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Abstract—This study focuses on simultaneous vibration 
suppression and energy harvesting in a broad frequency band. 
For this purpose, a variant nonlinear energy sink (NES) is 
developed. The developed variant NES consists of a nonlinear 
oscillator and an electromagnetic energy harvester. Unlike a 
true NES, the nonlinear oscillator’s spring is not essentially 
nonlinear. The variant NES is attached to a single-degree-of-
freedom (SDOF) primary system that is subjected to a base 
excitation. Different from the traditional way, the 
electromagnetic energy harvester is placed between the 
oscillator’s mass and the base. This study investigates the 
performance of this non-traditional variant NES under 
harmonic base excitation. First, the developed apparatus is 
described. Subsequently, the approximate solutions of steady 
state responses are derived using the harmonic balance (HB) 
method. Next, computer simulations are conducted using both 
the HB method’s solution and numerical integration. The 
results show that under harmonic excitation, the proposed 
apparatus behaves similarly to a true NES with the following 
features: amplitude jump, excitation level dependence, strongly 
modulated response (SMR), etc. Overall, the non-traditional 
variant NES can achieve vibration suppression and energy 
harvesting in a broad frequency band. 

Keywords-nonlinear energy sink; energy harvesting; vibration 
suppression; harmonic excitation; harmonic balance method; 
frequency response plot 

I.  INTRODUCTION 

In recent years, there has been a growing interest in 
harvesting energy from ambient vibration for self-powered 
devices. A popular way to convert vibrating energy into 
electricity is to use a single-degree-of-freedom (SDOF) 
oscillator. However, its performance will be compromised if the 
ambient vibration is not sinusoidal or the harmonic excitation 
frequency varies from the natural frequency of the oscillator. In 
order to widen the bandwidth, various nonlinear energy 
harvesters have been proposed [1, 2]. On the other hand, 
vibration absorbers consisting of an SDOF oscillator have been 
used to suppress vibration of a primary system subjected to a 
harmonic excitation. In terms of vibration suppression, linear 
vibration absorbers have a narrow working bandwidth. 

Nonlinear vibration absorbers have been proposed to improve 
performance robustness in a broad frequency band [3-5]. Over 
the last two decades, the nonlinear energy sink (NES) has been 
considered to be a better solution for broadband vibration 
suppression [6-8]. The NES consists of a mass, a nonlinear 
spring, and a damper. Unlike the nonlinear vibration absorbers, 
the NES’s spring is essentially nonlinear so that it can respond 
to any frequency as long as the excitation energy exceeds the 
required threshold [9].  

Recently some studies have been conducted to explore the 
possibility of using the NES to suppress vibration and harvest 
energy simultaneously [10, 11]. Achieving an ideal NES 
requires stringent conditions. A common way is to connect a 
small mass between two aligned linear springs with no 
pretension. Various methods were used to eliminate the 
requirement of pretension, including using an air track or a guide 
rail to support the NES mass [12-14]. In [15-17], the apparatuses 
with high nonlinear stiffness and low linear stiffness were 
developed to emulate the performance of an ideal NES. These 
devices were referred to as variant NES. The studies showed that 
as long as the variant NES is weakly coupled to the primary 
system, it demonstrates the similar behaviors of an ideal NES, 
such as 1:1 resonance, targeted energy transfer (TET), and 
strongly modulated response (SMR).  

In [18], a non-traditional vibration absorber was developed 
for the purpose of simultaneous vibration suppression and 
energy harvesting. The developed vibration absorber is 
considered to be non-traditional because its damper is connected 
between the absorber mass and the ground. In [19], a non-
traditional variant NES was developed for broadband 
applications, and its performance under transient responses was 
examined. This paper investigates the performance of the non-
traditional variant NES under harmonic excitation with the 
purpose of achieving simultaneous vibration suppression and 
energy harvesting. 

