02 x 10-5  

 

8 

7 
1Fisher’s exact test corrected by Benjamini-Hochberg’s method was used to calculate a p-value to identify statistically significant 

over-representation of the 48-gene signature involved in a specific function or pathway. 
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Table 2.7. Correlation between the geometric mean expression of 8 collagen genes and cellular origin markers in the discovery and 

validation sets 

Cellular 

origin 

Gene 

symbol 
Gene full name 

Discovery 

set 

Validation 

set 1 

Validation 

set 2 

Validation 

set 3 

Mean 

correlation 
Ref 

Hepatic 

stellate cell 

CYGB Cytoglobin 0.431* 0.226 0.585* 0.100 0.336 (48) 

DES Desmin NA NA -0.158 -0.242* -0.200 (48) 

FAP Fibroblast Activation Protein Alpha 0.728* 0.652* 0.307* 0.670* 0.589 (48) 

GFAP Glial Fibrillary Acidic Protein NA NA NA -0.142 -0.142 (48) 

HGF Hepatocyte Growth Factor 0.610* 0.634* 0.707* 0.757* 0.677 (49) 

LHX2 LIM Homeobox 2 -0.236* -0.261* NA -0.132 -0.210 (49) 

LRAT Lecithin Retinol Acyltransferase -0.504* -0.395* 0.126 -0.374* -0.286 (48) 

NGFR Nerve Growth Factor Receptor NA NA NA 0.463* 0.463 (48) 

NTF3 Neurotrophin 3 NA NA NA -0.040 -0.040 (48) 

NTRK3 Neurotrophic Receptor Tyrosine Kinase 3 NA NA NA -0.258* -0.258 (48) 

PDGFR

B 
Platelet Derived Growth Factor Receptor Beta NA NA 0.400* 0.714* 0.557 (48) 

RBP1 Retinol Binding Protein 1 0.292* 0.178 NA 0.491* 0.320 (48) 

SYP Synaptophysin NA NA NA -0.205 -0.205 (48) 

VIM Vimentin 0.538* 0.666* 0.736* 0.813* 0.688 (50) 

Hepatic 

progenitor 

cell 

CD24 CD24 Molecule 0.843* 0.794* 0.799* 0.776* 0.803 (51) 

CD109 CD109 Molecule 0.211 0.175 0.622* 0.354* 0.341 (52) 

EPCAM Epithelial Cell Adhesion Molecule 0.756* 0.791* 0.761* 0.586* 0.724 (53) 

KIT KIT Proto-Oncogene Receptor Tyrosine Kinase NA NA NA 0.072 0.072 (52) 

KRT7 Keratin 7 0.814* 0.886* 0.728* 0.712* 0.785 (54) 

KRT19 Keratin 19 0.616* 0.806* 0.576* 0.366* 0.591 (54) 

NCAM1 Neural Cell Adhesion Molecule 1 0.565* 0.644* 0.345* 0.206 0.440 (48) 

PROM1 Prominin 1 0.697* 0.804* 0.702* 0.525* 0.682 (55) 

PTPRC Protein Tyrosine Phosphatase, Receptor Type C NA NA 0.747* 0.428* 0.588 (52) 

THY1 Thy-1 Cell Surface Antigen 0.636* 0.784* 0.707* 0.759* 0.722 (52) 

High positive correlation (>0.7) was shaded grey. * Significant correlation (p<0.05). 

NA, not applicable. The gene was excluded after data preprocessing. 

Ref, reference. 
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Table 2.8. Correlation between the expression of 8 collagen genes in the 48-gene signature and cellular origin markers in the 

discovery and validation sets 
Dataset Cellular origin Gene symbol COL1A1 COL1A2 COL3A1 COL4A1 COL4A2 COL4A4 COL6A3 COL14A1 

Discovery 

set  

Hepatic stellate cell 

CYGB 0.517* 0.446* 0.367* 0.254* 0.339* 0.374* 0.444* 0.380* 

DES NA NA NA NA NA NA NA NA 
FAP 0.626* 0.721* 0.685* 0.761* 0.701* 0.473* 0.680* 0.532* 

GFAP NA NA NA NA NA NA NA NA 
HGF 0.465* 0.521* 0.598* 0.590* 0.448* 0.656* 0.593* 0.560* 

LHX2 -0.144 -0.380* -0.133 -0.421* -0.429* -0.094 -0.204 0.011 

LRAT -0.506* -0.561* -0.382* -0.524* -0.587* -0.343* -0.520* -0.237* 

NGFR NA NA NA NA NA NA NA NA 
NTF3 NA NA NA NA NA NA NA NA 
NTRK3 NA NA NA NA NA NA NA NA 
PDGFRB NA NA NA NA NA NA NA NA 
RBP1 0.102 0.196 0.310* 0.288* 0.194 0.337* 0.210 0.244* 

SYP NA NA NA NA NA NA NA NA 
VIM 0.345* 0.653* 0.467* 0.585* 0.644* 0.328* 0.444* 0.358* 

Hepatic progenitor cell 

CD24 0.751* 0.747* 0.791* 0.856* 0.772* 0.708* 0.760* 0.664* 

CD109 0.254* 0.049 0.432* 0.243* -0.007 0.205 0.172 0.366* 

EPCAM 0.606* 0.735* 0.615* 0.714* 0.699* 0.659* 0.714* 0.591* 

KIT NA NA NA NA NA NA NA NA 
KRT7 0.697* 0.811* 0.678* 0.793* 0.841* 0.631* 0.746* 0.606* 

KRT19 0.458* 0.685* 0.456* 0.691* 0.726* 0.418* 0.557* 0.371* 

NCAM1 0.473* 0.510* 0.527* 0.501* 0.509* 0.472* 0.591* 0.430* 

PROM1 0.549* 0.664* 0.537* 0.643* 0.694* 0.519* 0.685* 0.600* 

PTPRC NA NA NA NA NA NA NA NA 
THY1 0.579* 0.691* 0.539* 0.649* 0.677* 0.401* 0.581* 0.515* 

Validation 

set 1 
Hepatic stellate cell 

CYGB 0.246* 0.065 0.234 0.174 0.129 0.334* 0.233 0.236* 

DES NA NA NA NA NA NA NA NA 
FAP 0.617* 0.669* 0.647* 0.652* 0.669* 0.473* 0.664* 0.508* 

GFAP NA NA NA NA NA NA NA NA 
HGF 0.574* 0.585* 0.637* 0.649* 0.553* 0.546* 0.585* 0.593* 

LHX2 -0.214 -0.396* -0.252* -0.315* -0.323* -0.092 -0.241* -0.139 

LRAT -0.453* -0.440* -0.329* -0.438* -0.441* -0.156 -0.380* -0.308* 

NGFR NA NA NA NA NA NA NA NA 
NTF3 NA NA NA NA NA NA NA NA 
NTRK3 NA NA NA NA NA NA NA NA 
PDGFRB NA NA NA NA NA NA NA NA 
RBP1 0.079 0.173 0.231 0.243* 0.244* 0.194 0.130 0.064 

SYP NA NA NA NA NA NA NA NA 
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VIM 0.575* 0.801* 0.576* 0.673* 0.805* 0.428* 0.603* 0.430* 

Hepatic progenitor cell 

CD24 0.790* 0.707* 0.847* 0.831* 0.705* 0.631* 0.764* 0.703 

CD109 0.195 -0.019 0.349* 0.263* -0.006 0.186 0.196 0.236* 

EPCAM 0.740* 0.730* 0.790* 0.776* 0.700* 0.691* 0.749* 0.721* 

KIT NA NA NA NA NA NA NA NA 
KRT7 0.836* 0.829* 0.871* 0.848* 0.789* 0.759* 0.865* 0.765* 

KRT19 0.740* 0.811* 0.781* 0.820* 0.786* 0.674* 0.805* 0.606* 

NCAM1 0.603* 0.599* 0.604* 0.543* 0.572* 0.621* 0.655* 0.639* 

PROM1 0.761* 0.746* 0.742* 0.711* 0.702* 0.735* 0.820* 0.794* 

PTPRC NA NA NA NA NA NA NA NA 
THY1 0.714* 0.754* 0.760* 0.804* 0.776* 0.643* 0.717* 0.655* 

Validation 

set 2 

Hepatic stellate cell 

CYGB 0.645* 0.535* 0.498* 0.525* 0.481* 0.628* 0.548* 0.546* 

DES -0.215* -0.016 -0.103 -0.156 -0.010 -0.261* -0.137 -0.193 

FAP 0.433* 0.263* 0.270* 0.366* 0.248* 0.334* 0.233* 0.368* 

GFAP NA NA NA NA NA NA NA NA 
HGF 0.749* 0.606* 0.617* 0.650* 0.604* 0.731* 0.658* 0.683* 

LHX2 NA NA NA NA NA NA NA NA 
LRAT -0.010 0.166 0.159 0.063 0.172 0.052 0.163 0.080 

NGFR NA NA NA NA NA NA NA NA 
NTF3 NA NA NA NA NA NA NA NA 
NTRK3 NA NA NA NA NA NA NA NA 
PDGFRB 0.229* 0.482* 0.412* 0.370* 0.539* 0.254* 0.394* 0.375* 

RBP1 NA NA NA NA NA NA NA NA 
SYP NA NA NA NA NA NA NA NA 
VIM 0.631* 0.862* 0.821* 0.703* 0.781* 0.503* 0.608* 0.715* 

Hepatic progenitor cell 

CD24 0.855* 0.778* 0.766* 0.785* 0.762* 0.671* 0.676* 0.710* 

CD109 0.611* 0.533* 0.565* 0.616* 0.525* 0.565* 0.650* 0.636* 

EPCAM 0.843* 0.702* 0.692* 0.732* 0.672* 0.707* 0.667* 0.708* 

KRT7 0.674* 0.793* 0.742* 0.708* 0.795* 0.555* 0.619* 0.632* 

KRT19 0.539* 0.696* 0.632* 0.579* 0.680* 0.401* 0.458* 0.542* 

KIT NA NA NA NA NA NA NA NA 
NCAM1 0.377* 0.201 0.276* 0.351* 0.246* 0.388* 0.347* 0.359* 

PROM1 0.645* 0.645* 0.680* 0.678* 0.677* 0.595* 0.754* 0.661* 

PTPRC 0.788* 0.711* 0.740* 0.692* 0.638* 0.640* 0.663* 0.772* 

THY1 0.767* 0.706* 0.712* 0.696* 0.619* 0.605* 0.581* 0.649* 

Validation 

set 3 
Hepatic stellate cell 

CYGB 0.080 0.150 0.085 -0.006 0.054 0.051 0.432* 0.379* 

DES -0.197 -0.126 -0.264* -0.290* -0.176 -0.252* 0.098 0.146 

FAP 0.597* 0.600* 0.616* 0.664* 0.724* 0.390* 0.614* 0.578* 

GFAP -0.167 -0.052 -0.145 -0.228 -0.198 -0.138 0.228 0.184 

HGF 0.710* 0.750* 0.684* 0.686* 0.744* 0.420* 0.646* 0.649* 

LHX2 -0.069 -0.071 -0.015 -0.191 -0.173 -0.027 -0.073 0.028 

LRAT -0.197 -0.230 -0.150 -0.388* -0.439* -0.315* -0.295* -0.132 
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NGFR 0.420* 0.431* 0.491* 0.383* 0.366* 0.287* 0.405* 0.414* 

NTF3 -0.072 -0.012 -0.009 -0.159 -0.094 -0.021 0.043 0.203 

NTRK3 -0.275* -0.289* -0.251* -0.201 -0.058 -0.200 -0.119 -0.167 

PDGFRB 0.609* 0.694* 0.627* 0.604* 0.686* 0.454* 0.731* 0.709* 

RBP1 0.504* 0.517* 0.544* 0.496* 0.431* 0.227 0.518* 0.449* 

SYP -0.290* -0.217 -0.321* -0.301* -0.190 -0.037 0.109 -0.015 

VIM 0.734* 0.782* 0.700* 0.740* 0.803* 0.494* 0.674* 0.656* 

Hepatic progenitor cell 

CD24 0.720* 0.703* 0.737* 0.813* 0.867* 0.412* 0.461* 0.481* 

CD109 0.234* 0.302* 0.189 0.337* 0.401* 0.334* 0.296* 0.271* 

EPCAM 0.475* 0.524* 0.502* 0.549* 0.630* 0.394* 0.413* 0.480* 

KIT 0.091 0.113 0.108 0.115 0.082 -0.046 0.250* 0.263* 

KRT7 0.614* 0.684* 0.602* 0.673* 0.762* 0.418* 0.615* 0.615* 

KRT19 0.319* 0.391* 0.281* 0.348* 0.465* 0.146 0.556* 0.421* 

NCAM1 0.045 0.158 0.048 0.088 0.141 0.276* 0.336* 0.222 

PROM1 0.412* 0.476* 0.447* 0.459* 0.581* 0.335* 0.555* 0.559* 

PTPRC 0.454* 0.428* 0.483* 0.409* 0.387* 0.173 0.181 0.292* 

THY1 0.651* 0.741* 0.701* 0.679* 0.708* 0.472* 0.716* 0.737* 

High positive correlation (>0.7) was shaded grey. 

NA, not applicable. The gene was excluded after data preprocessing. 
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Table 2.9. Genes in the 48-gene signature that were up-regulated in a specific cell type when compared to other cell types in normal 

livers 

Cluster of cell type 

N out of 48 

genes in a 

cluster (%) 

Genes 

EPCAM+ cells and cholangiocytes  17/48 (35%) 
AQP1, BICC1, C1orf198, CD24, CXCL6, DCDC2, DTNA, EHF, EPCAM, 

FAT1, GPRC5B, JAG1, KRT7, LAMB1, MAP2, SH3YL1, SOX9 

HSCs and myofibroblasts 13/48 (27%) 
ANTXR1, COL14A1, COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, 

COL6A3, GSN, LAMB1, MAP1B, RCAN2, THBS2 

Macrovascular endothelial cells 10/48 (21%) 
AQP1, COL3A1, COL4A1, COL4A2, DKK3, GSN,  IGFBP7, JAG1, 

LAMB1, MAP1B 

Sinusoidal endothelial cells 6/48 (13%) C7, COL4A1, COL4A2, IGFBP7, LAMB1, MAP1B 

Kupffer cells 1/48 (2%) GSN 

Hepatocytes  1/48 (2%) GSN 

NK, NKT, and T cells 1/48 (2%) SLC38A1 

Unknown cell type 15/48 (31%) 
CACNA2D1, CDH11, COL4A4, EFEMP1, EPHA3, FAM169A, FBN1, 

HEPH, ITGBL1, LTBP2, LUM, MOXD1, NALCN, NAV3, TMEM200A 

HSC, hepatic stellate cell; NK, nature killer; NKT, nature killer T. 
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Table 2.10. Genes in the 48-gene signature that were up-regulated in a specific cell type in cirrhotic livers when compared to normal 

livers 

Cluster of cell type 
N out of 48 genes 

in a cluster (%) 
Genes 

Epithelial cells 9/48 (19%) BICC1, CD24, CXCL6, DCDC2, EHF, EPCAM, KRT7, SH3YL1, SOX9 

Mesenchymal cells 6/48 (13%) COL1A2, COL3A1, GSN, LUM, MAP1B, RCAN2 

Endothelial cells 5/48 (10%) AQP1, COL4A1, COL4A2, GSN, IGFBP7 

B cells 0/48 (0%)  

Cycling cells 0/48 (0%)  

Innate lymphoid cells 0/48 (0%)  

Mast cells 0/48 (0%)  

Mononuclear phagocytes 0/48 (0%)  

Plasmacytoid dendritic cells 0/48 (0%)  

Plasma cells 0/48 (0%)  

T cells 0/48 (0%)  
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Table 2.11. Fold-change of gene expression of antifibrotic drug target between advanced fibrosis and no or mild fibrosis in the 

NAFLD, viral hepatitis, and ALD samples 

Drug (drug trial 

identifier) 
Drug target (drug mechanism) 

Type of 

disease 

N of 

patients 

in trial 

Drug trial results 

Fold change of gene expression 

(advanced fibrosis/no or mild fibrosis) 

NAFLD Viral hepatitis ALD1 

Candesartan 

(NCT00990639) 

Angiotensin II receptor, type 1 

(AGTR1 inhibitor) 
ALD 85 Improvement in fibrosis (56) 0.91 1.232 1.21 

Losartan 

(NCT01051219,  

NCT00298714) 

Angiotensin II receptor, type 1 

(AGTR1 inhibitor) 

NASH 45 
Recruited insufficient 

patients (57) 0.91 1.232 1.21 

HCV 20 No change in fibrosis (58) 

Irbesartan 

(NCT00265642) 

Angiotensin II receptor, type 1 

(AGTR1 inhibitor) 
HCV 166 Pending 0.91 1.232 1.21 

Timolumab 

(NCT02239211) 

Amine oxidase copper containing 

3 (AOC3 inhibitor) 
PSC 41 Pending NA NA NA 

Cenicriviroc 

(NCT03028740) 

C-C Motif chemokine receptor 

2,5 (CCR2/CCR5 inhibitor) 
NASH 2000 Pending 

CCR2: 1.33** 

CCR5: 1.17* 

CCR2: 1.16*** 

CCR5: 1.15*** 

CCR2: 1.72*** 

CCR5: 1.09 

Pamrevlumab 

(NCT01217632) 

Connective tissue growth factor 

(CTGF inhibitor) 
HBV 114 Pending 1.73*** 1.44*** 2.43*** 

BMS-986036 

(NCT03486899,  

NCT03486912) 

Fibroblast growth factor 21 

(analogue of FGF21) 

NASH 160 Pending 
1.04 1.03 0.81 

NASH 100 Pending 

Tropifexor 

(NCT03517540) 

Farnesoid X receptor (FXR 

agonist) 
NASH 200 Pending 0.9 1.332* NA 

Obeticholic acid 

(NCT01265498, 

NCT02548351) 

Farnesoid X receptor (FXR 

agonist) 

NASH 283 Improvement in fibrosis (43) 

0.9 1.332* NA 
NASH 2370 Pending 

GR-MD-02 

(NCT02421094, 

NCT02462967) 

Galectin 3 (LGALS3 inhibitor) 
NASH 30 Pending 

1.48** 1.21*** 1.92* 
NASH 162 Pending 

Simtuzumab 

(NCT01672866,  

NCT01672879, 

NCT01707472,  

NCT01672853) 

Lysyl oxidase-like molecule 2 

(LOXL2 inhibitor) 

NASH  222 No change in fibrosis (37) 

1.34*** 1.142 1.97** 
NASH 259 No change in fibrosis (37) 

HCV 18 No change in fibrosis (36) 

PSC 235 No change in fibrosis (45) 

Apoptosis signal-regulating 

kinase 1 (ASK1 inhibitor) 

NASH 72 Improvement in fibrosis (44) 
0.98 0.952 0.77 

NASH 350 Pending 
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Selonsertib 

(NCT02466516, 

NCT03449446, 

NCT03053063,  

NCT03053050) 

NASH 883 Pending 

NASH 808 Pending 

Oltipraz 

(NCT00956098) 

Nuclear factor (erythroid-derived 

2)-like 2 (NFE2L2 activator) 

HBV 

HCV 
81 No change in fibrosis (59) 0.95 1.68*** 0.87 

Elafibranor 

(NCT02704403) 

Peroxisome oroliferator activated 

receptor alpha and delta (PPARA 

and PPARD agonist) 

NASH 2000 Pending 
PPARA: 1.00 

PPARD: 1.05 

PPARA: 0.99 

PPARD: 1.182 

PPARA: 0.69* 

PPARD: 1.47** 

Farglitazar 

(NCT00244751) 

Peroxisome proliferator activated 

receptor gamma (PPARG agonist) 
HCV 265 No change in fibrosis (60) 0.93 1.092 NA 

Aramchol 

(NCT02279524) 

Stearoyl-CoA desaturase-1 (SCD 

inhibitor) 
NASH 247 Pending 1.01 1.02* 0.75 

Volixibat 

(NCT02787304) 

Solute carrier family 10 member 

2 (SLC10A2 inhibitor) 
NASH 197 Pending NA NA NA 

BMS-986263 

(NCT03420768) 

Serpin family H member 1 

(SERPINH1 inhibitor) 
HCV 165 Pending 1.22*** 1.282* 1.24 

Metadoxine 

(NCT02541045) 

5-Hydroxytryptamine receptor 2B 

(5-HT2B  inhibitor) 
NASH 108 

Suspended (lack of finance 

resources) 
1.26 1.08** 1.01 

Genes that are significantly (p<0.05) upregulated in advanced fibrosis are highlighted in grey. 
1 Included only ALD samples in validation set 3.  
2 The gene did not pass data preprocessing in validation set 2. 

*p<0.05, **p<0.01, ***p<0.001 

Abbreviations: ALD, alcoholic liver disease; HBV, hepatitis B virus; HCV, hepatitis C virus; NAFLD, non-alcoholic fatty liver disease NASH, non-alcoholic steatohepatitis; 

PSC, primary sclerosing cholangitis. NA, not applicable, target gene did not pass data preprocessing. 
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Figure 2.1. Identification and validation of the common fibrosis gene signature.  

  

140 microarrays of livers from 148 unique patients were included and preprocessed in one batch

Gene Expression Omnibus microarrays search

- Searched keywords: “liver” or “fibrosis” in October 2014
- Included only Affymetrix Human Genome U133 Plus 2.0 Arrays of normal or chronic liver disease 

adult human liver tissues with histological fibrosis staging 

- Arrays of liver tissues with hepatocellular carcinoma or dysplastic nodules were excluded

Identification and validation of a common molecular signature for advanced fibrosis

70 microarrays for molecular 

signature identification and 
molecular score derivation 

70 microarrays for molecular 

score validation

External validation of the common molecular signature in independent series of 

microarrays

Discovery set Validation set 1

Series ID: GSE84044 (Affymetrix

Human Genome U133 Plus 2.0 Array) 
91 microarrays of livers from 91 unique 

patients

Series ID: GSE103580 (Affymetrix

Human Genome U219 Array)
73 microarrays of livers from 91 unique 

patients

Validation set 2 Validation set 3
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Figure 2.2. Data preprocessing flowchart. 
1Uninformative probe sets were removed using the procedure as follows: 1. Calculate the 

median expression value of each probe set in each batch. 2. Divide each probe set 

expression value by the median expression value to obtain a fold-change value. 3. If less 

than 20% microarrays have a >1.5 or <-1.5 fold-change value, the probe set is excluded. 
  

140 microarrays were pooled in one batch

Robust multi-array averaging

Filter out uninformative 

probe sets1

Select the best probe set for a gene

Use the maximally expressed probe set measured by average intensity across all 140 
microarrays to represent the gene

6,951 genes

12,805 probe sets

54,675 probe sets

Data preprocessing for the 140 microarrays in discovery set and validation set 1

Data preprocessing for the 
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Figure 2.3. Condition of the microarrays.  
1For the three microarrays from center 2, two were hybridized with a pool of liver RNA 

samples from four patients and one was hybridized with a pool of liver RNA samples from 

three patients. The liver tissues that were pooled together were in the same histological 

fibrosis group. NAFLD, non-alcoholic fatty liver disease. 
  

Discovery set (n=70)

Validation set 3 (n=73)

Center1

Condition 

Fibrosis 

group

Validation set 1 (n=70)

Center1

Condition 

Fibrosis 

group

6

Validation set 2 (n=91)

Center 

Condition 

Fibrosis 

group

7Center 

Condition 

Fibrosis 

group

Condition Fibrosis group

1 1 1 1 1 1 1 1

51 3 42

1 2 3 4 5

No or mild fibrosis

Advanced fibrosis

Normal Viral hepatitis

NAFLD Cryptogenic hepatitis

Alcoholic liver disease



119 
 

 
Figure 2.4. Data analysis flowchart. 
The upward pointing arrow represented up-regulated in advanced fibrosis, whereas 

downward pointing arrow represented down-regulated in advanced fibrosis. AUROC, area 

under the receiver operating characteristic curve. 
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Figure 2.5. Development and validation of machine learning classifiers for identifying 

advanced liver fibrosis. 
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(Figure 2.5 continued) I used (A) all 6,951 genes that passed data preprocessing and (B) 

1,294 differentially expressed genes (p<0.001) between advanced and no or mild fibrosis 

in the discovery set. The bar graph showed the sensitivity, specificity, positive predictive 

value (PPV), negative predictive value (NPV), and accuracy of each classifier for 

histology-proven advanced fibrosis. The performance of the classifiers in the discovery set 

was obtained using 10-fold cross-validation. The predicted fibrosis group for each sample 

was demonstrated on the heatmap. Of the seven classifiers, the Support Vector Machine 

Predictor had the best accuracy for advanced fibrosis when using 1,294 differentially 

expressed genes in both discovery set (94%) and validation set 1 (94%). 
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Figure 2.6. The performance of the 48-gene signature for advanced fibrosis in the 

discovery set. 
(A) A 48-gene signature score cutoff (6.185) was derived using the Youden index from 

the receiver operating characteristic (ROC) curve analysis. (B) Unsupervised hierarchical 

clustering of the 48 genes showed samples in the same fibrosis group were mostly 

clustered together. Red was used to denote genes that were up-regulated, and green for 

genes that were down-regulated. The cluster was created using the Euclidean distance 

method. (C) The relationship between the 48-gene signature score and the histological 

diagnosis of each sample. The black dashed line is the molecular score cutoff (6.185) 

derived from the ROC curve for advanced fibrosis. PPV, positive predictive value; NPV, 

negative predictive value. 
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Figure 2.7. The performance of top 50 differentially expressed genes for advanced 

fibrosis in the (A) discovery set and (B) validation set 1. 
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Figure 2.8. The performance of top 51-100 differentially expressed genes for 

advanced fibrosis in the (A) discovery set and (B) validation set 1. 
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Figure 2.9. External validation of the 48-gene signature for advanced fibrosis in 

validation set 1. 

(A) Application of the discovery set derived cutoff (6.185) in receiver operating 

characteristic (ROC) curve analysis showed 96% of accuracy and 0.994 of AUROC for 

advanced fibrosis. (B) Unsupervised hierarchical clustering of the 48 genes showed 

samples in the same fibrosis group were mostly clustered together. Red was used to denote 

genes that were up-regulated, and green for genes that were down-regulated. The cluster 

was created using the Euclidean distance method. (C) The relationship between the 48-

gene signature and histological diagnosis of each sample. The black dashed line is the 48-

gene signature score cutoff (6.185) derived from the discovery set for advanced fibrosis. 

PPV, positive predictive value; NPV, negative predictive value. 
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Figure 2.10. External validation of the 48-gene signature for advanced fibrosis in (A) 

validation set 2 and (B) validation set 3. 

Validation set 3 was analyzed on a different microarray platform (Affymetrix Human 

Genome U219 Array). Thus, the cutoff derived in the discovery set was not applied to 

validation set 3. Despite different microarray platforms, the 48-gene signature was still 

significantly upregulated in advanced fibrosis with excellent performance to discriminate 

advanced and no or mild fibrosis in validation set 3. This showed the 48-gene signature 

was capable to identify advanced fibrosis across different microarray platforms. PPV, 

positive predictive value; NPV, negative predictive value. ROC, receiver operating 

characteristic. 
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Figure 2.11. TGFβ1 was a significant upstream regulator in the 48-gene signature. 
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Figure 2.12. Molecular interaction analysis. 
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(Figure 2.12 continued) Red node labels denote genes in the 48-gene signature and black 

node labels denote intermediate nodes (potential upstream regulators and specific 

participants in pathways that interacts with the 48-gene signature). (A) Protein-protein 

interaction information of the 48-gene signature. The analysis was carried out using only 

high-confidence binary interactions and a default intermediate nodes z-score threshold of 

20. (B) Biochemical reaction and gene regulatory interaction of the 48-gene signature. 

This analysis was carried out using a default intermediate nodes z-score threshold of 20. 
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Figure 2.13. Correlation heatmap of the expression of hepatic stellate cell (HSC) 

markers vs. collagen genes and the expression of hepatic progenitor cell (HPC) 

markers vs. collagen genes. 
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Figure 2.14. The percentage of genes in the 48-gene signature that were up-regulated 

in a specific cell type when compared to other cell types in normal livers. 
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Figure 2.15. The percentage of genes in the 48-gene signature that were significantly 

up-regulated in a specific cell type in cirrhotic livers when compared to normal 

livers. 
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Figure 2.16. The 48-gene signature in samples with the same liver disease and fibrosis 

group had no significant difference among different centers. 

NAFLD samples were not shown because all NAFLD samples were from single center 

(center 1). Alcoholic liver disease samples were not shown because the samples from 

center 5 and 7 were analyzed by different microarray platforms. Data for cryptogenic 

hepatitis were not shown because these samples are heterogeneous and the sample size 

(n=5) is too small to make an interpretation. 1Mann-Whitney test. 2Kruskal-Wallis test. 
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3.1 – Introduction 

Advanced liver fibrosis is the common final pathway of all chronic liver diseases, 

leading to cirrhosis and poor clinical outcomes (liver decompensation, need for liver 

transplantation, or premature death) (1). Histopathological assessment of a liver biopsy is a 

cornerstone in the evaluation and management of patients with chronic liver disease, but it 

lacks predictive ability for fibrosis progression and clinical outcomes (2, 3). Clinically 

available imaging- and laboratory test- based approaches also cannot predict fibrosis 

progression (4). Gene signature studies of clinical liver biopsies with chronic liver disease 

may allow us to gain more insights into the biology of disease heterogeneity.  

Previous researchers reported that gene expression signatures in fresh human livers, 

compared with histopathology, could provide better prediction of prognosis including 

fibrosis progression and poor clinical outcomes in patients with chronic liver disease (5-11). 

However, translating these multiplex gene expression profiling into clinical practice is a 

challenging task. The major obstacle is the limited availability of fresh clinical specimens to 

analyze these gene signatures (12). All clinical liver biopsies are processed as formalin-fixed, 

paraffin-embedded (FFPE) specimens since this is the best standard for histopathology 

assessment. It is well known that RNA degradation is common in FFPE specimens due to 

formalin fixation and thus most methods of multiplex gene expression analysis (e.g. 

microarrays) do not reliably work in FFPE tissue specimens (12, 13). Moreover, there is 

usually limited amount of needle biopsy specimens left for gene expression analysis after 

paraffin sectioning for histological diagnostic purposes. To take these gene expression 

signatures into clinical application, clinical laboratories require a reliable and feasible 
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method for multiplexed gene expression quantification from miniscule leftover clinical liver 

biopsy specimens. 

Recently, a high-throughput digital system to measure the expression of a large 

number genes, called NanoString nCounter Analysis System (NanoString Technologies, 

Seattle, WA), has become available for digital quantification of multiplexed target molecules 

(14). It uses color-coded molecular barcodes (each barcode corresponds to a gene of interest) 

and microscopic imaging to capture and count up to 800 individual mRNA transcripts in one 

hybridization reaction without the need for amplification of the cellular RNA or the need for 

reverse transcription reactions (14). Several peer-reviewed publications have shown 

NanoString nCounter Analysis System is more sensitive (smaller limit of detection) than 

microarrays and similar in sensitivity to quantitative polymerase chain reaction of mRNA 

detection (14-18). Gene expression measured by NanoString is highly consistent across 

matched fresh, frozen, and FFPE tissues (15, 17, 19). As an example of its potential for 

clinical application, the NanoString system has been Food and Drug Administration (FDA)-

cleared for gene expression-based risk stratification and treatment planning in breast cancer 

patients using clinical FFPE breast tumor specimens (20). Despite the robustness of the 

NanoString technology for multiplex gene expression analysis using FFPE specimens in 

previous studies, to the best of my knowledge, no study has evaluated the robustness of 

NanoString nCounter Analysis System when analyzing clinical liver biopsies and how much 

of tissue is needed.  

