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Abstract 

Ultrasound image segmentation has grown as a field in the hope of aiding busy 

radiologists in diagnosing patients, and due to high noise and low contrast in the 

resulting images, prior knowledge has been used extensively. However, given the 

strength of the prior knowledge often used, resulting algorithms are usually limited 

in their applicability and feasibility. In this thesis, I look at what are appropriate pri­

ors for ultrasound image segmentation. In doing so, I determine that ultrasound is a 

unique medium and that understanding of the image acquisition process is required. 

Presented as a result of this prior knowledge review is a new approach to ultra­

sound image segmentation. A segmentation system is presented that relies solely on 

prior knowledge obtained from dissecting the image acquisition process. The image 

is decomposed into Synthetic A-Mode ultrasound scans and the resulting echo pat­

terns are modeled to determine the location of likely tissue boundaries. These likely 

boundary locations are used to initialize a contour for a force-based segmentation 

scheme. 

Results for the segmentation system are on par or better than other current meth­

ods, including a 73% segmentation accuracy on a set of 304 pork loin ultrasound 

images. A direct comparison with a similar existing algorithm in the field also 

shows the ability of my system to handle large variations in image content and 

noise. These results, obtained without the use of many limiting priors, show the 

value of both acknowledging the image creation process and of treating ultrasound 

as a unique medium in addressing the problem of segmentation. 



To the universe, or whoever decided that someone else would be Leonardo 
and I would be... less remarkable. 
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Chapter 1 

Introduction 

Ultrasound imaging has been a popular diagnostic tool in the medical field since the 

early 1960's. It's main concept is to use the sound medium to gather information 

about the state of a patient internal anatomy and is most commonly known for its 

use in monitoring a fetus' growth and development. 

Despite mainly being known for its use during pregnancy, ultrasound imag­

ing is used almost everywhere in diagnostic medicine, whether it's checking for 

heart conditions by monitoring a person's heartbeat (known as echocardiography), 

to checking for cancerous masses, to diagnosing glaucoma by imaging a patient's 

eye [35]. Lately, the use of ultrasound has extended beyond the field of medicine. 

In the agricultural field, ultrasound is not only used to treat animals, but also to 

monitor and estimate the size of various cuts of meat from live animals [10]. 

The popularity of ultrasound is due to many factors, the main one being that it 

is a non-invasive imaging technique. It provides images of the internal state of a 

subject's body without having any foreign object enter that body. Of course, there 

are many non-invasive imaging techniques, including MRI (magnetic resonance 

imaging), PET (positron emission tomography), X-ray, and CT (computed tomog­

raphy). Unlike those latter three imaging techniques, ultrasound is free of ionizing 

radiation, which is a key point especially in the field of obstetrics where a fetus 

cannot handle the levels of radiation used in X-ray, CT, or PET scans. Also, ultra­

sound is significantly cheaper than these imaging techniques and has a much faster 

acquisition time. 

However, these advantages do not come without a cost. Ultrasound imaging 

1 



is known for its poor image quality. High levels of noise, low contrast between 

regions, and signal dropout during image acquisition are all major issues when it 

comes to analyzing the content of the resulting images. In fact, training is required 

in order to properly analyze the content of ultrasound images. 

In the medical field, analyzing ultrasound images is one of the main tasks of a 

radiologist. As with other doctors, specifically in North America, radiologists are 

in high demand and are often overworked. Over the past two decades, efforts have 

been made to use computers to aid radiologists in their analysis and diagnosing 

tasks. Ideally, automating some of the preliminary tasks involved in ultrasound 

image analysis would lighten the workload on radiologists. 

The shape or size of an imaged anatomical structure are often key to diagnosing 

a patient. To obtain this information, it is first important to detect the anatomical 

structure in the ultrasound image. This is essentially the problem of image segmen­

tation: distinguishing objects in an image from their background. Proper ultrasound 

image segmentation solutions would lead to good measurements of the size - and 

proper classification of the shape - of various anatomical structures, making it faster 

and easier for a radiologist to analyze the results and successfully diagnose a pa­

tient. 

1.1 Background 

Current work in ultrasound image segmentation is extensive, and though many tech­

niques are being proposed to solve this problem, certain key approaches have be­

come commonplace. While these algorithms differ most notably in the type of 

image cues and prior knowledge incorporated into the segmentation process, it has 

been widely accepted, or at least implied, that segmentation algorithms for ultra­

sound images should include any and all information available in order to over­

come the poor quality of the images. With this mindset however, there is a concern 

that the applicability of an algorithm may be limited by the type of image cues and 

priors used. 

The features used to segment ultrasound images depend strongly on the ap-
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proach taken to the problem. Contour-based segmentation algorithms search for 

the region of interest by attempting to locate its boundary, and therefore rely on 

features that will highlight said boundary. On the other hand, region-based segmen­

tation methods attempt to identify a portion of the image where all points inside that 

part of the image are similar in appearance, according to a certain measure. 

Though many of the current approaches in ultrasound image segmentation com­

bine approaches or rely on the use of multiple features or priors, the main cues 

driving these segmentations can be placed into one of five different categories: 

• Gradients. Contour-based segmentation feature. Look for areas of high gra­

dient magnitude. 

• Gray-level Distributions and Histograms. Region-based segmentation fea­

ture. Region similarity based on intensity model. 

• Texture. Region-based segmentation feature. Region similarity based on tex­

ture measures. 

• Shape. Prior often used as a constraint in contour-based methods. 

• Application-specific Knowledge. Ad-hoc approaches based on specific image 

content. 

This section focuses on these five forms of knowledge and how they are often 

incorporated into ultrasound image segmentation algorithms. It should be noted 

that the algorithms presented here are not an exhaustive covering of the field of 

ultrasound image segmentation, but is instead a brief overview of the most popular 

methods in the field. For further approaches, please refer to [38] and references 

therein. 

Gradients 

A common assumption in image processing is that a strong gradient magnitude is 

a good indicator of a region boundary. While the accuracy of this assumption is 
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debatable in the context of ultrasound images, it nevertheless remains a popular 

approach in the field. 

The most common use of gradient knowledge is through the use of Active Con­

tours. First presented by Kass et al, the active contour approach takes a given 

initial contour and, while keeping the contour smooth, moves it to nearby areas of 

high gradient magnitude. This process is done by maximizing the gradient along 

the curve while minimizing the length and curvature of the curve as shown in the 

energy functional given in Equation 1.1 [31]. In this formulation, the curve is rep­

resented parametrically by v(s) = (x(s), y(s)). 

Esnake = [ |V(/(v(a)))| - 7 |v s (s) | - A|vM(s)| (1.1) 
Jo 

In ultrasound image segmentation, Active Contours is used in combination with 

other techniques in order to automate the segmentation process. In the work of 

Tong et al. on pork loin images, intensity-based region growing is performed first 

and the obtained region boundary is used as an initial contour [42]. Mathematical 

morphology is then applied to the Active Contour result to smooth the contour to 

its final result. A similar approach is taken by Holmes and Robb [26] on ultrasound 

images of the prostate. 

Gradient information has also been relied upon outside of Active Contour meth­

ods. In the work of Abolmaesumi and Sirouspour, candidate edge points are de­

tected using gradient magnitude along fan lines through a user-given point within 

the region of interest [1]. The candidate edge points on each fan line are related to 

those of neighbouring fan lines through the use of a probabilistic data association 

filter (PDAF). An interacting multiple model PDAF (IMM/PDAF) is included in 

this case due to the multiple candidate edge points on each fan line. A similar can­

didate edge point detection scheme is used by He and Jheng in combination with 

an Active Shape Model (ASM) to segment the tibia bone [24]. 

Gray-level Distributions and Histograms 

Unlike gradient-based methods which attempt to detect a region boundary, histogram-

based methods are used most frequently to characterize a region. Given the specific 
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nature of the noise in ultrasound images, the pixel intensities within and outside a 

region of interest can be characterized as coming from separate probability distri­

butions. 

Rayleigh distributions used are most frequently to model region intensity. The 

Rayleigh probability distribution is known to describe ultrasound image noise well 

and its distribution function is given in Equation 1.2 [27]. 

p(x;6) = ^e-£ (1.2) 

Cardinal et al. use Rayleigh distributions to describe the four different portions 

of a vessel wall in intravascular ultrasound images [12]. The distributions are fitted 

to the histogram using Expectation-Maximization and the segmentation performed 

using a level-set curve evolution with maximum likelihood as the energy functional. 

Jardim and Figueiredo perform a similar level-set segmentation, however the vari­

ance, 6, for the Rayleigh distribution of each region's intensity is updated iteratively 

instead of calculated ahead of time [29]. 

Other distributions have also been used to model region intensity in ultrasound 

images. Algelini et al. use a Gaussian distribution to describe the regions in echocar-

diographic images while maintaining a similar level-set segmentation approach as 

Jardim and Figueiredo [3]. August and Kanade also use a maximum likelihood 

level-set approach but with interior and exterior regions described by learnt his­

tograms [4]. 

Texture 

Certain ultrasound images, particularly prostate images, display noticeable texture 

differences between regions to the point that texture-based segmentation techniques 

have become quite popular. While these approaches have been both region and 

boundary based, co-occurrence matrix features have shown the most success with 

various forms of images. A co-occurrence matrix P is often defined as follows: 

1 M-AxN-Ay 
P(i>fi = -ji J2 Yl 6(I(rn,n) = iandI{m + Ax,n + Ay)=j) (1.3) 

m = l n = l 
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where the image I is of size M x N and R = (M - Ax){N - Ay). The 

matrix records the relationships between pixel intensities within a region of size 

Ax x Ay. From this matrix, various features describing an image's texture can be 

calculated [37]. 

In Muzzolini's seminal work, co-occurrence matrix features are used along with 

statistical classifiers to classify voxels in 3D ultrasound images. Once the voxels 

are classified, they are grouped into blocks up to a user-defined size [37]. Hao et 

al. also use co-occurrence matrix features along with other quantities such as local 

variance and wavelet energy signatures to create a feature space in which to perform 

region growing [21, 22]. 

Aside from texture features taken from co-occurrence matrices, Gabor filters 

are also popular for detecting locations of texture inhomogeneity. Chen et al. use 

responses from forty-two Gabor filters (six filters, each separated by thirty degrees, 

at seven different resolutions) to create a new image on which a modified Active 

Contour segmentation is performed [14]. The norm of the responses from each of 

the Gabor filters is used as the intensity in this new image. 

Shape 

Shape is possibly the most commonly used prior in ultrasound image segmentation 

and its incorporation into algorithms ranges from the use of smoothness terms in 

Active Contour approaches to the fitting of deformable models. Active Shape Mod­

els (ASM) and its variants are the most popular of the more explicit methods. Under 

the ASM approach, a region is represented by a fixed number of landmark points, 

(xi, i/i), selected, usually manually, along the boundary of the region to create a 

point distribution model (PDM) similar to that in Equation 1.4. 

x = Oi, x2, • • • , xn, 2/i, 2/2, • • • , 2/n) (1-4) 

The point distribution models from each training image are then combined in 

a matrix and principal component analysis (PCA) is performed to obtain a set of 

basic shapes, <&, of the region of interest. At this point, the segmentation problem 

is reduced to determining the linear combination of the base shapes obtained from 
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PCA that best represent the region of interest as described in Equation 1.5. 

x « b $ (1.5) 

Many variants of this type of Active Models have been applied to ultrasound 

image segmentation. Glasbey used the basic ASM described above in combina­

tion with a Bayesian framework to segment ultrasound images of sheep loins [19]. 

Bosch et al. added the intensity of the landmark points to their PDMs, creating what 

is known as an Active Appearance Model (AAM), and used the resulting model to 

segment heart chambers in echocardiographs [9]. In fact, the work of Bosch et al. 

is unique in that landmark points are selected from a sequence of images to create 

a 2D+time model for entire cardiac cycles. Jiang et al. also use the Active Model 

approach, but instead of adding the intensity of the landmark points to their PDMs 

like Bosch, Jiang uses gradient orientation and magnitude instead [30]. 

Chen et al. also use an explicit model in their level-set approach. In this case, 

the level-set energy functional includes a term describing the distance between the 

current contour location given by the level-set function and a registered version of 

the model [15]. 

However, the use of shape information is not limited to the fitting of deformable 

models. Knowing that the vessel wall in an intravascuar ultrasound image is roughly 

circular, Zhu et al. convert their images to the radial coordinate system and use 

Active Contours on a filtered version of the transformed image to find the now-

roughly-horizontal region boundaries [46]. Cancela et al. also shift their segmen­

tation problem into a different coordinate system. In this case, the new coordinate 

system is defined using a model. The x-axis in the new coordinate system is the 

model contour with a selected point on the contour labeled as the origin [11]. All 

image points are translated according to the above description and like Zhu et al, a 

roughly horizontal region boundary is detected. 

Application-specific Knowledge 

Ad-hoc methods are also common in ultrasound image segmentation due to the 

poor image quality and their ability to be designed around a particular context or a 
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particular data set. These algorithms are denoted as relying on multiple low-level 

image processing techniques to enhance the region of interest in order to make 

them easier to detect. The actual detection of the region of interest is either done 

manually or by comparison with a manually given shape. 

For example, Youmaran et al. combine Gaussian and Wiener smoothing filters 

with thresholding and mathematical morphology to enhance ultrasound images of 

the eye. Detection of the anterior chamber and sclera regions in the eye are then 

done by comparing each resulting region with a template shape [45]. Hiransakol-

wong et al. also use comparisons with a series of template shapes for object de­

tection following peak-and-valley filtering, smoothing through interpolation, and 

adaptive thresholding that reduce the image to a set of candidate regions [25]. 

Other algorithms rely on manual object detection. Hamou and El-Sakka en­

hance ultrasound images of the carotid artery using histogram equalization, Gaus­

sian filtering, Canny edge detection, and mathematical morphology, before leaving 

the region selection task to an expert [20]. Flores et al. use a median filter, intensity-

based region growing, and dilation to detect cancerous masses in breast tissue. In 

this case, the manual region selection is done as part of the initialization of the 

region growing method [2]. 

1.2 Purpose of this Research 

Up until now, ultrasound image segmentation, as a problem, has been analysed in 

the same fashion as other segmentation problems on real world images. Gradients 

are used to represent region boundaries, texture or intensity to describe the regions, 

and shape constrains to overcome noise. However, all of these techniques try to 

avoid, or attempt to ignore, one key issue, specifically: 

Ultrasound is a unique image modality with its own specific types of 

noise and artifacts due to its medium of acquisition. 

This point may seem obvious, but its implications are far-reaching. Specifically, 

all assumptions made in image processing about the appearance of features in real 

world images cannot be automatically applied in ultrasound image segmentation. 
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For example, the assumption that edges have a high gradient magnitude is highly 

debatable in the context of ultrasound images. In fact, the mere recognition that the 

analysis of ultrasound images requires considerable training suggests that at least 

some, if not many, of the assumptions that our visual system makes - and that are 

often incorporated into image processing algorithms - do not hold for ultrasound 

images. 

1.2.1 Objective of the Thesis 

The objective of the thesis is twofold, the first objective being the detection of fea­

tures unique to ultrasound images that could be useful to recognize image regions 

and their boundaries. In particular, I will look at the image acquisition process for 

ultrasound images to determine how to differentiate the noise and artifacts inherent 

in ultrasound images from the actual content of the image. 

Secondly, I will show that these particular features can be incorporated into an 

ultrasound image segmentation algorithm and that key anatomical structures can 

be reasonably well segmented as a result. Furthermore, this ultrasound image seg­

mentation algorithm will be fully automated and require no training data. These 

two requirements are imposed by the goal of the ultrasound image segmentation 

problem itself. 

1.2.2 Contributions of the Thesis 

Many of the contributions made by this thesis surround the approach taken to the 

problem, specifically the use of image acquisition information in the segmenta­

tion of ultrasound images. Others, as expected, are more implementation-specific. 

Regardless, great care was taken to ensure that the contributions herein can be gen­

erally applicable to the problem of ultrasound image segmentation. In particular, 

these contributions are: 

• The decomposition of ultrasound images into synthesized acoustical signals 

known as Synthetic A-Modes Ultrasound Scans. 

