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Abstract

in a design process, a designer attempts to generate a design that satisfies certain
constraints; however, the components selected to implement the design sometimes
cause these constraints to be violated. In the case of integrated circuit (IC) design,
constraints are placed on such properties as the area and signal propagation delay of
the completed circuit. A complication to the constraint satisfaction process is the fact
that certain types of constraints compete with other types of constraints. As a result,
resolving constraint violations often involves reasoning about desig: tradeoffs between
these competing constraints. This is the case with area and delay constraints -- reduc-

ing the area of aii IC cell will generally increase delay and vice versa.

This thesis presents Viola, a knowledge-based system for resolving area and delay
constraint violations in IC designs. When presented with a list of constraint violations,
Viola selects the most severe constraint violzdon from the list and resolves it either by
relaxation or by redesigning the IC cell. A domain-independent strategy is applied to
decide which course of action to take. The decision-making process is sensitive to
the severity of the constraint violation, the presence of any competing constraints and
the apparent success or failure of past violation handling activities. This process of

resolving one constraint violation at a time is repeated until all constraints are satisfied.

The results of Viola’s handling of several constraint satisfaction problems are
presented and comp:-ed to solutions generated by hand. It is concluded that V »la is a
flexible, computationally efficient system for reasoning about design tradeoffs while
resolving constraint violations in IC designs. It is also concluded that Viola’s clear
separation of domair-dependent and domain-independent knowledge and its . - - .icit,

domain-independent strategy should make it readily transferrable to other domains.
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Chapter 1. Introduction

Integrated circuit (IC) design may be viewed as a process of top-down refinement
where circuit modules at the top level of the design are refined into submodules which,
in turn, are refined into smaller submodules. This process continues until the circuit is
decomposed into submodules that may be implemented directly using cells from a
predefined library. As one circuit module at a given level in the design hierarchy is
decomposed and its implementation is completed, the implementation of other modules
at that level must be restricted to ensure compatibility with the completed module. In
other words, the low-level implementation of a module places constraints on how that
module may be used in the circuit. These low-level implementation constraints
include such things as minimum area requirements and critical path propagation
delays. As in any design process, the circuit designer also places constraints on sys-
tem performance. In IC design, user-specified constraints would be such things as

maximum circuit area and maximum propagation delay.

Constraints specify restrictions on variables associated with circuit modules. As
these modules are connected together, a network of interrelated constraints is formed.
In order to ensure consistency of this constraint network, it is necessary to propagate
variable values from one constraint to another while checking to ensure that the con-
straints are satisfied. Propagation of variable values occurs within each level of the
design hierarchy and also between levels; consequently, it provides a mechanism for
verifying that low-level constraints don’t conflict with each other or with user-specified
constraints at higher levels. This process is called constraint propagation and has been
implemented by Ly [10] in the STEM (5] IC design environment at the University of
Alberta.

Constraint propagation on its own, however, does not solve the problem of con-

straint satisfaction. Ly’s constraint propagation system identifies constraint violations



in situations where constraint conflicts arise, but doesn’t address the problem of resolv-
ing the violations through redesign or constraint relaxaticn -- this is left to the user.
An example of a constraint violation is the situation where a user has placed a max-
imum area constraint on a circuit and the sum of the areas required by the submodules
of the circuit exceeds this maximum value. In this situation, the user has two choices
-- relax the maximum area constraint or redesign the circuit by replacing one or more
circuit submodules. Choosing to relax the constraint will depend on such considera-
tions as the importance of the constraint and whether or not it has been relaxed in the
past. Choosing to replace a module requires the designer to consider alternative
module implementations available in the cell library and whether or not the available

replacements will cause other constraints to be violated.

Reasoning about how to resolve violations in a constraint network is time con-
suming and requires either expert IC design knowledge or time consuming trial and
error. This thesis describes Viola, a constraint violation handler that takes an expert
systems approach to reasoning about area and delay tradeoffs while resolving area and
delay constraint violations. In the following sections, the primary objectives of Viola’s

design are presented and the thesis is outlined.

1.1. Objectives Of Viola’s Design

The primary objectives in Viola’s design were:
(a) The violation handling strategy should be sensitive to constraint violation severity

and the presence of competing constraints.
(b) The strategy should be sensitive to the violation handling history of the design.
(c) The strategy should be as flexible and explicit as possible.

(d) There should be a clear separation of domain-dependent and domain-independent

knowledge to allow transfer to other domains.



(e) The system should be computationally efficient to be useful for large designs.

(f) The system should enable an inexperienced designer to produce better designs in
a shorter time and should reduce the time required for an experienced designer to

produce good designs.

Objecives (a) acd (b) provide Viola with its ability to reason about the best way
to resolve a constraint violation -- relax the constraint or redesign the cell. Viola must
not arbitrarily carry out the same corrective action every time a given constraint is
violated -- it must consider the severity of the constraint violation, the presence of
competing constraints (i.e. constraints that may be adversely affected by redesigning
the cell to resolve the violated constraint) and the historical significance of its actions.
The more severe a constraint violation is, the less acceptable it will be to simply relax
the violated constraint and the more likely it will be that cell redesign is the best
course of action. Coiversely, the presence of a competing constraint will tend to bias
the decision in favour of relaxation to avoid adversely affecting that competing con-
straint. In addition to this type of reasoning about the severity of a constraint viola:ion
versus the presence and severity of competing constraints, Viola must also be able to
look at what it has done in the past. In this way, it can avoid repeating past mistakes,
repeat actions that have worked before and avoid unnecessarily undoing previous

corrective actions.

The reason behind objective (c) is that a flexible and explicit strategy is more
readily understood and modified by others. It is necessary f.:r designers to be able to
add new knowledge and to remove knowledge that no longer seems appropriate in
order to keep the system current. it is important that in doing so the designer is able
to understand how the new knowledge will interact with the existing knowledge and

how the removal of knowledge will affect the overall performance of the system.

Although Viola was designed to resolve constraint violations in the domain of IC



design, it was considered important that Viola be transferrable to other domains. To
facilitate this, objective (d) states that there must be a clear separation between
domain-dependent and domain-independent knowledge. The domain-independent
knowledge can then be transferred directly to the new domain -- only the domain-
dependent knowledge must be modified. For this reason, it is also desirable that the

system use as little domain-dependent knowledge as possible.

The final objectives, (e) and (f), are obvious requirements of a good design auto-

mation tool.

1.2. Overview Of The Thesis

This thesis describes how Viola was implemented and evaluates it both on the
basis of its performance on a number of test cases and on how well it met the objec-
tives laid out in the previous section. The organization of the thesis is as follows.
Chapter 2 looks at previous work done on constraint violation handling and Chapter 3
provides some background information necessary to appreciate Viola’s approach. A
detailed description of Viola’s implementation is presented in Chapters 4 through 6.
Chapter 7 discusses the results obtained by Viola on a number of samplc constraint
satisfaction problems. Finally, Chapter 8 concludes with a discussion of the strong and
weak points of Viola’s approach to constraint violation handling and makes some

suggestions for future research.



Chapter 2. Related Work

A number of systems have been developed in recent years that use constraints to
guide a variety of design, planning and synthesis tasks. The need to handle constraint
violations or failures as they arise has been met to varying degrees of success. The
systems discussed in section 2.1 do not handle constraint violations. Section 2.2
examines four systems that have represented constraints as concepts with violation
handling knowledge in the representation of the constraints themselves. The systems in
section 2.3 have represented knowlege about violation handling external to the con-

straints. This last approach is closer to the approach taken by Viola.

2.1 Systems Without Violatior Handling

As mentioned in Chapter 1, the constraint propagation mechanism developed by
Ly [10] for the STEM [5] environment is a useful tool but is incomplete without some
means of resolving constraint violations as they arise. A number of other systems

have been developed that suffer from the same lack of violation handling capability.

CONSTRAINTS was developed by Sussman and Steele [19] as a language for
expressing constraints as algebraic relations between variables. It propagates con-
straints by performing algebraic manipulations to solve the constraint equations. This
system, however, does not address the situation where it is impossible to satisfy all
constraints. Rather, it operates under the assumption of a satisfiable constraint network

and suffers from the same lack of violation handling mechanism as Ly’s system.

Steinberg’s VEXED system [11,16] is an interactive digital circuit design aid that
allows a user to build circuits using top-down refinement of circuit modules with con-
straint propagation for consistency maintenance. VEXED’s CRITTER suvsystem [9]

actually performs the constraint propagation. Constraints are derived from the



functional specification of the modules in question and CRITTEEF. checks for constraint
violations by simulating the circuit’s behaviour and comparing this simulation with the
funztional specification. Rather than allow the user to refine the circuit in a way that
would create constraint violations, the constraints identified by CRITTER are con-
sidered absolute and VEXED restricts the user to making modifications that do not
violate constraints. This eliminates the view of constraints as competing and poten-
tially unsatisfiable goals and constraint violation handling as a process of reasoning

about design tradeoffs in trying to meet these goals.

MOLGEN [17,18] is an expert system that plans gene cloning experiments in
molecular genetics. It plans hierarchically by proposing abstract experimental opera-
tors and refining them similar to the way that an IC may be designed by top-down
refinement. As MOLGEN refines operators, constraints are placed on the inputs to
those operators and are propagated up through the plan hierarchy. MOLGEN is a
well-engineered system, but it too lacks any violation handling mechanism -- if

conflicting or insoluble constraints are discovered, control is returned to the user.

All of these systems use constraint propagation as a mechanism for managing
design interactions; however, the system designers chose not to address the problem of
constraint violation handling. As Viola was designed as an add-on violation handler
for STEM, similar violation handling systems could be added to both CONSTRAINTS
and MOLGEN with few modifications to their current frameworks. The
VEXED/CRITTER system, ¢z the other hand, would require more extensive
modification to incorporate a violation handling capability. Because it uses constraints
to limit the user’s actions rather than letting the user violate constraints, VEXED is

never placed in a position of having to resolve violated constraints.



2.2 Systems Using Constraints As Concepts

One approach to violation handling is to place violation handling knowledge
within the constraints themselves. The common problem faced by all systems using
this approach is that all problem situations must be anticipated -- there is no reasoning
about the best way to resolve a constraint violation based on the problem state at the

time the constraint is violated.

In ThingLab, Borning [1] uses this approach. ThingLab is a simulation system
based on constraints and constraint propagation. A user defines objects and constraints
on those objects and constraint propagation verifies the correctness of a design as the
user connects objects together. Constraints in ThingLab consist of a rule that must be
satisfied and a set of methods for satisfying the constraint. The order of the methods
indicates a preference. When presented with a design change, ThingLab uses a con-
straint satisfier to develop a plan for satisfying any constraints affected by the change.
The plan consists of calls to the various predefined constraint satisfaction methods. If
a plan cannot be developed to satisfy all constraints, ThingLab relaxes all unsatisfied
constraints by approximating them as linear equations and finding a least-mean-squares
fit. This often results in more constraints beinggrelaxed than would be necessary if

there were some mechanism for reasoning about the most appropriate relaxations to

make.

Fox [4] recognizes that constraints may not always be satisfied and identifies
some additional ‘information which must be taken into consideration in violation han-
dling: how important is the constaint; can the constraint be relaxed; how should it be

relaxed; how will relaxation affect other constraints; when shouldn’t it be relaxed.

In his ISIS system, Fox encodes this information in a symbolic representation of con-

straints as concepts. The way in which a constraint can be relaxed is prespecified -- all



of the reasoning about how to relax a constraint is done ahead of time; therefore, the
system is incapable of adjusting to the success or failure of its previous constraint
satisfaction actions. ISIS also uses some rules to encode knowledge about violation
handling, but the rules too are insensitive to design history.

Brown and Chandrasekaran [2] address the need for explicit knowledge about
violaiion handling, which they call faili-¢ recovery, in the AIR-CYL system. AIR-
CYL is an expert system for the mechanical design of air cylinder systems. A design
is executed by a number of "specialists” thizi check various constraints and call on
other specialists. If one of these constraints is violated, the specialist receives a mes-
sage from the constraint containing suggesiions about what to do to fix the problem.
As in Fox’s approach, these suggestions arc predefined with the constraints themselves.
The message is passed to a failure handler associated with the specialist that may
attempt redesign using the suggestions. This is a hard-coded, infiexible violation han-
dling scheme that fails to consider constraint relaxation as an alternative. Brown and
Chandrasekaran acknowledge the need for some means of reasoning about how to

resolve constraint violations as they arise.

PRIDE [12] is an expert system for the design of paper handling systems that
uses constraints to verify that a solution or partial solution is acceptable. Each con-
straint contains information about whether or not it may be relaxed and also advice
about what to do if it is violated. This system improves on AIR-CYL by considering
constraint relaxation as an alternative. The designers of the PRIDE system also state
that some means of reasoning automatically about which constraints to relax and how

is needed.

All of these systems use predefined, domain-specific knowledge encoded in the
constraint representations to handle constraint violations when they arise. As a result,

they are unable to react to differences between problem situations and reason about the



best way to resolve them. Also, none of the systems consider design as a process with

a history of decisions; therefore, they lack a general strategy.

