
Analyzing the impact of knowledge and search in
Monte Carlo Tree Search in Go

by

Farhad Haqiqat

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Farhad Haqiqat, 2018

Abstract

Domain-specific knowledge plays a significant role in the success of many

Monte Carlo Tree Search (MCTS) programs. The details of how knowledge

affects MCTS are still not well understood. In this thesis, we focus on identi-

fying the effects of different types of knowledge on the behaviour of the Monte

Carlo Tree Search algorithm, using the game of Go as a case study. We mea-

sure the performance of each type of knowledge, and of deeper search by using

two main metrics: The move prediction rate on games played by professional

players, and the playing strength of an implementation in our program Fuego.

We compare the result of these two evaluation methods in detail, in order

to understand how effective they are in fully understanding a program’s be-

haviour. A feature-based approach refines our analysis tools, and addresses

some of the shortcomings of these two evaluation methods. This approach

allows us to interpret different components of knowledge and deeper search in

different phases of a game, and helps us to obtain a deeper understanding of

the role of knowledge and its relation with search in the MCTS algorithm.

ii

Acknowledgements

I would like to thank my supervisor, Prof. Martin Müller for all his guidance,
patience and positive attitude throughout the journey, and for his constructive
comments on my thesis.

I would like to thank my friends and family for all their support when I needed
it, and giving me hope when I had none.

Finally, I would like to give my biggest gratitude to my wife Mansoureh Modar-
res for her encouragement throughout years of my study, and for her unfailing
support.

iii

Table of Contents

1 Introduction 1

1.1 Research Topics . 2

1.2 Contributions of this Thesis 2

2 Literature review 4

2.1 Knowledge . 4

2.1.1 Evaluation of Knowledge 4

2.1.2 Features . 5

2.1.3 Patterns . 9

2.1.4 Neural Networks . 9

2.2 Game Tree Search . 11

2.3 Minimax and Alpha-Beta . 13

2.4 The Game of Go and Computer Go 15

2.5 Monte Carlo Methods . 16

2.5.1 Upper Confidence Bound (UCB) and the UCB1 Algorithm 17

2.5.2 UCB applied to Trees (UCT) 17

2.5.3 PUCB . 18

2.5.4 AMAF and RAVE . 20

2.5.5 Usage of Knowledge in MCTS 21

3 Tools and Methods for Experiments 22

3.1 The Fuego Framework . 22

iv

3.1.1 UCT Move Selection 23

3.1.2 Initialization of N and Q Values 23

3.1.3 Additive Knowledge 24

3.1.4 Simple Features and Patterns in Fuego 24

3.1.5 Playout Policy . 24

3.1.6 Move Filtering . 25

3.2 Fuego-Based Players Used in our Experiments 25

3.2.1 Playout Policy-Only Player 25

3.2.2 Simple Features-Only Player 25

3.2.3 No Knowledge Player 25

3.2.4 No Additive Player . 26

3.2.5 Default MCTS-Based Fuego Player 26

3.2.6 Varying the Number of Simulations 26

3.3 Move Prediction . 26

3.3.1 Move Prediction Data 26

3.4 Playing Strength . 27

3.5 Previous Work on Analysis of Go Programs 27

3.5.1 Combining Online and Offline Knowledge in UCT . . . 27

3.5.2 Monte Carlo Simulation Balancing 28

3.5.3 Analyzing Simulations in MCTS 29

3.6 Revisiting the Research Topics 31

4 Experimental Results and Discussion 32

4.1 Move Prediction . 32

4.2 Playing Strength . 34

4.2.1 Red Group of Experiments: Default MCTS-based Fuego
vs No Additive Player 36

4.2.2 Yellow Group of Experiments: No Knowledge vs Other
MCTS-based Players 36

v

4.2.3 Blue Group of Experiments: Varying Number of Simu-
lations, 300 vs 100 . 36

4.2.4 Green Group of Experiments: No Additive vs Other
MCTS-based Players 37

4.2.5 Gray Group of Experiments: Simple Features-Only vs
No Knowledge Players 37

4.3 A Closer Look at Move Prediction Rate 37

4.4 Move Prediction and Feature Frequency 38

4.4.1 Effect of Search and Master Move Prediction 41

4.4.2 Impact of More Simulations 43

4.4.3 Impact of the Additive Term 43

4.4.4 Impact of Simple Feature Knowledge with Increasing
Number of Simulations 45

4.4.5 Features of Professional Moves 45

4.4.6 Move Selection Analysis 47

5 Conclusion and Future Work 51

Bibliography 53

A Appendix 57

vi

List of Tables

4.1 Result of move prediction for players based on Fuego. 34

4.2 Result of 100 game matches between all pairs of players. . . . 35

vii

List of Figures

2.1 Go position. 6

2.2 3×3 Patterns for Hane [27]. 10

2.3 Diamond Shape Patterns [49]. 10

2.4 Neural Network. 11

2.5 Convolutional Neural Network [17]. 12

2.6 Game tree for a Tic Tac Toe Position [13]. 12

2.7 Example of alpha-beta pruning algorithm on minimax tree [42]. 15

2.8 Game of Go Board [5]. 16

2.9 Phases of MCTS [51]. 19

3.1 Expected point loss of policy P vs policy blunder rate (left) and
vs relative strength of MCTS(P) (right) [24]. 30

4.1 Graph of move prediction rate. 33

4.2 Move prediction accuracy per game phase for 100 and 1000
simulation players. Each group has 50 moves. 39

4.3 Move prediction accuracy per game phase for 300, 3000 ad 10000
simulation players. Each group has 50 moves. 39

4.4 Feature counts of baselines. 40

4.5 Feature count for comparing the players. Features of moves
predicted correctly by players with 3000 simulations but missed
by players with 100 simulationis, and vice versa. 42

4.6 Top 10 differences between features count of default Fuego player
with 3000 simulations and 100 simulations. 44

viii

4.7 Difference between feature counts of default Fuego and No Ad-
ditive player when both players use 3000 simulations. 44

4.8 Difference between feature counts of default Fuego and No Knowl-
edge player. 46

4.9 Difference between feature counts of default Fuego with 3000
simulations moves and professional moves. 47

4.10 Comparison between number of simulations for initial feature
weight. 48

4.11 Percent of average number of simulations for buckets of initial
weights. 50

ix

Chapter 1

Introduction

Humans make many choices everyday which vary from trivial decisions, such
as what to eat for lunch, to more important decisions, such as how to invest
their money. These types of choices can be viewed as One-Shot decisions [28].
However there are many situations where we have to look at sequences of future
choices in order to make a decision now. It has been shown that humans tend
to make suboptimal decisions when faced with multiple choice repetitive tasks
[15] they have a tendency to under experiment the optimal choice [38]. This
signifies the need for decision-making algorithms to help us in making better
decisions. Researchers developing such algorithms need an environment that
is easy to setup and replicate, and has a sequential decision making process.

Board games provide such an environment, which is easy to implement by com-
puters. These games have simple rules, and results obtained with algorithms
can be compared to human performance as a measure of strength. Through
many years of research many of these games were solved, such as Checkers
[43], Hexapawn [8] and Quarto [30]; however, finding optimal solutions for
other games such as Go and chess proved to be intractable using the current
methods based on search algorithms. Therefore, researchers have put their
focus on beating top human players as a goal to advance their algorithms’
performance.

Chess programs have exceeded human level of play for the first time in 1997 [19]
using the alpha-beta pruning algorithm and special hardware. Alpha-beta’s
success in chess was helped greatly by the development of strong evaluation
functions, which examine a position and return its evaluation. Building such
an evaluation function had failed in the game of Go until AlphaGo’s value
network [45]. To address the lack of proper evaluation functions, Monte Carlo
Tree Search (MCTS) methods were developed [18].

The MCTS based program Fuego was the first program able to beat a top

1

human professional player in Go on a 9x9 size board in 2008 [23]. Fuego
achieved this level of play by using a MCTS algorithm enhanced by knowledge
of features and patterns. Despite the successes that programs had on the
9x9 size board, the full 19x19 size board remained out of reach until recently,
when AlphaGo [45, 46] far exceeded the human level of play. AlphaGo uses
a variant of MCTS with a very strong knowledge obtained through Neural
Networks (NN) in order to navigate the search in MCTS.

1.1 Research Topics

• Examine the relation between knowledge and search in Go programs and
how these two impact each other.

• Examine current evaluation approaches used in Go programs, which are:
move prediction and playing against another program. Understand the
differences between each of these tests and how they relate to each other.

• Evaluate the impact of knowledge on the performance of a Go program.

• How does longer and deeper search improve the strength of a MCTS
program, in the presence of knowledge?

• Can this increased strength be explained in terms of simple feature
knowledge?

1.2 Contributions of this Thesis

In this thesis, we have done an in-depth analysis of the role of knowledge
in the Monte Carlo Tree Search (MCTS) program Fuego. We studied how
each component of knowledge and deeper search impacts the performance of a
player in the move prediction task. We showed that the move prediction rate
is correlated with the stage of the game for each of our studied players. We
incorporated features as a tool to interpret a players moves and find differenti-
ating factors that explain differences between our studied players. We studied
the impact of feature knowledge on the number of simulations a move receives
in MCTS.

In Chapter 2 we review the literature, and explain the terms that we will use
throughout this text. In Chapter 3 we explain the tools and methods used to
carry out the experiments, such as Fuego [23], which is an open source MCTS
Go engine. We also reformulate the research topics of Section 1.1 in terms

2

of this environment. In Chapter 4 we report the results obtained through
our experiments, and analyze those results in-depth to answer our research
questions.

3

Chapter 2

Literature review

In this chapter we briefly describe all the methods and terminology needed in
order to explain our experiments.

2.1 Knowledge

Professional players in games such as Go or chess use their knowledge to play.
Although their knowledge helps them to play at a very high level, they do not
express their knowledge in a way that can be implemented easily in a program.
AI researchers are interested in obtaining game-specific knowledge to improve
their algorithms. One way to achieve this is by studying games played by
professional players. The main approaches for obtaining knowledge in the
context of games are: features, patterns and neural networks. Part of the
process of obtaining knowledge is its evaluation. We first describe methods for
evaluation of knowledge, and then briefly describe each method for obtaining
knowledge.

Before we describe these methods we need to define knowledge. We define
knowledge in the scope of games. Knowledge in this thesis is information
gained by training methods that helps a program to act in an informed manner,
and improves the performance of a player when applied.

2.1.1 Evaluation of Knowledge

We test the obtained knowledge in order to evaluate its strength. There are
two popular approaches for testing: First, by evaluating the move prediction
rate on games played by professional players, and second, by using knowledge

4

inside a game engine and evaluating the change in strength of this engine.

Move Prediction

Move prediction is the act of predicting the next move in a game that was
played before. To do a move prediction we select a position from a game and
feed that position to the game-playing engine. Then we compare the response
received with the next move played in the game. See Section 3.3 for a detailed
description of game data used in this research.

Move Prediction Data

In any machine learning process involving data to acquire trustworthy results,
available data should be divided into at least two set: training and test sets.
There is no specific rule on how to choose the size of training and test set;
nevertheless, it is common to have 80% of the data as training set and 20% as
test set. It is important that the program that is being trained to learn the
knowledge will not see the test data during the training phase.

Playing Strength

Another method for testing a certain type of knowledge is comparing playing
strength with and without the use of that knowledge. In this scenario we
use knowledge either as a standalone player or integrate it into an available
program, and play a number of matches against other programs or another
version of itself. If we know the level of strength of the opponent, then we can
estimate the strength of our program from the obtained results by using the
Elo rating formula [3]. If we have integrated knowledge in an existing program,
then we can estimate the quality of the knowledge by measuring the increase
in playing strength resulting from the added knowledge.

2.1.2 Features

Features can reveal aspects of a move in a game, which help to better under-
stand and heuristically evaluate that move. We will define features informally
using a small example for moves in the position shown in Figure 2.1, and show
how those features are extracted.

First we define a list of binary features for our moves:

5

Figure 2.1: Go position.

• Manhattan Distance to previous move of our own is 1

• Manhattan Distance to previous move of our own is 2

• Manhattan Distance to previous move of our opponent is 1

• Manhattan Distance to previous move of our opponent is 2

For example, consider the two possible moves A and B for White in Figure 2.1.
For move A, the first feature has a value of 0 (false), since this move does not
have the distance of 1 to the previous White move. Following this process we
obtain values of: 0,1,1,0 respectively for each feature for move A. Each move is
represented by a vector with its corresponding values for above features. Each
of the features also has a corresponding weight. Weights are represented by a
vector of the same length. The evaluation of a move is a number calculated
by the inner product of feature and weight vector. In order to achieve a good
evaluation, defined features should be discriminative. After defining features
we need to tune their weights to have a more accurate evaluation. This can
be done using machine learning techniques. In the following example, we
manually assigned values to the weight vector W . Move B in Figure 2.1 has a
higher evaluation than move A, therefore, it is considered to be a better move

6

by this heuristic evaluation function.

A←< 0, 1, 1, 0 >

B ←< 1, 0, 0, 1 >

W ←< 0.40, 0.25, 0.15, 0.20 >

Eval(A) = A.W = 0 ∗ 0.40 + 1 ∗ 0.25 + 1 ∗ 0.15 + 0 ∗ 0.20 = 0.4

Eval(B) = B.W = 1 ∗ 0.40 + 0 ∗ 0.25 + 0 ∗ 0.15 + 1 ∗ 0.20 = 0.6

(2.1)

There are many methods for learning the weights of features [44, 47, 49, 39].
We briefly describe the methods that are used in Fuego.

The Bradley-Terry Model

The Bradley-Terry (BT) model [32] predicts the outcome of a competition be-
tween individuals, when each individual is represented by a strength parameter
w. In a BT model the probability of player i beating j is:

P (i beats j) =
wi

wi + wj
(2.2)

The BT model can be generalized to account for teams of individuals [22]. The
strength of a team is defined as the product of strengths wi of team members.
Equation (2.3) shows how the model is used to predict the winning probability
of team A, given manually assigned strength parameters w1 . . . w4. If we have
a feature vector for each move, then the move can be represented as a team of
features in the generalized Bradley-Terry model, with the strength parameters
equal to the feature weights. We can predict the quality of each move in a
position by using this model.

TeamA : w1, w3, w4

TeamB : w2, w4

TeamC : w1, w2, w4

w1 = 0.40, w2 = 0.25, w3 = 0.15, w4 = 0.20

P (Team A wins) =
w1 ∗ w3 ∗ w4

w1 ∗ w3 ∗ w4 + w2 ∗ w4 + w1 ∗ w2 ∗ w4

P (Team A wins) ≈ 0.15

(2.3)

In order to use a Bradley-Terry model we need to optimize the parameters wi

of the model. Coulom [22] has proposed using a Minorization-Maximization

7

(MM) method for this. In MM, the objective function is maximizing the
probability of the next played move in the game, given the current position.
MM uses an iterative process to optimize the objective function over a (large)
test set. A simple surrogate function drives the objective function uphill. For
more info on MM, please refer to [32].

Latent Factor Ranking

Another method for estimating the ranking of moves is Latent Factor Rank-
ing (LFR) [37]. LFR ranks the next possible moves in the game from best
to worst. LFR uses a Factorization Machine (FM) [40]. In Factorization Ma-
chines, feature weights and interaction between features are given by:

y(X) = w0 +
m
∑

i=1

wixi +
m
∑

i=1

m
∑

j=i+1

< vTi vj > xixj

< vTi , vj >:=
k

∑

f=1

vi,f .vj,f

X = (x1, . . . xn)

W = (w1, . . . wn)

X ∈ R is a feature vector (i.e. move features).

W ∈ R
n is a weight vector.

V ∈ R
n×k is a pairwise interaction matrix.

Row vi within V describes the i-th variable with k factors.

y is evaluation of a move, which determines the ranking.

(2.4)

The move with highest evaluation in LFR will have the highest rank. LFR is
an extension of the BT model. In BT, only individual weights of features are
accounted for, while LFR in addition to features weights accounts for pairwise
interaction between features. The extra information provided in this model
leads to a 5% improvement in move prediction rate on Go games played by
professionals [37]. Another difference between the LFR and BT models is
their output LFR only produces a ranking, while BT produces a probability
distribution over all legal moves.

The Factorization Bradley-Terry Model

The Factorization Bradley-Terry (FBT) model [53] combines the strong points
of the LFR and BT methods. It accounts for pairwise interaction between

8

features, and also produces a probability of each move being selected, enabling
the model to be more easily applied as an evaluation function in Go programs.

y(X) =
∑

f∈X

wf +
1

2

∑

f∈X

∑

g∈X,f 6=g

< vf , vg >

P (X iwins) =
exp(y(X i))

∑N
j=1 exp(y(X

j))

Xa is feature vector of move a

(2.5)

FBT computes the strength of each feature group, and then uses a softmax
function to calculate the winning probability of a group.

2.1.3 Patterns

If we break down a game board into smaller pieces, we find many local shapes
that occur repeatedly. These shapes are called patterns. Studies have shown
that a professional player knows and uses an extensive number of patterns
in their play [33]. Inspired by the way professionals perceive the board, re-
searchers incorporated patterns into their Go programs. Patterns can be seen
as a special case of features and many programs use them in their feature
set, selecting patterns that are used frequently in professional players games
[22, 23, 37]. Figure 2.2 shows an example of 3×3 size patterns which are in-
variant to rotation. The square mark in the example is where the next move is
going to be played. It can be of either colour. Positions marked by crosses can
have any stone colour or be empty. Figure 2.2d only matches the pattern if
Black moves to the square marked position. Patterns can have different shapes
and sizes, and Figure 2.3 is an example of diamond shape patterns. Many Go
programs have used this type of patterns [27, 23, 37].

2.1.4 Neural Networks

A neural network (NN) is combination of neurons organized in layers, and it
has three types of layers, input, hidden and output. The input layer is where
input data is fed to the network, the output layer produces the results, and
the hidden layers organize neurons in one or more layers. Figure 2.4a shows a
neural network architecture, and Figure 2.4b shows the computations involved
in a single neuron of a neural network. A neuron receives an input vector and
computes the inner product of the input with its weight vector. The results
are then sent through a non-linear activation function, which determines the

9

(a) (b)

(c) (d)

Figure 2.2: 3×3 Patterns for Hane [27].

Figure 2.3: Diamond Shape Patterns [49].