This chapter aims to establish a method for multiplex gene expression quantification 

for clinical liver biopsy using NanoString technology and evaluate how much clinical liver 

biopsy is needed for NanoString gene expression assay. To evaluate the methodological 
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robustness and feasibility of NanoString nCounter Analysis System, 68 hepatic fibrosis-

associated genes (48 fibrosis genes from Chapter 2, 16 literature-selected fibrosis genes, and 

four housekeeping genes) were analyzed in 348 clinical liver biopsies and 15 explanted liver 

tissues from 15 patients. Each explanted liver tissue was divided into two pieces: one piece 

was placed in RNAlater (fresh tissue) and the other in formalin and paraffin embedded (FFPE 

tissue). Transcript counts in paired fresh vs. FFPE explant livers were analyzed to evaluate 

if transcript counts measured in FFPE tissues using NanoString are reliable. The results 

supported that NanoString nCounter Analysis System is favorable for multiplex gene 

expression quantification using clinical liver biopsies based upon reproducibility, robustness, 

ease of use, experimental hands-on time, and utility for clinical application. 

3.2 – Material and methods 

3.2.1 – Sample collection 

Single core needle biopsies were obtained under ultrasound guidance by 18-gauge 

spring-loaded needles. The NanoString assay was used to analyze 348 clinical liver biopsies 

with different liver diseases, which include 78 autoimmune hepatitis (AIH), 94 non-alcoholic 

fatty liver disease (NAFLD), 149 post-transplant recurrent viral hepatitis C (HCV), and 27 

normal livers (Table 3.1). The 27 normal livers were composed of 15 allograft livers with no 

significant histological abnormality and 12 native livers, of which three were donor livers 

and nine were livers with no significant histological abnormality. A core tissue from 15 

explanted livers (total hepatectomy specimens) was collected and each core tissue was 

divided into two pieces: one piece was immediately stabilized in RNAlater (Thermo Fisher 

Scientific, Waltham, MA), kept at −4°C for 24 hours and stored at −20°C until processing 
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and one piece fixed in 10% neutral buffered formalin and embedded in paraffin (Figure 3.1). 

Each piece had a size of approximately 1 cm x 1 cm x 1 cm. This study was approved by the 

institutional review board of the University of Alberta. 

3.2.2 – Histopathological assessment of clinical liver biopsies 

 Liver biopsy specimens of normal liver, AIH, and recurrent HCV were staged for 

fibrosis according to METAVIR classification system (21). Liver biopsy specimens of 

NAFLD were staged for fibrosis according to Brunt classification system (22). 

3.2.3 – RNA isolation from fresh samples 

 Following homogenization in 2 ml of Trizol reagent (Invitrogen, Carlsbad, CA), total 

RNA from fresh explant livers was isolated and purified using the RNeasy Mini Kit (Qiagen, 

Ontario, Canada) according to manufacturer recommendation. Precipitated and dried RNA 

was dissolved in DNase/RNase-free distilled water and the concentration and quality were 

measured by NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA). 

3.2.4 – RNA isolation from FFPE samples 

Reeda Gill assisted with the RNA isolation from FFPE samples. The length of clinical 

liver biopsy in FFPE block was measured before cutting sections for RNA isolation. Three 

to eight consecutive 20-µm thick sections were obtained from each FFPE block with 

equipment sterilization with RNase away reagent (Ambion, Carlsbad, CA) and microtome 

blade replacement between blocks. Sections were immediately put into sterile 1.5-mL 

DNase/RNase free microcentrifuge tubes for RNA isolation using a RecoverAll Total 

Nucleic Acid Isolation Kit (Ambion, Carlsbad, CA). Precipitated and dried RNA was 
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dissolved in DNase/RNase-free distilled water. The concentration and quality of RNA was 

measured by NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA). 

RNA integrity was assessed on an Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA). 

Detailed protocols for DNA/RNA free preparation of FFPE tissue sectioning and RNA 

isolation are available in Appendix A and Appendix B, respectively. Reeda Gill assisted with 

completing Appendix A and Appendix B. 

3.2.5 – Gene expression quantification using NanoString nCounter System 

I analyzed 68 hepatic fibrosis-associated genes (48 fibrosis genes from Chapter 2, 16 

literature-selected fibrosis genes, and four housekeeping genes) in this chapter (Table 3.2). 

The 16 literature-selected fibrosis genes were selected by gene expression profiling in 

microarray datasets in Chapter 2 and genes with an area under the receiver operating 

characteristic curve ≥ 0.7 for advanced liver fibrosis in the discovery set and validation set 1 

(23-27). Gene expression was quantified using a nCounter Elements assay (NanoString 

Technologies). Oligonucleotide probe sequences (Table 3.3) were designed and synthesized 

by Integrated DNA Technologies (Coralville, IA). Each probe contained a probe A and a 

probe B and were designed to hybridize specifically to each mRNA target (Figure 3.2). Probe 

A contained a capture tag attached to a biotin that enables to capture on streptavidin-coated 

surface in a cartridge and probe B contained a reporter tag linked to a color-coded molecular 

signature that was specific to each gene. mRNAs were hybridized (without amplification) to 

the probes for the measured genes. Hybridizations were carried out in a single tube for each 

sample for 18 hours at 67 °C. After hybridization, excess probes were removed and 

hybridized probes were immobilized and aligned on the cartridge by the nCounter Prep 

Station (NanoString Technologies, Seattle, WA). Transcript counts were quantified by the 
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nCounter Digital Analyzer (NanoString Technologies, Seattle, WA). 

3.2.6 – NanoString quality control and data preprocessing 

Quality control and preprocessing of raw NanoString data were performed using 

nSolver Analysis Software version 4.0 (NanoString Technologies, Seattle, WA) with 

manufacturer-recommended default parameters for quality control and normalization 

flagging. The parameters for quality control flagging include imaging (field of view <75%), 

binding density (<0.05 or >2.25), positive control linearity (R2 value <0.95), and positive 

control limit of detection (0.5fM positive control ≤2 standard deviations above the mean of 

the negative controls). Background noise was adjusted by subtracting the geometric mean 

transcript counts of six internal negative controls of each sample. mRNA with transcript 

counts less than the geometric mean transcript counts of the six internal negative controls 

were floored to a value of 1. Next, to adjust the variations in hybridization and purification 

efficiency, a positive normalization factor for each sample was calculated from the geometric 

mean transcript counts of the six internal positive controls (spike-in oligos) across all samples 

divided by the geometric mean transcript counts of the six internal positive controls of each 

sample. The positive normalization factor for each sample was multiplied to each mRNA 

transcript counts after background noise correction (with default flagging of positive 

normalization factors <0.3 or >3.0). After positive control normalization, to adjust the 

variations in different RNA input quantities, a housekeeping gene normalization factor for 

each sample was calculated from the geometric mean transcript counts of the four 

housekeeping genes across all samples divided by the geometric mean transcript counts of 

the four housekeeping genes in each sample. The housekeeping gene normalization factor 

for each sample was multiplied to the measured mRNA transcript counts after positive 
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control normalization (with default flagging of housekeeping gene normalization factors 

<0.1 or >10.0). 

3.2.7 – NanoString reproducibility experiments 

RNA titration experiment was performed with repeat runs of four RNA samples from 

four unique clinical liver biopsies with four different RNA quantities: 50, 100, 200, and 400 

ng. Intra-operator reproducibility experiment was performed with repeat runs of six RNA 

samples from six unique clinical liver biopsies in different days. Inter-operator 

reproducibility experiment was performed with repeat runs of four RNA samples from four 

unique clinical liver biopsies by two different operators: a molecular pathology technologist 

(Shalawny Miller) and a graduate student (me). Inter-lot reproducibility experiment was 

performed with repeat runs of two RNA samples from two unique clinical liver biopsies in 

three different lots of nCounter Elements reagents.  

3.2.8 – Statistical analysis 

Continuous variables were presented as mean ± standard deviation and categorical 

variables were presented as number and percentage. Mann-Whitney U-test was used for 

continuous data compared between two groups. Fisher’s exact test was used for categorical 

variables compared between groups. A Welch’s ANOVA followed by the Games-Howell 

post hoc test was used to determine differences among historical fibrosis stages (F0-F4) vs. 

molecular gene signature. Correlations between variables were evaluated using Spearman's 

rank correlation coefficient. All tests with a two-sided p-value <0.05 were considered 

significant. All analyses and figures were performed and generated using SPSS 25 statistical 

software (IBM, Armonk, NY, USA), Excel 2010 (Microsoft Corporation, Redmond, WA), 
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or R-program (version 3.3.2; http://www.r-project.org) with the following packages: corrplot 

and ggplot2. 

3.3 – Results 

3.3.1 – The quantity and quality of RNA isolated from clinical liver biopsies 

 Table 3.1 summarized the characteristics of 348 clinical liver biopsies that were 

analyzed. Adequate RNA (≥50 ng) was isolated from 99% (348 of 350) of clinical liver 

biopsies. The 348 successfully isolated clinical liver biopsies yielded a mean of 1703 ng 

(range: 68 - 8176 ng) with a mean A260/A280 spectrophotometry ratio of 1.84 (1.65-2.05). The 

RNA yield for the two samples < 50 ng were 40.6 and 47.5 ng and the A260/A280 were 2.05 

and 1.97, respectively. Figure 3.3 showed the RNA integrity number of four representative 

clinical liver biopsies. 

3.3.2 – The quantity and quality of RNA isolated from explant liver tissues 

Adequate RNA was isolated from all 15 paired explanted liver tissues for NanoString 

gene expression assay. The mean A260/A280 spectrophotometry ratio was 2.04 (range: 2.00-

2.08) for 15 fresh liver tissues and 1.86 (1.72-2.03) for 15 FFPE liver tissues. 

3.3.3 – Significant positive correlation between length of the core biopsy and the 

amount of total RNA  

I had a 99% (348 of 350) success rate to isolate enough RNA (≥50 ng) for NanoString 

gene expression assay with a minimum of 1 mm core tissue length (mean: 17 mm, range: 1 

- 40 mm) in the paraffin block before cutting sections (Figure 3.4A). This demonstrated only 

http://www.r-project.org/
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very little amount of tissue is required for the NanoString gene expression assay. There was 

a significant positive correlation between the length of the core biopsy and the amount of 

total RNA (r=0.281, p<0.001).  

To understand how much tissue is needed for the NanoString gene expression assay, 

the amount of total RNA was compared to number of sections obtained from the paraffin 

block. Although NanoString gene expression assay requires minimum 50 ng input of total 

RNA, here, 100 ng was used as a threshold to ensure enough total RNA for NanoString gene 

expression assay after RNA quality and quantity assessment. The success rate of isolating 

>100 ng of RNA with a core biopsy length > 5 mm was similar when obtaining three 20-µm 

thick sections compared to four to eight 20-µm thick sections (99% vs. 100%, p=1) (Table 

3.4). However, if the core biopsy length is ≤5 mm, the success rate of isolating >100 ng of 

RNA was significantly lower when obtaining only three 20-µm thick sections compared to 

four to eight 20-µm thick sections (62.5% vs. 100%, p=0.015) (Table 3.4). Therefore, if there 

was >5 mm of core biopsy in the block, obtaining three 20-µm thick sections would be 

enough to isolate enough RNA for the NanoString assay. If there was ≤5 mm of core biopsy, 

four to eight 20-µm thick sections would be needed. 

3.3.4 – No correlation between age of the biopsy and the amount of total RNA 

 I had a 99% (348 of 350) success rate to isolate enough RNA (≥50 ng) for NanoString 

gene expression assay with paraffin blocks up to 18 years old (mean: 4.79, range: 0.05-18.42) 

(Figure 3.4B). There was no correlation between age of the paraffin block and the total RNA 

yield (r=-0.046, p=0.395). This showed clinical liver biopsies <18 years old were suitable 

for NanoString gene expression assay; however, this should not be considered as an upper 
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limit since FFPE specimens older than 18 years were not examined for their suitability for 

NanoString gene expression assays. 

3.3.5 – NanoString gene expression analysis 

 A total of 378 RNA samples (348 clinical liver biopsies and 30 explant liver samples) 

were analyzed using NanoString gene expression assay (Figure 3.1). Gene expression 

quantitation was successful for all 68 hepatic fibrosis-associated genes and all samples 

passed quality and normalization controls except for 10 (2.6%) samples from clinical liver 

biopsies. These 10 samples were flagged because of having a housekeeping gene 

normalization factor >10, which represented these RNA samples were seriously degraded 

and considered as having poor-quality gene expression profile. These poor-quality samples 

were removed and only the samples with high-quality gene expression profiles were used in 

further analysis. 

3.3.6 – Transcript counts measured by NanoString gene expression assay were 

strongly correlated between paired fresh and FFPE samples 

To test if the transcript counts of FFPE samples measured by NanoString gene 

expression assay were reliable, the transcript counts of the 68 hepatic fibrosis-associated 

genes were measured in 15 paired fresh and FFPE explant livers. Normalized transcript 

counts of 15 paired fresh and FFPE samples were normally distributed and strongly 

correlated (r=0.944, p<0.001, Figure 3.5A and 3.5B). Correlation heatmap of all-pairwise 

combinations of fresh vs. FFPE samples also revealed strong correlation (Figure 3.5C). To 

determine if the transcript counts measured in each individual FFPE sample was reliable, I 
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compared the correlation coefficients between normalized transcript counts for each paired 

fresh vs. FFPE sample (sample-by-sample comparison). The mean correlation coefficient 

was 0.956, with a minimum correlation coefficient of 0.900 (p<0.001) and a maximum 

correlation coefficient of 0.984 (p<0.001) (Table 3.5). This showed the transcript counts 

measured in FFPE samples by NanoString gene expression assay were reliable. 

3.3.7 – The reproducibility of NanoString gene expression assay 

NanoString gene expression assay had robust reproducibility across different RNA input 

quantities 

To understand if different RNA input quantities affect mRNA transcript counts, I 

performed a titration experiment on four RNA samples from four unique clinical liver 

biopsies with different RNA input quantities (50 ng, 100 ng, 200 ng, and 400 ng). Normalized 

transcript counts were strongly correlated among different RNA input quantities for all four 

samples (r=0.946-0.995, p<0.001, Figure 3.6). Moreover, all normalized transcript counts 

with different RNA input quantities were almost identical with fold-change (slope) values 

near to 1. This demonstrated normalized transcript counts with different RNA input 

quantities were comparable after normalization.  

To show the NanoString gene expression assay was capable to detect fractional fold-

changes of different RNA input quantities, the transcript counts of 68 hepatic fibrosis-

associated genes of the same four samples on Figure 3.6 were preprocessed without 

housekeeping gene normalization, which was used to adjust RNA input quantities (Figure 

3.7). The slopes for all four samples were correlated closely with the expected fold-change 

values of 0.5 (100 ng input vs. 50 ng input), 2 (100 ng input vs. 200 ng input), and 4 (100 ng 
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input vs. 400 ng input). This indicated NanoString gene expression assay had a linear 

response to different amount of RNA inputs in up to five orders of magnitude (from 1 to 105 

transcript counts). 

NanoString gene expression assay had robust reproducibility with repeat runs by one 

operator 

To assess intra-operator reproducibility of the NanoString gene expression assay, six 

RNA samples from six unique clinical liver biopsies were analyzed twice on two different 

days by the same operator (Figure 3.8). Normalized transcript counts of repeat runs of all six 

samples were strongly correlated to each other (r=0.950-0.990, p<0.001). This demonstrated 

the methodological robustness of the NanoString nCounter Analysis System. 

To understand the precision of NanoString gene expression assay, I evaluated how 

many hepatic fibrosis-associated genes were within the 95% confidence interval of the 

regression line in the six samples on Figure 3.8. Overall, the precision increased with 

expression levels, with 100% (47 of 47) of highly expressed genes (transcript counts >1000) 

and 99% (299 of 304) of moderately expressed genes (transcript counts between 10 and 

1000), were within the 95% confidence interval (Figure 3.8). However, only 71% (41 of 58) 

of lowly expressed genes (transcript counts <10) were within the 95% confidence interval. 

This showed genes with transcripts counts less than 10 might not be reliably quantitated by 

the NanoString gene expression assay. 

NanoString gene expression assay had robust reproducibility with repeat runs by different 

operators of varying technical expertise 

To assess the inter-operator reproducibility of the NanoString gene expression assay, 
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four RNA samples from four unique clinical liver biopsies were analyzed twice on two 

different days by two different operators (a graduate student and a molecular pathology 

technologist) of varying technical expertise (Figure 3.9). Normalized transcript counts of 

repeat runs of all four samples were strongly correlated to each other (r=0.949-0.992, 

p<0.001). This demonstrated the technical replicability of the NanoString nCounter Analysis 

System. 

NanoString gene expression assay had robust reproducibility with repeat runs using 

different lots of reagents 

To assess if different lots of NanoString reagents would affect gene expression 

measurements, two RNA samples of two unique clinical liver biopsies were analyzed on 

three different days by the same operator across three different lots of reagents (Figure 3.10). 

Normalized transcript counts of repeat runs showed nearly prefect correlation (r=0.998-

0.999, p<0.001). This demonstrated different lot of reagents did not affect the mRNA 

transcript counts. 

3.3.8 – The expression levels of the fibrosis genes grouped by biological function 

increased progressively with histological fibrosis stages 

The fibrosis genes were annotated based on their biological functions from literature 

(Table 3.6). Most of the fibrosis genes were involved in extracellular matrix synthesis or 

cross-linking (23 genes), inducing fibroblast or myofibroblast or hepatic stellate cell 

activation (17 genes), collagen genes (8 genes), inflammation genes (6 genes), and hepatic 

progenitor cell markers (7 genes) (Table 3.7). I compared the geometric mean expression of 

the gene set in each biological function with different histological fibrosis stages (Figure 
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3.11A-E). The expression of each gene set increased progressively with histological fibrosis 

stages. Interestingly, patients within the same histological fibrosis stage had a heterogeneous 

gene set expression even in F0 and F1 fibrosis. This may suggest developing molecular 

fibrogenesis in some of the early stage patients and may predict future fibrosis progression. 

To test this, I analyzed all diseased biopsies without advanced fibrosis (F0-F2) and with 

follow-up outcome data available to understand if the expression of fibrosis genes can predict 

progression to advanced fibrosis (fibrosis stage 0-2 in the initial biopsy and fibrosis stage 3 

or 4 in any follow-up biopsies or Fibroscan >10.9 kPa in follow-up clinical visit) or 

progression to poor outcomes (liver decompensation, need for liver transplantation, or liver-

related death) (28). Patients who progressed to advanced fibrosis or poor outcomes had 

significantly higher fibrosis gene signature in initial biopsy with F1 or F2 fibrosis compared 

to the patients who did not progress (both p<0.001, Figure 3.11F). Even patients who 

progressed to advanced fibrosis or poor outcomes had a marginally significant higher fibrosis 

gene signature in initial biopsy with F0 fibrosis compared to the patients who did not progress 

(p=0.057, Figure 3.11F). This showed these fibrosis genes may have the potential to serve 

as prognostic markers for predicting progressive fibrosis and poor outcomes. 

3.4 – Discussion 

This chapter showed NanoString gene expression assay is technically simple and 

methodologically robust for multiplex gene expression profiling of clinical liver biopsies that 

were up to 18 years old with a minimum of 1 mm core tissue. The NanoString nCounter 

Analysis System meets the requirements of evaluating multiplex gene expression signatures 

using clinical liver biopsies in the local pathology lab setting.  
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 I successfully isolated enough RNA for NanoString gene expression assay from 

paraffin blocks with a minimum of 1 mm of liver tissue. Compared with liver resection 

samples, clinical liver biopsies are extremely valuable as only a small core of tissue was 

obtained. Moreover, there is usually very limited tissue left after staining of histological 

sections for clinical diagnosis. Due to these limitations, I evaluated the amount of liver tissue 

that is needed for NanoString gene expression assay. I had a 99% (348 of 350) success rate 

to isolate enough RNA from clinical liver biopsies. The two samples without enough RNA 

had minimal core biopsy (0 and 1 mm) and not enough sections were obtained (only three 

20-µm thick sections). To optimize the RNA isolation protocol, despite the length of the core 

biopsy, only three 20-µm thick sections were obtained for the initial 168 paraffin blocks. The 

two samples that failed to yield enough RNA were in these initially processed samples. After 

the RNA isolation protocol is optimized, in the subsequent procedure, I cut four to eight 

sections 20-µm thick sections from the paraffin blocks with a shorter length of core biopsy. 

Based on the finalized RNA isolation protocol (Appendix B), I had a 100% success rate to 

isolate enough RNA for the NanoString gene expression assay from the remaining 182 

samples with the length of core biopsy range from 1 mm to 40 mm. I showed almost all 

routine clinical liver biopsies had enough tissue for NanoString gene expression assay after 

paraffin sectioning for histological diagnostic purposes.  

NanoString gene expression assay is a highly reliable method for multiplexed gene 

expression quantification when analyzing archived, clinical liver biopsies. There was no 

correlation between age of clinical liver biopsies (up to 18 years old) and the RNA yield. 

This demonstrated use of clinical liver biopsies from archival specimens can be applied to 

NanoString gene expression assay to develop diagnostic and prognostic tests. I also 
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compared normalized transcript counts between paired fresh vs. FFPE samples and found a 

strong positive correlation (r=0.944). Other techniques such as Affymetrix microarray and 

quantitative polymerase chain reaction have lower correlation between paired fresh and 

FFPE samples (r=0.75, 0.50, respectively) (17, 29). NanoString gene expression assay had a 

stronger correlation between paired fresh and FFPE samples compared to microarray and 

quantitative polymerase chain reaction as NanoString method does not need amplification of 

input RNA and thus eliminates potential artefacts inherent to amplification techniques in a 

scenario wherein FFPE derived RNAs are smaller in size due to degradation in the fixation 

protocols. It was well documented that RNA isolated from FFPE tissue suffer from strand 

breaking and cross-linking. Therefore, the amplification procedure might lose amplifiable 

templates. Moreover, both microarray and quantitative polymerase chain reaction is not very 

quantitative (measure relative fluorescence signal intensity and quantification cycle, 

respectively), whereas NanoString gives a digital readout of the transcript counts in a sample 

using molecular barcodes (14). These advantages made NanoString one of the most reliable 

platforms for multiplexed gene expression quantification when analyzing archived clinical 

liver biopsies. 

A clinical assay needs to provide reproducible results when samples are repeated 

analyzed in different days, by different operators, and use of different lots of reagents (30). 

This chapter showed NanoString gene expression assay is highly reproducible when 

performed by the same operator and different operators of varying technical experience 

(r=0.950-0.990, 0.949-0.992, respectively). Transcript counts in repeat runs using different 

lots of reagents were almost perfectly correlated (r=0.998-0.999). These results indicated 

NanoString gene expression assay can provide reproducible results by the same and different 
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operators and use of different lots of reagents, thus meeting the requirements for clinical 

implementation.  

The fibrosis gene signature increased progressively with histological fibrosis stages 

and quantitatively differed between histological stages of liver fibrosis (Figure 3.11). 

Interestingly, some samples with no or mild fibrosis (F0-F1) showed a relatively high fibrosis 

gene signature. This may represent these patients are at high risk for fibrosis progression 

with molecular fibrogenesis which cannot be yet identified by histology (31). Future studies 

will have to be performed in a patient cohort with follow-up data to further establish the 

usefulness of the fibrosis gene signature to predict fibrosis progression. This is covered in 

Chapters 4, 5, and 6. 

This is the first study that showed NanoString nCounter Analysis System is a 

methodologically robust and feasible platform for multiplex gene expression quantification 

when analyzing archived clinical liver biopsies. This research illustrated how much tissue is 

needed to isolate enough RNA for NanoString gene expression assay. The low amount of 

tissue requirement will allow an expanded scope of molecular pathology through 

retrospective analysis of archival clinical liver biopsies that have been annotated with varied 

information on disease states and outcomes, such as disease progression and 

prognostic/survival data. Several human liver studies used genome-wide microarrays to 

identify a set of genes, which their expression pattern can predict disease progression in 

patients with chronic liver disease (5-11). The NanoString nCounter Analysis System will 

be the ideal platform for validating and translating these gene signatures for clinical 

application by analyzing archived clinical liver biopsies and correlate the gene expression 

with patient outcomes. Moreover, the NanoString nCounter Analysis System could be 
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seamlessly integrated into existing FFPE-based pathology workflow and could offer the 

ability to apply molecular diagnostics to the same biopsy core reviewed under the microscope 

by pathologists. This could provide personalized prognostic risk stratification, which could 

not be obtained by histopathology alone. 
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Table 3.1. Characteristics of the clinical liver biopsies analyzed by NanoString 

Biopsy characteristics All samples Normal livers 
Non-alcoholic fatty 

liver disease 

Autoimmune 

hepatitis 

Recurrent viral 

hepatitis C 

Number of biopsies 348 27 94 78 149 

Number of biopsies with 

high-quality gene expression 

profile 

338 26 91 76 145 

Number of patients 257 27 92 78 66 

Age at biopsy (y), mean ± SD 50.4 ± 14.1A 40.4 ± 21.5B 51.4 ± 13.6C 42.4 ± 17.7 55.8 ± 5.3 

Length of tissue (mm), mean 

± SD 
17.1 ± 7.2 15.26 ± 8.2 17.8 ± 6.6 14.7 ± 8.2 18.27 ± 6.6 

Age of tissue (y), mean ± SD 4.8 ± 3.7 3.8 ± 2.4 2.5 ± 2.4 7.9 ± 4.8 4.8 ± 2.6 

Fibrosis stageD, n (%) 

0 

1 

2 

3 

4 

 

83 (24) 

114 (33) 

69 (20) 

53 (15) 

29 (8) 

 

21 (78) 

6 (22) 

0 (0) 

0 (0) 

0 (0) 

 

26 (28) 

24 (26) 

7 (7) 

21 (22) 

16 (17) 

 

6 (8) 

21 (27) 

19 (24) 

21 (27) 

11 (14) 

 

30 (20) 

63 (42) 

43 (29) 

11 (7) 

2 (1) 
A Missing data from five biopsies. 
B Missing data from two biopsies. 
C Missing data from three biopsies. 
D Non-alcoholic fatty liver disease biopsies were assessed using Brunet staging classification (22). Normal livers, autoimmune 

hepatitis, and recurrent hepatitis biopsies were assessed using Metavir fibrosis staging classification (21).  

