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Abstract

Domain-specific knowledge plays a significant role in the success of many
Monte Carlo Tree Search (MCTS) programs. The details of how knowledge
affects MCTS are still not well understood. In this thesis, we focus on identi-
fying the effects of different types of knowledge on the behaviour of the Monte
Carlo Tree Search algorithm, using the game of Go as a case study. We mea-
sure the performance of each type of knowledge, and of deeper search by using
two main metrics: The move prediction rate on games played by professional
players, and the playing strength of an implementation in our program Fuego.
We compare the result of these two evaluation methods in detail, in order
to understand how effective they are in fully understanding a program’s be-
haviour. A feature-based approach refines our analysis tools, and addresses
some of the shortcomings of these two evaluation methods. This approach
allows us to interpret different components of knowledge and deeper search in
different phases of a game, and helps us to obtain a deeper understanding of

the role of knowledge and its relation with search in the MCTS algorithm.
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Chapter 1

Introduction

Humans make many choices everyday which vary from trivial decisions, such
as what to eat for lunch, to more important decisions, such as how to invest
their money. These types of choices can be viewed as One-Shot decisions [28].
However there are many situations where we have to look at sequences of future
choices in order to make a decision now. It has been shown that humans tend
to make suboptimal decisions when faced with multiple choice repetitive tasks
[15] they have a tendency to under experiment the optimal choice [38]. This
signifies the need for decision-making algorithms to help us in making better
decisions. Researchers developing such algorithms need an environment that
is easy to setup and replicate, and has a sequential decision making process.

Board games provide such an environment, which is easy to implement by com-
puters. These games have simple rules, and results obtained with algorithms
can be compared to human performance as a measure of strength. Through
many years of research many of these games were solved, such as Checkers
[43], Hexapawn [8] and Quarto [30]; however, finding optimal solutions for
other games such as Go and chess proved to be intractable using the current
methods based on search algorithms. Therefore, researchers have put their
focus on beating top human players as a goal to advance their algorithms’
performance.

Chess programs have exceeded human level of play for the first time in 1997 [19]
using the alpha-beta pruning algorithm and special hardware. Alpha-beta’s
success in chess was helped greatly by the development of strong evaluation
functions, which examine a position and return its evaluation. Building such
an evaluation function had failed in the game of Go until AlphaGo’s value
network [45]. To address the lack of proper evaluation functions, Monte Carlo
Tree Search (MCTS) methods were developed [18].

The MCTS based program Fuego was the first program able to beat a top



human professional player in Go on a 9x9 size board in 2008 [23]. Fuego
achieved this level of play by using a MCT'S algorithm enhanced by knowledge
of features and patterns. Despite the successes that programs had on the
9x9 size board, the full 19x19 size board remained out of reach until recently,
when AlphaGo [45, 46] far exceeded the human level of play. AlphaGo uses
a variant of MCTS with a very strong knowledge obtained through Neural
Networks (NN) in order to navigate the search in MCTS.

1.1 Research Topics

e Examine the relation between knowledge and search in Go programs and
how these two impact each other.

e Examine current evaluation approaches used in Go programs, which are:
move prediction and playing against another program. Understand the
differences between each of these tests and how they relate to each other.

e Evaluate the impact of knowledge on the performance of a Go program.

e How does longer and deeper search improve the strength of a MCTS
program, in the presence of knowledge?

e Can this increased strength be explained in terms of simple feature
knowledge?

1.2 Contributions of this Thesis

In this thesis, we have done an in-depth analysis of the role of knowledge
in the Monte Carlo Tree Search (MCTS) program Fuego. We studied how
each component of knowledge and deeper search impacts the performance of a
player in the move prediction task. We showed that the move prediction rate
is correlated with the stage of the game for each of our studied players. We
incorporated features as a tool to interpret a players moves and find differenti-
ating factors that explain differences between our studied players. We studied
the impact of feature knowledge on the number of simulations a move receives

in MCTS.

In Chapter 2 we review the literature, and explain the terms that we will use
throughout this text. In Chapter 3 we explain the tools and methods used to
carry out the experiments, such as Fuego [23], which is an open source MCTS
Go engine. We also reformulate the research topics of Section 1.1 in terms



of this environment. In Chapter 4 we report the results obtained through
our experiments, and analyze those results in-depth to answer our research
questions.



Chapter 2

Literature review

In this chapter we briefly describe all the methods and terminology needed in
order to explain our experiments.

2.1 Knowledge

Professional players in games such as Go or chess use their knowledge to play.
Although their knowledge helps them to play at a very high level, they do not
express their knowledge in a way that can be implemented easily in a program.
Al researchers are interested in obtaining game-specific knowledge to improve
their algorithms. One way to achieve this is by studying games played by
professional players. The main approaches for obtaining knowledge in the
context of games are: features, patterns and neural networks. Part of the
process of obtaining knowledge is its evaluation. We first describe methods for
evaluation of knowledge, and then briefly describe each method for obtaining
knowledge.

Before we describe these methods we need to define knowledge. We define
knowledge in the scope of games. Knowledge in this thesis is information
gained by training methods that helps a program to act in an informed manner,
and improves the performance of a player when applied.

2.1.1 Evaluation of Knowledge

We test the obtained knowledge in order to evaluate its strength. There are
two popular approaches for testing: First, by evaluating the move prediction
rate on games played by professional players, and second, by using knowledge

4



inside a game engine and evaluating the change in strength of this engine.

Move Prediction

Move prediction is the act of predicting the next move in a game that was
played before. To do a move prediction we select a position from a game and
feed that position to the game-playing engine. Then we compare the response
received with the next move played in the game. See Section 3.3 for a detailed
description of game data used in this research.

Move Prediction Data

In any machine learning process involving data to acquire trustworthy results,
available data should be divided into at least two set: training and test sets.
There is no specific rule on how to choose the size of training and test set;
nevertheless, it is common to have 80% of the data as training set and 20% as
test set. It is important that the program that is being trained to learn the
knowledge will not see the test data during the training phase.

Playing Strength

Another method for testing a certain type of knowledge is comparing playing
strength with and without the use of that knowledge. In this scenario we
use knowledge either as a standalone player or integrate it into an available
program, and play a number of matches against other programs or another
version of itself. If we know the level of strength of the opponent, then we can
estimate the strength of our program from the obtained results by using the
Elo rating formula [3]. If we have integrated knowledge in an existing program,
then we can estimate the quality of the knowledge by measuring the increase
in playing strength resulting from the added knowledge.

2.1.2 Features

Features can reveal aspects of a move in a game, which help to better under-
stand and heuristically evaluate that move. We will define features informally
using a small example for moves in the position shown in Figure 2.1, and show
how those features are extracted.

First we define a list of binary features for our moves:



Figure 2.1: Go position.

Manhattan Distance to previous move of our own is 1

Manhattan Distance to previous move of our own is 2

Manhattan Distance to previous move of our opponent is 1

Manhattan Distance to previous move of our opponent is 2

For example, consider the two possible moves A and B for White in Figure 2.1.
For move A, the first feature has a value of 0 (false), since this move does not
have the distance of 1 to the previous White move. Following this process we
obtain values of: 0,1,1,0 respectively for each feature for move A. Each move is
represented by a vector with its corresponding values for above features. Each
of the features also has a corresponding weight. Weights are represented by a
vector of the same length. The evaluation of a move is a number calculated
by the inner product of feature and weight vector. In order to achieve a good
evaluation, defined features should be discriminative. After defining features
we need to tune their weights to have a more accurate evaluation. This can
be done using machine learning techniques. In the following example, we
manually assigned values to the weight vector W. Move B in Figure 2.1 has a
higher evaluation than move A, therefore, it is considered to be a better move



by this heuristic evaluation function.

A<+<0,1,1,0 >

B+<1,0,0,1>

W +<0.40,0.25,0.15,0.20 > (2.1)
FEval(A) =AW =0%040+1%0.25+1%0.15+0%0.20 =04
FEval(B)=BW =1%040+0%0.25+0x%0.15+1%0.20 = 0.6

There are many methods for learning the weights of features [44, 47, 49, 39].
We briefly describe the methods that are used in Fuego.

The Bradley-Terry Model

The Bradley-Terry (BT) model [32] predicts the outcome of a competition be-
tween individuals, when each individual is represented by a strength parameter
w. In a BT model the probability of player i beating j is:

wy

P(i beats j) = (2.2)

wi+wj

The BT model can be generalized to account for teams of individuals [22]. The
strength of a team is defined as the product of strengths w; of team members.
Equation (2.3) shows how the model is used to predict the winning probability
of team A, given manually assigned strength parameters w; ...wy. If we have
a feature vector for each move, then the move can be represented as a team of
features in the generalized Bradley-Terry model, with the strength parameters
equal to the feature weights. We can predict the quality of each move in a
position by using this model.

TeamA : wy,ws, wy

TeamB : wsy, wy

TeamC' : wy, wa, Wy

wy = 0.40,wy = 0.25, w3 = 0.15,w, = 0.20 (2.3)

. W1 * W3 * Wy
P(Team A wins) =

W1 * W3 * Wy + Wo * Wy + W1 * Wo * Wy
P(Team A wins) ~ 0.15

In order to use a Bradley-Terry model we need to optimize the parameters w;
of the model. Coulom [22] has proposed using a Minorization-Maximization

7



(MM) method for this. In MM, the objective function is maximizing the
probability of the next played move in the game, given the current position.
MM uses an iterative process to optimize the objective function over a (large)
test set. A simple surrogate function drives the objective function uphill. For
more info on MM, please refer to [32].

Latent Factor Ranking

Another method for estimating the ranking of moves is Latent Factor Rank-
ing (LFR) [37]. LFR ranks the next possible moves in the game from best
to worst. LFR uses a Factorization Machine (FM) [40]. In Factorization Ma-
chines, feature weights and interaction between features are given by:

y(X) Iwo—i‘zm:wll'@—i—zm: Zm: <UZ-TUJ' > T
=1

=1 j=i+1
k
< UT V; >= Vi +.U;
v Y] T Z:f' Jvf
/=1

X = (21,...2)

W = (wy,...w,) (2.4)
X € R is a feature vector (i.e. move features).

W e R" is a weight vector.

V € R™* is a pairwise interaction matrix.

Row v; within V describes the i-th variable with & factors.

y is evaluation of a move, which determines the ranking.

The move with highest evaluation in LFR will have the highest rank. LFR is
an extension of the BT model. In BT, only individual weights of features are
accounted for, while LFR in addition to features weights accounts for pairwise
interaction between features. The extra information provided in this model
leads to a 5% improvement in move prediction rate on Go games played by
professionals [37]. Another difference between the LFR and BT models is
their output LFR only produces a ranking, while BT produces a probability
distribution over all legal moves.

The Factorization Bradley-Terry Model

The Factorization Bradley-Terry (FBT) model [53] combines the strong points
of the LFR and BT methods. It accounts for pairwise interaction between



features, and also produces a probability of each move being selected, enabling
the model to be more easily applied as an evaluation function in Go programs.

y(X):wa—l—%Z Z < Vf, v >

fex feEX geX, f#g
exp(y(X*)) (2.5)
S exp(y(X9))

X is feature vector of move a

P(X'wins) =

FBT computes the strength of each feature group, and then uses a softmax
function to calculate the winning probability of a group.

2.1.3 Patterns

If we break down a game board into smaller pieces, we find many local shapes
that occur repeatedly. These shapes are called patterns. Studies have shown
that a professional player knows and uses an extensive number of patterns
in their play [33]. Inspired by the way professionals perceive the board, re-
searchers incorporated patterns into their Go programs. Patterns can be seen
as a special case of features and many programs use them in their feature
set, selecting patterns that are used frequently in professional players games
22, 23, 37]. Figure 2.2 shows an example of 3x3 size patterns which are in-
variant to rotation. The square mark in the example is where the next move is
going to be played. It can be of either colour. Positions marked by crosses can
have any stone colour or be empty. Figure 2.2d only matches the pattern if
Black moves to the square marked position. Patterns can have different shapes
and sizes, and Figure 2.3 is an example of diamond shape patterns. Many Go
programs have used this type of patterns [27, 23, 37].

2.1.4 Neural Networks

A neural network (NN) is combination of neurons organized in layers, and it
has three types of layers, input, hidden and output. The input layer is where
input data is fed to the network, the output layer produces the results, and
the hidden layers organize neurons in one or more layers. Figure 2.4a shows a
neural network architecture, and Figure 2.4b shows the computations involved
in a single neuron of a neural network. A neuron receives an input vector and
computes the inner product of the input with its weight vector. The results
are then sent through a non-linear activation function, which determines the
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Figure 2.2: 3x3 Patterns for Hane [27].
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Figure 2.3: Diamond Shape Patterns [49].

10



QA
oo
X<
«(

L2
\“' ‘ output layer

hidden layer 1 hidden layer 2
(a) Schematic of Neural Network [10]
b

4
%

N
hoi:

(O

input layer

Xl
X \& Threshold
‘ Summer unit
WZ
X,
Output
| W, . .
’ Artificial Neuron
: 1
n w, w, w, w - Weights of Connectien
X, %, %, %~ Inputs | b -Bias

(b) Single Neuron in Neural Network [11]

X

Figure 2.4: Neural Network.

output of the neuron. With increasing number and size of hidden layers, the
number of parameters of a network increases. For each layer as in Figure 2.4a,
every single neuron calculates an inner product with all the outputs of the
previous layer. In such a fully-connected network the number of parameters in
fully-connected layers makes optimization of a network harder. Convolutional
Neural Networks (CNN) mitigate this problem [35].

A CNN reduces the number of needed parameters in the model by feeding
the neurons with a smaller output vector from the previous layer. This allows
the construction of deeper networks. Figure 2.5 shows an example of a CNN.
Many implementations of CNN were applied to Go [21, 36, 45]. With deep
CNN, Maddison et al. [36] achieved a prediction rate of over 50% on Go games
played by professional players. This huge increase in prediction rate was the
starting point for AlphaGo [45].

2.2 Game Tree Search

In order to represent move sequences in a game, computers use a game tree.
This is a directed graph with nodes representing the positions of the game,
and directed edges representing moves. A game tree starts from the current
position as the root of the tree. Each node in the tree has all the follow-up
positions as its children. The end of game positions are leaf nodes in the tree.

11



- ——

32x32 28x28x%20 14x14x20 10x10x20 5x5x20 3x3x20 1x1x300

1
! ]

! 1

I°n i

i > [ > P> —E—)"on |
D\ ZXDZ-_ i ° i
o 1

! i

Feature Learning Classification
e d
Input layer C1-layer C2-layer MP2-1 C3-layer Fully- Output layer
1 Map 20 Maps K::’_[:]tlla;irz 20 Maps Kernel: a;irz 20 Maps  connected Fully-
Neurons: 1024 Kernel: 5x5 Kernel: 5x5 Kernel: 3x3 layer connected

Figure 2.5: Convolutional Neural Network [17].
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Figure 2.6: Game tree for a Tic Tac Toe Position [13].

Each leaf node has a value associated to it called reward. In the simple case
it has a value of +1 for a win, —1 for a loss and 0 for a draw. Games where
one player’s gain equals the other player’s loss are called zero-sum [42]. In
this thesis, we focus on perfect information, two player, zero-sum games, and
all the subsequent algorithms that we describe are designed for such games.
A game is called perfect information if the environment is fully observable.
Figure 2.6 shows an example of a game tree for Tic Tac Toe. The root of the
tree represents the current position. Edges are possible moves for the current
player. On the next level are positions where edges are moves for the opponent.
The leaf nodes represent positions at the end of the game.
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2.3 Minimax and Alpha-Beta

Minimax [42] is a recursive algorithm for search in two player games. A min-
imax game tree has two types of nodes, Min and Max. All the nodes on the
same level are of the same type. From one level to the next, types alternate
between Max and Min. Given the value of its children, the minimax value of a
node can be computed based on its type as either the minimum or maximum
of the children’s values. The Minimax value is reached if both players play
optimally [42]. Algorithm 1 shows the pseudo code of Minimax. The naive
Minimax algorithm generates a full-width decision tree and has a computa-
tional complexity of O(b™) with branching factor b, and depth m. This is a
huge computational cost for games such as Go or chess that have large effective
branching factor and depth.