2.3 Other Approaches To Violation Handling

Unlike the above systems, several other approaches have represented violation
handling knowledge separate from the constraints. For example, Gray [8] has created
a design system called Diadem that uses constraint propagation and addresses the prob-
lem of resolving constraint violations. A truth maintenance system (TMS) is used to
record all design decisions made. Constraints represented as rules which, if fired,
trigger a "contradiction” condition. When a contradiction arises, the design stops and
dependency-directed backtracking is initiated. The TMS is inspected to find a design
decision that may be retracted in order to satisfy the constraint. Diadem considers
constraints to be absolute restrictions and fails to consider that, in some cases, it may
be better to retract a different design decision or to simply relax the violated con-

straint.

PROMPT [13] is a system that uses constraint propagation to design physical sys-
tems. An example application is beam design. The problem of constraint satisfaction

is handled with two approaches:

1) PROMPT first tries to vary parameters of the object currently being used. An
example of this is changing the diameter of a solid circular beam to increase its
strength.

2) If the first approach fails, PROMPT uses "heuristic modification operators" to
redesign the object. These operators represent knowledge about how to resolve
specific problems. An example is a2 mass redistribution operator that may decide

to resolve a conflict between mass and strength by replacing a solid circular beam
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with a hollow pipe to increase strength without increasing mass.

Both of these approaches use mathematical equations to determine the characteristics
of the redesigned object. The problem with applying this type of approach to IC
design and to many other design tasks is that there are not usually mathematical equa-
tions that can be used to modify objects and vary parameters. For example, there are
many ways to reduce the area of an IC cell, each of which may have a different
impact on the cell’s propagation delay. For the most part, modifying an IC will involve
replacing one module with another module of similar function -- a discrete change
whose effects can be computed after the fact but cannot be represented mathematically.
The heuristic opéerators also hide any overall violation handling strategy and make any

variation of that strategy difficult.

TLTS [15] diagnoses signal integrity problems of completed printed circuit bozzd
designs and redesigns them to eliminate the problems. It simulates the circuit’s
behaviour and compares it with user constraints, process constraints, etc. to look for
problems. If a constraint is violated, a knowledge source associated with that type of
violation will try to redesign the circuit. This knowledge source contains redesign
operators that it uses to modify the circuit. The obvious problem with this system is
that a knowledge source must be set up for every possible type of constraint violation
and redesign operators must be set up for every possible way of redesigning the circuit

to eliminate these violations.

The MICON system [3] designs small computer systems by top-down refinement
of a lugh-level functional specification. As the design proceeds, constraints are used to
maintain consistency between subsystems and ensure that top level specifications are
met. Constraint violations occur when thei« are no parts available that will satisfy the
specifications. In the event of a violation, the system performs dependcncy-directed

backtracking to determine the source of the failure. The user is then asked how to



11

correct the failure. As the user tells MICON how to solve the problem, a rule is added
to the database so that any time this constraint is violated in the future, it will be han-
dled in exactly the same way. MICON, then, is not capable of handling any problem
that it hasn’t seen before without user intervention. It is simply capable of repeating

previous solutions.

These systems take an approach similar to that taken by the systems in Section
2.2 but the violation handling knowledge is contained outside of the constraints. The
major problem with these systems is, once again, the inability to reason about the best
way to resolve a constraint violation when it arises. Users of all of these systems must
anticipate problems before they occur and provide the system with knowledge about

how to resolve them.

2.4 Summary

The fundamental problem with previous attempts at constraint violation handling
is their lack of flexibility. None of the systems discussed in this chspter reason about
the best way to resolve a constraint violation -- they simply respzad to problem situa-
tions by performing a predefined corrective action. Becausr ‘ine problem-solving in
these systems is done in advance, they are insensitive to diffzrences between one prob-
lem situation and another such as differing degrees <t w:oiation, the existence of other
constraints and the effect of any prior constraint vicisii¢«s on the design. As a result,
they will always respoad to the violation of a given ciastraint in the same way regard-
less of differences in other aspects of the design.

Viola, on the other hand, makes use of general problem-solving knowledge to
look at the violated constraint, its current environment and the design’s history of con-

straint violations. The result is a more flexible system that is capable of reacting to



subtle differences between constraint violations.
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Chapter 3. Constraint Propagation In STEM

This chapter describes how constraint propagation is handled in STEM, the
environment in which Viola was built. Since Viola was designed to be integrated into
the STEM environment, some design decisions were influenced by STEM’s operation.
For that reason, it is important to understand what STEM is, how it works and what
role Viola was intended to fulfill. Section 3.1 talks about where Viola fits in with
STEM and how they interact. Section 3.2 describes variables and constraints -- the par-
ticipants in the constraint propagation process. Finally, sections 3.3 and 3.4 look at the

area and delay constraints that Viola was designed to reason about.

3.1 Viola and STEM

STEM, the SmallTalk Environment for Module design, [5] is an integrated circuit
design environment implemented in the Smalltalk-80 object-oriented programming
language [6,7]. It provides both a common data structure for representing IC cells and
a mechanism for maintaining consistency between different views opened on this data
structure by IC design tools. In this way a number of different tools can be integrated
into a common environment. The IC design tool relevant to Viola is one that allows a

designer to specify the structure of a cell interactively.

To construct a cell, the designer selects subcells from an existing cell library,
places them, and connects them together. As structure is added to the cell, a constraint
propigation system within STEM incrementally updates all system variables and
checks any constraints on the cell. The designer may also add single transistors of
various dimensions to the cell. This design process is represented schematically in

Figure 3.1.
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Figure 3.1. Schematic Representation Of The Design Process

When a cons:raint is violated, the designer is asked whether he wants to continue
with the design or handle the constraint violation now. If he chooses to handle the
constraint violation, the Viola subsystem is called upon. If not, he continues with the
design and may initiate violation handling manually at any time. Viola will then
resolve any constraint violations on the cell either by relaxing the violated constraints

or by redesigning the cell.

3.2. Constraint Propagation -- The Basics

Constraint propagation is a process of propagating data from one point in a net-
work to other related points in the network. The points in the network are variables,
the links between points are constraints and the network itself is called a constraint

network.
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In STEM, variables are objects used to store data about integrated circuit cells.
This work is concerned only with delay and area variables. A constraint specifies res-
trictions on the values of one or more variables. The variables associated with a con-

straint are called its arguments.

When the value of a variable is changed, its new value is propagated to all asso-
ciated constraints. When a constraint receives a propagation message, it assigns new
values to any arguments affected by the changed variable. These variables, in turn,

propagate their new valiues to any other associated constraints.

This process continues until the initial change has been completely propagated.
At that time, each constraint that the propagation affected is tested for satisfaction. If
a constraint fails this test, a constraint violation has occurred. It is this type of con-

straint violation that Viola has been designed to resolve.

3.3. Area Constraints

The area of a cell is derived from the areas of its subcells using the following

relation:

CellArea =[Z(S ubcellAreas )Ix (1+ConnectionFraction)

where the ConnectionFraction is an approximation of the fraction of the cell area that
would be taken up by connections between subcells if the layout were compacted as
much as possible. Area is calculated in this way rather than using the actual area of
the user’s layout because the layout must be quite sparse to allow room for potential
subcell replacements by Viola. The value of ConnectionFraction may be assigned by

the user (a value of 0.30 was used for this thesis).
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If a cell is a primitive (i.e. a single transistor), it has no subcells and its area is

just calculated directly as the area of a bounding box around the primitive.

The user can constrain the area of a celi by specifying a constraint called a Max-

imumAreaPredicate. This consiraint places an upper limit on the cell’s area.

3.4. Delay Constraints

The simple delay model used in STEM operates on the assmuption that the delays
of consecutive elements in a delay path are additive. The delay values are also
adjusted to account for the output resistance of output signals and the loading capaci-
tance of input signals along the delay path. The delay of a signal along a path, then,
is a sum of subc 11 delay values plus an additional RC delay value for each connection

between subcells along the path.

If more accurate delay values are desired for the lower level celis, they may be
determined through simulation with SPICE [20] or an equivalent system and may be
specified as default delay values. Because these lower level cells are to be used many

times in designing larger cells, more accurate delay values are desirable.

Subcell delays are combiried to obtain overall cell delays using two types of con-
straints -- UniMaximumConstraints and UniAdditionConstraints. An example of a
delay network for a simple cell is presented in Figure 3.1. Variables are represented
as ovals, constraints are represented as rectangles and arrows indicate interactions

between variables and constraints.
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Figure 3.2. An Example Delay Network

For CellA, there are two delay paths. The overall cell delay is the delay value of
the longer of these two paths. The UniAdditionConstraints are used to add up the
subcell delays (including RC adjustment) along a single delay path. Once the path
delays have been calculated, a UniMaximumConstraint selects the maximum path
delay and assigns it to the cell’s delay variable. The user may then constrain this
delay variable using a MaximumDelayPredicate to place an upper limit on the delay
value. For any of the cases studied in this research, only the MaximumAreaPredicates

and the MaximumDelayPredicates were violated.

The remainder of this thesis looks at the approach taken by Viola to reasoning
about the interactions between area and delay in resolving constraint violations on IC

cells.
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Chapter 4. Viola’s Focus Of Atteniion Stage

Viola’s task is to take, as hput, a list of one or more constraint violations and
resolve them. Viola operates in a serial fashion, resolving one constraint at a time
until all constraints are satisfied as shown in Figure 4.1.

{

identity The Most

Seve. @ Constraint
Violation

(Focus Of Attention)

! Decide Whether To
Relax The Constraint
Or Redesign The Cell

{Plan Proposal)

4

Decide How To
Implement The
Proposed Relaxation
Or Redesign
(Plan Refinement
And Implementation)

Reevaluate All
Constraints

is The

Violation

List Empt
?

Yeos
Figure 4.1. Control Flow For Viola

To resolve a single contraint violation, Viola works through three stages. First,
Viola decides which of possibly several violated constraints it will first work on. This
is called the focus of attention stage. This decision is based on an assessment of the
relative severity of the constraint violations; thus, the purpose of the focus of attention

stage is to select the most severe constraint violation.
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The second stage of Viola’s operation is the plan proposal stage. In this stage,
Viola chooses between two courses of action that may be taken to resolve the selected

constraint violation -- relaxing the violated constraint and redesigning the cell.

The final stage of Viola’s operation is plan refinement and implementation. In
plan refinement and implementation, Viola determines how to relax the constraint or
redesign the cell depending on which of these alternatives it chose in the preceding
stage. If the plan is to relax the constraint, this stage is trivial because the constraint
can simply be relaxed just enough so that it is satisfied by the current value of its
arguments. If, on the other hand, the plan is to redesign the cell, a more detailed plan

must be laid out to determine exactly which subcells to replace in redesigning the cell.

These three stages represent Viola’s effort to resolve a single constraint violation
-- upon completion, it has either relaxed the constraint or redesigned the cell. Viola's
actions are likely to have impacted other constraints -- both those on the original viola-
tion list and others that were not violated before this process was begun. At this point,
the constraint propagation system determines which constraints, if any, are now
violated and a new violation list is constructed. If the violation list contains no con-
straint violations after testing all of the constraints, violation handling ends and control

is returned to the user.

This chapter and the following two chapters describe the three stages of Viola's
operation. The focus of attention stage is dascribed in this chapter, the plan proposal
stage is described in Chapter 6 and the plan refinement and implementation stage is

described in Chapter 7.
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4.1. Overview Of The Focus Of Attention Stage

Figure 4.2 shows the control flow for Viola’s focus of attention stage. To deter-
mine which constraint violation is the most severe, Viola considers not only the con-
straints on the violation list but also the environment in which those constraints exist.
A constraint’s environment is characterized by its interaction with other constraints. In
particular, Violz is designed to identify constraints that compete with one another.
One constraint is said to compete with another if improving the value of its argument
has a potential cietrimental effect on the other constraint’s argument. In integrated cir-
cuit design, area and delay are competing quantities -- reducing the area of a cell will
generally increase the propagation delay of signals passing through that cell and vice

versa.

J

Identify Competing
Constraints For

All Constraints On
The Violation List

\ 4

Rank All Violated
Constraints And
Their Competitors

Apply Bypass
Operators And
Flag Trivial
Violations

Use Precedence
Operators To
Identify The
Most Severe

Constraint Violation

v

Figure 4.2. Control Flow For The Focus Of Attention Stage
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At first glance, it seems that selecting the most severe constraint violation is sim-
ple; however, the selection is complicated by the presence of competing constraints.
Fixing a constraint violation may cause a competing constraint to be vioiated. So the
process of selecting the most severe constraint violation is really a delicate balance
between selectirig the most important constraint and selecting the constraint whose

solution will cause the least detriment to other constraints.

To enable selection of the most severe constraint violation, Viola first identifies
all of the counstraints that compete with each constraint on the violation list. It then
ranks each of the violated constraints and each of their competing constraints on the
basis of their user-specified importance ratings and their violation margins. The
importance rating indicates the relative importance of each constraint and the violation

margin is a measure of how close the constraint is to being violated.