10

(a) Schematic of Neural Network [10]

(b) Single Neuron in Neural Network [11]

Figure 2.4: Neural Network.

output of the neuron. With increasing number and size of hidden layers, the
number of parameters of a network increases. For each layer as in Figure 2.4a,
every single neuron calculates an inner product with all the outputs of the
previous layer. In such a fully-connected network the number of parameters in
fully-connected layers makes optimization of a network harder. Convolutional
Neural Networks (CNN) mitigate this problem [35].

A CNN reduces the number of needed parameters in the model by feeding
the neurons with a smaller output vector from the previous layer. This allows
the construction of deeper networks. Figure 2.5 shows an example of a CNN.
Many implementations of CNN were applied to Go [21, 36, 45]. With deep
CNN, Maddison et al. [36] achieved a prediction rate of over 50% on Go games
played by professional players. This huge increase in prediction rate was the
starting point for AlphaGo [45].

2.2 Game Tree Search

In order to represent move sequences in a game, computers use a game tree.
This is a directed graph with nodes representing the positions of the game,
and directed edges representing moves. A game tree starts from the current
position as the root of the tree. Each node in the tree has all the follow-up
positions as its children. The end of game positions are leaf nodes in the tree.

11

2.3 Minimax and Alpha-Beta

Minimax [42] is a recursive algorithm for search in two player games. A min-
imax game tree has two types of nodes, Min and Max. All the nodes on the
same level are of the same type. From one level to the next, types alternate
between Max and Min. Given the value of its children, the minimax value of a
node can be computed based on its type as either the minimum or maximum
of the children’s values. The Minimax value is reached if both players play
optimally [42]. Algorithm 1 shows the pseudo code of Minimax. The naive
Minimax algorithm generates a full-width decision tree and has a computa-
tional complexity of O(bm) with branching factor b, and depth m. This is a
huge computational cost for games such as Go or chess that have large effective
branching factor and depth.

There are many situations where computing the minimax value does not re-
quire to generate a full-width tree. Alpha-beta pruning [42] exploits those
situations and decreases the effective branching factor in minimax search. As
an example, in Figure 2.7.d, State B has a value of 3. The root, which is a
max node, will have at least a value of 3. State C has seen its first child and
has at most a value of 2. Therefore, optimal play from the root will never
choose C, because of the better option B. Therefore, alpha-beta does not need
to check other children of C, because it will never be selected. Such pruning
can greatly reduce the size of the generated tree from O(bd) to O(bd/2) in the
best case [42]; however, the computational complexity of the alpha-beta prun-
ing algorithm remains exponential in the depth of the tree. In the worst case
scenario, alpha-beta can not prune any node. In order to address this issue,
move ordering heuristics are used. Move ordering tries to visit the best node
in any given state first.

In many problems, finding the exact solution by alpha-beta pruning is not
possible because of the huge size of the game tree. In those problems heuristic
evaluation functions are used. An evaluation function estimates the expected
value of a position (state). In order to reduce the size of the game tree, alpha-
beta pruning with limited depth traverses the tree to a certain depth, and then
estimates the value of the node at that depth by the evaluation function [42].
In order to apply alpha-beta pruning with limited depth on a problem, we
need an evaluation function that is able to accurately estimate the expected
value of a node for that problem.

13

Algorithm 1 Example of Minimax algorithm [42]

function MINIMAX-DECISION(s) returns an action a

return argmaxa∈ACTIONS(s) MIN-VALUE(RESULTS(s,a))

function MAX-VALUE(s) returns a reward value R

if TERMINAL-TEST(s) then return REWARD(s)
Q← −∞
for each a in ACTIONS(s) do

Q← MAX(Q,MIN-VALUE(RESULTS(s,a)))

return Q

function MIN-VALUE(s) returns a reward value R

if TERMINAL-TEST(s) then return REWARD(s)
Q←∞
for each a in ACTIONS(s) do

Q← MIN(Q,MAX-VALUE(RESULTS(s,a)))

return Q

State s is a position of a game. ACTIONS(s) returns the
list of actions in state s. RESULTS(s,a) transitions from
state s by choosing action a to state s′. REWARD(s)
returns the reward R for the state s. TERMINAL-TEST
checks to see if the state s is terminal. Q is the value of a
leaf node.

14

Figure 2.7: Example of alpha-beta pruning algorithm on minimax tree [42].

2.4 The Game of Go and Computer Go

Go is a two player zero-sum game with alternating play and perfect infor-
mation. Chess, Tic Tac Toe and checkers are other examples of this kind of
games.

Go is a strategy game which was invented in China, and later brought to
other parts of the world. We explain the main rules of Go. See [1] for more
explanation. The game starts with an empty board, usually 19×19. Two
players Black and White take turns putting one of their stones on the board
with Black going first. White can be given extra points for starting second,
which is called komi. The game continues until both players pass consecutively.
Stones are captured if they are surrounded by stones of the opposite colour.
Captured stones must be removed from the board. When the game ends the
player that has the most stones plus surrounded area plus komi wins the game.

The complexity of the game tree in Go makes it a very attractive test bed for
artificial intelligence algorithms. There are 361 points on the board and each
can have one of the 3 possible states of Black, White or empty. This results in
3361 board positions. This number is an upper bound on the number of board
positions, since some states are illegal. However, the possibility of playing back
into points where stones were captured greatly increases the game complexity.
The computational complexity of the game makes it intractable to solve on the

15

Figure 2.8: Game of Go Board [5].

full size board by the alpha-beta algorithm. Until very recently, there was a
lack of good heuristics for evaluating Go positions, which made the alpha-beta
algorithm fail in Go.

2.5 Monte Carlo Methods

Monte Carlo (MC) methods were first popularized in physics to approximately
solve intractable integrals by using sampling [18]. Later Abramson [14] applied
Monte Carlo methods to games. He showed that the expected value of a move
through random play from a node was better than a handcrafted evaluation
function created by experts in the Game of Othello; however, he also noted
that obtaining such a value needs many rounds of random play. Equation (2.6)
shows how rewards obtained through rounds of play are used to compute the
expected value Q of a move a:

16

Ns ← Ns + 1

Ns,a ← Ns,a + 1

Qs,a ← Qs,a +

[

Rt −Qs,a

Ns,a

]

, formula for updating the average

• Ns is the overall number of visits of state s.

• Ns,a number of times action a was selected in state s.

• Qs,a is the average reward obtained from move a in state s

• Ri is reward obtained at i-th game

(2.6)

2.5.1 Upper Confidence Bound (UCB) and the UCB1
Algorithm

When we apply Monte Carlo methods on a problem we need to repeatedly
make a choice between n actions at the same state, where each action leads to
a reward value. Choosing the next action is usually done by combining two
ideas, greedy exploitation prefers an action that has maximum average reward
up to that time, while exploration chooses the next action based on reducing
the largest uncertainty. Auer et al. [16] proposed the UCB1 algorithm as a
balanced solution that combines exploitation and exploration. This is achieved
by computing an upper confidence bound on the reward. In UCB1, an action
with large Q value still has an advantage; however, as number of visits Ns

grows, actions with small number of visitsNs,a obtain larger exploration bonus.
This increases the urgency of trying moves with low visit number.

Algorithm 2 Deterministic policy UCB1 [16].

Initialization: play each action once
Loop:

On trial Ns in state s choose action a∗ where:

a∗ = argmaxa

[

Qs,a +
√

2 lnNs

Ns,a

]

2.5.2 UCB applied to Trees (UCT)

Although UCB1 is able to address the dilemma between exploration and ex-
ploitation, it was designed for choosing a single action in bandit problems, not
sequential decision making as in games. Kocsis et al. [34] proposed the UCT
algorithm based on UCB1 algorithm. UCT expands a search tree for selecting
the next action.

17

UCT uses Monte Carlo simulations to estimate the value of each action (move).
Each simulation repeats four phases: Selection, Playout, Expansion and Up-

date, as Figure 2.9 shows. In this section we briefly describe each.

Selection starts at the current position of the game, represented by the root
of the tree, and repeatedly selects the next node in the game tree based on
the UCT formula, until it reaches a leaf node. A Playout or rollout, starts
at the leaf node reached by selection, and repeatedly selects the next state of
the game based on a simulation policy until it reaches the end of the game,
and computes the result of the game. Expansion adds one or more children to
the leaf node that we have reached through selection. Update propagates the
simulations result back up the tree.

Kocsis et al. proved that as the number of sampled games goes to infinity,
the tree produced by UCT converges to a mini-max tree. Any method that
builds a tree using a Monte Carlo method to perform the search is called
MCTS; nonetheless, for the remainder of this thesis, whenever we use the
term MCTS, we mean a method based on UCT or an extension of the UCT
formula.

Algorithm 3 UCT [34]

Loop:

While s is not a leaf:
On trial Ns in state s choose action a where:

a = argmaxa

[

Qs,a + Cp

√

lnNs

Ns,a

]

next state: s ← sa
Playout from state s
Update

Cp is a tunable exploration hyperparameter.
s ← sa: takes action a in state s and results in a new state.
Playout: plays the game from given state until the end using playout policy.
Update: updates the tree statistics using the latest playout results.

The first difference between UCT (Algorithm 3) and UCB (Algorithm 2) is
the addition of a tunable exploration parameter Cp. The other difference is
that UCT is applied to all the nodes in a tree that are visited during selection.

2.5.3 PUCB

PUCB is a modification to UCT (Algorithm 3) proposed by Rosin [41]. This
algorithm adds a term to UCT to incorporate feature knowledge for evaluating
each action a. Algorithm 4 shows the method.

18

Figure 2.9: Phases of MCTS [51].

Algorithm 4 PUCB [16].

Initialization: play each action once
Loop:

On trial Ns in state s choose action a where:

a = argmaxa

[

Qs,a + C(Ns, Ns,a)−M(Ns, a)
]

• C(Ns, Ns,a) =
√

Cp log(Ns)

Ns
if Ns,a > 0, otherwise 0; Cp = 3/2.

• M(Ns, a) =
2

feval
s,a

√

log(Ns)
Ns

if Ns > 1, otherwise 2
feval
s,a

.

• f eval
s,a is the feature evaluation of move a in
state s.

19

2.5.4 AMAF and RAVE

Rapid Action Value Estimation (RAVE) [26] is a technique for estimating the
value of a move, and it uses the All Moves As First (AMAF) [29] technique.
AMAF estimation is based on the assumption that the value of a move is
unaffected by when the move is played during a game. AMAF produces a
rough estimation of a move’s value, “as the value of an action (move) usually
depends on the exact state in which it is selected [25]”

Q̂s,a = E[z|st = s, ∃ u ≥ t s.t. au = a]

where z is the game result, t is the time step
(move number), and Q̂ is the estimated value
of a move a using AMAF.

(2.7)

AMAF uses Monte Carlo simulations to estimate the Q̂ value by averaging the
result of every simulation, which started from state s in which action a was
played after time t.

In early stages of MCTS, when we have not gathered enough information to
accurately estimate a move’s value, the RAVE estimate can help to improve the
performance of search by biasing search towards the moves with better RAVE
value. [25] observed up to 36% increase in the win-rate of their player MoGo
[9] against GnuGo [6] by applying RAVE. When the number of simulations for
a move increases, we have a better estimation of the move value. We decrease
the weight of RAVE in move selection, by computing a weighted combination
of action value obtained through Equation (2.7) and Equation (2.6), gradually
fading out the Q̂s,a term.

Q̂∗
s,a = (1− βs,a)Qs,a + βs,aQ̂s,a

βs,a =

√

k

3Ns + k

where Qs,a is obtained by Equation (2.6), Q̂ is
the RAVE estimate, βs,a is the weight param-
eter, k is a hyperparameter, and Ns is number
of visits for state s

(2.8)

The UCT-RAVE algorithm [26] replaces Qs,a in Algorithm 3 with Q∗
s,a from

Equation (2.8).

20

2.5.5 Usage of Knowledge in MCTS

Domain specific knowledge in MCTS can be applied in different ways. One
approach is using knowledge to initialize a new node in the tree [23] to bias the
in-tree selection strategy towards or away from that node. Another application
of knowledge is its usage in the playout phase to strengthen play by playout
policy, and avoid some blunders. Silver and Tesauro [48] show that improving
the strength of a playout policy alone does not necessarily lead to improved
level of play, because it can increase bias. Reducing the bias of a playout
policy plays a significant role in the strength of a MCTS player. Knowledge
can also be applied as an evaluation function to cut off the search on the
simulation early, and estimate the game results at that point [45]. Many
program authors have reported an increase in performance of their program
from adding knowledge [37, 21, 45, 48, 27, 25, 53, 41].

21

Chapter 3

Tools and Methods for
Experiments

In this chapter we describe tools, methods and settings used in the experiments
of Sections 3.3 and 3.4. We use Fuego [23] as a test-bed to conduct our
experiments. In Section 3.1 we describe Fuego and its algorithm settings. We
then describe the tested players in Section 3.2. We describe our experimental
methods for move prediction and measuring playing strength in Sections 3.3
and 3.4. We briefly describe previous work on the analysis of game-playing
programs in Section 3.5. In Section 3.6 we revisit our research questions to
give more precise descriptions in terms of the definitions introduced here.

3.1 The Fuego Framework

Fuego [23] is an open-source MCTS-based search engine mostly developed by
a team at the University of Alberta. Fuego is a collection of game independent
libraries for two player, perfect information board games, and also contains a
set of MCTS-based Go players.

We briefly describe how each of the algorithms relevant to our experiments are
implemented in Fuego. SVN revision 2032, updated on 2016 − 08 − 16, was
used in our experiments.

22

3.1.1 UCT Move Selection

The Fuego implementation follows the standard MCTS algorithm, with in-tree
move selection described in Section 2.5.2.

On trial Ns, Fuego chooses action a∗ = argmax
a

[

Qs,a + C(Ns, Ns,a)
]

where:

• Ns is the number of visits of current state.

• Ns,a is the number of previous visits of move a in state s.

• Qs,a weighted mean of move value and RAVE value of move a in state s.

• Cp is a hyperparameter for controlling exploration with default value of 0.7.

• C(Ns, Ns,a) = Cp ∗

√

log(Ns)

Ns,a

(3.1)

3.1.2 Initialization of N and Q Values

Fuego uses feature evaluation as a prior knowledge. When a new node is added
to the Monte Carlo tree, its value is initialized by prior knowledge trained by
the LFR [37] method. Prior knowledge evaluation outputs a real number, and
Fuego uses Equations (3.2) and (3.3) to transform that number into an initial
number of visits Ns,a = Nprior

s,a and an initial value Qs,a = Qprior
s,a of move a in

state s [52].

Ns,a =

{

c×|Γ(s)|
Σafeval

s,a
× f eval

s,a if fs,a ≥ 0

− c×|Γ(s)|
Σafeval

s,a
× f eval

s,a otherwise

Here, c is a hyperparameter, f eval
s,a is the feature

evaluation of move a in state s, and |Γ(s)| is
number of all legal moves in state s.

(3.2)

Qs,a =







1+feval
s,a

2×feval
max

if fs,a ≥ 0

−
1+feval

s,a

2×feval
min

otherwise

where f eval
min and f eval

max are minimum and maxi-
mum feature evaluations of all moves in Γ(s).

(3.3)

23

3.1.3 Additive Knowledge

In order to extend UCT with feature knowledge, Fuego also uses a variant
of the PUCB method described in Section 2.5.3. However, the PUCB imple-
mentation in Fuego has some differences with the method described in Sec-
tion 2.5.3. Equation (3.4) shows the details.

On trial Ns choose a∗ = argmax
a

(Qs,a − pw ∗ pv) where:

• pw =

√

5

Ns + 5

• pv = cadd ∗ Sig(csig ∗ f
eval
s,a)

Here, cadd with default value of 1 and csig
with default value of 10 are hyperparameters.
Sig(t) = 1

1+et
is the sigmoid function and f eval

s,a

is the feature evaluation of move a.
(3.4)

One difference between Equation (3.4) and Algorithm 4 is that the exploration
term Cp is set to zero in here. The other difference is that the hyperparam-
eters used in here are different from Algorithm 4. Fuego also does not follow
the initialization step in Algorithm 4, and instead uses feature knowledge for
initialization.

3.1.4 Simple Features and Patterns in Fuego

Fuego uses complex knowledge for in-tree selection and simple knowledge in
the playout phase. Fuego also uses feature-based evaluation in an additive
term to bias moves during in-tree selection. The features used in additive
knowledge are diamond shape patterns similar to Figure 2.3 with size 4 [52].

3.1.5 Playout Policy

The playout policy in Fuego consists of a set of prioritized methods. Fuego runs
these methods in a top-down manner. It stops as soon as a method returns
a nonempty set S of candidate moves. Fuego chooses a move uniformly at
random between moves in S, except in the case of 3×3 pattern move features,
which have associated weights. In this case, the chance of a move being selected
is proportional to its weight. Features in Fuego are similar to the ones in [22]
using 3×3 patterns and features.

24

3.1.6 Move Filtering

Fuego uses a move filtering technique to reduce the branching factor of the
tree. This method can filter moves that are captured in a ladder, moves on
the first line, and moves inside safe groups. For more information on the
implementation of the move filtering algorithm in Fuego, please refer to [4].

3.2 Fuego-Based Players Used in our Experi-

ments

In our experiments we have used a set of players from the Fuego code base.
Here, we briefly describe each player. For detailed information on the settings
of each player, please refer to Appendix A.

3.2.1 Playout Policy-Only Player

This simple player uses only the playout policy of Fuego, described in Sec-
tion 3.1.5, for generating the next move in the game, and it does not use
search. This player helps us to understand the playout policy in Fuego better,
and also helps us to measure different aspects of the playout policy, such as
move prediction and playing strength.

3.2.2 Simple Features-Only Player

Here, we use the prior knowledge in Fuego as a stand-alone player. The highest
evaluated move according to features is played. Having a features-only player
helps us to understand how the knowledge encoded in features compares to
search, and it also helps to better evaluate feature knowledge.

3.2.3 No Knowledge Player

In order to examine how knowledge helps the performance of a player, we turn
off prior knowledge and move filtering in Fuego. This player uses only MCTS
with the default Fuego playout policy. This player helps us better understand
the impact of knowledge on a player, and specifically on move prediction and
playing strength.

25

3.2.4 No Additive Player

Fuego by default uses additive knowledge to help its in-tree policy focus more
on high-ranking moves. We turn off the additive knowledge in this player,
and rollback Fuego to use MCTS with the UCT method as described in Sec-
tion 3.1.1. This player helps us to better understand the role of additive
knowledge in Fuego.