There are many situations where computing the minimax value does not re-
quire to generate a full-width tree. Alpha-beta pruning [42] exploits those
situations and decreases the effective branching factor in minimax search. As
an example, in Figure 2.7.d, State B has a value of 3. The root, which is a
max node, will have at least a value of 3. State C has seen its first child and
has at most a value of 2. Therefore, optimal play from the root will never
choose C, because of the better option B. Therefore, alpha-beta does not need
to check other children of C, because it will never be selected. Such pruning
can greatly reduce the size of the generated tree from O(b?) to O(b%?) in the
best case [42]; however, the computational complexity of the alpha-beta prun-
ing algorithm remains exponential in the depth of the tree. In the worst case
scenario, alpha-beta can not prune any node. In order to address this issue,
move ordering heuristics are used. Move ordering tries to visit the best node
in any given state first.

In many problems, finding the exact solution by alpha-beta pruning is not
possible because of the huge size of the game tree. In those problems heuristic
evaluation functions are used. An evaluation function estimates the expected
value of a position (state). In order to reduce the size of the game tree, alpha-
beta pruning with limited depth traverses the tree to a certain depth, and then
estimates the value of the node at that depth by the evaluation function [42].
In order to apply alpha-beta pruning with limited depth on a problem, we
need an evaluation function that is able to accurately estimate the expected
value of a node for that problem.

13



Algorithm 1 Example of Minimax algorithm [42]

function MINIMAX-DECISION(s) returns an action a
return arg max,cacrions(s)y MIN-VALUE(RESULTS(s,a))

function MAX-VALUE(s) returns a reward value R

if TERMINAL-TEST(s) then return REWARD(s)
Q — —
for each a in ACTIONS(s) do

Q + MAX(Q,MIN-VALUE(RESULTS(s,a)))

return ()

function MIN-VALUE(s) returns a reward value R

if TERMINAL-TEST(s) then return REWARD(s)
Q + o0
for each a in ACTIONS(s) do

Q + MIN(Q,MAX-VALUE(RESULTS(s,a)))

return (@

State s is a position of a game. ACTIONS(s) returns the
list of actions in state s. RESULTS(s,a) transitions from
state s by choosing action a to state s’. REWARD(s)
returns the reward R for the state s. TERMINAL-TEST
checks to see if the state s is terminal. () is the value of a
leaf node.

14



(c) (d)

3 12 8 2 14

Figure 2.7: Example of alpha-beta pruning algorithm on minimax tree [42].

2.4 The Game of Go and Computer Go

Go is a two player zero-sum game with alternating play and perfect infor-
mation. Chess, Tic Tac Toe and checkers are other examples of this kind of
games.

Go is a strategy game which was invented in China, and later brought to
other parts of the world. We explain the main rules of Go. See [1] for more
explanation. The game starts with an empty board, usually 19x19. Two
players Black and White take turns putting one of their stones on the board
with Black going first. White can be given extra points for starting second,
which is called komi. The game continues until both players pass consecutively.
Stones are captured if they are surrounded by stones of the opposite colour.
Captured stones must be removed from the board. When the game ends the
player that has the most stones plus surrounded area plus komi wins the game.

The complexity of the game tree in Go makes it a very attractive test bed for
artificial intelligence algorithms. There are 361 points on the board and each
can have one of the 3 possible states of Black, White or empty. This results in
3%! board positions. This number is an upper bound on the number of board
positions, since some states are illegal. However, the possibility of playing back
into points where stones were captured greatly increases the game complexity.
The computational complexity of the game makes it intractable to solve on the
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Figure 2.8: Game of Go Board [5].

full size board by the alpha-beta algorithm. Until very recently, there was a
lack of good heuristics for evaluating Go positions, which made the alpha-beta
algorithm fail in Go.

2.5 Monte Carlo Methods

Monte Carlo (MC) methods were first popularized in physics to approximately
solve intractable integrals by using sampling [18]. Later Abramson [14] applied
Monte Carlo methods to games. He showed that the expected value of a move
through random play from a node was better than a handcrafted evaluation
function created by experts in the Game of Othello; however, he also noted
that obtaining such a value needs many rounds of random play. Equation (2.6)
shows how rewards obtained through rounds of play are used to compute the
expected value @) of a move a:
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(2.6)

e N, is the overall number of visits of state s.
e N, , number of times action a was selected in state s.
® (), is the average reward obtained from move a in state s

e R, is reward obtained at i-th game

2.5.1 Upper Confidence Bound (UCB) and the UCB1
Algorithm

When we apply Monte Carlo methods on a problem we need to repeatedly
make a choice between n actions at the same state, where each action leads to
a reward value. Choosing the next action is usually done by combining two
ideas, greedy exploitation prefers an action that has maximum average reward
up to that time, while exploration chooses the next action based on reducing
the largest uncertainty. Auer et al. [16] proposed the UCBI1 algorithm as a
balanced solution that combines exploitation and exploration. This is achieved
by computing an upper confidence bound on the reward. In UCBI1, an action
with large @) value still has an advantage; however, as number of visits N;
grows, actions with small number of visits Ny , obtain larger exploration bonus.
This increases the urgency of trying moves with low visit number.

Algorithm 2 Deterministic policy UCB1 [16].

Initialization: play each action once
Loop:

On trial N, in state s choose action a* where:

2In N
a* = arg max, [QM 1/ as}

2.5.2 UCB applied to Trees (UCT)

Although UCBLI is able to address the dilemma between exploration and ex-
ploitation, it was designed for choosing a single action in bandit problems, not
sequential decision making as in games. Kocsis et al. [34] proposed the UCT
algorithm based on UCBI1 algorithm. UCT expands a search tree for selecting
the next action.
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UCT uses Monte Carlo simulations to estimate the value of each action (move).
Each simulation repeats four phases: Selection, Playout, Fxpansion and Up-
date, as Figure 2.9 shows. In this section we briefly describe each.

Selection starts at the current position of the game, represented by the root
of the tree, and repeatedly selects the next node in the game tree based on
the UCT formula, until it reaches a leaf node. A Playout or rollout, starts
at the leaf node reached by selection, and repeatedly selects the next state of
the game based on a simulation policy until it reaches the end of the game,
and computes the result of the game. Fzpansion adds one or more children to
the leaf node that we have reached through selection. Update propagates the
simulations result back up the tree.

Kocsis et al. proved that as the number of sampled games goes to infinity,
the tree produced by UCT converges to a mini-max tree. Any method that
builds a tree using a Monte Carlo method to perform the search is called
MCTS; nonetheless, for the remainder of this thesis, whenever we use the
term MCTS, we mean a method based on UCT or an extension of the UCT
formula.

Algorithm 3 UCT [34]
Loop:
While s is not a leaf:

On trial Ny in state s choose action a where:

In N,
a = argmax, [Qs,a + Cp\/ N a]

next state: s < s,

Playout from state s
Update

C, is a tunable exploration hyperparameter.

s <+ 8, takes action ¢ in state s and results in a new state.

Playout: plays the game from given state until the end using playout policy.
Update: updates the tree statistics using the latest playout results.

The first difference between UCT (Algorithm 3) and UCB (Algorithm 2) is
the addition of a tunable exploration parameter C),. The other difference is
that UCT is applied to all the nodes in a tree that are visited during selection.

2.5.3 PUCB

PUCB is a modification to UCT (Algorithm 3) proposed by Rosin [41]. This
algorithm adds a term to UCT to incorporate feature knowledge for evaluating
each action a. Algorithm 4 shows the method.
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Figure 2.9: Phases of MCTS [51].

Algorithm 4 PUCB [16].

Initialization: play each action once

Loop:
On trial Ny in state

s choose action a where:

a = argmax, [Qw + C(Ns, Ngo) — M(Ns, a)

o C(C(Ng,Ng,) = \/%S(NS) if Ng, > 0, otherwise 0; C}, = 3/2.

e M(Ny,a) 2

- fe'ual
s,a

eval

o Jsu' Is the feature evaluation of move a in

state s.

\/17 %f:{s) if Ny > 1, otherwise

2

feval .
s,a
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2.5.4 AMAF and RAVE

Rapid Action Value Estimation (RAVE) [26] is a technique for estimating the
value of a move, and it uses the All Moves As First (AMAF) [29] technique.
AMAF estimation is based on the assumption that the value of a move is
unaffected by when the move is played during a game. AMAF produces a
rough estimation of a move’s value, “as the value of an action (move) usually
depends on the exact state in which it is selected [25)”

sta =Elzls;=s, Ju>t st a,=ad
where z is the game rgsult, t is the time step (2.7)
(move number), and @ is the estimated value
of a move a using AMAF.

AMAF uses Monte Carlo simulations to estimate the Q) value by averaging the
result of every simulation, which started from state s in which action a was
played after time t¢.

In early stages of MCTS, when we have not gathered enough information to
accurately estimate a move’s value, the RAVE estimate can help to improve the
performance of search by biasing search towards the moves with better RAVE
value. [25] observed up to 36% increase in the win-rate of their player MoGo
[9] against GnuGo [6] by applying RAVE. When the number of simulations for
a move increases, we have a better estimation of the move value. We decrease
the weight of RAVE in move selection, by computing a weighted combination
of action value obtained through Equation (2.7) and Equation (2.6), gradually
fading out the Q. , term.

Q:,a = (1 - Bs,a)Qs,a + Bs,a@s,a

[k
ﬁs,a— 3NS+I€

where s, is obtained by Equation (2.6), Q is
the RAVE estimate, [, , is the weight param-
eter, k is a hyperparameter, and N, is number

of visits for state s

The UCT-RAVE algorithm [26] replaces Q,, in Algorithm 3 with Q7 , from
Equation (2.8).
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2.5.5 Usage of Knowledge in MCTS

Domain specific knowledge in MCTS can be applied in different ways. One
approach is using knowledge to initialize a new node in the tree [23] to bias the
in-tree selection strategy towards or away from that node. Another application
of knowledge is its usage in the playout phase to strengthen play by playout
policy, and avoid some blunders. Silver and Tesauro [48] show that improving
the strength of a playout policy alone does not necessarily lead to improved
level of play, because it can increase bias. Reducing the bias of a playout
policy plays a significant role in the strength of a MCTS player. Knowledge
can also be applied as an evaluation function to cut off the search on the
simulation early, and estimate the game results at that point [45]. Many
program authors have reported an increase in performance of their program
from adding knowledge [37, 21, 45, 48, 27, 25, 53, 41].
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Chapter 3

Tools and Methods for
Experiments

In this chapter we describe tools, methods and settings used in the experiments
of Sections 3.3 and 3.4. We use Fuego [23] as a test-bed to conduct our
experiments. In Section 3.1 we describe Fuego and its algorithm settings. We
then describe the tested players in Section 3.2. We describe our experimental
methods for move prediction and measuring playing strength in Sections 3.3
and 3.4. We briefly describe previous work on the analysis of game-playing
programs in Section 3.5. In Section 3.6 we revisit our research questions to
give more precise descriptions in terms of the definitions introduced here.

3.1 The Fuego Framework

Fuego [23] is an open-source MCTS-based search engine mostly developed by
a team at the University of Alberta. Fuego is a collection of game independent
libraries for two player, perfect information board games, and also contains a
set of MCTS-based Go players.

We briefly describe how each of the algorithms relevant to our experiments are
implemented in Fuego. SVN revision 2032, updated on 2016 — 08 — 16, was
used in our experiments.
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3.1.1 UCT Move Selection

The Fuego implementation follows the standard MCTS algorithm, with in-tree
move selection described in Section 2.5.2.

On trial N, Fuego chooses action a* = arg max |Q;q + C(Ns, Ns,a)] where:

N, is the number of visits of current state.
Nj o is the number of previous visits of move a in state s.
(s, weighted mean of move value and RAVE value of move a in state s.

C, is a hyperparameter for controlling exploration with default value of 0.7.

log(N,)
NS a

)

C(Ns, Ny o) = Cp %

(3.1)

3.1.2 Initialization of N and () Values

Fuego uses feature evaluation as a prior knowledge. When a new node is added
to the Monte Carlo tree, its value is initialized by prior knowledge trained by
the LFR [37] method. Prior knowledge evaluation outputs a real number, and
Fuego uses Equations (3.2) and (3.3) to transform that number into an initial

number of visits N, = NP"°" and an initial value Q,, = Q""" of move a in
) ) ) y
state s [52].
ex|T(s)] I .
N Zafsezzlal X 8671()104 lf fs7a Z 0
s,a — T .
—CEX| ()] feval otherwise
afs,a, $,a (3 2)

Here, cis a hyperparameter, f¢° is the feature
evaluation of move a in state s, and |['(s)| is

number of all legal moves in state s.

1+feva,l .
0 —Qxf:engaé if fo,.>0
$a = LHfeu ~
— : otherwise
2ot (3.3)
where 7% and f¢¥® are minimum and maxi-

min mazx

mum feature evaluations of all moves in I'(s).
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3.1.3 Additive Knowledge

In order to extend UCT with feature knowledge, Fuego also uses a variant
of the PUCB method described in Section 2.5.3. However, the PUCB imple-
mentation in Fuego has some differences with the method described in Sec-
tion 2.5.3. Equation (3.4) shows the details.

On trial N, choose ¢* = argmax(Qs,, — pw * py) Where:

Here, cqqq with default value of 1 and cgy
eval) with default value of 10 are hyperparameters.

® Do = Cad % 519(Csig * fila Sig(t) = = is the sigmoid function and f¢2!

1+et
(3.4)

is the feature evaluation of move a.

One difference between Equation (3.4) and Algorithm 4 is that the exploration
term C, is set to zero in here. The other difference is that the hyperparam-
eters used in here are different from Algorithm 4. Fuego also does not follow
the initialization step in Algorithm 4, and instead uses feature knowledge for
initialization.

3.1.4 Simple Features and Patterns in Fuego

Fuego uses complex knowledge for in-tree selection and simple knowledge in
the playout phase. Fuego also uses feature-based evaluation in an additive
term to bias moves during in-tree selection. The features used in additive
knowledge are diamond shape patterns similar to Figure 2.3 with size 4 [52].

3.1.5 Playout Policy

The playout policy in Fuego consists of a set of prioritized methods. Fuego runs
these methods in a top-down manner. It stops as soon as a method returns
a nonempty set S of candidate moves. Fuego chooses a move uniformly at
random between moves in .S, except in the case of 3x3 pattern move features,
which have associated weights. In this case, the chance of a move being selected
is proportional to its weight. Features in Fuego are similar to the ones in [22]
using 3x3 patterns and features.
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3.1.6 Move Filtering

Fuego uses a move filtering technique to reduce the branching factor of the
tree. This method can filter moves that are captured in a ladder, moves on
the first line, and moves inside safe groups. For more information on the
implementation of the move filtering algorithm in Fuego, please refer to [4].

3.2 Fuego-Based Players Used in our Experi-
ments

In our experiments we have used a set of players from the Fuego code base.
Here, we briefly describe each player. For detailed information on the settings
of each player, please refer to Appendix A.

3.2.1 Playout Policy-Only Player

This simple player uses only the playout policy of Fuego, described in Sec-
tion 3.1.5, for generating the next move in the game, and it does not use
search. This player helps us to understand the playout policy in Fuego better,
and also helps us to measure different aspects of the playout policy, such as
move prediction and playing strength.

3.2.2 Simple Features-Only Player

Here, we use the prior knowledge in Fuego as a stand-alone player. The highest
evaluated move according to features is played. Having a features-only player
helps us to understand how the knowledge encoded in features compares to
search, and it also helps to better evaluate feature knowledge.

3.2.3 No Knowledge Player

In order to examine how knowledge helps the performance of a player, we turn
off prior knowledge and move filtering in Fuego. This player uses only MCTS
with the default Fuego playout policy. This player helps us better understand
the impact of knowledge on a player, and specifically on move prediction and
playing strength.
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3.2.4 No Additive Player

Fuego by default uses additive knowledge to help its in-tree policy focus more
on high-ranking moves. We turn off the additive knowledge in this player,
and rollback Fuego to use MCTS with the UCT method as described in Sec-
tion 3.1.1. This player helps us to better understand the role of additive
knowledge in Fuego.

3.2.5 Default MCTS-Based Fuego Player

We need to be able to compare the results obtained by other players with
full-strength Fuego. This player uses the full Fuego engine with all default
settings.

3.2.6 Varying the Number of Simulations

For the MCTS-based players in Sections 3.2.3 to 3.2.5 we vary the number of
simulations in {100, 300, 1000, 3000, 10000}. This helps us to understand the
impact of more simulations on the players.

3.3 Move Prediction

One of the main experiments that we have conducted in order to evaluate
our players is move prediction. In this task we have used games played by
professional players. We run a player on all the positions from each game, and
let it predict the next played move.