The rest of the paper is organized as follows. Section Ⅱ 
presents the developed apparatus and its modeling. Section Ⅲ 
introduces the harmonic balance (HB) method that is used to find 
the approximate steady-state responses of the system. Section Ⅳ 
gives the computer simulation results. Section Ⅴ draws the 
conclusion of the study. 



   

II. APPARATUS AND MODELING 

Fig. 1 compares the two ways to attach a variant NES’s 
damper. Fig. 1(a) is the traditional way named as variant NES 
model A while Fig. 1(b) is the non-traditional way named as 
variant NES model B. The non-traditional attachment offers 
some unique features in terms of applications and dynamics. For 
example, this way makes installation of a damper possible if the 
space between the NES mass and the primary mass is limited 
and the damper requires a large motion stroke.  

Fig. 2 shows an isometric view and a front view of the 
developed apparatus which consists of a primary system 
attached by the proposed variant NES model B. The primary 
system is constructed by clamping a Polylactic Acid (PLA) 
block printed by a 3-D printer and a base plate with four thin 
steel plates. The variant NES model B consists of a steel 
cantilever beam, two continuous-contact blocks, two permanent 
magnets, and two coils that are fixed to the base plate. The 
continuous-contact blocks are also made of PLA filament by a 
3-D printer. The upper end of the cantilever beam is clamped 
between the two continuous-contact blocks that are inserted in 
the primary block. The two magnets are attached to the free end 
of the cantilever beam by their own magnetic forces. As shown 
in Fig. 2, portions of the magnets are situated inside the coils 
such that they form two electromagnetic energy harvesters. 
Obviously, the developed apparatus represents a variant NES 
model B as the electromagnetic energy harvesters are connected 
between the NES mass and the base. 

Fig. 3 is a schematic diagram showing the dynamic model of 
the developed apparatus. ma and mp stand for the NES mass and 
the primary mass, respectively. k1, k3, and kp represent the NES 
linear stiffness, the NES nonlinear stiffness, and the primary 
stiffness, respectively. cam, cae, and cp represent the mechanical 
damping coefficient between the NES mass and the primary 
mass, the electric damping coefficient between the NES mass 
and the base, and the primary damping coefficient, respectively. 
y represents the displacement of the base, and xa and xp represent 
the displacement of the NES mass relative to the base and that 
of the primary mass relative to the base, respectively. The 
equations of motion of the system are given as 
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where z = xa – xp is the displacement of the NES mass relative to 
the primary mass. Assuming the base motion is harmonic, then 
the base acceleration is given by ÿ = –Aycos(Ωt), where Ay = 
Ω2Y  is the amplitude of the acceleration, Ω is the excitation 
frequency, and Y is the amplitude of the base motion. Equations 
(1) and (2) can be reformulated as 
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Based on the results from the system characterization [19], 
the parameter values used in the following simulation are 
ωp = 60.457 rad/s , ωa = 24.183 rad/s , μ = 0.177 , λ = 9.765 × 
104 m2, 

p
 = 7.3 × 10–3, 

am
 = 4.1 × 10–3. 

Fig. 4 shows the circuit of the electromagnetic energy 
harvester where Rcoil and Lcoil are the resistance and inductance 
of one coil, respectively, and Rload is the resistance of the load 
resistor. As the impedance due to the inductance of the coils is 
negligible, the electromagnetic energy harvester is equivalent to 
an electromagnetic damper with a damping coefficient 
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where Θ is the transduction factor that is approximated to be a 
constant. The value of 

ae
 varies with cae . In [18], the 

transduction factor was found to be Θ = 2.596 Tm and the coil 
resistance is measured as Rcoil = 2.3 . 

 

Figure 1.  Two different ways to attach a variant NES’s damper: (a) 
traditional way; (b) non-traditional way. 

 
Figure 2.  The CAD drawings of the developed apparatus: (a) isometric view; 

(b) front view. 



   

 

Figure 3.  Dynamic model of the developed apparatus. 

