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Abstract 

Computer aided detection (CAD) or diagnosis (CADx) is rapidly entering the radiology 

mainstream due to the conversion from film-based to digital radiographic systems and the 

advances in computerized image analysis techniques over the past decades. However, little 

CAD work in chest radiology has been done beyond lung nodules. Our research focuses on 

developing an intelligent CAD system for automated detection of infectious tuberculosis 

(TB), which has typical radiographic features such as cavity and acinar shadows. 

 In this thesis, I first present a general conceptual framework of the CAD system 

consisting of several steps, such as image preprocessing, feature extraction and 

classification, and final decision analysis. I then propose an efficient technique for 

automatic lung field segmentation using edge-region force guided active shape model 

(ERF-ASM) which is an important preprocessing step in the CAD system. A coarse-to-fine 

dual scale (CFDS) feature classification technique is then proposed for TB cavity detection. 

In this technique, Gaussian-model-based template matching (GTM), local binary pattern 

(LBP) and histogram of oriented gradients (HOG) based features are applied at the coarse 

scale; while circularity, gradient inverse coefficient of variation (GICOV) and Kullback- 

Leibler divergence (KLD) measures are applied at the fine scale. Finally, a hybrid system 

using combined LBP, HOG and grey level co-occurrence matrix (GLCM) based features is 

proposed for acinar shadows detection. Experiments over 300 chest radiographs show 

promising results of the proposed techniques. 
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Chapter 1 

Introduction 

Advances in computerized image analysis have a tremendous impact on the interpretation of 

medical images. Different types of computer-aided detection (CAD) or diagnosis (CADx) 

schemes have been developed for detection and classification of various lesions in many 

medical imaging modalities. The majority of CAD work in chest radiology has focused on 

lung nodules detection, although many other lung disease diagnostic procedures can benefit 

from CAD, such as Tuberculosis (TB). Worldwide, TB is a leading cause of morbidity and 

mortality, especially in developing countries. In Canada, since TB is uncommon in 

Canadian-born non-Aboriginals, it may not be suspected, even when radiographic features 

are typical. Such underreporting has been noted in some groups including Aboriginals and 

immigrants from TB endemic countries and could be prevented by a CAD system. 

Therefore, the primary goal of this thesis is to develop a comprehensive CAD system for 

automatic detection of typical radiographic features of infectious TB. In this chapter, the 

research motivation is presented along with the discussion of the background of TB and 

CAD schemes for TB detection. Thesis contributions are then summarized followed by the 

organization of the thesis. 

1.1 Background and Research Motivation 

1.1.1 Status of TB in the World and in Canada 

Globally, TB is a common and potentially life threatening contagious disease caused by 

Mycobacterium tuberculosis (MTB). TB affects most commonly the lungs but can also 

affect the central nervous system, the lymphatic system, the circulatory system, the 

genitourinary system, bones, joints, and even the skin [1]. According to the World Health 
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Organization (WHO) [2], TB is the second leading cause of death from an infectious disease 

worldwide. Every year, 8-10 million new people contract TB and up to 2 million die from it. 

For example, in 2010, there were 8.8 million incident cases of TB worldwide, 1.1 million 

deaths from TB among HIV-negative people and an additional 0.35 million deaths from 

HIV-associated TB. In Canada, TB is often ignored by heath care professionals at 

emergency departments due to the fact that TB is a rare disease in Canadian-born 

non-Aboriginals. However, it remains prevalent in some groups including Aboriginals and 

immigrants from TB endemic countries [3]. According to Citizenship and Immigration 

Canada, more than 200,000 people immigrate to Canada, and more than 35 million people 

visit Canada each year. Most newcomers are from developing countries where TB is a 

common and potentially fatal disease. Therefore, it is important to develop some reliable 

and easy-to-implement diagnostic technique to prevent TB, especially the infectious TB. 

1.1.2 Diagnosis of TB 

The diagnosis of TB is difficult. For infectious pulmonary TB, although Sputum Culture is 

the gold standard in diagnosis, it is not easy to implement in many cases due to specimens 

collection, lab infrastructure and contamination rate of the culture [1]. Compared to other 

detection methods, chest radiography is increasingly important in the fight against 

pulmonary TB due to several reasons. First, chest radiography provides a noninvasive mean 

to reveal unsuspected pathologic alterations. Second, it has lower radiation dose and lower 

cost than CT. In addition, chest X-ray machines are cheaper and more accessible, especially 

in developing countries [4]. However, interpreting a chest radiograph (commonly known as 

chest X-ray image, henceforth referred to as CXR) is extremely challenging [5]. The 

difficulty primarily arises because the CXRs typically do not have sharp features. The pixel 

intensity values of the abnormalities are in many cases similar to other regions in CXRs, 

and the overlapping anatomical structures further obscure the detection of the abnormalities. 

Fig. 1.1 shows an example of CXR of normal case. Note that the accuracy for TB diagnosis 
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using chest radiography is low (sensitivity: 70%-80%, specificity: 60%-70%), and large 

interobserver and even intraobserver differences occur [1]. Double reading by a trained 

radiologist or a physician is a routine medical practice for reducing the error rate. But the 

shortage of radiologists and a huge amount of CXRs lead to a heavy workload for 

radiologists. Therefore, it will be of immense value to develop a CAD system to provide 

‘‘second opinion’’ to assist radiologists’ image readings [6]. 

 

Fig.	1.1.	 An	example	of	normal	CXR.	

1.1.3 Existing CAD Systems in Chest Radiology 

Since the first application of CAD in chest radiography emerged in 1963 [7], the CAD 

system in chest radiography has slowly but steadily made its way into the clinical arena. 

Recent CAD schemes have been focused on automating one of the many aspects involved 

in the evaluation of CXRs [9], such as detection of lung nodules, detection of interstitial 

diseases, size and shape measurements. Excellent reviews of the CAD technological 

development can be found in  [8] [9]. Several commercial CAD software in chest radiology 

approved by the Food and Drug Administration (FDA) has been used in clinical routine for 

lung nodules detection, such as ClearRead +Detect™ (formerly OnGuard, RiverainMedical) 

[10], xLNA Enterprise (Philips) [11], IQQA-Chest (EDDA Technology) [12]. Existing CAD 

systems have already proved that CAD is best for two tasks: tedious tasks, such as looking 
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for a “needle in a haystack” (e.g., a very small lung nodule on CXR), and tasks that involve 

a complex combination of multiple image features (e.g., breast mass detection at 

mammography). The CAD is also helpful if there is high interobserver or intraobserver 

variation or a lack of trained observers. The physicians’ performance is improved by the 

effective computer output which is obtained from the computerized analysis of CXRs based 

on a carefully selected combination of elaborate segmentation and pattern recognition 

(feature extraction and classification) techniques.  

 So far, CAD system for nodule detection has received the most attention. Little work 

has been done in CAD development beyond lung nodules [9]. Early work to detect 

interstitial changes using simple texture features such as moments of power spectrum [13], 

fractal dimension [14], histogram based features [15], and 1-D wavelet coefficients [16] can 

be helpful for TB CAD development. However, the interstitial pattern is not a reliable 

radiographic cue for infectious TB, and most of these CAD systems are not automatic. 

Regions of interest (ROIs) usually need to be selected manually by radiologists. More 

recently, Shen et al. [17] proposed a hybrid knowledge-guided framework (HKG) for TB 

cavity detection. Although this hybrid CAD scheme is semi-automated, the detection 

accuracy is still not satisfactory. It is sensitive to parameters selection and misses cavities 

with weak boundaries. Tan et al. [18] proposed a user-guided snake model for the lung field 

segmentation, and extracted the first order statistical texture features (histogram based 

features) from the lung fields to classify the TB and normal cases. Furthermore, Patil [19] 

investigated both first and second order statistical texture features from TB CXRs, and 

suggested the second order statistical texture features is more suitable for TB opacity 

detection. Although these CAD schemes using texture features achieve better accuracy, it is 

still semi-automated, and no other high level texture features are tested and compared for 

TB detection. Therefore, the techniques and methods used in existing CAD systems for TB 

detection are still in their infancy, and the performance achievable with the latest technology 

is far below the performance by radiologists. 



 

5 

1.1.4 Proposed Intelligent CAD System for Infectious TB Detection 

The objective of our research is to develop an intelligent CAD system to aid radiologists to 

ease their workload, and to increase the detection accuracy of infectious TB. Based on our 

image database and the knowledge from the cooperant TB experts, we have developed a 

comprehensive CAD system for automatic extraction of major radiographic features of 

post-primary pulmonary tuberculosis (PPTB). The PPTB is a highly infectious TB, which is 

more likely to have transmission events or a public health consequence than other infectious 

TB. The PPTB is also named as typical TB by radiologists since it has typical radiographic 

features compared to other infectious TB named as atypical TB. The different CXR findings 

between typical and atypical TB [1] are listed in Table 1.1. While typical TB has 

radiographic features of position, volume loss, cavitation and acinar shadows (See Fig. 1.2 

for a CXR example of typical TB), atypical TB usually has no cavitation and only lower 

lobes involvement. Atypical TB such as HIV-infected TB has hilar and mediastinal 

lymphadenopathy, which represent ill-defined opacification of swollen or enlarged lymph 

nodes (See Fig. 1.3 for such an example). 

Table.	1.1.	Radiographic	features	of	typical	and	atypical	TB	

Typical TB Atypical TB 

(i) Position: apical-posterior segments of upper lobes or superior 

segment of lower lobes in 90%. 

(ii) Volume Loss: a hallmark of TB as a result of its destructive 

and fibrotic nature. 

(ii) Cavitation: defined as a parenchymal cyst greater than 1 cm 

diameter; usually seen at later stage and depends upon a 

vigorous immune response. 

(iv) Acinar shadows: opacities representing opacification of the 

individual pulmonary acinus. Multiple acinar shadows create the 

confluent, ill-defined opacity characteristic of consolidation. 

(i) Hilar and mediastinal 

lymphadenopathy, 

particularly in HIV- 

infected TB.  

(ii) Non-cavity infiltrates 

and lower lobes 

involvement. 
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Cavity 

Acinar Shadows 

Volume Loss 

 

Fig.	1.2.	 An	example	of	typical	TB.	

                      

 

Lymphadenopathy 

 

Fig.	1.3.	 An	example	of	atypical	TB.	

 To address the deficiencies of current TB-related CAD systems, we propose a 

conceptual framework of an automated and intelligent CAD system to detect infectious TB. 

The flow diagram of this framework is shown in Fig. 1.4. It consists of several steps, such 

as image preprocessing, identification of suspicious location, feature extraction and 

classification, further feature analysis and final decision analysis. It is observed that the 

CAD system can be divided into two major parts: CAD and CADx. The techniques 

discussed in this thesis are mainly focused on the CAD part. In particular, we propose an 

automatic lung field segmentation technique to overcome the problem of ROI’s manual 

selection. We extract both low level (edge, regional and geometric) and high level (shape 

and textural) image features of those typical TB patterns (such as cavities and acinar 



 

7 

shadows). To overcome the variation of abnormalities, these features are fed into intelligent 

training based classifiers to complete the detection task. Our contribution will be explained 

in the next section. Note that, the scheme of our CAD and some techniques for automatic 

feature extraction are also expected to be applied into other CAD applications. 

 
 

 

Fig.	1.4.	Conceptual	framework	of	the	intelligent	CAD	system.	
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1.2 Contributions and Thesis Organization 

The major contributions of this thesis are listed below: 

 Contribution I: An efficient technique using edge-region force guided active shape 

model (ERF-ASM) for automatic lung field segmentation has been proposed [20][21] 

(presented in Chap. 3). 

 Contribution II: A hybrid system using coarse-to-fine dual scale (CFDS) feature 

classification technique for TB cavity detection has been proposed [22][23][24] (presented 

in Chap. 4). 

 Contribution III: A hybrid system using multiple texture features based boosting 

technique for acinar shadows detection has been proposed [25] (presented in Chap. 5). 

 The rest of the thesis is organized as follows. Chap. 2 presents a review of related 

state-of-the-art techniques. Chap. 3 presents the proposed ERF-ASM lung field 

segmentation technique. The proposed hybrid systems for TB cavity and acinar shadows 

detection are presented in Chap. 4 and Chap.5. Chap. 6 concludes this thesis and mentions 

the potential future work. This is followed by the bibliography and appendix. 
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Chapter 2 

Review of Related Works 

Segmentation and pattern recognition are usually the two fundamental stages for automatic 

detection of abnormalities in most existing CAD systems [26][27]. Segmentation is the 

stage where anatomical structures (e.g. lung field) and abnormal objects (e.g. lung nodules 

and cavities) are delineated from background. Pattern recognition algorithms are then 

applied to the segmented structures to extract the essential medical features (such as shape, 

texture, and size), followed by the feature classification to determine normal and abnormal 

cases. In this chapter, we present a review of state-of-the-art segmentation and pattern 

recognition techniques used in CAD systems. Some of these techniques have been utilized 

in our proposed systems. Segmentation techniques are reviewed in Section 2.1, and the 

feature descriptors and classifiers are reviewed in Section 2.2. 

2.1 Segmentation Techniques 

A wide variety of segmentation techniques have been proposed for medical image 

processing, such as thresholding [56], edge tracing [57], expectation maximization [78] , 

active shape model (ASM) [28], and active contour model (ACM) [37]. Typically, a 

technique is chosen based on the application. In this section, we review two state-of-the-art 

segmentation techniques, ASM and ACM, which have been shown to provide excellent 

performance for medical images. 

2.1.1 Active Shape Model (ASM) 

The ASM is a statistical model of the object’s shape, which iteratively deforms to fit to the 

object in a new image. Since shape prior knowledge is incorporated, ASM-based techniques 
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have been successfully applied in segmenting anatomical structures or organs in medical 

images, such as lung fields. The schematic of a typical ASM method [28] proposed by 

Cootes et al. is shown in Fig. 2.1. It contains three main stages: shape learning stage, 

initialization stage and segmentation stage. 

 

Fig.	2.1.	Schematic	of	a	typical	ASM	segmentation	method.	

2.1.1.1 Shape Learning Stage 

In this stage, the shape prior and the gray level pattern of the objects are learnt by 

statistically analyzing the training image dataset. These two tasks are executed by shape 

model and gray level appearance model (GLAM) generation. 

 Shape Model Generation: A deformable shape model is computed from the manually 

annotated shapes on M training images. Assume that the object shape on the ith image is 

denoted by ( )ˆ iC and each shape has N points (henceforth referred to as the landmark points), 

the shape ( )ˆ iC can then be represented as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ),( , ),...( , ) , 1,2,..., .i i i i i i i
N NC x y x y x y i M       (2.1) 

 Before generating the shape model, all shapes must be aligned in the same way. An 

iterative method called generalized Procrustes analysis [29] is applied for the alignment. 

This method results in a set of aligned shapes ( )iC  with the least-square approach (See 



 

11 

details in Appendix A). Principal Component Analysis (PCA) is then performed to 

approximate any aligned shape in the training set as follows: 

( ) ( )i i
k kC C P b             (2.2) 

where ( )

1

1 M
i

i

C C
M 

   is the mean shape of aligned shapes, Pk=[p1,p2,…pk] is the matrix 

corresponding to the first k eigenvectors, and ( )i
kb =[b1,b2,…bk]

T is a vector of weights that 

defines the shape parameters. Note that eigenvectors are calculated from the covariance 

matrix ( ) ( )

1

1
( )

M
i T i

i

S dC dC
M 

  , where ( ) ( )i idC C C  . 

 By varying shape parameters b, new shapes could be generated using Eq. (2.2). To 

make sure that a new shape is similar to one of those in the training set, shape parameters 

need to be constrained within suitable limits. Therefore, a shape model with a form of Eq. 

(2.2) is generated to model any allowable shapes. 

 GLAM Generation: Similar to the shape model generation, the PCA is applied to 

characterize the gray level pattern around each landmark point. In general, any region 

around a landmark point can be studied, but only a 1-D profile along the normal direction of 

the landmark point is generally considered in ASM. The GLAM of the landmark point j in 

the ith image can be approximated as: 

( ) ( )i i
j j z zz z P b             (2.3) 

where jz denotes the mean gradient profile along each point’s normal direction, Pz is a 

matrix consisting of significant modes of gray level variations, and bz is a vector of weights 

that defines the gray level parameters. Note that although being standard in typical ASM 

frameworks, the underlying assumption of a normal profile distribution often does not hold. 

Thus, optimal local features based on machine learning in the vicinity of landmark points 

were considered. For example, Ginneken et al. [30] used the local texture features learnt by 

the k-nearest neighbor (kNN) classifier. Shi et al. used the local Scale Invariant Feature 
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Transforms-based (SIFT) features [31] as the profile. 

2.1.1.2 Initialization Stage 

Given a test image, a close initialization is first needed to generate an approximate fit to the 

object shape. This is done by putting the mean shape C  
1 1 2 2{( , ), ( , ),..., ( , )}N Nx y x y x y  in 

the center of test image with a user-guided transformationΤ, whereΤ is a function of 

translation t, rotation , and scaling s of the mean shape as follows: 

(0) cos sin
( ) ( , )

sin cos
j

j

x

y

t
C T C Q s C t s C

t

 


 

  
       

    
  (2.4) 

where 
cos sin

( , )
sin cos

Q s s
 


 

 
  

 
and t=

j

j

x

y

t

t

 
 
  

. The affine parameters  , s, and t are 

manually chosen to ensure that the initial contour is reasonably close to the target shape. 

Several efforts have been made to automate the initialization [32][33][34][35][36]. 

2.1.1.3 Segmentation Stage 

After an initial contour has been estimated, both shape model and gray level appearance 

model generated in the learning stage are used for segmentation using the following three 

iterative steps: 

 Step 1: Estimation of Desired Movements for Each Landmark Point Using GLAM 

 In this step, for each landmark point, a target point along the 1-D searching path is 

located by matching its gradient profile with GLAM of the corresponding landmark point. 

