Al Nati Lib:
Bl g

Acquisitions and

Biblicthéque nationale
du Canada

Direction des acquisitions el

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
subrted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

394, rue Wellington
Ottawa (Ontario)

Your fire Voo celeren, o

Qui hie Netre elerence

AVIS

La qualité de cette microforme
déper orandement de la qualité
de thése soumise au
micr: - .age. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a confeéré le grade.

La qualité d’'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



UNIVERSITY OF ALBERTA

Paraconsistency and Beyond:
Studies in Reasoning with Inconsistency
in Logic Pro~ mming

By

Suryanil Ghosh

A thesis
siinairted 1o the Faculty of Graduate Studies and Research
n pai.al * dfilli ient of the requirements for the degree
of Doctor of Philosophy

Department of Computing Science

Edmonton, Alberta
Spring 1995



National Lib
el o

Bibliothéque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch  des services bibliographiques
395 Wellington Street 395, nue Wellington

Ottawa, Ontario Ottawa (Ontario)

K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEiTHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-01695-1

Canadi

Your e  Volrg relérence

Our hie  Notre rélérence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DF CELLE-
CINE DOIVENT ETRE IMPRl 'S OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.



UNIVERSITY OF ALBERTA

LIBRARY RELEASE FORM

NAME OF AUTHOR: Suryanil Ghosh

TITLE OF THESIS: Paraconsistency and Beyond:
Studies in Reasoning with Inconsistency
in Logic Pregramming

DEGREE: Doctor of Philosophy

YEAR THIS DEGREE GRANTED: 1995

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis nor any
substantial portion thereof may be printed o: otherwise reproduced in any material
form whatever without the author’s prior wriiten permission.

(Signed) (/%W £ ’fm/
Permanent Aﬁress /
Rajbati, 125 - N. C. Ghosh Sarani,
Sheoraphuli, Hoogt.i
West Bengal, India
PIN - 712223

Date: 97 { gmmﬁj /995
/ / p



UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Resear<' for acceptance, a thesis entitled Paraconsistency and
Beyond: Studies in Reasoning with Inconsistency in Logic Programming
submitted by Suryanil Ghosh in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

T Vo %M

Supervisor: Dr. Jia-Huai You

AN

Examiner: Dr—R. Eoel)éf\m@ing Science)

Examiner: 9/ F. Ju’yetierl(C()mput,ing Science)

N )
<

(/'-/"j J AL L / At L\'/

Examiner: Dr., B. Linsky (Philosophy) /

S nn, S

External: Dr. J. Han (Simon Fraser University)

£ R )

Examiner: Dr. P. van Beek (Computing Science)

Date: Dan. 6, %!




This thesis is dedicated to the ones Ilove.
Parents - Sushil & Jayeshree
Brother - Indranil
Son - Akaash

Wife - Cornelia



Abstract

Existing classical logic frameworks cither trivialize a theory having inconsistent in-
formation or eradicate contradictions from knowledge bases. C‘ontradictions are the
norm rather than exception in large knowledge bases, and in more realistic settings.
So to renson in the presence of inconsistency, i.e. paraconsistent reasoning, would be
a rational evolution from the ways of reasoning as embedded in the traditional logics.
The avoidance of the computational overhead in eradicating the contradictions is also
a pragmatic consideration for paraconsistent reasoning. Existing logics of inconsis-
tency and paraconsistent logics allow us to reason in the presence of inconsistency.
But they are restricted as they are unable to recognize inconsistency or check when
reasoning is propagated from inconsistent information. The purpose of our work is
to enhance the different existing logical formalisms to accommodate the ability to
reason in the presence of inconsistency.

In this work we introduce fundamentally new ideas to handle inconsistency: ez-
plicit paraconsistency and reasoning beyond paraconsistency. Based on them we de
velop inconsistency handling strategies Approach C —Cy which provide the foundations
for logical frameworks akin to paraconsistent logics. We apply these new inconsis-
tency handling strategies to the different evolving formalisms in the family of logic

programming and deductive databases.
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Chapter 1

Introduction

1.1 Limitations of Classical Logic

Classical Logic (which we will denote as CL) corresponds to a very narrow and deter-
minate conception of logic, and hence represents a very limited and restrictive view of
the way in which the human mind works when it carries out deductive processes. One
basic result of modern logico-philosophical investigation is that CL does not constitute
an adequate formalization of the relation of classicai onsequence, as believed by the
classicists. There are several reasons for this: In the first place, within CL there are
theorems that deviate too far from certain extremely strong logical intuitions. One
of these intuitions is that between the premises and the conclusion of an argument
there must be some relation that is integral to the deductive step (e.g. relevance).
According to CL, when two contradictory properties or propositions can be derived
in a theory, the theory is trivialized owing to the Principle of Non-contradiction.
The principle states that a theory will deduce everything in presence of contradic-
tion such as a, —a, i.e. {a, —a} k= b. Because of this an inconsistent theory whose
logic is CL becomes trivial. But, when one thinks seriously what logical consequence
means, ore can find no reason to deduce b from {a, —a}. There is no relation be-

tween the premises and the conclusion; there is nothing in common between them:



no connection can justify the deductive step between the former to the latter. In the
next section we will discuss how a section of the logico-philosophical community has

addressed this problem.

1.. Paraconsistency: Expanding the horizon of
logical rationality

Reason and inference should not break down in inconsistent situations. If an incon-
sistency is found in one’s reasoning, one certainly does not invo: - er fulso quodlibet
and conclude that everything ought to be accepted, nor does vne g . a complete
halt. Commonly on finding a contradiction one takes evasive action. and changes the
views until they are consistent. But common enough though this is, it is by no means
rationally obligatory. The rational thing to do may well be to accept the contradic-
tion, or at least to see what emerges from it. (We will further discuss the rationale
of paraconsistency in a later section.) The important point for now is just that a
theory of reason certainly must be paraconsistent, i.e. allow nontrivial reasoning in
presence of contradiction. (Paraconsistent literally means beyond consistent). The
attempt of recent literature to provide an account of rational human reasoning based
on classical logic [27, 79] and probability theory, from which human inferential prac-
tice frequently deviates, is limited. With correct understanding Frege/Russel logic
(CL) can be used in certain restricted domains, viz. consistent ones. This is in fact
s0, although obtaining a correct understanding of the matter is a sensitive business.
Probabilistic logic on the other hand can capture inconsistent situations, by stating
that p and ~ p should be believed 0.5 respectively. But with the propagation of rea-
soning based on any one of the information p or ~ p, we lose the information that the
information we derive . is based on inconsistency. Moreover probablistic frameworks
are restricted to only domains where one can determinately record an evidence of

believing for different facts. So we see that paraconsistency expands the horizon of



logical rationality.

1.3 Paraconsistency: Characterization

Let |= be a relation of logical consequence. |= may be defined either model ticoreti-
cally (¥ |= @ holds fc- some specified set of valuations, whenever all the formulas in X
are true under an ' iation, so is a) or proof theoretically (¥ k= a holds iff for some
specified set of rules, there is a derivation of a, all of whose (undischarged) premises
are in ¥), or in some other way. |= is explosive iff for all a and b, {a, ~a} = b. It
is paraconsistent iff it is not explosive. A logic is paraconsistent iff its logical con-
sequence relation is. If a logic is defined in terms of a set of theses it may have
more than one associated consequence relation. For example, {a;,...,a,} | b iff
F(auA...hay) —=bor Fay— (... > (an = b)...)or as,...,a, = b (the last
representing the theorem-preserving or weak inferential connection). In this case all
its associated consequence relations should be paraconsistent.

Let ¥ be a set of statements closed under logical consequence. ¥ is inconsistent
iff, for some a, {a, ~a} C X. ¥ is triviel iff for all b, b € ¥. The important fact about
paraconsistent logics is that they provide the ba.1s for inconsistent but nontrivial the-
ories. In other words, there are sets of statements closed under logical consequences
which are inconsistent but nontrivial. This fact is sometimes taken as an ‘'‘erna-
tive definition of paraconsistent and, given that logical consequence is transitive, it
is equivalent to the original definition. The proof is this: If ¥ is an inconsistent but
nontrivial theory then obviously the consequence relation is paraconsistent. Con-
vorsely, suppose that {a,—a} = b. Let T be the transitive closure of {a,-a} under
logical consequence. Then I is inconsistent but b ¢ ¥. Because of the equivalence we
also call any inconsistent but nontrivial theory paraconsistent, and derivatively, any

position whose deductive closure provides a paraconsistent theory.

3



1.4 Paraconsistency: Motivation

Why should one be interested in paraconsistent logics? Among the many reasons
are proof theoretic and semantic ones. In this section we will present the traditional

motivations {or paraconsistency.

1.4.1 7 'he proof theoretic reason

The proof theoretic reason is that there are interesting theories T which are incon-
sistent but nontrivia’ Clearly the underlying logic of such theories must be pe acon-
sistent - hence the need to study paraconsistent logics. Examples of inconsistent but
nontrivial theories are not uncommon. We present some of them below.

A first example is naive set theory, the theory of sets based on full abstraction
axiom scheme, 3yVz(z € y « a). This, together with extensionality, characterizes
the intuitive conception of set. The theory is inconsistent since it generates the set
theoretic paradoxes (e.g. where R is the Russel set, defined as {z : -z € z}, standard
paradox arguments show that R € R and -R € R). Yet it is nontrivial because
there are many claims about sets which the intuitive notion rightly rejects (e.g. that
{0} € @, where 0 is the null set).

Another group of examples of inconsistent but nontrivial theories derive from
the history of science. Consider, for example, the Newton-Leibniz versions of the
calculus. Let us concentrate on the Leibniz version. This was inconsistent since it
required division by infinitesimal. Hence if a is any infinitesimal, @ # 0. Yet it
also required infinitesimal and their products be neglected in the finzl va'ie of their
derivative. Thus o = 0. (As much was pointed out by Berkeley [7] and then extended
by Boyer [10] in their critique of the calculus.) Despite this the calculus was certainly
nontrivial. None of Newton, Leibniz, the Benoullis, Euler, and so on, would have
accepted that fJ xdz = 7.

A very different but most interesting example of an inconsistent but nontrivial



theory in the history of the natural sciences is the i3ohr thcory of atom [48]. Many
other examples of inconsistent but nontrivial ths« -5 from the history of science are
be given in [22]. Indeed it could be persuasively .. gi-d that the whole state of
scientific knowledge at any time is a paraconsistent ti..-: = 34].

A third group of examples of inconsistent but nont.© : theories comprises cer-
tain bodies of information which are theories only in a <mu-what attenuated sense.
What justifies their inclusion in the present setting is that inferences are made com-
monly from the information. Thus ideaily they may be conceived of as deductively
closed corpus or theories. Among the more interesting non-philosophical examples
are certain bodies of law, such as bills of rights and constitutions. The following
is a convenient hypothetical example which, however, makes the point clearly. The
constitution of a certain country contains the clauses (a) “No person of the female
sex shall have the right to vote,” (b) “All property holders shall have the right to
vote.” We may also suppose that it is part of the common law that women may not
legally be property holders. As enlightenment creeps over the country this part of
the common law is cnanged to allow women to hold property. Patently the law is
inconsistent. According to the law a woman does and does not have the right to vote.
Someone who argued that her cat should be allowed to vote on the basis of (a) and
(b) would not get very far. Actual historical examples of inconsistent legal situations
are of course more complex and, therefore, more controversial. However two actual
examples are the case of Riggs versus Palmer [19] and Lincoln’s Proclamation of
Emancipation [40]. In the former the clear legal right of inheritance was contradicted
by the legal principle that no one shall acquire property by crime. The benefactor
had, in fact, murdered the deceased. In the second, the freeing of slaves, who were
undoubted legal property, with no compensation, contradicted the fifth amendment
of the American Bill of Rights, which says that property shall not be taken without

just compensation.

Other examples of inconsistent information from which inferences are drawn in-



clude: the data presented to a jury in a trial; the inform ation fed into a knowledge
base by different experts [55}; the information present in knowledge bases networked
together [23]; a person’s set of belief [78]. In each of these cases the information may
obviously be inconsistent. Moreover, inferences are obviously made from this infor-

mation. That there are inconsistent but nontrivial theories is thus well established.

1.4.2 ‘The semantical reason

A second reason for interest in paraconsistent logics is the fact that there are true
contradictions, that is, there are statements a and —e such that both are true. Because
of this, some inferences of the form {a, ~a} |= b must fail to be truth-preserving (let
alone valid) since some statements (take one such for b) are not true. Persuasive
examples of true contradictions are provided by the logical paradoxes. These are
examples of arguments in set theory and semantics which appear to be perfectly
sound arguments issuing in contradictory conclusions. If this is indeed the case then

clearly the contradictory conclusions are true. For example consider the sentence:
(**) This is a false sentence in English.

This has two components, a subject ‘this’ and a predicate ‘is a false sentence of
English’. Each of the components has certain semantic conditions. Thus, the semantic
condition of ‘this’ is its referring to a certain object — in this case (**), itself. The
semantic condition of the predicate is that it applies truly to a certain class of objects,
viz. those which are false English sentences. Now of course (**) is contradictory. In
other words the semantic conditions of the componeats of (**) overdetermine its
true value. They determine it to be both true and false. Of course, one can state
dogmatically that this is incorrect and that we have got the semantic conditions of
the components wrong. But this is to elevate consistency to an inviclable constraint
on semantics. But there is no particular reason that we should suppose so. Semantic

conditions are not eternal rules. They have grown up in a piecemeal and haphazard



way. It would, quite frankly, be amazing if they were consistent. Semantic conditions
can be seen as determining a field of meaning. Overdetermining truth conditions
produce singularities and other discontinuities in the field. But such conditions are
to be expected, and in no way interfere with the rest of the field.

A somewhat more controv rsial example concerns the application of multi-criterial
terms. For instance, to de 1e whether a phrase, such as ‘below 0°C’, correctly
applies to a certain situation, we may observe the behavior of either a correctly func-
tioning alcohol thermometer or a correctly functioning thermoelectric thermometer.
These work on quite different principles, and there s no sense in which one is more
basic to our determination of, or understanding of, temperature than the other. Cer-
tain behavior of either of these instruments j;iovides a sufficient condition for the
correct applicability of the term ‘below 0°C’ or its negation, and both have equal
claim to determine the operational meaning of the phrase. Normally the world is
such that these two conditions hold or fail together. However, in novel situation they
may fall apart. In such a situation both the assertion that the phrase applies and the
assertion that its negation does are true. By the symmetry of the situation neither
claim can be truer than the other. Hence either both are true or both are false. To
suppose that both are false would be to deny that they were criteria in the first place.
Thus they must both be true.

Clearly there is a relationship between the proof-theoretic and the semantic mo-
tivations of paraconsistency. If the semantic rationale is correct, then so is the proof
theoretic one. For if S is the set of things true in some domain containing true condi-
tions then S is an inconsistent but nontrivial theory. However, it is possible to accept
the proof-theoretic motivation without accepting the stronger semantic one outlined.
For one can hold that there are inconsistent but nontrivial theories that are interest-
ing, have important applications, useful properties, and so forth, without accepting
that they are true. Instrumentalists and formalists would, of course, have no problem

in accepting such a theme, though they might well find difficulties in clearly distin-
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guishing the stronger, dialethic position from the weaker, more pragmatic, position.
Whether either position is tenable on other grounds is another issue, which has been
investigated in [67].

At this point it would be appropriate to state our motivation for paraconsistency.
In the area of intelligent information processing, the problem of handling inconsis-
tency has always been an important issue. Several approaches have been proposed
to deal with the problem. The classical logic approach of trivialization is the default
approach. Then there is "« approach of revising existing information in a knowl-
edge base such that the inconsistency no longer prevail. This may happen with the
retraction of one or both of the complementary information responsible for the incon-
sistency. There are some other approaches towards handling inconsistency following
traditional information processing ideas, like choosing the largest consistent set of
information from the knowledge base and then reasoning from it. All of them have
certain limitations. This we will discuss in a separate section later. For the time being
we will state without clarifying, that the paraconsistent approach towards inconsis-
tency handling is more pragmatic than the others. Paraconsistency embedded in a
framework, enables the framework to hold inconsistent but nontrivial theories that
are interesting, have important applications and useful properties, without accepting

that they are true.

1.5 Classification of inconsistency in common-se-

nse reasoning

As common-sense reasoning became an important area of research of the logic com-
munity in the bigger community of Artificial Intelligence, a few new concepts have
evolved. The ability to infer from incomplete information and to retract if new evi-
dence challenges the former position is understood to be a pivotal notion of common-

sense reasoning. Thus knowledge grows nonmonotonically. A basic way of concluding



new information from incomplete information is by the closed world assumption pro-
posed by Reiter [73]. Negation as failure proposed in [12] is a particular approach
towards closed world assumption. The idea of it is as follows: “If « fails to be proved
from a theory assume not a.” The notation not denotes negation as failure.

This negation is limited, however, in the sense that not & does nouv refer to the
presence of knowledge asserting the falsehood of the atom « but only to the lack of
evidence about its truth. Indeed, some authors have translated not o as “« is not
believed” [41], “a is not known” [28], and “there is no evidence that « is truc” [21],
in addition to the common interpretation “a is not provable from the program in
question”. So, from now on we will refer to not as negation vy defeult as it is the
inherent meaning that it carries, and as we understand from the different ways it is
interpreted above.

An alternative to overcome some of the difficulties of dealing with negated infor-
mation is to make use of ezrplicit negatior in addition to negation by default. In this
way, the expressive power of a language is increased since the user is now allowed to
state not only when an atom is true but also when a negated atom is true (without
any ambiguity or default interpretation).

So now, we have two kinds of negation in the enhanced world of common-sense
reasoning: explicit negation (which we denote as ~) and negation by default (denoted
by not). Explicit negation (~) is different from classical negation (-) (see [53]),
though they are close in spirit. (This we will discuss later in Chapter 4.) Explicit
negation has also been called strong negation (see e.g. [92, 93]) because of its closeness
to the negation introduced by Nelson [56]. It has also been called classical negation
by Gelfond and Lifschitz [30].

Existence of a thesis and its negation, together in a theory, causes inconsistency.
As we have two kinds of negations we can have two kinds of inconsistency. The
inconsistency arising on account of explicit negation can be classified as onlologi-

cal inconsistency and the inconsistency arising on account of negation by default as

9



epistemic inconsistency.
Contradiction arising on account of insufficient knowledge in the reality to choose
hetween contradictory information existing owing to the inconsistent behavior of the

reality itself is ontological inconsistency'; e.g.

e contradictory information fed by different experts into the knowledge base of

an intelligent system, or
e combining knowledge bases having mutually contradictory information.

Inconsistency in description of a state of .!fairs reflecting not an inconsistency in the

state of affairs itself but a lack of knowledge about it is epistemic inconsistency’; e.g.

e assumption (closed world assumption) derived conclusions leading to contradic-

tions, or
e when default conclusions are contradictory.

Ontological inconsistency is a direct consequence of explicit negation, i.e. the
simultaneous presence of a fact and its explicit negation in a theory causes it. But
epistemic inconsistency is an indirect consequence of negation by default. To be more
precise we should say that it is the ‘implicational consequence’ of negation by default.
Let us consider the following theory (which is in the extended logic programming
language [34], a nonmonotonic framework, where not denotes negation by default
and ~ denotes explicit negation):

{~ a « notb; a — notc}.
The contradiction in the thesis a arises because a and its negation are derived from the
premises not b and not c respectively. Though the contradiction appears to be classical

(i.e. ontological), as we have a and ~ a as a consequence of the theory, its origin is

1This notion of ontological inconsistency has been used before roughly with the same meaning
as here in [75, 58].
2This notion of epistemic inconsistency has been proposed before by [45, 58].
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epistemic, i.e. not b and not ¢, which implies that the contradictory consequences are

a result of close world assumptions.

1.6 Inconsistency handling in Logic Programming

The introduction of explicit negation® into a logic program as done in the language
proposed by Gelfond and Lifschitz [30], gives rise to the possibility for the program to
support inconsistencies. Recent investigations in the use of logic programming based
formalisms to knowledge representation have not adequately solved the problem of
coping with partially inconsistent information.

Three ways of handling such inconsistency has been proposed. First, one can
allow inconsistency to trivialize the knowledge represented by the program by allow-
ing derivation of arbitrary conclusions, as in classical logic. Most logic rosra:nming
formalisms [30, 31, 29, 32] take this approach. We consider this appioie 2 7 break-
ing down in presence of inconsistency to be cognitively inadequate. Second, one
may adopt some techniques for belief revision. The argument behind it is that he-
lief revision is particularly well-suited to nonmonotonic formalisms, since they derive
conclusions on the basis of incomplete information using default assumptions, i.c.
negation by default (not) as in the language of extended logic programs [30]. As a
result, it is possible in these languages to derive inconsistencies which stem from as-
sumptions, which we have classified as epistemic inconsistency. But it is also possible
that an assumption giving rise to an inconsistency is no longer warranted because
of knowledge base updates. It could also be that the information derived from an
assumption causing inconsistency is of lower epistemicity than the complementary
information causing inconsistency, which may be derived from facts. This situation

should not warrant such assumption either. In both the situations epistemic incon-

3Explicit negation (~) does not truly correspond to classical negation (—) was also shown by
Przymusinski [71].
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sistencies should not not prevail. Pimentel etal [62] (w.r.t. to the first scenario) and
Pereira etal [61] (w.r.t. the second scenario, also see [3, 18, 94]) uses some believe
revision techniques for the purpose of deliberately removing the assumptions which
contribute to such epister.. - inconsistency. Their approaches apply to certain situ-
ations where epistemic inconsistency can be removed by retracting the responsible
as-umptions. But there are situations in which epistemic inconsistencies cannot be
removed by retracting the responsible assumptions. Take the following program:
{a « notb,~ a — notc}

The inconsistency though derived from assump*ions cannot be resolved by retracting
any one of the assumptions, because the assumptions are equal.y assumable. Neither
of the above mentioned formalisms using belief revision techniques are able to resolve
such epistemic inconsistencies intuitively as they take recourse to multiple extensions,
putting a and ~ a in different extensions.

Following the route of multiple extensions because of contradiction leads to the
situation where in the line of reasoning following any of the extensions the reasoner
is happily ignorant of the fact that its reasoning is based on contradiction. One may
argue that the presence of multiple extensions should remind the reasoner of contra-
diction somewhere in the line of reasoning. But unfortunately, this argument would
not hold as multiple extensions can have other reasons of origin too. For example:

{a « notb; b «— nota}
or
{aorb<}
where the language is enriched with the notion of disjunction (or). Moreover we los>
the informatio: about what is contradictory.

Furthermore some inconsistencies are not derived through the adoption of assump-
tions, and therefore cannot be removed by retracting assumptions. These inconsis-
tencies arise on account of insufficient knowledge in the reality to choose between

contradictory information existing owing to the inconsistent behaviour of the reality
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itself. In more clearer terms: the inconsistency arising on account of explicitly negated
fact or explicit negation directly or indirectly derived from indefeasible premises. A
knowledge base system fed by different experts or combining knowledge bases are
examples where such an inconsistency czn arise. We have classified this type of in-
consistency as ontological inconsistency. The formalisms of Pimentel etal and Pereira
etal does not handle this situation either. A third approach to handle inconsistency,
is the paraconsistent approach, i.e. when an inconsistency is allowed to be derived
without trivialization and reasoning is carried ou! in presence of inconsistency. By
this approach one can handle ontological inconsistec ney 21d also the cases of epistemic
inconsistency which have not been handled by * he first or second approach as we have
discussed above. Quite a few paraconsistency based approaches have been proposed
[55, 9, 92]. But none of them satisfactorily capture the scenario of reasoning in an
inconsistent world. Paraconsistent semantics proposed in [55, 9, 23] fail to capture an
inconsistent world as they follow the classical model theoretic approach of consider-
ing an interpretation (i.e of assigning truth-values to only positive propositions) and
satisfaction by an interpretation at the same level. Thus a proposition gets both the
semantics. This portrays a confused view of the world. We will discuss in some details

about the problems of these approaches in a later chapter.

1.7 Our contribution

In this work we introduce fundamentally new ideas of handling inconsistency. The
ideas have some of the same basic characteristics as some of the traditional parazon-
sistent logics (which we will discuss in Chapter 2). They also have certain similarities
to some of the new logics dealing with inconsistency, which we generally refer to as
the logics of inconsistency. We view them separately from paraconsistent logics as

their approach is different from the former. We also present them in Chapter 2.
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In most, of the existing logical frameworks where contradictions have been handled,
they have been considered undesirable and the approach is to either trivialize the
inconsistent theory or eradicate th.e contradictions from the knowledge base. This is
the case in traditional classical logics and in more recent logics trying to expand their
horizon to capture human common-sense reasoning. These second type of logics have
been briefly discussed in Chapter 2. They follow the classical trend of abiding by
the law of non-contradiction, reductio ad absurdum (which we denote as RAA) or ez
conladi iione sequitur quodlibet (which we denote as ECSQ).

We have st.ong objections against the ways the existing traditional logical frame-
works handle inconsistency. We espouse the notion of reasoning in presence of incon-
sistency as against the traditional ways. To summarize, the following considerations
motivate the need for logical formalisms capable of reasoning in the presence of in-

consistency (i.e. paraconsistent reasoning):

e Contradictions arc the norm rather than exception in large knowledge bases,
e.g. networked knowledge bases, two experts feeding a large knowledge base.
Knowledge bases may contain local inconsistencies that would make it contra-

dictory and yet they may have a natural intended global meaning.

e Contradictions are common in realistic settings, and heuce paraconsistency is a

natural evolution towards rationality.

e A more pragmatic consideration: Inabilty to resolve contradiction due to lack

of information and hence to be able to reason in presence of inconsistency.

N

Existing logics of inconsistency and paraconsistent logics allow us to reason in
presence of inconsistency. But they are restricted as none of them are able to recog-
nize inconsistency explicitly or check when reasoning is propa,ated from inconsistent
information. Qur work takes us a step forward. This restriction is overcome by rec-

ognizing the inconsistency, explicitly capturing it and then reasoning in its presence.
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We can refer to this version of paraconsister v as explicit paraconsistency. We de-
velop a formal strategy based on the concept of explicit paraconsistency. This we call
Approach C.

Moreover, we go beyond paraconsistency as we allow reasoning from inconsistent
information. The status of this reasoning process becomes explicitly distinct as the
elements involved in this reasoning process are explicitly marked as elements *affected’
by inconsistency. The elements involved in this reasoning process also have a different
epistemic status relative to the elements involved in reasoning that are not affected
by inconsistent information. This opens up a new horizon of reasoning, which we
call reasoning beyond paraconsistency. We develop a formal strategy based on the
concept of reasoning beyond paraconsistency, which we call Approach C,.

Now based on our inconsistency handling ideas we develop three different logical
frameworks. We apply the combined inconsistency handling strategies Approach
C — Cy to the different formalisms in the family of logic programming and dedctive
databases for this purpose. We restrict ourself to the propositional framework, so as
to focus on the complexities inherent in our approach.

We propose a model theoretic semantics for the first framework we develop bascel
on positive logic programs with explicit negation. This model theoretic semantics has
some fundamental difference from the traditional model theoretic semantics for clas-
sical logic. The difference is on account of treating inconsistency. We will elaborate
on this in Chapter 4. We later provide a constructive semantics for the framework.
The need for a constructive semantics is obvious. It provides a computational proce-
dure. Then the question arises why do we need a model theoretic semantics. There
are two reasons why we need it. First, it gives us insights into why the semantics
provided by the constructive semantics is most appropriate. This we comprehend
when the semantics provided by the constructive semantics corresponds with some
specific model amongst the several models we get by model theoretic semantics. Fur-

thermore, model theoretic semantics provides all kinds of possible interpretations (or



scenario) in which a formula may be understood (or evaluated). Some of the models
may be useful for certain purposes. For example in classical logic we can talk about
all possible ways in which a formula may be satisfied. But in logic programming
we are interested in some modcls which are intended. For definite clauses there is a
single least model. 1t does not mean that other models are not useful. In general
beyond logic programming other models may be useful. Second, the model theoretic
formalism for the first framework provides us with the foundation based on which we

develop the more complex inconsistency handling logic programming frameworks.

1.8 Thesis outline

In this section we will give the outline of our research that we present in this thesis.
In the next chapter we briefly survey the traditicnal paraconsistent logics, carry on
to present a comprehensive survey of recent works in paraconsistent logics and logics
of inconsistency, and finally discuss some of the new ways of handling inconsistency
following the classical approach or the traditional information processing® approach.
In Chapter 3 we discuss some of the existing literature in logic programming, based
on which we build our logical systems that handle inconsistency. In Chapter 4 we
present our basic ideas of handling inconsistency. We then investigate the incon-
sistency handling strategies Approuch C and Approach Cy based on the ideas in the
skeleton framework of positive logic programs with explicit negation. In Chapter 5 we
formally present Paraconsistent Specifications (PS), i.e. Approach C ~Cy embedded
positive logic programs with explicit negation. We give its model theoretic semantics
and investigate its properties. In Chapter 6 we present a constructive semantics for
PS. In Chapter 7 we venture into the realms of nonmonotonic systems and apply the

inconsistency handling strategies Approach C and Approach C4 to extended logic pro-

1By this approach, both inconsistent information can be dropped, one of them can be chosen
following a strategy or the reason for their origin is revised such that the contradictions disappear
i.e. belief revision [2].
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17
grams. We apply Approach C—C,4 to a more complex framework of objective epistemic
specifications and develop the framework, in Chapter 8. In Chapter 9 we compare
our approach to the existing approaches of handling inconsistency. Finally in the last

chapter we summarize our research, highlight our contribution and discuss the future

directions of our research. The bibliography is presented at the end.



Chapter 2

Survey: Inconsistency handling

approaches

In this chapter we present the various logics that handle inconsistency. Some of them
are paracoasistent in nature, some others have the information processing approach
of dealing with inconsistency in an ad-hoc basis (e.g., throwing out the contradictory

information pair or choosing one over the other).

2.1 A brief history of traditional paraconsistent
logic

It is certainly possible to point to figures in history of philosophy who at least made
allowance for nontrivial inconsistent theories or worlds, or who must have accepted
the idea that an appropriate logical consequence relation is paraconsistent. Any di-
aletheist, such as Hegel, must have had to do so on pain of triviality of his philosophy.
However formal paraconsistent logics are a creature of this century. Their design is,
in a sense, a reaction to classical (i.e. Frege [27] / Russell [79, 80]) logic .

The dominant logical paradigm before this century was, of course, Aristotelian

logic. The major part of this was the theory of the syllogism. Though Aristotelians
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held that a contradiction cannot be true, Aristotelian syllogistic is not explosive.
However, like a purely positive logic it is not paraconsistent either. The point is that
the poverty of the forms of syllogistic inference and its associated grammatical forms
makes it impossible to ask the question of what follows from a contradiction.

However it is quite possible to build onto Aristotelian syllogistic the machinery
for expressing this problem. One way, used in the 19th. century, is by the theory of
immediate inference inherited from the Stoics. Another is by adding a new class of
judgments ‘s is p and p’ and considering rules for the nontrivial consequences of a
member of this class. This latter possibility was investigated by the Russian logician
Vasil’ev about 1911 {88]'.

The paradigm that replaced Aristotelian logic, viz. classical logic was, of course,
anything but paraconsistent. The Frege/Russel account of logical consequence was
the legitimate descendant of certain medieval accounts of implication. What was
more revolutionary than their logic itself was the methodology they brought to logic.
The methodological techniques they used, such as separate analysis of the quanti-
fier, axiomatization, and, in a rudimentary form, the syntactic/semantic distinction,
revolutionized our conception of what a formal logic should be like.