• The creation of an acoustical model for the detection of tissue boundaries. 
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• The detection of likely boundary locations in ultrasound images through the 

use of an acoustical model. 

• An automated contour initialization approach that does not require explicit 

size, shape, location, or orientation information. 

• A robust force-based segmentation framework that is immune to local noise. 

Over an above these contributions is the fact that the proposed segmentation 

system can provide good results given a variety of images. As an example, results 

on a set of pork loin ultrasound images achieve 73% accuracy, better than most 

current methods. 

Ultimately though, the greatest contribution of this thesis may in fact be the 

analysis of the ultrasound image acquisition process and the image processing as­

sumptions obtained from that analysis. While the segmentation framework pre­

sented herein will be shown to be useful, the assumptions themselves could eventu­

ally lead to more sophisticated segmentation algorithms and even better results. 

1.3 Thesis Outline 

The remainder of this thesis is organized as follows. In Chapter 2, the medium of 

ultrasound will be analysed and the acquisition of ultrasound images discussed. In 

the new context of this information, related work in this filed will be reconsidered 

in Section 2.5. Section 2.6 will give a description of the assumptions upon which 

my ultrasound image segmentation approach will be based. 

My segmentation approach will be presented in Chapter 3. In particular, the 

creation of Synthetic A-Mode Ultrasound will be presented in Section 3.1 while the 

acoustical modeling of tissue boundaries will be discussed in Section 3.2. The con­

tour initialization and force-based segmentation will follow in Sections 3.3 and 3.4 

respectively. 

Results for this segmentation algorithm on various sets of ultrasound images 

will be presented in Chapter 4. Also, this algorithm will be compared to an earlier 

version of this work in Chapter 5. 
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Finally, I will conclude and consider possible future work in Chapter 6. 

11 



Chapter 2 

Ultrasound Basics 

An understanding of the processes under which ultrasound images are formed is 

often necessary, or at least helpful, in order to understand the content of ultrasound 

images, and in turn properly process these images. Therefore, it is imperative that a 

brief overview is given of how an ultrasonic scanner is used, how it functions, how 

the images are created from the sound data, and the resulting complications that 

often arise throughout this process. For this chapter, it is assumed that the reader is 

familiar with longitudinal waves - of which sound waves are an example - as well 

as the concepts of frequency, amplitude, and propagation. 

2.1 Signal Acquisition 

The ultrasound signal acquisition process is essentially performed by emitting an 

ultrasonic pulse and recording the echoes created by the pulse as it travels through 

the subject. A simplified example of this process is shown in Figure 2.1. This pro­

cess begins with a transducer: a small piece of ceramic that, when exposed to an 

electrical current, expands and contracts slightly, creating an ultrasonic pulse. The 

opposite is also true, that when hit with an ultrasonic pulse, the ceramic piece ex­

pands and contracts, emitting an electrical current. The frequency of the ultrasonic 

pulse is controlled by the electrical potential applied to the ceramic and is usually 

kept in the range of l-10Mhz, with lower frequencies used to penetrate deeper into 

the subject. [41]. 

As the ultrasound pulse proceeds into the subject, it will encounter what are 
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- ^ 4 
Figure 2.1: The Reflection and Refraction of Sound Waves from an Ultrasonic 
Scanner. As in [37] 

known as acoustical boundaries. These are locations where the density of the 

medium through which the pulse is travelling changes significantly. At these lo­

cations, a portion of the ultrasound pulse will reflect back towards the transducer, 

while a weaker ultrasound pulse will refract through the boundary and continue 

deeper into the subject. The reflected pulse is known as an echo, and the greater the 

magnitude of the density difference at the boundary, the stronger the produced echo 

will be [37]. 

When the echoes return to the transducer, their strength is recorded based on 

the electrical potential they induce on the transducer. Also, the time between the 

emission of the ultrasound pulse and the recording of the echoes is recorded. Using 

the formula velocity = 2 dl
t^

ce x, and knowing the that the speed of sound through 

soft tissues is 1540™, the depth at which the echo was generated can be obtained. 

The entire signal acquisition process takes on the order of 0.001 seconds. The 

ultrasound pulse takes one microsecond to be generated while the remaining 999 

microseconds are used to record the olio of echoes emenating from the original 

pulse. This quick acquisition time allows ultrasound to be a real-time imaging 

technique; one of its main strengths [41]. 

'The 2 used in this equation stems from the fact that the round-trip time was recorded by the 
transducer. 
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Figure 2.2: The Linear Probe of an Ultrasonic Scanner. From [40] 

Note that as the ultrasound pulse travels through the subject, its amplitude will 

continuously weaken, as will the echoes being sent back to the transducer. This 

side effect is known as attenuation and is dependant on many variables including 

the frequency of the emitted ultrasound pulse and the density of the medium being 

traversed [36]. As a result of attenuation, there are finite depths at which an ultra­

sound pulse will no longer be able to return an echo strong enough to be recorded. 

2.2 The Ultrasonic Scanner & Image Types 

As important as the transducer is in ultrasound signal acquisition, it is only a small 

part of a larger machine known as an ultrasonic scanner. Conceptually, the scan­

ner is divided into three key componants: the ultrasound probe which acquires the 

data, the on-board digital signal processor (DSP) which cleans up and integrates 

the obtained data, and a screen for displaying the resulting ultrasound image. For 

the purposes of this research, it is the details of the first two componants that are of 

greatest interest. 

2.2.1 Ultrasound Probes 

There are many different types of ultrasound probes, all of which are known to be 

small devices. The largest ultrasound probes are still small enough to be handheld, 

like the one seen in Figure 2.2. The small size of the probes allow for increased 

mobility and flexibility when imaging a patient. As a result, images of the same 

anatomical structure can often look very different based on the location and angle 
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Figure 2.3: Ultrasound Imaging Types 

Ul-

at which the ultrasound probe is placed. 

The main componants of the ultrasound probe are the transducers, with probes 

differing in the number of transducers used and how they are setup. The most basic 

ultrasound probe consists of one fixed transducer. In this case, the ultrasound scan 

produced is one dimensional and measures the echo response with respect to depth. 

This is known as an A-Mode (amplitude mode) ultrasound scan. An example A-

Mode scan can be seen in Figure 2.3(a). A-Mode ultrasound is rarely used for 

diagnostic purposes as the scans are difficult to visualize and therefore manually 

analyze. 

The most commonly used ultrasound probes have either an array of fixed trans­

ducers or a curved array of transducers that rotate to receive signal responses from a 

fanned out area. These probes create B-Mode (brightness mode) ultrasound scans: 

the commonly known ultrasound image or slice. Figures 2.3(b) and 2.3(c) show 

examples of a linear array B-Mode ultrasound scan curved array B-Mode scan re­

spectively. In a B-Mode scan, the array of transducers can be pictured at the top of 

the image with depth shown roughly along the vertical axis. The amplitude of the 

echoes received from a particular location is displayed as the brightness of the pix­

els. The brighter a location in the image is, the stronger the recorded echo for that 

location. Conceptually, a B-Mode ultrasound scan can be considered as an array of 

A-Mode ultrasound scans with each transducer in the ultrasound probe generating 

its own signal records. 

Other probes also exist, including intralumenal array ultrasound probes that can 
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be inserted into the body. The resulting ultrasound scans are still B-Mode images, 

but the conceptual location of the transducer is no longer at the top of the resulting 

image. For example, in intravascular ultrasound scans (IVUS), the transducer is 

located in the middle of the image with the blood vessel wall imaged around it. In 

this case, the probe consists of a single transducer that rotates 360 degrees to create 

the resulting image. Also common is Trans-rectal Ultrasound scans (TRUS), which 

are similar to intravascular ultrasound scans and are used to image the prostate. 

There are also additional ultrasound imaging modes that are not directly used 

in this thesis, including M-Mode (motion mode) Ultrasound, Doppler Ultrasound, 

and 3D Ultrasound. With the exception of Doppler Ultrasound which is a little 

more involved, the data acquisition process for these imaging modes is similar to 

that described herein. For further information on these ultrasound imaging modes, 

please refer to [37, 36]. 

2.2.2 The Ultrasound Digital Signal Processor (DSP) 

Once the ultrasound data has been gathered, it is processed by an on-board digital 

signal processor. Due to competition among various vendors of ultrasound scan­

ners, little is known what actions these DSP's perfrom, yet there are two known 

tasks performed by the processor that are worth noting. One of these tasks per-

fromed is a log-compression of the signal data. This process shrinks the range of 

the data for better visualization [38]. The other known task performed by the DSP 

is time-gain compensation. 

Time-gain compensation is a tool used to overcome the atteunation effects of 

the ultrasound signal as it travels deeper into a subject by amplifying more distant 

echoes. This amplification is proportional to the round-trip time of the ultrasound 

pulse and, like the location and the angle of the ultrasound probe, is controlled by 

the user. Generally, a higher time-gain compensation setting will lead to a brighter 

image [37]. 

It is generally accepted that further processing is done by the DSP to improve 

the quality of the resulting ultrasound image. However, what other analysis a DSP 

perfroms is kept as proprietary company information, and therefore no assumptions 
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can be made about what that further processing involves. I simply note that the 

resulting ultrasound image is not a direct representation of the original ultrasound 

signals. 

2.3 Image Content & Noise 

As can be seen in Figure 2.3, ultrasound images can be difficult to interpret in spite 

of knowing how the images were acquired. One would expect strong echoes from 

tissue boundaries, where a change in medium density is generally large, and little to 

no echoes originating from within tissues. An ultrasound image, therefore, would 

be expected to show tissue boundaries as being brighter than the rest of the image 

while tissue regions should appear almost completely black. 

In reality, this is not the case. Soft tissues do not appear with a uniform intensity 

within an ultrasound image. Instead, there appears to be a significant amount of 

variation in the appearance of the tissue itself. This non-uniformity is due to what 

has been termed speckle noise, an observable and random interference pattern. 

Speckle noise is caused by many factors, the most obvious being that the tis­

sues themselves are not of uniform density. Each tissue has its own micro-structure 

that scatters ultrasound echoes and produces particular echo patterns. As a result, a 

tissue region can have a noticeable granularity within an ultrasound image, which 

has led to the use of texture as a key image feature used in segmentation [38]. Also, 

the distribution of specularities in the image has been shown to follow a Rayleigh 

distribution, which has led to the distribution's inclusion in many probabilistic seg­

mentation frameworks [27]. 

However, these is more to the textured appearance than simply tissue inhomo-

geneity. The superposition of echoes generated by the ultrasound pulses of neigh­

bouring transducers generates small spots of relatively high intensity noise through­

out the image. Also, general acoustical noise may be picked up by the probe and 

inserted into the image, especially in areas where the original signal has greatly at­

tenuated. Both of these causes ultimately affect the reliability of speckle noise as a 

valuable feature for image segmentation. 
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(a) Horizontal Echo Reflection (b) Vertical Echo Reflection 

Figure 2.4: The Effect of Boundary Orientation on Ultrasound Signal Acquisition 

Ultimately, while different tissues can best be detected based on their general 

intensity, there is no known connection between the density of the tissue and its 

average intensity. One special case is fluids. Water, blood, and other fluids are the 

easiest to observe in ultrasound images as they appear pitch black and void of any 

speckle noise. This phenomenon is due primarily to the more homogeneous nature 

of the fluid itself. 

2.4 Imaging Artifacts 

As much as speckle noise can plague ultrasound images, so too can various arti­

facts that develop through this imaging process. These artifacts can have the effect 

of blurring the image, missing key image information, or even adding misleading 

content to the image. As a result, it is important to discuss the four main ultrasound 

imaging artifacts and how they arise. 

Orientation Dependency 

Given that a transducer has a pre-defined size, the echoes it can record are limited 

to the ones that can propagate to the transducer's surface. Since these echoes are 

created from the original ultrasound pulse as it reflects off a tissue boundary, the 

angle of that reflection plays a key role in determining which echoes will be re­

turned in the direction of the transducer and which echoes will miss the transducer 
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(a) Reverberation Be­
tween the Transducer (b) The Visual Effect of Reverberation. From [36] 
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Figure 2.5: The Reverberation Artifact and how it Affects Ultrasound Images 

completely. Consider Figure 2.4. The more perpendicular the tissue boundary is to 

the incident ultrasound pulse, the more likely the resulting echo will return to the 

transducer (as shown in Figure 2.4(a)). However, as the tissue boundary and the 

incident beam become closer to being parallel with each other, the more likely the 

reflected echo will miss the transducer completely (as in Figure 2.4(b)). 

The ultimate result of this limitation is that echoes from certain tissue bound­

aries will be missed and in turn, those tissue boundaries will not appear in the result­

ing ultrasound image. This is particularly a problem for vertical tissue boundaries 

as they are more parallel to the incoming ultrasound pulse. 

Reverberation 

The entire ultrasound imaging process is based on the recording of echoes created 

through reflection. However, the ultrasonic scanner, or the technician running the 

scanner, have little to no control over this echo creation process. Speckle noise is 

one result of this problem, reverberation is another. Frequently, when an echo re­

turns to the transducer, it is not simply absorbed and recorded. Instead, a portion of 

that echo also reflects off the surface of the transducer and returns back towards the 

subject to interact once again with tissue boundaries. This process repeats itself un­

til the offending ultrasound echoes become too weak to be recorded. The repetition 

of this process is known as reverberation. 

The most likely location for reverberation is between the transducer's surface 
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Figure 2.6: Acoustical Shadowing and its Effects on Ultrasound Images 

and the skin of the subject, as shown in Figure 2.5(a). This is due to the fact that the 

transducer and the skin are strong acoustical boundaries. However, reverberation 

can also occur between two strong tissue boundaries. Usually, the resulting echoes 

from reverberation blend into the speckle noise and do not cause a noticeable differ­

ence in the image quality, but occasionally, these reverberated echoes have a notice­

able impact. This impact is most problematic when imaging fluid-filled anatomical 

structures such as the one shown in Figure 2.5(b). Since fluid does not create any 

speckle noise, the reverberated echoes have nothing to blend into, and instead stand 

out quite obviously. 

Shadowing 

When an ultrasound pulse reaches an acoustical boundary, it generally reflects and 

refracts. Occasionally, the ultrasound pulse will reach a boundary so strong that 

the majority of the pulse is reflected and the refracted pulse ends up being so weak 

that no recordable echoes can be obtained from it. As a result, any anatomical 

information below such a boundary is never recorded, leading to ultrasound images 

that have portions of the image area completely void of content. This process, which 

is shown in Figure 2.6(a), is known as shadowing. 

Shadowing is one of the more dramatic imaging artifacts in ultrasound images. 

As can be seen in Figure 2.6(b), acoustical shadowing can lead to significant por­

tions of the resulting ultrasound image containing no anatomical information at all. 
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Blurring 

Unlike the earlier imaging artifacts, there are multiple sources for the blurring in an 

ultrasound image. In particular, the movement of the subject, whether voluntary or 

involuntary, can shift tissue boundaries and lead to distortions and blurring in the 

resulting image. 

Blurring can also occur as a result of the fine discretization that is common to 

ultrasound images. It is important to note that the ultrasound pulse emitted from 

a transducer is not infinitely thin. Instead, the emitted pulse occupies roughly the 

same area as the transducer's surface. The result of this observation is that an ul­

trasound pulse interacts with tissue boundaries over a particular area. This effect, 

combined with pixels that are fractions of a millimetre in size, results in echoes 

from a tissue boundary being recorded over various pixel depths, thereby creating 

an additional blurring effect. 

2.5 Related Work in Context 

Given a brief introduction to how ultrasound images are formed, more can now be 

said about current work in the area of ultrasound image segmentation, specifically 

how the use of prior knowledge can limit the applicability of current methods. As 

seen, there are various complications surrounding the analysis of ultrasound im­

ages. Speckle noise and image artifacts are perhaps the most obvious of issues, but 

there is also the concern of dealing with images of an anatomical structure taken 

of different probe locations or angles. Changes in probe position can cause signif­

icant differences in the shape, size, orientation, or even appearance, of a particular 

anatomical structure. Also, the task of analysing images from both healthy and ill 

patients can add additional variability to a data set. 