Once all of the violated constraints and their associated competitors are ranked,
Viola proceeds with the selection of the most severe constraint violation. To avoid
wasting time considering constraint violations that are obviously unimportant (i.e. con-
straints that have a low importance rating and are violated by a small amount), Viola
uses a group of bypass operators to screen out these trivial violations before proceed-
ing with the decision-making process. The system will fix a trivial constraint violation

only if there are no non-trivial constraint violations on the violation list.

The final selection of the most severe constraint violation is made by a group of
precedence operators that represent knowledge about what conditions are sufficient to

declare one constraint violation more severe than another.

The next four sections describe the steps involved in focussing Viola's attention
on the most severe constraint violation -- competing constraint identification, constraint

ranking, bypass operator application and precedence operator application.
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4.2. Competing Constraint Identification

In order for Viola to identify ihe competitive interactions between constraints on
a cell, it requires knowledge about which types of constraints compete. This
knowledge is represented in the constraints themselves. The competitive relationships
are defined in terms of constraint types -- an area constraint knows that it competes
with any delay constraints on the same cell and a delay constraint knows that it com-
petes with any area constraints on the same cell. These competitive relationships are

inherited by all of the specific area and delay constraints on a cell.

As Viola proceeds with the focus of attention stage, the competing constraints of
each constraint on the violation list are identified and stored. This provides Viola with
some of the information that it needs to identify the most severe constraint violation;
however, it still needs information about the individual importance of each constraint

on the violation list and the importance of their competing constraints.

4.3. Constraint Ranking

The severity of a constraint violation is based on two primary factors -- the
importance of the violated constraint and the extent of its violation. A third considera-

tion is the importance and possible violation of its competitors.

The importance of a constraint is specified by the user when the constraint is
placed on the cell and may have one of three values: important (I), very important (VI)
or not important (NI). The extent of violation is called the violation margin and is
expressed as a percentage of the constraining value. Expressing the violation margin
as a percentage allows a meaningful comparison of area and delay constraints despite

the fact that area and delay are expressed in different units.
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The severity ratings used by Viola are presented in Table 4.1. In this table, a
higher numerical severity rating indicates a greater severity. For a constraint to be
assigned a severity rating, it must have a certain importance value and its violation
margin must fall within a certain range. The range of accepted violation margins is
delimited by a lower violation margin and an upper violation margin. In Table 4.1, a
negative violation margin indicates an unviolated constraint. If a severity rating has a
lower violation margin of nil, this indicates that the range of violation margins for that
severity rating has no lower bound. Similarly, if a severity rating has an upper viola-

tion margin of nil, there is no upper bound.

As the severity ratings are listed in Table 4.1, the importance rating of a con-
straint is considered more significant than its extent of violation. For example, a very
important (VI) constraint violated by 10% would receive a severity rating of 11 and an
important (I) constraint violated by 30% would receive a severity rating of only 10.
However, this is a design decision that can be changed -- the severity ratings are

readily modified by the user.

Table 4.1. Severity Ratings Used By Viola

Severity Lolwer vU;})per
Violation iolation
Rating | LOPOMance | ‘\roein | Margin
12 VI 25.0% nil
11 VI 0.0% 25.0%
10 I 25.0% nil
9 I 0.0% 25.0%
8 NI 25.0% nil
7 NI 0.0% 25.0%
6 VI -25.0% 0.0%
5 VI nil -25.0%
4 I -25.0% 0.0%
3 I nil -25.0%
2 NI -25.0% 0.0%
1 NI nil -25.0%

As a further example, consider the three constraints listed in Table 4.2. Initially,
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constraints C1 and C3 are on the violation list. After identifying the -t weting .«
straints of C1 and C3 and ranking all of the constraints, the information gathered by
Viola is as shown in Figure 4.3. Sufficient information is now available about the
severity of the individual constraints and their interactica with other constraints for
Viola to proceed with its selection of the most severe constraint violation from the vio-
lation list. Before making this selection, however, it is .’ sirable to remove any obvi-
ously trivial constraint violations from consideration. This is the role of the bypass

operators.

Table 4.2. Constraints For Example

Violation
Name | Type | Importance Margin
Cl area Vi +3.0%
C2 delay VI -2.0%
C3 delay I +7.0%
Violation List Competing Constraints Rankings
— Ci__—1——> (€2, C3) 1> (6. 9
L — C3 _——>| (C1) sy (12)

Rankings
12

Figure 4.3. Example Of Severity Information Generatea By Viola

4.4. Bypass Operator Application

At a high level, a circuit designer faced with a constraint violation makes a deci-

sion about whether or not the violation is severe enough to justify going through an
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exhaustive decision-making process to decide how to resolve it. If a constraint viola-
tion is insignificant or trivial, the designer will just relax it and proceed with his
design. If there are other, non-trivial constraint violations, the designer will proceed

with resolving them and ignore the trivial constraint violation.

Viola uses a pair of bypass operators to identify trivial constraint violations
before proceeding with the decision-making process. Each bypass operator encodes a
piece of knowledge about when a constraint violation should be considered trivial.

The two pieces of knowledge encoded in Viola’s bypass operators are:

BypassOperatorl
If:
A violated constraint has no competing constraints
& Its ranking is less than a threshold ranking
Then:
it is trivial.
BypassOperator2
If:
A violated constraint has one or more competitors
& Its ranking is less than the ranking of its highest ranked competitor
by greater than a threshold value
Then:
it is trivial.

BypassOperatorl basically screens out any constraint violations below a certain
severity rating and BypassOperator2 avoidc working on a constraint violation if resolv-
ing it could potentially damage a much more important constraint. A design feature
that adds flexibility to Viola is the ability of the user to activate or deactivate each
bypass operator as required. Only the activated bypass operators are used by Viola to

identify trivial constraint violations.

At this stage, any constraint violations identified as trivial will be flagged as such

for future reference. Flagging a constraint violation as trivial effectively bypasses any
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decision-making as far as that constraint is concerned for the current violation handling
pass. Precedence operator application will ignore trivial constraint violations -- only if
there are no non-trivial violations will a trivial violation be selected by Viola as the
most severe constraint violation. If Viola does decide to resolve a trivial constraint
violation, the plan proposal stage will be bypassed and the constraint will be relaxed

directly. This will be discussed further in the next chapter.

At this point, the competing constraints have been identified, all constraints have
been ranked and any trivial violations have been identified. Viola may now proceed

with the selection of the most severe constraint violation.

4.5. Precedence Operator Application

To identify the most severe constraint violation from a group of constraint viola-
tions, a circuit designer uses knowledge about conditions that are sufficient to declare
one constraint violation more severe than another. For Viola, this type of knowledge

is encoded in the precedence operators.

The fundamental premise underlying all of the precedence operators is that the
more severe a violated constraint’s competing constraints, the less severe the constraint
becomes by comparison. This recognizes that any activity taken to improve a con-
strained quantity will have potential adverse effects on any competing constraints. The
more severe these competing constraint are, the less acceptable it is to adversely effect
them and the leés important it becomes to resolve the original constraint violation. A
secondary premise behind the precedence operators is that the severity of a constraint’s
highest ranked competitor is more important than the number of competing constraints
that it has -- it would be more damaging to adversely affect a single very important
constraint than it would be to adversely affect several less important constraints. The

knowledge represented by Viola’s precedence operators is stated in Table 4.3.



Table 4.3. Precedence Operators

Precedence Operator

Conditions
(VC = violated constraint, CC = competing constraint)

VC A is more severe than VC B if: ...

- neither VC has CC’s

PrecedenceOperatorl | _ye A is higher ranked than VC B
- only VC B has CC’s
PrecedenceOperalor2 | _ yc'A and VC B are equally ranked
- both VC’s have CC’s
PrecedenceOperator3 | - VC A and VC B are equally ranked
- VC A has a lower ranked top-ranking competitor
- both VC’s have CC’s
- VC A and VC B are equally ranked
PrecedenceOperator4 | _ the top-ranking CC’s of the two VC's are equally ranked
- VC A has a smaller sum of CC rankings
- both VC’s have CC’s
PrecedenceOperator5 | - the top-ranking CC’s of the two VC's are equally ranked
- VC A is higher ranked than VC B
- both VC’s have CC’s
PrecedenceOperator6é | - VC A is higher ranked than VC B
- VC A has a lower ranked top-ranking CC
- both VC’s have CC’s
- VC A is higher ranked than VC B
- VC A’s top-ranking CC is higher ranked than
PrecedenceOperator?7 VC B's top-ranking CC
- the difference between VC rankings is greater than the
difference between the rankings of the top-ranking CC’s
- both VC’s have CC's
- VC A is lower ranked than VC B
- VC B's top-ranking CC is higher ranked than
PrecedenceOperator8 VC A’s top-ranking CC
- the difference between VC rankings is less than the
difference between the rankings of the top-ranking CC’s
- both VC’s have CC’s
- the higher ranked VC has the higher ranked
top-ranking CC
PrecedenceOperatord - the difference between VC rankings is equal to the
difference between the rankings of the top-ranking CC’s
- VC A has the smaller sum of CC rankings
- both VC’s have CC's
- VC A and VC B are equally ranked
PrecedenceOperatorl0 | - the top-ranking CC's of the two VC’s are equally ranked

- the sum of CC rankings for the two VC's are equal
- VC A has a greater violation margin
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The precedence operators in Table 4.3 are listed in order of increasing complex-
ity. PrecedenceOperatorl checks for the simplest condition where neither of the con-
straints has competitors, PrecedenceOperator2 checks for the condition where only one
of the constraints has competitors and the remaining operators are concerned with con-

ditions where both constraints have competitors.

Precedence operators 3, 4 and 10 are concerned with the situation where the two
constraints are equally ranked. FrecedenceOperator3 tries to differentiate on the basis
of the rankings of the top-ranking competitors. If this fails, PrecedenceOperator4 tries
to differentiate by considering all of the competitors of the two constraints. Finally,
PrecedenceOperatorlQ tries to make a decision based on the actual violation margins

of the constraints.

Precedence operators 5 to 9 are concerned with the situation where the two con-
straints are not equally ranked. If the top-ranking competitors are equally ranked, Pre-
cedenceOperatorS can select the most severe constraint. If, however, the top-ranking
competitors are not equally ranked, the decision becomes more difficult. Since a high
constraint ranking and a low competitor ranking both favour the same choice, Pre-
cedenceOperator6 can differentiate between constraints in the situation where the
higher ranked constraint has the lower ranked top-ranking competitor. If the higher
ranked constraint also has the higher ranked top-ranking competitor, the comparison
shifts to the difference between constraint rankings and the difference between top-
ranking competitor rankings. Precedence operators 7 and 8 trv to differentiate on that
basis. If all else fails, PrecedenceOperator9 tries to differentiate by bringing all of the

competitors of both constraints into consideration.

As with the bypass operators, the user may activate or deactivate the precedence
operators as he sees fit. By stepping through the violation list, applying the active pre-

cedence operators to pairs of constraints and keeping track of the most severe
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constraint violation as it goes, Viola is able to identify the most severe constraint vio-
lation. Once this has been completed, the focus of attention stage is complete. Viola
then takes the most severe constraint violation and proceeds to the plan proposal stage
where a decision will be made about whether to relax the selected constraint or

redesign the cell in order to resolve the constraint violation.
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Chapter 5. Viola’s Plan Proposal Stage

In the plan proposal stage, Viola decides either to relax the violated constraint
identified in the focus of attention stage or to redesign :. ¢ ~cll. The first alternative,
constraint relaxation, loosens the violated constraint untl it is satisfied for the current
cell design. The second alternative, cell redesign, leaves the violated constraint as it is

and attempts to satisfy it by redesigning the cell.

The decision of how to resolve a constraint violation is sensitive to (a) the sever-
ity of the constraint violation and (b) the history of violation handling activity for the
cell. Viola uses two sets of operators to "vote" on the course of action it should take
-- severity assessment operators (SAO’s) and historical evaluation operators (HEQ’s).
The SAO’s make recommendations based on the severity of the constraint violation
and its compeﬁhg constraints and the HEO’s make recommendations based on the
actions taken vy Viola in the past. Each SAO and HEO determines whether it has any
relevant input for the current decision. If it does, it casts a vote for either relaxation or

redesign depending on which course of action it favours.

The control flow for the plan proposal stage is presented in Figure 5.1. As stated
in the last chapter, the plan proposal stage is bypassed for trivial constraint violations.
Once the SAO’s and HEO’s have been applied and a number of votes have been cast
for relaxation and redesign, it would seem that Viola could directly make a decision by
counting the votes in favour of the two alternatives. However, some of the voters (the
SAO’s and HEQ’s) are more important than others. The kuowledge of which voters
are more important is represented in a group of meta-operators. Once these meta-
operators have been used to weed out less important voters, Viola can count up the

remaining votes and make its decision.
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Figure 5.1. Control Flow For The Plan Proposal Stage

The following sections look at each of the operator types used to make the
relax/redesign decision -- severity assessment operators, historical evaluation operators

and meta-operators.
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5.1. Severity Assessment Operators

When deciding whether to relax or redesign, a number of factors related to con-
straint violation severity come into play. In Viola, this knowledge about violation
severity is encoded in the SAO’s. Each SAO favours either relaxation or redesign. In
general, the knowledge in the SAO’s is based on the premise that the greater the
extent of the violation, the greater the likelihood that redesign is the appropriate deci-
sion. Similarly, the more important a constraint’s competitors, the greater the likeli-
hood that relaxation is the appropriate decision. The knowledge contained in Viola’s

SAQ’s is listed in Table 5.1.