 

Figure 4.  Circuit of the energy harvester. 

III. HARMONIC BALANCE METHOD 

In terms of predicting the steady-state response of nonlinear 
systems, the harmonic balance (HB) method is more efficient 
than numerical simulation in time domain since the latter has to 
compute many cycles in order to generate the steady-state 
response, and such process can be time-consuming [20]. In order 
to apply the HB method to (3) and (4), the following state 
variables are defined: 

 1 2 3 4, , , .p px x x z x x x z      (7) 

With the assumption that the predominant component of the 
steady-state response has the same frequency as that of the 
excitation, the equations of motion of the system can be written 
in the form of ẋ⃗ = f⃗ (t, x⃗) = f⃗ (t + T, x⃗). 
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The truncated Fourier series of the assumed solution are 
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which can be written in component form as 
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where ai , Ain , and Bin  are constants, cn(t) = cos(nt)  and 
sn(t) = sin(nt) are the harmonics, D = 4 is the dimension of the 
system, and N is the number of harmonics. As the system under 
consideration has a nonlinear stiffness with a cubic term, N = 3 
is used in this study. The residual function in vector form is 
defined by 

  ˆ ˆ( ) , ( ) ( ).r t f t x t x t 
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Minimizing the residual functions using the Galerkin method 
yields 

 

0

0

0

1
( , , ) ( ) 0,

1
( , , ) ( ) ( ) 0,

1
( , , ) ( ) ( ) 0.

T
a

i

T

in

T

in

r a r t dt
T

R a r t c t dt
T

R a r t s t dt
T





 

 

 







A

B

A B

A B

A B

  

  

  

 (12) 

The above step generates a system of D(2N + 1), i.e. 4 × (2 × 3 
+ 1) = 28 equations with the same number of unknowns that can 
be solved by the Newton-Raphson method. 

IV. SIMULATION RESULTS 

In the following simulations, the identified parameter values 
given in section Ⅱ are used. The results by the HB method are 
used to generate the so-called frequency response plot (FRP) 
[21]. Figs. 5 and 6 show the FRPs with a load resistance of 
Rload = 20 Ω  under two excitation levels Ay = 1 m/s2  and 
Ay = 1.5 m/s2, respectively. The blue solid line represents the up-
sweep responses of the primary system attached with the non-
traditional variant NES while the red dashed line represents the 
down-sweep ones. The green line shows the frequency response 
of the primary system alone. It can be seen that the variant NES 
can suppress vibration of the primary system in a wide frequency 
region effectively. The effectiveness of the vibration suppression 
deteriorates with an increase of the excitation level. As shown in 
Figs. 5 and 6, the amplitude of the responses of the nonlinear 
systems jumps up or down abruptly at some specific frequencies. 
This phenomenon is referred to as the amplitude jump, which is 
a typical behavior of nonlinear systems [22]. With an up-sweep 
excitation, the jump frequencies with Ay = 1 m/s2 are around 7.0 
Hz and 10.7 Hz, while the jump frequencies with Ay = 1.5 m/s2 
are around 7.7 Hz and 11.2 Hz. With a down-sweep excitation, 
the jump frequencies with Ay = 1 m/s2 are around 9.8 Hz and 5.9 
Hz, while the jump frequencies with Ay = 1.5 m/s2 are around 
10.0 Hz and 6.7 Hz. 

In order to verify the approximate steady-state responses by 
the HB method, the solution of (8) under a slow frequency sweep 
excitation is numerically obtained by using the MATLAB 
function ode45. To this end, the excitation frequency f = Ω/2π is 
varied by 
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where f
s
 is the starting frequency, f

e
 is the ending frequency, Td 

is the sweep duration, and r is the sweeping rate. In this study, f
s
 



   

is set to be 2 Hz and 20 Hz in an up-sweep and a down-sweep, 
respectively, f

e
 is set to be 20 Hz and 2 Hz in an up-sweep and a 

down-sweep, respectively, and r  is set to be 0.02 Hz/s  and 
–0.02 Hz/s in an up-sweep and a down-sweep, respectively. 