Abbreviation: SD, standard deviation. 
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Table 3.2. The list of the 68-fibrosis associated genes 

Gene symbol Gene full name Gene symbol Gene full name 

ANTXR1 Anthrax toxin receptor 1 GSN Gelsolin 

AQP1 Aquaporin 1 (Colton blood group) HEPH Hephaestin 

B2MB Beta-2-microglobulin IGFBP7 Insulin-like growth factor binding protein 7 

BICC1 BicC family RNA binding protein 1 ITGBL1 
Integrin, beta-like 1 (with EGF-like repeat 

domains) 

C1orf198 
Chromosome 1 open reading frame 

198 
JAG1 Jagged 1 

C7 Complement component 7 KRT7 Keratin 7, type II 

CACNA2D1 
Calcium channel, voltage-

dependent, alpha 2/delta subunit 1 
KRT8A Keratin 8, type II 

CCL2A Chemokine (C-C motif) ligand 2 LAMB1 Laminin, beta 1 

CCR5A 
Chemokine (C-C motif) receptor 5 

(gene/pseudogene) 
LDHAB Lactate dehydrogenase A 

CD24 CD24 molecule LGALS3A Lectin, galactoside-binding, soluble, 3 

CDH11 
Cadherin 11, type 2, OB-cadherin 

(osteoblast) 
LOXA Lysyl oxidase 

CHI3L1A 
Chitinase 3-like 1 (cartilage 

glycoprotein-39) 
LPAR1A Lysophosphatidic acid receptor 1 

COL14A1 Collagen, type XIV, alpha 1 LTBP2 
Latent transforming growth factor beta binding 

protein 2 

COL1A1 Collagen, type I, alpha 1 LUM Lumican 

COL1A2 Collagen, type I, alpha 2 MAP1B Microtubule-associated protein 1B 

COL3A1 Collagen, type III, alpha 1 MAP2 Microtubule-associated protein 2 

COL4A1 Collagen, type IV, alpha 1 MMP2A Matrix metallopeptidase 2 

COL4A2 Collagen, type IV, alpha 2 MMP7A Matrix metallopeptidase 7 

COL4A4 Collagen, type IV, alpha 4 MOXD1 Monooxygenase, DBH-like 1 

COL6A3 Collagen, type VI, alpha 3 NALCN Sodium leak channel, non-selective 

CTGFA Connective tissue growth factor NAV3 Neuron navigator 3 
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CXCL6 Chemokine (C-X-C motif) ligand 6 RCAN2 Regulator of calcineurin 2 

CXCR4A 
Chemokine (C-X-C motif) receptor 

4 
SH3YL1 SH3 and SYLF domain containing 1 

DCDC2 Doublecortin domain containing 2 SLC38A1 Solute carrier family 38, member 1 

DKK3 
Dickkopf WNT signaling pathway 

inhibitor 3 
SNX17B Sorting nexin 17 

DTNA Dystrobrevin, alpha SOX9 SRY (sex determining region Y)-box 9 

EFEMP1 
EGF containing fibulin-like 

extracellular matrix protein 1 
SPP1A Secreted phosphoprotein 1 

EHF Ets homologous factor TAP2A 
Transporter 2, ATP-binding cassette, sub-

family B (MDR/TAP) 

EPCAM Epithelial cell adhesion molecule TBPB TATA box binding protein 

EPHA3 EPH receptor A3 TGFB1A Transforming growth factor, beta 1 

FAM169A 
Family with sequence similarity 

169, member A 
THBS2 Thrombospondin 2 

FAT1 FAT atypical cadherin 1 TIMP1A TIMP metallopeptidase inhibitor 1 

FBN1 Fibrillin 1 TMEM200A Transmembrane protein 200A 

GPRC5B 
G protein-coupled receptor, class C, 

group 5, member B 
VWFA Von Willebrand factor 

A Literature selected fibrosis genes. 
B Housekeeping gene. 
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Table 3.3. NanoString probe sequences 

Gene symbol Accession number NanoString probe sequence 

ANTXR1 NM_018153.3 
GATGGGGGTCCAGCCTGCTACGGCGGATTTGACCTGTACTTCATTTTGGACAAA

TCAGGAAGTGTGCTGCACCACTGGAATGAAATCTATTACTTTGTGG 

AQP1 NM_198098.1 
CTGGGATTCTACCGTAATTGCTTTGTGCCTTTGGGCACGGCCCTCCTTCTTTTCC

TAACATGCACCTTGCTCCCAATGGTGCTTGGAGGGGGAAGAGATC 

B2M NM_004048.2 
CGGGCATTCCTGAAGCTGACAGCATTCGGGCCGAGATGTCTCGCTCCGTGGCCT

TAGCTGTGCTCGCGCTACTCTCTCTTTCTGGCCTGGAGGCTATCCA 

BICC1 NM_001080512.1 
CACGGTCATCATATGTCAACATGCAGGCATTTGACTATGAACAGAAGAAGCTAT

TAGCCACCAAAGCTATGTTAAAGAAACCAGTGGTGACGGAGGTCAG 

C1orf198 NM_001136495.1 
CTCAACAAGCCCAATATTCCCTCCAAGTTCTTCTTGGTGCTGAGGGCTGTAGGA

ATTATTGAAAGCTTCTGCCTCACTTAGTATCGTCTGGGGCCCAGCA 

C7 NM_000587.2 
ATGCTTTTGAAACACAGTCCTGTGAACCTACAAGAGGATGTCCAACAGAGGAG

GGATGTGGAGAGCGTTTCAGGTGCTTTTCAGGTCAGTGCATCAGCAA 

CACNA2D1 NM_000722.2 
TCTTATGATTATCAGTCAGTATGTGAGCCCGGTGCTGCACCAAAACAAGGAGCA

GGACATCGCTCAGCATATGTGCCATCAGTAGCAGACATATTACAAA 

CCL2 NM_002982.3 
GAGGAACCGAGAGGCTGAGACTAACCCAGAAACATCCAATTCTCAAACTGAAG

CTCGCACTCTCGCCTCCAGCATGAAAGTCTCTGCCGCCCTTCTGTGC 

CCR5 NM_000579.1 
TAGGAACATACTTCAGCTCACACATGAGATCTAGGTGAGGATTGATTACCTAGT

AGTCATTTCATGGGTTGTTGGGAGGATTCTATGAGGCAACCACAGG 

CD24 NM_013230.2 
ATAGACACTCCCCGAAGTCTTTTGTTCGCATGGTCACACACTGATGCTTAGATG

TTCCAGTAATCTAATATGGCCACAGTAGTCTTGATGACCAAAGTCC 

CDH11 NM_001797.2 
CAGGAAGCCAAAGTCCCAGTGGCCATTAGGGTCCTTGATGTCAACGATAATGCT

CCCAAGTTTGCTGCCCCTTATGAAGGTTTCATCTGTGAGAGTGATC 

CHI3L1 NM_001276.2 
GGTCTCAAAGATTTTCCAAGATAGCCTCCAACACCCAGAGTCGCCGGACTTTCA

TCAAGTCAGTACCGCCATTTCTGCGCACCCATGGCTTTGATGGGCT 
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COL14A1 NM_021110.1 
CTTTAAGTCCACCAAGAAACCTGAGAATCTCCAATGTTGGCTCTAACAGTGCTC

GATTAACCTGGGACCCAACTTCAAGACAGATCAATGGTTATCGAAT 

COL1A1 NM_000088.3 
CAGAAACATCGGATTTGGGGAACGCGTGTCAATCCCTTGTGCCGCAGGGCTGG

GCGGGAGAGACTGTTCTGTTCCTTGTGTAACTGTGTTGCTGAAAGAC 

COL1A2 NM_000089.3 
CCAATGGATTTGCTGGTCCTGCTGGTGCTGCTGGTCAACCTGGTGCTAAAGGAG

AAAGAGGAGCCAAAGGGCCTAAGGGTGAAAACGGTGTTGTTGGTCC 

COL3A1 NM_000090.3 
TTGGCACAACAGGAAGCTGTTGAAGGAGGATGTTCCCATCTTGGTCAGTCCTAT

GCGGATAGAGATGTCTGGAAGCCAGAACCATGCCAAATATGTGTCT 

COL4A1 NM_001845.4 
TGGGCTTAAGTTTTCAAGGACCAAAAGGTGACAAGGGTGACCAAGGGGTCAGT

GGGCCTCCAGGAGTACCAGGACAAGCTCAAGTTCAAGAAAAAGGAGA 

COL4A2 NM_001846.2 
GGCATTTCCTTGAAGGGAGAAGAAGGAATCATGGGCTTTCCTGGACTGAGGGG

TTACCCTGGCTTGAGTGGTGAAAAAGGATCACCAGGACAGAAGGGAA 

COL4A4 NM_000092.4 
TATATGGGAGTGGAAAGAAATACATTGGTCCTTGTGGAGGAAGAGATTGCTCT

GTTTGCCACTGTGTTCCTGAAAAGGGGTCTCGGGGTCCACCAGGACC 

COL6A3 NM_004369.3 
AGAGCAAGCGAGACATTCTGTTCCTCTTTGACGGCTCAGCCAATCTTGTGGGCC

AGTTCCCTGTTGTCCGTGACTTTCTCTACAAGATTATCGATGAGCT 

CTGF NM_001901.2 
ACCACCCTGCCGGTGGAGTTCAAGTGCCCTGACGGCGAGGTCATGAAGAAGAA

CATGATGTTCATCAAGACCTGTGCCTGCCATTACAACTGTCCCGGAG 

CXCL6 NM_002993.3 
AGTAACAAAAAAGACCATGCATCATAAAATTGCCCAGTCTTCAGCGGAGCAGT

TTTCTGGAGATCCCTGGACCCAGTAAGAATAAGAAGGAAGGGTTGGT 

CXCR4 NM_003467.2 
ATTGATGTGTGTCTAGGCAGGACCTGTGGCCAAGTTCTTAGTTGCTGTATGTCTC

GTGGTAGGACTGTAGAAAAGGGAACTGAACATTCCAGAGCGTGTA 

DCDC2 NM_016356.3 
GTCTGAAACACGGGGGGCAGCAGAAGTCCAAGAAGATGAAGATACTCAGGTTG

AGGTTCCAGTCGATCAGAGGCCAGCAGAAATAGTAGACGAGGAAGAA 

DKK3 NM_001018057.1 
AGTGAACCTGGCAAACTTACCTCCCAGCTATCACAATGAGACCAACACAGACA

CGAAGGTTGGAAATAATACCATCCATGTGCACCGAGAAATTCACAAG 
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DTNA NM_032981.4 
GTTCCCAGATCAGCCTGAGAAGCCACTCAACTTGGCTCACATCGTGCCTCCCAG

ACCTGTAACCAGCATGAACGACACCCTGTTCTCCCACTCTGTTCCC 

EFEMP1 NM_004105.3 
ACCTACGACAAACAAGTCCTGTAAGTGCAATGCTTGTGCTCGTGAAGTCATTAT

CAGGACCAAGAGAACATATCGTGGACCTGGAGATGCTGACAGTCAG 

EHF NM_012153.3 
ATTTAGAAAAAGGTGATGCATCCTCCTCACATAAGCATCCATATGGCTTCGTCA

AGGGAGGTGAACATTGTTGCTGAGTTAAATTCCAGGGTCTCAGATG 

EPCAM NM_002354.1 
AGAAGAGCAAAACCTGAAGGGGCCCTCCAGAACAATGATGGGCTTTATGATCC

TGACTGCGATGAGAGCGGGCTCTTTAAGGCCAAGCAGTGCAACGGCA 

EPHA3 NM_005233.5 
GAGGCCGGAAAGATGTTACCTTCAACATCATATGTAAAAAATGTGGGTGGAAT

ATAAAACAGTGTGAGCCATGCAGCCCAAATGTCCGCTTCCTCCCTCG 

FAM169A NM_015566.2 
AACTTGAAGACGTGCCATTTTCACAGAATGCAGGACAGAAGAATCAGTCAGAG

GAGCAGTCTGAAGCATCTTCCGAGCAACTGGATCAGTTTACACAATC 

FAT1 NM_005245.3 
ACCCAACCAGTGGTGTGATAGTGTTAACTGGTAGACTTGATTACCTAGAGACCA

AGCTCTATGAGATGGAAATCCTCGCTGCGGACCGTGGCATGAAGTT 

FBN1 NM_000138.3 
CACTGAAGGCAGCTTCAAATGTCTGTGTCCAGAAGGGTTTTCCTTGTCCTCCAG

TGGAAGAAGGTGCCAAGATTTGCGAATGAGCTACTGTTATGCGAAG 

GPRC5B NM_016235.1 
GCCCTCTGGGTGATGAAGTGACCATCACATTTGGAAAGTGATCAACCACTGTTC

CTTCTATGGGGCTCTTGCTCTAATGTCTATGGTGAGAACACAGGCC 

GSN NM_000177.4 
GATGGGAAAATCTTTGTCTGGAAAGGCAAGCAGGCAAACACGGAGGAGAGGA

AGGCTGCCCTCAAAACAGCCTCTGACTTCATCACCAAGATGGACTACC 

HEPH NM_138737.3 
CCAGCGTGCCTCACCTGGATCTACCATTCTCATGTAGATGCTCCACGAGACATT

GCAACTGGCCTAATTGGGCCTCTCATCACCTGTAAAAGAGGAGCCC 

IGFBP7 NM_001553.1 
CCCAGAAAAGCATGAAGTAACTGGCTGGGTGCTGGTATCTCCTCTAAGTAAGG

AAGATGCTGGAGAATATGAGTGCCATGCATCCAATTCCCAAGGACAG 

ITGBL1 NM_004791.1 
GGTATATTTCTGGGGAGTTCTGTGACTGTGATGACAGAGACTGCGACAAACATG

ATGGTCTCATTTGTACAGGGAATGGAATATGTAGCTGTGGAAACTG 
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JAG1 NM_000214.2 
TTGCTTGTGGAGGCGTGGGATTCCAGTAATGACACCGTTCAACCTGACAGTATT

ATTGAAAAGGCTTCTCACTCGGGCATGATCAACCCCAGCCGGCAGT 

KRT7 NM_005556.3 
GGGAACCATGGGCAGCAATGCCCTGAGCTTCTCCAGCAGTGCGGGTCCTGGGC

TCCTGAAGGCTTATTCCATCCGGACCGCATCCGCCAGTCGCAGGAGT 

KRT8 NM_002273.3 
CCGTGCGCACCCAGGAGAAGGAGCAGATCAAGACCCTCAACAACAAGTTTGCC

TCCTTCATAGACAAGGTACGGTTCCTGGAGCAGCAGAACAAGATGCT 

LAMB1 NM_002291.2 
TTGCCAGGAGCTGCTACCAAGATCCTGTTACTTTACAGCTTGCCTGTGTTTGTGA

TCCTGGATACATTGGTTCCAGATGTGACGACTGTGCCTCAGGATA 

LDHA NM_001165414.1 
AACTTCCTGGCTCCTTCACTGAACATGCCTAGTCCAACATTTTTTCCCAGTGAGT

CACATCCTGGGATCCAGTGTATAAATCCAATATCATGTCTTGTGC 

LGALS3 NM_001177388.1 
CACGGTGAAGCCCAATGCAAACAGAATTGCTTTAGATTTCCAAAGAGGGAATG

ATGTTGCCTTCCACTTTAACCCACGCTTCAATGAGAACAACAGGAGA 

LOX NM_002317.4 
CGCTACACAGGACATCATGCGTATGCCTCAGGCTGCACAATTTCACCGTATTAG

AAGGCAAAGCAAAACTCCCAATGGATAAATCAGTGCCTGGTGTTCT 

LPAR1 NM_001401.3 
CCTAATGGCTAATCTGGCTGCTGCAGACTTCTTTGCTGGGTTGGCCTACTTCTAT

CTCATGTTCAACACAGGACCCAATACTCGGAGACTGACTGTTAGC 

LTBP2 NM_000428.2 
CATCTCTCCCAGCTTAGCCTCTGGCTGTAAGCTTCGGTCATTGCCTCCATGCCCT

TGCTTGGCTCAAGCACCACCAATCGCTTTAATGCTTCAGCCACCG 

LUM NM_002345.3 
GCCATTATCCTACTCCAAGATCAAGCATTTGCGTTTGGATGGCAATCGCATCTC

AGAAACCAGTCTTCCACCGGATATGTATGAATGTCTACGTGTTGCT 

MAP1B NM_005909.3 
CATATAGGATTATAGATACTTAAAGGAACACGTGGGTGAGCGTGTGTGGGGGT

ACTAGAAGCTGATCTGATTGGTCCAACAGTTTGATGCTGAGTCATGC 

MAP2 NM_031845.2 
TACTCTGTATGCTGGGATTCCGAGGTTCCAACACACTGTTACAAATCTGTGGGG

GGTTTCTTTCTTCTGATAATTCTAGAGCCTGTTACCATAGAAAGGC 

MMP2 NM_004530.2 
CCCGGAGGGGCCTGGCAGCCGTGCCTTCAGCTCTACAGCTAATCAGCATTCTCA

CTCCTACCTGGTAATTTAAGATTCCAGAGAGTGGCTCCTCCCGGTG 
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MMP7 NM_002423.3 
GTGCCAGATGTTGCAGAATACTCACTATTTCCAAATAGCCCAAAATGGACTTCC

AAAGTGGTCACCTACAGGATCGTATCATATACTCGAGACTTACCGC 

MOXD1 NM_001031699.1 
GATGCATTCCTCACCTGTGAAACTGTGATTTTTGCCTGGGCTATTGGTGGAGAG

GGCTTTTCTTATCCACCTCATGTTGGATTATCCCTTGGCACTCCAT 

NALCN NM_052867.2 
TGGACGTGATCGTGGCGGCTAGCAACTACTACAAAGGAGAAAACTTCAGGAGG

CAGTACGACGAGTTCTACCTGGCGGAGGTGGCTTTTACAGTACTTTT 

NAV3 NM_014903.4 
CCAGCACTTCTTCTCTTTACTCTACAGCTGAAGAAAAGGCTCATTCAGAGCAAA

TCCATAAACTGCGGAGAGAGCTGGTTGCATCACAAGAAAAAGTTGC 

RCAN2 NM_005822.3 
GTGTCCTCTAGTGGAAGAAATAGTAGGCTCCGCTATTCAGATGCAGAGCACTGC

AGCATCCAGCCTTTCAAAGCTGACTCTTCTCAATCATCTGTGGGTC 

SH3YL1 NM_001159597.1 
AAAGGCCTTGCAATTCTGTCTGTGATCAAAGCCGGGTTCCTGGTGACTGCCAGA

GGAGGCAGCGGGATTGTAGTGGCGCGCCTTCCAGATGGAAAATGGT 

SLC38A1 NM_001077484.1 
TCTATGACAACGTGCAGTCCGACCTCCTTCACAAATATCAGAGTAAAGATGACA

TTCTCATCCTGACAGTGCGGCTGGCTGTCATTGTTGCTGTGATCCT 

SNX17 NM_014748.2 
CTTTCCTTGTCCCCTGGGCTGGCTGCACAGAGGATTGCCCCTTCTCTTTTCAGAG

CTGGCCCTCGATGCCAAATTAGCATTTAGTATTTTGCACAAAGTC 

SOX9 NM_000346.2 
CAGTGGCCAGGCCAACCTTGGCTAAATGGAGCAGCGAAATCAACGAGAAACTG

GACTTTTTAAACCCTCTTCAGAGCAAGCGTGGAGGATGATGGAGAAT 

SPP1 NM_000582.2 
CGCCTTCTGATTGGGACAGCCGTGGGAAGGACAGTTATGAAACGAGTCAGCTG

GATGACCAGAGTGCTGAAACCCACAGCCACAAGCAGTCCAGATTATA 

TAP2 NM_000544.3 
GGCTTCCTTTAAATGCCAATGTGCTCTTGCGAAGCCTGGTGAAAGTGGTGGGGC

TGTATGGCTTCATGCTCAGCATATCGCCTCGACTCACCCTCCTTTC 

TBP NM_001172085.1 
ACAGTGAATCTTGGTTGTAAACTTGACCTAAAGACCATTGCACTTCGTGCCCGA

AACGCCGAATATAATCCCAAGCGGTTTGCTGCGGTAATCATGAGGA 

TGFB1 NM_000660.3 
TATATGTTCTTCAACACATCAGAGCTCCGAGAAGCGGTACCTGAACCCGTGTTG

CTCTCCCGGGCAGAGCTGCGTCTGCTGAGGCTCAAGTTAAAAGTGG 
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THBS2 NM_003247.2 
AAACATCCTTGCAAATGGGTGTGACGCGGTTCCAGATGTGGATTTGGCAAAACC

TCATTTAAGTAAAAGGTTAGCAGAGCAAAGTGCGGTGCTTTAGCTG 

TIMP1 NM_003254.2 
CGTGGGGACACCAGAAGTCAACCAGACCACCTTATACCAGCGTTATGAGATCA

AGATGACCAAGATGTATAAAGGGTTCCAAGCCTTAGGGGATGCCGCT 

TMEM200A NM_052913.2 
CCTTGTGGTTCCTTTGCCCAACACCAGTGAATCCTTCCAGCCCGTCAGCACAGT

GCTACCAAGGAATAATTCCATTGGGGAGTCGTTGTCGAGTCAGTAC 

VWF NM_000552.3 
CACCTGCAACCCCTGCCCCCTGGGTTACAAGGAAGAAAATAACACAGGTGAAT

GTTGTGGGAGATGTTTGCCTACGGCTTGCACCATTCAGCTAAGAGGA 
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Table 3.4. Three 20-µm sections were enough to isolate at least 100 ng of RNA from blocks with more than 5 mm of core biopsy 

Length of core biopsy in the block 
Number of 20-µm sections obtained 

p-value 
3 4-8 

0-5 mm 62.5% (5/8) 100% (21/21) 0.015 

> 5 mm 99% (298/301) 100% (20/20) 1 
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Table 3.5. Transcript counts of 68 fibrosis-associated genes were strongly correlated between paired fresh and FFPE livers  

Paired fresh and FFPE 

sample ID 

Correlation 

coefficient 
p-value 

Paired fresh and 

FFPE sample ID 

Correlation 

coefficient 
p-value 

Explant 1 0.934 <0.001 Explant 9 0.971 <0.001 

Explant 2 0.984 <0.001 Explant 10 0.982 <0.001 

Explant 3 0.969 <0.001 Explant 11 0.900 <0.001 

Explant 4 0.924 <0.001 Explant 12 0.962 <0.001 

Explant 5 0.964 <0.001 Explant 13 0.964 <0.001 

Explant 6 0.969 <0.001 Explant 14 0.912 <0.001 

Explant 7 0.954 <0.001 Explant 15 0.975 <0.001 

Explant 8 0.974 <0.001    
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Table 3.6. Biological annotation of the fibrosis genes 

Gene symbol Biological annotation Ref 
Gene 

symbol 
Biological annotation Ref 

ANTXR1 
Induce extracellular matrix synthesis 

or cross-linking 
(32) GPRC5B Signal transduction (33) 

AQP1 Expressed in hepatic progenitor cell (34) GSN 
Expressed in fibroblast or 

myofibroblast 
(35) 

BICC1 Wnt signaling pathway (36) HEPH Ion or amino acid transporter (37) 

C1orf198 Unknown  IGFBP7 
Induce extracellular matrix synthesis 

or cross-linking 
(38) 

C7 Inflammation (39) ITGBL1 
Induce fibroblast or myofibroblast 

activation 
(40) 

CACNA2D1 Ion or amino acid transporter (41) JAG1 
Expressed in fibroblast or 

myofibroblast 
(42) 

CCL2 Inflammation (43) KRT7 Expressed in hepatic progenitor cell (44) 

CCR5 Inflammation (45) KRT8 Expressed in hepatic progenitor cell (46) 

CD24 Expressed in hepatic progenitor cell (47) LAMB1 
Induce extracellular matrix synthesis 

or cross-linking 
(48) 

CDH11 
Induce fibroblast or myofibroblast 

activation 
(49) LGALS3 

Induce fibroblast or myofibroblast 

activation 
(50) 

CHI3L1 Inflammation (43) LOX 
Induce extracellular matrix synthesis 

or cross-linking 
(51) 

COL14A1 
Induce extracellular matrix synthesis 

or cross-linking, HSC activation 
(9, 52) LPAR1 

Induce fibroblast or myofibroblast 

activation 
(53) 

COL1A1 
Induce extracellular matrix synthesis 

or cross-linking, HSC activation 
(9, 52) LTBP2 

Induce extracellular matrix synthesis 

or cross-linking 
(54) 

COL1A2 
Induce extracellular matrix synthesis 

or cross-linking, HSC activation 
(9, 52) LUM 

Induce extracellular matrix synthesis 

or cross-linking 
(55) 

COL3A1 
Induce extracellular matrix synthesis 

or cross-linking, HSC activation 
(9, 52) MAP1B 

Expressed in hepatic progenitor cell, 

microtubule binding 
(56) 
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COL4A1 
Induce extracellular matrix synthesis 

or cross-linking, HSC activation 
(9, 52) MAP2 

Expressed in fibroblast or 

myofibroblast, microtubule binding 
(57) 

COL4A2 
Induce extracellular matrix synthesis 

or cross-linking, HSC activation 
(9, 52) MMP2 

Extracellular matrix degradation, 

HSC, extracellular matrix remodeling 
(9, 58) 

COL4A4 
Induce extracellular matrix synthesis 

or cross-linking, HSC activation 
(9, 52) MMP7 

Extracellular matrix degradation, 

HSC, extracellular matrix remodeling 
(9, 58) 

COL6A3 
Induce extracellular matrix synthesis 

or cross-linking, HSC activation 
(9, 52) MOXD1 Ion binding (59) 

CTGF 
Induce extracellular matrix synthesis 

or cross-linking, HSC activation 
(9, 60) NALCN Ion or amino acid transporter (61) 

CXCL6 Inflammation (43) NAV3 Microtubule binding (62) 

CXCR4 
Induce fibroblast or myofibroblast 

activation 
(43) RCAN2 

Expressed in fibroblast or 

myofibroblast, nucleic acid binding 
(63) 

DCDC2 Wnt signaling (64) SH3YL1 

Induce fibroblast or myofibroblast 

activation, regulation of ruffle 

assembly 

(65) 

DKK3 Wnt signaling (66) SLC38A1 Ion or amino acid transporter (67) 

DTNA Dystrophin (68) SOX9 

Induce extracellular matrix synthesis 

or cross-linking, expressed in hepatic 

progenitor cell 

(69) 

EFEMP1 
Induce extracellular matrix synthesis 

or cross-linking 
(70) SPP1 

Induce extracellular matrix synthesis 

or cross-linking 
(71) 

EHF Epithelial-mesenchymal transition (72) TAP2 Ion or amino acid transport (73) 

EPCAM Expressed in hepatic progenitor cell (74) TGFB1 
Induce extracellular matrix synthesis 

or cross-linking, HSC 
(75) 

EPHA3 Inflammation (76) THBS2 
Induce extracellular matrix synthesis 

or cross-linking 
(77) 

FAM169A Unknown  TIMP1 

Induce extracellular matrix synthesis 

or cross-linking, HSC, extracellular 

matrix remodeling 

(9, 58) 

FAT1 Epithelial-mesenchymal transition (78) TMEM200A Unknown  
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FBN1 
Induce extracellular matrix synthesis 

or cross-linking 
(79) VWF 

Induce extracellular matrix synthesis 

or cross-linking 
(80) 

HSC, hepatic stellate cell; Ref, reference. 
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Table 3.7. Biological functions of the fibrosis genes 

Biological function Genes 

ECM synthesis or cross-

linking 

ANTXR1, COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, COL4A4, COL6A3, COL14A1, CTGF, 

EFEMP1, FBN1, IGFBP7, LAMB1, LOX, LTBP2, LUM, SOX9, SPP1, TGFB1, THBS2, TIMP1, 

VWF 

Fibroblast or 

myofibroblast or HSC 

activation 

CDH11, COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, COL4A4, COL6A3, CTGF, CXCR4, 

ITGBL1, LGALS3, LPAR1, MMP2, MMP7, SH3YL1, TIMP1 

Collagen COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, COL4A4, COL6A3, COL14A1 

Inflammation C7, CCL2, CCR5, CHI3L1, CXCL6, EPHA3 

Hepatic progenitor cell AQP1, CD24, EPCAM, KRT7, KRT8, MAP1B, SOX9 

ECM, extracellular matrix. HSC, hepatic stellate cell. 
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Figure 3.1. Study design. 

FFPE, formalin-fixed paraffin-embedded. 
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Figure 3.2. NanoString gene expression assay workflow. 

From the time of clinical biopsy procurement, NanoString gene expression results can be 

obtained within 1.5 days and only 7 hours hands-on time. 
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Figure 3.3. Representative chromatogram for four RNA samples from four unique 

clinical liver biopsies with respective RNA integrity number (RIN). 
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Figure 3.4. Total RNA yield was significantly correlated with the length of core 

biopsy, but not with the age of paraffin block.  
(A) There was a significant correlation between the length of clinical liver biopsy and the 

total RNA yield. (B) Age of the paraffin block did not correlate with the total RNA yield. 
  

B

50ng RNA input 

(red line). 

50ng RNA input 

(red line). 

r = 0.281, p<0.001

r = -0.046, p=0.395

Number of 

sections

Number of 

sections

Length of core biopsy (mm) in the block before cutting paraffin sections 

To
ta

l 
R

N
A

 (
n
g

)

Age of the paraffin block (year)

To
ta

l 
R

N
A

 (
n
g

)

A



181 
 

 
Figure 3.5. Normalized transcript counts of 68 fibrosis-associated genes in fresh 

biopsies were strongly correlated with 15 paired FFPE biopsies. 
(A) Normalized mRNA transcript counts in paired fresh and FFPE samples were normally 

distributed. (B) Scatter plot of the normalized transcript counts of 68 fibrosis-associated 

genes obtained from 15 paired fresh vs. FFPE samples. Normalized transcript counts in 

fresh samples had a strong correlation with paired FFPE samples (r=0.944, p<0.001). (C) 

Correlation heatmap of the normalized transcript counts of 68 hepatic fibrosis-associated 

genes in 15 paired fresh and FFPE samples. 
  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x
p
la

n
t.
1

E
x
p
la

n
t.
2

E
x
p
la

n
t.
3

E
x
p
la

n
t.
4

E
x
p
la

n
t.
5

E
x
p
la

n
t.
6

E
x
p
la

n
t.
7

E
x
p
la

n
t.
8

E
x
p
la

n
t.
9

E
x
p
la

n
t.
1
0

E
x
p
la

n
t.
1
1

E
x
p
la

n
t.
1
2

E
x
p
la

n
t.
1
3

E
x
p
la

n
t.
1
4

E
x
p
la

n
t.
1
5

E
x
p
la

n
t.
1
.1

E
x
p
la

n
t.
2
.1

E
x
p
la

n
t.
3
.1

E
x
p
la

n
t.
4
.1

E
x
p
la

n
t.
5
.1

E
x
p
la

n
t.
6
.1

E
x
p
la

n
t.
7
.1

E
x
p
la

n
t.
8
.1

E
x
p
la

n
t.
9
.1

E
x
p
la

n
t.
1
0
.1

E
x
p
la

n
t.
1
1
.1

E
x
p
la

n
t.
1
2
.1

E
x
p
la

n
t.
1
3
.1

E
x
p
la

n
t.
1
4
.1

E
x
p
la

n
t.
1
5
.1

Explant.1

Explant.2

Explant.3

Explant.4

Explant.5

Explant.6

Explant.7

Explant.8

Explant.9

Explant.10

Explant.11

Explant.12

Explant.13

Explant.14

Explant.15

Explant.1.1

Explant.2.1

Explant.3.1

Explant.4.1

Explant.5.1

Explant.6.1

Explant.7.1

Explant.8.1

Explant.9.1

Explant.10.1

Explant.11.1

Explant.12.1

Explant.13.1

Explant.14.1

Explant.15.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x
p
la

n
t.
1

E
x
p
la

n
t.
2

E
x
p
la

n
t.
3

E
x
p
la

n
t.
4

E
x
p
la

n
t.
5

E
x
p
la

n
t.
6

E
x
p
la

n
t.
7

E
x
p
la

n
t.
8

E
x
p
la

n
t.
9

E
x
p
la

n
t.
1
0

E
x
p
la

n
t.
1
1

E
x
p
la

n
t.
1
2

E
x
p
la

n
t.
1
3

E
x
p
la

n
t.
1
4

E
x
p
la

n
t.
1
5

E
x
p
la

n
t.
1
.1

E
x
p
la

n
t.
2
.1

E
x
p
la

n
t.
3
.1

E
x
p
la

n
t.
4
.1

E
x
p
la

n
t.
5
.1

E
x
p
la

n
t.
6
.1

E
x
p
la

n
t.
7
.1

E
x
p
la

n
t.
8
.1

E
x
p
la

n
t.
9
.1

E
x
p
la

n
t.
1
0
.1

E
x
p
la

n
t.
1
1
.1

E
x
p
la

n
t.
1
2
.1

E
x
p
la

n
t.
1
3
.1

E
x
p
la

n
t.
1
4
.1

E
x
p
la

n
t.
1
5
.1

Explant.1

Explant.2

Explant.3

Explant.4

Explant.5

Explant.6

Explant.7

Explant.8

Explant.9

Explant.10

Explant.11

Explant.12

Explant.13

Explant.14

Explant.15

Explant.1.1

Explant.2.1

Explant.3.1

Explant.4.1

Explant.5.1

Explant.6.1

Explant.7.1

Explant.8.1

Explant.9.1

Explant.10.1

Explant.11.1

Explant.12.1

Explant.13.1

Explant.14.1

Explant.15.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x
p
la

n
t.
1

E
x
p
la

n
t.
2

E
x
p
la

n
t.
3

E
x
p
la

n
t.
4

E
x
p
la

n
t.
5

E
x
p
la

n
t.
6

E
x
p
la

n
t.
7

E
x
p
la

n
t.
8

E
x
p
la

n
t.
9

E
x
p
la

n
t.
1
0

E
x
p
la

n
t.
1
1

E
x
p
la

n
t.
1
2

E
x
p
la

n
t.
1
3

E
x
p
la

n
t.
1
4

E
x
p
la

n
t.
1
5

E
x
p
la

n
t.
1
.1

E
x
p
la

n
t.
2
.1

E
x
p
la

n
t.
3
.1

E
x
p
la

n
t.
4
.1

E
x
p
la

n
t.
5
.1

E
x
p
la

n
t.
6
.1

E
x
p
la

n
t.
7
.1

E
x
p
la

n
t.
8
.1

E
x
p
la

n
t.
9
.1

E
x
p
la

n
t.
1
0
.1

E
x
p
la

n
t.
1
1
.1

E
x
p
la

n
t.
1
2
.1

E
x
p
la

n
t.
1
3
.1

E
x
p
la

n
t.
1
4
.1

E
x
p
la

n
t.
1
5
.1

Explant.1

Explant.2

Explant.3

Explant.4

Explant.5

Explant.6

Explant.7

Explant.8

Explant.9

Explant.10

Explant.11

Explant.12

Explant.13

Explant.14

Explant.15

Explant.1.1

Explant.2.1

Explant.3.1

Explant.4.1

Explant.5.1

Explant.6.1

Explant.7.1

Explant.8.1

Explant.9.1

Explant.10.1

Explant.11.1

Explant.12.1

Explant.13.1

Explant.14.1

Explant.15.1

A

B

r = 0.944, p<0.001

n=1020

Transcript counts (fresh samples)

T
ra

n
s
c
ri

p
t 

c
o

u
n
ts

 (
F

F
P

E
 s

a
m

p
le

s
)

C

Transcript counts (fresh samples) Transcript counts (FFPE samples)

N
u
m

b
e

r 
o

f 
tr

a
n
s
c
ri

p
ts

N
u
m

b
e

r 
o

f 
tr

a
n
s
c
ri

p
ts

FFPE samples

F
re

s
h
 s

a
m

p
le

s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x
p
la

n
t.
1

E
x
p
la

n
t.
2

E
x
p
la

n
t.
3

E
x
p
la

n
t.
4

E
x
p
la

n
t.
5

E
x
p
la

n
t.
6

E
x
p
la

n
t.
7

E
x
p
la

n
t.
8

E
x
p
la

n
t.
9

E
x
p
la

n
t.
1
0

E
x
p
la

n
t.
1
1

E
x
p
la

n
t.
1
2

E
x
p
la

n
t.
1
3

E
x
p
la

n
t.
1
4

E
x
p
la

n
t.
1
5

E
x
p
la

n
t.
1
.1

E
x
p
la

n
t.
2
.1

E
x
p
la

n
t.
3
.1

E
x
p
la

n
t.
4
.1

E
x
p
la

n
t.
5
.1

E
x
p
la

n
t.
6
.1

E
x
p
la

n
t.
7
.1

E
x
p
la

n
t.
8
.1

E
x
p
la

n
t.
9
.1

E
x
p
la

n
t.
1
0
.1

E
x
p
la

n
t.
1
1
.1

E
x
p
la

n
t.
1
2
.1

E
x
p
la

n
t.
1
3
.1

E
x
p
la

n
t.
1
4
.1

E
x
p
la

n
t.
1
5
.1

Explant.1

Explant.2

Explant.3

Explant.4

Explant.5

Explant.6

Explant.7

Explant.8

Explant.9

Explant.10

Explant.11

Explant.12

Explant.13

Explant.14

Explant.15

Explant.1.1

Explant.2.1

Explant.3.1

Explant.4.1

Explant.5.1

Explant.6.1

Explant.7.1

Explant.8.1

Explant.9.1

Explant.10.1

Explant.11.1

Explant.12.1

Explant.13.1

Explant.14.1

Explant.15.1

Correlation coefficient



182 
 

 
Figure 3.6. NanoString gene expression assay had robust reproducibility across 

different RNA input quantities. 
Four RNA samples from four unique clinical liver biopsies were analyzed using 

NanoString with different RNA input quantities (50, 100, 200, 400 ng). The results for 50 

(red diamond), 200 (black square), and 400 (green triangle) ng of RNA input quantities 

were represented on the y-axis in relation to corresponding results along the x-axis for the 

amount of 100 ng. The scatter plot demonstrated normalized transcript counts of 68 hepatic 

fibrosis-associated genes were strongly correlated in repeat runs with different RNA input 

quantities. 
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Figure 3.7. NanoString gene expression assay could detect fractional fold-changes 

across different RNA input quantities. 