Table 5.1. Severity Assessment Operators

If: (Conditions) Then Favour: (Recommendation)

SAO (VC = violated constraint, CC = competing constraint)
Conditions Recommendation
SAO1 | - the current VC ranking is greater than redesign
a threshold value
SAO2 | - the current VC ranking is less than a relaxation
threshold value
SAO3 | - the VC has one or more CC’s redesign
- the ranking of the VC is greater than the
ranking of its top-ranking CC
SAQ4 | - the VC has one or more CC’s relaxation
- the ranking of the VC is lower than the
ranking of its top-ranking CC
SAOS | - the VC has more than one CC relaxation
- the sum of CC rankings is greater than the
VC ranking

SAO’s 1 and 2 make recommendations based solely on the ranking of the
violated constraint. SAO’s 3 and 4, on the other hand, look at both the violated
constraint’s ranking and the ranking of the top-ranking competitor; therefore, SAO’s 3
and 4 should be considered more important. This distinction is made by the meta-

operators (to be discussed later). Since Viola was designed to consider the top-ranking
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competitor more important than any other competitors, meta-operators will also iden-

tify SAOS as less important than SAO’s 3 and 4.

An SAO'’s applicability is defined by its conditions. Any SAO whose conditions
are satisfied will register a vote. The votes are registered by adding the voting SAO to
either a redesign list or a relaxation list. Once any applicable SAO’s have cast their

votes, Viola’s next step is to get input from the HEO’s.

5.2. Historical Evaluation Operators

As a designer handles a constraint violation on a cell, he considers what he has
done to resolve previous consiraint violations on that cell before he makes a decision
about how to resolve the current violation. It may be that the current constraint has
been violated before. If this is the case and the violation is more severe than it was
before, perhaps a poor decision was made the last time and should be avoided now.
The designer may also look at the number of times area constraints have been relaxeu
in comparison to the number of times delay constraints have been relaxed. If the
current constraint is an area constraint and there have been more relaxations of area
constraints than delay constraints, it might be a good idea to choose redesign to
resolve the current violation. These two cases are examples of the type of knowledge
encoded in the HEO’s. By using the HEO’s to look at what it has done in the past,
Viola has a better chance of avoiding past mistakes and making a better decision.
When a cell is opened for design, a constraint violation history is associated with it.
This history records any constraint violations handled by Viola, the severity rating of

those violations and the actions taken by Viola to resolve them.

The knowledge contained in Viola’s HEQ’s consists of a set of historical condi-

tions and the course of action favoured by those conditions. The HEQ’s used by Viola
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are listed in Table 5.2.

Table 5.2. Historical Evaluation Operators

If: (Conditions) Then Favour: (Recommendation)

HEO (VC = violated constraint, CC = competing constraint)
Conditions Recommendation
HEO1 | - the last VC was the same as the current VC redesign

- the previous ranking was lower
- it was resolved by relaxation

HEO2 | - the last VC was the same as the current VC relaxation
- the previous ranking was lower
- it was resolved by redesign
HEO3 | - a CC of the current VC has been violated relaxation
in the past
- it was resolved by redesign
HEO4 | - there have been more relaxations of CC relaxation
types than of the current VC type
HEOS5 | - there have been more relaxations of the redesign
current VC type than of CC types
HEO6 | - the last violation of the current VC type redesign
was resolved by relaxation
HEO7 | - the last violation of the current VC type relaxation
was resolved by redesign
HEO8 | - the current VC has been violated before relaxation

- the ranking was higher last time
- it was resolved by relaxation
HEQ9 | - the current VC has been violated before redesign
- the ranking was higher last time
- it was resolved by redesign
HEOI10 | - the current VC has been violated before redesign
- the ranking was lower last time
- it was resolved by relaxation

HEO!1 | - the current VC has been violated before relaxation
- the ranking was lower last time
- it was resolved by redesign

HEOI12 | - the current VC is ranked higher than any redesign

previously violated CC

As with the SAQ’s, some of the HEO’s are more important than others. HEOI1
and HEOQ2 are more important than any others because they are intended to correct a
mistake made on the last violation handling step. HEO’s 4 to 7 refer only to con-

straint types rather than specific constraints; therefore, they are less important than the
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other HEO’s. For any HEO’s registering a vote, the more recent the historical event
they are referring to the more important they are. All of these distinctions are made

by the meta-operators.

The active and applicable HEO’s vote for relaxation or redesign in the same way
as the SAQO’s. The result is that the relaxation list and the redesign list each contain a
number of SAO and HEO voters. The next task to be performed is to decide which of

the voters are the most important -- that is the task of the meta-operators.

5.3. Meta-Operators

The meta-operators take their name from the fact that they are operators that are
created to reason about other operators. Their function is to compare operators in
order to decide whether one is more important than another. The knowledge contained

in Viola’s meta-operators is listed below:

MetaOperatorl:

Any HEO whose intention is to indicate that the last decision made by Viola
didn’t work is more important than any other HEO.

MetaOperator2:

An HEO referring to a more recent event in the history is more important than an
HEO referring to an event in the more distant past.

MetaOperator3:

An HEO that refers to a specific constraint is more important than an HEO that
refers only to a constraint type.

MetaQperator4:

An SAO that refers to the violated constraint and a competing constraint is more
important than an SAO that refers only to the violated constraint.
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MetaOperatorS:

An SAO that refers to a single competing constraint is more important than an
SAO that refers to multiple competing constraints.

MetaOperator6:

An HEO is more important than an SAO.

It is apjarent from these meta-operators that they must have access to some
knowledge about the SAO’s and HEO’s on which they operate. This additional
knowledge is contained in a number of SAO and HEO variables called content
description variables. With one exception noted below, these variables are set by the
user when the operators are created. For SAO’s, the competitorsConsidered variable
may be set to ’nil’, ’one’ or 'multiple’ so that meta-operators can make decisions
based on how many competing constraints are referenced by an operator. For HEO’s,

there are a number of these content description variables as listed below:

correctionlntent

This variable indicates whether the intent of a HEO is to correct a mistake made

on the previous violation handling step. It may be set to 'true’ or ’false’.
singleEventReference

This variable indicates whether the HEO refers to a single historical event. It

may be set to ’true’ or ’false’.
typeReference

This variable indicates whether the HEO refers only to constraint types. It may

be set to ’true’ or ’false’.
historylndex

This variable is not set by the user. It is set by the HEO itself when it is applied

and indicates the point in the constrain: vivlation history to which the HEO refers
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(provided that singleEventReference is 'true’ indicating that the HEO refers to a

single historical event).

Some meta-operators apply to HEO’s only, some apply to SAO’s only and some
apply to both. Each meta-operator contains knowledge about which types of operators
it applies to. Viola uses the meta-operators to weed out less important voters from the

redesign list and the relaxation list as shown in Figure 5.2.

Seiect Next Select Next Apply
—>{ Operator From Operator From Meta-Operators
The Redesign List The Relaxation To The Selected
‘ List Operators

Has
The Entire
Relaxation List
Been Checked

Has
The Entire
Redesign List
Been Checked

s The
Redesign
Cperator More
mportant

Remove The

Repeat The Process Relaxation Operator
With The Redesign From The
List And The Relaxation List
Relaxation List
Reversed

v

Figure 5.2. Control Flow For Meta-Operator Application

First, any operators on the relaxation list that the meta-operators identifyv as less
important than an operator on the redesign list are removed. Next, the process is
repeated and any operators on the redesign list that the meta-opertors identify as less
important than an operator on the relaxation list are removed. Once that has been

done, all unimportant operators have been removed and the relax/redesign decision can
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be made by comparing the sizes of the redesign list and the relaxation list. If the size
of the redesign list is greater than the size of the relaxation list, the decision is made to
redesign the cell; otherwise, the decision is made to relax the constraint. The proposed
plan now consists of a statement of intent to relax the constraint or redesign the cell --

the role of the next stage is to refine and implement the plan.
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Chapter 6. Viola’s Plan Refinement And Implementation Stage

By the time Viola reaches the plan refinement and implementation stage, the
relax/redesign decision has already been made for the current constraint violaton. All
that remains to be done is to decide exactly how to relax the constraint or redesign the

cell. The control flow for this stage is presented in Figure 6.1.

Yes | Ralax The Violated
Constraint Until
It is Satisfied

Area / Constrained
Quantity Area

Or Delay
?

Redesign The Cell |
To Improve Area

Delay

Redaesign The Caell
To Improve Delay

£

Figure 6.1. Control Flow For Plan Refinement And Implementation

If the plan is to relax the violated constraint, there is no plan refinement required
-- Viola may proceed directly with plan implementation and relax the constraint until it
becomes satisfied. The idea of plan refinement really comes into play when the plan
calls for cell redesign. A cell is redesigned by replacing one or more of its subcells
with alternate implementations from STEM’s cell library. Plan refinement selects sub-
cells for replacement that will resolve the current constraint violation while having as

little effect as possible on competing constraints.

Section 6.1 describes how constraint relaxation is implemented by Viola. In Sec-

tion 6.2, the implementation of STEM’s cell library is discussed. This library is
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organized by functional category and each category is sorted by area and by the value
of each delay variable declared for that cell type. Section 6.3 describes the plan
refinement and implementation process for resolving an area constraint violation and
section 6.4 discusses the different approach required to resolve a delay constraint vio-

lation.

6.1. Constraint Relaxation

Viola’s objective in constraint relaxation is to relax the violated constrain* until it
is satisfied by the current values of its arguments. For plan implementation, a con-
straint is relaxed by its violation margin -- the minimurn amount required to satisfy the

constraint.

6.2. STEM’s Cell Library

Since redesign consists of replacing subcells with funciionally equivalent alternate
implementations, a cell library was created for Viola. The cell library is organized by
functional category. For example, the three inverters in Figure 6.2 are stored in a
category called Inverter. Though this is a functional category, STEM performs no
simulation to verify the function of the cells within the category -- this is left to the

user.
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Category: Inverter
10Signals: in, out, vdd, gnd
DslayVars: delayFromintoout
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InverterA inverter8 inverterC

Figure 6.2. Functional Category Inverter

Cell redesign aims either to reduce area by choosing a smaller subcell implemen-
tation or to improve delay by choosing a faster subcell implementation; therefore, it
was necessary to have the cell library organized in such a way that Viola can easily
identify one implementation as smaller or faster than another. This was done by
adding a smallerAlternateCell field to each area variable and a fasterAlternateCell
field to each delay variable which are used to store pointers to smaller or faster imple-
mentations within a category. Each inverter in Figure 6.2 will have a smallerAlterna-
teCell pointer associated with its area variable and a fasterAlternateCell pointer asso-
ciated with its delay variables. Any time one of the inverter implementations is
modified or a new implementation is added, category inverter is automatically sorted
by area and delay to update the pointers. The smallest implementation has its smal-

lerAlternateCell pointer set to nil; likewise, the fastest implementation has its fasterAl-
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ternateCell pointer set to nil. The result is that category Inverter becomes organized
as shown in Figure 6.3 with all of the implementations linked by the smallerAlterna-

teCell and fasterAlternateCell pointers.

Category: Inverter m smallerAlternateCell
I0Signals: in, out, vdd, gnd
DelayVars: delayFromintoout m fasterAlternateCell

NP out

inverterA InverterB InverterC

Figure 6.3. Functional Category Inverter After Sorting

These pointers are akin to the similarity links use by Shibahara in the CAA sys-
tem [14]. The idea of similarity links is to direct search using links keyed on impor-
tant differences between objects. For Viola, search for an alternate implementation
begins at the current implementation. The difference between the desired alternate
implementation and the current implementation is either a dJecrease in area or an
increase in speed; thus, Viola’s search is directed by similarity links keyed on smaller
area (smallerAlternateCell) or greater speed (fasterAlternateCell). This difference-

directed search allows Viola to find appropriate implementations quickly.
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6.3. Cell Redesign For Area Improvement

The first step in cell redesign is to determine which subcells are associated with
the violated constraint (block A in Fig. 6.4). This group of subcells is called the criti-
cal subcell set (CSS) for the constraint. Since all subcells contribute to a cell’s area,
the CSS fer an area constraint comprises all subcells. One or more members of this

CSS will be chosen for replacement.
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Determine Cntical Subcell Set S m':“:so:mw‘i:lh E:;l
For Area Constraint Sut:x;oll In The
Critical Subceil Set

Is The Highest

Ranked Competilor's

Rarnking Greater Than

The Area Constraint's

Ranking
2

is The Highest
Ranked Cempetitor's
Ranking Equal To
That Of The Area
Constraint ?

