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Abstract

Cooperation and coordination are challenging to achieve in public goods games.

As a result, public goods are often chronically under-provisioned due to free-

riding. However, reciprocity has been increasingly associated with cooperative

behaviour and may play an important role in driving individual contribu-

tions in public goods games. While reciprocity is often discussed as a two

party interaction (direct reciprocity), reciprocity can also occur in interactions

between three parties (indirect reciprocity), and capture effects of recent ex-

periences (indirect upstream reciprocity) and reputation (indirect downstream

reciprocity) on individual contributions. In this thesis, our objective is to

examine the role of both direct and indirect reciprocity preferences in vol-

untary contributions in public goods games. Understanding the relevance of

these preferences will have implications for many social dilemma situations

impacting society. Using a psychological game theoretic approach, we apply

and extend the utility framework introduced by Dufwenberg and Kirchsteiger

(2004) to incorporate direct and indirect reciprocity preferences in a public

goods setting. We identify several theoretical predictions which show the ex-

istence of cooperative equilibria. Furthermore, we identify several conditions

under which the inclusion of direct and indirect reciprocity preferences can

lead to more cooperative outcomes. This research furthers our understanding

of the role of reciprocity preferences on individual contributions in public goods

games and highlights the importance of both direct and indirect reciprocity in

supporting cooperative behaviour.
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Chapter 1

Introduction

Individual contributions to public goods games have been increasingly shown

to be associated with reciprocal behaviours (Chaudhuri, 2011; Croson, 2007).

Cialdini (2009) defines reciprocity as returning in kind how one is treated by

others. In the literature, reciprocity is mostly discussed in terms of direct

reciprocity which involves conditional cooperation between two parties, such

as tit-for-tat (Nowak and Sigmund, 2005; Axelrod and Hamilton, 1981). Less

studied, indirect reciprocity addresses conditional cooperation between three

parties, and as such incorporates elements of tit-for-tat but also depends on

recent experiences and reputation of others (Nowak and Sigmund, 2005).

Indirect reciprocity can capture many social interactions that are excluded

by the two party nature of direct reciprocity. Where direct reciprocity (Fig-

ure 1.1) captures an exchange of altruistic acts between two parties1, three

party interactions can provide richer environments to examine cooperative be-

haviour.

Figure 1.1: Direct Reciprocity occurs when A is kind to B and B is kind to A
(Nowak and Sigmund, 2005).

1Trivers (1971) defines reciprocal altruism as acts that have a small cost to the giver and
a large benefit to the receiver. Nowak and Sigmund (2005) state that reciprocal altruism
involves the exchange of altruistic acts such that both parties obtain a net benefit. Pure
altruism occurs when the giver incurs a small cost and does not benefit.
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Indirect upstream reciprocity (Figure 1.2) focuses on the effects of recent ex-

periences on an individual’s behaviour. For example, if you were nice to me, I

may be motivated to “pay-it-forward” and be nice to someone else.

Figure 1.2: Indirect Upstream Reciprocity occurs when A is kind to B, then
B is kind to C (Nowak and Sigmund, 2005).

In indirect downstream reciprocity (Figure 1.3), the focus is on the effect of

reputation on an individual’s behaviour. For example, if I saw you be nice to

someone else, I may evaluate you as being a “kind” person and reward you

by being nice to you. As well, indirect reciprocity preferences may be more

Figure 1.3: Indirect Downstream Reciprocity occurs when A is kind to B, then
C is kind A (Nowak and Sigmund, 2005).

salient for individuals who place stronger value on societal appearances (see,

for example, Nowak and Sigmund, 1998, for a discussion on indirect reciprocity

and image scoring models).

The objective of this thesis is to examine the role of both direct and indi-

rect reciprocity preferences in voluntary contributions to public goods. Under-

standing the relevance of these preferences will have implications for many so-

cial dilemma situations impacting society today – for example, climate change

abatement, adaptation and mitigation efforts are global public goods that are

chronically under-provisioned due to incentives to deviate from emissions re-

duction targets that would otherwise be welfare enhancing.
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Free-riding in public goods games, in which an individual does not con-

tribute to the public good yet may still benefit from its provision, under-

mines cooperation and is a key characteristic of collective action social dilem-

mas. Reaching the social optimum requires coordination, and in its absence,

“[f]reedom in a commons brings ruin to all” (Hardin, 1968). However, in-

dividuals cooperate more than predicted (Ostrom, 2010) and conditional co-

operation among individuals can support higher contributions to the public

good (Chaudhuri, 2011). Accounting for reciprocity preferences can provide

further insight into cooperative outcomes in public goods games and add new

behavioural predictions.

Our theoretical framework builds on Dufwenberg and Kirchsteiger (2004)’s

model of reciprocity, which we extend to a public goods game with direct

and indirect reciprocity preferences. Deriving new theoretical predictions for

behaviour in a public goods setting, we show that the inclusion of both direct

and indirect reciprocity preferences can lead to more cooperative outcomes in

public goods games. We specifically use a psychological game theory approach

that incorporates first- and second-order beliefs when solving for simultaneous

and sequential choice reciprocity models. The distinction between traditional

game theory approaches and psychological game theory is important to note.

When incorporating reciprocity preferences into a public goods game context,

we are not just assessing whether an action is “kind” or “unkind”, but also

evaluating the intention behind the action, i.e., modelling reciprocity requires

the consideration of beliefs, and considering beliefs and incorporating belief-

dependent emotions into games moves away from traditional game theory and

into psychological games. The general framework for psychological games

was developed by Geanakoplos et al. (1989), who discuss the application of

traditional game theory concepts to psychological games and provide a set of

assumptions and appropriate solution concepts for this class of games. Many

of Geanakoplos et al.’s assumptions address beliefs. For example, players are

assumed to hold rational expectations (beliefs are correct in equilibrium) and

coherent beliefs (first-order and second-order beliefs correlated). As well, there

is collective coherency; that is, coherent beliefs are common knowledge among

3



players (Geanakoplos et al., 1989). Finally, Geanakoplos et al. assume perfect

recall among players. Perfect recall occurs when each player knows what they

previously chose (action recall) and each player remembers whatever they knew

at any previous move, including their previous choices as well as previous states

of the game (memory of past knowledge) (Kuhn, 1953).

Furthermore, and relevant for our sequential choice reciprocity framework,

traditional game theory concepts such as sequential rationality still hold in

psychological game environments, but methods such as backward induction

fail due to the inclusion of beliefs (Geanakoplos et al., 1989). In traditional

game theory, sequential rationality occurs when, at every point in the game

tree, a player’s strategy specifies optimal actions (Mas-Collel et al., 1995).

The key difference, according to Geanakoplos et al., lies in the fact that once

players reach a decision node, this does not necessarily provide players with

essential information needed for further decision making as nodes only identify

histories or previous play and fail to incorporate the beliefs of the players. Fur-

thermore, beliefs must be sequentially rational (strategies are rational given

beliefs) and beliefs must be consistent (obtained through Bayesian updating

given the strategies) - this encompasses information sets both on and off the

equilibrium path. Hence, the sequential psychological equilibrium as outlined

in Geanakoplos et al. (1989) differs from the sequential equilibrium concept

(see for example, Kreps and Wilson, 1982) in that beliefs directly enter into

players’ utility functions and the Geanakoplos et al. (1989) sequential psycho-

logical equilibrium concept accounts for higher-order beliefs. An application

of psychological game theory can be found in Rabin (1993), who incorporated

kindness in players’ utility functions to derive fairness equilibria. Similar to

our reciprocity approach presented in this thesis, Rabin’s work sought to incor-

porate social preferences through evaluating fairness considerations – Rabin

showed that establishing a status quo of what everyone else thinks is “fair” and

assessing “fair” action through the use of reference points adds new predictive

power to economic models.

Two main classes of models have emerged in the literature on modelling

reciprocity preferences: outcome-based models and intention-based models.

4



Outcome-based models focus on modelling distributional concerns and include

work by Fehr and Schmidt (1999) who examine the roles of inequity-aversion

and guilt-aversion, and Bolton and Ockenfels (2000) who incorporate both

equity and reciprocity in their model. However, these models fall short of in-

cluding higher-order beliefs, which are important in understanding the moti-

vation behind belief-dependent emotions. On the other hand, intentions-based

models incorporate first- and higher-order beliefs in players’ utility functions.

Dufwenberg and Kirchsteiger (2004)’s model of reciprocity incorporates con-

cepts from both Geanakoplos et al. (1989) and Rabin (1993) – specifically,

Dufwenberg and Kirchsteiger allow for belief updating as players reach deci-

sion nodes throughout the game, allowing players to consider both the history

of the game and their beliefs at that decision node. Unlike Dufwenberg and

Kirchsteiger (2004)’s model, Falk and Fischbacher (2006) present a blend of

an outcome- and intention-based model, however, their model only allowed

for initial beliefs and did not consider belief updating once players reach de-

cision nodes. This is an important omission as belief updating and variations

in belief updating (i.e., Jiang and Wu, 2019) are key to a player’s assessment

of what is “fair”, or in Dufwenberg and Kirchsteiger (2004)’s model, what is

“kind”, and a player’s belief about another player’s kindness can be different

depending on the decision node reached and the history of the game.

Most applications of reciprocity models in the literature are exclusively

addressing direct reciprocity, or the interactions between two parties. The

timing of these interactions may be simultaneous (Sugden, 1984) or sequen-

tial (Dufwenberg and Kirchsteiger, 2004; Falk and Fischbacher, 2006). Cro-

son (2007) distinguishes between simultaneous reciprocity as “matching” be-

haviour (such as tit-for-tat strategies as outlined in Axelrod and Hamilton,

1981) and sequential reciprocity as “rewarding” behaviour. There have also

been several applications of Dufwenberg and Kirchsteiger (2004)’s model of

reciprocity to public goods games, including Dufwenberg et al. (2011), which

examines guilt aversion and reciprocal motivations, and Dufwenberg and Patel

(2017) which revisits Palfrey and Rosenthal (1984)’s participation problem in

a discrete public goods game showing that both cost-sharing and reciprocity

5



preferences can contribute to solving coordination problems in public goods

games. These applications find that there is a positive correlation between

beliefs and contributions, and that reciprocity increases coordination.

Ambrus and Pathak (2011) also examine cooperation in a repeated public

goods game, allowing for both selfish and asymmetrically reciprocal players.

They find that asymmetric reciprocity preferences can describe contribution

decay behaviour observed in economic experiments. As well, Teyssier (2012)

looks at inequity aversion and risk in a public goods game using the outcome-

based model of Fehr and Schmidt (1999). While many public goods games are

simultaneous, Teyssier (2012) uses an explicit sequential format to find that

reciprocity is driven by advantageous-inequity aversion. This distributional

concern arises depending on the player’s role as first- or second-mover, where

first-movers with stronger disadvantageous-inequity aversion will contribute

less to public goods, and second-movers with sufficiently strong advantageous-

inequity aversion will contribute more to public goods.

In another experiment, Bardsley and Sausgruber (2005) disentangle the

impact of reciprocity versus conformity on the crowding-in effect in public

goods game. Their design examines differences between own-group regarding

behaviour (i.e., reciprocity) and other-group regarding behaviour (i.e., confor-

mity), by modifying the information that players observe and when they make

their contribution choices. While a subset of a group of players will simulta-

neously choose their contribution amounts, a randomly selected second-mover

will observe a vector of contributions either from their own group of play-

ers or some other group. The player with this information then makes their

contribution choice. Bardsley and Sausgruber find evidence that reciprocity

accounts for the majority of crowing-in effects in public goods games. Clark

et al. (2020) also examines the role of indirect reciprocity in driving coopera-

tive behaviour. In their work, Clark et al. show that providing simple records

of players’ past behaviour can support cooperation in social dilemmas requir-

ing coordination, including both prisoners’ dilemma and public goods games.

The observation of players’ past behaviour aligns with the reputation-based

aspect of indirect downstream reciprocity. However, indirect upstream reci-

6



procity, or the role of recent experience in driving cooperation, is yet to be

explored. While there are applications of reciprocity models in the literature,

as far as we are aware, the work of this thesis to model indirect reciprocity as

indirect upstream reciprocity and indirect downstream reciprocity is a unique

application of Dufwenberg and Kirchsteiger (2004)’s model of reciprocity in a

public goods game setting and provides a strong theoretical contribution to

the literature.

Given the theoretical and experimental contributions presented above, this

thesis adds to the literature by building on and extending the Dufwenberg

and Kirchsteiger (2004) model. Specifically, we apply a theoretical framework

of direct and indirect reciprocity to public goods games. The thesis further

includes characteristics of the framework used in Bardsley and Sausgruber

(2005)’s experimental design and follows the definitions of direct and indirect

reciprocity as described by Nowak and Sigmund (2005).

The remainder of this thesis is structured as follows. In Chapter 2, we

present a model setting that explicitly introduces both direct and indirect

reciprocity preferences into a public goods game. In Section 2.1, we present

a simultaneous choice public goods game with reciprocity preferences as a

baseline case. In Section 2.2, we present a sequential choice public goods

game with reciprocity preferences as a model of direct reciprocity. Indirect

upstream reciprocity is presented in Section 2.3 and indirect downstream reci-

procity is presented in Section 2.4. Chapter 3 concludes with a discussion of

the theoretical findings and a discussion of the general implications from the

model.

7



Chapter 2

The Model

We adapt and extend Dufwenberg and Kirchsteiger (2004)’s model of sequen-

tial reciprocity and develop an explicit model of indirect reciprocity follow-

ing definitions provided by Nowak and Sigmund (2005). Dufwenberg and

Kirchsteiger (2004)’s model of sequential reciprocity incorporates reciprocal

motivations into a player’s utility function and examines how these motiva-

tions influence a player’s actions depending on the decision node reached and

the history of the game. Belief formation and updating are important as-

pects of the Dufwenberg and Kirchsteiger model which drive perceptions of

the intentions behind actions and motivations for reciprocity. Dufwenberg

and Kirchsteiger present a utility function comprised of both a material pay-

off function and a reciprocity payoff function. The reciprocity payoff function

evaluates kindness and perceived kindness, where utility is increased by reci-

procity when these functions have matching signs (i.e., when a player is “kind”

to others and believes that others intended to be “kind” to them, then their

utility is increasing). In our application, the model focuses on how concerns

for reciprocity drive individual contribution behaviour. In what follows, we

present applications of Dufwenberg and Kirchsteiger (2004)’s model in a pub-

lic goods game setting with simultaneous choice (Section 2.1) and sequential

choice (Section 2.2). In Sections 2.3 and 2.4, we extend the model to include

indirect reciprocity preferences.

Consider an n player public goods game with a voluntary contribution

mechanism and n ≥ 3. Each player i, where i ∈ A = {1, ..., n}, has endowment

8



y and chooses a contribution ci to the group, with ci ∈ Ci = [0, y]. Each

player i can contribute nothing (ci = 0), contribute something (0 < ci < y), or

contribute their1 full endowment (ci = y). A profile of contribution strategies

is c = (c1, ..., ci−1, ci, ci+1, ..., cn).

The model setting includes both simultaneous and sequential play. Players

may either choose their contribution amounts at the same time as the other

players in their group, or a player may observe the average2 contributions of

the players in another group or their own group before making their contri-

bution decision. The timing of each game will be described in greater detail

in subsequent sections. If the game is sequential, then player i observes the

average contribution of other players and has information about the history of

the game; player i can consider the history of the game when choosing their

contribution. That is, at every node in a sequential game, each player i might

know the history of the game, h (i.e., if player i is the second-mover). The his-

tory of the game is defined as a vector of contributions made by other players.

For instance, h = (0, ..., 0) represents the history when player i knows with

probability 1 that all the other players have contributed nothing, and when

h = (y, ..., y), player i knows with probability 1 that all the other players have

contributed the full endowment, y. When h = (c1, ..., cn), player i does not

know with certainty what each player has contributed, but player i observes

the average contribution 1
n−1

∑
j 6=i

cj = c, where 0 < c < y, so player i knows

that each player j has contributed cj, where j = 1, ..., n, j 6= i, and 0 ≤ cj ≤ y.

Following Dufwenberg and Kirchsteiger (2004), each player i has beliefs

about the other players’ contribution strategies, and each player i can assess

probabilities on their beliefs about the other players’ contributions, where

first- and higher-order beliefs are contribution amounts. We denote bi,j(h) as

1Throughout the thesis and in the model exposition, we use gender-neutral language
to discuss players (i.e., “they/them” pronouns). Every effort is made to distinguish be-
tween players when referring to a singular player versus plural players through additional
descriptors such as set membership.

2We define average as the mean of the contributions of the other players in the group,

where 1
n−1

∑
j 6=i

cj = c. Chaudhuri (2011) highlights several papers that use average group

contributions, including Croson (2007).
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the first-order belief that player i holds about player j’s contribution strategy

conditional on history h, where player i, j = 1, ..., n, i 6= j, and (bi,j(h))j 6=i ∈

Bi,j. Each player i also holds higher-order beliefs. Player i holds beliefs about

player j’s belief about other players’ contribution strategies conditional on

history h, (bi,j,k(h))k 6=j ∈ Bi,j,k, where players i, j, k ∈ A and i 6= j and j 6= k.

Note that bi,j(h) and bi,j,k(h) represent players’ beliefs about contributions

and that Bi,j,k = Bj,k = Ck. That is, we assume that beliefs are correct in

equilibrium (i.e., rational expectations in Dufwenberg and Kirchsteiger, 2004),

beliefs are coherent (first-order and higher-order beliefs correlated) and there is

collective coherency among players (Geanakoplos et al., 1989). We also assume

that players have perfect recall (Kuhn, 1953) such that they know the history

of the game and all preceding choices up to the decision node reached. Finally,

we assume that players are myopic and only care about how their decisions

affect the current period’s payoff not taking into account the future.

2.1 Baseline

As a baseline case, consider a simultaneous n player game with symmetric

players, Figure 2.1. We define player i ∈ A, and player j ∈ Ai such that

Figure 2.1: Baseline

Ai = {1, ..., i − 1, i + 1, ..., n} where Ai ⊂ A. In other words, player i can be

any player in set A while player j is a player in set Ai, which represents the

set of all players excluding player i (i.e., a set of (n− 1) players).

2.1.1 No Reciprocity Preferences

Each player i ∈ A simultaneously chooses ci ∈ [0, y], and receives the following

material payoff

10



πi = y − ci + α
∑
l∈A

cl, (2.1.1)

where α is the marginal per capita return (MPCR) with 0 < α < 1 < nα, and∑
l∈A

cl identifies the contributions of all n players in set A to the group account,

where player l ∈ A3. The payoff for each player j is analogous. Player i chooses

ci that solves max
ci

πi where πi is defined by (2.1.1). Given that α < 1, the

first-order condition is always negative,

− 1 + α < 0. (2.1.2)

The only Nash equilibrium is thus c∗1 = ... = c∗n = 0, such that each player i

contributes nothing. This is the equilibrium that we expect to find in a classic

public goods game. We define this equilibrium as the traditional public goods

game Nash equilibrium.

2.1.2 Reciprocity Preferences

While reciprocity is typically modelled sequentially, and despite the simulta-

neous nature of this game, player i could have reciprocity preferences that

influence their beliefs about the contribution strategies of other players. How-

ever, due to the structure of the game, players cannot discriminate - player i

can only be “kind” to all the players in set Ai in order to be “kind” to any one

individual player. We incorporate a reciprocity payoff into player i’s utility

function following Dufwenberg and Kirchsteiger (2004). To do so, we define

additional components such as beliefs and higher-order beliefs about the con-

tribution strategies of the other players in the set. Given history h, let b̄i,Ai
be

player i’s belief about the average contribution of the other players in set Ai,

such that

3Player i is included in the set of players l ∈ A
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b̄i,Ai
(h) =

1

n− 1

∑
j∈Ai

bi,j(h), (2.1.3)

where

∑
j∈Ai

bi,j(h) = bi,1(h) + ...+ bi,i−1(h) + bi,i+1(h) + ...+ bi,n(h). (2.1.3a)

Recall that Ai represents the set of all players but player i, and therefore, the

set Ai contains (n− 1) players. Furthermore, bi,j(h) represents the belief that

player i holds about player j’s strategies. Because the (n − 1) players in set

Ai are symmetric, we rewrite (2.1.3a) as

∑
j∈Ai

bi,j(h) = (n− 1)bi,j(h). (2.1.3b)

Therefore, we express (2.1.3) as

b̄i,Ai
(h) = bi,j(h). (2.1.3c)

Let b̄i,Ai,i(h) be player i’s belief about what the other players in set Ai believe

about player i’s own contribution strategy, conditional on history h, such that

b̄i,Ai,i(h) =
1

n− 1

∑
j∈Ai

bi,j,i(h), (2.1.4)

where

∑
j∈Ai

bi,j,i(h) = bi,1,i(h) + ...+ bi,i−1,i(h) + bi,i+1,i(h) + ...+ bi,n,i(h). (2.1.4a)

Because the (n− 1) players in set Ai are symmetric, we rewrite (2.1.4a) as

12



∑
j∈Ai

bi,j,i(h) = (n− 1)bi,j,i(h). (2.1.4b)

Therefore, we express (2.1.4) as

b̄i,Ai,i(h) = bi,j,i(h). (2.1.4c)

Due to symmetry, the belief that player i holds about player j’s beliefs about

player i’s contribution strategy, as well as the strategies of the k other players

in their set can be expressed as

bi,j,i(h) = bi,j,k(h), (2.1.4d)

for i 6= j and j 6= k. Following Dufwenberg and Kirchsteiger (2004), let Ri,j

be player i’s reciprocity preference towards player j, where Ri,j ≥ 0. However,

because player i cannot discriminate between players and can only be “kind”

to the group, we represent player i’s reciprocity preferences as

Ri =
1

n− 1

∑
j∈Ai

Ri,j. (2.1.5)

Because the (n− 1) players in set Ai are symmetric,

∑
j∈Ai

Ri,j = (n− 1)Ri,j, (2.1.5a)

and, therefore, we express (2.1.5) as

Ri = Ri,j. (2.1.5b)

Player i’s utility function with reciprocity preferences is expressed by
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Ui = y − ci + α
∑
l∈A

cl︸ ︷︷ ︸
(i)

+
∑
j∈Ai

Ri,j · κi,j(ci, (bi,j(h))j 6=i) · λi,j,i(bi,j(h), (bi,j,k(h)))k 6=j︸ ︷︷ ︸
(ii)

.
(2.1.6)

The utility function, (2.1.6), now has two components: part (i), a material

payoff as in the initial model, and part (ii), a reciprocity payoff. The reci-

procity payoff function is also comprised of two parts

∑
j∈Ai

Ri,j · κi,j(ci, (bi,j(h))j 6=i)︸ ︷︷ ︸
(i)

·λi,j,i(bi,j(h), (bi,j,k(h)))︸ ︷︷ ︸
(ii)

k 6=j, (2.1.7)

where part (i) represents player i’s kindness function and part (ii) represents

player i’s perceived kindness function. The kindness function, κi,j(ci, (bi,j(h))j 6=i)),

is an evaluation of player i’s kindness towards player j and depends on ci,

player i’s own contribution, and (bi,j(h))j 6=i, a vector of player i’s beliefs about

the contributions of each player j ∈ Ai. The perceived kindness function,

λi,j,i(bi,j(h), (bi,j,k(h)))k 6=j, is an evaluation of player i’s perception of the kind-

ness of player j towards player i. Perceived kindness depends on player i’s

belief of the contribution of player j, bi,j(h), and a vector of their beliefs of

what player j believes about player i’s contribution strategy and the contri-

bution strategies of the other players, (bi,j,k(h))k 6=j. First, we examine player

i’s kindness function, κi,j(·), part (i) in (2.1.7), where

κi,j(ci, (bi,j(h))j 6=i) = πj(ci, (bi,j(h))j 6=i)︸ ︷︷ ︸
(i)

− 1

2

[
max
c′i

πj(c
′
i, (bi,j(h))j 6=i) +min

c′i

πj(c
′
i, (bi,j(h))j 6=i)

]
︸ ︷︷ ︸

(ii)

.

(2.1.8)
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The payoff of each player j is represented by part (i) in (2.1.8). Here, player

i chooses a contribution, ci, given the beliefs that they hold about the contri-

butions of others and the history of the game, (bi,j(h))j 6=i. Player i’s kindness

is evaluated against a reference point, part (ii) in (2.1.8). We suppose that

player i could make a certain maximum or minimum payoff happen by choos-

ing c′i = y or c′i = 0, respectively. From (2.1.8), if part (i) is greater than part

(ii), then κi,j(·) > 0 which means that player i is “kind” to player j. If the

converse is true and part (i) in (2.1.8) is less than part (ii), then κi,j(·) < 0

which means that player i is “unkind” to player j. According to (2.1.1), the

payoff of player j is thus

πj(ci, (bi,j(h))j 6=i) = y − bi,j(h) + α(ci + (n− 1)bi,j(h)), (2.1.8a)

as the sum of the contributions and beliefs about contributions is ci + (n −

1)bi,j(h).

If c′i = y and c′i = 0, then the maximum and minimum payoffs of player j

are

πj(y, (bi,j(h))j 6=i) = y − bi,j(h) + α(y + (n− 1)bi,j(h)), (2.1.8b)

and

πj(0, (bi,j(h))j 6=i) = y − bi,j(h) + α(0 + (n− 1)bi,j(h)). (2.1.8c)

Substituting these expressions into (2.1.8) and simplifying, we obtain

κi,j(ci, (bi,j(h))j 6=i) = α

(
ci −

1

2
y

)
. (2.1.8d)

Next, we examine player i’s perceived kindness function, part (ii) in (2.1.7),
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that we define as the level of player i’s perceived kindness of player j towards

player i, where

λi,j,i(bi,j(h), (bi,j,k(h))k 6=j) = πi(bi,j(h), (bi,j,k(h))k 6=j)︸ ︷︷ ︸
(i)

− 1

2

[
max
b′i,j(h)

πi
(
b′i,j(h), (bi,j,k(h))k 6=j

)
+ min

b′i,j(h)
πi
(
b′i,j(h), (bi,j,k(h))k 6=j

)]
︸ ︷︷ ︸

(ii)

.

(2.1.9)

The payoff that player i believes they will receive is represented by part (i) in

(2.1.9). This is evaluated against a reference point, part (ii) in (2.1.9). We

suppose that player i can evaluate what they believe their payoff would be if

they believe that player j could make a certain maximum or minimum payoff

happen by choosing b′i,j(h) = y or b′i,j(h) = 0, respectively. From (2.1.9), if

part (i) is greater than part (ii), then λi,j,i(·) > 0 and player i perceives player

j to be “kind” towards them. If the converse is true and part i in (2.1.9) is less

than part (ii), then λi,j,i(·) < 0 and player i perceives player j to be “unkind”

towards them. From (2.1.1), we thus expect payoff, part (i) in (2.1.9), to be

πi(bi,j(h), (bi,j,k(h))k 6=j) = y − bi,j,i(h)

+ α(bi,j(h) + bi,j,i(h) + (n− 2)bi,j,k(h)),
(2.1.9a)

as the sum of the beliefs about contributions is now bi,j(h) + bi,j,i(h) + (n −

2)bi,j,k(h). If b′i,j(h) = y and b′i,j(h) = 0, then the maximum and minimum

payoffs of player i are

πi(y, (bi,j,k(h))k 6=j) = y − bi,j,i(h) + α(y + bi,j,i(h) + (n− 2)bi,j,k(h)), (2.1.9b)

and

πi(0, (bi,j,k(h))k 6=j) = y − bi,j,i(h) + α(0 + bi,j,i(h) + (n− 2)bi,j,k(h)). (2.1.9c)
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Since players are symmetric, bi,j,i(h) = bi,j,k(h). Substituting these expressions

into (2.1.9) and simplifying, we obtain

λi,j,i(bi,j(h), (bi,j,k(h))k 6=j) = α

(
bi,j(h)− 1

2
y

)
. (2.1.9d)

We can now substitute these simplified expressions for kindness and per-

ceived kindness, (2.1.8d) and (2.1.9d), respectively, into (2.1.6). The reci-

procity payoff is thus

∑
j∈Ai

Ri,jα
2

(
ci −

1

2
y

)(
bi,j(h)− 1

2
y

)
. (2.1.10)

Since there are (n − 1) symmetric players in set Ai, and using (2.1.5b) we

express the reciprocity payoff as

(n− 1)Riα
2

(
ci −

1

2
y

)(
bi,j(h)− 1

2
y

)
. (2.1.11)

Using (2.1.3b), the reciprocity payoff is thus

Riα
2

(
ci −

1

2
y

)(∑
j∈Ai

bi,j(h)− n− 1

2
y

)
. (2.1.12)

Note that, like the material payoff function, part (i) in (2.1.6), the reciprocity

payoff function, (2.1.12), is increasing in the MPCR, α, which aligns with

the literature (i.e., Ledyard, 1995). Further, findings by Ledyard (1995) and

Chaudhuri (2011) and experimental evidence from Bagnoli and McKee (1991)

suggest that group size does not have an effect on increasing cooperation in

public goods games. However, as group size, n, increases, the reciprocity

payoff function, (2.1.11), is increasing if the kindness and perceived kindness

functions have matching signs.
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The utility maximization problem represented by (2.1.6) for player i is now

expressed as

max
ci

{
y − ci + α

∑
l∈A

cl +Riα
2

(
ci −

1

2
y

)(∑
j∈Ai

bi,j(h)− n− 1

2
y

)}
.