To show the fractional fold-changes of different RNA input quantities, the transcript 

counts of the four samples in Figure 3.6 were preprocessed without housekeeping gene 

normalization. The slopes correlated closely with the expected fold-change values of 0.5 

(100ng input vs. 50ng input), 2 (100ng input vs. 200ng input), and 4 (100ng input vs. 

400ng input). 
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Figure 3.8. NanoString gene expression assay had robust intra-operator 

reproducibility. 

Six RNA samples from six unique clinical liver biopsies were analyzed twice by one 

operator in different days. The scatter plot showed normalized transcript counts of 68 

hepatic fibrosis-associated genes were strongly correlated in repeat runs by the same 

operator. The gray dashed lines represented 95% confidence interval of the regression line. 
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Figure 3.9. NanoString gene expression assay had robust inter-operator 

reproducibility. 

Four RNA samples from four unique clinical liver biopsies were analyzed twice by two 

operators with different technical experience in different days. The scatter plot showed 

normalized transcript counts of 68 hepatic fibrosis-associated genes were strongly 

correlated in repeat runs by different operators. The normalized transcript counts produced 

by operator 1 (graduate student) were represented on the x-axis in relation to corresponding 

normalized transcript counts along the y-axis produced by operator 2 (molecular pathology 

technologist). The gray dashed lines represented 95% confidence interval of the regression 

line. 
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Figure 3.10. NanoString gene expression assay had robust inter-lot reagents 

reproducibility. 

Two RNA samples from two unique clinical liver biopsies were analyzed across three 

different lots of reagents by the same operator in different days. The scatter plot showed 

normalized transcript counts of 68 hepatic fibrosis-associated genes were strongly 

correlated in repeat runs using different lots of reagents. 
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Figure 3.11. The fibrosis gene signature increased progressively with histological 

fibrosis stage. 
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(Figure 3.11 continued). The fibrosis gene sets were grouped based on biological 

function, including (A) extracellular matrix synthesis or cross-linking (23 genes), (B) 

inducing hepatic stellate cell and/or fibroblast and/or myofibroblast activation (17 genes), 

(C) collagen genes (8 genes), (D) inflammation genes (6 genes), and (E) hepatic progenitor 

cell markers (7 genes). (F) The expression of fibrosis genes predicts progression to 

advanced fibrosis and poor outcomes. Error bars represented mean ± standard error of 

mean. 
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4.1 – Introduction 

Currently, there are more than two billion patients worldwide who suffer from 

chronic liver disease. The most common causes are non-alcoholic fatty liver disease 

(NAFLD), viral hepatitis B, alcoholic liver disease, and viral hepatitis C (HCV) with 

prevalence rates of 25.24%, 3.61%, 2.05%, and 1.00% worldwide, respectively (1-4). 

Patients with chronic liver disease can behave as rapid or slow/no progressors, with time 

progression to advanced fibrosis ranging from a few years to several decades (5, 6). As 

advanced fibrosis is the common final pathway that leads to poor clinical outcomes (liver 

decompensation, need for liver transplantation, and premature death), recent clinical 

guidelines strongly recommend that not only patients with advanced fibrosis should be 

considered for lifestyle changes or pharmacotherapy, but also patients with early fibrosis (F0 

or F1) who are at high-risk of progressing to advanced fibrosis (7, 8). Previous studies 

identified several common risk factors of fibrosis progression in chronic liver diseases, such 

as older age, excessive alcohol consumption, and obesity (9-11). However, no single clinical 

variable can reliably predict high-risk for progression to advanced fibrosis and poor clinical 

outcomes in individual patients especially when the patient is at early stage. 

Histopathology assessment of liver biopsy remains the gold standard for staging liver 

fibrosis that provides clinically important diagnostic information; but it cannot provide risk 

stratification for progressing to advanced fibrosis or poor clinical outcomes (12). This is 

because liver fibrosis is a heterogeneous condition, with intervals of progression and 

regression, and thus patients with the same histological fibrosis stage could present different 

histopathological changes and clinical outcomes over time. The inherent limitations of 
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histopathology have led to the development of non-invasive diagnostic tests (imaging 

methods, serum biomarkers), but these tests can only detect fibrosis if present at the time of 

diagnostic tests but cannot predict disease progression (13). Therefore, there is an urgent 

clinical need for a surrogate biomarker to predict fibrosis progression and poor clinical 

outcomes in patients with early stage chronic liver disease. 

Increasing evidence indicated that genetic factors have a major influence on fibrosis 

progression, but less is known of the relationship between fibrosis progression and gene 

expression alterations (14). Previous studies showed that mRNA expression of several 

fibrosis genes can predict fibrosis progression in early fibrosis stages (15, 16). However, 

these findings were conducted in small cohorts of patients, thus remain unreplicated and  also 

it is unknown if these genes can predict clinical outcomes (15, 16). In Chapter 2, I identified 

and validated a common 48-gene signature with over 93% of accuracy for advanced liver 

fibrosis, independent of etiologies, by microarray based whole genome transcriptomics. 

However, the prognostic value of the 48-gene signature is unknown. Patients with recurrent 

HCV after liver transplantation are known to have accelerated fibrosis progression, thus 

sequential biopsies from recurrent HCV can serve as a human model for progressive liver 

fibrosis. In this chapter, using post-transplant patients with recurrent HCV before the era of 

new direct-acting antiviral treatments, I aim to analyze if the 48-gene signature can predict 

progression to advanced fibrosis, liver decompensation, and liver-related death.  

4.2 – Materials and methods 

4.2.1 – Patients 

This research used post-transplant patients with recurrent HCV as a human disease 
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model for fibrosis progression. Post-transplant patients with HCV recurrence from 

Edmonton and Toronto between 2004 and 2014 were identified (Figure 4.1). Patients were 

retrospectively included if they had an early (median: 6-months) and late (median: 2-3 years) 

liver biopsy post-transplantation with leftover archived formalin-fixed paraffin-embedded 

(FFPE) tissue. A total of 62 Edmonton patients and 60 Toronto patients were included in the 

study. The study was approved by the institutional review board of the University of Alberta 

and University of Toronto. 

4.2.2 – Treatment of recurrent viral hepatitis C 

 Recurrent HCV infection was defined as the detection of HCV RNA in the serum 

and/or liver after liver transplantation. Prior to April 2014, recurrent HCV patients were 

treated with Peginterferon and/or Ribavirin with or without Boceprevir. After April 2014, 

recurrent HCV patients were treated with Sofosbuvir-containing regimens. Sustained 

virologic response (SVR) was defined as undetectable serum HCV RNA at 24 weeks after 

completion of Peginterferon and/or Ribavirin with or without Boceprevir therapy (17). For 

patients who were treated with Sofosbuvir-containing regimens, SVR was defined as 

undetectable serum HCV RNA at 12 weeks after completion of therapy (17). 

4.2.3 – Histopathological assessment 

Histopathological evaluation of representative stained slides was independently 

performed by liver pathologists according to the Metavir classification system to grade and 

stage recurrent HCV disease (18). Scores that were not provided as an integer were rounded 

in the analysis to a higher grade or stage (e.g., stage 0-1 was rounded to 1 and stage 1-2 was 

rounded to 2) (19). All histopathological evaluations were blinded to the clinical and 
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molecular data. 

4.2.4 – RNA isolation 

Reeda Gill assisted with the RNA isolation. One to three consecutive 20-µm sections 

were obtained from each clinical liver biopsy with equipment sterilization with RNase away 

reagent (Ambion, Carlsbad, CA) and microtome blade replacement between blocks. Sections 

were then taken immediately into a sterile 1.5-mL DNase/RNase free microcentrifuge tube 

for subsequent RNA extraction using a RecoverAll Total Nucleic Acid Isolation Kit 

(Ambion, Carlsbad, CA). Precipitated and dried RNA was dissolved in DNase/RNase-free 

distilled water and the concentration and quality were measured by NanoDrop 2000 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA). 

4.2.5 – NanoString gene expression quantification 

This chapter analyzed 52 genes. Of the 52 genes, 48 were up-regulated in advanced 

liver fibrosis (discovered in Chapter 2) and four were housekeeping genes (Table 4.1). 

Oligonucleotide probe sequences of 52 genes were designed and synthesized by Integrated 

DNA Technologies (Coralville, IA) (Table 4.1). Probes were hybridized to 60-100 ng of total 

RNA for 18 hours at 67 degrees. After hybridization, excess probes were removed and 

hybridized probes were immobilized and aligned on the streptavidin-coated cartridge by the 

nCounter Prep Station (NanoString Technologies, Seattle, WA). Gene expression was 

quantified by the nCounter Digital Analyzer (NanoString Technologies, Seattle, WA). 

4.2.6 – NanoString data preprocessing 

Quality control and normalization of raw NanoString transcript counts were 
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performed by nSolver Analysis Software version 4.0 (NanoString Technologies, Seattle, 

WA). Background noise was adjusted by subtracting the geometric mean of six internal 

negative controls of each sample. Genes with transcript counts less than the geometric mean 

of the negative controls were floored to a value of 1. After background noise adjustment, 

transcript counts were normalized with the geometric mean of the six internal positive 

controls, followed by normalization to the geometric mean of four housekeeping genes in 

each sample. Two lots of NanoString reagents were utilized during the study. Thus, two 

consistent reference samples were analyzed in each lot for lot-to-lot normalization.  

4.2.7 – Study endpoint 

The study endpoint was progression to adverse outcomes, defined as progressed to 

any one of the following: advanced fibrosis, liver decompensation, need for liver 

transplantation, or liver-related death. Progression to advanced fibrosis was defined as 

Metavir fibrosis stage 3 or 4 in late or any other follow-up biopsies or Fibroscan >10.9 kPa 

in follow-up clinical visits (20). Liver decompensation was defined as diagnosis of any of 

the following: ascites, hepatic encephalopathy, variceal bleeding, or hepatorenal syndrome 

(21). Liver-related death was defined as death caused by liver failure: nearest liver function 

test with total bilirubin > 50 umol/L and international normalized ratio (INR) > 1.7 before 

death (22, 23). The time to endpoint was calculated using the date of biopsy to an event. 

4.2.8 – Statistical analysis 

Aggregate gene set expression was determined for each biopsy by calculating the 

geometric mean of the normalized transcript counts of 48 fibrosis genes (48-gene signature). 

Continuous variables were presented as median and interquartile range (IQR) and categorical 
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variables were presented as number and percentage. All data were compared between groups 

using Mann-Whitney U-test for continuous variables and Fisher’s exact test for categorical 

variables. Survival analyses were performed after biopsies with the Kaplan–Meier method 

using a log-rank test and univariate and multivariate models with Cox regression method. 

The assumption of proportional hazards over time was verified using the log–log graphic 

method and met by all covariates. Potential linearity of covariates was investigated by 

collinearity diagnostics before multivariate survival analysis. All tests with a two-sided p-

value <0.05 were considered significant. All analyses and figures were performed and 

generated using the SPSS 25 statistical software (IBM, Armonk, NY, USA), Excel 2010 

(Microsoft Corporation, Redmond, WA), or R-program (version 3.3.2; http://www.r-

project.org) with the ggplot2 package. 

4.3 – Results 

4.3.1 – Patient characteristics 

 This study analyzed 62 Edmonton and 60 Toronto patients with recurrent HCV after 

liver transplantation (Figure 4.1). Table 4.2 summarized the clinical characteristics of 

Edmonton and Toronto patients. Median age at transplantation was 54.9 and 58.1 years old 

for the Edmonton and Toronto patients, respectively. Fifty (80.6%) Edmonton patients had 

no or mild fibrosis (F0 or F1) and 12 (19.4%) had moderate fibrosis (F2) in early biopsy. 

Fifty-five (91.7%) Toronto patients had no or mild fibrosis, 4 (6.7%) had moderate fibrosis, 

and 1 (1.7%) had advanced fibrosis (F3) in early biopsy. There were no significant 

differences between Edmonton and Toronto patients with respect to fibrosis stage in both 

early and late biopsies (p=0.12, 0.09, respectively). However, Edmonton patients had 

http://www.r-project.org/
http://www.r-project.org/
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significantly longer follow-up period than Toronto patients (median 8.4 vs. 3.1 years, 

p<0.001), and this resulted in more Edmonton patients with progression to adverse outcomes 

compared to Toronto patients (41.9% vs. 13.3%, p=0.001). In this chapter, progressed to 

adverse outcomes refer to development of any of the following during follow-up: progression 

to advanced fibrosis, liver decompensation, need for liver transplantation, or liver-related 

death. There was also heterogeneity between patients from two centers with respect to 

immunosuppressive therapy and HCV genotype (Table 4.2). These heterogeneities may help 

to ensure that the 48-gene signature has real-world applicability across heterogeneous 

populations of recipients with different drug treatments and HCV genotype. 

4.3.2 – RNA quantity, quality and NanoString quality control 

Adequate RNA was isolated from all 184 liver tissues for NanoString gene 

expression assay. The quality (A260/A280 spectrophotometry ratio) of the isolated RNA was 

between 1.65 and 2.05, which met manufacturer-recommended specifications. No quality 

control or normalization flags were encountered during nSolver analysis for any of the 

samples. 

4.3.3 – Distribution of the histological fibrosis stage and the 48-gene signature in 

Edmonton early biopsies 

 Of 62 Edmonton patients, 32% (6 of 19) with F0 fibrosis, 35% (11 of 31) with F1 

fibrosis, and 75% (9 of 12) with F2 fibrosis in early biopsy progressed to adverse outcomes. 

Biopsies with a 48-gene signature greater than 64.36 (the median of 48-gene signature in 62 

Edmonton early biopsies) were assigned as having a high 48-gene signature (Figure 4.2A). 
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There were significantly more patients with a high 48-gene signature progressed to adverse 

outcomes compared to patients with a low 48-gene signature (65% vs. 19%, p=0.001, Figure 

4.2B). When only patients with F0 or F1 fibrosis were analyzed, there were also significantly 

more patients with a high 48-gene signature progressed to adverse outcomes compared to 

patients with a low 48-gene signature (50% vs. 21%, p=0.040, Figure 4.2B). However, the 

percentage of patients progressed to adverse outcomes were similar between F0 and F1 

fibrosis in early biopsy (32% vs. 35%, p=1.00). 

Of 62 Edmonton patients, progressors (patients who progressed to adverse outcomes) 

had significantly higher 48-gene signature and higher histological fibrosis stage compared to 

the non-progressors in early biopsy (p=0.003 and 0.048, respectively) (Figure 4.3A and 

4.3B). Of the 50 Edmonton patients with F0 or F1 fibrosis in early biopsy, progressors had 

significantly higher 48-gene signature compared to non-progressors (p=0.013, Figure 4.2C), 

but similar histological fibrosis stage between progressors and non-progressors (p=0.779, 

Figure 4.2D). This showed histological fibrosis stage cannot predict adverse outcomes in 

patients with F0 or F1 fibrosis. 

 Of the 12 Edmonton patients with F2 fibrosis in early biopsy, there were significantly 

more patients with a high 48-gene signature progressed to adverse outcomes compared to 

patients with a low 48-gene signature (100% vs. 0%, p=0.005, Figure 4.2B). Moreover, 

progressors had significantly higher 48-gene signature compared to non-progressors 

(p=0.009, Figure 4.4). This showed the 48-gene signature could accurately classify patients 

with the same histological fibrosis stage into distinct prognostic categories, thus providing 

additional prognostic information. 
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4.3.4 – The 48-gene signature in Edmonton early biopsies with F0 or F1 fibrosis 

predicts adverse outcomes, but histological fibrosis stage cannot 

Edmonton patients with a high 48-gene signature and higher fibrosis stage in early 

biopsy had significantly higher probability of progression to adverse outcomes during the 

follow-up period while taking time into account in Kaplan-Meier analysis (log-rank p<0.001 

and 0.001, respectively) (Figure 4.5A and 4.5B). When only the patients with F0 or F1 

fibrosis were analyzed, patients with a high 48-gene signature had significantly higher 

probability of progression to adverse outcomes compared to patients with a low 48-gene 

signature (50% vs. 21%, log-rank p=0.030, Figure 4.6A), but histological assessment 

comparisons between F0 and F1 fibrosis patients showed no statistically significant 

differences (32% vs. 35%, log-rank p=0.482, Figure 4.6B). This showed the 48-gene 

signature can predict adverse outcomes earlier than histology. 

 Of the 12 Edmonton patients with F2 fibrosis in early biopsy, all patients with a high 

48-gene signature progressed to adverse outcomes (100% vs. 0%, log-rank p=0.011, Figure 

4.7). 

4.3.5 – Variables associated with progression to adverse outcomes 

Univariate and multivariate Cox regression analyses were used to analyze potential 

variables for progression to adverse outcomes. Univariate analysis revealed Edmonton 

patients with older age at transplantation, older donor age, higher Metavir fibrosis stage and 

a high 48-gene signature in early biopsy were significantly associated with increased risk for 

progression to adverse outcomes, whereas SVR was significantly associated with decreased 

risk for progression to adverse outcomes (Table 4.3). Histological activity score was not 
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significantly associated with progression to adverse outcomes (HR=1.87; 95% CI, 0.80-4.38; 

p=0.15). 

Multivariate analyses included all variables with a p-value <0.05 in univariate 

analysis (recipient age at transplantation, donor age, HCV treatment response, Metavir 

fibrosis stage in early biopsy, and 48-gene signature in early biopsy). Due to limited number 

of patients progressed to adverse outcomes (n=26), multivariate models were limited to three 

variables to avoid model overfitting. To analyze the effect of 48-gene signature predicting 

progression to adverse outcomes, six models were built: 48-gene signature in early biopsy  

with recipient age at transplantation and Metavir fibrosis stage in early biopsy (model 1); 48-

gene signature in early biopsy with donor age and Metavir fibrosis stage in early biopsy 

(model 2); 48-gene signature in early biopsy with recipient age at transplantation and donor 

age (model 3); 48-gene signature in early biopsy with recipient age at transplantation and 

HCV treatment (model 4); 48-gene signature in early biopsy with donor age and HCV 

treatment (model 5); 48-gene signature in early biopsy with HCV treatment and Metavir 

fibrosis stage in early biopsy (model 6) (Table 4.3). A high 48-gene signature was 

significantly and independently associated with progression to adverse outcomes in all six 

multivariate models. 

Multivariate analysis repeated with all variables with p<0.05 in univariate analysis 

provided the same conclusions as above. A high 48-gene signature was the most significant 

independent predictor for progression to adverse outcomes (HR=4.47; 95% CI, 1.70-11.78; 

p=0.002) (Table 4.4). 
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4.3.6 – Distribution of the histological fibrosis stage and the 48-gene signature in 

Edmonton late biopsies 

Of the 62 Edmonton patients, 14% (1 of 7) with F0 fibrosis, 19% (4 of 21) with F1 

fibrosis, and 43% (10 of 23) with F2 fibrosis in late biopsy had progressed to adverse 

outcomes. Using the cutoff (48-gene signature = 64.36) derived in Edmonton early biopsies, 

Edmonton late biopsies with a 48-gene signature greater than 64.36 were assigned as having 

a high 48-gene signature (Figure 4.8A). There were significantly more patients with a high 

48-gene signature progressed to adverse outcomes compared to patients with a low 48-gene 

signature (62% vs. 12%, p<0.001). When only patients with F0, F1, or F2 fibrosis were 

analyzed, there were also significantly more patients with a high 48-gene signature 

progressed to adverse outcomes compared to patients with a low 48-gene signature (48% vs. 

8%, p=0.002). However, the percentage of patients progressed to adverse outcomes were 

similar across F0, F1, and F2 fibrosis in late biopsy (14%, 19%, and 43%, respectively, 

p=0.149). 

Of the 62 Edmonton patients, progressors had significantly higher 48-gene signature 

and histological fibrosis stage compared to non-progressors in late biopsies (both p<0.001, 

Figure 4.9A and 4.9B). When only patients with F0-F2 fibrosis were analyzed, progressors 

had significantly higher 48-gene signature compared to non-progressors (p<0.001, Figure 

4.8B), but progressors only had a marginally significant higher histological fibrosis stage 

compared to non-progressors (p=0.052) (Figure 4.8C). When only patients with F0 or F1 

fibrosis were analyzed, progressors had a marginally significant higher 48-gene signature 

compared to non-progressors (p=0.051, Figure 4.8D), but similar histological fibrosis stage 

between progressors vs. non-progressors (p=0.780, Figure 4.8E). These results supported 
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that the 48-gene signature can predict adverse outcomes earlier than histology. 

4.3.7 – The 48-gene signature in Edmonton late biopsies without advanced 

fibrosis predicts adverse outcomes, but histological fibrosis stage cannot 

Here, patients with F0-F2 fibrosis in late biopsy were analyzed because of the small 

sample size and events if only include patients with F0 or F1 fibrosis (n=28, events=5). 

Patients with a high 48-gene signature had significantly higher probability of progression to 

adverse outcomes compared to patients with a low 48-gene signature while taking time into 

account in Kaplan-Meier analysis (48% vs. 8%, log-rank p=0.003, Figure 4.10A), but 

histological assessment comparisons between F0, F1, and F2 fibrosis patients showed no 

statistically significant differences (14%, 19%, and 43%, respectively, log-rank p=0.208, 

Figure 4.10B). This showed the 48-gene signature can early predict adverse outcomes, but 

histological fibrosis stage cannot. 

4.3.8 – Validation of the 48-gene signature in Toronto early biopsies 

Of 60 Toronto patients, 9% (2 of 22) with F0 fibrosis, 15% (5 of 33) with F1 fibrosis, 

and 0% (0 of 4) with F2 fibrosis in early biopsy progressed to adverse outcomes during 

follow-up. Using the cutoff (48-gene signature = 64.36) derived in Edmonton early biopsies, 

Toronto early biopsies with a 48-gene signature greater than 64.36 were assigned as having 

a high 48-gene signature (Figure 4.11A). There were significantly more patients with a high 

48-gene signature progressed to adverse outcomes compared to patients with a low 48-gene 

signature (27% vs. 3%, p=0.009) (Figure 4.11B). When only patients with F0 or F1 fibrosis 

were analyzed, there were also significantly more patients with a high 48-gene signature 
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progressed to adverse outcomes compared to patients with a low 48-gene signature (25% vs. 

3%, p=0.035) (Figure 4.11B). However, the percentage of patients progressed to adverse 

outcomes were similar between F0 and F1 fibrosis (9% vs. 15%, p=0.689). 

Of 60 Toronto patients, progressors had significantly higher 48-gene signature 

compared to the non-progressors in early biopsies (p=0.002, Figure 4.12A), but similar 

histological fibrosis stage (p=0.404, Figure 4.12B). When only patients with F0 or F1 fibrosis 

were analyzed, progressors still had significantly higher 48-gene signature compared to non-

progressors (p=0.008, Figure 4.11C), but similar histological fibrosis stage between 

progressors vs. non-progressors (p=0.513, Figure 4.11D). These validated results showed 

that the 48-gene signature can predict adverse outcomes in patients earlier than histology. 

4.4 – Discussion 

This chapter showed for the first-time using patients with recurrent HCV after liver 

transplantation as a disease model for fibrosis progression, a 48-fibrosis gene signature in 

liver tissue can predict adverse outcomes (development of advanced fibrosis, liver 

decompensation, need for liver transplantation, or liver-related death) during follow-up. 

Early prediction of advanced fibrosis has been recognized as an effective strategy to 

substantially impact prognosis in patients with chronic liver disease (24). However, 

histopathology assessment of liver biopsy is poorly predictive for advanced fibrosis and 

liver-related outcomes in early disease stage. This 48-gene signature test can provide 

personalized risk stratification for fibrosis progression and poor liver-related outcomes that 

cannot be obtained by histology and the test can be easily implemented into a clinical assay 

platform. 
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Early prognostic prediction for patients with chronic liver disease is important in 

clinical management as patients at high-risk should be considered for lifestyle changes or 

timely treatment before development of advanced fibrosis. The importance of early 

diagnosing advanced fibrosis was indicated in a phase II anti-fibrotic drug trial. Simtuzumab, 

a drug targeting LOXL2 to prevent cross-linkage of collagen, was recently found ineffective 

in decreasing fibrosis in non-alcoholic steatohepatitis and HCV patients with advanced 

fibrosis (25, 26). One explanation of the failure is that these patients were too advanced and 

were not amenable to fibrinolysis after inhibition of collagen cross-linkage. Mauro et al. also 

reported regression of fibrosis was unlikely in HCV patients with cirrhosis and clinically 

significant portal hypertension even after successful antiviral therapy (27). These results 

showed the importance of predicting advanced fibrosis early and timely clinical management 

before development of advanced fibrosis. The 48-gene signature could serve as a clinical 

surrogate biomarker test to early identify high-risk patients who may benefit from the 

upcoming antifibrotic drug treatments to prevent progression to advanced fibrosis and poor 

liver-related outcomes.  

 Many previous studies had discovered gene expression profile associated with 

advanced fibrosis in liver tissue from patients with chronic liver diseases (28-32). However, 

to the best of my knowledge, only three studies analyzed the gene expression profile in liver 

tissue with HCV to predict fibrosis progression (15, 33, 34). Using microarray gene 

expression profiling, Smith et al. found recurrent HCV patients with early progressive 

fibrosis had up-regulated expression markers of myofibroblasts compared to patients without 

progressive fibrosis (15). Similarly, Munshaw et al. found the expression of 

butyrylcholinesterase in hepatocyte decreased before the onset of advanced fibrosis (33). 
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Marcolongo et al. discovered a score based on seven single-nucleotide polymorphisms can 

predict fibrosis progression in males with HCV, but not in females (34). A major difference 

between this study and the earlier ones was the findings in this chapter were validated in an 

independent cohort of patients from a different center, rather than only a single center study 

without external validation. This ensured that the 48-gene signature have real-world 

applicability across heterogeneous populations of patients. 

This study had two limitations that were important to acknowledge. First, the follow-

up time after transplantation for the Toronto patients is relatively short (median 3.1 years) 

and this resulted in limited number of events. Validation in another independent data set with 

longer follow-up period should be performed to assure the confidence in the results. Second, 

I used patients with recurrent HCV as a disease model because these patients have 

accelerated fibrosis progression compared to other chronic liver diseases (35). Future studies 

should assess the 48-gene signature in other liver diseases, especially in NAFLD, as currently 

there are no baseline clinical, histologic, or biochemical variables that could predict NAFLD 

progression and the high prevalence of this disease globally (36). 