In Fig. 2.2 (a), landmark points of the initial contour are shown as (●), while target points 

on the object boundary are represented by (○). One of the landmark points’ searching path is 

shown in Fig. 2.2 (b). For the landmark point (xj,yj), a straight line CD perpendicular to the 

straight line AB passing through the points (xj-1, yj-1) and (xj+1, yj+1) is treated as the 

searching path along the normal direction. Within this searching path, the target point is 

expected to have a gray level pattern that best matches the GLAM obtained from the 
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learning stage. Let (dxj, dyj) denote the movement of the jth landmark point to its target point. 

This procedure is repeated for all the landmark points (1 ≤ j ≤ M) to obtain the vector of 

desired movements dC, where dC = {(dx1, dy1), (dx2, dy2),…, (dxN, dyN)}.  

 

Fig.	2.2.	Searching	an	approximate	model	fit	for	target	points.	

 Step 2: Calculation of the Adjustments to the Affine and Shape Parameters 

 After obtaining the desired movements dC, the new shape ( 1)
new

nC dC C   needs 

to be constrained within the shape model. In other words, the affine and shape parameters 

need to be adjusted in order to ensure the similarity between the new shape and training 

shapes. Let the adjustments of the affine and shape parameters be denoted as ( , , )d ds dt  

and kdb , respectively. The adjustments at nth iteration are then calculated as follows. 

 (1) ( , , )d ds dt  is obtained by aligning newC   to ( 1)nC   using the least-square 

 approach explained in Appendix A. 

 (2) Calculate the affine adjusted shape, ( 1)( + , + ) + +n
adjC Q s ds d C t dt   . 

 (3) Calculate the shape adjustment, new( )T
k k adjdb P C C  . 

 (4) Calculate the final adjusted shape, ( ) ( )n
k k kC C P b db   . 
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 Step 3 – Iteration from Step 1 until Changes Become Negligible 

 Starting with the updated new contour ( )nC  after the previous affine and shape 

parameters adjustments, the procedure is iterated in the same way from step 1 to step 2, 

until movements of all landmark points are within a predefined limit. Note that the search 

strategy in the typical ASM is to find the target point by only inspecting the local edge 

gradients along the normal direction of landmark point, which can easily trap the search in a 

local optimum instead of reaching a global optimum. 

2.1.2 Active Contour Model (ACM) 

Active contours have been widely used in medical image segmentation, especially for 

segmenting abnormal objects with large shape variations or little shape prior such as tumors 

or cavities. In general, ACMs can be divided into two major types: parametric active 

contour (typically known as snake) and geometric active contour (typically known as level 

set). The major difference between the snake and the level set is in the representation of the 

contour. While the snake method represents the contour explicitly as a parameterized curve, 

the level set method implicitly represents the contour as the zero level set of a high 

dimensional function. We focus on the development of the snake-based methods for two 

reasons: 1) snakes are often faster than level sets in virtue of efficient numeric methods and 

lower complexity; 2) although level set handles topology changes better than snake, it may 

produce many false alarms in the presence of noise. Two examples of “false” objects 

segmented by level set are shown in Fig. 2.3.  

 

(a) (b) (c) (d) 

Fig.	2.3.	Examples	of	“false”	objects	extracted	by	level	set.	
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2.1.2.1 Traditional Snake and Its Development 

The traditional snake model, first introduced by Kass et al. [37], is a parametric curve which 

deforms on the image domain and capture desired image features by minimizing the 

following energy functional: 

1 2 2

0

1
( ( )) ( '( ) ''( ) ) ( ( ))

2snake extE v s v s v s E v s ds          (2.5) 

where v(s)=(x(s),y(s)), s∈[0,1] represents a parametric curve, αandβare weighting 

parameters determining the strength of the model’s tension (elasticity) and rigidity 

(stiffness), respectively, and v’(s) and v’’(s) are the first and second derivatives of v(s) with 

respect to s. Eext denotes the external energy, the value of which is small at image features, 

such as edges. At the minima of Eq. (2.5), the contour must satisfy the Euler-Lagrange 

equation 

'' v '''' 0extv E              (2.6) 

which can be treated as a force balance equation 

int ( ) ( ) 0extF v F v              (2.7) 

where int ( ) '' v ''''F v v    is the internal force constraining contour’s smoothness, and 

( ) ( )extextF v E v   is the external force attracting the contour toward image features. 

Gradient descent and numerical approximation methods [37] are then applied to solve the 

Eq. (2.6). This parametric active contour model became popular quickly due to its natural 

ability of handling shape variations. However, the traditional external force relies directly 

on the image’s gradient which inevitably limits the capture range. 

 Efforts made to improve the performance by designing different external forces can be 

generally classified as static forces and dynamic forces. The static forces calculated from 

the image remain unchanged while the dynamic forces dependent on the snake change as 

the snake deforms. Cohen [38] presented a static distance potential force (DPF) using 

negative gradient of a Euclidean distance map, which enlarges the capture range but has 

difficulties with concave shapes and leakage problem. Thus, Xu and Prince [39] proposed a  
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Fig.	 2.4.	 Stationary	 or	 saddle	 point	 examples	 in	 GVF	 and	 BVF.	 (a)	 Acute	 concave	

shape	with	an	initial	contour	as	a	blue	circle;	(b)	Segmentation	result	using	GVF;	(c)	

Segmentation	result	using	BVF;(d)	Stationary	point	in	GVF;	(e)	Saddle	point	in	BVF;	

(f)	GVF	force	field	of	the	local	area	containing	stationary	point	(the	black	point);	(g)	

BVF	force	field	of	the	local	area	containing	saddle	point.	

new static external force model named as gradient vector flow (GVF) by diffusing the edge 

gradient. However, the capture range of GVF is still not the entire image and the diffusion is 

time-consuming. Sum and Cheung [40] presented a novel four-direction interpolation of the 

edge gradient called boundary vector flow (BVF) to extend the capture range with lower 

   
(a) (b) (c) 

  
(d) (e) 

  
(f) (g) 
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Table.	2.1.	Snakes	using	static	external	forces	 extF 	

computational cost. Note that the GVF and BVF force fields have stationary or saddle 

points where the sum of external forces is zero. At these points, the contour may fail to 

evolve to reach acute concavities. Fig. 2.4(a) shows an object with an acute concavity where 

the blue circle is the initial contour of the snake. Fig. 2.4(b) and (c) are the snake evolution 

results of the GVF and BVF, respectively. Fig. 2.4(d) and (e) are the external force fields of 

Snakes extF  

Traditional [37]  

2
( * ( , ))extF G I x y    

where Gσ is a 2-D Gaussian kernel with standard deviation σ. 

DPF [38]  

( ( , ))DPFF d x y   

where ω is a constant, 1    controls the outward or inward 

direction,   is a normalized operator, d is the Euclidean distance 

between a point (x,y) and the nearest point in the binary edge map. 

GVF [39]  

( , )GVFF u v , by solving 

2

2

(1 )( ) 0

(1 )( ) 0

x

y

g u g u f

g v g v f

     


    
 

where 
2

( , ) ( * ( , ))x y Gf If x y  , 
| |

exp( ( ))
f

g
k


  , 

and k is a positive constant. 

BVF[40]  

1 1

2 2

= =( , )

2 2
= =( ( + ), ( - ))

2 2

BVF x y

BVF xy yx xy yx

F

F

  



    


 

where Ψx , Ψy, Ψxy, and Ψyx are four potential functions computed 

using line-by-line interpolations in the horizontal, vertical, and two 

diagonal directions. The final FBVF is obtained by applying two 

BVFs one by one. 
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the GVF and BVF, respectively. The corresponding local areas containing the stationary and 

saddle points in GVF and BVF are enlarged and shown in Fig. 2.4(f) and (g). It is observed 

that both GVF and BVF can not evolve further to reach the acute concavity due to the 

stationary and saddle points. Therefore, recent developments of snakes have been made by 

adding a dynamic force term into the static external force to overcome this problem, such as 

GVF snake with Dirichlet boundary conditions (DBC-GVF)  [41] and fluid vector flow 

(FVF) [42]. The calculations of these static and dynamic external forces are listed in Table 

2.1 and 2.2, respectively. 

Table.	2.2.	Snakes	using	dynamic	external	forces	 extF 	

Snakes extF  

DBC-GVF [41] 

( , )DBC GVFF u v  , by solving 

2

2

(1 )( ) 0 ( \ )

(1 )( ) 0 ( \ )

( , )

( , )

  in

  in

n

0

x

y

C

D

g u g u f D C

g v g v f D C

u v

u v




     

    




 

 

where D denotes the rectangular image domain, C is the region 

bounded by ∂C, D\C denotes the set difference of D and C, ∂D 

and ∂C are respectively the boundaries of D and C, and n is the 

unit outward normal to the boundary ∂C. 

FVF [42] 

( ( ( , )) (1 ) ( ( , )))FVFF I x y f d x y        

where   is a normalized operator, 1    controls the outward 

or inward direction, |f| is the binary boundary map, and d is the 

Euclidean distance between a point (x,y) (except the points on the 

object boundary) and the center point of the contour or the control 

point on the object boundary. 
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2.1.2.2 Fluid Vector Flow (FVF) 

Among these snakes, the FVF not only has large capture range (i.e. the entire image), but 

also is able to extract the acute concave shapes due to its dynamic external force [42]. In 

FVF, the external force design is divided into two steps: vector flow initialization and FVF 

computation. The extF  in vector flow initialization step is defined as follows: 

( cos , sin )FVF x yF f f               (2.8) 

where   is a normalized operator, 1    controls the outward or inward direction, f = 

(fx, fy) is the image gradient. Since is the angle between a point (x, y) (except the points on 

the object boundary) and the center point of the contour, (cos , sin )  is actually the 

normalized Euclidean distance between them. 

 To extract the curve to acute concavity, new dynamic extF  is defined in FVF 

computation step. 

= ( + ( ), + ( ))FVF x q y qF f x x f y y          (2.9) 

where the normalized distance part is changed to the distance between a point (x, y) (except 

the points on the object boundary) and the point (xq, yq) picked up from the object boundary 

(named as control point). During curve evolution, the control point used for generating the 

additional distance force is moving along the object boundary which makes the external 

force dynamic and overcome stationary points problem. Since the Fext on the object 

boundary is zero, the convergence will be achieved when the curve move close to these 

points. 

 Note that the two-step external forces in FVF could be consolidated by the following 

equation: 

( ( ( , )) (1 ) ( ( , )))FVFF I x y f d x y            (2.10) 

where |f| is the binary boundary map, and d is the Euclidean distance between a point (x,y) 

(except the points on the object boundary) and the center point of the contour or the control 

point on the object boundary.  
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 From the Eq. (2.10), we found that the FVF is actually a combination of a static image 

gradient force and a dynamic DPF. It not only enlarges the capture range into the whole 

image, but also overcomes the convergence problem the static external forces such as GVF 

and BVF have by adding the dynamic term. However, it has two limitations. First, FVF 

suffers the same edge leakage problem as DPF. If the detected boundary encounters 

significant edge gaps, the FVF will fail to achieve accurate result. Fig. 2.5 shows an 

example, where the FVF leaks through the edge gaps. Secondly, control point selection for 

each deformation is critical. In vector flow initialization step, choice of the center point of 

the contour may not be robust. In the later FVF computation step, control point is 

sequentially selected along the object boundary, where all the boundary points are weighted 

equally. Ideally, when snaxels (points on the snake) get close to most part of the object 

boundary, the attraction force should be generated by the points located at the acute 

concavity, not at other points on the boundary. Otherwise, it may lead to inaccurate result. 

Fig. 2.6 shows an example of this effect. During the FVF computation step, if the control 

point (small black circle in Fig. 2.6) is selected from Fig. 2.6 (c) to (f), the segmentation of 

FVF will be inaccurate.  

  
(a) (b) (c) 

Fig.	2.5.	Edge	leakage	problem	in	FVF.	(a)	Object	with	two	edge	gaps;	(b)	The	initial	

contour;	(c)	Result	of	FVF.	
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig.	2.6.	Sensitivity	of	control	point	selection	in	FVF.	(a)	Object	with	acute	concavity;	

(b)	The	 initial	contour;	 (c–f)	Sequential	 results	of	FVF	with	 its	external	 force	 field	

plot;	Small	black	circle	 is	the	control	point’s	 location	and	closed	red	contour	 is	the	

evolved	contour.	
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2.2 Feature Extraction and Classification Techniques 

An image pattern can be distinguished from its neighbourhood by using an appropriate 

feature or a combination of features. These features are typically extracted based on 

different detection cues, such as intensity, shape, texture, and color [43]. Selected features 

are then fed to a classifier for making decisions about the presence of a specific pattern. 

Feature extraction is therefore a key step in pattern recognition. The classification accuracy 

critically depends on the quality of the feature descriptors. Various types of feature 

descriptors have been proposed and reviewed in the literature [43][44][45][46]. However, 

descriptors used in practice still depend on the intrinsic characteristics of the images and 

applications. Thus, in this section, we briefly provide an introduction to the feature 

extraction and classification methods which have a particularly significant impact on the TB 

detection task. 

2.2.1 Feature Descriptors 

2.2.1.1 Histogram based Statistical Features (HS) 

Since image histogram carries rich information about image grey levels, histogram based 

statistical features (HS) are widely used in image texture analysis. They have also been used 

to discriminate the abnormal TB CXRs from normal ones in [15][18]. Given an image with 

L grey levels in the range [0, L-1], the normalized histogram of the image is a discrete 

probability density function 
( )

( )
i

p i





, where Ψ(i) is the number of pixels in the image 

with intensity i (i = 1,2,…, L-1), and Λ is the total number of pixels in the image. Instead of 

using histogram directly as a feature, statistical features based on histogram are usually 

applied in practice. Typically, six statistical features including average intensity (mean), 

average contrast (standard deviation), smoothness, skewness, uniformity and entropy are 

calculated as follows: 
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      (2.11) 

2.2.1.2 Grey Level Co-occurrence Matrix (GLCM) based Features 

Spatial GLCM based features are well-known and widely used texture features in computer 

vision. These features have also been used for texture analysis of TB CXRs [19]. 

Considering an image I with possible L grey levels, let the GLCM and its elements be 

denoted as CM and cmij, respectively (0 ≤ i, j ≤ L-1). Given a specific displacement (d, θ), 

cmij(d, θ) counts the number of pixel pairs (x1, y1) and (x2, y2) whose grey levels are i and j 

respectively, and (x2, y2) = (x1+dcosθ, y1+dsinθ). It could be represented as:  

 1 1 2 2 1 1 2 2( , ) ( , ), ( , ) : ( , ) , ( , )ijcm d x y x y I x y i I x y j      (2.12) 

where   is the cardinality of a set. Four angles θ = 0°,45°,90°,135° are usually 

considered. Fig. 2.7 shows an example of generating CM(1, 0°) for a given image I with L = 

3. Before calculating the GLCM-based features, ijcm  usually needs to be normalized as 

'
1 1

0 0

ij
ij L L

ij
i j

cm
cm

cm
 

 




. Texture features, such as contrast, correlation, energy and homogeneity, 

are then derived from the normalized co-occurrence matrix as follows: 
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where , , , and x y x y    are the means and standard deviations of '
ij xcm  and '

ij ycm , 

respectively, and 
1
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Fig.	2.7.	An	example	of	constructing	a	co‐occurrence	matrix	CM	of	an	image	with	L	=	3	

and	(d,	θ)	=	(1,	0°).	

2.2.1.3 Local Binary Pattern (LBP) based Features 

The LBP [47] is a hybrid texture feature widely used in image processing. It combines the 

traditionally divergent statistical and structural models of texture analysis. The LBP feature 

has some key advantages, such as its invariance to monotonic gray level changes and 

computational efficiency. Let the general LBP operator based on a circularly symmetric 

neighbor set of P members on a circle of radius R be denoted as ,P RLBP . It is obtained by 

 0 1 2 
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thresholding the gray levels of the neighborhood pixels with respect to the center pixel as 

follows  

1

,
0

1 if  0
2 ( )      Note: ( )

0 otherwise

P
p

P R p c
p

x
LBP s g g s x





  
    

 
  (2.14) 

where gp, gc are gray levels of the neighborhood pixels and center pixel, respectively. 

Different LBPs are generated using this LBP operator, for example, there are 256 possible 

binary patterns in a 3×3 neighborhood, i.e. P = 8, R = 1(Fig. 2.8 shows an example of one 

LBP 10010111 which is 151 in a clockwise 3×3 neighborhood). Statistical features based on 

the histogram of these LBP values can then be used as a texture descriptor, such as six HS 

features described in Eq. (2.11). 

 It was found that some LBPs are fundamental since they take up the vast majority of 

local texture patterns [47], and these fundamental patterns are called “uniform” patterns. 

Therefore, by introducing a uniformity measure U which corresponds to the number of 

spatial transitions (bitwise 0/1 changes) in the pattern, a new LBP operator, denoted 

as 2
,

riu
P RLBP , is calculated as follows:  

1

,2
0,

( )  if ( ) 2

1               otherwise

P

p c P Rriu
pP R

s g g U LBP
LBP

P






  

 


     (2.15) 

The superscript riu2 reflects the use of rotation invariant “uniform” patterns that have U 

values of at most 2. Eq. (2.15) assigns a unique label to each of the “uniform” patterns 

corresponding to the number “1” bits in the pattern, while the “nonuniform” patterns are 

grouped under the label P+1. Using this new LBP operator, the number of binary patterns 

will be greatly reduced. For example, 256 patterns are reduced to only 10 patterns in a 3×3 

neighborhood. In Fig. 2.8, since the ,( ) 4P RU LBP  , 2
, 9riu

P RLBP  belongs to the 

“nonuniform” patterns. Comparing to the ,P RLBP , the new rotation-invariant 2
,

riu
P RLBP  

pays more attention to the “uniform” patterns and is more computationally efficient. 
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Fig.	2.8.	An	example	of	calculating	LBP	values	in	a	3×3	neighborhood.	