3.3.1 Move Prediction Data

For the move prediction task, we used games from Pro Game Collection [12].
In total we used 4621 games, after removing games that were played on board
sizes other than 19x19. These games were played from Sep 2013 to Nov 2016.
This time frame was chosen because Fuego features were trained on games
prior to Sep 2013 from the same collection. Choosing this period makes sure
that the test set has not been seen by our programs before.
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3.4 Playing Strength

In this experiment we play matches between different players to obtain a mea-
sure of their relative strength. We used GoGui [7] to automate the process.
For detailed information on the scripts, please refer to Appendix A.

3.5 Previous Work on Analysis of Go Pro-
grams

Many game programs have been used for scientific research over the years [23,
27, 20, 19]. Here, we describe studies on analyzing playout policies, simulations
and strength in MCTS-based Go programs.

3.5.1 Combining Online and Offline Knowledge in UCT

Sylvain Gelly and David Silver [25] studied the impact of three different ideas
on the performance of MoGo [9]:

e Impact of strength of playout policy
e Impact of RAVE

e Impact of prior knowledge

Impact of Strength of Playout Policy

For a set of playout policies P that were based on a value function () trained
by Reinforcement Learning techniques [50], the authors measured the strength
of every playout policy as a stand-alone player by performing a round-robin
tournament between the policies P. Then they measured the strength of
versions of MoGo that use the playout policies in set P by playing games
against a fixed opponent GnuGo 3.7.10 (level 0) [6]. To their surprise, MoGo’s
default handcrafted policy, which was weaker as a standalone player, improved
the performance of MoGo compared to the other policies in these games.
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Impact of RAVE

Another experiment measured the impact of RAVE on the performance of
MoGo. They observed up to 36% improvement in MoGo’s win-rate against
GnuGo 3.7.10 (level 8) by adding RAVE.

Impact of Prior Knowledge

The last part of the study [25] focused on analyzing the impact of prior knowl-
edge on the performance of MoGo extended with RAVE. Feature knowledge
was used to assign an initial value )5, and a number of visits N, , for a move
a. Adding prior knowledge improved the win-rate of MoGo by 9% against
GnuGo 3.7.10 (level 8).

3.5.2 Monte Carlo Simulation Balancing

David Silver and Gerald Tesauro studied the impact of balance in a playout
policy on the performance of a player [48]. This work introduced an imbalance
measure B, as the expectation of the squared bias b(s)?.

b(s) = V*(s) — Er,[2]s]
9(s) = VoEr, [2]s]
Boo(0) = E,[b(s)’]
VoBoo(0) = VoE,[V°] = —2E,[b(s)g(s)]

where z is the result of a game obtained (3:5)

through simulations, V*(s) is minimax value
of a state s, m is a playout policy, 6 are the
parameters of m, and p is the distribution of
states.

In this work, first V* is approximated by using deep Monte Carlo search for
each state. Then an optimization method is applied to Equation (3.5) to
balance the policy m. The resulting policies were tested against a set of machine
learned policies. While the machine learned policies were stronger as a stand
alone player, when used in an MCTS program, the program with balanced
policy outperformed the other versions.
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Simulation Balancing in Practice

Another Monte Carlo Simulation Balancing technique was analyzed by Aja
Huang et al. in [31], and applied to the Go playing program Erica. The
playout policy in Erica was pattern based, and trained by the MM technique
[22].

After training a playout policy using the MM method, it was then balanced by
simulation balancing. Erica was tested against Fuego 0.4 on the 9 x 9 board
size by performing 1000 games with 3000 simulations per move. Simulation
balancing improved the win-rate of Erica from 40.9% to 78.2%.

3.5.3 Analyzing Simulations in MCTS

Sumudu Fernando and Martin Miiller conducted a study to examine playout
policies in Fuego [24]. They studied three hypotheses:

e The strength of a playout policy is strongly correlated with the preser-
vation of the game theoretic status of the game. For example, if Black is
winning when the playout starts, at the end of the playout Black should
be reported as the winner.

e The size of errors made during simulation matters.

e Given a playout policy, having no systematic bias is more important than
having low error rate.

In order to test their hypotheses, Fuego was used to conduct the experiments
on the 9x9 board size. Different variations of Fuego’s playout policy were used
in their study, by selecting subsets of the playout policy rules in Fuego.

Balance and Strength

To investigate the correlation between balance and strength of a policy to ad-
dress their first two hypotheses, the authors measured the number of blunders
each of their selected policies makes during the playout phase over 100 self-
played games. In order to measure blunders, each position of the game before
and after a move was evaluated by 5000 simulations using the default settings
of Fuego. This results in a good estimate of the value for a position. If a move
changes the estimate from over 0.75 to under 0.25, it is marked as a blunder.
When a playout policy makes zero or an even number of blunders that policy
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Figure 3.1: Expected point loss of policy P vs policy blunder rate (left) and
vs relative strength of MCTS(P) (right) [24].

would be considered strong, since it keeps the game theoretic status of the
position.

The obtained results do not show an “appreciable correlation” between balance
and strength in the experiment. One reason for failed correlation were long
series of blunders occurring during the playout, which makes the parity of the
number of blunders random. Another reason is that non-blunder moves with
smaller error add up and eventually change the result of the game, without
being caught by this approach.

Error Size

To measure the policy error, the authors selected a number of positions uni-
formly from more that 50000 games on CGOS [2] on board size 9x9. For each
position, a fair komi value was computed, which is an estimate of the value of
a position for Black. Fuego was used to estimate the winning probability for
Black by changing the komi value. The point where the winning probability
becomes 50% is defined as the fair komi value. After using binary search to ob-
tain the fair komi value for a position, all legal moves from that position were
played, and the fair komi value of all the resulting positions was computed as
well. The difference between original and after-move value was assigned as the
move value loss. Each move that changed the winning status to losing and
also lost at least 5 points was defined as a blunder.

The authors observed a strong correlation between expected point loss and
policy blunder rate. They also found a “suggestive negative correlation” be-
tween expected point loss and relative strength of a policy. Figure 3.1 shows
their results.
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3.6 Revisiting the Research Topics

In this section we re-visit our research questions, and rephrase them using the
terms that we introduced so far.

e Examine the relation between knowledge and search in Go programs and
how these two impact each other.

We want to know how knowledge impacts simulations in Fuego, and how
we can express the moves with high number of simulations in terms of
prominent features, and what impact the evaluation of feature knowledge
has on those moves. This is discussed in Section 4.4.

e Examine current evaluation approaches used in Go programs, which are:
move prediction and playing against another program or human. Un-
derstand the differences between each of these tests and how they relate
to each other.

We want to know what is the evaluation of move prediction on the players
that we described in Section 3.2, and how those results compare to the
results of matches that those players play against each other. This is
discussed in Sections 4.1 to 4.3.

e Evaluate the impact of knowledge on the performance of a Go program.

After understanding the difference between measures of evaluation, we
want to know how usage of simple features for initialization of new nodes
in the tree can impact the performance of a player in terms of both move
prediction rate and playing strength. This is covered in Section 4.4.6.

e How does longer and deeper search improve the strength of a MCTS
program, in the presence of knowledge?

We want to measure the impact of varying the number of simulations in
default MCTS-based Fuego. We analyze the results of move prediction
and playing strength. This is discussed in Sections 4.1 to 4.3.

e Can this increased strength be explained in terms of simple feature
knowledge?

Can the impact of simple feature knowledge on the evaluation mea-
sures also be observed in the frequency of features present in the default
MCTS-based Fuego player moves? This is discussed in Section 4.4.
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Chapter 4

Experimental Results and
Discussion

In this chapter we provide the results of our experiments. We explain those
results, and use them to answer the research questions.

4.1 Move Prediction

Table 4.1 shows the results of the move prediction task described in Section 3.3
on the test set with positions from 4621 games. The players are Fuego-based
engines described in Section 3.2. The move prediction rate is the fraction
of positions for which the master move was predicted correctly. For the No
Knowledge, No Additive, and Default Fuego players the number in the name
represents the number of simulations per move used by that player. Figure 4.1
shows the prediction rate for various number of simulations.

The Playout Policy-Only and Simple Features-Only players do not use Monte
Carlo simulations. Playout Policy-Only was only able to predict less than 22%
of professional moves. Simple Features-Only has a much higher prediction rate
of approximately 31%. Given the fact that neither of those two players uses
MCTS, the gap signifies the role of the knowledge obtained through a large set
of simple features trained by machine learning methods in the Simple Features-
Only player, compared to the combination of fast rules and small patterns in
the Playout Policy-Only player.

Removing all knowledge has a big negative impact on the prediction rate
in MCTS. It drops the prediction rate to 12% in the No Knowledge player
with 100 simulations. Adding more simulations compensates for the lack of
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Figure 4.1: Graph of move prediction rate.

knowledge to some degree. With 10000 simulations, the prediction rate of the
No Knowledge player increases to over 21%. Nonetheless, this is still far below
the move prediction rate of any MCTS player utilizing knowledge. This shows
the role of knowledge in giving directions to MCTS toward nodes with better
outlook, when the number of simulations is limited.

The prediction rate of the No Additive player is between approximately 28%
and 33%. Up to 1000 simulations increasing the number of simulations im-
proves the prediction rate; however, after that it starts to drop. When we
compare the results of a No Additive player to the Default MCTS-based player
with the same number of simulations, we observe a similar pattern in change of
prediction rate. The difference between prediction rates of the Default Fuego
player and the No Additive player for simulations between 100 to 10000 are:
0.0015, 0.0024, 0.0061, 0.0139, 0.0178. This shows that as the number of sim-
ulations grows, additive knowledge slows down the drop of prediction rate in
the Default Fuego player, and biases the selection policy in MCTS more to-
wards professional player moves. This widening gap can also be observed in
Figure 4.1.

Given the obtained results several new questions arise:

e [s there any difference in strength between players with similar prediction
rate?

e What role does the number of simulations play in players strength vs
prediction rate?
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Experiment Accuracy
Playout Policy-Only 0.2160
Simple Features-Only | 0.3066
No Knowledge 100 0.1212
No Knowledge 300 0.1486
No Knowledge 1000 0.1767
No Knowledge 3000 0.1976
No Knowledge 10000 0.2125

No Additive 100 0.3209
No Additive 300 0.3269
No Additive 1000 0.3281
No Additive 3000 0.3074
No Additive 10000 0.2811
Default 100 0.3224
Default 300 0.3293
Default 1000 0.3342
Default 3000 0.3213
Default 10000 0.2989

Table 4.1: Result of move prediction for players based on Fuego.

e Why does the prediction rate for No Additive and Default MCTS players
start to drop?

In order to start investigating these questions, we next conducted two experi-
ments. The first experiment measures the playing strength of players against
each other. The second measures the move prediction rate in different stages
of the games.

4.2 Playing Strength

In order to answer the first two questions in Section 4.1, we created a round
robin tournament between all the 11 players described in Section 3.2. Each
round consists of 100 games between two players, with each player playing
Black 50 times. All players except the Simple Features-Only player use ran-
domization, which resulted in not having any duplicated games. We used
GoGui [7] to perform the tournament. Results of the tournament are reported
in Table 4.2. Reported results are from the perspective of the player in the row
against the player in the column. For example the entry in the second row,
second column shows that the Playout Policy-Only player has won 0 games
against the No Additive player with 1000 simulations.
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experiments No Additive 1000 No Additive 300 No Additive 100
Playout Policy-Only 0 0 0

No Additive 1000 - 100 100

No Additive 300 0 - . 10
No Additive 100 0 0 -

No Knowledge 1000 7 60 90

No Knowledge 300 0 17 65

No Knowledge 100 0 0 17
Default 1000 Bl 99 100
Default 300 1 55 97
Default 100 0 3 50
Simple Features-Only 0 0 3
experiments Default 1000 Default 300 Default 100
Playout Policy-Only 0 0 0

No Additive 1000 49 99 100

No Additive 300 1 45 97

No Additive 100 0 3 50

No Knowledge 1000 4 65 87

No Knowledge 300 0 12 40

No Knowledge 100 0 0 7
Default 1000 - 100 100
Default 300 0 - T
Default 100 0 2 -

Simple Features-Only 0 0 4
experiments No Knowledge 1000 | No Knowledge 300 | No Knowledge 100
Playout Policy-Only 0 0 0

No Additive 1000 93 100 100

No Additive 300 40 83 100

No Additive 100 10 45 83

No Knowledge 1000 - 95 100

No Knowledge 300 ) - _
No Knowledge 100 0 2 -
Default 1000 96 100 100
Default 300 35 88 100
Default 100 13 60 93
Simple Features-Only 2 26 67
experiments Playout Policy-Only | Simple Features-Only -
Playout Policy-Only - 0 -

No Additive 1000 100 100 -

No Additive 300 100 100 -

No Additive 100 100 97 -

No Knowledge 1000 100 98 -

No Knowledge 300 100 74 -

No Knowledge 100 100 33 -
Default 1000 100 100 -
Default 300 100 100 -
Default 100 100 96 -

Simple Features-Only 100 - -

Table 4.2: Result of 100 game matches between all pairs of players.
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Table 4.2 summarizes the results of the tournament. In order to highlight
some interesting trends, we have created five colour groups in the table.

4.2.1 Red Group of Experiments: Default MCTS-based
Fuego vs No Additive Player

This compares the experiments with same number of simulations between the
No Additive and default MCTS-based Fuego player. Increasing simulations
does not change the balance of strength between these two settings, and re-
moving additive knowledge had minimal impact on playing strength. This
is consistent with what we observed in the move prediction task. It can be
concluded from the result that these two players have almost the same playing
strength against each other when using the same number of simulations.

4.2.2 Yellow Group of Experiments: No Knowledge vs
Other MCTS-based Players

The playing strength of the No Knowledge player decreases most of the time
against an opponent with the same number of simulations as the number
of simulations increases. The role of knowledge becomes more important as a
player’s strength increases. Knowledge helps a player to avoid crucial mistakes
in a game, where a stronger opponent can better exploit those mistakes. While
it seems that increasing the number of simulations should compensate for lack
of knowledge, there are two reasons that we do not see that effect in this
group of experiments. First, the opponent also benefits from an increased
number of simulations. Second, in a player that uses the knowledge, increasing
the number of simulations leads to more visits of promising moves that the
knowledge picks. This enables the player to examine these moves more deeply,
and pick the best among them. The No Knowledge player is less focused and
needs more simulations to achieve the same effect.

4.2.3 Blue Group of Experiments: Varying Number of
Simulations, 300 vs 100

As expected from previous experience with MCTS-based engines, we can see
that in every case, a 3x increase in number of simulations leads to a huge
difference in playing strength. This is in sharp contrast to the move prediction
task in Table 4.1, where the difference was small and sometimes even negative.
This shows that using the move prediction rate as a measure to examine a
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player is not as informative as we expected it to be. There remain aspects of
a player which strongly affect its comparative strength against another player,
which move prediction is unable to reveal.

4.2.4 Green Group of Experiments: No Additive vs
Other MCTS-based Players

This colour group compares No Additive with other MCTS-based players with
the same number of simulations. In all these experiments removing the ad-
ditive term has limited impact on playing strength. The biggest change in
playing strength between the No Additive and Default Fuego player is in 300
simulations, where Default Fuego player won 55% of games, in 1000 simulations
it is only 51% win-rate for the Default Fuego player, and in 100 simulations no
difference is made. These changes in win-rate seems to be due to randomness.
Removing feature knowledge decreases the playing strength by a huge margin,
with win-rates of 7-17% for the No Knowledge player.

4.2.5 Gray Group of Experiments: Simple Features-
Only vs No Knowledge Players

This scaling experiment shows how many simulations are needed to reach and
surpass Simple Feature knowledge. With 100 simulations, the No Knowl-
edge player is weaker than feature knowledge: it loses 67 games. With 300
simulations, the No knowledge player surpasses the strength of the Simple
Features-Only player, and with 1000 simulations the No Knowledge player is
much stronger, winning 98 of 100 games.

4.3 A Closer Look at Move Prediction Rate

In Section 4.1 of the previous experiment, surprisingly the move prediction
rate did not show any major difference between Default Fuego and the No
additive player when the number of simulations was varied between 100 to
1000, while Section 4.2 showed undeniable differences in strength between
those players. We also want to understand why the prediction rate starts
to drop after 3000 simulations in the Default MCTS-based and No Additive
players. In this experiment, we study the effect of the game phase. We divide
a game into six intervals from the opening to the endgame, and measure the
prediction accuracy of each player separately for each interval. We created six
intervals of 50 moves each, corresponding to move 0 to move 300. Because of
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the limited number of available samples after move 300 we ignored those final
small endgame moves.