3.2.5 Default MCTS-Based Fuego Player

We need to be able to compare the results obtained by other players with
full-strength Fuego. This player uses the full Fuego engine with all default
settings.

3.2.6 Varying the Number of Simulations

For the MCTS-based players in Sections 3.2.3 to 3.2.5 we vary the number of
simulations in {100, 300, 1000, 3000, 10000}. This helps us to understand the
impact of more simulations on the players.

3.3 Move Prediction

One of the main experiments that we have conducted in order to evaluate
our players is move prediction. In this task we have used games played by
professional players. We run a player on all the positions from each game, and
let it predict the next played move.

3.3.1 Move Prediction Data

For the move prediction task, we used games from Pro Game Collection [12].
In total we used 4621 games, after removing games that were played on board
sizes other than 19×19. These games were played from Sep 2013 to Nov 2016.
This time frame was chosen because Fuego features were trained on games
prior to Sep 2013 from the same collection. Choosing this period makes sure
that the test set has not been seen by our programs before.

26

3.4 Playing Strength

In this experiment we play matches between different players to obtain a mea-
sure of their relative strength. We used GoGui [7] to automate the process.
For detailed information on the scripts, please refer to Appendix A.

3.5 Previous Work on Analysis of Go Pro-

grams

Many game programs have been used for scientific research over the years [23,
27, 20, 19]. Here, we describe studies on analyzing playout policies, simulations
and strength in MCTS-based Go programs.

3.5.1 Combining Online and Offline Knowledge in UCT

Sylvain Gelly and David Silver [25] studied the impact of three different ideas
on the performance of MoGo [9]:

• Impact of strength of playout policy

• Impact of RAVE

• Impact of prior knowledge

Impact of Strength of Playout Policy

For a set of playout policies P that were based on a value function Q trained
by Reinforcement Learning techniques [50], the authors measured the strength
of every playout policy as a stand-alone player by performing a round-robin
tournament between the policies P . Then they measured the strength of
versions of MoGo that use the playout policies in set P by playing games
against a fixed opponent GnuGo 3.7.10 (level 0) [6]. To their surprise, MoGo’s
default handcrafted policy, which was weaker as a standalone player, improved
the performance of MoGo compared to the other policies in these games.

27

Impact of RAVE

Another experiment measured the impact of RAVE on the performance of
MoGo. They observed up to 36% improvement in MoGo’s win-rate against
GnuGo 3.7.10 (level 8) by adding RAVE.

Impact of Prior Knowledge

The last part of the study [25] focused on analyzing the impact of prior knowl-
edge on the performance of MoGo extended with RAVE. Feature knowledge
was used to assign an initial value Qs,a and a number of visits Ns,a for a move
a. Adding prior knowledge improved the win-rate of MoGo by 9% against
GnuGo 3.7.10 (level 8).

3.5.2 Monte Carlo Simulation Balancing

David Silver and Gerald Tesauro studied the impact of balance in a playout
policy on the performance of a player [48]. This work introduced an imbalance
measure B∞ as the expectation of the squared bias b(s)2.

b(s) = V ∗(s)− Eπθ
[z|s]

g(s) = ∇θEπθ
[z|s]

B∞(θ) = Eρ[b(s)
2]

∇θB∞(θ) = ∇θEρ[b
2] = −2Eρ[b(s)g(s)]

where z is the result of a game obtained
through simulations, V ∗(s) is minimax value
of a state s, π is a playout policy, θ are the
parameters of π, and ρ is the distribution of
states.

(3.5)

In this work, first V ∗ is approximated by using deep Monte Carlo search for
each state. Then an optimization method is applied to Equation (3.5) to
balance the policy π. The resulting policies were tested against a set of machine
learned policies. While the machine learned policies were stronger as a stand
alone player, when used in an MCTS program, the program with balanced
policy outperformed the other versions.

28

Simulation Balancing in Practice

Another Monte Carlo Simulation Balancing technique was analyzed by Aja
Huang et al. in [31], and applied to the Go playing program Erica. The
playout policy in Erica was pattern based, and trained by the MM technique
[22].

After training a playout policy using the MM method, it was then balanced by
simulation balancing. Erica was tested against Fuego 0.4 on the 9 × 9 board
size by performing 1000 games with 3000 simulations per move. Simulation
balancing improved the win-rate of Erica from 40.9% to 78.2%.

3.5.3 Analyzing Simulations in MCTS

Sumudu Fernando and Martin Müller conducted a study to examine playout
policies in Fuego [24]. They studied three hypotheses:

• The strength of a playout policy is strongly correlated with the preser-
vation of the game theoretic status of the game. For example, if Black is
winning when the playout starts, at the end of the playout Black should
be reported as the winner.

• The size of errors made during simulation matters.

• Given a playout policy, having no systematic bias is more important than
having low error rate.

In order to test their hypotheses, Fuego was used to conduct the experiments
on the 9×9 board size. Different variations of Fuego’s playout policy were used
in their study, by selecting subsets of the playout policy rules in Fuego.

Balance and Strength

To investigate the correlation between balance and strength of a policy to ad-
dress their first two hypotheses, the authors measured the number of blunders
each of their selected policies makes during the playout phase over 100 self-
played games. In order to measure blunders, each position of the game before
and after a move was evaluated by 5000 simulations using the default settings
of Fuego. This results in a good estimate of the value for a position. If a move
changes the estimate from over 0.75 to under 0.25, it is marked as a blunder.
When a playout policy makes zero or an even number of blunders that policy

29

3.6 Revisiting the Research Topics

In this section we re-visit our research questions, and rephrase them using the
terms that we introduced so far.

• Examine the relation between knowledge and search in Go programs and
how these two impact each other.

We want to know how knowledge impacts simulations in Fuego, and how
we can express the moves with high number of simulations in terms of
prominent features, and what impact the evaluation of feature knowledge
has on those moves. This is discussed in Section 4.4.

• Examine current evaluation approaches used in Go programs, which are:
move prediction and playing against another program or human. Un-
derstand the differences between each of these tests and how they relate
to each other.

We want to know what is the evaluation of move prediction on the players
that we described in Section 3.2, and how those results compare to the
results of matches that those players play against each other. This is
discussed in Sections 4.1 to 4.3.

• Evaluate the impact of knowledge on the performance of a Go program.

After understanding the difference between measures of evaluation, we
want to know how usage of simple features for initialization of new nodes
in the tree can impact the performance of a player in terms of both move
prediction rate and playing strength. This is covered in Section 4.4.6.

• How does longer and deeper search improve the strength of a MCTS
program, in the presence of knowledge?

We want to measure the impact of varying the number of simulations in
default MCTS-based Fuego. We analyze the results of move prediction
and playing strength. This is discussed in Sections 4.1 to 4.3.

• Can this increased strength be explained in terms of simple feature
knowledge?

Can the impact of simple feature knowledge on the evaluation mea-
sures also be observed in the frequency of features present in the default
MCTS-based Fuego player moves? This is discussed in Section 4.4.

31

Chapter 4

Experimental Results and
Discussion

In this chapter we provide the results of our experiments. We explain those
results, and use them to answer the research questions.

4.1 Move Prediction

Table 4.1 shows the results of the move prediction task described in Section 3.3
on the test set with positions from 4621 games. The players are Fuego-based
engines described in Section 3.2. The move prediction rate is the fraction
of positions for which the master move was predicted correctly. For the No
Knowledge, No Additive, and Default Fuego players the number in the name
represents the number of simulations per move used by that player. Figure 4.1
shows the prediction rate for various number of simulations.

The Playout Policy-Only and Simple Features-Only players do not use Monte
Carlo simulations. Playout Policy-Only was only able to predict less than 22%
of professional moves. Simple Features-Only has a much higher prediction rate
of approximately 31%. Given the fact that neither of those two players uses
MCTS, the gap signifies the role of the knowledge obtained through a large set
of simple features trained by machine learning methods in the Simple Features-
Only player, compared to the combination of fast rules and small patterns in
the Playout Policy-Only player.

Removing all knowledge has a big negative impact on the prediction rate
in MCTS. It drops the prediction rate to 12% in the No Knowledge player
with 100 simulations. Adding more simulations compensates for the lack of

32

Experiment Accuracy
Playout Policy-Only 0.2160
Simple Features-Only 0.3066
No Knowledge 100 0.1212
No Knowledge 300 0.1486
No Knowledge 1000 0.1767
No Knowledge 3000 0.1976
No Knowledge 10000 0.2125
No Additive 100 0.3209
No Additive 300 0.3269
No Additive 1000 0.3281
No Additive 3000 0.3074
No Additive 10000 0.2811
Default 100 0.3224
Default 300 0.3293
Default 1000 0.3342
Default 3000 0.3213
Default 10000 0.2989

Table 4.1: Result of move prediction for players based on Fuego.

• Why does the prediction rate for No Additive and Default MCTS players
start to drop?

In order to start investigating these questions, we next conducted two experi-
ments. The first experiment measures the playing strength of players against
each other. The second measures the move prediction rate in different stages
of the games.

4.2 Playing Strength

In order to answer the first two questions in Section 4.1, we created a round
robin tournament between all the 11 players described in Section 3.2. Each
round consists of 100 games between two players, with each player playing
Black 50 times. All players except the Simple Features-Only player use ran-
domization, which resulted in not having any duplicated games. We used
GoGui [7] to perform the tournament. Results of the tournament are reported
in Table 4.2. Reported results are from the perspective of the player in the row
against the player in the column. For example the entry in the second row,
second column shows that the Playout Policy-Only player has won 0 games
against the No Additive player with 1000 simulations.

34

experiments No Additive 1000 No Additive 300 No Additive 100
Playout Policy-Only 0 0 0
No Additive 1000 – 100 100
No Additive 300 0 – 100
No Additive 100 0 0 –
No Knowledge 1000 7 60 90
No Knowledge 300 0 17 65
No Knowledge 100 0 0 17
Default 1000 51 99 100
Default 300 1 55 97
Default 100 0 3 50
Simple Features-Only 0 0 3
experiments Default 1000 Default 300 Default 100
Playout Policy-Only 0 0 0
No Additive 1000 49 99 100
No Additive 300 1 45 97
No Additive 100 0 3 50
No Knowledge 1000 4 65 87
No Knowledge 300 0 12 40
No Knowledge 100 0 0 7
Default 1000 – 100 100
Default 300 0 – 98
Default 100 0 2 –
Simple Features-Only 0 0 4
experiments No Knowledge 1000 No Knowledge 300 No Knowledge 100
Playout Policy-Only 0 0 0
No Additive 1000 93 100 100
No Additive 300 40 83 100
No Additive 100 10 45 83
No Knowledge 1000 – 95 100
No Knowledge 300 5 – 98
No Knowledge 100 0 2 –
Default 1000 96 100 100
Default 300 35 88 100
Default 100 13 60 93
Simple Features-Only 2 26 67
experiments Playout Policy-Only Simple Features-Only –
Playout Policy-Only – 0 –
No Additive 1000 100 100 –
No Additive 300 100 100 –
No Additive 100 100 97 –
No Knowledge 1000 100 98 –
No Knowledge 300 100 74 –
No Knowledge 100 100 33 –
Default 1000 100 100 –
Default 300 100 100 –
Default 100 100 96 –
Simple Features-Only 100 – –

Table 4.2: Result of 100 game matches between all pairs of players.

35

Table 4.2 summarizes the results of the tournament. In order to highlight
some interesting trends, we have created five colour groups in the table.

4.2.1 Red Group of Experiments: Default MCTS-based
Fuego vs No Additive Player

This compares the experiments with same number of simulations between the
No Additive and default MCTS-based Fuego player. Increasing simulations
does not change the balance of strength between these two settings, and re-
moving additive knowledge had minimal impact on playing strength. This
is consistent with what we observed in the move prediction task. It can be
concluded from the result that these two players have almost the same playing
strength against each other when using the same number of simulations.

4.2.2 Yellow Group of Experiments: No Knowledge vs
Other MCTS-based Players

The playing strength of the No Knowledge player decreases most of the time
against an opponent with the same number of simulations as the number
of simulations increases. The role of knowledge becomes more important as a
player’s strength increases. Knowledge helps a player to avoid crucial mistakes
in a game, where a stronger opponent can better exploit those mistakes. While
it seems that increasing the number of simulations should compensate for lack
of knowledge, there are two reasons that we do not see that effect in this
group of experiments. First, the opponent also benefits from an increased
number of simulations. Second, in a player that uses the knowledge, increasing
the number of simulations leads to more visits of promising moves that the
knowledge picks. This enables the player to examine these moves more deeply,
and pick the best among them. The No Knowledge player is less focused and
needs more simulations to achieve the same effect.

4.2.3 Blue Group of Experiments: Varying Number of
Simulations, 300 vs 100

As expected from previous experience with MCTS-based engines, we can see
that in every case, a 3x increase in number of simulations leads to a huge
difference in playing strength. This is in sharp contrast to the move prediction
task in Table 4.1, where the difference was small and sometimes even negative.
This shows that using the move prediction rate as a measure to examine a

36

player is not as informative as we expected it to be. There remain aspects of
a player which strongly affect its comparative strength against another player,
which move prediction is unable to reveal.

4.2.4 Green Group of Experiments: No Additive vs
Other MCTS-based Players

This colour group compares No Additive with other MCTS-based players with
the same number of simulations. In all these experiments removing the ad-
ditive term has limited impact on playing strength. The biggest change in
playing strength between the No Additive and Default Fuego player is in 300
simulations, where Default Fuego player won 55% of games, in 1000 simulations
it is only 51% win-rate for the Default Fuego player, and in 100 simulations no
difference is made. These changes in win-rate seems to be due to randomness.
Removing feature knowledge decreases the playing strength by a huge margin,
with win-rates of 7-17% for the No Knowledge player.

4.2.5 Gray Group of Experiments: Simple Features-
Only vs No Knowledge Players

This scaling experiment shows how many simulations are needed to reach and
surpass Simple Feature knowledge. With 100 simulations, the No Knowl-
edge player is weaker than feature knowledge: it loses 67 games. With 300
simulations, the No knowledge player surpasses the strength of the Simple
Features-Only player, and with 1000 simulations the No Knowledge player is
much stronger, winning 98 of 100 games.

4.3 A Closer Look at Move Prediction Rate

In Section 4.1 of the previous experiment, surprisingly the move prediction
rate did not show any major difference between Default Fuego and the No
additive player when the number of simulations was varied between 100 to
1000, while Section 4.2 showed undeniable differences in strength between
those players. We also want to understand why the prediction rate starts
to drop after 3000 simulations in the Default MCTS-based and No Additive
players. In this experiment, we study the effect of the game phase. We divide
a game into six intervals from the opening to the endgame, and measure the
prediction accuracy of each player separately for each interval. We created six
intervals of 50 moves each, corresponding to move 0 to move 300. Because of

37

the limited number of available samples after move 300 we ignored those final
small endgame moves.

Figure 4.2 shows the move prediction accuracy per interval for Default Fuego
with 100 and 1000 simulations, and for No Additive with 100 and 1000 sim-
ulations. While Table 4.1 showed no noticeable difference between 100 and
1000 simulations, Figure 4.2 shows that for the first 200 moves there is a ma-
jor difference in both Default Fuego and No Additive players, with a higher
prediction rate for 1000 simulation player. This difference fades from move
200-250 and turns to the opposite from moves 251-300.

Figure 4.3 shows the prediction accuracy for experiments where we saw the
drop of prediction rate with 3000 and 10000 simulations for No Additive and
Default Fuego. We added the 300 simulation players as a baseline. In the
opening, the prediction rate for the Default Fuego players increases with num-
ber of simulations, and for No Additive players remains very similar for the
first 50 moves. From the second interval to the last, the prediction rate of the
300 simulation players sharply increases. For the 3000 simulation players this
increase is more moderate. In the 10000 simulation players we observe a drop
of prediction rates for the first 250 moves, and then a slight rebound.

To explain the lower prediction rate in the late endgame in players using more
simulations, we need to look at how the selection policy in MCTS works. In a
game when one player’s winning probability is very high, there are many moves
that still result in winning for that player, while being sub-optimal in terms of
score. The selection policy in Fuego maximizes winning probability, not score.
After 200 moves, the winner of most of the games can be predicted with high
confidence by strong players. There are many moves in those games that do
not change the outcome, and Fuego chooses a “safest” move according to its
noisy simulations. Professional players will not usually select such point-losing
“safe” moves. Another reason lies in the impact of knowledge on players with
fewer simulations. As we saw in Section 3.1.2, knowledge is used to initialize
the value of a node in the Monte Carlo tree. When the number of simulations
is still small, this initialization plays a major role in MCTS search. Since it is
based on features learned from professional games, it biases the search toward
professional moves. However, as the number of simulations grows the impact
of initialization diminishes relative to the result of simulations.

4.4 Move Prediction and Feature Frequency

Since the move prediction rate alone does not explain the difference in playing
strength, we try to find other differentiating factors between various players
by focusing on features. Features play a major role in the success of a player.

38

1 2 3 4 5 6

10

15

20

25

30

35

40

interval

A
cc
u
ra
cy

Default 100 Default 1000 No Knowledge 100 No Knowledge 1000

Figure 4.2: Move prediction accuracy per game phase for 100 and 1000 simu-
lation players. Each group has 50 moves.

1 2 3 4 5 6

30

35

40

interval

A
cc
u
ra
cy

No Additive 300 No Additive 3000
No Additive 10000 Default 300

Default 3000 Default 10000

Figure 4.3: Move prediction accuracy per game phase for 300, 3000 ad 10000
simulation players. Each group has 50 moves.

39

(a) Feature frequencies of every legal move
in master games

(b) Feature frequencies of all master
moves in master games

(c) Features of master moves that have
low number of simulations compared to
the move played by Default Fuego using
1000 simulations.

Figure 4.4: Feature counts of baselines.

Even modern neural networks can be seen as a function that is built upon a
complex set of features computed in its nodes. In order to understand the
significance of different features, we use frequency of features, and we report
the most frequent features for each experiment. We count the number of times
each feature is present in master players’ moves throughout the game records
to identify frequency of features. We also record the same features over the
moves generated by our computer-based players. Our goal is to gain insight
on how players differ. In each experiment, we count the number of times each
feature exists in the moves generated by one player. The result is a table of
features with their significance for the move prediction task. For the meaning
of each recurring feature number please refer to the appendix.