Earlier, the current work in the area of ultrasound image segmentation was clas­

sified by the main types of image cues and priors used in the field. Each of these 

knowledge classes impose a particular set of assumptions on the data being anal­

ysed. How valid these assumptions are in the area of ultrasound is of great impor­

tance in developing a successful segmentation system. Therefore, I will consider 
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each class in detail. 

Gradients 

The main assumption behind gradient-based segmentation methods is that a gradi­

ent of high magnitude is a good indicator of a region boundary. While this assump­

tion is reasonable for many real world images, it is rarely valid with ultrasound data 

for various reasons. First, the speckle noise that is inherent in the imaging pro­

cess adds significant gradients within homogeneous regions that can be misleading. 

Also, the orientation dependency of the ultrasound signal causes the more vertical 

boundaries in an image to be either less pronounced or even non-existent. This com­

bination of misleading gradients and missing boundaries can lead to unpredictable 

and often invalid results. 

Gradients may be a reasonable choice for fluid-filled structures, such as heart 

chambers or cysts, as these anatomical structures are often void of speckle noise 

and, even though certain portions of the region boundary may be missing, the 

speckle noise outside the region of interest may be strong enough to substitute as a 

reliable boundary. 

Even so, it is no surprise then that the gradient-based algorithms used in this 

field often incorporate additional priors into their segmentation frameworks, be it 

shape [1, 24] or intensity [26, 42] based priors. 

Gray-level Distributions and Histograms 

Algorithms in this class rely on the assumption that a region can be well described 

by a distribution of pixel intensities. As speckle noise is known to be Rayleigh dis­

tributed [27], the use of said distribution is both well supported and well used [12, 

29]. However, one must be concerned when imaging a structure from different 

probe locations. The appearance, particularly the brightness, of the pixels in a re­

gion can be affected by both the depth of the region in the image as well as the 

time gain compensation setting used by the ultrasound technician to overcome the 

attenuation effect. 

The other major concern in this situation is the possibility that a subject's ill— 
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ness may add too much variability in intensity within the region of interest that the 

Rayleigh distribution model for the region will not be appropriate. Unfortunately, 

little has been done in this field to test current methods on images of ill subjects [38]. 

The use of other gray-level distribution models, like the Gaussian distribution, is 

less well supported and may only work in particular settings or with a specific data 

set. In the case of the Gaussian distribution, fluid-filled structures are once again 

the most likely candidate for success as they contain little-to-no speckle noise. 

Texture 

There is strong support for the use of texture to define the appearance of region in 

ultrasound images as the texture in the image relates well to the micro-structure of 

the represented tissue. In particular, the prostate, breast cancer masses, and vessel 

walls contain strong texture cues that are relatively easy to separate from their sur­

rounding regions [35]. In these cases, the speckle noise can be easily modeled by 

texture information obtained from co-occurance matrices or Gabor filters. 

However, there are often occasions were a region's texture is not visually ap­

parent and cannot be well detected or described by either co-occurrence matrices 

or Gabor filters. Take for example the ultrasound images in Figure 2.3. As a result, 

there is no guarantee in general that a given ultrasound image will have reliable 

texture cues. 

Also, as with algorithms that rely on gray-level distributions, texture-based 

methods are also susceptible to variation from the texture model due to the illness 

of a subject. 

Shape 

The use of shape priors is possibly the most common incorporation of knowledge 

in ultrasound image segmentation techniques as it is robust to speckle noise and 

imaging artifacts. However, the assumption that the region of interest maintains a 

reasonably consistent shape over multiple images is a tenuous one. The imaging of 

multiple subjects, both ill and healthy, can lead to a significant variation in shape of 

a particular tissue. 
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Even so, the imaging of the same anatomical structure from various probe po­

sitions may be the most difficult problem facing shape-based methods. Scanning a 

subject from different locations, or at different angles, can lead to ultrasound im­

ages of a structure that are significantly different in terms of the structure's shape, 

size, and orientation. Current methods generally avoid this problem by limiting 

their algorithms to the most frequently used view of a structure [9, 15, 19]. While 

certain views of an anatomical structure are more likely to be diagnostically useful, 

radiologists, in practise, will use whatever image or images they find to be the most 

helpful for diagnosing the patient. Any automated method should be able to do the 

same. 

Shape priors would be most reasonably used in situations where the position of 

the ultrasound probe is relatively fixed with respect to what is being imaged, such 

as intravascular ultrasound images or trans-rectal ultrasound images. Still, caution 

must still be exercised to ensure that any shape-based method can handle the amount 

of variation in size and shape that can be obtained from multiple subjects in varying 

levels of health. 

Application-specific Knowledge 

The ad-hoc methods common to this class often make multiple assumptions about 

the content and structure of the images being segmented. In fact, these algorithms 

are often built around the images themselves. Specificity is their strength, but it 

is also their weakness as these approaches may have difficulty adapting to many 

possible variations in appearance. While it can be argued that the ability to han­

dle variability is not a concern for algorithms in this class, it should be noted that 

different ultrasound technicians can obtain significantly different images of a tissue 

despite using the same probe position on the same subject. These differences are 

due to the technician's personal preference for various settings on an ultrasound 

scanner, of which time gain compensation is one. 

What is also common for many of methods in this class is the use of knowledge 

via manual interaction. While approaches of this kind provide significant knowl­

edge for image segmentation, they do little to reduce the time pressures imposed on 
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Gradients 

Gray-level 
Distributions 

Texture 

Shape 

Application-
specific 
Knowledge 

Pros 
• Can identify boundaries of 
speckle-free fluid-filled struc­
tures. 

• Rayleigh distributions accu­
rately model region intensi­
ties. 
• Robust to speckle noise and 
missing boundaries. 

• Models tissue microstruc-
ture. 
• Robust to missing bound­
aries. 

• Can compensate for missing 
boundaries. 
• Adds anatomical knowl­
edge. 

• Caters to the specific needs 
of the application, thereby im­
proving the quality of the seg­
mentation. 

Cons 
• Speckle noise adds sig­
nificant non-boundary related 
gradients. 
• Absent vertical boundaries 
go undetected. 
• The use of non-Rayleigh 
distributions is not well-
founded. 
• Unknown ability to deal 
with images from ill subjects. 
• Adjacent regions need 
visible intensity differences. 
• Unknown ability to deal 
with images from ill subjects. 
• Requires identifiable texture 
cues that vary among adjacent 
regions. 
• Limits the algorithm to one 
view of a structure. 
• Poor at handling images 
from ill subjects, particularly 
masses. 
• Often includes manual inter­
vention. 
• Has the possibility of being 
too closely tied to one data set 
and not others. 

Table 2.1: The pros and cons of various uses of knowledge in the field of ultrasound 
image segmentation. 

a radiologist. 

The pros and cons of each prior knowledge class are summarized in Table 2.1. 

Other Points on the State of the Field 

It is important to note that current approaches in this field appear to be focused on 

five particular areas of application, in particular echocardiographs, obstetrics/gynecology, 

breast cancer detection, prostate cancer detection, and intravascular ultrasound [38]. 

It is no coincidence that these five areas of application have strong image features. 

25 



Texture is quite evident in both breast and prostate images as well as intravascular 

ultrasound images. Echocardiographs as well as ultrasound images from obstet-

rics/gynecology are aided by the extra contrast provided by fluids within the imaged 

area. 

While there is some research being done on ultrasound image segmentation that 

is not related to the categories mentioned above, the number of successful results 

are far fewer due to the decreased reliability of various image features. 

The specificity of algorithms to a particular area of application is also interesting 

and it could show two possible mindsets. First, there seems to be a strong desire 

to obtain practical solutions for specific diagnostic problems over attempting to 

address the ultrasound image segmentation problem as a whole. It may also show 

the inability to generalize image features, or even a class of image features, from 

one area of application to another. The sheer variety of appearances of tissues in 

ultrasound images may be difficult to cover with a single set of image features. 

Finally, I must acknowledge the role of ethics constraints, at least in North 

America, on the development of ultrasound image segmentation systems. Obtain­

ing ultrasound images, especially medical images, for research of this kind is a very 

time consuming and bureaucratic process. On top of this, radiologists are very busy 

and it is difficult for them to find time to release images for research purposes. As 

a result, the data sets obtained are often quite small, to the extent that it makes it 

difficult to justify learning-based methods as a practical approach. 

2.6 Assumptions 

Up until this point, there has been a strong emphasis in the area of ultrasound image 

segmentation on image features and shape as the sole guiding knowledge for seg­

mentation algorithms. While the results from these methods have been good, the 

algorithms themselves have had limited areas of application and often ignore some 

of the more challenging aspects of how ultrasound is used in general. 

In contrast, far less work has been done at analyzing the image acquisition pro­

cess and obtaining information from there that may be useful for segmenting ul-
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trasound images. It is here that this research hope to make a significant impact. 

However, to do so, I must first make the connection between the image features I 

will use and how those feature come to be. This is done by relying solely on the 

following observations which, for formality's sake, I will present as assumptions. 

1. Bright pixels are likely to represent tissue boundaries. 

As different tissues have different densities, it is expected that the echoes created 

from the tissue boundary will be stronger than those created within the tissue. In 

practice, this is indeed the case and as a result, can be reliably assumed. 

2. Pixels within a region of interest are likely to be darker than sur­

rounding pixels at the same depth. 

Consider two ultrasound pulses that have traveled the same depth into the sub­

ject. The first pulse reaches the boundary of the tissue of interest and refracts 

through the boundary and into the tissue. Meanwhile, the second pulse misses 

the tissue of interest and, due to its proximity to the tissue of interest, is unlikely to 

have refracted through an unrelated tissue boundary. How will the echoes originat­

ing from these pulses differ? 

As expected, the echoes from the first pulse will be weaker than those from 

the second. This phenomenon is due to the fact that the pulse travelling through 

the tissue of interest has been weakened by being partially reflected at the tissue 

surface. Conversely, the second pulse did not cross this boundary and as a result is 

the stronger of the two ultrasound pulses. Therefore, the echoes originating from 

the second pulse will be stronger and, in turn, the area surrounding the tissue of 

interest will appear brighter in the image than the region of interest. 

3. Noise is more likely at deeper parts of the image than in more shal­

low portions of the image. 

This assumption is based on both attenuation as well as the propagation of 

echoes in multiple directions within the subject being scanned. As ultrasound pulses 

progress deeper into the subject, the strength of the pulse will weaken, making it 
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more difficult to differentiate the original signal from noise. In fact, at a certain 

depth, it is impossible to differentiate the two. 

Meanwhile, the deeper an ultrasound pulse travels, the more echoes are gener­

ated and scattered within the subject, leading to more noise that may corrupt the 

signal. The result of these two effects leads to noise playing a more prominent role 

as you go deeper into the image. 

4. Horizontal tissue boundaries will appear brighter than vertical tis­

sue boundaries. 

Due to the aforementioned orientation dependency of the signal, this image 

effect is to be expected. The more parallel a tissue boundary is to an incoming 

ultrasound pulse, the less likely the echoes generated off that boundary will return 

to the transducer. 

5. Tissue boundaries will appear fuzzy in the image. 

Unfortunately, the interaction between an ultrasound pulse and a tissue's sur­

face is not entirely simplistic. As mentioned, this interaction does not occur at an 

infinitely tiny point, nor is either quantity entirely static. As a result, the tissue 

boundaries in ultrasound images are not as sharp or clear as boundaries can appear 

in real world images. 

6. Pixel intensity will decay following a tissue boundary. 

Reverberation of echoes between the transducer and the skin of the subject is 

inevitable, and while this imaging artifact often does not create any visual difference 

within the resulting images, its presence is nonetheless undeniable and cannot be 

ignored in the modelling process. 

7. Ultrasound images can be conceptually considered as an array of 

A-Mode ultrasound scans. 

This assumption originates from how an ultrasound image is formed. While 

A-Mode ultrasound shows the ultrasound signal's effect from one transducer, an 
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ultrasound image shows the same for an array of transducers. Clearly, there is a 

strong connection between these two visualization modes. 

Ideally, a one-dimensional line in an ultrasound image that passes through the 

represented location of a transducer could be looked at as being similar to an orig­

inal A-Mode ultrasound scan. The main difference between this line and the real 

scan is the overlap of echoes that occurs through the use of multiple transducers 

in the creation of ultrasound images. That said, the effect of this difference is un­

known and given the presence of a DSP on the ultrasound scanner and the fact that 

spatial information is relied upon in these images for diagnostic purposes, it is en­

ticing to assume that the effect of echo superposition has been minimized prior to 

image formation. 

8. The region of interest has a smooth, closed contour. 

While this assumption does not relate to the ultrasound imaging process, it is 

still important to note for the upcoming segmentation method. The rationale that 

the region of interest have a smooth contour is reasonable considering that virtually 

all anatomical structures are generally smooth in shape. The assumption that this 

contour is also closed should not be a surprise either in that both the image and any 

anatomical structure is of finite size. 
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Chapter 3 

Segmentation System Overview 

Due to poor image quality, most ultrasound image segmentation systems are quite 

complex. The approach presented herein is similar in that regard and includes a sig­

nificant amount of pre-processing. The amount of pre-processing is not surprising 

as I do not use any image feature directly. Instead, the image is interpreted based on 

models of how the image was formed and from this process, boundary information 

is obtained for use in the actual segmentation. 

The complete segmentation system is shown in the block diagram in Figure 3.1. 

The approach begins by decomposing the image into one-dimensional ultrasound 

scans. Echo patterns in these Synthetic A-Mode ultrasound scans are then mod­

eled in order to determine likely tissue boundary locations. Finally, the detected 

boundary locations are used to initialize a contour that is stretched and pulled by 

various forces to obtain a final segmentation. Throughout, I rely on the existing 

assumptions obtained from studying the ultrasound image acquisition process. 

3.1 Synthetic A-Mode Ultrasound 

In order to be able to use knowledge about how ultrasound data is acquired, we 

must first decompose the image into its separate ultrasound signals: one for each 

emitted pulse. Admittedly, by splitting the image into one-dimensional scans, we 

lose spatial information, but the hope is that we can gain an advantage by analyzing 

the original signals as closely as possible. Also, despite the obvious appearance of 

echo superposition in ultrasound images, I will assume that the ultrasound scans 
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Figure 3.1: Overview of the Ultrasound Image Segmentation System 

from each pulse are independent for the sake of simplicity. 

Different ultrasound images will require different approaches depending on the 

construction of the ultrasound probe used to obtain the images. For the purposes of 

this thesis, we will restrict ourselves to linear and curved array ultrasound images 

similar to the ones seen earlier in Figure 2.3. For the linear array ultrasound im­

ages, the fixed array of transducers produce signals that correspond directly to the 

columns of the image. Therefore, each column of a linear array ultrasound image 

can be interpreted similarly to an A-Mode ultrasound scan, as described in Fig­

ure 3.2(a). Henceforth, we will consider these one-dimensional scans as Synthetic 

A-Mode Ultrasound scans since echo superposition, discretization, and processing 

done by the ultrasonic scanner have altered what would be an A-Mode ultrasound 

scan into what we are observing here. 

The curved array ultrasound case, however, is not as straightforward. Here, the 

image area is shaped like a hand-held fan with the ultrasound pulses originating 

from the curved array positioned near the pivot of the fan. In fact, if we project the 

pulse trajectories backwards, they will all intersect at this pivot point. Therefore, 

the Synthetic A-Mode can be generated by lines that pass through this pivot point 
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Image. Image Boundary lines shown in Blue. 

Figure 3.2: Pulse Trajectories from various Ultrasound Images 

and fan out through the image area. An example can be seen in Figure 3.2(b). 

Generating synthetic A-Mode ultrasound scans from a curved array ultrasound 

image first requires the detection of this pivot point. To detect the pivot point, we 

first detect the left and right boundaries lines of the image area - shown in blue in 

Figure 3.2(b) - and obtain their intersection. Determining these boundary lines, in 

turn, involves first obtaining points along the image boundaries and fitting boundary 

lines to those points. 