The first person to conceive of the possibility of a paraconsistent formal logic, in
the modern sense, was probably Lukasiewicz (1910) [52]. However, the first person to
produce one was his pupil Jaskowski (1948) [42, 43]. Jaskowski’s basic idca is to take
true to be ‘true according to position of some person (e.g. in a discussion)’. This
we can represent logically as ‘true in some possible world (the world of that person’s
position)’. Then a pair of formulas a, —a, can be true without an arbitrary formula
b being true.

In the 1950s work on paraconsistent logic began independently in South America.
Asenjo (1954) [6] and da Costa [13, 14] started to study paraconsistent systems. Of

these the most widely developed are those of da Costa. His approach was to graft on

1One can refer to [68) for a more elaborate discussion of the history of paraconsistent logic.
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to ordinary positive logic a ‘negation’ operator that is not truth functional. If a takes
the value false, then —a takes the value true. But if a takes the value true, ~a may
have value true or false.

A third, and again independent, approach can also be traced back to the late
1950s. At that time in North America Anderson and Belnap [4] taking off from
the work of Ackermann [1], started to produce logical systems that were relevant
i.e. that avoided the paradoxes of implication. For present purposes we can define
a relevant propositional logic to be one in which if {a;...a.} F b, band a1 A... A
a,, share a propositional parameter. Anderson and Belnap’s intention was not to
produce a paraconsistent logic as such. However their logics were paraconsistent.
The paraconsistent aspect of relevant logic was later taken up in Australia by Priest
[63] and Routley [77, 76]. Priest and Routley have argued that the relevant approach
to paraconsistency is the best [67]. We agree with them so far as the traditional
paraconsistent approaches we have reviewed. But we will later show that Approach
C — C, has many advantages over the relevant approach too. We will briefly present a
relevant approach in the next section, so that we can later compare it with Approach
C — C,. For elaboration on the other two traditional approaches to paraconsistency
one can look into the collection of essays on paraconsistent logics in Ch.5 of [68]. For

more on paraconsistent logic in general we suggest reference to 5, 15, 17, 16].

2.1.1 Relevant approach to paraconsistency

There are several semantical ways to proceed for relevant approach. We will present
the one by Priest [63], which is particularly simple to grasp. The relevant approach
takes seriously the view that some statements are true and false. However, instead
of insisting that every sentence take a unique truth value, it allows statements to have
both.

Formally, let V = {{1}{0}{1,0}}. Here {1} is (the classical) true and true only;
{0} is (the classical) false and false only; {1,0} is (the paradoxical) true and false.
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A valuation is a map v from the set of zero degree formulas (i.e. atoms a, b, ...) to

V such that
la) 1 € v(—a) iff 0 € v(a)
1b) 0 € v(—a) iff 1 € v(a)
2a) 1 € v(aAb)iff 1 € v(a) and 1 € v(d)
2b) 0 € v(a A b) iff 0 € v(a) or 0 € v(b)
3a) 1€ v(aVvb)iff 1 € v(a)orl € v(b)
3b) 0 € »(aVb)iff 0 € v(a) and 0 € v(b)
Logical truth and consequence are defined in the obvious way.

¥ k=g a iff for all evaluations v either 1 € v(a) or for some b € X, 1 € v(b)
=gr A iff for all evaluations v, 1 € v(A).

Clearly these truth conditions are paraconsistent, i.e. {a,—a} £gr b. Morcover, the
truth conditions look very similar. Indeed they are just the classical ones. Of course
in the classical case the second one of each pair (i.e. 1b, 2b and 3b) are redundant.
However, this is no longer the case when we have grasped the paraconsistent insight
that things may be both true and false.

A pleasing feature of the semantics is that the set of zero degree logical truths is
exactly the set of classical tautologies. This shows that this is a particularly stable
set of formulas valid in both classical and inconsistent contexts. Moreover in a sense
it shows that relevant logic subsumes classical logic at its zero degree level.

Turning to deducibility relation, clearly this is a sub-relation of the classical one.
The one relation of classical logic (CL) that is paraconsistently invalid is the principle

of disjunctive syllogism

{a, -a V b} l=c[, b



and its cognates such as

{a,~(aAb)} FcL —b

This is the only major principle of classical inference that is rejected on the relevant
paraconsistent approach. The reason that disjunctive syllogism fails is that sentence

a may be paradoxical. If a and —a are true, then so are ¢ and -~a V b, whatever b is.

2.2 Recent and new approaches to paraconsis-
tency: A complete survey

In the last few years their has been some interest in the research of reasoning with
inconsistency in the logic particularly the logic community of Artificial Intelligence.
There has been two approaches. One that of the traditional information processing
approach, by which the effect of a contradiction is nullified by removing the cause
from which it came about or by removing the models containing contradiction or by
removing one in the complementary pair of contradictions. The other is of a renewed
look into the paraconsistent approach and thus new ramifications. Multi-valued logics
alsc added to this fray of reasoning in inconsistent situations as it has paraconsistent
characteristics. In this section we will discuss some of the significant works that have
facilitated reasoning in presence of contradictions and have taken the later approach,

i.e. that of paraconsistency.

2.2.1 Belnap’s ‘Four-valued Logic’

Belnap [55] argued that a sophisticated question-answering machine that has the ca-
pability of making inferences from its database should employ a certain four-valued
logic, the motivating consideration being that minor inconsistencies in its data should

not be allowed to lead (as in classical logic) to irrelevant conclusions. The actual form
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of the four-valued logi: « as ‘deduced’ from an interplay of this motivating counsider-
ation with certain ideas of Dana Scott [82, 83, 84] concerning approxrimation lattices.

A similar four-valued logic was introduced by [89]. More recently Ginsberg [37, 38]
introduced the notion bilattice, with Belnap’s logic as the simplest example. Fit-
ting [25] used Belnap’s four-valued logic, which he called FOUR, as the semantical
framework for a refutation mechanism (dunal to the usual proof mechanism), which
he introduced into logic programming. In [23], Fitting showed that a satisfactory
logic programming language could be developed using any bilattice that met certain
natural interlacing conditions.

We will present a brief sketch of results about Belnap’s four-valued logic which
we will also call FOUR as Fitting did. Once can think of these truth-values as sets
of ordinary truth values:{true}, which we will write as true; {false}, which we will
write as false; 0, which we will write as L and read as unde fined, and {true, false},
which we will write as T and read as overde fined.

Belnap noted that two natural partial orderings existed for these truth values.
The subset relation is one; it can be thought of as ordering reflecting information
content. Thus {true, false} contains more information than a {true} say. The other
ordering expresses degree of truth; for example, @ has a higher degree of truth than
{false}, precisely because it does not contain false. Thus we might call truth valuc
ty les-true-or-more-false than t; if t; contains false but ¢, doesn’t, t; contains true
but ¢; deesn’t. Both of these are natural orderings to consider.

Giusberg had the insight to see there are intimate interconnections and to gener-
w}i:e them. Figure 2.1 is a double Hasse diagram displaying the two partial orderings
v XMt . once. The knowledge of information direction is vertical (labeled k),
while the tri:1 dircction is horizontal (labeled t). Thus a < b if there is an upward
path frein < vo &, aud a %, b if there is a rightward path from « to b.

Bo.l. ;. .-tia} orderir 1s give a complete lattice. In particular, meets and joins exist

in each  .utior. 0 notation A and V is used for infinite meet and join, A and V



t
Figure 2.1: A Four-valued lattice [53]

for arbitrary meet and join, in the <, ordering. @ and @& is used for finite meet and
join, I1 and ¥ for arbitrary meet and join, in the < ordering. Negation is defined
directly: ~true = false; —false = true; =T =T; ~L = 1. Thinking of four-valued
truth values as sets of ordinary truth values, this negation amounts to the application
of ordinary negation to each member of the set.

Kleene's strong three-valued logic [46] and ordinary two-valued logic are present
as sublattices. The operations of the <, ordering and negation, when restricted to
false and true, are the classical ones, and when restricted to false, true and L are
Kleene’s. Thus FOUR retains all the mathematical machinery of the two and three-
valued logics that have worked so well, and gives us complete lattices, thus simplifying
the technical setting somewhat.

Note that the operations induced by the =i ordering also have a natural inter-
pretation. Combining truth values using ® amounts to the consensus approach to
conflicts mentioned above, while the use of & corresponds to the accept-anything
version. This suggests that counterparts of these operations should be part of a

logic-programming language designed for distributed implementation as in [23].
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Now, we can discuss briefly how Fitting [23] applied FOI{R to logic programming
in a distributed environment. They considered a fixed logic programming language
L (whose details can be omitted for onr purpose here). In it clause heads are atomic,
and clause bodies can contain negations an. aiso conjunctions and disjunctions, ex-
plicit or implicit. P can be considered a program written in the language L. P
is supposed to be distributed over several sites, with some provision for interaction.
Some predicates may be local to the site and others may be global. If a query is issued
at network sites, each site attempts to answer the query by the usual mechanism of
replacing one question with a list of others. Subsequent queries involving local predi-
cates are handled locally, while those involving global predicates are broadcast to the
system in the same way that the initial query was. Same as the authors we will not
consider the details of variable binding - indeed, for our purposes we will identify a
program with the set of ground instances of its clauses. But even with this simple
model a fundamental problem arises: what can be done with nflicting responses?
If the system is asked ?q, a site having clauses covering ¢ may respond with “yes”,
while a site having no clauses for ¢ will, via negation as failure, respond “no”. The
authors propose that several simpleminded solutions are possible, some of which will
go beyond classical truth values. For instance, a consensus can be insisted. Then
facing with conflicting answers, one can say that there is no information available.
Or each site can be treated as an expert whose opinion is valued, and so when faced
with the problem of two answers, one can accept both of them and simply record the
existence of the conflict.

Fitting considered Belnap’s four-vaiued logic FOUR, as it provides the right
setting for the situation. Now, the meaning assigned to a program P will be a
model, but a four-valued one. As in classical logic, a domain D is considered. Logic
programming is generally thought to have a fixed domain, in practice the Herbrand
universe. So they considered D to identify with the set of ground atoms. With this

understanding they characterized valuations as follows:



Definition 2.2.1 A valuation v in FOUR is a mapping from the set of ground
atomic formulas of L to FOUR. Valuations are given two pointwise orderings as
follows: vy < vy if vi(a) =k vo(a) for every ground atomic formula a; vi X v2 if

vy(a) <, va(a) for every ground atomic formula . O

The set of valuations constitutes a complete lattice under each of the induced
orderings <x and =, and inherits much of the structure of FOUR in a natural way.
Valuations was extended to maps from the set of all ground formulas to FOUR. A
least fixed point ser..antics was also developed, but least in the < direction. Instead
of in FOU - a broader setting of bilattices they established the general results.
For the deta fer to [23].

2.2.2 °‘RI .. : of Kifer and Lozinski

A logic, presented by Kifer and Lozinski in [45] and called RI (Reasoning with Incon-
sistency) is briefly described in this section.

" Their approach is motivated by a view that the real world is inherently consistent,
while inconsistency of its logical description occurs only in the mind of the beholder.
So, the real world can tolerate inconsistency of the reasoner’s beliefs, since the latter
may not be grounded in reality. In other words, they distinguish between what
the reasoner beliefs in (at the epistemic level), and what is actually true or false
in the real world (at the ontological level). RI can faithfully imitate the standard
predicate calculus at its ontological level, thus being intolerant to inconsistency, or
it can interpret the calculus epistemically being able to tolerate inconsistency in full
(or, it can mix the two interpretations).

Although RI allows one to reason about consistency of one’s belief, it is worth
noting that the logic itself is first-order. Some of the ideas about treatment of incon-
sistency used in RI appeared in [9, 8, 44]. However these works are not as general
as Kifer’s work, since they are restricted to a subset of logic and as explained later

considers only monotonic kind of negation that Kifer refers to as “ontological”.
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We now present RI logic: A belief lattice BL is given, with a set of members
such that for every element s in the set an ordering L < s < T holds, where < is
a reflective and transitive relation, and L and T are lower and upper bounds of the
lattice respectively. If ¢ is an atomic formula of predicate calculus, then ¢ : s is a
literal of RI, where s € BL. Composed formulae of RI are created in an obvious
manner. BL is restricted to {t, f, T, L} in the following. Where t is true, f is faise,
T is both true and false (understood as contradictory) and L is none of true and
false (understood as undefined or unknown).

An Interpretation I is a triple (D, F, P), where D is the domain of I, I’ assigns to
each function symbol a mapping from D x ... x D to D, P assigns to each predicate
symbol a mapping D X ... x D x BL to {1,0}, such that the following conditions
hold: for every predicate p and tuple 7 from D x ... x D there is an r € BL such
that P(p(7) : s) = 1 iff s <. (If p(7) is believed to a degree r, it is impossible that
it is not believed to a smaller degree.)

Concepts of valuation, satisfaction, truth, model, and logical entailment are de-
fined in the usual manner. Classical implication (—) (which is called ontological
implication here), classical negation (=) and classical disjunction (V) have their usual
meaning. Therefore

¢ - Piff ~g V.
Two new logical connectives are introduced, an epistemic negation (N) and an epis-
temic implication (~>). Epistemic implication is defined as:

d~>yiff N¢ V.

N is defined on a four-valued BLas Nt = f, Nf={, NT=T,NL=41. Itis
extended to formulas as follows. Np:siff p: Ns, N-p: s iff =p : Ns, the behavior
of epistemic negation with respect to conjunction, disjunction, general quantificr and
existential quantifier is the same as for classical negation. -

Consider a theory S = {q:t = p:t; ¢:t}. In Rllogic S |=ps p: t. Furthermore,

o
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even if ¢ were an inconsistent belief, p : t would still follow: {g:t—>p:t; q: T} En
;L. Thus ontological implication allows to draw conclusions from inconsistent
beliefs. This corresponds to the following way of reasoning: ¢ is an inconsistent
belief, but in the real world either ¢ or —g is true. So, to ensure that q:t = p:tis
true in cvery case, p: { is assumed.

Epistemic implication is overly cautious: from c{g:t~>p:tiqg:tip:t
does not follow. An interpretation {g : T, p: L} is a model of T, but it is not a
model of p:t.

From this point of view it is preferable to consider only models with the least
amount of inconsistency.

A model m is e-inconsistent iff there is a literal { : T, which is true in m. This
concept represents an epistemic inconsistency that is tolerated in RI. There are models
of e-inconsistent sets of formulae, as we have seen. On the other hand, ontological
inconsistency, is not tolerated. T is o-inconsistent in RIiff it contains both ¢ : ¢t and
-t

An interpretation J is more or equal e-cornsistent as [ iff for every atom p(t1,...,ts)
the following holds: if p(ti,...,t,) : T is true in J, then it is true in I. (A"
inconsistencies from J occur in I.) I is most e-consistent in a class of interpretations
i there is no 1’ such that I’ is strictly more e-consistent than I. Epistemic entailment
(=) is restricted to the most e-consistent models: a formula ¢ is epistemically entail. 1
by a set T iff every most e-consistent model of T' is a model of ¢.

An inference operater (Cn) implementing the epistemic entaiiment of RI is not
a trivial one: from a e-inconsistent set of formulae {g : t ~> p:t; g : b}, p:t
does not. epistemically follow. On the other hand, p : t epistemically follows from

{g:t~>p:t; q:t}.
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2.2.3 ‘Logic of Epistemic Inconsistency’ of Pequeno and

Buchsbaum

The Logic of Epistemic Inconsistency LEI, proposed by [58], is a paraconsistent logic
that syntactically distinguishes between sentences expressing irrefutable (monotoni-
cally deduced) “knowledge” from those expressing defeasible (nonmonotonically in-
ferred) ones. It was conceived to tolerate contradiction among this last kind of sen-
tences and to enable meaningful reasoning on these circumstances. The main moti-
vation for its construction has been its use for nonmonotonic reasoning in association
to a special default logic, called IDL (for Inconsistent Default logic).

LEI was conceived to formalize and enable reasoning in the presence of epistemic
inconsistency (refer to Chapter 1 Section 1.5). This kind of reasoning is applied to
situations where the knowledge is necessarily incomplete, eventually inaccurate as
well, and very often involving information giving evidence to contradictory conclu-
sions. Unlike deduction, such a reasoning cannot be performed on local basis, witho...
appealing to context. In the course of reasoning the arguments interfere with cach
other, generating conflicts and promoting the defeat of partial conclusions. Further-
more there is no guarantee that every arising conflict can be resolved. It may perfectly
happen two opposite partial conclusions having equal rights to b achieved or, even
if there is not such a perfect symmetry, it can happen anyway that the available
knowledge does not enable a clear decision in favour of one of the alternatives. Thus
contradiction arises. The authors argue that: In case of deduction this would carry
out a revision of premises by the application of reductio ad absurdum, but this is not
so for this case. There is no point in applying reductio ad absurdum to contradiction
among defeasible conclusions.

In [58] it is suggested that these contradictory conclusions should be assimilated
in a single theory and reasoned out just as any other. This would emphasize the need
for a better understanding of this kind of situations in order to provide a purely log-

ical analysis for them. LEI is a paraconsistent logic designed to cope with intuitions



concerning incompleteness of knowledge, such as the ones described above. Thus,
its calculus is intended to reason out meaningfully the inconsistent theories arising
in these situations. Its design aims to keep as many properties of classical logic as
possible, without interfering with the properties required for the performance of this
task. In fact, the calculus behaves classically for undoubting (monotonic, irrefutable)
statements and paraconsistently for plausible (nonmonotenic, defeasible) ones. These
two kinds of statements are distinguished in the language of the calculus by an inter-
rogation mark (?) suffixing the formulas of the last kind. When used in association
to IDL, these marks are supplied by its default rules.

Here we do not discuss the details about the calculus of LEI and its semantics.
But we present an example to show its ability to reason in the presence of epistemic
inconsistency and the advantages in doing so.

Pequeno argues against the splitting up of contradictory conclusions into multiple
extensions, each one internally consistent as done in Reiter’s default logic [74]. The
splitting up of diverging default conclusions into multiple extensions has the effect
of precluding the purely logical analysis of the whole situation. The contribution
of extralogical mechanism to deal with extensions to perform reasoning, would be
required. Furthermore, this approach has an undesirable side effect that prevents
default logic to avoid unintended extensions (and conclusions) in situations such as

the famous “Yale shooting problem”, discussed in [39].

Example 2.2.1 Consider the following ezample, taken from [54]:

o Animals usually do not fly;
o Winged animals are exception to this, they can fly;
o Birds are animals;

e Birds normally have wings.

This can be aziomatized, using Reiter’s default, as follows:
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1 an(z):~ fly(z)A~wing(x)
) ~fly(=)

bR

wing(z) — fly(z)
3. bird(x) — an(z)
4. bird(r):wing(r)

wing(z)

The following reasoning will then be possible: given that Tweety is a bird, it follows
from (3) that it is an animal, and from this and the rule (1) that it cannot fly. By
modus tollens on (2), if it cannot fiy it is not winged. With Reiter’s default logic this
last conclusion prevents the application of the default rule and therefore, from the
single fact that the poor Tweety is a bird, it comes out this bizarre conclusion that
it is wingless. What happened wrong here is the splitting into two extensions, one in
which Tweety is winged and another in which it is not. This did not allow the reasoner
to see that, by being a bird, therefore winged, Tweety constitutes an except: n to
rule (1), which makes this rule not being applicable. This information belonged to
another extension and thus could not be seen from the unintended extension. Thus,
the dissolving of conlicts by the splitting intc extensions prevented the consideration
of a relevant piece of evidence, causing the trouble of not handling properly the
exception condition.

In [57, 58] a logic with a tolerant disposition towards contradiction called Inconsis-
tent Default Logic (IDL) is presented, which is able to solve this problem. A general

IDL default rule reads as follows:

B?

A is the antecedent of the rule and B its default condition. C is a proviso (its n-gation
is an ezception condition for the application of the rule). Finally, B? is the conse-
quent. This rule is a modification of Reiter’s rule in accordance with the following

considerations:
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e Asa defeasible conclusion and an irrefutable one cannot have the same epistemic
status, the former is distinguished from the later by the use of an interrogation

mark (?) suffixing defeasible formulas.

e IDL implements the idea of accommodating conflicting views in a same exten-
sion. Therefore, in IDL the defeasible negation of a default condition (-B)?
(referred to as a weak contradiction) does not prevent the application of the
default rule. In order to defeat a default application a strong contradiction ~B

is required.

e The seminormal part of a default rule is frequently used to express an exception
condition. In IDL, C is really taken as a proviso for the application of the rule,
receiving a differentiate treatment. In order to defeat the application of an IDL

default rule by its proviso, a weak contradiction, (~C)?, suffices.

We are now able to see how IDL works in Morris's example. The same argument
could be constructed as before up to the temporary conclusion —winged(Tweety)?.
But now this does not defeat the application of rule (4) and thus winged(Tweety)? is
also achieved. This last conclusion, even being defeasible, is able to prevent the ap-
plication of rule (1) (by its proviso). Therefore = f ly(Tweety)? is withdrawn together
with ~winged(Tweety)?. So, with IDL, only the expected conclusions that by being
a bird Tweety is winged and can fly are obtained.

LEI has been designed to serve as the monotonic basis for IDL and at the same
time has an independent existence of its own. The ability to reason out contradictions

without triviality characterizes LEI as a paraconsistent logic.

2.2.4 *‘Vivid Logic’ of Wagner

In [90, 91] Wagner reported on a nonmonotonic system of partial logic with two kinds
of negation, called weak and strong, respectively. Referring to Levesque’s [49] idea

of a vivid knowledge they call this system vivid logic (VL). Unlike classical logic,
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VL offers several options for how to deal with inconsistency. The author discussed
four of them in his paper [92] and then later extended them in connection with the
semantics of extended deductive databases in his paper [93]. Each of the options
lead to a particular version of VL which are called liberal, credulous, conservative and
skeptical, respectively.?

Here, we will present VL in connection to extended databases (denoted as NDBs).
The language of vivid logic corresponds to the language of XDBs where weak negation
represents not (for negation as failure), and strong negation represents the second
negation — (for “classical” as in [30]). The authors used the concept of neutralization
from directly skeptical inheritance [87, 85, 47] and applied it to the semantics of XDBs
to solve the problem of conflicting rules. The principle of neutralization can also be
viewed as emerging from the weakening of modus ponens: if modus ponens (i.e.
rule application) is restricted to those cases where the conclusion is in some sense
‘consistent’ (as required with normal default rules), then the potential conclusions
that are supported together with their complements are not inferable but neutralized.

The principle of neutralization does not only imply paraconsistency, i.c.

{P, ﬂp} V q

but also violates reflexivity by

{p,-p}Vp

that no longer holds for inconsistent formulas. The reward for giving up unrestricted

reflexivity is the validity of the following non-standard principle:
(Inherent Consistency) X F 1= X i/ =l

that holds in conservative and skeptical reasoning. Since Inherent Consistency holds

for negation as failure,

2Here the notion of credulous reasoning is not related to the usual definition where a credulous
conclusion is licensed by an arbitrary-choice extension.
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XFe= Xlnote,
the following condition of Coherence (the name is adopted from [59)):
XtFl=> XFnot-l,

implies Inherent Consistency.

An extended deductive database X consists of rules of the form [ « E (read
[ if E”) where | is a proper literal and E is a set of extended literals (where ex-
tended literals are literals or weakly negated literals). The definition of four inference
relations between XDB and a formula is given in the restricted language of XDBs:
liberal, credulous, conservative and skeptical inference, denoted by ki, Fer, e and
I-,, respectively. All the inference relations have the following derivation rules in

common:

XFnotnotl if XF1
XFEifVee F: XtFe
XtnotEifdeec E: X Fnote

and each of them have their own own definition of derivability for literals. They are

as follows:

Liberal Reasoning

A literal | can be liberally inferred if it is the conclusion of sor: = rule and the premise
of this rule can itself be liberally inferred, no matter whether its complement =l is

derivable as well:

Xk lif3le—E)e[X]: XHE
XH lifV(le—E)e[X]: X FinotE

where, [X] is the Herbrand expansion of X w.r.t. the Herbrand universe Uy induced

by X, i.e. the set of all constant symbols occurring in X.



The following notions of credulous, conservative and skeptical reasoning are all
based on a two-level inference architecture: a conclusion is only accepted if it is
supported but not doubted. It is supported if there is a rule for it the premise for
which is accepted, and it is doubted if there is a contradicting rule the premise of
which is accepted. Differences arise with respect to the degree of skepticism: what

counts as an argument in favour of some potential conclusion, and what counts as a
neutralizing counterargument?
Credulous Reasoning

In credulous reasoning it suffices in order to establish a conclusion that it is liber-
ally supported (i.e. the supporting argument may even be based on contradictory

information), and not credulously doubted:
Xt alif X l,andV(-l — E) € [X]: X ke not £
Xbkonotliff X Hinotl,or 3(~l— E)e[X]: X Fe E
Conservative Reasoning

In conservative reasoning support and doubt have the same weight: a conclusion holds

if it is conservatively supported and not conservatively doubted:

o X+ liff (!~ E)€[X]: X k. E, and
V(-l— F)€[X]: X k. not F

¢ Xt notliff V(I — E) € [X]: X F.not E, and
I-le—F)e(X]: X+ F
Skeptical Reasoning

In skeptical reasoning there must be no doubt in order to establish a conclusion: it

has to be skeptically supported and must not be liberally doubted. In other words,



a sentence is not accepted if there is any counterargument even if it is based on

contradictory information.

X+, lifIl—E)e[X]: X F, E,and X F not -l
X F,notliff V(l— E) € [X]): X Fynot E, or X k- —l

These definitions however only works for ‘well-behaved’ XDBs that are called
w. llfounded as defined in [93]. For non-wellfounded XDBs where in the loops (which is
responsible for non-wellfoundedness) not involving weak negation the loop detection
process as given in [92] seems possible to be used as seen by the author. On the
other hand, it is suggested that loops involving weak negation could be assigned a
declarative semantics in the style of stable model semantics [34].

The respective consequence operations by LC, CrC, CC and SC, i.e. LC(X) =
{F : X k; F}, and corresponding for others.

Observation 2.2.1 If X does not contain weak negation, then S(X) C CC(X) C
CrC(X) C LC(X).

This observation expresses the decreasing degree of skepticism towards ambiguous
information in the chain from skeptical to liberal inference. It is illustrated with the

following example:
Example 2.2.2 Let X = {p; =p; ~q; ¢ — p; 7 — p; =1 «— q} then:

LC(X) = {p,~p,~¢,q,, T}
CrC(X) = {—q,r}
CC(X) = {—q}
SC(X)=90

Although p is contradictory, it constitutes evidence for a counterargument against —q
in skeptical VL. This is not the case in conservative VL, where no counterargument
against —q is possible. In credulous VL it suffices for v to hold that it is supported by

(the contradictory) p and not doubted by any counterargument. O
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2.2.5 ‘Logic of Argumentation’ of Fox, Krause and Ambler

In [26] a formal framework for reasoning with incousistency based on concepts from
a theory of ‘argumentation’ and ‘practical reasoning’ (with intended applications to
decision making and multi-agent problem solving) is presented. Like the different
VL reasoning modes, the proposed systems also have a two-level architecture: a
formula can be only ‘supported’ or it is really ‘confirmed’ (in the stronger sense of
VL logics ‘accepted’). If a formula is supported or confirmed and its complement is
supported, it is ‘doubted’. If a formula is supported or confirmed and its complement
is confirmed, it is ‘rebutted’. In contrast to conservative and skeptical VL, both a
formula and its complement can at the same time be confirmed. The philosophy of
logic of argumentation, thus, is not based on the principle of mutual neutralization of
contradictory information but rather on the principle that “the nature of the conflict
should be made explicit to permit reasoning about it at the meta-level”. Formulas
are annotated by a sign representing their degree of inconsistency. However, one
can usually not expect that users of a knowledge representation system specify such
annotations when they enter information to the system, or ask queries to it. So, it
seems unclear, whether the additional information of annotations can really be used

in a practical system.

2.2.6 The ‘Extended Well-founded Semantics for Paracon-

sistent Logic Programs’ of Sakama

Sakama niotivates his notion of an extended model by relating it to Ginsherg’s lattice
for defau't logic [37]. Recall that for the diagram I of an extended model Z, and
an extended literal e € X Lit®, I e iff e € I. Sakama presents a generalization of

Przymusinski’s [70, 72] fixpoint construction of the well-founded model of a program

3A literal ! is of the form a or —a, where a is an atom. The set of all literals is Lit. An extended
literal is of the form not! or not—l, and the set of all extended literals 1s X Lit.

37



38

bhased on two single-step inference operators X* and X~ taking an interpretation
I C X Lit and a set of tentatively derived, resp. failed, literals K C Lit, and providing

an improved set of tentatively derived, resp. failed, literals:
1. X+t(I.K):={l|A—Fe[X]:TUKF F}
2. X'(],I\')::{llVl«—FG[X]:IUR?-notF}

According to the paraconsistent extended well-founded semantics, if we consider

the following example:

Example 2.2.3 The information that Susan is married either to Peter or Tom, Peter

is a bachelor, and a man is not married if he is a bachelor, is the following:

(

b(P)
m(P,S) « notm(T, S)

X =
T m(T,S) « not m(P, S)

- om(m,y) < b(z)
g

from X does @ ; follow that Susan is married to Tom. m.(T,S), as opposed to WFSX*
[72], and to conservat.’ : = « “%eptical VL {refer to Section 2.2.4). On the other hand,
for X; = X U {~my,.; ~0.-b(T)}, a model M, is provided:
< {B(P)}, {4 P),b(S), &T)}, {m(P,S),m(T,5)}, {6(T),b(5)} >

Since the extended well-founded model does neither evaluate the implicit disjunc-
tive information (that Susan is married to Peter or Tom) nor relate the validity of
not m(T, S) to the validity of ~m(T,S), M; makes both m(P,S) and notm(T, S)
false.

Sakama also presents a refinement of his X+ and X~ operators in order to take

account of the fact that some conclusions of an extended program may depend on

1Formally, a WFSX interpretation is given by < I*, %, I/, I¥ >, where I' and I/ denotes true
and false atoms respectively, I and I9 denotes true and false atoms by defaults.



contradictory premises, and this should be recorded in some way. However, he does
neither relate the validity of —I nor the inconsistency of [ to the failure of I, i.e. to

the validity of not [, which seems to be a serious shortcoming.

2.3 New approaches in the classical way: A brief

overview

In this section we will discuss a few approaches that have dealt with epistemic and
ontological contradiction following the classical strategies of Reductio ad Absurdum,

or Ex Contradictione Sequitur Quodlibet (ESCQ).

2.3.1 The ‘Contradiction Removal Semantics’ of Pereira,

Alferes and Aparicio

The Contradiction Removal Semantics (CRS X ) of [60] extends the WFSA’ semantics
[59] which is based on the extended stable model semantics of [72] and on the principle
that —! should imply notl, called Coherence. Formally, a WFSX interpretation
< It 1% 17, 1Y > is required to satisfy

(Coherence) I* C 1" & 11 2 14

implying that I*'N I/ = 0.
We recall Example 2.2.3. The only WFSX model® of X is

M = < {b(P),m(T, )} + {b(5),b(T)}, {m(P, $)} + {b(5), b(T')} >

associated with the transformed program

5For the sake of brevity it is given < I + (I — I'), I/ + (I¥ — /) >.
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b(P)

m(T, S)
-m(P,S) « b(P)
-m(T,S) « b(T)

XM =

Considering
X':= XU {-m(T,S) — not-b(T)}

that is, X is extended by adding the conditional fact that Tom and Susan are not
married if it is true by default that Tom is a bachelor. X' has no WFS&X model
simply because all candidates are inconsistent. In order to be able to assign an
intended model to programs where contradictions arise through default assumptions
(i.e. by weakly negated premises), the CRSX semantics blocks those weakly negated
premises that are responsible for contradictions. In other words, weakly negated
sentences are revised if this avoids inconsistency. in the example of X' this means

that one cannot conclude not—b(T')¢, and therefore X’ has the following CRSX model:

M =< {b(P),m(T, )} + {b&(S)}, {m(P, 5)} + {b($5),b(T)} >

2.3.2 ‘Semantics of Weighted Maximally-Consistent Sub-

sets’ of Lozinskii

Lozinskii in his paper [51] considers a knowledge system S whose purpose is to present
the real world W faithfully. But if S turns out to be inconsistent containing contra-
dictory data, he views the state as a result of information pollution with some wrong
data. He argues that: One may reasonably assume that most of the system content
still reflects the world truthfully, and therefore it would be a great loss to allow a small

contradiction to depreciate or €ven destroy a large amount of correct knowledge. So,

6Technically this achieved by adding the ‘inhibition rule’ =b(T) — not—b(T) to X'.