Figure 4.2 shows the move prediction accuracy per interval for Default Fuego
with 100 and 1000 simulations, and for No Additive with 100 and 1000 sim-
ulations. While Table 4.1 showed no noticeable difference between 100 and
1000 simulations, Figure 4.2 shows that for the first 200 moves there is a ma-
jor difference in both Default Fuego and No Additive players, with a higher
prediction rate for 1000 simulation player. This difference fades from move
200-250 and turns to the opposite from moves 251-300.

Figure 4.3 shows the prediction accuracy for experiments where we saw the
drop of prediction rate with 3000 and 10000 simulations for No Additive and
Default Fuego. We added the 300 simulation players as a baseline. In the
opening, the prediction rate for the Default Fuego players increases with num-
ber of simulations, and for No Additive players remains very similar for the
first 50 moves. From the second interval to the last, the prediction rate of the
300 simulation players sharply increases. For the 3000 simulation players this
increase is more moderate. In the 10000 simulation players we observe a drop
of prediction rates for the first 250 moves, and then a slight rebound.

To explain the lower prediction rate in the late endgame in players using more
simulations, we need to look at how the selection policy in MCTS works. In a
game when one player’s winning probability is very high, there are many moves
that still result in winning for that player, while being sub-optimal in terms of
score. The selection policy in Fuego maximizes winning probability, not score.
After 200 moves, the winner of most of the games can be predicted with high
confidence by strong players. There are many moves in those games that do
not change the outcome, and Fuego chooses a “safest” move according to its
noisy simulations. Professional players will not usually select such point-losing
“safe” moves. Another reason lies in the impact of knowledge on players with
fewer simulations. As we saw in Section 3.1.2, knowledge is used to initialize
the value of a node in the Monte Carlo tree. When the number of simulations
is still small, this initialization plays a major role in MCTS search. Since it is
based on features learned from professional games, it biases the search toward
professional moves. However, as the number of simulations grows the impact
of initialization diminishes relative to the result of simulations.

4.4 Move Prediction and Feature Frequency

Since the move prediction rate alone does not explain the difference in playing
strength, we try to find other differentiating factors between various players
by focusing on features. Features play a major role in the success of a player.
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Figure 4.2: Move prediction accuracy per game phase for 100 and 1000 simu-
lation players. Each group has 50 moves.
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Figure 4.3: Move prediction accuracy per game phase for 300, 3000 ad 10000
simulation players. Each group has 50 moves.
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Figure 4.4: Feature counts of baselines.

Even modern neural networks can be seen as a function that is built upon a
complex set of features computed in its nodes. In order to understand the
significance of different features, we use frequency of features, and we report
the most frequent features for each experiment. We count the number of times
each feature is present in master players’ moves throughout the game records
to identify frequency of features. We also record the same features over the
moves generated by our computer-based players. Our goal is to gain insight
on how players differ. In each experiment, we count the number of times each
feature exists in the moves generated by one player. The result is a table of
features with their significance for the move prediction task. For the meaning
of each recurring feature number please refer to the appendix.

We need baselines to analyze the results obtained from our comparison. We
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have selected three such baselines. The first baseline is the frequency of fea-
tures in all legal moves for every position in all the master games. The second
one is the frequency of all features in master player’s moves throughout all
game records. The last baseline is the frequency of features in the master
move which do not get any attention from our player. In order to determine
these moves, we record the number of simulations allocated by the Default
Fuego player for each master move in each game position. If the number of
simulation for the master move is less than 1% of the move chosen by the
Default Fuego, that move is marked as a low simulation master move and its
features are recorded. Figure 4.4 shows the graphs for these baselines.

The two most prominent features in Figure 4.4a are 117 and 122. They rep-
resent a distance of 4 or more to the block of the last opponent stone and
to the block of the last own stone respectively. Their frequency is more than
85% over all legal moves for each position. This is not surprising due to the
size of the 19x19 board, and the distribution of legal moves in each position.
The next two prominent features are 25 (moves on line 5 and upward) and
21 (moves on the first line). While moves on line 5 and upward cover 1.68
times the area of moves on the first line, they only happen 1.25 times more
in the legal moves. Comparing the frequency of these two feature reveals that
positions on the first line of the board remain empty longer than other points
in professional games.

Figure 4.4b shows features of professional players moves. Feature 176 (distance
2 to closest opponent stone) is true for 62% of professional moves and feature
177 (distance 3 to closest opponent stone) in 22%. In total 85% of professional
moves are in close proximity to opponent stones. Feature 157 and 158 (distance
2 and 3 to closest own stone) together cover almost 80% of professional moves,
showing that professionals play close to their own stones as well.

As in Figure 4.4a, in Figure 4.4c prominent features of master moves missed by
Fuego are 122 and 117 with frequency of 68% and 60%. This shows that moves
that usually get ignored by Fuego are non-local responses to the opponent, or
“tenuki” moves that change the area of play.

4.4.1 Effect of Search and Master Move Prediction

We study which master moves are a) found by search, and b) rejected by
search. Figures 4.5a to 4.5¢ show feature frequencies for three players: Default
MCTS-based Fuego, No Additive and No Knowledge. Each figure shows the
frequency of features present in the moves predicted correctly by the player
with 3000 simulations, while the same player with 100 simulations misses it.
We also created statistics for the opposite case: moves that the player with
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100 simulations predicts correctly but the player with 3000 simulations misses.
We have not included these graphs in Section 4.4 and only show the difference
graphs here. In order to understand the differences, we created graphs of
difference between features frequency statistics shown in Figures 4.5a to 4.5c¢,
and statistics of players with 100 simulations when they predict correctly and
3000 simulations fails. These results are reported in Figures 4.5d to 4.5f.

To discover if these differences in statistics of features in the players are random
or consistent, we randomly selected 10 subsets of feature statistics from the
feature frequency database used to make the difference graphs. We observed
that frequencies in all the subsets where within 98.5% of the frequencies in the
superset in top 50 features of the superset. This shows that any difference in
feature frequency that is less than 1.5% can be ignored in features difference
graphs due to randomness in the data.

As we can see in Figures 4.5d to 4.5f, all the differences have frequencies less
than 1.5%, and they can be ignored. This shows that feature frequency for
master moves predicted correctly by one player while the other missed it is not
much different from the feature frequency when the other player predicts the
master moves correctly and the first player misses it. This shows that we are
not able to use features to find differences in mechanisms of master move pre-
diction between the players. In order to find the differentiating factors between
players, we also created graphs of difference between feature frequency on all
the moves generated by each player. Those graphs are shown in Figures 4.6
to 4.8.

4.4.2 Impact of More Simulations

Figure 4.6 shows the difference in feature frequency of moves generated by
default Fuego with 3000 and 100 simulations. The main difference is in features
117 and 122 which indicate changing the area of play, “tenuki”. Feature 25
(play on line number 5 and up) is another example of the impact of more
simulations on the area of play. We saw that this is one of the prominent
features of professional players moves. These results show that the player with
more simulations can find centre and tenuki moves more often, and becomes
more similar to how professional players play in these situations.

4.4.3 Impact of the Additive Term

Figures 4.7a and 4.7b show the differences between the default Fuego player
and the No additive player with 3000 simulations. In Figure 4.7a, features 157
and 176 are for playing in distance of 2 to the closest own stone and opponent
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Figure 4.7: Difference between feature counts of default Fuego and No Additive
player when both players use 3000 simulations.

colour respectively. They happen 6% and 4% more in the default Fuego player
which benefits from the additive term. This shows that additive knowledge
encourages playing close to previous stones. Feature 64 also happens 3% more
in the player with additive term. This feature is for 3x3 patterns used in
the simulations policy. This is an expected behaviour as the additive knowl-
edge uses a diamond shape pattern to evaluate each move. Other features in
Figure 4.7a have a very low frequency.

The No Additive player plays more often in empty areas of the board (feature
2153, 3x3 empty pattern), and far from all other stones, features 117, 122 and
160 (distance 5 to closest own stone).
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4.4.4 Impact of Simple Feature Knowledge with Increas-
ing Number of Simulations

By comparing Figures 4.8a and 4.8b and Figures 4.8c and 4.8d we can under-
stand the impact of simple feature knowledge. Features 26 (distance 2 to last
opponent stone), 64 and 114 (distance 1 to block of last opponent stone) are
more present in the player with knowledge, while in Figure 4.8b features 117
and 122 occur up to 42% more in the No Knowledge player. This shows that
the No Knowledge player with low number of simulations plays more randomly
in all areas of the board without any attention to the last own or opponent
move, while the player with knowledge responds locally to those moves more
often.

As the number of simulations grows, we still observe in Figures 4.8c and 4.8d
the same difference in style of play from default Fuego and the No Knowl-
edge player. This gap, however, narrows to half with consistency in relative
frequency of features to each other. To some degree more simulations com-
pensate for the lack of knowledge in the No Knowledge player, as we already
observed in the move prediction task; however, more simulations are not able
to completely close the gap.

4.4.5 Features of Professional Moves

We ran another experiment to understand why some professional moves are
ignored in Fuego. We compared the statistics of the default Fuego moves
to the professional moves with low simulations in Figure 4.9. This helps to
understand what kind of moves professional players make that Fuego does not
consider, and how often those moves happen. In Figure 4.9a, features 114, 115,
119, 157, 176 are all for moves with distance of 1 or 2 to the own or opponent
stones. This signifies the higher degree of locality of play in Fuego versus
professional players. Also 3x3 simulation policy patterns (feature 64) occur
35% more in the default Fuego moves than in professional moves with low
number of simulations, showing that many professional moves do not follow
traditional 3x3 patterns as described in [27]. Looking at Figure 4.9b, features
117, 122, 159, 160, 161, 178, 179 are all for moves with distance of 4 or more
to stones of either colour and feature 2153 is for the empty 3x3 square. These
features happen up to 24% more in professional moves that received a very low
number of simulations from Fuego. This shows that Fuego systematically likes
to play locally, and moves with longer distance to the last own or opponent
stone are not appealing to the program.

Feature differences in Figures 4.9c and 4.9d between the default Fuego moves
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and all professional moves have similar feature differences to Figures 4.9a
and 4.9b, but with different magnitude. First the magnitude of difference
is much lower in Figures 4.9¢ and 4.9d. The other difference is that the most
differentiating factor for the default Fuego player is that it plays 12% more in
distance 2 of opponent stones (feature 176) than professional players. Profes-
sional moves still occure more in distance of 3 or more (features 116, 159, 160,
177, 178 and 179) to other stones, but the gap to Fuego is smaller.

4.4.6 Move Selection Analysis

The next experiment helps us to understand under what circumstances a player
can predict a professional move, while at other times it can not. We created an
experiment to measure the number of simulations relative to the initial weight
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of a move. The results of this experiment are reported in Figure 4.10.

For the Y-axis of Figure 4.10 we measured two different cases. In the first case,
we measured the number of simulations sims, for move a in state s relative to
the total number of simulations for state s in the professional game: ES ng“
For the second case, we measured the relative number of simulations sz’m;’a
for move a in state s to the number of simulation sim; for move b in state s:
ZZZ—S‘; The Y-axis of Figures 4.10a to 4.10d use the first case. For Figures 4.10a
and 4.10b, move a is the move selected by default Fuego, and for Figures 4.10c
and 4.10d it is the move selected by the professional player. The Y-axis of
Figures 4.10e and 4.10f uses the second case. Move a is the move selected by

the professional player and move b is the move selected by default Fuego.

The X-axis of Figure 4.10 has two different formats. In the first one, we use the
initial weight w; , of move a in state s of the professional game. For the second
case, we compute the maximum weight w4, for the state s, then compute
the relative weight of move a to maximum weight —“—_ Since the weight of
a move can be negative, we normalize the relative value by sigmoid function
%. The X-axis of Figures 4.10a, 4.10c and 4.10e uses the first format.
The X-axis of Figures 4.10b, 4.10d and 4.10f uses the second format. Move a
is selected by default Fuego in Figures 4.10a and 4.10b, and by professional

players in Figures 4.10c to 4.10f.

In order to understand the distribution of simulations, we created Figure 4.11a.
It represents the relation between the weight of the feature for a move selected
by default Fuego and the percent of simulations that move has received. Most
of the moves selected by default Fuego have the majority of the simulations.
Moves with higher initial weights receive almost 100% of simulations. Moves
selected by Fuego have different ranges of weights from low to high. However,
Figure 4.10b shows that even moves with low weights have weights close to
the maximum weight of that position, and most of the times are the maximum
weight.

Figure 4.10c shows that professional players moves most of the time either
received the maximum number of simulations, or received close to zero. Moves
that have an in-between number of simulations make up a smaller portion of
professional moves. Figure 4.10d better illustrates this point. Figure 4.11b
shows that for professional moves to get the attention of Fuego, they need to
have higher evaluation by simple features.

We also compared the number of simulations for the professional moves and the
moves selected by default Fuego. Figure 4.10e shows that very often the move
played by professionals is the same as the Fuego move. However, if they differ,
the chances of the professional move having a large number of simulations
is low. Most of the time, it has less than 20% compared to Fuego’s move.
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Figure 4.11: Percent of average number of simulations for buckets of initial
weights.

Figure 4.10f plots the relative number of simulations and the relative heuristic
weight of the professional move to the move selected by default Fuego. The
ratio of simulations drops sharply as the relative weight of the professional
player’s move decreases. For professional moves that have a ratio of less than
0.9, their number of simulations is near zero most of the time. There are some
examples of professional moves with higher weight than the move selected by
Fuego but with fewer simulations. These cases make less than 7% of total
number of moves.

This experiment showed us the importance of simple feature initialization on
the number of simulations a move receives. Fuego gives professional moves
more simulations if they have high evaluation by simple features and on the
other hand ignores them if the simple feature evaluation is low on those moves.

The move selected by Fuego does not need to have high evaluation as seen in
the Figure 4.10a. It just needs to have an evaluation close to the maximum
move evaluation of that position. This can be observed in Figure 4.10b. We
also observed in Figures 4.10d and 4.10e how professional moves either receive
close to the maximum number of simulations or close to zero.
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Chapter 5

Conclusion and Future Work

In this thesis we investigated two popular evaluation methods: move prediction
and playing strength, and how they relate to each other. We noticed that move
prediction did not reveal important aspects of a player, and there remain many
details that an aggregated move prediction percentage can not express. We
showed that players with similar move prediction rate can have very different
playing strengths. Sometimes, one completely overpowers the other player.

We used a playing strength experiment to understand the impact of the follow-
ing concepts in MCTS: additive knowledge, simple feature knowledge, number
of simulations, and playout policy. We noticed that the additive term has a
very small impact on playing strength, which did not change with more sim-
ulations. Removing feature knowledge proved to have a deep negative impact
on playing strength. The gap between the No Knowledge player and players
with simple feature knowledge increases with more simulations.

We then dissected the move prediction rate into several intervals of a game in
order to capture differences between the players at different game stages. We
observed that as the number of simulations increases for a player, the move
prediction rate drops as we get closer to the end of a game, due to “safe” move
selection by stronger players in MCTS.

As the next step to find more differentiating factors between players, we exam-
ined feature frequencies in the move prediction task for different players. We
were able to find features that differ remarkably between players, which can be
used to define their behaviour. We also found relations between the evaluation
of feature knowledge and the number of simulations a move receives.

For future work, we want to further the study by including neural network-
based players and extending the experiments to understand the impacts of a
neural network in detail. Another promising extension of this work is trying
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to understand neural networks in terms of both simple features and move
prediction, in order to find an interpretation of their behaviour with known
features of the Go game.
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Appendix A

Appendix

List of Features appeared in the moves selected by Fuego or professional play-

ers.