We need baselines to analyze the results obtained from our comparison. We

40

have selected three such baselines. The first baseline is the frequency of fea-
tures in all legal moves for every position in all the master games. The second
one is the frequency of all features in master player’s moves throughout all
game records. The last baseline is the frequency of features in the master
move which do not get any attention from our player. In order to determine
these moves, we record the number of simulations allocated by the Default
Fuego player for each master move in each game position. If the number of
simulation for the master move is less than 1% of the move chosen by the
Default Fuego, that move is marked as a low simulation master move and its
features are recorded. Figure 4.4 shows the graphs for these baselines.

The two most prominent features in Figure 4.4a are 117 and 122. They rep-
resent a distance of 4 or more to the block of the last opponent stone and
to the block of the last own stone respectively. Their frequency is more than
85% over all legal moves for each position. This is not surprising due to the
size of the 19×19 board, and the distribution of legal moves in each position.
The next two prominent features are 25 (moves on line 5 and upward) and
21 (moves on the first line). While moves on line 5 and upward cover 1.68
times the area of moves on the first line, they only happen 1.25 times more
in the legal moves. Comparing the frequency of these two feature reveals that
positions on the first line of the board remain empty longer than other points
in professional games.

Figure 4.4b shows features of professional players moves. Feature 176 (distance
2 to closest opponent stone) is true for 62% of professional moves and feature
177 (distance 3 to closest opponent stone) in 22%. In total 85% of professional
moves are in close proximity to opponent stones. Feature 157 and 158 (distance
2 and 3 to closest own stone) together cover almost 80% of professional moves,
showing that professionals play close to their own stones as well.

As in Figure 4.4a, in Figure 4.4c prominent features of master moves missed by
Fuego are 122 and 117 with frequency of 68% and 60%. This shows that moves
that usually get ignored by Fuego are non-local responses to the opponent, or
“tenuki” moves that change the area of play.

4.4.1 Effect of Search and Master Move Prediction

We study which master moves are a) found by search, and b) rejected by
search. Figures 4.5a to 4.5c show feature frequencies for three players: Default
MCTS-based Fuego, No Additive and No Knowledge. Each figure shows the
frequency of features present in the moves predicted correctly by the player
with 3000 simulations, while the same player with 100 simulations misses it.
We also created statistics for the opposite case: moves that the player with

41

(a) Default Fuego. (b) No additive.

(c) No Knowledge.
(d) Difference between Figure 4.5a and
when players are swapped.

(e) Difference between Figure 4.5b and
when players are swapped.

(f) Difference between Figure 4.5c and
when players are swapped.

Figure 4.5: Feature count for comparing the players. Features of moves pre-
dicted correctly by players with 3000 simulations but missed by players with
100 simulationis, and vice versa.

42

100 simulations predicts correctly but the player with 3000 simulations misses.
We have not included these graphs in Section 4.4 and only show the difference
graphs here. In order to understand the differences, we created graphs of
difference between features frequency statistics shown in Figures 4.5a to 4.5c,
and statistics of players with 100 simulations when they predict correctly and
3000 simulations fails. These results are reported in Figures 4.5d to 4.5f.

To discover if these differences in statistics of features in the players are random
or consistent, we randomly selected 10 subsets of feature statistics from the
feature frequency database used to make the difference graphs. We observed
that frequencies in all the subsets where within 98.5% of the frequencies in the
superset in top 50 features of the superset. This shows that any difference in
feature frequency that is less than 1.5% can be ignored in features difference
graphs due to randomness in the data.

As we can see in Figures 4.5d to 4.5f, all the differences have frequencies less
than 1.5%, and they can be ignored. This shows that feature frequency for
master moves predicted correctly by one player while the other missed it is not
much different from the feature frequency when the other player predicts the
master moves correctly and the first player misses it. This shows that we are
not able to use features to find differences in mechanisms of master move pre-
diction between the players. In order to find the differentiating factors between
players, we also created graphs of difference between feature frequency on all
the moves generated by each player. Those graphs are shown in Figures 4.6
to 4.8.

4.4.2 Impact of More Simulations

Figure 4.6 shows the difference in feature frequency of moves generated by
default Fuego with 3000 and 100 simulations. The main difference is in features
117 and 122 which indicate changing the area of play, “tenuki”. Feature 25
(play on line number 5 and up) is another example of the impact of more
simulations on the area of play. We saw that this is one of the prominent
features of professional players moves. These results show that the player with
more simulations can find centre and tenuki moves more often, and becomes
more similar to how professional players play in these situations.

4.4.3 Impact of the Additive Term

Figures 4.7a and 4.7b show the differences between the default Fuego player
and the No additive player with 3000 simulations. In Figure 4.7a, features 157
and 176 are for playing in distance of 2 to the closest own stone and opponent

43

Figure 4.6: Top 10 differences between features count of default Fuego player
with 3000 simulations and 100 simulations.

(a) Top 10 positive difference. (b) Top 10 negative difference.

Figure 4.7: Difference between feature counts of default Fuego and No Additive
player when both players use 3000 simulations.

colour respectively. They happen 6% and 4% more in the default Fuego player
which benefits from the additive term. This shows that additive knowledge
encourages playing close to previous stones. Feature 64 also happens 3% more
in the player with additive term. This feature is for 3×3 patterns used in
the simulations policy. This is an expected behaviour as the additive knowl-
edge uses a diamond shape pattern to evaluate each move. Other features in
Figure 4.7a have a very low frequency.

The No Additive player plays more often in empty areas of the board (feature
2153, 3×3 empty pattern), and far from all other stones, features 117, 122 and
160 (distance 5 to closest own stone).

44

4.4.4 Impact of Simple Feature Knowledge with Increas-
ing Number of Simulations

By comparing Figures 4.8a and 4.8b and Figures 4.8c and 4.8d we can under-
stand the impact of simple feature knowledge. Features 26 (distance 2 to last
opponent stone), 64 and 114 (distance 1 to block of last opponent stone) are
more present in the player with knowledge, while in Figure 4.8b features 117
and 122 occur up to 42% more in the No Knowledge player. This shows that
the No Knowledge player with low number of simulations plays more randomly
in all areas of the board without any attention to the last own or opponent
move, while the player with knowledge responds locally to those moves more
often.

As the number of simulations grows, we still observe in Figures 4.8c and 4.8d
the same difference in style of play from default Fuego and the No Knowl-
edge player. This gap, however, narrows to half with consistency in relative
frequency of features to each other. To some degree more simulations com-
pensate for the lack of knowledge in the No Knowledge player, as we already
observed in the move prediction task; however, more simulations are not able
to completely close the gap.

4.4.5 Features of Professional Moves

We ran another experiment to understand why some professional moves are
ignored in Fuego. We compared the statistics of the default Fuego moves
to the professional moves with low simulations in Figure 4.9. This helps to
understand what kind of moves professional players make that Fuego does not
consider, and how often those moves happen. In Figure 4.9a, features 114, 115,
119, 157, 176 are all for moves with distance of 1 or 2 to the own or opponent
stones. This signifies the higher degree of locality of play in Fuego versus
professional players. Also 3×3 simulation policy patterns (feature 64) occur
35% more in the default Fuego moves than in professional moves with low
number of simulations, showing that many professional moves do not follow
traditional 3×3 patterns as described in [27]. Looking at Figure 4.9b, features
117, 122, 159, 160, 161, 178, 179 are all for moves with distance of 4 or more
to stones of either colour and feature 2153 is for the empty 3×3 square. These
features happen up to 24% more in professional moves that received a very low
number of simulations from Fuego. This shows that Fuego systematically likes
to play locally, and moves with longer distance to the last own or opponent
stone are not appealing to the program.

Feature differences in Figures 4.9c and 4.9d between the default Fuego moves

45

(a) Top 10 positive difference when both
players use 100 simulations.

(b) Bottom 10 negative difference when
both players use 100 simulations.

(c) Top 10 positive difference when both
players use 3000 simulations.

(d) Bottom 10 negative difference when
both players use 3000 simulations.

Figure 4.8: Difference between feature counts of default Fuego and No Knowl-
edge player.

46

(a) Positive difference with low simula-
tions professional moves

(b) Negative difference with low simula-
tions professional moves

(c) Positive difference with all professional
moves

(d) Negative difference with all profes-
sional moves

Figure 4.9: Difference between feature counts of default Fuego with 3000 sim-
ulations moves and professional moves.

and all professional moves have similar feature differences to Figures 4.9a
and 4.9b, but with different magnitude. First the magnitude of difference
is much lower in Figures 4.9c and 4.9d. The other difference is that the most
differentiating factor for the default Fuego player is that it plays 12% more in
distance 2 of opponent stones (feature 176) than professional players. Profes-
sional moves still occure more in distance of 3 or more (features 116, 159, 160,
177, 178 and 179) to other stones, but the gap to Fuego is smaller.

4.4.6 Move Selection Analysis

The next experiment helps us to understand under what circumstances a player
can predict a professional move, while at other times it can not. We created an
experiment to measure the number of simulations relative to the initial weight

47

(a) Graph of selected move by default
Fuego player given its initial weight

(b) Graph of selected move by default
Fuego player given sigmoid of its initial
weight divided by sigmoid of Max weight

(c) Graph of played move by professional
player given its initial weight

(d) Graph of selected move by profes-
sional Player given its sigmoid of its initial
weight divided by sigmoid of Max weight

(e) Percent of Simulations relative to
selected move divided by professional
player’s move given its initial weight

(f) Percent of Simulations relative to
selected move divided by professional
player’s move given sigmoid of its initial
weight divided by sigmoid of Max weight

Figure 4.10: Comparison between number of simulations for initial feature
weight.

48

of a move. The results of this experiment are reported in Figure 4.10.

For the Y-axis of Figure 4.10 we measured two different cases. In the first case,
we measured the number of simulations sims,a for move a in state s relative to
the total number of simulations for state s in the professional game: sims,a

Σisims,i
.

For the second case, we measured the relative number of simulations sims,a

for move a in state s to the number of simulation sims,b for move b in state s:
sims,a

sims,b
. The Y-axis of Figures 4.10a to 4.10d use the first case. For Figures 4.10a

and 4.10b, move a is the move selected by default Fuego, and for Figures 4.10c
and 4.10d it is the move selected by the professional player. The Y-axis of
Figures 4.10e and 4.10f uses the second case. Move a is the move selected by
the professional player and move b is the move selected by default Fuego.

The X-axis of Figure 4.10 has two different formats. In the first one, we use the
initial weight ws,a of move a in state s of the professional game. For the second
case, we compute the maximum weight ws,max for the state s, then compute
the relative weight of move a to maximum weight ws,a

ws,max
. Since the weight of

a move can be negative, we normalize the relative value by sigmoid function
sig(wa)

sig(wmax)
. The X-axis of Figures 4.10a, 4.10c and 4.10e uses the first format.

The X-axis of Figures 4.10b, 4.10d and 4.10f uses the second format. Move a
is selected by default Fuego in Figures 4.10a and 4.10b, and by professional
players in Figures 4.10c to 4.10f.

In order to understand the distribution of simulations, we created Figure 4.11a.
It represents the relation between the weight of the feature for a move selected
by default Fuego and the percent of simulations that move has received. Most
of the moves selected by default Fuego have the majority of the simulations.
Moves with higher initial weights receive almost 100% of simulations. Moves
selected by Fuego have different ranges of weights from low to high. However,
Figure 4.10b shows that even moves with low weights have weights close to
the maximum weight of that position, and most of the times are the maximum
weight.

Figure 4.10c shows that professional players moves most of the time either
received the maximum number of simulations, or received close to zero. Moves
that have an in-between number of simulations make up a smaller portion of
professional moves. Figure 4.10d better illustrates this point. Figure 4.11b
shows that for professional moves to get the attention of Fuego, they need to
have higher evaluation by simple features.

We also compared the number of simulations for the professional moves and the
moves selected by default Fuego. Figure 4.10e shows that very often the move
played by professionals is the same as the Fuego move. However, if they differ,
the chances of the professional move having a large number of simulations
is low. Most of the time, it has less than 20% compared to Fuego’s move.

49

(a) Graph of average simulations for se-
lected move by default Fuego player given
its initial weight

(b) Graph of average simulations for se-
lected move by default professional player
given its initial weight

Figure 4.11: Percent of average number of simulations for buckets of initial
weights.

Figure 4.10f plots the relative number of simulations and the relative heuristic
weight of the professional move to the move selected by default Fuego. The
ratio of simulations drops sharply as the relative weight of the professional
player’s move decreases. For professional moves that have a ratio of less than
0.9, their number of simulations is near zero most of the time. There are some
examples of professional moves with higher weight than the move selected by
Fuego but with fewer simulations. These cases make less than 7% of total
number of moves.

This experiment showed us the importance of simple feature initialization on
the number of simulations a move receives. Fuego gives professional moves
more simulations if they have high evaluation by simple features and on the
other hand ignores them if the simple feature evaluation is low on those moves.

The move selected by Fuego does not need to have high evaluation as seen in
the Figure 4.10a. It just needs to have an evaluation close to the maximum
move evaluation of that position. This can be observed in Figure 4.10b. We
also observed in Figures 4.10d and 4.10e how professional moves either receive
close to the maximum number of simulations or close to zero.

50

Chapter 5

Conclusion and Future Work

In this thesis we investigated two popular evaluation methods: move prediction
and playing strength, and how they relate to each other. We noticed that move
prediction did not reveal important aspects of a player, and there remain many
details that an aggregated move prediction percentage can not express. We
showed that players with similar move prediction rate can have very different
playing strengths. Sometimes, one completely overpowers the other player.

We used a playing strength experiment to understand the impact of the follow-
ing concepts in MCTS: additive knowledge, simple feature knowledge, number
of simulations, and playout policy. We noticed that the additive term has a
very small impact on playing strength, which did not change with more sim-
ulations. Removing feature knowledge proved to have a deep negative impact
on playing strength. The gap between the No Knowledge player and players
with simple feature knowledge increases with more simulations.

We then dissected the move prediction rate into several intervals of a game in
order to capture differences between the players at different game stages. We
observed that as the number of simulations increases for a player, the move
prediction rate drops as we get closer to the end of a game, due to “safe” move
selection by stronger players in MCTS.

As the next step to find more differentiating factors between players, we exam-
ined feature frequencies in the move prediction task for different players. We
were able to find features that differ remarkably between players, which can be
used to define their behaviour. We also found relations between the evaluation
of feature knowledge and the number of simulations a move receives.

For future work, we want to further the study by including neural network-
based players and extending the experiments to understand the impacts of a
neural network in detail. Another promising extension of this work is trying

51

to understand neural networks in terms of both simple features and move
prediction, in order to find an interpretation of their behaviour with known
features of the Go game.

52

Bibliography

[1] Basic Rules of Go: https://senseis.xmp.net/?BasicRulesOfGo. Accessed
Online on Oct 22, 2017.

[2] CGOS Server: http://cgos.boardspace.net.

[3] Elo Rating: https://senseis.xmp.net/?EloRating. Accessed Online on
Aug 10, 2017.

[4] Fuego Source Code: http://fuego.sourceforge.net. SVN revision 2032,
updated on Aug 16, 2016.

[5] Game of Go Picture: http://blogs.discovermagazine.com/crux/files/2016/01/shutterstock -
342026228.jpg. Accessed Online on Nov 12, 2017.

[6] Gnu Go: https://www.gnu.org/software/gnugo/devel.html. Accessed On-
line on Dec 7, 2017.

[7] GoGui Project: https://sourceforge.net/projects/gogui/. Accessed On-
line on Dec 14, 2016.

[8] HexPawn: http://www.chessvariants.com/small.dir/hexapawn.html. Ac-
cessed Online on Mar 20, 2018.

[9] MoGo Program: https://www.lri.fr/∼teytaud/mogo.html. Accessed On-
line on Nov 10, 2017.

[10] Neural Network Schematic: https://www.pyimagesearch.com/wp-
content/uploads/2016/08/simple neural network header.jpg?width=600.
Accessed Online on Dec 4, 2017.

[11] Neuron Schematic:
https://cdn-images-1.medium.com/max/1600/0*OHlzxsoDSEBXW0iI.jpg.
Accessed Online on Dec 4, 2017.

[12] Professional Games: https://badukmovies.com/pro games. Accessed On-
line on Nov 02, 2016.

[13] Using Minimax (with the full game tree) to implement the ma-
chine players to play TicTacToe in Computer with Python:
https://sandipanweb.wordpress.com/2017/03/30/using-minimax-
without-pruning-to-implement-the-machine-players-to-play-tictactoe-
in-computer/. Accessed Online on Dec 4, 2017.

53

[14] Bruce Abramson. Expected-Outcome: A General Model of Static Evalu-
ation. IEEE Trans. Pattern Anal. Mach. Intell., 12(2):182–193, 1990.

[15] Daniel Acuna and Paul R Schrater. Structure learning in human se-
quential decision-making. In Advances in Neural Information Processing
Systems, pages 1–8, 2009.

[16] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time Analysis
of the Multi-armed Bandit Problem. Mach. Learn., 47(2-3):235–256, May
2002.

[17] Pavol Bezák, Yury Rafailovich Nikitin, and Pavol Božek. Robotic Grasp-
ing System Using Convolutional Neural Networks. American Journal of
Mechanical Engineering, 2(7):216–218, 2014.

[18] Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas, Pe-
ter I. Cowling, Stephen Tavener, Diego Perez, Spyridon Samothrakis, Si-
mon Colton, and et al. A survey of Monte Carlo tree search methods.
IEEE transactions on computational intelligence and AI, 2012.

[19] Murray Campbell, A Joseph Hoane, and Feng-hsiung Hsu. Deep blue.
Artificial intelligence, 134(1-2):57–83, 2002.

[20] Guillaume M JB Chaslot, Mark HM Winands, H Jaap Van Den Herik,
Jos WHM Uiterwijk, and Bruno Bouzy. Progressive strategies for Monte
Carlo tree search. New Mathematics and Natural Computation, 4(03):343–
357, 2008.

[21] Christopher Clark and Amos Storkey. Training deep convolutional neural
networks to play Go. In International Conference on Machine Learning,
pages 1766–1774, 2015.

[22] Rémi Coulom. Computing Elo Ratings of Move Patterns in the Game of
Go. In H. Jaap van den Herik, Mark Winands, Jos Uiterwijk, and Maarten
Schadd, editors, Computer Games Workshop, Amsterdam, Netherlands,
June 2007.