40



11

despite the pollution, § must contain a meaningful subset, and so it is reasonable to
assume that the semantics of a logic system is determined by that of its maximally
consistent subsets, mc-subsets. The information contained in S allows deriving certain
conclusions regarding the truth of a formula F' in W. In this sense the author says
that S contains a certain amount of semantic information, and provides an evidence
of F. A close relationship is revealed between the evidence, the quantity of semantic
information of the system, and the set of models of its inc-subsets. Based on these
notions, he introduces the semantics of weighted mc-subsets as a way of reasoning in
inconsistent systems. To show that this semantics indeed enables reconciling contra-
dictions and deriving plausible beliefs about any statement including ambiguous ones,
it is successfully applied to a series of justifying examples, such as chain proofs, rules
with exceptions, and paradoxes. By an example we will illustrate the semantics of
weighted mc-subset< below, but before that we will just mention some terminologies
without going to the deeper mathematical definitions of them as given by the authors.

E(S, F) means the evidence of a formula F' being true in a set of formula S
comprising to make a theory. s;s are the mc-subsets of S and | s; | is the size (number
of formulas) of a mc-subset and w(s;) is a function of the size of s;. MC(S) is the set
of all mc-subsets of S and MOD(s) is the model of a set of formula s. Now we can

define weight of a mc-subset and evidence of a formula with respect to a theory:
Definition 2.3.1 (Weight of an mc-subset) w(s) = ijsé’ﬂ%é];' O

Definition 2.3.2 (Evidence of a formula F in a theory 5)

_ I, (5)|MOD(sU{F})ixw(s)
E(S,F) = = 2 5 Mob(sxuts) ~ O

Example 2.3.1 Let us consider the following ezample of exception that has recently

become a classical one.
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i) bird(z) — fly(z)
ii) penguin(z) — bird(z)

(
(
(11i) penguin(z) — —fly(z)
(

| () penguin(quacky) O

Since the free variables of the clauses of S are supposed to be universally quantified,

S is inconsistent. Indeed, by clauses (iv), (ii), (i), ‘quacky’ can fly, but owing to (iv),

(i), she cannot. However, is it possible to learn more about this matter from the

system? Let us try to figure out by applying the semantics of weighted mc-subsets.

S contains 3 mc-subsets:

sy = {(i), (i1). (10)}, | &1 |=3, my = {penguin(quacky), bird(quacky)fly(quacky)};

Sg = {(ii),(iii) m)} | s2 |= 3, m = {penguin(quacky),bird(quacky), -fly(quacky)};

sy = {(#), (i), (sv)}, |s3|=3, my = {penguin( (quacky),~bird(quacky),~fly(quacky)};
So, the system of the above example provides the following evidence about the

flying ability of ‘quacky’.

E(S, fly(quacky)) = 5, E(S,~[ly(quacky)) = 3

Hence it is most likely that ‘quacky’ cannot fly, which resolves the contradiction in S

in full accord with the common knowledge about the flying ability of penguins.

2.4 Summary

In this chapter we presented a brief account of some of the traditional paraconsistent
logics and carried on to present a comprehensive survey of new approaches to para-
consistency. In the last part we discussed some of the new approaches to handling
inconsistency following the traditional classical approach of ECSQ (for ex contradic-
tion sequitur quodlibet) and traditional information processing approach of RAA (for
reductio ad absurdum). In Chapter 9 we will discuss the limitations of these work

w.r.t. to our work.



Chapter 3

Preliminaries

In this chapter we review some of the preliminaries that we use throughout the thesis.
We first review the general concepts involved in model theory and discuss the notions
about fizpoints that are often used to define the declarative semantics of logic pro-
grams. We then review the least model semantics [20] for positive logic programs and
the answer set semantics of ertended logic programs (ELP) [30]. Finally we discuss
the language of objective epistemic specifications (OES) a subset of the language of

epistemic specifications (ES) [29].

3.1 Some Model Theoretic Concepts
We will define some terms involved in defining a propositional language. We start
with the definition of Herbrand base.

Definition 3.1.1 (/50]) Let L be a propositional language. The Herbrand basec H for
L is the set of all propositional symbols from L. O

The definition of Herbrand interpretation is given as follows:

Definition 3.1.2 ([69]) Any Herbrand interpretation I =< T;F > can be viewed
as a function I : H — {O,%,l}, from the Herbrand base M to the 3-element sci
T ={0,1,1}, defined by:
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0 ifacF
H{a)=14 3 ifaelU
1 ifacT

where T and F are disjoint subsets of the Herbrand base H, T is the set of atoms that
are truc in [ and F is the set of atoms that are false in I. U = H — (T U F) is the
set of the remaining atoms in H which are neither true or false but unknown (or
undefined).

An interpretation I is two valued iff I maps H into the 2-element set {0,1}. O
We now give the definition of truth valuation in an interpretation:

Definition 3.1.3 ([69]) If I is an interpretation, then the truth valuation I corre-
sponding to I is a function I :F — T from the set F of all (closed) formulae of the

language to T recursively defir  as follows:
o [fa is an atom, then I =I).
o If F is a formula then J(~F) =1 - I(F).
o If F\ and F, are formulae, then

i(Fl ANFy) = min{j(Fl}aj(F2));

[(FiV Fy) = maz{l(FR),[(F};

I(F, — F) = { 1 i I(FR) 2 I(F);

0 otherwise. O

Definition 3.1.4 A theory over L is a (finite or infinite) set of closed formulae of
L. An interpretation I is a (2-valued or 3-valued) model of a theory R if f(F) =1,
for all formulae F in R. O

Definition 3.1.5 A normal logic program P is a set of clauses of the form:
Q — ¢1 Ao A ¢m

where a is an atom, ¢;s are literals of the form a or ~a and m > 0. D



Clearly, every P is a theory. The following proposition is immedicte.

Proposition 3.1.1 An (Herbrand) interpretation M is a model of a program P if

and only if for every instance
O‘—(b] /\/\d)m

of a program clause (where a is an atom and ;s are literals of the form a or ~a) we

have
A:[(a) > min{M(¢;) 1 <m}. 0O
The definition of standard ordering (<) is given as follows:

Definition 3.1.6 ([70]) If I and I' are two interpretations then we say that I X I'
if I(a) < I(a) for any atom a. If T is a collection of interpretalions, then an
interpretation I € I is called minimal in I if there is no interpretation I' € I such
that I' < I and I' # 1. An interpretation I is called least in I if I < I, for any other
interpretation I' € IT. A medel M of a theory P is called minimal (resp. least) if it

is minimal (resp. least) among all models of P. O
The definition of F-ordering is given as follows:

Definition 3.1.7 ([24]) Let I =< T;F > and I' =< T'; F' > be two inlerpretations
where T, F and T', F' are two disjoint subsets of the Herbrand base H, respectively.
Then we say that I <g I' if T C T' and F' C F'. We call this ordering an F-
ordering.

If T is a collection of interpretations, then an interpretation I € T is called F-minimal
in T if there is no interpretation I' € T such that I' X I and I' # 1. An interpreta-
tion I is called F-least in T if I <p I', for any other interpretation I € IT. A model
M of a theory P is called F-minimal (resp. V' lcast) if it is F-minimal (resp. I-least)
among all models of P. O



3.2 Fixpoi ts

Declarative semantics of logic programs is often defined using fixpoints of some natural
fixpoint operator O, applied on ordered sets of interpretations. Suppose < is a partial

ordering . the set Z of interpretations of a given language L, then O, : T —»Tisa

mapping,.

Definition 3.2.1

(1) By the least upper bound lub(I') of I' C I (vesp. the greatest lower bound
glb(T") of T' C T') we mean an interpretation I € T such that I' Q I, for any
I"c T and I' Q I" for any other 1" with this property (resp. 13 I', for any
I'e T and 1" Q [' for any other 1" with this property).

2) The partially ordered set T is a complete lattice if lub(Z') and glb(T') exists for
every subset I' of T.

(3) Let T be a complete lattice. O, is monotonic if I Q I' implies 0,(1) 9 O,(1'),
for any {1,1'} CT.

(4) O, is nonmonotonic if 1" does not imply Op(I)QA0,(I'), for some {I, I''cT.

(5) Lot I be a complete lattice. Let I' € I. e say I’ is directed if every finite subset
of I' has an upper bound in I'.

(6) Let T be a complete lattice. We say O, is continuous v O,(lub(Z")) = lub(T’),
for every directed subset of T' of T.

(7) An interpretation 1 € T is a firpoint of O, if O,(I) = I.

(8) Let I be a complete lattice. I € T is the least fixpoint of Op if I is a fizpoint
and for all firpoints I' of O,, we have I < I'.

(9) By the smallest interpretation (under the given ordering) we mean an interpre-

tation Iy such that Iy Q I, for any other interpretation I.
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The next result is owing io a weak form of a theorem by Tarski [86], which

generalizes an earlier result by Knaster and Tarski.

Proposition 3.2.1 ({50]) Let I be a complete lattice and O, be monotonic, O, has
a least fizpoint lfp(O,). and a greatest firpoint g fp(O,). Furthermore, 1{p(O,) =
glo{I : Op(I) =1} = glb{I : O,(1) QA I} and gfp(O,) = lub{l : O (1) = I} = lub{] :
140,(1)}. O

Least firpoints of operator O, are generated by iterating the operator (), starting

from the smallest interpretation Iy and obtaining the (possibly transfinite) sequence:

Op T0: 10?
Op Tb+l= OP(OP Tb);
0, 1= lub{0, 1%: 6§ < A};

where 6 is an ordinal, § + 1 = § U {6} which is the least ordinal greater than é is the
successor ordinal, and A, which is not the successor of any ordinal is the limit ordinal.
The first finite ordinal is w = {0,1,2,...}, the set of all non-negative integers.

The smallest limit ordinal apart from 0 is w.

Proposition 3.2.2 ([50]) Let I be a complete lattice and Oy, : T — T be continuous.
Then lfp(O,) =0, . O

In the sequel we consider two principal orderings among interpretations, namely
the standard ordering < (see Definition 3.1.6) and the F-ordering <; (sce Defini-
tion 3.1.7). Operators acting on sets of interpretations ordered by the standard or-
dering, is denoted by ©, while those acting on sets of interpretations ordered by the
F-ordering, is denoted by Q. Recall that Iy =< §;H > (resp. Io =< 0;0 >) is the
smallest (resp. F-smallest) interpretation in the set of all interpretations ordered by

=< (resp. =<F).



For a subset I’ of T, we denote by lub(I’) (resp. glb(I')) the least upper bound
(resp. the greatest lower bound) of I' with respect to <. Similarly, we denote by
lubp(T') (resp. glbp(I')) the least upper bound (resp. the greatest lower bound) of
I’ with respect to <p.

Observe, that if I = {I, : « € S. the set of all atoms in the language}, with

1, =<1T,; F, >, then:

glbp(T') = < () Ta; () Fa >

a€S a€S
Although [ub(Z’), glb(I') and glbg(ZI') are always well-defined interpretations, lubp
(I') =< T; F > may not be an interpretation, because the sets T and F may not be
disjoint. However, lubp(I') is always an interpretation, if I’ is an F-directed set of

"

interpretations, i.e. such that for any I',]"” € I’ there is a I" € T satisfying I' <p I
p Y g

"

and I" jp I.

3.3 Positive Logic Programs (PLE)
In the section we start with the definition of positive logic prograins.

Definition 3.3.1 (Positive logic programs (PLP)) A positive logic program is a
set of clauses of the following form:
ag— o A...ANay,

where ags (i =0,...,m) are atomns and m > 0. O
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The model-thevretic approach is particularly well-understood in the case of positive

logic programs. In this section, we assume that all interpretations are 2-valued.

Example 3.3.1 Suppose that our program P consists of the clauses:

able-mathemalician «— physicist

avoids-maths «— businessman

physicist.
This program has several different models, the largest of which is the model in which a
person is both a physicist and a businessman and is thus an able mathemalician and
a person who avoids maths at the same time. This model hardly seems to describe the
intended meaning of P correctly. Indeed there is nothing in the program to imply that
the person 1s a businessman. We are inclined to believe that the lack of information
implies we can assume the contrary. The program also has the unique least model
M;:

< {physicist,able-mathematician}; {businessman,avoids — math} >

This model seems to reflect the semantics of P correctly. At the same lime il incor-
porates the classical case of the closed-world assumption [13]: if no reason cxists for

some positive statement to be true, then we are allowed to infer that it is false. O

It turns out that the existence of the unique least 1aodel M,’, is the property shared

by all positive programs.

Theorem 3.3.1 ([20]) Every positive logic program P has a unique least (Herbrand)
model M;. O

This important result led to the definition of the so called least model semantics for

positive logic programs.

Definiti:» 3.3.2 (Least model semantics [20]) By the least model semantics of

a positive program P we mean the semantics determined by the least Herbrand model

M, of P. O



‘The least Herbrand model semantics is very intuitive and it seems to reflect the
intended meaning of positive logic programs properly. The motivation behind this
approach is based on the iuwa that we should minimize positive information as much
as possible, limiting it to facts explicitly implied by P, and making everything else
false. In other words, the least mnodel semantics is based on a natural form of the
closed world assumption.

Least model semantics also has a natural fixpoint characterization. First we define
the Van Emden-Kowalski immediate consequence operator © : T — I on the set T of

all interpretations of P (ordered by <').

Definition 3.3.3 (The Van Emden-Kowalski operator [20]) Suppose that P is
a positive logic program, I € T is an interpretation of P and a is an atom. Then
O(I) is an interpretation given by:

(i) ©(I)(a) = true if there is an instance of a clause a — ay,...,an, tn P such
that I(c;) = true, foralli=1,...,m;

(it) ©(I)(a) = false, otherwise. O

Theorem 3.3.2 ([20]) The Van Emden-Kowalski operator © has the least fizpoint,
which coincides with the least model M;. O

The least model M, is obtained by iterating w (which denotes the first infinite ordinal)
times the operator O , starting with the smallest interpretation Ip =< 0;H >. We
get the sequence © T",n = 0,1,2,...,w, (© 1°= Ip), of iterations with respect to
the standard ordering < of interpretations. The sequence is monotonically increasing

and it has a fixpoint

0 1v= M,

Wf I =< T,F > and I' =< T'; F' > are two interpretations, then ] < I' iff T C T' and F C F".
In particular, for 2-valued interpretations, I < I' iff I C I'. Here T (vesp. T') and F (resp. F')
are disjoint subsets of the Herbrand base H, T (resp. T') is the set of atcms that is true in [ (resp.
I'), i.e. those that belong to I (resp. I') and F (resp. F”) is the set of atoms that are false in I
(resp. I') i.e., those that do not belong to I (resp. I'). Interpretations I (resp. I’) above are called
2-valued because they satisfy the condition H = T'U F and thus assign to every ground atom either
the value true or false.
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3.4 Extended Logic Programs (ELP)

In this section we review the answer set semantics for extended logic programs [30].
But first we define an ELP.
An ertended logic program (ELP) is a set of rules of the form
Lo—LiN...ANLp,not Ly A...AnotlL,
where n > m > 0, and each L; is a literal.

Now we define the answer set semantics for ELP. First let P be an ELP that does
not contain not. Lit stands for the set of literals in the language of P. An answer set
of P is any minimal subset S of Lit such that

(i) for each rule Ly « Ly A ... A Ly, from P, if Ly,...,L,, € S then Lo € S5;
(ii) if S contains a pair of complementary literals, then S = Lit.

We denote the answer set of a program P that does not contain negation as failure
by A(P).

If P is a positive program, i.e., a program containing neither not nor ~, then condition

(i1).is trivial, and A(P) is simply the minimal model of P (refer to the last scction).

Example 3.4.1 Now let us consider an ELP P, without not:
{~pe—; pe—~g}.
It has the answer set:
{~ p}.
Let us consider another ELP P, without not:
{~p, ¢ =~ p}.

It has the answer set:

{~p, q}.

Now let P be any ELP. For any set S C Lit, let PS be the ELP obtained from P
by deleting

(i) cach rule that has a formula notL in its body with L € S, and



(1) all formulas of the form notL in the bodies of the remaining rules.
Clearly, PS does not contain not, so that its answer set is already defined. If this
answer set coincides with S, then we say that S is an answer set of P. In other words,

the answer sets of P are characterized by the equation
S = A(P%) (3.1

Example 3.4.2 Consider the program Ps:
~ g «— notp.
To check that {~ q} is an answer set of the program P3, we should construct the
program P;,{NQ). This program contains one rule
~q—
(the result of deleting not p from the only rule of Ps. The answer set of this program is
{~ q}, the set that we started with. Consequently, this is indeed the answer set of Ps.

It is easy to check that no other subset of literals has the same fized point property.

O

An answer set of a normal logic program ~ a program without explicit negation,
but with negation by default not - is a set of atoms. The definition of an answer
set coincides here with the definition of stable models [34]. (Notice that the sign
~ stands there for negation by default and thus corre-ponds to not in the notation
of this chapter.) We conclude that the answer sets of a normal logic program are
identical to its stable models. In this sense, the semantics of ELP, applied to normal
logic programs, turns into the stable model semantics.

An ELP is contradictory if it has an inconsistent answer set (that is, an answer set
containing a pair of complementary literals). For instance, the program P4, consisting
of the rules

{~ q « notp; q « not p}
is contradictory as it has the answer set that contains both ¢, ~ ¢. Clearly a normal

logic program cannot be contradictory.



Proposition 3.4.1 ([30]) Every contradictory program has exactly one answer sel

- the set of all literals, Lit. O

Being non-contradictory doesn’t guarantee, of course, the existence of answer sets.
This can be illustrated by the normal logic programs without stable models, such as

{p « not p}.

3.5 Objective Epistemic Specifications (OES)

In this section we present the language of OES, a sub-language of ES [29, 33]. The
sub-language OES has not been defined before. But as it is a restricted version of the
language of ES (the language of ES in propositional form without modal operators
K and M), we make certain modificaiions to the definitions of the language of LIS as
given in [29] and present it kere. We can also consider OES as an extension of the
language of ELP (for extended logic programs) by inclusion of epistemic disjunction
(which we shall soon elaborate on) and complex formulae.

Let us consider a language Lo consisting of propositional symbols p,¢,.. ., logical
connectives A (and), ~ (explicit negation), not (negation by default) and or (epistemic
disjunction, different from classical disjunction V). Formulae of Lg are defined in the
usual way. Formulas of the form p are called atoms. By literals we mean atoms «
and their strong negations ~ a. The set of all ground literals are denoted by Lit.

Let us consider a set of literals W. (W represents his/her current/working set of
beliefs.) We inductively define the notion of truth (k=) and falsity (=|) of a formulae
of Lo w.r.t. a pair W.

Definition 3.5.1
WkoifoeW
WERANFRIfWiEF and W E F,
Wk FiorF if WEFL, or WEF,
Wge~Fif W=lF
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WiknoF if WEF

W=l¢iff W

W=|RAFRFW=|ForW=|F

W =| FiorFp if W =| Fl and W =|

W=|~Fif WEF

W =|notF if W = F
where, ¢ € ®; if ¢ is an atom ¢, é denotes ~ a and vice versa; and F;s are arbitrary
formulae constructed from the set ® of all literals of our language by the connective

~, N\ andor. O

Remark 8.5.1 The meaning of the connective or, called epistemic disjunction, is
given by the semantics of disjunctive databases [31] and differ from that of V (classical
disjunction). The niwaning of a formula a V b is “a is true or b is true”, while aorb
is interpreted epistemically and means “believe a or believe b”.

Let us attempt some intuitive ezplanation of or. p or q is true w.r.t. a set of
literals A if p is in A orq isin A. por;q is false w.r.t. Aif~pisin A or~gqisin
A. Otherwise the truth of p or;q is unknown.

Notice that A is a set of literals, not atoms. It represents an incomplete model of

the world.

The language and the satisfiability relation described above together with the
notion of a rule from logic programming are used to provide a specification of a
reasoner with the desired properties. The formal notion of such a specification is

captured by the following definitions:

Definition 3.5.2 By an objective epistemic specification (denoted as OES) we mean
a collection of rules of the form
F F] AL Fm

where F and F;s are arbitrary formulae and m > 0. O



Remark 3 5.2 Our semantics is not “contrapositive” with respect to — and ~ ; it
assigns different meaning to the rules p «—~ q and q —~ p. The reason is that
it interprets expressions like these as inlcrence rules, rather than conditionals. The
language of OFS includes explicit negation (which is different from classical negation

but have some closeness too), but not classical implication. F — G means ‘F if i

Now we define a set of literals satisfying an objective epistemic specificatwo 1.
We call such a set an answer set of T. The precise definitions of these notions ar

given in several steps:

Definition 3.5.3 Let IIp be an OES consisting of rules of the form
F «
A set W of literals is called a belief set of Ty iff it is @ minimal set with a property

W k= F for every rule from Ty. If W contains a pair of complementary literals then
W = Lit. O

Example 3.5.1 Let T consist of the clauses:
porgq «
~p
rorsort «—
nots «—

Clearly T has two belief sets:

{N p,q,r} {N p,q,t}
O

Definition 3.5.4 Let Il be an arbitrary OFS and W be a set of literals in the language
of I1. For every W by Ily we denote the epistemic specification obtained from 11 by:

1. Removing from the premises of rules of T all formulae F; such that W = F;.

2. Removing all remaining rules with non-empty premises

Then W is called a world view of Il iff W is a belief set of Ilw}. O



Example 3.5.2 Let P consist of the formulae
porq«—rAnots
roe—

(learly this specification has twe answer sets: {p, r} {¢,r}. O

Example 3.5.3 Let 11 consist of the formulae
porq«—rAnots
T
t «— nots
~ 1« nols
It is casy lo see that this specification is inconsistent and thus have a set of all literals

Lil as an answer sel, which pertains to having no answer set. O

Example 3.5.4 Let P consist of the formulae
p+« nolq
q «— nolp

This specification is satisfied by two answer sets: {p} and {q} O

Example 3.5.5 Let P consist of the formulae
p— nolp

This specification does not have an answer set. U

Example 3.5.6 Let P consist of the formulae
Pp—4q
q —
rep
~qge—T

This specification does not have an answer set. U

Example 3.5.7 Let P consist of the formulae

Np(—
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p —
g =~ (pA ~ p)

This specification does not have an answer set. O

Example 3.5.8 Let P consist of the formulae
peqor~¢q
qges
~ gt
l «— nots
s «— nott

This specification have two answer sets: {t,~ ¢,p} and {s,q,p}. O

An OES is non-contradictory if it has a world view with no inconsistent belief
sets (i.e. belief sets containing a pair of complementary literals). Thus a OLS is
contradictory if it has a world view with inconsistent belief sets. For instance, the
OES consisting of the rules

{porqe;~gqe}

is contradictory as it has the world view with a belief set that contains both ¢, ~ ¢.

3.6 Summary

In this chapter we reviewed some of the existing notions in the realm of logic pro-
gramming and some of the logic programming frameworks. Based on these we shall
develop our inconsistency handling frameworks in the next few chapters.

In Chapter 6 we use the notion of fixpoints based on an extension of the Van
Emden Kowalski operator ©, which we discussed in this chapter, in developing a
constructive semantics for an inconsistency handling framework based on positive
logic programs. As the framework is akin to a positive logic program which has 2
fixpoint, without going into details of the properties of the specification we consider

it to have a fixpoint.



Chapter 4

Approach C -y

in this chapter we propose some fundamentally new ideas of handling inconsistency
hased on inch we develop several logical systems which we will present in the fol-
lowing chapters.

This chapter is organized as follows. In the next section we introduce the new ideas
of handling inconsistency. Based on thesc ideas we propose inconsistency handling
strategies that we present in Section 4.2. In Section 4.3 we discuss the rationale behind
them und briefly compare them to the existing inconsistency handling approaches.
In Section 4.4 we explore the originality in our ideas of handling inconsistency. We
conclude with a summary and pointers to developments in the next chapters.

A preliminary vession of the ideas presented in this chapter has appeared in [36].

4.1 The inconsistency handling ideas

In this section we propose some new ideas for treating knowledge in the presence of
contradiction. In particular inconsistency handling strategies based on these ideas
wou !+, instead of providing automatic helief revision or trivialization (as in classical
logic). ~uggest a way out of the diicmima imposed by the presence of contradiction.

The concept contri: to our idea consists of considering inconsistent knowledge as
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being as relevant as any other knowledge, capturing it explicitly, reporting it and
producing new interesting knowledge from it. The concepts are referred to as erplicii
paraconsistency and reasoning beyond paraconsistency.

This cannot be attained via modal treatments, nonmonotonic logics or truth main-
tenance devices and can be attained only approximately via many-valued logics. This
is because such approaches work by preventing contradictions or by remedying the
situations instantly if inconsistency occurs. But we are interested in ‘coexisting’ with
the contradiction and possibly taking profit of it as interesting knowledge. This is in
the sense that understanding the cause of contradictions provides additional knowl-
edge. It is also profitable in the sense that contradiction driven reasoning provides
a new horizon of information which would have never been arrived at, following the
existing approaches of handling inconsistency. This allows us a wider spectrum of
information, some irrefutable, some defeasible (the ones inferred from assumptions)
and the new ones, paraconsistent (which captures the contradiction implicitly with-
out making the theory inconsistent) and contradiction affected, which have different
epistemicity than the others. It is a matter of philosophical intuition where the epis-
temicity of these new types of information stand with respect to the irrefutable and
defeasible ones.

In clearer terms, we intend to discuss the basis for a system in which:

(a) conflicting situations can be tolerated, explicitly captured and reported, without

making the system inconsistent (this we call ezplicit paraconsistency), and

(b) intuitively relevant knowledge can be obtained from this confiicting situation,
from the rest of the global theory that is not directly affected by contradictory
information, from the contradictory inforination and from parts of the theory di-
rectly or indirectly affected by contradictory information (this we call reasoning

beyond paraconsistency).



4.2 Introducing the new elements of Approach C —
Cy: C and Cq4

The question that arises often in the logic community is how to handle contradiction.
The consensus in the logic community ‘s that contradiction is undesirable. The ap-
proach has been to free knowledge base: of contradiction completely, and to try to
eradicate contradiction from knowledge beses by any means possible or to trivialize
the inconsistent theory. Many of them [2, 32, 61] seem to agree that contradiction
should not exist in a knowledge base and must be resolved somehow. But some re-
searchers in this area contend the prevailing notion amongst many of the researchers
on the basis of the rationale that inconsistency in large knowledge bases is inevitable.
So to be more pragmatic we must have some means to reason in the presence of in-
consistency. This is just one motivation for reasoning in the presence of inconsistency.
We have discussed several others in the introductory chapter.

We propose a new approach to handle inconsistency. We start with the basic
language of positive logic programs (50, 20, 69] and introduce explicit' negation.

Earlier, positive logic programs have been extended by negation, but the semantics
given {o it is not that of explicit negation, but of ‘negation by default’ [12, 41, 28, 21].
By introducing in the language of positive logic programs the notion of explicit nega-
tion, only the existence of a negated fact in the knowledge-base will make the strong
notion of negatior. manifest itself in the theory, instead of closed world assumption
(73] that makes negation by default manifest in the theory. (For more on the rationale
behind introducing explicit negation to logic programs see (30, 53].)

Existence of a thesis and its explicit negation, together in a theory, causes contra-
diction. Because we have two kinds of negations we also have two kinds of inconsis-

tency. The inconsistency arising on account of explicit negation is called ontological

1Explicit negation (~) is different from classical negation (-). This we have mentioned in Chap-
ter 1 and will discuss in Chapter 5, Section 5.4.
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inconststency and the inconsistency arising on account of negation by default is called
epistemic inconsistency. This we have discussed in Chapter 1, Section 1.5.

In this chapter we will deal with ontological inconsistency by restricting our lan-
guage to that of positive logic programs plus explicit negation. * To handle ontological
inconsistency, we introduce a new connective C to the existing language of positive
logic programs plus explicit negation (denoted as ~). Let a be an atom. Ca (or
C ~ a) means a (resp. ~ a) is inconsistent or a (resp. ~ «a) is in contradiction,
i.e. there is contradictory information available ahbout a (resp. ~ ) in a theory. By
our semantics if @ and ~ a are in the same theory , we replace them by Ca. From
now on we will have Ca to capture both Ca and C ~ a. When we say Ca is true, we
mean both Ca and C ~ a are true.

Unlike some of the other logics handling inconsistency (refer to Chapter 2), we
do not allow contradictory information to prevail in the theory but still maintain
paraconsistency. By an introspective method we check the theory for the presence of
contradiction. If contradiction is present we replace it by a sentence depicting it. In
this way we avoid all the repercussions® of having contradictions in a theory and at
the same time maintain the privileges! of paraconsistency. We name this particular
strategy of handling inconsistency based on the idea of erplicil paraconsistency, as
Approach C.

Approach C based systems are paraconsistent without the presence of explicit in-
consistency. Considering a traditional paraconsistent system, if a set of formulac ¥ =
{~ a,a} and f=parq denotes logical consequence in the system, then ¥ = purq @ (resp.
~ @), but ¥ [pera b (the theory is not trivialized by concluding everything from

inconsistency). Approach C integrated paraconsistent systems behaves differently. If

2We handle both ontological and epistemic inconsistency in Chapter 7 in the context of extended
logic programs.

3Contradictory pairs of information explicitly present in a theory lead- to inferences being made
from them. This may propagate conclusions affected by contradictions without the knowledge of
the reasoner. This is not warranted for.

4Ability to carry out nontrivial reasoning in presence of inconsistency.
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l=c denotes the logical consequence for the system, then X e a(resp. ~a), & Hc b
and ¥ ¢ Ca. By this approach inconsistent pairs (such as a and ~ a) are not explic-
itly present in the theories but replaced by the new element Ca. We refer to formulas
like Ca as ‘paraconsistent elements’ as they contribute to the paraconsistency of the
system. There are many advantages to this approach which we shall discuss in the
next section.

In most of the logics handling inconsistencies, none distinguishes between con-
clusions drawn from inconsistent and consistent information. Moreover there is no
logical mechanism in these logics to allow or disallow conclusions from inconsistent
information as the situation demands.

The philosophical question that we face here is whether we should at all distin-
guish between conclusions arrived from inconsistent information and conclusions ar-
rived from consistent informaticn. Existing paraconsistent logics have not dealt with
this fundamental question. We argue that we should distinguish between conclusions
from inconsistent and consistent information as we understand that the conclusions
derived from inconsistency have different epistemic strength than the ones derived
from consistent information. This argument is somewhat similar to [58] who dis-
tinguishes between irrefutable and defeasible conclusions arrived via irrefutable and
defeasible rules respectively.