The image boundary points are detected using the algorithm shown in Fig­

ure 3.3. The pixel in the upper, left-hand corner of the image is used to obtain 

the intensity of the uniform background area within the image that is outside of 

the viewing area. Using this as a cutoff value, the first and last points above this 

background intensity in each row of the image are obtained. For ideal ultrasound 

images, fiting a line to these points is all that would need to be done to obtain the 

image boundary points. 

Unfortunately, it is not uncommon for curved array ultrasound image to have 

shadowing effects near the viewing boundaries. Consider the right image bound­

ary in Figure 3.2(b). Simply obtaining the first inward pixels above the uniform 

background intensity will lead to the majority of the points chosen being within the 

image and not along its boundary. Even the left image boundary in Figure 3.2(b) 

shows slight shadowing in the middle section of the image, despite being visibly 
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DETECTlM AGEB OUNDARYPOINTS (I) 

I Pbndy <- 1(1, 1) 
2 
3 forall rows r in I 
4 leftPts(r) *- MINlNDEX(I(r,:) > p^dy) 
5 rightPts(r) <- MAXlNDEX(7(r,:) > P6ndy) 
6 endfor 
7 
8 leftPts <- MEDFILTI (leftPts, 9) 
9 rightPts <- MEDFlLTl (rightPts, 9) 
10 
II forall i in leftPts k, rightPts 
12 leftPts{i) <- MlN(Ze/tPis(i - 1), leftPts(i)) 
13 rightPts(i) <— MAx(rightPts(i - 1), rightPts(i)) 
14 endfor 
15 
16 leftPts <- umQUE(leftPts) 
17 rightPts <— UNIQUE(rip/itPts) 
18 
19 return [leftPts, rightPts] 

Figure 3.3: The Algorithm for Detecting Points Along a Curved Array Ultrasound 
Image Boundary 

prominent image boundary. 

To account for these shadowing effects, the obtained sets of data points for both 

the left and right image boundaries are arranged based on depth and filtered with a 

one-dimensional median filter with a window size of nine pixels to remove obvious 

outliers. This process is followed by removing any points from a boundary set that 

is clearly within the viewing area. Note that for curved array ultrasound images, the 

viewing boundaries move outward as they descend in the image. As a result, any 

pixel in a boundary point set that is closer to the center-line of the image than an 

earlier pixel in the same set should be removed. For each boundary point set, the 

pixels are traversed depth-wise and replaced with the most outward value previously 

seen in the set, up to and including the old value of the pixel, as seen starting at line 

11 of Figure 3.3. Duplicates are then removed to obtain the final image boundary 

point sets. 

Using the image boundary point sets, we must find the most fitting boundary 

lines for the left and right sides of the image. Due to shadowing effects, it cannot 

be assumed that the point sets obtained using the above method are free of outliers. 
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LINER ANS AC (pts) 
1 for i <- 1 to N do 
2 point! +- RANDOM(pts) 
3 point2 <— RANDOM(pts) 
4 
5 sampleLines(i) <— CROSS(pointl,point2) 
6 UneScore(i) <— sC0RELlNE(sampleLines(i)) 
7 endfor 
8 
9 return samp/eLmes(MAXlNDEX(/ineS'core)) 

Figure 3.4: RANSAC Algorithm used to Obtain Image Boundary Lines for a 
Curved Array Ultrasound Image 

As a result, we cannot simply determine the line of best fit using the least-mean-

squared algorithm. Instead, the RANSAC algorithm derived from [23], is used. 

Figure 3.4 displays the RANSAC algorithm used for this task. Essentially, the 

algorithm picks two points from the boundary point set at random and creates a line 

through these two points. This line is then scored based on a given criteria. In this 

particular application, the following criteria is used: 

.bout I. 

Score{l) = \pon\ - A ^ d(Pout, I) (3.1) 

where pon represents the set of image boundary points on the line, pout repre­

sents the set of image boundary points on the outside side of the line (i.e.,points 

to the right or the right image boundary line, or points to the left of the left image 

boundary line), and d is the euclidean distance function. Basically, the score at­

tempts to maximize the number of points that support the line while minimizing the 

number of image boundary points that are outsiders. The variable A in Equation 3.1 

weights the two criteria. As the possibility of a boundary point being outside the 

imaging area is very low, a relatively large value for A will likely produce the best 

results. In practice, a value of A = 10 was found to be appropriate. 

The process of creating and scoring lines is repeated a fixed number of times 

with the highest scoring line chosen as the best representation of the boundary. The 

number of iterations RANSAC executes depends on a few variables and is usually 
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Figure 3.5: A Sample Synthetic A-Mode Ultrasound Scan 

chosen using the following formula (from [23]): 

log(l-p) 
N = (3.2) 

M i - (i - £)s) 

where p is the likelihood of getting a successful fit (usually set to 0.99), e is the 

fraction of outliers in the boundary point set, and S is the number of points used 

for the data fitting (in this case, two). Ideally, it is best to choose a value for e that 

is as large as is practical, e = 0.8 has been found to work rather well and results in 

N = 113 RANSAC iterations. 

With the image boundary lines detected, we can determine the pivot point of 

the fanned-out region and use that point as the point of origin for the ultrasound 

pulses. Using this point of origin, as well as all the points between the boundary 

lines at the bottom of the image, we can easily interpolate at a fine scale between 

the two points to obtain all the pixels on each Synthetic A-Mode Ultrasound scan 

for a curved array ultrasound image. 

3.2 Modeling Echo Patterns 

With the creation of the Synthetic A-Mode scans complete, the goal of the system 

becomes the analysis of these one-dimensional scans for information on possible 

regions and their boundaries. 
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Figure 3.6: A Sample Gumbel Distribution (/J, = 0, (5 = 1). 

A sample Synthetic A-Mode ultrasound scan is shown in Figure 3.5. For the 

sake of reminder, note that the scan displays echo amplitude versus depth in the 

subject, or more precisely, pixel intensity versus depth in the image. Also note the 

amount of noise that is still present in this mode. To identify a tissue and its bound­

aries will require an understanding of what type of echo pattern a tissue boundary 

generates. 

Earlier, two particular imaging artifacts were mentioned that will aid in under­

standing these echo patters: reverberation and blurring. The latter would result in 

relatively strong echoes over a small depth window while the former would cause 

a gradual decrease in echo amplitude following a tissue boundary as echoes rever­

berate between the transducer and the subject's skin. The result of these two arti­

facts would be a rise and gradual decay of echo amplitude for each tissue boundary 

crossed. 

The Gumbel probability distribution follows a similar shape, as can be seen in 

Figure 3.6. The shape of the Gumbel distribution as well as its simple mathemat­

ical description make it a good candidate for modelling the echo patterns of tissue 

boundaries in this context. The tail of the Gumbel Distribution mimics the reverber­

ation effect seen in the Synthetic A-Mode scans while the mode of the distribution 

can be taken as the most likely boundary location. The Gumbel distribution is given 
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Figure 3.7: A Conceptual Description of the Echo Pattern Modeling Process 

by the following probability distribution function: 

f{x;p,/3) = 
0 

(3.3) 

where [i is the distribution's mode and f3 is its spread. Using the Gumbel distri­

bution as a model, I propose that a tissue boundary's echo pattern appears similar to 

a Gumbel distribution corrupted by noise. Figure 3.7 displays the conceptual steps 

of the segmentation system thus far. 

With the Gumbel distribution as an appropriate echo pattern model, the prob­

lem of analyzing the Synthetic A-Mode scans is reduced to fitting the appropriate 

number of Gumbel distributions to each scan. The boundary locations given by the 

fitted Gumbel distributions can then be easily converted back to locations in the 

image. 

The fitting of the Gumbel distributions to the scans can be achieved by many 

minimization techniques. Here, the task is performed using the Expectation-

Maximization algorithm derived from [17] and given in Figure 3.8. First the algo­

rithm converts the Synthetic A-Mode scan into a set of samples by using the echo 

intensity at each depth as the number of samples for that depth. These samples 
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EXPMAxGUMBEL(scan, numToFit) 
1 SCanSamples <- CONVERTlNTENSITYToSAMPLES(scan) 
2 modes <— LINSPACE(MIN(scan),MAX(scan), numToFit) 

3 spWs(i) +- X ° S i t 
4 
5 while numChangedClass > tstop 

6 
7 # The Expectation Step # 
8 foreach x in scanSamples 
9 for £ = 1 to numToFit 

K»,O - - -^ i ; ; ^ 
11 endfor 
12 endfor 
13 classLabels <— MAXINDEXOVERDIM(P, 2) 
14 
15 # The Maximization Step # 
16 for i = 1 to numToFit 
17 valsInClass <— scanSamples(FlND(scanSamples, classLabels —— i)) 
18 classMean +— E[valsInClass] 
19 classStdDev <— y/Var [valsInClass] 
20 spreads{i) <- ^ dassStdDev 
21 modes{i) <— classMean — 7 spreads(i) 
22 endfor 
23 endwhile 
24 
25 return [modes, spreads] 

Figure 3.8: The Expectation-Maximization Algorithm used to fit Gumbel Distribu­
tions to Synthetic A-Mode Scans. 

are then classified in the expectation step according to the most likely Gumbel dis­

tribution to have generated that sample. Once classified, the mean and standard 

deviation of each class are calculated and used to update the mode and spread of 

each Gumbel distribution according to the equations given on lines 20 and 21 (From 

[43], where 7 is the Euler-Mascheroni constant), thereby maximizing the class' pa­

rameters. This process is repeated until the number of samples that change from 

one class to another goes below a given threshold. 

As can be seen in Figure 3.8, the Expectation-Maximization algorithm requires 

that the user specify the number of Gumbel distributions to fit to each Synthetic 

A-Mode scan. Given that there may be a varying number of anatomical structures 

within any portion of an ultrasound image, the number of Gumbel distributions 
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NUMTOFITPOLY (scan) 
1 for i <- 1 to 20 do 
2 polyCoeff <— POLYFlT(scan) 
3 resNorm(i) ±-RESlD\JAtNORM(scan,polyCoeff) 
4 endfor 
5 
6 bestFitDegree <— MlNlNDEX(resiVorm) 
7 return CElh(bestFitDegree/2) 

Figure 3.9: Algorithm used to determine the number of Tissue Boundaries in a 
Synthetic A-Mode Ultrasound Scan. 

to fit to each scan is unclear and must be determined before using Expectation-

Maximization. However, a reasonable lower and upper bound on the number of 

tissue boundaries in a Synthetic A-Mode scan can be easily determined from view­

ing various ultrasound images. Clearly, zero is a reasonable lower bound while a 

reasonable upper bound on the tissue boundary number would be on the order of 10 

given the limited depth achievable with ultrasound imaging. 

In theory, one could simply run the Expectation-Maximization algorithm on 

each scan over the range of likely tissue boundary numbers and choose the result 

that is the best fit according to a given error measure. Unfortunately, each ultra­

sound image contains on the order of hundreds of Synthetic A-Mode ultrasound 

scans, so running the EM algorithm on each ten times would be quite time consum­

ing. 

Instead, I use the method provided in Figure 3.9 to estimate the number of tissue 

boundaries in a given Synthetic A-Mode ultrasound scan. Polynomials of degrees 

ranging from zero to twenty are fitted to the Synthetic A-Mode scan and the residual 

norm calculated for each case to determine the quality of the fit. While the fitted 

polynomials do not provide us with any information about the location of possible 

tissue boundaries, the degree of the polynomial of best fit does provide us with 

information on the complexity of the scan. Therefore, the degree of the polynomial 

with the lowest residual norm is determined and - due to the roughly parabolic shape 

of the Gumbel distribution - is divided by two to obtain an estimate for the number 

of Gumbel distributions to fit to the scan. This algorithm has the benefit of being 
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Figure 3.10: A Sequential View of the Model Fitting Process 

much faster than multiple EM passes as the polynomial fitting can be done rather 

efficiently. 

With the estimate of the number of tissue boundaries within a Synthetic A-Mode 

ultrasound scan, we can now fit the proper number of Gumbel distributions to each 

scan and, using to modes of each distribution, obtain likely tissue boundary loca­

tions within the ultrasound image. This entire process can be seen in Figure 3.10 

3.3 Contour Initialization 

With the knowledge of possible boundary locations now at hand, it is reasonable 

to progress with a contour-based segmentation approach. In order to do so, an 

initial contour is required. Given that most anatomical structures have a smooth 

closed contour, it only seems appropriate to use an ellipse as an initialization for the 

contour-based segmentation. Yet, at what location in the image should this ellipse 

be placed? At what orientation? How long should its major and minor axes be? 

Despite limiting the initial contour to an ellipse, there are still many options in 
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ELLIPSERANSAC(pts) 
1 for i <- 1 to N do 
2 points <— RANDOM(pis, 5) 
3 
4 ellipses(i) *— FlTELLlPSE(pom£s) 
5 ellipses'core(i) <— SCOREELLlPSE(eZZzpses(t)) 
6 endfor 
7 
8 return .ellipses(M.AXlNDEX(ellipseScore)) 

Figure 3.11: RANSAC Algorithm used to Obtain The Initial Elliptical Contour for 
the Region of Interest. 

determining the ultimate shape, size, and orientation of this contour. This freedom, 

however, is not without complexity. 

The ultimate goal in initializing the contour is to use the set of boundary points 

already obtained from the analysis of the Synthetic A-Mode scans to place and 

size an ellipse that best represents the region of interest. Unfortunately, this set of 

likely boundary points includes not only boundary points for the region of interest, 

but also boundary points for other regions in the image and possibly even some 

erroneous points. As a result, we cannot simply fit an ellipse to all the points in the 

boundary point set. Instead, a more intelligent algorithm is required. 

In order to deal with the likely possibility of outsiders in the boundary point set, 

I once again rely on a RANSAC approach developed from [23]. As with the line 

fitting RANSAC algorithm presented in Section 3.1, the algorithm used here selects 

five points at random from the bounday point set, fits an ellipse to these five points, 

and scores the ellipse based on a given criteria. Again, the ellipse with the highest 

score is chosen as the initial contour. This ellipse fitting RANSAC algorithm is 

presented in Figure 3.11. 

The ellipse fitting process is performed directly using the least squares ap­

proached derived by Fitzgibbon et al. [18]. Consider the formula for a general 

conic, given as: 

F(a, x) = a • x = ax2 + bxy + cy2 + dx + ey + / = 0 (3.4) 

where a = [abode f]T and x = [x2 xy y2 x y 1]T. Given the scale invariace 
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of the conic equation, the ellipse constraint can be written as 4ac — b2 = 1, or in 

matrix form as: 
0 0 2 0 0 0 
0 - 1 0 0 0 0 
2 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

a = 1 (3.5) 

Given a set of n points D, where D = [xx x2 • • • x n ] r , the ellipse fitting prob­

lem is reduced to minimizing E = ||Da||2 according to the constriant in Equa­

tion 3.5. By introducing a Lagrange Multiplier A and differentiating, the following 

generalized eigenvalue system can be obtained: 

D 2 D a = ACa (3.6) 

where C is the constraint matrix from Equation 3.5. Fitzgibbon et al. showed 

that the generalized eigenvector associated with the only positive generalized eigen­

value of the above system is an ellipse that best fits the points given according to 

the algebraic error given above [18]. 

Prior to scoring the sample ellipses, those whose eccentricity is greater than 0.95 

are discarded for efficiency's sake. Clearly, any ellipse with a large eccentricity will 

be too flat and too elongated to properly represent most anatomical structures. The 

eccentricity of each ellipse is calculated from the obtained conic equation using the 

method presented in [5]. 

Once the remaining sample ellipses are obtained, they are scored based on the 

following five criteria: 

• Boundary Support iV^^. The number of points within a distance tnear of the 

ellipse. 

• Homogeneous Region Support Sreg. The largest percentage of the ellipse that 

is not split by points in the boundary point set. 

• Depth Support S'depth- The amount of the ellipse that is at a depth in the image 

where there are a lot of boundary points. 
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• Separation Support Ndiff. The portion of the ellipse whose nearest boundary 

point, for both the upper and lower portions of the ellipse, is not the same 

point. 