 

Figure 5.  Frequency responses of the primary system from up-sweep and 
down-sweep excitations with Ay = 1 m/s2 and by HB method. 

 

Figure 6.  Frequency responses of the primary system from up-sweep and 
down-sweep excitations with Ay = 1.5 m/s2 by HB method. 

In the following simulation, the excitation amplitude of 
Ay = 1 m/s2  is used. Figs. 7 to 9 show the amplitudes of the 
steady-state responses of the developed apparatus obtained using 
the two methods with three different load resistances of Rload = 
20 Ω, 100 , and 200 Ω. Figs. 7(a) to 9(a) show the amplitudes 
of the steady-state response Xp  of the primary system, while 
Figs. 7(b) to 9(b) show the amplitudes Z  of the steady-state 
relative response of the NES. The blue solid lines and the red 
solid lines represent the up-sweep responses and the down-
sweep responses obtained by numerical simulation respectively, 
and the dashed lines represent the responses obtained by using 
the HB method. In general, both of the results agree well in terms 
of the magnitudes and the jump frequencies. Some discrepancies 
are noted when the load resistance is large or the electric 
damping is low. This is due to the fact that when the damping is 
low, the transient responses in the frequency sweep excitation 
become more noticeable. Table Ⅰ shows the jump frequencies in 
the upward and downward FRPs with different load resistances. 

Figs. 7 to 9 show that in an up-sweep, the peak value of Xp 
at the first jump frequency is significantly increased as the load 
resistance increases, while the value of Xp  around the second 
jump frequency remains at the same level. In a down-sweep, the 
value of Xp  remains low and nearly unchanged as the load 
resistance increases. It can also be observed from Table Ⅰ, as well 
as Figs. 7 to 9 that the unstable regions are widened with an 

increase of the load resistance. The observations above indicate 
that although the nonlinear effect of the system is stronger with 
a larger load resistance, a lower resistance is preferred for better 
vibration suppression.  

 

Figure 7.  Up-sweep frequency responses (left column) and down-sweep 
frequency responses (right column) with Rload = 20 Ω: (a) Xp; (b) Z. 

 

Figure 8.  Up-sweep frequency responses (left column) and down-sweep 
frequency responses (right column) with Rload = 100 Ω: (a) Xp; (b) Z. 

 

Figure 9.  Up-sweep frequency responses (left column) and down-sweep 
frequency responses (right column) with Rload = 200 Ω: (a) Xp; (b) Z. 

Figs. 10 and 11 show examples of the so-called strongly 
modulated response (SMR), which is a typical phenomenon of a 
NES system subjected to harmonic excitation. The SMR is 
considered as a sign of repeated TET [23, 24]. Figs. 10 and 11 
show the time responses with Rload = 20 Ω  and 200 Ω , 



   

respectively. Two excitation frequencies of 3.14 Hz and 9.22 Hz 
are used. Apparently the SMR is established.  

TABLE I.  JUMP FREQUENCIES WITH DIFFERENT LOAD RESISTANCES. 

Rload 20 Ω 50 Ω 100 Ω 150 Ω 200 Ω 

upward 
7.04 Hz, 
10.68 Hz 

7.80 Hz, 
11.36 Hz 

7.94 Hz, 
11.98 Hz 

7.98 Hz, 
12.40 Hz 

8.00 Hz, 
12.60 Hz 

downward 
9.84 Hz, 
5.86 Hz 

9.86 Hz, 
6.00 Hz 

9.84 Hz, 
5.88 Hz, 

9.84 Hz, 
5.98 Hz 

9.84 Hz, 
6.02 Hz 

 

 

Figure 10.  Time responses of SMR with the excitation frequency of 3.14 Hz 
(left column) and 9.22 Hz (right column) and Rload = 20 Ω: (a) xp; (b) z. 