O O

Perform The Replacement Has An
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Figure 6.4. Cell Redesign Control Flow For Area Constraints

The intelligent selection of subcells for replacement requires a certain amount of
information about each subcell in the CSS. This information is recorded by assigning

each subcell to an object called a RedesigninfoRecord that has the information fields



shown in Figure 6.5.

subcellinstance - subcell associated with this RedesigninfoRecord

improvedVars - subcell variables associated with the violated constraint
mostimportantCompetitor - highest ranked competing constraint associated with subcellinstance
competitorRanking - ranking of mostimportantCompetitor

worsenedVvars - subcell variables associated with mostimportantCompetitor
alternatelmplementation - selected alternate implementation for subcell replacement
improvement - percentage improvement in the violated constraint

worstEffect - percentage adverse effect on mostimportantCompatitor

netBenetit - (improvement - worstEffect)

numCriticalPaths - used for delay constraints only

Figure 6.5. A RedesignInfoRecord

The only fields specified initially in the RedesigninfoRecord are the subcellln-
stance field and the improvedVars field. improvedVars stores the name(s) of the sub-
cell variable(s) that contribute to the cell variable constrained by the violated con-
straint. For arca;, the subcell variables are always named area but for delay, the sub-
cell delay variable may, in some cases, be any one of several delay variables. By
comparing the value of the improvedVars for an alternate implementation and for the
current implementation, Viola can determine how much improvement is possible with
a particular replacement. The remaining fields of the Redesign/nfoRecord are filled in

as the redesign process progresses.

To determine the adverse effect of subcell replacement, Viola determines the
highest ranked competing constraint associated with each of the subcells in the CSS
(block B in Fig. 6.4). A subcell is said to be associated with a competing constraint if

it iy included in the CSS of that constraint; consequently, Viola must determine the
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CSS of each competing constraint and check each subcell for membership in those
CSS’s. When the highest ranked competitor associated with a subcell is found, it is
recorded in that subcell’s RedesigninfoRecord along with its ranking. At this point,
the subcell variables associated with the mostimportantCompetitor are recorded in the
worsenedVars field. These variables are used to calculate the adverse effect of a

replacement on the competitor.

Blocks C through G of Figure 6.4 were added to the plan refinement and imple-
mentation stage as a heuristic compensation for a problem encountered during testing
of Viola. Since Viola operates on the principle of resolving one constraint violation at
a time, a situation where the violaticn list contained two equally ranked competing

constraint violations was resulting in one of two scenarios:

1. (a) One of the constraint violations would be resolved by redesign resulting in a

large detrimental effect on the other constrzaint.
(b) The second constraint would be relaxed.
2. (a) Same as step (a) in 1.

(b) The second constraint violation would be resolved by redesign; thereby, undo-

ing much of the redesign done in step (a).
(c) This goes back and forth until one constraint is relaxed.

The result in both of these scenarios was that one constraint would be satisfied
without relaxation (or as near as possible) and the other would be relaxed by a large
amount. It was felt that it would be more desirable to achieve some middle of the
road solution where both constraints would be relaxed by a lesser amount. The idea is
to balance the improvement in the constraint currently being handled with the ac:urse
effect on its competitor by setting a redesign target of only 50% of the violatizn mar-

gin and making up the other 50% by relaxation. The solution used is to check for the
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condition where the highest ranked competitor’s ranking is equal to that of the area
constraint (block D in Fig. 6.4) or where an equally ranked competitor was resolved by
redesign in the past (block E in Fig. 6.4). If either of these conditions exist, Viola
proceeds with a "50% relaxation heuristic" (blocks F through H). Since it may be pos-
sible to partially or completely resolve the area constraint violation by replacing sub-
cells whose most important associated competitor is less important than the area con-
straint, the subcell replacement scheduling cycle is performed (block F) before apply-
ing the 50% relaxation. If this is sufficient to completely saiisfy the area constraint
violation, no 50% relaxation is performed. If, however, the area constraint is still
violated, it is relaxed by 50% of the remaining violation margin before proceeding
with redesign. The result is that over two or more violation handling passes, the two
constraints approach a similar level of relaxation rather than oscillating back and forth

until one constraint is relaxed by a large amount as before.

As an example, consider the constraints depicted in Figure 6.6. Figure 6.6 (a)
shows the results of threc violation handling passes without the 50% relaxation heuris-
tic and Figure 6.6 (b) shows the results of thrze violation handling passes using the
50% relaxation heuristic. The total relaxation required in (b) is about the same (21%)
as in (2) (23%) but it is split between the two constraints producing a more balanced
solution. The resultant solution in many cases may not be optimal; however, the qual-
ity of the solution is improved significantly without adding a great deal of computa-

tional complexity.
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‘tlal Conditions

Constraint A eesssosesssm 12% violation
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Pass 1: redesign for A Pass 1: relax A by 6% then redesign

A TN satisfied A ST sreTN satisfied

B siswwasscsswowwewes 18% violated (relaxed by 6%)
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A sossssssssssmsms 23% violated Pass 2: relax B by 7% then redesign

B IEEaaecae satisfied A mamewssswersssmn 8% violated
Pass 3: relax A 8 amemssmeemmmn  satisfied

A esscaess svempeys satisfied (relaxed by 7%)

(relaxed by 23%) Pass 3: ralex A
B RSN satisfied A sEarzssescmeasa Satisfied

B mmmnmsnsescassemn satisfied
(relaxed by 7%)

(a) (b)
Figure 6.6. A Violation Handling Example

Figure 6.7 depicts the subcell replacement scheduling cycle for an area constraint
violation. The replacement scheduling cycle may be described as a heuristic search
where the starting point is the condition where the area constraint is violated, the goal
is the condition where the area constraint is no lenger violated, each node of the
search space is a partial solution and moves from node to node are made by selecting
a subcell for replacement. The heuristic method used to select the next move is imple-

mented by the two criteria used to select the best subcell replacerment.

The first step in the cycle is to select an alternate implementation for each subcell
that will come as close as possible to resolving the area constraint violation. For block
F in Figure 6.4, only subcells whose most important associated competitor is less
important than the area constraint being handied are considered for replacement. For

block I in Figure 6.4, all subcells not already scheduled for replacement are con-

(relaxed by 14%)
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sidered. For each subcell, its alternate implementation, if any was found, is recorded in
the alternatelmplementation field of the RedesigninfoRecord. The improvement in the
area constraint is calculated for each potential replacement by subtracting the value of
the improvedVars for the alternate implementation from the value for the current
implementation. The result is stored as a percentage of the constrained area value in

the improvement field of the RedesignlnfoRecord.

Is The

For Each Subceli In The [ For Each Subcel In The Choose Best Subcs!l Violation
3 CSS, Find An Atternative CSS, Caiculate The Warst Renl And Scheduie Resoived Yet ?
Implementation And Etlect Ang Net Benefit ) "It For Replacoment (Or Have All Subcells
Calculats Improvement Of Replacement Been Scheduied ?,

Figure 6.7. Subcell Replacement Scheduling Cycle

To be able to choose one subcell replacement over the others it is necessary to
consider more than just the potential improvement -- the detrimental effect on compet-
ing constraints must also be considered. To consider adverse effects on all competing
constraints may, however, become very time consuming in the case where there are
several competitors. A computationally expedient approximation used by Viola is to
consider the effect only on the highest ranked competitor recorded earlier in each
subcell’s RedesigninfoRecord. The detrimental effect on the competitor is calculated
by comparing the values of the worsenedVars for the current subcell implementation
and for the selected alternate implementation. This difference is recorded in the
worstEffect field as a percentage of the constrained value of the competitor. A meas-
ure of the net benefit of a subcell replacement is now available by subtracting the

worstEffect from the improvement. This measure is stored in the netBenefit field.
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The final sep in the subcell replacement scheduling cycle is to select the best
subcell replacement. The selection is made on the basis of two factors -- the ranking
of the subcell’s most impc:iant associated competitor and the net benefit of the
replaceinent (in that order). Once the best subcell replacement has been selected, it is
scheduled by placing its RedesignInfoRecord on the replacement schedule. The sub-
cell replacement scheduling cycle continues until either the scheduled replacements are
sufficient to resolve the constraint violation or all possible replacements have been

scheduled.

Once the replacement schedule is complete, all of the scheduled subcell replace-
ments are implemented by removing the required subcells from the cell and inserting
their alternate implementations. At present, STEM has no automatic connection and
routing facility; therefore, when the scheduled subcells have been replaced, control is

returned to the user so that he can reestablish the necessary connections.

In some cases, a constraint may be violated by such a wide margin that replacing
all possible subcells isn’t enough to resolve it. It is for these cases that block L has
been included in Figu:re: 6.4. In order to ensure that the constraint violation is com-
petely resolved in these cases, Viola takes up any residual violation margin by relaxing

the violated constraint at the end of the redesign process.

6.4. Cell Redesign For Delay Improvement

The plan refinement and implementation process for resolving delay constraint
violations (Fig. 6.8) is very similar to that for resolving area constraint violations.
There are, however, a few differences in the process that arise from a fundamental
difference between cell area and cell delay -- a value for cell area has only one source,
the total area of all subcells; whereas, a value for propagation delay through a cell

arises from the longest of potentially many delay paths. In order to resolve a delay
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constraint violation, it is necessary to reduce the delay of any paths that are long

enough to violate the constraint (violated paths).
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Figure 6.8. Cell Redesign Control Flow For Delay Constraints

The first difference for delay constraints is the way that the concept of critical

subcell set (CSS) is used. In resolving an area constraint violation as described in the

previous section, the CSS of all competing constraints (i.c. all delay constraints on the

cell) had to be determined in order to decide whether or not a subcell was associated

with that competitor. For a delay constraint, the CSS comprises all subcells contained

in paths that are within 10% of being violated. The factor of 10% is used so that any

subcells whose replacement would likely violate the delay constraint are included. If
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the delay constraint has no paths that are close to violation, the CSS just comprises the
subcells on the longest delay path. This CSS is used only for the purpose described
above -- as shown in Figure 6.8, each of the violated paths is considered separately in
the replacement scheduling process; therefore, a separate subcell set is used for resolv-

ing each violated path.

The 50% relaxation heuristic is applied in a simpler way for delay constraints
than for area constraints -- since all subcells are associated with any area constraint on
the cell, there is no potential to improve delay without affecting area. It is therefore
unnecessary to perforrr the subcell replacement scheduling cycle before performing the

50% relaxation.

The msoluﬁon of the violated paths starts with the longest violated path and
works down to the shorter paths. In this way, the shorter paths are frequently resolved
as a side effect of resolving the longer paths. Scheduling subcell replacements to
resolve a single path is very similar to the process of scheduling subcell replacements
to resolve an area constraint violation. The subcell replacement scheduling cycle is the
same as the replacement scheduling cycle for area constraint violations. The
difference arises in blocks G and H of Figure 6.8 which take into account the fact that
a single subcell may take part in more than one of the violated delay paths. If a sub-
cell has already been replaced to resolve a previous violated path, it makes no sense to
consider it for replacement again in resolving another violated path; consequently,
block F removes any subcells from consideration that have already been scheduled for
replacement. Block H adds a value to the nwmCriticalPaths field of the subcell’s
RedesignInfoRecord. This value specifies the number of violated paths that the subcell
is involved in and provides an additional decision criterion for selecting a subcell for
replacement. The idea here is that it is better to start by replacing subcells common to

several delay paths because the potential for resolving more than one violated path at
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once is thereby increased. The selecti-n of the st subcell replac- -ent for delay con-
straints takes three factors into consideration -- the . .*-2r of violated paths the sub-
cell is involved in, the net berefit of the replacement and the ranking ¢% .2 subcei <

highest ranked associated competitor (in that order).

Plan refinement and implementation for delay constraint satisfaction differs from
the process for area constraint satisfaction in that ihe subcell replacement scheduling
cycle is executed for each violated path of the delay constraint. The replacement
scheduling cycle for a violated path may be described as a heuristic search where the
starting point is the condition where the path is violated, the goal is the condition
where the path is no longer violated, each node of the search space is a partial solution
and moves from node to node are made by selecting a subcell for replacement. The
heuristic method used to select the next move is implemented by the three criteria used

to select the best subcell replacement.
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Chapter 7. Discussion Of Resuits

This chapter discusses results obtained with Viola on seven constraint satisfaction
problems. Viola’s solutions are examined and compared to results obtained by hand.

Section 7.1 describes the subcell library and the test cell used for the problems.

There are two major types of problems. The first type occurs where there is one
overriding constraint that is more important than any of the other constraints on a cell
-- Section 7.2 will look at three problems of this type. The second type of problem
occurs where there is not a single overriding constraint. In many ways, the second
type of problem is more difficult to resolve. Section 7.3 will look at four problems of

this type.