"2": "FE_CAPTURE_ADJ_ATARI",

"3": "FE_CAPTURE_RECAPTURE",

"4 : "FE_CAPTURE_PREVENT_CONNECTION",
"5": "FE_CAPTURE_NOT_LADDER",

"6": "FE_CAPTURE_LADDER",

"7v: "FE_CAPTURE_MULTIPLE",

"8": "FE_EXTENSION_NOT_LADDER",

"9": "FE_EXTENSION_LADDER",

"10": "FE_TWO_LIB_SAVE_LADDER",
"11": "FE_TWO_LIB_STILL_LADDER",
"12": "FE_TWO_LIB_SELF_LADDER",
"13": "FE_THREE_LIB_REDUCE_OWN_LIB",
"14". "FE_THREE_LIB_REDUCE_OPP_LIB",
"15": "FE_SELFATARI",

"16": "FE_ATARI_LADDER",

"17":. "FE_ATARI_KO",

"18": "FE_ATARI_OTHER",

"19": "FE_DOUBLE_ATARI",

"20": "FE_DOUBLE_ATARI_DEFEND",
"21": "FE_LINE_1",

"22". "FE_LINE_2",

"23": "FE_LINE_3",

"24":. "FE_LINE_4",

"25": "FE_LINE_5+",

"26": "FE_DIST_PREV_2",

"27". "FE_DIST_PREV_3",
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

DAGD ¢
"29":
NG ¢
"31n:
A ¢
NGE ¢
MGAD ¢
NGED ¢
"36":
"3
GG ¢
"39":
AGD ¢
AL ¢
AR ¢
MAZ ¢
MAAD ¢
A ¢
"46":
4T
MAE ¢
"49n:
NEED ¢
NG ¢
"B2":
NEH ¢
MGAD ¢
NEED ¢
NEED ¢
"B :
"58" :
DEEW ¢
DG ¢
NEED ¢
"63":
"G4 :
DEE ¢
BE ¢
NET ¢
"68" :
"69" :
DTG ¢
DEAD ¢
TG ¢
A ¢

"FE_DIST_PREV_4",
"FE_DIST_PREV_5",
"FE_DIST_PREV_6",
"FE_DIST_PREV_T7",
"FE_DIST_PREV_8",
"FE_DIST_PREV_9",

"FE_DIST_PREV_10"
"FE_DIST_PREV_11"
"FE_DIST_PREV_12"
"FE_DIST_PREV_13"
"FE_DIST_PREV_14"
"FE_DIST_PREV_15"
"FE_DIST_PREV_16"
"FE_DIST_PREV_17"

"FE_DIST_PREV_OWN_
"FE_DIST_PREV_OWN_
"FE_DIST_PREV_OWN_
"FE_DIST_PREV_OWN_
"FE_DIST_PREV_OWN_
"FE_DIST_PREV_OWN_
"FE_DIST_PREV_OWN_

"FE_DIST_PREV_OWN_
"FE_DIST_PREV_OWN_
"FE_DIST_PREV_OWN_

"FE_DIST_PREV_OWN_
"FE_DIST_PREV_OWN_
"FE_DIST_PREV_OWN_
"FE_DIST_PREV_OWN_
"FE_DIST_PREV_OWN_
"FE_DIST_PREV_OWN_
"FE_DIST_PREV_OWN_

-

-

-

-

o
o
3"
4"
5"
G
_
8"
9"
10"
11"
12"
g
14"
15"
16"
17"

"FE_GOUCT_NAKADE",

"FE_GOUCT_ATARI_CAPTURE",
"FE_GOUCT_ATARI_DEFEND",

"FE_GOUCT_LOWLIB",
"FE_GOUCT_PATTERN",
"FE_GOUCT_CAPTURE",

"FE_GOUCT_RANDOM_PRUNED",
"FE_GOUCT_REPLACE_
"FE_GOUCT_REPLACE_
"FE_GOUCT_SELFATARI_CORRECTION_FROM",
"FE_GOUCT_SELFATARI_CORRECTION_TO",
"FE_GOUCT_CLUMP_CORRECTION_TO",

"FE_POS_1",
"FE_POS_2",
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72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

DTE ¢
NTED ¢
NTT ¢
"T8":
"T9n:
DHED ¢
P ¢
DZAD ¢
"g3":
"g4n:
"g5" :
"86" :
NZT ¢
"gg" :
"89":
DG ¢
DG ¢
NGZD ¢
"93":
"9qn:
"9E" :
"96" :
nET ¢
"9g" :
l|99ll.

Wi GO ¢
™Gl ¢
LhPLE
0G0 &
051, G0 ¢
"105" :
" GET ¢
DG D g
LhRGLE
LERELE
5] 510 ¢
LERLE
LhRICLE
LR AE
D0 ¢
0515180 ¢
05| 2D ¢
DD g
NEPLE
EELE

"FE_POS_3",
"FE_POS_4",
"FE_POS_5",
"FE_POS_6",
"FE_POS_7",
"FE_POS_8",
"FE_POS_9",
"FE_POS_10",
"FE_GAME_ PHASE i
"FE_GAME_PHASE_2"
"FE_GAME_PHASE_3"
"FE_GAME_PHASE_4"
"FE_GAME_PHASE_b5"
"FE_GAME_PHASE_6",
"FE_GAME_PHASE_7",
"FE_GAME_PHASE_8",
"FE_GAME_PHASE_9",
"FE_GAME_PHASE_10",
"FE_GAME_PHASE_11",
"FE_GAME_PHASE_12",
"FE_SIDE_EXTENSION_3"
"FE_SIDE_EXTENSION_4"
"FE_SIDE_EXTENSION_5"
"FE_SIDE_EXTENSION_6"
"FE_SIDE_EXTENSION_7",
"FE_SIDE_EXTENSION_8",
"FE_SIDE_EXTENSION_O9",
"FE_SIDE_EXTENSION_10",
"FE_SIDE_EXTENSION_11",
"FE_SIDE_EXTENSION_12",
"FE_SIDE_EXTENSION_13",
"FE_SIDE_EXTENSION_14",
"FE_SIDE_EXTENSION_15",
"FE_SIDE_EXTENSION_18",
"FE_CORNER_OPENING MOVE",
"FE_CFG_DISTANCE_LAST_1",
"FE_CFG_DISTANCE_LAST_2",
"FE_CFG_DISTANCE_LAST_3",
"FE_CFG_DISTANCE_LAST_4_O0OR_MORE",
"FE_CFG_DISTANCE_LAST_OWN_O",
"FE_CFG_DISTANCE_LAST_OWN_1",
"FE_CFG_DISTANCE_LAST_QOWN_2",
"FE_CFG_DISTANCE_LAST_OWN_3",
"FE_CFG_DISTANCE_LAST_OWN_4_OR_MORE",
"FE_TWO_LIB_NEW_SELF_LADDER",

-

-

-

-

-

-

-

-

-
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117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

i BAT ¢
" 25T ¢
"126":
057D ¢
i B
"129":
FEGLE
MG ¢
0 A0 &
"133":
| AT ¢
m i EHT ¢
" IEET ¢
"137":
"138":
"139":
mLAGT ¢
nALT ¢
nAZD ¢
05 4G ¢
0 ) AL ¢
m AR ¢
nAGT ¢
n AT ¢
"149":
0 G5 ¢
i BET ¢
nET ;
"158":
"159" :
"160" :
i G
m i GAT ¢
" EET ¢
0 G ¢
"165":
0 i GG ¢
m LT
"168":
"169" :
"170":
AL
R OLE
n i TET ;
n AT ¢

"FE_OUR_PROTECTED_LIBERTY",
"FE_OPP_PROTECTED_LIBERTY",
"FE_OUR_CUT_WITH_KO",
"FE_OPP_CUT_WITH_KO",
"FE_SAVE_STONES_1",
"FE_SAVE_STONES_2",
"FE_SAVE_STONES_3",
"FE_SAVE_STONES_4_6",
"FE_SAVE_STONES_7_10",
"FE_SAVE_STONES_11_20",
"FE_SAVE_STONES_21_0OR_MORE",
"FE_KILL_STONES_1",
"FE_KILL_STONES_2",
"FE_KILL_STONES_3",
"FE_KILL_STONES_4_6",
"FE_KILL_STONES_7_10",
"FE_KILL_STONES_11_20",
"FE_KILL_STONES_21_OR_MORE",
"FE_KILL_OWN_STONES_1",
"FE_KILL_OWN_STONES_2",
"FE_KILL_OWN_STONES_3",
"FE_KILL_OWN_STONES_4_6",
"FE_KILL_OWN_STONES_7_10",
"FE_KILL_OWN_STONES_11_20",
"FE_SNAPBACK",

"FE_CUT",

"FE_CONNECT",
"FE_DIST_CLOSEST_OWN_STONE_2",
"FE_DIST_CLOSEST_OWN_STONE_3",
"FE_DIST_CLOSEST_OWN_STONE_4",
"FE_DIST_CLOSEST_OWN_STONE_5",
"FE_DIST_CLOSEST_OWN_STONE_6",
"FE_DIST_CLOSEST_OWN_STONE_7",
"FE_DIST_CLOSEST_OWN_STONE_8",
"FE_DIST_CLOSEST_OWN_STONE_9",
"FE_DIST_CLOSEST_OWN_STONE_10"
"FE_DIST_CLOSEST_OWN_STONE_11"
"FE_DIST_CLOSEST_OWN_STONE_12"
"FE_DIST_CLOSEST_OWN_STONE_13"
"FE_DIST_CLOSEST_OWN_STONE_14"
"FE_DIST_CLOSEST_OWN_STONE_15"
"FE_DIST_CLOSEST_OWN_STONE_16"
"FE_DIST_CLOSEST_OWN_STONE_17"
"FE_DIST_CLOSEST_OWN_STONE_18"
"FE_DIST_CLOSEST_OWN_STONE_19"
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162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

LR
" TE ¢
nATT
"178":
"179":
n i GO ¢
MG ;
N LGAD ¢
"183":
"184":
0GB ¢
"186":
nLGT ¢
"188" :
"189" :
"190" :
"191":
"192":
"193" :
"194":

"1001":
"1003":
"1004":
"1005":
"1009":
"1010":
"1011":
"1012":
"1013":
"1014":
"1015":
"1016":
"1017":
"1019":
"1020":
"1021":
"1027":
"1028":
"1029":
"1030":
"1031":
"1032":
U033
"1034":
"1035":

"FE_DIST_CLOSEST_OWN_STONE_20_OR_MORE",
"FE_DIST_CLOSEST_OPP_STONE_2",
"FE_DIST_CLOSEST_OPP_STONE_3",
"FE_DIST_CLOSEST_OPP_STONE_4",
"FE_DIST_CLOSEST_OPP_STONE_5",
"FE_DIST_CLOSEST_OPP_STONE_6",
"FE_DIST_CLOSEST_OPP_STONE_7",
"FE_DIST_CLOSEST_OPP_STONE_8",
"FE_DIST_CLOSEST_OPP_STONE_O9",
"FE_DIST_CLOSEST_OPP_STONE_10",
"FE_DIST_CLOSEST_OPP_STONE_11",
"FE_DIST_CLOSEST_OPP_STONE_12",
"FE_DIST_CLOSEST_OPP_STONE_13",
"FE_DIST_CLOSEST_OPP_STONE_14",
"FE_DIST_CLOSEST_OPP_STONE_15",
"FE_DIST_CLOSEST_OPP_STONE_16",
"FE_DIST_CLOSEST_OPP_STONE_17",
"FE_DIST_CLOSEST_OPP_STONE_18",
"FE_DIST_CLOSEST_OPP_STONE_19",
"FE_DIST_CLOSEST_OPP_STONE_20_OR_MORE",
"\nWEB\nBBB\n",
"\nBEB\nWBB\n",
"\nWEB\nWBB\n",
"\nEEB\nWBB\n"
"\nBEB\nBWB\n"
"\nWEB\nBWB\n"
"\nEEB\nBWB\n"
"\nBEB\nWWB\n"
"\nWEB\nWWB\n"
"\nEEB\nWWB\n"
"\nBEB\nEWB\n"
"\nWEB\nEWB\n"
"\nEEB\nEWB\n"
"\nWEB\nBEB\n",
"\nEEB\nBEB\n",
"\nBEB\nWEB\n"
"\nWEB\nBBW\n"
"\nEEB\nBBW\n"
"\nBEB\nWBW\n"
"\nWEB\nWBW\n"
"\nEEB\nWBW\n"
"\nBEB\nEBW\n"
"\nWEB\nEBW\n"
"\nEEB\nEBW\n"
"\nWEB\nBWW\n"

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-
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207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

"1036":
"1037":
"1038":
"1039":
"1040":
"1041":
"1042":
"1044":
"1045":
"1046":
"1047":
"1048":
"1049":
"1050":
"1051":
"10563":
"1054":
"1056":
"1058":
"1059":
"1060":
"1061":
"1062":
"1063":
"1064":
"1065":
"1066":
"1070":
"1071":
"1072":
"1073":
"1074":
"1075":
"1076":
"107T7":
"1078":
"1079":
"1080":
"1081":
"1082":
"1083":
"1085":
"1086":
"1087":
"1088":

"\nEEB\nBWW\n"
"\nBEB\nWWW\n"
"\nWEB\nWWW\n"
"\nEEB\nWWW\n"
"\nBEB\nEWW\n"
"\nWEB\nEWW\n"
"\nEEB\nEWW\n"
"\nEEB\nBEW\n"
"\nBEB\nWEW\n"
"\nWEB\nWEW\n"
"\nEEB\nWEW\n"
"\nBEB\nEEW\n"
"\nWEB\nEEW\n"
"\nEEB\nEEW\n"
"\nWEB\nBBE\n"
"\nWEB\nWBE\n"
"\nEEB\nWBE\n"
"\nWEB\nEBE\n"
"\nWEB\nBWE\n"
"\nEEB\nBWE\n"
"\nWEB\nWWE\n"
"\nEEB\nWWE\n"
"\nBEB\nEWE\n"
"\nWEB\nEWE\n"
"\nEEB\nEWE\n"
"\nWEB\nBEE\n"
"\nEEB\nBEE\n"
"\nWEB\nEEE\n"
"\nEEB\nEEE\n"
"\nWEW\nBBB\n"
"\nEEW\nBBB\n"
"\nWEW\nWBB\n"
"\nEEW\nWBB\n"
"\nWEW\nEBB\n"
"\nEEW\nEBB\n"
"\nWEW\nBWB\n"
"\nEEW\nBWB\n"
"\nWEW\nWWB\n"
"\nEEW\nWWB\n"
"\nWEW\nEWB\n"
"\nEEW\nEWB\n"
"\nEEW\nBEB\n"
"\nWEW\nWEB\n"
"\nEEW\nWEB\n"
"\nWEW\nEEB\n"

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-
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-
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-
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-

-

-
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252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

"1089":
"1090":
"1091":
"1092":
"1093":
"1094":
"1095":
"1100":
"1101":
"1102":
"1103":
"1105":
"1106":
"1108":
"1109":
"1112":
"1113":
"1114":
"1115":
"1116":
"1117":
"1118":
"1119":
"1120":
"1121":
"1122":
"1123":
"1124":
"1125":
"1126":
"1127":
"1128":
"1129":
"1130":
"1131":
"1133":
"1134":
"1203":
"1204":
"1209":
"1211":
"1213":
"1218":
"1219":
"1220":

"\nEEW\nEEB\n"
"\nEEW\nBBW\n"
"\nWEW\nWBW\n"
"\nEEW\nWBW\n"
"\nWEW\nEBW\n"
"\nEEW\nEBW\n"
"\nEEW\nBWW\n"
"\nEEW\nBEW\n"
"\nWEW\nWEW\n"
"\nEEW\nWEW\n"
"\nWEW\nEEW\n"
"\nEEW\nBBE\n"
"\nEEW\nWBE\n"
"\nEEW\nEBE\n"
"\nEEW\nBWE\n"
"\nEEW\nEWE\n"
"\nEEW\nBEE\n"
"\nEEW\nWEE\n"
"\nWEW\nEEE\n",
"\nEEW\nEEE\n"
"\nEEE\nBBB\n"
"\nEEE\nWBB\n"
"\nEEE\nEBB\n"
"\nEEE\nBWB\n"
"\nEEE\nWWB\n"
"\nEEE\nEWB\n"
"\nEEE\nBEB\n"
"\nEEE\nWEB\n"
"\nEEE\nEEB\n"
"\nEEE\nWBW\n"
"\nEEE\nEBW\n"
"\nEEE\nWWW\n"
"\nEEE\nEWW\n"
"\nEEE\nWEW\n",

"\nEEE\nEEW\n",

"\nEEE\nEWE\n",

"\nEEE\nEEE\n",

"\nBWB\nBEB\nBBB\n"
"\nBWW\nBEB\nBBB\n"
"\nWBW\nBEB\nBBB\n"
"\nWWW\nBEB\nBBB\n"
"\nWEW\nBEB\nBBB\n"
"\nBWB\nBEW\nBBB\n"
"\nBWW\nBEW\nBBB\n"
"\nBWE\nBEW\nBBB\n"