[23] Markus Enzenberger, Martin Müller, Broderick Arneson, and Richard
Segal. Fuego an open-source framework for board games and Go engine
based on Monte Carlo tree search. IEEE Transactions on Computational
Intelligence and AI in Games, 2(4):259–270, 2010.

[24] Sumudu Fernando and Martin Müller. Analyzing Simulations in Monte
Carlo Tree Search for the Game of Go. In Computers and Games - 8th In-
ternational Conference, CG 2013, Yokohama, Japan, August 13-15, 2013,
Revised Selected Papers, pages 72–83, 2013.

[25] Sylvain Gelly and David Silver. Combining online and offline knowledge
in UCT. In Proceedings of the 24th international conference on Machine
learning, pages 273–280. ACM, 2007.

[26] Sylvain Gelly and David Silver. Monte Carlo Tree Search and Rapid
Action Value Estimation in Computer Go. Artif. Intell., 175(11):1856–
1875, July 2011.

[27] Sylvain Gelly, Yizao Wang, Rémi Munos, and Olivier Teytaud. Modifi-
cation of UCT with patterns in Monte Carlo Go. 2006.

54

[28] Peijun Guo. One-shot decision theory. IEEE Transactions on Sys-
tems, Man, and Cybernetics-Part A: Systems and Humans, 41(5):917–
926, 2011.

[29] David P. Helmbold and Aleatha Parker-Wood. All-Moves-As-First Heuris-
tics in Monte Carlo Go. In Hamid R. Arabnia, David de la Fuente, and
Jos Angel Olivas, editors, IC-AI, pages 605–610. CSREA Press, 2009.

[30] Arthur Holshouser and Harold Reiter. Quarto without the Twist, 2003.
http://math2.uncc.edu/∼hbreiter/Quarto.pdf.

[31] Shih-Chieh Huang, Rémi Coulom, and Shun-Shii Lin. Monte Carlo Sim-
ulation Balancing in Practice. In Proceedings of the 7th International
Conference on Computers and Games, CG’10, pages 81–92, Berlin, Hei-
delberg, 2011. Springer-Verlag.

[32] David R Hunter and Kenneth Lange. A tutorial on MM algorithms. The
American Statistician, 58(1):30–37, 2004.

[33] Yaakov Kerner. Learning strategies for explanation patterns: Basic game
patterns with application to chess. Case-Based Reasoning Research and
Development, pages 491–500, 1995.

[34] Levente Kocsis and Csaba Szepesvári. Bandit Based Monte Carlo Plan-
ning. In Proceedings of the 17th European Conference on Machine Learn-
ing, ECML’06, pages 282–293, Berlin, Heidelberg, 2006. Springer-Verlag.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[36] Chris J Maddison, Aja Huang, Ilya Sutskever, and David Silver. Move
evaluation in Go using deep convolutional neural networks. arXiv preprint
arXiv:1412.6564, 2014.

[37] Martin Wistuba and Lars Schmidt-Thieme. Move Prediction in Go –
Modelling Feature Interactions Using Latent Factors. In KI 2013: Ad-
vances in Artificial Intelligence, pages 260–271. Springer Berlin Heidel-
berg, 2013.

[38] Robert J Meyer and Yong Shi. Sequential choice under ambiguity: In-
tuitive solutions to the armed-bandit problem. Management Science,
41(5):817–834, 1995.

[39] Liva Ralaivola, Lin Wu, and Pierre Baldi. SVM and pattern-enriched
common fate graphs for the game of Go. In ESANN, volume 2005, pages
27–29, 2005.

[40] Steffen Rendle. Factorization machines with libfm. ACM Transactions
on Intelligent Systems and Technology, 3(3):57, 2012.

[41] Christopher D. Rosin. Multi-armed Bandits with Episode Context. An-
nals of Mathematics and Artificial Intelligence, 61(3):203–230, March
2011.

55

[42] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition,
2009.

[43] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto,
Martin Müller, Robert Lake, Paul Lu, and Steve Sutphen. Checkers is
solved. Science, 317(5844):1518–1522, 2007.

[44] Nicol N Schraudolph, Peter Dayan, and Terrence J Sejnowski. Temporal
difference learning of position evaluation in the game of Go. In Advances
in Neural Information Processing Systems, pages 817–824, 1994.

[45] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[46] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,
Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,
Adrian Bolton, et al. Mastering the game of Go without human knowl-
edge. Nature, 550(7676):354–359, 2017.

[47] David Silver, Richard Sutton, and Martin Müller. Reinforcement learning
of local shape in the game of Go. In IJCAI, 2007.

[48] David Silver and Gerald Tesauro. Monte Carlo Simulation Balancing.
In Proceedings of the 26th Annual International Conference on Machine
Learning, ICML ’09, pages 945–952, New York, NY, USA, 2009. ACM.

[49] David Stern, Ralf Herbrich, and Thore Graepel. Bayesian Pattern Rank-
ing for Move Prediction in the Game of Go. In Proceedings of the 23rd
International Conference on Machine Learning, ICML ’06, pages 873–880,
New York, NY, USA, 2006. ACM.

[50] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement
Learning. MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[51] Mark HM Winands, Yngvi Bjornsson, and Jahn-Takeshi Saito. Monte
Carlo tree search in lines of action. IEEE Transactions on Computational
Intelligence and AI in Games, 2(4):239–250, 2010.

[52] Chenjun Xiao. Factorization Ranking Model for Fast Move Prediction in
the Game of Go. Master’s thesis, University of Alberta, 2016.

[53] Chenjun Xiao and Martin Müller. Factorization Ranking Model for Move
Prediction in the Game of Go. In AAAI, pages 1359–1365, 2016.

56

Appendix A

Appendix

List of Features appeared in the moves selected by Fuego or professional play-

ers.