(2.1.13)

This expression is similar to other applications of Dufwenberg and Kirchsteiger

(2004)’s model, including Dufwenberg et al. (2011). The first-order condition

is

− 1 + α +Riα
2

(∑
j∈Ai

bi,j(h)− n− 1

2
y

)
= 0. (2.1.14)

In the baseline case, we assume that players are symmetric in their reciprocity

preferences, thus we can denote Ri = R. Furthermore, we assume rational

expectations such that player i’s beliefs about the contribution strategies of

other players in set Ai are correct, bi,j(h) = cj. We can rewrite the first-order

condition (2.1.14) as

− 1 + α +Rα2

(∑
j∈Ai

cj −
n− 1

2
y

)
= 0. (2.1.14a)

This first-order condition is different from the baseline case with no reci-

procity preferences, first-order condition (2.1.2), and now depends on more

factors. When we account for reciprocity preferences, the first-order condition

depends on reciprocity preference, contributions of others, and group size. The

function, (2.1.14a), can be strictly negative and downward sloping, in which

case the maximum is found at ci = 0. The function can be equal to zero (in-

terior solution) such that the function is horizontal and the maximum exists

anywhere along ci ∈ [0, y]. The function can be strictly positive and upward

sloping, in which case the maximum is found at ci = y.

We derive players’ best response functions to evaluate contribution strate-

gies and determine potential equilibria. Given the contributions of the (n− 1)
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players in set Ai, (i.e.,
∑
j∈Ai

cj), player i’s best response function is

BRi ((cj)j 6=i) =



0 if
∑
j∈Ai

cj <
1− α
α2R

+
n− 1

2
y

[0, y] if
∑
j∈Ai

cj =
1− α
α2R

+
n− 1

2
y

y if
∑
j∈Ai

cj >
1− α
α2R

+
n− 1

2
y

(2.1.15)

We specify player j’s utility maximization problem, where player j is sym-

metric to player i. Let Aj = {1, ..., j − 1, j + 1, ..., n} and k ∈ Aj. Player j

chooses cj that solves

max
cj

{
y − cj + α

∑
l∈A

cl

+Rjα
2

(
cj −

1

2
y

)∑
k∈Aj

bj,k(h)− n− 1

2
y

}. (2.1.16)

As described above, players are symmetric in their reciprocity preferences, and

thus we can denote Rj = R. The first-order condition is

− 1 + α +Rα2

∑
k∈Aj

bj,k(h)− n− 1

2
y

 = 0. (2.1.17)

Beliefs are correct in equilibrium, bj,k(h) = ck. The best response function for

each player j, j 6= i, is thus

BRj ((ck)k 6=j) =



0 if
∑
k∈Aj

ck <
1− α
α2R

+
n− 1

2
y

[0, y] if
∑
k∈Aj

ck =
1− α
α2R

+
n− 1

2
y

y if
∑
k∈Aj

ck >
1− α
α2R

+
n− 1

2
y

(2.1.18)

First, we determine if there exists an interior solution contribution choice,
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c ∈ [0, y], that satisfies player i’s best response function, (2.1.15), and each

player j’s best response function, (2.1.18). If all players choose c ∈ [0, y], then∑
j∈Ai

cj = (n − 1)c and
∑
k∈Aj

ck = (n − 1)c, which from (2.1.15) and (2.1.18) is

possible if (n− 1)c = 1−α
α2R

+ n−1
2
y. Thus, we find the interior solution

c∗ =
1− α
α2

1

(n− 1)R
+

1

2
y, (2.1.19)

where ci = cj = c∗, and 0 ≤ c∗ ≤ y if R ≥ 1−α
α2

2
(n−1)y .

Applying Dufwenberg and Kirchsteiger (2004)’s Sequential Reciprocity Equi-

librium (SRE) concept, a profile of contribution strategies, c∗ = (c∗i )i∈A is a

SRE if

Ui (c
∗
i , (bi,j(h), (bi,j,k(h))k 6=j)j 6=i) ≥ Ui (c

′
i, (bi,j(h), (bi,j,k(h))k 6=j)j 6=i) ∀ c′i 6= c∗i ,

and bi,j = c∗j ∀ j 6= i and bi,j,k = c∗k ∀ k 6= j, j 6= i. The equilibrium concept

states that given correct beliefs, a profile of contribution strategies is a SRE

if, at a given history h, and given each player’s beliefs, a player’s contribution

choice maximizes their utility.

From players’ best response functions, (2.1.15) and (2.1.18), and Dufwen-

berg and Kirchsteiger (2004)’s SRE concept, there are three possible equilibria.

The traditional public goods game Nash equilibrium (0, ..., 0, ..., 0) is always

satisfied because 0 < 1−α
α2

1
R

+ n−1
2
y is always satisfied as R ≥ 0. The social

optimum equilibrium, (y, ..., y, ..., y), is satisfied if R > 1−α
α2

2
(n−1)y . The in-

terior solution equilibrium, (c∗, ..., c∗, ..., c∗), with 0 ≤ c∗ ≤ y, is satisfied if

R ≥ 1−α
α2

2
(n−1)y .

There are now two additional equilibria compared with the baseline with

no reciprocity preferences, where we only found the traditional public goods

game outcome in equilibrium. When we account for reciprocity preferences,

we also have the social optimum as an equilibrium, and an interior solution

equilibrium at (c∗, ..., c∗, ..., c∗) with 0 ≤ c∗ ≤ y. Note that the interior solution
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equilibrium is a specific contribution amount, c∗i or c∗j , and not a multiplicity

of equilibria4.

These additional equilibria suggest that reciprocity preferences play an

important role in cooperative behaviour and can encourage socially optimal

outcomes. The equilibria conditions presented above depend on several pa-

rameters, including α, the MPCR. The MPCR is a key feature in public goods

games and ensures that players are faced with a social dilemma when making

their contribution choice. In Figure 2.2, we represent the different equilibria

in a graph (α,R). The function f1(α) separates equilibria areas, where in Area

I only the traditional public goods game Nash equilibrium exists and, in Area

II, the additional cooperative equilibria are also present.

1
n

1
2

1
0

RC

4
(n−1)y

RA

1
n

1
2

1

Area II

Area I
f1(α)

A

B

C

α

R

Figure 2.2: Baseline Model with Reciprocity Preferences

Let f1(α) ≡ 1−α
α2

2
(n−1)y , where 0 < α < 1 < nα and n ≥ 3. Area I denotes

the equilibrium (0, ..., 0, ..., 0). Area II denotes the equilibria (0, ..., 0, ..., 0),

(y, ..., y, ..., y), and (c∗, ..., c∗, ..., c∗). Along the curve f1(α), the equilibrium

(c∗, ..., c∗, ..., c∗) also exists. To illustrate the importance of the MPCR on the

4Dufwenberg et al. (2011), a public goods game application of Dufwenberg and Kirch-
steiger (2004), ignore the possibility of interior solutions. Our findings of a unique interior
solution equilibrium presents a novel contribution on its own and highlights that there exists
cooperative equilibria beyond the predictions of traditional game theory.
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equilibria in a public goods game, we present two examples, when α = 1
2

and

α = 2
3
. When α = 1

2
, then f1(

1
2
) = 4

(n−1)y . When a player’s reciprocity pref-

erences, R, are greater than f1(α) (point A), then the player is in Area II

and there are multiple possible equilibria. When a player’s reciprocity prefer-

ences, R, are equal to f1(α) (point B), then the equilibrium, (c∗, ..., c∗, ..., c∗),

represented along the curve of f1(α) is satisfied, as is (0, ..., 0, ..., 0) which is

satisfied everywhere. When a player’s reciprocity preferences, R, are less than

f1(α) (point C), then the player is in Area I and there only exists the tra-

ditional public goods game Nash equilibrium, (0, ..., 0, ..., 0). Furthermore, as

the MPCR, α, increases, the curve f1(α) shifts inwards. For example, if α = 2
3
,

then f1(
2
3
) = 3

2(n−1)y . This inward shift of the threshold means that Area II

expands and there exists a greater range of values for R which can satisfy the

more cooperative outcomes. This aligns with findings from reviews by Led-

yard (1995) and Chaudhuri (2011) on public goods games and mechanisms for

cooperation in social dilemmas.

2.2 Direct Reciprocity

Figure 2.3: Direct Reciprocity

Consider a variation of the previous case where players now interact sequen-

tially, Figure 2.3. In this sequential game, (n− 1) players play a simultaneous

game in which each player i ∈ Aj = {1, ..., j − 1, j + 1, ...n}, where Aj ⊂ A,

chooses a contribution, ci ∈ [0, y]. Player j then observes the average con-

tribution of these (n − 1) players, 1
n−1

∑
i∈Aj

ci, and chooses their contribution,

cj. The rationale for this setting follows Bardsley and Sausgruber (2005)’s

work on reciprocity and conformity. In Bardsley and Sausgruber’s experiment

design, the authors incorporate an explicit sequential structure to a public

22



goods game, with opportunity for observation of other players’ contribution

amounts. While Bardsley and Sausgruber provide the selected player with the

full vector of contributions from the other players in the set, in our model,

the selected player, player j, observes the average contribution instead of a

vector of contributions. In this way, player j may not know with certainty

if one player is more or less “kind” than others in the set Aj. In line with

the growing body of work on conditional cooperation discussed by Chaudhuri

(2011), we hypothesize that as average contributions increase, player j will

contribute more as well.

2.2.1 No Reciprocity Preferences

In the first period, each player i in set Aj simultaneously chooses ci ∈ [0, y].

In the second period, player j observes 1
n−1

∑
i∈Aj

ci and then chooses cj ∈ [0, y].

With no reciprocity preferences, each player i receives a material payoff (2.1.1),

and the material payoff for player j is analogous, πj = y − cj + α
∑
l∈A

cl. We

assume that there is no discounting between periods. In the second period,

player j chooses cj that solves

max
cj

{
y − cj + α

∑
l∈A

cl

}
. (2.2.1)

The first-order condition is

− 1 + α < 0. (2.2.2)

Therefore, we are at a corner solution where the optimal contribution choice

is c∗j = 0 because the maximization problem is linear.

In the first period, for the (n− 1) other players, each player i ∈ Aj solves

max
ci

{
y − ci + α

∑
l∈A

cl

}
. (2.2.3)
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The first-order condition is

− 1 + α < 0. (2.2.4)

We are again at a corner solution where the optimal contribution choice is

c∗i = 0 ∀ i ∈ Aj, such that c∗1 = ... = c∗j−1 = c∗j+1 = ... = c∗n = 0. Not

surprisingly, the subgame perfect Nash equilibrium is (c∗1, ..., c
∗
n) = (0, ..., 0).

Even though the game is sequential, in the absence of reciprocity preferences,

none of the players have an incentive to contribute a positive amount to the

group account and we are again at the traditional public goods game outcome.

2.2.2 Reciprocity Preferences

As in Section 2.1.2, incorporating reciprocity preferences into players’ utility

functions takes the same form in this sequential variation of the model. The

equations and their components only differ in their subscripts, i.e., the player

of interest and their beliefs about the other (n − 1) players. The history of

the game is analogous to the one outlined in Section 2. The history of the

game, h = (c1, ..., cj−1, cj+1, ..., cn), is observed by player j in the form of the

average contribution of others, 1
n−1

∑
i∈Aj

ci, such that when player j observes

1
n−1

∑
i∈Aj

ci = 0, player j knows with probability 1 that each player i ∈ Aj

chose ci = 0. When player j observes 1
n−1

∑
i∈Aj

ci = y, player j knows with

probability 1 that each player i ∈ Aj chose ci = y. The history h = (c, ..., c)

represents a multiplicity of equilibria. When player j observes 1
n−1

∑
i∈Aj

ci = c,

where c ∈]0, y[, player j does not know with certainty what each player i ∈ Aj
contributed. Thus, player j must form beliefs, bj,i(h), about the other players’

contribution strategies. Player j’s utility function with reciprocity preferences

is expressed by (2.1.6) in Section 2.1.2.

Because the game is a psychological game with sequentiality, we cannot

solve it by backward induction (Geanakoplos et al., 1989). Recall that back-
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ward induction fails in psychological games because once a decision node is

reached it does not necessarily provide players with adequate information

needed for further decision-making; the decision node only identifies the his-

tory or previous play and not the beliefs of the players (Geanakoplos et al.,

1989). Instead, we examine players’ best response functions, apply Dufwen-

berg and Kirchsteiger (2004)’s SRE concept, and evaluate potential equilibria.

In the second period, player j chooses cj conditional on history h to solve

Uj = y − cj + α
∑
l∈A

cl︸ ︷︷ ︸
(i)

+
∑
i∈Aj

Rj,i · κj,i(cj, (bj,i(h))i 6=j) · λj,i,j(bj,i(h), (bj,i,k(h))k 6=i)︸ ︷︷ ︸
(ii)

.
(2.2.5)

Similar to (2.1.7) in Section 2.1.2, player j’s reciprocity payoff, part (ii) in

(2.2.5), takes the form

Rjα
2

(
cj −

1

2
y

)∑
i∈Aj

bj,i(h)− n− 1

2
y

 . (2.2.6)

Player j’s utility maximization problem can now be expressed as

max
cj

{
y − cj + α

∑
l∈A

cl

+Rjα
2

(
cj −

1

2
y

)∑
i∈Aj

bj,i(h)− n− 1

2
y

}. (2.2.7)

The first-order condition is thus

− 1 + α +Rjα
2

∑
i∈Aj

bj,i(h)− n− 1

2
y

 = 0. (2.2.8)

As we assume rational expectations in equilibrium, player j’s beliefs about
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each player i’s contributions are correct such that bj,i(h) = ci. We rewrite the

first-order condition (2.2.8), as

− 1 + α +Rjα
2

∑
i∈Aj

ci −
n− 1

2
y

 = 0. (2.2.8a)

The choice of cj depends on player j’s beliefs about the average contribution of

the other players, conditional on the history of the game, bj,i(h). Because the

utility function is linear in the choice variable, cj, the first-order condition can

be positive, negative, or null. As described above, while player j observes the

average contribution of other players through 1
n−1

∑
i∈Aj

ci, there are only two

cases in which player j knows with certainty what each player i chose: when

1
n−1

∑
i∈Aj

ci is 0 or y. When 1
n−1

∑
i∈Aj

ci = c ∈ ]0, y[, player j does not know with

certainty what each player i has contributed to the group account and must

form beliefs about their contributions. The best response function for player

j is thus

BRj ((ci)i 6=j) =



0 if
∑
i∈Aj

ci <
1− α
α2Rj

+
n− 1

2
y

[0, y] if
∑
i∈Aj

ci =
1− α
α2Rj

+
n− 1

2
y

y if
∑
i∈Aj

ci >
1− α
α2Rj

+
n− 1

2
y

(2.2.9)

In the first period, because first- and second-order beliefs are correct, each

player i correctly anticipates what player j’s best response will be in the second

period given the history of the game. Therefore, each player i chooses ci to

solve

max
ci

{
y − ci + α

∑
l∈A

cl

+
∑
k∈Ai

Ri,k · κi,k(ci, (bi,k(h))k 6=i) · λi,k,i(bi,k(h), (bi,k,l(h))l 6=k)
}
.

(2.2.10a)
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As before, if we substitute the simplified expressions for player i’s kindness

and perceived kindness functions in (2.2.10), we obtain

max
ci

{
y − ci + α

∑
l∈A

cl +Riα
2

(
ci −

1

2
y

)(∑
k∈Ai

bi,k −
n− 1

2
y

)}
. (2.2.10b)

The choice of ci depends on player i’s beliefs about the average contribution

of the other players in the set Ai = {1, ..., i− 1, i+ 1, ..., n}, where Ai ⊂ A.

Because player i is making their choice at the same time as the other players

in set A, player i does not know the history of the game.

The first-order condition is

− 1 + α +Riα
2

(∑
k∈Ai

bi,k(h)− n− 1

2
y

)
= 0. (2.2.11)

We assume rational expectations, therefore, in equilibrium player i’s beliefs

about each player k’s contributions are correct such that bi,k(h) = ck. We can

rewrite the first-order condition (2.2.11) as

− 1 + α +Riα
2

(∑
k∈Ai

ck −
n− 1

2
y

)
= 0. (2.2.11a)

Given the contributions of the (n− 1) players in the set Ai, the best response

function for player i is

BRi ((ck)k 6=i) =



0 if
∑
k∈Ai

ck <
1− α
α2Ri

+
n− 1

2
y

[0, y] if
∑
k∈Ai

ck =
1− α
α2Ri

+
n− 1

2
y

y if
∑
k∈Ai

ck >
1− α
α2Ri

+
n− 1

2
y

(2.2.12)

Because player j does not know what each player i has contributed to the
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group account when 1
n−1

∑
i∈Aj

ci = c ∈]0, y[, we now consider cases with different

histories of the game: h = (0, ..., 0), h = (y, ..., y), and h = (c, ..., c).

2.2.2.1 Case 1

First, if h = (0, ..., 0), then player j believes that player i contributes noth-

ing to the group account, bj,i(h) = 0, and player j observes 1
n−1

∑
i∈Aj

ci = 0.

This means that with probability 1, player i contributes nothing to the group

account, ci = 0, and player j knows with certainty that in the first period,

c∗1 = 0, ..., c∗j−1 = 0, c∗j+1 = 0, ..., c∗n = 0. Therefore, the best response function

of player j is

BRj ((ci)i 6=j) =



0 if 0 < 1−α
α2Rj

+ n−1
2
y

[0, y] if 0 = 1−α
α2Rj

+ n−1
2
y

y if 0 > 1−α
α2Rj

+ n−1
2
y

(2.2.13)

Note that ci = 0 ∀ i ∈ Aj, therefore the potential equilibria when the his-

tory of the game is h = (0, ..., 0) occur at (0, ..., 0, ..., 0), (0, ..., c∗j , ..., 0), and

(0, ..., y, ..., 0). However, an interior solution, c∗j , does not exist because Rj ≥ 0

and n ≥ 3, so the condition 0 = 1−α
α2Rj

+ n−1
2
y cannot be satisfied. From player

j’s best response function, we see that neither playing y nor cj ∈ [0, y] is possi-

ble. Therefore, when the history of the game is h = (0, ..., 0), there only exists

one equilibrium, (0, ..., 0, ..., 0), as

1− α
α2Rj

+
n− 1

2
y > 0, (2.2.14)

and

1− α
α2Ri

+
n− 1

2
y > 0 (2.2.15)

are always satisfied for α > 0, Rj ≥ 0, Ri ≥ 0, and y ≥ 0. Even when
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reciprocity preferences are considered, if the other players in the set Aj do

not contribute anything to the group account and players correctly anticipate

that others are not contributing, then there exists only one equilibrium, the

subgame perfect Nash equilibrium, as predicted by standard game theory as

well.

2.2.2.2 Case 2

Second, if h = (y, ..., y), then player j believes that player i is contributing

their full endowment to the group account, bj,i(h) = y, and player j observes

1
n−1

∑
i∈Aj

ci = y. This means that with probability 1, ci = y, and player j knows

with certainty that in the first period, c∗1 = y, ..., c∗j−1 = y, c∗j+1 = y, ..., c∗n = y.

Therefore, the best response function of player j is

BRj ((ci)i 6=j) =



0 if (n− 1)y < 1−α
α2Rj

+ n−1
2
y

[0, y] if (n− 1)y = 1−α
α2Rj

+ n−1
2
y

y if (n− 1)y > 1−α
α2Rj

+ n−1
2
y

(2.2.16)

Rearranging the terms, we express player j’s best response function as

BRj ((ci)i 6=j) =



0 if Rj <
1−α
α2

2
(n−1)y

[0, y] if Rj = 1−α
α2

2
(n−1)y

y if Rj >
1−α
α2

2
(n−1)y

(2.2.16a)

Since ci = y ∀ i ∈ Aj, the potential equilibria when the history of the game is

h = (y, ..., y) occur at (y, ..., 0, ..., y), (y, ..., c∗j , ..., y), and (y, ..., y, ..., y). First,

to determine if c∗j exists as an interior solution, we examine the best response

function, (2.2.12). If all players but player j choose y, then
∑
k∈Ai

ck = (n −

2)y+ cj, and from (2.2.12) (n− 2)y+ cj ≥ 1−α
α2Ri

+ n−1
2
y. The interior solution,

c∗j , exists at
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c∗j =
1− α
α2Ri

− n− 3

2
y, (2.2.17)

where 0 ≤ c∗j ≤ y is satisfied if

1− α
α2

2

(n− 1)y
≤ Ri ≤

1− α
α2

2

(n− 3)y
, (2.2.18)

and n > 3.

The free-riding equilibrium (y, ..., 0, ..., y) is satisfied when for player j

0 ≤ Rj <
1− α
α2

2

(n− 1)y
, (2.2.19)

and for each player i

Ri >
1− α
α2

2

(n− 3)y
, (2.2.20)

and n > 3. Free-riding is an optimal strategy for player j when their reci-

procity preferences are sufficiently weak and when each player i has sufficiently

strong reciprocity preferences. When this equilibrium occurs, each player i

has correctly anticipated that player j will free-ride, but each player i’s strong

reciprocity preferences towards the group as a whole drive their cooperative

behaviour of contributing the full endowment.

The equilibrium (y, ..., c∗j , ..., y) is not possible as it violates player i’s best

response function.

The social optimum equilibrium (y, ..., y, ..., y) is satisfied when for player

j

Rj >
1− α
α2

2

(n− 1)y
, (2.2.21)

and for each player i
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Ri >
1− α
α2

2

(n− 1)y
. (2.2.22)

The social optimum is a possible equilibrium if player j and each player i have

sufficiently strong reciprocity preferences. Cooperation is possible in sequential

play with reciprocity preferences.

2.2.2.3 Case 3

Finally, if h = (c, ..., c), then player j cannot determine with certainty what

the other players in set Aj have contributed. While h = (c, ..., c) represents a

multiplicity of interior contributions, here we examine the special case of the

interior solution equilibrium, h = (c∗, ..., c∗). Player j observes 1
n−1

∑
i∈Aj

ci =

c ∈]0, y[, and thus player j’s best response function is

BRj ((ci)i 6=j) =



0 if
∑
i∈Aj

ci <
1− α
α2Rj

+
n− 1

2
y

[0, y] if
∑
i∈Aj

ci =
1− α
α2Rj

+
n− 1

2
y

y if
∑
i∈Aj

ci >
1− α
α2Rj

+
n− 1

2
y

(2.2.23)

According to player j’s best response function, (2.2.23), and given each player

i ∈ Aj are symmetric, (n−1)ci = 1−α
α2Rj

+ n−1
2
y. The interior solution, c∗i , exists

and is expressed as

c∗i =
1− α
α2

1

(n− 1)Rj

+
1

2
y, (2.2.24)

where 0 ≤ c∗i ≤ y if Rj ≥ 1−α
α2

2
(n−1)y . According to player i’s best response

function, (2.2.12), (n−2)ci+cj = 1−α
α2Ri

+ n−1
2
y. The interior solution, c∗j , exists

and is expressed as

c∗j =
1− α
α2

(
1

Ri

− n− 2

n− 1

1

Rj

)
+

1

2
y, (2.2.25)
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where c∗j ≤ y if

1

Rj

≥ n− 1

n− 2

1

Ri

− α2

1− α
y
n− 1

2(n− 2)︸ ︷︷ ︸
(i)

. (2.2.26)

The right-hand side, part (i) in (2.2.26), can be positive or negative. If part

(i) ≥ 0, then

0 ≤ Ri <
1− α
α2

2

y
, (2.2.27)

and the condition (2.2.26) must be satisfied. If part (i) < 0, then

Ri >
1− α
α2

2

y
, (2.2.28)

and the condition (2.2.26) is always satisfied. Furthermore, c∗j ≥ 0 if

1

Rj

≤ n− 1

n− 2

1

Ri

+
α2

1− α
y
n− 1

2(n− 2)
. (2.2.29)

For the conditions 0 ≤ c∗j ≤ y to be met at the same time, then we must

have that Ri >
1−α
α2

2
y
. This means that player i’s reciprocity preferences

need to be sufficiently strong for c∗j to exist as an eligible interior solution

for player j (i.e., player j takes each player i’s reciprocity preferences into ac-

count when choosing their contribution amount). Note that c∗j < c∗i if Rj < Ri.

When the history of the game is h = (c, ..., c), then the possible equilibria are

(c∗i , ..., 0, ..., c
∗
i ), (c∗i , ..., c

∗
j , ..., c

∗
i ), and (c∗i , ..., y, ..., c

∗
i ). However, the equilib-

rium (c∗i , ..., 0, ..., c
∗
i ) is not satisfied as it violates the best response function

for player j, (2.2.23). As well, the equilibrium (c∗i , ..., y, ..., c
∗
i ) is not satisfied

as it violates the best response function of player j, (2.2.23).

The interior solution equilibrium, (c∗i , ..., c
∗
j , ..., c

∗
i ), is satisfied when for

player j
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1

Rj

≥ n− 2

n− 1
Ri +

α2

1− α
n− 1

2(n− 2)
y, (2.2.30)

and

Ri >
1− α
α2

2

y
, (2.2.31)

such that the conditions are satisfied for 0 ≤ c∗j ≤ y. For player i

Rj ≥
1− α
α2

2

(n− 1)y
, (2.2.32)

such that the conditions are met for 0 ≤ c∗i ≤ y. The interior solution equilib-

rium is possible if players have sufficiently strong reciprocity preferences.

1
2

1
0

RAj

RBj

RCj

1
n

1
2

1

Area II

Area I

Area III

f1(α)

g1(α)

A

B

C

α

Rj

Figure 2.4: Direct Reciprocity

In Figure 2.4, we represent equilibria in all histories of the game in a graph

(α,Rj). Let f1(α) ≡ 1−α
α2

2
(n−1)y , and g1(α) ≡ n−1

n−2Ri + 1−α
α2

2
(n−1)y , where f1(α)

and g1(α) are equilibria conditions. In Area I, the equilibrium for Case 1 -

h = (0, ..., 0) is (0, ..., 0, ..., 0), and the equilibrium for Case 2 - h = (y, ..., y)
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is (y, ..., 0, ..., y). In Area II, the equilibrium for Case 1 - h = (0, ..., 0) is

(0, ..., 0, ..., 0), and the equilibrium for Case 2 - h = (y, ..., y) is (y, ..., y, ..., y).

In Area III, the same equilibria hold as in Area II, and the equilibrium for

Case 3 - h = (c, ..., c) is (c∗i , ..., c
∗
j , ..., c

∗
i ).