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-
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-

-

-

-

-

-

-

-
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297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

"1221":
"1222":
"1224":
"1225":
"1226":
"1227":
"1228":
"1229":
"1230":
"1231":
"1232":
R SSIS
"1234":
"1235":
"1236":
"1238":
R S2SIOR:
"1241":
"1242":
"1246":
"1248":
"1249":
"1250":
"1252":
"1257":
"1263":
"1264":
"1265":
"1267":
"1268":
"1269":
"1270":
"1271":
"1272":
"1273":
"1274":
"1275":
"1276":
"1277":
"1278":
"1279":
"1280":
"1281":
"1282":
"1283":

"\nBEB\nBEW\nBBB\n"
"\nBEW\nBEW\nBBB\n"
"\nWBB\nBEW\nBBB\n"
"\nWBW\nBEW\nBBB\n"
"\nWBE\nBEW\nBBB\n"
"\nWWB\nBEW\nBBB\n"
"\nWWW\nBEW\nBBB\n"
"\nWWE\nBEW\nBBB\n"
"\nWEB\nBEW\nBBB\n"
"\nWEW\nBEW\nBBB\n"
"\nWEE\nBEW\nBBB\n"
"\nEBB\nBEW\nBBB\n"
"\nEBW\nBEW\nBBB\n"
"\nEBE\nBEW\nBBB\n"
"\nEWB\nBEW\nBBB\n"
"\nEWE\nBEW\nBBB\n"
"\nEEB\nBEW\nBBB\n"
"\nEEE\nBEW\nBBB\n"
"\nBEB\nBEE\nBBB\n"
"\nWBW\nBEE\nBBB\n"
"\nWWB\nBEE\nBBB\n"
"\nWWW\nBEE\nBBB\n"
"\nWWE\nBEE\nBBB\n"
"\nWEW\nBEE\nBBB\n"
"\nEWB\nBEE\nBBB\n"
"\nBBB\nWEW\nBBB\n"
"\nBBW\nWEW\nBBB\n"
"\nBBE\nWEW\nBBB\n"
"\nBWW\nWEW\nBBB\n"
"\nBWE\nWEW\nBBB\n"
"\nBEB\nWEW\nBBB\n"
"\nBEW\nWEW\nBBB\n"
"\nBEE\nWEW\nBBB\n"
"\nWBW\nWEW\nBBB\n"
"\nWBE\nWEW\nBBB\n"
"\nWWW\nWEW\nBBB\n"
"\nWWE\nWEW\nBBB\n"
"\nWEW\nWEW\nBBB\n"
"\nWEE\nWEW\nBBB\n"
"\nEBE\nWEW\nBBB\n"
"\nEWE\nWEW\nBBB\n"
"\nEEE\nWEW\nBBB\n"
"\nBBB\nWEE\nBBB\n"
"\nBBW\nWEE\nBBB\n"
"\nBBE\nWEE\nBBB\n"
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-



342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

"1284":
"1285":
"1286":
"1287":
"1288":
"1289":
"1290":
"1291":
"1292":
"1293":
"1294":
"1296":
"1297":
"1298":
"1299":
"1300":
"1301":
"1302":
"1303":
"1304":
"13056":
"1306":
"1307":
"1308":
"1311":
"1312":
LIRSS N
"1314":
R ASHIRE
"1316":
"1317":
"1318":
"1321":
"1322":
"1324":
"1325":
"1326":
"1327":
"1328":
"1329":
"1330":
"1331*":
W33
D138 ¢
"1334":

"\nBWB\nWEE\nBBB\n"
"\nBWW\nWEE\nBBB\n"
"\nBWE\nWEE\nBBB\n"
"\nBEB\nWEE\nBBB\n"
"\nBEW\nWEE\nBBB\n"
"\nBEE\nWEE\nBBB\n"
"\nWBB\nWEE\nBBB\n"
"\nWBW\nWEE\nBBB\n"
"\nWBE\nWEE\nBBB\n"
"\nWWB\nWEE\nBBB\n"
"\nWWW\nWEE\nBBB\n"
"\nWEB\nWEE\nBBB\n"
"\nWEW\nWEE\nBBB\n"
"\nWEE\nWEE\nBBB\n"
"\nEBB\nWEE\nBBB\n"
"\nEBW\nWEE\nBBB\n"
"\nEBE\nWEE\nBBB\n"
"\nEWB\nWEE\nBBB\n"
"\nEWW\nWEE\nBBB\n"
"\nEWE\nWEE\nBBB\n"
"\nEEB\nWEE\nBBB\n"
"\nEEW\nWEE\nBBB\n"
"\nEEE\nWEE\nBBB\n"
"\nBBB\nEEE\nBBB\n"
"\nBWB\nEEE\nBBB\n"
"\nBWW\nEEE\nBBB\n"
"\nBWE\nEEE\nBBB\n"
"\nBEB\nEEE\nBBB\n"
"\nBEW\nEEE\nBBB\n"
"\nBEE\nEEE\nBBB\n"
"\nWBW\nEEE\nBBB\n"
"\nWBE\nEEE\nBBB\n"
"\nWEW\nEEE\nBBB\n"
"\nWEE\nEEE\nBBB\n"
"\nEWE\nEEE\nBBB\n"
"\nEEE\nEEE\nBBB\n"
"\nWBB\nBEB\nBBW\n"
"\nWBW\nBEB\nBBW\n"
"\nWBE\nBEB\nBBW\n"
"\nWWB\nBEB\nBBW\n"
"\nWWW\nBEB\nBBW\n"
"\nWWE\nBEB\nBBW\n"
"\nWEB\nBEB\nBBW\n"
"\nWEW\nBEB\nBBW\n"
"\nWEE\nBEB\nBBW\n"
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387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

13361 :
11338 ¢
11389 ¢
"1340":
"1341":
"1342":
"1344":
"1345":
"1346" :
"1347":
"1348":
"1349":
"1350":
"1351":
"1352":
"1363":
"13556":
"1356":
"1358":
"1360":
"1361":
1363
"1365" :
"1366":
"1367":
"1369":
"1371":
"1372":
"1373":
"1374":
"1375":
"1376":
"1377":
"1378":
"1379":
"1380":
"1381":
"1382":
"1383":
"1384":
"1385":
"1386":
"1387":
"1388":
"1389":

"\nEBW\nBEB\nBBW\n"
"\nEWB\nBEB\nBBW\n"
"\nEWW\nBEB\nBBW\n"
"\nEWE\nBEB\nBBW\n"
"\nEEB\nBEB\nBBW\n"
"\nEEW\nBEB\nBBW\n"
"\nWWB\nBEW\nBBW\n"
"\nWWW\nBEW\nBBW\n"
"\nWWE\nBEW\nBBW\n"
"\nWEB\nBEW\nBBW\n"
"\nWEW\nBEW\nBBW\n"
"\nWEE\nBEW\nBBW\n"
"\nEBB\nBEW\nBBW\n"
"\nEBW\nBEW\nBBW\n"
"\nEBE\nBEW\nBBW\n"
"\nEWB\nBEW\nBBW\n"
"\nEWE\nBEW\nBBW\n"
"\nEEB\nBEW\nBBW\n"
"\nEEE\nBEW\nBBW\n"
"\nWEW\nBEE\nBBW\n"
"\nWEE\nBEE\nBBW\n"
"\nEBW\nBEE\nBBW\n"
"\nEWB\nBEE\nBBW\n"
"\nEWW\nBEE\nBBW\n"
"\nEWE\nBEE\nBBW\n"
"\nEEW\nBEE\nBBW\n"
"\nBBW\nWEB\nBBW\n"
"\nBBE\nWEB\nBBW\n"
"\nBWB\nWEB\nBBW\n"
"\nBWW\nWEB\nBBW\n"
"\nBWE\nWEB\nBBW\n"
"\nBEB\nWEB\nBBW\n"
"\nBEW\nWEB\nBBW\n"
"\nBEE\nWEB\nBBW\n"
"\nWBW\nWEB\nBBW\n"
"\nWBE\nWEB\nBBW\n"
"\nWWB\nWEB\nBBW\n"
"\nWWW\nWEB\nBBW\n"
"\nWWE\nWEB\nBBW\n"
"\nWEB\nWEB\nBBW\n"
"\nWEW\nWEB\nBBW\n"
"\nWEE\nWEB\nBBW\n"
"\nEBW\nWEB\nBBW\n"
"\nEBE\nWEB\nBBW\n"
"\nEWB\nWEB\nBBW\n"
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432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

"1390":
"1391":
"1392":
11393":
"1394":
"1395":
"1396":
"1397":
"1398":
"1399":
"1400":
"1401":
"1402":
"1403":
"1404":
"1405":
"1406":
"1407":
"1408":
"1409":
"1410":
"1411":
"1412":
"1413":
"1414":
"1415":
"1416":
"1417":
"1418":
"1419":
"1420":
"1422":
"1423":
"1424":
"1425":
"1426":
"1427":
"1428":
"1429":
"1430":
"1431":
"1432":
"1433":
"1434":
"1435":

"\nEWW\nWEB\nBBW\n"
"\nEWE\nWEB\nBBW\n"
"\nEEB\nWEB\nBBW\n"
"\nEEW\nWEB\nBBW\n"
"\nEEE\nWEB\nBBW\n"
"\nBBW\nWEW\nBBW\n"
"\nBBE\nWEW\nBBW\n"
"\nBWB\nWEW\nBBW\n"
"\nBWW\nWEW\nBBW\n"
"\nBWE\nWEW\nBBW\n"
"\nBEB\nWEW\nBBW\n"
"\nBEW\nWEW\nBBW\n"
"\nBEE\nWEW\nBBW\n"
"\nWBB\nWEW\nBBW\n"
"\nWBW\nWEW\nBBW\n"
"\nWBE\nWEW\nBBW\n"
"\nWWB\nWEW\nBBW\n"
"\nWWW\nWEW\nBBW\n"
"\nWWE\nWEW\nBBW\n"
"\nWEB\nWEW\nBBW\n"
"\nWEW\nWEW\nBBW\n"
"\nWEE\nWEW\nBBW\n"
"\nEBB\nWEW\nBBW\n"
"\nEBW\nWEW\nBBW\n"
"\nEBE\nWEW\nBBW\n"
"\nEWB\nWEW\nBBW\n"
"\nEWW\nWEW\nBBW\n"
"\nEWE\nWEW\nBBW\n"
"\nEEB\nWEW\nBBW\n"
"\nEEW\nWEW\nBBW\n"
"\nEEE\nWEW\nBBW\n"
"\nBBE\nWEE\nBBW\n"
"\nBWB\nWEE\nBBW\n"
"\nBWW\nWEE\nBBW\n"
"\nBWE\nWEE\nBBW\n"
"\nBEB\nWEE\nBBW\n"
"\nBEW\nWEE\nBBW\n"
"\nBEE\nWEE\nBBW\n"
"\nWBB\nWEE\nBBW\n"
"\nWBW\nWEE\nBBW\n"
"\nWBE\nWEE\nBBW\n"
"\nWWB\nWEE\nBBW\n"
"\nWWW\nWEE\nBBW\n"
"\nWWE\nWEE\nBBW\n"
"\nWEB\nWEE\nBBW\n"
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477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

"1436":
"1437":
"1438":
"1439":
"1440":
"1441":
"1442":
"1443":
"1444":
"1445":
"1446":
"1447":
"1449" :
"1450":
"1451":
"1452":
"1453":
"1454":
"1455":
"1456":
"1457":
"1458":
"1459":
"1460" :
"1461":
"1463":
"1464":
"1465":
"1466" :
"1467":
"1468":
"1469":
"1470":
"1471":
"1472":
"1473":
"1474" :
"1475":
"1476" :
"147T7":
"1478":
"1480":
"1481":
"1482":
"1483":

"\nWEW\nWEE\nBBW\n"
"\nWEE\nWEE\nBBW\n"
"\nEBB\nWEE\nBBW\n"
"\nEBW\nWEE\nBBW\n"
"\nEBE\nWEE\nBBW\n"
"\nEWB\nWEE\nBBW\n"
"\nEWW\nWEE\nBBW\n"
"\nEWE\nWEE\nBBW\n"
"\nEEB\nWEE\nBBW\n"
"\nEEW\nWEE\nBBW\n"
"\nEEE\nWEE\nBBW\n"
"\nBBW\nEEB\nBBW\n"
"\nBWW\nEEB\nBBW\n"
"\nBWE\nEEB\nBBW\n"
"\nBEB\nEEB\nBBW\n"
"\nBEW\nEEB\nBBW\n"
"\nBEE\nEEB\nBBW\n"
"\nWBW\nEEB\nBBW\n"
"\nWBE\nEEB\nBBW\n"
"\nWWW\nEEB\nBBW\n"
"\nWWE\nEEB\nBBW\n"
"\nWEB\nEEB\nBBW\n"
"\nWEW\nEEB\nBBW\n"
"\nWEE\nEEB\nBBW\n"
"\nEBW\nEEB\nBBW\n"
"\nEWW\nEEB\nBBW\n"
"\nEWE\nEEB\nBBW\n"
"\nEEB\nEEB\nBBW\n"
"\nEEW\nEEB\nBBW\n"
"\nEEE\nEEB\nBBW\n"
"\nBBW\nEEW\nBBW\n"
"\nBBE\nEEW\nBBW\n"
"\nBWB\nEEW\nBBW\n"
"\nBWW\nEEW\nBBW\n"
"\nBWE\nEEW\nBBW\n"
"\nBEB\nEEW\nBBW\n"
"\nBEW\nEEW\nBBW\n"
"\nBEE\nEEW\nBBW\n"
"\nWBW\nEEW\nBBW\n"
"\nWBE\nEEW\nBBW\n"
"\nWWB\nEEW\nBBW\n"
"\nWWE\nEEW\nBBW\n"
"\nWEB\nEEW\nBBW\n"
"\nWEW\nEEW\nBBW\n"
"\nWEE\nEEW\nBBW\n"
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-



522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

"1484":
"1485":
"1486" :
"1487":
"1489":
"1490":
"1491":
"1492":
"1493":
"1494" :
"1495" :
"1496" :
"1497":
"1499":
"1500":
"1501":
"1502":
"1503":
"1504":
"15056":
"1506":
"1507":
"1508":
"1509":
"1510":
"1511":
"16512":
"1513":
"1514":
"1515":
"1516":
"1617":
"1518":
"1522":
"1523":
"1524":
"1528":
"1531":
"1537":
"15638":
"1539":
"1540":
"1541":
"1542":
"1543":

"\nEBB\nEEW\nBBW\n"
"\nEBW\nEEW\nBBW\n"
"\nEBE\nEEW\nBBW\n"
"\nEWB\nEEW\nBBW\n"
"\nEWE\nEEW\nBBW\n"
"\nEEB\nEEW\nBBW\n"
"\nEEW\nEEW\nBBW\n"
"\nEEE\nEEW\nBBW\n"
"\nBBW\nEEE\nBBW\n"
"\nBBE\nEEE\nBBW\n"
"\nBWB\nEEE\nBBW\n"
"\nBWW\nEEE\nBBW\n"
"\nBWE\nEEE\nBBW\n"
"\nBEW\nEEE\nBBW\n"
"\nBEE\nEEE\nBBW\n"
"\nWBB\nEEE\nBBW\n"
"\nWBW\nEEE\nBBW\n"
"\nWBE\nEEE\nBBW\n"
"\nWWB\nEEE\nBBW\n"
"\nWWW\nEEE\nBBW\n"
"\nWWE\nEEE\nBBW\n"
"\nWEB\nEEE\nBBW\n"
"\nWEW\nEEE\nBBW\n"
"\nWEE\nEEE\nBBW\n"
"\nEBB\nEEE\nBBW\n"
"\nEBW\nEEE\nBBW\n"
"\nEBE\nEEE\nBBW\n"
"\nEWB\nEEE\nBBW\n"
"\nEWW\nEEE\nBBW\n"
"\nEWE\nEEE\nBBW\n"
"\nEEB\nEEE\nBBW\n"
"\nEEW\nEEE\nBBW\n"
"\nEEE\nEEE\nBBW\n"
"\nEWB\nBEB\nBBE\n"
"\nEWW\nBEB\nBBE\n"
"\nEWE\nBEB\nBBE\n"
"\nEWB\nBEW\nBBE\n"
"\nEEB\nBEW\nBBE\n"
"\nBBE\nWEB\nBBE\n"
"\nBWB\nWEB\nBBE\n"
"\nBWW\nWEB\nBBE\n"
"\nBWE\nWEB\nBBE\n"
"\nBEB\nWEB\nBBE\n"
"\nBEW\nWEB\nBBE\n"
"\nBEE\nWEB\nBBE\n"
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567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611