 
Figure 11.  Time responses of SMR with the excitation frequency of 3.14 Hz 

(left column) and 9.22 Hz (right column) and Rload = 200 Ω: (a) xp; (b) z. 

With the FRPs obtained, vibration suppression of the 
developed apparatus with respect to Rload  is measured by 
defining an index which is given by 

 3 2
,pD X  (14) 

i.e. the second norm of Xp. This index evaluates the sum of the 
squared values of Xp. The lower the value of D3, the better the 
vibration suppression. Fig. 12 shows D3  with respect to Rload 
with up-sweep excitation only since Xp  remains nearly 
unchanged with down-sweep excitation. Clearly, the value of D3 
increases with an increase of Rload  in the up-sweep responses, 
which indicates that a lower Rload is preferred for better vibration 
suppression. 

The energy harvesting efficiency of the system is 
investigated using the approximate solutions obtained from the 
HB method. The current in the circuit can be found by [18] 
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2 a

coil load

i t x t
R R





  (15) 

The peak current ipeak is defined by 

 ,
2peak

coil load

i A
R R





 (16) 

where A  is the peak amplitude of ẋa(t) . The value of A  is 
obtained by generating single-frequency time responses using 
(10). The peak of the instantaneous power harvested by the load 
resistor is given as 

 2 .peak peak loadP i R  (17) 

Fig. 13 shows the peak powers harvested by the load resistor 
with Rload  = 20 Ω, 50 Ω, 100 Ω, and 200 Ω , respectively. As 
shown in Fig. 13, in terms of the frequency jumping, the overall 
trends of Ppeak with different load resistances are consistent with 
those seen in the corresponding amplitude-frequency responses. 
However, in terms of the magnitude, the load resistances have 
different effects at the two jump frequencies in the up-sweep 
responses. In Fig. 13(a), at the first jump frequency, the load 
resistance of Rload  = 50 Ω  results in the largest peak power 
among the four load resistances considered. If the load resistance 
is further increased, the peak power reduces. At the second jump 
frequency, the lower the load resistance, the larger the peak 
power. While in Fig. 13(b), the largest peak power increases at 
both the jump frequencies with a decrease in Rload. 

 
Figure 12.  D3 versus Rload. 

 
Figure 13.  Frequency responses of Ppeak with Rload = 20 Ω, 50 Ω, 100 Ω, and 

200 Ω: (a) up-sweep; (b) down-sweep. 



   

In order to further investigate the effect of Rload on energy 
harvesting in the up-sweep responses, the energy harvesting 
capability of the load resistor in a broad frequency range is 
measured by defining an index as follows: 

 4 2
.peakD P  (18) 

This index measures a sum of the squared peak powers in the 
frequency range of interest. Fig. 14 shows the plot of D4 with 
respect to Rload in the up-sweep responses. As shown in Fig. 14, 
with an increase of Rload , the value of D4  increases until Rload 
reaches 50 Ω, then decreases. In terms of energy harvesting, a 
load resistance around 50 Ω is preferred for the system. Based 
on the trends of D3 and D4, it can be concluded that a proper 
trade-off between vibration suppression and energy harvesting 
can be obtained around Rload = 50 Ω. 

 

Figure 14.  D4 versus Rload. 

V. CONCLUSION 

Harmonically forced responses of a non-traditional variant 
NES are investigated in this study. The frequency response plots 
are obtained by using the HB method and the frequency sweep 
excitation with the MATLAB function ode45. Overall, the 
results of the two methods agree well. Some typical behaviors of 
the NES system are observed such as the jump phenomenon and 
SMR. The peak power harvested by the load resistor is used to 
investigate the energy harvesting efficiency. The results reveal 
that vibration suppression can be achieved with a high electric 
damping, i.e. a small Rload , while energy harvesting can be 
achieved with a load resistance of around 50 Ω. 
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