1 "2": "FE_CAPTURE_ADJ_ATARI",

2 "3": "FE_CAPTURE_RECAPTURE",

3 "4": "FE_CAPTURE_PREVENT_CONNECTION",

4 "5": "FE_CAPTURE_NOT_LADDER",

5 "6": "FE_CAPTURE_LADDER",

6 "7": "FE_CAPTURE_MULTIPLE",

7 "8": "FE_EXTENSION_NOT_LADDER",

8 "9": "FE_EXTENSION_LADDER",

9 "10": "FE_TWO_LIB_SAVE_LADDER",

10 "11": "FE_TWO_LIB_STILL_LADDER",

11 "12": "FE_TWO_LIB_SELF_LADDER",

12 "13": "FE_THREE_LIB_REDUCE_OWN_LIB",

13 "14": "FE_THREE_LIB_REDUCE_OPP_LIB",

14 "15": "FE_SELFATARI",

15 "16": "FE_ATARI_LADDER",

16 "17": "FE_ATARI_KO",

17 "18": "FE_ATARI_OTHER",

18 "19": "FE_DOUBLE_ATARI",

19 "20": "FE_DOUBLE_ATARI_DEFEND",

20 "21": "FE_LINE_1",

21 "22": "FE_LINE_2",

22 "23": "FE_LINE_3",

23 "24": "FE_LINE_4",

24 "25": "FE_LINE_5+",

25 "26": "FE_DIST_PREV_2",

26 "27": "FE_DIST_PREV_3",

57

27 "28": "FE_DIST_PREV_4",

28 "29": "FE_DIST_PREV_5",

29 "30": "FE_DIST_PREV_6",

30 "31": "FE_DIST_PREV_7",

31 "32": "FE_DIST_PREV_8",

32 "33": "FE_DIST_PREV_9",

33 "34": "FE_DIST_PREV_10",

34 "35": "FE_DIST_PREV_11",

35 "36": "FE_DIST_PREV_12",

36 "37": "FE_DIST_PREV_13",

37 "38": "FE_DIST_PREV_14",

38 "39": "FE_DIST_PREV_15",

39 "40": "FE_DIST_PREV_16",

40 "41": "FE_DIST_PREV_17",

41 "42": "FE_DIST_PREV_OWN_0",

42 "43": "FE_DIST_PREV_OWN_2",

43 "44": "FE_DIST_PREV_OWN_3",

44 "45": "FE_DIST_PREV_OWN_4",

45 "46": "FE_DIST_PREV_OWN_5",

46 "47": "FE_DIST_PREV_OWN_6",

47 "48": "FE_DIST_PREV_OWN_7",

48 "49": "FE_DIST_PREV_OWN_8",

49 "50": "FE_DIST_PREV_OWN_9",

50 "51": "FE_DIST_PREV_OWN_10",

51 "52": "FE_DIST_PREV_OWN_11",

52 "53": "FE_DIST_PREV_OWN_12",

53 "54": "FE_DIST_PREV_OWN_13",

54 "55": "FE_DIST_PREV_OWN_14",

55 "56": "FE_DIST_PREV_OWN_15",

56 "57": "FE_DIST_PREV_OWN_16",

57 "58": "FE_DIST_PREV_OWN_17",

58 "60": "FE_GOUCT_NAKADE",

59 "61": "FE_GOUCT_ATARI_CAPTURE",

60 "62": "FE_GOUCT_ATARI_DEFEND",

61 "63": "FE_GOUCT_LOWLIB",

62 "64": "FE_GOUCT_PATTERN",

63 "65": "FE_GOUCT_CAPTURE",

64 "66": "FE_GOUCT_RANDOM_PRUNED",

65 "67": "FE_GOUCT_REPLACE_CAPTURE_FROM",

66 "68": "FE_GOUCT_REPLACE_CAPTURE_TO",

67 "69": "FE_GOUCT_SELFATARI_CORRECTION_FROM",

68 "70": "FE_GOUCT_SELFATARI_CORRECTION_TO",

69 "72": "FE_GOUCT_CLUMP_CORRECTION_TO",

70 "73": "FE_POS_1",

71 "74": "FE_POS_2",

58

72 "75": "FE_POS_3",

73 "76": "FE_POS_4",

74 "77": "FE_POS_5",

75 "78": "FE_POS_6",

76 "79": "FE_POS_7",

77 "80": "FE_POS_8",

78 "81": "FE_POS_9",

79 "82": "FE_POS_10",

80 "83": "FE_GAME_PHASE_1",

81 "84": "FE_GAME_PHASE_2",

82 "85": "FE_GAME_PHASE_3",

83 "86": "FE_GAME_PHASE_4",

84 "87": "FE_GAME_PHASE_5",

85 "88": "FE_GAME_PHASE_6",

86 "89": "FE_GAME_PHASE_7",

87 "90": "FE_GAME_PHASE_8",

88 "91": "FE_GAME_PHASE_9",

89 "92": "FE_GAME_PHASE_10",

90 "93": "FE_GAME_PHASE_11",

91 "94": "FE_GAME_PHASE_12",

92 "95": "FE_SIDE_EXTENSION_3",

93 "96": "FE_SIDE_EXTENSION_4",

94 "97": "FE_SIDE_EXTENSION_5",

95 "98": "FE_SIDE_EXTENSION_6",

96 "99": "FE_SIDE_EXTENSION_7",

97 "100": "FE_SIDE_EXTENSION_8",

98 "101": "FE_SIDE_EXTENSION_9",

99 "102": "FE_SIDE_EXTENSION_10",

100 "103": "FE_SIDE_EXTENSION_11",

101 "104": "FE_SIDE_EXTENSION_12",

102 "105": "FE_SIDE_EXTENSION_13",

103 "106": "FE_SIDE_EXTENSION_14",

104 "107": "FE_SIDE_EXTENSION_15",

105 "110": "FE_SIDE_EXTENSION_18",

106 "113": "FE_CORNER_OPENING_MOVE",

107 "114": "FE_CFG_DISTANCE_LAST_1",

108 "115": "FE_CFG_DISTANCE_LAST_2",

109 "116": "FE_CFG_DISTANCE_LAST_3",

110 "117": "FE_CFG_DISTANCE_LAST_4_OR_MORE",

111 "118": "FE_CFG_DISTANCE_LAST_OWN_0",

112 "119": "FE_CFG_DISTANCE_LAST_OWN_1",

113 "120": "FE_CFG_DISTANCE_LAST_OWN_2",

114 "121": "FE_CFG_DISTANCE_LAST_OWN_3",

115 "122": "FE_CFG_DISTANCE_LAST_OWN_4_OR_MORE",

116 "123": "FE_TWO_LIB_NEW_SELF_LADDER",

59

117 "124": "FE_OUR_PROTECTED_LIBERTY",

118 "125": "FE_OPP_PROTECTED_LIBERTY",

119 "126": "FE_OUR_CUT_WITH_KO",

120 "127": "FE_OPP_CUT_WITH_KO",

121 "128": "FE_SAVE_STONES_1",

122 "129": "FE_SAVE_STONES_2",

123 "130": "FE_SAVE_STONES_3",

124 "131": "FE_SAVE_STONES_4_6",

125 "132": "FE_SAVE_STONES_7_10",

126 "133": "FE_SAVE_STONES_11_20",

127 "134": "FE_SAVE_STONES_21_OR_MORE",

128 "135": "FE_KILL_STONES_1",

129 "136": "FE_KILL_STONES_2",

130 "137": "FE_KILL_STONES_3",

131 "138": "FE_KILL_STONES_4_6",

132 "139": "FE_KILL_STONES_7_10",

133 "140": "FE_KILL_STONES_11_20",

134 "141": "FE_KILL_STONES_21_OR_MORE",

135 "142": "FE_KILL_OWN_STONES_1",

136 "143": "FE_KILL_OWN_STONES_2",

137 "144": "FE_KILL_OWN_STONES_3",

138 "145": "FE_KILL_OWN_STONES_4_6",

139 "146": "FE_KILL_OWN_STONES_7_10",

140 "147": "FE_KILL_OWN_STONES_11_20",

141 "149": "FE_SNAPBACK",

142 "155": "FE_CUT",

143 "156": "FE_CONNECT",

144 "157": "FE_DIST_CLOSEST_OWN_STONE_2",

145 "158": "FE_DIST_CLOSEST_OWN_STONE_3",

146 "159": "FE_DIST_CLOSEST_OWN_STONE_4",

147 "160": "FE_DIST_CLOSEST_OWN_STONE_5",

148 "161": "FE_DIST_CLOSEST_OWN_STONE_6",

149 "162": "FE_DIST_CLOSEST_OWN_STONE_7",

150 "163": "FE_DIST_CLOSEST_OWN_STONE_8",

151 "164": "FE_DIST_CLOSEST_OWN_STONE_9",

152 "165": "FE_DIST_CLOSEST_OWN_STONE_10",

153 "166": "FE_DIST_CLOSEST_OWN_STONE_11",

154 "167": "FE_DIST_CLOSEST_OWN_STONE_12",

155 "168": "FE_DIST_CLOSEST_OWN_STONE_13",

156 "169": "FE_DIST_CLOSEST_OWN_STONE_14",

157 "170": "FE_DIST_CLOSEST_OWN_STONE_15",

158 "171": "FE_DIST_CLOSEST_OWN_STONE_16",

159 "172": "FE_DIST_CLOSEST_OWN_STONE_17",

160 "173": "FE_DIST_CLOSEST_OWN_STONE_18",

161 "174": "FE_DIST_CLOSEST_OWN_STONE_19",

60

162 "175": "FE_DIST_CLOSEST_OWN_STONE_20_OR_MORE",

163 "176": "FE_DIST_CLOSEST_OPP_STONE_2",

164 "177": "FE_DIST_CLOSEST_OPP_STONE_3",

165 "178": "FE_DIST_CLOSEST_OPP_STONE_4",

166 "179": "FE_DIST_CLOSEST_OPP_STONE_5",

167 "180": "FE_DIST_CLOSEST_OPP_STONE_6",

168 "181": "FE_DIST_CLOSEST_OPP_STONE_7",

169 "182": "FE_DIST_CLOSEST_OPP_STONE_8",

170 "183": "FE_DIST_CLOSEST_OPP_STONE_9",

171 "184": "FE_DIST_CLOSEST_OPP_STONE_10",

172 "185": "FE_DIST_CLOSEST_OPP_STONE_11",

173 "186": "FE_DIST_CLOSEST_OPP_STONE_12",

174 "187": "FE_DIST_CLOSEST_OPP_STONE_13",

175 "188": "FE_DIST_CLOSEST_OPP_STONE_14",

176 "189": "FE_DIST_CLOSEST_OPP_STONE_15",

177 "190": "FE_DIST_CLOSEST_OPP_STONE_16",

178 "191": "FE_DIST_CLOSEST_OPP_STONE_17",

179 "192": "FE_DIST_CLOSEST_OPP_STONE_18",

180 "193": "FE_DIST_CLOSEST_OPP_STONE_19",

181 "194": "FE_DIST_CLOSEST_OPP_STONE_20_OR_MORE",

182 "1001": "\nWEB\nBBB\n",

183 "1003": "\nBEB\nWBB\n",

184 "1004": "\nWEB\nWBB\n",

185 "1005": "\nEEB\nWBB\n",

186 "1009": "\nBEB\nBWB\n",

187 "1010": "\nWEB\nBWB\n",

188 "1011": "\nEEB\nBWB\n",

189 "1012": "\nBEB\nWWB\n",

190 "1013": "\nWEB\nWWB\n",

191 "1014": "\nEEB\nWWB\n",

192 "1015": "\nBEB\nEWB\n",

193 "1016": "\nWEB\nEWB\n",

194 "1017": "\nEEB\nEWB\n",

195 "1019": "\nWEB\nBEB\n",

196 "1020": "\nEEB\nBEB\n",

197 "1021": "\nBEB\nWEB\n",

198 "1027": "\nWEB\nBBW\n",

199 "1028": "\nEEB\nBBW\n",

200 "1029": "\nBEB\nWBW\n",

201 "1030": "\nWEB\nWBW\n",

202 "1031": "\nEEB\nWBW\n",

203 "1032": "\nBEB\nEBW\n",

204 "1033": "\nWEB\nEBW\n",

205 "1034": "\nEEB\nEBW\n",

206 "1035": "\nWEB\nBWW\n",

61

207 "1036": "\nEEB\nBWW\n",

208 "1037": "\nBEB\nWWW\n",

209 "1038": "\nWEB\nWWW\n",

210 "1039": "\nEEB\nWWW\n",

211 "1040": "\nBEB\nEWW\n",

212 "1041": "\nWEB\nEWW\n",

213 "1042": "\nEEB\nEWW\n",

214 "1044": "\nEEB\nBEW\n",

215 "1045": "\nBEB\nWEW\n",

216 "1046": "\nWEB\nWEW\n",

217 "1047": "\nEEB\nWEW\n",

218 "1048": "\nBEB\nEEW\n",

219 "1049": "\nWEB\nEEW\n",

220 "1050": "\nEEB\nEEW\n",

221 "1051": "\nWEB\nBBE\n",

222 "1053": "\nWEB\nWBE\n",

223 "1054": "\nEEB\nWBE\n",

224 "1056": "\nWEB\nEBE\n",

225 "1058": "\nWEB\nBWE\n",

226 "1059": "\nEEB\nBWE\n",

227 "1060": "\nWEB\nWWE\n",

228 "1061": "\nEEB\nWWE\n",

229 "1062": "\nBEB\nEWE\n",

230 "1063": "\nWEB\nEWE\n",

231 "1064": "\nEEB\nEWE\n",

232 "1065": "\nWEB\nBEE\n",

233 "1066": "\nEEB\nBEE\n",

234 "1070": "\nWEB\nEEE\n",

235 "1071": "\nEEB\nEEE\n",

236 "1072": "\nWEW\nBBB\n",

237 "1073": "\nEEW\nBBB\n",

238 "1074": "\nWEW\nWBB\n",

239 "1075": "\nEEW\nWBB\n",

240 "1076": "\nWEW\nEBB\n",

241 "1077": "\nEEW\nEBB\n",

242 "1078": "\nWEW\nBWB\n",

243 "1079": "\nEEW\nBWB\n",

244 "1080": "\nWEW\nWWB\n",

245 "1081": "\nEEW\nWWB\n",

246 "1082": "\nWEW\nEWB\n",

247 "1083": "\nEEW\nEWB\n",

248 "1085": "\nEEW\nBEB\n",

249 "1086": "\nWEW\nWEB\n",

250 "1087": "\nEEW\nWEB\n",

251 "1088": "\nWEW\nEEB\n",

62

252 "1089": "\nEEW\nEEB\n",

253 "1090": "\nEEW\nBBW\n",

254 "1091": "\nWEW\nWBW\n",

255 "1092": "\nEEW\nWBW\n",

256 "1093": "\nWEW\nEBW\n",

257 "1094": "\nEEW\nEBW\n",

258 "1095": "\nEEW\nBWW\n",

259 "1100": "\nEEW\nBEW\n",

260 "1101": "\nWEW\nWEW\n",

261 "1102": "\nEEW\nWEW\n",

262 "1103": "\nWEW\nEEW\n",

263 "1105": "\nEEW\nBBE\n",

264 "1106": "\nEEW\nWBE\n",

265 "1108": "\nEEW\nEBE\n",

266 "1109": "\nEEW\nBWE\n",

267 "1112": "\nEEW\nEWE\n",

268 "1113": "\nEEW\nBEE\n",

269 "1114": "\nEEW\nWEE\n",

270 "1115": "\nWEW\nEEE\n",

271 "1116": "\nEEW\nEEE\n",

272 "1117": "\nEEE\nBBB\n",

273 "1118": "\nEEE\nWBB\n",

274 "1119": "\nEEE\nEBB\n",

275 "1120": "\nEEE\nBWB\n",

276 "1121": "\nEEE\nWWB\n",

277 "1122": "\nEEE\nEWB\n",

278 "1123": "\nEEE\nBEB\n",

279 "1124": "\nEEE\nWEB\n",

280 "1125": "\nEEE\nEEB\n",

281 "1126": "\nEEE\nWBW\n",

282 "1127": "\nEEE\nEBW\n",

283 "1128": "\nEEE\nWWW\n",

284 "1129": "\nEEE\nEWW\n",

285 "1130": "\nEEE\nWEW\n",

286 "1131": "\nEEE\nEEW\n",

287 "1133": "\nEEE\nEWE\n",

288 "1134": "\nEEE\nEEE\n",

289 "1203": "\nBWB\nBEB\nBBB\n",

290 "1204": "\nBWW\nBEB\nBBB\n",

291 "1209": "\nWBW\nBEB\nBBB\n",

292 "1211": "\nWWW\nBEB\nBBB\n",

293 "1213": "\nWEW\nBEB\nBBB\n",

294 "1218": "\nBWB\nBEW\nBBB\n",

295 "1219": "\nBWW\nBEW\nBBB\n",

296 "1220": "\nBWE\nBEW\nBBB\n",

63

297 "1221": "\nBEB\nBEW\nBBB\n",

298 "1222": "\nBEW\nBEW\nBBB\n",

299 "1224": "\nWBB\nBEW\nBBB\n",

300 "1225": "\nWBW\nBEW\nBBB\n",

301 "1226": "\nWBE\nBEW\nBBB\n",

302 "1227": "\nWWB\nBEW\nBBB\n",

303 "1228": "\nWWW\nBEW\nBBB\n",

304 "1229": "\nWWE\nBEW\nBBB\n",

305 "1230": "\nWEB\nBEW\nBBB\n",

306 "1231": "\nWEW\nBEW\nBBB\n",

307 "1232": "\nWEE\nBEW\nBBB\n",

308 "1233": "\nEBB\nBEW\nBBB\n",

309 "1234": "\nEBW\nBEW\nBBB\n",

310 "1235": "\nEBE\nBEW\nBBB\n",

311 "1236": "\nEWB\nBEW\nBBB\n",

312 "1238": "\nEWE\nBEW\nBBB\n",

313 "1239": "\nEEB\nBEW\nBBB\n",

314 "1241": "\nEEE\nBEW\nBBB\n",

315 "1242": "\nBEB\nBEE\nBBB\n",

316 "1246": "\nWBW\nBEE\nBBB\n",

317 "1248": "\nWWB\nBEE\nBBB\n",

318 "1249": "\nWWW\nBEE\nBBB\n",

319 "1250": "\nWWE\nBEE\nBBB\n",

320 "1252": "\nWEW\nBEE\nBBB\n",

321 "1257": "\nEWB\nBEE\nBBB\n",

322 "1263": "\nBBB\nWEW\nBBB\n",

323 "1264": "\nBBW\nWEW\nBBB\n",

324 "1265": "\nBBE\nWEW\nBBB\n",

325 "1267": "\nBWW\nWEW\nBBB\n",

326 "1268": "\nBWE\nWEW\nBBB\n",

327 "1269": "\nBEB\nWEW\nBBB\n",

328 "1270": "\nBEW\nWEW\nBBB\n",

329 "1271": "\nBEE\nWEW\nBBB\n",

330 "1272": "\nWBW\nWEW\nBBB\n",

331 "1273": "\nWBE\nWEW\nBBB\n",

332 "1274": "\nWWW\nWEW\nBBB\n",

333 "1275": "\nWWE\nWEW\nBBB\n",

334 "1276": "\nWEW\nWEW\nBBB\n",

335 "1277": "\nWEE\nWEW\nBBB\n",

336 "1278": "\nEBE\nWEW\nBBB\n",

337 "1279": "\nEWE\nWEW\nBBB\n",

338 "1280": "\nEEE\nWEW\nBBB\n",

339 "1281": "\nBBB\nWEE\nBBB\n",

340 "1282": "\nBBW\nWEE\nBBB\n",

341 "1283": "\nBBE\nWEE\nBBB\n",

64

342 "1284": "\nBWB\nWEE\nBBB\n",

343 "1285": "\nBWW\nWEE\nBBB\n",

344 "1286": "\nBWE\nWEE\nBBB\n",

345 "1287": "\nBEB\nWEE\nBBB\n",

346 "1288": "\nBEW\nWEE\nBBB\n",

347 "1289": "\nBEE\nWEE\nBBB\n",

348 "1290": "\nWBB\nWEE\nBBB\n",

349 "1291": "\nWBW\nWEE\nBBB\n",

350 "1292": "\nWBE\nWEE\nBBB\n",

351 "1293": "\nWWB\nWEE\nBBB\n",

352 "1294": "\nWWW\nWEE\nBBB\n",

353 "1296": "\nWEB\nWEE\nBBB\n",

354 "1297": "\nWEW\nWEE\nBBB\n",

355 "1298": "\nWEE\nWEE\nBBB\n",

356 "1299": "\nEBB\nWEE\nBBB\n",

357 "1300": "\nEBW\nWEE\nBBB\n",

358 "1301": "\nEBE\nWEE\nBBB\n",

359 "1302": "\nEWB\nWEE\nBBB\n",

360 "1303": "\nEWW\nWEE\nBBB\n",

361 "1304": "\nEWE\nWEE\nBBB\n",

362 "1305": "\nEEB\nWEE\nBBB\n",

363 "1306": "\nEEW\nWEE\nBBB\n",

364 "1307": "\nEEE\nWEE\nBBB\n",

365 "1308": "\nBBB\nEEE\nBBB\n",

366 "1311": "\nBWB\nEEE\nBBB\n",

367 "1312": "\nBWW\nEEE\nBBB\n",

368 "1313": "\nBWE\nEEE\nBBB\n",

369 "1314": "\nBEB\nEEE\nBBB\n",

370 "1315": "\nBEW\nEEE\nBBB\n",

371 "1316": "\nBEE\nEEE\nBBB\n",

372 "1317": "\nWBW\nEEE\nBBB\n",

373 "1318": "\nWBE\nEEE\nBBB\n",

374 "1321": "\nWEW\nEEE\nBBB\n",

375 "1322": "\nWEE\nEEE\nBBB\n",

376 "1324": "\nEWE\nEEE\nBBB\n",

377 "1325": "\nEEE\nEEE\nBBB\n",