"1544":
"1545":
"1546" :
"1547":
"1548":
"1549":
"1550" :
LSy LR
"1552":
"15563":
"1554":
"155656":
1B B 6 :
"1657":
"1558":
"1559":
"1560":
"1561":
"1562":
"1563":
"1564":
"1565":
"1566":
"1567":
"1568":
"1569":
"1571":
"1572":
SBT3
"1574":
"1575":
"1576":
"157T7":
"1578":
"15679":
"1580":
"1581":
"1582":
"1583":
"1584":
"1585":
"1586":
"1587":
"1588":
"1589":

"\nWBW\nWEB\nBBE\n"
"\nWBE\nWEB\nBBE\n"
"\nWWB\nWEB\nBBE\n"
"\nWWW\nWEB\nBBE\n"
"\nWWE\nWEB\nBBE\n"
"\nWEB\nWEB\nBBE\n"
"\nWEW\nWEB\nBBE\n"
"\nWEE\nWEB\nBBE\n"
"\nEBW\nWEB\nBBE\n"
"\nEBE\nWEB\nBBE\n"
"\nEWB\nWEB\nBBE\n"
"\nEWW\nWEB\nBBE\n"
"\nEWE\nWEB\nBBE\n"
"\nEEB\nWEB\nBBE\n"
"\nEEW\nWEB\nBBE\n"
"\nEEE\nWEB\nBBE\n"
"\nBBE\nWEW\nBBE\n"
"\nBWB\nWEW\nBBE\n"
"\nBWW\nWEW\nBBE\n"
"\nBWE\nWEW\nBBE\n"
"\nBEB\nWEW\nBBE\n"
"\nBEW\nWEW\nBBE\n"
"\nBEE\nWEW\nBBE\n"
"\nWBW\nWEW\nBBE\n"
"\nWBE\nWEW\nBBE\n"
"\nWWB\nWEW\nBBE\n"
"\nWWE\nWEW\nBBE\n"
"\nWEB\nWEW\nBBE\n"
"\nWEW\nWEW\nBBE\n"
"\nWEE\nWEW\nBBE\n"
"\nEBB\nWEW\nBBE\n"
"\nEBW\nWEW\nBBE\n"
"\nEBE\nWEW\nBBE\n"
"\nEWB\nWEW\nBBE\n"
"\nEWW\nWEW\nBBE\n"
"\nEWE\nWEW\nBBE\n"
"\nEEB\nWEW\nBBE\n"
"\nEEW\nWEW\nBBE\n"
"\nEEE\nWEW\nBBE\n"
"\nBBE\nWEE\nBBE\n"
"\nBWB\nWEE\nBBE\n"
"\nBWW\nWEE\nBBE\n"
"\nBWE\nWEE\nBBE\n"
"\nBEB\nWEE\nBBE\n"
"\nBEW\nWEE\nBBE\n"
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612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

"1590":
"1591":
"1592":
"1593":
"1594":
"1596":
"1597":
"1598":
"15699":
"1600":
"1601":
"1602":
"1603":
"1604":
"1605":
"1606":
"1607":
"1609":
"1610":
"1611":
"1614":
"1616":
"1617":
"1619":
"1623":
"1624":
"1628":
"1629":
"1630":
"1631":
"1632":
"1633":
"1634":
"1635":
"1636":
"1637":
"1639":
"1640":
"1641":
"1642":
"1643":
"1644":
"1645":
"1647":
"1648" :

"\nBEE\nWEE\nBBE\n"
"\nWBW\nWEE\nBBE\n"
"\nWBE\nWEE\nBBE\n"
"\nWWB\nWEE\nBBE\n"
"\nWWW\nWEE\nBBE\n"
"\nWEB\nWEE\nBBE\n"
"\nWEW\nWEE\nBBE\n"
"\nWEE\nWEE\nBBE\n"
"\nEBB\nWEE\nBBE\n"
"\nEBW\nWEE\nBBE\n"
"\nEBE\nWEE\nBBE\n"
"\nEWB\nWEE\nBBE\n"
"\nEWW\nWEE\nBBE\n"
"\nEWE\nWEE\nBBE\n"
"\nEEB\nWEE\nBBE\n"
"\nEEW\nWEE\nBBE\n"
"\nEEE\nWEE\nBBE\n"
"\nBWW\nEEB\nBBE\n"
"\nBWE\nEEB\nBBE\n"
"\nBEB\nEEB\nBBE\n"
"\nWBW\nEEB\nBBE\n"
"\nWWW\nEEB\nBBE\n"
"\nWWE\nEEB\nBBE\n"
"\nWEW\nEEB\nBBE\n"
"\nEWW\nEEB\nBBE\n"
"\nEWE\nEEB\nBBE\n"
"\nBBE\nEEW\nBBE\n"
"\nBWB\nEEW\nBBE\n"
"\nBWW\nEEW\nBBE\n"
"\nBWE\nEEW\nBBE\n"
"\nBEB\nEEW\nBBE\n"
"\nBEW\nEEW\nBBE\n"
"\nBEE\nEEW\nBBE\n"
"\nWBW\nEEW\nBBE\n"
"\nWBE\nEEW\nBBE\n"
"\nWWB\nEEW\nBBE\n"
"\nWWE\nEEW\nBBE\n"
"\nWEB\nEEW\nBBE\n"
"\nWEW\nEEW\nBBE\n"
"\nWEE\nEEW\nBBE\n"
"\nEBW\nEEW\nBBE\n"
"\nEBE\nEEW\nBBE\n"
"\nEWB\nEEW\nBBE\n"
"\nEWE\nEEW\nBBE\n"
"\nEEB\nEEW\nBBE\n"
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657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

"1649" :
"1650":
"1652":
"1653":
"1654":
"1655":
"1656":
"1657":
"1658":
"1659":
"1660":
"1664":
"1665":
"1667":
"1669":
"1671":
"1672":
"1674":
"1675":
"1676":
"167T":
"1679":
"1680":
"1681":
"1682":
"1683":
"1684":
"1685":
"1686":
"1687":
"1688":
"1689":
"1690":
"1691":
"1692":
"1693":
"1694":
"1695":
"1696" :
"1697":
"1698":
"1699":
"1700":
"1701":
"1702":

"\nEEW\nEEW\nBBE\n"
"\nEEE\nEEW\nBBE\n"
"\nBWB\nEEE\nBBE\n"
"\nBWW\nEEE\nBBE\n"
"\nBWE\nEEE\nBBE\n"
"\nBEB\nEEE\nBBE\n"
"\nBEW\nEEE\nBBE\n"
"\nBEE\nEEE\nBBE\n"
"\nWBW\nEEE\nBBE\n"
"\nWBE\nEEE\nBBE\n"
"\nWWB\nEEE\nBBE\n"
"\nWEW\nEEE\nBBE\n"
"\nWEE\nEEE\nBBE\n"
"\nEBW\nEEE\nBBE\n"
"\nEWB\nEEE\nBBE\n"
"\nEWE\nEEE\nBBE\n"
"\nEEB\nEEE\nBBE\n"
"\nEEE\nEEE\nBBE\n"
"\nBWB\nWEW\nBWB\n"
"\nBWW\nWEW\nBWB\n"
"\nBWE\nWEW\nBWB\n"
"\nBEW\nWEW\nBWB\n"
"\nBEE\nWEW\nBWB\n"
"\nWBW\nWEW\nBWB\n"
"\nWBE\nWEW\nBWB\n"
"\nWWW\nWEW\nBWB\n"
"\nWWE\nWEW\nBWB\n"
"\nWEW\nWEW\nBWB\n"
"\nWEE\nWEW\nBWB\n"
"\nEBE\nWEW\nBWB\n"
"\nEWE\nWEW\nBWB\n"
"\nEEE\nWEW\nBWB\n"
"\nBEB\nWEE\nBWB\n"
"\nBEW\nWEE\nBWB\n"
"\nBEE\nWEE\nBWB\n"
"\nWBW\nWEE\nBWB\n"
"\nWBE\nWEE\nBWB\n"
"\nWWB\nWEE\nBWB\n"
"\nWWW\nWEE\nBWB\n"
"\nWWE\nWEE\nBWB\n"
"\nWEB\nWEE\nBWB\n"
"\nWEW\nWEE\nBWB\n"
"\nWEE\nWEE\nBWB\n"
"\nEBW\nWEE\nBWB\n"
"\nEBE\nWEE\nBWB\n"
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702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

"1703":
"1704":
"1705":
"1706":
"1707":
"1708":
"1710":
1711
"1712":
"1713":
"1714":
"1715":
"1716":
17T
"1718":
"1719":
"1720":
"1721":
"1722":
"1723":
"1724":
"1725":
"1726":
"1r27":
"1728":
"1729":
"1730":
"1731":
"1732":
"1733":
"1734":
"1735":
"1736":
"1737":
"1739":
"1740" :
"1741":
"1742":
"1743":
"1744":
"1747":
"1748" :
"1750":
"1751":
"1752":

"\nEWB\nWEE\nBWB\n"
"\nEWW\nWEE\nBWB\n"
"\nEWE\nWEE\nBWB\n"
"\nEEB\nWEE\nBWB\n"
"\nEEW\nWEE\nBWB\n"
"\nEEE\nWEE\nBWB\n"
"\nBWW\nEEE\nBWB\n"
"\nBWE\nEEE\nBWB\n"
"\nBEB\nEEE\nBWB\n"
"\nBEW\nEEE\nBWB\n"
"\nBEE\nEEE\nBWB\n"
"\nWBW\nEEE\nBWB\n"
"\nWBE\nEEE\nBWB\n"
"\nWWW\nEEE\nBWB\n"
"\nWWE\nEEE\nBWB\n"
"\nWEW\nEEE\nBWB\n"
"\nWEE\nEEE\nBWB\n"
"\nEBE\nEEE\nBWB\n"
"\nEWE\nEEE\nBWB\n"
"\nEEE\nEEE\nBWB\n"
"\nWBW\nWEB\nBWW\n"
"\nWBE\nWEB\nBWW\n"
"\nWWW\nWEB\nBWW\n"
"\nWWE\nWEB\nBWW\n"
"\nWEW\nWEB\nBWW\n"
"\nWEE\nWEB\nBWW\n"
"\nEBW\nWEB\nBWW\n"
"\nEBE\nWEB\nBWW\n"
"\nEWW\nWEB\nBWW\n"
"\nEWE\nWEB\nBWW\n"
"\nEEW\nWEB\nBWW\n"
"\nEEE\nWEB\nBWW\n"
"\nWWB\nWEW\nBWW\n"
"\nWWW\nWEW\nBWW\n"
"\nWEB\nWEW\nBWW\n"
"\nWEW\nWEW\nBWW\n"
"\nWEE\nWEW\nBWW\n"
"\nEBW\nWEW\nBWW\n"
"\nEBE\nWEW\nBWW\n"
"\nEWB\nWEW\nBWW\n"
"\nEEB\nWEW\nBWW\n"
"\nEEW\nWEW\nBWW\n"
"\nWEB\nWEE\nBWW\n"
"\nWEW\nWEE\nBWW\n"
"\nWEE\nWEE\nBWW\n"
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747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
s
778
779
780
781
782
783
784
785
786
787
788
789
790
791

"1753":
"1754":
e SABIEE:
"1756":
"1757":
"1758":
"1759":
"1760":
"1761":
"1762":
"1763":
"1764":
"1765":
"1766":
"1767":
"1768":
"1769":
"1770":
"17T1i":
"1T7T72":
"1773":
"17ran:
"1775":
"1776" :
17T
"1778":
"1779":
"1782":
"1786":
"1788":
"1789":
"1793":
"17956":
"1796" :
"179T7":
"1798":
"1799":
"1800":
"1801":
"1802":
"1803":
"1804":
"18056":
"1806":
"1807":

"\nEBW\nWEE\nBWW\n"
"\nEBE\nWEE\nBWW\n"
"\nEWB\nWEE\nBWW\n"
"\nEWW\nWEE\nBWW\n"
"\nEWE\nWEE\nBWW\n"
"\nEEB\nWEE\nBWW\n"
"\nEEW\nWEE\nBWW\n"
"\nEEE\nWEE\nBWW\n"
"\nBWW\nEEB\nBWW\n"
"\nBWE\nEEB\nBWW\n"
"\nBEW\nEEB\nBWW\n"
"\nBEE\nEEB\nBWW\n"
"\nWBW\nEEB\nBWW\n"
"\nWBE\nEEB\nBWW\n"
"\nWWW\nEEB\nBWW\n"
"\nWWE\nEEB\nBWW\n"
"\nWEW\nEEB\nBWW\n"
"\nWEE\nEEB\nBWW\n"
"\nEBW\nEEB\nBWW\n"
"\nEBE\nEEB\nBWW\n"
"\nEWW\nEEB\nBWW\n"
"\nEWE\nEEB\nBWW\n"
"\nEEW\nEEB\nBWW\n"
"\nEEE\nEEB\nBWW\n"
"\nBWW\nEEW\nBWW\n"
"\nBWE\nEEW\nBWW\n"
"\nBEB\nEEW\nBWW\n"
"\nWBW\nEEW\nBWW\n"
"\nWEB\nEEW\nBWW\n"
"\nWEE\nEEW\nBWW\n"
"\nEBW\nEEW\nBWW\n"
"\nEEB\nEEW\nBWW\n"
"\nEEE\nEEW\nBWW\n"
"\nBWW\nEEE\nBWW\n"
"\nBWE\nEEE\nBWW\n"
"\nBEB\nEEE\nBWW\n"
"\nBEW\nEEE\nBWW\n"
"\nBEE\nEEE\nBWW\n"
"\nWBW\nEEE\nBWW\n"
"\nWBE\nEEE\nBWW\n"
"\nWWB\nEEE\nBWW\n"
"\nWWW\nEEE\nBWW\n"
"\nWWE\nEEE\nBWW\n"
"\nWEB\nEEE\nBWW\n"
"\nWEW\nEEE\nBWW\n"
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792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

"1808":
"1809":
"1810":
"1811":
"1812":
"1813":
"1814":
"1815":
"1816":
"1817":
"1818":
"1819":
"1820":
"1821":
"1822":
"1826":
"1827":
"1828":
"1829":
"1830":
"1831":
"1832":
D188 ¢
"1834":
"1835":
"1836":
"1837":
"1838":
"1839":
"1840" :
"1841":
"1842":
"1843":
"1844":
"1845":
"1846":
"1848":
"1849":
"1850":
"1851":
"1852":
"18556":
"1856":
"1857":
"1858":

"\nWEE\nEEE\nBWW\n"
"\nEBW\nEEE\nBWW\n"
"\nEBE\nEEE\nBWW\n"
"\nEWB\nEEE\nBWW\n"
"\nEWW\nEEE\nBWW\n"
"\nEWE\nEEE\nBWW\n"
"\nEEB\nEEE\nBWW\n"
"\nEEW\nEEE\nBWW\n"
"\nEEE\nEEE\nBWW\n"
"\nEBW\nWEB\nBWE\n"
"\nEBE\nWEB\nBWE\n"
"\nEWW\nWEB\nBWE\n"
"\nEWE\nWEB\nBWE\n"
"\nEEW\nWEB\nBWE\n"
"\nEEE\nWEB\nBWE\n"
"\nEEB\nWEW\nBWE\n"
"\nEEW\nWEW\nBWE\n"
"\nEEE\nWEW\nBWE\n"
"\nEEB\nWEE\nBWE\n"
"\nEEW\nWEE\nBWE\n"
"\nEEE\nWEE\nBWE\n"
"\nBWE\nEEB\nBWE\n"
"\nBEW\nEEB\nBWE\n"
"\nBEE\nEEB\nBWE\n"
"\nWBW\nEEB\nBWE\n"
"\nWBE\nEEB\nBWE\n"
"\nWWW\nEEB\nBWE\n"
"\nWWE\nEEB\nBWE\n"
"\nWEW\nEEB\nBWE\n"
"\nWEE\nEEB\nBWE\n"
"\nEBW\nEEB\nBWE\n"
"\nEBE\nEEB\nBWE\n"
"\nEWW\nEEB\nBWE\n"
"\nEWE\nEEB\nBWE\n"
"\nEEW\nEEB\nBWE\n"
"\nEEE\nEEB\nBWE\n"
"\nBEB\nEEW\nBWE\n"
"\nBEW\nEEW\nBWE\n"
"\nBEE\nEEW\nBWE\n"
"\nWBW\nEEW\nBWE\n"
"\nWBE\nEEW\nBWE\n"
"\nWEB\nEEW\nBWE\n"
"\nWEW\nEEW\nBWE\n"
"\nWEE\nEEW\nBWE\n"
"\nEBW\nEEW\nBWE\n"