The inconsistency handling strategy we propose here based on our second idea,
deals with the issue of the distinction of conclusions drawn from inconsistent and con-
sistent information. The logical systems that we propose based on this strategy are
compact systems where logical devices can be easily built in to give us the option to
allow or disallow conclusions from inconsistent information as the situation arises. So
based on our inconsistency handling strategies not only are we able to go beyond in-
consistency by introducing paraconsistent techniques, but we are also able to develop
enhanced logical frameworks that are capable of reasoning beyond paraconsistency.

To develop the inconsistency handling strategy based on the idea of reasoning
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beyond paraconsistency we introduce a new connective Cq. A formula Cqa means that
a is the consequence of a premise of a rule® ‘affected’ by inconsistent information.
There are three possible ways in which the premise of a rule can be affected by
contradictory information: (1) The premise of a rule can have a contradiction, i.c.
can have a formula of the form Ca in it and also Ca as a consequence of the rest of the
theory containing the rule; (2) the premise can hite » formula of the form Cyar and
a conrsequence Cqa of the rest of the theory; or (3) tis yr- mise can have a formula a
and the rest of the theory has C:x ot Cqa as a consequence.

The three possibilities of gei‘-..g Csx as a consequence, discussed above, can be

illustrated by the following examples.

Example 4.2.1

(1) ~ a; a; b+ Ca. Here we get Ca as a consequence of the theory, and also get
Cib as a consequence as the premise of the rule having b at the head has Ca.

(2) ~ a; a; b« Ca; d «— Cyb. Here we get Ca as a consequence of the theory,
and also get Cyb as a consequence as the premise of the rule having b at the head has
Ca. Finally we get Cyd as a consequence as the premise of the rule with the head d
has Cqb which is a consequence of the theory.

(3) ~ a; a; b — a. Here we get Ca as a consequence of the theory. We also gel
Cyb as a consequence, as the premise of the rule having b at the head has a in the

premise. O

The formal strategy we proposed based on the idea of reasoning beyond paraconsis-
tency is termed Approach C,.
We name the combination of Approach C and Approach Cy: Approach C —C,.
Application of Approach C — Cy to the language of positive logic programs {20, 50]
with explicit negation gives us a new language that we call Paraconsistent Specification

(PS). We will formally define this in Chapter 5, Section 5.1.

5An extended positive logic program rule, extended by explicit negation, the paraconsistent
connective C and the connective handling reasoning beyond paraconsistency Cq.
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4.3 Approach C — C,4 and its rationale

Example 4.3.1 Consider a PS comprised of a collection of rules:
republican

quaker «

o b o=

pacifist — quaker

4. ~ pacifist — republican
The unique conclusion set we would expect to get from the above set of clauses by
Approach C 1s:

{republican, quaker,Cpaci fist}. O

Keeping the above example in mind we will briefly discuss the advantages and ap-
propriateness of handling inconsistency by Approach C — Cq4 in the light of the exist-
ing approaches of (a) paraconsistency, (b) traditional information processing and (c)

multi-valued logics.

4.3.1 Approach C and its rationale

In the paraconsistent approaches [42, 13, 14, 17] and extensions of it [11, 58, 93] the
view is too liberal as complemeniary contradictory information is allowed to prevail
in the theary without registering that they are in contradiction. This allows to derive
ireely further information with the help of one or both the contradictory information.
This may result in further complications in the reasoning process giving rise to more
contradictory information.

By Approach C we have the option to allow or disallow derivation from contra-
diction, as contradiction is captured explicitly and reported. This is possible as the
builtin logical device (which we will discuss in the next chapter) is able to explic-
itly recognize the contradiction by capturing it in a paraconsistent form. This was
not possible in the paraconsistent approaches as the contradiction was not explicitly

recognized but implicitly allowed to exist. In some cases [45] contradiction is only



recognized implicitly in the process of application of a consequence operator.

In the traditional information processing approach a choice is made between one
of the contradictory information based on certain preference criteria or noune of the
contradictory information is chosen to play safe. Sometimes the belief is revised
[2, 62, 61] to make the theory consistent. By our understanding this approach is
too decisive and we may lose some important information in many of these ways.
For example a knowledge base comprised of the rules a «— notb, ~ a « notc and
e «— notb, notb and notc are equally assumable. We can retract our assumption in
both notb and notc to avoid contradiction, but then we are unable to derive ¢ and
thus lose important information.

Approach C has the merits of both the approaches that we have discussed till now.
This is in the sense that it is liberal enough to accept a contradiction in a theory, to let
it be derived from a theory and also to reason with it. At the same time by capturing it
by the connective C, it is registering the fact that contradictory information exists and
are keeping the option open to choose both or one of the contradictory information, or
discard both of theni. It leaves the option open to decide at a later stage when more
information may be available to choose between the contradictory information. This
saves us from taking a hasty decision to choose between one of them or to discard
both to reestablish consistency as soon as it appears, which requires us to maintain a
cumbersome process of revision, by which possibly valuable information can be lost.

There is another approach, where inconsistency has been handled by multiple-
valued logics [55, 9, 23]. The commonly used two extra truth-valuations for these
multi-ya.lued logics are unknown, denoted by the symbol 1 and inconsistent denoted
by the symbol T. The second truth-saluation captures the case where a thesis and its
negation are present in a theory. One of the basic differences between these approaches
and ours is that’we stick to a two-va'ued semantics. Instead of truth-valuating an
atom « to be inconsistent we affirm -i:at both a and ~ «a are true in a theory, by

introducing the formula Ca in the theay.
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In Belnap’s four-valued logic [55] saying a is believed both true and false (i.e.
truth-valuation of a is T) is different from the meaning captured by Ca. Multi-valued
logics provides an inconsistent system with an epistemological meaning in the sense
that the system can reflect beliefs of a reasoner (human or machine) who may hap-
pen to hold conflicting beliefs. The multi-val: " logme s *oms remain ontologically
inconsistent as far as they agreed that rcality comphes with the laws of excluded
middle and noncontradiction, which m.ans that in every possible -*ate of the real
world every statement is either tr- - or false exclusively. By it, a tatement can
only be ‘believed’ true and false <:multaneously, (thus capturing a kir * of epistemic
inconsistency), but cannot be true and false in reality (i.e. ontologic lly).

An Approach C based reasone- takes an ‘objective’ introspective v ew of its knowl-
edge base. It does not internalizc ¢ contradictory informatior ~ 1ts own but con-
siders its presence and reports it. Where as, a multi-valued logic »ased reasoner views
its knowledge base ‘subjectively’ and considers the cortrawuction to be its own be-
lief. So Approach C captures the scenario (of combining knowledge bases or different
experts feeding a knowledge base, thus resulting in inconsistency that we define as
ontological inconsistency) more appropriately by our intuition, than the multi-valued
approach which in a way reports self-inconsistency. Moreover, we do not perceive
self-inconsistency to be a rational characteristic of a reasoner.

Can we allow contradictions in a theory without introducing the C operator?
Some paraconsistent logics (e.g., (13, 15, 93]) tolerate contradiction and reason in its
presence. But the problem that occurs there is that a theory containing contradictions
answers true to both the complements of the contradiction. The knowledge base in
Example 4.3.1 answers yes to both the queries ?paci fist and ? ~ paci fist when asked
at different times or at the same time. We comprehend the existence of contradiction
in the knowledge base if we ask the complementary queries at the same time. But if
we ask the complementary queries at different times then the querier would remain

ignorant about the contradiction. We can also modify the query answering mechanism
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such that it always answers both questions paci fist and ~ paci fist whenever one of
them is asked. But the problem lies in the meaning of the answer “yes” given to
both pacifist and ~ pacifist. When asked the same query to a system based on
Approach C having the knowledge base as given by Example 4.3.1, it will answer that
‘it has contradictory information available about paci fist’. Here the meaning is very
explicit.

In [55, 9, 45, 11, 23] (i.e. the multi-valued approaches), the aforementioned prob-
lem does not occur. But as we have pointed out before our strategy provides a dif-
ferent approach to solving the problem and captures the inconsistent scenario more
appropriately than the multi-valued approaches.

By Approach C, we have the choice to reason more cautiously, by choosing to aliow
or disallow further reasoning from contradiction depending on the circumstances. So
one can define different modes of reasoning based on the - .ccumstances where we
allow or disallow reasoning from coutradiction. We won’t “e investigating this aspect

of our system in our work here, but will leave it for future investigation.

4.3.2 Approach C; and its rationale

For the paraconsistent logics that allow reasoning based on contradiction, the com-
plementary pairs of a contradiction would lead to different paths in reasoning. This
has a significant implication. We are following both extensions in the reasoning path
considering both of them equally pessible, but withou' the comprehension that they
are in contradiction. It is the case for many realistic situations that, each individual
element of a contradictory pair leads to different lines of reasoning. The conclusions
in the two different reasoning paths are of* «i: mutually contradictory in realistic set-
tings. Hence we get more contradictions by not explicitly registering contradiction at
the beginning.

By ApproachC different paths of reasoning are not followed based on the individual

elements of a contradictory pair. Instead a single path of reasoning is followed. As the

67



contradictory pairs are not separate elements (o and ~ a), but a single entity (Ca),
any reasoning based on either a or ~ a is recognized to stem from contradiction.
‘This we will understand better with understanding of the working of Approach Cq
nelow.

Let us add to the set of clauses in Example 4.3.1 at the beginning of the secti~n,
another clause:

5. popular « pacifist.

We will get a revised conclusion set with Cypopular added to the conclusion set of
Example 4.3.1. Most paraconsistent logics that we have mentioned so far do not
address the question whether we should allow or disallow derivation from a contra-
diction. Usually in paraconsistent logics contradictions are accepted as a basis for
further derivation. But the epistemic weakness (or we can say the epistemic con-
fusion regarding the status of a theory affected by contradiction) is not propagated
to the conclusions derived from contradiction. We have no way to recognize these
conclusions from the ones derived from noncontradictory premises, thus giving them
the same epistemicity. By our intuition, information concluded from contradictory
and non-contradictory premises should have different epistemic status.

In RI logic [45) and in paraconsistent semantics for logic programs 9%, {g:t—
p:tig: T} = p:t. Here implication allows for conclusions from inconsistent
beliefs. p: t derived here will have the same epistemic status as p : f derived from
{[r:t—=p: fir:t} = p: f belonging to the same knowledge-base. Though,
on our understanding we should be distinguishing between these two derived beliefs.
We would like to give the user of the logical system a chance to decide what they
would like to accept from the two beliefs derived from distinctly different premises,
one affected by contradiction and the other not aflected by it. Our system would

distinguish between the two derived beliefs by prefixing the conclusion p : t derived

®In [45, 9] a basic element of the language is not an atom a, but an ‘annotated literal’ ¢ : b,
where ¢ is a literal (i.e. an atom or its negation) and b € {t (for true), f (for false), L (for
unknown), T (for inconsistent) }.
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from the first premise by Cy.

On the other hand, multi-valued approaches [55, 23] over commit the conclusions
from contradictory premises. For a theory T = {a; ~ a;a — b}, the model is
{a = T,b= T}. Here b is just entailed from contradiction, but not contradictory by
itself.

By Approach C4, the new connective Cy introduced to capture the conclusions
derived from contradiction, gives us the advantage to distinguish between conclusions
that are affected by contradictions and the ones that are not. This distinction lets
the user of the logical system determine the epistemic strength he/she would like to
assign to conclusions derived from contradictions and ones that are not derived from
contradictions. Thus the builtin logical device in the system is able to propagate
the information from one derivation to another that a conclusion has been affected
by contradiction sometime in the process of its derivation. This opens up a new
horizon of information (i.e. information related to inference from contradiction) and
a new dynamics of interaction is added to the system, interaction between irrefutable
information and contradiction affected information. We also do not over commit the
contradictory status of the conclusions, as in multi-valued approaches.

One more significant contribution of Approach C — Cq is that it enhances the
expressive power of the language. We can now express the notions ‘contradictory’
and ‘contradiction affected’ in our language. In a suitably formalized system of non-
monotonic reasoning, this may be used to prevent a default assumption from being
committed because it would lead to a contradiction. In addition, a knowledge engi-
neer can use these language constructs for the purpose of maintaining a knowledge
system.

Approach C—Cy enables the expansion of the horizon of reasoning as we are able to
reason with ‘contradiction affected’ information, i.e. information that is directly and

indirectly (or propagatively”) affected by contradictory information. For example,

7i.e. when affected by ‘contradiction affected’ iuformation.
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given the following theory:
{a; ~ a;b — a; c — b}
the conclusion set we get is:
{Ca, C4b, Cyc}.
‘I'he line of reasoning is as follows: Ca is arrived from a and ~ @; Cqb is arrived from
Lo and b — @ and Cyc is arrived from Cyb and ¢ « b. Here, b is directly affected by
contradiction and ¢ is propagatively affected by contradiction.

Existing logics handling inconsistency either block off the whole realm of ‘contra-
diction affected’ information, or deal with it in an unintuitive way. We have shown
thig for mnlti-valued approaches [55), which over commit the valuation of a conclusion
derived from (rontré.diction, and for other paraconsistent logics {13, 45, 9, 93], which
allow conclusions from coniradictory information, but give them the same epistemic
status as irrefutable conclusions.

In Chapter 9 we claborately discuss the merits of Approach C —Cy w.r.t. some of

the existing paraconsistent logics and other logics handling inconsistency.

4.4 Insights into some fundamental aspects of our
approach

In a knowledge base inconsistent information (which we represent here as an atomic
proposition a and its negation ~ «a) can coexist. This situation arises, say, when
two knowledge bases are collapsed together, or when two experts feed inconsistent
information to a knowledge base. To handle this situation. the crucial facet of the
stance we take in our formalism is that, @ and ~ o are not related to each other
in the usual classical logic sense, i.e. if a is true we should not conclude that ~ o
is false. The truth theoretic valuation (‘truth’ or ‘falsity’) of o and that of ~ «
in an interpretation are independent of one another. The existential status of a is

decoupled from that of ~ a: the facticity of a is not to preclude that of ~ a.
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| la  [~a |
Case (1) | true | true
Case (2) | true | false
Case (3) | false | true
Case (4) | false | false

Figure 4.1: Truth-value assignment table

Accordingly there wiil be four distinct interpretive possibilities (truth-value as-
signment) of the pair a and ~ « (as given by Figure 4.4):

Case /1) captures the anomalous circumstance where we can say that the world
is ontologically overdetermined. This situation is considered incousistent in standard
classical logic and truth-valuated to T (for ‘inconsistent’) in many-valued logic. We
include this anomalous scenario in our logic. Instead of taking the refuge of the truth-
value T8, we will capture the notion of ontological overdetermination syntactically
and keep to a two-valued semantics.

The fundamentally new approach in our idea in handling inconsistency is that we
have two levels in interpretation of the world:

In the lower level of interpretation we allow inconsistency to prevail. Thus we
get the truth-value assigniient in an interpretation of complementary literals o and
~ o as given in Figure 4.4. We will refer to this lower level of inlerpretation in
an inconsistent context as just interpretation or alternatively as truth-valuation i an
inconsistent contert. We only deal with the basic elements of our language (i.c. atomic
propositions and their negations) representing the world in this level of interpretation.

In the higher level of interpretation we do not allow inconsistency but let it prevail
implicitly, *hus following Approach C based on the idea of cxplicit paraconsistency.
If both @ and ~ « have the truth-value assignment true in the lower level of inter

pretation, we capture it syntactically by a new symbol Ca and truth-valuate it to

8We have discussed earlier that the many-valued logical systems do not capture the scenario of
our concern.



true in the higher level of interpretation. At the sane time we do not allow a or
.. o to be truth-valuated to true at this higher level of interpretation, though they
are true in the lower level. Thus we are capable of handling inconsistency without
becoming inconsistent, thus attaining paraconsistency. We will refer to this higher
level of interpretation in a paraconsistent contert as satisfaction by an interpretation
or alternatively as truth-valuation in a paraconsistent context. Now that we have
sorted out how to interpret .he ba<ic elements in our language in the higher level of
interpretation, we will be able to handle the interpretation of more complex elements
of our language. Interpretation of complex elements of the language will be based on
the interpretation of the basic elements.

Case (2) and case (3) can now be easily semantically interpreted. These are the
cases where either o or ~ a exists by itself in a knowledge base. For the case where
o (resp. ~ a) exists by itself in a knowledge base, the truth-value true is assigned
to a (resp. ~ @) in an interpretation. But the satisfaction of o (resp. ~ a) by
an interpretation will be determined by first checking whether Ca is satisfied/not
satisfied by the interpretation. Thus we define the satisfaction of a (resn. ~ a) by
an interpretation with respect to the satisfaction of Ca.

In the case, where o (resp. ~ ) is satisfied by an interpretation, the relation
between a and ~ a is in the usual sense of classical logic. ~ o (resp. a) cannot be
satisfied by an interpretation when a (resp. ~ a) is satisfied by the interpretation.

Jase (4) captures the case of ontological underdetermination. This situation de-
picts a knowledge-base where neither  nor ~ a exists. By taking a two-valued
approach we can still deal with this situation, instead of giving into a many-valued
semantics. There the situation would have been captured as a being assigned the
truth-value L (for unknown). A world where this situation arises is referred to as
the schematic world by Rescher etal [75] and it is incomplete in nature from point
of view of . Such schematic worlds are accordingly, ontologically fuzzy or blank or

illegitimate in their make-up: certain of their features are lost in the fog of indeter-
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73
minacy. Rescher etal [75] have discussed these anomalous scenarios in non-standard
worlds.

In our logic we deal individually with the existence/non-existence {obtainability /non-
obtainability) of a and ~ « in a knowledge base. The status of a literal a (or ~ «)
not present in a knowledge base, is syntactically captured by not, giving a new symbol
nota (or not ~ a) as an add-on to our conclusions. Semantically we define nota (or
not ~ a) as: a (or ~ @) is not satisfied by an interpretation. Semantically not coin-
cides with the negation by default used in nonmonotonic systems. The nonsatisfaction
by an interpretation of o (resp. ~ a) does not immediately imply the satisfaction of
~ o (resp. a) by the interpretation. We distinguish between these two in our seman-
tics. For only cases(2) and (3), the nonsatisfaction of a (or ~ =) by an interpretation
implies the satisfaction of ~ a (or @) by the interpretation; the nonassignment of the
truth-value true (or false) to a (or ~ a) implies the assignment of the truth-value
false (or true) to ~ a (or a).

Together nota and not ~ o captures the case where « i assigned the truth-value
L (unknown) in a many-valued logic interpretation. In case (4) the assignment of
the truth-value false to both a and ~ a, as given by the truth-table, has the intuitive
meaning of ontological underdetermination, which is intuitivelv close to the meaning
cf unknown in many-valued logic.

We also consider the scenario depicted by case (4) in building our logic. We discuss
this in a later chapter where we apply Approach C — C4 to extended logic prograras
[30], which already have not.

It is crucial to uote, however, that while a and ~ a both can be assigned the truth-
value true by an interpretation, we shall certainly never have ai ~ « satisfied in
an interpretation. Our perspective is that two mutually inconsistent states of affairs
might well both be realized. -hereas a single self-inconsistent state of affairs can
never be realized. Contradictions can be realized distributively but not collectively:

self-inconsistency must be excluded. We shall always have aA ~ a unsatisfied by an



interpretation. This will have its affect on the application of the logical connective A

over formulas.

4.5 Summary

In this chapter we introduced the main ideas involved in our work for this thesis. We
introduced Approach C and Approach C4 individually. Then we elaborately discussed
the rationale of the approaches in handling inconsistency. Finally we explored some
fundamentally new aspects of our approach to handle inconsistency.

In the next two chapters we formally present the PS system with its model the-
oretic and constructive semantics. In Chapter 7 we build a nonmonotonic system

integrated with Approach C — C4, which we extend in Chapter 8.
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Chapter 5

Paraconsistent Specifications (PS)

In this chapter we will formally define the language of Paracousistent Specifications
(PS), define its model theoretic semantics and investigate the properties of the for-
malism.

The chapter is organized as follows: In Section 5.1 we explain the syntax of PS
and we present its semantics in Section 5.2. In Section 5.3 we explore the basic
properties of the formalism. In Section 5.4 we investigate some of the properties of
the logical system iu .he broader perspective of paraconsistent logics. In Section 5.5
we discuss how we answer queries about the status of a formula by a theory based on
our framework. Finally we conclude this chapter with a summarization of our results.

P eliminary version of the results presented in this chapter has appeared i [36].

5.1 Syntax

Let us consider a language £ consisting of atomic sentences «a, b, ¢, ..., p, ¢, ..., logical
connectives A (and), ~ (explicit negation). the new ones C, Cy and the connective «
which we call inference implication. Formulas of £ will be defined in the following
way. Formula of the form p will be called atoms. A sumnple literal is an atom a or a

negated atom of the form ~ a. We use ® to denote the set of all simple literals. ¢
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denotes the atomic part of a simple literal ¢. Paraconsistent literals are formulas of
the form Cq.t; and Cy¢, where ¢ € . We use ¥ to denote the set of all simple literals
and paraconsistent literals. We call an element % € U a literal.

We will restrict ourself to a subset of the language of £, which we call Para-
consistent Specifications. We allow contradictions to prevail in a theory of a PS by
cautionsly capturing them with C. Cy ~»ptures the ‘inferentially implicated’ con-
sequences (derivations) from premises which have contradictions or are affected by
contradictions. The formal notion of such a specification is captured by the following

definition:

Definition 5.1.1 (Paraconsistent Specification (PS)) By a paraconsistent spec-
ification P we mean a collection of rules of the form

¢ — i A Ay
where ¢ € ®, Yis are formulae belonging to the set of literals ¥ of the languuge L and

m>0.0

Forarule R:¢ — ¥1 A...Av¥myina PS P, by concl(R) we mean the simple
literal in the head of R, i.e. ¢, by prem(R) we mean the set of literals in the body of
R,ic. {1, .., ¥m}.

We have discussed in Section 4.4 Chapter 4, that by the semantics of PS (which
we formally present in the next section), self-inconsistency can never be realized, i.e.
é A & (¢ € ®) can never be satisfied by an interpretation. Therefore, any rule R in
a PS P, where ¢, € prem(R) (we call this a self-inconsistent rule), loses its role in
semantics. So one can assume that a PS is free of self-inconsistent -ules without loss
of generality. We consider any specification we develop in the later chapters to be
also free of self-inconsistent rules.

A plain rule in a PS is a rule R such that prem(R) C @.

So, the subset of our language £ we consider here is that of PS, syntactically an

extended form of positive logic programs [50, 20, 69]. Semantically it covers positive
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logic programs. We will discuss this in the next chapter, after defining the semantics

for PS.

5.2 Model theoretic semantics

In this section we will propose a model theoretic semantics for paraconsistent speci-
fications. The approach is fundamentally different from the existing model theoretic
semantics of logic programs, as we allow the theories to be paraconsistent, i.c. al-
low for nontrivial reasoning in presence of contradiction. We define the semantics
of our logic by an extension of the standard notion of interpretations, which we call
p-interpretations. Here ‘p’stands for two notions: (1) PS-specific, i.e. the existence
of the elements in a p-interpretation depends on the 1'S being considered and (2)
paraconsistent, i.e. because in a p-interpretation we also allow paraconsisteut literals
along with simple literals. Here we adhere to a two-valued semantics.

In our semantic definitions, we introduce some revisicns to the existing classical
concepts of interpretation and satisfaction by an interpretation. We usc them to
represent. different notions. We propose two levels in interpreting the world: one
at an iuronsistent level which we refer to here as interpretation and the other at a
pari.consistent level, which we refer to here as satisfaction by an interpretaiion. We
have discussed these concepts in the last chapter in Section 4.4.

The truth-value assignment to a propositional symbol is arbitrary. In our seman-
tics, we have dissociated the assignment of truth values of the simple literals « and
~ a. They can both get the value true or false simultaneously, as we see in the
truth-value assignment table in Figure 4.4, Chapier 4. By differentiating between the
concept of interpretation and satisfactior by an interpretation, we are able to make
a and ~ a not satisfied by an inlerpretation, though we let them to be simultane-
ously true in the interpretation. This differentiation is achieved by restricting the

satisfaction by attaching some conditions coupled with the truih-value assignment to

-1
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true.

In the two-tier approach of our semantics, in the first tier, corresponding to the
assignment of truth-values in an interpretation, only simple literals pertaining to the
PS being considered are arbitrarily assigned the truth-values true or false. In the
second tier, satisfaction of simple literals by an interpretation are guided by certain
conditions. Thus a simple lijeral which is true by the interpretation may not be
satisfied by an interpretation. In the second tier, in addition to the simple literals
already satisfied by an interpretation, paraconsistent literals are brought into the
picture. We now have paraconsistent literals satisfied by an interpretation depending
on the PS and the interpretation being considered. The satisfaction of paraconsistent
literals of the form Cy4¢ by an interpretation is guided by the rules of a PS. This is
clear from the meaning of Ci¢.

Satisfaction by an interpretation is guided by the specific PS for which the inter-
pretation is being considered. Thus we rename satisfaction by an interpretation as
satisfaction by an interpretation w.r.t. a PS. We will define a p-interpretation of a
PS as a set that contains all the simple literals and paraconsistent literals satisfied by
the satisfiability relations (i.e. satisfiability conditions) of satisfaction by an interpre-
tation w.r.. the PS. Models are based on these p-interpretations. All these notions
would be better understood with the formal definitions that follow.

Let us now define some notations that we use in the formal definitions below. Let
¢ € ®, where ® is the set of all simple literals in £. ¢ is of the form o or ~ a, where
a is an atom. If ¢ = a then é =~ a and if # = o then ¢ =~ a. We call é the
complement of ¢ and vice versa.

Let ®, be the set of all the simple literals in a PS P. For example, the set
&, = {a,b,~ b} for the PS P = {a « b; ~ b « a}. We will now define an

interpretation and satisfaction by an interpretation w.r.t. a PS P.

Definition 5.2.1 (Interpretation)
An interpretation I for P is a mapping from the set ®, to {true,false},
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which we denote as:

I:®$, — {true, false}
O

Remark 5.2.1 We will follow the convention used commonly in literature. (@)
denotes the truth value of ¢ (€ ®,) in an interpretation I. By an interpretation I we

will also mean the set of all the simple literals ¢ € ®, such that I(¢) = true.

Definition 5.2.2 (Satisfaction by an interpretation w.r.t. a PS)

Let ¢, € ® and ;s € W. To say that a literal ¢ is satisfied by an interpretation
I w.r.t. a PS P, we write I =c_c, ¥, and I [c_c, ¥ to say that a literal ¢ is not
satisfied by [ w.r.t. P.

(1) T f=c_c, Cé iff I(¢) =true and I($) =true.

(2) I =c-c,Cad iff
there ezists a rule R: ¢ «— Y1 A ... Ay, in P, such that

a (i) I lEc-c, i foralli=1,...,m, and

(ii) there exists some paraconsistent literal C (or Cap) € prem(R)
or
b (i) I Fc-c,Ci;i (resp. Catpi) for a ; € ®, and

(i) 1 f=c-c, ¥; for any ; for which condition (2b)(i) does not hold.

(3) I t=c_c, ¢ iff there exists a plain rule R: ¢ — t A... ANy in P, such lhat
I($) = true, ! fc_c, Cé and

(i) I ¥c—c,Cad
or

(it) I Ec—c, Vi for alli=1,...,m.
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Remark 5.2.2 Recall the meaning of a literal denoting contradic .on from Chapter 4,
Section 4.2. The convention we follow is that we do not imply C * or Cé to capture
the meaning that ¢ (resp. é) is in contradiction. Instead we imply a contradiction
in ¢ or ¢ with its atomic part. Hence we imply Cé, which captures the meaning that

both ¢ and ¢ are in contradiction.

In Definition 5.2.2(1) we state that a “contradiction” (which we denote by a
paraconsistent literal of the form CqS) is satisfied by an interpretation I w.r.t. a PS
P if and only if both the complementary simple literals ¢ and é (w.r.t. an atom ¢)
are true in the interpretation.

We have discussed in Section 4.4 Chapter 4 the case where both I($) = false and
1(¢) = false. This is the case of ontological underdetermination, where nothing is
known about a proposition or its complement. We do not particularly capture this
case here in the second level of interpretation, i.e. satisfaction by an interpretation,
based on the following rationale: Satisfaction by an interpretation is a meta-reflection
of what can be “consistently true” and “paraconsistently true”, but not about what
can be “consistently false” and “paraconsistently false”.

In Definition 5.2.2(2) we state that a “contradiction-affected” literal (i.e. a para-
consistent literal of the form Cy¢) is satisfied by I w.r.t. P if and only if there exists
a rule R € P such that one or both of the following two conditions hold:

(a) All the elements in the premise of R are satisfied by I w.r.t. P and there exists
some contradictory or contradiction-affected literals in the premise of R.

(b) There exists some simwple literal ¢; in the premise of R, such that a contradictory
or a contradiction-aftected literal in #; (i.e. a paraconsistent literal CQZ‘,’ or Cgv) is
satisfied by / w.r.t. 2, and the rest of the elements in the premise of R are all satisfied
by I w.r.t. P.

If we allowed self-inconsistent rules in a PS we would have had to handle it in the
following way: In the above condition (b), we would have had to include the sub-

condition that the simple literal #; is not in the premise of the rule R when the simple
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literal ; is in the premise of R. This blocks the chance of getting a contradiction-
affected literal from a rule R which has a self-inconsistent formula (i.e. ¥ A 'J’.‘) in its
body.

In Definition 5.2.2(3) we state that a simple literal ¢ is satisfied by an interpre-
tation / w.r.t. a PS P if and only if there exists a plain rule R in P such that
concl(R) = ¢, a paraconsistent literal C¢ is not satisfied by I w.r.t. to P, ¢ is true
in I and one or both of tt - following two conditions prevail:

(a) A paraconsistent literal C4¢ is not satisfied by I w.r.t. to /.
(b) All the elements in the premise of R are satisfied by I w.r.t. P.

The satisfaction of a simple literal ¢ requires

(*) the existence of a plain rule R, such that concl(R) = ¢.
This apparently may seem to be a little strange. Given a PS P = {a « b}, why
should we have I :c_c, b, even if I(b) = true and I{e) = true. The reason for this
is:. By our semantics we try to exclude some of the irrelevant models of a PS which
are unintuitive, in the sense that a reasoner cannot justify its beliefs based on the
given specification. Ultimately our aim is to generate models for a PS which provide
the intended meaning of a PS. So by setting the requirement (*) in the semantic
definit. ons, we are excluding some of the models which are not significant w.r.t. our
aim.

Now we define a p-interpretation of a PS based on which a model of the PS will

be defined.

Definition &.2.3 (P-interpretation)

A p-interpretation I, of a PS P is a set of literals satisfied by an interpretation |

with respect to P. 1

Now we define the 1.otion of negative satisfaction of a simple literal by an inmer-
pretation w.r.t. a PS. This notior: defines the status of satisfaction of a simple literal

w.r.t. its complement.



Definition 5.2.4 (Negative satisfaction by an interpretation w.r.t. a PS)
Let ¢ € ®. To say that a simple literal is negatively satisfied by an interpretation [

w.r.t. a PS, we write I =|c_¢c, ¢.
I'=lc-c, & iff { c-c,¢- B

Definition 5.2.4 is self-explanatory. It states the definition of the negative satis-
faction of a simple literal in terms of the satisfaction of its complement. This gives
us an insight into the existential dynamics of an atom and its explicit negation w.r.t.
a p-interpretation. So when a theory is consistent, our system behaves like a classical
system. (We prove this in the next chapter.) In a classical system when a proposition
is true its negation is false and vice versa. In our system when a proposition is
satisfied its explicit negation is negatively satisfied and vice versa.