We examine how the equilibria solutions change as player j’s reciprocity

preferences shift depending on the history of the game. Let α = 1
2

such that

f1(
1
2
) = 4

(n−1)y . The traditional public goods game subgame perfect Nash

equilibrium is possible at all values of Rj ≥ 0. At point A, player j’s reci-

procity preference RA
j < f1(α), and player j will contribute nothing as they

have weak reciprocity preferences. The potential equilibria at point A are the

traditional public goods game subgame perfect Nash equilibrium, and the free-

riding equilibrium. As player j’s reciprocity preferences increase to point B,

the social optimum becomes a potential equilibrium. In Area II, RB
j > f1(α)

which means that if player j has sufficiently strong reciprocity preferences,

then player j will either be at the traditional public goods game subgame

perfect Nash equilibrium or the social optimum equilibrium.

When player j’s reciprocity preferences increase further to point C, then the

interior solution for each player i and player j, (c∗i , ..., c
∗
j , ..., c

∗
i ), also becomes

a potential equilibrium, i.e., RC
j > g1(α). The requirements for the interior

solution equilibrium to be satisfied are much more stringent than other equi-

libria as the conditions 0 ≤ c∗i ≤ y and 0 ≤ c∗j ≤ y must also be satisfied (i.e.,

condition Rj ≥ 1−α
α2

2
(n−1)y for 0 ≤ c∗i ≤ y, and conditions (2.2.26) and (2.2.29)

for player j). A possible explanation for this shift in equilibria at a greater

reciprocity preference level for player j is that the reciprocity preferences for

each player i must also be large and each player i correctly anticipates that

player j will not free-ride when observing 1
n−1

∑
ci = c.

2.2.3 Comparative Statics

We examine several cases and compare how equilibria behaviour may be af-

fected as certain parameters change. We use Mathematica (Wolfram Research,

Inc, 2020), a technical computing system, to visualize the data. Mathematica

code for reproduction of the interactive visualization is available in Appendix
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A.1.1. Static snapshots and descriptions with parameter values are presented

below.
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Figure 2.5: Direct Reciprocity - Case 1. Traditional Public Goods Game Nash
Equilibrium.

In Figure 2.5, we represent player j’s maximized utility as a function of their

contribution, U(cj), in (c, U), where U represents player j’s utility level and

c represents player j’s contribution choice. When n = 3, y = 10, α = 1
2
, and

player j has observed that the other players are contributing nothing (i.e., the

history of the game is h = (0, ..., 0) and ci = 0), then player j’s utility function

is always maximized by contributing nothing given any value of Rj ≥ 0. In

other words, player j chooses cj = 0 for any value of Rj ≥ 0 when the history

of the game is h = (0, ..., 0). See Appendix A.1.1.1 for Mathematica code to

reproduce the figure at these parameter values.
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Figure 2.6: Direct Reciprocity - Case 2. Free-riding Equilibrium and Social
Optimum.
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Figure 2.6 represents player j’s maximized utility as a function of their

contribution choice, in (c, U), with the parameter values n = 4, y = 10,

and α = 1
2
. When player j observes that the other players are contributing

the full endowment (i.e., ci = y), then there are two potential equilibria, as

identified in Figure 2.4. If player j has relatively weaker reciprocity preferences

where 0 ≤ Rj < f1(α), then free-riding is the optimal strategy for player j

(i.e., (y, ..., 0, ..., y) in Area I in Figure 2.4. If player j has relatively stronger

reciprocity preferences where Rj > f1(α), then the social optimum equilibrium

results as in Area II in Figure 2.4. In Figure 2.6, ci = 10 and f1(α) = 0.133,

therefore, the function is downward sloping when Rj < 0.133 such that player

j’s utility is maximized when cj = 0. When Rj > 0.133, the player j’s utility

upward sloping and is maximized when cj = y. Figure 2.6 presents an intuitive

finding: when player j does not have strong preferences for reciprocity, they

will free-ride, but as player j’s reciprocity preferences increase, they will fully

contribute when the history of the game is h = (y, ..., y).

See Appendix A.1.1.1 and A.1.1.2 for Mathematica code to reproduce the

figures at these parameter values.

Comparative statics for h = (c, ..., c) or interior solution equilibria are not

presented here. Comparisons at the corner cases provide greater insight into

thresholds for cooperative behaviour.

2.3 Indirect Upstream Reciprocity

Figure 2.7: Indirect Upstream Reciprocity

Consider a variation of the baseline model, presented in Figure 2.7, where

players interact simultaneously within their own group and there is an oppor-
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tunity for one player, player J , to observe the outcome of a previous game with

different players. In this multi-stage game, there are two groups of n players

each: A = {1, ..., n} and B = {n + 1, ..., 2n}, with player J ∈ B. In the first

period, each player i ∈ A simultaneously chooses their contribution ci ∈ [0, y].

This game has the same structure as the baseline case and the payoffs for each

player i ∈ A are outlined in Section 2.1. In the second period, the selected

player, player J ∈ B, observes the average contribution of the n players in set

A, 1
n

∑
i∈A

ci, and receives a share of the group account, α
∑
i∈A

ci. After player

J has made this observation, all players in set B simultaneously choose their

contribution amounts. Player J chooses their contribution, cJ ∈ [0, y], and

each player j ∈ BJ , where BJ = {n + 1, ..., J − 1, J + 1, ..., 2n} and BJ ⊂ B,

chooses their contribution, cj. The payoff for each player j ∈ BJ is analogous

to (2.1.1) in Section 2.1. The payoff for player J ∈ B includes the additional

share that they receive from the group account of players in set A, such that

πJ = y− cJ +α
∑
i∈A

ci +α
∑
l∈B

cl, where l accounts for player J and each player

j ∈ BJ . Indirect upstream reciprocity requires this game structure wherein

player J ∈ B plays simultaneously within their own group and cannot be

“kind” to players in set A. Recall that indirect upstream reciprocity entails a

“pay-it-forward” behaviour, therefore, the game structure requires that player

J has no opportunity to directly reciprocate to players in set A. As before,

we restrict the MPCR to 0 < α < 1 < nα to ensure that the game satisfies

the conditions of a social dilemma in a public good game. Further, we again

assume no discounting between periods.

2.3.1 No Reciprocity Preferences

If player J ∈ B has no reciprocity preferences, then they will play a simul-

taneous game with (n − 1) symmetric players j ∈ BJ . In the second period,

player J chooses cJ that solves

max
cJ
{y − cJ + α

∑
i∈A

ci + α
∑
l∈B

cl}. (2.3.1)
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The first-order condition is

− 1 + α < 0. (2.3.2)

Therefore, we are again at a corner solution where the optimal contribution

choice is c∗J = 0 because the maximization problem is linear. At the same

time, each player j ∈ BJ chooses cj to solve

max
cj
{y − cj + α

∑
l∈B

cl}. (2.3.3)

The first-order condition is also

− 1 + α < 0. (2.3.4)

We are again at a corner solution where the optimal contribution choice is

c∗j = 0 ∀ j ∈ BJ , such that c∗n+1 = ... = c∗J−1 = c∗J+1 = ... = c∗2n = 0. Once

again, it is not surprising that the outcome of the game is the traditional

public goods game Nash equilibrium where (c∗n+1, ..., c
∗
2n) = (0, ..., 0). The first

period of the game proceeds exactly as in the baseline case, Section 2.1. We

have previously seen that the equilibrium in that game is also the traditional

public goods game Nash equilibrium, (c∗1, ..., c
∗
n) = (0, ..., 0). In the absence of

reciprocity preferences, and even though player J ∈ B may receive a share of

the group account from players in set A, none of the players in set B have an

incentive to contribute a positive amount to the group account.

2.3.2 Reciprocity Preferences

As in Section 2.1.2, incorporating reciprocity preferences into players’ utility

functions takes a similar form here. However, in the indirect upstream reci-

procity case examined here, the reciprocity payoff function itself is expanded

to account for both direct reciprocity preferences (as outlined in Section 2.1.2)
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and indirect reciprocity preferences. The reciprocity payoff function for player

J ∈ B will be described in detail below. The history of the game is analogous

to the one outlined in Section 2, with the following exceptions. Since players in

set B chose their contributions simultaneously, there is no history in that stage.

However, players in set B still form beliefs about the contribution strategies

of the others in their set. Player J ∈ B observes the average contribution of

players in set A and therefore knows something about the history of the game.

The history of the game, h = (c1, ..., cn), is observed by player J ∈ B in the

form of the average contribution of players in set A, 1
n

∑
i∈A

ci, such that when

player J observes 1
n

∑
i∈A

ci = 0, then player J knows with probability 1 that

each player i ∈ A chose to contribute nothing to the group account, ci = 0.

When player J observes 1
n

∑
i∈A

ci = y, then player J knows with probability 1

that each player i ∈ A chose to fully contribute, ci = y. However, when player

J observes 1
n

∑
i∈A

ci = c, where c ∈]0, y[, then player J does not know with

certainty what each player i ∈ A contributed to the group account. Player J

must then form beliefs, bJ,i(h), about the other players’ contribution strate-

gies. Player J ’s utility function now consists of a material payoff function, a

direct reciprocity payoff function, and an indirect reciprocity payoff function.

Player J chooses cJ to solve

UJ = y − cJ + α
∑
i∈A

ci + α
∑
l∈B

cl

+
∑
j∈BJ

RJ,j · κJ,j(cJ , (bJ,j(h))j 6=J) · λJ,j,k(bJ,j(h), (bJ,j,k(h))k 6=j)︸ ︷︷ ︸
(i)

+
∑
i∈A

RJ,i · κJ,j(cJ , (bJ,j(h))j 6=J) · λJ,i,k(bJ,i(h), (bJ,i,k(h))k 6=i)︸ ︷︷ ︸
(ii)

,

(2.3.5)

where i ∈ A and j ∈ BJ where BJ ⊂ B. Unlike the reciprocity payoff

function described in Section 2.1.2, player J ’s reciprocity payoff function is

now comprised of two parts. First, player J ’s direct reciprocity payoff function,
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part (i) in (2.3.5), which is analogous to part (ii) in (2.1.6), takes the form

∑
j∈BJ

RJ,j · κJ,j(cJ , (bJ,j(h))j 6=J) · λJ,j,k(bJ,j(h), (bJ,j,k(h))k 6=j). (2.3.6)

Following Section 2.1.2 and the direct reciprocity payoff, (2.1.10), player J ’s

direct reciprocity payoff is

RJα
2

(
cJ −

1

2
y

)(∑
j∈BJ

bJ,j(h)− n− 1

2
y

)
, (2.3.7)

where RJ represents player J ’s direct reciprocity preference. Next, player J ’s

indirect reciprocity payoff function, part (ii) in (2.3.5), takes the form

∑
i∈A

RJ,i · κJ,j(cJ , (bJ,j(h))j 6=J) · λJ,i,k(bJ,i(h), (bJ,i,k(h))k 6=i), (2.3.8)

where i ∈ A and j ∈ BJ . Since player J cannot be “kind” to players in set

A, the indirect reciprocity payoff function captures the effect of player J ’s

perceived kindness of players in set A on player J ’s own kindness towards

players in set BJ . We examine player J ’s kindness function, κJ,j(·), which

evaluates player J ’s kindness towards player j ∈ BJ . From (2.1.3c), we know

that

κJ,j(cJ , (bJ,j(h))j 6=J) = α

(
cJ −

1

2
y

)
, (2.3.9)

where j ∈ BJ . In the indirect reciprocity payoff function, part (ii) in (2.3.5),

player J ’s perceived kindness function, λJ,i,k(bJ,i(h), (bJ,i,k(h))k 6=i), evaluates

player J ’s perception of the kindness of player i ∈ A towards player J . Due

to the structure of the game, each player i ∈ A cannot directly be “kind” to

player J . Therefore, player J must evaluate the perceived kindness of each

player i ∈ A. Following (2.1.4d), we know that
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λJ,i,k(bJ,i(h), (bJ,i,k(h))k 6=i) = α

(
bJ,i(h)− 1

2
y

)
, (2.3.10)

where i ∈ A, k ∈ A, and k 6= i.

We denote RI as player J ’s indirect reciprocity preference and we assume that

RI = RJ,i ∀ i ∈ A from part (ii) in (2.3.5). We express (2.3.5) as

max
cJ

{
y − cJ + α

∑
i∈A

ci + α
∑
l∈B

cl

+RJα
2

(
cJ −

1

2
y

)(∑
j∈BJ

bJ,j(h)− n− 1

2
y

)

+RIα
2

(
cJ −

1

2
y

)(∑
i∈A

bJ,i(h)− n

2
y

)}
.

(2.3.11)

Note that the sum of beliefs about contributions relative to some reference

point is different in the indirect reciprocity payoff compared to the direct

reciprocity payoff in this equation and previous cases. Player J ’s utility maxi-

mization problem in (2.3.11) is different from the utility maximization problem

in the baseline model, (2.1.13), and the utility maximization problem in the

direct reciprocity model, (2.2.7). This is due to accounting for player J ’s indi-

rect reciprocity preferences and the inclusion of an indirect reciprocity payoff

function in addition to a direct reciprocity payoff function.

To simplify this expression, let RI = γRJ , where γ represents the relative

strength of indirect reciprocity preferences to direct reciprocity preferences

and γ > 0. When γ > 1, then player J ’s indirect reciprocity preferences are

stronger than their direct reciprocity preferences. When γ < 1, then player

J ’s indirect reciprocity preferences are weaker than their direct reciprocity

preferences. We rewrite equation (2.3.11) as
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max
cJ

{
y − cJ + α

∑
i∈A

ci + α
∑
l∈B

cl

+RJα
2

(
cJ −

1

2
y

)(∑
j∈BJ

bJ,j(h)− n− 1

2
y

)

+RJα
2γ

(
cJ −

1

2
y

)(∑
i∈A

bJ,i(h)− n

2
y

)}
,

(2.3.11a)

or

max
cJ

{
y − cJ + α

∑
i∈A

ci + α
∑
l∈B

cl

+RJα
2

(
cJ −

1

2
y

)(∑
j∈BJ

bJ,j(h) + γ
∑
i∈A

bJ,i(h)− n− 1 + nγ

2
y

)}
.

(2.3.11b)

The first-order condition is

− 1 + α +RJα
2

(∑
j∈BJ

bJ,j(h) + γ
∑
i∈A

bJ,i(h)− n− 1 + nγ

2
y

)
= 0. (2.3.12)

We assume rational expectations in equilibrium; player J ’s beliefs about each

player i’s and player j’s contributions are correct such that bJ,i(h) = ci. and

bJ,j(h) = cj. We rewrite the first-order condition, (2.3.12), as

− 1 + α +RJα
2

(∑
j∈BJ

cj + γ
∑
i∈A

ci −
n− 1 + nγ

2
y

)
= 0. (2.3.12a)

The choice of cJ depends on player J ’s beliefs about the average contribution

of the other players conditional on the history of the game, bJ,i(h) and bJ,j(h).

Because the function is linear in the choice variable, cJ , the first-order con-

dition can be positive, negative, or null. As described above, while player J
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observes the average contribution of n players in set A through 1
n

∑
i∈A

ci, there

are only two cases in which player J knows with certainty what each player i

chose to contribute to the group account; i.e., when 1
n

∑
i∈A

ci is 0 or y. When

1
n

∑
i∈A

ci = c ∈ ]0, y[, then player J does not know with certainty what each

player i contributed to the group account and must form beliefs about the

contributions of each player i ∈ A. As before, we examine different cases when

the history of the game is h = (0, ..., 0), h = (y, ..., y), and h = (c, ..., c).

The best response function for player J is thus

BRJ ((bJ,j(h)), (bJ,i(h)))i 6=j 6=J =



0 if
∑
j∈BJ

bJ,j(h) < 1−α
α2RJ

+ n−1+nγ
2 y

−γ
∑
i∈A

bJ,i(h)

[0, y] if
∑
j∈BJ

bJ,j(h) = 1−α
α2RJ

+ n−1+nγ
2 y

−γ
∑
i∈A

bJ,i(h)

y if
∑
j∈BJ

bJ,j(h) > 1−α
α2RJ

+ n−1+nγ
2 y

−γ
∑
i∈A

bJ,i(h)

(2.3.13)

Next, we determine the utility maximization problem for each player j ∈ BJ .

Similar to Section 2.1.2, each player j chooses cj to solve

max
cj

{
y − cj + α

∑
l∈B

cl

+Rjα
2

(
cj −

1

2
y

)∑
k∈Bj

bj,k(h)− n− 1

2
y

}, (2.3.14)
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where Bj = {n+ 1, ..., j−1, j+ 1, ..., 2n} and Bj ⊂ B. Player j does not know

the history of the game because player j is making their contribution choice

at the same time as the other players in set B.

The first-order condition is

− 1 + α +Rjα
2

∑
k∈Bj

bj,k(h)− n− 1

2
y

 = 0. (2.3.15)

We assume rational expectations in equilibrium; player j’s beliefs about each

player k’s contributions are correct such that bj,k(h) = ck. We rewrite the

first-order condition, (2.3.15) as

− 1 + α +Rjα
2

∑
k∈Bj

ck −
n− 1

2
y

 = 0. (2.3.15a)

Given the contributions of the (n − 1) players in set Bj, the best response

function for player j is

BRj ((bj,k(h))k 6=j) =



0 if
∑
k∈Bj

bj,k(h) <
1− α
α2Rj

+
n− 1

2
y

[0, y] if
∑
k∈Bj

bj,k(h) =
1− α
α2Rj

+
n− 1

2
y

y if
∑
k∈Bj

bj,k(h) >
1− α
α2Rj

+
n− 1

2
y

(2.3.16)

We need to consider cases depending on the history of the game. Recall from

2.3.2 that the history of the game can be h = (0, ..., 0), h = (y, ..., y), or

h = (c, ..., c).

2.3.2.1 Case 1

First, if the history of the game is h = (0, ..., 0), then player J has observed

1
n

∑
i∈A

ci = 0. This means that with probability 1, ci = 0 ∀ i ∈ A, thus player
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J knows with certainty that c∗1 = 0, ..., c∗n = 0 (i.e., players in set A are at the

traditional public goods game Nash equilibrium). Since player J is choosing

their contribution amount at the same time as each player j ∈ BJ , player

J must form beliefs about the contribution strategy of each player j ∈ BJ .

Player J ’s best response function is

BRJ ((bJ,j(0, ..., 0))j 6=J) =



0 if
∑
j∈BJ

bJ,j(h) <
1− α
α2RJ

+
n− 1 + nγ

2
y

[0, y] if
∑
j∈BJ

bJ,j(h) =
1− α
α2RJ

+
n− 1 + nγ

2
y

y if
∑
j∈BJ

bJ,j(h) >
1− α
α2RJ

+
n− 1 + nγ

2
y

(2.3.17)

First, to determine if there exists interior solutions for players in set B, we ex-

amine the players’ best response functions. From each player j’s best response

function, (2.3.16), and player J ’s best response function, (2.3.17),

(n− 2)cj + cJ =
1− α
α2Rj

+
n− 1

2
y, (2.3.18)

and

(n− 1)cj =
1− α
α2RJ

+
n− 1 + nγ

2
y. (2.3.19)

Solving for an interior solution, we find

c∗J =
1− α
α2

(
1

Rj

− n− 2

n− 1

1

RJ

)
+
n− 1− nγ(n− 2)

2(n− 1)
y, (2.3.20)

where RJ ≥ 0 and Rj ≥ 0. To be an eligible interior solution, 0 ≤ c∗J ≤ y. We

verify that c∗J ≤ y if

1− α
α2

(
1

Rj

− n− 2

n− 1

1

RJ

)
+
n− 1− nγ(n− 2)

2(n− 1)
y ≤ y. (2.3.21)

Rearranging the terms, we obtain
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n− 2

n− 1

1

RJ

≥ 1

Rj

− α2

1− α
n− 1 + nγ(n− 2)

2(n− 1)
y, (2.3.21a)

or

n− 2

n− 1

1

RJ

≥

(i)︷ ︸︸ ︷
1− α2

1−α
n−1+nγ(n−2)

2(n−1) Rjy

Rj

. (2.3.21b)

If part (i) > 0, then (2.3.21) is satisfied if

Rj <
1− α
α2

2(n− 1)

(n− 1 + nγ(n− 2))y
, (2.3.22)

and

RJ ≤
n− 2

n− 1

Rj

1− α2

1−α
n−1+nγ(n−2)

2(n−1) Rjy
. (2.3.23)

If part (i) ≤ 0, then (2.3.21) is satisfied if

Rj ≥
1− α
α2

2(n− 1)

(n− 1 + nγ(n− 2))y
, (2.3.24)

and

RJ ≥
n− 2

n− 1

Rj

1− α2

1−α
n−1+nγ(n−2)

2(n−1) Rj

, (2.3.25)

which is always satisfied because RJ ≥ 0.

We check that c∗J ≥ 0 if

1− α
α2

(
1

Rj

− n− 2

n− 1

1

RJ

)
+
n− 1− nγ(n− 2)

2(n− 1)
y ≥ 0. (2.3.26)

Rearranging the terms, we obtain
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n− 2

n− 1

1

RJ

≤
1 + α2

1−α

(i)︷ ︸︸ ︷(
n− 1− nγ(n− 2)

2(n− 1)

)
Rjy

Rj

. (2.3.26a)

If part (i) > 0, then γ < n−1
n(n−2) , and (2.3.26) is satisfied if

RJ ≥
n− 2

n− 1

Rj

1 + α2

1−α

(
n−1−nγ(n−2)

2(n−1)

)
Rjy

. (2.3.27)

If part (i) < 0, then γ > n−1
n(n−2) and (2.3.26) is satisfied when

1 +
α2

1− α

(
n− 1− nγ(n− 2)

2(n− 1)

)
Rjy > 0, (2.3.28)

or

0 ≤ Rj <
1− α
α2

2(n− 1)

(nγ(n− 2)− n+ 1)y
, (2.3.29)

then

RJ ≥
n− 2

n− 1

Rj

1 + α2

1−α

(
n−1−nγ(n−2)

2(n−1)

)
Rjy

, (2.3.30)

or when

1 +
α2

1− α

(
n− 1− nγ(n− 2)

2(n− 1)

)
Rjy < 0, (2.3.31)

or

Rj >
1− α
α2

(
2(n− 1)

(nγ(n− 2)− n+ 1)y

)
, (2.3.32)

and Rj ≥ 0, then
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RJ ≤
n− 2

n− 1

Rj

1 + α2

1−α

(
n−1−nγ(n−2)

2(n−1)

)
Rjy

, (2.3.33)

which is not possible as RJ cannot be less than zero. Depending on Rj, the

conditions for 0 ≤ c∗J ≤ y can be simultaneously satisfied, therefore c∗J exists

and is an eligible interior solution.

Solving for an interior solution for each player j, we find

c∗j =
1− α
α2

1

(n− 1)RJ

+
n− 1 + nγ

2(n− 1)
y, (2.3.34)

where RJ ≥ 0. It is clear from (2.3.34) that c∗j ≥ 0, however to be an eligible

interior solution, we also require c∗j ≤ y, which is satisfied if

1− α
α2

1

(n− 1)RJ

+
n− 1 + nγ

2(n− 1)
y ≤ y. (2.3.35)

Rearranging the terms, we get

1

(n− 1)RJ

≤ − α2

1− α
y

(i)︷ ︸︸ ︷
n− 1 + nγ

2(n− 1)
. (2.3.35a)

Since part (i) > 0, the condition (2.3.35) is satisfied if

RJ ≤ −
1− α
α2

2

(n− 1 + nγ)y
, (2.3.36)

which is not possible as RJ cannot be less than zero. Therefore, c∗j exists and

c∗j ≥ 0, but because c∗j is not less than the full endowment, y, for any γ > 0,

c∗j is not an eligible interior solution.

When the history of the game is h = (0, ..., 0), there are four possible

equilibria, expressed as (cn+1, ..., cJ , ..., c2n). The traditional public goods game

Nash equilibrium, (0, ..., 0, ..., 0), is always satisfied because the condition 0 <

1−α
α2RJ

+ n−1+nγ
2

y is satisfied for player J for any value of RJ ≥ 0, and the
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condition 0 < 1−α
α2Rj

+ n−1
2
y is satisfied for each player j for any value of Rj ≥

0. This equilibrium is predicted by standard game theory for public goods

games with no reciprocity preferences and remains an equilibrium even when

accounting for reciprocity preferences.

The social optimum equilibrium, (y, ..., y, ..., y), is satisfied when the fol-

lowing conditions are satisfied for player J and each player j. For player J ,

1
RJ

< n−1−nγ
2

y α2

1−α where if n − 1 − nγ > 0, or γ < n−1
n

, then the equilibrium

exists when

RJ >
1− α
α2

2

(n− 1− nγ)y
, (2.3.37)

or if n− 1− nγ ≤ 0, or γ ≥ n−1
n

, then the equilibrium exists when

RJ ≤
1− α
α2

2

(n− 1− nγ)y
, (2.3.38)

which is not satisfied since RJ cannot be less than zero. For player j

Rj >
1− α
α2

2

(n− 1)y
, (2.3.39)

which is always satisfied if Rj is strictly greater than zero. By accounting for

reciprocity preferences, the social optimum equilibrium can be reached when

player J ’s direct reciprocity preferences are sufficiently strong and greater than

their indirect reciprocity preferences.

The equilibrium with some free-riding, (y, ..., c∗J , ..., y), is satisfied when the

following conditions are met for player J and each player j. For player J

RJ =
1− α
α2

2

(n− 1− nγ)y
, (2.3.40)

where if n−1−nγ > 0, or γ < n−1
n

, then RJ > 0 and the condition is satisfied,

and if n − 1 − nγ ≤ 0, or γ ≥ n−1
n

, then the condition is not satisfied as RJ

cannot be less than zero. For player j
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n− 2

n− 1

1

RJ

<
α2

1− α
y
n(n− 1− γ(n− 2))

2(n− 1)
, (2.3.41)

where if n− 1− γ(n− 2) > 0, or 0 < γ < n−1
n−2 , then

RJ >
1− α
α2

2(n− 2)

ny(n− 1− γ(n− 2))
, (2.3.42)

and the condition is met, and if n− 1− γ(n− 2) < 0, or γ > n−1
n−2 , then

RJ <
1− α
α2

2(n− 2)

ny(n− 1− γ(n− 2))
, (2.3.43)

and the condition is not met because RJ cannot be less than zero. The equilib-

rium with some free-riding is possible if 0 < γ < n−1
n

where player J ’s indirect

reciprocity preferences are weaker than their direct reciprocity preferences.

The equilibrium with total free-riding, (y, ..., 0, ..., y), is satisfied when con-

ditions on player J and each player j are met. For player J

1

RJ

>
α2

1− α
y
n− 1− nγ

2
, (2.3.44)

where if n− 1− nγ > 0, or γ < n−1
n

, then

0 ≤ RJ <
1− α
α2

2

(n− 1− nγ)y
, (2.3.45)

and if n− 1− nγ < 0, or γ > n−1
n

, then

RJ >
1− α
α2

2

(n− 1− nγ)y
, (2.3.46)

which is always satisfied because RJ ≥ 0, and the condition is met. If n− 1−

nγ = 0, or γ = n−1
n

, then 0 < 1−α
α2

1
Rj

is always satisfied because RJ ≥ 0. For

player j
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Rj >
1− α
α2

2

(n− 3)y
, (2.3.47)

which is satisfied when n > 3. The existence of the equilibrium with total

free-riding suggests that free-riding is an optimal strategy when player J has

observed and been impacted by free-riding among players in set A. This further

supports our hypothesis that indirect reciprocity preferences are important in

determining player J ’s contribution choice. From the above conditions, it is

clear that the barriers to free-riding are much lower when player J ’s indirect

reciprocity preferences become greater than a certain point, γ ≥ n−1
n

.

1
2

1
0

RAJ

4
(n−1−nγ)y

RCJ

1
n

1
2

1

Area II

Area I f2(α)

A

B

C

α

RJ

Figure 2.8: Indirect Upstream Reciprocity - Case 1: h = (0, ..., 0)

We represent these different equilibria in a graph (α,RJ) in Figure 2.8. In

Figure 2.8, f2(α) ≡ 1−α
α2

2
(n−1−nγ)y when γ < n−1

n
. Recall that γ > 0 and RI =

γRJ . Note that when γ > n−1
n

, the function exists for negative values of RJ .