7.1. The Subcell Library And The Test Cell

The subcell library used for the problems discussed in this chapter is depicted
symbolically in Figure 7.1. It consists of four inverter implementations, three two-
input NAND gate implementations and three three-input NAND gate implementations.
The area and delay values for each implementation in the library are shown. SPICE
[20] was used to calculate the unloaded delay values shown for the library cells
because STEM’s delay calculation doesn’t take transistor dimensions into consideration
and the area and delay of the library cells was varied by transistor sizing. As dis-
cussed in Section 3.4, STEM adds additional RC delay to account for loading of cir-

cuit subcells.
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Figure 7.1. The Subcell Library

In order to properly demonstrate Viola's capabilities, a test cell with several delay

variables and a variety of delay paths was designed and is presented in Figure 7.2.

For this cell, there are four variables that may be constrained by the user -- area,

delayFrominatoout, delayFrominbtoout and delayFrominctoout. This test cell has a

large enough number of subcells to permit many possible ways of redesigning the cell

and has several delay paths of varying length for each delay variable.
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Figure 7.2. TestCellA

For each of the constraint satisfaction problems described in the next two sec-
tions, Viola was presenied with a set of two or more constraints (some violated and
some not) and the complete circuit for TestCellA as shown in Figure 7.2. The discus-
sion looks at the steps taken by Viola to resolve the constraint violations and the rea-
sons for taking those steps. Since Viola’s knowledge base was derived from the
author’s problem solving knowledge, the actions taken and the results obtained by
Viola are evaluated by comparing them with the author’s hand solutions. This com-
parison is valid because the hand solutions were generated using an exhaustive parallel
constraint satisfaction approach rather than Viola's approach. This parallel approach
was avoided in Viola’s design to prevent combinatorial problems in large circuits; as a
result, the quality of the hand solutions will degenerate more quickly with increasing

circuit complexity than will tiie quality of Viola’s solutions.
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7.2. Constraint Satisfaction Problems With A Single Overriding Constraint

For problems where there is one constraint that is more important than any of the
others, Viola’s problem solving strategy is based on the following premise:

"Satisfy the most important constraint if at all possible. Any adverse effect on

less important constraints is a secondary concern."
Problems of this type will be referred to as "type I problems”. The initial conditions
for the three problems examined in this section are presented in Table 7.1. In Test
Cases 1 and 2, the overriding constraint is already violated when Viola is called upon.
In Test Case 3, the overriding constraint is not yet violated but is in danger of being

vioiated by any actions taken to resolve the violated competing constraints.

Table 7.1. Initial Conditions For Type I problems

Constrained Variables (VM = Violation Margin, Imp = Importance)
area delayFrominatoout delayFrominbtoout | delayFrominctoout
VM imp VM Imp VM Imp VM imp
Tesi Case 1 +6.8% | Vi -5.4% | -3.4% { -2.4% |
TestCase 2 | +1.5% § | +70.2% Vi +35.2% i +56.2% NI
Test Case 3 | -5.6% | Vi +5.4% | +12.7% | +4.1% |

Transcripts of the actions taken by Viola in resolving these problems are
presented in Appendix I. In order to properly evaluate Viola’s solutions, a number of
solution quality metrics have been used. The first of these metrics is the percentage
relaxation needed to satisfy each constraint (PRTS for short). The PRTS is measured
as a percentage of the original constrained value. I any problem, it is most desirable
to satisfy each constraint without any relaxation at all (PRTS = 0); however, this is not

usually possible.
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The next metric used to evaluate solution quality is the number of subcells in the
final version of the cell that are different from the original cell. It is desirable to
resolve a problem by making as little change tc the designer’s original circuit as possi-
ble. An excessive number of différem subcells can indicate either that Viola chose to

redesign the cell too often or that its selection of subcells for replacement was

inefficient.

The final metric involves a comparison of the total number of subcell replace-
ments made in the violation handling process with the number of different subcells in
the final version of the cell. The idea here is that any redesign step may involve the
replacement of subcells that have already been replaced in previous redesign steps.
This measure of the number of reversals of previous replacements gives an indication
of the cost of Viola’s methodology of handling constraint violations one at a time.
Since a human designer will usuallv consider all constraints in parallel, a manual solu-
tion will seldom involve any reversals. As stated earlier, however, this will be true

only for relatively simple problems.

The resultant values of all of these solution quality metrics for the type I prob-
lems are presented in Table 7.2 both for Viola’s solution and for the author’s hand
solution. Each of the problems is discussed individually in the following subsections;

then, the results for all type I problems are summarized.
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Table 7.2. Results For Type I problems
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7.2.1. Test Case 1

This test case involves satisfying a very important area constraint in the presence
of three less important delay constraints. Initially, the area constraint is violated by
6.8% and the delay constraints are all satisfied but close to violation. The goal here is
to satisfy the area constraint while causing the delay constraints to be violated by as
little as possible.

In Viola’s solution, the area constraint was resolved with a PRTS of 0; hence, the
primary goal of satisfying the original area constraint was met. The secondary goal of
adversely affecting the delay constraints as little as possible was not as well met by
Viola as in the hand solution. In the hand solution, each of the delay constraints was
violated by a small amount and the adverse effect was spread evenly over the three
constraints. Viola didn’t distribute the adverse effect as well. In choosing subcell
replacements, Viola only considers the effect on the highest ranked competitor associ-
ated with each subcell. As a result, a subcell replacement that adversely affects more
than one constraint but has a small adverse effect on its highest ranked competitor may

be chosen over a repiacement that affects only one constraint but has a slightly larger
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effect on it. This inefficiency in replacement selection is the price to be paid for the
computatio:.al advantage of only having to track effects on a single competi':: for

each potential subcell replacement.

The other solution quality metrics show no difference between Viola’s solution
and the hand solution. Viola chose to replace the same number of subcells as in the
hand solutizn, but, as explained above, Viola’s replacements were chosen with a nar-

rower focus and resulted in a poorer solution.

Viola’s solution to the problem of test case 1 is acceptable as it met the primary
goal and fell short of the optimal solution (assuming the hand solution to be optimal)

only by a small amount.

7.2.2 Test Case 2

Test case 2 invelves resolving a very important delay censtraint violation in the
presence of a less important area constraint. There are also two less important delay
constraints. The primary difference from test case 1 is that there is only one constraint
competing with the very important delay constraint; hence, there is no error introduced

by considering orly the highest ranked competitor associated with each subcell.

For this test case, the hand soiution and Viola’s solution are identical. The pri-
mary goal of satisfying the very irnportant delay constraint was not met in either case
because the violation margin was too large. In both solutions, all subcells on the criti-
cal delay paths were replaced by their fastest alternate implementations. Once that
was done, there was no further improvement available and the remaining 35.4% was

made up by relaxation.
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7.2.3 Test Case 3

As mentioned earlier, this test case is different from the first two test cases in that
the very important constraint is not initially violated. The problem here is to try to
resolve three important delay constraint violations in the presence of a very important

area constraint that is close to being violated.

For this problem, Viola achieves results very similar to the hand solution; how-
ever, the means of achieving those results is much different. Viola’s first step was to
select the most severe constraint violation and resolve it. Initally, the constraint on
delayFrominbtoout was the most severely violated. Viola chose to resolve this viola-
tion by redesign. This redesign step, however, caused the more important area con-
straint to be violated. Since Viola’s ranking scheme is set up to consider any violated
constraint more significant than any non-violated constraint, the area constraint, though
more important, was considered less significant than the delay constraints until it was
violated. As soon as the area constraint was violated, it became the focus of Viola’s

attention.

To resolve the area constraint violation, Viola performed a second redesign step.
It is this use of two redesign steps that accounts for the difference between Viola’s
solution: and the hand solution. Viola’s first redesign step replaced three subcells with
faster implementations; then, Viola’s second redesign step reversed one of the initial
replacements and replaced three other subcells with smaller implementations. In gen-
erating the hand solution, it was possible to identify that what had to be done was to
improve the delay constraints as much as possible without causing the area constraint
to become violated. As it turned out, a single subcell replacement was sufficient to

achieve this goal.
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For Viola to predict that its c:tions would cause a more severe constraint viola-
tion, it would be necessary t» reevaluate constraint rankings and reapply precedence
operators after each subcell replacement. This would slow the system down consider-
ably for all redesign steps in order to provide a more efficient solution for problems
like test case 3. Since problems of this type are a minority, the tradeoff is not

justifiable.

Although Viola’s means of achieving its solution were less efficient than the hand

solution, the end result was near enough to the hand solution to be acceptable.

7.2.4 Summary .Of Results For Type I problems

For all of the type I problems, the primary goal of satisfying the overriding con-
straint without relaxation was achieved. There wers, however, two problems resulting

from Viola’s problem solving approach.

The first problem with Viola’s approach is its consideration of adverse effects
only on the highest ranked competing constraint associated with each subceil. This
resulted in a less than optimal distribution of adverse effects over competing con-
straints. This narrowing of Viola’s tocus also provides a benefit to offset the problem
-- considering 2 single competitor for each subcell reduces the computing time required
for subcell replacement selecion. For a small cell like TestCeliA, this speed-up is
marginal; however, for a large cell with hundreds to thousands of subcells and dozens

of constraints, the benefit could become significant.

The second problem is Viola’s inability to determine that a redesign step may
cause a more severe problem than the one it is trying to fix. Viola responds properly
and resolves this more severe problem, but that introduces a second redesign step to

the violation handling process; thus, reducing solution efficiency. Viola has the ability
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to reason about constraint violation severity with its precedence operators. This rea-
soning process, however, is not suited to incremental comparison of constraints within
the subcell replacement cycle. To do this would require recalculation of the delay net-
work, re-ranking of all constraints and reapplication of the precedence operators after
each subcell replacemers Thz aided computation would be greater than that intro-
duced by the extra recesign step in the first place.

Despite these deviations from optimal problem solving, Viola achieved acceptable

solutions for all type I problems.

7.3. Violation Handling Wi h Equally Important Constraints

For this second type of problems (type II for short), there is no single overriding
constraint so the approach to problem solving is different. The problem solving stra-

tegy for type II problems can be stated as:

"In resolving the violated constraints, try to balance the improvement in a

violated constraint with any aaverse effects on its equally important competitors."”

The 50% relaxation heuristic plays a fundamental role in this balancing of adverse

effects.

The initial conditions for four type II problems are presented in Table 7.3. The
results for these problems are presented in Table 7.4 and discussed in the following
subsections. A summary of the results obtained for all type II problems is also
presented. Transcripts of the actions taken by Viola in solving these problems are

included in Appendix L
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Tabie 7.3. Initial Conditions For Type II problems

Constrained Variables (VM = Violatien Miargin, Imp = Imporiance)

area delayFrominatoout delayFrominbtoout { delayFrominctoout
VM imp vM Imp VM Imp VM imp
Test Case 4 | -18.8% | +41.8% | / / / /
Test Case 5 | +4.1% i -5.4% | / / /
Test Case 6 | +1.5% l +6.4% | / / / /
Test Case 7 | +1.5% i +21.6% | +4.0% [ +11.6% i
Table 7.4. Results For Type II problems
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7.3.1. Test Case 4

In this test case, Viola was required to resolve a severely violated delay constraint
in the presence of an equally important (though initially lower ranked) area constraint.

Viola’s initial action was to redesign the cell to improve the delay from ina to out.
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Because the violation margin of the delay constraint was very large, it could not be
completely resolved -- the delay paths were reduced as much as possible and the
remaining 12.8% was made up by relaxing the constraint. Viola’s rext action was to

relax the area constraint.

The result was as well balanced as possible given that the delay constraint

couldn’t be improved any further.

7.3.2. Test Case 5

For test c~.© ~, Viola had to resolve an area constraint violation with as little
adverse effect as possible on an equally important delay constraint that was close to
being violated.

Both Viola’s solution and the hand solution obtained ideal results for this test
case, satisfying both constraints without any need for relaxation. In selecting subcells
for replacement to improve the area, Viola first chose subcells that were not included
in the critical subcell set of the delay constraint. For this problem, it was possible for
Viola to completely resolve the area constraint without adversely affecting the delay

constraint.

7.3.3. Test Case 6

This test case is an example of a problem where the 50% relaxation heuristic was
used to achieve a balance between two equally ranked competing constraints. Viola’s
attention was first focussed on the delay constraint. In redesigning the cell to improve
this delay, Viola identified that the highest ranked competitor of the delay constraint

was equally ranked. To avoid having too large an adverse effect on this competing
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area constraint, Viola chose to relax the delay constraint by 50% of the violation mar-
gin before carrying out the redesign. Viola’s next step was to focus attention on the
area constraint -- it was satisfied by redesign without any adverse effect on the delay

constraint.

The end result achieved by Viola was that the area constraint was satisfied
without relaxation and the delay constraint was satisifed with PRTS = 3.2%. This
solution is not as well balanced as that achieved by hand. The imbalance results from

the approximate nature of the 50% relaxation heuristic.

For this test case, Viola was once again able to achieve an acceptable, non-

optimal solution.

7.3.4. Test Case 7

Test case 7 was the most complex of the type II problems. It involved the reso-
lution of four equally ranked constraint violations -- three delay constraints and an area
constraint. Though the constraints are equally ranked initially, there is a significant
difference in actual violation margin. This is an example of "quantization error" intro-
duced by using discrete violation margin intervals to rank constraints. Since the viola-
tion margin intervals used for testing Viola were 25% wide, there is a maximum of
about 25% quantization error. In other words, two constraints whose violation margins

are up to 25% different may be ranked the same.