• Image Inclusion Support JV0Ut. The portion of the ellipse that is within the 

image area. 

A weighted combination of these five support measures is used to obtain an 

ellipse's score: 

Score(a) = wbndy Nhndy+wreg Sreg+w^pth Sdepth+wdiff Ndiff+wolit N^t (3-7) 

The first four support criteria used are calculated using the Synthetic A-Mode 

ultrasound scans. The points of intersection between the scan and the ellipse are cal­

culated and these points are then compared to the boundary points obtained from 

modeling the scan. The distance between the ellipse points and the nearest bound­

ary points are measured and compared to tnear for boundary support, as seen in 

Figure 3.12(a). Separation support simply finds the closest boundary point to each 

of the two ellipse intersection points and determines whether the same boundary 

point is detected in both cases, as shown in Figure 3.12(b). If this is frequently the 

case, then the sample ellipse may be focused on one tissue boundary and not two. 

The homogeneous region support requires two measures seen in Figure 3.13(a): 

the distance between the two ellipse intersection points (Esize), and the largest in­

terval between the two ellipse intersection points that is not interrupted by a point 

in the boundary point set (Rsize). These two measures refer to the ellipse size as 

well as the homogeneous region size. Both are used to obtain the percentage of the 

ellipse that can be considered as a homogeneous region. 

The depth support is a little more involved. Naturally, if there are a large num­

ber of boundary points detected at a particular depth in the image, then it is likely 

that there exits a tissue boundary at that depth. Given the boundary point locations, 

likely boundary depths are calculated using the Algorithm presented in Figure 3.14. 

For each row in the image area, the fraction of that image row that contains bound­

ary points is calculated. This creates a form of histogram over image depth. Once 
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Synthetic A-Mode Scan Line 

(a) Boundary Support, pi Supports the Boundary, p2 does not. 

| pi 

(b) Separation Support. The Left Scan Line Shows Good Separa­
tion Support, the Right Scan Line does not. 

Figure 3.12: Visual Interpretation of the Calculations used for Boundary and Sepa­
ration Support Measures. 
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Ellipse 

Synthetic A-Mode Scan Line 

(a) Homogeneous Region Support. RSize Shows the Largest Ho­
mogeneous Region Inside the Ellipse. 

Synthetic A-Mode Scan Line 

(b) Depth Support, d is Compared to the Mean and Standard Deviation of the 
Nearest Likely Depth. 

Figure 3.13: Visual Interpretation of the Calculations used for Region and Depth 
Support Measures. 
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GETLlKELYDEPTHS(S,
bnd2/, I, Lieft, Lright, Nscans) 

foreach row r in / do 
imgSize <- GETlMAGEBOUNDARY(Lrjfl/u,r)- GETlMAGEBOUNDARY(L;e/t,r) 
bndyPtsInRow <- EvPe56 n d W * / ) = = r) 

PctBoundary(r) - 100 ^ g g f ^ 
endfor 

depthSamples «- CONVERTVALUEToSAMPLES(ROUND(pctBoundary)) 
numLikelyDepths -(-ROUND(|SWy I/Nscans) 
return EXPMAXGAUSSIAN(depi/i.S>ampZes, numLikely Depths) 

Figure 3.14: Algorithm to obtain Likely Tissue Boundary Depths Expressed using 
Gaussian Distributions. 

i/i in 
v i \ j . l # 

$m 
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Figure 3.15: A Visual Description of Obtaining the Most Likely Depths in an Im­
age. 

complete, the Expectation-Maximization algorithm is used to fit N Gaussian distri­

butions to the depth histogram, where N is the average number of boundary points 

from one of the image's Synthetic A-Mode scans (The EM algorithm used here is 

identical to the one in Figure 3.8 used for fitting the Gumbel distributions, except 

lines 20 and 21 are removed for obvious reasons). This process can be seen in 

Figure 3.15. 

With the likely depths described using Gaussian functions, the Z-score for each 

ellipse intersection points can be obtained for each of the Gaussians. The lowest Z-

score for each ellipse point is then chosen and negated to represent depth support. 

This process is illustrated in Figure 3.13(b) 

Finally, the image inclusion support mearly counts and negates the number of 
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ellipse points that are along the boundary of the image area. This score is usually 

weighted highly to ensure that the ellipse chosen as the initial contour is entirely 

within the image area. 

The entire ellipse scoring algorithm is presented in Figure 3.16. For each Syn­

thetic A-Mode scan i, its line equation lines(i) and boundary points'ptm.dy(i) are 

maintained. 

3.4 Force-Based Segmentation 

With the pre-processing now complete and the initial contour obtained, the segmen­

tation process can now commence in shaping and moving the contour towards the 

proper region boundaries. This deformation is performed by applying forces of var­

ious types to the contour. The contour, in turn, will act much like an elastic band, 

stretching and flexing until an equilibrium is reached between the forces acting on 

the contour and the elasticity of the contour itself. Once this equilibrium has been 

reached, the segmentation process will be considered complete. 

For the purposes of this algorithm, the contour S is represented as a set of con­

tour points p. In order to maintain the elastic quality of the contour, the distance 

between each contour point is kept within an interval [dmin, dmax], where dmin and 

dmax are chosen ahead of time to ensure that the elasticity of the contour is around 

the same order of magnitude as the forces acting on the contour. In practice, the 

values dmin = 5 pixels and dmax = 40 pixels work well for ultrasound images 

of various sizes and content. If the distance between two contour points falls out 

of this given interval, a contour point is either added or removed as appropriate. 

With these distance thresholds in mind, the initial contour point set is generated by 

selecting points on the initial ellipse that are 20 pixels apart. 

The forces used in the segmentation are applied directly to the contour points 

in an iterative fashion with the contour points being moved in each iteration to a 

neighboring pixel location in the direction of the prevailing force. In a similar vein 

as Active Contours, the forces acting on each contour point can be classified into 
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CALCELLIPSESUPPORT(e/^pse, lines, pbndy, Udepth, Vdepth) 
1 foreach I in lines do 
2 ellipsePts <— INTERSECT(e^ipse, lines(l)) 
3 
4 foreach x in ellipsePts do 
5 foreach y inpbndy(l) do 
6 disi(x, y) <- A/(X - y)2 

7 endfor 
8 if MIN(dist(a;,:)) < tn e a r then 
9 ATftndy + + 
10 endif 
11 endfor 
12 
13 iSuiNlNDEX(dist(ellipsePts(l),:)) / 

MlNlNDEx(dist(e/ZipsePis(2),:)) then 
14 JVdi// + + 
15 endif 
16 
17 ellipseSize(l) *— y/' (ellipsePts(l) — ellipsePts{2))2 

18 ptsOnlnEllipse <— {x\(x € ellipsePts V x £ Pbndy) 
A ellipsePts(l) < x > ellipsePts(2)} 

19 foreach x in ptsOnlnEllipse do 
20 foreach y in ptsOnlnEllipse do 
21 distInEllipse(x, y) <— -ŷ (a; — j/)2 

22 endfor 
23 endfor 
24 regionSize(l) <— MAx(distInEllipse) 
25 
26 foreach a; in ellipsePts 
27 foreach d in /idepth 

28 Z(a:, d) = X~^P^ 

29 endfor 
30 Sdepth <- Sfepth- MIN(Z(x, :)) 
31 endfor 
32 endfor 
-}"} Q . i n n T,yieunes

re9ionSize 

53 Zreg < - 1UU E v . n M e , M p s e 5 t e e 

34 
35 imgBoundaries = [Lieft, Lright, Rtop, Rbtm] 
36 foreach Z in imgBoundaries do 
37 ellipsePts <— INTERSECT(d%>se, imgBoundaries(l)) 
38 if ellipsePts ^ 0 then 
39 ATou4 *- JVout - y/(ellipsePts(l) - ellipsePts{2))2 

40 endif 
41 endfor 
42 
43 supports <— [iV6nd2/, Srefl, S^pt/i, ^"di//', AT^p 
44 return weights • supports 

Figure 3.16: The Calculation of Ellipse Support Values. 
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one of two types: internal or external [31]. 

*XP) = Fextt?) + Fint{v) (3.8) 

External forces can be considered as those forces which are applied to the con­

tour from an external source while internal forces represent more intrinsic properties 

of the contour, such as elasticity and smoothness. Both force classes themselves are 

also made up of multiple forces, the combination of which is a robust yet flexible 

framework through which a segmentation result can be obtained. 

3.4.1 External Forces 

The role of external forces is to drive the contour towards the boundary of the region 

of interest. For this task, knowledge of the region boundary is necessary. Once 

again, this knowledge comes in the form of the boundary points obtained from the 

Synthetic A-Mode ultrasound scans. These detected boundary points are used to 

generate two separate external forces: 

Fext(p) = w i n S FinS(p) + w o u t S F0UtS(p) (3.9) 

Intuitively, Fins and -Fouts represent the forces applied to the contour by bound­

ary points within and outside the closed contour respectively. As these boundary 

points may represent the true tissue boundary, the force generated by these bound­

ary points should pull the contour towards them. As a result, the outside boundary 

point force is defined as follows: 

, . , . v(?/) 
outS (P)= E (l--^M0(v,p). (3.10) 

where 
j v - p i f V p ' G 5 , p = m m ( v - p ' ) ; 

0 ( v , p ) = < (3.11) 
0 otherwise. 

Essentially, each boundary point outside the closed contour pulls on its nearest 

contour point. The strength of this force is equivalent to the distance between the 

boundary point and the contour point. This force is then weighted in Equation 3.10 

inversely to the boundary point's depth in the image. This weighting is done to 
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reflect the increased presence of noise deeper in ultrasound images due to signal 

attenuation. The inside boundary point force is defined almost identically. 

As I noted earlier however, not all of the detected boundary points truly relate 

to the region of interest. Equation 3.10 does not take this into account. The key 

difference between the two boundary point forces is how they deal with noise in the 

boundary point set. The inside boundary point force simply imposes an envelope of 

width p around the inside of the contour. Any boundary point that is further than p 

pixels within the closed contour is disregarded as noise. Aside from this additional 

criteria, the inside boundary point force is identical to that defined in Equation 3.10. 

The outside boundary point force uses a more stringent approach in dealing with 

likely erroneous boundary points. Reconsider once again the likely tissue bound­

ary depths calculated using the algorithm in Figure 3.14. The Gaussian distribu­

tions obtained from this algorithm conceptually represent separate tissue bound­

aries. Comparing these Gaussian distributions with the initial elliptical contour, 

we can determine which boundary points are most likely referring to the region of 

interest. 

Consider the set of detected boundary points. These points can be classified 

according to the Gaussian distributions obtained from the algorithm in Figure 3.14. 

Conceptually, these classes contain the boundary points for separate tissue bound­

aries. 

The initial contour points can be classified in the same way. Assuming a reason­

able initial contour, any class in which at least one contour point has been classified 

may contain boundary points related to the region of interest. Conversely, any class 

that does not contain a contour point can be assumed to represent a tissue bound­

ary that does not belong to the region of interest. Therefore, any boundary points 

within that class are simply ignored. This filtering of erroneous boundary points 

is presented in Figure 3.17. Note that since this filtering process relies on the lo­

cation of the initial contour, it is important for the contour to be initialized at the 

appropriate depth. 

With erroneous boundary points filtered away, it is assumed that the remaining 

boundary points relate to the region of interest. As much as this filtering makes the 
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FILTERBOUNDARYPTS(p6nd2/, ^depth, <? depth ,P contour) 

1 foreach x in Pbndy do 
2 foreach u in fidepth do 

-(x~t*depth(u))2 

2 

3 p r 0 6 D e p t / i ( x > « ) ^ e ^ : ^ ) 

4 endfor 
5 depthClass(x) <- MAXlNDEX(pro6jDept/i(x,:)) 
6 endfor 
7 
8 foreach x in pcontour do 
9 foreach it in Udepth do 

10 probContour(x, u) - e ^Cl t ) 
11 endfor 
12 depthContour(x) <— MAXlNDEX(pro&Corj£cw(a;,:)) 
13 endfor 
14 
15 unsupportedClasses <— depthClass \ depthContour 
16 unsupportedPoints +— FIND (depthClass == unsupportedClasses) 
17 f literedPoints <— p&rufy \ unsupportedPoints 
18 return filter edPoints 

Figure 3.17: The Boundary Point Filtering Algorithm Expressed using Gaussian 
Distributions. 

algorithm robust to noise, it also has the added benefit of allowing the external force 

to be applied globally to the entire image space. By using all remaining boundary 

points, the contour is less likely to get caught by localized noise. 

Finally, note that both boundary point forces are weighted differently in the 

horizontal direction as they are in the vertical direction through the use of weight 

vectors. This differential weighting is a result of more pronounced vertical bound­

aries compared to horizontal boundaries. 

A visual representation of the effects of the external forces on a contour is shown 

in Figure 3.18. 

3.4.2 Internal Forces 

Internal forces are used generally to keep the contour consistent and smooth and as 

such are often referred to as regularization forces. This application is no different 

in that regard. What is unique in this context is the possibility of significant noise 
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Figure 3.18: The External Boundary Point Force and how and where it interacts 
with the Contour 

as well as large gaps along the region boundary, particularly vertically. As a result, 

a significant effort must be done to ensure the contour keeps its integrity. This goal 

is achieved through the use of two internal forces: 

^int\JP) LUcurv ^curv\P) "T~ ^Vprop "prop\P) W-^-W 

The first internal force is known as a curvature force and is similar to the one 

used by Kass et ah in their Active Contour framework [31]. In fact, the curvature 

force is simply the finite difference approximation of the contour's second deriva­

tive: 

FcurviPi) = Pi-i - 2pi + Pi+i (3.13) 

It is this curvature force that provides the contour with its elastic properties 

as well as enforcing a certain amount of smoothness. This force is also used while 

maintaining the contour itself. As mentioned, when the contour grows, new contour 

points have to be added to maintain a consistent curvature force. To ensure a greater 

smoothness to the contour, these contour points are only added to the contour if that 

portion of the contour has a low curvature. Heuristically, areas of low curvature are 

chosen to be portions of the contour where a contour points satisfies: 

Fcurv(p) < [ *W *W ] (3.14) 

Oulsh.lv C on lour 

-S. I 
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Figure 3.19: The Propagation of External Forces expressed in relation to the Con­
tour Points 

While the curvature force provides some smoothing effects to the contour, its 

impact may not be enough. As a result, an additional internal force is added. The 

effect of the propagation force is to distribute the external forces more smoothly 

over the contour points. This is achieved by adding a portion of the external forces 

from neighboring contour points to a given contour point: 

rp / N. ^ext(Pi-l) + Fext(pi+1) n , „ 
fpropKPi) = x ( J . 1 - > ; 

Conceptually, the propagation force has a impact similar to applying a low-pass 

filter to the contour point's external forces. Note that the addition in Equation 3.15 

is a vector addition as shown in Figure 3.19. 

These two forces counterbalance the external forces and help shape the resulting 

contour by ultimately providing an equilibrium between the forces. 

Halting Criteria 

Given that there is no threshold on the force required to move a contour point, there 

is little chance that any contour point will reach a fixed location. Instead, when a 

equilibrium state is achieved, contour points usually end up oscillating forward and 

backward within a small region. Detecting this equilibrium state can be difficult. 

However, it is known that once in an equilibrium state, the number of contour points 

defining the region boundary will not change. Also known is that contour points are 

separated by a distance in the interval of [dmin, dmax]. As each iteration moves a 

53 



contour point to a adjacent location, it is safe to assume that any addition or removal 

of contour points must be done within 2 • dmax iterations. 

As a result, if 2 • dmax iterations go by without any contour points being added 

or removed from the contour, it is assumed that the contour has reached the equi­

librium state. Therefore, once this criteria is met, the algorithm has halted. Cubic 

B-Splines are then used to interpolate the final contour. 

3.5 Conclusions 

The ultrasound image segmentation system presented in this chapter can be best 

described as having four main components: 

• Image decomposer. The creation of Synthetic A-Mode ultrasound scans that 

mimic the original ultrasound signals. 