However, since we impose the restriction RJ ≥ 0, that portion of the function

does not appear in the figure above (i.e., it exists in the quadrant below the

α-axis). In Area I, the equilibria are the traditional public goods game Nash

equilibrium, (0, ..., 0, ..., 0), and the total free-riding equilibrium, (y, ..., 0, ..., y),

when γ ≶ n−1
n

. In Area II, the equilibria are the traditional public goods
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game Nash equilibrium, the total free-riding equilibrium when γ > n−1
n

, and

the social optimum equilibrium, (y, ..., y, ..., y). Along the curve f2(α), the

equilibrium with some free-riding, (y, ..., c∗J , ..., y), exists as does the traditional

public goods game Nash equilibrium (which is satisfied everywhere). In Case 1,

when γ < n−1
n

and is increasing, or as player J ’s indirect reciprocity preferences

become stronger, then the threshold increases (i.e., f2(α) shifts out) and it

becomes harder to reach cooperative equilibria. In other words, when player

J cares more about indirect reciprocity, then we expect free-riding behaviour

to dominate when the history of the game is h = (0, ..., 0).

To illustrate, let α = 1
2

such that f2(
1
2
) = 4

(n−1−nγ)y . At point A, player

J ’s reciprocity preference is weaker, RA
J < f2(α), and player J will contribute

nothing to the group account, irrespective of indirect reciprocity preferences,

γ. At point B, player J ’s reciprocity preference is stronger, RB
J = f2(α), and

cooperating with their group by contributing a positive amount to the pub-

lic good becomes a possibility for player J (i.e., cJ > 0). This equilibrium

suggests that the history of the game, h = (0, ..., 0), tempers player J ’s coop-

eration such that player J does not contribute their full endowment, despite

others in their group doing so. At point C, player J ’s reciprocity preference

is strong, RC
J > f2(α), and player J will contribute nothing if player J be-

lieves that others in their group are also not contributing to the group account

(i.e., the traditional public goods game Nash equilibrium), or if player J has

relatively strong indirect reciprocity preferences, γ > n−1
n

, then player J will

free-ride when others are fully contributing. At point C, player J can reach a

cooperative equilibrium as well, and the group can be at the social optimum

equilibrium.

2.3.2.1.1 Comparative Statics We examine the case of free-riding be-

haviour in Area II in Figure 2.8, where RJ > f2(α), and compare how equi-

libria behaviour may be affected as certain parameters change. We use Math-

ematica (Wolfram Research, Inc, 2020), a technical computing system, to vi-

sualize the data. Mathematica code for reproduction of the interactive visual-

ization is available in Appendix A.1.2. Static snapshots and descriptions with
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parameter values are presented below.
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Figure 2.9: Indirect Upstream Reciprocity - Case 1. Player J ’s utility when
RJ = 0.15.

In Figure 2.9, we represent player J ’s maximized utility as a function of

their contribution choice, U(c), where U represents player J ’s utility level and

c represents player J ’s contribution choice. When the history of the game is

h = (0, ..., 0), n = 4, y = 10, α = 1
2
, player J believes that the other players

are contributing fully (i.e., bJ,j = y), and player J has relatively weak reci-

procity preferences (RJ = 0.15), we examine three values of player J ’s indirect

reciprocity preference parameter, γ, when γ S 1. Recall that γ represents the

relative strength of player J ’s direct and indirect reciprocity preferences. Fur-

thermore, recall that the total free-riding equilibrium is optimal if RJ > f2(α)

and γ > n−1
n

, and the social optimum equilibrium occurs if RJ > f2(α) and

γ < n−1
n

. When γ < 1, player J ’s indirect reciprocity preferences are weaker

than their direct reciprocity preferences. We predict that when player J has

weaker indirect reciprocity preferences (i.e., γ < 1) the social optimum equi-

librium will result. We examine the following scenarios: γ = 0.5, γ = 1, and

γ = 1.5. When γ = 0.5, then RJ is not greater than f2(α) and the social op-

timum equilibrium is not possible. The social optimum equilibrium can only

be reached for values of γ < 0.083 when RJ = 0.15. This outcome would

require that player J ’s indirect reciprocity preferences are very weak, in ad-

dition to weak direct reciprocity preferences. When γ = 1, all else constant,

then RJ > f2(α) is satisfied. Player J ’s indirect reciprocity preferences are
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as strong as their direct reciprocity preferences. Player J ’s utility function

is downward sloping and is maximized when cJ = 0. The results hold when

γ = 1.5. Free-riding is an optimal behaviour for player J when their direct

reciprocity preferences are weak.
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Figure 2.10: Indirect Upstream Reciprocity - Case 1. Player J ’s utility when
RJ = 0.5.

We examine player J ’s utility for the same values for γ as RJ increases.

In Figure 2.10, direct reciprocity preferences become stronger, RJ = 0.5, and

as γ increases, we observe a shift from cooperative behaviour to free-riding.

Player J will fully contribute when γ = 0.5 and their utility function is upward

sloping and maximized when c∗J = y. When γ increases and indirect reciprocity

preferences become relatively stronger, there is a switch towards free-riding

behaviour. Player J will free-ride when γ = 1 and their utility function is

downward sloping and maximized when c∗J = 0. When player J ’s indirect

reciprocity preferences are stronger than their direct reciprocity preferences,

γ = 1.5, then the total free-riding equilibrium, (y, ..., 0, ..., y), is optimal.

In Figure 2.11, direct reciprocity preferences are stronger, RJ = 1, and

we observe a similar behavioural shift as γ increases. When indirect reci-

procity preferences are weaker, γ = 0.5, then the social optimum equilibrium,

(y, ..., y, ..., y), results. However, as player J ’s indirect reciprocity preferences

become stronger (γ ≥ 1), all else constant, then free-riding becomes the opti-

mal strategy.

This comparison highlights the importance of indirect reciprocity prefer-
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Figure 2.11: Indirect Upstream Reciprocity - Case 1. Player J ’s utility when
RJ = 1.

ences and the role of the history of the game h = (0, ..., 0) in tempering player

J ’s cooperation. When player J has had a recent experience (i.e., players in

set A were “unkind” to player J), and player J has strong indirect reciprocity

preferences, then player J will free-ride. If player J has perceived each player

i ∈ A to be “unkind”, then player J “pays forward” being “unkind” and be-

haves non-cooperatively with players in set B. However, if player J has weak

indirect reciprocity preferences, then they will fully cooperate. Player J ’s re-

cent experience does not drive their contribute decision as much as their direct

reciprocity preference and their beliefs about the other players’ contribution

strategies.

See Appendix A.1.2.1 for Mathematica code to reproduce the figures at the

specified parameter values.

2.3.2.2 Case 2

Second, when the history of the game is h = (y, ..., y), then player J has

observed 1
n

∑
i∈A

ci = y. This means that with probability 1, each player i ∈ A

is fully contributing to the group account, ci = y ∀ i ∈ A, and thus player

J knows with certainty that c∗1 = y, ..., c∗n = y (i.e., players in set A are at

the social optimum equilibrium, (y, ..., y, ..., y)). However, because player J is

choosing their contribution amount at the same time as each player j ∈ BJ ,

player J must form beliefs about the contribution strategy of each player
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j ∈ BJ . Player J ’s best response function is

BRJ ((bJ,j(y, ..., y))j 6=J) =



0 if
∑
j∈BJ

bJ,j <
1− α
α2RJ

+
n− 1− nγ

2
y

[0, y] if
∑
j∈BJ

bJ,j =
1− α
α2RJ

+
n− 1− nγ

2
y

y if
∑
j∈BJ

bJ,j >
1− α
α2RJ

+
n− 1− nγ

2
y

(2.3.48)

From the best response functions for players J and j, (2.3.48) and (2.3.16)

respectively,

(n− 1)cj =
1− α
α2RJ

+
n− 1− nγ

2
y, (2.3.49)

and

(n− 2)cj + cJ =
1− α
α2Rj

+
n− 1

2
y. (2.3.50)

Solving for an interior solution, we find

c∗J =
1− α
α2

(
1

Rj

− n− 2

n− 1

1

RJ

)
+
n− 1 + nγ(n− 2)

2(n− 1)
y, (2.3.51)

where Rj ≥ 0 and RJ ≥ 0. We verify that c∗J ≤ y if

1− α
α2

(
1

Rj

− n− 2

n− 1

1

RJ

)
+
n− 1 + nγ(n− 2)

2(n− 1)
y ≤ y. (2.3.52)

Rearranging the terms, we get

n− 2

n− 1

1

RJ

≥ 1

Rj

− α2

1− α
y

(
n− 1− nγ(n− 2)

2(n− 1)

)
, (2.3.52a)

or

n− 2

n− 1

1

RJ

≥

(i)︷ ︸︸ ︷
1 + α2

1+α

(
nγ(n−2)−n+1

2(n−1)

)
yRj

Rj

. (2.3.52b)
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Note that part (i) > 0 if γ ≥ n−1
n(n−2) and

Rj ≥ −
1− α
α2

2(n− 1)

(nγ(n− 2)− n+ 1)y
, (2.3.53)

which is always satisfied as Rj ≥ 0. As well, part (i) > 0 if γ < n−1
n(n−2) and

Rj < −
1− α
α2

2(n− 1)

(nγ(n− 2)− n+ 1)y
, (2.3.54)

then

0 ≤ RJ ≤
n− 2

n− 1

 Rj

1 + α2

1−α

(
nγ(n−2)−n+1

2(n−1)

)
yRj

 . (2.3.55)

However, part (i) < 0 if γ < n−1
n(n−2) and

Rj > −
1− α
α2

2(n− 1)

(nγ(n− 2)− n+ 1)y
, (2.3.56)

then

RJ ≥
n− 2

n− 1

 Rj

1 + α2

1−α

(
nγ(n−2)−n+1

2(n−1)

)
yRj

 , (2.3.57)

which is always met as RJ ≥ 0. We check that c∗J ≥ 0 if

1− α
α2

(
1

Rj

− n− 2

n− 1

1

RJ

)
+
n− 1 + nγ(n− 2)

2(n− 1)
y ≥ 0. (2.3.58)

Rearranging the terms, we get

n− 2

n− 1

1

RJ

≤
1 + α2

1−α
n−1+nγ(n−2)

2(n−1) yRj

Rj

, (2.3.58a)

which is satisfied if

57



RJ ≥
n− 2

n− 1

Rj

1 + α2

1−α
n−1+nγ(n−2)

2(n−1) yRj

, (2.3.58b)

for any value of γ > 0. The conditions for 0 ≤ c∗J ≤ y can be simultaneously

satisfied.

Solving for an interior solution for each player j, we find

c∗j =
1− α
α2

1

(n− 1)RJ

+
n− 1− nγ

2(n− 1)
y, (2.3.59)

where RJ ≥ 0.

We verify that c∗j ≤ y if

1− α
α2

1

(n− 1)RJ

+
n− 1− nγ

2(n− 1)
y ≤ y. (2.3.60)

Rearranging the terms, we get

1

(n− 1)RJ

≤ α2

1− α
y
n− 1 + nγ

2(n− 1)
, (2.3.60a)

which is satisfied when

RJ ≥
1− α
α2

2

(nγ + n− 1)y
. (2.3.61)

We check that c∗j ≥ 0 if

1− α
α2

1

(n− 1)RJ

+
n− 1− nγ

2(n− 1)
y ≥ 0. (2.3.62)

Rearranging the terms, we get

1

RJ

≥ α2

1− α
y

(i)︷ ︸︸ ︷
nγ − n+ 1

2
. (2.3.62a)
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If part (i) > 0, then γ > n−1
n

and

RJ ≤
1− α
α2

2

(nγ − n+ 1)y
, (2.3.63)

and if part (i) ≤ 0, then γ ≤ n−1
n

and

RJ ≥
1− α
α2

2

(nγ − n+ 1)y
, (2.3.64)

which is always met as RJ ≥ 0. The conditions for 0 ≤ c∗j ≤ y can be

simultaneously satisfied.

When the history of the game is h = (y, ..., y), there are five possible

equilibria. The traditional public goods game Nash equilibrium, (0, ..., 0, ..., 0),

is satisfied if the following conditions for players J and j are met. For player

J

1

RJ

>
α2

1− α
nγ − n+ 1

2
y, (2.3.65)

where if nγ − n+ 1 > 0, or γ > n−1
n

, then

0 ≤ RJ <
1− α
α2

2

(nγ − n+ 1)y
, (2.3.66)

or if nγ − n+ 1 ≤ 0, or γ ≤ n−1
n

, then

RJ >
1− α
α2

2

(nγ − n+ 1)y
, (2.3.67)

which is always met as RJ ≥ 0.

For player j

0 <
1− α
α2Rj

+
n− 1

2
y, (2.3.68)
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which is satisfied for any value of Rj ≥ 0. Unlike the outcome of the previous

case (Section 2.3.2.1), the inequality (2.3.66) implies that player J needs to

have sufficiently weak reciprocity preferences to play the traditional public

goods game Nash equilibrium when player J ’s indirect reciprocity preferences

are relatively stronger (i.e., when γ > n−1
n

), given the history of the game

h = (y, ..., y). When player J cares less about indirect reciprocity, γ < n−1
n

,

then contributing nothing is an optimal strategy for player J at any value of

RJ ≥ 0. However, if player J cares relatively more about indirect reciprocity

preferences, (i.e., as γ > n−1
n

), then there is a smaller range of values for RJ

that make contributing nothing an optimal strategy. The more that indirect

reciprocity preferences matter to player J , and given the history of the game

h = (y, ..., y), then the more player J cares about reciprocating the “kindness”

they received from players in set A.

The social optimum equilibrium, (y, ..., y, ..., y), is satisfied when for player

J

RJ >
1− α
α2

2

(n− 1 + nγ)y
, (2.3.69)

and for player j

Rj >
1− α
α2

2

(n− 1)y
. (2.3.70)

These conditions imply that if player J and each player j have sufficiently

strong reciprocity preferences, the social optimum equilibrium can be reached

irrespective of player J ’s indirect reciprocity preferences relative to their direct

reciprocity preferences (i.e., irrespective of γ).

The altruistic5 equilibrium, (0, ..., y, ..., 0), is satisfied when the following

5This equilibrium is not pure altruism as defined by Trivers (1971). Pure altruism occurs
when the giver incurs a (small) cost and the receiver benefits. Player J incurs a cost from
fully contributing to the group account when others are not in the form of lower material
payoff, but player J benefits through their reciprocity payoff function.
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conditions for player J and each player j are met. For player J

1

RJ

<
α2

1− α
nγ − n+ 1

2
y, (2.3.71)

where for nγ − n + 1 ≤ 0, or γ ≤ n−1
n

, then the condition RJ ≥ 0 is not

satisfied, and for nγ − n+ 1 > 0, or γ > n−1
n

, then

RJ >
1− α
α2

2

(nγ − n+ 1)y
, (2.3.72)

and RJ > 0. For player j

1

Rj

> −
[

α2

1− α

(
n− 3

2

)
y

]
, (2.3.73)

where Rj ≥ 0 is always satisfied for n = 3, and for n > 3

Rj > −
[

1− α
α2

2

(n− 3)y

]
, (2.3.74)

where Rj ≥ 0. As player J ’s indirect reciprocity preferences matter more

(i.e., as γ increases), contributing to their own group even when players in

their own group are not contributing is an equilibrium. This finding suggests

that if player J has strong reciprocity preferences and γ > n−1
n

, then player

J will contribute their full endowment given that the history of the game is

h = (y, ..., y) despite others in their group contributing nothing.

The total free-riding equilibrium, (y, ..., 0, ..., y), is satisfied when for player

J

RJ <
1− α
α2

2

(n− 1 + nγ)y
, (2.3.75)

and RJ ≥ 0, and for player j
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1

Rj

<
α2

1− α

(
n− 3

2

)
y, (2.3.76)

where the condition Rj ≥ 0 is not satisfied if n = 3, but is satisfied if n > 3

and

Rj >
1− α
α2

2

(n− 3)y
. (2.3.77)

The total free-riding equilibrium holds if player J has sufficiently weak reci-

procity preferences, regardless of the value of γ, and if each player j has suf-

ficiently strong reciprocity preferences. This makes intuitive sense, as each

player j will be motivated to contribute their full endowment if they have very

strong reciprocity preferences.

The interior solution equilibrium, (c∗j , ..., c
∗
J , ..., c

∗
j), is satisfied if the condi-

tions for 0 ≤ c∗J ≤ y and 0 ≤ c∗j ≤ y can be simultaneously met (i.e., conditions

(2.3.52) and (2.3.58) for player J and conditions (2.3.60) and (2.3.62) for each

player j). For 0 ≤ c∗j ≤ y, the conditions can be simultaneously satisfied, but

are harder to compare with the conditions expressed in a graphical represen-

tation because the conditions include Rj. For c∗j ≤ y,

RJ ≥
1− α
α2

2

(n− 1 + nγ)y
, (2.3.78)

and for c∗j ≥ 0, if γ < n−1
n

, then RJ ≥ 0, and if γ > n−1
n

, then

RJ ≤
1− α
α2

2

(nγ − n+ 1)y
. (2.3.79)

In Figure 2.12, we represent these different equilibria in a graph (α,RJ).

In the figure, f3(α) ≡ −1−α
α2

2
(n−1−nγ)y and f4(α) ≡ 1−α

α2
2

(n−1+nγ)y . In Area I, the

equilibria are the traditional public goods game Nash equilibrium, (0, ..., 0, ..., 0),

if γ > n−1
n

, the total free-riding equilibrium, (y, ..., 0, ..., y), and the interior
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Figure 2.12: Indirect Upstream Reciprocity - Case 2: h = (y, ..., y)

solution equilibrium, (c∗j , ..., c
∗
J , ..., c

∗
j), if γ > n−1

n
. In Area II, the equilib-

ria are the traditional public goods game Nash equilibrium if γ > n−1
n

, the

interior solution equilibrium if γ ≶ n−1
n

, and the social optimum equilibrium,

(y, ..., y, ..., y). In Area III, the equilibria are the traditional public goods game

Nash equilibrium if γ > n−1
n

, the interior solution equilibrium if γ < n−1
n

,

the altruistic equilibrium, (0, ..., y, ..., 0), if γ > n−1
n

, and the social optimum

equilibrium. As γ increases, or as player J ’s indirect reciprocity preferences

become stronger than their direct reciprocity preferences, the thresholds de-

crease, meaning that cooperative equilibira are “easier” to attain when indirect

reciprocity preferences matter more. The converse happens when γ decreases.

When player J ’s indirect reciprocity preferences are weaker, then the thresh-

olds increase (i.e., f3(α) and f4(α) shift out).

To illustrate, let α = 1
2
. If player J ’s reciprocity preference is RA

J < f4(α),

then player J is in Area I. If player J ’s reciprocity preference is f4(α) <

RB
J < f3(α), then player J is in Area II. At point C, player J has very strong

reciprocity preferences, RC
J > f3(α), and player J is in Area III.
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2.3.2.2.1 Comparative Statics We examine the case of cooperative be-

haviour and compare how equilibria may be affected as certain parameters

change. We compare the two potential equilibria in Area III in Figure 2.12

when γ > n−1
n

- the traditional public goods game Nash equilibrium, (0, ..., 0, ..., 0),

and the altruistic equilibrium, (0, ..., y, ..., 0). We use Mathematica (Wolfram

Research, Inc, 2020), a technical computing system, to visualize the data.

Mathematica code for reproduction of the interactive visualization is available

in Appendix A.1.2. Static snapshots and descriptions with parameter values

are presented below.
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Figure 2.13: Indirect Upstream Reciprocity - Case 2. Player J ’s utility when
RJ = 0.15.

In Figure 2.13, we represent player J ’s maximized utility as a function of

contribution choice, where U represents player J ’s utility level and c represents

player J ’s contribution choice. When the history of the game is h = (y, ..., y),

n = 3, y = 10, α = 1
2
, player J believes that the other players are con-

tributing nothing (i.e., bJ,j = 0), and player J has weak reciprocity preferences

(RJ = 0.15), then player J will fully contribute to the group account when

their indirect reciprocity preferences are stronger than their direct reciprocity

preferences (i.e., γ > 1.55). Recall that the conditions RJ > f3(α) and γ > n−1
n

are required for either the traditional public goods game equilibrium or the al-

truistic equilibrium to be potential equilibria in Area III in Figure 2.12. These

conditions are satisfied for values of γ > 1.55 when RJ = 0.15. Player J ’s util-

ity function is maximized when they are fully cooperating and contributing
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their full endowment to the group account, cJ = y, such that the optimal out-

come of the game is the altruistic equilibrium. Player J will fully contribute

to the group account even when their direct reciprocity preferences are weak,

provided that they have strong indirect reciprocity preferences. This suggests

that, when the history of the game is h = (y, ..., y), recent experience can drive

cooperative behaviour, even when others in the group are not contributing.

As direct reciprocity preferences become stronger, altruistic behaviour re-

mains optimal for player J and the traditional public goods game Nash equi-

librium prevails for all values of γ > n−1
n

. In Figure 2.14, when RJ = 0.5,

then player J ’s utility function is maximized when cJ = y at the altruistic

equilibrium, (0, ..., y, ..., 0), for all values of γ > 0.933.
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Figure 2.14: Indirect Upstream Reciprocity - Case 2. Player J ’s utility when
RJ = 0.5.

In Figure 2.15, when RJ = 1, then player J ’s utility is maximized when

cJ = y, and altruistic behaviour remains optimal for all values of γ > 0.8.

The altruistic equilibrium is driven by strong indirect reciprocity prefer-

ences. Indirect reciprocity preferences influence player J ’s optimal strategy to

contribute fully, even when the other players in their group are not contribut-

ing. For example, when comparing across different values for player J ’s direct

reciprocity preference from RJ = 0.15 to RJ = 1, this effect becomes even more

pronounced. The slope of player J ’s utility function when γ = 1.5 is greatest

when RJ = 1, compared to lower values for the direct reciprocity preference

parameter. When player J ’s indirect reciprocity preference is relatively weaker
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Figure 2.15: Indirect Upstream Reciprocity - Case 2. Player J ’s utility when
RJ = 1.

(i.e., γ < 1) yet player J ’s direct reciprocity preference is sufficiently strong,

then altruistic behaviour can still be optimal. Player J ’s indirect reciprocity

preference needs to be “strong enough” in combination with strong direct reci-

procity preferences to reach the altruistic equilibrium, (0, ..., y, ..., 0). Given

player J ’s beliefs about the contribution of each player j ∈ BJ (i.e., bJ,j = 0),

player J will be “kind” to players in set BJ , if players in set A were “kind”

to player J (i.e., when the history of the game is h = (y, ..., y)) and indirect

reciprocity matters to player J . That is, a recent experience can positively in-

fluence player J ’s contribution choice if indirect reciprocity matters to player

J . Even if player J has stronger direct reciprocity preferences, RJ = 1, if

player J ’s indirect reciprocity preferences are strong, γ = 1.5, then the altru-

istic equilibrium is optimal.

The prevalence of the altruistic equilibrium, (0, ..., y, ..., 0), when h =

(y, ..., y) and player J believes that each player j ∈ BJ will contribute nothing,

bJ,j = 0, supports that recent experience and indirect reciprocity preferences

drive cooperative behaviour for player J . As well, this result supports the “pay-

it-forward” definition of indirect upstream reciprocity: player J perceived each

player i ∈ A to be “kind” to player J and player J is “kind” to players in set

BJ .

See Appendix A.1.2.2 for Mathematica code to reproduce the figures at the

specified parameter values.
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2.3.2.3 Case 3

Finally, we examine the history of the game h = (c, ..., c). While h = (c, ..., c)

represents a multiplicity of interior contributions, in Case 3 we examine the

special case of the interior solution equilibrium, h = (c∗, ..., c∗). If h =

(c∗, ..., c∗), then player J has observed 1
n

∑
i∈A

ci = c ∈]0, y[. This means that

player J does not know with certainty the contribution amount of each player

i ∈ A. Player J is choosing their contribution amount at the same time as

each player j ∈ BJ and player J must form beliefs about the contribution

strategy of each player j ∈ BJ . From the baseline case in Section 2.1, we know

that c∗i = 1−α
α2

1
(n−1)Ri

+ 1
2
y ∀ i ∈ A, and 0 ≤ c∗i ≤ y if Ri ≥ 1−α

α2
2

(n−1)y . Because

we assume that players are symmetric in the baseline case (i.e., each player

i ∈ A) and in set BJ (i.e., each player j ∈ BJ), we let Ri = Rj = R. Player

J ’s best response function is

BRJ ((bJ,j(c, ..., c))j 6=J) =



0 if
∑
j∈BJ

bJ,j <
1−α
α2

(
1
RJ
− nγ

n−1
1
R

)
+n−1

2
y

[0, y] if
∑
j∈BJ

bJ,j = 1−α
α2

(
1
RJ
− nγ

n−1
1
R

)
+n−1

2
y

y if
∑
j∈BJ

bJ,j >
1−α
α2

(
1
RJ
− nγ

n−1
1
R

)
+n−1

2
y

(2.3.80)

From the best response functions for players J and j, (2.3.80) and (2.3.16)

respectively,

(n− 1)cj =
1− α
α2

(
1

RJ

− nγ

n− 1

1

R

)
+
n− 1

2
y, (2.3.81)
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and

(n− 2)cj + cJ =
1− α
α2Rj

+
n− 1

2
y. (2.3.82)

Solving for an interior solution, we find

c∗J =
1− α
α2

(
(n+ nγ)(n− 2) + 1

(n− 1)2
1

R
− n− 2

n− 1

1

RJ

)
+

1

2
y, (2.3.83)

where RJ ≥ 0 and R ≥ 0. For c∗J to be an eligible interior solution, it must

satisfy 0 ≤ c∗J ≤ y. We verify that c∗J ≤ y if

(i)︷ ︸︸ ︷
(n+nγ)(n−2)+1

(n−1)2 − α2

1−α
Ry
2

R
≤ n− 2

n− 1

1

RJ

, (2.3.84)

where if part (i) > 0, then

0 ≤ R ≤ 1− α
α2

2(n+ nγ)(n− 2) + 2

(n− 1)2y
, (2.3.85)

and

0 ≤ RJ ≤
n− 2

n− 1

(
R

(n+nγ)(n−2)+1
(n−1)2 − α2

1−α
Ry
2

)
. (2.3.86)

If part (i) ≤ 0, then

R ≥ 1− α
α2

2(n+ nγ)(n− 2) + 2

(n− 1)2y
, (2.3.87)

and

RJ ≥
n− 2

n− 1

(
R

(n+nγ)(n−2)+1
(n−1)2 − α2

1−α
Ry
2

)
, (2.3.88)

which is satisfied as RJ ≥ 0. We check that c∗J ≥ 0 if
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RJ ≥
(n− 1)(n− 2)

(n+ nγ)(n− 2) + 1
R +

1− α
α2

2(n− 2)

(n− 1)y
. (2.3.89)

The conditions for 0 ≤ c∗J ≤ y can be simultaneously satisfied, therefore c∗J

exists as an eligible interior solution. From player J ’s best response function

(2.3.80) and solving for an interior solution for each player j, we find

c∗j =
1− α
α2

(
1

n− 1

1

RJ

− nγ

(n− 1)2
1

R

)
+

1

2
y, (2.3.90)

where RJ ≥ 0, R ≥ 0, and 0 ≤ c∗j ≤ y. We verify that c∗j ≤ y if

1

R
≥

(i)︷ ︸︸ ︷
n− 1

nγ

1

RJ

− α2

1− α
(n− 1)2

2nγ
y, (2.3.91)

where if part (i) > 0, then

RJ >
1− α
α2

2

(n− 1)y
, (2.3.92)

and

0 ≤ R ≤ nγ

n− 1

1

RJ

− 1− α
α2

2nγ

(n− 1)2y
. (2.3.93)

If part (i) < 0, then

0 ≤ RJ <
1− α
α2

2

(n− 1)y
, (2.3.94)

and

R ≥ 1− α
α2

2

(n− 1)y
, (2.3.95)
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which is always satisfied since R ≥ 0. We check that c∗j ≥ 0 if

R ≥ nγ

n− 1
RJ +

1− α
α2

2nγ

(n− 1)2y
, (2.3.96)

where R ≥ 0. The conditions for 0 ≤ c∗j ≤ y can be simultaneously satisfied

when 0 ≤ RJ ≤ 1−α
α2

2
(n−1)y . If conditions are satisfied at the same time, then

c∗j , c
∗
J can exist simultaneously.