2.2.1.4 Histogram of Oriented Gradients (HOG) based Features 

The HOG feature [48], similar to Lowe's SIFT feature, is regarded as an excellent local 

feature descriptor to capture the edge and local shape information. It has a great advantage 

of being robust to changes in illumination or shadowing. The basic idea of HOG is that local 

object appearance and shape can often be characterized well by the distribution of local 

intensity gradients or edge directions. In practice, for a local image area, e.g. a rectangular 

image window with size of 64×64 pixels, its HOG feature is calculated as follows: 

 Step1. Gradient Computation: The gradient of each pixel in the window is calculated 

using two filter kernels: [-1, 0, 1] and [-1, 0, 1]T. Let the magnitude and orientation of the 

gradient of the ith pixel (1 4096i  ) be denoted by mi andφi, respectively. 

 Step2. Orientation Histogram: Each window is first divided into non-overlapping small 

regions of equal dimension (called cells), e.g., a rectangular cell of 8×8. The orientation 

histogram is then generated by quantizingφ i into one of the 9 major orientations: 

(2 1)

9 9

k  
 , 1 9k  . The vote of the pixel is weighted by its gradient magnitude mi. 

Thus, a cell orientation histogram Hc is a vector with dimension of 1×9.  

 Step3. Block Normalization: For better invariance to illumination or shadowing, cells 

are grouped into larger spatial regions (called blocks) and the orientation histograms in a 

block are normalized to increase the local contrast. For example, we set the block size as 2

×2 cells (i.e., 16×16 pixels), and the overlap between two neighboring blocks is 1/2 of the 

block size. Therefore, a whole window of 64×64 pixels contains 49 blocks. The block 
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divisions for an image window are shown in Fig. 2.9. The feature vector of one block Hb is 

concatenated by four cell histograms: Hb = [Hc1 Hc2 Hc3 Hc4]. Note that, the orientation 

histogram of a block Hb is a vector with dimension of 1×36. The normalized HOG vector 

is then calculated as follows. 

ˆ b
b

b

H
H

H
             (2.16) 

where .  represents the L2-norm. 

 

Hb = [Hc1 Hc2 Hc3 Hc4],where a cell 

orientation histogram Hci is a vector 

with dimensions of 1×9, i = 1, 2,3,4. 

Fig.	2.9.	The	block	and	cell	divisions	in	a	window	image.	Letters	b	and	c	stand	for	a	

block	and	a	cell,	respectively.	

 The final HOG feature vector of an image window (with 49 blocks) is a concatenated 

vector of all 49 normalized block orientation histogram ( ˆ
bH ), and will have a dimension of 

1×1764 in this example. 

2.2.2 Feature Classifiers 

To best utilize the prior knowledge of radiographic features in CXRs, supervised learning 
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based feature classification has been adopted in most CAD systems [49]. Although there are 

generative and discriminative approaches in supervised learning, discriminative approaches 

achieve more popularity in practice. That’s because discriminative approaches generally 

outperform generative ones in classification tasks, and are not so sensitive to the presence of 

irrelevant features [50][51] . Therefore, in this section, we will review the basic idea of two 

state-of-the-art discriminative classifiers: Support Vector Machine (SVM) [52] and Adaptive 

Boosting (Adaboost) [53]. 

2.2.2.1 Support Vector Machine (SVM) 

The SVM is one of the leading classifiers for its excellent performance and efficiency. In 

addition to performing linear classification, SVMs can efficiently perform non-linear 

classification using what is called the kernel trick, implicitly mapping their inputs into 

high-dimensional feature vector spaces [52]. For two-class classification, the optimal 

separating hyperplane in SVM to separate two sets of data in a feature vector space is 

defined by 0w x b  
 

, where x


 is the feature vector space, w


 is the normal vector to 

the hyperplane, and b is the offset of the hyperplane from the origin. Given M training 

feature vectors  ,1kx k M 


, and the corresponding ground truth classification result 

 [1, 1],1ky k M    , the optimal hyperplane coefficients vector w


 is generated as 

follows: 

 21
min , . . ( , ) 1, 1

2
       k kw s t y w x b k M    

  
  (2.17) 

where ( )   denotes a kernel function [52]. The SVM training builds a model that is able 

to distinguish the belonging class of any future data based on the Support Vectors obtained 

by the training dataset. Any new feature vector ix


 is classified according to the output of 

the decision function: 
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1

( ) ( , )
M

i k k k i
k

D x y x x b


    
       (2.18) 

where k  is the Lagrange multiplier. If ( ) 0iD x 


, it means ix


 belongs to class 1y  , 

and if ( ) 0iD x 


, it means ix


 belongs to class 1y   .  

2.2.2.2 Adaptive Boosting (Adaboost) 

Boosting is a general technique for improving performance of any given classifier. It can 

effectively combine a number of weak classifiers into a strong classifier which can achieve 

an arbitrarily low error rate given sufficient training data [53]. Compared to SVM, boosting 

techniques such as Adaboost, the most popular boosting method, have less parameters to 

tune, are more resistant to overfitting problem and do not require prior knowledge of the 

features [54]. The Adaboost algorithm forms a strong classifier by combining a set of weak 

learners linearly in an iterative manner. Although any classifier achieving accuracy larger 

than 50% can be used as the weaker classifier in Adaboost, a single level decision tree 

called decision stump is typically applied in practice to reduce the computational 

complexity [53]. Given N  training examples 1 2( , ,..., )Nx x x  and corresponding labels 

1 2( , ,..., )Ny y y  with  1,1iy   , the pseudo-code of the Adaboost combing M decision 

stumps is described as follows: 

 1. Initialize the observation weights,
1 1

, ,
2 2i iw w

N N
 

    where 1,2,...,i N , 

 N N N   , ‘+’ and ‘-’ represent positive and negative samples, respectively. 

 2. For m = 1 to M 

 (a) Fit a decision stump ( )mh x  to the training data using weights ( )m
iw , where 

 ( ) ( )m i i mh x sign x t  , mt  is some feature value chosen as a threshold for the 

 decision stump. 
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 (b) Compute 

( )

1

( )

1

( ( ))
N

m
i i m i

i
m N

m
i

i

w I y h x
err

w










, where I  is an indicator function. 

 (c) Compute 
11

ln( )
2

m
m

m

err

err
 

 . 

 (d) Update ( 1) ( ) exp( ( ( ))m m
i i m i mw w I y h x   . 

 3. Combine weak learners into a strong classifier 
1

( ) ( ( ))
M

m m
m

D x sign h x


  . 

 



 

31 

Chapter 3 

Automatic Lung Field Segmentation 

Automatic and accurate lung field segmentation is an essential step for developing an 

automated computer-aided diagnosis system for CXRs. Although ASM has been useful in 

many medical imaging applications, lung field segmentation remains a challenge due to the 

superimposed anatomical structures. In this chapter, we propose an efficient technique using 

edge-region force guided active shape model (ERF-ASM) to address the inadequacy of 

ASM in lung field extraction. Experimental results using both normal and abnormal CXRs 

show that the proposed technique provides better performance and can achieve 3-6 % 

improvement on accuracy, sensitivity and specificity compared to traditional ASM 

techniques. 

3.1 Introduction 

A CAD procedure in chest radiography involves various steps including lung field 

segmentation, feature extraction and analysis. Since only the information inside the lung is 

required, automatic lung field segmentation becomes a mandatory pre-processing step for 

computerized analysis of CXRs. Accurate segmentation results will provide useful 

information for the later feature extraction and analysis steps. A robust lung field 

segmentation technique, accurately isolating the target region from the background, will 

reduce the high false positive rates. 

 Previous efforts on lung field segmentation approaches can be classified into two 

categories: low level and high level methods. Low level methods focus on pixels and edges, 

such as thresholding, edge detection and linking, and pixel-based classification or clustering, 

to guide segmentation. For example, Armato et al.[56] used a combination of gray-level 

thresholding and contour smoothing for lung field segmentation. Duryea et al. [57]  
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proposed a heuristic edge tracing approach to extract lung regions. McNitt-Gray et al. [58] 

developed a method using feature-based classification of pixels for segmenting the lung. Shi 

et al. [59] proposed a Gaussian kernel-based fuzzy clustering algorithm with spatial features 

for automatic lung field segmentation. These techniques without prior knowledge are 

usually fast and automatic but often not reliable due to the variability that exists in an image, 

e.g., abnormal anatomy and poor image quality. 

 High level methods, on the other hand, try to utilize the prior knowledge of generic 

thoracic images to overcome the shortcomings of the low level methods. Two types of high 

level methods have been applied on lung field segmentation. The first type is 

knowledge-based model matching techniques. For example, Brown et al. [60] developed a 

knowledge-based system which matches image edges to a lung boundary model. This 

knowledge-based method was later refined by Park et al. [61] and Luo et al. [62]. However, 

the anatomical models used in these knowledge-based systems are fixed and sensitive to the 

lung shape variation or patient’s positioning. 

 Another type of high level methods is active contours incorporated with shape priors. 

An example of active contour techniques is level-set with shape priors (LSSP). Three types 

of LSSP have been successfully applied into different medical imaging modalities: 

edge-based LSSP, region-based LSSP, and hybrid (both edge and region-based) LSSP. For 

example, Leventon et al. [63] first incorporated shape priors into the edge-guided geodesic 

active contours (GAC) using level-set. These techniques are sensitive to image noise and 

weak edges. Tsai et al. [64] proposed to combine the shape constraint into the Chan and 

Vese (CV) model [65] to overcome the drawbacks of edge-based LSSP. However, the CV 

model’s assumption (foreground and background regions are statistically homogenous) 

causes these methods to fail when segmenting images with intensity inhomogeneity. 

Appropriate computation of foreground and background in local regions need to be 

considered [66]. Bresson et al. [67] finally consolidated the GAC and CV models with 

shape priors under the level set framework. Similar hybrid LSSP [68] is proposed for lung 
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segmentation by considering specific image features in CXRs, in which the region related 

energy term assumes the foreground and background regions follow the Gaussian 

distribution, and the edge related energy term combines the low level canny edge map and 

castrophenic angle corner feature. The hybrid LSSP techniques and the edge-based and 

region-based LSSP compensate each other, but increases the complexity, such as higher 

computational cost and more parameters to adjust (e.g., weights of edge, region and shape 

related energy terms). More discussion on LSSP can be found in the Appendix B. 

 Active contours of snake and ASM have achieved more popularity for lung field 

segmentation in recent years. Iglesias et al. [69] first introduced the snake with shape 

constraint for detecting lung contours, and studied the influence of the different parameters 

of the snake. Yu et al. [70] derived the nonlinear shape statistics which were used for shape 

regularization in snake. Nevertheless, snake suffers from sensitivity to parameters selection 

and limitation of one object segmentation. ASM was then proposed by Cootes et al. [28] to 

overcome these problems. Ginneken et al. [30] applied an ASM with optimal texture 

features for lung field segmentation based on machine learning. Shi et al. [31] combined the 

local SIFT feature to the ASM for detecting lung field. Iakovidis et al. [71] applied ASM 

supported by selective thresholding for detecting lung boundaries in portable CXRs. 

Although ASM-based techniques have achieved satisfactory segmentation results, these 

techniques focus on exploiting local features and thus can fail to locate global features. 

Without global regulation and given the superimposed anatomical structures on CXRs, 

shape restrictions plus local features alone are unable to achieve optimal segmentation [72]. 

Hence, satisfactory convergence relies very much on how close their initialization is to the 

actual lung field contour. To overcome this initialization problem, a user-guided manual 

initialization is used in the typical ASM [28], making this method supervised and not 

automatic. Cootes et al. [32] proposed a multi-resolution approach, which could extend the 

search to include points farther away but still within a certain distance limit. Brejl et al. [33] 

used an exhaustive search for those situations in which the object might be located 
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anywhere in the image. Specific features such as intensity feature introduced by Li et al. [34] 

and color feature introduced by Mahoor et al. [35] are used for automatic initialization, but 

these techniques are task-specific. Cosio [36] proposed a more complex automatic ASM 

which combines pixel classification with a multi-population genetic algorithm. Similar to 

the exhaustive search, the computational cost is very expensive.  

 In this chapter, we propose an efficient automatic segmentation technique for lung 

boundary detection in CXRs. The proposed method applies the global edge and region force 

(ERF) field to guide the ASM framework, which makes the automatic initialization and 

segmentation stages more robust. Experimental results show that our method significantly 

improves the typical ASM [28] and performs better than the hybrid LSSP [68] segmentation 

methods in terms of accuracy, sensitivity and specificity, as well as time efficiency. 

3.2 Proposed ERF-ASM for Lung Field Segmentation 

As pointed out in Chap. 2, due to its local search scheme the performance of ASM relies on 

an initialization sufficiently close to the target. In this section, we present our global 

ERF-ASM for lung field segmentation to address the limitations of typical ASM. The 

proposed method also applies PCA analysis to learn the lung fields’ shape prior, which is 

then applied to regularize the later ERF-based segmentation. Our contributions compared to 

the typical ASM [28] include: (1) Generating the initial shape automatically based on the 

global edge and region information.; (2) Applying a new point evaluation technique when 

locating the target contour of the lung field; (3) Removing the constraint of placing initial 

landmark points sufficiently close to the target contour. The proposed procedure (Fig. 3.1) 

contains three stages: shape learning stage, automatic initialization stage, and segmentation 

stage. The novelty lies in the last two stages, which are described below. 
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Fig.	3.1.	Schematic	of	our	proposed	ERF‐ASM	for	automatic	lung	field	segmentation.	

3.2.1 Automatic Initialization Stage 

In order to obtain accurate segmentation, a preliminary but crucial step is to estimate the 

affine parameters for automatic initialization. Different automatic initialization approaches 

for ASM and their weaknesses have been discussed in the Introduction. Given the low 

contrast in CXRs, to achieve automatic initialization is a major challenge. In order to 

overcome the limitations of previous methods, we introduce global edge and region features 

analysis into the Poisson Inverse Gradient (PIG) initialization process. 

 The PIG initialization method estimates the energy field from the force field that 

corresponds to the object shape in the image, and uses this estimated energy field to 

determine the most likely initial contour for the segmentation [73]. This automatic 

initialization is achieved in two steps. 

 Step 1 – Estimating the Energy from the Given Force by Solving Poisson’s Equation 

 The PIG approach estimates the energy field E such that the negative gradient of E is 

the closest vector field to the force field F in the L2-norm sense. Then, the problem 

becomes: 

2
arg min ( , ) ( , )

E
E E x y x y dxdy   F      (3.1) 
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It can be shown that E is the unique solution of the following Poisson’s equation: 

( , )E div x y   F           (3.2) 

where 
2 2

2 2( ) ( )x y

 
  

 
 is the Laplacian operator, and F

u v
div

x y

 
  

 
 is the 

divergence of F = (u, v). In discrete domain (e.g., images), numerical methods are often 

applied to calculate E. 

 Step 2 – Selecting the Isomodel of the Estimated Energy for Initialization 

 After calculating the estimated E from F, different isovalues of E with contours of 

isolines can be achieved. Those isolines are candidate isomodels. Since the final result in 

Snake’s evolution is usually expected to correspond with image edges, an ideal initial 

contour should be close to those edges. Thus given an edge force, the isomodel with the 

lowest energy is chosen as the optimal initial contour. However, using edge force alone can 

lead to an inaccurate initialization as explained below. To address this issue, we propose a 

three-step automatic initialization in our procedure. 

 Step 1 – Optimal Edge and Region Map Generation 

 In this step, an edge map B and a region map R are generated for the lung field. Since 

the CXRs are noisy, an edge-preserving and image smoothing scheme is necessary. We 

apply a speckle reducing anisotropic diffusion technique [74] for smoothing the image, 

preserving the strong edges, and suppressing speckle noise. The edge map B is then 

extracted using an edge detector, such as the Canny edge detector [75]. Fig. 3.2 (b) shows 

an example of the optimized edge map of the right lung image in Fig. 3.2 (a). 

 The region map R is generated by using a two-region segmentation technique in which 

the lung region is treated as the foreground and the rest of the image is treated as the 

background. Several region segmentation methods [76][77][78] were evaluated in our 

experiments, and it was found that the expectation maximization (EM) method proposed in 

[78] provides the best performance. Hence, in this work, we use EM technique to achieve 

optimal region map R. Fig. 3.2 (c) shows the region map corresponding to the image shown 
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in Fig. 3.2 (a). Note that the broken contour in the edge map (Fig. 3.2 (b)) is enclosed after 

applying region information. 

 Step 2 – ERF Field Calculation 

 The global edge and region field vector fERF is calculated by a linear combination of 

diffused edge force field fE and diffused region force field fR as follows: 

(1 )   ERF E Rf f f           (3.3) 

where the parameter (0,1)  controls the relative weight of fE and fR in fERF. 

 The edge force is the gradient of the image’s edge map B. We adopt the gradient vector 

flow (GVF) technique proposed by Xu et al. [39] to globally diffuse the edge force field. 

The GVF field g = (u(x,y),v(x,y)) is defined by minimizing the energy functional:  

2 22 2 2 2argmin ( )ext x y x yE u u v v B B dxdy       
g

g   (3.4) 

where   is the smoothing factor, and B  is the gradient of the edge map B. Using 

variational calculus, the GVF field can be found by solving the Euler equations of Eq. (3.4). 

Finite difference approach is then applied to achieve its numerical solution on a discrete 

grid. Fig. 3.2 (d) shows the diffused edge force field fE of the CXR given in Fig. 3.2 (a). 

 The diffused region force field is generated similarly with an assumption that the 

gradient of the optimal region map R is the region force field. Fig. 3.2 (e) shows the 

diffused region force field fR of the example CXR, and Fig. 3.2 (f) is our final ERF vector 

field after combining the global edge and region force fields. 

 Step 3 – Initialization using global ERF 

 PIG-based method was reported in [73] to be more efficient than other automatic 

initialization techniques. However, using edge force alone in the PIG method can lead to an 

inaccurate initialization result. For example, the isoline passing through the gap between 

broken edges will result in an inaccurate initialization (Fig. 3.2 (h) & (j)). Therefore, we 

introduce region force and mean shape alignment to obtain better results. We perform two 
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processes as follows: 

 First, we replace the edge force with our ERF field. Thus, the Poisson Eq. (3.2) 

becomes: 

( , )E div x y    ERFf           (3.5) 

For example, given the ERF field in Fig. 3.2 (f), the estimated energy field by solving Eq. 