Viola’s strategy of handling constraint violations one at a time resulted in three
redesign steps being performed, applying the 50% relaxation heuristic each time. This
helped balance the opposing constraints; however, it also resulted in more subcell
replacements than in the hand solution with three of them reversing earlier replace-

ments. The relaxations were not as evenly distributed as in the hand solution -- a
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result, once again, of the approximate nature of the 50% relaxation heuristic.

Despite the unevenness of the distribution, Viola’s solution to this problem is

acceptable with an average PRTS of 7.7% compared to 5.0% for the hand solution.

7.3.5. Summary Of Results For Type II problems

For all of the type II problems, Viola achieved acceptable results and achieved
optimal results for two test cases. The non-optimal results in the other two test cases

stem from three sources.

The first source of error is the 50% relaxation heuristic. This heuristic was added
to the plan refinement and implementation stage to help improve the balance of the
results of redesign without adding a great deal of extra computation. It achieves that
end in producing results that are better balanced, but its computational simplicity

results in non-optimal solutions.

The imbalance in Viola’s results also received a contribution from the quantiza-
tion error inherent in the constraint ranking system. This error is introduced by rank-
ing constraints equally when there is actually a difference in thsir violation margins.

By introducing additional constraint rankings, this error could be reduced.

As with the type I problems, Viola’s need to handle constraint violations one at a
time rather than in parallel resulted in extra subcell replacements; however, these extra
subcell replacements only affected the efficiency of obtaining the solution, not the

quality of the results.
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Chapter 8. Conclusion

This chapter begins with a brief restatement of Viola’s approach to the problem
of constraint violation handling in IC design. The strengths and limitations of this
approach are then discussed. The chapter concludes with suggestions for future

research.

8.1. Handling Constraint Violations In IC Design

For a design environment that has competing objectives, it is necessary to reason
about design tradeoffs when resolving constraint violations. Integrated circuit design is
an example of such a design environment. In integrated circuit design, minimizing
area and minimizing delay are competing objectives -- reducing the area of a cell will
generally increase the propagation delay of signals passing through the cell and vice
versa. Viola addressed this need to reason about area-delay tradeoffs in IC designs
while resolving area and delay constraint violations. Its strategy was realized as three
stages -- the focus of attention stage, the plan proposal stage and the plan refinement

and implementation stage.

The focus of attention stage selects one of the violated constraints to resolve. To
select the most severe constraint violation, Viola uses a severity rating scheme and a
group of precedence operators. A numerical severity rating based on importance and
extent of violation is assigned to each violated constraint and each competing con-
straint. The precedence operators then take these severity ratings and apply knowledge
about how the presence and severity of competing constraints impacts the overall
severity of a constraint violation. This narrowing of Viola’s focus early in the process

reduces the computation required later.
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To resolve a constraint violation, Viola may either relax the violated onstraint or
redesign the IC cell. This decision is made in the n'an proposal stage. V' 'a uses two
sets of operators to "vote" for either constraint relaxation or cell redesi, - severity
assessment operators representing knowledge about constraint violation severity and
historical evaluation operators representing knowledge about the history of constraint
violations and violation handling activities. The voting process is controlled by a
group of meta-operators that represent knowledge about characteristics that make one
severity assessment operator or historical evaluation operator more important than

another.

Finally, in the plan refinement and implementation stage, the proposed plan is
refined into a set of specific actions for Viola to take -- either a specific constraint

relaxation, specific subcell replacements, or a combination of the two.

These three stages constitute Viola’s handling of a single constraint violation. By
reevaluating the constraints and repeating this process in a cyclic fashion until all con-
straints are satisfied, Viola produces a design that meets the original design objectives

or balances adverse effects on those objectives.

8.2. Discussion

The primary objectives in Viola’s design were:
(a) The violation handling strategy should consider constraint violation severity and

the presence of competing constraints.
(b) The strategy should consider the violation handling history of the design.
(c) The strategy should be as flexible and explicit as possible.

(d) There should be a clear separation of domain-dependent and domain-independent
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knowledge to allow transfer to other dormains.
(e) The system should be computationally efficient to be useful for large designs.

(f) The system should enable an inexperienced designer to produce better designs in
a shorter time and should reduce the time required for an experienced designer to

produce good designs.

The following sections discuss the way that Viola met these objectives. Section
8.2.1 discusses the strong points of Viola’s approach and section 8.2.2 looks at ways in

which Viola could be improved.

8.2.1 Benefits Of Viola’s Approach

In previous systems such as Borning’s [1] ThingLab system and Fox’s [4] ISIS sys-
tem, the only way of reacting to differences in constraint violation severity was to try
different predefined corrective actions until one of them satisfied the constraint. Viola
improves on this approach by using a group of severity assessment operators (SAO's).
Input from the SAQ’s makes Viola’s decision-making process sensitive to the severity
of the violated constraint and its competitors as set out in objective (a). By looking at
both the violated constraint and its competitors, the SAO’s balance Viola’s decision
between the need to improve the violated constraint and the need to avoid adversely
affecting other constraints. I~ this way, Viola uses the concept of competing con-
straints to predict the potential adverse effects of its decisions -- something that was

not done in any of the systems discussed in Chapter 2.

An additional improvement to Viola’s decision-making process is provided by the
historical evaluation operators (HEO’s). A constraint violation history records all con-
straint violations handled by Viola, their severity ratings and the actions taken by

Viola to resolve them. This is a different approach to the use of history than that
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taken by Gray [8] in Diadem. Rather than recording the steps taken to produce the
design as in Diadem, Viola's history maintains a record of all previous problem-
solving activity. This allows Viola to monitor and evaluate its own problem-solving
strategy over the course of the design. This monitoring and evaluation is the role of
the HEO’s -- by examining the constraint violation history and providing input to
Viola’s decision-making process, the HEO’s help Viola to improve its decisions by
avoiding past mistakes and repeating actions that worked in the past. In this way,
Viola can also avoid unnecessarily undoing previous corrective actions. Combined
with the SAQ’s, the HEQ’s allow Viola to make an informed decision that is sensitive

to the current problem context.

Objective (c) states that Viola’s violation handling strategy should be flexible and
explicit. The reason for this objective is that a flexible and explicit strategy is more
readily understood and modified by others. Viola’s strategy is implemented by the
SAO’s, the HEO's and the meta-operators. The flexibility of the strategy stems from
the fact that the operators are independent and can be readily added or removed to
tailor the strategy. Whenever the plan proposal stage is executed, all active operators
examine the problem independently and cast their votes if they are relevant. The only
interaction between operators comes after the votes have been cast. This interaction is
controlled by the meta-operators; therefore, to understand how a new SAO or HEO
will interact with potentially many existing SAO’s and HEQ’s, it is only necessary to
be familiar with the relatively few meta-operators. By imposing this higher-level con-
trol on the HEO’s and SAQ’s, the meta-operators help to make Viola’s strategy more
explicit.

In combination with a flexible and explicit strategy, a clear separation of domain-
dependent and domain-independent knowledge, as stated in objective (d), makes it

easier to switch from one domain to another. Viola’s focus of attention and plan
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proposal stages are domain-independent. The severity ratings, bypass operators, pre-
cedence operatois, SAO’s, HEO’s and meta-operators are all applicable to any domain
where competing constraints exist and a choice must be made between action (i.e.
redesign) and inaction (i.e. relaxation). None of the knowledge in the aforementioned
system components makes reference specifically to area or delay constraints or to IC
design -- the knowledge refers only to constraints, competing constraints, the impor-
tance of those constraints and their violation margins. For example, SAO4 (from

Table 5.1) states:

If the violated constraint . : . r jtitor and the competitor’s ranking is greater

than the violated consti i:.i" - +»<j:. . ;, relaxation should be favoured.

This piece of knowledge is appucable to any situation where a constraint violation is
being resolved in the presence of a competing constraint. The only domain-dependent
knowledge used by Viola is the knowledge about which constraint types compete and
the knowledge used in the plan refinement and implementation stage. The knowledge
about which constraint types compete is represented in the identifyCompetingCon-
straints method of each constraint type and the cell redesign knowledge of the plan
refinement and implementation stage is represented procedurally. This clear separation
of knowledge types should allow transfer of the focus of attention and plan proposal
stages to a new domain by defining new competing constraint relationships and adding
a new plan refinement and implementation stage. If the new domain must choose
between courses.of action other than constraint relaxation and redesign, modification of
some of the SAO’s and HEQO’s may be required. An example of an alternate domain
is project scheduling. In this domain, manpower and time constraints compete and
constraint violations are resolved by either constraint relaxation or rescheduling. For
project scheduling, the focus of attention stage and the plan proposal stage should be

transferrable with little modification because rescheduling can be considered redesign



of the project schedule.

The problems that Viola was tested on were quite small. Objective () states that
Viola should be computationally efficient to be useful for large designs. The primary
means of achieving this efficiency in Viola is the focus of attention stage -- by narrow-
ing Viola's focus to a single constraint violation at a time, considerable computing
time is saved from an approach that attempts to resolve il constraint violations in
parallel. A similar means of increasing efficiency is t.e approximation of tracking
effects only on the highest ranked competitor in the plan refinement process. This'
increased efficiency should allow Viola’s approach to be used for larger designs; how-
ever, Smalltalk, being an interpreted envirionment, runs too slowly to be useful for
larger designs. This does not contradict the objective of computational efficiency. The
intent was not to develop a system that would be efficient in Smalltalk; rather, the
intent was to develop an approach to constraint violation handling that would produce
good results with a minimum of cor:jputation and would be efficient once translated to
a faster programming environment. Smalltalk was a very efficient environment for
prototype development, but a production quality system should be implemented in a

faster object-oriented system such as C++.

The final objective in Viola’s design (objective (f)) states that Viola should enable
an inexperienced designer to produce better designs in a shorter time and should
reduce the time required for an experienced designer to produce designs. Assuming
the author’s hand solutions to the problems in Chapter 7 to be the solutions of an
experienced designer, Viola succeeded in fulfilling this objective. Viola’s solutions to
the problems (including time for interactive reconnection of subcells) took an average
of 10 to 15 minutes. The corresponding hand solutions averaged 30 to 45 minutes.
This time saving will incr e with more complex designs and less experienced

designers.
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In summary, Viola is a flexible. efficient system that is capable of reasoning
about design tradeoffs while resolving area and delay constraint violations in IC
designs. It produces good designs at a considerable time saving and clearly separates
domain-dependent and domain-independent knowledge to allow transfer to other
domains. Despite these benefits, there are limitations to Viola’s approach to violation

handling. These limitations are discussed in the next section.

8.2.2. Limitations Of Viola’s Approach

The most difficult problem Vioia is required to resolve is the situation where two
equally important competing constraints are violated. The objective in this type of
problem is to balance the adverse effects on the two competing constraints. Viola uses
a heuristic approach (the 50% relaxation heuristic) to address this situation The
results could, however, be improved by better tracking of the effects of resolving a
constraint violation on any competing constraints. As each subcell replacement is
scheduled, the relative severity of the two constraints could be compared. If the com-
petitor becomes more severe than the constraint violation being handled, the redesign
process could be stopped and both constraints could be relaxed. This would produce a
more optimal balance between the two cormpeting constraints and would resolve them

both in a single violation handling pass.

The problem with directly implementing this approach stems from Viola's sever-
ity ratings system. In order to declare one constraim violaticn more severe than
another, the violated constraints and their competing constraints must be assigned
severity ratings and the precedence operators must be applied. The application of the
precedence operators is necessary because a comparison of constraint violation severity

must consider both the severity ratings of the violated constraints and the severity rat-
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ings of their competitors. Before assigning new severity ratings to the constraints, it is
necessary to reconnect each subcell (manually) and reevaluate all constraints. This
combination of factors makes implementation of the revised resolution mechanism
within the existing framework prohibitively time consuming. If, however, an
automatic reconnection facility were added to STEM and the procedures for reevaluat-
ing the constraint network were made more efficient, the added computing time
required to incrementally compare the two competing constraints may be justified

because both constraint violations could be resolved at the same time.