When h = (c, ..., c), then there exists seven possible equilibria. The tra-

ditional public goods game Nash equilibrium, (0, ..., 0, ..., 0), is satisfied if the

following conditions are met for players J and each player j. For player J

1

RJ

>

(i)︷ ︸︸ ︷
nγ

n− 1

1

R
− α2

1− α
(n− 1)y

2
, (2.3.97)

where if part (i) > 0, then

0 ≤ R <
1− α
α2

2nγ

(n− 1)2y
, (2.3.98)

and

0 ≤ RJ <
n− 1

nγ
R− 1− α

α2

2

(n− 1)y
. (2.3.99)

If part (i) < 0, then

R >
1− α
α2

2nγ

(n− 1)2y
, (2.3.100)

and

RJ >
n− 1

nγ
R− 1− α

α2

2

(n− 1)y
, (2.3.101)
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which is always met as RJ ≥ 0. Player j’s best response is cj = 0 if

R > −
[

1− α
α2

2

(n− 1)y

]
, (2.3.102)

which is always satisfied as R ≥ 0. This equilibrium can be reached with or

without reciprocity preferences (i.e., when R ≥ 0, RJ ≥ 0).

The social optimum equilibrium, (y, ..., y, ..., y), is satisfied if the following

conditions are met. For player J

RJ >
n− 1

nγ
R +

1− α
α2

2

(n− 1)y
. (2.3.103)

For each player j

R >
1− α
α2

2

(n− 1)y
. (2.3.104)

By incorporating reciprocity preferences, it is possible to reach the social op-

timum equilbrium if players have strong preferences for reciprocity.

The altruistic equilibrium, (0, ..., y, ..., 0), is possible under certain condi-

tions. For player J

1

RJ

<

(i)︷ ︸︸ ︷
nγ

n− 1

1

R
− α2

1− α
y
n− 1

2
, (2.3.105)

where if part (i) > 0, then

0 ≤ RJ <
1− α
α2

2nγ

(n− 1)2y
, (2.3.106)

and

RJ >
n− 1

nγ
R− 1− α

α2

2

(n− 1)y
, (2.3.107)
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and if part (i) < 0, then

R >
1− α
α2

2nγ

(n− 1)2y
, (2.3.108)

and the condition RJ ≥ 0 is not met. For player j, the condition

R > −
[

1− α
α2

2

(n− 3)y

]
, (2.3.109)

is always satisfied since R ≥ 0. If player J ’s reciprocity preferences are suffi-

ciently strong (i.e., condition (2.3.107)), player J will contribute their full en-

dowment even when other players in set B are not contributing anything. As

γ increases (i.e., as player J ’s indirect reciprocity preferences become stronger

than their direct reciprocity preferences), the threshold for contributing their

full endowment decreases.

The “kind” equilibrium, (0, ..., c∗J , ..., 0), is satisfied if for player J

RJ =
n− 1

nγ
R− 1− α

α2

2

(n− 1)y
, (2.3.110)

where RJ ≥ 0 if

R ≥ 1− α
α2

2nγ

(n− 1)2y
, (2.3.111)

and for player j

R >
n− 1

nγ
RJ +

1− α
α2

2nγ(n− 2)

(n− 1)2y
, (2.3.112)

which is possible if the conditions for 0 ≤ c∗J ≤ y are also satisfied. Note

that the conditions previously outlined for the existence of c∗J must hold as

well (i.e., conditions (2.3.84) and (2.3.89)). Each player j will free-ride despite

having relatively higher reciprocity preferences in this case.
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The equilibrium with some free-riding, (y, ..., c∗J , ..., y), is satisfied if the

following conditions are met. For player J

RJ =
n− 1

nγ
R +

1− α
α2

2

(n− 1)y
. (2.3.113)

For player j

1

R
>

(i)︷ ︸︸ ︷
n− 1

nγ

1

RJ

− α2

1− α
(n− 1)2y

2nγ
, (2.3.114)

where if part (i) > 0, then

0 ≤ RJ <
1− α
α2

2

(n− 1)y
, (2.3.115)

which is not possible because of the condition expressed in condition (2.3.113),

and if part (i) < 0, then

RJ >
1− α
α2

2

(n− 1)y
, (2.3.116)

and

R >
nγ

n− 1
RJ −

1− α
α2

2nγ

(n− 1)2y
, (2.3.117)

and R ≥ 0. Note that the conditions previously outlined for the existence of c∗J

must hold as well. In this equilibrium, each player j will contribute their full

endowment if player J and each player j all have sufficiently strong reciprocity

preferences.

The total free-riding equilibrium, (y, ..., 0, ..., y), is satisfied if for player J

0 ≤ RJ <
n− 1

nγ
R +

1− α
α2

2

(n− 1)y
, (2.3.118)
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and for player j

R >
1− α
α2

2

(n− 3)y
, (2.3.119)

which is possible when n > 3. Player J will free-ride when their reciprocity

preferences are weaker. Each player j will contribute their full endowment if

their reciprocity preferences are sufficiently strong.

The interior solution equilibrium, (c∗j , ..., c
∗
J , ..., c

∗
j), is satisfied if the con-

ditions for 0 ≤ c∗J ≤ y and 0 ≤ c∗j ≤ y are simultaneously satisfied. The

interior solution equilibrium does not represent a multiplicity of equilibria,

but a very specific set of values for contributions which satisfy certain condi-

tions (i.e., conditions (2.3.84) and (2.3.89) for player J and conditions (2.3.91)

and (2.3.96) for each player j) and also vary depending on the values of RJ

and R.

1
2

1
0

1
γA

1
γB

1
γC

1
γD

1
γE

1
n

1
2

1

Area I

Area II

Area III

g2(α)

g3(α)

A

B

C

D

E

α

1
γ

Figure 2.16: Indirect Upstream Reciprocity - Case 3: h = (c, ..., c)

In Figure 2.16, we represent the equilibria in a graph (α, 1
γ
). Note that

unlike Section 2.3.2.1 and Section 2.3.2.2, the equilibria areas are presented

in the (α, 1
γ
) space rather than the (α,RJ) space due to the structure of the
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equilibria conditions when the history of the game is h = (c, ..., c) and to in-

crease comparison across histories. Recall that RI = γRJ , therefore γ = RI

RJ
.

It follows that 1
γ

= RJ

RI
. In Figure 2.16, g2(α) ≡ n

n−1
RJ

R
− 1−α

α2R
2n

(n−1)2y , and

g3(α) ≡ n
n−1

RJ

R
+ 1−α

α2R
2n

(n−1)2y . In Area I, the equilibria are the traditional pub-

lic goods game Nash equilibrium, (0, ..., 0, ..., 0), when 1
γ
< 1−α

α2R
2n

(n−1)2y , the

social optimum equilibrium, (y, ..., y, ..., y), and the total free-riding equilib-

rium, (y, ..., 0, ..., y). In Area II, the only equilibrium is the traditional public

goods game Nash equilibrium when 1
γ
> 1−α

α2R
2n

(n−1)2y . In Area III, the equilibria

are the traditional public goods game Nash equilibrium when 1
γ
> 1−α

α2R
2n

(n−1)2y

and the altruistic equilibrium, (0, ..., y, ..., 0).

The “kind” equilibrium, (0, ..., c∗J , ..., 0), exists along g3(α) and the equi-

librium with some free-riding, (y, ..., c∗J , ..., y), exists along g2(α). Finally, the

interior solution equilibrium, (c∗j , ..., c
∗
J , ..., c

∗
j), is met when the conditions for

0 ≤ c∗J ≤ y (i.e., conditions (2.3.84) and (2.3.89)) and 0 ≤ c∗j ≤ y (i.e.,

conditions (2.3.91) and (2.3.96)) are simultaneously satisfied.

When 1
γ

is low (i.e., 1
γA

), then γ is relatively large and player J ’s indirect

reciprocity preferences are stronger than their direct reciprocity preferences.

When 1
γ

is high (i.e., 1
γC

), then γ is relatively small and player J ’s indirect

reciprocity preferences are weaker than their direct reciprocity preferences. As

γ increases, or as player J ’s indirect reciprocity preferences become stronger

than their direct reciprocity preferences (i.e., RI > RJ), then 1
γ

decreases and

the equilibria thresholds decrease. As γ increases, or as player J ’s indirect

reciprocity preferences become greater than their direct reciprocity preferences

(i.e., RI > RJ), then 1
γ

decreases and the equilibria thresholds decrease. This

makes some of the cooperative equilibria more accessible or “easier” to reach.

To illustrate this further, let α = 1
2

such that g2(
1
2
) ≡ n

n−1
RJ

R
− 4n

(n−1)2Ry ,

and g3(
1
2
) ≡ n

n−1
RJ

R
+ 4n

(n−1)2Ry . At point A, γ is relatively larger and player J ’s

indirect reciprocity preferences are stronger than their direct reciprocity pref-

erences. At point A, player J is in Area I and faces three potential equilibria.

As player J ’s indirect reciprocity preferences decrease and 1
γ

increases, moving

to point B suggests a shift from potentially total free-riding, (y, ..., 0, ..., y),

to under cooperating or some free-riding, (y, ..., c∗J , ..., y). This shift highlights
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that as player J has weaker preferences for indirect reciprocity, they will con-

tribute more (i.e., cJ > 0) as player J ’s direct reciprocity preference increases

given that the other players are contributing fully to the group account.

A similar shift occurs between point D and E, although with a less clear

interpretation. At point D, player J shifts from the “kind” equilibrium,

(0, ..., c∗J , ..., 0), to point E, either the altruistic equilibrium, (0, ..., y, ..., 0),

or the traditional public goods game Nash equilibrium, (0, ..., 0, ..., 0), which

is always satisfied. This shift, accompanied by a decrease in γ, suggests that

direct reciprocity preferences matter more. However, if direct reciprocity pref-

erences mattered more to player J , they would likely not contribute anything

to their group account if player J correctly believes that the others are con-

tribution nothing. The possibility of altruistic behaviour as optimal for player

J indicates that the relationship between direct and indirect reciprocity pref-

erences is influencing player J ’s contribution behaviour in more complex ways

than predicted by traditional game theory. That is, there may be complexity

due to interdependency between R, RJ , and γ. The traditional public goods

game Nash equilibrium holds if 1
γ
> 1−α

α2R
2n

(n−1)2y , or if R > 1−α
α2

2nγ
(n−1)2y . The

altruistic equilibrium arises if R is weak and γ is small, suggesting that player

J ’s altruistic behaviour is driven by strong direct reciprocity preferences, RJ .

As discussed in Section 2.2.3, comparative statics for h = (c, ..., c) or in-

terior solution equilibria are not presented here. Comparisons at the corner

cases provide greater insight into thresholds for cooperative behaviour.

2.4 Indirect Downstream Reciprocity

Figure 2.17: Indirect Downstream Reciprocity
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Consider a variation of the baseline model, in Figure 2.17, where players

interact simultaneously within their own group and there is an opportunity

for one player, player J , to observe the outcome of a previous game. In this

multi-stage game, there are two groups of n players each, where A = {1, ..., n}

and B = {1, ..., i − 1, i + 1, ..., n, J} with player J ∈ B and n ≥ 3. Note

that BJ = {1, ..., i − 1, i + 1, ..., n}, where BJ ⊂ B, is a group of (n − 1)

players randomly selected from set A, therefore BJ ⊂ A. In the first period,

each player i ∈ A simultaneously chooses their contribution ci ∈ [0, y]. This

game has the same structure as the baseline case and the utility functions and

payoffs for each player i ∈ A are outlined in Section 2.1.

Similar to the model variation in Section 2.3 which discusses indirect up-

stream reciprocity, there is an outside player who is a beneficiary from the

contributions to the group account from players in set A. In this variation

with indirect downstream reciprocity, an outside player receives some mone-

tary benefit without participating in the public goods game with players in set

A; in Figure 2.17, this outside player is denoted as the third-party beneficiary

(TPB). As in Section 2.3, in the second period player J ∈ B observes the

average contribution of n players in set A, 1
n

∑
i∈A

ci, and player J knows that

the TPB has benefited from the contributions of players in set A. After player

J has made this observation, all players in set B, including player J , simul-

taneously choose their contribution amounts. Recall that players are myopic;

that is, we assume that players are myopic in their decisions during each pe-

riod and care only about the current period’s payoff. This assumption allows

us to focus on the reciprocal decision-making of player J and ignore dynamic

interactions between periods6. The rewarding behaviour or reputation-based

reciprocity that characterizes indirect downstream reciprocity can be captured

in player J ’s contribution choice, cJ . Player J chooses cJ ∈ [0, y], and each

player k ∈ BJ chooses ck ∈ [0, y]. The payoff for all players in set B is

analogous to (2.1.1) in Section 2.1. As before, we restrict MPCR such that

6While there may be a dynamic component of reciprocity, we are interested in how player
J will be affected by observing first period behaviour, rather than understanding reciprocity
in the first period or how reciprocity influences behaviour over time.
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0 < α < 1 < nα to ensure the conditions of a public goods game are met. We

assume no discounting between periods.

2.4.1 No Reciprocity Preferences

In the second period, player J ∈ B chooses cJ that solves

max
cJ
{y − cJ + α

∑
l∈B

cl}. (2.4.1)

The first-order condition is

− 1 + α < 0. (2.4.2)

We are again at a corner solution where the optimal contribution choice is

c∗J = 0 because the maximization problem is linear. At the same time, each

player k ∈ BJ simultaneously chooses ck to solve

max
ck
{y − ck + α

∑
l∈B

cl}. (2.4.3)

The first-order condition is

− 1 + α < 0. (2.4.4)

We are again at a corner solution where the optimal contribution choice is

c∗k = 0 ∀ k ∈ BJ , such that c∗1 = ... = c∗i−1 = c∗i+1 = ... = c∗n = c∗J = 0.

The game results in the traditional public goods game Nash equilibrium,

(c∗1, ..., c
∗
i−1, c

∗
i+1, ..., c

∗
n, c
∗
J) = (0, ..., 0). The first stage of the game proceeds

exactly as in the baseline case presented in Section 2.1. We have previously

seen that the outcome of that game is the traditional public goods game Nash

equilibrium, (c∗1, ..., c
∗
n) = (0, ..., 0), as well. In the absence of reciprocity pref-

erences, and even though player J ∈ B observes the average contribution to
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the group account from players in set A, none of the players in set B have

an incentive to contribute to their own group account, and we remain at the

traditional public goods game Nash equilibrium.

2.4.2 Reciprocity Preferences

Incorporating reciprocity preferences into players’ utility functions takes a sim-

ilar form as in the direct reciprocity model, Section 2.1.2, and the indirect up-

stream reciprocity model, Section 2.3.2. Player J ’s reciprocity payoff function

accounts for both direct and indirect reciprocity preferences. Player J ’s di-

rect reciprocity preference captures player J ’s reciprocity preferences towards

the players in their own set, set B. Player J ’s indirect reciprocity preference

captures the relative weight that player J places on player J ’s own evaluation

of the behaviour (i.e., contributions) of each player i ∈ A in the first stage,

knowing that an (n − 1) random sample of these players are in subset BJ .

Player J ’s indirect reciprocity preference is player J ’s reciprocity preference

towards the interaction that occurred between players in set A and the TPB ,

where RJ,A|TPB = RI .

We express player J ’s utility function as

UJ ={y − cJ + α
∑
l∈B

cl︸ ︷︷ ︸
(i)

+
∑
k∈BJ

RJ,k · κJ,k(cJ , (bJ,k(h))k 6=J) · λJ,k,J(bJ,k(h), (bJ,k,l(h))l 6=k)︸ ︷︷ ︸
(ii)

+RI · κ̄J,k(cJ , (bJ,k(h))k 6=J)k∈BJ
· λ̄J,i,TPB(b̄J,i(h), (b̄J,i,k(h))k 6=i)i∈A︸ ︷︷ ︸
(iii)

},

(2.4.5)

where part (i) in (2.4.5) is the material payoff, part (ii) is the same direct reci-

procity payoff as before, and part (iii) is player J ’s indirect reciprocity payoff.

Note that in contrast to the indirect upstream reciprocity model in Section

2.3.2, player J ’s indirect reciprocity payoff has a different form to capture the
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reputation-based effects of indirect downstream reciprocity. Because player J

is evaluating the action of players i ∈ A towards the TPB , player J is evalu-

ating average kindness and average perceived kindness. Consequently, player

J holds only one indirect reciprocity preference, RI . The kindness function

evaluates how “kind” player J is, on average, to players in set BJ . In part (iii)

in (2.4.5), the perceived kindness function is now an evaluation of how “kind”

player J perceives each player i ∈ A to be towards the TPB , on average.

The history of the game plays an important role in indirect downstream

reciprocity. Indeed, the history of the game, h = (c1, ..., cn), is observed by

player J through the average contribution of players in set A. Player J observes

1
n

∑
i∈A

ci and knows with probability 1 that each player i ∈ A chose ci = 0 or

ci = y when the average contribution is 1
n

∑
i∈A

ci = 0 or y, respectively. When

player J observes 1
n

∑
i∈A

ci = c ∈ ]0, y[, then they do not know with certainty

what each player i ∈ A has contributed. Player J must form beliefs, bJ,i(h),

about the other players’ contribution strategies. Following Section 2.1.2 and

(2.1.10), player J ’s direct reciprocity payoff, part (ii) in (2.4.5) is

RJα
2

(
cJ −

1

2
y

)(∑
k∈BJ

bJ,k(h)− n− 1

2
y

)
, (2.4.6)

where RJ represents player J ’s direct reciprocity preference.

Next, player J ’s indirect reciprocity payoff function, part (iii) in (2.4.5) is

represented as

RI · κ̄J,k(cJ , (bJ,k(h))k 6=J)k∈BJ
· λ̄J,i,TPB(b̄J,i(h), (b̄J,i,k(h))k 6=i)i∈A. (2.4.7)

The indirect reciprocity payoff function captures the effect of player J ’s per-

ceived kindness of players in set A on player J ’s own kindness towards players

in set BJ . As a result, player J evaluates average kindness and average per-

ceived kindness. Recall that player J does not know which players in set A
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were “kind” and also does not know which players from set A are now in set

BJ . First, player J ’s average kindness function, κ̄J,k(·), evaluates player J ’s

kindness, on average, towards players in set BJ . From (2.1.8d), we know that

κJ,k(cJ , (bJ,k(h))k 6=J) = α

(
cJ −

1

2
y

)
, (2.4.8)

where k ∈ BJ . Player J ’s average kindness function is

κ̄J,k(cJ , (bJ,k(h))k 6=J)k∈BJ
=

1

n− 1

∑
k∈BJ

κJ,k(cJ , (bJ,k(h))k 6=J), (2.4.8a)

or

κ̄J,k(·) = α

(
cJ −

1

2
y

)
. (2.4.8b)

Player J ’s average perceived kindness function, λ̄J,i,TPB(b̄J,i(h), (b̄J,i,k(h))k 6=i)i∈A,

evaluates player J ’s perception of the average kindness of players in set A to-

wards the TPB . Following (2.1.9d) and (2.1.4d)

λ̄J,i,TPB(b̄J,i(h), (b̄J,i,k(h))k 6=i)i∈A = α

(
b̄J,i(h)− 1

2
y

)
. (2.4.9)

Player J observes 1
n

∑
i∈A

ci which is equivalent to b̄J,i(h) ∀ i ∈ A. We denote

RI as player J ’s indirect reciprocity preference and let RI = γRJ , where γ

represents the relative strength of indirect reciprocity preferences and γ > 0.

Recall γ ≶ 1, where γ > 1 indicates relatively stronger indirect reciprocity

preferences and suggests altruistic behaviour in some cases, and γ < 1 indicates

relatively weaker indirect reciprocity preferences.

We express player J ’s utility function as
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UJ = y − cJ + α
∑
l∈B

cl

+RJα
2

(
cJ −

1

2
y

)(∑
k∈BJ

bJ,k(h)− n− 1

2
y

)

+RJα
2γ

(
cJ −

1

2
y

)(
1

n

)(∑
i∈A

ci −
n

2
y

)
.

(2.4.10)

Rearranging the terms in (2.4.10), we obtain player J ’s utility maximization

problem

max
cJ

{
y − cJ + α

∑
l∈B

cl

+RJα
2

(
cJ −

1

2
y

)(∑
k∈BJ

bJ,k(h) +
γ

n

∑
i∈A

ci −
n− 1 + γ

2
y

)}
.

(2.4.11)

The first-order condition is

− 1 + α +RJα
2

(∑
k∈BJ

bJ,k(h) +
γ

n

∑
i∈A

ci −
n− 1 + γ

2
y

)
= 0. (2.4.12)

Player J ’s best response function is

BRJ ((bJ,k(h))k 6=J) =



0 if
∑
k∈BJ

bJ,k(h) < 1−α
α2RJ

− γ
n

∑
i∈A

ci

+n−1+γ
2

y

[0, y] if
∑
k∈BJ

bJ,k(h) = 1−α
α2RJ

− γ
n

∑
i∈A

ci

+n−1+γ
2

y

y if
∑
k∈BJ

bJ,k(h) > 1−α
α2RJ

− γ
n

∑
i∈A

ci

+n−1+γ
2

y

(2.4.13)
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Note that history is captured in the term 1
n

∑
i∈A

ci and player J ’s best response

function differs from the indirect upstream reciprocity case.

As before, the utility maximization problem for each player k ∈ BJ takes

a similar form to (2.1.6) in Section 2.1.2. Each player k chooses ck to solve

max
ck

{
y − ck + α

∑
l∈B

cl

+Rkα
2

(
ck −

1

2
y

)(∑
j∈Bk

bk,j(h)− n− 1

2
y

)}
,

(2.4.14)

where Bk = {1, ..., k − 1, k + 1, ..., n, J} and Bk ⊂ B. Recall that player k is

myopic and is making their contribution choice at the same time as the other

players in set B. Player k does not know the history of the game in the second

period and must form beliefs about the other players’ contribution strategies

during that period. The first-order condition is

− 1 + α +Rkα
2

(∑
j∈Bk

bk,j(h)− n− 1

2
y

)
= 0. (2.4.15)

We assume rational expectations in equilibrium, therefore player k’s beliefs

about each player j’s contributions are correct such that bk,j(h) = cj. We can

rewrite the first-order condition, (2.4.15) as

− 1 + α +Rkα
2

(∑
j∈Bk

cj −
n− 1

2
y

)
= 0. (2.4.15a)

Given the contributions of the (n − 1) players in set Bk, the best response

function for each player k is
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BRk ((bk,j(h))j 6=k) =



0 if
∑
j∈Bk

bk,j(h) <
1− α
α2Rk

+
n− 1

2
y

[0, y] if
∑
j∈Bk

bk,j(h) =
1− α
α2Rk

+
n− 1

2
y

y if
∑
j∈Bk

bk,j(h) >
1− α
α2Rk

+
n− 1

2
y

(2.4.16)

As before, we need to consider different cases depending on the history of the

game.

2.4.2.1 Case 1

First, if the history of the game is h = (0, ..., 0), then player J has observed

1
n

∑
i∈A

ci = 0. This means that with probability 1, c∗i = 0 ∀ i ∈ A, thus

player J knows with certainty that c∗1 = 0, ..., c∗n = 0 (i.e., players in set A

are at the traditional public goods game Nash equilibrium). However, because

player J is choosing their contribution amount at the same time as each player

k ∈ BJ , player J must form beliefs about the contribution strategy of each

player k ∈ BJ .

Player J ’s best response function is

BRJ ((bJ,k(0, ..., 0))k 6=J) =



0 if
∑
k∈BJ

bJ,k(h) <
1− α
α2RJ

+
n− 1 + γ

2
y

[0, y] if
∑
k∈BJ

bJ,k(h) =
1− α
α2RJ

+
n− 1 + γ

2
y

y if
∑
k∈BJ

bJ,k(h) >
1− α
α2RJ

+
n− 1 + γ

2
y

(2.4.17)

From the best response functions for player J and and each player k, (2.4.17)

and (2.4.16), respectively,

(n− 1)ck =
1− α
α2RJ

+
n− 1 + γ

2
y, (2.4.18)
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and

(n− 2)ck + cJ =
1− α
α2Rk

+
n− 1

2
y. (2.4.19)

Solving for cJ , the interior solution is

c∗J =
1− α
α2

(
1

Rk

− n− 2

n− 1

1

RJ

)
+
n− 1− γ(n− 2)

2(n− 1)
y, (2.4.20)

where RJ ≥ 0, Rk ≥ 0. To be an eligible interior solution, 0 ≤ c∗J ≤ y. We

verify that c∗J ≤ y if

1− α
α2

(
1

Rk

− n− 2

n− 1

1

RJ

)
+
n− 1− γ(n− 2)

2(n− 1)
y ≤ y. (2.4.21)

Rearranging the terms, we obtain

1

RJ

≥ n− 1

n− 2

(
1

Rk

− α2

1− α

(
n− 1 + γ(n− 2)

2(n− 1)

)
y

)
, (2.4.21a)

or

1

RJ

≥ n− 1

n− 2

(i)︷ ︸︸ ︷1− α2

1−α

(
n−1+γ(n−2)

2(n−1)

)
yRk

Rk

 . (2.4.21b)

If part (i) > 0, then

0 ≤ Rk <
1− α
α2

2(n− 1)

(n− 1 + γ(n− 2))y
, (2.4.22)

and
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0 ≤ RJ ≤
n− 2

n− 1

 Rk

1− α2

1−α

(
n−1+γ(n−2)

2(n−1)

)
yRk

 . (2.4.23)

If part (i) < 0, then

Rk >
1− α
α2

2(n− 1)

(n− 1 + γ(n− 2))y
, (2.4.24)

and

RJ ≥
n− 2

n− 1

 Rk

1− α2

1−α

(
n−1+γ(n−2)

2(n−1)

)
yRk

 , (2.4.25)

which is always met as RJ ≥ 0. We check that c∗J ≥ 0 if

1− α
α2

(
1

Rk

− n− 2

n− 1

1

RJ

)
+
n− 1− γ(n− 2)

2(n− 1)
y ≥ 0. (2.4.26)

Rearranging the terms, we obtain

1

RJ

≤ n− 1

n− 2

(
1

Rk

+
α2

1− α

(
n− 1− γ(n− 2)

2(n− 1)

)
y

)
, (2.4.26a)

or

1

RJ

≤
(
n− 1

n− 2

) 1 + α2

1−α

(ii)︷ ︸︸ ︷(
n− 1− γ(n− 2)

2(n− 1)

)
yRk

Rk

. (2.4.26b)

If part (ii) > 0, then γ < n−1
n−2 and

RJ ≥
n− 2

n− 1

 Rk

1 + α2

1−α

(
n−1−γ(n−2)

2(n−1)

)
yRk

 . (2.4.27)
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If part (ii) < 0, then γ > n−1
n−2 . When γ > n−1

n−2 , then the right-hand side of

(2.4.26b) > 0 if

0 ≤ Rk <
1− α
α2

2(n− 1)

(n− 1− γ(n− 2))y
, (2.4.28)

and

RJ ≥
n− 2

n− 1

 Rk

1 + α2

1−α

(
n−1−γ(n−2)

2(n−1)

)
yRk

 ≥ 0. (2.4.29)

When γ > n−1
n−2 , then the right-hand side of (2.4.26b) < 0 if

Rk >
1− α
α2

2(n− 1)

(n− 1− γ(n− 2))y
, (2.4.30)

which is always true as Rk ≥ 0, and

RJ ≤
n− 2

n− 1

 Rk

1 + α2

1−α

(
n−1−γ(n−2)

2(n−1)

)
yRk

 , (2.4.31)

which is not possible as RJ cannot be less than zero. Therefore, 0 ≤ c∗J ≤ y is

satisfied if

0 ≤ Rk <
1− α
α2

2(n− 1)

(n− 1 + γ(n− 2))y
, (2.4.32)

and

n− 2

n− 1

 Rk

1 + α2

1−α

(
n−1−γ(n−2)

2(n−1)

)
yRk

 ≤ RJ ≤
n− 2

n− 1

 Rk

1− α2

1−α

(
n−1+γ(n−2)

2(n−1)

)
yRk

 .