3.5 is shown in Fig. 3.2 (g). Next, a mean shape alignment is applied to achieve the final 

optimal initialization. The mean shape, which we derived from the shape learning stage, is 

placed in the middle of the image, and each landmark point on the mean shape seeks its 

corresponding point on the isoline obtained from the previous step. The optimal 

initialization is achieved by minimizing the distance between the mean shape and the isoline. 

All the corresponding points will gradually form an approximate shape, and the 

initialization is eventually finished by aligning the mean shape with this approximate shape. 

Fig. 3.2 (i) & (k) shows our automatic initialization results of the example images, and Fig. 

3.2 (h) & (j) are the results of the original PIG approach. Note that our auto-initialization 

technique preserves a smoother and more accurate lung field contour, and the initial contour 

could be inside, outside or overlapping the exact lung field. 
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Fig.	3.2.	An	example	of	our	automatic	initialization	using	edge	and	region	force	fields:	

(a)	 The	 original	 right	 half	 lung	 image;	 (b)	 Optimized	 edge	map	 B;	 (c)	 Optimized	

region	map	R;	 (d)	Diffused	edge	 force	 field	 fE;	 (e)	Diffused	region	 force	 field	 fR;	 (f)	

Total	 ERF	 field	 fERF;	 (g)	 Estimated	 energy	 field	 of	 the	 force	 fERF;	 (h)	 PIG‐based	

initialization;	 (i)	Our	 initialization.	Another	 comparison	 is	 shown	 in	 (j)	PIG‐based	

initialization	and	(k)	our	initialization.	

  

(a) (b) (c) (d) 

  

(e) (f) (g) (h) 

 

 

(i) (j) (k)  
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3.2.2 Segmentation Stage 

We introduce a new point evolution equation (PEE), which applies the global ERF field 

generated in the initialization stage, to lead the landmark points out of the local optima. Xu 

et al. [79] introduced the GVF field g into the ASM’s points evolution. Their PEE, including 

a given step size w and an annealing factor k, is given as follows: 

' '( )C C w k C   g          (3.6) 

where C and C’ denote the current and previous contours respectively, and the annealing 

factor 
q

p
k

t
  (constants p, q 1) decreases as the iteration time t increases. 

 Steered by both the direction and magnitude of g, this GVF-ASM improves the 

robustness and accuracy of the segmentation. However, Eq. (3.6) has two limitations: first, 

the three parameters w, p and q need to be chosen before searching for the target points and 

may need to be adjusted for different test images; second, the lung contour in a CXR is 

usually blurred, which means that the magnitudes of the gradient vectors close to the 

contour edges change only slightly. But in Eq. (3.6) the power function 1/tq decreases too 

fast compared to the corresponding changes in the gradient vectors, resulting in an early 

convergence. In order to reduce the complexity and improve the search accuracy, we 

propose a new PEE below, based on our preliminary study published in [20], which can 

provide more stability and accuracy: 

'( )' '( ( ))
g

g
C

C C w sign C e


           (3.7) 

where sign function sign keeps the GVF vector’s direction and the function exp(-|g(C’)|) 

works as a smooth monotonically decreasing function (or a speed function), which attracts 

the points to edges along the lung contour. Since the boundary of the lung field does not 

always correspond with continuous edges, we improve the performance by incorporating 

both edge and region information of the lung fields. This is done by substituting the GVF 

vector g with our ERF vector fERF. The final PEE is computed as:  
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'( )' '( ( )) .ERFf

ERFf
C

C C w sign C e


         (3.8) 

 We illustrate the difference between PEE (3.6) and (3.7) by both 1-D and 2-D force 

field examples. Fig. 3.3 shows point evolution guided by 1-D GVF field {0.01,0.02,...,g  

1, 1, 0.99,..., 0.01}.    Note that g is a GVF field corresponding to 200 points position 

(1 200x  ), and the strong edges lie at x = 100 (when 1g ) and x = 101 (when 1 g ). 

The horizontal axes represent the iteration time t, and the vertical axes represent the 

landmark point’s new coordinate x at different t. The graphs in Fig. 3.3 show the evolution 

of landmark point x over time t. Observe that in Fig. 3.3 (a) evolutions corresponding to 

both PEE (3.6) and (3.7) converge to the expected strong edges (x = 100 and x = 101) with 

parameters w = p = q = 1 for PEE (3.6) and w = 1 for PEE (3.7). However, in Fig. 3.3 (b), 

the evolution of landmark point using PEE (3.6) leads to an early false edge convergence 

with w = q =2, p = 1, while the result of using our proposed PEE (3.7) is still accurate with 

w = 2. In other words, PEE (3.6) is sensitive to parameters selection. 

 Fig. 3.4 shows another example with a different 1-D GVF whose value changes more 

rapidly compared to the g considered in Fig. 3.3, {0.01,0.06,...,0.96, 0.96, 0.91,...,  g  

0.01},  where the strong edges lie at x = 20 (when 0.96g ) and x = 21 (when 0.96 g ). 

It can be observed that the point evolution using PEE (3.6) has strong ringing effect, and 

jumps too far away from the strong edges position. 

 In the analysis depicted in Figs. 3.3 and 3.4, the proposed PEE is more accurate and 

stable; this can also be proved in the 2-D domain. Fig. 3.5 shows some evolution results of 

our point evolution process compared to Eq. (3.6). 

 After all the landmark points converge, the shape model’s parameters are updated 

accordingly. The stopping criteria can be defined by the number of iterations or a threshold 

specifying the Euclidean distance between two consecutive iterations. In the experiments, 

we used a fixed number of iterations. 
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(a) (b) 

Fig.	3.3.	Example	of	1‐D	point	evolution	using	PEE	 (3.6)	 (solid	 line)	and	PEE	 (3.7)	

(dotted	 line).	While	 both	 converging	 to	 the	 strong	 edges	 in	 graph	 (a),	 the	 point	

evolution	by	using	PEE	(3.6)	fails	in	graph	(b)	showing	that	it	is	sensitive	to	even	a	

small	change	in	the	parameter	values.	

 

Fig.	3.4.	Another	example	of	1‐D	point	evolution	using	PEE	(3.6)	(solid	line)	and	PEE	

(3.7)	(dotted	line).	When	changes	are	more	rapid	in	a	1‐D	GVF	field,	point	evolution	

using	PEE	 (3.6)	has	 strong	 ring	 effect	while	 the	 result	 of	PEE	 (3.7)	 appears	more	

stable.	

Fig.	3.5.	2‐D	points	evolution	using	PEE	 (3.6)	with	w=1,	p=20,	q=1	 (solid	 line)	and	

PEE	(3.7)	with	w=1	(dotted	line).	The	points	evolution	using	PEE	(3.6)	jumps	to	some	

false	edges	at	 iteration	 time	 t	=	10	and	20	comparing	 to	 the	more	accurate	points	

evolution	result	of	PEE	(3.7).	
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3.3 Performance Evaluation 

In this section, we compare the performance of our proposed method with the typical ASM 

[28] and LSSP [68]. 

3.3.1 Database Used and Lung Field Definition 

 Standard postero-anterior (PA) CXRs from two different databases (normal and 

abnormal) are used in our experiments: (1) a publicly available Japanese Society of 

Radiological Technology (JSRT) database [80]; (2) a CXR database from the University of 

Alberta Hospital (UAHCXR). The JSRT database contains 93 normal PA-view images with 

resolution of 2048 × 2048, and the UAHCXR image database has 50 pulmonary 

tuberculosis PA-view images with different resolutions. 

 We downsample the images in the JSRT database to 512×512 pixels and images in our 

UAHCXR database to approximately 512×512 due to the following reasons: First, in our 

experiments 512×512 is a suitable resolution agreed to by radiologists to be adequate for 

them to define ground truth and perform visual assessments. Second, for computational 

efficiency it is common to segment the lung field in lower resolution, as an initial screening 

step and then analyze higher resolutions if necessary. For example, Refs. [30][31][60][68] 

use 256×256, and Refs. [62][71] use approximately 512×512.  

 We define the lung field as the part of the CXR which contains lungs not obscured by 

diaphragm, mediastinum and heart [81]. A professional radiologist helps to manually draw 

lung field contours for both test and training images using a mouse cursor on an interactive 

interface. 

3.3.2 Parameters Configuration 

 Parameters in our proposed method are set as follows: in the shape learning stage, for 
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images from the JSRT database, we use an aligned training set of M = 23 left or right lung 

field contours, annotated with N = 30 landmark points. Twelve principal component vectors, 

which represent 90% of the total variance of the training set, are used to model the shape 

variation of the aligned lung field training set. We apply a similar process for our UAHCXR 

database with fewer CXRs, M = 20, N = 30. In the automatic initialization stage, the 

smoothness factor   is set to 0.2 empirically following previous research [39], and the 

optimal weight parameter   of 0.6 in Eq. (3.3) is found to generate good results by a 

simulation experiment which will be explained in detail in Section 3.3.3. In the 

segmentation stage, the evolution step size w in Eq. (3.8) is fixed at 1, and the number of 

iterations is set to 100. Fig. 3.6 shows an example of the segmentation process. 

    

(a) (b) (c) (d) 

Fig.	3.6.	Performance	of	 the	proposed	method	 for	 lung	 field	 segmentation:	 (a)	 left	

lung	 image;	 (b)	 ground	 truth;	 (c)	 generated	 ERF	 field;	 and	 (d)	 automatic	

segmentation	result	of	proposed	method.	

 As for the parameters in the comparative techniques of typical ASM [28] and hybrid 

LSSP [68], same parameters are followed in both training and initialization stages. In the 

segmentation stage of typical ASM, the length of searching profile along normal direction is 

selected as 19 pixels including the landmark point. In the segmentation stage of hybrid 

LSSP, after carefully tuning, the weight of shape related energy term   is set to 0.005, the 

smoothing parameter (weight of length term)   is set to 0.1, and the balancing parameter 

of low level features w  is set to 0.4. ( ,   and w  are the same symbols used in [68]) 
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3.3.3 Experiments and Analysis 

 The automatic segmentation results of the test images are compared with ground truth 

data, which was manually outlined by a professional radiologist. By considering the 

problem as segmentation between lung and background, the performance of the proposed 

method is evaluated based on three indices: accuracy, sensitivity and specificity [81], which 

are calculated as follows: 

TP TN

TP TN FP FN

TP

TP FN

TN

TN FP

N +N
Accuracy=

N +N +N +N

N
Sensitivity=

N +N

N
Specificity=

N +N

       (3.9) 

where NTP is the true positive fraction (part of the image correctly classified as lung), NTN is 

the true negative fraction (part of the image correctly classified as background), NFP is the 

false positive fraction (part of the image incorrectly classified as lung), and NFN is the false 

negative fraction (part of the image incorrectly classified as background). Another 

evaluation parameter for comparison between methods is the time-cost factor. It is defined 

as the curve evolution time based on the same initial contour to the same number of 

iterations. Our experimental platform is Matlab 2007b on an Intel Pentium 4 CPU 2.8G Hz 

with 2G RAM computer. 

 Following the above evaluation criteria, we designed two categories of experiments: (1) 

simulation experiments to determine the optimal weight parameter in ERF generation; (2) 

comparison experiments to evaluate segmentation results between hybrid LSSP technique 

[68], typical ASM technique [28] and our proposed ERF-ASM method. 

 The simulation experiment is performed by applying our ERF technique with variable 

  on 20 CXRs which are randomly selected from our image database. The segmentation 

results of both left and right lung images are illustrated in Fig. 3.7 (a) and (b). We select 

 = 0.6 to optimize accuracy, sensitivity and specificity. 
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(b) 

Fig.	 3.7.	 Simulation	 experiment	 with	 tuning	 weighted	 parameter	  	 in	 ERF	

generation	where	x	axis	stands	for	  	 value	changing	from	0	to	1,	and	y	axis	is	the	
average	accuracy,	sensitivity	and	specificity	values	over	20	randomly	selected	CXRs.	

(a)	Results	of	20	left	lung	images;	(b)	Results	of	20	right	lung	images.	 	

 The comparison experiments are applied to all the normal and abnormal images in our 

databases. The evaluation results are listed in Table 3.1. Accuracy, sensitivity and specificity 

of different methods on both left and right lung CXRs are compared. The values of these 

three indices are represented by the average value ± standard deviation. It is found that the 

proposed ERF-ASM method outperforms the typical ASM and LSSP techniques in average 

accuracy, sensitivity and specificity. For example, while the average accuracy of the left 

lung field segmentation in the JSRT image database is 91.7% using the typical ASM 
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technique, the accuracy of the proposed method is 95.2%. The sensitivity and specificity 

also increase from 81.3% to 89.7% and from 95.9% to 97.2% respectively, which indicate 

that the proposed method has higher true positive rate and lower false positive rate. 

Considering both normal and abnormal left and right lung images, the proposed method 

provides around 4%, 6% and 3% overall improvement on the segmentation’s accuracy, 

sensitivity and specificity, respectively. Similar improvement can be found by comparing 

the proposed method to hybrid LSSP technique. In addition, the standard deviations of the 

three evaluation criteria drop significantly when using the proposed method, suggesting our 

technique is more robust. As for the time-cost, LSSP is more than 800 times and typical 

ASM is more than 5 times than the proposed method, indicating our method is more 

efficient for real-time operation. Fig. 3.8 shows some segmentation results for comparison 

using the same initial contour for LSSP, ASM and our proposed method on both normal and 

abnormal left and right lung images. It can be observed that our proposed method gives 

more accurate results with respect to the ground truth. 

Table.	3.1.	Evaluation	of	different	segmentation	methods	using	the	same	automatic	

initialization.	

Database Segmentation 

Method 

Accuracy Sensitivity Specificity Time 

Cost(s) 

LSSP[68] 0.909 ± 0.020 0.857 ± 0.047 0.931 ± 0.028 320.18 

ASM[28] 0.917 ± 0.039 0.813 ± 0.083 0.959 ± 0.032 2.21 

JSRT 

(Left 

Lung) Proposed 0.952 ± 0.013 0.897 ± 0.038 0.972 ± 0.014 0.38 

LSSP[68] 0.913 ± 0.045 0.859 ± 0.061 0.944 ± 0.040 321.95 

ASM[28] 0.924 ± 0.034 0.847 ± 0.071 0.959 ± 0.035 2.38 

JSRT 

(Right 

Lung) Proposed 0.955 ± 0.014 0.912 ± 0.030 0.976 ± 0.018 0.35 

LSSP[68] 0.910 ± 0.013 0.835 ± 0.090 0.943 ± 0.039 321.45 

ASM[28] 0.903 ± 0.034 0.825 ± 0.087 0.933 ± 0.038 2.37 

UAHCXR 

(Left 

Lung) Proposed 0.946 ± 0.015 0.883 ± 0.050 0.969 ± 0.019 0.39 

LSSP[68] 0.924 ± 0.045 0.885 ± 0.086 0.947 ±0.036 320.22 

ASM[28] 0.899 ± 0.040 0.858 ± 0.085 0.912 ± 0.042 2.31 

UAHCXR 

(Right 

Lung) Proposed 0.953 ± 0.017 0.900 ± 0.044 0.977 ± 0.020 0.33 
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Images Ground Truth LSSP[68] ASM[28] Proposed 

     

     

     

     

Fig.	 3.8.	 Comparisons	 of	 segmentation	 results,	 using	 the	 same	 initialization	 and	

ground	truth,	between	LSSP,	typical	ASM	and	our	proposed	on	normal	and	abnormal	

images	(both	left	and	right	lungs).	Images	from	top	row	to	bottom	row	show	normal	

left	lung,	normal	right	lung,	abnormal	left	lung	and	abnormal	right	lung.	



 

49 

 The complexity involved in segmenting medical images varies depending on the 

anatomical structures. Lung field segmentation is challenging mainly because of the 

superimposed features, which blur the lung field region as well as create discontinuous 

edges along the contour. Although typical ASM techniques have been proved to be 

successful in other types of segmentation, they have their limitations when applied to lung 

fields. Hybrid LSSP incorporating specific edge and region features improves the accuracy 

of lung field segmentation in UAHCXR database. However, due to its higher computational 

cost and more parameters needing to be tuned, our proposed technique is much more 

preferable than LSSP in real-time application. 

3.4 Summary 

In this chapter we proposed an automatic global edge and region force (ERF) field guided 

method with non-linear exponential point evolution for lung field segmentation. 

Experimental results demonstrated that the proposed method is time efficient and improves 

the accuracy, sensitivity, specificity and robustness of the segmentation results, compared to 

the typical ASM and hybrid LSSP. Our automatic initialization also has better performance 

than the original PIG based initialization. Although we run our experiments on CXRs, the 

proposed ERF technique can easily be adapted to other image segmentation applications. 

Future developments include analyzing more complex ERF fields and other non-linear 

statistical shapes to improve the current model. 
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Chapter 4 

Efficient TB Cavity Detection 

For typical TB (PPTB), cavitation in the upper lung zone (ULZ) is a strong indicator that 

the disease has developed into a highly infectious state. Automatic and accurate lung field 

segmentation proposed in Chap. 3 has already paved the way for finding the location of 

ULZ. Our next task is to detect the presence of cavities in this area. In order to address the 

deficiency of existing computer-aided TB cavity detection methods, in this chapter, we 

propose an efficient coarse-to-fine dual scale (CFDS) technique for cavity detection in 

CXRs. Gaussian-model-based template matching, LBP and HOG-based features are applied 

at the coarse scale; while circularity, gradient inverse coefficient of variation (GICOV) and 

Kullback-Leibler divergence (KLD) measures are applied at the fine scale. Experimental 

results demonstrate that the proposed technique outperforms other existing techniques with 

respect to true cavity detection rate and segmentation accuracy. 