• Echo Pattern Modeler. The modelling of the echo patterns of a tissue bound­

ary in a Synthetic A-Mode ultrasound scan with Gumbel distributions. Bound­

ary points locations are obtained by fitting Gumbel distributions to the Syn­

thetic A-Mode scans. 

• Contour Initializer: The creation of an initial estimate of the boundary of 

the region of interest by fitting an ellipse to a sample set of boundary points. 

The best ellipse is chosen according to a detailed scoring criteria to act as the 

initial contour. 

• Force-Based Segmenter. A robust set of external forces is used to drive the 

contour to a proper final segmentation. Strong internal forces are used to 

maintain the contour in an smooth and elastic fashion. 

The main strength of this system is the knowledge used to guide the segmenta­

tion process. The algorithms presented herein rely only on the observations made 

on the ultrasound imaging process. Table 3.1 displays the key assumptions relied 

upon and how they are incorporated into the my segmentation approach. 
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Assumption 
3. Noise is more likely at deeper 
parts of the image than in more 
shallow portions of the image. 

4. Horizontal tissue boundaries 
will appear brighter than vertical 
tissue boundaries. 

5. Tissue boundaries will appear 
fuzzy in the image. 

6. Pixel intensity will decay fol­
lowing a tissue boundary. 

7. Ultrasound images can be con­
ceptually considered as an array 
of A-Mode ultrasound scans. 
8. The region of interest has a 
smooth, closed contour. 

Use In Algorithm 
The segmentation forces applied 
by the boundary points are 
weighted inversly by their depth 
in the image. 
The segmentation forces applied 
by the boundary points have sepa­
rate weights for the horizontal and 
vertical directions. 
The fuzzy tissue boundary is 
appropriately modeled by the 
smooth peak of a Gumbel distri­
bution. 
This decay in intensity is captured 
by the tail of the Gumbel distribu­
tion that models the tissue bound­
ary. 
The main rationale used to split 
up the ultrasound image into Syn­
thetic A-Mode ultrasound scans. 
An ellipse is used to initialize the 
contour of the region of interest. 

Table 3.1: Ultrasound Image Assumptions and how they are incorporated into The 
Algorithm. 

Another strength of the proposed method is its ability to overcome noise in the 

images. This strength stems from the fact that the image data is analysed using 

a model of the image acquisition process. Significant pre-processing is used to 

ensure that the most reliable region boundaries were detected and incorporated into 

the segmentation process. Even so, additional noise reduction is performed within 

the segmenter through the use of strong internal forces and boundary point filtering 

to lessen the effect of misleading boundary information on the end result. 
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Chapter 4 

Experimental Results 

The proposed ultrasound image segmentation system was created and tested on 

multiple data sets from both the medical and agricultural fields. The resulting tests 

were run using Octave version 2.9.9 under Scientific Linux, release 4.4 on a Intel® 

Pentium® 3.40 GHz HT machine. 

Three data sets were constructed from ultrasound images of pork loins, human 

kidneys, and human livers. Great care was taken to ensure that the images in each 

data set contained significant variation not only in the subjects scanned, but also 

in terms of ultrasound probe location, probe type, scanner settings, the health of 

the subjects scanned, and even the manufacturer of the ultrasound scanners used 

to generate the images. As a result, significant differences in image quality are 

apparent in each data set as well as wide variation in the shape, size, location, and 

orientation of the region of interest. 

The inclusion of such a variety of ultrasound images within the test sets is de­

liberate. The goal of these tests is to determine how the algorithm performs in a 

practical setting. In order to achieve this goal, the ultrasound images used to test 

the proposed segmentation system were selected by an independent radiologist who 

had no knowledge of the algorithm or of the the image features used therein. 

In this chapter, I present the results of these tests. While obtaining the resulting 

segments of each image is straightforward, determining the quality of the segment's 

contours is not as clear of a procedure. Regardless, an attempt is made to quantify 

the segmentation results in a viable manner. 
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4.1 Validation Issues in this Field 

On the whole, the issue of validating results in the field of ultrasound image seg­

mentation has been a problematic one. There are various aspects of this problem 

that not only make it difficult to properly compare results within the field, but can 

also make it a dubious task to interpret the quality of any obtained result. 

The majority of quantitative results in this field stem from a comparison between 

the segmentation result and a segmentation manually performed by an expert [38]. 

In essence, the expert's segmentation is taken as a ground truth. Unfortunately, there 

is significant variation between a region of interest traced by one expert as opposed 

to one traced by another. Intra-observer variation is also often quite high as tracing 

out an image region by hand is a task rarely performed by radiologists. With no 

ethical way of determining the accuracy of the expert's manual segmentation, we 

can only safely assume that the manual trace is, at best, an approximation. 

Occasionally, inter-observer and intra-observer variance values will be used as a 

standard upon which segmentation systems are compared [9,14,21]. This approach 

would be the most appropriate way of assessing the quality of a segmentation algo­

rithm, however its use in the field is often limited by the availability of experts to 

perform the manual segmentation. 

An additional concern in interpreting segmentation results is the number of im­

ages used in the testing phase. Due to ethics constraints and the busy schedules 

of radiologists, the size of most test sets is often less than fifty images [38]. With 

such a small set of samples, it is difficult to generalize the results obtained by the 

segmentation algorithm for general use. 

What is more concerning though is the role ethics constraints play when it 

comes to comparing results within the field. As of yet, no publicly available data 

sets exit for ultrasound image processing. For ethical reasons, no research group 

has been able to present their ultrasound image for public use. Therefore, each 

ultrasound image segmentation algorithm presented in the field has been tested on 

separate data sets. Surely, the quality of, and variation within, these data sets may 

vary significantly from one group to the next. Any direct quantitative comparison 
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between two approaches has limited analytical value as the difficulties encountered 

in one test set may not exist in another. 

Not only do the differences in test sets affect the value of a direct quantitative 

comparison, it also limits the ability to duplicate the methods and the results ob­

tained by others. It is not unusual to have algorithms be built specifically around a 

particular data set. As all ultrasound image segmentation algorithms include a par­

ticular amount of prior knowledge, each method is, by definition, limited in their 

ability to be generally applied. The strength of gradients, the quality of shape and 

texture cues, and the value of intensity variation between regions all vary from one 

data set to the next. Recreating the algorithm of another and applying it to the ul­

trasound images you have may not provide you with an appropriate comparison as 

that other person's algorithm may not be as well suited to your problem. 

Finally, different segmentation approaches often use different measures to deter­

mine the quality of their results. Some researchers use boundary correlation [9, 19] 

while others measure the distance between contours [14, 1], while still others pro­

vide area-related scores [22, 11]. In some cases, only qualitative results are pre­

sented [16, 24], or segmentation quality is scored using an application-specific cri­

teria that cannot be generalized [2, 29]. This variation in quality measures simply 

adds to the difficulty of assessing the results of various approaches in the field. 

For the purposes of assessing the quality of the segmentation system presented 

herein, two of the most common qualitative measures will be used: the distance 

between the expert's contour and the resulting contour, and the overlap of the re­

sulting segment and the expert's traced segment. The contour distance is measured 

as the average shortest distance between the two contours, in pixels. Meanwhile, 

the overlap score is defined as, 

Score(A) = A
 R

 %r x 100 (4.1) 
K ' AuM 

where A is the set of pixels in the region segmented by the algorithm and M 

is the set of pixels in the region segmented manually by the expert. Note that this 

score provides a percentage area accuracy measure. Despite the limited value in 

doing so, these quantitative results will be directly compared to those of similar 
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Ellipse Fitting Parameters Segmentation Force Parameters 
Fraction of Outliers 

Boundary Sup. Weight 
Bndy. Sup. Dist. Thresh. 

Region Sup. Weight 
Depth Support Weight 
Separation Sup. Weight 
Img. Inch Sup. Weight 

e 
^bndy 

tnear 

Wreg 

Wdepth 
Wdiff 

Wout 

0.7 
1.0 
10 
1.0 
1.0 
1.0 
5.0 

Bndy. Pixel Weight 
(Inside Contour) 

Bndy. Pixel Weight 
(Outside Contour) 
Curvature Weight 

Propagation Weight 
Contour Env. Width 

w i n S (a?) 
W i n s ( y ) 

W o u t s ( z ) 

W o u t s ( y ) 

Wcurv 

uJprop 

P 

0.00 
0.95 
0.85 
0.25 
0.10 
0.10 
20 

Table 4.1: Parameter settings used for the segmentation of 304 pork loin ultrasound 
images 

studies. Keep in mind though that the data on which these algorithms were tested is 

different. Also keep in mind the amount of prior knowledge used in each approach 

and how that may affect the ultimate results. 

Due to time constraints, I was only able to obtain one manually traced contour 

for each of the images in my data sets. As a result, inter-observer or intra-observer 

results unfortunately cannot be presented. 

4.2 Agricultural Images Test Case 

With the help of the Lacombe Research Centre of Agriculture and Agri-Food Canada, 

a collection of 304 ultrasound images of in vivo pork loins were obtained for testing 

purposes. The ultrasound images were recorded with an Aloka Flexus Model SSD-

1100 equipped with a 3.5MHz/127mm transducer Ultrasound system. The images 

are from between the 3rd and 4th ribs from the last rib and 7cm off the mid-line of 

the pigs. Due to the positioning of the loin with respect to the pig's ribcage, varia­

tions in probe position could not be achieved. Variation in probe type and scanner 

manufacturer was also unable to be achieved due to financial constraints. However, 

this data set still contains variation due to the large number of subjects included as 

well as the settings of the ultrasonic scanner. In many ways, this type of data set is 

similar to what is normally used in the field for testing purposes. 

The images were segmented using the the proposed segmentation system tuned 

with the parameter settings given in Table 4.1. Parameter settings were chosen 
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Statistical 
Measure 

Mean 
Std. Deviation 

Minimum 
Maximum 

Contour Distance 
(in pixels) 

15.915 
7.598 
5.852 

44.400 

Overlap Score 
(%) 

72.703 
11.252 
36.771 
88.949 

Table 4.2: Statistical results for the algorithm on 304 ultrasound images of pork 
loins 

empirically as to obtain the best results. Contour distances and overlap scores were 

recorded of each segmentation result and are summarized in Table 4.2. On average, 

the pork loins were segmented with 73% overlap accuracy and the contours differed 

by approximately 16 pixels. 

What is particularly of note though is the relatively large standard deviation in 

both cases. Upon further inspection, we see that these scores have the distributions 

shown in Figure 4.1, suggesting that for the majority of cases, the results are as 

good or better than the averages given in Table 4.2. These graphs also show a 

certain number of extreme cases that did not score well. An example of one of 

these extreme cases is shown in Figure 4.2. 

The extreme poor cases similar to the one shown in Figure 4.2 are mainly the 

result of a poor initial contour. In these cases, reverberation effects above the skin 

layer distort the location of boundary points on the left side of the image, leading 

to a poor contour initialization. While the force-based segmentation is capable 

of overcoming this reverberation effect, the filtering of boundary points based on 

the initial ellipse location limits the boundary points that can apply a force on the 

contour. In the case shown in Figure 4.2, the boundary points relating to the interest 

region's bottom contour were mistakenly removed from the segmentation due to the 

poor location of the initial ellipse. It is possible that alternative parameter settings 

within the initial contour ellipse fitting procedure could have avoided this issue. In 

fact, allowing the parameter settings to somehow vary with respect to the image 

content would likely lead to better results. 

Figure 4.3 shows an the results for an average case. Note that in general, the 

initial contour is reasonably well placed and the force-based segmentation is able 
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Figure 4.1: The Distribution of Scores for the Pork Loin Ultrasound Image Set. 
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(a) Original Image with Manually Traced 
Expert Contour in Green. 

(c) The Fitted Ellipse Initial Contour. 

(e) The Final Countour - The Segmentation 
Result. 

(b) The Detected Boundary Points (in 
white) and their relation to the Most Likely 
Boundary Depths (in red). 

(d) The Boundary Points Filtered by Depth 
and Ellipse Location. 

(f) The Manually Traced Region Overlayed 
on the Detected Segment. 

Figure 4.2: An Example of a Poor Result seen from using the Segmentation System 
on an Ultrasound Image of a pork loin (Contour Distance: 36.16 pixels, Overlap 
Score: 36.77%). 
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(a) Original Image with Manually Traced 
Expert Contour in Green. 

(b) The Detected Boundary Points (in 
white) and their relation to the Most Likely 
Boundary Depths (in red). 

(c) The Fitted Ellipse Initial Contour. 
(d) The Boundary Points Filtered by Depth 
and Ellipse Location. 

(e) The Final Countour - The Segmentation 
Result. 

(f) The Manually Traced Region Overlayed 
on the Detected Segment. 

Figure 4.3: An Average Example of the Results seen from using the Segmentation 
System on an Ultrasound Image of a pork loin (Contour Distance: 14.92 pixels, 
Overlap Score: 72.36%). 
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(a) Original Image with Manually Traced 
Expert Contour in Green. 

(b) The Detected Boundary Points (in 
white) and their relation to the Most Likely 
Boundary Depths (in red). 

(c) The Fitted Ellipse Initial Contour. 
(d) The Boundary Points Filtered by Depth 
and Ellipse Location. 

(e) The Final Countour - The Segmentation 
Result. 

(f) The Manually Traced Region Overlayed 
on the Detected Segment. 

Figure 4.4: An Example of a Good Result seen from using the Segmentation System 
on an Ultrasound Image of a pork loin (Contour Distance: 5.98 pixels, Overlap 
Score: 88.95%). 
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to move the contour with reasonable ease despite the presence of noise. These 

observances also hold true for better results as seen in Figure 4.4. 

For comparison's sake, consider additional works in the area of agricultural 

ultrasound image segmentation. The most closely related work is that of Tong et 

al. who also segmented pork loin images. Their results on thirty pork loin images 

were used to estimate the muscle volume. The estimated muscle volume was then 

compared to the volume of the loin measured from the carcass of the pig and their 

method was found to predict 79% of the loin's variation is size [42]. Unfortunately, 

this method is difficult to compare to mine given the quantitative measure used. 

Hao et al. present a method for segmenting infarcted, ischemic, and normal 

regions of pig's hearts from echocardiographs. Their results, on average show an 

overlap score of 62% [22]. Cancela et al. segment the rib eye area in cattle in sixty 

ultrasound images and obtain a score above 85% for 80% of their images [11]. 

Meanwhile, Glasbey segments 144 ultrasound images of sheep loins with a corre­

lation of muscle depths of 52% [19]. 

On average, the results presented herein fall within the same range as those 

presented in the field of agricultural ultrasound image segmentation while using a 

much larger data set for testing and unlike Cancela et al. and Glasbey, my approach 

does not rely on learnt shape information. While this comparison is dubious in 

the sense that separate test sets are used, these results still show that my proposed 

approach is appropriate and does not include knowledge that may limit its practical 

application. 

Preliminary results from this method were shown in [6]. 

4.3 Medical Images Test Cases 

With the cooperation of Capital Health and the University of Alberta hospital, two 

sets of medical ultrasound images were obtained for testing purposes: a set of 30 

kidney images and one of 20 liver images. Unlike the agricultural ultrasound im­

ages, the images within these test sets were obtained from various curved array 

ultrasound probes with a myriad of settings. The liver and kidney images were also 
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Ellipse Fitting Parameters Segmentation Force Parameters 
Fraction of Outliers 

Boundary Sup. Weight 
Bndy. Sup. Dist. Thresh. 

Region Sup. Weight 
Depth Support Weight 
Separation Sup. Weight 
Img. Incl. Sup. Weight 

e 
"Jbndy 

^near 

Wreg 

Wdepth 

Wdiff 

Wout 

0.7 
9.0 
10 
2.0 
0.0 
2.0 
50.0 

Bndy. Pixel Weight 
(Inside Contour) 

Bndy. Pixel Weight 
(Outside Contour) 
Curvature Weight 

Propagation Weight 
Contour Env. Width 

Wi„s (a) 

Wins(2/) 
W o u t s ( z ) 

wouts(y) 
l^curv 

^prop 

P 

0.10 
0.75 
0.10 
0.03 
0.05 
1.00 
50 

Table 4.3: Parameter settings used for the segmentation of 30 human kidney ultra­
sound images 

obtained from multiple probe locations and cover a group of subjects in various 

stages of health. The amount of variation in image content in these data sets is far 

beyond what is normally found in the test sets of similar studies, in particular the 

variation due to probe position. 