This chapter showed using patients with recurrent HCV after transplantation as a 

disease model for fibrosis progression, the 48-gene signature was able to predict progression 

to advanced fibrosis and poor liver-related outcomes earlier than histology. This 48-gene 

signature may be incorporated and validated into future clinical studies of different chronic 

liver diseases for early prediction of fibrosis progression.
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Table 4.1. The list of 48-gene signature and four housekeeping genes 

Gene Official gene name Accession number Probe sequence 

ANTXR1 Anthrax toxin receptor 1 NM_018153.3 
GATGGGGGTCCAGCCTGCTACGGCGGATTTGACCT
GTACTTCATTTTGGACAAATCAGGAAGTGTGCTGC
ACCACTGGAATGAAATCTATTACTTTGTGG 

AQP1 Aquaporin 1 NM_198098.1 
CTGGGATTCTACCGTAATTGCTTTGTGCCTTTGGGC
ACGGCCCTCCTTCTTTTCCTAACATGCACCTTGCTC
CCAATGGTGCTTGGAGGGGGAAGAGATC 

BICC1 
BicC family RNA binding 
protein 1 

NM_001080512.1 
CACGGTCATCATATGTCAACATGCAGGCATTTGAC
TATGAACAGAAGAAGCTATTAGCCACCAAAGCTAT
GTTAAAGAAACCAGTGGTGACGGAGGTCAG 

C1orf198 
Chromosome 1 open reading 
frame 198 

NM_001136495.1 
CTCAACAAGCCCAATATTCCCTCCAAGTTCTTCTTG
GTGCTGAGGGCTGTAGGAATTATTGAAAGCTTCTG
CCTCACTTAGTATCGTCTGGGGCCCAGCA 

C7 Complement component 7 NM_000587.2 
ATGCTTTTGAAACACAGTCCTGTGAACCTACAAGA
GGATGTCCAACAGAGGAGGGATGTGGAGAGCGTT
TCAGGTGCTTTTCAGGTCAGTGCATCAGCAA 

CACNA2D1 
Calcium channel, voltage-
dependent, alpha 2/delta 
subunit 1 

NM_000722.2 
TCTTATGATTATCAGTCAGTATGTGAGCCCGGTGCT
GCACCAAAACAAGGAGCAGGACATCGCTCAGCAT
ATGTGCCATCAGTAGCAGACATATTACAAA 

CD24 CD24 molecule NM_013230.2 
ATAGACACTCCCCGAAGTCTTTTGTTCGCATGGTCA
CACACTGATGCTTAGATGTTCCAGTAATCTAATAT
GGCCACAGTAGTCTTGATGACCAAAGTCC 

CDH11 
Cadherin 11, type 2, OB-
cadherin 

NM_001797.2 
CAGGAAGCCAAAGTCCCAGTGGCCATTAGGGTCCT
TGATGTCAACGATAATGCTCCCAAGTTTGCTGCCC
CTTATGAAGGTTTCATCTGTGAGAGTGATC 

COL14A1 Collagen, type XIV, alpha 1 NM_021110.1 
CTTTAAGTCCACCAAGAAACCTGAGAATCTCCAAT
GTTGGCTCTAACAGTGCTCGATTAACCTGGGACCC
AACTTCAAGACAGATCAATGGTTATCGAAT 

COL1A1 Collagen, type I, alpha 1 NM_000088.3 
CAGAAACATCGGATTTGGGGAACGCGTGTCAATCC
CTTGTGCCGCAGGGCTGGGCGGGAGAGACTGTTCT
GTTCCTTGTGTAACTGTGTTGCTGAAAGAC 
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COL1A2 Collagen, type I, alpha 2 NM_000089.3 
CCAATGGATTTGCTGGTCCTGCTGGTGCTGCTGGTC
AACCTGGTGCTAAAGGAGAAAGAGGAGCCAAAGG
GCCTAAGGGTGAAAACGGTGTTGTTGGTCC 

COL3A1 Collagen, type III, alpha 1 NM_000090.3 
TTGGCACAACAGGAAGCTGTTGAAGGAGGATGTTC
CCATCTTGGTCAGTCCTATGCGGATAGAGATGTCT
GGAAGCCAGAACCATGCCAAATATGTGTCT 

COL4A1 Collagen, type IV, alpha 1 NM_001845.4 
TGGGCTTAAGTTTTCAAGGACCAAAAGGTGACAAG
GGTGACCAAGGGGTCAGTGGGCCTCCAGGAGTACC
AGGACAAGCTCAAGTTCAAGAAAAAGGAGA 

COL4A2 Collagen, type IV, alpha 2 NM_001846.2 
GGCATTTCCTTGAAGGGAGAAGAAGGAATCATGG
GCTTTCCTGGACTGAGGGGTTACCCTGGCTTGAGT
GGTGAAAAAGGATCACCAGGACAGAAGGGAA 

COL4A4 Collagen, type IV, alpha 4 NM_000092.4 
TATATGGGAGTGGAAAGAAATACATTGGTCCTTGT
GGAGGAAGAGATTGCTCTGTTTGCCACTGTGTTCC
TGAAAAGGGGTCTCGGGGTCCACCAGGACC 

COL6A3 Collagen, type VI, alpha 3 NM_004369.3 
AGAGCAAGCGAGACATTCTGTTCCTCTTTGACGGC
TCAGCCAATCTTGTGGGCCAGTTCCCTGTTGTCCGT
GACTTTCTCTACAAGATTATCGATGAGCT 

CXCL6 Chemokine ligand 6 NM_002993.3 
AGTAACAAAAAAGACCATGCATCATAAAATTGCCC
AGTCTTCAGCGGAGCAGTTTTCTGGAGATCCCTGG
ACCCAGTAAGAATAAGAAGGAAGGGTTGGT 

DCDC2 
Doublecortin domain 
containing 2 

NM_016356.3 
GTCTGAAACACGGGGGGCAGCAGAAGTCCAAGAA
GATGAAGATACTCAGGTTGAGGTTCCAGTCGATCA
GAGGCCAGCAGAAATAGTAGACGAGGAAGAA 

DKK3 
Dickkopf WNT signaling 
pathway inhibitor 3 

NM_001018057.1 
AGTGAACCTGGCAAACTTACCTCCCAGCTATCACA
ATGAGACCAACACAGACACGAAGGTTGGAAATAA
TACCATCCATGTGCACCGAGAAATTCACAAG 

DTNA Dystrobrevin, alpha NM_032981.4 
GTTCCCAGATCAGCCTGAGAAGCCACTCAACTTGG
CTCACATCGTGCCTCCCAGACCTGTAACCAGCATG
AACGACACCCTGTTCTCCCACTCTGTTCCC 

EFEMP1 
EGF containing fibulin-like 
extracellular matrix protein 1 

NM_004105.3 
ACCTACGACAAACAAGTCCTGTAAGTGCAATGCTT
GTGCTCGTGAAGTCATTATCAGGACCAAGAGAACA
TATCGTGGACCTGGAGATGCTGACAGTCAG 
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EHF Ets homologous factor NM_012153.3 
ATTTAGAAAAAGGTGATGCATCCTCCTCACATAAG
CATCCATATGGCTTCGTCAAGGGAGGTGAACATTG
TTGCTGAGTTAAATTCCAGGGTCTCAGATG 

EPCAM 
Epithelial cell adhesion 
molecule 

NM_002354.1 
AGAAGAGCAAAACCTGAAGGGGCCCTCCAGAACA
ATGATGGGCTTTATGATCCTGACTGCGATGAGAGC
GGGCTCTTTAAGGCCAAGCAGTGCAACGGCA 

EPHA3 EPH receptor A3 NM_005233.5 
GAGGCCGGAAAGATGTTACCTTCAACATCATATGT
AAAAAATGTGGGTGGAATATAAAACAGTGTGAGC
CATGCAGCCCAAATGTCCGCTTCCTCCCTCG 

FAM169A 
Family with sequence 
similarity 169, member A 

NM_015566.2 
AACTTGAAGACGTGCCATTTTCACAGAATGCAGGA
CAGAAGAATCAGTCAGAGGAGCAGTCTGAAGCAT
CTTCCGAGCAACTGGATCAGTTTACACAATC 

FAT1 FAT atypical cadherin 1 NM_005245.3 
ACCCAACCAGTGGTGTGATAGTGTTAACTGGTAGA
CTTGATTACCTAGAGACCAAGCTCTATGAGATGGA
AATCCTCGCTGCGGACCGTGGCATGAAGTT 

FBN1 Fibrillin 1 NM_000138.3 
CACTGAAGGCAGCTTCAAATGTCTGTGTCCAGAAG
GGTTTTCCTTGTCCTCCAGTGGAAGAAGGTGCCAA
GATTTGCGAATGAGCTACTGTTATGCGAAG 

GPRC5B 
G protein-coupled receptor, 
class C, group 5, member B 

NM_016235.1 
GCCCTCTGGGTGATGAAGTGACCATCACATTTGGA
AAGTGATCAACCACTGTTCCTTCTATGGGGCTCTTG
CTCTAATGTCTATGGTGAGAACACAGGCC 

GSN Gelsolin NM_000177.4 
GATGGGAAAATCTTTGTCTGGAAAGGCAAGCAGGC
AAACACGGAGGAGAGGAAGGCTGCCCTCAAAACA
GCCTCTGACTTCATCACCAAGATGGACTACC 

HEPH Hephaestin NM_138737.3 
CCAGCGTGCCTCACCTGGATCTACCATTCTCATGTA
GATGCTCCACGAGACATTGCAACTGGCCTAATTGG
GCCTCTCATCACCTGTAAAAGAGGAGCCC 

IGFBP7 
Insulin-like growth factor 
binding protein 7 

NM_001553.1 
CCCAGAAAAGCATGAAGTAACTGGCTGGGTGCTGG
TATCTCCTCTAAGTAAGGAAGATGCTGGAGAATAT
GAGTGCCATGCATCCAATTCCCAAGGACAG 

ITGBL1 Integrin, beta-like 1 NM_004791.1 
GGTATATTTCTGGGGAGTTCTGTGACTGTGATGAC
AGAGACTGCGACAAACATGATGGTCTCATTTGTAC
AGGGAATGGAATATGTAGCTGTGGAAACTG 
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JAG1 Jagged 1 NM_000214.2 
TTGCTTGTGGAGGCGTGGGATTCCAGTAATGACAC
CGTTCAACCTGACAGTATTATTGAAAAGGCTTCTC
ACTCGGGCATGATCAACCCCAGCCGGCAGT 

KRT7 Keratin 7 NM_005556.3 
GGGAACCATGGGCAGCAATGCCCTGAGCTTCTCCA
GCAGTGCGGGTCCTGGGCTCCTGAAGGCTTATTCC
ATCCGGACCGCATCCGCCAGTCGCAGGAGT 

LAMB1 Laminin, beta 1 NM_002291.2 
TTGCCAGGAGCTGCTACCAAGATCCTGTTACTTTAC
AGCTTGCCTGTGTTTGTGATCCTGGATACATTGGTT
CCAGATGTGACGACTGTGCCTCAGGATA 

LTBP2 
Latent transforming growth 
factor beta binding protein 2 

NM_001401.3 
CCTAATGGCTAATCTGGCTGCTGCAGACTTCTTTGC
TGGGTTGGCCTACTTCTATCTCATGTTCAACACAGG
ACCCAATACTCGGAGACTGACTGTTAGC 

LUM Lumican NM_000428.2 
CATCTCTCCCAGCTTAGCCTCTGGCTGTAAGCTTCG
GTCATTGCCTCCATGCCCTTGCTTGGCTCAAGCACC
ACCAATCGCTTTAATGCTTCAGCCACCG 

MAP1B 
Microtubule-associated 
protein 1B 

NM_002345.3 
GCCATTATCCTACTCCAAGATCAAGCATTTGCGTTT
GGATGGCAATCGCATCTCAGAAACCAGTCTTCCAC
CGGATATGTATGAATGTCTACGTGTTGCT 

MAP2 
Microtubule-associated 
protein 2 

NM_005909.3 
CATATAGGATTATAGATACTTAAAGGAACACGTGG
GTGAGCGTGTGTGGGGGTACTAGAAGCTGATCTGA
TTGGTCCAACAGTTTGATGCTGAGTCATGC 

MOXD1 Monooxygenase, DBH-like 1 NM_001031699.1 
GATGCATTCCTCACCTGTGAAACTGTGATTTTTGCC
TGGGCTATTGGTGGAGAGGGCTTTTCTTATCCACCT
CATGTTGGATTATCCCTTGGCACTCCAT 

NALCN 
Sodium leak channel, non-
selective 

NM_052867.2 
TGGACGTGATCGTGGCGGCTAGCAACTACTACAAA
GGAGAAAACTTCAGGAGGCAGTACGACGAGTTCT
ACCTGGCGGAGGTGGCTTTTACAGTACTTTT 

NAV3 Neuron navigator 3 NM_014903.4 
CCAGCACTTCTTCTCTTTACTCTACAGCTGAAGAAA
AGGCTCATTCAGAGCAAATCCATAAACTGCGGAGA
GAGCTGGTTGCATCACAAGAAAAAGTTGC 

RCAN2 Regulator of calcineurin 2 NM_005822.3 
GTGTCCTCTAGTGGAAGAAATAGTAGGCTCCGCTA
TTCAGATGCAGAGCACTGCAGCATCCAGCCTTTCA
AAGCTGACTCTTCTCAATCATCTGTGGGTC 
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SH3YL1 
SH3 and SYLF domain 
containing 1 

NM_001159597.1 
AAAGGCCTTGCAATTCTGTCTGTGATCAAAGCCGG
GTTCCTGGTGACTGCCAGAGGAGGCAGCGGGATTG
TAGTGGCGCGCCTTCCAGATGGAAAATGGT 

SLC38A1 
Solute carrier family 38, 
member 1 

NM_001077484.1 
TCTATGACAACGTGCAGTCCGACCTCCTTCACAAA
TATCAGAGTAAAGATGACATTCTCATCCTGACAGT
GCGGCTGGCTGTCATTGTTGCTGTGATCCT 

SOX9 
SRY (sex determining region 
Y)-box 9 

NM_000346.2 
CAGTGGCCAGGCCAACCTTGGCTAAATGGAGCAGC
GAAATCAACGAGAAACTGGACTTTTTAAACCCTCT
TCAGAGCAAGCGTGGAGGATGATGGAGAAT 

THBS2 Thrombospondin 2 NM_003247.2 
AAACATCCTTGCAAATGGGTGTGACGCGGTTCCAG
ATGTGGATTTGGCAAAACCTCATTTAAGTAAAAGG
TTAGCAGAGCAAAGTGCGGTGCTTTAGCTG 

TMEM200A Transmembrane protein 200A NM_052913.2 
CCTTGTGGTTCCTTTGCCCAACACCAGTGAATCCTT
CCAGCCCGTCAGCACAGTGCTACCAAGGAATAATT
CCATTGGGGAGTCGTTGTCGAGTCAGTAC 

B2M* Beta-2-microglobulin NM_004048.2 
CGGGCATTCCTGAAGCTGACAGCATTCGGGCCGAG
ATGTCTCGCTCCGTGGCCTTAGCTGTGCTCGCGCTA
CTCTCTCTTTCTGGCCTGGAGGCTATCCA 

LDHA* Lactate dehydrogenase A NM_001165414.1 
AACTTCCTGGCTCCTTCACTGAACATGCCTAGTCCA
ACATTTTTTCCCAGTGAGTCACATCCTGGGATCCAG
TGTATAAATCCAATATCATGTCTTGTGC 

SNX17* Sorting nexin 17 NM_014748.2 
CTTTCCTTGTCCCCTGGGCTGGCTGCACAGAGGATT
GCCCCTTCTCTTTTCAGAGCTGGCCCTCGATGCCAA
ATTAGCATTTAGTATTTTGCACAAAGTC 

TBP* TATA box binding protein NM_001172085.1 
ACAGTGAATCTTGGTTGTAAACTTGACCTAAAGAC
CATTGCACTTCGTGCCCGAAACGCCGAATATAATC
CCAAGCGGTTTGCTGCGGTAATCATGAGGA 

* Housekeeping gene. 
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Table 4.2. Patient characteristics 

Characteristics Edmonton (n=62) Toronto (n=60) p-value 

Recipient age at transplantation (year), median (IQR) 54.9 (50.9-58.2) 58.1 (51.7-60.8) 0.10 

Recipient male, n (%) 47 (75.8) 43 (71.7) 0.68 

Donor age (year), median (IQR) 45.3 (27.3-53.8) 39.8 (25.1-54.0)A 0.42 

Donor male, n (%) 32 (51.6) 32 (55.2)B 0.86 

Early biopsy    

Time from transplantation (day), median (IQR) 183 (143-256) 182 (171-187) 0.59 

    Log10 HCV RNA at biopsy (IU/mL), median (IQR) 6.8 (6.2-7.3)C NA NA 

    Acute cellular rejection, n (%) 13 (21.0) NA NA 

    Metavir activity score, n (%)  NA NA 

        0 5 (8.1)   

        1 41 (66.1)   

        2 15 (24.2)   

        3 1 (1.6)   

    Metavir fibrosis stage, n (%)   0.12 

        0 19 (30.6) 22 (36.7)  

        1 31 (50.0) 33 (55.0)  

        2 12 (19.4) 4 (6.7)  

        3 0 (0) 1 (1.7)  

        4 0 (0) 0 (0)  

Late biopsy    

Time from transplantation (day), median (IQR) 727 (441-1208) 1141 (737-1454) <0.001 

Log10 HCV RNA at biopsy (IU/mL), median (IQR) 5.5 (0.0-6.8)D NA NA 

    Acute cellular rejection, n (%) 6 (9.7) NA NA 

    Metavir activity score, n (%)  NA NA 

        0 6 (9.7)   

        1 37 (59.7)   

        2 14 (22.6)   

        3 5 (8.1)   
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    Metavir fibrosis stage, n (%)   0.09 

        0 8 (12.9) 1 (1.7)  

        1 21 (33.9) 23 (38.3)  

        2 23 (37.1) 28 (46.7)  

        3 8 (12.9) 4 (6.7)  

        4 2 (3.2) 4 (6.7)  

Progress to adverse outcomes, n (%) 26 (41.9) 8 (13.3) 0.001 

Follow-up period (year), median (IQR) 8.4 (5.2-11.7) 3.1 (2.0-4.0) <0.001 

Immunosuppressive therapy, n (%)     

    Tacrolimus 54 (87.1) 17 (28.8)A <0.001 

    Prednisone 28 (45.2) 60 (100) <0.001 

    Mycophenolate 60 (96.8) 51 (85.0) 0.03 

HCV genotype, n (%)   0.01 

    1 54 (87.0) 39 (65.0)  

    Other 4 (6.5) 14 (23.3)  

    Unknown 4 (6.5) 7 (11.7)  

HCV treatment, n (%)  NA NA 

    Ribavirin 36 (58.1)   

    Peginterferon 33 (53.2)   

    Boceprevir 5 (8.1)   

    Sofosbuvir and ledipasvir 25 (40.3)   

Response to HCV treatment, n (%)  NA NA 

    Sustained virologic response 45 (72.6)   

    Non-response 4 (6.5)   

    Not treated 13 (21.0)   

IQR, interquartile range. NA, not available. Percentage might not add up to 100% because of rounding. 
A Data was not available for 1 patient. 
B Data was not available for 2 patients. 
C Data was not available for 29 patients. 
D Data was not available for 23 patients. 
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Table 4.3. Univariate and multivariate analyses of progression to adverse outcomes in 62 Edmonton patients (n=26 events) 

Variable HR 95% CI p-value 

Univariate analysis    

Recipient age at transplantation, year 1.09 1.00-1.19 0.04 

Recipient gender  

   Female (reference) 

   Male 

 

1.00 

0.94 

 

 

0.43-2.51 

 

 

0.94 

Donor age, year 1.06 1.03-1.09 <0.001 

Donor gender 

   Female (reference) 

   Male 

 

1.00 

0.92 

 

 

0.42-2.00 

 

 

0.83 

Tacrolimus 

   No (reference) 

   Yes 

 

1.00 

1.03 

 

 

0.31-3.46 

 

 

0.96 

Prednisone 

   No (reference) 

   Yes 

 

1.00 

1.32 

 

 

0.61-2.88 

 

 

0.48 

Mycophenolate 

   No (reference) 

   Yes 

 

1.00 

2.45 

 

 

0.30-20.00 

 

 

0.40 

HCV genotype 

   Other (reference) 

   Genotype 1 

 

1.00 

0.56 

 

 

0.13-2.43 

 

 

0.44 

Log10 HCV RNA at early biopsy1 1.16 0.66-2.03 0.60 

HCV treatment 

   No treatment (reference) 

   Non-response    

   Sustained virologic response 

 

1.00 

1.79 

0.37 

 

 

0.44-7.25 

0.14-0.995 

 

 

0.41 

0.049 

Acute cellular rejection (early biopsy) 

   No (reference) 

   Yes 

 

1.00 

1.51 

 

 

0.55-4.09 

 

 

0.42 
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Metavir activity score (early biopsy) 

   A0-A1 (reference) 

   A2-A3 

 

1.00 

1.87 

 

 

0.80-4.38 

 

 

0.15 

Metavir fibrosis stage (early biopsy) 

   F0-F1 (reference) 

   F2 

 

1.00 

4.40 

 

 

1.89-10.20 

 

 

0.001 

48-gene signature (early biopsy) 

  Low 48-gene signature (reference) 

  High 48-gene signature 

 

1.00 

4.90 

 

 

1.96-12.25 

 

 

0.001 

Multivariate analysis    

Model 1    

Recipient age at transplantation, year 1.07 0.99-1.14 0.08 

Metavir fibrosis stage (early biopsy) 

   F0-F1 (reference) 

   F2 

 

1.00 

3.80 

 

 

1.60-9.01 

 

 

0.002 

48-gene signature (early biopsy) 

  Low 48-gene signature (reference) 

  High 48-gene signature 

 

1.00 

4.83 

 

 

1.91-12.20 

 

 

0.001 

Model 2    

Donor age, year 1.04 1.01-1.07 0.005 

Metavir fibrosis stage (early biopsy) 

   F0-F1 (reference) 

   F2 

 

1.00 

2.31 

 

 

0.91-5.85 

 

 

0.08 

48-gene signature (early biopsy) 

  Low 48-gene signature (reference) 

  High 48-gene signature 

 

1.00 

4.29 

 

 

1.68-10.95 

 

 

0.002 

Model 3    

Recipient age at transplantation, year 1.07 0.99-1.15 0.08 

Donor age, year 1.05 1.03-1.09 <0.001 

48-gene signature (early biopsy) 

  Low 48-gene signature (reference) 

 

1.00 
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  High 48-gene signature 5.38 2.11-13.70 <0.001 

Model 4    

Recipient age at transplantation, year 1.06 0.99-1.14 0.09 

HCV treatment 

   No treatment (reference) 

   Non-response    

   Sustained virologic response 

 

1.00 

1.17 

0.59 

 

 

0.29-4.77 

0.23-1.53 

 

 

0.82 

0.28 

48-gene signature (early biopsy) 

  Low 48-gene signature (reference) 

  High 48-gene signature 

 

1.00 

4.45 

 

 

1.74-11.40 

 

 

0.002 

Model 5    

Donor age, year 1.05 1.02-1.08 0.001 

HCV treatment 

   No treatment (reference) 

   Non-response    

   Sustained virologic response 

 

1.00 

1.13 

0.82 

 

 

0.28-4.58 

0.31-2.16 

 

 

0.87 

0.69 

48-gene signature (early biopsy) 

  Low 48-gene signature (reference) 

  High 48-gene signature 

 

1.00 

4.53 

 

 

1.75-11.70 

 

 

0.002 

Model 6    

HCV treatment 

   No treatment (reference) 

   Non-response    

   Sustained virologic response 

 

1.00 

1.32 

0.69 

 

 

0.32-5.48 

0.26-1.81 

 

 

0.70 

0.44 

Metavir fibrosis stage (early biopsy) 

   F0-F1 (reference) 

   F2 

 

1.00 

3.59 

 

 

1.51-8.56 

 

 

0.004 

48-gene signature (early biopsy) 

  Low 48-gene signature (reference) 

  High 48-gene signature 

 

1.00 

4.12 

 

 

1.60-10.64 

 

 

0.003 
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1 Analyzed in 33 patients with available data. 

To avoid model over fitting, multivariate models were limited to three variables (number of events=26). In the multivariate 

analyses, the 48-gene signature was analyzed with all other significant variables in the univariate analyses. 
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Table 4.4. Multivariate analysis of progression to adverse outcomes including all variables with p<0.05 in univariate analyses 

Variable 
Multivariate analysis 

HR 95% CI p-value 

Recipient age at transplantation, year 1.08 1.00-1.16 0.048 

Donor age, year 1.05 1.01-1.08 0.005 

HCV treatment 

   No treatment (reference) 

   Non-response    

   Sustained virologic response 

 

1.00 

1.09 

0.61 

 

 

0.26-4.60 

0.23-1.62 

 

 

0.32 

0.91 

Metavir fibrosis stage (early biopsy) 

   F0-F1 (reference) 

   F2 

 

1.00 

2.61 

 

 

1.05-6.50 

 

 

0.04 

48-gene signature (early biopsy) 

  Low 48-gene signature (reference) 

  High 48-gene signature 

 

1.00 

4.47 

 

 

1.70-11.78 

 

 

0.002 
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Figure 4.1. Study design. 

Tx, transplant. 
  

HCV liver transplant recipients at University 

of Alberta Hospital between January 2004 to 

July 2014

62 recipients with two follow-up liver biopsies 

62 early biopsies (Median 183 days post tx)

62 late biopsies (Median 727 days post tx)

n=124 biopsies

62 early and 62 late biopsies subjected to 

gene signature assay

HCV liver transplant recipients at Toronto 

General hospital between January 2009  to 

December 2012

63 recipients with two follow-up liver biopsies 

63 early biopsies (Median 182 days post tx)

63 late biopsies (Median 1141 days post tx)

n=126 biopsies

60 early biopsies subjected to gene signature 

assay

Three recipients excluded due 

to missing histological data for 

early or late biopsy

Edmonton patients Toronto patients
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Figure 4.2. The distribution of the 48-gene signature and histological fibrosis stage in 

Edmonton early biopsies. 

(A) Edmonton early biopsies were sorted based on the 48-gene signature from low (blue) 

to high (red). (B) Patients with high 48-gene signature had significantly higher probability 

of progression to adverse outcomes. (C) Progressors had significantly higher 48-gene 

signature compared to non-progressors in patients with F0 or F1 fibrosis. (D) Histological 

fibrosis stage was similar between progressors and non-progressors in patients with F0 or 

F1 fibrosis. 
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Figure 4.3. Edmonton progressors had significantly higher (A) 48-gene signature and 

(B) histological fibrosis stage in early biopsy compared to non-progressors. 
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Figure 4.4. Of Edmonton patients with F2 fibrosis in early biopsy, progressors had 

significantly higher 48-gene signature compared to non-progressors. 
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Figure 4.5. Cumulative incidence of adverse outcomes in Edmonton patients 

stratified by (A) the 48-gene signature and (B) histological fibrosis stage in early 

biopsy. 
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Figure 4.6. Cumulative incidence of adverse outcomes in Edmonton patients 

stratified by (A) the 48-gene signature and (B) histological fibrosis stage in early 

biopsy with F0 or F1 fibrosis. 
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Figure 4.7. Cumulative incidence of adverse outcomes in Edmonton patients 

stratified by the 48-gene signature in early biopsy with F2 fibrosis. 
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Figure 4.8. The distribution of the 48-gene signature and histological fibrosis stage in 

Edmonton late biopsies. 

(A) Edmonton late biopsies were sorted based on the 48-gene signature from low (blue) to 

high (red). (B) Progressors had significantly higher 48-gene signature compared to non-

progressors in patients with F0, F1, or F2 fibrosis. (C) Progressors had a marginally 

significantly higher histological fibrosis stage than non-progressors in patients with F0, 

F1, or F2 fibrosis. (D) Progressors had a maraginally significantly higher 48-gene 

signature compared to non-progressors in patients with F0 or F1 fibrosis. (E) Histological 

fibrosis stage was similar between progressors and non-progressors in patients with F0 or 

F1 fibrosis. 
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Figure 4.9. Edmonton progressors had significantly higher (A) 48-gene signature and 

(B) histological fibrosis stage in late biopsy compared to non-progressors. 
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Figure 4.10. Cumulative incidence of adverse outcomes in Edmonton patients 

stratified by (A) the 48-gene signature and (B) histological fibrosis stage in late biopsy 

without advanced fibrosis. 
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Figure 4.11. The distribution of the 48-gene signature and histological fibrosis stage 

in Toronto early biopsies. 

(A) Toronto early biopsies were sorted based on the 48-gene signature from low (blue) to 

high (red). (B) Patients with high 48-gene signature had significantly higher probability of 

progression to adverse outcomes. (C) Progressors had significantly higher 48-gene 

signature compared to non-progressors in patients with F0 or F1 fibrosis. (D) Histological 

fibrosis stage was similar between progressors and non-progressors in patients with F0 or 

F1 fibrosis. 
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Figure 4.12. Toronto progressors had significantly higher (A) 48-gene signature, but 

similar (B) histological fibrosis stage in early biopsy compared to non-progressors. 
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Chapter 5: A 48-gene Signature in Clinical Liver 

Biopsies Enables Early Prediction of Progression to 

Cirrhosis in Patients with Autoimmune Hepatitis at 

Disease Onset 
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5.1 – Introduction 

Autoimmune hepatitis (AIH) is a complex and heterogeneous chronic inflammatory 

liver disease characterized by high serum immunoglobulin G (IgG) level, positivity for 

circulating autoantibodies, interface hepatitis on liver histology, and response to 

immunosuppressive treatment (1). Despite immunosuppressive treatment induce clinical, 

laboratory, and histological improvement for most patients, cirrhosis still develops in up to 

40% of treated patients (2). As cirrhosis leads to poor clinical outcomes, early diagnosis and 

prevention of cirrhosis is important (3). Previous research identified risk factors of fibrosis 

progression in AIH, such as presence of human leukocyte antigen DR3 and higher histology 

activity index (4). However, no single clinical variable can reliably predict who is at high-

risk for progression to cirrhosis and poor clinical outcomes at disease onset. 

Histopathology assessment of liver biopsy at disease onset is considered prerequisite 

to assess AIH disease severity in order to guide treatment decisions, but it cannot provide 

risk stratification for progression to cirrhosis (5). Since AIH had a huge disease heterogeneity, 

this limitation made identifying high-risk patients for tailored treatment challenging and 

caused a wide variation of immunosuppressive treatment regimens in clinical practice (1, 6, 

7). Progression to cirrhosis is present in 3% of patients with treatment per year and even 

happens in patients with complete treatment response (4, 8, 9). This indicated that currently 

there is no confident clinical indices to identify patients who are at high-risk for progression 

to cirrhosis. Moreover, the benefits of treatment for mild, asymptomatic AIH (alanine 

aminotransferase [ALT] < 3x upper limit of normal [ULN], histological activity index <4, 

and absence of advanced fibrosis) are currently debated, as the risk vs. benefit of 
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immunosuppression treatment for these patients is not clear (1, 7, 10). Due to these 

circumstances, there is an urgent clinical need for a surrogate biomarker to identify high-risk 

patients for progression to cirrhosis. The surrogate biomarker can help guide personalized 

treatment regimens that is of greatest efficacy and lowest burden to patients. 

Increasing evidence indicates that genetic factors have a major influence on fibrosis 

progression, but less is known of the relationship between fibrosis progression and gene 

expression alterations in patients with AIH (11). Previous studies showed mRNA expression 

of several fibrosis genes can predict fibrosis progression (12, 13). However, these findings 

were mostly conducted in other chronic liver diseases and have not been confirmed if these 

genes were applicable in patients with AIH (12, 13). In Chapter 2, I identified and validated 

a common 48-gene signature that had over 93% of accuracy for advanced liver fibrosis, 

independent of etiologies, by microarray based whole genome transcriptomics. In this 

chapter, I aim to analyze if the 48-gene signature can predict progression to cirrhosis, liver 

decompensation, and liver-related death. 

5.2 – Materials and Methods 

5.2.1 – Patients 

This chapter retrospectively included 78 patients diagnosed with probable or 

definitive AIH (defined by the International Autoimmune Hepatitis Group) and had a liver 

biopsy at disease onset between 1997 and 2016 at University of Alberta, Edmonton, Canada 

(Figure 5.1) (14). This study was approved by the institutional review board of the University 

of Alberta. 
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5.2.2 – Clinical and laboratory assessments 

 Baseline factors evaluated in this chapter include gender, age, biochemical and 

serological markers, body mass index (BMI), liver enzymes, albumin levels, bilirubin levels, 

platelet counts, IgG levels, international normalized ratio (INR), and model of end-stage liver 

disease (MELD) score. 

5.2.3 – Histopathological assessment 

Histopathological assessment of representative stained slides were scored according 

to the Metavir classification system for activity grading (scale 0-3) and fibrosis staging (scale 

0-4) (15). 