4.1 Introduction 

Cavitation in the ULZ is a typical radiographic feature of PPTB [1][82]. In chest 

radiography, a cavity is typically defined as a parenchymal cyst greater than one cm in 

diameter, containing either air or fluid or both [83]. Since the cavities are created by tissue 

necrosis within nodules or masses, their radiographic patterns are usually demonstrated as 

annular rings with variable wall thickness. Fig. 4.1(a) shows a CXR with a typical cavity 

(inside the rectangle region), which manifests as a focal lucent area on the image and 

appears as a “hole” in the patient’s left ULZ. However, these holes might be blurred due to 

the overlapping projection of anatomical structures or some other abnormalities in the 

neighborhood, which makes the identification of cavities a difficult task for radiologists. Fig. 

4.1(b) is another example of a TB cavity obscured by the left clavicle. Fig. 4.1(c) shows an 



 

51 

example where the cavity is overlapped with airspace opacities. 

  

(a) (b) 

 

(c) 

Fig.	4.1.	Examples	of	cavities	in	CXRs	(in	the	red	rectangle).	

 So far, insufficient research has been done for efficient detection of TB cavities. Shen 

et al. [17] recently proposed a hybrid knowledge-guided framework (HKG) for TB cavity 

detection, which contains three major steps. In Step 1, the cavity candidates are detected 

using adaptive thresholding on the mean-shift clustered CXRs. In Step 2, a segmentation 

technique is applied to the candidates to generate contours of important objects present in 

the CXR. In Step 3, the contour-based circularity and GICOV features are extracted for the 

final cavity classification using a Bayesian classifier. Although, this technique provides a 

good performance, it has several limitations. First, due to cavity size variation and the 

occlusion from neighboring superimposed anatomical structures, the mean shift cluster 
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result is sensitive to the parameter values used. Secondly, the adaptive threshold, which is a 

quadratic polynomial of GICOV score, does not perform well when the cavity boundary is 

weak. These two limitations lead to a high missing rate of true cavities. To overcome these 

problems, we propose a dual scale feature classification strategy for TB cavity detection in 

CXRs. First, a coarse feature classification step is performed to detect the cavity candidates 

by capturing the geometric, textural and gradient features in the lung field. Second, a 

Hessian matrix based technique is applied to enhance the cavity candidates, which leads to a 

more accurate contour segmentation. Finally, fine features based on the shape, edge and 

region are extracted from the segmented contours for the final cavity classification. 

Experimental results show that the performance of the proposed candidates detection, 

segmentation and cavity classification modules are superior compared to the results 

obtained using other related CAD systems. 

4.2 Proposed CFDS for TB Cavity Detection 

Computer-aided pattern recognition in CXRs is comparatively more challenging than 

pattern recognition in medical images of other body parts because of the rib cage and other 

superimposed anatomical structures in the lung field as illustrated in Fig. 4.1. After 

examining the geometric, textural and photometric characteristics of TB cavities, we 

propose a coarse-to-fine feature classification technique for cavity detection. Fig. 4.2 shows 

a schematic of the proposed technique. It is observed that there are three major steps: (i) 

coarse feature classification, (ii) contour segmentation and (iii) fine feature classification. A 

CXR is first divided into patches. In the first step, a coarse feature classification is 

performed on each image patch to identify candidates which are suspected to contain 

cavities. Two modules are used to capture the coarse features: Gaussian-model-based 

Template Matching (GTM), and LBP and HOG-based Feature Classification (LHFC). In 

the second step, contours of the chosen candidates are segmented using two modules: 

Hessian-matrix-based Image Enhancement (HIE) and Active Contour-based Segmentation 
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(ACS). The HIE is used to boost the cavity edges. The Edge-based ACS is then applied to 

segment the enhanced images. In the third step, a Contour-based Feature Classification 

(CFC) module is applied. Fine features including shape, edge and region are extracted from 

the contours. Cavity classification is then performed based on these features. A detailed 

description of these five modules is presented in the following sections. 

 
Contour 
Segmentation 

Coarse Feature 
Classification 

 

 
Fine Feature 
Classification

CXR 
Image 

GTM 
Cavity 

Candidates 

Detected 
Cavities 
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CFC ACS 
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Contours of
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Fig.	4.2.	Schematic	of	the	proposed	CAD	framework.	

4.2.1 Gaussian-model-based Template Matching (GTM) 

The template matching is a widely used technique in pattern recognition, where the 

presence of a pattern in an image is detected by comparing different parts of an image with 

a reference pattern known as template. In many TM techniques, instead of comparing a 

given template directly, a transformation of the template is matched with similar 

transformation of a candidate region using a similarity measure. Normalized cross 

correlation is often used to measure similarity because of its fast implementation using the 

fast Fourier transform. Since traditional template matching is sensitive to rotation and scale, 

rotation and scale invariant transform such as Fourier-Mellin transform [84], or 

ring-projection transform [85] can be incorporated into TM. However, these transforms 

provide good results only when a cavity shape/size deviates very little from the template 

shape/size. To avoid missing true cavities, a solution is to use a large set of templates 
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covering different cavity sizes and rotation angles. 

 Using a large set of templates can be computationally expensive but still cannot 

guarantee to detect all cavities. Therefore, the proposed technique makes use of prior 

knowledge given by TB experts to generate a customized template database specific for TB 

cavities. Observe that in the “hole” like cavity shown in Fig. 4.1(a), line-cut intensity 

profiles in various directions of the cavity region appear similar. Fig. 4.3(a) shows the 

magnified region of a cavity, and Fig. 4.3(b)-(e) show plots of the four intensity lines 

passing through the image center at 0°,45°,90°,135°. Each line’s intensity profile appears as 

a bi-modal Gaussian function. Based on the similarity of these intensity profiles, it is 

reasonable to mimic the cavity pattern using rotationally symmetric pattern such as 2D 

circular or elliptical Gaussian ring distribution (as shown in Fig. 4.3(f)). Note that if a 

line-cut intensity profile of Fig. 4.3(f) is calculated, a bimodal Gaussian distribution is 

obtained where the two major peaks correspond to the two sides of the ring. 

 

Fig.	4.3.	 Line‐cut	 intensity	profile	 analysis	 of	 ‘hole’	 like	 cavity	 region.	 (a)	 a	 cavity	

region;	(b)‐(d)	Line‐cut	intensity	profile	in	four	directions;	(f)	customized	template	

for	mimicking	the	cavity	pattern.	

 A generic 2D Gaussian ring is defined as follows: 

2 2 2

2
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         (4.1) 
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


, a and b are the two radii (distance between the origin and the 

peaks on x and y axes), I(x,y) is the image intensity function in the 2D domain, and   is 

the standard deviation of the Gaussian distribution which determines the wall thickness of 

the ring. Noting that when a = b = r, Eq. (4.1) represents a 2D circular Gaussian ring, where 
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r is the inner radius. Rotated patterns can be generated by incorporating a rotation angle   

into the following coordinate transformation: 

'cos 'sin

'cos 'sin

x x y

y y x

 
 

 
  

         (4.2) 

where x’, y’ are the pixel’s location before rotation. Using Eqs. (4.1) and (4.2), the template 

database can be built with various sizes, wall thicknesses and rotation angles by changing 

the value of parameters a, b,   and  . For example, given a 512×512 CXR with a pixel 

spacing [0.8 mm, 0.8 mm], the physical size represented by the image is 40.96 cm×40.96 

cm. Since the diameter of the largest cavity is usually less than 6 cm, we define the template 

size as 75×75. While the wall thickness is within the range of [4mm, 16mm], parameter   

is varied from 5 to 20 pixels. Fig. 4.4 shows a set of templates, with various radii, rotation 

angle and wall thickness. 

 

Fig.	4.4.	An	example	of	cavity	 templates.	a/b<1.6,	wall	 thickness	within	 [5,20],	and	

 	 =	0°,45°,90°,135°.	

4.2.2 LBP and HOG-based Feature Classification (LHFC) 

Although the proposed GTM module works well for cavities of typical shape and intensity, 

it is difficult to detect cavities obscured by anatomical structures or some other 

abnormalities in the lung field. To address this issue, we combine LBP and HOG features, 

which have been shown to be useful in human detection in handling partial occlusion [86]. 

As explained in Chap. 2, the LBP [47] is a hybrid texture feature widely used in image 

processing. It combines the traditionally divergent statistical and structural models of 
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texture analysis. The LBP feature has some key advantages, such as its invariance to 

monotonic gray level changes and computational efficiency. The HOG feature [48] is 

regarded as an excellent descriptor to capture the edge or local shape information. It has a 

great advantage of being robust to changes in illumination or shadowing. These two features 

are expected to complement well the GTM technique, especially in blurred regions 

containing cavities, to detect TB cavity candidates, 

 In the LHFC module, a feature vector, which combines the LBP and HOG features, is 

calculated for each candidate window. The feature vector is then fed to a classifier, which is 

trained offline using ground truth (cavity and non-cavity) training data. The classifier will 

assess the windows as cavity candidates (positive samples) or not (negative samples). The 

candidate windows are generated using a sliding-window paradigm where an image is 

scanned from the top left to the bottom right with overlapping rectangular sliding windows. 

The windows are scanned row-wise. The window size is consistent with the template size in 

GTM, i.e., each window has a size of 75x75. The overlap between two consecutive 

windows is 2/3 of the window size. The computation of the combined LBP and HOG 

feature vector and the classification using SVM are now explained below. 

 Step 1 - Combined LBP and HOG based Feature Extraction 

 Given an image window, the LBP values are first calculated as explained in Section 

2.2.1.3, six statistical features (mean, standard deviation, smoothness, skewness, uniformity 

and entropy) based on the LBP histogram are then extracted. Fig. 4.5(b) shows the 6 LBP 

features calculated from the image window shown in Fig. 4.5(a). To compute the 

HOG-based feature vector, for computational convenience, we first resize each 75×75 

image window into a 64×64 window using bicubic interpolation, the feature vector is then 

extracted using the 3 steps explained in Section 2.2.1.4. With the cell size of 8×8 pixels, 

and the block size of 2×2 cells, the final HOG-based feature vector of a window (with 49 

blocks) is a concatenated vector of all 49 normalized block orientation histogram, and will 

have a dimension of 1×1764. The final combined LBP and HOG features, a feature vector 
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of size 1×1770 is obtained for each image window. Fig. 4.5(c) shows the plot of the HOG 

feature vector of the image window shown in Fig. 4.5(a).  

 
 

(a) (b) 

 
(c) 

Fig.	4.5.	An	example	of	the	LBP	and	HOG	features.	(a)	An	image	window	containing	a	

cavity;	 (b)	 Six	 LBP	 features	 corresponding	 to	 (a);	 (c)	 The	 HOG	 feature	 vector	

(1x1764)	corresponding	to	(a).	

 Step 2 – Feature Classification using SVM  

 These features vectors are fed to the SVM classifier which we explained in Section 

2.2.2.1. To train the SVM classifiers, we apply the ‘leave-one-out’ method since the size of 

samples with cavities is small [87]. The training set contains the combined LBP and HOG 

feature vectors extracted from windows with and without cavities (positive and negative 

samples) in CXRs. Note that the negative samples for training were selected from the 

contralateral position of the positive samples based on the approximate symmetry of the 

lung field. We use the radial basis function (RBF) kernel function in SVM which performs 

better than other kernels such as linear, polynomial, and sigmoid kernels in our tasks. Based 

on the trained SVM model, candidate windows are detected by SVM as the positive ones. 

 An example of cavity candidate detection using GTM+LHFC is shown in Fig. 4.6. Fig. 

4.6(a) shows the original CXR, and Fig. 4.6(b) shows three detected TB cavity candidates 

C1, C2, C3. The magnified images of these candidates are also shown in Fig. 4.6(c). To 

eliminate the false positive candidates (C1 and C3), further contour segmentation and fine 
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feature classification are necessary. 

 

Fig.	4.6.	An	example	of	cavity	candidates	detection	using	the	proposed	technique.	(a)	

Original	 CXR;	 (b)	 Candidate	 detection	 results	 in	 ULZ	 obtained	 using	 GTM+LHFC	

where	the	green	rectangular	windows	(C1,	C2,	C3)	represent	the	candidates,	and	the	

blue	 dotted	 contour	 is	 the	 true	 cavity	 annotated	 by	 radiologists;	 (c)	 Magnified	

candidate	windows:	C1‐C3	(left	to	right);	(d)	HIE	results	of	C1‐C3;	(e)	IFVF	results	of	

C1‐C3	 with	 the	 help	 of	 HIE;	 (f)	 Final	 cavity	 detection	 results	 using	 fine	 feature	

classification.	Red	contour	is	the	detected	cavity,	while	the	cyan	ones	are	classified	

as	non‐cavity	contours.	
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4.2.3 Hessian-matrix-based Image Enhancement (HIE) 

As shown in Fig. 4.6 (b), the GTM+LHFC detects a large number of cavity candidates some 

of which may be false positives (e.g., C1 and C3 shown in Fig. 4.6(b)). In this section, we 

present a technique to enhance the cavity feature in a candidate, which will help in reducing 

the number of false positives. In order to reduce the effect of noise and irrelevant 

anatomical structures or abnormalities, we apply the HIE to enhance the candidates. Note 

that the Hessian matrix has been applied in the literature to enhance local patterns such as 

plate-like, line-like or blob-like structures [88]. The proposed HIE has three steps, which are 

described in the following: 

 Step 1 - Laplacian of Gaussian Smoothed Image 

 In this step, three Laplacians (in three directions) of a Gaussian smoothed image, at 

scale  , are obtained by convolving a cavity candidate with the 2nd derivative of Gaussians 

as follows: 
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

 

      (4.3) 

where ( , )I x y  is the candidate and G is the Gaussian kernel. Note that for a candidate of 

size 75×75, each of the three L matrices in Eq. (4.3) will have a size of 75×75.  Fig. 4.7 

shows the 2nd derivative of a 1D Gaussian kernel. The intrinsic characteristic of this analysis 

is that the 2nd derivative of the Gaussian kernel at scale   generates a probe kernel that 

measures the contrast between the regions inside and outside the range (- , ) in the 

direction of the derivative. 
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Fig.	4.7.	The	2nd	derivative	of	a	1D	Gaussian	kernel	probes	inside/outside	contrast	of	

the	range	(‐ , ).	In	this	example,	
2
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 Step 2 - Hessian Matrix Calculation 

 For a given   value, the Hessian matrix corresponding to pixel ( , )i ix y  in the 

candidate is calculated as follows: 

( , , ) ( , , )
( , ) .

( , , ) ( , , )
xx i i xy i i

i i
yx i i yy i i

L x y L x y
H x y

L x y L x y

 
 

 
  
 

    (4.4) 

where ( , , ) ( , , )xy i i yx i iL x y L x y  . A known problem of multi-scale analysis using 

Hessian matrix is that over-blurring can occur during the multi-scale smoothing, which may 

increase false detections [89]. Therefore, we set the   value equal to the object scale 

calculated using the method described in Ref. [90]. The object scale at every pixel is defined 

as the radius of the largest hyperball centered at the pixel such that all pixels within the ball 

satisfied a predefined image intensity homogeneity criterion. Object scale represents the 

geometric information (size) of the local structure. Object scale at the center of a blob-like 

structure is approximately equal to the radius of the blob in pixel size. 

 Step 3 - Image Enhancement Using Eigenvalues of Hessian Matrix 

 The pixel ( , )i ix y  in the candidate with intensity ( , )i iI x y , is enhanced using the 

following equation: 
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1( , ) ( , )E i i i iI x y I x y          (4.5) 

where 
1 and 2 are eigenvalues of ( , )i iH x y , and 1 2  . The intuition in Eq. (4.5) 

of using only the largest eigenvalue for cavity enhancement is based on the fact that the 

Hessian matrix has a strong edge effect (for those strong edge points, 1 2 0   ) 

[91]. Although cavities are usually embedded in noisy surroundings due to the neighboring 

necrosis caused by cavitation, the inside of a cavity (filled with air or fluid or both) still has 

lower intensity than the background. Thus the strong edge between the inside and outside of 

a cavity gives a good clue to indentify the contour of cavity. Different techniques of edge 

enhancement were evaluated in our study, such as contrast-limited adaptive histogram 

equalization [92], fuzzy C means [93] and speckle reducing anisotropic diffusion [74] 

technique, and the proposed HIE technique achieves the best performance. 

 The enhanced window candidates C1-C3 are shown in Fig. 4.6(d). It is observed that 

the annular ring-like structure is greatly enhanced. 

4.2.4 Active Contour-based Segmentation (ACS) 

In this module, we propose a snake-based technique known as improved fluid vector flow 

(IFVF) [22] to segment the cavity. As explained in Section 2.1.2.1, a snake contour 

represented by v evolves through the candidate window to reach a force balance 

equation int ext( ) ( ) 0F v F v  , where int ( )F v  is the internal force constraining contour’s 

smoothness, and ext ( )F v  is the external force attracting the contour toward image features. 

The development of snakes mainly focus on design of new static and/or dynamic terms in 

the external force, where ext static dynamic( ) ( ) ( )F v F v F v  .  

 From the discussion about FVF in Section 2.1.2.2, we improve the two limitations of 

FVF as follows: 

 First, the Fstatic in FVF is replaced by a static external force which overcomes the edge 
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leakage problem, such as GVF [39] or BVF [40]. In our task, we use BVF as the Fstatic due 

to its larger capture range and higher computational efficiency than GVF. 

 Next, the new proposed Fdynamic is achieved in three steps: 

 Step 1 - Given a HIE enhanced candidate image, a binary edge map B is generated 

using a Canny edge detector [75]. 

 Step 2 - By comparing the edge map points to the current snake contour points 

(snaxels), a new control point (xc,yc) is selected by considering the point which contributes 

more to the distance between snake contour and object boundary [22]. We use the Hausdorff 

distance to find such a point. Assuming two sets of points S and O, the Hausdorff distance is 

then defined as   ( , ) max min ( , )
s So O

h S O d s o


  where d(s,o) is the Euclidean distance 

between a snaxel s and a object boundary point o. So the control point is chosen as the point 

on the object boundary which has the Hausdorff distance value. For example, in Fig. 4.8, 

point o3 will be selected as the control point for the current snake evolution.  