In the following examples we enumerate the p-interpretations for PS.

Example 5.2.1 Consider the PS P given below:

{a — b; ~ b a}
Let I = 0 be an interpretation. The corresponding p-interpretation I = 0.
Let I = {a} be an interpretation. The corresponding p-interpretation Iz = {a}.
Let Iy = {b} be an interpretation. The corresponding p-interpretation Ip3 = 0.
Let I = {~ b} be an interpretation. The corresponding p-interpretation Ipy = {~ b}.
Let Is = {a, b} be an interpretation. The corresponding p-interpreiation Ips = {a}.
Let Is = {a,~ b} be an interpretation. The corresponding p-interpretation Ig =
{a,~ b}.
Let I; = {b,~ b} be an interpretation. The corresponding p-interpretation Iz =
{Cb,Cya,Cq ~ b}.
Let Is = {a,b,~ b} be an interpretation. The corresponding p-interpretation Ig =
{Cb,Cqa,Cq ~ b}.

These are all the p-interpretations of P. O
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Example 5.2.2 Consider the PS P given below:
{p=i~pe}
Let I, = 0 be an interpretation. The corresponding p-interpretation I,y = 0.
Let I, = {p} be an interpretation. The corresponding p-interpretation I,; = {p}.
Let I3 = {~ p} be an interpretation. The corresponding p-interpretation Iy = {~ p}.
Let Iy = {p,~ p} be an interpretation. The corresponding p-interpretation I, =
{Cp}.
These are all the p-interpretations of P. O

Definition 5.2.5 (Satisfaction by a p-interpretation of a rule in a PS)
A rule R in a PS P of the form:
‘,b"_"/)l/\---/\"/)m

is satisfied by a p-inierpretation I, iff one or more of the following conditions hold

(1) ¥ & I, C; € I, and Cath; & I, for some 1 < i < m;
(2) ¢ €I

(3) R is a plain rule, Cé € I, ¢; or Cutb; € I, for all i and there is a plain rule
R :¢— Y A... Ny, in P, such that . or Cyp; € I, for all i;

(4) Ca¢ € I,, there exists a 1; € ® such that sz;,- or Cap; € I, and p; € I, for all
¥ # ¥i;

(5) Cad € I, ; € I, for all i and there exists a 1; that is a paraconsistent lileral.
0

In Definition 5.2.5 we state that a rule B : ¢ « 31 A ... A ¥, is satisfied by a
p-interpretation I, iff one or more of the following conditions hold:
(1) Any literal 9; in the premise of R or its corresponding paraconsistent forms (i.c.
Ci; or Caif;, such that ¢; is a simple literal) are not in [,
(2) The conclusion of the rule R (i.e. ¢)is in [,.

(3) The contradiction in the atomic part of the conclusion of R (i.c. Cé) is in I, all



the literals in the premise of B (i.e. v, where 1 = i o or their contradiction
affected forms (i.e. Cyvvje such that oo ix a simple literal) are w1y and there s a
rule R € P, such that conel{ 'Y = o and for all the literals in the premise of R the
literal or its contradiction-affected form (if the hteral is a simple liters! “esent in
I,

(1) The contradiction-.flected literal corvesponding to the conclusion ol a e Cpo) s
in I,. there are some simple literals like v, in the premise of R whose paraconsistent
counterparts are present in [, and the rest of the literals which do not have their
paraconsistent forms in [, (e, literals o, # o are {,.

(5) The contradiction-allected literal on the conclusion of I (i.c. Cqo) s in 1, all
the literals in the premise of [ are in 1, and among them some are paraconsistent

literals.

Remark 5.2.3 [n this work as in [9. 301, we give a non-classical inferprclation lo
the '« symbol. i.c. we do not treat it as a classical malerial Gaplication. « - behaves
like a rule implication. If the literals in the premise of the rale or their paraconsistenl
forms are satisfied, then the conclusion of the rule or ils paraconsistond Joirins are

satisfied.

Definition 5.2.6 (Model of a PS)
We say that a p-intcrpredation I, 15 a model M of « PS P ] coery vule 18 in I

i satisfied by I,. O

Definition 5.2.7 (Minimal model of a PS)

A model M of a PS P is minimal, if no proper subset of M is a modcl of 17, U}

Example 5.2.3 Consider Erample 5.2.1. The p-interpretations 1y, and 1,5 are nol

II-)
models of P. Ly, L. Ipa, Ips. L7 and lg are all the moddls of P.

Clearly the minimwal model of P is M, = 1,y = 3 =10. O

e



cxample 5.2.4 Consider Feampic 5 2.2 The p-int rpretetions Iy, 1y and Ly are
nol models of P, Only 1y is a model of P.

Thus the minimal modcd of P: M, = 1,4 ={Cp}. O

Kxample 5.2.5 Consider the PSP given below:
{n = qeir-qi~q—r}

The p-inte rprefations of P are.

0 Lo = {p-ql Ly = {p.q.r}

{r} [ = {p.r} Lz = {p. 7.~ ¢}
La={q  La=1{p.~q} Iz ={Ce.Ci.Ci~ q}
{r}

{

Ip-l =3r Ipf.* = {(I-,7'} Ipltl = {C([.C(H'.Cd ~ qa]’}
L = {~ qt L= {r .~ ‘1}

Only the p-interpretation Ly (induced from the interpretation {p,q.~ q} or {p,q,~
q.r}) is « modcl of P.

Thus 1,4 is the minime ol of 2700
pla

Example 5.2.6 Consww.r = 75 P g b
fad = ~a—cibe—a;~be—aw a « b}
The only p-interpretation 1, which is a model of P and its correspording interpretation
I are:
[, = {a.Cb.Cyb.Cy ~ b, Cqa} I = {n.b,~ b}

Thus 1, is the minimal model of 1.0

Example 5.2.7 Consider the PS P given below:

f~ad—ae—i~ae-a b an ~beasa = b}
The p-interpretations which are models of P and thewr corresponding interpretations
are.

],,1 = {C(I.Cb. Cdb, Cd ~ [),Cd(l} ]1 = {(L,N a, b,fv b}
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1,,9 = {(111.(1,41).(’,,' ~ b.Cya}
lyy = {a.~a}. Iy = {a.~a b}, by = {a.~a~ b}
(The p-interpretation Ly has three corresponding interprelations.) Clearly. 1y is the

minimal moddl of °. O

Definition 5.2.8 (Entailment of a literal from a PS)
A PSP entails a literal o, denoted by Pl=e oo, v dff cvcry moded of P also a

model of . O

Example 5.2.8 Consider Erample 5.2.0 and Frample 5.2.5. Lo Lae Lao . l,-
and Lg arc the models of P.

Therefore, P l=c_¢, 0. O

5.3 Basic propertics of the formalism

In this seotion we investigate some of the propertic: ol our formalism.

We first make an interesting observation from our formalism.

Observation 5.3.1  Any simple literal ¢ (€ ®,) true in an interpretation [ of &

PS P is not necessarily satisfied by [ w.rt. P. O

Observation 5.3.1 is evident from Definition 5.2.2. For example, when simple literals
¢ and ~ ¢ belong to an interpretation I of a PS P, then [ {c_c, ¢ (resp. ~ ).
The following proposition states that complementary elements of a contradiction

cannot both be satisfied by an interpretation.

Proposition 5.3.1 A simple litcral ¢ and its compleme & cannol both be salisficd

by an interpretation w.r.t. a« PS. O

Proof: Let us assume that both a simple literal ¢ and its complement ~ @ are satisficd
by an interpretation w.r.t. a PS . By Definition 5.2.2 (3) if a simple literal ¢ (resp.

) is satisfied by an interpretation [ w.r.t. P it has to be true in the interpretation



/. Now by Definition 5.2.2 (1) if both ¢ and o are true in [ then I E=c_¢, Coé. Now
by Definition 5.2.2 (3) neither © nor o can be satisfied by T'if I Ec_e, Ccp Hence our
Laitial assumption that both a simple literal o and its complement o can be satisfied
by / cammot be true. Thus our proposition is proved. O

The following example demonstraten the above proposition.

Example 5.3.1 (onsider the PS given below:

[(pe—i g re—q ~qgerre »}
Lot I = {p.g.ro~ g} be an amterpretation. The corresponding p-interpretation I, =
[Cq.Cor . Cy ~ q,pr}. 1, 15 a model of the PS P. There are no other modcls for the
P oawhich is a subset of 1. Thus the minimal model of the PS P: M, = {Cq,Cqr,Ca ~
g, p.7}-
liere I(q) = true and I{(~ ¢) = true. But neither 1 =c_c, g nor I |Ec_cy~ q. This

is because | f=e_e, Cq obsiructs the salisfaction of both ¢ and ~ q by [. O

In the following proposition we state that an implicit contradiction (i.e. a para-
consistent, literal of the form C@) and its originating causes (i.c. ¢ and @) cannot be

in the same theory.

Proposition 5.3.2 Lt [, be a p-intcrpretation of a PS P. If a puraconsistent literal
Coe L. neither ¢ nor é cen belong to 1,. D

Proof: 1{ Co € I,. « p-interpretation w.rt. a PS P, then tlie o is an interpretation
[ of P such that ! f=¢_¢, Cé (by Definition 5.2.3) . I [ = -, Cé then by Defini-
tion 5.2.2 (1), ¢ € I and ¢ € 1. Now by Definition 5.2.2 (3), { bc—c, & (resp. ) as
[ E=c-c, Co. Hence by Definition 5.2.3 neither ¢ nor é can belong to I,. O
Proposition 5.3.2 is also well demonstrated by Example 5.3.1.
The following proposition states that “~ontradiction-affected’ literals owes its origin

to other *contradictory” or ‘contradict: m-affected’ literals.

o
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Proposition 5.3.3 Lct M be a model of a PS P IfCyo &€ M then ilrere crists a rule
R:o— Oy A« A in P osuch that (1) there is af least oie paraconsistent Liieral
Ui € {11, 0w} such that vy € M oor (2) there s al leazt one paraconsistont Literal

CE(orCap) € M (o€ @), such that g € {¢, -+ v} D

Troof: Let P be a PS and M be a model of . Let €0 € M. Fhen by Deli
nitions 5.2.5 and 5.2.6 there exists a rale 10 ¢ — oy Ao A vy, an Poosuch that
I t=c_¢, Cqo. where [ is the interpretation correspoiding to the model M. By Def
inition 5.2.2(2). if (1) I Ec-c, vy for all ¢+ = oo and any one of the oy s
a paraconsistent literal or (2) I fEc—c, Cd (or C.p), where o € {onee by ) and
I Ec—c, ¥ for the resi of the vs, then I Ee_c, Ca¢. Now by Definitions 5.2.5 and
5.2.6 as (1) [ l=c—c, ¥ for some v or (2) [ Ee_¢, C@ (or Cip), therefore, ¢, ¢ M or

C% (or Cqp) € M. Hence proved. O.

Example 5.3.2 Consider the PS given bclow:

{be—: ~be: a —b ¢c—Cqa}
Let I = {b,~ b.a} and I' = {b,~ b} be two intcrpretations. The p-interprelation
corresponding both I and I' is I, = {Cb,Cqa,Cyc}. I, is a model of . There arc no
other models for P which is a subsct of I,. Thus the minimal model of the PSP
M, = {Cb,Cq4a,Cyc}.
This example demonstrates Proposiiion 5.3.9. Cqa € My, by the rule @ « b as Ch <.

M,. Cqc € M, by the rule ¢ « Cqa asCya € M,. O

5.4 Properties of our formalism on a broader per-
spective

By adopting a two-valued semantics for our framework and dissociating the truth
valuation of an atom o and an explicitly negated atom ~ «, we have some interesting

outcomes. As an atom a and its negation ~ a can both have the same truth-value
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false simnltancously. we get the case where a PS £ does not entail aV ~ o, where V
denotes classical disjunetion: i.e.

Picoc, oV ~a.
Thus we see that the ase of the given semantics clearly implies that the lav »f ex-
cluded middle does not necessarily hold for explicit negation. Obviously then, explicit

egation differs from classical negation (=) which, being defined for a two-valued logic

(namely, classical logic). =0 e mentioned law.

But interestin dy, the forr. - +have defined retains the law of non-contradiction
that characterizes a o7 svstem, and naturally. also holds for classical logic. as
consisteney 1s an impe ot ~ria for it. The law of non-contradiction implies:

Plc-c, ah ~ o
I'his is what we expect froni a self-consistent systern. The systemn we have defined here
is paraconsistent, that is, it allows reasoning in presence of inconsistent information
but s self-consistent. A self-consistent systein may have contradictory information
in it coming from diverse sources, but should not by itself conclude a contradiction,
such as the aflirmation of *a and ~ a” from two separate entities a and ~ a.

So we see that the adjunction principle, i.e.

fa; 3 E QNS
s restricted i our semantics. This is evident from the sernantical definitions as given
by Definition 5.2.2(1-2), by which cither

[ E=¢-c, @, or

I =cocy~ o,
" giving no scope for

I F—:C-Cd al ~ «.
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5.5 Status answern _ ed on entailment

ilere we discuss how we answer a query regarding the status (e, the existential state
by a theory based on what the theory entails) of a fornuda. This notion of status of a
formula will become clearer as we proceed with the section. We allow queries (which

we denote by ¢) of the following types:
s ¢ = ¢, where o is a simple literal
e ¢ = Co, where ¢ is a simple literal
o ¢ = Cy0. where ¢ is a simple literal
o ¢ = q A ¢z, where ¢;s are queries
o ¢ = q V ¢qa. where ¢;s are queries

We define the correct answers to a status query with respect to a P'S as:

"yes”, "no”, "unknown”, "in-contradiction” and " contradiction-affected™.

If ¢ = o.
yes PEcoc, @
no Pl=eoc, ¢
unknown P ¥ce_c, b, P FEc-c, b,
answer(P,q) = < .
I) %C—C,l C(ba I) V:C—C,l (-",:[(/)
in — contradiction Pte_c,Cod
( conlradiction —affceted P lEe_c, Cad

We also get some combination answers:
(yes, contradiction — af fected)
(no, contradiction — af fected)

(in — contradiction, contradiction — af fected)
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In these eases it would be ur o the querter o0se the ppropriate answe:
pending on hns/her pralosophical cooviction, it one believes that a <trong “yes”
(resp. Tno™) has a wghor epist nic statns than the answer “contri Jicoon-affected”.
then the choice of cither "ye- ™ (resp. "no™) is clear. Again, for queriers hoth “in-
contradiction™ and Tcontradic tion-affected” may have equal ¢ <temic stetu Thus
both wil! be considered by them.

Now we will give answers to the euner kinds of queries:

Ifq = Co

yes P e, Co

answer(Pog) =
no  otherwise

il g = Cad,

yes P l=c_cd C'dc')

ro olherwise

answer(Pog) =

If g =aq A qe,

yes answer(Pgy) = yes and answer(P, q2) = yes
o y n) =y q
answer(Pog) =
no otherwise
Hqg=aqVq,
yes answer(P.q) = yes or answer(P, q2) = yes

answer( P, q) =
no answer{ P, q) = no and answer(P, q3) = no

5.6 Summary

In this chapter we apply the inconsistency handling strategies, Approach C and Ap-

proach Cg 1o the language of positive logic programs with explicit negation. This



enhanced the language, enabling the expanded language PS to handle inconsistency
in a pragmatic wayv. We also presented a model theoretic semanties and investigated
the properties of our formalism.

In the next chapter we follow up with a construetive semantics for PS and inves.

tigate the correspondence between the model theoretic and constructive semantics,



Chapter 6

Paraconsistent Specifications:

Constructive Semantics

In this chapter we present a constructive formulation to compute the minimal model
of a PS. This constructive definition is based on an iterative process: an agent incre-
me tally establishes its beliefs by iterating a composite function R o D, where D is
a deductive operator that generates the literals in a PS that are derivable and R is
a deduction revision opcrator that revises the deductions generated by D if they are
contradiclory themselves or are affected by contradiction.

''his chapter is organized as follows. The next section presents the hosic def-
initions needed to formulate the constructive framework. Section 6.2 presents the
constructive formulation. Section 6.3 describes the properties of the formalization.
In Section 6.5 we explore the relationship between the constructive and the model-
theoretic semantics of PS. In Section 6.6 we relate the constructive semantics of PS
to the fixpoint semantics of positive logic programs. We conclude in Section 6.7 with

a stmmarization of the work which we report in this chapter.
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6.1 Some definitions

In this section we give some definitions that enable us to formalize our constructive
framework.

Our constructive formulation is based on iteratively using the composite function
R oD on a structure. We call this structure a deduction greph ov d-graph as we use

it 1o capture a deductive process. We will now formally detine a d-graph.

Definition 6.1.1 (D-graph) A d-graph (i is a dirceled graph with cach node con-

taining one or more literals. 0

We will call a d-graph without any nodes as a null deduction graph or an nd-qraph.
For defining a transformation function on d-graphs. we will use an operator T,
over sets of literals and paraconsisteni literals. Tlus is an extension of the standard

immediate consequence operator (vefer to Chapter 3). We will define it below.

Definition 6.1.2 Lel ¢, € ®, P be a PS and S be a subsct of W. The conscquenee
operator T, is defined as follows:
T,(S) = {¢| there crists a rele R oin P such that concl(R) = ¢, pre m( ) ¢ N}
O
Clearly T, is monotonic. Hence it has a fixpoint.

Let G be the set of all d-graphs. Now we will define a transformation operator

(Wst,:G —G) based on T, and S C W as follows:

Definition 6.1.3 Lel P be a I’S, R be a rule in P, (i be a d-graph and S be a subsel
of ¥. Wsr,(G) is defined for each ¢ € 1,(S) and cach rule B with ¢ = concl(I?) as
Sollows:

1. If prem(R) = 0,

(a) if m G a node with ¢ does not already cxist, creale d, and draw an arc

pointing to it from a null node;
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a g»b a»b » C

m @ (3) (4) (5)

iigure 6.2: Operation Wy, on d-graphs

(b) if in ( a node with o already cxists, but does not have an arc pointing lo

it from a null node, draw such an arc.

2. If prem(R) €S, ercate in Ga new node with @ +f it docs not alrcady erist, and
draw an arc from cach node hamng an clement of prem(R) to the node with ¢,

if such an arve docs not already erist.

3. If iherve exists a literal o € prem(R) such that Cg (or Cap) € S and the remuin-
ing clements of prem(R) (# ) belongs to S:
creale in (0 a new node with ¢. if it deci not already exist, and draw an arc
froni cach node in G with the elements Co (or Cap) and also from each of the
nodes in (¢ with an clement € prem(R) but # ¢, to the node with &, if such an

are docs nol already erxist.
O

Remark 6.1.1 From now on we denote the operater Wst, as Wr, because T, is based
on S C W, and denoting W, as Wy, without the reference of S is implicit in the

reference of T, in W,

Wy s based ou Tp. Hence it is also monotonic. More precisely, S; € Sz, G1 C G2
(where 81,5, are subsets of U, (/.G € G and C denotes less or equally compler)
implies Wy (G) & Wy, (GR). W, (G) (G € G) isno less complex than G. So Wr, has

a fixpoint. In the following example we will show the operation of Wr, over d-graphs.



Example 6.1.1 Lt P = {b — a1 ¢ — b ~ ¢ «— b a e ¢t a « |} S b an
empty sct and Gy be the the corvesponding nd-graph as given by Figure 6.2¢1). The
d-graphs which we get from P by applymg Wy, on the initeal d-graph Gy are gieen
the Figure 6.2 above. The d-graphs are i an incremental ovder of growtle from lef’
to right. The nodes of the d-graph in Figure 6.2 above have all the literals which are

derivable from P by the T, opcrator. O

6.2 Constructive formulation

In this section, we define the operators D and R. Then we define a composite function
based on the two operators. This we use to generate a set of literals and paraconsistent
literals w.r.t. a PS. We call this set generated sel or g-sel. We will later show that a
g-set of a PS corresponds to the minimal model of the PS.

We define D based on Wy . The function D when applied to a d-graph wort. a

PS, exvhausts all the rules in the PS to give a d-graph that cannot grow any more.

Definition 6.2.1 Let P be a PS. (i be a d-graph on P and S be the set of all the
literals in the nodes in G. We define the function D on (7 as follows:

T)( (;) = ”"'1',' T"'

Conventionally, the notation ., T means the least fixpoint of Te:r which is con
structed from the smallest element in the domain. But here we change the meaning
of the notation such that the construction can start from any clement of the domain

The example below illustrates the above definition.

Example 6.2.1 Let us co - ider the PS P in Fzample 6.1.1. Let us consider an nd-
graph Gy. Here S = 0, the sct of nodes of Gy. On applying D on iy w.ard. P, by
Definition 6.2.1, we get the d-graph (' in Figure 6.2(5). The intermediale sleps from
Gy to G' which follows from Definition 6.1.3 are given by Figure 6.2(2-4). O

Ui






97

Now we define the operator R over d-graphs. This function modifies a d-graph to

produce another d-graph, if certain conditions prevail in the former d-graph.

Definition 6.2.2 Let (¢ be a d-graph and Ne be the sct of all the clements in th-
nodis i (5. R is a function on (i such that it giees a modificd d-graph G- by following
Hie steps:

If there are nodes with ¢ and & wn the initial wnodified d-graph G i.c. {o, 6} C

step I:
No: and there are no direeted paths to them from a node with paraconsistent
literals or a node with a simple literal o such that  § Ng, replace them by Co
and C(}) respectively.

step 2: 1f in (7 (possibly modified by step 1) there arc nodes with ¢ pointed by an arc

coming from a node with a paraconsistent literal

(a) add Cy¢p as another element to the node along with ¢. if there is a di-

reeted path from wall to the node with ¢ without intermediate nodes with
paraconsistent literals;
(b) replace ¢ in the node with Cyo. otherwise.

If in (0 (possibly modified by steps 1 or 2), there are nodes with C4o pointing to

step 3:
nodes with Cp. add a new clement Cqp to nodes with Coo.
step 42 Repeat steps (2) and (3) until the prevequisites for the two steps are not fulfilled
anymore.
step 5: Replace all nodes in (0 (possibly modified by steps 1, 2, 3 or 4) with formulas of
the form Co or Co by Co.
£

Definition 6.2.3 (F-stable d-graphs) A d-graph G is F-stable if for a function F
F(G)=0G
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Figure 6.3: Operation R on d-graphs

It is obvious that R applied to a d-graph ¢ results in a R-stable d-graph (7. We will

now demonstrate how this definition works with the following example.

Example 6.2.2 Let us consider the PS P in Frample 6.2.1 (which is the same as

the one in Example 6.2.1). Let us also consider the graph G' in Lrample 6.2.1 given

by Figure 6.3(1). We apply the function R on (' and gel the d-graph (i given by

Figure 6.3(6) in the following steps:

step 1: By Definiiion 6.2.2(1) we get the d-graph in Figure 6.3(2) starting from the
d-graph G' in Figure 6.3(1).

step 2:

d-graph in Figurc 6.3(2).
step 3: By Definition 6.2.2(2b) we gt the d-graph in Figure
d-graph in Figure 6.3(3).

step 4: By Definition 6.2.2(3) we get the d-graph in Figure

d-graph in Figure 6.3{4).

By Dcfinition 6.2.2(2a) we gel the d-graph in Figure

6.3(3) starting from the

6.3(4) starting from e

6.3(5) starting from the

uN
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step 50 Definttion 6.2.2(4) cannot be applicable to the d-graph in Figure 6.3(5). So we

go to the nerl deponitional slep.
step 6: Definition 6.2.2(5) when applicd 1o the d-graph in Figurc 6.3(3) gives the d-
graph (. in Figure 6.3(6), which is the final product of the application of func-

tion R on (i,

We can now define a composite function A as follows:
A=RoD (6.1)

A applied repetitively on an nd-graph w.r.t. a PS culminates into a A-stable d-
graph, because D is monotonic and R produces a R-stable d-graph. We call the set
of literals we get w.r.t. the A-stable d-graph a generated set or g-set. We will show
later that this set corresponds to the minimal model of the PS. We formalize the idea

bhelow:

Definition 6.2.4 (G-set of a PS) Let Gy be an nd-graph, G;s be d-graphs and P
be a PS. A g-sel is the set of all the literals in the nodes of a d-graph Gy such that

G = .A(G@)
G; = A{Gi-y)
Gy = A(Gy).

]
Example 6.2.3 Consider the PS P in Erample 6.1.1. The corresponding g-set for

P is given by the set N, = {a.Cya,Cqb, Cc,Cyc,Cq ~ c} comprised of all the elements
in the nodes of the d-graph G, given in Figure 6.3(6). O
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Figure 6.4: Operation A on d-graphs

Example 6.2.4 Consider the PS P =

{a —;~a—be—ace Cybi¢ — c;~ ¢ — ¢}.
Let Gy be an nd-graph.
The d-graph D(Gg) towards the construction of Gy is giver by Ficre 6.4(1).
The d-graph Gy = A(Gy) is given by Figure 6.4(2).
The d-graph D(G,) towards the construction AG\ is given by Figure 6.4(3).
The d-graph Gy = A(G)) is given by l'igure 6.4(4).
The d-graph A(G,) = G.
Hence the g-set of P is

{Ca,Cyb,Cyc,Cyc,Cy ~ ¢}

i.e. the set of all the elements in the nodes of the d-graph (iy. O

6.3 Properties of the Constructive Semantics

In this section we will investigate some properties of our constructive formulation.

We propose and prove the unigueness of g-set of a PS.

Proposition 6.3.1 A PS P has a unique g-sct.

100

Proof: Let a PS P have two g-sets N and Ngr. Let G and (7 be the corresponding
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d-graphs for the g-sets N and o respectively. ¢ and G’ must be arrived as two
different. A-stable d-graphs using he function A wort. P For this to happen the
function A has to be non-deterrinistic. i.e. at a point of derivation of the sequence
of d-graphs by the function A, different d-graphs should be derivable on applying
A on the same d-graph. This would only happen if one of the composing functions
of the composite function A is »on-detc, ministic, But by definition both D and R
are deterministic. Henee we get only one g-set of P. O

We state some propositions expressing some of the intrinsic properties of our

formulation.

Proposition 6.3.2 A simple literal ¢ and ils complement & cannot both be in the

g-scl of a PS. O

Proposition 6.3.3 Lel N be the g-set of a PS P. If a parcconsistent literal Cé €
Ne:, neither ¢ nor é belongs to N¢g. O

Proposition 6.3.4 Let R : ¢ — Yn Ao A ¥ be a rule in @ PS P and Ng be
the g-set of P. If Ca¢ € Ng then (1) there is at least one paraconsistent literal
i € {yn, -+ b} such that ¥; € Ng or (2) theve is at least one simple literal 1; such
that Cy (or Cyi;) € Ni;. O

The proofs of Propositions 6.3.2-6.3.4 are straight-forward from the construction of

g-set.

6.4 Complexity and Scalability issues of the Con-

structive Semantics

‘The procedure involved in the constructive semantics is based on the repeated oper-
ation of the operator D and the operator R until a stable d-graph is reached. Let

n be the total number of rules in a program. The maximum time needed for the
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first operation D would be to the order of 1. Now suppose the number - ces
in the d-graph after the completion of the first D operation is m. The o, on
R first involves the search of pairs of mconsistent complementary literals. Winiot
applying any heuristics the time for the scarch would be to the order of m*. We get
this by the following way. For a simple literal in a ode we search for the content
of the rest of the nodes excluding the nodes for which we have already considered.
for the complement of the simple literal. Thus the total number of comparisons is
(m—=1)+(m—=2)+ (m—=3)+ -+ L. whichis approximately m*. The repetitions
of operation D and R will take significantly much less time compared to the first
execution of the two operations unless there are many rules with contradictory or
contradiction-affected literals in the body of the rule. This we do not forsee in a
knowiedge base. So we see that the procedure involved in the constructive sentantics
can be computed in polynomial time and thus tractable.

In [95], You and Ghosh have shown a constructive procedure for computing the
intended model of a PS by program transformation. There in the worst case, a
PS P’ is obtained from a PS P by replacing all the occurrences of literals in P
The modification process is obviously tractable. Hence, the entire construction is
tractable. We conjecture that the procedure by You and Ghosh and our constructive
procedure are equivalent.

By our framework we try to model large knowledge bases. The problem of scal-
ability is very important for large knowledge bases or combining knowledge bases.
So it is important to explore the issues of scalability w.r.t. our approach. From the
discussion of the complexity of our system we know that the computational process
is tractable, however large the knowledge base is. Now if the knowledge base is in-
creased with more rules and facts, the dynamics of the existing rules and facts in
the knowledge base with the new ones does not allow the system to be cumulative,
i.e. the existing g-set of the knowledge base may not be a subset of the new g-set of

the knowledge base. So in that sense, the efficiency in scalability which comes with
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cumulativity is not realizable by our system. But we can intuitively perceive that the

framework can be made partially scalable. This we leave for future investigation.

6.5 Relating constructive and model-theoretic se-
mantics of PS

In this section we explore the relationship between the constructive and the model-
theoretic semantics of PS. As a result we get some interesting properties for the
model-theoretic semantics of PS.

We present a theorem relating the two semantics of PS in the later part of the

section. First we prove some lemmas which lead to the theorem.

Lemma 6.5.1 Let P be a PS. Wr, be the transformation operator and D be the
deduction operator based on Wy, as defined earlier. Let Gy be an nd-graph. Let Py be
the subset of I containing all the rules involved in the construction of D(Gyp). Let M
be any model of Py. For any simple literal ¢ in D(Gg), &, C(}S or Cy¢ belongs to M.

W]

Proof: (By Induction)

Base Step:

For any element ¢ € Wr, (Gy), there is a rule ¢ «— belongiug to P (Ly definition
of Wy,). Any model My of the sub-PS P, of P containing only of rules of the form
¢ . has to satisfy all such rules. To satisfy a rule ¢ «—. ¢ or C(}é or Cy¢ belongs to
My. Thus, for all ¢ € My, ¢ or Ccp or Cy¢ belongs to any model My of the sub-PS F.

Induction Step:

(onsider an operation by W, on an intermediate d-graph G; = Wr, 1%, towards
the construction of D(Gy). Let P; represent the subset of rules of P used thus far in
the construction of G.. By inductive hypothesis for any ¢ € Ng, (where Ng, is the

set of all the literals in the nodes of G}), ¢, Cé or Cyo belongs to any model M; of P,.
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Now. let Py represent the set of rules in construction of (i = Wy, IS
W, (G;) (i.e. Piyy includes the new rules used in construction of (¢4 from (7)), Any
model M4, of Py must satisfy every rule . vy AL A ey, which is used i
the construction of Wo, T such that prem(H) < Ne,.

If o € Ng,, then already o or Co or Cyo belongs to any model M, of I and hence
& or Co or Cyé will also belong to any model Mgy of Py, sinee Py 2 P

If © ¢ Ng,. then for any model My in Pyl to satisfy rule Ho ¢ or Co or
Cy¢ belongs to M,y because prem(lf) © Vg, C N Ve, the node set of
(is1). Hence for any My, of Py, it is the case that for any ¢ € N, . ¢ or Co or
Cqd € M;4,.

D(Gyp) represents the d-graph based on which no further rules in P can be fired.
So if Py represents the subset of rules fired thus far in construction of D((7y), for any
literal ¢ in D(Gy), ¢, Ct% or Cq¢ belongs to any model of [%.