(2.4.33)

From the best response functions for player J and each player k, (2.4.17) and
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(2.4.16), respectively, and solving for ck, we find an interior solution for each

player k ∈ BJ

c∗k =
1− α
α2

1

(n− 1)RJ

+
n− 1 + γ

2(n− 1)
y, (2.4.34)

where RJ ≥ 0. To be an eligible interior solution, 0 ≤ c∗k ≤ y. We verify that

c∗k ≤ y if

1− α
α2

1

(n− 1)RJ

+
n− 1 + γ

2(n− 1)
y ≤ y. (2.4.35)

Rearranging the terms, we obtain

1

RJ

≤ α2

1− α

(i)︷ ︸︸ ︷
(n− 1− γ)y

2
. (2.4.35a)

If part (i) > 0, then γ < n− 1 and

RJ ≥
1− α
α2

2

(n− 1− γ)y
. (2.4.36)

If part (i) < 0, then γ > n− 1 and

RJ ≤
1− α
α2

2

(n− 1− γ)y
, (2.4.37)

which is not possible because RJ cannot be less than zero. We check that

c∗k ≥ 0 if

1− α
α2

1

(n− 1)RJ

+
n− 1 + γ

2(n− 1)
y ≥ 0, (2.4.38)

or
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RJ ≥ −
[

1− α
α2

2

(n− 1 + γ)y

]
, (2.4.38a)

which is always satisfied as RJ ≥ 0. Taking the above conditions for 0 ≤ c∗J ≤ y

and 0 ≤ c∗k ≤ y, (2.4.21), (2.4.27), (2.4.29), (2.4.32), (2.4.35), c∗J and c∗k can

exist simultaneously if

γ <
2n− 5

3

(
n− 1

n− 2

)
. (2.4.39)

When the history of the game is h = (0, ..., 0), there are four possible

equilibria, expressed as (c1, ..., cJ , ..., cn).

The traditional public goods game Nash equilibrium, (0, ..., 0, ..., 0), is al-

ways satisfied because for player J , 0 < 1−α
α2RJ

+ n−1+γ
2

y, or

RJ > −
(

1− α
α2

2

(n− 1 + γ)y

)
, (2.4.40)

is always met because RJ ≥ 0, and for each player k, 0 < 1−α
α2Rk

+ n−1
2
y, or

Rk > −
(

1− α
α2

2

(n− 1)y

)
, (2.4.41)

which is also always met as Rk ≥ 0. This equilibrium is predicted by tradi-

tional game theory for public goods games with no reciprocity preferences. As

in the previous cases of the model, the traditional public goods game Nash

equilibrium remains with the inclusion of reciprocity preferences.

The total free-riding equilibrium, (y, ..., 0, ..., y), is satisfied when the fol-

lowing conditions are met for player J and each player k. For player J ,

(n− 1)y < 1−α
α2RJ

+ n−1+γ
2

y, or

1

RJ

>
α2

1− α

(i)︷ ︸︸ ︷
(n− 1− γ)y

2
, (2.4.42)
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where if part (i) > 0, or γ < n− 1, then

0 ≤ RJ <
1− α
α2

2

(n− 1− γ)y
, (2.4.43)

or if part (i) < 0, or γ > n− 1, then

RJ >
1− α
α2

2

(n− 1− γ)y
, (2.4.44)

which is always met as RJ ≥ 0. For each player k, (n− 2)y > 1−α
α2Rk

+ n−1
2
y, or

1

Rk

<
α2

1− α
(n− 3)y

2
, (2.4.45)

where if n > 3, then

Rk >
1− α
α2

2

(n− 3)y
. (2.4.46)

The existence of the total free-riding equilibrium suggests that if player J

has observed non-cooperative behaviour and the history of the game is h =

(0, ..., 0), then player J will choose not to contribute to the group account.

This suggests that indirect reciprocity preferences play a role in free-riding

behaviour. Even when player J ’s indirect reciprocity preferences are relatively

strong, γ > n− 1 > 1 ∀ n ≥ 3, then player J ’s direct reciprocity preferences

can be quite weak. Similarly, when γ < n − 1, direct reciprocity preferences

remain low. For γ, the threshold of n−1 > 1 suggests that indirect reciprocity

preferences play a very strong role in determining this outcome. Note that the

total free-riding equilibrium does not exist when n = 3.

The social optimum equilibrium, (y, ..., y, ..., y), is satisfied when the fol-

lowing conditions are met for player J and each player k. For player J ,

(n− 1)y > 1−α
α2RJ

+ n−1+γ
2

y, or
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1

RJ

<
α2

1− α

(i)︷ ︸︸ ︷
(n− 1− γ)y

2
, (2.4.47)

where if part (i) > 0, or γ < n− 1, then

RJ >
1− α
α2

2

(n− 1− γ)y
, (2.4.48)

or if part (i) < 0, or γ > n− 1, then

RJ <
1− α
α2

2

(n− 1− γ)y
, (2.4.49)

which is not possible as RJ cannot be less than zero. For each player k,

(n− 2)y + y > 1−α
α2Rk

+ n−1
2
y, or

Rk >
1− α
α2

2

(n− 1)y
. (2.4.50)

The social optimum equilibrium is possible if player J has sufficiently strong di-

rect reciprocity preferences, and cares relatively less about indirect reciprocity

(i.e., γ < n−1). So long as γ is not too great, or in other words, so long as the

relatively role of indirect reciprocity is not too strong, player J will “forgive

and forget” the history of of the game, h = (0, ..., 0), and contribute their full

endowment to the group account.

The interior solution equilibrium, (c∗k, ..., c
∗
J , ..., c

∗
k), is satisfied when the

conditions outlined above are met for c∗J and c∗k (i.e., conditions (2.4.21) and

(2.4.26) for player J and conditions (2.4.35) and (2.4.38) for each player k).

In Figure 2.18, we represent the equilibrium in a graph (α,RJ). Note that

this figure differs from 2.18 in Case 1 of the indirect upstream reciprocity

model in Section 2.4.2.1. In Figure 2.18, f5(α) ≡ 1−α
α2

2
(n−1−γ)y . Recall that

γ > 0 and RI = γRJ . In Area I, the equilibria are the traditional public
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Figure 2.18: Indirect Downstream Reciprocity - Case 1: h = (0, ..., 0)

goods game Nash equilibrium, (0, ..., 0, ..., 0), and the total free-riding equi-

librium, (y, ..., 0, ..., y), if γ ≶ n − 1 and n > 3. In Area II , the equilibria

are the traditional public goods game Nash equilibrium, the total free-riding

equilibrium if γ > n − 1 and n > 3, or the social optimum equilibrium,

(y, ..., y, ..., y), if γ < n− 1. Along the curve f5(α), the interior solution equi-

librium, (c∗k, ..., c
∗
J , ..., c

∗
k), also exists.

Let α = 1
2

such that f5(
1
2
) = 4

(n−1−γ)y . If player J ’s reciprocity preference

is less than f5(α), i.e., RA
J < 4

(n−1−γ)y , then player J is in Area I. If player

J ’s reciprocity preference is equal to f5(α), i.e., RB
J = 4

(n−1−γ)y , then player J

is along the curve f5(α). If player J ’s reciprocity preference is greater than

f5(α), i.e., RC
J >

4
(n−1−γ)y , then player J is in Area II .

Note that Area II showcases a tipping point in the threshold for γ, the

relative strength of direct versus indirect reciprocity. If γ < n − 1, then the

social optimum is the equilibrium. If γ > n − 1, then the total free-riding

equilibrium prevails. In other words, if indirect reciprocity preferences are

much stronger than direct reciprocity preferences, then we are at the total free-

riding equilibrium, and the history of the game, h = (0, ..., 0), has a strong

impact on the outcome of the game. If indirect reciprocity preferences are
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slightly weaker (i.e., indirect reciprocity preferences may still be greater than

direct reciprocity preferences, but are decreasing compared to the previous

case), then the history of the game has less of a bearing on the game’s outcome

and the social optimum equilibrium results.

2.4.2.1.1 Comparative Statics We examine two potential equilibria that

occur in Area II in Figure 2.18, where RJ > f5(α), and illustrate the role of

the indirect reciprocity preference parameter, γ, in determining the switching

point between free-riding and cooperative behaviour. We use Mathematica

(Wolfram Research, Inc, 2020), a technical computing system, to visualize the

data. Mathematica code for reproduction of the interactive visualization is

available in Appendix A.1.3. Static snapshots and descriptions with parameter

values are presented below.
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Figure 2.19: Indirect Downstream Reciprocity - Case 1. Player J ’s utility
when R = 0.15.

In Figure 2.19, we represent player J ’s maximized utility as a function

of contribution choice, U(c), where U represents player J ’s utility level and

c represents player J ’s contribution choice. When the history of the game is

h = (0, ..., 0), n = 4, y = 10, α = 1
2
, player J believes that the other players are

contributing fully (i.e., bJ,k = y), and player J ’s direct reciprocity preference

parameter takes the value RJ = 0.15, then the social optimum equilibrium will

result when player J ’s indirect reciprocity preferences are weak (γ < 0.33) and

player J will free-ride only when their indirect reciprocity preferences are very

high (γ > n − 1). Figure 2.19 represents these two scenarios with γ = 0.25
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and γ = 3.5, respectively. Note that the condition RJ > f5(α) is not satisfied

for 0.33 < γ < n− 1.
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Figure 2.20: Indirect Downstream Reciprocity - Case 1. Player J ’s utility
when R = 0.5.

As player J ’s direct reciprocity preference parameter increases, we observe

a greater range of values for γ < n− 1 which satisfy the condition RJ > f5(α)

for the social optimum equilibrium to occur. In Figure 2.20, when RJ = 0.5

and player J ’s indirect reciprocity preferences are weak, γ < 1, then player J

will contribute fully to the group account. However, when player J ’s indirect

reciprocity preferences are relatively stronger, 1 < γ < 2.2, all else constant,

then player J ’s utility function is still upward sloping and maximized when

they are contributing fully, c∗J = y. The condition RJ > f5(α) is not satisfied

for values 2.2 < γ < n− 1. Once player J ’s indirect reciprocity preference pa-

rameter becomes sufficiently strong, γ > n−1, then player J ’s utility function

is downward sloping and maximized when c∗J = 0 such that total free-riding is

optimal.

Finally, in Figure 2.21, when RJ = 1, we observe similar results. When

player J ’s indirect reciprocity preferences are weak, γ < 1, then they will

contribute fully to the group account. As player J ’s indirect reciprocity pref-

erences become relatively stronger, 1 < γ < 2.6, all else constant, then player

J ’s utility function remains upward sloping and maximized when they are con-

tributing fully, c∗J = y. The social optimum equilibrium occurs for all values

of γ < 2.6 when RJ = 1. Once player J ’s indirect reciprocity preference pa-
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rameter becomes sufficiently strong, γ > n− 1, then total free-riding becomes

optimal.

0 2 4 6 8 10
c

10

20

30

40
U

Utility when γ=0.5

0 2 4 6 8 10
c

10

20

30

40
U

Utility when γ=1.5

0 2 4 6 8 10
c

10

20

30

40
U

Utility when γ=3.5

Figure 2.21: Indirect Downstream Reciprocity - Case 1. Player J ’s utility
when R = 1.

This shift between non-cooperative free-riding behaviour towards coopera-

tive behaviour can be attributed to the role of indirect reciprocity preferences.

When player J has relatively strong indirect reciprocity preferences, γ > n−1,

then total free-riding is the optimal behaviour. When player J ’s indirect reci-

procity preferences are not as strong, 1 < γ < n − 1, then full cooperation is

optimal, all else equal. When player J does not care as much about indirect

reciprocity, γ < 1, then the history of the game, h = (0, ..., 0) does not influ-

ence their contribution choice as much as when player J ’s indirect reciprocity

preferences are very strong, γ > n− 1.

This exercise shows that the reputation-based effects of indirect reciprocity

only negatively affect cooperation when indirect reciprocity matters greatly to

player J (i.e., when γ > n− 1). Otherwise, even when player J has relatively

strong indirect reciprocity preferences (i.e., 1 < γ < n−1), if player J believes

that each player k ∈ BJ is contributing their full endowment, then player J will

also contribute fully. Indirect reciprocity preferences only hamper cooperation

when these preferences are very strong.

See Appendix A.1.3.1 for Mathematica code to reproduce the figures at the

specified parameter values.
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2.4.2.2 Case 2

Second, if the history of the game is h = (y, ..., y), then player J has ob-

served players in set A fully contributing, 1
n

∑
i∈A

ci = y. This means that

with probability 1, c∗i = y ∀ i ∈ A, thus player J knows with certainty that

c∗1 = y, ..., c∗n = y (i.e., players in set A are at the social optimum equilibrium).

However, because player J is choosing their contribution amount at the same

time as each player k ∈ BJ , player J still must form beliefs about the con-

tribution strategy of each player k ∈ BJ , bJ,k(h). Player J ’s best response

function is

BRJ ((bJ,k(y, ..., y))k 6=J) =



0 if
∑
k∈BJ

bJ,k(h) <
1− α
α2RJ

+
n− 1− γ

2
y

[0, y] if
∑
k∈BJ

bJ,k(h) =
1− α
α2RJ

+
n− 1− γ

2
y

y if
∑
k∈BJ

bJ,k(h) >
1− α
α2RJ

+
n− 1− γ

2
y

(2.4.51)

Given the best response function of player J and each player k, (2.4.51) and

(2.4.16), respectively, we find

(n− 1)ck =
1− α
α2RJ

+
n− 1− γ

2
y, (2.4.52)

and

(n− 2)ck + cJ =
1− α
α2Rk

+
n− 1

2
y. (2.4.53)

Rearranging the terms and solving for cJ , the interior solution for player J is

c∗J =
1− α
α2

(
1

Rk

− n− 2

n− 1

1

RJ

)
+
n− 1 + γ(n− 2)

2(n− 1)
y, (2.4.54)

where RJ ≥ 0, and Rk ≥ 0. To be an eligible interior solution, 0 ≤ c∗J ≤ y.
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We verify that c∗J ≤ y if

1− α
α2

(
1

Rk

− n− 2

n− 1

1

RJ

)
+
n− 1 + γ(n− 2)

2(n− 1)
y ≤ y. (2.4.55)

Rearranging the terms, we obtain

1

RJ

≥ n− 1

n− 2

(
1

Rk

− α2

1− α
(n− 1− γ(n− 2))y

2(n− 1)

)
, (2.4.55a)

or

1

RJ

≥
(
n− 1

n− 2

) (i)︷ ︸︸ ︷
1− α2

1−α
n−1−γ(n−2)

2(n−1) yRk

Rk

. (2.4.55b)

If part (i) > 0, then

1− α
α2

2(n− 1)

y
> Rk (n− 1− γ(n− 2))︸ ︷︷ ︸

(ii)

, (2.4.56)

where if part (ii) > 0, or γ < n−1
n−2 , then

0 ≤ Rk <
1− α
α2

2(n− 1)

(n− 1− γ(n− 2))y
, (2.4.57)

and if part (ii) < 0, or γ > n−1
n−2 , then

Rk >
1− α
α2

2(n− 1)

(n− 1− γ(n− 2))y
, (2.4.58)

where Rk ≥ 0 is always met. In this case, where part (i) > 0, then

0 ≤ RJ ≤
n− 2

n− 1

 Rk

1− α2

1−α

(
n−1−γ(n−2)

2(n−1)

)
yRk

 . (2.4.59)
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If part (i) < 0, then

1− α
α2

2(n− 1)

y
< Rk (n− 1− γ(n− 2))︸ ︷︷ ︸

(iii)

, (2.4.60)

where if part (iii) > 0, or γ < n−1
n−2 , then

Rk >
1− α
α2

2(n− 1)

(n− 1− γ(n− 2))y
, (2.4.61)

and if part (iii) < 0, or γ > n−1
n−2 , then

Rk <
1− α
α2

2(n− 1)

(n− 1− γ(n− 2))y
, (2.4.62)

which is not possible because Rk cannot be less than zero. When part (i) in

(2.4.55b) is less than 0, then

RJ >
n− 2

n− 1

 Rk

1− α2

1−α

(
n−1−γ(n−2)

2(n−1)

)
yRk

 , (2.4.63)

and since part (i) in (2.4.55b) is less than 0, RJ ≥ 0 is always satisfied. We

check that c∗J ≥ 0 if

1− α
α2

(
1

Rk

− n− 2

n− 1

1

RJ

)
+
n− 1 + γ(n− 2)

2(n− 1)
y ≥ 0. (2.4.64)

Rearranging the terms, we get

1

RJ

≤ n− 1

n− 2

(
1

Rk

+
α2

1− α
(n− 1 + γ(n− 2))y

2(n− 1)

)
, (2.4.64a)

or
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RJ ≥
n− 2

n− 1

(
Rk

1 + α2

1−α
n−1+γ(n−2)

2(n−1) yRk

)
. (2.4.64b)

The conditions for 0 ≤ c∗J ≤ y can be satisfied simultaneously.

Next, we solve for the interior solution, c∗k. From the best response func-

tions for player J and each player k, (2.4.51) and (2.4.16), respectively, and

solving for ck, we obtain

c∗k =
1− α
α2

1

(n− 1)RJ

+
n− 1− γ
2(n− 1)

y, (2.4.65)

where RJ ≥ 0. To be an eligible interior solution, 0 ≤ c∗k ≤ y. We verify that

c∗k ≤ y if

1− α
α2

1

(n− 1)RJ

+
n− 1− γ
2(n− 1)

y ≤ y. (2.4.66)

Rearranging the terms,

1

RJ

≤ α2

1− α
(n− 1 + γ)y

2
, (2.4.66a)

or

RJ ≥
1− α
α2

2

(n− 1 + γ)y
. (2.4.66b)

We check that c∗k ≥ 0 if

1− α
α2

1

(n− 1)RJ

+
(n− 1− γ)y

2(n− 1)
≥ 0. (2.4.67)

Rearranging the terms,
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1

RJ

≥ −

 α2

1− α

(i)︷ ︸︸ ︷
(n− 1− γ)y

2

 , (2.4.67a)

where if part (i) > 0, or γ < n− 1, then

RJ ≥ −
(

1− α
α2

2

(n− 1− γ)y

)
, (2.4.68)

where RJ ≥ 0 is always met, and if part (i) < 0, or γ > n− 1, then

RJ ≤ −
(

1− α
α2

2

(n− 1− γ)y

)
, (2.4.69)

where RJ ≥ 0 is also possible. The conditions for 0 ≤ c∗k ≤ y can be simultane-

ously satisfied. However, it is not possible for the interior solutions c∗J and c∗k

to exist at the same time. This means that the interior solution equilibrium,

(c∗k, ..., c
∗
J , ..., c

∗
k), is not a potential equilibrium.

When the history of the game is h = (y, ..., y), there are four possible equi-

libria. This differs from the Case 2 in the indirect upstream reciprocity model

in Section 2.3.2.2 which had five possible equilibria. However, this difference

can be attributed to the fact that the conditions for the existence of the in-

terior solutions, c∗J and c∗k, cannot be satisfied simultaneously in the indirect

downstream reciprocity model. The following possible equilibria remain the

same as in Section 2.3.2.2.

The traditional public goods game Nash equilibrium, (0, ..., 0, ..., 0), is sat-

isfied if the following conditions are met. For player J , 0 < 1−α
α2RJ

+ n−1−γ
2

y,

or

1

RJ

> −

 α2

1− α

(i)︷ ︸︸ ︷
(n− 1− γ)y

2

 , (2.4.70)
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where if part (i) > 0, or γ < n− 1, then

RJ > −
(

1− α
α2

2

(n− 1− γ)y

)
, (2.4.71)

or if part (i) < 0, or γ > n− 1, then

RJ < −
(

1− α
α2

2

(n− 1− γ)y

)
, (2.4.72)

which is possible if RJ ≥ 0. For player k, 0 < 1−α
α2Rk

+ n−1
2
y. Rearranging the

terms, we get

1

Rk

> −
(

α2

1− α
n− 1

2
y

)
, (2.4.73)

or

Rk > −
(

1− α
α2

2

(n− 1)y

)
, (2.4.73a)

which is always met as Rk ≥ 0. The traditional public goods game Nash

equilibrium is predicted by standard game theory and holds with or without

accounting for reciprocity preferences. Even when player J cares about being

indirectly reciprocal, or player J ’s indirect reciprocity preferences are quite

strong, where γ > n − 1, player J will contribute nothing if they have a

relatively weak direct reciprocity preference. If player J ’s indirect reciprocity

preference is relatively weaker, γ < n−1, then player J will contribute nothing

to the group account at any value of RJ ≥ 0.

The altruistic equilibrium, (0, ..., y, ..., 0), is satisfied when the following

conditions for player J and each player j are met. For player J , 0 > 1−α
α2RJ

+

n−1−γ
2

y, or
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1

RJ

< −

 α2

1− α

(i)︷ ︸︸ ︷
(n− 1− γ)y

2

 . (2.4.74)

If part (i) > 0, or γ < n− 1, then

RJ > −
(

1− α
α2

2

(n− 1− γ)y

)
, (2.4.75)

which is always true since RJ ≥ 0. If part (i) < 0, or γ > n− 1, then

RJ < −
(

1− α
α2

2

(n− 1− γ)y

)
, (2.4.76)

which is also possible, so long as RJ ≥ 0. For each player k, y < 1−α
α2Rk

+ n−1
2
y,

or

1

Rk

> −
(

α2

1− α
n− 3

2
y

)
. (2.4.77)

If n = 3, then 1
Rk

> 0 is possible. If n > 3, then

Rk > −
(

1− α
α2

2

(n− 3)y

)
, (2.4.78)

which is always met as Rk ≥ 0. The conditions on RJ present a somewhat

counter-intuitive result. If player J has relatively weaker indirect reciprocity

preferences (i.e., γ < n − 1), then any value of RJ ≥ 0 can result in player J

choosing to contribute their full endowment. However, if player J has relatively

stronger indirect reciprocity preferences (i.e., γ > n − 1), then player J will

contribute their full endowment at lower levels of RJ . Note that in the former

case, RJ can take any value, so long as RJ ≥ 0, but in the latter, RJ is

bounded from above. As well, the threshold value for γ is greater than one

which implies that indirect reciprocity preferences are stronger than direct
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reciprocity preferences for at least the latter case and for some range in the

first case. This finding is counter-intuitive because, as when the history of

the game is h = (0, ..., 0), we expect that player J would not be “kind” to

their own group, especially when player J believes that their own group will

be “unkind” to them as well. However, in this case, when the history of the

game is h = (y, ..., y), we find that player J will be “kind” to their own group

depending on the strength of their indirect reciprocity preferences despite the

other players in their group not contributing.

The total free-riding equilibrium, (y, ..., 0, ..., y), is satisfied if for player J ,

(n− 1)y < 1−α
α2RJ

+ n−1−γ
2

y, or

0 ≤ RJ <
1− α
α2

2

(n− 1 + γ)y
, (2.4.79)

and for player k, (n− 2)y > 1−α
α2Rk

+ n−1
2
y, or

1

Rk

<
α2

1− α
n− 3

2
y. (2.4.80)

If n = 3, then 1
Rk

< 0, which is not possible since we restrict Rk ≥ 0. If n > 3,

then

Rk >
1− α
α2

2

(n− 3)y
. (2.4.81)

In this equilibrium, player J will free-ride if their direct reciprocity preferences

are weak enough, irrespective of their relative indirect reciprocity preferences.

As γ gets larger, this threshold decreases to lower levels of RJ , which suggests

that stronger indirect reciprocity preferences may push player J to one of the

other different and more cooperative equilibrium.

The social optimum equilibrium, (y, ..., y, ..., y), is satisfied if for player J ,

(n− 1)y > 1−α
α2RJ

+ n−1−γ
2

y, or

RJ >
1− α
α2

2

(n− 1 + γ)y
, (2.4.82)
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and for player k, (n− 2)y + y > 1−α
α2Rk

+ n−1
2
y, or

Rk >
1− α
α2

2

(n− 1)y
. (2.4.83)

The social optimum equilibrium results when both player J and player k have

sufficiently strong direct reciprocity preferences. Player J ’s threshold for con-

tributing their full endowment decreases as γ, or the relative importance of

player J ’s indirect reciprocity preference, increases. This suggests that the

more player J cares about indirect reciprocity, the lower the threshold is for

player J to contribute their full endowment to the group account (i.e., it is

easier to contribute the full endowment).
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Figure 2.22: Indirect Downstream Reciprocity - Case 2: h = (y, ..., y)

In Figure 2.22, we represent the equilibria in a graph (α,RJ). In Figure

2.22, f5(α) ≡ 1−α
α2

2
(n−1−γ)y and f6(α) ≡ 1−α

α2
2

(n−1+γ)y . In Area I, the equilibria

are the traditional public goods game Nash equilibrium, (0, ..., 0, ..., 0), when

γ ≶ n − 1, the altruistic equilibrium, (0, ..., y, ..., 0), when γ ≶ n − 1, or the

total free-riding equilibrium, (y, ..., 0, ..., y). In Area II , the equilibria are

the traditional public goods game Nash equilibrium when γ ≶ n − 1, the
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altruistic equilibrium when γ ≶ n − 1, or the social optimum equilibrium,

(y, ..., y, ..., y). In Area III , the equilibria are the traditional public goods

game Nash equilibrium when γ < n − 1, the altruistic equilibrium when γ <

n− 1, or the social optimum equilibrium.

Let α = 1
2

such that f5(
1
2
) = 4

(n−1−γ)y and f6(
1
2
) = 4

(n−1+γ)y . If player

J ’s reciprocity preference is less than f6(α), i.e., RA
J < 4

(n−1+γ)y , then player

J is in Area I. If player J ’s reciprocity preference is between f6(α) and

f5(α), i.e., 4
(n−1+γ)y < RC

J < 4
(n−1−γ)y , then player J is in Area II . If player

J ’s reciprocity preference is greater than f5(α), i.e., RE
J > 4

(n−1−γ)y , then

player J is in Area III . To illustrate, if player J has very strong reciprocity

preferences, RE
J , but also has relatively greater indirect reciprocity preferences,

γ > n− 1, then the social optimum equilibrium will result.

2.4.2.2.1 Comparative Statics We examine two potential equilibria that

occur in Area III in Figure 2.22, where RJ > f5(α), and illustrate the role of

the indirect reciprocity preference parameter, γ, in determining the switching

point between altruistic and non-cooperative behaviour. In Area III in Figure

2.22, when player J believes that each player k ∈ BJ is not contributing,

bJ,k = 0, then there are two potential equilibria: the traditional public goods

game Nash equilibrium and the altruistic equilibrium. Both equilibria are

satisfied if RJ > −f5(α) when γ < n− 1, and if RJ < −f5(α) when γ > n− 1

(see conditions (2.4.71) and (2.4.72) for the traditional public goods game Nash

equilibrium and (2.4.75) and (2.4.76) for the altruistic equilibrium). We use

Mathematica (Wolfram Research, Inc, 2020), a technical computing system,

to visualize the data. Mathematica code for reproduction of the interactive

visualization is available in Appendix A.1.3. Static snapshots and descriptions

with parameter values are presented below.

In Figure 2.23, we represent player J ’s maximized utility as a function of

contribution choice, U(c), where U represents player J ’s utility level and c

represents player J ’s contribution choice. When the history of the game is

h = (y, ..., y), n = 3, y = 10, α = 1
2
, player J believes that the other players

are contributing nothing (i.e., bJ,k = 0), and player J has relatively weak direct
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Figure 2.23: Indirect Downstream Reciprocity - Case 2. Player J ’s utility
when R = 0.15.

reciprocity preferences, then not contributing to the group account is optimal

for all values of γ > 0. Player J ’s utility function is downward sloping and

maximized when player J is contributing nothing to the group account, c∗J = 0.

The traditional public goods game Nash equilibrium is optimal.