 

Fig.	4.8.	An	example	of	control	point	selection.	s1‐s3,	o1‐o3	are	points	on	the	snake	

contour	and	object	boundary,	respectively.	

 Step 3 - For any snaxel (x,y) on the contour v, its Fdynamic(x,y) is then calculated as 

follows: 

dynamic

'( , )
( , ) (1 )

'( , )

d x y
F x y B

d x y
 

 


        (4.6) 

where 1    controls the outward or inward direction, and d’(x,y) is the Euclidean 

distance between points (x,y) and (xc,yc). Note that the term (1 )B  makes the Fdynamic 

zero for those snaxels which already reach edges. As a special case, when the snaxel (x,y) 

reaches the control point ( '( , ) 0d x y  ), the Fdynamic is zero since the control point is 
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selected from the edge map ((1-B)=0). Based on the edge map generated from the enhanced 

candidates images using HIE, the IFVF segmentation result of these candidates C1-C3 are 

shown in Fig. 4.6(e). The stopping criterion of the evolution is determined by computing the 

difference in locations of the corresponding snaxels between two consecutive iterations. If it 

is less than a convergence threshold t, the active contour evolution will be stopped. 

4.2.5 Contour-based Features Classification (CFC) 

The last module in our proposed technique is the CFC, which performs the fine scale feature 

classification. Three types of contour-based features: shape, edge and region, are extracted 

for the final cavity detection. These features include circularity measure [94], GICOV [95], 

and KLD [96] between the pixel intensity distributions inside and outside the contour. A 

SVM classifier is then applied using these contour-based features to identify cavity contours 

in a similar way as in LHFC. The computation of three features is explained below: 

 (1) Circularity: Assuming a contour has one centroid, L points are selected from the 

contour in L cardinal directions. The circularity of the contour is then calculated as scaled 

variance as follows: 

var( ( , ))
,    1, 2,...,

max( ( , ))
i i

i i

d x y
Circularity i L

d x y
        (4.7) 

where d(xi,yi) is the distance from the centroid to the contour point (xi,yi) in the ith direction. 

In this study, we use L = 16. The circularity feature is a feature which could effectively 

reduce the false positives. 

 (2) GICOV: Based on the observation that the inner boundary of a cavity often has 

dark-to-bright transition, GICOV value of L points on the contour is calculated as follows: 

 a) For the contour point (xi,yi) in the ith direction, its gradient in normal direction 

 gn(xi,yi) is calculated as ( , ) ( , ) ( , )n i i i i i ig x y I x y n x y  


, where ( , )i in x y


 is the 

 unit outward normal vector at this point. 
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 b) The mean and standard deviation of gn, denoted by m and s, are then calculated as 

 
1

1
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m g x y
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   and 2 2
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1
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 c) The GICOV value of the contour is finally achieved using following equation: 

GICOV
m

s L
            (4.8) 

 (3) KLD: Given the probability distributions, P and Q, of the pixel intensity values 

inside and outside the cavity in the candidate window respectively, the KLD is calculated as 

follows:  

1

( )
( ) ln

( )

B

i

P i
KLD P i

Q i

           (4.9) 

where B is the number of bins in the histogram span by P and Q. The KLD compares the 

difference in gray level distribution between the pixels inside and outside the contour. 

 Table 4.1 shows the above feature values corresponding to three contours shown in Fig. 

4.6(e). As in the coarse feature classification step, we select the SVM as the fine feature 

classifier in this step. Based on the feature values (in Table 4.1), the trained SVM classifier 

identifies the Contour-2 as a positive and Contour-1 and Contour-3 as negatives. The final 

detected cavity (corresponding to Contour-2) in the CXR is shown in Fig. 4.6(f) as the red 

contour. The result matches with the ground truth. 

Table.	4.1.	Fine	feature	values	of	three	contours	in	Fig.	4.6(e)	 	

 Circularity GICOV KLD 

Contour-1 0.11 15.33 1.49 

Contour-2 0.15 13.68 2.28 

Contour-3 0.69 15.26 0.28 

4.3 Performance Evaluation 

In this section, we evaluate our proposed CFDS technique with respect to three aspects: the 
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effectiveness of candidate selection; the accuracy of contour segmentation; and the accuracy 

of final cavity detection. 

4.3.1 Database Used and Parameters Configuration 

A cavity dataset of 35 CXRs containing 50 cavities is obtained from the UAHCXR. All the 

CXRs were independently read by three experienced chest radiologists who are specialized 

in TB diagnosis. The presence of TB cavities was confirmed by the agreement of at least 

two radiologists. The sample histograms of cavity properties such as diameter, circularity 

and wall thickness are shown in Fig. 4.9. From the histograms, it can be seen that the 

cavities vary in diameters while their circularities range mainly from 0.15 to 0.2 and most of 

them have intermediate thickness. For computational efficiency, the original CXRs are 

resized as 512×512 (or close to this size) with a fixed pixel spacing [0.8 mm, 0.8 mm]. The 

proposed cavity detection technique is implemented in Matlab 2007b on an Intel Pentium 4 

CPU 2.8G Hz with 2G RAM computer. All the parameters in the proposed technique are 

listed in Table 4.2. The SVM classifiers in both coarse and fine feature classification are 

built using LIBSVM software [97]. 

Table.	4.2.	Parameters	configuration	in	the	proposed	technique	 	

Modules Parameters Names Parameters Values 

Template size 75×75 pixels 

Wall thickness σ [5, 20] 

Aspect ratio a/b [1, 1.6] 

GTM 

Rotation angle θ {0°,45°,90°,135°} 

Window size 75×75 pixels 

Cell size 8×8 pixels 

Block size 2×2 cells 

Block overlap 2/3 

LHFC 

SVM parameters Default values in LIBSVM software  

Snake evolution direction δ 1 ACS 

Convergence threshold t 0.05 

CFC SVM parameters Default values in LIBSVM software  
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Fig.	 4.9.	 Sample	 histograms	 of	 cavity	 properties.	 (a)	 histogram	 of	 diameter;	 (b)	

histogram	of	circularity;	(c)	histogram	of	wall	thickness	of	 four	categories:	“Thick”	

(≥16mm),	 “Intermediate”(4‐15	 mm),	 “Thin”(<	 4mm),	 and	 “Uncertain”	 (wall	 not	

discernible).	

4.3.2 Experiments and Analysis 

Experiment 1 - Effectiveness of Candidate Selection 

The proposed coarse feature classification technique for candidate detection is evaluated by 
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the missing rate (MR), which is calculated as follows: 

# of Cavities Excluded from Candidates
MR 100%

Total # of True Cavities
    (4.10) 

A preliminary experiment using only GTM for candidate detection has already been 

reported in [23]. We anticipate that by integrating with other novel techniques, a better 

result can be obtained. Thus we used different combinations of LBP and/or HOG features 

together with GTM, and checked whether the missing rate could be reduced. Table 4.3 

shows our test results. 

Table.	4.3.	Candidates	detection	results	 	

 
HKG 

[17]  

GTM 

[23] 
GTM+LBP GTM+HOG GTM+LBP+HOG

# of Cavities 50 50 50 50 50 

# of Candidates 170 124 315 229 160 

# of Missing Cavities 22 18 10 17 7 

MR 44% 36% 20% 34% 14% 

 From the results, we observe that the HKG framework for TB cavity detection [17] 

missed more cavities than our proposed approach. HKG is based on an adaptive 

thresholding on the mean-shifted clustered image for candidate detection. Its high missing 

rate is due to two reasons. First, the mean-shift clustering approximates nearest neighbors 

intensities and space information but neglects the texture. Second, the adaptive threshold, 

which is a quadratic polynomial of the GICOV feature, is not suitable for modeling all 

shapes, especially when the boundary of a cavity is weak. Fig. 4.10 compares the candidates 

detection results of HKG and our technique. The green regions and boxes represent cavity 

candidates. In Fig. 4.10(a), HKG cannot identify both cavities due to the failure of 

mean-shift clustering in the noisy ULZ, while our technique is able to cover the two cavities 

(Fig. 4.10(b)). Fig. 4.10(c) is yet another example showing the adaptive threshold value 

used in HKG unable to identify the cavity. However, our technique is able to detect the 

cavity correctly (Fig. 4.10(d)). 
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(a) (b) 

 
(c) (d) 

Fig.	4.10.	Comparison	of	candidates	detection	between	HKG	 [17]	and	 the	proposed	

technique.	 (a),	 (c)	 are	 the	 results	 of	 HKG,	while	 (b),	 (d)	 are	 generated	 from	 the	

proposed	 technique.	 Green	 regions	 in	 the	 images	 are	 cavity	 candidates	 regions	

reported	 by	 different	 techniques	 and	 blue	 dotted	 contours	 are	 the	 true	 cavities	

annotated	by	radiologists.	

 Using the same parameter values for LBP and HOG as in the literature, we found that a 

combination of LBP and HOG together with GTM achieved better performance. Our 

finding is consistent with the results in human detection using LBP and HOG features [86]. 

HOG performs poorly when the background is cluttered with noises. LBP is able to alleviate 

this deficiency. It can filter out noises following the uniform pattern estimation. However, if 

LBP is used alone without HOG, the entire ULZ will be extracted if some other 

abnormalities are also present in the area. In that case, the HOG helps to reduce the false 
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positives based on the available edge information. Fig. 4.11 illustrates the complementary 

effect of LBP and HOG. The window reported by the classifier should contain a complete 

cavity in order to be qualified as a positive candidate. Note that in the 1st row 2nd column 

when using only HOG, no reported window contains a complete cavity. The HOG performs 

poorly when the background is cluttered with noises, and the edge information is no longer 

reliable. Similarly, in the 2nd row 1st column, when using only the LBP, the small cavity is 

missing because no reported window contains the complete small cavity, and only the larger 

cavity is fully contained in a reported window. 

GTM+LBP GTM+HOG GTM+LBP+HOG 

 

(a) (b) (c) 

 

(d) (e) (f) 

Fig.	4.11.	Comparison	of	candidate	detection	in	the	coarse	feature	classification	step	

using	(a,d)	GTM+LBP,	(b,e)	GTM+HOG,	(c,f)	GTM+LBP+HOG.	Note	that	in	the	first	row	

HOG	misses	the	cavity	but	LBP	is	able	to	detect	it.	In	the	second	row,	LBP	misses	the	

small	cavity	but	HOG	can	detect	it.	In	both	rows	our	technique	is	able	to	detect	all	the	

cavities.	
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 The above test results show that combining the LBP and HOG features for capturing 

the texture and gradient information around the cavity region, and using the GTM for shape 

recognition, contributes to the low missing rate of the proposed coarse feature classification 

technique. 

Experiment 2 – Accuracy of Contour Segmentation 

To make the comparison consistent, we evaluate the segmentation accuracy using the same 

Tanimoto measure (TMM) in [17]: 

c g

c g

R R
TMM

R R





          (4.11) 

where Rc denotes the region enclosed by the contour generated by the segmentation 

techniques, such as DBC-GVF [17] and our IFVF [22]; Rg denotes the region of a TB cavity 

that is enclosed by the ground truth contour manually drawn by radiologists; and 

 denotes the cardinality (# of pixels). TMM = 0 indicates that the segmented contour has 

no intersection with the ground truth, while TMM = 1 indicates that the segmented contour 

is identical to the exact cavity. To improve the segmentation accuracy, we apply the HIE on 

the candidates before segmentation.  

 The performance of the DBC-GVF and the IFVF techniques with and without the HIE 

is shown in Table 4.4. Note that around 10% accuracy improvement is achieved for both 

DBC-GVF and IFVF when HIE is incorporated. The results are also more robust as 

demonstrated by the lower standard deviations of the TMM. Fig. 4.12 presents subjective 

comparison of different segmentation techniques. With the HIE, the segmented contours are 

closer to the ground truth compared to the same techniques without the HIE. 

Table.	4.4.	Segmentation	accuracy	evaluation	

 
DBC-GVF 

Without HIE

DBC-GVF

With HIE

IFVF 

Without HIE

IFVF 

With HIE 

Average of TMM 55.1% 64.6% 56.8% 67.1% 

Std. of TMM 15.8% 12.6% 12.2% 9.3% 

Mean of TMM 58.2% 64.9% 59.3% 66.1% 
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Fig.	4.12.	Cavity	segmentation	result	comparison	using	different	edge‐based	snakes	

with	and	without	HIE.	From	top	to	bottom,	the	cavity	 is	more	and	more	difficult	to	

identify.	 Blue	 contours	 are	 the	 true	 cavities	 annotated	 by	 radiologists.	 Green	

contours	are	the	computer	segmentation	results.	

 Note that image patterns, even without cavities, may generate close to ring-like shape 

after the HIE step. Fig. 4.13 shows some of these cases. For example, the image in the 

bottom row contains a pattern similar to a cavity. To eliminate this type of candidates, the 

fine scale feature classification step in our approach is necessary. The accuracy of our final 

cavity detection is evaluated in the next section. 
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HIE  

Result 

IFVF 

with HIE 

Fig.	4.13.	Segmentation	results	of	candidates	without	cavity.	

Experiment 3 – Accuracy of Final Cavity Detection 

Before performing the final cavity detection, 160 candidate contours are divided into cavity 

and non-cavity contours. Candidate region reported after the LHFC (as highlighted by the 

green windows in Fig.4.11) may not contain true cavities. Also, even if a reported window 

contains the entire cavity, its segmented contour may not be the same as the ground truth. To 

evaluate the accuracy of the final contour classification, we need to impose a value 

TMM>0.7 (based on the segmentation accuracy of 67.1% reported in Table 4.4), in order to 

qualify a candidate to be a true cavity; otherwise it is considered as non-cavity. Three 

contour-based features (Circularity, GICOV and KLD) are extracted from the candidate 

contours for the final cavity classification. To evaluate the performance of classification, 

sensitivity, specificity and accuracy are calculated as follows: 
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# of Correctly-Detected Contours 
Accuracy 100%

Total # of Candidates Contours
# of Correctly-Detected Cavity Contours

Sensitivity 100%
Total # of Cavity Contours

# of Correctly-Detected Non-C
Specificity

 

 


avity Contours

100%
Total # of Non-Cavity Contours



(4.12) 

 The classification result using SVM for the 160 candidate contours is shown in Table 

4.5. It can be observed that the detection accuracy is increased by more than 8% in our 

approach after adding KLD feature. Fig. 4.14 shows cavity detection results of HKG [17] 

and the proposed technique, which demonstrate that our technique can detect more true 

cavities and detect fewer false cavities. As illustrated in Fig. 4.14, the proposed cavity 

detection system identifies all cavities annotated by the radiologists and there is only one 

false alarm. The presence of cavities in the upper half of the lungs, especially when there 

are multiple or bilateral cavities, should raise suspicion of TB in the appropriate 

epidemiologic and/or clinical context. Unfortunately, in practice, a lot of these findings are 

not mentioned in the radiologist's report, because the epidemiologic or clinical information, 

necessary to raise suspicion, is not provided by the ordering physician on the requisition. 

This is often the case in geographic regions where TB rate is low. Based on the clinician’s 

perspective, a relatively higher false positive rate is better than false negatives because the 

latter can cause an infectious TB to spread. Even with false positives, clinicians find 

automatic cavity detection system helpful in reducing a large number of true negatives and 

radiograph examinations. This is beneficial given the limited radiologists available 

particularly in remote communities and developing countries. 

Table.	4.5.	Cavity	detection	evaluation	 	

 Sensitivity Specificity Accuracy 

Circularity+GICOV [17] 62% 46% 54% 

Circularity+GICOV+KLD 70% 60% 65% 
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Original CXR with Ground Truth HKG [17] Cavity Detection Result Proposed Cavity Detection Result

 

 

 

Fig.	 4.14.	 Cavity	 detection	 comparison	 between	 HKG	 [17]	 and	 the	 proposed	

technique.	Blue	dotted	contours	are	the	true	cavities	annotated	by	radiologists.	Red	

contours	are	the	detected	cavities,	while	the	cyan	ones	are	the	non‐cavity	contours.	
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 The radiologists also classified the true cavity contours into two categories: E-Group 

and D-Group, containing cavities which are ‘easy’ or ‘difficult’ to identify, respectively. The 

D-Group contains cavities even radiologists found them difficult to identify without other 

demographic or additional information. False cavity contours were then combined with each 

of these two groups. The SVM classification results of these groups are shown in Table 4.6 

and 4.7. Observe that on average the classification accuracy in each group is higher than the 

result reported in Table 4.5. The performance of the E-Group is significantly improved by 

adding the KLD feature. In the D-Group, although the intensity variation inside and outside 

a cavity changes only slightly making it very difficult to identify the contour even for 

radiologists, there is still improvement in the detection result. This shows that the classifier 

can perform better if trained using more specific knowledge. 

Table.	4.6.	Cavity	detection	evaluation	of	E‐Group	

 Sensitivity Specificity Accuracy 

Circularity+GICOV [17] 65% 78.2% 71.6% 

Circularity+GICOV+KLD 78.8% 86.8% 82.8% 

 

Table.	4.7.	Cavity	detection	evaluation	of	D‐Group	

 Sensitivity Specificity Accuracy 

Circularity+GICOV [17] 57.6% 88% 72.8% 

Circularity+GICOV+KLD 69.4% 81.6% 75.5% 

4.4 Summary 

In this chapter, we proposed an efficient CFDS feature classification technique for TB 

cavity detection in CXRs. Experimental results demonstrate that the proposed technique 

outperforms existing methods in three aspects. First, a lower missing rate is achieved 

because in the proposed method local cavity region-related coarse features, such as 

geometric, textural and gradient features, are taken into consideration. Second, edge-based 
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segmentation becomes more accurate by incorporating HIE to enhance the contours. Third, 

the final cavity detection accuracy is greatly increased by introducing the fine scale feature 

classification using three types of contour-related features, which includes shape, edge and 

region. Our work contributes in the development of CAD systems for infectious TB 

diagnosis, because of the higher detection rate and lower missing rate compared to other 

techniques. 
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Chapter 5 

Efficient TB Acinar Shadows Detection 

For typical TB (PPTB), the co-occurrence of other abnormalities, such as AS in the vicinity 

of a cavity is a very useful and complementary radiographic cue. Sometimes, multiple AS 

will raise suspicion of infectious TB to radiologists, even if cavitation is undetectable. 