Hence the lemma is proved. O

Example 6.5.1 Let us consider the PS P of Erample 6.2.4 and the corresponding
Figure 6.4 for the construction of its g-sel. The set of rules that are just involved in
the construction of D(Gy) is Py = {a «;~ a «—; b — a}. lor cach clement ¢ (i.c. a
simple literal) in the nodes of D(Gy) (which is given by the Figure 6.4(1)), there s a

corresponding formula ¢, Cé or Cyd in any model of Py. O

Lemma 6.5.2 Let P be a PS, D be the deduction operator and R be the deduclion
revision operator as defined earlicr. Let A be the composile function as defined before,
based on D and R. Let Gy be an nd-graph, Py be the subsel of P conlaining all the
rules involved in the construction of D((ly) and My be any model of Py, Any literal

¥ in A(Gp) also belongs to My. O

Proof:

By Lemma 6.5.1, for every simple literal ¢ € D(Gp) w.r.t. P, ¢, Cr;‘; or Cy¢ belongs
to any model M, of F.
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Allly) = R oD((ip). Hence we are concerned with the operation of R on the
d-graph (/ = D((iy).

Now for any pair of simple literals o, o in (& we replace the nodes by Co by step
(1) and (5) of operator R in construction of R(G). By Lemma 6.5.1, as ¢ and q; € G,
o, Co or Cadp € My and b, C(}; or C,;cg e M,.

By the conditions of satisfiability of litera.s " a p-interpretation and hence in a
model, the pairs {6, ¢}. {¢. Co} and {o, Cé} caunot belong to Mo. Moreover the
literals @ and ¢ are on the head of rules with premises C Ng (i.c. the set or all
the literals in the nodes of (i), where all the elements in N¢ are simple literals not
paraconsistent literals. Therefore we can neither have Cy¢ nor Cyé in My. Hence the
only option left is that Cé € M,. Hence for any formula Cé in A(Gy) = R(G) =
R o D(({y) we will have Cé € Mo.

Now, any node with a simple literal ¢ in G pointed by an arc coming from a node
with €3 (y is a simple literal), is rep'iced by the node Cy¢ by step (2b) of operator
R in the construction of R(G). By Lemma 6.5.1 6, Céor Cap € My as ¢ € G.

By the satisfiability relation of a formula by a model M (i.e. a p-interpretation),
if there is a rule R, such that ¢ € prem(R), prem(R) € Mo and ¢ = concl(R), then
C,o € M,. This exactly corresponds to the condition of Cy¢ to be in R(G). Hence
for this case by Lemma 6.5.1 and the operation R on G, Ca® € My.

Similarly we can show that, the formulas like C4é we obtain by step (3), (4) and
(5) of the operator R, in the construction of the d-graph R(G), are also in any model
My of Py,

Thus any formula Cgé in A(Gp) = R(G) = R o D((p) is also in M.

The remaining simple literals ¢ € Ng for which by Lemma 6.5.1, ¢ or C(Z or
Cyo € M. As none of the conditions for Cé or Cad to be in My can be fulfilled.
tHience ¢ € M.

Hence from all the cases we have enumerated above, we get that, every formula

in A((y) is in any model Mg of P, O
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Example 6.5.2 Let us consider the PS P oof Frample 6.2, and the corresponding
Figure 6.} for the construction of ils g-set. The set of rules that are just involved in
the construction of D(Gy) is Py = {a «—i~a —:b«— a}. Fach literal v n the nodes

of A(Gy) (which is given by the Figure 6.4(2)) is in any modd of Py, 0

Lemma 6.5.3 Let the notations be as given in the lemmas before. Let Ppobe the
subset of a PS P containing all the rules involeed in the construction of the A-stable
d-graph G, starting from an nd-graph applicd upon by A w.r.t. P, Foeery lteal

¥ € Gy oism any model My of Py, T

Proof: (By Induction)

Base step:

Let Py be the subset of a PS P containing all the rules involved in the construction
of D(Gp). By Lemma 6.5.2, any literal v € A((/p) w.rt. [, is in any model My of
bB.

Induction Step:

Consider any operation A on an intermediate d-graph (7, towards the construction
of Gy, where A(G;) = G;. Let P; represent the subset of rules used thus far in the
construction of G;. By inductive hypothesis for any literal 1 € Ne;, (where N, is the
set of all the literals in the nodes in (7;), ¢ belongs to any model M; of 1.

Now. let Py represent the set of rules in the construction of Gy = A{(/;) (i.c.
Piy1 includes the new rules used in construction of Giyy from (). Any model My,
of P,41 must satisfy every rule R, which is used in the construction of A((4;), such
that each literal in prem(R) or its paraconsistent forms € N,,.

If a literal ¥ (= o, Cq) or Cy¢, where concl(R) = ¢) € N, then already o helongs
to any model M; of P; and hence ¢ will also belong to any model Miyy of Py, since
Pi+1 2 -Pz

If » € Ng,, then to satisfy any such rule R,  has to belong to each model My of
Pi+1. Now since each literal in prem(R) or its paraconsistent forms € Ne,,, i € D((7;).

Thus for any ¥ € D(G;) ¥ belongs to any arbitrary model My of Py
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Now when we apply R to D((), it is clear that any such rule R: ¢ « Y1 A.. Ay
which is involved in the construction of A(G;), where @, Céor Cy0 € Ng,. itis the case
that Cy € A((,). This is because there is at least one simple literal ¥; € prem(R),
such that Ci; or Cyth; € N, or there is a paraconsistent literal € prem(R). Hence
only Cy¢ will belong to any model M4, of Piy1. Thus for every formula ¥ € Ng,,,
(Nei,,, is the set of all the literals in the nodes in “v.4q) ¥ is in any model My, of

1

iy represents the d-graph based on which no further rules in P can be fired. So
if Py represents the subset of rules fired thus far in the construction of Gy, for any
literal 9 in Gy, ¥ belongs to any model My of Py.

Hence the lemma is proved. O

Example 6.5.3 Let us consider the PS P of Exzample 6.2.4 and the corresponding
Figure 6.4 for the construction of its g-set. The set of rules which are involved in the
construction of Gy are all the rules in P. Each literal ¢ in the nodes of Gy (which is

given by the Figure 6.4(4)) is in any model of P. O
Theorem 6.5.1 The g-set of a PS P is a model of P. O

Proof: Let the notations have their usual meanings as denoted before. Let Py be the
subset of a PS P containing all the rules involved in the construction of Gy, such that
(i, = A(Gy) and Gy = A(Gy). Every literal b € Gy is in any model M; of Py, by
Lemma 6.5.3. Pj represents the subset of rules in P which are fired in the construction
of (i;. No further rules in P can be fired in the construction of G;. Hence for all
the remaining rules R in P but ¢ Py, a literal in prem(R) or its paraconsistent forms
¢ Ng, (set of all the literals in the nodes in Gy). Hence literals in prem(R) or its
paraconsistent forms ¢ M, if we assume that the model M has ounly the elements
€ Ng,, as those are all the elements it needs to have to satisfy all the rules in P;.

So, by the condition of satisfiability of a rule by a model (i.e. a p-interpretation), as
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literals in prem{R) or their paraconsistent forms ¢ My, the rules R in P but ¢ Py
are all satisfied by the model M;. Therefore My is a model of P.

Hence by Lemma 6.5.3:

Every literal ¥ € G is in any model M of P. (6.2)

The g-set, which is the set of all the literals ¢ in the nodes in Gy, also satisfies all

he rules of a PS P. Hence the g-set is a model of . Thus the theorem is proved. ©
Corollary 6.5.1 There always erists a model for any PS. O

Proof: By the construction of a g-set, any PS P always has a g-set. A g-set 18 @

model of P. Hence P has a model. Hence proved. O
Corollary 6.5.2 The g-set of a PS P is a minimal model of 1. O

Proof: In the proof of Theorem 6.5.1 we have proved that: The g-set is a subset of
any model M of a PS P (refer to statement 6.2). The g-set is also a model of P.

Therefore it is a minimal model of P. Hence proved. O
Corollary 6.5.3 There always ezists « unique minimal model for a PS. O

Proof: A PS P has a g-set. By Proposition 6.3.1 a PS has a unique g-set. Therefore
P has a unique g-set, which is also its minimal model. Thercfore P has a unique

minimal model. Hence proved. O

Example 6.5.4 Let us consider the PS P of Example 6.2.f and the corresponding
Figure 6.4 for the construction of its g-set. The g-set of P, i.c. {Ca,Cqb,Cyc,Cyc,Cy ~

e} as given in Ezample 6.2.4 is the minimal model of P. O
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6.6 Relating to Positive Logic Programs

The purpose of our framework is to cope with inconsistency that arises when positive
logic programs are extended to accommodate explicit negation. To handle inconsis-
tency we introduce the connective C. Furthermore, to capture the scenario of rea-
soning beyond paraconsistency we have introduced the connective Cy. So, we would
expect that, the semantics for paraconsistent specifications, will yield the same se-
mantics for positive logic programs, as that of any existing semantics (i.e. least mc del
semantics [20] reviewed in Chapter 3).

In this section we give a theorem that relates our semantics to least 1.10del seman-

tics, for positive logic programs.

Theorem 6 6.1 Lel PP be a paraconsistent specification consisting of clauses of the
Jform
o — N ...\On.

Then, if ¢is are atoms and m > 0, i.e. P is a positive logic program then:

The g-set Ng of P coincides with the true set of the least fizpoint of the
firpoint operator @ (given by Def 3.3.3 in Chapter 3) w.r.t. P. O

Proof:

For a positive logic program P, the constructive definition for a g-set, i.e. the
simple literals (they are only positive for this case) we get in the stable d-graph which
«ve- get when the operator A = R o T is applied on an nd-graph Gg w.r.t P, reduces
to that of the literals we get in D((i;) = Wy, 1% (Gy). This is because the operator R
does not have any operational function here, as there does not arise any negative literal
(as we are dealing with positive programs). Hence there won't arise any inconsistency,
thus no explicit paraconsistency or reasoning beyond paraconsistency, which the R
operator handles. Wr, has » one to one correspondence with the operator Ty, which

exactly coincides with the fixpoint operator © for the true atoms. Hence the g-set



110

Ng of P arrived as a fixpoint of the operator A coincides with the true set of the

least fixpoint of the fixpoint operator @ w.r.t. P. Hence the theorem is proved. O

Example 6.6.1 [f we consider Evample 3.3.1 in Chapter 3, for program P, the g-sel
of P (which coincides with the minimal model of P) we get s

{ physicist. able-mathematician }.
This coincides with the true set in the least model of P as given by “'rample 331 in

Chapter 3. O

6.7 Summary

In this chapter we have presented a constructive semantics for PS5, investigated its
properties, shown its correspondence to the model theoretic semantics of PS5, We

finally related the semantics of PS to the semantics of positive logic programs.






Chapter 7

Approach ¢ - ¢; and Extended Logic

Programs

In this chapter we expand the language of extended logic programs (which we denote
as BLP) [30] to allow for ‘reasoning in the presence of inconsistent information’. We
apply the inconsistency handling strategy Approach C proposed in Chapter 4 to ELP,
for this purpose. This extension increases the expressive power of the language of this
nonmonotonic reasoning framework and allows one to reason explicitly in presence
of contradictions without the trivialization (or explosion) approach of classical logic.
The trivialization approach is certainly not adequate for the purpose of processing
partially inconsistent information in a cognitively and computationally satisfactory
way.

Furthermore, we apply the inconsistency handling strategy, Approach Cq  ‘hich
we proposed in Chapter 1) to the language of ELP embedded with Approach C, for
reasoning beyond paraconsistency. It refers to the ability of reusoning from contra-
dictory or contradiction-aflected information, by the propagation of the fact that
inference has been made based on contradictory or contradiction-affected informa-
tion ihroughout the reasoning process. This extension also increases the expressive

power of the language thns enabling the distinction between contradiction-affected
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and indefeasible information (i.c. facts and information derived from facts).

The chapter is arranged in the following way. In the next section we present some
background material regarding inconsistency and ELP. [n Section 7.2 we present our
inconsistency handling approaches. and their rationale in the context of ELP. In
Section 7.2 we will introduce the extensions needed for the existing syntax of BLD to
accomimodate the inconsistency handling techniques and then we define the semanties.
In Section 7.3 we explor: some of properties of our formalism. In Secrion 7.4 we will
explore the relationship of our extended answer set semantics to the existing answer
set semantics of exte wded logic programs [30]. to the stable model semantics of normal
logic programs (34] and then to the model thearetic semantics of PS. We conclude
with & summary of our contribution and a discussion of the scope for future work.

A preliminary version of the results presented in this chapter has appeared in [35).

7.1 Background

Extended logic programs [30] allow for negative conclusions in rules. So the question
of dealing with contradictions in the database arises. The language of extended logic
programs generates both ontological and ¢pistemic inconsistency. (We have discussed
them earlier in Chapter 1, but will revisit the concepts.) Ontological inconsisteney
owes its origin directly to ‘explicit” negation. Epistemic inconsistency owes its origin
directly to cuplicit negation and indirectly to negation by default, which is an added
feature of - iended logic programs.

Epistemic inconsistency manifests itself in the same way as ontological inconsis:
tency. Both are expressed as an atom e and its explicit negation ~ «. The difference
is that. for ontological inconsistency the mutually contradicting elements owe their
origin either (i) to their explicit presence in a knowledge base, or (i) to derivation
from facts. (By facts we mean indefeasible knowledge existing in the knowledge

base.) For example in the language of ELP case (i) can be represented by the follow-
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ing set of rules: {~a «:a ; comprising a knowledge base, and case (ii) as follows:
{~ae—byce—;ae—c b} bor epistemic inconsistency the mutually contradicting
clements owes its origin to being derived (iii) partly or (iv) fully from assumptions,
i.c. negatioa by default. In the language of ELP case (iii) can be represented by the
following set of rules: {~ a « noth A cia « d: d —;c «} and case (iv) as follows:
{~a — noth; a « nolc}. But the difference in their origin does not express them
differently in the theory. Hence, they are treated similarly.

We apply the inconsistency handling strategies to cnhance the language of ELP
1o handle both ontological and epistemic inconsistency in a more satisfactory way,
and empower it to reason from inconsistent information. We extend the answer
set. semantics [30] attached to extended logic programs (this we have reviewed in
Chapter 3) to include our inconsistency handling strategies Approach C —Cy and give

it. the ability to deal with contradictions in a more intuitive way.

7.2  Approach C —C, and its rationale in the context

of ELP

Here., we apply Approach C — C4 proposed in Chapter 4 to handle inconsistency. We
troduce the new connectives C and Cy to the existing language of extended logic
programs [30]. We allow formulas of the form Ca and Cygo in the bodies of the
rules of an ELP. We call this modified language of ELP, a Paraconsistent Assumptive
Speeification (which we denote by PAS). This is also an extension of the language
of paraconsistent specification (PS), which we proposed in Chapter 4. Negation by
default (not) is added to the language, giving the language the power of closed world
assumption [73]. The terminology assumptive in PAS can be credited to its closed
world assumptive capability.

We take the same approach as we have taken for definite (or positive) logic pro-

grams extended by explicit negation (refer to Chapter 4), but in the context of ex-
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tended logic programs. and in the process reap similar benefits. Existing answer set
semantics [30] for extended logic programs lacks the ability to handle inconsistency.
According to it, an inconsistent answer set is trivialized to give the set of all literals of
the language. But we would like our extended answer set semantics to be non-trivial.

This is made clear in ihe following examples.

Example 7.2.1 Consider an ELP as given below:

{p—notq ~penotr; c—a; a}.
Answer sel semantics of ELP [30] does not have an answer sct for the above program
The contradictory information p and ~ p sets off the ceplosive appreach by which
we get the set of all literals of the program. By applying approach C fo FLP, we
will preserve the theory, and would cxpect to get as a conclusion the following set:
{Cp,a,e}. This is more intuitive as we arc able to conclude some information about

the theory without trivializing. O

Exampl’e 7.2.2 We can imagine a scenario as given by the following dalabase P:
{a —notyg; ~a—not f; e Ca: b a; ¢ —~a; ~be ¢}

arising in the real world, where the infention of the programmer is to have {¢,Ca}
as the final set of conclusions from the database, as it is. And, if an [ (resp. q) is
added fo the database, then the intended sct of conclusions capected is {a, b} (resp.
{~ a,c,~ b}).

By the existing answer sel semantics [30], we will get no answer sel from P because
a rule of the form e « Ca is not allowed in an ELP. If it were somehow allowed, we
would still get an inconsistent set {a,~ a,b,c,~ b}, thus trivializing the theory. This
wasn't the intention of the given database. It is unintuitive that just from a localized
piece of inconsistent information the global theory will be contaminaled and resull tn a
collapse. By our answer set semantics for PAS embedded with Approach C we would
like to get the conclusion set which contains Ca.

As we see from the above example, by capluring a,~ a by Ca we are blocking

off the generation of unintuitive conclusions sometimes leading lo an undesirable in-
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consistency (if we allow a, ~ a te be in our set of conclusions, it will facilitate the
generation of bye,~b) and thus more confusion.

It is reasonable to allow the devivation of ¢ from the rule ¢ «— Ca if we get Ca from
the program after applying Approach C to it The problem that arises here is that if
we infer ~ ¢ from some other part of the program, say by appending to P two more
rules:

~¢ =1 and T —
we gel another inconsisteney Ce. Getting this inconsistency is not intuitive as the in-
ference of ~ ¢ is from a consislenl piece of information v, whereas ¢ is inferred from
Ca. an inconsistenl information. In o: » understanding it s rational to differentiate
between conclusions derived from inconsistent information and consistent informa-
tion. As in the inconsistent information there can be an intrinsic error. We consider
the information derived from inconsistent information to have a lower epistemicity
than information derived from a consistent information. So instead of arriving at the
inconsistent information Ce. we would prefer the conclusion of ~ e from the program
P. This we will achicve by inferring Ca and Cye from the first set of rules. Cye is
concluded from the rule:
¢ — Ca

based on the idea of Approach Cy that if the premise of a rule is affected by a contradic-
tion (heve Ca), the head of the rule, which we conclude, is tagged with the information
that it is inferred from a contradictory premise or a premise affected by contradictory
information. Thus we ere able to differentiate between conclusions inferred from con-
sistent and inconsistent information. Now from all the above rules of the PAS P
we get the conclusion set {Ca,r,Cye,~ e,Cqb,Cac,Cq ~ b}. We do not derive the

conclusion Ce anymore. O

Example 7.2.3 Consider the PAS given below:

{q — p; p; ~ p}

This PAS has a unique answer set containing Cp on applying Approach C. It is

5
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intuitively appropriate to block the inference of ¢ and just devive the information that
p (or ~ p) is inconsistent. But if we like our serantics to be more informative, it is
rational to conclude something about q too. By applying Approach Cy. we are able to

conclude Cyq. O

7.3 Formalizing Paraconsistent Assumptive Spec-

ifications (PAS)

In this section we will describe the language. define the semantics of the framework

that we are proposing and shall investigate the propertics of the formalism.

7.3.1 Syntax

Here we use the same notations we introduced in Chapter 5. We extend our language
L with the connective not (negation by default). Formulas of £ are defined similarly
to what we defined for PS except that we introduce default literals, which are of the
form notd, where ¢ € ®. We denote the set of all default literals by 7. By ertended
literals we mean an element in the set X' = & U &7 U ¥, ihe set of all simple literals,
default literals and paraconsistent literals.

We will restrict ourself to a subset of the language of £, which we call Paraconsis-
tent Assumplive Specifications (PAS). The formal notion of such a specification is a
syntactical extension of an eztended logic program [30]. It is captured by the following

definition:

Definition 7.3.1 (Paraconsistent Assumptive Specificztion (PAS))
A paraconsistent assumptive specification P is a collection of rules, where a rule 1T is
of the form
¢ — YA Ny
where ¢ € ®, ;s belong to X, i, ; (€ ®) & prem(R) and m > 0. O
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We consider that any rule in a PAS is not self-inconsistent, for the same reasons

as we considered for PS.

7.3.2 Semantics

The basies of the semantics that we are proposing here is the same as that of PS
proposed in Chapter 4. Simple literals - and & are not related to each other in
the nsual classical logic sense. 1.e. if o 1s true we should not conclude that b is
fadse or vice-versa. The truth-theoretic valuation (truth or falsity) of ¢ and that of
A in an interpretation are independent of one another. We also do not allow self-
contradiction, i.e. a formula of the form o A ¢ does not have a truth-valuation true
by our semantics.

We will give the truth-theoretic evaluation of sentences in our language in two
steps. In the first step we will define the truth-valuation in an inconsistent context.
That is when we allow both @ and é to be simultancously true. Here we will initially
just deal with simple literals. In the second step we will define the truth-valuation
of extended literals and formulas formed from their conjunctions in a paraconsistent
context in our language. Iere the inconsistent literals are no longer true, but a new
paraconsistent literal capturing the inconsistency is true.

We will now define the truth-valuation of literals in an inconsistent context. Let
us consider a set W of literals. W represents the current (working) inconsistent set
of beliefs of a reasoner. We will define the notion of truth in an inconsistent context

of literals of £ w.r.t. W,

Definition 7.3.2 (Truth-valuation in an inconsistent context)

A simple literal o is true in an inconsistent context iff ¢ € W. O

We will now define truth-valuation of sentences in a paraconsistent context. Let
us consider a set 1P of literals and paraconsistent literals und a set of literals W. W

adheres to the truth-valuation in an inconsistent context. W? represents the current



(working) paraconsistent set of beliefs, while W' represents its current (working) -

PN

consistent set of beliefs. We will inductively define the notion of truth (F=p..) moa

paraconsistent context of formulae of £ wort. a pair WP =< WP 1 >,

Definition 7.3.3 (Truth-valuation in a paraconsistent context)
Let 0 € d and vis € V.

(1) MP Epure Co iff 0.0 € W end Co € W7,

(2) MV Epara @ U MP B ry Co, 0 € W oand o € W,

(3) MP 1= pra 1006 (] M? Hopury © and M e puny Co.

(4) M" E=pura Cho tff Cyo € WP

(5) MP Epara 01 Ao N YT MP Epueg vy fori= 100000 0

Now we will define an answer set WP, a set of extended literals satisfying a PAS

P. The precise definition of this notion will be given in the following steps.

Definition 7.3.4 Let Py be a paraconsistent assumptive specification consisting of

rules of the form

O —.

Let MP =< WP W > be a pair. where Wois a set of llerals of I' o od WP is a sel of

extended literals. WP is called a belief set of Py ¢f it is a minimal set with the

property that MP? |=p4rq & (()I'Cé or C.$) for cvery rule from 13, O

Example 7.3.1 Let @ PAS Py consists of rules:
1. ¢ —
2~
3.1 —
Let W = {q,~ q.r}. The corresponding W? by Definition 7.4.53 and 7.5.f 15
{Cq.r}
So WP is the belicf set of Fy. O
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Example 7.3.2 Lt PAS P consists of rules:
[
2o~qg —
4. q e
We can see that P has a belief scl:
{Cap.Cq}-

]

Definition 7.3.5 Ll P be an arbitrary paraconsistent assumptive specification, W
be a set of simple literals of P and W7 be a set of extended literals w.r.t. P. For every
M? =< WP W >, by Papp we unll denote the paraconsistent assumptive specification
oblained from P by:
1. Replacing all rules of the form:
O — VNN,
such that ¢ € ®. o5 are extended literals and m 2 0,
by rules of the form:
b —
il

(@) (i) M pura Ca
(i) M? Epara U1 A ... N2y, and
(ii1) there cxists cxtended literals of the form Cé (resp. Cap) < prem(R);
or
(b) (i) M” Epara Cad
(ii) M? Epara C'c‘/:,- (resp. Cqy;) for some simple literal ¥; and
(iii) MP = para U for all ¥ # ;.
2. Removing from the premiscs of the remaining rules of P all formulae F such

that M? {=para I
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3. Removing all remaining rules with non-cmpty premises.

Then WP will be called an answer set of P iff WP is a beliel set of Py, O

Example 7.83.3 Let a PAS P consists of rules:

1. g — notp

2. ~q e not ~p

3.1 —
Let W = {q,~ q,r} a set of simple literals of P and a corresponding W' = {Cqy.r}.
By Definition 7.3.5 we obtain the PAS Pyy = Py, the PAS in Frample 7.5.1. By
Definition 7.3.4 WP is the belief set of Pye = Py. Hence WP is the answer set of P
O

Example 7.3.4 Let a PAS P consists of rules:

l. p—gq

o

~ g —

3. q
Let W = {q,~ ¢} or {g.~ ¢q.p} and a corrcsponding W? = {Cq,Cyp}. By Dcf-
wmition 7.3.5 we obtair the PAS Pyr = Py, the PAS in Erample 7.3.2. By Defi-
nition 7.3.4 WP is the bel'.f set of Pypr = Py. Hence WP is the answer set of P.

0

Example 7.2 § onener the A% aen in Erample 7.2.1. Let W= {p,~ p,a,c}
and a corresponding W? = {(Ca.¢}. By Definition 7.3.5 we obtain the PAS
Paip iz ipe-imp i ;a0 —}

By Dcfinition 7.5.4 WF ‘s a velic? sot of Pru. Henee WP s the answer sel of .0

Example 7.3.6 ¢ unsiacr o 245 ~o-ipised of a collection of clauses:
1. republica.: - -
2. quaker

3. pacifist — quaker A noi -2 acifist
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J. ~ pact fist — republican A not pact fist
We get two answer sels f-om the PAS:

{republican, ~ pacif '} and {quaker, pacifist}. O

Example 7.3.7 [« us consider the PAS P of Ezxample 7.2.2:
{a — wotg; ~ae—not [ic —Cas b a;ce=~a;~ b« c}
apperded Sy e rules:
~e¢e—T
T .

By the PAS transformation of Definition 7.3.5 we get the PAS Pup:

{a—: ~a—ice—theicer ~bei~e e r—}
from P by considering W2 t. be the following set:

{Ca,Cyc,Cqb,Cac,Cy ~ b7, ~ ¢, }

Now, W? is the belief set (refer to Definition 7.3.4) of Pue, hence it s the answer

set of PP. O

7.4 Some Properties

Proposition 7.4.1  Let & be a simple literal.
o € W does not necessarily imply MP |=pora ¢

O

Proof: Let ¢ € ®) and & the complement of ¢ both be in W the current inconsistent
set. of heliefs of a reasoner and Cé € WP the current paraconsistent set of beliefs of
the reasoner.

Therefore by Definition 7.3.3(1) Epara Cé.

Therefore by Definition 7.3.3(2) Fpera @ (oOr é).

Hence the proposition is proved. O

The above proposition is illustrated by the following example.
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Example 7.4.1 Let P = {p e~ p «} be a PAS. If W = {p.- p} be the incon-
sistent working set and WP = {Cp} is the correspondivy poraconsistent working set,

then we see MP Epura p (or ~ p). O.

Proposition 7.4.2 A self-inconsisteni formula (i.c. a formula of the form ¢ A o,

where ¢ € ®) is not true in a paraconsistent contert. O

Proof: Let us assume that MP(=< WP W >) Epure ¢ A o.

Therefore M? Eyara @ and M? Epara é by Definition 7.3.3(5).

Therefore (a) ¢, é € W and (b) M? ¥ para Cé by Definition 7.3.3(2).

Bby (a) and Definition 7.3.3(1) Epera Cé. This is in contrary to (b).

Therefore our assumption F=perq @ A & proved to be false. Henee the proposition is
proved. O

The above proposition is illustrated by the following example.

Example 7.4.2 Consider the PAS given below:
{g = pA~p; ;v ~ p}
This PAS has an unique answer set: {Cp}.
This is intuitively appropriate as we do not allow self-inconsistency, i.c. do nol allow
formulas like pA ~ p. thus the rule ¢ «— pA ~ p is removed as the premise of the rule

does not truth-valuate to true in a paraconsistent ¢. =, i.c. MP Fpny pA ~ p. O

Proposition 7.4.3 Let R be a rule in a PAS P and M? 4. Ch. If ¢, ¢ or Co
belongs to the premise of R, conclusion of R will not belong lo the answer scl of I’

O

Proof: Let us assume that R be a rule in a PAS P, M? }=,,,, C¢ and ¢, ¢ or Cd
belongs to the premise of R. Let us also assume in contiary to the proposition that
conclusion of R belongs to the answer set of P.

As conclusion of R belongs to WP an answer set of P, it belongs to the belief set

of the PAS Py got by the PAS transformation by Definition 7.3.5.
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Therefore by Definition 7.3.4 we can assert that:
(A): there is a body less rale /77 1n Py such that the conclusion of R is equal to the
conclusion of .

All the rules in Py» are arrived from P following the PAS transformation by
Definition 7.3.5. But as M? =44 Co and ¢, ¢ or C(P belongs to the premise of R, by

Defirtion 7.3.5 R should be removed from P in the process of transformation to Pass.

This will not resuit with the vr° 2 1r . This is in contrary to the assertion (A).

Hence we disproved our init "+ -mptions. Hence the proposition is proved.
0
Proposition 7.4.4 Lt R:¢ «— « ... Athy be arule in a PAS P. If

(a) (i) M? Epara 1A oo AU, and
(ii) there crists an extended literal of the form Co (resp. Cqp) in the premise
of R;

or

(b) (1) M? =para Cil; (resp. Cai;) for some simple literal ¢; € prem(R), such
that ; & prem(R) and

(”) MP ‘:pnm 1/‘] fOT d"j # i

then a contradiction-affected literal on conclusion of R (i.e. Cad) is in an answer set

of P. O

Proot: The proof is straight-forward from the semantical definitions of an answer set
of a PAS. O

The following examples illustrate the above proposition.

Example 7.4.3 Consider the PAS of Erample 7.2.3 given below:
{q < pe ~p}
The answer set for PAS is: {Cp.Cqaq}. O
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Example 7.4.4 Consider the PAS P below:
{pe—not ~r.qe nol ~p;re—q~qe r}

By the answer sel semantics of PAS as given above, we will have the following answer

set {p,Cq.Cqr.Cy ~q} for P. O

Example 7.4.5 Let PAS P consist of the rules

[. p«Cyr A nott

2regq

3. q — nots

-

.~ q+—nots

We can sce thal P has a unique answer set: {Cq.Cqr.Cyp}. O

Example 7.4.6 For the PAS {a «— nota} we do nol gcb an answer set. U

7.5 Relating PAS to ELP and PS

In this section we show how the answer set semantics of PAS encapsulates the answer
set semantics of ELP. We also relate the answer set semantics of PAS to the model
theoretic semantics of PS.

The databases in the Example 3.4.1 and Example 3.1.2 can be considered as PAS.
The answer sets given by the two PAS in the above mentioned examples by the answer
set semantics of 1\~ are the two answer sets by the answer set semantics of ELP as
given by the respective examples. The modified answer set semantics for PAS gives
the same intended semantics as given by the answer set semanties for ELP if the ELP
1s non-contradictory.

The following proposition establishes the relationship of extended logic programs

with paraconsistent assumptive specifications.

Proposition 7.5.1 W7 is an answer set of a non-contradiclory LP P by the answer
set semantics of ELP (as given in Chapter 3) iff it is an answer scl of PP by the answer

set semantics of PAS. O
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it

Proof: A non-contradictory ELP 17 s contradiction free. Therefore the logical mech-
anisms to handle inconsistency embedded in the semantical definit s for a world
view of an KLP (given in Chapter 3 Seetion 3.4) are redundant. V.o ELP P is also
4 PAS. Therefore the logical mechanisms to handle inconsistency cmbedded in the
cemantical definitions for an answer set of PAS are also redundant in computing an
answer set for the non-contradictory ELP P. Thus effectively the semantical defini-
Gions fo- + answer set of ELP and the semantical definitions for an answer set of
PAS has & one to one correspondence in computing an answer set ot P. Therefore an
answer set of 12 by the answer set semantics of ELP coincides with an answer set of

I’ by the answer set semantics of PAS. Hence our proposition is proved. O

Example 7.5.1 Consider the PAS P viver in Erample 3.4.1:
(v gt p o a)
The answer set we get by the answer sel semantics of PAS is : {~ ¢,p}, samc as we

gel by the answer sct semantics of ELP [30]. 3

Example 7.5.2 Consider the PAS P given in Eramplc 3.4.2:
{~ p « not ¢}
The answer set we gl by the answer set semantics of PAS is : {~ p}, same as we

gel by the answer set semantics of ELP [30]. ©

The following proposition establishes the relationship of normal logic programs

with paraconsistent assumptive specifications.