378 "1326": "\nWBB\nBEB\nBBW\n",

379 "1327": "\nWBW\nBEB\nBBW\n",

380 "1328": "\nWBE\nBEB\nBBW\n",

381 "1329": "\nWWB\nBEB\nBBW\n",

382 "1330": "\nWWW\nBEB\nBBW\n",

383 "1331": "\nWWE\nBEB\nBBW\n",

384 "1332": "\nWEB\nBEB\nBBW\n",

385 "1333": "\nWEW\nBEB\nBBW\n",

386 "1334": "\nWEE\nBEB\nBBW\n",

65

387 "1336": "\nEBW\nBEB\nBBW\n",

388 "1338": "\nEWB\nBEB\nBBW\n",

389 "1339": "\nEWW\nBEB\nBBW\n",

390 "1340": "\nEWE\nBEB\nBBW\n",

391 "1341": "\nEEB\nBEB\nBBW\n",

392 "1342": "\nEEW\nBEB\nBBW\n",

393 "1344": "\nWWB\nBEW\nBBW\n",

394 "1345": "\nWWW\nBEW\nBBW\n",

395 "1346": "\nWWE\nBEW\nBBW\n",

396 "1347": "\nWEB\nBEW\nBBW\n",

397 "1348": "\nWEW\nBEW\nBBW\n",

398 "1349": "\nWEE\nBEW\nBBW\n",

399 "1350": "\nEBB\nBEW\nBBW\n",

400 "1351": "\nEBW\nBEW\nBBW\n",

401 "1352": "\nEBE\nBEW\nBBW\n",

402 "1353": "\nEWB\nBEW\nBBW\n",

403 "1355": "\nEWE\nBEW\nBBW\n",

404 "1356": "\nEEB\nBEW\nBBW\n",

405 "1358": "\nEEE\nBEW\nBBW\n",

406 "1360": "\nWEW\nBEE\nBBW\n",

407 "1361": "\nWEE\nBEE\nBBW\n",

408 "1363": "\nEBW\nBEE\nBBW\n",

409 "1365": "\nEWB\nBEE\nBBW\n",

410 "1366": "\nEWW\nBEE\nBBW\n",

411 "1367": "\nEWE\nBEE\nBBW\n",

412 "1369": "\nEEW\nBEE\nBBW\n",

413 "1371": "\nBBW\nWEB\nBBW\n",

414 "1372": "\nBBE\nWEB\nBBW\n",

415 "1373": "\nBWB\nWEB\nBBW\n",

416 "1374": "\nBWW\nWEB\nBBW\n",

417 "1375": "\nBWE\nWEB\nBBW\n",

418 "1376": "\nBEB\nWEB\nBBW\n",

419 "1377": "\nBEW\nWEB\nBBW\n",

420 "1378": "\nBEE\nWEB\nBBW\n",

421 "1379": "\nWBW\nWEB\nBBW\n",

422 "1380": "\nWBE\nWEB\nBBW\n",

423 "1381": "\nWWB\nWEB\nBBW\n",

424 "1382": "\nWWW\nWEB\nBBW\n",

425 "1383": "\nWWE\nWEB\nBBW\n",

426 "1384": "\nWEB\nWEB\nBBW\n",

427 "1385": "\nWEW\nWEB\nBBW\n",

428 "1386": "\nWEE\nWEB\nBBW\n",

429 "1387": "\nEBW\nWEB\nBBW\n",

430 "1388": "\nEBE\nWEB\nBBW\n",

431 "1389": "\nEWB\nWEB\nBBW\n",

66

432 "1390": "\nEWW\nWEB\nBBW\n",

433 "1391": "\nEWE\nWEB\nBBW\n",

434 "1392": "\nEEB\nWEB\nBBW\n",

435 "1393": "\nEEW\nWEB\nBBW\n",

436 "1394": "\nEEE\nWEB\nBBW\n",

437 "1395": "\nBBW\nWEW\nBBW\n",

438 "1396": "\nBBE\nWEW\nBBW\n",

439 "1397": "\nBWB\nWEW\nBBW\n",

440 "1398": "\nBWW\nWEW\nBBW\n",

441 "1399": "\nBWE\nWEW\nBBW\n",

442 "1400": "\nBEB\nWEW\nBBW\n",

443 "1401": "\nBEW\nWEW\nBBW\n",

444 "1402": "\nBEE\nWEW\nBBW\n",

445 "1403": "\nWBB\nWEW\nBBW\n",

446 "1404": "\nWBW\nWEW\nBBW\n",

447 "1405": "\nWBE\nWEW\nBBW\n",

448 "1406": "\nWWB\nWEW\nBBW\n",

449 "1407": "\nWWW\nWEW\nBBW\n",

450 "1408": "\nWWE\nWEW\nBBW\n",

451 "1409": "\nWEB\nWEW\nBBW\n",

452 "1410": "\nWEW\nWEW\nBBW\n",

453 "1411": "\nWEE\nWEW\nBBW\n",

454 "1412": "\nEBB\nWEW\nBBW\n",

455 "1413": "\nEBW\nWEW\nBBW\n",

456 "1414": "\nEBE\nWEW\nBBW\n",

457 "1415": "\nEWB\nWEW\nBBW\n",

458 "1416": "\nEWW\nWEW\nBBW\n",

459 "1417": "\nEWE\nWEW\nBBW\n",

460 "1418": "\nEEB\nWEW\nBBW\n",

461 "1419": "\nEEW\nWEW\nBBW\n",

462 "1420": "\nEEE\nWEW\nBBW\n",

463 "1422": "\nBBE\nWEE\nBBW\n",

464 "1423": "\nBWB\nWEE\nBBW\n",

465 "1424": "\nBWW\nWEE\nBBW\n",

466 "1425": "\nBWE\nWEE\nBBW\n",

467 "1426": "\nBEB\nWEE\nBBW\n",

468 "1427": "\nBEW\nWEE\nBBW\n",

469 "1428": "\nBEE\nWEE\nBBW\n",

470 "1429": "\nWBB\nWEE\nBBW\n",

471 "1430": "\nWBW\nWEE\nBBW\n",

472 "1431": "\nWBE\nWEE\nBBW\n",

473 "1432": "\nWWB\nWEE\nBBW\n",

474 "1433": "\nWWW\nWEE\nBBW\n",

475 "1434": "\nWWE\nWEE\nBBW\n",

476 "1435": "\nWEB\nWEE\nBBW\n",

67

477 "1436": "\nWEW\nWEE\nBBW\n",

478 "1437": "\nWEE\nWEE\nBBW\n",

479 "1438": "\nEBB\nWEE\nBBW\n",

480 "1439": "\nEBW\nWEE\nBBW\n",

481 "1440": "\nEBE\nWEE\nBBW\n",

482 "1441": "\nEWB\nWEE\nBBW\n",

483 "1442": "\nEWW\nWEE\nBBW\n",

484 "1443": "\nEWE\nWEE\nBBW\n",

485 "1444": "\nEEB\nWEE\nBBW\n",

486 "1445": "\nEEW\nWEE\nBBW\n",

487 "1446": "\nEEE\nWEE\nBBW\n",

488 "1447": "\nBBW\nEEB\nBBW\n",

489 "1449": "\nBWW\nEEB\nBBW\n",

490 "1450": "\nBWE\nEEB\nBBW\n",

491 "1451": "\nBEB\nEEB\nBBW\n",

492 "1452": "\nBEW\nEEB\nBBW\n",

493 "1453": "\nBEE\nEEB\nBBW\n",

494 "1454": "\nWBW\nEEB\nBBW\n",

495 "1455": "\nWBE\nEEB\nBBW\n",

496 "1456": "\nWWW\nEEB\nBBW\n",

497 "1457": "\nWWE\nEEB\nBBW\n",

498 "1458": "\nWEB\nEEB\nBBW\n",

499 "1459": "\nWEW\nEEB\nBBW\n",

500 "1460": "\nWEE\nEEB\nBBW\n",

501 "1461": "\nEBW\nEEB\nBBW\n",

502 "1463": "\nEWW\nEEB\nBBW\n",

503 "1464": "\nEWE\nEEB\nBBW\n",

504 "1465": "\nEEB\nEEB\nBBW\n",

505 "1466": "\nEEW\nEEB\nBBW\n",

506 "1467": "\nEEE\nEEB\nBBW\n",

507 "1468": "\nBBW\nEEW\nBBW\n",

508 "1469": "\nBBE\nEEW\nBBW\n",

509 "1470": "\nBWB\nEEW\nBBW\n",

510 "1471": "\nBWW\nEEW\nBBW\n",

511 "1472": "\nBWE\nEEW\nBBW\n",

512 "1473": "\nBEB\nEEW\nBBW\n",

513 "1474": "\nBEW\nEEW\nBBW\n",

514 "1475": "\nBEE\nEEW\nBBW\n",

515 "1476": "\nWBW\nEEW\nBBW\n",

516 "1477": "\nWBE\nEEW\nBBW\n",

517 "1478": "\nWWB\nEEW\nBBW\n",

518 "1480": "\nWWE\nEEW\nBBW\n",

519 "1481": "\nWEB\nEEW\nBBW\n",

520 "1482": "\nWEW\nEEW\nBBW\n",

521 "1483": "\nWEE\nEEW\nBBW\n",

68

522 "1484": "\nEBB\nEEW\nBBW\n",

523 "1485": "\nEBW\nEEW\nBBW\n",

524 "1486": "\nEBE\nEEW\nBBW\n",

525 "1487": "\nEWB\nEEW\nBBW\n",

526 "1489": "\nEWE\nEEW\nBBW\n",

527 "1490": "\nEEB\nEEW\nBBW\n",

528 "1491": "\nEEW\nEEW\nBBW\n",

529 "1492": "\nEEE\nEEW\nBBW\n",

530 "1493": "\nBBW\nEEE\nBBW\n",

531 "1494": "\nBBE\nEEE\nBBW\n",

532 "1495": "\nBWB\nEEE\nBBW\n",

533 "1496": "\nBWW\nEEE\nBBW\n",

534 "1497": "\nBWE\nEEE\nBBW\n",

535 "1499": "\nBEW\nEEE\nBBW\n",

536 "1500": "\nBEE\nEEE\nBBW\n",

537 "1501": "\nWBB\nEEE\nBBW\n",

538 "1502": "\nWBW\nEEE\nBBW\n",

539 "1503": "\nWBE\nEEE\nBBW\n",

540 "1504": "\nWWB\nEEE\nBBW\n",

541 "1505": "\nWWW\nEEE\nBBW\n",

542 "1506": "\nWWE\nEEE\nBBW\n",

543 "1507": "\nWEB\nEEE\nBBW\n",

544 "1508": "\nWEW\nEEE\nBBW\n",

545 "1509": "\nWEE\nEEE\nBBW\n",

546 "1510": "\nEBB\nEEE\nBBW\n",

547 "1511": "\nEBW\nEEE\nBBW\n",

548 "1512": "\nEBE\nEEE\nBBW\n",

549 "1513": "\nEWB\nEEE\nBBW\n",

550 "1514": "\nEWW\nEEE\nBBW\n",

551 "1515": "\nEWE\nEEE\nBBW\n",

552 "1516": "\nEEB\nEEE\nBBW\n",

553 "1517": "\nEEW\nEEE\nBBW\n",

554 "1518": "\nEEE\nEEE\nBBW\n",

555 "1522": "\nEWB\nBEB\nBBE\n",

556 "1523": "\nEWW\nBEB\nBBE\n",

557 "1524": "\nEWE\nBEB\nBBE\n",

558 "1528": "\nEWB\nBEW\nBBE\n",

559 "1531": "\nEEB\nBEW\nBBE\n",

560 "1537": "\nBBE\nWEB\nBBE\n",

561 "1538": "\nBWB\nWEB\nBBE\n",

562 "1539": "\nBWW\nWEB\nBBE\n",

563 "1540": "\nBWE\nWEB\nBBE\n",

564 "1541": "\nBEB\nWEB\nBBE\n",

565 "1542": "\nBEW\nWEB\nBBE\n",

566 "1543": "\nBEE\nWEB\nBBE\n",

69

567 "1544": "\nWBW\nWEB\nBBE\n",

568 "1545": "\nWBE\nWEB\nBBE\n",

569 "1546": "\nWWB\nWEB\nBBE\n",

570 "1547": "\nWWW\nWEB\nBBE\n",

571 "1548": "\nWWE\nWEB\nBBE\n",

572 "1549": "\nWEB\nWEB\nBBE\n",

573 "1550": "\nWEW\nWEB\nBBE\n",

574 "1551": "\nWEE\nWEB\nBBE\n",

575 "1552": "\nEBW\nWEB\nBBE\n",

576 "1553": "\nEBE\nWEB\nBBE\n",

577 "1554": "\nEWB\nWEB\nBBE\n",

578 "1555": "\nEWW\nWEB\nBBE\n",

579 "1556": "\nEWE\nWEB\nBBE\n",

580 "1557": "\nEEB\nWEB\nBBE\n",

581 "1558": "\nEEW\nWEB\nBBE\n",

582 "1559": "\nEEE\nWEB\nBBE\n",

583 "1560": "\nBBE\nWEW\nBBE\n",

584 "1561": "\nBWB\nWEW\nBBE\n",

585 "1562": "\nBWW\nWEW\nBBE\n",

586 "1563": "\nBWE\nWEW\nBBE\n",

587 "1564": "\nBEB\nWEW\nBBE\n",

588 "1565": "\nBEW\nWEW\nBBE\n",

589 "1566": "\nBEE\nWEW\nBBE\n",

590 "1567": "\nWBW\nWEW\nBBE\n",

591 "1568": "\nWBE\nWEW\nBBE\n",

592 "1569": "\nWWB\nWEW\nBBE\n",

593 "1571": "\nWWE\nWEW\nBBE\n",

594 "1572": "\nWEB\nWEW\nBBE\n",

595 "1573": "\nWEW\nWEW\nBBE\n",

596 "1574": "\nWEE\nWEW\nBBE\n",

597 "1575": "\nEBB\nWEW\nBBE\n",

598 "1576": "\nEBW\nWEW\nBBE\n",

599 "1577": "\nEBE\nWEW\nBBE\n",

600 "1578": "\nEWB\nWEW\nBBE\n",

601 "1579": "\nEWW\nWEW\nBBE\n",

602 "1580": "\nEWE\nWEW\nBBE\n",

603 "1581": "\nEEB\nWEW\nBBE\n",

604 "1582": "\nEEW\nWEW\nBBE\n",

605 "1583": "\nEEE\nWEW\nBBE\n",

606 "1584": "\nBBE\nWEE\nBBE\n",

607 "1585": "\nBWB\nWEE\nBBE\n",

608 "1586": "\nBWW\nWEE\nBBE\n",

609 "1587": "\nBWE\nWEE\nBBE\n",

610 "1588": "\nBEB\nWEE\nBBE\n",

611 "1589": "\nBEW\nWEE\nBBE\n",

70

612 "1590": "\nBEE\nWEE\nBBE\n",

613 "1591": "\nWBW\nWEE\nBBE\n",

614 "1592": "\nWBE\nWEE\nBBE\n",

615 "1593": "\nWWB\nWEE\nBBE\n",

616 "1594": "\nWWW\nWEE\nBBE\n",

617 "1596": "\nWEB\nWEE\nBBE\n",

618 "1597": "\nWEW\nWEE\nBBE\n",

619 "1598": "\nWEE\nWEE\nBBE\n",

620 "1599": "\nEBB\nWEE\nBBE\n",

621 "1600": "\nEBW\nWEE\nBBE\n",

622 "1601": "\nEBE\nWEE\nBBE\n",

623 "1602": "\nEWB\nWEE\nBBE\n",

624 "1603": "\nEWW\nWEE\nBBE\n",

625 "1604": "\nEWE\nWEE\nBBE\n",

626 "1605": "\nEEB\nWEE\nBBE\n",

627 "1606": "\nEEW\nWEE\nBBE\n",

628 "1607": "\nEEE\nWEE\nBBE\n",

629 "1609": "\nBWW\nEEB\nBBE\n",

630 "1610": "\nBWE\nEEB\nBBE\n",

631 "1611": "\nBEB\nEEB\nBBE\n",

632 "1614": "\nWBW\nEEB\nBBE\n",

633 "1616": "\nWWW\nEEB\nBBE\n",

634 "1617": "\nWWE\nEEB\nBBE\n",

635 "1619": "\nWEW\nEEB\nBBE\n",

636 "1623": "\nEWW\nEEB\nBBE\n",

637 "1624": "\nEWE\nEEB\nBBE\n",

638 "1628": "\nBBE\nEEW\nBBE\n",

639 "1629": "\nBWB\nEEW\nBBE\n",

640 "1630": "\nBWW\nEEW\nBBE\n",

641 "1631": "\nBWE\nEEW\nBBE\n",

642 "1632": "\nBEB\nEEW\nBBE\n",

643 "1633": "\nBEW\nEEW\nBBE\n",

644 "1634": "\nBEE\nEEW\nBBE\n",

645 "1635": "\nWBW\nEEW\nBBE\n",

646 "1636": "\nWBE\nEEW\nBBE\n",

647 "1637": "\nWWB\nEEW\nBBE\n",

648 "1639": "\nWWE\nEEW\nBBE\n",

649 "1640": "\nWEB\nEEW\nBBE\n",

650 "1641": "\nWEW\nEEW\nBBE\n",

651 "1642": "\nWEE\nEEW\nBBE\n",

652 "1643": "\nEBW\nEEW\nBBE\n",

653 "1644": "\nEBE\nEEW\nBBE\n",

654 "1645": "\nEWB\nEEW\nBBE\n",

655 "1647": "\nEWE\nEEW\nBBE\n",

656 "1648": "\nEEB\nEEW\nBBE\n",

71

657 "1649": "\nEEW\nEEW\nBBE\n",

658 "1650": "\nEEE\nEEW\nBBE\n",

659 "1652": "\nBWB\nEEE\nBBE\n",

660 "1653": "\nBWW\nEEE\nBBE\n",

661 "1654": "\nBWE\nEEE\nBBE\n",

662 "1655": "\nBEB\nEEE\nBBE\n",

663 "1656": "\nBEW\nEEE\nBBE\n",

664 "1657": "\nBEE\nEEE\nBBE\n",

665 "1658": "\nWBW\nEEE\nBBE\n",

666 "1659": "\nWBE\nEEE\nBBE\n",

667 "1660": "\nWWB\nEEE\nBBE\n",

668 "1664": "\nWEW\nEEE\nBBE\n",

669 "1665": "\nWEE\nEEE\nBBE\n",

670 "1667": "\nEBW\nEEE\nBBE\n",

671 "1669": "\nEWB\nEEE\nBBE\n",

672 "1671": "\nEWE\nEEE\nBBE\n",

673 "1672": "\nEEB\nEEE\nBBE\n",

674 "1674": "\nEEE\nEEE\nBBE\n",

675 "1675": "\nBWB\nWEW\nBWB\n",

676 "1676": "\nBWW\nWEW\nBWB\n",

677 "1677": "\nBWE\nWEW\nBWB\n",

678 "1679": "\nBEW\nWEW\nBWB\n",

679 "1680": "\nBEE\nWEW\nBWB\n",

680 "1681": "\nWBW\nWEW\nBWB\n",

681 "1682": "\nWBE\nWEW\nBWB\n",

682 "1683": "\nWWW\nWEW\nBWB\n",

683 "1684": "\nWWE\nWEW\nBWB\n",

684 "1685": "\nWEW\nWEW\nBWB\n",

685 "1686": "\nWEE\nWEW\nBWB\n",

686 "1687": "\nEBE\nWEW\nBWB\n",

687 "1688": "\nEWE\nWEW\nBWB\n",

688 "1689": "\nEEE\nWEW\nBWB\n",

689 "1690": "\nBEB\nWEE\nBWB\n",

690 "1691": "\nBEW\nWEE\nBWB\n",

691 "1692": "\nBEE\nWEE\nBWB\n",

692 "1693": "\nWBW\nWEE\nBWB\n",

693 "1694": "\nWBE\nWEE\nBWB\n",

694 "1695": "\nWWB\nWEE\nBWB\n",

695 "1696": "\nWWW\nWEE\nBWB\n",

696 "1697": "\nWWE\nWEE\nBWB\n",

697 "1698": "\nWEB\nWEE\nBWB\n",

698 "1699": "\nWEW\nWEE\nBWB\n",

699 "1700": "\nWEE\nWEE\nBWB\n",

700 "1701": "\nEBW\nWEE\nBWB\n",

701 "1702": "\nEBE\nWEE\nBWB\n",

72

702 "1703": "\nEWB\nWEE\nBWB\n",

703 "1704": "\nEWW\nWEE\nBWB\n",

704 "1705": "\nEWE\nWEE\nBWB\n",

705 "1706": "\nEEB\nWEE\nBWB\n",

706 "1707": "\nEEW\nWEE\nBWB\n",

707 "1708": "\nEEE\nWEE\nBWB\n",

708 "1710": "\nBWW\nEEE\nBWB\n",

709 "1711": "\nBWE\nEEE\nBWB\n",

710 "1712": "\nBEB\nEEE\nBWB\n",

711 "1713": "\nBEW\nEEE\nBWB\n",

712 "1714": "\nBEE\nEEE\nBWB\n",

713 "1715": "\nWBW\nEEE\nBWB\n",

714 "1716": "\nWBE\nEEE\nBWB\n",

715 "1717": "\nWWW\nEEE\nBWB\n",

716 "1718": "\nWWE\nEEE\nBWB\n",

717 "1719": "\nWEW\nEEE\nBWB\n",

718 "1720": "\nWEE\nEEE\nBWB\n",

719 "1721": "\nEBE\nEEE\nBWB\n",

720 "1722": "\nEWE\nEEE\nBWB\n",

721 "1723": "\nEEE\nEEE\nBWB\n",

722 "1724": "\nWBW\nWEB\nBWW\n",

723 "1725": "\nWBE\nWEB\nBWW\n",

724 "1726": "\nWWW\nWEB\nBWW\n",

725 "1727": "\nWWE\nWEB\nBWW\n",

726 "1728": "\nWEW\nWEB\nBWW\n",

727 "1729": "\nWEE\nWEB\nBWW\n",

728 "1730": "\nEBW\nWEB\nBWW\n",

729 "1731": "\nEBE\nWEB\nBWW\n",

730 "1732": "\nEWW\nWEB\nBWW\n",

731 "1733": "\nEWE\nWEB\nBWW\n",

732 "1734": "\nEEW\nWEB\nBWW\n",

733 "1735": "\nEEE\nWEB\nBWW\n",

734 "1736": "\nWWB\nWEW\nBWW\n",

735 "1737": "\nWWW\nWEW\nBWW\n",

736 "1739": "\nWEB\nWEW\nBWW\n",

737 "1740": "\nWEW\nWEW\nBWW\n",

738 "1741": "\nWEE\nWEW\nBWW\n",

739 "1742": "\nEBW\nWEW\nBWW\n",

740 "1743": "\nEBE\nWEW\nBWW\n",

741 "1744": "\nEWB\nWEW\nBWW\n",

742 "1747": "\nEEB\nWEW\nBWW\n",

743 "1748": "\nEEW\nWEW\nBWW\n",