Therefore, in this chapter, we propose an effective CAD system aimed for AS regions 

detection in CXRs. This system exploits textural and photometric features extraction 

techniques which include LBP, GLCM and HOG to analyze target regions in CXRs. 

Classification of AS using Adaboost is then deployed to verify the performance of a 

combination of these techniques. Comparative study in different image databases shows that 

the proposed CAD system delivers consistent high accuracy in detecting AS. 

5.1 Introduction 

Typical radiographic patterns of PPTB as mentioned in many radiology handbooks include 

cavities, volume loss, AS and so on [1] [83]. In the diagnosis of pulmonary TB on CXR, AS 

reflect the presence of endobronchial spread of disease, the spread of tuberculous ‘caseous’ 

material within the bronchial tree. Such spread is a universal feature of pulmonary TB [1]. 

The AS are either within the vicinity of the major focus of disease (for example a cavitated 

area), immediately dependent from it or occasionally in the contralateral lung – indicating 

position or posture-related drainage from the major focus. The presence of AS in the 

vicinity of an upper lung zone infiltrate, especially if cavitary, further adds to the probability 

that the infiltrate reflects the presence of infectious PPTB. Our previous work in Chap. 4 

focused on the extraction of TB cavities on CXRs. Thus, in current work, we focus on the 

automatic detection of AS on CXRs, which is defined as “round or ovoid poorly defined 

pulmonary opacities approximately 5-8 mm in diameter, presumed to represent an anatomic 
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acinus rendered opaque by consolidation” [83]. An example of multiple AS could be found 

in Fig 5.1. 

 

Fig.	5.1.	An	example	of	CXR	with	multiple	acinar	shadows.	

 So far, to the best of our knowledge, no automatic algorithm has been developed that 

can detect TB AS from CXRs accurately. As we mentioned in Section 1.1.3, there are 

several CAD schemes using texture features such as moments of power spectrum [13], 

fractal dimension [14], histogram based features [15], and 1-D wavelet coefficients [16] to 

identify interstitial changes. However, not only these CAD systems are not fully automatic, 

but also the interstitial opacity is not a reliable radiographic cue for infectious TB and is 

pathologically different with airspace opacity such as AS. More recently, Tan et al. [18] 

proposed a semi-automatic CAD system to detect airspace opacity of TB. They used a 

user-interactive ASM technique for the lung field segmentation and applied the first order 

statistical texture features (histogram based features) to the Adaboost classifier to identify 

TB from normal cases. Further more, Patil [19] investigated both first and second order 

statistical texture features from TB CXRs, and suggested the second order statistical texture 

features (GLCM-based features) are more suitable for TB opacity detection. Although these 

new CAD schemes achieve high accuracy, they are still not automatic and extracted only 

individual texture features without considering other high level features or combination of 

different types of features. Besides, the database they use only contains TB and normal 

cases, ignoring other lesions need to be distinguished from airspace opacity such as discrete 

Multiple AS 
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nodules. Therefore, in this chapter, we conduct a comprehensive study applying different 

feature descriptors and investigate their influence on classification using the popular SVM 

or Adaboost classifiers for AS detection. Based on the comparative experiments in different 

image datasets including typical TB with AS, atypical TB without AS, normal cases without 

AS, and nodule cases without AS, we finally propose a hybrid CAD system for AS 

detection using combined LBP, HOG and GLCM based features with Adaboost classifier. 

To further reduce false positive rate, we introduce an efficient morphological operation to 

achieve better performance. 

 

Fig.	5.2.	Schematic	of	the	proposed	CAD	system	for	AS	detection.	

5.2 Proposed Hybrid CAD System for AS Detection 

The proposed computer-aided AS detection system follows the state-of-the-art sliding 

window paradigm in object detection, which is similar as applied in Section 4.2.2. Each 

CXR is first preprocessed as a contrast-enhanced subimage containing only lung fields. The 

preprocessed subimage is then divided into non-overlapping windows, whose size is fixed 

as 16×16 in our experiments. Multiple features are calculated from each window to form a 

multi-dimensional feature vector. Based on these feature vectors, a classifier is trained 

offline to distinguish windows containing instances of AS from other windows. The test 
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image scanned with sliding windows is then analyzed and classified using the model 

generated from the training set. We conducted comparative experiments using different 

types of features on different classifiers. Finally, combined LBP, HOG and GLCM-based 

features are extracted to the Adaboost classifier, followed by a morphological smoothing 

technique to reduce the false positive windows. Fig. 5.2 shows the schematic of the 

proposed AS detection technique. 

5.2.1 Preprocessing 

Before a CXR is sent to our proposed hybrid CAD system for AS regions detection, it needs 

to be preprocessed in two steps: First, the CXR will be cropped as a rectangular subimage 

which contains the border of lung fields using our ERF-ASM technique (See Chap. 3). Next, 

this subimage is locally contrast-enhanced using contrast-limited adaptive histogram 

equalization (CLAHE) technique [92]. Fig. 5.3 shows subimages from different image 

datasets and their improved qualities using the contrast enhancement step. 

Typical TB with AS Atypical TB without AS Normal Case Nodule Case without AS

 

 

Fig.	5.3.	Preprocessed	CXRs	from	four	different	image	databases.	CXRs	in	the	1st	row:	

cropped	 subimages	 with	 lung	 fields	 limitation;	 CXRs	 in	 the	 2nd	 row:	

contrast‐enhanced	subimages.	
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5.2.2 Multiple-Feature Extraction 

To recognize AS pattern, texture features will be the most important cue [98]. Although 

thousand of texture features have been developed, the selection of proper feature descriptors 

is often application dependent and largely based on the intrinsic characteristics of the 

images. Generally, texture features can be divided into four categories: statistical features, 

structural features, signal processing based features, and model based features [99]. 

Therefore, a variety of features from different categories are selected and compared in our 

study, including texture features applied in the existing CAD schemes in chest radiology 

such as histogram based statistical features (HS) [18], Fourier spectrum (FS) based features 

[13], GLCM based features [19], and fractal dimension (FD) [14]. We also test some 

advanced feature descriptors which receive more and more popularity in many pattern 

recognition tasks in medical images, including LBP based features [47], HOG based 

features [48], and Tchebichef moments based features(TM) [100]. Finally, based on the 

results of comparative experiments (See Section 5.3.2), we combined LBP, GLCM and 

HOG to achieve the best performance. 

5.2.3 Feature Classification 

Multiple features are evaluated on two state-of-the-art classifiers SVM and Adaboost. Since 

the details of these two classifiers have already been discussed in Section 2.2.2, no more 

will be repeated here. We finally apply the Adaboost classification technique into our hybrid 

CAD system due to its better performance than SVM (See Section 5.3.2). 

5.2.4 False Positive Reduction 

Notice that most of the false positive windows are discrete, thus, we introduce a simple 

smoothing technique based on morphological operation to reduce the false positives so that 
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radiologist diagnosis can be more effective. Considering a block of 3×3 windows, for each 

center window, if five or more of its 8-surrounding windows have different classification 

labels from the center window, the center window is then reassigned the same label as the 

majority of its neighbourhood. Otherwise, it keeps its label. 

5.3 Performance Evaluation 

In this section, we investigate multiple features including HS, FS, GLCM, FD, LBP, HOG, 

and TM on both SVM and Adaboost classifiers for the AS detection. Based on the 

comparative experiments, we combine LBP, HOG and GLCM-based features with the 

Adaboost classifier to detect AS regions. Performance with and without the proposed false 

positive reduction step is also evaluated. 

5.3.1 Database Used and Parameters Configuration 

Standard PA view CXRs from two image databases are used in this study. The first database 

obtained from the UAHCXR consists of 58 cases of sputum smear positive pulmonary TB. 

37 cases in this database are typical infectious TB with AS and 21 cases are atypical TB 

without AS. Ground truth information was determined by a panel of three independent 

expert chest radiologists. One of the experts helped to draw the region of AS. The second 

database obtained from the JSRT [80] contains 93 CXRs of normal cases and 154 CXRs of 

abnormal cases with solitary nodule which is defined as a discrete, well-marginated, 

rounded opacity less than or equal to 3 cm in diameter [83]. Images in this database were 

also evaluated with the consensus of three chest radiologists. Finally, CXRs in these two 

image databases are grouped into four datasets: D1 – typical infectious TB with AS (37 

cases); D2 – atypical TB without AS (21 cases); D3 – Normal cases without AS (93 cases); 

D4 – Nodule cases without AS (154 cases).  

 For computational efficiency, the original CXRs from D1-D4 are resized as 512×512 
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(or close to this size) with a fixed pixel spacing [0.8 mm, 0.8 mm]. All the experiments are 

implemented in Matlab 2007b on an Intel Pentium 4 CPU 2.8G Hz with 2G RAM computer. 

Parameters used in Preprocessing (ERF-ASM and CLAHE), SVM and Adaboost 

classification are set as default values in these algorithms. The selected multiple features 

used for comparison include 6 features of HS, 5 features based on FS, 4 features based on 

GLCM, one feature of FD value, 6 features using the LBP histogram, 36 features based on 

HOG and 6 features based on TM. Details of these features are listed in Table 5.1.  

Table.	5.1.	Multiple	features	used	for	comparison	

Multiple 

Features from 

No. of 

Features 

Used Features 

HS 6 
Mean, standard deviation, smoothness, skewness, uniformity, and 

entropy calculated from the intensity histogram. 

FS 5 
Energy, variance, entropy, low frequency energy ratio, low/high 

frequency energy ratio calculated from FS. 

GLCM 4 
Contrast, correlation, energy, homogeneity calculated from the 

co-occurrence matrix in horizontal, vertical and diagonal directions. 

FD 1 Fractal dimension 

LBP 6 
Mean, standard deviation, smoothness, skewness, uniformity, and 

entropy calculated from the histogram of LBP values. 

HOG 36 4 cells of 9 major orientation of the gradient 

TM 6 Moments of T00, T01, T10, T11, T12, T21 

5.3.2 Experiments and Analysis 

Before doing the comparative experiments, we need to figure out the ground truth 

vagueness problem. Although radiologist has helped to extract the ground truth region 

containing AS, some sliding windows are vague to be defined as positive windows with AS 

due to the incomplete coverage of the target. Fig. 5.4 shows an example where the red block 

is one of the sliding windows and white closed contour is the ground truth drawn by the 

radiologist. To resolve such ambiguity, we define an area ratio R = (area of AS in the 

window) / (area of the window) to divide the positive and negative windows. Given a 
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threshold value t, a positive window should satisfy R ≥ t, and vice versa. For example in Fig. 

5.4, if t = 3/4, the red block will not be defined as the positive windows with AS. 

 

Fig.	5.4.	An	example	of	a	window	(red)	containing	part	of	AS	(white	contour).	

 We use sensitivity, specificity and precision, which are widely used in medical domain, 

to evaluate the classification performances. These parameters are defined as follows: 

# of  true positives
Sensitivity

# of  true positives + # of  false negatives

# of  true negatives
Specificity .

# of  true negatives + # of  false positives

# of  true positives
Precision

# of  true positives + # of  fal






se positives

   (5.1) 

Note that sensitivity measures the proportion of the correctly classified AS windows over 

the entire ground truth AS windows, specificity measures the proportion of the correctly 

classified non-AS windows over the entire ground truth non-AS windows, and precision 

measures the proportion of the correctly classified AS windows over all detected AS 

windows.  

Comparative Experiment 1 – Individual Feature Descriptors Evaluation 

Since the region of AS only occupies a small part of a CXR, to make the sample size 

between normal and abnormal cases relatively balanced in training, we randomly select 25 

preprocessed CXRs in D1 to obtain positive windows and 6 preprocessed CXRs from D2 to 

D4 to get negative windows. For testing, we select the rest from D1 and randomly select 10 
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images from D2 to D4. The classification results using only one type of features with SVM 

are listed in Table 5.2. The corresponding receiver operating characteristic (ROC) curves by 

tuning threshold t is shown in Fig. 5.5. The Area Under the Curve (AUC) is also calculated 

and listed in Table 5.2. In comparison, the classification results of using individual features 

with Adaboost and the corresponding ROC curves are illustrated in Table 5.3 and Fig. 5.6. 

Table.	5.2.	SVM	classification	results	using	individual	features.	

Results t 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1 Avg AUC

Sen 94.5% 94.1% 93.2% 92.4% 90.4% 89.6% 89.2% 90.1% 91.7% 

Spe 34.7% 37.1% 41.7% 42.4% 48.3% 50.6% 52.7% 55.6% 45.4% 
Only 

HS 
Pre 37.5% 36.6% 36.7% 35.5% 36.1% 35.0% 33.9% 33.4% 35.6% 

0.729 

Sen 97.9% 98.3% 98.2% 98.1% 98.2% 52.8% 6.3% 0.6% 68.8% 

Spe 26.1% 27.7% 29.0% 30.3% 31.8% 93.2% 99.4% 100.0% 54.7% 
Only 

FS 
Pre 35.8% 34.8% 33.7% 32.9% 32.0% 70.0% 75.4% 80.0% 49.3% 

0.796 

Sen 93.6% 93.7% 93.1% 92.5% 92.7% 91.9% 92.0% 91.7% 92.6% 

Spe 80.9% 82.3% 84.0% 85.2% 85.8% 87.5% 88.3% 90.0% 85.5% 
Only 

GLCM 
Pre 67.4% 67.5% 68.1% 68.5% 68.1% 68.9% 68.5% 69.7% 68.3% 

0.913 

Sen 74.6% 71.1% 69.2% 66.7% 64.1% 62.5% 60.0% 56.5% 65.6% 

Spe 79.1% 82.7% 84.6% 86.7% 88.8% 91.1% 91.8% 93.1% 87.2% 
Only 

FD 
Pre 56.0% 57.7% 58.4% 59.7% 61.2% 64.1% 63.2% 63.6% 60.5% 

0.804 

Sen 97.4% 97.8% 97.9% 98.3% 98.6% 98.8% 97.9% 98.7% 98.2% 

Spe 89.3% 89.1% 89.1% 90.3% 90.6% 90.7% 91.4% 91.7% 90.3% 
Only 

LBP 
Pre 77.9% 76.4% 76.6% 77.0% 76.7% 75.6% 75.8% 75.0% 76.4% 

0.946 

Sen 95.3% 95.7% 96.3% 96.2% 96.5% 96.5% 95.5% 95.9% 96.0% 

Spe 72.5% 73.7% 75.7% 77.3% 78.0% 79.2% 80.8% 82.0% 77.4% 
Only 

HOG 
Pre 55.3% 54.7% 55.3% 55.5% 54.8% 54.1% 53.8% 53.1% 54.6% 

0.885 

Sen 97.7% 90.0% 67.7% 51.0% 42.2% 15.9% 1.0% 0.3% 45.7% 

Spe 34.3% 47.7% 63.6% 76.8% 84.5% 98.1% 99.9% 100.0% 75.6% 
Only 

TM 
Pre 34.7% 36.4% 36.7% 39.3% 42.9% 68.3% 77.8% 100.0% 54.5% 

0.745 
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Fig.	5.5.	ROC	curves	of	different	features	using	SVM.	 	

Table.	5.3.	Adaboost	classification	results	using	individual	features.	

Results t 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1 Avg AUC

Sen 86.9% 84.0% 85.4% 79.9% 79.7% 73.4% 70.4% 68.8% 78.6% 

Spe 49.2% 53.5% 53.4% 60.1% 60.7% 66.9% 70.3% 72.4% 60.8% 
Only 

HS 
Pre 56.7% 54.1% 52.9% 49.8% 48.2% 44.1% 41.0% 38.1% 48.1% 

0.737 

Sen 91.6% 86.7% 86.0% 83.6% 81.9% 82.2% 77.7% 76.7% 83.3% 

Spe 71.8% 77.3% 79.1% 80.4% 80.3% 81.6% 83.5% 85.0% 79.9% 
Only 

FS 
Pre 72.0% 69.4% 67.8% 66.0% 64.1% 62.3% 58.9% 56.2% 64.6% 

0.858 

Sen 93.4% 93.6% 92.7% 92.4% 92.3% 92.0% 92.4% 92.6% 92.7% 

Spe 83.6% 85.3% 84.7% 87.3% 88.0% 89.6% 90.1% 90.8% 87.4% 
Only 

GLCM 
Pre 81.0% 79.9% 78.7% 77.7% 76.6% 75.0% 73.5% 71.5% 76.7% 

0.917 

Sen 81.6% 82.3% 78.7% 73.6% 74.2% 74.5% 72.9% 66.6% 75.5% 

Spe 73.8% 73.8% 77.4% 81.2% 81.3% 81.7% 83.4% 89.6% 80.3% 
Only 

FD 
Pre 73.7% 72.4% 70.2% 67.6% 66.4% 64.6% 62.1% 57.6% 66.8% 

0.822 

Sen 96.2% 96.3% 96.3% 96.4% 96.7% 96.6% 96.6% 96.4% 96.4% 

Spe 94.1% 94.4% 94.5% 95.4% 95.7% 96.2% 96.4% 95.8% 95.3% 
Only 

LBP 
Pre 91.4% 90.9% 90.1% 89.8% 89.3% 88.4% 87.5% 85.5% 89.1% 

0.959 

Sen 89.7% 91.1% 90.4% 90.8% 92.1% 90.9% 87.7% 90.5% 90.4% 

Spe 81.0% 81.4% 82.9% 83.7% 84.9% 86.2% 87.7% 87.7% 84.4% 
Only 

HOG 
Pre 72.3% 71.2% 69.7% 68.6% 67.5% 65.4% 62.6% 61.1% 67.3% 

0.885 

Sen 80.7% 78.1% 76.1% 75.7% 72.9% 71.2% 67.4% 64.4% 73.3% 

Spe 67.9% 70.2% 72.8% 73.6% 76.2% 77.7% 80.2% 85.0% 75.5% 
Only 

TM 
Pre 65.7% 63.4% 61.3% 59.8% 57.4% 54.8% 51.3% 47.7% 57.7% 

0.785 
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Fig.	5.6.	ROC	curves	of	different	features	using	Adaboost.	