1)
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-
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837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881

"1859":
"1862":
"1863":
"1864" :
"1865":
"1866":
"1867":
"1868":
"1869" :
"1870":
"1871":
"1872":
"1873":
"1874":
"1875":
"1876":
"1877":
"1878":
"1879":
"1880":
"1881":
"1882":
"1883":
"1887":
"1888":
"1889":
"1891":
"1892":
"1894":
"1895" :
"1896" :
"1897":
"1898":
"1899":
"1900" :
"1901":
"1902":
"1904":
"1905":
"1906" :
"1907":
"1910":
"1911":
"1912":
"1913":

"\nEBE\nEEW\nBWE\n"
"\nEEB\nEEW\nBWE\n"
"\nEEW\nEEW\nBWE\n"
"\nEEE\nEEW\nBWE\n"
"\nBWE\nEEE\nBWE\n"
"\nBEB\nEEE\nBWE\n"
"\nBEW\nEEE\nBWE\n"
"\nBEE\nEEE\nBWE\n"
"\nWBW\nEEE\nBWE\n"
"\nWBE\nEEE\nBWE\n"
"\nWWW\nEEE\nBWE\n"
"\nWWE\nEEE\nBWE\n"
"\nWEB\nEEE\nBWE\n"
"\nWEW\nEEE\nBWE\n"
"\nWEE\nEEE\nBWE\n"
"\nEBW\nEEE\nBWE\n"
"\nEBE\nEEE\nBWE\n"
"\nEWB\nEEE\nBWE\n"
"\nEWW\nEEE\nBWE\n"
"\nEWE\nEEE\nBWE\n"
"\nEEB\nEEE\nBWE\n"
"\nEEW\nEEE\nBWE\n"
"\nEEE\nEEE\nBWE\n"
"\nWBW\nEEE\nBEB\n"
"\nWBE\nEEE\nBEB\n"
"\nWWW\nEEE\nBEB\n"
"\nWEW\nEEE\nBEB\n"
"\nWEE\nEEE\nBEB\n"
"\nEWE\nEEE\nBEB\n"
"\nEEE\nEEE\nBEB\n"
"\nWBW\nEEB\nBEW\n"
"\nWBE\nEEB\nBEW\n"
"\nWWW\nEEB\nBEW\n"
"\nWWE\nEEB\nBEW\n"
"\nWEW\nEEB\nBEW\n"
"\nWEE\nEEB\nBEW\n"
"\nEBW\nEEB\nBEW\n"
"\nEWW\nEEB\nBEW\n"
"\nEWE\nEEB\nBEW\n"
"\nEEW\nEEB\nBEW\n"
"\nEEE\nEEB\nBEW\n"
"\nWEW\nEEW\nBEW\n"
"\nWEE\nEEW\nBEW\n"
"\nEBW\nEEW\nBEW\n"
"\nEBE\nEEW\nBEW\n"
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882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926

"19156":
"1917":
"1918":
"1919":
"1920":
"1921":
"1922":
"1923":
"1924":
"19256":
"1926":
"1927":
"1928":
"1930":
"1931":
"1932":
1R 3I3EE:
1935
"1936":
"1937":
"1938":
HRGSIORE:
"1940" :
"1941":
"1942":
"1943":
"1944":
"1945" :
"1946" :
"1947":
"1948":
"1949":
"1950":
S ROIBH R
"1952":
"19563":
"1954":
"195656":
"1956":
"1957":
"19568":
"19569":
"1960":
"1961":
"1962":

"\nEWE\nEEW\nBEW\n"
"\nEEE\nEEW\nBEW\n"
"\nWEB\nEEE\nBEW\n"
"\nWEW\nEEE\nBEW\n"
"\nWEE\nEEE\nBEW\n"
"\nEBW\nEEE\nBEW\n"
"\nEBE\nEEE\nBEW\n"
"\nEWW\nEEE\nBEW\n"
"\nEWE\nEEE\nBEW\n"
"\nEEB\nEEE\nBEW\n"
"\nEEW\nEEE\nBEW\n"
"\nEEE\nEEE\nBEW\n"
"\nEBW\nEEB\nBEE\n"
"\nEWW\nEEB\nBEE\n"
"\nEWE\nEEB\nBEE\n"
"\nEEW\nEEB\nBEE\n"
"\nEEE\nEEB\nBEE\n"
"\nEWE\nEEW\nBEE\n"
"\nEEW\nEEW\nBEE\n"
"\nEEE\nEEW\nBEE\n"
"\nEEB\nEEE\nBEE\n"
"\nEEW\nEEE\nBEE\n"
"\nEEE\nEEE\nBEE\n"
"\nWBW\nBEB\nWBW\n"
"\nWBE\nBEB\nWBW\n"
"\nWWW\nBEB\nWBW\n"
"\nWWE\nBEB\nWBW\n"
"\nWEW\nBEB\nWBW\n"
"\nWEE\nBEB\nWBW\n"
"\nEBE\nBEB\nWBW\n"
"\nEWE\nBEB\nWBW\n"
"\nEEE\nBEB\nWBW\n"
"\nWWW\nBEW\nWBW\n"
"\nWWE\nBEW\nWBW\n"
"\nWEW\nBEW\nWBW\n"
"\nWEE\nBEW\nWBW\n"
"\nEBW\nBEW\nWBW\n"
"\nEBE\nBEW\nWBW\n"
"\nEWW\nBEW\nWBW\n"
"\nEWE\nBEW\nWBW\n"
"\nEEW\nBEW\nWBW\n"
"\nEEE\nBEW\nWBW\n"
"\nWEW\nBEE\nWBW\n"
"\nWEE\nBEE\nWBW\n"
"\nEBW\nBEE\nWBW\n"
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927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

"1963":
"1964":
"1965":
"1966" :
"1967":
"1969":
"1970":
"1971":
"1972":
"1973":
"1974":
"1975":
"1976" :
"1978":
"1979":
"1980":
"1981":
"1982":
"1983":
"1984":
"1985":
"1986":
"1987":
"1988":
"1990":
"1991":
"1992":
T1993™ ¢
"1994":
"1995":
"1996" :
"1997":
"2000":
"2001":
"2002":
"2004":
"2005":
"2006":
"2007":
"2008":
"2009":
"2010":
"2011":
"2012":
"2013":

"\nEBE\nBEE\nWBW\n"
"\nEWW\nBEE\nWBW\n"
"\nEWE\nBEE\nWBW\n"
"\nEEW\nBEE\nWBW\n"
"\nEEE\nBEE\nWBW\n"
"\nWBE\nWEW\nWBW\n"
"\nWWW\nWEW\nWBW\n"
"\nWWE\nWEW\nWBW\n"
"\nWEW\nWEW\nWBW\n"
"\nWEE\nWEW\nWBW\n"
"\nEBE\nWEW\nWBW\n"
"\nEWE\nWEW\nWBW\n"
"\nEEE\nWEW\nWBW\n"
"\nWBE\nWEE\nWBW\n"
"\nWWW\nWEE\nWBW\n"
"\nWWE\nWEE\nWBW\n"
"\nWEW\nWEE\nWBW\n"
"\nWEE\nWEE\nWBW\n"
"\nEBW\nWEE\nWBW\n"
"\nEBE\nWEE\nWBW\n"
"\nEWW\nWEE\nWBW\n"
"\nEWE\nWEE\nWBW\n"
"\nEEW\nWEE\nWBW\n"
"\nEEE\nWEE\nWBW\n"
"\nWBE\nEEE\nWBW\n"
"\nWWW\nEEE\nWBW\n"
"\nWWE\nEEE\nWBW\n"
"\nWEW\nEEE\nWBW\n"
"\nWEE\nEEE\nWBW\n"
"\nEBE\nEEE\nWBW\n"
"\nEWE\nEEE\nWBW\n"
"\nEEE\nEEE\nWBW\n"
"\nEWW\nBEB\nWBE\n"
"\nEWE\nBEB\nWBE\n"
"\nEEW\nBEB\nWBE\n"
"\nEWW\nBEW\nWBE\n"
"\nEWE\nBEW\nWBE\n"
"\nEEW\nBEW\nWBE\n"
"\nEEE\nBEW\nWBE\n"
"\nEEW\nBEE\nWBE\n"
"\nEEE\nBEE\nWBE\n"
"\nWBE\nWEB\nWBE\n"
"\nWWW\nWEB\nWBE\n"
"\nWWE\nWEB\nWBE\n"
"\nWEW\nWEB\nWBE\n"
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972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

"2014":
"2015":
"2016":
"2017":
"2018":
"2019":
"2020":
"2022":
"2023":
"2024":
"2025":
"2026":
"2027":
"2028":
"2029":
"2030":
"2031":
"2032":
"2033":
"2034":
"2035":
"2036":
"2037":
"2038":
"2039":
"2040":
"2041":
"2042":
"2043":
"2044":
"2045":
"2046":
"2047":
"2048" :
"2050":
"2051":
"2052":
"2053":
"2054":
"2055":
"2056":
"2057":
"2058":
"2059":
"2060" :

"\nWEE\nWEB\nWBE\n"
"\nEBE\nWEB\nWBE\n"
"\nEWW\nWEB\nWBE\n"
"\nEWE\nWEB\nWBE\n"
"\nEEW\nWEB\nWBE\n"
"\nEEE\nWEB\nWBE\n"
"\nWBE\nWEW\nWBE\n"
"\nWWE\nWEW\nWBE\n"
"\nWEW\nWEW\nWBE\n"
"\nWEE\nWEW\nWBE\n"
"\nEBW\nWEW\nWBE\n"
"\nEBE\nWEW\nWBE\n"
"\nEWW\nWEW\nWBE\n"
"\nEWE\nWEW\nWBE\n"
"\nEEW\nWEW\nWBE\n"
"\nEEE\nWEW\nWBE\n"
"\nWBE\nWEE\nWBE\n"
"\nWWW\nWEE\nWBE\n"
"\nWWE\nWEE\nWBE\n"
"\nWEW\nWEE\nWBE\n"
"\nWEE\nWEE\nWBE\n"
"\nEBW\nWEE\nWBE\n"
"\nEBE\nWEE\nWBE\n"
"\nEWW\nWEE\nWBE\n"
"\nEWE\nWEE\nWBE\n"
"\nEEW\nWEE\nWBE\n"
"\nEEE\nWEE\nWBE\n"
"\nWBE\nEEB\nWBE\n"
"\nWWE\nEEB\nWBE\n"
"\nWEW\nEEB\nWBE\n"
"\nWEE\nEEB\nWBE\n"
"\nEBE\nEEB\nWBE\n"
"\nEWE\nEEB\nWBE\n"
"\nEEW\nEEB\nWBE\n"
"\nWBE\nEEW\nWBE\n"
"\nWWW\nEEW\nWBE\n"
"\nWWE\nEEW\nWBE\n"
"\nWEW\nEEW\nWBE\n"
"\nWEE\nEEW\nWBE\n"
"\nEBE\nEEW\nWBE\n"
"\nEWW\nEEW\nWBE\n"
"\nEWE\nEEW\nWBE\n"
"\nEEW\nEEW\nWBE\n"
"\nEEE\nEEW\nWBE\n"
"\nWBE\nEEE\nWBE\n"
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1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

IETEIEE
"2062":
"2063":
"2064":
"2065":
"2066":
DROEYD ¢
"2068" :
"2069" :
"2070":
DRGTED ¢
"2078":
"2081":
"2085":
"2088":
"2089":
D030 &
NI ORD &
Mook
"2104":
"2105":
IO &
"2109":
NEEL 7D &
W5 AD ¢
WG ¢
LERRIGEE
DL AED &
"2119":
A GEE
W5 AP ¢
"2123":
D PAD &
PR
N F D g
"2128":
"2130":
EHEIRE
DL &
NFE EYAD &
DD g
"2139":
D AED &
S RE
NG AP &

"\nWWW\nEEE\nWBE\n"
"\nWWE\nEEE\nWBE\n"
"\nWEW\nEEE\nWBE\n"
"\nWEE\nEEE\nWBE\n"
"\nEBW\nEEE\nWBE\n"
"\nEBE\nEEE\nWBE\n"
"\nEWW\nEEE\nWBE\n"
"\nEWE\nEEE\nWBE\n"
"\nEEW\nEEE\nWBE\n"
"\nEEE\nEEE\nWBE\n"
"\nWEW\oWEW\nWWW\n"
"\nWEW\nWEE\nWWW\n"
"\nEWW\nWEE\nWWW\n"
"\nWWW\nEEE\nWWW\n"
"\nWEE\nEEE\nWWW\n"
"\nEBE\nEEE\nWWW\n"
"\nWWE\nEEB\nWWE\n"
"\nWEE\nEEB\nWWE\n"
"\nEBE\nEEB\nWWE\n"
"\nEWE\nEEB\nWWE\n"
"\nEEE\nEEB\nWWE\n"
"\nWEW\nEEW\nWWE\n"
"\nEBE\nEEW\nWWE\n"
"\nEEE\nEEW\nWWE\n"
"\nWEW\nEEE\nWWE\n"
"\nWEE\nEEE\nWWE\n"
"\nEBE\nEEE\nWWE\n"
"\nEWE\nEEE\nWWE\n"
"\nEEW\nEEE\nWWE\n"
"\nEEE\nEEE\nWWE\n"
"\nWEE\nEEE\nWEW\n"
"\nEBE\nEEE\nWEW\n"
"\nEWE\nEEE\nWEW\n"
"\nEEE\nEEE\nWEW\n"
"\nEWE\nEEB\nWEE\n"
"\nEEE\nEEB\nWEE\n"
"\nEEE\nEEW\nWEE\n"
"\nEEW\nEEE\nWEE\n"
"\nEEE\nEEE\nWEE\n"
"\nEWE\nBEB\nEBE\n"
"\nEEE\nBEW\nEBE\n"
"\nEBE\nWEW\nEBE\n"
"\nEWE\nWEW\nEBE\n"
"\nEEE\nWEW\nEBE\n"
"\nEBE\nWEE\nEBE\n"
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1062
1063
1064
1065
1066
1067
1068
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"2143": "\nEWE\nWEE\nEBE\n",
"2144": "\nEEE\nWEE\nEBE\n",
"2146": "\nEWE\nEEE\nEBE\n",
"2147": "\nEEE\nEEE\nEBE\n",
"2151": "\nEWE\nEEE\nEWE\n",
"2152": "\nEEE\nEEE\nEWE\n",
"2153": "\nEEE\nEEE\nEEE\n"

Default MCTS-based Fuego player settings

uct_param_search
uct_param_player
uct_param_player
uct_param_player
uct_param_player
uct_param_player
go_rules cgos

number_threads 1
ignore_clock 1
max_games NUSIM
reuse_subtree O

ponder O
forced_opening_moves 0

No Additive player settings

uct_param_globalsearch use_additive_predictor O

uct_param_search
uct_param_player
uct_param_player
uct_param_player
uct_param_player
uct_param_player
go_rules cgos

number_threads 1
ignore_clock 1
max_games NUSIM
reuse_subtree O

ponder O
forced_opening_moves O

No Knowledge player setting

uct_param_feature_knowledge prior_knowledge_type none
uct_param_globalsearch use_default_prior_knowledge O
uct_param_globalsearch use_tree_filter O

uct_param_search
uct_param_player
uct_param_player
uct_param_player
uct_param_player
uct_param_player
go_rules cgos

number_threads 1
ignore_clock 1
max_games NUSIM
reuse_subtree O

ponder O
forced_opening_moves O

Playout Policy-Only player setting
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uct_param_player
uct_param_search
uct_param_player
uct_param_player
uct_param_player
uct_param_player
uct_param_player
go_rules cgos

search_mode playout_policy
number_threads 1
ignore_clock 1

max_games NUSIM
reuse_subtree O

ponder O
forced_opening_moves O
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