The traditional public goods game Nash equilibrium and the altruistic

equilibrium are both potential equilibrium in Area III of Figure 2.22 where

RJ > f5(α) and when bJ,k = 0 and γ < n − 1. Yet comparative statics in

Mathematica show that the traditional public goods game Nash equilibrium is

always optimal for all values of γ, where γ > 0, compared to the other potential

equilibria . Therefore, even when indirect reciprocity matters greatly to player

J and player J has observed the history of the game where ci = y, if player

J believes that each player k ∈ BJ will not contribute, bJ,k = 0, then player

J will not contribute to the group account as well. The altruistic equilibrium

does not present in the Mathematica data visualization for any parameter

values that satisfy the conditions for the equilibrium (i.e., condition (2.4.75)).

To further illustrate this, the following figures depict player J ’s utility func-

tion at different values of RJ and γ. In Figure 2.24, we represent player J ’s

utility function with low direct reciprocity preferences, RJ = 0.5, all else equal.

Player J ’s utility function is maximized when c∗J = 0 and the traditional pub-

lic goods game equilibrium remains optimal for all values of γ. Figure 2.25

presents player J ’s utility function with strong direct reciprocity preferences,
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Figure 2.24: Indirect Downstream Reciprocity - Case 2. Player J ’s utility
when RJ = 0.5.

RJ = 1, all else equal. Again the traditional public goods game Nash equilib-

rium is optimal and player J ’s utility is maximized when they are contributing

nothing. Not contributing remains optimal. Note that player J ’s overall utility

level is increasing, all else equal, as RJ increases from RJ = 0.15 to RJ = 1.
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Figure 2.25: Indirect Downstream Reciprocity - Case 2. Player J ’s utility
when RJ = 1.

When the history of the game is h = (y, ..., y) and RJ > f5(α) in Figure

2.22, and player J believes that each player k ∈ BJ will contribute nothing,

bJ,k = 0, then the traditional public goods game Nash equilibrium is optimal

when γ > 0. In this case, reputation does not affect player J ’s contribution

choice. If player J has observed each player i ∈ A fully contribute, then when

player J believes that each player k ∈ BJ , where BJ ⊂ B, will not contribute

to the group account, player J will also not contribute, even when player J
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has relatively strong indirect reciprocity preferences, γ > 1. Direct reciprocity

preferences and beliefs about players’ contribution strategies have a greater

effect on player J ’s contribution choice than indirect reciprocity preferences in

this case.

See Appendix A.1.3.2 for Mathematica code to reproduce the figures at the

specified parameter values.

2.4.2.3 Case 3

Finally, if the history of the game is h = (c, ..., c), then player J has observed

1
n

∑
i∈A

ci = c ∈]0, y[. This means that player J does not know with certainty

the contribution amount of each player i ∈ A. As before, while h = (c, ..., c)

represents a multiplicity of interior contributions, in this case we examine the

special case of the interior solution equilibrium is the history of the game, h =

(c∗, ..., c∗). Player J is choosing their contribution amount at the same time

as each player k ∈ BJ and player J must form beliefs about the contribution

strategy of each player k ∈ BJ . From the baseline game, we know that c∗i =

1−α
α2

1
(n−1)R + 1

2
y ∀ i ∈ A, and 0 ≤ c∗i ≤ y if R ≥ 1−α

α2
2

(n−1)y . Because we assume

that players are symmetric in the baseline case (i.e., each player i ∈ A) and

in set BJ (i.e., each player k ∈ BJ where BJ ⊂ B), we assume Ri = Rk = R.

Player J ’s best response function is
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BRJ ((bJ,k(c, ..., c))k 6=J) =



0 if
∑
k∈BJ

bJ,k(h) < 1−α
α2

(
1
RJ
− γ

n−1
1
R

)
+n−1

2
y

[0, y] if
∑
k∈BJ

bJ,k(h) = 1−α
α2

(
1
RJ
− γ

n−1
1
R

)
+n−1

2
y

y if
∑
k∈BJ

bJ,k(h) > 1−α
α2

(
1
RJ
− γ

n−1
1
R

)
+n−1

2
y

(2.4.84)

From the best response functions for player J and each player k, (2.4.84) and

(2.4.16), respectively

(n− 1)ck =
1− α
α2

(
1

RJ

− γ

n− 1

1

R

)
+
n− 1

2
y, (2.4.85)

and

(n− 2)ck + cJ =
1− α
α2R

+
n− 1

2
y. (2.4.86)

From these expressions, solving for cJ , the interior solution is

c∗J =
1− α
α2

(
(n− 1)2 + γ(n− 2)

(n− 1)2
1

R
− n− 2

n− 1

1

RJ

)
+

1

2
y, (2.4.87)

where RJ ≥ 0, and R ≥ 0. To be an eligible interior solution, 0 ≤ c∗J ≤ y. We

verify that c∗J ≤ y if

1− α
α2

(
(n− 1)2 + γ(n− 2)

(n− 1)2
1

R
− n− 2

n− 1

1

RJ

)
+

1

2
y ≤ y. (2.4.88)
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Rearranging the terms, we obtain

1

RJ

≥ (n− 1)2 + γ(n− 2)

(n− 1)(n− 2)

1

R
− α2

1− α
n− 1

2(n− 2)
y, (2.4.88a)

or

1

RJ

≥

(i)︷ ︸︸ ︷
(n−1)2+γ(n−2)
(n−1)(n−2) −

α2

1−α
n−1

2(n−2)yR

R
. (2.4.88b)

If part (i) > 0, then

0 ≤ R <
1− α
α2

2(n− 1)2 + 2γ(n− 2)

(n− 1)2y
, (2.4.89)

and

0 ≤ RJ ≤
R

(n−1)2+γ(n−2)
(n−1)(n−2) −

α2

1−α
n−1

2(n−2)yR
. (2.4.90)

If part (i) < 0, then

R >
1− α
α2

2(n− 1)2 + 2γ(n− 2)

(n− 1)2y
, (2.4.91)

and

RJ ≥
R

(n−1)2+γ(n−2)
(n−1)(n−2) −

α2

1−α
n−1

2(n−2)yR
, (2.4.92)

which is always met as RJ ≥ 0. We check that c∗J ≥ 0 if

1− α
α2

(
(n− 1)2 + γ(n− 2)

(n− 1)2
1

R
− n− 2

n− 1

1

RJ

)
+

1

2
y ≥ 0. (2.4.93)
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Rearranging the terms, we obtain

1

RJ

≤ (n− 1)2 + γ(n− 2)

(n− 1)(n− 2)

1

R
+

α2

1− α
n− 1

2(n− 2)
y, (2.4.93a)

or

RJ ≥
R

(n−1)2+γ(n−2)
(n−1)(n−2) + α2

1−α
n−1

2(n−2)yR
. (2.4.93b)

The condition 0 ≤ c∗J ≤ y can be satisfied.

Solving for the interior solution, ck, we find

c∗k =
1− α
α2

(
1

n− 1

1

RJ

− γ

(n− 1)2
1

R

)
+

1

2
y, (2.4.94)

where RJ ≥ 0 and R ≥ 0. For c∗k to be an eligible interior solution, 0 ≤ c∗k ≤ y.

We verify that c∗k ≤ y if

1− α
α2

(
1

n− 1

1

RJ

− γ

(n− 1)2
1

R

)
+

1

2
y ≤ y. (2.4.95)

Rearranging the terms, we obtain

1

R
≥ n− 1

γ

1

RJ

− α2

1− α
(n− 1)2

2γ
y, (2.4.95a)

or

1

R
≥

(i)︷ ︸︸ ︷
n−1
γ
− α2

1−α
(n−1)2

2γ
yRJ

RJ

. (2.4.95b)

If part (i) > 0, then
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0 ≤ RJ <
1− α
α2

2

(n− 1)y
, (2.4.96)

and

0 ≤ R ≤ γ

n− 1
RJ −

1− α
α2

2γ

(n− 1)2y
, (2.4.97)

or

0 ≤ R ≤ RJ

n−1
γ
− α2

1−α
(n−1)2

2γ
yRJ

. (2.4.98)

If part (i) < 0, then

RJ >
1− α
α2

2

(n− 1)y
, (2.4.99)

and

R ≥ γ

n− 1
RJ −

1− α
α2

2γ

(n− 1)2y
, (2.4.100)

or

R ≥ RJ

n−1
γ
− α2

1−α
(n−1)2

2γ
yRJ

, (2.4.101)

and since R ≥ 0, this condition is always met. We check that c∗k ≥ 0 if

1− α
α2

(
1

n− 1

1

RJ

− γ

(n− 1)2
1

R

)
+

1

2
y ≤ 0. (2.4.102)

Rearranging the terms, we obtain

1

R
≤ n− 1

γ

1

RJ

+
α2

1− α
(n− 1)2

2γ
y, (2.4.102a)
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or

R ≥ γ

n− 1
RJ +

1− α
α2

2γ

(n− 1)2y
. (2.4.102b)

However, the conditions for 0 ≤ c∗k ≤ y cannot be simultaneously satisfied.

Therefore, the interior solution, c∗k, is not possible.

When the history of the game is h = (c, ..., c), there are five possible equi-

libria. This differs from the Case 3 in the indirect upstream reciprocity model

in Section 2.3.2.3 which had seven possible equilibria. However, this differ-

ence can be attributed to the fact that the conditions for the existence of the

interior solution for player k, c∗k, are not satisfied in the indirect downstream

reciprocity model, and that the conditions required for the “kind” equilibrium,

(0, ..., c∗J , ..., 0), are not satisfied. The following possible equilibria remain the

same as in Section 2.3.2.3.

The traditional public goods game Nash equilibrium, (0, ..., 0, ..., 0), is satis-

fied when the following conditions are met. For player J , 0 < 1−α
α2

(
1
RJ
− γ

n−1
1
R

)
+

n−1
2
y. Rearranging the terms, we obtain

1

RJ

>
γ

n− 1

1

R
− α2

1− α

(
n− 1

2

)
y, (2.4.103)

or

1

RJ

>

(i)︷ ︸︸ ︷
γ

n−1 −
α2

1−α

(
n−1
2

)
yR

R
. (2.4.104)

If part (i) > 0, then

0 ≤ R <
1− α
α2

2γ

(n− 1)2y
, (2.4.105)

and
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RJ <
R

γ
n−1 −

α2

1−α

(
n−1
2

)
yR

, (2.4.106)

or

RJ <
n− 1

γ
R− 1− α

α2

2

(n− 1)y
. (2.4.107)

If part (i) < 0, then

R >
1− α
α2

2γ

(n− 1)2y
, (2.4.108)

and

RJ >
R

γ
n−1 −

α2

1−α

(
n−1
2

)
yR

, (2.4.109)

or

RJ >
n− 1

γ
R− 1− α

α2

2

(n− 1)y
, (2.4.110)

and because RJ ≥ 0, this condition is always satisfied. For player k, 0 <

1−α
α2R

+ n−1
2
y, or

R > −
(

1− α
α2

2

(n− 1)y

)
, (2.4.111)

which is always satisfied as R ≥ 0. The traditional public goods game Nash

equilibrium is possible with or without accounting for reciprocity preferences.

The altruistic equilibrium, (0, ..., y, ..., 0), is satisfied when the following

conditions are met for player J and each player k. For player J , 0 > 1−α
α2

(
1
RJ
− γ

n−1
1
R

)
+

n−1
2
y. Rearranging the terms, we obtain

114



1

RJ

<
γ

(n− 1)R
− α2

1− α

(
n− 1

2

)
y, (2.4.112)

or

1

RJ

<

(i)︷ ︸︸ ︷
γ

n−1 −
α2

1−α

(
n−1
2

)
yR

R
. (2.4.113)

If part (i) > 0, then

0 ≤ R <
1− α
α2

2γ

(n− 1)2y
, (2.4.114)

and

RJ >
n− 1

γ
R− 1− α

α2

2

(n− 1)y
, (2.4.115)

or

RJ >
R

γ
n−1 −

α2

1−α

(
n−1
2

)
yR

. (2.4.116)

From (2.4.113), if part (i) < 0, then

R >
1− α
α2

2γ

(n− 1)2y
, (2.4.117)

and

0 ≤ RJ <
n− 1

γ
R− 1− α

α2

2

(n− 1)y
, (2.4.118)

or
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0 ≤ RJ <
R

γ
n−1 −

α2

1−α

(
n−1
2

)
yR

. (2.4.119)

However, RJ cannot be negative, so this equilibrium is not possible when

R > 1−α
α2

2γ
(n−1)2y . For player k, y < 1−α

α2R
+ n−1

2
y, or

1

R
> −

(
α2

1− α
(n− 3)y

2

)
. (2.4.120)

When n = 3, 1
R
> 0 is always met. When n > 3,

R > −
(

1− α
α2

2

(n− 3)y

)
, (2.4.121)

which is always satisfied as R ≥ 0. The altruistic equilibrium exists if player

J has sufficiently strong reciprocity preferences. As the relative importance of

player J ’s indirect reciprocity preference increases (i.e., as γ increases), then

the threshold for RJ decreases. This means that as player J cares more about

indirect reciprocity, then the threshold for contributing their full endowment

is lowered. This suggests that the history of the game and player J ’s indi-

rect reciprocity preference play roles in determining player J ’s cooperative

behaviour, even when the players in player J ’s own set are not contributing

to the group account.

The total free-riding equilibrium, (y, ..., 0, ..., y), is satisfied when the fol-

lowing conditions for player J and each player k are met. For player J ,

(n− 1)y < 1−α
α2

(
1
RJ
− γ

n−1
1
R

)
+ n−1

2
y. Rearranging the terms, we obtain

1

RJ

>
γ

(n− 1)R
+

α2

1− α

(
n− 1

2

)
y, (2.4.122)

or

0 ≤ RJ <
n− 1

γ
R +

1− α
α2

2

(n− 1)y
. (2.4.123)
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For player k, (n− 2)y > 1−α
α2R

+ n−1
2
y, or

1

R
<

α2

1− α

(
n− 3

2

)
y. (2.4.124)

If n = 3, then 1
R
< 0 which is not possible because we restrict R ≥ 0. If n > 3,

then

R >
1− α
α2

2

(n− 3)y
. (2.4.125)

The total free-riding equilibrium exists if player J ’s direct reciprocity pref-

erences are sufficiently weak and each player k’s reciprocity preferences are

sufficiently strong. As player J ’s indirect reciprocity preference increases (i.e.,

as γ increases), then the threshold on RJ lowers. This means that player J has

very weak reciprocity preferences towards players in their own set. While this

finding may not be intuitive in isolation, in the context of the other equilibria,

it highlights a switching point towards more cooperative outcomes.

The equilibrium with some free-riding, (y, ..., c∗J , ..., y), is satisfied when for

player J , (n− 1)y = 1−α
α2

(
1
RJ
− γ

n−1
1
R

)
+ n−1

2
y, or

RJ =
n− 1

γ
R +

1− α
α2

2

(n− 1)y
, (2.4.126)

and for player k, (n− 2)y + cJ >
1−α
α2R

+ n−1
2
y. Rearranging the terms, we find

1

R
>
n− 1

γRJ

− α2

1− α
(n− 1)2

2γ
y, (2.4.127)

or

1

R
>

(i)︷ ︸︸ ︷
n−1
γ
− α2

1−α
(n−1)2

2γ
yRJ

RJ

. (2.4.128)
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If part (i) > 0, then

0 ≤ RJ <
1− α
α2

2

(n− 1)y
. (2.4.129)

From the conditions outlined for player J , this is not possible (even when

R = 0) as RJ = n−1
γ
R + 1−α

α2
2

(n−1)y . From (2.4.128), if part (i) < 0, then

RJ >
1− α
α2

2

(n− 1)y
, (2.4.130)

which is possible if R > 0. Therefore,

R >
γ

n− 1
RJ −

1− α
α2

2γ

(n− 1)2y
, (2.4.131)

which is always satisfied as R ≥ 0. For the equilibrium with some free-riding

to be satisfied, R > 0 and the conditions on 0 ≤ c∗J ≤ y must be met (i.e.,

conditions (2.4.93) and (2.4.95)). As player J ’s indirect reciprocity preferences

increase (i.e., as γ increases), the value of RJ decreases. In other words, when

player J cares relatively more about indirect reciprocity, player J does not

need to have as strong direct reciprocity preferences in order to contribute

(0 ≤ c∗J ≤ y) to the group account. Indeed, player J contributes less than

their full endowment to the group account even when the other players are

fully contributing. The strength of player J ’s indirect reciprocity preferences

and the history of the game h = (c, ..., c) may temper player J ’s contribution

choice so that they are contributing less than the other players.

The social optimum equilibrium, (y, ..., y, ..., y), is satisfied when the fol-

lowing conditions for player J and each player k are satisfied. For player J ,

(n− 1)y > 1−α
α2

(
1
RJ
− γ

n−1
1
R

)
+ n−1

2
y. Rearranging the terms, we find

1

RJ

<
γ

(n− 1)R
+

α2

1− α
n− 1

2
y, (2.4.132)
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or

RJ >
n− 1

γ
R +

1− α
α2

2

(n− 1)y
. (2.4.133)

For player k, (n− 2)y + y > 1−α
α2R

+ n−1
2
y. Rearranging the terms, we find

1

R
<

α2

1− α
n− 1

2
y, (2.4.134)

or

R >
1− α
α2

2

(n− 1)y
. (2.4.135)

The social optimum equilibrium is satisfied when player J and player k have

sufficiently strong reciprocity preferences.
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Figure 2.26: Indirect Downstream Reciprocity - Case 3: h = (c, ..., c)

In Figure 2.26, we represent the equilibria in a graph (α,RJ). In Fig-

ure 2.26, g4(α) ≡ n−1
γ
R + 1−α

α2
2

(n−1)y and g5(α) ≡ n−1
γ
R − 1−α

α2
2

(n−1)y . In
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Area I, the equilibria are the traditional public goods game Nash equilibrium,

(0, ..., 0, ..., 0), or the total free-riding equilibrium, (y, ..., 0, ..., y). In Area II ,

the equilibria are the traditional public goods game Nash equilibrium, the

total free-riding equilibrium, or the altruistic equilibrium, (0, ..., y, ..., 0). In

Area III , the equilibria are the traditional public goods game Nash equilib-

rium, the altruistic equilibrium, or the social optimum equilibrium, (y, ..., y, ..., y).

In addition to the traditional public goods game Nash equilibrium, which ex-

ists everywhere, the equilibrium with some free-riding, (y, ..., c∗J , ..., y), exists

along g4(α).

Let α = 1
2

such that g4(
1
2
) = n−1

γ
R + 4

(n−1)y and g5(
1
2
) = n−1

γ
R − 4

(n−1)y . If

player J ’s reciprocity preference is less than g5(α), i.e., RA
J <

n−1
γ
R − 4

(n−1)y ,

then player J is at point A in Area I. If player J ’s reciprocity preference is

between g5(α) and g4(α), i.e., n−1
γ
R− 4

(n−1)y < RC
J <

n−1
γ
R+ 4

(n−1)y , then player

J is at point C in Area II . If player J ’s reciprocity preference is greater than

g4(α), i.e., RE
J > n−1

γ
R + 4

(n−1)y , then player J is at point E in Area III . If

player J ’s reciprocity preference is equal to g4(α), then player J is at point D

along g4(α).

As discussed in Section 2.2.3, comparative statics for h = (c, ..., c) or in-

terior solution equilibria are not presented here. Comparisons at the corner

cases provide greater insight into thresholds for cooperative behaviour.
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Chapter 3

Conclusion

3.1 Discussion

The inclusion of direct and indirect reciprocity preferences in public goods

games can lead to outcomes not predicted by traditional game theory. In

the baseline and direct reciprocity models, more cooperative equilibria can

be reached if players have sufficiently strong reciprocity preferences, depend-

ing on their beliefs and the history of the game. In addition to direct reci-

procity preferences, the relative strength of indirect reciprocity preferences

also matters. Through the examples provided in the indirect upstream reci-

procity model and indirect downstream reciprocity model, recent experience

and reputation effects, respectively, can influence behaviour and push players

towards more cooperative equilibria. In short, reciprocity preferences matter.

In fact, among the different model specifications, reciprocity preferences can

influence individual behaviour so profoundly that depending on the history of

the game and players’ beliefs, these preferences make the difference between

contributing nothing (a traditional public goods game Nash equilibrium) and

reaching the social optimum equilibrium. Furthermore, there are cases when

reciprocity preferences matter more (i.e., the switching point between the to-

tal free-riding equilibrium or social optimum equilibrium in Case 1 of both

indirect reciprocity models, Section 2.3.2.1.1 and Section 2.4.2.1.1, and the

prevalence of the altruistic equilibrium in Case 2 of the indirect upstream reci-

procity model, Section 2.3.2.2.1) and cases when they do not matter (i.e., the

prevalence of the traditional public goods game Nash equilibrium in Case 2
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of the indirect downstream reciprocity model, Section 2.4.2.2.1). Thus, un-

der certain conditions, these preferences, in combination with either recent

experiences or reputation, can further support cooperative outcomes and sub-

stantially change the outcomes of social dilemma situations.

Table 3.1 presents a summary of the potential equilibria in each history

of the game for the different reciprocity model specifications outlined in this

thesis. In the baseline model where contribution choices are made simultane-

ously, a player’s own contribution “matches” their beliefs about other players’

contributions. Further, the existence of a unique interior equilibrium repre-

sents a specific set of conditions for reciprocity preferences and is in itself a

novel contribution. In the direct reciprocity model where contribution choices

are made sequentially, the second-mover now “matches” their contribution

choice to what they observe the first-moving players to contribute; this aligns

with the “rewarding” behaviour of sequential reciprocity discussed by Croson

(2007). However, in Case 2 when the second-mover has observed the other

players fully contributing, the second-mover will totally free-ride if their reci-

procity preferences are sufficiently weak but fully cooperate if their reciprocity

preferences are strong enough. As shown in the comparative statics for the

direct reciprocity model, Section 2.2.3, the traditional public goods game Nash

equilibrium is prevalent in Case 1, but in Case 2 there exists a switching point

between the social optimum equilibrium and the total free-riding equilibrium

depending on the strength of reciprocity preferences.

Comparing the baseline and direct reciprocity models, the role of infor-

mation arising from sequential play affects the potential equilibria in these

two models. The differences between the number of potential equilibria in the

baseline model (simultaneous play with contribution strategies dependent on

beliefs) and direct reciprocity model (sequential play with contribution strate-

gies dependent on beliefs and observed contributions) arises due to the cer-

tainty of information about others’ contribution strategies. In sequential play,

if the second-mover observes the first-moving players fully contributing, the

second-mover will fully cooperate if they have strong reciprocity preferences,

but they will totally free-ride if their reciprocity preferences are weak. In the
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simultaneous baseline model, the player will fully cooperate unconditionally if

they believe the other players are also fully cooperating (i.e., free-riding is not

optimal, nor an option, irrespective of the strength of reciprocity preferences).

In Table 3.1, both indirect reciprocity models have multiple potential equi-

libria for each history of the game. In the indirect upstream reciprocity model,

the potential equilibria vary depending on the history of the game, players’ be-

liefs about others’ contribution strategies, and reciprocity preferences. Recall

that relative strength of indirect reciprocity preferences matters. Compared

to the baseline model, in Case 1 of the indirect upstream reciprocity model,

the player of interest will not contribute if they believe that the other players

are not contributing, but if they believe that the other players are fully con-

tributing, then they may also fully cooperate or totally or partially free-ride

depending on their reciprocity preferences. Similarly in Case 2 of the indirect

upstream reciprocity model, if the player of interest believes that the other

players are not contributing to the group account, then the player will either

not contribute or fully contribute (i.e., the altruistic1 equilibrium) depending

on the strength of their reciprocity preferences. As shown in the comparative

statics, Section 2.3.2.2.1, recent experience and indirect reciprocity preferences

drive cooperative behaviour for the player of interest, compared to the baseline

model. Further, in Case 3 of the indirect upstream reciprocity model, there

are multiple potential equilibria compared to the baseline model. In Case

3, as indirect reciprocity preferences become relatively stronger, cooperative

equilibria are easier to attain. The relationship between direct and indirect

reciprocity preferences affects contribution behaviour in more complex ways

than predicted by traditional game theory - whether the player of interest co-

operates or not depends on the history of the game, their beliefs about others’

contribution strategies, and their reciprocity preferences.

1Recall that “altruistic” behaviour here is not pure altruism as defined by Trivers (1971).
Pure altruism occurs when the giver incurs a (small) cost and the receiver benefits. Player
J incurs a cost from fully contributing to the group account when others are not in the form
of lower material payoff, but player J benefits through their reciprocity payoff function.
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In the indirect downstream reciprocity model, Table 3.1 shows that there

are multiple potential equilibria that vary depending on the history of the

game, players’ beliefs about others’ contribution strategies, and reciprocity

preferences. As before, compared to the baseline model, in Case 1 of the indi-

rect downstream reciprocity model, the player of interest will not contribute

if they believe that the other players are not contributing, but if they believe

that the other players are fully contributing, then they may also fully coop-

erate or totally free-ride depending on their reciprocity preferences. Further,

the interior solution equilibrium is also a potential equilibrium. This is similar

to the baseline model where if the player believes that the other players are

contributing the interior solution contribution amount to the group account,

then it is optimal for the player to also contribute the interior solution con-

tribution amount. In Case 2 and Case 3, the potential equilibria are similar

to the indirect upstream reciprocity model as well. That is, the potential

equilibria differ depending on reciprocity preferences. In Case 2, in addition

to “matching” their own contribution with their beliefs about other players’

contributions (i.e., the traditional public goods game Nash equilibrium or the

social optimum equilibrium), the player of interest may free-ride when others

are contributing fully or be reciprocally altruistic2 when others are not con-

tributing depending on their reciprocity preferences. Similar behaviour may

occur in Case 3, however the player of interest may also partially free-ride as

a result of “matching” the history of the game that they observed. The down-

stream indirect reciprocity model presents several potential equilibria which,

conditional on indirect reciprocity preferences, may or may not depend on

reputation effects.

How individuals respond to the kindness of others can support outcomes

not predicted by traditional game theory and that are, in fact, counter-intuitive.

In the direct reciprocity model, Section 2.2.3, when the history of the game

is h = (0, ..., 0), then not cooperating is optimal, as predicted by traditional

game theory. However, when the history of the game is h = (y, ..., y), we

2This is not pure altruism as defined by Trivers (1971), but aligns with the definition of
reciprocal altruism from Nowak and Sigmund (2005).
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see that total free-riding is an optimal strategy for very low values of the reci-

procity preference parameter, but fully cooperating is optimal when reciprocity

preferences are stronger.

When the history of the game is h = (0, ..., 0), we observe switching points

between cooperative and non-cooperative behaviour for both of the indirect

reciprocity models. In Case 1 of the indirect upstream reciprocity model,

Section 2.3.2.1.1, we show that stronger indirect reciprocity preferences drive

non-cooperative behaviour, yet when direct reciprocity preferences are strong

and indirect reciprocity preferences are weak, the social optimum equilibrium

can result. In Case 1 of the indirect downstream reciprocity model, Section

2.4.2.1.1, we show that non-cooperative behaviour only holds when indirect

reciprocity preferences are very strong, otherwise cooperation within the group

can be achieved.

On the other hand, when the history of the game is h = (y, ..., y), we see di-

vergent outcomes in the indirect reciprocity models that are counter-intuitive.

In Case 2 of the indirect upstream reciprocity model, Section 2.3.2.2.1, the

prevalence of the altruistic equilibrium compared to the prevalence of the

traditional public goods game Nash equilibrium in the indirect downstream

reciprocity model, Section 2.4.2.2.1, suggests that both exposure to kindness

and strength of reciprocity preferences are important in driving cooperative

behaviour. Relative strength of direct versus indirect reciprocity preference

parameters is also a driver of cooperation in these cases. For example, in the

indirect upstream reciprocity model specification, recent experience when the

history of the game is h = (y, ..., y) leads to more pro-social behaviour than

the reputation-based effects of indirect downstream reciprocity.