Proposition 7.5.2 Lt P be a PAS consisting of rules of the form:

Q — U A A Q',n.
such that. o is an alom. ;s are aloms o or formulas of the form nota (i.e. P isa
normal logic program) then WP is an answer set of P iff WP is a stable model (as

defined in [34]) of P. O

Proof: This proof is on similar lines to the proof of Proposition 7.5.1. O
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Now we relate the answer sot semantics of PAS to the model theoretic semantics
of PS.

The following proposition relates the two semantics.

Proposition 7.5.3 M isa minimal model of a PS P by the model theoretic semantics
of PS (as given in Chapter 5) (it is an answer sel of P by the answer set semanties

of PAS. O

Proof: Let M be a minimal model of a PS P and [ be the corresponding mter
pretation of M. Therefore M satisfies every rule B : ¢« vy Ao Ay, (such that
é € ® and ¥ys € X') in P. Therefore by Definition H5.2.5 in Chapter 5 of satisfaction
by a model (i.e. a p-interpretation) of a rule in a PS, one or more of the following

conditions hold:
(a) v, & M, Ci~ & M and Cyur, & M for some 1 <7 < m;

(c) R is a plain rule, Cod € M, i or Cyo; € M for all i and there is a plain rule

~ ! ! N ’I ! . .
R :¢— ) A... AN, in P, such that ¥ or Cytpy € M for all &

(d) Cqo € M, there exists a y; € ¢ such that Clj;,‘ or Cyyr; € M, and +, € M such

that v; # ¥
(e) Cq0 € M, ¥; € M for all i and there exists a ¥ that is a paraconsistent literal.

The language of PS is a subsct of the language of PAS. PS does ot have default
literals in the body of its rules. So P is an PAS. Moreover for a PS, ... (ic.
truth in paraconsistent context) guided by Proposition 7.4.4 (which states under
what conditions a literal (i.e. a simple literal or a paraconsistent literal) is true in a
paraconsistent context w.r.t. an EPAS) has a one to one correspondence with Fe_¢,

(i.e. satisfaction by an interpretation w.r.t. a PS)
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By Definition 7.3.5 every rule R € P is transformed by the conditions in it to
get Pyp. Now for any rule 8 € P, (a), (b), (¢i. (d) or (e) holds. If (a) holds
then strategy (3) in the PAS transformation definition is satisfied. If (b) (resp. (c),
(d) or (¢)) holds then strategy (2) (resp. (1)) in Definition 7.3.5 (i.e. the PAS
transformation definition) is satisfied and thus we get the Py with rules like ¢ «-,
such that < M, I >k .. ¢ (o1 Cfb or Ci¢) (as [=pare has a one to one correspondence
with Ec_c, for PS). Therefore M is an answer set of P by the answet sct semantics
of PAS.

Similarly we can prove that if M is an answer set of PS P by the answer set
semantics of PAS, then it is a minimal model of P by the model theoretic semantics
of PS.

iience the proposition is proved. O

7.6 Summary

We have extended the language of extended logic programs to handle ontological
and epistemic inconsistency. Instead of discarding the inconsistent answer sets by
trivializing them we make them viable by capturing the inconsistent information in
them explicitly. We have also shown the usefulness of capturing inconsistency, as in
certain situations we may still use the inconsistent information for further reasoning.

Our semantics collapses to that of stable model semantics for normal logic pro-
grams. Stable model semantics of normal logic programs [34] and extensional se-
mantics of default logic [74] are equivalent. Thus our semantics is related to default
logic. So, we have a reason to believe that default logic can also benefit from our
inconsistency handling approach. We should be able to extend default logic by our
inconsistency handling approach C — Cy.

As future work we would like to extend the framework of PAS to introduce the

notion of defeasible information inferred from assumptions (i.e. negation by default)
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by the introduction of an inferred from defeasible belicf operator B. By this we can
deal with epistemic inconsistency differently from ontological inconsistency. A sim-
ilar approach has been taken by Pequeno and Buchsbaum [58] in the context of
defeasible default logic. We find this approach a more natural way of resolving epis-
temic inconsistencies where one of the pair of the responsible inconsistent information
stems from defeasible information and the other from indefeasible information, e.g.
{a «: ~ a « not b}. By this approach we would not get any epistemic inconsistency
as envisioned and resolved by Pereira etal [61] aud Pimentel and Rodi [62].

We can think of an alternate way of resolving this. If our approach is embedded
into the contradiction removal semantics [61], we can expeet to have a but not ~ «
nor Ca. In other words, they become unknown. In this way we can complement and

greatly enhance the contradiction handling capability of their system.



Chapter 8

Approach C - ¢; and Objective

Epistemic Specifications

Lpistemic Specifications (which we denote as ES) [29. 33) are a more general form
of extended logic programs (ELP) [31] with the notions of knowing and believing
added to it. Objective Epistemic Specifications (which we denote as OES), form a
subset of the language of ES, i.c. ES without the notions of knowing and believing.
In this chapter we expand the language of OES to aliow for reasoning in the pres-
ence of inconsistent information (by erplicit paraconsistency) and reasoning beyond
paraconsistent information.

The language of OES is expressive than that of ELP. But the expressive power
is hindered because of its inability to handle inconsistency. We apply the inconsis-
reney handling strategies Approach C and Approach Cq (proposed in Chapter 4)
to OES to handle inconsistency effectively. We call this extended language of OES
Paraconsistent Objective Epistemic Specifications (POES). This extension allows one
to veason explicitly in presence of contradictions without the trivialization (or ex-
plosion) approach of classical logic, which is certainly not adequate for processing
partially inconsistent information in an intuitive way. The expansion also gives more

expressive power to the language of OES.

129
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The chapter is organized as follows: In Section 8.1 we present our inconsistency
handling approach, and the rationale behind the new approach in the context of OES.
(We have presented OES in Chapter 3.) In Section 8.2 we introduce the extensions
needed for the existing syntax of QES to accommodate the inconsistency handling
techniques. Then we define its semantics and investigate its properties. In Section 8.3
we explore the relationship of the semantics of POES to the semantics of OES [31, 29]
and then to the semantics of PAS (as given in Chapter 7). In the last section we

conclude with a summary of our contribution and directions to future work.

8.1 Background

OES allows for negative sentences in the head of a rule. This leads to contradiction.
So, the question of dealing with contradictions in the OES databases arises. The
language of OES generates both ontological and epistemic inconsistencies. We ap-
ply the inconsistency handling strategies Approach C and Approach C, (i.c. the
combined Approach C —C;) to the language of OES to handle both ontological and
epistemic inconsistency' in a satisfactory way. POES embedded with the inconsis-

tency handling strategies is able to deal with contradictions in a mor¢ lautitive way

than OES.

8.1.1 ApproachC—Cy and its Rationale in the context of OES

Here, we apply Approach C —Cy (proposed in Chapter 4) to OES to handle inconsis-
tency. We introduce the new connectives C and Cy to the existing language of OFS
[29]. Let I denote the positive part of a simple formula /7, e.g. if I' =~ (p A q)
or F = pAgq, then F = pAg. Now, by CI we mean I is inconsistent (or I' is in
contradiction), i.e. there is contradictory information available about /' in the theory.

By our semantics if F and ~ F are in the same theory, we replace them by Cl. Caiv

lrefer to Chapter 4
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means I is wferred from a premise (of a rule in a theory) affected by an inconsistent
information. We allow formulas of the form CF and CyF in the body of a rule of an
OES. We call this modified QOES. a Paraconsistent Objective Epistemic Specification.
This we denote by POES.

By applying Approach C — Cy to OES. we have the same advantages as when we
apply Approach C—Cqto ELP (refer to Chapter 7). The following examples illustrates

the point clearly.

Example 8.1.1 We takc one of the same motivational cxamples we took in Chap-
ler 7 when we applied Approach C to ELP, because, the motivations to apply the
inconsistency handling approach is the same as it was for ELP. Let us consider the
ELP in Erample 7.2.1 (which is also an OES):
{pe—notq ~pe—notr; e —a; a —}

This is a significant exrample where the semantics for objective epistemic specifications
(which allows formulas in the body and the head of a rule ) (refer to Chapter 3), a
sublanguage of epistemic specifications [29] fails to give an intuitive semantics.

By the semantics of OES we get a world view, i.e. a set of all simple literals, by the
trivialization approach in the face of inconsistency. Bul intuitively we can expect to
get at least a and ¢ as a consequence of the above set of clauses as it is contradic-
tion free. By the semantics that we propose, we get the following set of conclusions:
{a,e.Cp} which follows the intwitive meaning as given by the specification. We not
only get the information a and ¢, bul also the information that we have contradictory

information about p, which we represent by Cp. O

Example 8.1.2 Lef us consider Erample 3.5.7 consisting of the rules
[ ~p e
2op e
3. q —~ (pA\ ~ p)
This specification does not have a world view by the answer set semantics of OFS.

Because of the inconsistency owing to the the first and second rules, the theory is



132
trivialized.
In the language of POES, we would like to get the following intuitive set of conelu-
sions: {Cp,Caq}. By Approach C we capture the inconsistency implicitly by explicit
paraconsistency and by Approach Cq we get Caq by tagging the information g derived
from rule (3) whose premisc is affected by the paraconsistent information C(pA ~ p)
which is implied by the theory. In this example we sec how compler sentences play an

interesting role in the language of POLS. O

The overall motivation of extending the language of OLS is to make it explicitly
paraconsistent so that it can handle inconsistency present in the form of both simple
literals (e.g. p and ~ p) and simple formulas (c.g. p A g and ~ (pA q)). It is also to
give OES the ability to reason beyond paraconsistency, such that the system is able to
infer both contradiction-affected literals (e.g. Cqp) and contradiction-affected simple

formulas (e.g. Ca(p A q)).

8.2 Formalizing Paraconsistent Objective Epistemic
Specifications (POES)

In this section we describe the language, define the semantics of the framework of

POES and shall investigate the properties of the formalism.

8.2.1 Syntax

Here we use the same notations we introduced in Chapter 5 and Chapter 7. We
extend our language £ with the connective or (epistemic disjunction) and parentheses
(,). Formulas of £ are defined similarly to what we defined for PAS except that we
introduce epistemic disjunction. By ertended literals we mean an element in the set
X = & U ®% U U, where ® is the set of all simple literals, * is the set of all default

literals and ¥ is the set of all paracousistent literals.
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Simple formulas in our language are formulas formed from simple literals (€ @)
conneeted by the logical connectives A, or, ~. ( and ) in the usual way. We denote
the set of all simple formulas in our language by F. By F (F € F) we denote ~ F,
it = I Af 1 o=~ 17, F denotes F'. By I (F € F) we denote the positive part
of I or F. More complex formulas in our language are formed by formulas like F,
nol M, CI* and CqF° connected by logical connectives A, or, ~, ( and ) where F € F.
We denote the set of all such comiplex formulae by G.

We restrict oursell to a subset of the language of L. i.e. Paraconsistent Objective

spistemic Specifications (POES). We allow contradictions to prevail in a theory of
a POES by cautiously capturing it by C and inferences from contradiction affected

premises by Cg. The formal notion of such a specification which is also an extension

of an ertended disjunctive database [31] is captured by the following definition:

Definition 8.2.1 (Paraconsistent Objective Epistemic Specification (POES))

A paraconsistent objective epistemic specification P is a collection of rules of the form
F — GiA...AGp

where, F€ F. Gis € Gandm>0. 0O

We assume that the premise of a rule in a POES does not have a self-inconsistent
formula. The reason for this consideration has been discussed for PS and it is the
same here.

So the subset of our language £ we are considering here is that of paraconsistent
objective epistemic specifications (POES). syntactically and semantically an extension

of OES.

Remark 8.2.1 ‘e "and ‘or ' have the same meaning here as they have in OES (refer

to Chapler 3 Section 3.5).
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8.2.2 Semantics

The basics of the semantics that we are proposing here is the same as the semanties
of PAS. as proposed in Chapter 7. A simple formula F' and its negation ~ I are
not related to each other in the usual classical logic sense, i.e. if Fis frue we should
not conclude that ~ F is false or vice-versa. By our semantics the truth-theoretic
valuation (truth or falsity) of I and that of ~ I are independent of cach other.

We give the truth-theoretic evaluation of sentences in our language in two steps
adhering to the notions we developed in Chapter 4, Section L4, First we define the
truth-valuation in an inconsistent context. where we allow both simple formulas I
and ~ F to be simultancously true. In this step we only deal with simple formulas.
In the second step we define the truth-valuation of sentences in our language in a
paraconsistent, context when the inconsistent sentences are no longer true but a new
formula CF capturing the inconsistency is true. In this second step of truth-valuation
of sentences in a paraconsistent context we deal with both simple formulas (€ F) and
complex formt - ; (€ G).

We now define the truth (or falsity) of simple formulas in an inconsistent context.
Let us consider a set W of simple literals (€ ®). W represents the current (working)
possibly inconsistent set of beliefs of a reasoner. We define the notion of truth (k)

and falsity (=|;n) in an inconsistent context of simple forinulas of £ w.r.t. W.

Definition 8.2.2 (Truth-valuation in an inconsistent context)
Let 6 € ® and F, Fis € 7

(1) WisndiffgeW

(2) Wk FIANF iff W ki Fyand W =i 1

(3) W i Fror Fo if W k=i, Fy or W =i 1)

(4) W i~ F ilf W =[in F

(5)W=lnoiff beW

(6) W =|in i A Fo tfW =i iy or W =i,

(7) w =|in Fror Fy ff W =|in Fy and W =|i, 13
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We now define the truth-valuation of sentences in a paraconsistent context. Let
us consider a set W7 of simple literals and paraconsistent literals. Let us also consider
a st W of simple literals. W adheres to the truth-valuation |=i,. WP can be thought
of as a possible paraconsistent belief set of a reasoner. We define the notion of truth
(= para) and falsity (=|para) In a paraconsistent context of formulae of £ w.r.t. a pair

MP =< WP W >.

Definition 8.2.3 (Trutk-valuation in a paraconsistent context)
Lt pded, I F FseF andG, Gseg.
(1) M para C& iff M f=in 6. M Ein & and CH € WP.
(2) M? b=pura & il M™ Fopara Co. M Fin ¢ and ¢ WP
(3) M? Epura Ca¢ iff Cagp € W7
(1) M? Epara GL A ACy iff MPV. % foralli= ..o,
(5) MV papa Groor ... or Go iff 20 . for somei =1,...,n.
(6) M? | para CF iff M i . M i F.
(1) MP = pura CaF iff MP |2 pura CaFs for alli = 1,...\n, such that F = FyA.. .AFy.

(8) M? Epere CaF ff MP Fpara C.F; for some 1 = 1,...,n, such that F =

Fior ...or Fy.
(9) M¥ Epara~ G iff MP =}pura G
(10) M Epara n0LF iff MP W para I (vesp. CF).
(11) M? =lyara & iff MP Fpara Ch. M [=in 6 and $ € WP.
(12) MP =|para Gy Ao  AGy iff MP =lpare Gi for some = 1,...,7.

(13) MP? =|para Gyor ... or Gy iff MP =|pare Gi foralli=1,...,n.
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(14) MP =|para CF iff MP E=pura F or MP Fpara F.
(15) MP =|para~ G iff M? [=para G.

(16) MP =|p4,q not F iff MP =p0rq F [resp. Cl).

]

Remark 8.2.2 The sentences formed by the connective or in our language can also

be semantically defined as follows: Let (i,(y € G,

(Gyor Go) iff ~ (~GiA ~ (iy) (8.1)

Fquation 8.1 s easily provable from Definition 5.2.3.

Now we define a set W? of simple literals and paraconsistent literals satisfying
a POES P. We call such a set an answer set of P. The precise definition of these
notions are given in the following steps.

First we define the notion of a consistent set.

Definition 8.2.4 (Consistent set) A set W? which docs not ha.~ paraconsistenl

literals is called a consistent set. O

Definition 8.2.5 Lel Py be a paraconsistent objective epistemnie specificalion consisl-
ing of rules of the form

I~
(a) If there exists a minimal consistent sct (C @) with the property M? f=ppn I for
every rule from Py it is called a belief set of 1.
(b) If there does not exist a belief set by (a), a minimal set (C GUW) with the property
M? Epore F (07‘CF or C4F) for every rule from Fy is called a belief set of Py, O

Example 8.2.1 Let P consists of rules:
1.por g «
2. ~ g —



3. rors
We can sce that 7 has two belief sets by condition (a) of Definition 8.2.5:

{p.~ q.r}{p.~q.5}.
0

Example 8.2.2 Let P consists of clauses:

. por ~p e

2. ~pe—

3. pe—
Let the set of possible inconsistent sets be W = {p,~ p} and the set of possible
paraconsistent sets be W? = {Cp}. Now by Definitions 8.2.2 and 8.2.3 we can get the
following:
p~peW =>M=|,pand M =|i,~p = M=|ppor ~p=> M i~ (por ~ p)

(a).

p~pEW = MEgppor MiEn~p=>MEinpor ~p— (b).
(a) and (b) = M? k=pora C(p or ~ p).
We can sce that P has the belief set WP = {Cp} by condition (b) of Definition 8.2.5
as M? |=parq C(p or ~ p) for rule (1) and M? k= ara Cp for rules (2) and (3). O

Here we first try to get belief sets that are consistent and minimal following condition
(a) of the definition. If we fail to get any such set, we try to get belief sets which are
just minimal (but not ¢ _sistent) by condition (b) of the definition.

In Example 8.2.1 we already get two consistent minimal belief sets (as given in
the example) by condition (a) of the definition. Therefore we do not consider the
sets {Cq,r} or {Cq.s} which we get by condition (b) of the definition, though they
are (set theoretically) smaller then the belief sets we already got by condition (a).
The reasoning behind this is that inconsistency rising from information coming from
an epistemic disjunctive information is epistemically weaker than information coming
from an indefeasible information. In the example ~ q has a higher epistemic status

than ¢ in p or q.
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In Example 8.2.2 as we do not get any minimal consistent set by condition (a) of
the definition we accept the mimmal sets (as given in the example) by condition (b)

of the definition.

Example 8.2.3 Let the POES P be
{porqe: ~qe—: pe—}

P has the belief set {~ ¢.p} by condition (a) of Definition 8.2.5. &

Example 8.2.4 Let P consists of clauses:
l.pAN ~p e
2~ p e
3. p e
3. ¢
Let W = {p.~ p.q} and WP = {Cp.q}.
MP =00 C(PA ~ p). thus satisfying rule (1) by Definition 8.2.5(b). Similarly rules

(2) and (3) are satisfied by Definition 8.2.5(b). Hence W2 is a belief set of P D

Now we will define some rules for the propagation of the direct or indirect affect of
contradiction on subformulas? w.r.t. a formula. We apply these rules to check when
a formula in the body of a rule will affect the head of a rule and propagate reasoning

beyond paraconsistency. The rules are given in the following definition:

Definition 8.2.6 (Rules for propagation of contradiction) 7he rules by which

we can say that a formula can propagate contradiction are as follows:

b

o Fora formula G =GN NG, if (= CF (or CyF) for an i and M? =y G
then G can propagate contradiction.

e For a formula GG = Gy N ... NGy if MP Epura C(‘;',' (or C4(i;) for an it and

MP =pare G for j # i, then (6 can propagate contradiction.

2if F is a subformula w.r.t. a formula ' then either F = (i or I is a constituting formula of G;.
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Aor a formula (= (i or.. . or i f M7 E=para CCii (or CaGy. or G such
that €/, = CIl (orCyl)) for an i and M? W para (i, Jor any i # ], then G ocan

propagale contradiction.

v Lor a formula (1= Gy Ao NG f a (i:s can propagate contradiction and

M para () for any ¢ # . then G can propagatc contradiction.

v For a formala (7 = Gy oor...or (i if a Gis can propagate conlradiction and

M? e pien () for any i # j, then (0can propagalc contradiction.

v we give the definition which states under what conditions an arbitrary POES
be transformed into a POES with rules like /7« (i.c. body less rules). Based on

» we define the answer set of a POES.

Anition 8.2.7 Let P be an arbitrary POES, W be a set of simple literals in P
PWP be a sel of cements (€ @UW) wart. P Let F.F' Fs€F and G,G;,Gs
L For coery MP =< WP W >, Py» denotes the POES obtained from P by:

{. Replacing all rules R of the form:
F e G AN ANGy
by rules of the form:
[

T MY Epura Cal? and Gy Ao A (1., can propagale contradiction.

L

Removing from the pramises of the remaining rules of P all formulae G such

that M7 = eea (0.
3. Remorving all remaining rules with non-empty premises.
en WP is called an answer set of P iff WP is a belief set of Pyp. O

Given the notations have their usnal meanings as given in the definition, the first

wlition can be explained as follows: A rule R: F e Gy A ... AGn is replaced by
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arule R : F —.iff
the conclusion of R is aflected by contradiction (i.e. CqF is true in a paracousistent
context). and the premise of the rule R can propagate contradiction.

Basically the first transformation rule indireetly assures that by a belief set a
contradiction-affected form of the conclusion of a rule is true in a paraconsistent
context iff the premise of the rule is affected by contradiction in some way. The
other iwo transformation rules are casy to follow. The second one assures that the
conclusion of a rule is true in a paraconsistent context w.r.t. a belief set il the
premises are true. The third transformation rule in the above definition assures that
the conclusion of a rule is not true in a paraconsistent context w.r.t. a belief set if
its premise is not true. unless the conclusion is true as the head of some other rule.

By the following examples we demonstrate the working of the Jast. two definmtions

in computing an answer set of a POLS.

Example 8.2.5 Let a POES P be
{por g e—not t A{rors); ~qeirors e~ q}
Let W! = {p,~ q.r} and W} = {p,~ p.s}.
By POES transformation of Definition 8.2.7 we get the POES Prpr
{porqe: ~qe;rTors e}
By Example 8.2.1 the W} and WY are the belief sets of Pyn. Hence WP and W} are

the answer sets of P. O

Example 8.2.6 Let a POES P be
{por ~p—not(ph ~p); pe; ~p—}
Let W = {p.~ p} and W? = {Cp}.
By POES transformation of Definition 8.2.7 we get the POLS Py
{por ~pe=ipe;pe}

By Example 8.2.2 W? is the belief set of Pue. Hence WP is the answer set of 2. O
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Example 8.2.7 Let us consider the POES in Example 8.1.1:
{p e nolq: ~penolr. « —a:a —}.

We get the following unique answer set: {a.c.Cp}. O

Example 8.2.8 Let us consider the POS I’ of lxample 8.1.2 consisting of the rules
|~
2 p e
3. g —~ (pN ~ p)
Let W= {p,~ p} and W» = {Cp.Cay}
M? = para C(pA ~ p). Thus condition [1(b)] of Definition 8.2.7 is met for rule (3).
hus we get the transformed rule (3) as ¢ < in ' transformed POES Pap. Rules
(1) and (2) remains the same in Py

Now W7 is the belief set of the POES Pae. Her  the answer set of Pis WP, O

Example 8.2.9 Let us consider the POES P consisting of clauses:

l.qe—por ~p

2. ~p e

3.
We can see that P has an unique answer set:
{Cp,Caq}. This answer set is intuitively appropriate. Rule (1) is not directly applica-
ble here as the premise of the rule is not true, i.e. M? W para p or ~ p. Cp holds the
information that both p and ~ p is true by the theory P (in an inconsistent context).
We cannot hold p or  ~ p true as it means either M? E,q.0 p or M? Epara™ P
which goes against the meaning of Cp. But rule (1) is applicable in an indirect way.
M? = ara C(p or ~ p). Hence by Definition 8.2.7 condition (1b) and by rule (1) we

get Cyg in the answer set, O

Example 8.2.10 Let POES P consist of the rules
l. por ¢ « nots

2. r « not p



We can see that P has two answer sets:

{r}. {g.r}

8.2.3 Some properties

Propositien 8.2.1
[ Relating Truth-valuation in inconsistent to paraconsistent context]

Any simple formula F of our languaoe £ true by the truth-valualion in an in-
consistent context is not neeessardy trae by the truth-valuation i a paraconsistent

contexrt. O

Proof: Let M k=, FF and M =, ~ I, where I' € F.

Hence by Definition 8.2.3(6) M? {=yara ci - (a).

Now let us assume that M? |=pqpq I (or ~ ) - (b). Henee by Definition 8.2.3(141)
=lpara CF.

This is in contrary to (a). Therefore we cannot have (b). Hence the proposition is
proved. O

With the following example we illustrate the above proposition.

Example 8.2.11 Let the POES P bhe
{porqe: ~ph~qe}
P has two answer sets: {Cp,~ ¢}, {Cq.~ p}.
By both the answer sets (and their corresponding inconsistent sets) M =i, p or g

(and M E=in~ pA ~ q, but neither M? Epura p 0r g nor M? |~ pA ~¢.) O

Proposition 8.2.2 A self-inconsistent formula (i.e. a formula of the form I A I

where F € F) is not true in ¢ paraconsistent context. O

Proof: Let us assume that MP(=< W? W >) |=p.0 I A I,
Therefore M? f=pq7 1 and M? =00 I by Definition 8.2.3(5).
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Therefore (a) I, I e W oand (b) M? ¥pura Co: (where FF'= FiA. AFp.m 21 and
Fo=dyor o oor gyt =100, 1. n > 0) by Definition 8.2.3(2).

By (a) and Definition 8.2.3(1) Epara Co,;. This is in contrary to (b).

Therefore omr assumption M? a0 FA " proved to be false. Hence the proposition

is proved, O

8.3 Relating POES to OES and PAS

In this section we relate the answer set semantics of POES to the answer set semantics
of PAS and OES.

The following proposition establishes the relationship of OES with POES.

Proposition 8.3.1 W7 is an answer sel of a non-contradictory OES P by the se-

mantics of OES iff il is an answer set of P by the semantics of POES. O

Proof: A non-contradictory OES P is contradiction free. Therefore the logical mech-
anisms to handle inconsistency embedded in the semantical definitions for an answer
et of an OES are redundant. The OES P is also a POES. Therefore the logical
mechanisms to handle inconsistency embedded in the semantical definitions for an
answer sol of a POES are also redundant in computing an answer set for the non-
contradictory OES P. Thus effectively the semantical definitions for an answer set
of OES and the semantical definitions for an answer set of POES has a onc to one
correspondence in computing an answer set of P. Treerefore an answer set of the
OES P by the semantics of OES and the answer set of P by the semantics of POES
coincides. Hence the proposition is proved. ©

"The database in the Example 8.2.7 and others involving simple elements belonging
to ®. &, W, or V¥ in forming the premises of rules and simple literals forming the
heads of rules can be considered as a PAS. The answer set given by the POES is

respectively the answer set as given by the answer set semantics of PAS. The semantics
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for POES gives the same intended semantics for a PAS as given by the answer set
semantics for PAS.

The following proposition cstablishes the relationship of PAS with POES.

Proposition 8.3.2 W7 is an answer set of a PAS P by the answer set semanties of
PAS (as given in Chapter 7) Uf it is an answer sct of P by the semantics of POES.
0

Proof: A PAS P is a POES. The language of PAS is a subset of the language of
POES. Simple and complex formulac are allowed in the language of POES, but are
not allowed in the language of PAS.

The logical mechanisms embedded in the semantical definitions of a POES that
handles simple and complex formulae are redundant in computing an answer set of
P. Therefore effectively the semantical definitions for an answer set of a PAS has a
one to one correspondence to the semantical definitions for an answer set of a POES
for P. Hence an answer set of P by the answer set semantics of PAS coincides with

the answer set of P by the semantics of POES. O

8.4 Summary

We have expanded the language of objective epistemic specifications to handle in-
consistency. Instead of discarding the inconsistent answer sets by trivializing them
we make them viable by explicitly capturing the inconsistent information in the the-
ory and thus concluding more information from a theory. This was achicved by the
application of Approach C to OES. By applying Cq4 to OES we are able Lo reason
beyond paraconsistency, i.c. we are able to reason from inconsistent information and
distinguish between conclusions inferred from consistent and inconsistent informa-
tion respectively. We now have an expressive language where contradiction in simple
formulas are handled and where the information of being being affected by a contra-

diction are propagated through simple formulas.
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Future work needs to be done in applying Approach C —Cy to the full language of



Chapter 9

Approach C - C; and Existing
Logics

In this chapter we compare Approach C —Cq based systems with some of the existing
logics handling inconsistency that we reviewed in Chapter 2. This comparison gives
us an insight into how Approach C —Cq based systems contribute to the enhancement
of rational logicality by dealing with inconsistency in an intuitively satisfactory and
pragmatic way.

For the discussions in this chapter we do not differentiate between classical nega-
tion (—) and explicit negation (~) as they are very close in spirit. Wherever reference

to classical negation is made consider it as explicit negation.

9.1 Relating to classical logic

In Chapter 1 we discussed the restriction of classical logic and showed how paracon-
sistent logics are a natural enhancement towards logical rationality. The systems that
we have developed based on the inconsistency handling strategies Approach C — Cy

are all paraconsistent. in nature. Morcover they are cxzplicitly paraconsestent and have

146
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the added feature of reasoning beyond paraconsistency'. In Chapter 4 we discussed
the system PS that we build over a subset of classical logic (i.e. positive logic pro-
grams with classical negation). There we showed how Approach C — Cy-integrated
system PS deals with inconsistency i a more intuitive and computationally satis-
factory way compared to classical logic’s approach of ECSQ (for Ex Contradictione
Sequitur Quodlibet).

In Chapter 7 we presented a noninonotonic system PAS (built on extended logic
programs, a nonmonotonic formalism) integrated with Approach C — Cy. The non-
monotonic building block of extended logic programs inherited the classical approach
of inconsistency handling (ECSQ). PAS handles inconsistency equipped with the in-
tuitive and logically rational characteristics of Approach C — C4. This we have again

discussed in Chapter 7.

9.2 Relating to traditional paraconsistent appro-
aches

In this section we briefly discuss the limitations of the existing approaches of tradi-
tional paraconsistent logics (as also discussed by Priest and Routley [67]). Then we
show how Approach C — C4 is an improvement over them in handling inconsistency.

We do not go into the details of the demerits of the non-adjunctive approaches
to paracousistency as pioneered by Jaskowski [42] or further developed in a thinly
disguised form, in the work of Rescher and Brandom [75]. For extensive discussion
abrt the unsnitability of the non-adjunctive approach as a paraconsistent iogic, we
suggest reference to the paper by Priest and Routley [67]). We sum up the discussion
against the approach as given by Priest and Routley below.

Discursive logic (the logic develoi»d on the non-adjunctive approach to avoid

XCSQ) may be either single premised or multiple premised. In the first case it is

I'We discussed this characteristic in details in Chapter 4. Approach Cy delivers it.



14N

classical. In the second it is not really a logic any more. In neither case it is suitable
for the investigation of inconsistent theories. The main problem with the discursive
approach is just that it does not take the dialethic motivation (that there are true
contradictions) seriously. Contradictions may be “true™ but this amounts to no more
than “true in different worlds™. Morcover each possible world is as cousistent as
any classicist would wish: the approach is mucl too modally based to accomimodate
inconsisteucy satisfactorily.