 From the above experimental results, it is observed that LBP outperforms the other 

features with largest AUC. GLCM and HOG also achieve good performance. While keeping 

the similar sensitivity, classifier Adaboost greatly increase the precision and specificity 

outperforming SVM. Note that some ROC curves are not monotonically increasing due to 

the ambiguity of defining true positives using the threshold value t. 

Comparative Experiment 2 – Different Combination Strategies of LBP, HOG and GLCM 

Our hypothesis is to use multiple strong features to deliver better outcome. Thus, we 

perform the second comparison experiments using different combination strategies of LBP, 

HOG and GLCM based features. Adaboost classification results using LBP combined with 

other features are listed in Table 5.4 and 5.5, respectively. The corresponding ROC curves 

with different t are shown in Figs. 5.7 and 5.8. Since it is difficult to discriminate different 

curves, the rectangular regions in Figs. 5.7 and 5.8 are enlarged and shown in the middle of 

the figures. It could be observed that the combination of LBP, GLCM and HOG achieves 

the overall best performance in both SVM and Adaboost classification. For the performance 

comparison between SVM and Adaboost classifiers, Adaboost greatly outperforms SVM in 

specificity and precision while keeping similar high sensitivity. The Adaboost classifier 
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using LBP, GLCM and HOG based features provides around 5% and 12% improvement in 

average specificity and precision, which means it not only reduces the false positives but 

also increases the accuracy of the total detected positives significantly. 

Table.	5.4.	SVM	classification	results	using	combined	features	of	LBP,	GLCM	and	HOG.	

Results t 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1 Avg AUC

Sen 97.0% 97.7% 98.0% 97.6% 98.4% 98.9% 98.6% 98.8% 98.1% 

Spe 87.8% 88.1% 89.3% 90.1% 90.8% 90.9% 91.7% 92.1% 90.1% 
LBP 

+HOG 
Pre 74.0% 73.1% 74.0% 74.3% 74.7% 73.6% 73.7% 72.8% 73.8% 

0.946 

Sen 97.5% 97.9% 98.2% 98.1% 98.3% 98.2% 98.2% 98.1% 98.1% 

Spe 88.5% 88.7% 89.7% 90.4% 90.8% 91.6% 92.1% 92.5% 90.5% 
LBP 

+GLCM 
Pre 78.3% 77.5% 77.9% 78.2% 78.0% 78.1% 77.7% 77.7% 77.9% 

0.950 

Sen 98.5% 98.6% 98.7% 98.6% 99.2% 99.4% 99.5% 99.4% 99.0% 

Spe 88.5% 88.9% 89.4% 90.4% 90.7% 91.5% 92.0% 92.6% 90.5% 

LBP 

+GLCM 

+HOG Pre 78.4% 77.7% 77.4% 78.1% 77.7% 77.8% 77.5% 77.0% 77.7% 

0.956 

 

Table.	5.5.	Adaboost	classification	results	using	different	combination	strategies	of	

LBP,	HOG	and	GLCM	based	features.	

Results t 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1 Avg AUC

Sen 95.9% 96.2% 96.2% 97.0% 96.7% 96.5% 96.7% 96.2% 96.4% 

Spe 94.4% 95.1% 95.3% 95.7% 96.0% 96.7% 96.4% 96.7% 95.8% 
LBP 

+HOG 
Pre 91.2% 90.7% 90.1% 89.7% 89.1% 88.2% 87.3% 86.1% 89.1% 

0.962 

Sen 96.1% 96.3% 96.8% 97.0% 97.6% 97.3% 97.4% 96.6% 96.9% 

Spe 93.4% 93.6% 94.0% 94.7% 95.0% 95.9% 96.3% 96.5% 94.9% 
LBP 

+GLCM 
Pre 92.4% 91.9% 91.5% 91.0% 90.5% 89.7% 88.9% 87.9% 90.5% 

0.963 

Sen 97.1% 97.5% 97.1% 97.4% 97.8% 98.4% 97.4% 97.7% 97.5% 

Spe 94.2% 94.7% 94.8% 95.0% 95.4% 95.6% 96.5% 96.5% 95.3% 

LBP 

+GLCM 

+HOG Pre 92.0% 91.4% 91.0% 90.5% 90.0% 89.3% 88.4% 87.4% 90.0% 

0.968 
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Fig.	5.7.	ROC	curves	using	different	combination	of	LBP,	GLCM	and	HOG	features	with	

SVM.	To	better	discriminate	different	curves,	the	rectangle	area	has	been	enlarged	

and	shown	in	the	middle.	

 

Fig.	5.8.	ROC	curves	using	different	combination	of	LBP,	GLCM	and	HOG	features	with	

Adaboost.	 To	 better	 discriminate	 different	 curves,	 the	 rectangle	 area	 has	 been	

enlarged	and	shown	in	the	middle.	
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Comparative Experiment 3 – Final AS Detection with and without False Positive Reduction 

Based on the outcome of our comparison analysis, we apply LBP+GLCM+HOG features 

and Adaboost classifier in the final AS detection system. Considering different 

characteristics among D2, D3 and D4 (atypical TB without AS, normal cases without AS 

and nodule cases without AS, respectively), we conduct tests for the datasets D1 with D2 

(D1D2), D1 with D3 (D1D3), and D1 with D4 (D1D4), respectively. Notice that in Table 

5.5, the best performance of using LBP+GLCM+HOG with Adaboost is achieved when t = 

3/4, thus the threshold for the whole datasets tests is chosen as t = 3/4. The performance of 

the final AS detection without further false positive reduction is shown in Table 5.6.  

Table.	5.6.	Final	AS	detection	results	without	false	positive	reduction	

Results D1D2 D1D3 D1D4 

Sen 98.37% 98.12% 98.25% 

Spe 93.50% 99.99% 99.98% 

Pre 63.34% 99.49% 98.13% 

 Quantitative analysis shows that the proposed CAD system achieves both high 

sensitivity and specificity. Examples of AS detection results of CXRs from D1 are shown in 

Fig. 5.9. It could be observed that the detected positive windows are quite consistent with 

the ground truth drawn by radiologist. However, the specificity and precision in the test of 

D1D2 is relatively lower. It is because lots of false positive windows are detected in the 

images of D2 comparing to D3 and D4. This higher false positive rate (lower specificity) in 

D1D2 test could be explained as more lesions similar to AS caused by atypical TB are 

observed in CXRs in D2. Although the specificity in tests of D1D3 and D1D4 are close to 

100%, there are still several images in D3 and D4 containing false positive windows. 

Examples of those false positive windows are shown in Fig. 5.10. 
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Fig.	 5.9.	 True	 positive	windows	 detected	 in	D1	 comparing	with	 the	 ground	 truth	

(white	contour).	

CXR1 from D2 CXR2 from D2 CXR3 from D3 CXR4 from D4 

 

Fig.	5.10.	False	positive	windows	detected	in	D2,	D3	and	D4.	

 After applying the smoothing technique, the final AS detection results are greatly 

refined for the specificity and precision, while keeping the high sensitivity. See Table 5.7 for 

the refined results. Examples of false positive windows in CXR1, CXR3 and CXR4 in Fig. 

5.10 are all removed except a few left in CXR2 (See Fig. 5.11 for the rest of false positive 

windows).  

Table.	5.7.	Final	AS	detection	results	with	false	positive	reduction.	

Results D1D2 D1D3 D1D4 

Sen 92.37% 91.74% 92.49% 

Spe 97.43% 100% 100% 

Pre 80.39% 100% 100% 
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CXR2 from D2 

Fig.	5.11.	False	positive	windows	detected	after	the	smoothing	technique.	 	

5.4 Summary 

In this chapter, a hybrid intelligent system is proposed to detect acinar shadow regions in 

CXRs. This novel CAD system takes advantages of integrating multiple features of LBP, 

GLCM and HOG into the Adaboost classifier. False positives are further reduced by 

introducing a morphological smoothing technique. The proposed CAD system shows an 

outstanding performance with more than 92% sensitivity, 97% specificity and 80% 

precision, which make it an effective tool to improve diagnostic performance. Our CAD 

system is efficient to eliminate a large number of irrelevant cases so that the radiologists can 

focus on a smaller set of significant cases. 
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Chapter 6 

Conclusions and Future Work 

Despite the technological advances in medical diagnosis, accurate detection of infectious 

TB still poses challenges due to complex image features and thus infectious TB continues to 

be a public health problem of global proportions. Currently, the detection of TB is mainly 

conducted visually by radiologists examining CXRs. To reduce the backlog of CXR 

examination and provide more precise quantitative assessment, CAD systems for potential 

lung lesions have been increasingly adopted and commercialized for clinical practice. 

However, little work has been done beyond lung nodules. Thus, our research focuses on 

developing an intelligent CAD system to automatically detect typical radiographic patterns 

of infectious TB in CXRs. This CAD system is expected to work as a supporting tool to 

alert radiologists on suspected infectious TB features that could have been neglected. In this 

chapter, our research work is concluded and new directions for future research are 

discussed. 

6.1 Conclusions 

Followed by the general framework of our proposed CAD system stated in Section 1.1.4, 

the research work can be summarized in three parts: 

Part I – Preprocessing using ERF-ASM for Lung Field Segmentation 

Automatic and accurate lung field segmentation has become a mandatory preprocessing 

step in most CAD systems in chest radiology. Considering the deficiency of existing lung 

field segmentation techniques, we propose an efficient ERF-ASM algorithm by introducing 

the global ERF into PIG-based automatic initialization stage and a new non-linear 

exponential point evolution based segmentation stage. Experimental results on both normal 

and TB CXRs shows the superior performance (higher accuracy and lower computational 
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cost) of our ERF-ASM over other existing techniques. The segmented lung fields using 

ERF-ASM will help to restrict the detection area of TB radiographic patterns. 

Part II – TB Cavity Detection 

Since cavitation in the ULZ is a strong indicator of typical TB, our next research effort 

focuses on efficient TB cavity detection. To compare with the existing cavity detection 

HKG system, we propose an efficient CFDS technique which first detects cavity candidates 

at coarse feature level using GTM and LHFC and then identifies cavity contours at fine 

feature level using CFC. To accurately extract the cavity contour, we propose the HIE for 

cavity edge enhancement and develop a snake model using new dynamic external force. 

Experimental results show that our proposed CFDS outperforms HKG at all aspects 

including accuracy of candidates selection; accuracy of contour segmentation; and accuracy 

of final cavity contour classification. 

Part III – TB AS Detection 

Since the presence of AS in the vicinity of a cavity increases the probability of typical TB, 

we use a sliding window paradigm in MFB to detect AS candidates. We conduct a 

comprehensive study applying different feature descriptors (HS, FS, GLCM, FD, LBP, HOG, 

and TM) and investigate their influence on classification using the well-known SVM and 

Adaboost classifiers. Based on the comparative experimental results, the final hybrid system 

for AS detection utilizes the combined LBP, HOG and GLCM features with Adaboost 

classification. We also apply a simple smoothing technique to remove the false positive 

windows efficiently. Note that Part II and Part III could work in parallel for real practice. 
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6.2 Future Work 

This research work can be extended in the following topics to make the CAD system more 

beneficial for clinical practice: 

Topic I – Other Radiographic Patterns Detection 

Volume loss is a hallmark of TB as a result of its destructive and fibrotic nature. Since the 

lung fields could be extracted using our ERF-ASM, we would like to study the variation of 

lung volumes to recognize the volume loss. Besides, hilar and mediastinal 

lymphadenopathy could be a good indicator for HIV-related TB. The detection of 

lymphadenopathy will also help to reduce the false positive rate of typical TB.  

Topic II – Incorporation of Patient Record 

An intelligent CAD system is not only to accomplish tasks as detecting suspicious TB 

radiographic patterns from images, but also needs to learn and judge from other patient 

record information such as epidemiologic risk, pulmonary or constitutional symptoms, 

leukocyte count number, and medical history. Therefore, more efficient classifiers which 

could handle with different data structure need to be studied and proposed. 

Topic III – Cooperation with Radiologists for the Evaluation of the CAD system 

All in all, the objective of the CAD system is to provide ‘‘second opinion’’ to assist 

radiologists’ image readings. The proposed CAD system needs to be tested with both 

experienced TB experts and inexperienced radiologists to evaluate its impact on the readers’ 

diagnostic judgment. With their feedback, further feature analysis might be necessary. 
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Appendices 

Appendix A: Procrustes Alignment Method 

The flow diagram of the generalized Procrustes analysis [29] is shown in Fig. A.1. It could 

be observed that the alignment works in an iterative way and the critical part is to align two 

shapes. 

Align each shape to 1st shape

Calculate the mean of the aligned shapes

Normalize the mean by aligning to 1st shape

Realign each shape with normalized mean

Convergence?

Done, all shapes aligned.

Yes
No

Align each shape to 1st shape

Calculate the mean of the aligned shapes

Normalize the mean by aligning to 1st shape

Realign each shape with normalized mean

Convergence?

Done, all shapes aligned.

Yes
No

 

Fig.	A.1	The	flow	diagram	of	the	generalized	Procrustes	analysis.	

 Considering a pair of shapes C(1) and C(2), the alignment is achieved using the 

following least-square approach: 
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Differentiating with respect to each of the variables a, b, tx, ty, the solution to Eq. (A.2) leads 

to four linear Eqs.: 

' '

' '

'

'

0

( )
0

( )

0

0

xx yy x x y y xx yy

xx yy x x y y xy yx

x y x x

x
x y y y

y

E

a
a S S t S t S S SE
b S S t S t S S Sb

E aS bS t S
t bS aS t S
E

t

                    
     


  (A.3) 

where 2
'

1 1 1

1 1 1
, , '

N N N

x i xx i xx i i
i i i

S x S x S x x
N N N  

     , and similar to other S. Linear 

Eqs. (A.3) could be rewritten as:  

' '

' '

'

'

0

0

1 0

0 1

xx yyxx yy x y

xy yxxx yy x y

xx y x

y x y y

S SaS S S S

b S SS S S S

tS S S
S S t S

    
              
   
         

  (A.4) 

Here I just prove the 1st Eq. in (A.3) as follows: 

1

2 2

1 1

2 ( ') 2 ( ')

( ) ' '

N

i i i x i i i i y i
i

N N

i i x i y i i i i i
i i

E
x ax by t x y bx ay t y

a

a x y t x t y x x y y



 


       



     



 
 (A.5) 

Assuming S is centered, i.e. 0x yS S  , then we could get:  

' '

' '

'

'

( )

( )

xx yy

xx yy

xy yx

xx yy

x x

y y

S S
a

S S

S S
b

S S

t S

t S


 

   
 




          (A.6) 
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Appendix B: LSSP for Lung Field Segmentation 

To compare the ASM-based technique to the level-set with shape priors (LSSP), we applied 

a hybrid LSSP [68] which is more specific for lung field segmentation. In addition, we 

carefully selected the parameters in this implemented LSSP detailed below.  

 Before discussing the parameters’ selection, we first explain the difference between 

LSSP in [67] and [68], and why LSSP [68] is more specific for lung field segmentation. 

 The hybrid LSSP framework is based on the minimization of the following energy 

functional: 

r region b boundary s shapeE w E w E w E          (B.1) 

where wr, wb, ws are the weights of three energy terms. The major differences between LSSP 

in [67] and [68] are the region and boundary energy terms. The comparison is listed in Table 

B.1. 

Table	B.1.	Comparison	of	Energy	Terms	between	LSSP	in	[67]	and	[68]	

 LSSP [67] LSSP [68] 

regionE  

2 2

2 2

( )( )

(1 ( ))( )

in

out

in in

out out

H I u u d

H I u u d

 

 





   

    





21
1

1

22
2

2

( )(( ) ln( ))

(1 ( ))(( ) ln( ))

in

out

I c
H d

I c
H d

 


 







 


  




 

boundaryE  ( ) ( ) ( )g I d  


  
 

2( ) ( ) ( )Ed d   


  
 

where inu  and outu  are smooth approximations of the original image I  in in and out . 

1 1( , )c   and 2 2( , )c   are the parameters of the distributions inside and outside. H  and   are 

the Heaviside and Dirac functions, respectively. g  is an edge detecting function. 

1 2E E Ed wd d   denotes the sum of distance transforms of the Canny edge map 1Ed  and the 

castrophenic angle corner feature 2Ed .   and w  are balancing weights.   is the weight of 

length term. 

 It can be seen that LSSP [68] is much more specific for lung field segmentation due to: 

(1) the incorporation of Gaussian distributions assumption of the inside and outside the 
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contour in the region term, which is more precise than the homogeneity assumption in the 

CV model; (2) low level edge features including castrophenic angle corner feature are 

considered, which is more specific than the general image gradient. 

 

Fig.	B.1.	Segmentation	performance	in	20	randomly	selected	CXRs	with	changing	  	

and	fixed	  	 and	 w .	

 Paper [68] simplifies the weights between edge, region and shape terms as 

1r bw w  , and only uses one parameter  to control the weight of shape term. Thus, 

three explicit parameters in LSSP [68] need to be decided: weight of shape term  , weight 

of length term (smoothing parameter)   and low level edge feature balancing weight w . 

We first fix   and w  with appropriate values, tune   in the test of randomly selected 
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20 CXRs (See the following Fig. B.1 illustrating the results of tuning  ). Based on the 

segmentation performance we find the optimal  . Then using this  , we fix w  to find 

the optimal  . Finally optimal w  could also be decided. The final segmentation results 

shown in the revised paper are based on these optimal parameters. Note that the similarity 

coefficient of 0.86 in our LSSP implementation is consistent with the result (0.88) reported 

in [68]. This shows that the parameter value selection is not biased. 
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