5.2.4 – Treatment and response 

Patients were treated with prednisone or a combination of prednisone and 

azathioprine according to the international guidelines (1). Treatment responses were assessed 

every month until laboratory resolution, and then at 6-month interval. Complete response 

was defined as normalization of serum ALT, AST, and IgG levels. Incomplete response was 

defined as improvement of serum ALT or AST levels to 1–3 ULN or worsening serum ALT 

and AST during treatment. Relapse was defined as an increase in serum AST level to more 

than three-fold ULN with or without the reappearance of symptoms after discontinuation of 

the medication. 

5.2.5 – RNA isolation 

Three to eight consecutive 20-µm sections were obtained from each FFPE block with 
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equipment sterilization with RNase away reagent (Ambion, Carlsbad, CA) and microtome 

blade replacement between blocks. Sections were then immediately placed into sterile 1.5-

mL DNase/RNase free microcentrifuge tubes for later RNA extraction using a RecoverAll 

Total Nucleic Acid Isolation Kit (Ambion, Carlsbad, CA). Total RNA was dissolved in 

RNase-free water and the concentration and quality were measured by NanoDrop 2000 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA). 

5.2.6 – NanoString gene expression quantification 

Details of NanoString gene expression quantification were previously described in 

Chapter 4.2.5.  

5.2.7 – NanoString data preprocessing 

All 78 samples were preprocessed and normalized in one batch. Details of 

NanoString data preprocessing and normalization were previously described in Chapter 

4.2.6. 

5.2.8 – Study endpoint 

The primary study endpoint was progression to cirrhosis, defined as absence of 

cirrhosis in the initial biopsy and had Metavir fibrosis stage 4 in follow-up biopsies or 

Fibroscan >14 kPa in follow-up clinical visits (16). The secondary study endpoint was 

progression to poor outcomes, defined as development of any one of the following: liver 

decompensation, need for liver transplantation, or liver-related death. Liver decompensation 

was defined as diagnosis of any of the followings: ascites, hepatic encephalopathy, variceal 

bleeding, or hepatorenal syndrome (17). Liver-related death was defined as death caused by 
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liver failure: nearest liver function test with total bilirubin > 50 umol/L and INR > 1.7 before 

deceased (18, 19). The time to endpoint was calculated using the date of biopsy to an event. 

5.2.9 – Statistical analysis 

Aggregate gene set expression was determined for each biopsy by calculating the 

geometric mean of the normalized counts of 48 fibrosis genes (48-gene signature). 

Continuous variables were presented as median and interquartile range (IQR) and categorical 

variables were presented as number and percentage. All data were compared between groups 

using Mann-Whitney U-test for continuous variables and Fisher’s exact test for categorical 

variables. Correlation coefficients were analyzed using Spearman rank-order correlation. 

The receiver operating curve was used to analyze the diagnostic performance of the 48-gene 

signature to predict progression to cirrhosis. The best cutoff of the curve was determined by 

Youden index. Survival analyses were performed after biopsies with the Kaplan–Meier 

method using a log-rank test and univariate and multivariate models with Cox regression 

method. The assumption of proportional hazards over time was verified using the log–log 

graphic method and met by all covariates. Potential linearity of covariates was investigated 

by collinearity diagnostics before multivariate survival analysis. All tests with two-sided p-

value <0.05 were considered significant. All analyses and figures were performed and 

generated using the SPSS 25 statistical software (IBM, Armonk, NY, USA), Excel 2010 

(Microsoft Corporation, Redmond, WA), or R-program (version 3.3.2; http://www.r-

project.org) with the following packages: ggplot2 and pROC. 

http://www.r-project.org/
http://www.r-project.org/
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5.3 – Results 

5.3.1 – Patient characteristics 

 Of 78 RNA samples from 78 unique patients, two were excluded due to low-quality 

gene expression profiles (Figure 5.1). Table 5.1 summarized the clinical and histological 

characteristics of the 76 patients. One patient was diagnosed with primary sclerosing 

cholangitis overlap syndrome. Median age at disease onset was 37.3 years old (IQR: 24.9-

54.4). Seventy-eight percent patients had positive anti-nuclear antibodies and 66% had 

positive smooth muscle antibodies. Liver tissue examination at disease onset revealed severe 

inflammatory (Metavir activity grade=3) in 35 patients (46.1%) and cirrhosis in 11 patients 

(14.5%). During a median 8.5 years of follow-up (IQR: 4.9-12.5), 13 patients without 

cirrhosis at disease onset progressed to cirrhosis. Of all 76 patients, 12 (15.8%) progressed 

to poor outcomes during follow-up. Progressed to poor outcomes refer to development of 

any one of the following during follow-up: liver decompensation, need for liver 

transplantation, or liver-related death. 

5.3.2 – Treatment and response 

All patients were treated initially with prednisone and 64 (84%) were treated with 

prednisone in combination with azathioprine. Twelve patients developed side effects with 

the first-line therapies. Of these 12 patients, four were managed with mycophenolate mofetil. 

After a median 8.5 years of follow-up (IQR: 4.9-12.5), 52 (68.4%) patients had achieved a 

complete treatment response, 21 (27.6%) with incomplete treatment response, and 3 (3.9%) 

with relapse. 
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5.3.3 – RNA quantity and quality 

Adequate RNA was isolated from all liver tissues for NanoString gene expression 

assay. The quality (A260/A280 spectrophotometry ratio) of the isolated RNA was between 1.67 

and 1.98, which met manufacturer-recommended specifications. 

5.3.4 – Comparison of the 48-gene signature with biochemistry and histology 

parameters 

 The 48-gene signature was compared with biochemical and histological parameters 

at disease onset. The levels of the 48-gene signature were significantly correlated with 

increased histological fibrosis stage (r=0.467, p<0.001) and activity score (r=0.266, p=0.020) 

as well as increased levels of IgG (r=0.423, p<0.001), INR (r=0.496, p<0.001), and MELD 

score (r=0.421, p=0.004). The levels of the 48-gene signature were also significantly 

correlated with decreased levels of albumin (r=-0.389, p=0.005) and platelet counts (r=-

0.377, p=0.005). 

5.3.5 – Distribution of the histological fibrosis stage and the 48-gene signature 

Figure 5.2A showed the distribution of the 48-gene signature, histological fibrosis 

stage, and outcomes for all 76 patients. A 48-gene signature cut-off of 113.56 for progression 

to cirrhosis was derived from receiver operating characteristic curve analysis in patients 

without cirrhosis at disease onset (Youden index = 113.56, Figure 5.2B). Based on this cutoff, 

patients with a 48-gene signature greater than 113.56 were assigned as having a high 48-

gene signature (Figure 5.2A). 

Of the 65 patients without cirrhosis at disease onset, 0% (0 of 5) with F0 fibrosis, 18% 
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(4 of 22) with F1 fibrosis, 22% (4 of 18) with F2 fibrosis, and 25% (5 of 20) with F3 fibrosis 

progressed to cirrhosis during follow-up. The probability of progression to cirrhosis was 

similar across different fibrosis stages (p=0.811). Patients progressed to cirrhosis had 

significantly higher 48-gene signature compared to patients who did not progress (p=0.001, 

Figure 5.3A), but similar histological fibrosis stage (p=0.298, Figure 5.3B) and activity score 

(p=0.345, Figure 5.4A). Patients progressed to cirrhosis had similar 48-gene signature 

compared to patients who had cirrhosis at disease onset (p=0.505, Figure 5.3A). 

 Of all 76 patients, 0% (0 of 5) with F0 fibrosis, 5% (1 of 22) with F1 fibrosis, 22% 

(4 of 18) with F2 fibrosis, 15% (3 of 20) with F3 fibrosis, and 36% (4 or 11) with F4 fibrosis 

progressed to poor outcomes. Patients progressed to poor outcomes had a marginally 

significant higher 48-gene signature and significantly higher histological fibrosis stage 

compared to patients who did not progress (p=0.073, 0.027, respectively, Figure 5.3C and 

5.3D). Histological activity score was similar between patients who progressed and did not 

progress to poor outcomes (p=0.289, Figure 5.4B). 

5.3.6 – The 48-gene signature predicts progression to cirrhosis, but histological 

fibrosis stage and activity score cannot 

Of the 65 patients without cirrhosis at disease onset, patients with a high 48-gene 

signature had significantly higher probability of progression to cirrhosis compared to patients 

with a low 48-gene signature (53% vs. 7%, log-rank p<0.001, Figure 5.5A). However, the 

probability of progression to cirrhosis was similar between F2-F3 vs. F0-F1 fibrosis (24% 

vs. 15%, log-rank p=0.420, Figure 5.5B) and A2-A3 vs. A1 (24% vs. 7%, log-rank p=0.133, 

Figure 5.6A). This showed the 48-gene signature can predict progression to cirrhosis at 
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disease onset, but histological fibrosis stage and activity score cannot. 

5.3.7 – Variables associated with progression to cirrhosis 

Univariate Cox regression analyses in 65 patients without cirrhosis at disease onset 

revealed incomplete treatment response (HR: 4.06, 95% CI: 1.23-13.41, p=0.02), INR >1.2 

at disease onset (HR: 13.04, 95% CI: 1.67-101.89, p=0.01) and a high 48-gene signature at 

disease onset (HR: 7.95, 95% CI: 2.44-25.87, p=0.001) were significantly associated with 

progression to cirrhosis (Table 5.2). Histological activity grade and fibrosis stage at disease 

onset were not significantly associated with progression to cirrhosis. 

Multivariate analyses included the variables with p<0.05 in univariate analysis (48-

gene signature, INR, and treatment response). Due to limited number of patients progressed 

to cirrhosis (n=13), to avoid model overfitting, multivariate models were limited to two 

variables. To analyze the effect of 48-gene signature predicting progression to cirrhosis, two 

models were built: 48-gene signature with treatment response (model 1) and 48-gene 

signature with INR (model 2) (Table 5.2). In model 1, the risk of progressing to cirrhosis is 

7.63-fold higher in patients with a high 48-gene signature compared to patients with a low 

48-gene signature after adjustment for treatment response (HR: 7.63, 95% CI: 1.94-30.03, 

p=0.004). In model 2, the risk of progressing to cirrhosis is 5.65-fold higher in patients with 

a high 48-gene signature compared to patients with a low 48-gene signature after adjustment 

for INR (HR: 5.65, 95% CI: 1.51-21.18, p=0.01). 

Multivariate analysis repeated with all three variables with p<0.05 in univariate 

analysis provided the same conclusions as above (Table 5.2). 

I further analyzed INR, which was significantly associated with progression to 
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cirrhosis in model 2 for progression to cirrhosis. Of the 65 patients without cirrhosis at 

disease onset, 53 (81.5%) had INR measurements. Patients with an INR >1.2 at disease onset 

had significantly higher probability of progression to cirrhosis compared to patients with an 

INR ≤ 1.2 (38% vs. 4%, log-rank p=0.002, Figure 5.7). 

5.3.8 – Histological parameters and 48-gene signature cannot predict poor 

outcomes 

Of the 65 patients without cirrhosis at disease onset, the probability of progression to 

poor outcomes was similar between patients with high and low 48-gene signature (21% vs. 

9%, log-rank p=0.113) (Figure 5.8A), between F2-F3 and F0-F1 (18% vs. 4%, log-rank 

p=0.096) (Figure 5.8B), and between A2-A3 and A1 (16% vs. 0%, log-rank p=0.085) (Figure 

5.6B).  

5.3.9 – Variables associated with progression to poor outcomes 

Univariate Cox regression analyses revealed incomplete treatment response (HR: 

4.44, 95% CI: 1.24-15.88, p=0.02), decreased platelet counts at disease onset (HR: 0.99, 95% 

CI: 0.98-1.00, p=0.01), and cirrhosis at disease onset (HR: 3.50, 95% CI: 1.02-11.96, 

p=0.046) were significantly associated with progression to poor outcomes (Table 5.3).  

Due to the limited number of patients that progressed to poor outcomes (n=12), only 

the top two variables with the most significant p-value in the univariate analysis (treatment 

response and platelet counts at disease onset) were included in the multivariate analysis. In 

multivariate analysis, only decreased platelet counts at disease onset (HR: 0.99 95% CI: 0.98-

1.00, p=0.03) was significantly associated with poor outcomes after adjusting for treatment 
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response (Table 5.3). 

5.4 – Discussion 

Predicting the risk of progression to cirrhosis in patients with AIH at disease onset is 

an unmet clinical need. This chapter showed for the first time that a 48-fibrosis gene 

signature in clinical liver biopsies predicts progression to cirrhosis, long before the event, 

but histology parameters do not offer this level of risk stratification. Patients with a high 48-

gene signature had significantly higher probability of progression to cirrhosis compared to 

patients with a low 48-gene signature (53% vs. 7%, log-rank p<0.001). The risk of 

progression to cirrhosis was 6.78-fold higher in patients with a high 48-gene signature 

compared to patients with a low 48-gene signature after adjusting for other significant 

variables in univariate analysis. This finding has a significant clinical relevance because early 

prediction of cirrhosis can guide physicians to adjust treatment regimens and dosages to 

substantially impact prognosis for individual patients. Moreover, the 48-gene signature test 

can be easily applied into a routine clinical assay as it can be analyzed in standard 

procurement and work-up of diagnostic liver biopsies. 

There is an unmet clinical need in predicting and monitoring progression of liver 

fibrosis at the start and during immunosuppressive therapy (20). Corticosteroids are the first 

line treatment for AIH and have anti-fibrotic actions. However, they are inconsistency in 

controlling fibrosis due to corticosteroids are not primarily anti-fibrotic agents and they are 

lack of site-specific target action that can be monitored reliably (21). Current available non-

invasive biomarkers for hepatic fibrosis are limited in predicting fibrosis progression (22). 

This chapter showed non-cirrhotic patients at disease onset with high 48-gene signature had 
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significantly higher risk of progression to cirrhosis. Therefore, the 48-gene signature can 

help to monitor the risk of progression to cirrhosis before or during therapy. 

All AIH patients with active disease or advanced fibrosis should be treated; however, 

there is a debate about whether mild, asymptomatic patients need immunosuppressive 

regimes or not, as the risk vs. benefit of treatment for these patients is not clear (1). Untreated 

AIH has heterogeneous disease behavior and a proportion of patients progress to cirrhosis 

during follow-up (10). As AIH is a lifelong disease, and progression to cirrhosis take years 

to decades to become clinically apparent, current published observational studies may have 

too short follow-up to demonstrate the benefit of immunosuppressive treatment in patients 

with mild AIH. The 48-gene signature may help to early predict mild AIH patients who are 

at high-risk for developing cirrhosis. This can identify a sub-group of mild patients at disease 

onset but at high-risk for disease progression that would benefit more from 

immunosuppressive treatment. Moreover, as progression to cirrhosis usually takes years to 

decades in these patients, the 48-gene signature may be used as a surrogate endpoint to early 

predict progression to cirrhosis. 

Patients who progressed to cirrhosis had a significantly higher 48-gene signature 

compared to patients who did not progress, but similar when compared to patients with 

cirrhosis at disease onset (Figure 5.2A). This showed patients progressed to cirrhosis had a 

similar molecular phenotype with patients who had cirrhosis at disease onset and suggested 

the 48-gene signature could distinguish between subgroups of patients based on prognosis 

(progress to cirrhosis or not), and this cannot be provided by histology alone.  

Despite neither histological activity score nor fibrosis stage at disease onset can 

predict progression to cirrhosis, a high INR (a sign of liver dysfunction) at disease onset was 
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a significant determinant for progression to cirrhosis (Table 5.2, Figure 5.7). A previous 

study found INR >1.2 was significantly associated with cirrhosis at disease onset (23). These 

results showed increased INR was associated with both cirrhosis at disease onset and 

increased risk for progression to cirrhosis. Of 24 patients with INR ≤1.2 at disease onset in 

this cohort, only 1 (4%) progressed to cirrhosis during follow-up. This shows INR may be 

used as a rule-out test for progression to cirrhosis at disease onset. 

There were limitations of this study. First, this was a retrospective study with a small 

number of patients and relatively short follow-up time (median 8.5 years) to detect enough 

events of poor outcomes. A previous study analyzed 245 AIH patients and found only 9% 

and 30% developed liver-related death or need for transplantation after 10 and 20 years of 

follow-up, respectively (24). The small number of patients and relatively short follow-up 

time may be the reason of why the 48-gene signature was not significantly associated with 

progression to poor outcomes. Since the 48-gene signature predicts progression to cirrhosis 

and cirrhosis portends poor prognosis in AIH, the 48-gene signature should also be capable 

to predict progression to poor outcomes if more patients were included with a longer follow-

up time. Second, as AIH is a rare disease, I do not have enough patients to consider splitting 

of the samples to two or more independent sets to validate the results.  Therefore, validation 

in a second larger, independent cohort with longer follow-up time should be performed to 

assure confidence in these initial results.   

This chapter showed the 48-gene signature in patients with AIH at disease onset early 

predicts progression to cirrhosis, but histology cannot. Measurement of the 48-gene signature 

at the time of AIH diagnosis should be considered as it can provide additional prognostic 

information that cannot be provided by histology. The prognostic information can provide 
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risk stratification and help physicians to tailor treatment regimen for individual patients.
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Table 5.1. Patient characteristics 

Characteristics Patients evaluated, n (%) Median (IQR) or n (%) 

Age at disease onset (year), median (IQR) 76 (100%) 37.3 (24.9-54.4) 

Sex female, n (%) 76 (100%) 54 (71.1) 

Ethnicity white, n (%) 31 (41%) 26 (83.9) 

BMI at disease onset, median (IQR) 61 (80%) 28.8 (25.3-33.8) 

Biochemistry at disease onset   

  AST, U/L, median (IQR) 58 (76%) 707 (281-1137) 

  ALT, U/L, median (IQR) 67 (88%) 651 (278-1100) 

  ALP, U/L, median (IQR) 65 (86%) 166 (138-236) 

  Albumin, g/L, median (IQR) 50 (66%) 34 (29-40) 

  Total bilirubin, umol/L, median (IQR) 67 (88%) 46 (17-141) 

  IgG, g/L, median (IQR) 72 (95%) 26.1 (22.1-35.6) 

  INR >1.2, n (%) 63 (83%) 34 (54) 

  MELD, median (IQR) 47 (62%) 17 (10-22) 

  Platelet, 109/L, median (IQR) 65 (86%) 180 (128-249) 

Serology at disease onset   

  Positive anti-nuclear antibody, n (%) 74 (97%) 58 (78.4) 

  Positive smooth muscle antibody, n (%) 50 (66%) 33 (66.0) 

Histology   

    Metavir activity score, n (%) 76 (100%)  

        0  0 (0) 

        1  17 (22.4) 

        2  24 (31.6) 

        3  35 (46.1) 

    Metavir fibrosis stage, n (%) 76 (100%)  

        0  5 (6.6) 

        1  22 (28.9) 

        2  18 (23.7) 

        3  20 (26.3) 
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        4  11 (14.5) 

Fibrosis outcome 76 (100%)  

  Cirrhosis at disease onset, n (%)  11 (14.5) 

  Progressed to cirrhosis, n (%)  13 (17.1) 

  Did not progress to cirrhosis, n (%)  52 (68.4) 

Treatment response 76 (100%)  

  Complete, n (%)  52 (68.4) 

  Incomplete, n (%)  21 (27.6) 

  Relapse, n (%)  3 (3.9) 

Progressed to poor outcomes, n (%) 76 (100%) 12 (15.8) 

Follow-up period after biopsy (year), median (IQR) 76 (100%) 8.5 (4.9-12.5) 

Percentage might not add up to 100% because of rounding. 
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Table 5.2. Univariate and multivariate analyses of progression to cirrhosis in 65 patients without cirrhosis at disease onset (n=13 

events) 

Variable HR 95% CI p-value 

Univariate analyses    

Age at disease onset, year 1.01 0.98-1.05 0.38 

Gender  

   Male (reference) 

   Female 

 

1.00 

1.24 

 

 

0.34-4.53 

 

 

0.74 

Treatment response 

   Complete (reference) 

   Incomplete 

 

1.00 

4.06 

 

 

1.23-13.41 

 

 

0.02 

ALT at disease onset 0.999 0.998-1.000 0.13 

AST at disease onset 1.00 0.999-1.001 0.91 

ALP at disease onset 1.001 0.996-1.006 0.69 

Albumin at disease onset 0.93 0.84-1.04 0.22 

Total bilirubin at disease onset 1.001 0.997-1.006 0.57 

IgG at disease onset 1.02 0.99-1.05 0.29 

INR at disease onset 

   ≤1.2 

   >1.2 

 

1.00 

13.04 

 

 

1.67-101.89 

 

 

0.01 

MELD at disease onset 1.14 0.98-1.32 0.09 

Platelet at disease onset 0.993 0.986-1.000 0.06 

Metavir activity score 

   A1 (reference) 

   A2-A3 

 

1.00 

4.24 

 

 

0.55-32.59 

 

 

0.17 

Metavir fibrosis stage 

   F0-F1 (reference) 

   F2-F3 

 

1.00 

1.15 

 

 

0.38-3.52 

 

 

0.81 

48-gene signature 

  Low (reference) 

  High 

 

1.00 

7.95 

 

 

2.44-25.87 

 

 

0.001 
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Multivariate analyses    

Model 1    

Treatment response 

   Complete (reference) 

   Incomplete 

 

1.00 

2.42 

 

 

0.71-8.24 

 

 

0.16 

48-gene signature 

  Low (reference) 

  High 

 

1.00 

7.63 

 

 

1.94-30.03 

 

 

0.004 

Model 2    

INR at disease onset 

   ≤1.2 

   >1.2 

 

1.00 

9.08 

 

 

1.14-72.42 

 

 

0.04 

48-gene signature 

  Low (reference) 

  High 

 

1.00 

5.65 

 

 

1.51-21.18 

 

 

0.01 

Model with all three significant variables in univariate analysis    

Treatment response 

   Complete (reference) 

   Incomplete 

 

1.00 

1.54 

 

 

0.42-5.63 

 

 

0.51 

INR at disease onset 

   ≤1.2 

   >1.2 

 

1.00 

7.10 

 

 

0.86-58.43 

 

 

0.07 

48-gene signature 

  Low (reference) 

  High 

 

1.00 

6.78 

 

 

1.33-34.56 

 

 

0.02 

To avoid model over fitting, multivariate model was limited to two variables due to the number of events (n=13). The 48-gene 

signature was analyzed with all other significant variables in the univariate analyses. 
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Table 5.3. Univariate and multivariate analyses of progression to poor outcomes (n=76 patients, 12 events) 

Variable 
Univariate analysis Multivariate analysis 

HR 95% CI p-value HR 95% CI p-value 

Age at disease onset, year 0.98 0.95-1.01 0.20    

Gender  

   Male (reference) 

   Female 

 

1.00 

1.29 

 

 

0.35-4.76 

 

 

0.70 

   

Treatment response 

   Complete (reference) 

   Incomplete 

 

1.00 

4.44 

 

 

1.24-15.88 

 

 

0.02 

 

1.00 

4.72 

 

 

0.88-25.22 

 

 

0.07 

ALT at disease onset 0.999 0.998-1.001 0.27    

AST at disease onset 1.000 0.998-1.001 0.64    

ALP at disease onset 1.00 0.99-1.01 0.94    

Albumin at disease onset 0.93 0.82-1.06 0.29    

Total bilirubin at disease onset 0.999 0.993-1.006 0.80    

IgG at disease onset 1.02 0.98-1.05 0.46    

INR at disease onset 

   ≤1.2 

   >1.2 

 

1.00 

2.77 

 

 

0.56-13.73 

 

 

0.21 

   

MELD at disease onset 1.04 0.90-1.20 0.64    

Platelet at disease onset 0.99 0.98-1.00 0.01 0.99 0.98-1.00 0.03 

Metavir activity score 

   A1 (reference) 

   A2-A3 

 

1.00 

32.75 

 

 

0.13-8416 

 

 

0.22 

   

Metavir fibrosis stage 

   F0-F1 (reference) 

   F2-F4 

 

1.00 

6.31 

 

 

0.81-48.90 

 

 

0.08 

   

Cirrhosis at disease onset 

   No (reference) 

   Yes 

 

1.00 

3.50 

 

 

1.02-11.96 

 

 

0.046 
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48-gene signature 

  Low (reference) 

  High 

 

1.00 

2.24 

 

 

0.71-7.12 

 

 

0.17 
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Figure 5.1. Study design. 

78 clinical liver biopsies subjected to RNA extraction

Use the 76 high-quality gene expression profile to predict 

progression to cirrhosis and poor outcomes

2 excluded due to poor quality 

gene expression profile

78 RNA subjected to NanoString gene expression assay

None excluded due to 

insufficient tissue/RNA

84 patients with a initial biopsy at disease onset between 1997 

to 2016

6 biopsies were not 

retrievable
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Figure 5.2. The distribution of the 48-gene signature and histological fibrosis stage. 

(A) The biopsies were sorted based on the 48-gene signature from low (blue) to high (red). 

(B) The performance of the 48-gene signature predicting progression to cirrhosis in 65 

patients without cirrhosis at disease onset. 
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Figure 5.3. The 48-gene signature values and histological fibrosis stage grouped 

according to different outcomes. 

(A) Patients progressed to cirrhosis had significantly higher 48-gene signature compared 

to patients who did not progress (p=0.001). (B) Patients progressed to cirrhosis had similar 

histological fibrosis stage compared to patients who did not progress (p=0.298). (C) 

Patients progressed to poor outcomes had borderline significantly higher 48-gene signature 

compared to patients who did not progress (p=0.073). (D) Patients progressed to poor 

outcomes had significantly higher histological fibrosis stage compared to patients who did 

not progress (p=0.027). 
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Figure 5.4. The histological activity score grouped according to different outcomes. 

(A) Patients progressed to cirrhosis had similar activity score at disease onset compared to 

patients who did not progress (p=0.345). (B) Patients progressed to poor outcomes had 

similar activity score at disease onset compared to patients who did not progress (p=0.289). 
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Figure 5.5. Cumulative incidence of cirrhosis in patients without cirrhosis at disease 

onset stratified by (A) the 48-gene signature and (B) histological fibrosis stage. 
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Figure 5.6. Cumulative incidence of (A) cirrhosis and (B) poor outcomes in patients 

without cirrhosis at disease onset stratified by Metavir activity score. 
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Figure 5.7. Cumulative incidence of cirrhosis in patients without cirrhosis at disease 

onset stratified by INR. 
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Figure 5.8. Cumulative incidence of poor outcomes in patients without cirrhosis at 

disease onset stratified by (A) the 48-gene signature and (B) histological fibrosis stage. 
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Chapter 6: A 48-gene Signature in Clinical Liver 

Biopsies Enables Early Prediction of Progression to 

Cirrhosis in Patients with Non-alcoholic Fatty Liver 

Disease 
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6.1 – Introduction 

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease 

that affects over 25% of the population worldwide (1). It is a spectrum of liver damage with 

overlapping histology phenotypes that varies from simple steatosis to non-alcoholic 

steatohepatitis (NASH) with presence of lobular inflammation and hepatocyte ballooning 

with or without fibrosis. NAFLD is a heterogeneous disease that has very different rates of 

disease progression among individuals. About 20-30% of patients with simple steatosis will 

develop NASH, of whom 20% will progress to cirrhosis (2). Cirrhosis is the final pathway 

that leads to poor clinical outcomes (liver decompensation, need for liver transplantation, 

premature death) (3, 4). Therefore, early diagnosis and prevention of cirrhosis is important. 

Approximately 20% of patients with NAFLD rapidly progress to advanced fibrosis/cirrhosis, 

but there is no reliable method to identify these rapid progressors (5). The characteristics of 

subpopulations with rapid or slow fibrosis progression are not well established. Previous 

research identified several common risk factors of fibrosis progression such as obesity, type 

2 diabetes, and genetic predisposition (6). However, currently there is no baseline clinical, 

histological, or biochemical variables that can predict progression to cirrhosis in early disease 

stage (7). 

Although currently there is no Food and Drug Administration (FDA)-approved drug 

for treating NASH, several ongoing phase III pivotal trials will likely report initial results 

around 2021 (8). Currently accepted endpoint by regulatory authorities for an antifibrotic 

drug is fibrosis regression without worsening NASH, evaluated by paired liver histology, 

one before treatment and another after treatment (9). However, there is a debate on whether 
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improvement of fibrosis is a valid surrogate of fibrosis progression (9). A recent phase II 

NASH therapeutic trial showed more patients had fibrosis improvement on active drug than 

on placebo, but the proportion of patients with fibrosis progression was similar between the 

two arms (10). As the impact on the number of patients that progressed to cirrhosis is only 

driven by the proportion of patients who have worsen fibrosis stage, not the proportion of 

those that improve, fibrosis regression may not be sufficient to serve as a valid surrogate for 

progression to cirrhosis (9). Due to the aforementioned circumstance, there is an unmet and 

urgent clinical need for a molecular biomarker to accurately identify high-risk patients for 

fibrosis progression who may benefit from upcoming drug treatments to prevent further liver 

damage. (6).  

Increasing evidence indicated that genetic factors have a major influence on fibrosis 

progression in NAFLD. Previous studies showed mRNAs expression of several fibrosis 

genes and mutation of patatin-like phospholipase domain containing 3 (PNPLA3) and the 

transmembrane 6 superfamily 2 (TM6SF2) were associated with advanced fibrosis (11-13). 

However, the prognostic value of these genes for predicting fibrosis progression is unknown. 

NAFLD is a complex disease driven by multiple pathways. Therefore, it is unlikely that a 

variable can accurately predict fibrosis progression in all NAFLD patients. In Chapter 2, I 

identified and validated a common 48-gene signature that had over 93% of accuracy to 

predict advanced liver fibrosis, independent of etiologies, by microarray based whole 

genome transcriptomics. The prognostic value of the 48-gene signature in NAFLD is 

unknown. In this chapter, I aim to understand if the 48-gene signature can predict progression 

to cirrhosis, liver decompensation, and liver-related death. 
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6.2 – Materials and Methods 

6.2.1 – Patients 

This chapter retrospectively included 105 patients with NAFLD confirmed by liver 

biopsy at the University of Alberta, Edmonton, Canada (Figure 6.1). In addition, 10 normal 

livers and 9 explant NASH cirrhotic livers were included as negative and positive controls, 

respectively. Of the 10 normal livers, two were donor liver biopsies and eight were liver 

tissues with no histological abnormality. This study was approved by the institutional review 

board of the University of Alberta.  

6.2.2 – Clinical and laboratory assessments 

Baseline factors evaluated in this study include gender, age, biochemical markers, 

body mass index (BMI), presence of metabolic syndrome, liver enzymes, albumin, bilirubin, 

platelet counts, and HbA1c. 

6.2.3 – Histopathological assessment 

Histopathological evaluation of representative stained slides were scored according 

to the Brunt classification system for fibrosis staging (scale 0-4) (14). Simple steatosis was 

defined as steatosis, but no hepatocyte ballooning or inflammation and NASH was defined 

as steatosis with hepatocyte ballooning degeneration and inflammation with or without 

fibrosis (15). 



282 
 
 

6.2.4 – RNA isolation 

Details of RNA isolation were previously described in Chapter 4.2.4. 

6.2.5 – NanoString gene expression quantification 

Details of NanoString gene expression quantification were previously described in 

Chapter 4.2.5. 