For a more detailed discussion about ubjections against the positive-plus approach
of da Costa [13] as a paraconsistent logic we again suggest reference to [67]. Here we
just summarily mention some of them. The motivation for an evaluation condition
in da Costa’s logic: v(A) = 1 ¢f v(==A) = | is ill-motivated. The second objection
to da Costa’s semantics is that they are non-recursive. Negation in the positive plus
approach is not classical negation, but a sub-contrary forming functor and virtually
has none of the inferential properties traditionally associated with classical negation.
Moreover a change from da Costa’s C,, to C; systems with the ‘classicality operator’
(°) does not change any of the objections already made about the (7, system, but
leads to new trouble, as formulas of the form BA =B A B° are provable in the system
that leads to ECSQ.

Priest and Routley [67] have argued in favor of rclevant approach to paraconsis-
tency against the last two and have showed its adequacy as a better paraconsistent,
system. Unlike the non-adjunctive systems, it has an adequate conjunction and a
decidedly non-trivial multi-premise deducibility relation. The properties of negation
are neat and simple and no extra semantic postulates are added, as in da Costa’s ap-
proach, to ensure bits of double negation. Morcover, there can be no doubt that the
negation of this approach is negation. The semantics are recursive and extensional.
Thus — is not »n intensional functor. Both the laws of excluded middle and non-
ce. 2diction ho.d and negation s all the deducibility relations one would expect.,

We now o~ the n.erits and demerits of Approach C — Cy-integrated paraconsistent



149

systems with respect to relevant systems.

I'he arguments that Priest and Routley made against the non-adjunctive approach
and positive-plus approach does not hold for Approach C — C4 and the arguments in
favor of the relevant approach also holds for a paraconsistent system based on Ap-
proach C — Cq. 'The system POES based on Approach C — Cy (refer to Chapter 8) has
conjunction (A) and negation (~) operators that are close to their classical counter-
parts. So most of the normal relations between conjunction, disjunction and negation

holds. For example:
]

I h]l!lT'llN a« <= }:puru'\' ((1 A b)
2. Epara~ uA ~ b & e~ (@or b)

3. Epera~ aor ~b & Epgra~ (@A b)

By Approach C — Cq we capture contradiction by the operator C and consider that it
is truc in a single world instead of in different worlds as in non-adjunctive approach.
By allowing two levels in our interpretation: an inconsistent level, where we allow
formulas of the form I and ~ F to be simultaneously true, and an explicit paracon-
sistent level, where formulas are consistent, i.e. formulas of the form 1 and ~ F are
both not true in a theory, but inconsistent complementary pairs of formulas at the
inconsistent. level are captured explicitly by the operator C, thus making contradic-
tions true in an indirect syntactical way at the paraconsistent level. We still allow
the law of non-contradiction, as it does not clash with the paraconsistency conditions
and as we also want the theory to be self-consistent. So this is a unique approach
in which the law of non-contradiction (i.e. formulas of the form FA ~ F are false)
is upheld along with the paraconsistent conditions (i.e. nontrivial reasoning can be
carried out in presence of contradiction).

It is confusing to perceive a world where a sentence is assigned the truth-value both
true and false. Priest’s relevant approach [63) takes this approach. The problem lies

in trying to interpret the world in the same lines as classical logic. We break away
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from it b, vroviding a two tier approach in interpreting the world. At the lower level
of interpretation (where we allow incousistency). both a sentence and its negation are
assigned unique truth-values. i.e. either true or false. independently. This clears up
the perception of the world. We discuss this point in more details when we discuss
the drawbacks of multiple-valued logics in the next section.

In Priest’s relevant logic the principle of disjunctive syllogism is invalid, i.e.
{a,~aV b} g b. In POES from a similar specification, i.c. {a e~ or b e} we
get the only answer set {a.b}. Thus =y, b. So the principle of disjunctive syllogism
is valid by our formalism.

Furthermore, we introduce a new horizon in paracousistent reasoning, reasontinyg
beyond paraconsistency which is an important cthanecinent over the three traditional
paraconsistent approaches. We are abiv to reason not just in presence of inconsistent
information but from inconsistent information. In relevant approach what one should

get from a theory as given below in the example is not dealt with appropriately.
Example 9.2.1 We consider a set of formulae

T = {-a; a; a = b}.
where — is material (classical) implication.

There is a notion that if the sense (or objective content) (refer to [65]) of a is less
than or equal to the sense of b then ¢ — b is true. For the above case the objective
content of @ is more than that of b. Thus @ — b is true, but b is not inferable from
the theory, as the principle of disjunctive syllogism is invalid in this logic (this we
discussed in Chapter 2 Section 2.1.1 when we reviewed a relevant, approach), i.c.
{a; —a; a — b} Fr b

So we see that implicative deducibility is very weak. We ar ot able to gain much
information from T by relevant approach. By Approach C; we derive s.me very
intuitive information: {Ca, Czb}. We not only implicitly capture contradiction and

derive it in an explicit syntactic form, but we also infer from it. The interred belief is
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such, that it is affected by contradiction is explicit. Thus, differentiating it from the

inferences that are not affected by contradiction.

9.3 Relating to new paraconsistent approaches

In this section we compare Approach C — Cy to recent approaches of paraconsistency.

9.3.1 Comparing with Multiple-valued Logics

Use of multiple-valued logic provides an inconsistent system S with an epistemological
meaning in the sense that S can ret” ct beliefs of a reasoner (human or machine)
who may happen to hold conflicting beliefs [55. 8, 25. 23]. By say Belnap’s logic
FOUR [55], from Example 9.2.1 we get the following model: {a = T.b = T}
The model we get by our approach 1s to some extent comparable with the above
model but is different in its epistemic perspective. Saying that a is believed both true
and false as understood in FOUR by a = T is different from the meaning of Ca,
which means that « end —a are both true in an inconsistent context, i.e. there is
contradictory information available about ¢ and —a. The multi-valued logic systems
remain ontologically inconsistent as far as it agreed that the reality complies with the
laws of Frcluded Middle and Non-Contradiction, which means that in every possible
state of the real world every statement is either true or false exclusively. Only a
statement can be believed to be true and false simultaneously, but cannot be true
and false in reality, i.c. entologically. So there is no ontological paraconsistency, but
a kind of epistemic paraconsistency.

Furthermore, the truth-value of an inferred element in an implication (e.g. T
for b in the above example) doesn’t reflect the truth-status of b appropriately. b is
inferred from an inconsistent information, but by itself is not inconsistent. So giving
the truth-value T to b is committing it beyond what is given by the theory. So, in

actuality it would be more intuitively appropriate, if b is evaluated to false (if we
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pertain to a two-valued logic and take a closed world perspective) or to unknown
(in a three-valued scenario). The theory is more informative and intuitive then the
last two approaches if b is inferred with explicit reference that it is derived from
inconsistency. This is achieved by Approach C - C,.

Belnap's logic has one more drawback  The notion of logical entailment ditfers
from a standard one and there is an unpleasant asvimmetry in the semanties of impli-
cation: normally logic formulas may assume any truth value from the lattice, except
for implications. which are strictly 2-valued.

In none of the systems we have developed we have provided a semanties for classical
implication. But it can be easily included. As our logic is two-valued and most of the
interaction between or. A and ~ are similar to classical logic. an implication (~>)

close in spirit to classical implication can be semantically defined in terme of or and

h,,,,m Fo~> Gl ~ For(,

It can be simple enough to introduce a classical disjunction operator (V) in our
language. Then we can have an implication operator closer in spirit to classical
implication (—) as we can express it as

Epara @ = bifl ~a Vb,
Rest of the logical development based on implication follow suits. But it has a little
twist because of the paraconsistent nature of our formalism.

Subramanian’s [8] paraconsistent logic programming framework is based on multi-
valued approach. But a basic element in that language is an annotated literal?. Their
interpretation of an annotated inconsistent literal « @ T is: it is known that « is
inconsistent, i.e. both true and false. It is diffecent from Belnap’s approach of
believing a to be incomnsistent. Subramanian’s intuition is closer to how we model
the inconsistency in the world, i.e. objectively. But accepting something to be be

both true and false from any perspective objective (i.e. as known) or subjective

2 Annotated literals have been discussed in Section 2.2.2, Chapter 2 in reviewing I logie.



153

«as believed ) is in some ways nnintuitive. Implicitly assigning two truth-values
a thesis a by assigning it the truth-value inconsistent is viewing the world in a
torted way. It is interpreting the world with double meaning. thus quite confusing.

The problem lies in tryving to interpret a world having inconsistency the same
y as done for a consistent world. where every positive thesis is assigned a unique
h-vahie. which makes the world very easy and clear to understand. In this way of
erpretation for the presence of a negative thesis in a theory the positive thesis 1s
signed the truth-value false. But existence of both. a positive and a negative thesis
a theory jeopardizes this way of interpreting the world. The approach which we
opose departs from the existing model theoretic approach of interpreting the world,
the way that both negative and a positive thesis are assigned truth-values inde-
ndently. Furthermore, any thesis is either assigned the truth-value true or false,
1t not simultancously. We refer to this level of interpretation as interpretation in an
consistent contert. In the meta-level of interpreting the world by introducing the
nnective C the inconsistency in the inconsistent context is captured, thus providing
paraconsistent environment in the meta-level. By this approach of interpreting the
srld the confusion arising from the double meaning of the truth-value inconsistent
cleared away.

Now let us consider the set of formula

S={-a:t;a:t: b:t —a:t}
his has two models by Subramanian’s formalism:
{a:T.b:tyand {a: T, b: TH

he first is the least model, hence giving the intended semantics of 5. OQur argument
sainst this is that the meaning of the program is lost as the consequence of the
ause does not have any relevance to the premise w.r.t. the model. If a premise is
1coilsistent. it is unintuitive to say that the consequence is true. We get a more
ituitive meaning of S by our approach.

One more thing we eriticize about both Belnap’s and Subramanian’s semantics.
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They assign the truth-value inconsistent to the formmla /7 A =1, This is a sell-
inconsistent statement. We are strong about refuting any such statement in our
formalism. It is irrational for an intelligent system to accept self-inconsistent formulas
with any level of truth. Under Belnap and Subramanian’s semrantics it is truth
valuated t- inconsistent. Thus there is an ambivalence to the truth status of the
formula. There is a chance that it can also be true. There should never be any doubt
about a self-inconsistent formula’s truth status in the mind of a rational reasoner.

That is why by our semantics it always gets the truth value fals.

9.3.2 Comparing with RI logic

The main restriction of RI logic with respect to any system based on Approach C —Cy
is that it is motivated by a view that the real world is inherently consistent, while
inconsistency of its logical description ocerrs only in the mind of the heholder. "This
is different from our view in which we not only say that inconsistency can arise he-
cause of the reasoner’s belief but also because the world is inherently inconsistent, i.e.
ontologically inconsistent. It can he a reality that a computer’s knowledge hase con-
tains contradictory information. Considering this inconsistency at the epistemic level
portrays the characteristic of the intelligent computer system to he self-inconsistent.
This we do not agree to be a desirable feature for an intelligent system. Why should
we rely on a confused reasoner. Characteristically the inconsistency would be ap-
propriately portrayed if the contradictory information is considered at an ontological
level. For example, a situation in which the computer stores contradictory informa-
tion coming from different sources that are true in their own right in the circumstance
and thus contradictory in reality when they come together.

In Approach C — Cy an epistemic notion of inconsistency is allowed. But it is a
very cautious approach towards inconsistency compared to the epistemic notions in /1
logic or other lattice-valued logics (which we referred to in the last section). Intelligent,

systems modeled on our approach do not consider its information as heliefs but as



knowledge. Information which are explicitly considered assumptions (i.e. negation
by defanlt) are considered as beliefs. And contradictory information derived from
assumptions are beliefs too and they provide the epistemic level of inconsistency. But
for our systems as the manifestation of both epistemic and ontological inconsistency
is similar. they are dealt in the same way. (This we discussed earlier in Chapter 4.)

I1 is tolerant to oniy epistemic inconsistency (different from our notion of epis-
temic inconsistency) but intolerant to ontological inconsistency, whereas, our ap-
proach hased systems are tolerant to both epistemic and ontological inconsistency, but
withont letting the theory ©.-voming inconsistent. The specification in Example 9.2.1
can be represented in B1 logic as follows: (refer to Section 2.2.2 in Chapter 2)

{~a:tia:t; at—bit)
It has uo models by RI logic as it is ontologically inconsistent. But a theory as given
helow:
Sy={a:Tia:t—-b:1} =g ot
The problem that we face here is that when we have the information
Ty={c:t; c:t — =b:t}

along with Si. Then we are unable to differentiate between the epistemic status of
bt inferred from part S; and -9 : ¢ inferred from part S,. Hence, S7 U S; does not
have any model since it produces ontologi-al inconsistency. But in actuality b: ¢ in-
ferred from S is infe: -ed from inconsistency. Thus it should ha . a jower epistemicity
than —b : ¢ inferred from the part S; of the theory. So =b: t should be obtainable in
a model of §;1U S, insicad of following the RAA (for reductio ad absurdum) approach.
Approach Cy takes « e of this problem by distinguishing between A : t inferred from
S, and =b: t inferred from Sy by prefixing the forawer by Ca.

Epistemic entailment (£p1) docs neither provide much information from S, if we
replace ontological implication by episiemic implication. Thus,

T={a:Tia:t~>b:t}|#prb:t.

But 7' |=p; b: L. which is a little more informative than the former. This still lacks

(1]

W)
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the depth of information which we get by Approach Cy.

9.3.3 Comparing with LEI

The Logic of Epistemic In-on steney [58] (presented in Chapter 2), as its name sug
gests only takes care of epistemic inconsistency. It is not capable of handling ontolog,
ical inconsistency. Whereas Approach € — Cy based systems handles both epistemice
and and ontological inconsistency. Morcover as we mentioned carlier Approach €,
opens up a new realm of reasoning. that of reasoning beyond paraconsistency. which

is beyond the scope of LEL

9.3.4 Comparing with Vivid logic

Wagner’s Vivid logic [93] (as reviewed in Section 2.2.4), provides four different reason-
ing schemes where contradiction is considered undesirable in different degrees and are
neutralized accordingly. Let us reconsider Example 2.2.2 given in presenting Vivid

logic in Chapter 2:

Example 9.3.1 Let X = {pi ~ p ~ ¢; ¢ — pi v — pi ~ 1 « ¢} then:
LC(X) = {p.~p.~q,q,r.~r} by liberal reasoning)

CrC(X)={~q,r} (by credulous reasoning)
CC(X)={~q} (by conscrvalive reasoning)
SC(X)=10 (by skeptical reasoning)

Although p is contradictory, it constitutes evidence for a counler-arqument againsl
~ q in skeptical VL. This is nol the case in conscrvative VL, where no counter-
argu.c i . punst ~ q is possible. In credulous VI it suffices for v te held that il is

suppo. -~y (the contradictory) p and nol doubled by any cowder-argument. 1

In our intuitive undesstanding liberal reasoning has a glut of information with no
restraint to what can be inferred in the presence of contradiction. ‘Thus though it

is paraconsistent it stops being a rational reasoning process anymore. Credulous,
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conservative and skeptical reasoning have a strong notion of rationality based on
reductio ad absurdum. They neutralize the effect of contradiction in different degrees,
but as we see not much information is inferred. At every stricter level of reasoning we
tend 1o lose more information. Intuition says that we should be able to infer as much
information as possible without being irrational about what we are inferring. The
nentralization strategy follows the classical or the traditional information processing
trend of reducing absurdity (here absurdity is contradictions and inferences from
them). So though it provides scheries to reason in presence of contradiction with
different. degrees of neutralization depending upon the support and suspicion, it is
some problems.

If a system based on Wagner’s approach is provided with a mechanism to find
inconsistent pairs in a model by liberal reasoning, then one can follow one of the
other reasoning methods provided by the system, i.e. credulous, conservative or
“skeptical reasoning. But one would not know which one to choose. Moreover the
last three reasoning methods have a strong notion of rationality based on reductio
ad absurdum. They neutralize the effect of contradiction in different degrees. But
as we see the information about either p or ~ p is lost. So the inconsistency in
the system is not recorded.  Hence the reasoner hased on the last three reasoning
methods would be unaware of the inconsistency at the liberal reasoning level if there
is no way to capture inconsistency after liberal reasoning. A similar mechanism of
recognizing/capturing inconsistency have to be there after credulous and conservative
reasoning levels to be able to go on to the corresponding next levels of reasoning, 1.e.
conservative and skeptical reasoning respectively. So we see that the whole system
turns out 1o be not very efficient with all four reasoning methods working together if
there is an inconsistency in the system.

By Approach C —Cy based systems (e.g. system PS as given in Chapter 5) we get

a unique answer set from the theory in the above example:

{Cp* ~q, qu- Cd?‘, Cd ~ '[‘}
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Here we do not make the contradiction disappear as against neutralizing in vivid
logic. But we capture the contradiction explicitly. Moreover in any inference made
from contradiction or contradiction-affected information, the information that it is
inferred from contradiction related information is propagated. So the neutralizing

effects at different levels of reasoning as in Wagner's approach becomes unnecessary.

9.3.5 Comparing with Extended WFSX for Paraconsistent

Logic Programs

Sakama [81] (refer to “.hapter 2) in trying to give a proper semantics to extended
logic programs giving inconsistent models vesorted to a seven-valued logic following
in the footsteps of Ginsbherg [37]. We arc critical about his approach in the same
tune as we are about the other multi-valued logics we have discussed. Their notion of
inconsistency is of epistemic inconsistency (which is different from our notion ol 11),
i.e. if a thesis p and its negation —p arc in a theory, then p is assigned the truth-vatue
inconsistent (T), which means p is ‘believed’ to be both true and false. This is
actually reporting self-inconsistency. Reporting self-inconsistency is an appropriate
action. but to start with allowing it is inappropriate. Morcover this proliferation of
truth-values can be a little bewildering.

In our approach p and —p in a theory is considered as ontological inconsistency.
Our approach of modeling the information in the world is objective, unlike Sakama’s
and some of the existing multi-valued approaches, which are subjective.  Instead
of internalizing the information (that is considering the information as ones own
belief), an intelligent system based on our approach considers the information present
in its knowledge base as information which it has gathered from the environment.
Presuming that an intelligent system would gather information which it considers
authentic, our approach based intelligent systems face inconsistent information that
is ontological. This is a more appropriate way to model an inconsistent world in the

context of an intelligent system whose information is from the environment around

)
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it, presumably from experts feeding information to it. Moreover our formalism is
two-valued and thus straight forward to understand. It behaves like a traditional
classical logic in absence of inconsistency.

A formula of the form pA =p is truth-valuated to inconsistent in Sakama's frame-
work. We argue against it in the same line as we did for Subramanian’s formalism
{refer to Section 9.3.1).

Sakama independently developed an idea similar to reasoning beyond paraconsis-
teney. In his framework he provides a way to detect a fact affected by an inconsistent
information and distinguish it from other meaningful information. For this purpose
he introduced the notation of suffired literal LT, where L is a literal from the Her-
brand base w.r.t. a program P and T is a collection of sets of ground literals. Each
of these sets are comprised of facts which are used in deriving L in P. A literalin a
fixpoint (as defined by Sakama), thus a proven fact is suspicious if every proof of the
fact contains an inconsistent information. Hence from the program below:

P ={a— b 2becAnot b ce; e de}
we get the suspicious well-founded model:
< {C{O}’ —1(:{0}, d{(b}’ a{{—-b.c.not b}}’ _‘b{{c.nat. b}}}; {b, -a, ﬁd} >
Thus, d is true, c¢ is contradictory, while a and b are true with suspect and false
with suspect, respectively. b, ma and —~d are true by default.

Problem with Sakama’s approach of reasoning beyond paraconsistency is that one
have to keep track of all the facts which have been used in proving an element in
the model. This is computationally staggering. Moreover another mechanism have
1o be added over the existing framework to detect whether there is an inconsistency
among the facts which have been used in proving a literal. Along with that for the
model theoretic approach for this formalism two more truth-values have to be added
to the existing seven, which is in a way a bit too ad-hoc in terms of juggling with
truth-values.

Our formalism provides a more natural and computationally efficient way to detect
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a suspicious fact. If contradiction affects a premise of a rule that information is
propagated through the consequence of the rule and hence to any other premise which
is affected by this consequence. So the information of being affected b2 s vantradiction
is transitive by the inherent mechanism of our formalism and the bos - 1 proving
facts need not be carried around to detect whether a proven fact is proved using a
contradictory information. By our formalism we 2t . he following answer set {rom ?
by the answer set semantics of PAS:
{Cé.d.Cy—b,Cha}
from which it is evident what is contradictory and what is cont adiction-affected or

suspicious.

9.4 Relating to new classical/information process
ing approaches

In this section we compare Approach C — Cy based systems with new approaches
(though they follow the same classical strategy of FCSQ and RAA) to handle incon-

sistency.

9.4.1 Comparing With CRSY

Two critical remarks can be made about the CRS&" semantics [60] (which we re-
viewed in Chapter 2). Firstly, it is not clear whether the revision policy of CRSX
satisfies the principle of minimal change, i.e. whether it is generally guaranteed
that never ‘too much’ information gets lost by the suggested revisions (e.g.  for
X; = {p « not=p; ¢ « p; —¢ — p} the CRSX model is < 0,{q}, 8, {p.q} > while
the intended answer set following Approach C—Cy (refer to Chapter 7) is {p, Cq}). Our
approach provides more intuitive information from X,. Secondly, no solution is given
for *hard’ (ontological) contradictions not depending on weakly negated premises, i.e.

contradictions which are not arising on account of assumptions. Such programs do



not have any meaning in the CRSA semantics. This is an important

Approach C — Cy.
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contributicn of

9.4.2 Comparing with the ‘Semantics of weighted mc-subs-

ets’

The semantics of weighted me-subsets of Lozinski [51] (which we reviewed in Chap-

ter 2) is a maximal consistency based approach, where inconsistent sets are divided

into maximally consistent subsets. Splitting out of inconsistent sets

into maximally

consistent subsets has the effect of precluding the purely logical analysis of the whole

situation. This we see in the probabilistic heuristics taken by Lozinski's approach.

We are aiso critical about the unintuitive conclusions we get in certain scenarios

by his approach. Let us check it out with the following example:
Example 9.4.1 Given a set of formulae:
S = {a: —a: a — b},
il has two mazimally consistent subsets:
sy = {a; @ = b} and s = {-a; a — b},
their sizes are:

| s |=2 and | s |=2,

and for S the size | S |= 3.

and weights are:

w(s)) =35 and w(sy) = L

sy has the model {a, b} and s has two models {—a,b} and {—a, b}

and —a in S is as Jollows:

2 2,2
'JAQ — 3 — l YooY — +3 — 2
E(S.qa) T =3 and E(S,-a) = 1—3-;3—;-3+_3_+5 =3

. Evidence of a
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Thus it is most likely from the above example that —a is true as E(S.a) < F(S, ).
But this is unintuitive. Lozinskii’s semantics does not give the intuitive meaning of
the program. What is intended by the formulas is (if -» denotes classical implication)
as follows:

By classical logic S does not have any model as @ and —a¢ both can never be true
in a model. So let we assume that truth-values of ¢ and —a ave decoupled, i.e. they
are independent of cach other. Then all the three formulas of S are true only when
a, —a and b are all assigned true by an interpretation. Hence the model of S s
M = {a,~a,b}. By the semantics of PS (refer to Section 5). M is considered as the
interpretation of S, and the corresponding p-interpretation, which is also a model of
S is {Ca,Cyb}.

Here the possibility of @ and —a being true is equal by the model as that is
what Ca captures. In addition, as the inference of b is affected by the paraconsistent
information Ca, we get Cyb by Approach Cy.

We have already pointes! out while comparing with the other logics dealing with
inconsistency that, our approach based systems open up a new horizon of reasoning

i.e. reasoning beyond paraconsistency, that is beyond Lozinskii’s approach.

9.5 Summary

In this chapter we compared Approach C — Cy to ihe existing traditional and new
approaches in the classical realm and also in the paraconsistent realm. By a direct,
comparison with individual systems we come to an waderstanding of the merits of

our svstem with respect to the existing systems handling inconsistency.
y B y



Chapter 10

Conclusions

In this final chapter, we summarize the results of this researcle. hightght “henent

features of our contribution and describe the future directions.

10.1 Summary of Research

In this section we summarize the results of our research.

In Chapter 4 we proposed some fundamentally new ideas of handling inconsistency.
Based on those ideas we developed two strategies to handle inconsistency. They are
Approach C and Approach Cq. We developed three logical systems based on these
approaches in the broader framework of logic programming.

The first system we developed is that of Paraconsistent Specifications (PS) an
extension of positive logic programs. In Chapter 5 we presented the model theoretic
semantics of PS and discussed its properties. In Chapter 6 we presented a constructive
semantics for PS and proved its correspondence to the model theoretic semantics.

The second system we developed is a nonmonotonic logical system that we call
Paraconsistent Assumptive Specifications (PAS). It is based on extended logic pro-
grams, with the inconsistency handling strategies Approach C — Cy4 embedded in it.

This we preseated in Chapter 7.

163
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Next we developed a very generalized logic programming framework based on the
inconsistency handling strategies. This we called Paraconsistent Objective Epistenae
Specifications (POLS). We presented 1t in Chapter 8.

Finally in Chapter 9 we compared our approach of handling inconsistency to

several other existing approaches of incousistency handling.

10.2 Contributions and discussion

In this thesis we have proposed some fundamental ideas of how to handle inconsis
tency. Based on which we developed two strategies to handle inconsisteney in the
realm of logical theories in a rational way. Classical logic’s inaptitude to boadle in
consistency in a satisfactory way is a strong motiration for our work. *arthermore
the traditional and the new approaches of handling inconsistency, wheher they arve
paraconsistent or information processing approaches, have their limitations. Approach
C — C; is able to resolve many of them. lurthermore, it opens up a new horizon in
reasoning, reasoning beyond paraconsistency i.c. to be able to reason from inconsis-
tent information and at the same time distinguish between information inferred from
inconsistent information and that from consistent information. This is beyond the
scope of the existing logics handling inconsistency.

Approach C presents a new knowledge representational scheme to capture incon-
sistent information in a syntactically explicit way, without making the theory incon:
sistent. Approach C4 presents a new knowledge representational scheme to represent.
information inferred from inconsistent information. Hence, enabling us to reason
from inconsistent information without loosing the rationale that, inconsistency based
inferences have a different epistemic status from inferences made from consistent in-
formation.

We are strong proponents of paraconsistent approaches to common-sense or arti-

ficial intelligence appl tions, though there may be possible objections to be raisd
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against this idca.

The first is a conceptual objection based on the argument that contradiction is
idicative of error ocenrrence and therefore the efforts should be directed towards the
correction of these errors and not in propagating them. It could be added that an
inconsistent deseription is a description of nothing. The second is a technical objection
based on the belief that, in any reasonable logical system, inconsistent theories are
trivial (everything is a theorem).

We think that Approach C — Cy based systems presented here is evident enough
to remove the second objection. A logical systen. able to perforin reasoning in the
presence of contradiction, without trivializing. being at the same time strong enough
to make this reasoning useful, is perfectly plausible. We would further discuss the
first point.

Contradiction is effectively a test for error. If a contradiction is deduced from a
set. of premises, this imply the inconsistency of this set. Semantically this means that
no models can exist in which all of them are true. Thus it is a positive indication that
these premises make a bad description of the world. To stay free of contradiction is
one of the main methodological prescription of standard scientific practice.

But the situation is different when common-sense reasoning and artificial intelli-
gence applications are considered. Then the inaccuracy of the knowledge is recognized
in advance, and so the occurrence of contradictions does not provide such strong indi-
cation. It may demand an effort to get more precise informations, but this refinement
cannot be done beyond the limits of the knowledge available at a given time. In spite
of it, reasoning must be done and decisions taken.

This kind of situation reveals that the role of reasoning is not exactly to come up
with conclusions to be assumed as true in situations satisfying the premises. This
picture fits well with deductive reasoning and it is so prevalent as a paradigm that it
is often taken as a general expression for reasoning.

Actually, the role of reasoning is to perform an analysis of the epistemic relations
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within the information available. It is to compose and judge evidences, to resolve
conflicts (when possible) and to come up with relations between evidences and pos:
sible conclusions. These conclusions. in opposition to deductive ones, can never be
detached from the premises in support of them. Thus the system evolved is relerant!
in nature in these situations. A contradiction then means simply that there are
evidences in support of I as well there are evidences supporting ~F.

It is worthwhile at this point to make a clear statement about the position which
we defend. We are not affirming here (at least not yet) to the stronger motivation
of paraconsistency i.e. truc contradictions are a reality but to the weaker pragmadic
motivation that. in common-sense and artificial intelligence applications involved in
computer information processing, inconsistency is an inevitability (for various reasons
and circumstances that we have claborated in the introductory chapter). So the de-
velopment of the paraconsistent approach € —Cy and paraconsistent systems based on
it is a pragmatic approach towards handling inconsistency in realistic logical systems.

We started with the motivation of developing a paraconsistent system which does
not have the limitation of trivialization of the classical system. In classical logic if
6 is true in 7 it is a logical consequence of 7, i.e. 7 = ¢. If ¢ and (/}) is true in
r then 7 = ¢, but © may not be true in 7. By 7 Ec-c, ¢, it means that ¢ is
a paraconsistent consequence of 7, i.c. if ¢ is true in 7 and 7 [c_c, Ch then ¢
is entailed from 7. An arbitrary literal @ not true in 7 cannot be paraconsistently
entailed by 7. The reason for being able to deduce arbitrary literal in classical logic
is the Principle of Or Introduction along with the presence of inconsistency. 1f 7 |= «
then 7 = a or B (by Or Introduction). Now if 7 |z~ a, then TU {evor 4} |= 3. Thus
one can entail arbitrary elements based on inconsistent pairs. But by our approah as
soon as we have a and ~ a true in 7, we get 7 f=c—c, Ca. Hence the Or introduction
is restricted. Thus we are unable to get arbitrary elements based on an inconsistent

pair and Or Introduction, by our paraconsistent system.

1Relevaat approaches have been discussed in Chapter 2, Section 2.1.1.
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10.3 Future Work

i this section we disenss the work that can be done in the future based on the

researeh that we have presented here. We itemize them below:

e In this work we have developed an intuitive paraconsistent approach to handle
mconsistency and have enhanced the horizon of paraconsistent reasoning by
developing a strategy that allows reasoning beyond paraconsistency. We have
shown its applicability to different systems classical and nonclassical (here, non-
monotonic) and have developed those systems integrated by the paraconsistent
approaches, Approach C and Approach Cy4. We have presented a semantical
foundation for the systems. But what can be pursued beyond our work is that
of developing a computational procedure for the systems. What can be done as

future work is to develop proof procedures for systems PS, PAS and POES.

o All the systems that we have developed are an extension of the restricted frame-
work of logic programming. It would be a interesting endeavour to develop an
extension of first order logical framework based on our new ideas of inconsis-

teney handling.

e As we have mentioned in summarizing Chapter 8, as a future scope of the work,
Approach C — Cy can be applied to the complete language of ES (for epistemic
specifications) {29, 33]. Investigations into this will give insights 1nto the dy-
hamics of interactions between intensional functors (i.e. the modal operators K
and M) and the underlying paraconsistent logic. Furthermore, paraconsistent
bases would allow for the elaboration of novel modal logics. Little has yet been

done in this arca.

e The standard approaches to probability theory are squarely based on classical
logic. However, they can be alternatively and casily based on a paraconsistent

approrch (such as Approach € — Cy). We perceive, doing so produces several
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advantages [66). An especial advantage is that we can have sensible evaluations
of probabilities of statements relative to inconsistent information. This can be

another direction in which research can be pursued based on our work.
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