744 "1750": "\nWEB\nWEE\nBWW\n",

745 "1751": "\nWEW\nWEE\nBWW\n",

746 "1752": "\nWEE\nWEE\nBWW\n",

73

747 "1753": "\nEBW\nWEE\nBWW\n",

748 "1754": "\nEBE\nWEE\nBWW\n",

749 "1755": "\nEWB\nWEE\nBWW\n",

750 "1756": "\nEWW\nWEE\nBWW\n",

751 "1757": "\nEWE\nWEE\nBWW\n",

752 "1758": "\nEEB\nWEE\nBWW\n",

753 "1759": "\nEEW\nWEE\nBWW\n",

754 "1760": "\nEEE\nWEE\nBWW\n",

755 "1761": "\nBWW\nEEB\nBWW\n",

756 "1762": "\nBWE\nEEB\nBWW\n",

757 "1763": "\nBEW\nEEB\nBWW\n",

758 "1764": "\nBEE\nEEB\nBWW\n",

759 "1765": "\nWBW\nEEB\nBWW\n",

760 "1766": "\nWBE\nEEB\nBWW\n",

761 "1767": "\nWWW\nEEB\nBWW\n",

762 "1768": "\nWWE\nEEB\nBWW\n",

763 "1769": "\nWEW\nEEB\nBWW\n",

764 "1770": "\nWEE\nEEB\nBWW\n",

765 "1771": "\nEBW\nEEB\nBWW\n",

766 "1772": "\nEBE\nEEB\nBWW\n",

767 "1773": "\nEWW\nEEB\nBWW\n",

768 "1774": "\nEWE\nEEB\nBWW\n",

769 "1775": "\nEEW\nEEB\nBWW\n",

770 "1776": "\nEEE\nEEB\nBWW\n",

771 "1777": "\nBWW\nEEW\nBWW\n",

772 "1778": "\nBWE\nEEW\nBWW\n",

773 "1779": "\nBEB\nEEW\nBWW\n",

774 "1782": "\nWBW\nEEW\nBWW\n",

775 "1786": "\nWEB\nEEW\nBWW\n",

776 "1788": "\nWEE\nEEW\nBWW\n",

777 "1789": "\nEBW\nEEW\nBWW\n",

778 "1793": "\nEEB\nEEW\nBWW\n",

779 "1795": "\nEEE\nEEW\nBWW\n",

780 "1796": "\nBWW\nEEE\nBWW\n",

781 "1797": "\nBWE\nEEE\nBWW\n",

782 "1798": "\nBEB\nEEE\nBWW\n",

783 "1799": "\nBEW\nEEE\nBWW\n",

784 "1800": "\nBEE\nEEE\nBWW\n",

785 "1801": "\nWBW\nEEE\nBWW\n",

786 "1802": "\nWBE\nEEE\nBWW\n",

787 "1803": "\nWWB\nEEE\nBWW\n",

788 "1804": "\nWWW\nEEE\nBWW\n",

789 "1805": "\nWWE\nEEE\nBWW\n",

790 "1806": "\nWEB\nEEE\nBWW\n",

791 "1807": "\nWEW\nEEE\nBWW\n",

74

792 "1808": "\nWEE\nEEE\nBWW\n",

793 "1809": "\nEBW\nEEE\nBWW\n",

794 "1810": "\nEBE\nEEE\nBWW\n",

795 "1811": "\nEWB\nEEE\nBWW\n",

796 "1812": "\nEWW\nEEE\nBWW\n",

797 "1813": "\nEWE\nEEE\nBWW\n",

798 "1814": "\nEEB\nEEE\nBWW\n",

799 "1815": "\nEEW\nEEE\nBWW\n",

800 "1816": "\nEEE\nEEE\nBWW\n",

801 "1817": "\nEBW\nWEB\nBWE\n",

802 "1818": "\nEBE\nWEB\nBWE\n",

803 "1819": "\nEWW\nWEB\nBWE\n",

804 "1820": "\nEWE\nWEB\nBWE\n",

805 "1821": "\nEEW\nWEB\nBWE\n",

806 "1822": "\nEEE\nWEB\nBWE\n",

807 "1826": "\nEEB\nWEW\nBWE\n",

808 "1827": "\nEEW\nWEW\nBWE\n",

809 "1828": "\nEEE\nWEW\nBWE\n",

810 "1829": "\nEEB\nWEE\nBWE\n",

811 "1830": "\nEEW\nWEE\nBWE\n",

812 "1831": "\nEEE\nWEE\nBWE\n",

813 "1832": "\nBWE\nEEB\nBWE\n",

814 "1833": "\nBEW\nEEB\nBWE\n",

815 "1834": "\nBEE\nEEB\nBWE\n",

816 "1835": "\nWBW\nEEB\nBWE\n",

817 "1836": "\nWBE\nEEB\nBWE\n",

818 "1837": "\nWWW\nEEB\nBWE\n",

819 "1838": "\nWWE\nEEB\nBWE\n",

820 "1839": "\nWEW\nEEB\nBWE\n",

821 "1840": "\nWEE\nEEB\nBWE\n",

822 "1841": "\nEBW\nEEB\nBWE\n",

823 "1842": "\nEBE\nEEB\nBWE\n",

824 "1843": "\nEWW\nEEB\nBWE\n",

825 "1844": "\nEWE\nEEB\nBWE\n",

826 "1845": "\nEEW\nEEB\nBWE\n",

827 "1846": "\nEEE\nEEB\nBWE\n",

828 "1848": "\nBEB\nEEW\nBWE\n",

829 "1849": "\nBEW\nEEW\nBWE\n",

830 "1850": "\nBEE\nEEW\nBWE\n",

831 "1851": "\nWBW\nEEW\nBWE\n",

832 "1852": "\nWBE\nEEW\nBWE\n",

833 "1855": "\nWEB\nEEW\nBWE\n",

834 "1856": "\nWEW\nEEW\nBWE\n",

835 "1857": "\nWEE\nEEW\nBWE\n",

836 "1858": "\nEBW\nEEW\nBWE\n",

75

837 "1859": "\nEBE\nEEW\nBWE\n",

838 "1862": "\nEEB\nEEW\nBWE\n",

839 "1863": "\nEEW\nEEW\nBWE\n",

840 "1864": "\nEEE\nEEW\nBWE\n",

841 "1865": "\nBWE\nEEE\nBWE\n",

842 "1866": "\nBEB\nEEE\nBWE\n",

843 "1867": "\nBEW\nEEE\nBWE\n",

844 "1868": "\nBEE\nEEE\nBWE\n",

845 "1869": "\nWBW\nEEE\nBWE\n",

846 "1870": "\nWBE\nEEE\nBWE\n",

847 "1871": "\nWWW\nEEE\nBWE\n",

848 "1872": "\nWWE\nEEE\nBWE\n",

849 "1873": "\nWEB\nEEE\nBWE\n",

850 "1874": "\nWEW\nEEE\nBWE\n",

851 "1875": "\nWEE\nEEE\nBWE\n",

852 "1876": "\nEBW\nEEE\nBWE\n",

853 "1877": "\nEBE\nEEE\nBWE\n",

854 "1878": "\nEWB\nEEE\nBWE\n",

855 "1879": "\nEWW\nEEE\nBWE\n",

856 "1880": "\nEWE\nEEE\nBWE\n",

857 "1881": "\nEEB\nEEE\nBWE\n",

858 "1882": "\nEEW\nEEE\nBWE\n",

859 "1883": "\nEEE\nEEE\nBWE\n",

860 "1887": "\nWBW\nEEE\nBEB\n",

861 "1888": "\nWBE\nEEE\nBEB\n",

862 "1889": "\nWWW\nEEE\nBEB\n",

863 "1891": "\nWEW\nEEE\nBEB\n",

864 "1892": "\nWEE\nEEE\nBEB\n",

865 "1894": "\nEWE\nEEE\nBEB\n",

866 "1895": "\nEEE\nEEE\nBEB\n",

867 "1896": "\nWBW\nEEB\nBEW\n",

868 "1897": "\nWBE\nEEB\nBEW\n",

869 "1898": "\nWWW\nEEB\nBEW\n",

870 "1899": "\nWWE\nEEB\nBEW\n",

871 "1900": "\nWEW\nEEB\nBEW\n",

872 "1901": "\nWEE\nEEB\nBEW\n",

873 "1902": "\nEBW\nEEB\nBEW\n",

874 "1904": "\nEWW\nEEB\nBEW\n",

875 "1905": "\nEWE\nEEB\nBEW\n",

876 "1906": "\nEEW\nEEB\nBEW\n",

877 "1907": "\nEEE\nEEB\nBEW\n",

878 "1910": "\nWEW\nEEW\nBEW\n",

879 "1911": "\nWEE\nEEW\nBEW\n",

880 "1912": "\nEBW\nEEW\nBEW\n",

881 "1913": "\nEBE\nEEW\nBEW\n",

76

882 "1915": "\nEWE\nEEW\nBEW\n",

883 "1917": "\nEEE\nEEW\nBEW\n",

884 "1918": "\nWEB\nEEE\nBEW\n",

885 "1919": "\nWEW\nEEE\nBEW\n",

886 "1920": "\nWEE\nEEE\nBEW\n",

887 "1921": "\nEBW\nEEE\nBEW\n",

888 "1922": "\nEBE\nEEE\nBEW\n",

889 "1923": "\nEWW\nEEE\nBEW\n",

890 "1924": "\nEWE\nEEE\nBEW\n",

891 "1925": "\nEEB\nEEE\nBEW\n",

892 "1926": "\nEEW\nEEE\nBEW\n",

893 "1927": "\nEEE\nEEE\nBEW\n",

894 "1928": "\nEBW\nEEB\nBEE\n",

895 "1930": "\nEWW\nEEB\nBEE\n",

896 "1931": "\nEWE\nEEB\nBEE\n",

897 "1932": "\nEEW\nEEB\nBEE\n",

898 "1933": "\nEEE\nEEB\nBEE\n",

899 "1935": "\nEWE\nEEW\nBEE\n",

900 "1936": "\nEEW\nEEW\nBEE\n",

901 "1937": "\nEEE\nEEW\nBEE\n",

902 "1938": "\nEEB\nEEE\nBEE\n",

903 "1939": "\nEEW\nEEE\nBEE\n",

904 "1940": "\nEEE\nEEE\nBEE\n",

905 "1941": "\nWBW\nBEB\nWBW\n",

906 "1942": "\nWBE\nBEB\nWBW\n",

907 "1943": "\nWWW\nBEB\nWBW\n",

908 "1944": "\nWWE\nBEB\nWBW\n",

909 "1945": "\nWEW\nBEB\nWBW\n",

910 "1946": "\nWEE\nBEB\nWBW\n",

911 "1947": "\nEBE\nBEB\nWBW\n",

912 "1948": "\nEWE\nBEB\nWBW\n",

913 "1949": "\nEEE\nBEB\nWBW\n",

914 "1950": "\nWWW\nBEW\nWBW\n",

915 "1951": "\nWWE\nBEW\nWBW\n",

916 "1952": "\nWEW\nBEW\nWBW\n",

917 "1953": "\nWEE\nBEW\nWBW\n",

918 "1954": "\nEBW\nBEW\nWBW\n",

919 "1955": "\nEBE\nBEW\nWBW\n",

920 "1956": "\nEWW\nBEW\nWBW\n",

921 "1957": "\nEWE\nBEW\nWBW\n",

922 "1958": "\nEEW\nBEW\nWBW\n",

923 "1959": "\nEEE\nBEW\nWBW\n",

924 "1960": "\nWEW\nBEE\nWBW\n",

925 "1961": "\nWEE\nBEE\nWBW\n",

926 "1962": "\nEBW\nBEE\nWBW\n",

77

927 "1963": "\nEBE\nBEE\nWBW\n",

928 "1964": "\nEWW\nBEE\nWBW\n",

929 "1965": "\nEWE\nBEE\nWBW\n",

930 "1966": "\nEEW\nBEE\nWBW\n",

931 "1967": "\nEEE\nBEE\nWBW\n",

932 "1969": "\nWBE\nWEW\nWBW\n",

933 "1970": "\nWWW\nWEW\nWBW\n",

934 "1971": "\nWWE\nWEW\nWBW\n",

935 "1972": "\nWEW\nWEW\nWBW\n",

936 "1973": "\nWEE\nWEW\nWBW\n",

937 "1974": "\nEBE\nWEW\nWBW\n",

938 "1975": "\nEWE\nWEW\nWBW\n",

939 "1976": "\nEEE\nWEW\nWBW\n",

940 "1978": "\nWBE\nWEE\nWBW\n",

941 "1979": "\nWWW\nWEE\nWBW\n",

942 "1980": "\nWWE\nWEE\nWBW\n",

943 "1981": "\nWEW\nWEE\nWBW\n",

944 "1982": "\nWEE\nWEE\nWBW\n",

945 "1983": "\nEBW\nWEE\nWBW\n",

946 "1984": "\nEBE\nWEE\nWBW\n",

947 "1985": "\nEWW\nWEE\nWBW\n",

948 "1986": "\nEWE\nWEE\nWBW\n",

949 "1987": "\nEEW\nWEE\nWBW\n",

950 "1988": "\nEEE\nWEE\nWBW\n",

951 "1990": "\nWBE\nEEE\nWBW\n",

952 "1991": "\nWWW\nEEE\nWBW\n",

953 "1992": "\nWWE\nEEE\nWBW\n",

954 "1993": "\nWEW\nEEE\nWBW\n",

955 "1994": "\nWEE\nEEE\nWBW\n",

956 "1995": "\nEBE\nEEE\nWBW\n",

957 "1996": "\nEWE\nEEE\nWBW\n",

958 "1997": "\nEEE\nEEE\nWBW\n",

959 "2000": "\nEWW\nBEB\nWBE\n",

960 "2001": "\nEWE\nBEB\nWBE\n",

961 "2002": "\nEEW\nBEB\nWBE\n",

962 "2004": "\nEWW\nBEW\nWBE\n",

963 "2005": "\nEWE\nBEW\nWBE\n",

964 "2006": "\nEEW\nBEW\nWBE\n",

965 "2007": "\nEEE\nBEW\nWBE\n",

966 "2008": "\nEEW\nBEE\nWBE\n",

967 "2009": "\nEEE\nBEE\nWBE\n",

968 "2010": "\nWBE\nWEB\nWBE\n",

969 "2011": "\nWWW\nWEB\nWBE\n",

970 "2012": "\nWWE\nWEB\nWBE\n",

971 "2013": "\nWEW\nWEB\nWBE\n",

78

972 "2014": "\nWEE\nWEB\nWBE\n",

973 "2015": "\nEBE\nWEB\nWBE\n",

974 "2016": "\nEWW\nWEB\nWBE\n",

975 "2017": "\nEWE\nWEB\nWBE\n",

976 "2018": "\nEEW\nWEB\nWBE\n",

977 "2019": "\nEEE\nWEB\nWBE\n",

978 "2020": "\nWBE\nWEW\nWBE\n",

979 "2022": "\nWWE\nWEW\nWBE\n",

980 "2023": "\nWEW\nWEW\nWBE\n",

981 "2024": "\nWEE\nWEW\nWBE\n",

982 "2025": "\nEBW\nWEW\nWBE\n",

983 "2026": "\nEBE\nWEW\nWBE\n",

984 "2027": "\nEWW\nWEW\nWBE\n",

985 "2028": "\nEWE\nWEW\nWBE\n",

986 "2029": "\nEEW\nWEW\nWBE\n",

987 "2030": "\nEEE\nWEW\nWBE\n",

988 "2031": "\nWBE\nWEE\nWBE\n",

989 "2032": "\nWWW\nWEE\nWBE\n",

990 "2033": "\nWWE\nWEE\nWBE\n",

991 "2034": "\nWEW\nWEE\nWBE\n",

992 "2035": "\nWEE\nWEE\nWBE\n",

993 "2036": "\nEBW\nWEE\nWBE\n",

994 "2037": "\nEBE\nWEE\nWBE\n",

995 "2038": "\nEWW\nWEE\nWBE\n",

996 "2039": "\nEWE\nWEE\nWBE\n",

997 "2040": "\nEEW\nWEE\nWBE\n",

998 "2041": "\nEEE\nWEE\nWBE\n",

999 "2042": "\nWBE\nEEB\nWBE\n",

1000 "2043": "\nWWE\nEEB\nWBE\n",

1001 "2044": "\nWEW\nEEB\nWBE\n",

1002 "2045": "\nWEE\nEEB\nWBE\n",

1003 "2046": "\nEBE\nEEB\nWBE\n",

1004 "2047": "\nEWE\nEEB\nWBE\n",

1005 "2048": "\nEEW\nEEB\nWBE\n",

1006 "2050": "\nWBE\nEEW\nWBE\n",

1007 "2051": "\nWWW\nEEW\nWBE\n",

1008 "2052": "\nWWE\nEEW\nWBE\n",

1009 "2053": "\nWEW\nEEW\nWBE\n",

1010 "2054": "\nWEE\nEEW\nWBE\n",

1011 "2055": "\nEBE\nEEW\nWBE\n",

1012 "2056": "\nEWW\nEEW\nWBE\n",

1013 "2057": "\nEWE\nEEW\nWBE\n",

1014 "2058": "\nEEW\nEEW\nWBE\n",

1015 "2059": "\nEEE\nEEW\nWBE\n",

1016 "2060": "\nWBE\nEEE\nWBE\n",

79

1017 "2061": "\nWWW\nEEE\nWBE\n",

1018 "2062": "\nWWE\nEEE\nWBE\n",

1019 "2063": "\nWEW\nEEE\nWBE\n",

1020 "2064": "\nWEE\nEEE\nWBE\n",

1021 "2065": "\nEBW\nEEE\nWBE\n",

1022 "2066": "\nEBE\nEEE\nWBE\n",

1023 "2067": "\nEWW\nEEE\nWBE\n",

1024 "2068": "\nEWE\nEEE\nWBE\n",

1025 "2069": "\nEEW\nEEE\nWBE\n",

1026 "2070": "\nEEE\nEEE\nWBE\n",

1027 "2073": "\nWEW\nWEW\nWWW\n",

1028 "2078": "\nWEW\nWEE\nWWW\n",

1029 "2081": "\nEWW\nWEE\nWWW\n",

1030 "2085": "\nWWW\nEEE\nWWW\n",

1031 "2088": "\nWEE\nEEE\nWWW\n",

1032 "2089": "\nEBE\nEEE\nWWW\n",

1033 "2101": "\nWWE\nEEB\nWWE\n",

1034 "2102": "\nWEE\nEEB\nWWE\n",

1035 "2103": "\nEBE\nEEB\nWWE\n",

1036 "2104": "\nEWE\nEEB\nWWE\n",

1037 "2105": "\nEEE\nEEB\nWWE\n",

1038 "2107": "\nWEW\nEEW\nWWE\n",

1039 "2109": "\nEBE\nEEW\nWWE\n",

1040 "2112": "\nEEE\nEEW\nWWE\n",

1041 "2114": "\nWEW\nEEE\nWWE\n",

1042 "2115": "\nWEE\nEEE\nWWE\n",

1043 "2116": "\nEBE\nEEE\nWWE\n",

1044 "2118": "\nEWE\nEEE\nWWE\n",

1045 "2119": "\nEEW\nEEE\nWWE\n",

1046 "2120": "\nEEE\nEEE\nWWE\n",

1047 "2122": "\nWEE\nEEE\nWEW\n",

1048 "2123": "\nEBE\nEEE\nWEW\n",

1049 "2124": "\nEWE\nEEE\nWEW\n",

1050 "2125": "\nEEE\nEEE\nWEW\n",

1051 "2127": "\nEWE\nEEB\nWEE\n",

1052 "2128": "\nEEE\nEEB\nWEE\n",

1053 "2130": "\nEEE\nEEW\nWEE\n",

1054 "2131": "\nEEW\nEEE\nWEE\n",

1055 "2132": "\nEEE\nEEE\nWEE\n",

1056 "2134": "\nEWE\nBEB\nEBE\n",

1057 "2137": "\nEEE\nBEW\nEBE\n",

1058 "2139": "\nEBE\nWEW\nEBE\n",

1059 "2140": "\nEWE\nWEW\nEBE\n",

1060 "2141": "\nEEE\nWEW\nEBE\n",

1061 "2142": "\nEBE\nWEE\nEBE\n",

80

1062 "2143": "\nEWE\nWEE\nEBE\n",

1063 "2144": "\nEEE\nWEE\nEBE\n",

1064 "2146": "\nEWE\nEEE\nEBE\n",

1065 "2147": "\nEEE\nEEE\nEBE\n",

1066 "2151": "\nEWE\nEEE\nEWE\n",

1067 "2152": "\nEEE\nEEE\nEWE\n",

1068 "2153": "\nEEE\nEEE\nEEE\n"

Default MCTS-based Fuego player settings

1 uct_param_search number_threads 1

2 uct_param_player ignore_clock 1

3 uct_param_player max_games NUSIM

4 uct_param_player reuse_subtree 0

5 uct_param_player ponder 0

6 uct_param_player forced_opening_moves 0

7 go_rules cgos

No Additive player settings

1 uct_param_globalsearch use_additive_predictor 0

2 uct_param_search number_threads 1

3 uct_param_player ignore_clock 1

4 uct_param_player max_games NUSIM

5 uct_param_player reuse_subtree 0

6 uct_param_player ponder 0

7 uct_param_player forced_opening_moves 0

8 go_rules cgos

No Knowledge player setting

1 uct_param_feature_knowledge prior_knowledge_type none

2 uct_param_globalsearch use_default_prior_knowledge 0

3 uct_param_globalsearch use_tree_filter 0

4 uct_param_search number_threads 1

5 uct_param_player ignore_clock 1

6 uct_param_player max_games NUSIM

7 uct_param_player reuse_subtree 0

8 uct_param_player ponder 0

9 uct_param_player forced_opening_moves 0

10 go_rules cgos

Playout Policy-Only player setting

81

1 uct_param_player search_mode playout_policy

2 uct_param_search number_threads 1

3 uct_param_player ignore_clock 1

4 uct_param_player max_games NUSIM

5 uct_param_player reuse_subtree 0

6 uct_param_player ponder 0

7 uct_param_player forced_opening_moves 0

8 go_rules cgos

82