6.2.6 – NanoString data preprocessing 

All 105 NAFLD samples and the negative and positive controls were preprocessed 

and normalized in one batch. Details of NanoString data preprocessing and normalization 

were previously described in Chapter 4.2.6. 

6.2.7 – Study endpoint 

The primary study endpoint was progression to cirrhosis, defined as absence of 

cirrhosis in the initial biopsy and had Metavir fibrosis stage 4 in follow-up biopsies or 

Fibroscan >10.3 kPa in follow-up clinical visits (16). The secondary study endpoint was 

progression to poor outcomes, defined as development of any one of the following: liver 

decompensation, need for liver transplantation, or liver-related death (17). Liver-related 

death was defined as death caused by liver failure: nearest liver function test with total 

bilirubin > 50 umol/L and international normalized ratio (INR) > 1.7 before deceased (18, 

19). The time to endpoint was calculated using the date of biopsy to event. 
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6.2.8 – Statistical analysis 

Aggregate gene set expression was determined for each biopsy by calculating the 

geometric mean of the normalized counts of 48 fibrosis genes (48-gene signature). 

Continuous variables were presented as median and interquartile range (IQR) and categorical 

variables were presented as number and percentage. Data were compared between groups 

using Mann-Whitney U-test for continuous variables and Fisher’s exact test for categorical 

variables. The receiver operating characteristic (ROC) curve was used to analyze the 

diagnostic performance of the 48-gene signature for NASH. The cutoff of the ROC curve for 

NASH was determined by Youden index. Survival analyses were performed after biopsies 

with the Kaplan–Meier method using a log-rank test and univariate and multivariate models 

with Cox regression method. Multivariate model was built using a backward stepwise 

procedure for selecting variables, retaining those with p<0.05. The assumption of 

proportional hazards over time was verified using the log–log graphic method and met by all 

covariates. Potential linearity of covariates was investigated by collinearity diagnostics 

before multivariate survival analysis.  All tests with two-sided p-value <0.05 were considered 

significant. All analyses and figures were performed using the R-program (version 3.3.2; 

http://www.r-project.org), SPSS 25 statistical software (IBM, Armonk, NY, USA), or Excel 

2010 (Microsoft Corporation, Redmond, WA). or R-program (version 3.3.2; http://www.r-

project.org) with the pROC package. 

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
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6.3 – Results 

6.3.1 – Patient characteristics 

 Among 105 RNA samples from 105 unique patients, four were excluded due to low-

quality gene expression profiles (Figure 6.1). Table 6.1 summarized the clinical and 

histological characteristics of 101 patients analyzed in this chapter. Median age at biopsy 

was 50.9 years old. Fifty-eight percent had diabetes mellitus and 68% had hypertension. 

Liver tissue examination revealed cirrhosis in 17 (16.8%) patients at biopsy. During a median 

of 2.6 years of follow-up (IQR: 1.4-3.4), 10 (9.9%) patients without cirrhosis at biopsy 

progressed to cirrhosis. Of all 101 patients, 21 (20.8%) progressed to poor outcomes. 

Progression to poor outcomes refers to development of any one of the following during 

follow-up: liver decompensation, need for liver transplantation, or liver-related death. 

6.3.2 – RNA quantity and quality 

Adequate RNA was isolated from all liver tissues for NanoString gene expression 

assay. The quality (A260/A280 spectrophotometry ratio) of the isolated RNA was between 1.73 

and 1.99, which met manufacturer-recommended specifications. 

6.3.3 – Comparison of the 48-gene signature with biochemical and histological 

parameters 

 The 48-gene signature was compared with biochemical and histological parameters 

at biopsy. The level of 48-gene signature was significantly correlated with an increased 

histological fibrosis stage (r=0.801, p<0.001) and increased levels of aspartate 



285 
 
 

aminotransferase (AST) (r=0.587, p<0.001), gamma-glutamyl transferase (GGT) (r=0.313, 

p=0.013), total bilirubin (r=0.299, p=0.004), as well as decreased levels of albumin (r=-

0.376, p<0.001) and platelet counts (r=-0.565, p=0.01). 

6.3.4 – The expression of 48-gene signature increased with disease severity 

 The 48-gene signature in liver tissues was compared across simple steatosis, NASH 

without cirrhosis, and NASH with cirrhosis (Figure 6.2). The expression of the 48-gene 

signature increased significantly with disease severity. The level of 48-gene signature was 

similar between simple steatosis and normal livers (negative control) and between NASH 

cirrhosis and explant NASH cirrhosis (positive control). The 48-gene signature had an area 

under the receiver operator characteristic curve (AUROC) of 0.89 (95% confidence interval, 

0.82-0.95, p<0.001) for NASH and at a Youden index cutoff of 69.34, the 48-gene signature 

had 86% sensitivity, 80% specificity, and 83% of accuracy for NASH (Figure 6.3). Based 

on the 69.34 cutoff, the 48-gene signature was stratified into two groups, low and high 48-

gene signature (Figure 6.4). 

6.3.5 – Distribution of the histological fibrosis stage and 48-gene signature 

Figure 6.4 showed the distribution of the 48-gene signature, histological fibrosis 

stage and clinical outcomes for all 101 patients. Seventeen (16.8%) patients had cirrhosis at 

biopsy. Of the 84 patients without cirrhosis at biopsy, 9% (3 of 33) with F0 fibrosis, 8% (2 

of 24) with F1 fibrosis, 14% (1 of 7) with F2 fibrosis, and 20% (4 of 20) with F3 fibrosis 

progressed to cirrhosis during the follow-up period. The percentage of patients progressed to 

cirrhosis was similar across different fibrosis stages (p=0.581). Patients progressed to 
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cirrhosis had a marginally significantly higher 48-gene signature compared to patients who 

did not progress (p=0.055, Figure 6.5A), but histological fibrosis stage was similar between 

progressors vs. non-progressors (p=0.269, Figure 6.5B).  

Of all 101 patients, 3% (1 of 33) with F0 fibrosis, 0% (0 of 24) with F1 fibrosis, 14% 

(1 of 7) with F2 fibrosis, 25% (5 of 20) with F3 fibrosis, and 83% (14 or 17) with F4 fibrosis 

at biopsy progressed to poor outcomes during follow-up. Patients progressed to poor 

outcomes had significantly higher 48-gene signature and histological fibrosis stage compared 

to patients who did not progress (both p<0.001, Figure 6.5C and 6.5D). 

6.3.6 – The 48-gene signature predicts progression to cirrhosis, but histological 

fibrosis staging cannot 

Of the 84 patients without cirrhosis at biopsy, patients with a high 48-gene signature 

had a marginally significantly higher probability of progression to cirrhosis compared to 

patients with a low 48-gene signature (21% vs. 4%, log-rank p=0.05, Figure 6.6A). However, 

the probability of progression to cirrhosis was similar between F2-F3 vs. F0-F1 (19% vs. 9%, 

log-rank p=0.172, Figure 6.6B). This supported that the 48-gene signature has a trend that 

can early predict progression to cirrhosis, but this was not possible by histological fibrosis 

stage. 

6.3.7 – Variables associated with progression to cirrhosis 

Univariate Cox regression analysis revealed present of diabetes mellitus (HR: 4.88 

95% CI: 1.03-23.17, p=0.046) and increased HbA1c (HR: 1.82, 95% CI: 1.18-2.80, p=0.007) 

at biopsy were significantly associated with progression to cirrhosis (Table 6.2). There was 
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a trend that a high 48-gene signature (HR: 4.20 95% CI: 0.89-19.92, p=0.07) and increased 

BMI (HR: 1.06 95% CI: 1.00-1.12, p=0.07) at biopsy were associated with progression to 

cirrhosis. Histological fibrosis stage at biopsy was not associated with progression to 

cirrhosis. Multivariate analysis was not performed due to the small number of patients 

progressed to cirrhosis within a relatively short follow-up (n=10).  

6.3.8 – Both histological fibrosis stage and 48-gene signature predict progression 

to poor outcomes 

The probability of progression to poor outcomes was significantly higher in patients 

with a high 48-gene signature compared to patients with a low 48-gene signature (46% vs. 

0%, respectively, log-rank p<0.001) and patients with higher fibrosis stages compared to 

patients with lower fibrosis stages (F0-F1: 2%, F2-F3: 22%, and F4: 82%, log-rank p<0.001) 

(Figure 6.7A and 6.7B). 

6.3.9 – Variables associated with progression to poor outcomes 

 Univariate Cox regression analysis revealed increased levels of AST (HR: 1.01 95% 

CI: 1.00-1.01, p=0.04), GGT (HR: 1.001, 95% CI: 1.000-1.002, p=0.02), ALP (HR: 1.00, 

95% CI: 1.00-1.01, p=0.046), total bilirubin (HR: 1.00, 95% CI: 1.00-1.01, p<0.001), and a 

higher fibrosis stage (F0-1 vs. F2-3: HR: 16.09, 95% CI: 1.87-138.9, p=0.01) and a high 48-

gene signature (HR: 55.71, 95% CI: 1.61-1924, p=0.03), as well as decreased levels of 

albumin (HR: 0.9, 95% CI: 0.86-0.95, p<0.001) and platelet (HR: 0.99, 95% CI: 0.98-0.99, 

p<0.001) at biopsy were significantly associated with progression to poor outcomes (Table 

6.3). 
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In a backward stepwise elimination Cox regression model starting with all prognostic 

factors with p<0.05 in univariate analysis as independent covariates, only increased ALT and 

decreased platelet counts at biopsy remained as significant variables in the final model (Table 

6.3). 

6.4 – Discussion 

In this retrospective cohort study that covered the whole disease spectrum of patients 

with NAFLD, I showed a 48-gene signature can early predict progression to cirrhosis, but 

histological fibrosis stage and activity score cannot. This finding has a significant clinical 

relevance because the 48-gene signature can serve as a surrogate biomarker and provide 

personalized risk stratification to predict liver cirrhosis at an early time in the disease 

trajectory, long before the event. Moreover, the 48-gene signature can identify patients who 

may benefit from upcoming drug treatments to prevent further liver damage. As for clinical 

application, the 48-gene signature can be easily applied into a routine clinical assay using 

standard procurement and work-up of diagnostic liver biopsies. 

Predicting progressive fibrosis in NAFLD is an unmet clinical need. Currently, 

NAFLD risk stratification mainly focused on measurement of the disease state at biopsy 

(histological activity score and fibrosis stage). Despite presence of NASH represents a more 

advanced disease, a portion of patients with only simple steatosis, behave as rapid 

progressors. Simple steatosis was initially recognized as a benign course with low-risk of 

fibrosis progression. However, a previous study found the proportion of patients who had 

fibrosis progression was not significantly different between simple steatosis and NASH (37% 

vs. 43%, p = 0.65) (20). They found 22% of patients with simple steatosis progressed to 
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bridging fibrosis or cirrhosis in a median 6.6 years of follow-up. These simple steatosis 

patients with high-risk of fibrosis progression cannot be identified by current available 

clinical or histological measurements. The findings in this chapter suggested that the 48-gene 

signature in liver tissues can overcome this gap by providing personalized risk stratification 

for progression to cirrhosis.  

One of the aim of this chapter is to determine if there were any clinical or biochemical 

parameters that could predict fibrosis progression among patients with NAFLD. 

Unfortunately, conventional liver function tests cannot predict progression to cirrhosis. Only 

presence of diabetes mellitus (HR: 4.88, 95% CI: 1.03-23.17, p=0.046) and increased HbA1c 

level (HR: 1.82, 95% CI: 1.18-2.80, p=0.007) at biopsy were significantly associated with 

progression to cirrhosis. Increased BMI (HR: 1.06 95% CI: 1.00-1.12, p=0.07) also had a 

trend to be associated with progression to cirrhosis. These results matched with a previous 

study and was expected as the severity of the metabolic syndrome was reported associated 

with fibrosis progression (20).  

This chapter had two major limitations that are important to acknowledge. First, there 

is a small number of patients that progressed to cirrhosis (n=10) due to a relatively short 

follow-up period (median 2.6 years). This resulted in the 48-gene signature had a trend, but 

a marginally significant p-value for progression to cirrhosis in the survival analyses. In a 

Kaplan-Meier analysis, patients with a high 48-gene signature had higher probability 

progression to cirrhosis compared to patients with a low 48-gene signature (21% vs. 4%, 

p=0.05, Figure 6.6A). In a univariate Cox regression analysis, there was also a trend that 

patients with a high 48-gene signature had a higher probability of progression to cirrhosis 

(HR: 4.20, 95% CI: 0.89-19.92, p=0.07). Future studies with more patients and longer 
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follow-up periods should be performed to assure confidence in these initial results. Second, 

this was not a controlled trial and therefore several potential confounding factors such as 

glycemic control or medications (e.g. anti-diabetic agents) that could impact fibrosis 

progression could not be assessed. 

In conclusion, the 48-gene signature in routine clinical liver biopsy with NAFLD 

could identify high-risk patients for progression to cirrhosis. Measurement of the 48-gene 

signature at the time of biopsy should be considered as it can provide additional prognostic 

information that cannot be identified by histology. The prognostic information can provide 

risk stratification and help physicians to tailor upcoming NAFLD treatment regimen for 

individual patients.



291 
 
 

Table 6.1. Patient characteristics 

Characteristics Patients evaluated, n Median (IQR) or n (%) 

Age at biopsy (yr), median (IQR) 93 (92.1%) 50.9 (43.7-58.9) 

Sex male, n (%) 92 (91.1%) 48 (52.2) 

Ethnicity white, n (%) 91 (90.1%) 84 (92.3) 

BMI, median (IQR) 75 (74.3%) 30.9 (27.5-36.0) 

Diabetes mellitus, n (%) 89 (88.1%) 52 (58.4) 

Hypertension, n (%) 72 (71.3%) 49 (68.1) 

Hyperlipidemia, n (%) 86 (85.1%) 80 (93.0) 

Biochemistry at biopsy   

  AST, U/L, median (IQR) 67 (66.3%) 47 (29.0-104.0) 

  ALT, U/L, median (IQR) 90 (89.1%) 58 (32.8-99.0) 

  ALP, U/L, median (IQR) 91 (90.1%) 100 (76.0-145.0) 

  GGT, U/L, median (IQR) 62 (61.3%) 90 (40.8-257.8) 

  Total bilirubin, umol/L, median (IQR) 91 (90.1%) 10 (13.0-20.0) 

  Platelet, 109/L, median (IQR) 91 (90.1%) 203 (140.0-252.0) 

  HbA1c, %, median (IQR) 73 (72.3%) 6.0 (5.3-6.9) 

Histology   

    Brunt fibrosis stage, n (%) 101 (100%)  

        0  33 (32.7) 

        1  24 (23.8) 

        2  7 (6.9) 

        3  20 (19.8) 

        4  17 (16.8) 

Diagnosis, n (%) 101 (100%)  

  Simple steatosis  46 (45.5) 

  NASH without cirrhosis  38 (37.6) 

  NASH with cirrhosis  17 (16.8) 

Follow-up (years), median (IQR) 101 (100%) 2.6 (1.4-3.4) 
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Fibrosis outcome, n (%) 101 (100%)  

  Cirrhosis at biopsy  17 (16.8) 

  Progressed to cirrhosis  10 (9.9) 

  Did not progress to cirrhosis  74 (73.3) 

Progressed to poor outcomes, n (%) 101 (100%) 21 (20.8) 

IQR, interquartile range. Percentage might not add up to 100% because of rounding. 
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Table 6.2. Variables associated with progression to cirrhosis (n=84 patients, 10 events)  

Variable 
Univariate analysis 

HR 95% CI p-value 

Age at biopsy, year 1.00 0.96-1.04 0.97 

Gender  

   Female (reference) 

   Male 

 

1.00 

0.88 

 

 

0.24-3.19 

 

 

0.88 

BMI 1.06 1.00-1.12 0.07 

Hypertension 

  No (reference) 

  Yes 

 

1.00 

1.98 

 

 

0.39-10.07 

 

 

0.41 

Diabetes mellitus 

  No (reference) 

  Yes 

 

1.00 

4.88 

 

 

1.03-23.17 

 

 

0.046 

Hyperlipidemia 

  No (reference) 

  Yes 

 

1.00 

0.76 

 

 

0.10-6.03 

 

 

0.76 

ALT at biopsy 1.00 0.99-1.01 0.88 

AST at biopsy 0.99 0.97-1.01 0.50 

GGT at biopsy 1.00 0.99-1.01 0.48 

ALP at biopsy 1.00 1.00-1.01 0.55 

Albumin at biopsy 0.91 0.80-1.04 0.17 

Total bilirubin at biopsy 0.95 0.85-1.05 0.30 

Platelet at biopsy 1.01 1.00-1.01 0.28 

HbA1c at biopsy 1.82 1.18-2.80 0.007 

Brunt fibrosis stage 

  F0-F1 (reference) 

  F2-F3 

 

1.00 

2.37 

 

 

0.66-8.55 

 

 

0.66 

48-gene signature 

  Low 48-gene signature 

  High 48-gene signature 

 

1.00 

4.20 

 

 

0.89-19.92 

 

 

0.07 
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Table 6.3. Variables associated with progression poor outcomes (n=101 patients, 21 events) 

Variable 
Univariate analysis 

Multivariate analysis 

 (backward stepwise elimination) 

HR 95% CI p-value HR 95% CI p-value 

Age at biopsy, year 1.03 1.00-1.07 0.06    

Gender  

   Female (reference) 

   Male 

 

1.00 

0.41 

 

 

0.17-1.03 

 

 

0.06 

   

BMI 1.01 0.95-1.06 0.87    

Hypertension 

  No (reference) 

  Yes 

 

1.00 

1.93 

 

 

0.54-6.83 

 

 

0.31 

   

Diabetes mellitus 

  No (reference) 

  Yes 

 

1.00 

1.97 

 

 

0.76-5.11 

 

 

0.17 

   

Hyperlipidemia 

  No (reference) 

  Yes 

 

1.00 

1.44 

 

 

0.18-10.32 

 

 

0.76 

   

ALT at biopsy 0.99 0.98-1.00 0.06    

AST at biopsy 1.01 1.00-1.01 0.04    

GGT at biopsy 1.001 1.000-1.002 0.02    

ALP at biopsy 1.00 1.00-1.01 0.046 1.004 1.000-1.008 0.03 

Albumin at biopsy 0.90 0.86-0.95 <0.001    

Total bilirubin at biopsy 1.01 1.00-1.01 <0.001    

Platelet at biopsy 0.99 0.98-0.99 <0.001 0.98 0.97-0.99 0.003 

HbA1c at biopsy 1.11 0.86-1.43 0.41    

Brunt fibrosis stage 

  F0-F1 (reference) 

  F2-F3 

  F4 

 

1.00 

16.09 

96.25 

 

 

1.87-138.9 

11.02-840.9 

 

 

0.01 

<0.001 
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48-gene signature 

  Low 48-gene signature 

  High 48-gene signature 

 

1.00 

55.71 

 

 

1.61-1924 

 

 

0.03 
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Figure 6.1. Study design. 

105 clinical liver biopsies from 105 NAFLD patients subjected to 

RNA extraction

Use the 101 high-quality gene expression profile to:

1. Understand the relationship between gene expression and 

histopathological changes of different severity of NAFLD

2. Predict progression to cirrhosis and poor outcomes

4 excluded due to poor quality 

gene expression profile

105 RNA subjected to NanoString gene expression assay

None excluded due to 

insufficient tissue/RNA

Negative controls: 10 normal 

liver biopsies

Positive controls: 9 explant 

NASH cirrhosis tissues
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Figure 6.2. The 48-gene signature increased with disease severity. 

N.S., non-significant (p>0.05). 
  

N   10   46   38 17 9

p<0.001

p<0.001

(negative control)   
(positive control)   

N.S.

N.S.
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Figure 6.3. The performance of 48-gene signature for NASH. 

  

48-gene signature to predict 

NASH (n=101):

AUROC=0.89, p<0.001

Sensitivity 86%  PPV 84%  

Specificity 80%  NPV 82% 

Accuracy 83%

*

Youden index cutoff=69.34*
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Figure 6.4. The distribution of 48-gene signature, histological fibrosis stage, and 

outcomes of all 101 NAFLD patients. 
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Figure 6.5. The 48-gene signature values and histological fibrosis stages grouped 

according to different outcomes. 

(A) Patients progressed to cirrhosis had a marginally significantly higher 48-gene 

signature compared to patients who did not progress (p=0.055). (B) Patients progressed to 

cirrhosis had similar histological fibrosis stage compared to patients who did not progress 

(p=0.269). (C) Patients progressed to poor outcomes had significantly higher 48-gene 

signature compared to patients who did not progress (p<0.001). (D) Patients progressed to 

poor outcomes had significantly higher histological fibrosis stage compared to patients 

who did not progress (p<0.001). 
  

N   74   10   17  

p=0.269

N   74   10   17   

p=0.055

A B

C D

N   80   21   N   80   21   

p<0.001
p<0.001

Cirrhosis at disease 
onset (n=11)

Did not progress to poor 

outcomes

Progressed to poor 

outcomes
Did not progress to poor 

outcomes

Progressed to poor 

outcomes
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Figure 6.6. Cumulative incidence of cirrhosis in patients without cirrhosis at biopsy 

stratified by (A) the 48-gene signature and (B) histological fibrosis stage. 
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Figure 6.7. Cumulative incidence of poor outcomes in patients stratified by (A) the 

48-gene signature and (B) histological fibrosis stage. 
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 Chapter 7: Protein Level Validation of the Fibrosis Gene 

Signature by Objective Immunostaining Quantification 
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7.1 – Introduction 

In Chapters 4, 5, and 6, I showed a 48-gene signature in clinical liver biopsies can 

predict fibrosis progression in patients with recurrent viral hepatitis C (HCV), autoimmune 

hepatitis (AIH), and non-alcoholic fatty liver disease (NAFLD), respectively. However, 

mRNA levels may or may not correspond to the protein content in the tissues, and as protein 

is the key molecule that mediates catalytic and enzymatic functions, it is critical to assure 

that the observed mRNA expression changes were accompanied by changes in expression of 

the respective proteins. If mRNA levels and protein expression levels in tissues are 

correlated, this knowledge could potentially be used to develop immunohistochemical 

analysis of tissue sections and automated quantification of the staining as a diagnostic 

ancillary test. 

Hepatic stellate cells (HSCs) and hepatic progenitor cells (HPCs) are proposed as two 

main contributors to liver fibrosis in non-biliary diseases (1, 2). Majority of the 48-gene 

signature were expressed by HPCs, defined as epithelial cell adhesion molecule (EPCAM) 

positive cells (Table 2.9). During liver injury, quiescent HPCs become activated and cause 

ductular reaction, characterized by the proliferation of reactive bile ducts (3). The degree of 

ductular reaction correlated closely with the severity of fibrosis across different chronic liver 

diseases, including HCV (4), alcoholic hepatitis (5), and NAFLD (3). EPCAM and keratin 7 

(KRT7) are well defined HPC markers that marks newly derived hepatocytes and bile ducts 

from HPCs (6, 7). These two genes were present in the 48-gene signature. A previous study 

reported that protein expression of EPCAM and KRT7 can predict 90-days mortality in 

patients with alcoholic hepatitis (8). However, it is totally unknown if HPC markers have a 



308 
 

prognostic value for predicting fibrosis progression in many of the chronic liver diseases. 

Immunohistochemistry (IHC) reveals the presence, location and cellular origin of a 

specific protein in tissue sections. It allows study of the distribution and localization of 

specific cellular components by providing supplemental information to the routine 

morphological assessment of tissues. This could provide additional diagnostic and 

prognostic information relative to disease status and biology. The target protein expression 

can be quantified by computerized image analysis, which measures the area of staining and 

the area of remaining liver tissue and produces the proportion of the area of the biopsy 

occupied by the stain. This technique can be adapted in routine pathology workflow. In this 

chapter, I used the clinical liver biopsies in Chapters 4, 5, and 6 with available tissue after 

NanoString gene expression assay and analyzed the protein expression of EPCAM and 

KRT7 by IHC. This chapter aims to understand the relationship between the mRNA and 

protein expression of EPCAM and KRT7 as representative markers in clinical liver biopsies 

and to analyze if protein expression can predict progression to cirrhosis, liver 

decompensation, and liver-related death, using a simple IHC experiment that can be easily 

applied into clinical pathology labs. 

7.2 – Materials and Methods 

7.2.1 – Liver samples and histological examination 

I analyzed 94 clinical liver biopsies from 94 patients in Chapters 4, 5, and 6 with 

available tissue after routine clinical diagnosis and NanoString gene expression assay (Figure 

7.1). Additional four cirrhotic explant livers were included as extreme phenotype samples (1 

with HCV, 1 with primary biliary cirrhosis, 1 with alcoholic steatohepatitis, and 1 with non-
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alcoholic steatohepatitis).  The liver biopsy specimens with recurrent HCV and AIH were 

staged for fibrosis according to Metavir staging system (9) and NAFLD was staged according 

to Brunt staging system (10).  

7.2.2 – Immunohistochemistry 

 The IHC staining was performed by lab technicians at Alberta Health Services, 

Edmonton zone, immunohistochemistry lab. Both EPCAM and KRT7 staining were 

performed on Dako Autostainer Link 48 (Agilent, Santa Clara, CA).  Four-µm section of 

formalin-fixed paraffin-embedded tissue were cut and subsequently mounted onto Leica 

APEX slides and baked at 60 degrees for 1 hour. The tissue sections were deparaffinized 

with xylene, rehydrated with graded alcohols, and washed in distilled water. EPCAM slides 

were retrieved with Envision Flex Target Retrieval Solution, Low pH (Dako, K8005) in the 

Dako PT Link for 20 minutes at 97 degrees. KRT7 sections were retrieved with Envision 

Flex Target Retrieval Solution, High pH (Dako, K8000) in the Dako PT Link for 20 minutes 

at 97 degrees. Tissue sections were then immersed in 3% hydrogen peroxide in methanol to 

inactivate endogenous peroxidase. After blocking non-specific antibody, EPCAM slides 

were stained with mouse monoclonal MOC-31 (Dako M3525) at a 1/25 dilution for 20 

minutes at room temperature followed by Mouse Linker (Dako, SM804) for 15 minutes and 

then horseradish peroxidase (Dako, SM802) for 20 minutes and KRT7 slides were stained 

with mouse monoclonal OV-TL 12/30 (Dako, IR619) pre-dilute applied to slides for 20 

minutes at room temperature followed by horseradish peroxidase (Dako, SM802) for 20 

minutes. Visualization was performed using Ventana Ultraview 3,3’-diaminobenzidine 

(DAB) (Dako, SM803) chromogen detection for 10 minutes. The slides were then 

counterstained on the DAKO Autostainer using Hematoxylin Gill I (Leica, 30801500) for 3 
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minutes and mounted. A positive and a negative control slide per batch for each stain were 

included. In each case, bile ducts were used as internal positive controls. Histologically 

normal livers were used as baseline controls and cirrhotic explant livers as extreme 

phenotype samples. 

7.2.3 – Whole slide image scanning 

High-resolution digital whole slide images were generated using Aperio ScanScope 

CS (Aperio Technologies, Inc., Vista, CA) at 20x magnification (resolution of 0.50 

µm/pixel). All slides had a quality factor >90 (range 0-100) and I did manual quality checks 

of all slides to ensure that the scanned images were faithful to the original glass slide with 

appropriate background staining and were in-focus. Analysis alterations caused by tissue 

folds and staining artifacts were eliminated from the analysis boxes with a negative pen tool. 

The scanned liver tissues were then analyzed by Aperio Imagescope Positive Pixel Count 

algorithm v9, with a hue value = 0.0 and a hue width = 0.4. The algorithm automatically 

analyzed the positive DAB staining of the selected regions into three different colored pixels: 

strong positive (red), positive (orange), and weak positive (yellow) (Figure 7.2). The 

hematoxylin counterstain was represented by blue negative pixels. The percentage of 

positive pixels was calculated: positivity (%) = (weak positive + positive + strong positive 

pixels) / (total number of positive and negative pixels) × 100. 

7.2.4 – RNA isolation and NanoString gene expression quantification 

Details of RNA isolation and gene expression quantification were previously 

described in Chapters 3.2.4 and 3.2.5, respectively. 
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7.2.5 – NanoString quality control and data preprocessing 

Details of NanoString quality control and data preprocessing were previously 

described in Chapter 3.2.6. 

7.2.6 – Study endpoint 

The primary study endpoint was progression to cirrhosis, defined as absence of 

cirrhosis in the initial biopsy and had Metavir fibrosis stage 4 in follow-up biopsies or 

Fibroscan >12.5 kPa (recurrent HCV), >14 kPa (AIH), or >10.3 kPa (NAFLD) in follow-up 

clinical visits (11-13). The secondary study endpoint was progression to poor outcomes, 

defined as any one of the following: development of liver decompensation, need for liver 

transplantation, or liver-related death (14). Liver-related death was defined as death caused 

by liver failure: nearest liver function test with total bilirubin > 50 umol/L and international 

normalized ratio (INR)  > 1.7 before deceased (15, 16). 

7.2.7 – Statistical analysis 

Continuous variables were presented as median and interquartile range (IQR) and 

categorical variables were presented as number and percentage. Correlation coefficients 

were analyzed using Spearman rank-order correlation. Sensitivity, specificity, positive 

predictive value, negative predictive value, accuracy, and area under the receiver operating 

characteristic curve (AUROC) values of EPCAM and KRT7 protein expression for 

predicting progression to cirrhosis were calculated.  Cumulative incidence of progression to 

cirrhosis or poor outcomes was calculated using Kaplan-Meier method with log-rank test. 

All tests with two-sided p-value <0.05 were considered significant. All analyses and figures 
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were performed using SPSS 25 statistical software (IBM, Armonk, NY, USA). 

7.3 – Results 

7.3.1 – Patient characteristics 

 The 94 liver biopsy specimens from 94 patients consisted of eight cases of recurrent 

HCV, 21 AIH, 62 NAFLD, and three livers with normal histology (Table 7.1).  Table 7.2 

listed the disease and fibrosis stage of 94 liver biopsies. Of 94 patients, 15 (16.0%) had 

cirrhosis at biopsy and 11 (11.7%) progressed to cirrhosis during follow-up (Table 7.1). 

Nineteen (20.2%) patients progressed to poor outcomes, which refer to development of any 

one of the following during follow-up: liver decompensation, need for liver transplantation, 

or liver-related death. 

7.3.2 – Significant positive correlation between mRNA and protein expression of 

EPCAM and KRT7 

There was a significant positive correlation between the mRNA and the protein 

expression of EPCAM (r=0.667, p<0.001) as well as between the mRNA and the protein 

expression of KRT7 (r=0.788, p<0.001) (Figure 7.3A and 7.3B). This confirms that 

upregulation of EPCAM and KRT7 mRNA expression led to an increase of the protein 

expression of EPCAM and KRT7 in most of the biopsy samples. 

7.3.3 – EPCAM protein expression predicts progression to cirrhosis and poor 

outcomes 

Of all 94 patients, 15 (16%) had cirrhosis at biopsy. Of the 79 patients without 
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cirrhosis at biopsy, patients who progressed to cirrhosis had significantly higher EPCAM 

protein expression compared to patients who did not progress (p<0.001, Figure 7.4A). 