4.3.1 Kidney Image Set 

The parameter settings for the kidney data set are presented in Table 4.3. Note 

that the region support criteria is weighted much less than the boundary support 

criteria. This particular weighting is due to the structure of the kidney itself. The 

kidney has a dense center known as its sinus which is surrounded by soft tissue and 

fluid. The kidney sinus is naturally bright in the ultrasound image with the rest of 

the kidney being relatively dark. As a result of this structure, the kidney sinus is 

often recognized as a tissue boundary itself, leading to less reliability in the region 

support score. 

Also note that the depth support score is not used in this ellipse fitting procedure. 

This omission is due to the fact that the kidney often takes up only a small portion 

of the ultrasound image, with other anatomical structures comprising the rest of the 

image. Therefore, the detected likely boundary depths are often quite noisy and 

unreliable. 

Results for the kidney data set are summarized in Table 4.4 and displayed in 

Figure 4.5. As expected, the numerical results are much lower than those obtained 

from the pork loin data set. The variation in size, shape, and location of the imaged 

66 



Statistical 
Measure 

Mean 
Std. Deviation 

Minimum 
Maximum 

Contour Distance 
(in pixels) 

34.102 
12.480 
12.909 
62.041 

Overlap Score 
(%) 

48.999 
15.504 
18.679 
74.786 

Table 4.4: Statistical results for the algorithm on 30 ultrasound images of Human 
Kidneys 

kidneys is simply too large to be properly assessed using a single set of parameters. 

Figure 4.6 shows an example of the issues met with this data set. The presence 

of the kidney sinus within the images led to the ellipse fitting procedure to favor 

boundary support over region support. As a side effect of this choice, large ini­

tial ellipses were favored in many situations where the kidney itself was not that 

large. For the case in Figure 4.6, the initial contour was poorly chosen, leading to 

the filtering out of the boundary points associated with the bottom of the kidney. 

Attempts to use a strong internal force and interior boundary point force could not 

overcome this poor initialization. 

However, there were a few images for which the segmentation results were en­

couraging. Figure 4.7 shows one of these good kidney segmentation results. In this 

particular case, the kidney was much larger in the image and better suited to the 

parameter settings used. 

Comparatively, it is difficult to assess the relative quality of the proposed algo­

rithm. Other works in the area of kidney ultrasound image segmentation are very 

limited due to the difficult qualities of the images. Those proposals that do exist 

simply do not use data sets with the same variability as the one used for testing 

here. Xie et al. have obtained overlap scores of 96.49% and contour separation dis­

tances around 3.25 pixels over their six image data set [44]. However, Xie etal rely 

on a learnt deformable template in their algorithm and their data set simply features 

images of the left kidney scanned from the same probe position. Martin-Fernandez 

and Alberola-Lopez also rely on shape through the use of a manually traced initial 

contour, and while they do not provide any comparable numerical results, their seg-
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Figure 4.5: The Distribution of Scores for the Kidney Ultrasound Image Set. 
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(a) Original Image with Manually Traced 
Expert Contour in Green. 

(b) The Detected Boundary Points (in 
white) and their relation to the Most Likely 
Boundary Depths (in red). 

(c) The Fitted Ellipse Initial Contour. 
(d) The Boundary Points Filtered by Depth 
and Ellipse Location. 

(e) The Final Countour - The Segmentation 
Result. 

(f) The Manually Traced Region Overlayed 
on the Detected Segment. 

Figure 4.6: An Example of a Poor Result seen from using the Segmentation Sys­
tem on an Ultrasound Image of a human Kidney (Contour Distance: 55.15 pixels, 
Overlap Score: 18.68%). 
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(a) Original Image with Manually Traced 
Expert Contour in Green. 

(b) The Detected Boundary Points (in 
white) and their relation to the Most Likely 
Boundary Depths (in red). 

(c) The Fitted Ellipse Initial Contour. 
(d) The Boundary Points Filtered by Depth 
and Ellipse Location. 

(e) The Final Countour - The Segmentation 
Result. 

(f) The Manually Traced Region Overlayed 
on the Detected Segment. 

Figure 4.7: An Example of a Good Result seen from using the Segmentation Sys­
tem on an Ultrasound Image of a human Kidney (Contour Distance: 22.29 pixels, 
Overlap Score: 74.79%). 
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Ellipse Fitting Parameters Segmentation Force Parameters 
Fraction of Outliers 

Boundary Sup. Weight 
Bndy. Sup. Dist. Thresh. 

Region Sup. Weight 
Depth Support Weight 
Separation Sup. Weight 
Img. Incl. Sup. Weight 

e 
tUbndy 

l-near 

Wreg 

Wdepth 
Wdiff 

Wout 

0.7 
4.0 
10 
1.0 
0.0 
5.0 

50.0 

Bndy. Pixel Weight 
(Inside Contour) 

Bndy. Pixel Weight 
(Outside Contour) 
Curvature Weight 

Propagation Weight 
Contour Env. Width 

Wlns(x) 

Wins(y) 

Wouts(z) 

W0uts(j/) 

ulcurv 

IVprop 

P 

0.00 
0.01 
0.50 
0.25 
0.01 
1.00 
20 

Table 4.5: Parameter settings used for the segmentation of 20 human liver ultra­
sound images 

mentation results do appear to be similar to my better results, such as the one shown 

in Figure 4.7 [34]. Of course, the framework presented by Martin-Fernandez and 

Alberola-Lopez is not fully automated and therefore differs significantly from the 

approach presented herein. 

Ultimately, no other attempt has been made to address the variability of the data 

set used herein. 

4.3.2 Liver Image Set 

The parameter settings for the human liver data set are presented in Table 4.5. The 

presence of strong speckle noise, as well as occasional masses, within the liver, 

leads to a significant number of additional boundary points being detected. As a 

result, both the region support score and the depth support scores used in the ellipse 

fitting procedure are less reliable for this data set. This degradation in reliability 

is shown in the weighting of the respective scores in the ellipse fitting procedure. 

The depth support is once again ignored while the region support is weighted much 

lower than the others. 

Results for the liver data set are summarized in Table 4.6 and displayed in Fig­

ure 4.8. The results for the liver data set were better than those seen in the kidney 

data set, which is to be expected. The liver image set does not have the same level 

of variability as the kidney image set simply due to the much larger size of the liver, 

making the liver the dominant feature in many of the images. 

However, there was still variation due to the combination of lengthwise and 
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Statistical 
Measure 

Mean 
Std. Deviation 

Minimum 
Maximum 

Contour Distance 
(in pixels) 

34.665 
14.286 
13.885 
56.598 

Overlap Score 

(%) 
60.106 
17.109 
26.862 
82.289 

Table 4.6: Statistical results for the algorithm on 20 ultrasound images of Human 
Livers. 

widthwise slices of the liver, and the differing sizes of the subjects. Again, the 

parameters of the algorithm were set to provide large initial contours, which worked 

well for cases where the liver took up a large portion of the image image area, such 

as with the case in Figure 4.10. However in certain cases, the widthwise slice of 

a smaller patient led to a much smaller portion of the image being represented by 

the liver. Figure 4.9 shows such a case. Note that the initial elliptical contour is too 

large for the region of interest due to the parameter settings. Also, the settings for 

the force-based segmentation led to that initial contour being expanded, resulting in 

a much poorer segmentation. Once again, the variability of the data set could not 

be covered by a single parameter setting. 

While there have been many efforts to detect and classify diseased liver tissues, 

particularly the detection of masses [14, 33], little has been done in detecting the 

liver itself. The work of Kotropoulos and Pitas was used to segment the liver, how­

ever no quantitative results were given [32]. It appears that few formal attempts 

have been made at segmenting the liver as a whole. This result is not surprising as 

most segmentation approaches involving the liver rely on texture cues, particularly 

the work of Chen et al. [14] (also see references in [38]). The variability of texture 

cues within the liver images from ill subjects is known to be quite large. Deter­

mining the boundary of the liver while accounting for this variability would be a 

difficult task. As a result, even the simplest of comparisons could not be obtained 

for this test. 
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for Liver Ultrasound Image Set 
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gure 4.8: The Distribution of Scores for the Liver Ultrasound Image Set. 
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(a) Original Image with Manually Traced 
Expert Contour in Green. 

(b) The Detected Boundary Points (in 
white) and their relation to the Most Likely 
Boundary Depths (in red). 

(c) The Fitted Ellipse Initial Contour. (d) The Boundary Points Filtered by Depth 
and Ellipse Location. 

(e) The Final Countour - The Segmentation 
Result. 

(f) The Manually Traced Region Overlayed 
on the Detected Segment. 

Figure 4.9: An Example of a Poor Result seen from using the Segmentation System 
on an Ultrasound Image of a human Liver (Contour Distance: 51.31 pixels, Overlap 
Score: 39.64%). 
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(a) Original Image with Manually Traced 
Expert Contour in Green. 

(b) The Detected Boundary Points (in 
white) and their relation to the Most Likely 
Boundary Depths (in red). 

(c) The Fitted Ellipse Initial Contour. (d) The Boundary Points Filtered by Depth 
and Ellipse Location. 

(e) The Final Countour - The Segmentation 
Result. 

(f) The Manually Traced Region Overlayed 
on the Detected Segment. 

Figure 4.10: An Example of a Good Result seen from using the Segmentation Sys­
tem on an Ultrasound Image of a human Liver (Contour Distance: 13.88 pixels, 
Overlap Score: 82.29%). 
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4.3.3 Parameter Settings and Their Effect 

Note that the majority of the variability seen in the medical data sets are due to 

the presence of images taken from multiple probe positions, scanners, and scanner 

settings. This level of variation in image content is not often seen in test sets in this 

field. The lack of variation in most test sets has often allowed other algorithms to 

succeed through the use of fixed parameter values. This situation is clearly not the 

case for the medical data sets presented herein. 

It is clear that for the last two image sets, a single parameter setting simply 

could not account for the variability of the image content. This does not discount 

the algorithm as a whole. Instead, it is believed that by somehow tuning the param­

eters to the image content, better results could be obtained. While determining a 

proper method to tuning these parameters is beyond the scope of this thesis, it is still 

important to show that the algorithm can perform well given appropriate parameter 

settings. 

In order to show that my proposed algorithm is indeed well-founded, I take 

my test cases which saw poor results earlier in Figures 4.6 and 4.9 and determine 

whether alternative parameter settings would lead to improved performance. If 

good results could be obtained by tuning the parameters to the images, it would 

show that the proposed segmentation framework is not only capable of handling the 

variability seen in medical radiology in practice, but that the system is conceptually 

appropriate. 

Figure 4.11 compares the poor result obtained earlier on an ultrasound image of 

a kidney with a segmentation result obtained from the same algorithm with better 

tuned parameter settings. The tuned parameter settings were selected manually 

based on the analysis of the boundary point locations. Given more appropriate 

parameter settings, we see a vast improvement. The overlap score improves by 

almost 57% while contour distance decreases by over 42 pixels on average. Similar 

results can been seen for the liver test case in Figure 4.12. In this case, overlap 

score improves by over 37% and contour distance decreases on average by over 37 

pixels. 

Clearly, given appropriate parameter settings, this approach can produce good 
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(a) The initial contour (in red) and filtered 
boundary points (in white) using class pa­
rameters. 

(c) The Final Contour using Class Parame­
ters 

(e) Contour Distance: 55.15 pixels, Overlap 
Score: 18.68% 

Figure 4.11: Comparison of two kidney 
based paramter setting and one using an i 

(b) The initial contour (in red) and filtered 
boundary points (in white) using tuned pa­
rameters. 

(d) The Final Contour using tuned parame­
ters 

(f) Contour Distance: 12.60 pixels, Overlap 
Score: 75.45% 

segmentation results, one using a class-
nage-tuned parameter setting. 

77 



(a) The initial contour (in red) and filtered (b) The initial contour (in red) and filtered 
boundary points (in white) using class pa- boundary points (in white) using tuned pa­
rameters, rameters. 

(c) The Final Contour using Class Parame- (d) The Final Contour using tuned parame­
ters ters 

(e) Contour Distance: 51.31 pixels, Overlap (f) Contour Distance: 14.20 pixels, Overlap 
Score: 39.64% Score: 77.14% 

Figure 4.12: Comparison of two liver segmentation results, one using a class-based 
paramter setting and one using an image-tuned parameter setting. 
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results. However, determining appropriate parameter settings given the image con­

tent is left as future work. 

4.4 Conclusions 

The proposed ultrasound image segmentation system was implemented and test on 

three different data sets. A set of 304 ultrasound images of pork loins was compiled 

with a similar degree of difficulty as test sets common to the field of ultrasound 

image segmentation. Two additional sets of medical ultrasound images, one of 

kidneys and one of livers, were also used to measure the quality of the algorithm. 

These two medical data sets contained a much larger degree of variability than what 

is normally seen in the field. 

On average, the segmentation system showed an accuracy of 73% on the pork 

loin data set. While direct numerical comparisons are a dubious way of comparing 

comparing algorithms for various reasons, I do note that these results are better 

than many approaches presented in similar studies in agricultural ultrasound image 

segmentation. 

Results on the medical images were significantly lower with the segmentation 

system obtaining an accuracy of 49% on the kidney image set and 60% on the liver 

image. It became clear that a single set of parameter settings could not encompass 

the entire variability in image content of these data sets. However, it is possible that 

by somehow tuning the parameters to the image content, I can obtain significantly 

improved results. 
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Chapter 5 

Algorithmic Comparison 

In order to provide further context for the results of the algorithm proposed herein, 

I present an earlier version of this segmentation system for the purposes of compar­

ison. In doing so, we are able to directly compare numerical results I've obtained 

with those gathered from an algorithm that has been accepted in the field [8, 7]. 

Furthermore, by comparing these two segmentation approaches, we can gain an 

understanding of the benefits the final algorithm provides. 

With the final segmentation system already presented, discussion will focus on 

the differences between it and this earlier approach. Results will be shown for the 

same data sets used earlier for testing purposes. As both algorithms were designed 

with the same goal in mind - to segment general ultrasound images void of limit­

ing priors - the comparison in quality of these two algorithms has an appropriate 

context. 

5.1 Algorithm Description 

In order to best accentuate the differences between the proposed algorithm and its 

earlier version, it is best to separate the system into three separate componants: the 

boundary point detection scheme, the contour initialization, and the force-baced 

segmentation. 
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Boundary Point Detection 

Recall that in the finalized version of the segmentation system, boundary points 

were detected from the Synthetic A-Mode ultrasound scans. In particular, the 

modes of the Gumbel distributions used to model the tissue boundary echo patterns 

in the scans were the boundary points used in the final approach. 

The earlier segmentation system used a much simpler criteria for determin­

ing the presence of likely boundary points. Knowing that brighter pixels relate 

to stronger echoes, which in turn relate to areas of significant changes in density, a 

basic threshold on pixel intensity was used to classify likely boundary points. Any 

pixels over an intensity threshold t^ght were considered likely boundary points. 

Also, unlike the final segmentation system which later filters out boundary 

points based on their location to the initial contour, no filtering of these boundary 

points is perfromed. 

Contour Initialization 

As with the final segmentation system, the initial contour for the region of interest 

is an ellipse that is generated by being fitted to a collection of boundary points. The 

final segmentation system uses a RANSAC method to create multiple candidate 

ellipses which are then scored to determine the best quality ellipse to use as an 

initial contour. 

My earlier approach was again more simplistic. Instead of scoring candidate 

ellipses, one single ellipse is fitted to all the points in the likely boundary point set 

using the same algorithm described in Section 3.3 and taken from [18]. In using 

all the likely boundary points for the ellipse fitting, an implicit assumption is made 

that any noise in the boundary point set would have equally been generated within 

and outside the region of interest. If this assumption is true, then the effect on the 

ellipse of the noise in the boundary point set would be small enough for the ellipse 

to remain a reasonable initial contour. 
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Outside Contour 

Inside Contour 

Figure 5.1: The Region-Based Pixel Force and its affect on the Contour 

Force-Based Segmentation 

Unlike the pre-processing steps which have seen significant changes, the force-

based segmentation framework has remained relatively the same. All internal and 

external forces that existed in the final version of the segmentation system existed in 

this earlier form as well. What is different however is the inclusion of an additional 

external force in the earlier segmentation system: a region based pixel force. 