Further, the identification of interior solutions suggests that there exist sce-

narios in which corner solutions are not optimal, contrary to traditional the-

oretical predictions for public goods games. Recall that the interior solution

equilibria represent special cases and not a multiplicity of equilibria. How-

ever, because the reciprocity preference parameter is exogenous and varies,

the interior solution contribution choices that comprise the interior solution

equilibrium vary as well. These special cases depend on the reciprocity prefer-
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ence parameters and satisfying the condition 0 ≤ c∗ ≤ y. For example, in the

baseline model, Section 2.1.2, the interior solution, c∗ from (2.1.19), suggests

that for R > 0, c∗ > 1
2
y. Therefore, the interior solution is always “kind”

when evaluated against the reference points (i.e., part (ii) in (2.1.8)). By in-

corporating reciprocity preferences into players’ utility functions, the interior

solutions can be achieved.

3.2 Extensions

While the focus of the indirect reciprocity models presented here examines

the effect of indirect reciprocity preferences on a player’s contribution strat-

egy, future extensions of this model could treat each player with the indirect

reciprocity information either randomly or with common knowledge. For ex-

ample, in the indirect reciprocity models, only one player of interest receives

additional information and/or monetary benefit. However, the model could

possibly be expanded to explore the effect of indirect reciprocity interactions

across all players, either randomly or uniformly, such that all players know

that some players will receive a benefit (i.e., information about average contri-

butions and/or a monetary benefit), but players may not know which players

or how many players receive the benefit. If all players have indirect reciprocity

preferences, cooperative outcomes may be easier to achieve, however, adjust-

ments to assumptions about symmetric players, information, and spillover

effects, such as learning, norms, and belief formation, are needed.

Another extension of this model includes incorporating further higher-order

beliefs and beliefs about other players’ motivations. In particular, third-order

beliefs, or what player i believes player j believes that player i believes about

player j’s contribution strategy, bi,j,i,j , involve higher-order rationality (i.e.,

Kneeland, 2015) and allows for further specifications of perceived kindness.

Where the perceived kindness function, λi,j,i, evaluates player i’s perception

of the kindness of player j towards player i, inclusion of further perceived

kindness that evaluates player i’s perception of player j’s perception of player

i’s kindness towards player j, or in other words, how “kind” player i thinks
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player j thinks player i is to player j, could further parse out the effects of

beliefs and histories on contribution choice.

However, there exists a tradeoff when incorporating odd-numbered higher-

order beliefs. For example, the inclusion of a further perceived kindness func-

tion with third-order beliefs in player i’s reciprocity payoff function means

that all kindness functions need to have matching signs for the reciprocity

payoff function to be additive to player i’s utility. When there is a mismatch

in signs, then player i’s reciprocity payoff function can present disutility to

player i. This could occur if player i is “kind” to player j (kindness), player i

perceives that player j is “kind” to player i (perceived kindness), and player

i perceives that player j perceives that player i is “unkind” to player j (fur-

ther perceived kindness). In this case, player i receives disutility from being

“kind” to player j, believing that player j is “kind” to player i, but believing

that player j thinks player i is “unkind” to player j. However, the assump-

tion of rational expectations ensures that beliefs are correct in equilibrium,

such that second-order beliefs are correct, bi,j,i = ci, and first- and third-order

beliefs are correlated and correct, bi,j,i,j = bi,j = cj. This assumption would

need to be relaxed for kindness and further perceived kindness functions to

have mismatched signs. Incorporating further higher-order beliefs, particularly

in the indirect downstream reciprocity model, may provide more insight into

reputation-based effects and align with work on simple records (Clark et al.,

2020), image-scoring (Nowak and Sigmund, 1998), and higher-order rationality

(Kneeland, 2015).

Further extensions of the model could include adjustments to various as-

sumptions. For example, relaxing assumptions on player symmetry would

allow for asymmetric players and heterogeneous reciprocity preferences, sim-

ilar to selfish and reciprocal player types in Ambrus and Pathak (2011). As

well, allowing for the decay of kindness and perceived kindness through a dis-

count factor on the kindness and perceived kindness functions as higher-order

beliefs are incorporated could also be considered for future work.

The theoretical predictions derived from the reciprocity models presented

in this thesis can be tested with economic experiments and provide further
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insight into voluntary individual contributions in public goods games. The

explicit modelling of direct reciprocity, indirect upstream reciprocity, and in-

direct downstream reciprocity presented in this thesis provides foundations

for an experimental design to test these predictions and analyze observed be-

haviour in public goods games experiments.

3.3 Final Thoughts

This research provides insight into cooperative and non-cooperative behaviour

in collective action social dilemmas. While presented generally, these find-

ings are particularly relevant in a climate change context. Climate change

is global public good that requires coordination and cooperation to address.

There exists incentives to free-ride in global environmental policy and pol-

lution reduction efforts (Silva and Zhu, 2009), yet socially efficient outcomes

regarding greenhouse gas emissions can be reached if countries behave recipro-

cally altruistic and voluntarily implement socially optimal allocations (Caplan

et al., 1999). The reciprocity models that we present in this thesis suggest

that there are certain conditions under which cooperative outcomes can be

achieved. Accounting for direct and indirect reciprocity preferences can drive

these cooperative outcomes in public goods games and have applications in

global environmental policy. In particular, accounting for recent experience or

reputation-based effects can identify the conditions under which cooperation

can be reached in more complex three-party interactions.

For example, suppose that a country has directly benefited from the collec-

tive actions of a group of countries in mitigating climate change (i.e., pollution

abatement). Suppose that this country is then coordinating with a group of

countries (i.e., geographic neighbours or shared major industry) on climate

change action as well. A recent experience may influence the country to “pay-

it-forward” within their group of countries and push the group towards co-

operative outcomes, including the interior solution equilibrium and the social

optimum equilibrium. More cooperative outcomes on climate change action

are welfare enhancing and globally beneficial.
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Accounting for reciprocity preferences can address chronic under-provisioning

of public goods, such as climate change abatement. Direct and indirect reci-

procity preferences can influence cooperative outcomes in public goods games

and may, in fact, reduce incentives to free-ride. The relative strength of direct

versus indirect reciprocity preferences is also a contributing factor in reaching

these outcomes, as are the history of the game and players’ first- and higher-

order beliefs. We explicitly model direct and indirect reciprocity and derive

theoretical predictions that support the inclusion of reciprocity preferences in

players’ utility functions to reach cooperative outcomes.
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Appendix A

A.1 Mathematica Code

A.1.1 Direct Reciprocity

Let c represent cj, b represent bj,i = ci, and R represent Rj.

Manipulate[ Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5 y) ((n

- 1) b - 0.5 (n - 1) y)}, c, 0, y,

PlotRange -> {0, 25},

PlotLegends -> {"Utility"},

AxesLabel -> {"c", "U"}, PlotStyle->Black],

{{α, 0.5}, 1/n, 1, Appearance -> "Labeled"},

{{y, 10}, 0, 20, 1, Appearance -> "Labeled"},

{{n, 3}, 3, 6, 1, Appearance -> "Labeled"},

{{b, 0}, 0, y, 1, Appearance -> "Labeled"},

{{R, 0}, 0, ((1 - α)/α^2)*(2/((n - 1)*y)) + 3, Appearance -> "Labeled"},

ControlPlacement -> Left, FrameLabel -> "Direct Reciprocity"]

A.1.1.1 Case 1

p1 = DynamicModule[{b = 0, n = 3, R = 0.15, y = 10, α = 0.5‘}, Plot[{y

- c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n - 1) b - 0.5‘ (n

- 1) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[0, 11.875]},

PlotRange -> {0, 25},

PlotLegends -> Placed[{"Utility when R=.15"}, {{1.35, 0.75}, {0.7,

0.5}}],
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AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dashed}]]

p2 = DynamicModule[{b = 0, n = 3, R = 0.5, y = 10, α = 0.5‘}, Plot[{y

- c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n - 1) b - 0.5‘ (n

- 1) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 16.25}]},

PlotRange -> {0, 25},

PlotLegends -> Placed[{"Utility when R=0.5"}, {{1.35, 0.5}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dotted}]]

p3 = DynamicModule[{b = 0, n = 3, R = 1, y = 10, α = 0.5‘}, Plot[{y

- c + α((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n - 1) b - 0.5‘ (n

- 1) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 22.5}]},

PlotRange -> {0, 25},

PlotLegends -> Placed[{" Utility when R=1.0"}, {{1.35, 0.25}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black}]]

Overlay[{p1, p2, p3}]

A.1.1.2 Case 2

p1 = DynamicModule[{b = 10, n = 4, R = 0.05, y = 10, α = 0.5‘}, Plot[{y

- c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n - 1) b - 0.5‘ (n

- 1) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 24.0625}]},

PlotRange -> {0, 40},

PlotLegends -> Placed[{"Utility when R=.05"}, {{1.35, 0.75}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dashed}]]
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p2 = DynamicModule[{b = 10, n = 4, R = 0.5, y = 10, α = 0.5‘}, Plot[{y

- c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n - 1) b - 0.5‘ (n

- 1) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{10, 29.375}]},

PlotRange -> {0, 40},

PlotLegends -> Placed[{"Utility when R=0.5"}, {{1.35, 0.5}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dotted}]]

p3 = DynamicModule[{b = 10, n = 4, R = 1, y = 10, α = 0.5‘}, Plot[{y

- c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n - 1) b - 0.5‘ (n

- 1) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 38.75}]},

PlotRange -> {0, 40},

PlotLegends -> Placed[{" Utility when R=1.0"}, {{1.35, 0.25}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black}]]

Overlay[{p1, p2, p3}]

A.1.2 Indirect Upstream Reciprocity

Let c represent cJ , b represent bJ,j = cj, d represent ci, and R represent RJ .

Manipulate[ Plot[{y - c + α ((n - 1)*b + c) + α (n*d) + R α^2 (c

- 0.5 y) ((n - 1)*b + γ*n*d - 0.5 (n - 1 + n γ) y)}, {c, 0, y},

PlotRange -> {0, 25},

PlotLegends -> {"Utility"},

AxesLabel -> {"c", "U"},

PlotStyle -> Black]],

{{α, 0.5}, 1/n, 1, Appearance -> "Labeled"},

{{y, 10}, 0, 20, 1, Appearance -> "Labeled"},

{{n, 3}, 3, 6, 1, Appearance -> "Labeled"},

{{b, 0}, 0, y, 1, Appearance -> "Labeled"},
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{{d, 0}, 0, y, 1, Appearance -> "Labeled"},

{{R, 0}, 0, ((1 - α/α^2)*(2/((n - 1)*y)) + 3, Appearance -> "Labeled"},

{{γ, 1}, 0.05, 10, 0.05, Appearance -> "Labeled"},

ControlPlacement -> Left, FrameLabel -> "Indirect Upstream Reciprocity"]

A.1.2.1 Case 1

When the history of the game is h = (0, .., 0), player J believes that each

player j will fully contribute (i.e., bJ,j = cj = y),and player J has low reci-

procity preferences, RJ = 0.15, then the free-riding equilibrium is optimal.

p1 = DynamicModule[{b = 10, d = 0, n = 4, R = 0.15‘, y = 10, α = 0.5‘,

γ = 1‘}, Plot[{y - c + α ((n - 1) b + c) + α (n d) + R α^2 (c - 0.5‘

y) ((n - 1) b + γ n d - 0.5‘ (n - 1 + n γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 25.9375}]},

PlotRange -> {0, 30},

PlotLegends -> Placed[{"Utility when γ=1.0"}, {{1.35, 0.5}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"}, PlotStyle -> {Black, Dashed}]]

p2 = DynamicModule[{b = 10, d = 0, n = 4, R = 0.15‘, y = 10, α = 0.5‘,

γ = 1.5‘}, Plot[{y - c + α ((n - 1) b + c) + α (n d) + R α2(c−0.5‘y)((n−

1)b+γ n d - 0.5‘ (n - 1 + n γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 27.8125}]},

PlotRange -> {0, 30},

PlotLegends -> Placed[{" Utility when γ=1.5"}, {{1.35, 0.25}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> Black]]

Overlay[{p1, p2}]

When RJ = 0.5, all else equal, then the social optimum results when γ is low,

and the free-riding equilibrium results when γ increases.

p1 = DynamicModule[{b = 10, d = 0, n = 4, R = 0.5‘, y = 10, α = 0.5‘,

γ = 0.5‘}, Plot[{y - c + α ((n - 1) b + c) + α (n d) + R α^2 (c -
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0.5‘ y) ((n - 1) b + γ n d - 0.5‘ (n - 1 + n γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{10, 23.125}]},

PlotRange -> {0, 40},

PlotLegends -> Placed[{"Utility when γ=0.5"}, {{1.35, 0.75}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dashed}]]

p2 = DynamicModule[{b = 10, d = 0, n = 4, R = 0.5‘, y = 10, α = 0.5‘,

γ = 1‘}, Plot[{y - c + α ((n - 1) b + c) + α (n d) + R α^2 (c - 0.5‘

y) ((n - 1) b + γ n d - 0.5‘ (n - 1 + n γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 28.125}]},

PlotRange -> {0, 40},

PlotLegends -> Placed[{"Utility when γ=1.0"}, {{1.35, 0.5}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dotted}]]

p3 = DynamicModule[{b = 10, d = 0, n = 4, R = 0.5‘, y = 10, α = 0.5‘,

γ = 1.5‘}, Plot[{y - c + α ((n - 1) b + c) + α (n d) + R α2(c−0.5‘y)((n−

1)b+γ n d - 0.5‘ (n - 1 + n γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 34.375}]},

PlotRange -> {0, 40},

PlotLegends -> Placed[{" Utility when γ=1.5"}, {{1.35, 0.25}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> Black]]

Overlay[{p1, p2, p3}]

When RJ = 1, all else equal, then the social optimum results when γ is low,

and the free-riding equilibrium results when γ increases.

p1 = DynamicModule[{b = 10, d = 0, n = 4, R = 1‘, y = 10, α = 0.5‘,

γ = 0.5‘}, Plot[{y - c + α ((n - 1) b + c) + α (n d) + R α^2 (c -

0.5‘ y) ((n - 1) b + γ n d - 0.5‘ (n - 1 + n γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{10, 26.25}]},
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PlotRange -> {0, 45},

PlotLegends -> Placed[{"Utility when γ=0.5"}, {{1.35, 0.75}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dashed}]]

p2 = DynamicModule[{b = 10, d = 0, n = 4, R = 1‘, y = 10, α = 0.5‘,

γ = 1‘}, Plot[{y - c + α ((n - 1) b + c) + α (n d) + R α2(c−0.5‘y)((n−

1)b+γ n d - 0.5‘ (n - 1 + n γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 31.25}]},

PlotRange -> {0, 45},

PlotLegends -> Placed[{"Utility when γ=1.0"}, {{1.35, 0.5}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dotted}]]

p3 = DynamicModule[{b = 10, d = 0, n = 4, R = 1‘, y = 10, α = 0.5‘,

γ = 1.5‘}, Plot[{y - c + α ((n - 1) b + c) + α (n d) + R α2(c−0.5‘y)((n−

1)b+γ n d - 0.5‘ (n - 1 + n γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 43.75}]},

PlotRange -> {0, 45},

PlotLegends -> Placed[{" Utility when γ=1.5"}, {{1.35, 0.25}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> Black]]

Overlay[{p1, p2, p3}]

A.1.2.2 Case 2

When the history of the game is h = (y, .., y) and player J believes that each

player j will contribute nothing (i.e., bJ,j = cj = 0), then when RJ = 0.15,

RJ > f(α) and γ > n−1
n

are satisfied, the altruistic equilibrium is optimal

p1 = DynamicModule[{b = 0, d = 10, n = 3, R = 0.15‘, y = 10, α = 0.5‘,

γ = 1.6‘}, Plot[{y - c + α ((n - 1) b + c) + α (n d) + R α^2 (c -
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0.5‘ y) ((n - 1) b + γ n d - 0.5‘ (n - 1 + n γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{10, 22.625}]},

PlotRange -> {0, 25},

PlotLegends -> Placed[{"Utility when γ=1.6"}, {{1.35, 0.5}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dashed}]]

p2 = DynamicModule[{b = 0, d = 10, n = 3, R = 0.15‘, y = 10, α = 0.5‘,

γ = 2‘}, Plot[{y - c + α ((n - 1) b + c) + α (n d) + R α2(c−0.5‘y)((n−

1)b+γ n d - 0.5‘ (n - 1 + n γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{10, 23.75}]},

PlotRange -> {0, 25},

PlotLegends -> Placed[{" Utility when γ=2.0"}, {{1.35, 0.25}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> Black]]

Overlay[{p1, p2}]

When RJ = 0.5 and γ increases, all else constant, then player J ’s indi-

rect reciprocity preferences become stronger and the altruistic equilibrium re-

sults, (0, ..., y, ..., 0). p1 = DynamicModule[{b = 0, d = 10, n = 3, R =

0.5‘, y = 10, α = 0.5‘, γ = 0.95‘}, Plot[{y - c + α ((n - 1) b +

c) + α (n d) + R α^2 (c - 0.5‘ y) ((n - 1) b + γ n d - 0.5‘ (n -

1 + n γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{10, 22.65625}]},

PlotRange -> {0, 30},

PlotLegends -> Placed[{"Utility when γ=.95"}, {{1.35, 0.75}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dashed}]]

p2 = DynamicModule[{b = 0, d = 10, n = 3, R = 0.5‘, y = 10, α = 0.5‘,

γ = 1‘}, Plot[{y - c + α ((n - 1) b + c) + α (n d) + R α^2 (c - 0.5‘

y) ((n - 1) b + γ n d - 0.5‘ (n - 1 + n γ) y)}, {c, 0, y},
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Epilog -> {PointSize[Medium], Point[{10, 23.125}]},

PlotRange -> {0, 30},

PlotLegends -> Placed[{"Utility when γ=1.0"}, {{1.35, 0.5}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dotted}]]

p3 = DynamicModule[{b = 0, d = 10, n = 3, R = 0.5‘, y = 10, α = 0.5‘,

γ = 1.5‘}, Plot[{y - c + α ((n - 1) b + c) + α (n d) + R α^2 (c -

0.5‘ y) ((n - 1) b + γ n d - 0.5‘ (n - 1 + n γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{10, 27.8125}]},

PlotRange -> {0, 30},

PlotLegends -> Placed[{" Utility when γ=1.5"}, {{1.35, 0.25}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> Black]]

Overlay[{p1, p2, p3}]

When player J has stronger direct reciprocity preferences, RJ = 1, the al-

truisitc equilibrium remains optimal for values of γ > 0.8. p1 = p1 =

DynamicModule[{b = 0, d = 10, n = 3, R = 1‘, y = 10, α = 0.5‘, γ =

0.85‘}, Plot[{y - c + α ((n - 1) b + c) + α (n d) + R α^2 (c - 0.5‘

y) ((n - 1) b + γ n d - 0.5‘ (n - 1 + n γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{10, 23.4375}]},

PlotRange -> {0, 40},

PlotLegends -> Placed[{"Utility when γ=.85"}, {{1.35, 0.75}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dashed}]]

p2 = DynamicModule[{b = 0, d = 10, n = 3, R = 1‘, y = 10, α = 0.5‘,

γ = 1‘}, Plot[{y - c + α ((n - 1) b + c) + α (n d) + R α^2 (c - 0.5‘

y) ((n - 1) b + γ n d - 0.5‘ (n - 1 + n γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{10, 26.25}]},

PlotRange -> {0, 40},
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PlotLegends -> Placed[{"Utility when γ=1.0"}, {{1.35, 0.5}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dotted}]]

p3 = DynamicModule[{b = 0, d = 10, n = 3, R = 1‘, y = 10, α = 0.5‘,

γ = 1.5‘}, Plot[{y - c + α ((n - 1) b + c) + α (n d) + R α^2 (c -

0.5‘ y) ((n - 1) b + γ n d - 0.5‘ (n - 1 + n γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{10, 35.625}]},

PlotRange -> {0, 40},

PlotLegends -> Placed[{" Utility when γ=1.5"}, {{1.35, 0.25}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> Black]]

Overlay[{p1, p2, p3}]

A.1.3 Indirect Downstream Reciprocity

Let c represent cJ , b represent bJ,k = ck, d represent ci, and R represent RJ .

Manipulate[ Plot[{y - c + α ((n - 1)*b + c) + R α^2 (c - 0.5 y) ((n

- 1)*b + (γ/n)*d - 0.5 (n - 1 + γ) y)}, {c, 0, y},

PlotRange -> {0, 25},

PlotLegends -> {"Utility"},

AxesLabel -> {"c", "U"},

PlotStyle->Black],

{{α, 0.5}, 1/n, 1, Appearance -> "Labeled"},

{{y, 10}, 0, 20, 1, Appearance -> "Labeled"},

{{n, 3}, 3, 6, 1, Appearance -> "Labeled"},

{{b, 0}, 0, y, 1, Appearance -> "Labeled"},

{{d, 0}, 0, y, 1, Appearance -> "Labeled"},

{{R, 0}, 0, ((1 - α)/α^2)*(2/((n - 1)*y)) + 3, 0.05, Appearance ->

"Labeled"},

{{γ, 1}, 0.05, 10, 0.05, Appearance -> "Labeled"},
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ControlPlacement -> Left, FrameLabel -> "Indirect Downstream Reciprocity"]

A.1.3.1 Case 1

When the history of the game is h = (0, .., 0) and player J believes that each

player k will fully contribute (i.e., bJ,k = ck = y), then when RJ = 0.15 and the

social optimum can be achieved at low values of γ and free-riding is optimal

when γ > n− 1.

p1 = DynamicModule[{b = 10, d = 0, n = 4, R = 0.15‘, y = 10, α = 0.5‘,

γ = 0.25‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y)

((n - 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{10, 22.58}]},

PlotRange -> {0, 30},

PlotLegends -> Placed[{"Utility when γ=.25"}, {{1.35, 0.75}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dashed}]]

p2 = DynamicModule[{b = 10, d = 0, n = 4, R = 0.15‘, y = 10, α = 0.5‘,

γ = 3.5‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n

- 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 25.47}]},

PlotRange -> {0, 30},

PlotLegends -> Placed[{" Utility when γ=3.5"}, {{1.35, 0.5}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black}]]

Overlay[{p1, p2}]

When RJ = 0.5 then the social optimum is stable for a greater range of values

for γ.

p1 = DynamicModule[{b = 10, d = 0, n = 4, R = 0.5‘, y = 10, α = 0.5‘,

γ = 0.5‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n

- 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},
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Epilog -> {PointSize[Medium], Point[{10, 27.8125}]},

PlotRange -> {0, 30},

PlotLegends -> Placed[{"Utility when γ=0.5"}, {{1.35, 0.75}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dashed}]]

p2 = DynamicModule[{b = 10, d = 0, n = 4, R = 0.5‘, y = 10, α = 0.5‘,

γ = 1.5‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n

- 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{10, 24.6875}]},

PlotRange -> {0, 30},

PlotLegends -> Placed[{"Utility when γ=1.5"}, {{1.35, 0.5}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dotted}]]

p3 = DynamicModule[{b = 10, d = 0, n = 4, R = 0.5‘, y = 10, α = 0.5‘,

γ = 3.5‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n

- 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 26.5625}]},

PlotRange -> {0, 30},

PlotLegends -> Placed[{" Utility when γ=3.5"}, {{1.35, 0.25}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black}]]

Overlay[{p1, p2, p3}]

When player J has stronger direct reciprocity preferences, RJ = 1, the social

optimum exists for values of γ < 2.6.

p1 = DynamicModule[{b = 10, d = 0, n = 4, R = 1‘, y = 10, α = 0.5‘,

γ = 0.5‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n

- 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{10, 35.625}]},

PlotRange -> {0, 40},
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PlotLegends -> Placed[{"Utility when γ=0.5"}, {{1.35, 0.75}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dashed}]]

p2 = DynamicModule[{b = 10, d = 0, n = 4, R = 1‘, y = 10, α = 0.5‘,

γ = 1.5‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n

- 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{10, 29.375}]},

PlotRange -> {0, 40},

PlotLegends -> Placed[{"Utility when γ=1.5"}, {{1.35, 0.5}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dotted}]]

p3 = DynamicModule[{b = 10, d = 0, n = 4, R = 1‘, y = 10, α = 0.5‘,

γ = 3.5‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n

- 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 28.125}]},

PlotRange -> {0, 40},

PlotLegends -> Placed[{" Utility when γ=3.5"}, {{1.35, 0.25}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black}]]

Overlay[{p1, p2, p3}]

A.1.3.2 Case 2

When the history of the game is h = (y, .., y) and player J believes that each

player k will not contribute (i.e., bJ,k = ck = 0), then when RJ = 0.15 and the

traditional public goods game Nash equilibrium is optimal.

p1 = DynamicModule[{b = 0, d = 10, n = 3, R = 0.15‘, y = 10, α = 0.5‘,

γ = 0.5‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n

- 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},
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Epilog -> {PointSize[Medium], Point[{0, 12.03125}]},

PlotRange -> {0, 15},

PlotLegends -> Placed[{"Utility when γ=0.5"}, {{1.35, 0.75}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dashed}]]

p2 = DynamicModule[{b = 0, d = 10, n = 3, R = 0.15‘, y = 10, α = 0.5‘,

γ = 1.5‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n

- 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 12.34375}]},

PlotRange -> {0, 15},

PlotLegends -> Placed[{"Utility when γ=1.5"}, {{1.35, 0.5}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dotted}]]

p3 = DynamicModule[{b = 0, d = 10, n = 3, R = 0.15‘, y = 10, α = 0.5‘,

γ = 2.5‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n

- 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 12.65625}]},

PlotRange -> {0, 15},

PlotLegends -> Placed[{" Utility when γ=2.5"}, {{1.35, 0.25}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black}]]

Overlay[{p1, p2, p3}]

when RJ = 0.5, all else equal, the traditional public goods game Nash equilib-

rium is again optimal.

p1 = DynamicModule[{b = 0, d = 10, n = 3, R = 0.5‘, y = 10, α = 0.5‘,

γ = 0.5‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n

- 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 16.770833}]},

PlotRange -> {0, 20},
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PlotLegends -> Placed[{"Utility when γ=0.5"}, {{1.35, 0.75}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dashed}]]

p2 = DynamicModule[{b = 0, d = 10, n = 3, R = 0.5‘, y = 10, α = 0.5‘,

γ = 1.5‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n

- 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 17.8125}]},

PlotRange -> {0, 20},

PlotLegends -> Placed[{"Utility when γ=1.5"}, {{1.35, 0.5}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dotted}]]

p3 = DynamicModule[{b = 0, d = 10, n = 3, R = 0.5‘, y = 10, α = 0.5‘,

γ = 2.5‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n

- 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 18.8541667}]},

PlotRange -> {0, 20},

PlotLegends -> Placed[{" Utility when γ=2.5"}, {{1.35, 0.25}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black}]]

Overlay[{p1, p2, p3}]

when RJ = 1, all else equal, the traditional public goods game Nash equilib-

rium remains optimal.

p1 = DynamicModule[{b = 0, d = 10, n = 3, R = 1‘, y = 10, α = 0.5‘,

γ = 0.5‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n

- 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 23.5416667}]},

PlotRange -> {0, 30},

PlotLegends -> Placed[{"Utility when γ=0.5"}, {{1.35, 0.75}, {0.7,

0.5}}],
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AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dashed}]]

p2 = DynamicModule[{b = 0, d = 10, n = 3, R = 1‘, y = 10, α = 0.5‘,

γ = 1‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n

- 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 24.583333}]},

PlotRange -> {0, 30},

PlotLegends -> Placed[{"Utility when γ=1.0"}, {{1.35, 0.5}, {0.7,

0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black, Dotted}]]

p3 = DynamicModule[{b = 0, d = 10, n = 3, R = 1‘, y = 10, α = 0.5‘,

γ = 1.5‘}, Plot[{y - c + α ((n - 1) b + c) + R α^2 (c - 0.5‘ y) ((n

- 1) b + (γ d)/n - 0.5‘ (n - 1 + γ) y)}, {c, 0, y},

Epilog -> {PointSize[Medium], Point[{0, 25.625}]},

PlotRange -> {0, 30}, PlotLegends -> Placed[{" Utility when γ=1.5"},

{{1.35, 0.25}, {0.7, 0.5}}],

AxesLabel -> {"c", "U"},

PlotStyle -> {Black}]]

Overlay[{p1, p2, p3}]
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