Protein expression of EPCAM had an AUROC of 0.82 (95% confidence interval, 0.67-0.97, 

p=0.001) for predicting progression to cirrhosis (Figure 7.4B). The Youden index cutoff of 

the ROC curve at 2.55% as an immunostaining cutoff had 73% sensitivity, 91% specificity, 

and 89% of accuracy for predicting progression to cirrhosis. Based on the 2.55% cutoff, the 

patients were stratified into two groups, low and high EPCAM expression. 

Non-cirrhotic patients at biopsy with a high EPCAM expression had significantly 

higher probability of progression to cirrhosis compared to patients with a low EPCAM 

expression (57% vs. 5%, log-rank p<0.001, Figure 7.5A).  

Patients with a high EPCAM expression at biopsy had significantly higher 

probability of progression to poor outcomes compared to patients with a low EPCAM 

expression (45% vs. 13%, log-rank p<0.001, Figure 7.5B).  

7.3.4 – KRT7 protein expression predicts progression to cirrhosis and poor 

outcomes 

Of the 79 patients without cirrhosis at biopsy, patients who progressed to cirrhosis 

had significantly higher KRT7 protein expression compared to patients who did not progress 

(p<0.001, Figure 7.6A). Protein expression of KRT7 had an AUROC of 0.82 (95% 

confidence interval, 0.65-0.99, p=0.001) for predicting progression to cirrhosis (Figure 

7.6B). The Youden index cutoff of the ROC curve at 1.46% as an immunostaining cutoff 

had 73% sensitivity, 87% specificity, and 85% of accuracy for predicting progression to 

cirrhosis. Based on the 1.46% cutoff, patients were stratified into two groups, low and high 



314 
 

KRT7 expression. 

Non-cirrhotic patients at biopsy with a high KRT7 expression had significantly 

higher probability of progression to cirrhosis compared to patients with a low KRT7 

expression (47% vs. 5%, log-rank p<0.001, Figure 7.7A).  

Patients with a high EPCAM expression at biopsy had significantly higher 

probability of progression to poor outcomes compared to patients with a low KRT7 

expression (43% vs. 11%, log-rank p<0.001, Figure 7.7B).  

7.4 – Discussion 

This chapter analyzed the protein expression of two HPC markers (EPCAM and 

KRT7), which were in the 48-fibrosis gene signature, in liver tissues with different diseases 

and confirmed that an increase of mRNA expression of EPCAM and KRT7 led to an increase 

of EPCAM and KRT7 protein expression. The results supported that HPC proliferation is a 

shared feature of progressive liver disease in different etiologies and the protein expression 

EPCAM and KRT7 could serve as potential surrogate markers for predicting progression to 

cirrhosis, liver decompensation, and liver-related death. This surrogate marker and 

quantification method can be easily applied to routine diagnostic liver biopsies.  

This is the first study that showed the protein expression of EPCAM and KRT7 can 

predict progression to cirrhosis in patients with chronic liver disease of different etiologies. 

Previous studies only reported that HPC proliferation was associated with the severity of 

liver fibrosis (3-5), but had not addressed if HPC proliferation was associated with fibrosis 

progression. A previous study analyzed 59 patients with alcoholic hepatitis and showed 

increased gene and protein expression of EPCAM and KRT7 in liver biopsies were 
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associated with 90-days mortality (8). However, most of their patients were cirrhotic (74%) 

and were in acute-on-chronic condition. Currently little is known about the prognostic value 

of HPC makers in early stage liver disease. The unique finding of this chapter is HPC 

proliferation may occur not only in late stage, but also in early stage of chronic liver disease 

and the degree of HPC proliferation can predict progression to cirrhosis before fibrosis 

deposit in the liver. 

Currently there is a debate on whether fibrosis deposition leads to HPC-associated 

regenerative response or whether fibrosis is exacerbated by the profibrogenic factors from 

the HPCs during ductular reaction (17). In this chapter, I found patients in early stage of liver 

disease with high EPCAM and KRT7 protein expression had significantly higher probability 

of progression to cirrhosis (Figure 7.5 and 7.7). This result supported that in early stage of 

liver disease, HPC proliferation might contribute more to fibrosis exacerbation rather than 

fibrosis regression.  

This chapter showed that the protein expression of EPCAM and KRT7 can predict 

progression to cirrhosis and poor outcomes in early stage of different chronic liver diseases. 

This suggested that HPC proliferation plays an important role in fibrosis progression and 

could serve as a prognostic marker for fibrosis progression in routine diagnostic liver 

biopsies. 
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Table 7.1. Patient characteristics 

Patient characteristics Patients evaluated, n (%) 

Disease 

   Normal 

   Recurrent viral hepatitis C 

   Autoimmune hepatitis 

   Non-alcoholic fatty liver disease 

 

3 (3.2) 

8 (8.5) 

21 (22.3) 

62 (66.0) 

Fibrosis outcome 

   Cirrhosis at biopsy 

   Progressed to cirrhosis 

   Did not progress to cirrhosis 

15 (16.0) 

11 (11.7) 

68 (72.3) 

Progressed to poor outcomes 19 (20.2) 
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Table 7.2. Biopsy characteristics 

Disease F0 F1 F2 F3 F4 Total 

Normal, n 3 0 0 0 0 3 

Recurrent viral hepatitis C, n 2 3 2 1 0 8 

Autoimmune hepatitis, n 3 6 4 5 3 21 

Simple steatosis, n 12 10 1 0 0 23 

Non-alcoholic steatohepatitis, n 0 10 5 12 12 39 

Total, n 20 29 12 18 15 94 
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Figure 7.1 Study design.  

 
  

94 clinical liver biopsies with available tissue after NanoString gene 

expression assay was subjected to IHC (EPCAM and KRT7)

Use the 94 high-quality gene expression and IHC profile to:

1. Understand the relationship between mRNA and protein expression

2. Predict progression to cirrhosis and poor outcomes



319 
 
 

 
Figure 7.2. Imaging analysis using Aperio Imagescope Positive Pixel Count 

algorithm. 

(A) Digital image of EPCAM-stained liver biopsy slide and (B) corresponding analysis 

mark-up image (Aperio ImageScope Positive Pixel Count algorithm, hue value 0.0, hue 

width 0.4, original 20x magnification, 100 µm measurement bar). (C) Digital image of 

KRT7-stained liver biopsy slide and (D) corresponding analysis mark-up image (Aperio 

ImageScope Positive Pixel Count algorithm, hue value 0.0, hue width 0.4, original 20x 

magnification, 100 µm measurement bar). 
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Figure 7.3. There was a significant positive correlation between the mRNA and the 

protein expression of (A) EPCAM and (B) KRT7. 
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Figure 7.4. EPCAM protein expression predicts progression to cirrhosis.  

(A) Patients progressed to cirrhosis had significantly higher EPCAM expression compared 

to patients who did not progress (p<0.001). (B) EPCAM had an area under the receiver 

operating characteristic curve (AUROC) of 0.82 to predict progression to cirrhosis. 
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Figure 7.5. Cumulative incidence of (A) cirrhosis and (B) poor outcomes stratified by 

EPCAM protein expression. 
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Figure 7.6. KRT7 protein expression predicts progression to cirrhosis. 

(A) Patients progressed to cirrhosis had significantly higher KRT7 expression compared 

to patients who did not progress (p=0.001). (B) KRT7 had an area under the receiver 

operating characteristic curve (AUROC) of 0.82 to predict progression to cirrhosis. 
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Figure 7.7. Cumulative incidence of (A) cirrhosis and (B) poor outcomes stratified by 

KRT7 protein expression. 
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Chapter 8: Discussion and Future Directions 
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8.1 – General discussion 

Cirrhosis is a late stage of liver fibrosis caused by many forms of chronic liver 

diseases (1). As disease progresses, increased scar tissue forms which in turn impedes liver 

functions. The liver damage caused by cirrhosis is difficult to reverse and cirrhosis is life-

threatening with a high mortality rate (2). However, if cirrhosis/advanced fibrosis is 

predicted early and the cause is treated, early fibrosis can be reversed and further liver 

damage can be prevented. This means prevention of poor outcomes (liver decompensation, 

need for liver transplantation, or liver-related death). 

The gold standard in assessing liver fibrosis is liver needle biopsy examined by 

histopathology (3). However, histopathology of liver biopsy suffers from sampling error, 

inter-observer variability, and cannot predict fibrosis progression (4-6). Up to 33% of error 

rates for diagnosis of advanced fibrosis had been reported (7). The invasive nature of biopsy 

and inherent limitations of histopathology have led to the development of noninvasive 

diagnostic tests (imaging methods and serum biomarkers), but none of them were proven to 

be adequate to identify progressive fibrosis (8). Imaging methods can detect fibrosis only 

when it is manifested at the histological level by measuring liver stiffness, but can give 

significant false positive results when there is fatty liver, acute inflammation, or biliary 

obstruction (9, 10). Serum biomarkers also cannot reliably identify progressive fibrosis and 

have limitations such as not being liver specific, inability to differentiate intermediate 

fibrosis stages, and confounder effect of liver inflammation and steatosis (8). Given these 

constraints and limitations, there is an unmet and urgent clinical need for a surrogate 

biomarker to predict progressive fibrosis and poor clinical outcomes in patients with chronic 
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liver disease. 

Advanced fibrosis is a shared histological phenotype for late-stage liver disease by 

different etiologies. However, it is yet unknown if there is a common molecular signature of 

progressive liver fibrosis that is shared by a variety of chronic liver diseases. If we can 

understand molecular events that drive progressive fibrosis, then we may predict which 

patients will progress to advanced fibrosis before the development of well-established 

pathology.  

In Chapter 2, 304 Affymetrix microarrays of fresh livers from 312 patients with 

different chronic liver diseases were analyzed. I identified a common 48-gene signature 

associated with advanced fibrosis that is shared by different liver diseases in humans. This 

was the first comprehensive collection of gene expression signatures that drives advanced 

liver fibrosis in the context of various common causes of liver disease in humans. This new 

understanding defines a quantitative surrogate biomarker for advanced liver fibrosis. 

Despite the impressive findings in Chapter 2, it is yet unknown if the 48-gene 

signature can be reliably measured in clinical liver biopsies because formalin-fixed paraffin-

embedded (FFPE) tissues are known to suffer from RNA degradation and cross-linkage and 

there is limited amount of tissue after sectioning for routine histological analysis. Therefore, 

in Chapter 3, I analyzed 348 clinical liver biopsies and studied the feasibility and reliability 

of measuring the 48-gene signature using NanoString platform. An additional 30 samples 

(15 paired fresh and FFPE liver biopsies) were studied using NanoString and the transcript 

counts between paired fresh versus FFPE samples were compared. I had 99% success rate to 

isolate enough RNA from paraffin sections of clinical liver biopsies, which were up to 18 

years old and had a minimum of 1 mm tissue in length. NanoString gene expression levels 
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in fresh biopsies were strongly correlated with paired FFPE biopsies (r=0.944, p<0.001). 

Moreover, NanoString gene expression measurements were highly reproducible across 

different RNA input quantities (r=0.946-0.995, p<0.001), in repeat runs by one operator 

(r=0.950-0.990, p<0.001) or by different operators (r=0.949-0.992, p<0.001), and across 

different lots of reagents (r=0.998-0.999, p<0.001). This chapter established a feasible and 

robust protocol for multiplexed gene expression profiling in clinical liver biopsies. 

With supporting results that NanoString is a robust platform for measuring multiplex 

gene expression signature in clinical liver biopsies, I analyzed if the 48-gene signature can 

predict fibrosis progression and poor outcomes in a total of 299 patients with post-transplant 

recurrent viral hepatitis C (HCV) (Chapter 4), autoimmune hepatitis (AIH) (Chapter 5), and 

non-alcoholic fatty liver disease (NAFLD) (Chapter 6).  

Before direct-acting antiviral treatment was available for patients with HCV, 

virologic recurrence after transplantation was universal and triggered an accelerated 

progression of fibrosis (11). In Chapter 4, I used post-transplant patients with recurrent HCV, 

before the direct-acting antiviral treatment was available, as a human disease model for 

progressive liver fibrosis. I analyzed if the 48-gene signature can predict adverse outcomes, 

which was defined as progression to one or more of the followings: advanced fibrosis, liver 

decompensation, requirement for liver transplantation, or liver-related death. This cohort was 

composed of 62 Edmonton and 60 Toronto patients. Each patient had an early (median: 6-

months) and late biopsy (median: 2 to 3 years) post-transplantation. During the entire follow-

up period (median 8.4 years for Edmonton patients and 3.1 years for Toronto patients), 42% 

Edmonton and 13% Toronto patients progressed to adverse outcomes (progressors). The 

median of the 48-gene signature in early biopsies with F0-F1 fibrosis was significantly higher 
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in both Edmonton and Toronto progressors compared with non-progressors (p=0.013, 0.008, 

respectively), but Metavir-fibrosis stage was not (p=0.779, 0.513, respectively). I used the 

median of 48-gene signature in the 62 Edmonton early biopsies to assign patients to two 

groups: high and low 48-gene signature and validated the cutoff in Edmonton late biopsies 

and Toronto early biopsies. In Edmonton patients with F0 or F1 fibrosis in early biopsy, there 

were significantly more patients with a high 48-gene signature progressed to adverse 

outcomes compared to patients with a low 48-gene signature (50% vs. 21%, p=0.040), but 

the percentage of patients progressed to adverse outcomes was similar between F0 and F1 

fibrosis (32% vs. 35%, p=1.000). In Toronto early biopsies with F0 or F1 fibrosis, there were 

also significantly more patients with a high 48-gene signature progressed to adverse 

outcomes compared to patients with a low 48-gene signature (25% vs. 3%, p=0.035), but the 

percentage of patients progressed to adverse outcomes was similar between F0 and F1 

fibrosis (9% vs. 15%, p=0.689). This chapter showed the 48-gene signature in clinical liver 

biopsies can predict progression to adverse outcomes earlier than histopathology. 

Early prediction of progression to cirrhosis in patients with AIH at disease onset is 

an unmet clinical need. In Chapter 5, I analyzed if the 48-gene signature can predict 

progression to cirrhosis in 76 patients with AIH. Eleven (14.5%) patients had cirrhosis at 

disease onset. Of the 65 patients without cirrhosis at disease onset, 13 (17.1%) progressed to 

cirrhosis (progressors) during a median of 8.5 years of follow-up. Median 48-gene signature 

in biopsies was significantly higher progressors compared with non-progressors (p=0.001), 

but Metavir activity score and fibrosis stages were not (p=0.298, 0.345, respectively). I then 

derived a 48-gene signature cut-off at 113.56 (Youden index) for progression to cirrhosis 

from receiver operating characteristic curve analysis in 65 patients without cirrhosis at 
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disease onset. Of the 65 patients without cirrhosis at disease onset, patients with a high 48-

gene signature had significantly higher probability of progression to cirrhosis compared to 

patients with a low 48-gene signature (53% vs. 7%, log-rank p<0.001), but similar between 

F2-F3 vs. F0-F1 fibrosis (24% vs. 15%, log-rank p=0.420) and A2-A3 vs. A1 activity (24% 

vs. 7%, log-rank p=0.133). This chapter showed the 48-gene signature in clinical liver 

biopsies can predict progression to cirrhosis earlier than histopathology in patients with AIH 

at disease onset. This prognostic information can provide risk stratification and help guide 

personalized treatment regimens. 

NAFLD is the most common chronic liver disease and is predicted as the most 

common indication for liver transplantation in 2025 (12). Therefore, drug development for 

treating non-alcoholic steatohepatitis (NASH) is currently a hot topic. Several ongoing phase 

III pivotal trials will likely report initial results around 2021 (13). This raises an unmet 

clinical need for a surrogate biomarker to accurately predict fibrosis progression and to 

identify patients who may benefit from drug treatments to prevent further liver damage and 

poor outcomes (14). In Chapter 6, I analyzed if the 48-gene signature can predict progression 

to cirrhosis and poor outcomes in 101 patients with different severity of NAFLD. The 48-

gene signature had an area under the receiver operator characteristic curve of 0.89 (95% 

confidence interval, 0.82-0.95, p<0.001) and the Youden index cutoff at 69.34 had 86% 

sensitivity, 80% specificity, and 83% of accuracy for NASH. Based on this cutoff, the 48-

gene signature was stratified into two groups, low and high 48-gene signature. Seventeen 

(16.8%) patients had cirrhosis at biopsy. Of 84 patients without cirrhosis at biopsy, patients 

with a high 48-gene signature had a marginally significantly higher probability of 

progression to cirrhosis compared to patients with a low 48-gene signature (21% vs. 4%, log-
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rank p=0.05). However, the probability of progression to cirrhosis was similar between F0-

F1 vs. F2-F3 (9% vs. 19%, log-rank p=0.172). This chapter showed the 48-gene signature in 

clinical liver biopsies predicts progression to cirrhosis earlier than histopathology in patients 

with NAFLD. This prognostic information can provide risk stratification and help to identify 

patients who may benefit from upcoming drug treatments to prevent further liver damage. 

It is well-known that mRNA levels may or may not correspond to the protein content 

in the tissues, and while protein is the key molecule that mediates catalytic and enzymatic 

functions. Protein level validation will facilitate therapeutics development. Therefore, 

Chapter 7 analyzed the protein expression of EPCAM and KRT7 that were in the 48-gene 

signature and found quantification of immunohistochemistry slides of protein 

immunostained in the liver tissue using an objective quantitative computer imaging analysis 

can predict progression to cirrhosis in patients with different liver diseases. This suggested 

EPCAM and KRT7 could serve as a surrogate marker, which can be applied in routine 

diagnostic liver biopsies, for predicting progression to cirrhosis.  

8.2 – Clinical significance 

This thesis identified a 48-gene signature associated with advanced liver fibrosis that 

is shared by different liver diseases in humans. Based on this knowledge, I developed a 48-

gene signature genomic test enables early diagnosis of progressive fibrosis in patients with 

different chronic liver diseases. This molecular test is compatible with standard procurement 

and work-up of diagnostic liver biopsies from patients with problems in clinic. 

As for clinical relevance, the 48-gene signature test could provide risk stratification 

of progression to advanced fibrosis or cirrhosis for patients with chronic liver disease, earlier 
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than histology or current available imaging methods. The test could identify patients that are 

at high-risk of fibrosis progression for timely clinical management. This test could be also 

applied into anti-fibrotic drug trials for liver fibrosis. Enrolling patients with similar 

histological fibrosis stages, which most clinical trials did, could not represent these patients 

had similar phenotype for fibrosis progression (i.e. similar fibrosis progression rate). 

Implications of the 48-gene signature in clinical trials when selecting patients could provide 

unambiguous findings because fibrosis progression rates are similar in both placebo and 

treatment group. If enrolling only the high-risk patients for fibrosis progression (patients with 

a high 48-gene signature), results could be achieved in a relatively shorter study interval, as 

differences between a placebo and treatment group would emerge more rapidly if the drug 

is effective. Moreover, the 48-gene signature could also possibly be used as an earlier 

indicator of meaningful therapeutic response (if the 48-gene signature has decreased after 

the treatment). 

8.3 – Project strengths and limitations 

The major strength of this thesis was that I included a large number of patients (n=312) 

with a variety chronic liver diseases when identifying a common 48-gene signature for 

advanced fibrosis (Chapter 2) and the 48-gene signature was validated in multiple 

independent cohorts of total 299 patients with different chronic liver diseases (Chapters 4, 5, 

and 6). I also had data to support that the 48-gene signature could be reliably measured in 

clinical liver biopsies by NanoString (Chapter 3). This made translating the 48-gene 

signature test into a clinical assay possible using standard liver biopsies performed for 

clinical indications.  
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There were limitations to this work. First, in Chapter 6, there was a limited number 

of NAFLD patients that progressed to cirrhosis (n=10). This was because of the relatively 

short follow-up period (median 2.6 years). According to previous studies, approximately 25% 

of patients with NASH and 4% of patients with simple steatosis patients progress to cirrhosis 

in 10 years of follow-up (15, 16). Therefore, there is a need to validate the 48-gene signature 

an independent cohort with longer follow-up period. Second, Chapters 4, 5, and 6 were 

retrospective studies and therefore patient selection bias might occur, as patients who were 

biopsied usually had a relatively more severe disease. For the AIH cohort, selection bias was 

minimal as all patients were biopsied at disease onset. For the recurrent HCV and NAFLD 

cohorts, most biopsies were indication biopsy due to elevated transaminases, which may 

cause a trend to include patients with more advanced liver damage. However, the fibrosis 

progression rate was similar between this recurrent HCV cohort and a previously published 

review study (approximately 40-50% progressed to advanced fibrosis five years after 

transplantation) (11). Therefore, there was no significant selection bias for the recurrent HCV 

cohort. For the NAFLD cohort, the follow-up time period was too short (median 2.6 years) 

to compare the fibrosis progression rate with previous published studies. Therefore, 

validation in an independent cohort with a longer follow-period should be performed to 

assure confidence in these initial results. 

8.4 – Future directions 

Despite liver biopsy has been the gold standard for advanced fibrosis, there are well-

known limitations including invasiveness, rare but potentially life-threatening complications, 

and poor acceptability. Due to the epidemic proportion of patients with chronic liver disease 
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worldwide, liver biopsy evaluation for all patients is impractical. Therefore, as a further step, 

comparing mRNA and protein expression levels of the fibrosis genes between paired blood 

and liver biopsy samples and correlating blood results with tissue mRNA expression levels 

may enable the development of a non-invasive blood test that may predict fibrosis 

progression in patients with chronic liver disease.  
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Appendix A 

Detailed protocol for preparation of formalin-fixed paraffin-embedded tissues cutting for 

RNA extraction. 

Equipment and supplies 

 Microtome 

 RNase AWAY™ Decontamination Reagent  

 Xylene 

 Blades 

 Gloves 

 RNase and DNAse free microcentrifuge tubes (1.5 mL) 

Procedure 

1. Wipe equipment clean with xylene and dry with kimwipes (repeat between samples to 

minimize carry-over of wax and cross-contamination of tissue). 

2. Decontaminate all equipment (including microtome, forceps, scalpel blade holder, and 

macrodissecting cutting surface) before preparation of each sample using RNase AWAY™ 

Decontamination Reagent. Use a new blade for cutting each block. 

3. Commence sectioning at 5-µm thickness and discard top few whole sections (to avoid 

using the oxidized/contaminated surface of tissue block). 

4. Set to microtome to cut 20-µm sections and cut 3-8 curls. 

5. Place sections immediately into a labeled RNase-free microcentrifuge tube, close cap. 
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6. Repeat steps 1–5 until all samples are prepared. Change new gloves before cutting a new 

sample.  
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Appendix B 

Detailed protocol for RNA isolation using RecoverAll™ Total Nucleic Acid Isolation Kit 

(Ambion). 

Equipment and supplies 

 RNase and DNAse free pipettes and filtered tips 

 RNase AWAY™ Decontamination Reagent  

 RNAse and DNAse free microcentrifuge (1.5 mL) tubes 

 Nuclease-free water 

 Modular tube rack 

 Waste bucket 

 Sharpie 

 Dry block heaters 

 Microfuge 

 Centrifuge 

 Vortex mixer 

 Biosafety hood 

 Ice and ice bucket 

 RecoverAll™ Total Nucleic Acid Isolation Kit 

 Xylene 

 100% ethanol 

 Gloves 
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Before You Begin 

1. RNase precautions: 

Clean the lab, bench, tube rack and pipettes, with an RNase decontamination solution. 

2. Prepare wash solutions: 

a. Add 42 mL of ACS grade 100% ethanol to the bottle labeled Wash 1 Concentrate. Mix 

well. 

b. Add 48 mL of ACS grade 100% ethanol to the bottle labeled Wash 2/3 Concentrate. Mix 

well. 

c. Cap the wash solution bottles tightly to prevent evaporation. 

d. Mark the labels to indicate that the ethanol has been added. 

The final solutions will be referred to as Wash 1 and Wash 2/3 in the procedure. 

Procedure 

A. Deparaffinization 

1. Add 1 mL 100% xylene, mix, and incubate for 3 min at 50°C: 

a. Under Fumehood: Add 1 mL 100% xylene to the sample.  

b. Vortex briefly to mix. 

c. Centrifuge briefly to bring any tissue that is stuck to the sides of the tube down into the 

xylene. 

d. Heat the sample for 3 min at 50°C to melt the paraffin. 

2. Centrifuge for 4 min at maximum speed, and discard the xylene: 
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a. Centrifuge the sample for 4 min at room temperature and maximum speed to pellet the 

tissue. 

b. Under fume hood: Use 1000 μL pipette to remove the xylene without disturbing the pellet. 

Discard the xylene. 

c. Repeat 1a to 1c and 2a to 2b again. Don’t heat the sample this time. 

- At this step, the tissue is usually clear and can be difficult to see. If the pellet is 

loose, you may need to leave some xylene in the tube to avoid removing any tissue 

pieces. 

3. Wash the pellet 3 times with 1 mL 100% ethanol: 

a. Under fume hood: Add 1 mL of 100% ethanol (room temperature) to the sample and vortex 

to mix. 

b. Centrifuge the sample for 2 min at room temperature and maximum speed to pellet tissue. 

c. Use 1000 μL pipette to remove and discard the ethanol without disturbing the pellet. 

d. Repeat steps 3a–3c twice to wash with 1 mL of 100% ethanol. 

e. Briefly centrifuge again (1 min) to collect any remaining drops of ethanol in the bottom of 

the tube. Use 200 μL pipette to remove as much residual ethanol as possible without 

disturbing the pellet. 

4. Air dry for 60-90 min at room temperature under the fume hood to remove residual 

ethanol. 

B. Protease Digestion 

1. Add Digestion Buffer and Protease: 
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a. Add 100 μL of Digestion Buffer needed for your tissue sample. 

- Keep all enzymes on ice.  

- Clean ice-bucket with RNase AWAY™ Decontamination Reagent beforehand. 

b. Add 4 μL Protease to each sample. 

c. [Do no vortex]: Mix and immerse the tissue (dislodge the pellet by pippetting up and down 

gently). If tissue sticks to the sides of the tube, use a pipette tip to push it into the solution, 

or briefly centrifuge to bring the tissue down into the solution. 

2. Incubate for 15 min at 50°C, then 15 min at 80°C: 

Incubate the sample in heat blocks for 15 min at 50°C, then 15 min at 80°C. 

C. Nucleic Acid Isolation 

1. Prepare Isolation Additive/ethanol mixture: 

Combine the indicated amounts of Isolation Additive and ethanol, according to the volume 

of Digestion Buffer used in your sample. 

For multiple samples, prepare a master mix for all samples plus ~5% overage.  

Component Amount (per sample) 

Isolation Additive 120 μL 

100% ethanol 275 μL 

Total 395 μL 

2. Add Isolation Additive/ethanol and mix: 

a. Add 395 μL of Isolation Additive/ethanol mixture to each sample. 
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b. Mix by pipetting up and down five times. Some samples may appear white and cloudy 

after mixing. 

3. Pass the mixture through a Filter Cartridge: 

a. For each sample, place a Filter Cartridge in one of the Collection Tubes supplied.  

b. Pipette up to 700 μL of the sample/ethanol mixture (from step 2) onto the Filter Cartridge 

and close the lid.  

- To prevent clogging of the filter, avoid pipetting large pieces of undigested tissue 

onto the Filter Cartridge. 

- Do not centrifuge Filter Cartridges at relative centrifugal forces greater than 10,000 

g; higher forces may damage the filters. 

c. Centrifuge at 10,000g for 1 min to pass the mixture through the filter. 

d. Discard the flow-through, and re-insert the Filter Cartridge in the same Collection Tube. 

4. Wash with 700 μL of Wash 1: 

a. Add 700 μL of Wash 1 to the Filter Cartridge. 

b. Centrifuge for 1 min at 10,000 g to pass the mixture through the filter. 

c. Discard the flow-through, and re-insert the Filter Cartridge in the same Collection Tube. 

5. Wash with 500 μL of Wash 2/3, and then centrifuge to remove residual fluid: 

a. Add 500 μL of Wash 2/3 to the Filter Cartridge. 

b. Centrifuge for 1 min at 10,000 g to pass the mixture through the filter. 

c. Discard the flow-through, and re-insert the Filter Cartridge in the same Collection Tube. 
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d. Centrifuge for another 1 min at 10,000 g to remove residual fluid from the filter. 

D. Nuclease Digestion and Final Nucleic Acid Purification 

1. Prepare DNase mixture 

Combine the indicated amounts of Nuclease-free Water, 10X DNase Buffer, and DNAse. 

For multiple samples, prepare a master mix for all samples plus ~5% overage.  

Component Amount (per sample) 

Nuclease-free Water  50 μL 

10X DNase Buffer  6 μL 

DNase  4 μL 

Total 60 μL 

2. RNA isolation: add 60 μL of DNA mixture and incubate for 30 min at room temp: 

a. Add 60 μL of the DNase mixture to the center of each Filter Cartridge. 

b. Cap the tube and incubate for 30 min at room temperature. 

3. Wash with 700 μL of Wash 1: 

a. Add 700 μL of Wash 1 to the Filter Cartridge. 

b. Incubate for 1 min at room temperature. 

c. Centrifuge for 1 min at 10,000 g. 

d. Discard the flow-through, and re-insert the Filter Cartridge in the same Collection Tube. 

4. Wash twice with 500 μL of Wash 2/3, then centrifuge to remove residual fluid: 
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a. Add 500 μL of Wash 2/3 to the Filter Cartridge. 

b. Centrifuge for 1 min at 10,000 g. 

c. Discard the flow-through, and re-insert the Filter Cartridge in the same Collection Tube. 

d. Repeat steps a–c to wash a second time with 500 μL of Wash 2/3. 

e. Centrifuge the assembly for 1 min at 10,000 g to remove residual fluid from the filter. 

f. Transfer the filter cartridge to a new collection tube and proceed with the following. 

5. Elute with 60 μL nuclease-free water at room temp: 

a. Apply 60 μL of nuclease-free water to the center of the filter, and close the cap. 

b. Allow the sample to sit at room temperature for 1 min. 

c. Centrifuge for 1 min at maximum speed to pass the mixture through the filter (the eluate 

contains the RNA), put the samples on ice immediately after centrifuging. 

d. Continue on to ethanol precipitation. 

E. Ethanol precipitation of RNA: 

1. Initial Precipitation 

a. Add 0.1 volumes (6 μL) 3M sodium acetate (pH 5.2). Pipetting up and down to mix. 

b. Add 2.2 volumes (132 μL) ice cold 100% ethanol.  Mix thoroughly. 

c. Place the tubes in the -80°C freezer overnight.  

2. Withdrawing RNA 

a. Keep the sample on ice whenever possible. 



394 
 
 

b. Mix the ethanol precipitate. 

c. Spin the tube 10 minutes in a 4 degree microcentrifuge at 14,000 g.  Be sure the hinge of 

the tube is facing out so that you know where the pellet will be later (it is often invisible). 

d. Decant the supernatant. 

e. Add 500 μL ice cold 70% ethanol to the tube. 

f. Spin the tube 10 minutes in the microcentrifuge at 14,000 g. 

g. Remove the ethanol by decanting with a pipettor (recommend 200 μL pipette). 

h. Invert the tubes on a towel under the fume hood and allow the pellet to dry 60-90 min. 

i. Dissolve the sample in 20 μL of nuclease-free water.  