Earlier, it was noted that darker pixels are more likely to be within the region 

of interest as the ultrasound pulses imaging the interest region would be weaker 

than the pulses in the surrounding area. Therefore, we can recognize pixels that 

are likely to be within the region of interest based on their intensity. Once again, 

thresholding is used to detect likely region pixels. Any pixels below a threshold 

tdark are classified as likely region pixels. 

As with the likely boundary points detected earlier, these likely region pixels 

also apply a force to the contour. However, unlike the boundary pixel force which 

works in a global fashon, the region pixel force is applied locally to the contour. 

Essentially, the goal is to move the contour to absorb, in a way, the detected region 

pixels. This goal is accomplished using the following force formulation: 

Freg(p)= Yl Mv> P) (5.1) 
VveDP 
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Boundary Point Detection 
using Thresholding 

Contour Initialization via 
Ellipse Fitting to all Boundary 
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Figure 5.2: Overview of the Earlier Version of the Ultrasound Image Segmentation 
System 

where 

Mv,p) = 
v — p if v G 8-Neighbourhood(p); 

(5.2) 
0 otherwise. 

Effectively, the region pixel force only comes into play when there are likely 

region pixels along the outside edge of the contour. In this situation, the likely 

region pixels pull the contour in their direction, thereby including themselves within 

the closed contour and the region of interest. This process is shown visually in 

Figure 5.1. 

The region pixel force works in paralell to the boundary pixel forces and the in­

ternal curvature and propagation forces described in Section 3.4 to obtain the final 

segmentation result. In order to be robust to poor initial contours, the region pixel 

force is not applied to the contour until the halting criteria is met. At that moment, 

the region force is added to the segmentation framework and the segmentation con­

tinues until the halting criteria is met a second time. 

An overview of the earlier version of the segmentation system can be seen in 

Figure 5.2. Note that once again, this segmentation system also relies sloely on 
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Assumption 
1. Bright pixels are likely to rep­
resent tissue boundaries. 
2. Pixels within a region of inter­
est are likely to be darker than sur­
rounding pixels at the same depth. 
3. Noise is more likely at deeper 
parts of the image than in more 
shallow portions of the image. 

4. Horizontal tissue boundaries 
will appear brighter than vertical 
tissue boundaries. 

8. The region of interest has a 
smooth, closed contour. 

Use In Algorithm 
Likely boundary pixels are de­
tected based on their intensity. 
Darker pixels are detected as 
likely region pixels and apply an 
inclusion force to the contour. 
The segmentation forces applied 
by the boundary points are 
weighted inversly by their depth 
in the image. 
The segmentation forces applied 
by the boundary points have sepa­
rate weights for the horizontal and 
vertical directions. 
An ellipse is used to initialize the 
contour of the region of interest. 

Table 5.1: Ultrasound Image Assumptions and how they are incorporated into The 
Earlier Version of the Segmentation System. 

prior knowledge obtained from the assumptions listed in Section 2.6. How these 

assumptions affect the working of this early version of the ultrasound segmentation 

system is summarized in Table 5.1. 

5.2 Experimental Results 

As mentioned, the pork loin, kidney, and liver data sets are once again used to 

measure the quality of the earlier ultrasound image segmentation system. Overlap 

scores and contour distances are once again the measures used to determine the 

quality of each segmentation result. Parameter settings for each data set are pre­

sented in Table 5.2. Intensity thresholds are given in percentage of pixels in the 

image in order to handle images of varying contrasts. 

Results for the earlier segmentation system are summarized in Tables 5.3 and 5.4, 

with the range of the results displayed in Figure 5.3. Note that the results for the 

pork loin ultrasound image data set is very similar to those obtained by the final 

segmentation system. This is not surprising as there is a strong relationship in this 

image set between the boundary pixels selected by intensity and the boundary pix-
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Segmentation Parameters Pork Loins Kidneys Livers 
Boundary Pixel Threshold 

Region Pixel Threshold 
Boundary Pixel Weight 

(Inside Contour) 
Boundary Pixel Weight 

(Outside Contour) 
Region Pixel Weight 

Curvature Weight 
Propagation Weight 

Contour Envelope Width 

^bright 

''dark 

Wins(£) 
Wins(l/): 

Wouts(^) 

Wouts(j/) 
")dark 

"Jcurv 

"Jprop 

P 

13% 
26% 
0.00 
1.00 
0.18 
0.04 
2.00 
0.08 
0.20 
20 

2.5% 
20% 
0.00 
1.00 
0.30 
0.04 
1.00 
0.10 
0.20 
100 

7% 
10% 
0.10 
0.30 
0.50 
0.30 
0.80 
0.10 
0.20 
25 

Table 5.2: Parameter Settings used for the Segmentation of each Data Set with the 
Earlier Segmentation System. 

els selected from the modeled Synthetic A-Mode scans. Furthermore, the pork loin 

region is the only noticeable anatomical structure present in this image set. These 

two phenomenon can be seen from the example result in Figure 5.4. 

However, what is also noticeable in Figure 5.4 is the effect of noise in the de­

tected boundary point set. Despite strong internal forces attempting to keep the 

contour smooth, large pockets of erroneously selected boundary pixels in the center 

of, below, and to the left of the pork loin result in a rather jagged final contour. 

Although the parameters used were chosen to give the best numerical results, the 

contours obtained by this earlier segmentation system are not as visually appealing 

as those obtained by my final segmentation system. 

The intensity threshold approach to determining likely boundary points also 

had difficulty recognizing particular boundaries. Consider the results for the liver 

image in Figure 5.5. In this case, the bottom-left liver boundary is not significantly 

brighter than its surroundings. Other than a slight decrease in intensity, it is hardly 

noticeable. As a result, no boundary points are detected along this tissue border, 

leading to a poor final segmentation. While well founded, selecting boundary points 

solely on intensity leads to noisy or incomplete boundary point sets in practice. As 

a result, the final segmentation approach uses an alternative boundary detection 

approach. 

Another concern with the earlier segmentation system is the initial contour. As 
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Stat. Measure Pork Loins Kidneys Livers 
Mean 

Std. Deviation 
Minimum 
Maximum 

13.348 
5.129 
3.814 

35.784 

28.407 
10.720 
10.791 
51.051 

32.275 
20.643 
10.004 
81.305 

Table 5.3: Contour Distance Results for our Early Segmentation Algorithm on all 
three Data Sets. 

Stat. Measure 
Mean 

Std. Deviation 
Minimum 
Maximum 

Pork Loins 
72.553 
10.465 
8.244 

91.765 

Kidneys 
47.090 
19.652 
7.030 
82.211 

Livers 
64.592 
15.924 
38.479 
89.392 

Table 5.4: Overlap Score Results for our Early Segmentation Algorithm on all three 
Data Sets. 

just mentioned, the detected boundary point sets often have a significant amount 

of noise. It was assumed that any noise in the detected boundary points would 

be distributed in such a way as to have little impact in the initialization process. 

While this assumption held well for the pork loin images, the erroneous boundary 

points had a significant impact on the other two data sets, particularly the kidney 

ultrasound images. Figure 5.6 shows an example of a poor contour initialization 

on a kidney image. In this case, the skin and the liver boundaries added erroneous 

boundary points above and to the left of the kidney, leading to an unbalanced effect 

on the ellipse fitting. The end result is a significantly larger contour than the one 

desired. Clearly, not all boundary points should be used to initialize the contour. 

Therefore, the contour initialization method in the final segmentation system was 

altered to be more robust to outliers in the boundary point set. 

Even though this earlier segmentation system has its faults, it is able to generate 

reasonable, and even good, results in many cases. Figure 5.7 shows one of these 

good segmentation results on an ultrasound image of a human liver. However, the 

limitations in the boundary point detection and contour initialization show a lack 

of flexibility in the overall method that needed to be addressed. While poor results 

obtained by my final segmentation system can be avoided by using tuned parameter 
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Figure 5.3: The Distribution of Scores for the All Three Ultrasound Image Sets. 
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(a) Original Image with Manually Traced (b) The Detected Boundary Points (in 
Expert Contour in Green. white) and Region Points (in black). 

(c) The Fitted Ellipse Initial Contour. 

(d) The Final Countour - The Segmentation (e) The Manually Traced Region Overlayed 
Result. on the Detected Segment. 

Figure 5.4: An Example Result from using the Earlier Segmentation System on an 
Ultrasound Image of a pork loin (Contour Distance: 7.84 pixels, Overlap Score: 
80.70%). 
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(a) Original Image with Manually Traced 
Expert Contour in Green. 

(b) The Detected Boundary Points 
white) and Region Points (in black). 

(in 

(c) The Fitted Ellipse Initial Contour. 

(d) The Final Countour - The Segmentation 
Result. 

(e) The Manually Traced Region Overlayed 
on the Detected Segment. 

Figure 5.5: An Example of a Poor Result from using the Earlier Segmentation 
System on an Ultrasound Image of a Human Liver (Contour Distance: 81.30 pixels, 
Overlap Score: 38.48%). 
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(a) Original Image with Manually Traced (b) The Detected Boundary Points (in 
Expert Contour in Green. white) and Region Points (in black). 

(c) The Fitted Ellipse Initial Contour. 

(d) The Final Countour - The Segmentation (e) The Manually Traced Region Overlayed 
Result. on the Detected Segment. 

Figure 5.6: An Example of a poor Initialization Result from using the Earlier Seg­
mentation System on an Ultrasound Image of a human kidny (Contour Distance: 
16.60 pixels, Overlap Score: 25.82%). 
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(a) Original Image with Manually Traced 
Expert Contour in Green. 

(b) The Detected Boundary Points (in 
white) and Region Points (in black). 

(c) The Fitted Ellipse Initial Contour. 

(d) The Final Countour - The Segmentation 
Result. 

(e) The Manually Traced Region Overlayed 
on the Detected Segment. 

Figure 5.7: An Good Example Result from using the Earlier Segmentation System 
on an Ultrasound Image of a human liver (Contour Distance: 15.26 pixels, Overlap 
Score: 82.53%). 

91 



settings, here the poorer results are due to fundamental problems in the framework 

itself. 

5.3 Conclusions 

To provide further context to the results from my proposed segmentation system, 

an earlier version of my segmentation algorithm, which has generated reported re­

sults [7, 8], was used as a comparison. As both algorithms were made for exactly 

the same purpose, a reasonable comparison could be done with a method that al­

ready existed in the field. 

The earlier segmentation approach differed from the final segmentation system 

in three ways: 

• Boundary points were detected by intensity thresholds instead of from Syn­

thetic A-Mode ultrasound scans. 

• Contour initialization was done by fitting an ellipse to all detected boundary 

points instead of a subset of the detected boundary points. 

• A region-based pixel force was added to the segmentation framework. Likely 

region pixels were detected as those pixels below a given threshold and these 

pixels push the contour to encapsulate them. 

Results were obtained over the same data sets and using the same quality mea­

sures for both segmentation systems. While similar results were obtained with both 

algorithms, the earlier system has some fundamental flaws. The boundary point de­

tection scheme turned out to incorporate a significant amount of noise while missing 

more subtle boundaries. Meanwhile, the contour initialization procedure was less 

susceptible to the noise in the boundary point set. Despite the best chosen parame­

ter settings, these flaws could not be overcome. Both of these issues were addressed 

in the final segmentation framework, which given appropriately tuned parameters, 

can generate better results and handle more variability. 

Ultimately, the final segmentation system proposed herein compares favorably 

to an existing algorithm in the field. 
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Chapter 6 

Conclusion 

6.1 Summary 

As radiologists become more and more in demand, the desire for automated ultra­

sound image segmentation grows. Given the poor quality of ultrasound images, any 

and all image cues and priors have been relied upon to obtain reasonable results. 

Often, relying on these features has limited the applicability of certain proposed 

algorithms. 

In this thesis, I concern myself directly with the question of what type of knowl­

edge is appropriate for the task of ultrasound image segmentation. Unlike other ap­

proaches which treat ultrasound images in a similar fashion to real world images, I 

acknowledge instead the uniqueness of the medium itself. The ultrasound imaging 

process is discussed in detail and in doing so, I am able to infer various assumptions 

about the content of ultrasound images. 

From these assumptions, I present an alternative approach to ultrasound image 

segmentation. A segmentation framework based solely on these obtained assump­

tions is presented. In this approach, the original ultrasound image is decomposed 

into separate one-dimensional signals, dubbed as Synthetic A-Mode Ultrasound 

Scans, in the hope of mimicking the originally obtained ultrasonic data as closely 

as possible. These Synthetic A-Mode scans are then analyzed as echo patterns. 

Likely tissue boundary echo patterns are detected and fitted Gumbel distributions 

are used to obtain likely tissue boundary locations. Using these obtained tissue 

boundary locations, an initial contour is created and segmentation is performed by 
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applying robust forces to this contour. 

My segmentation system was implemented and tested on three separate data 

sets, one data set being similar to those in the field, and two data sets of a much 

higher degree of difficulty. Results of 73% accuracy on the pork loin data set seem 

to suggest that the segmentation system is as good or better than other algorithms 

in the area while not being as limited by the priors it uses. Further results on two 

medical image data sets also show good results assuming appropriate parameter 

settings are used. 

Finally, a direct comparison was performed between this proposed segmenta­

tion system and an earlier version of my system that currently exists in the field. 

Numerical results were similar between both methods with the final segmentation 

system being more capable of handling noise and variability. 

The combination of these results show that there is value in approaching ultra­

sound images as being a unique case in image processing and that understanding 

the ultrasonic imaging process will be important in obtaining feasible and reliable 

ultrasound image segmentation systems. 

6.2 Future Work 

There are various directions for future work based on what is presented herein. Both 

the algorithm and approach are new and can be improved upon. In terms of the 

algorithm itself, a key component moving forward is, as mentioned earlier, linking 

the parameter settings to features in the image, essentially automating the setting 

of various parameters. For example, by looking at the standard distributions of 

the most likely depths, we could determine how spread out the detected boundary 

points are in the image. If the boundary points are spread out (i.e., the standard 

distributions are high), then it may be less likely for the best elliptical contour to 

have strong boundary support. Therefore, it may be reasonable to tie the boundary 

support weight to the standard distributions of the likely boundary depths. 

On top of automating parameter settings, a more elegant way of determining the 

number of Gumbel distributions to fit to a Synthetic A-Mode scan would be useful. 
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A probabilistic approach similar to the infinite Gaussian mixture model by Ras-

mussen comes to mind [39]. Extending this work to 3D ultrasound data sets is also 

a possibility, as is reformulating the segmentation using a level-set approach similar 

to that of Caselles et al. to detect multiple regions of interest [13]. Improving the ef­

ficiency of the ellipse fitting procedure would also help to make the algorithm more 

usable. One idea of particular interest would be to incorporate texture and intensity 

information into the boundary detection process, thereby creating a boundary map 

similar to the saliency map of Itti and Koch for real world images [28]. This bound­

ary map could ultimately improve the robustness of this algorithm even further. 

As far as using knowledge of the image acquisition process for ultrasound image 

segmentation, there are many ways in which to move forward. Recognizing more 

imaging artifacts and determining better echo models for tissue boundaries are both 

open problems. By decomposing ultrasound images into Synthetic A-Mode scans, 

we have opened the problem of ultrasound image segmentation to the field of one-

dimensional digital signal processing, a domain which includes a myriad of analysis 

techniques. Further study of the ultrasound imaging process could also lead to 

further recognition of important patterns within Synthetic A-Mode scans that could 

lead to a better overall understanding of image content. 

In the end, by recognizing the uniqueness of ultrasound as a medium, we open 

up the door to a new way of assessing ultrasound signal content. Possibilities 

abound as to what can be useful in this approach to the problem of ultrasound 

image segmentation. 
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