The quality of Viola’s solutions may also be reduced in some cases by the way
subcells are chosen for replacement in the plan refinement and implementation stage.
Viola currently takes a hill climbing approach to subcell replacement scheduling --
each subcell replacement is chosen based on a local comparison without any ovsrall
evaluation of the group of subcell replacements selected. Consider the example in Fig-
ure 8.1. An improvement of 10% is required in a violated constraint and three subcell
replacements are possible -- each with a different potential improvement in the violated
constraint and adverse effect on a competing constraint. With Viola's current hiil
climbing approach, subcell A would be scheduled for replacement first followed by
subcell B. The result would be an improvement of 13% and an adverse effect on the
competing constraint of 6%. An alternate best-first search might choose to replace
subcells B and C rather than A and B resulting in an improvement of 10% and an
adverse effect of 4%. In order for this alternate approach to be used without paying a
large penalty in computing time, an improvement to the subcell replacement selection
heuristic would also be necessary. The use of net benefit (improvement - adverse
effect) as a heuristic would have to be modified to include a penaity for excessive

improvement in the violated constraint.
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Subcell Replacement Alternatives

Replace Subcell A Replace Subcell B Replace Subcell C

Improvement: 8% Improvement: 5% Improvement. S%
Adverse Effect: 4% Adverse Effect: 2% Adverse Effect: 2%

Solutions Searched With Existing System (Hill Climbing)

- @ach branch indicates a subcell replacement considered
- bold lines indicate the subcells chosen for replacement

Improvemant 13% 13%
Pt s ieet £9% 6%

Sviviwts Searched With Revised System (Best-First Search)

Improvement 13% 3% 13% 10% 13% 10%
Adverse Effect 6% 6% 6% 4% 6% 4%

Figure 8.1. An Alternate Subcell Replacement Scheduling Approach

Viola also runs into a hill climbing problem in the focus of atte.tion stage -- the
serial methodology of selecting a single constraint violation and resoivirg it before
attempting to resolve other constrairt violations is the source of that problem. Because
Viola cannot predict the exact effect of resolving a constraint violation on other con-
straints, it doesn’t aiways make the best possible choice of which constraint violation
to work on. In fact, it sometimes creates bigger problems than the one it is trying to
solve. Since Viola has no backtracking capability, an additional redesign step is some-
times required to resolve the problem created by the first redesign step. The ability to

retract the previous violation handling step could be added to Viola at the expense of



76

storage overhead. Viola could retain a copy of the original design until a comparison

could be made to ensure that the state of the design was improved by Viola’s actions.

An extension to this idea of evaluating Viola’s decisions before; cornmitting to
them might be to generate a plan for resolving each constraint violation on the viola-
tion list and compare the state of the design resulting from each plan. Viola could
then simply implement the best plan. To fully determine the effect of handling each
constraint violation on the network, however, would require execution of the plan pro-
pesal stage and the plan refinement and implementation stage for each constraint viola-
tion on the violation list. In Viola’s existing framework, it would be necessary to
record the original design as well as the design resulting from resolving each constraint
violation. This would introduce a large storage overhead to the system; however,
modifying the system to record only the design changes actually maae in each case
rather than the entire design would alleviate the storage problem. The biggest problem
to be overcome in this alternate approach would be the extra computation required to
generate each solution for comparison. It seems that the best solution to this problem
may be to avoid the backtracking problem by improving Viola’s predictive capabilities.
In uetermining the most sev.re constraint violation, Viola looks at the importance and
violation maizin of competing constraints as a means of predicting the potential
adverse effects of handling a constraint violation. It may be necessary also to consider

the subcell replacements available when selecting the most severe constraint violation.

As described in the previous section, the ccmbinztion of SAQ’s, HEO’s and
meta-operators constitute a flexible and explicit violation handling strategy. There is,
however, some petential for knowledge to be lost or hidden through the use of opera-
tors. As with other rule-based knowledge representations, the knowledge represented
by the operators themselves is explicit, but the justification behind that knowledge may

not be apparent. This problem could be addressed by good documentation practices --



77

a justification field could be added to each operator in which the person adding the
operator would record a statement describing the reason behind the operator. It would
then be up to the person administering the system to ensure that anyone adding an

operator records the justification behind that operator.

Most of the limitations discussed in this section stem from the shortcuts taken by
“:cla for the sake of computational efficiency. As a result, resolution of the limita-
“ons will likely nave an adverse effect on efficiency. Any future research intended to
irnprove upon the work described in this thesis should look at more computationally
cfficient means of ai-essing these limiw:.v.... Additional suggestions for future

research are presented in the following sectio:.

8.3. Suggestions For Future Reserrch

In addition to making the improvements discussed in the last section, there are a
number of other possible directions for future rescarch to take. Some research topics
involve exhancements to Viola’s capabilities to make it applicable to a broader range
of problems and some involve incerporation of Viola with other design automation

systems.

In light of the fact that Viola was developed with the intent of being transferrable
to other violation handling domains, a logical extension of this research would be to
attempt such a transfer. Since the knowledge used in the focus of attention stage
(severity rating sytem, bypass operators and precedence operators) and the plan propo-
sal stage (severity assessment operators, historical evaluation operators and meta-
operators) is domain-independent, these two stages, which constitute Viola's decision-
making process, could be transferred directly to the new domain. The procedural

knowledge of the plan refinement and implementation stage would have to be replaced
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with knowledge appropriate to the new domain. An appropriate domain for applica-
tion of Viola’s methodology is any domain where competing constraints exist and a
decision must be made between taking corrective action (i.e. redesign) and ignoring the
problem (i.e. relaxation) to resolve constraint violations. Project s~heduling is a suit-
able alternate domain with considerable profit potential -- many corporations spend a
considerable amount of time and money on project scheduling. In the project schedul-
ing domain, a decision must be made between rescheduling and constraint relaxation to
resolve competing due date, manpower, cost and equipment availability constraints.
Other domains include large design or synthesis tasks such as the design of telephone
switching networks. This task involves selection of equipment from one or more
manufacturers to meet competing cost and performance constraints. As with IC
design, a decision must be made between relaxation and redesign to resolve constraint

violations.

Extension to other domains will require the addition of new constraint types to
Viola. Viola represents constraints as objects capable of sending and receiving con-
straint propagation messages, testing themselves for satisfaction, and identifying com-
peting constraints. In most cases, new constraint types wiil inherit the ability to send
and receive propagation messages and test for satisfaction; however, the competing
constraint types will have to be specified for the new constraints. In some domains,
ccmpetition between constraint types will be easy to identify as with area and delay in
IC design; however, not all competition will be this simple. To handie more complex
competition situations, a more sophisticated mechanism for representing competition
relationships will be required. An example of a more complex competition relationship
is the case where a system is being designed from a number of available pieces of
equipment with -nnstraints on equipment size, equipment performance and equipment

cost. In the absence of performance constraints, size and cost may not compete, and
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in the absence of size corstraints, performance and cost may not compete. A combi-
nation of a size constraint and a performance constraint will, however, compete with
any cost constraint. Perhaps, each competition relationship will have to be represented
explicitly in this way.

In wransferring Viola to any large, real-world domains, it will be also be necessary

to translate it into a more efficient programming language such as C++.

The first logical combination of Viola with another design automation system
would be to add an automatic reconnection facility to STEM. This would speed things
up greatly -- the user would no longer have to pause and manually reconnect any

replaced subcells after each redesign step taken by Viola.

An interesting research topic would be to use Viola in conjunction with a logic
synthesis system. The synthesis system: couli generate an IC cell from functional
specification without worrying about area and delay constraints. Viola could then go
through and redesign the generated cell as required to meet the design constraints. The
incorporation of a logic minimization system between the synthesis system and Vioia

would also help to produce a better final circuit.

Viola is a good prototype system for constraint violation handling. Incorporation
of any or all of the improvements mentioned should make Viola a useful system for IC

design and for other domains.
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Appendix I - Test Case Transcripts

Record Of Violation Handling For Test Case 1
Constraints:

TestCellA .area
- actual value: 40580.3
- constrained value: 38000.0
- importance: Very Important

TestCellA.delayFrominatoout
- actual value: 8.51e-8
- constrained value: 9.0e-8
- importance: Important

TestCellA.delayFrominbtoout
- actual value: 6.76e-8
- constrained value: 7.0e-8
- importance: Important

TestCellA.delayFrominctoout
- actual value: 7.81e-8
- constrained value: 8.0e-8
- importance: Important

Actions Taken By Viola:

Handling constraint: a MaximumAreaPredicate ( TestCellA.area )

- violation margin: 6.79023

- redesign list before MOs: OrderedCollection (SAO1 SAO3 )

- relaxation list before MOs: OrderedCollection (SAOS )

- redesign list after MOs: OrderedCollection (SAO1 SAO3 )

- relaxation list after MOs: OrderedCollection ()

- decided to redesign

- replaced subcells: Nand2B.4 (a Nand2B) Nand3B.3 (a Nand3B)
Nand2B.2 {a Nand2B) Nand2B.5 (a Nand2B)

Handling constraint: a MaximumDelayPredicate ( TestCellA.delayFrominctoout )
- violation margin: 11.125
- redesign list before MOs: OrderedCollection (HEOS SAO1 SAQO3)
- relaxation list before MOs: OrderedCollection (HEO3 )
- redesign list after MOs: OrderedCollection ()
- relaxation list after MOs: OrderedCollection (HEO3 )
- decided to relax

Handling constraint: a MaximumDelayPredicate ( TestCellA.delayFrominbtoout )
- violation margin: 10.5714
- redesign list before MOs: OrderedCollection (HEO6 HEOS SAO1 SAQO3 )
- relaxation list before MOs: OrderedCollection (HEO3 )



- redesign list after MOs: OrderedCollection ()
- relaxation list after MOs: OrderedCollection (HEO3 )
- decided to relax

Handling constraint: a MaximumDelayPredicate ( TestCellA.delayFrominatoout )
- violation margin: 1.22222
- redesign list before MOs: OrderedCollection (HEO6 HEOS SAO1 SAO3)
- relaxation list before MOs: OrderedCollection (HEQ3 )
- redesign list af:'er MOs: OrderedCollection ()
- relaxation list #fter MOs: OrderedCollection (HEO3 )
- decided to relax

VIOLATION HANDLING COMPLETE!
Results:

TestCellA.area
- actual value: 37660.0
- constrained value: 38000.0
- importance: Very Important

TestCellA.delayFrominatoout
- actual value: 9.11e-8
- constrained value: 9.11e-8
- importance: Important

TestCellA.delayFrominbtoout
- actual value: 7.74e-8
- constrained value: 7.74¢-8
- importance: Important

TestCellA.delayFrominctoout
- actual value: 8.89%¢-8
- constrained value: 8.8%¢-8
- importance: Important



Record Of Violation Handling For Test Case 2
Constraints:

TestCellA.delayFrominatoout
- actual value: 8.51e-8
- constrained value: 5.0e-8
- importance: Very Important

TestCellA.area
- actual value: 40580.3
- constrained value: 40000.0
- importance: Important

TesiCellA.delayFrominbtcout
- actual value: 6.76e-8
- constrained value: 5.0e-8
- importance: Important

TestCellA.delayFrominctoout
- actual value: 7.81e-8
- constrained value: 5.0e-8
- importance: Not Important

Actions Taken By Viola:

Handling constraint: a MaximumbDelayPredicate ( TestCellA.delayFrominatoout )

- violation margin: 70.2

- redesign list before MOs: OrderedCollection (SAO1 SAQO3 )

- relaxation list before MOs: OrderedCoilection ()

- redesign list after MOs: OrderedCollection (SAO1 SAO3 )

- relaxation list after MOs: OrderedCollection ()

- decided to redesign

- replaced subcells: Nand3B.1 (a Nand3B) InverterB.1 (an InverterB)
InverterB.2 (an InverterB) Nand2B.1 (a Nand2B) Nand3B.2 (a Nand3B)
Nand3B.3 (a Nand3B) Nand2B.3 (a Nand2B)

- also had to relax by 35.4

Handling constraint: a MaximumaAreaPredicate ( TestCellA.area )
- violation margin: 30.6539
- redesign list before MOs: OrderedCollection (HEOS SAO1 SAQ3 )
- relaxation list before MOs: OrderedCollection (HEO3 SAQS )
- redesign list after MOs: OrderedCollection ()
- relaxation list after MQOs: OrderedCollection (HEO3 )
- decided to relax

Handling constraint: a MaximumbDelayPredicate ( TestCellA.delayFrominbtoout )
- violation margin: 9.2
- redesign iist before MOs: OrderedCollection (SAO1 SAQ3 )
- relaxation list before MOs: OrderedCollection (HEO7 HEO4 )
- redesign list after MOs: OrderedCollection ()



- relaxation list after MOs: OrderedCollection (HEO7 HEO4 )
- decided to relax

Handling constraint: a MaximumDelayPredicate ( TestCellA.delayFrominctoout )
- violation margin: 34.2
- redesign list before MOs: OrderedCo!lection (HEO6 SAQ3 )
- relaxation list before MOs: OrderedCollection (HEO4 SAO2 )
- redesign list after MOs: OrderedCollection (HEO6 )
- relaxation list after MOs: OrderedCollection (HEO4 )
- decided to relax

VIOLATION HANDLING COMPLETE!
Results:

TestCellA.delayFrominatoout
- actual value: 6.77¢e-8
- coastrained value: 6.77e-8
- importance: Very Importunt

TesiCellA.area
- acmal value: 52261.6
- copstrained value: 52261.6
- importance: Important

stCellA.delayFrominbtoout
actual value: 5.46e-8

- constrained value: 5.46e-8

- importance: Important

TestCellA.delayFrominctoout
- actual value: 6.71e-8
- constrained value: 6.71e-8
- importance: Not Important



Record Of Violation Handling For Test Case 3
Constraints:

TestCellA.area
- actual value: 40580.3
- constrained value: 43000.0
- importance: Very Important

TestCeliA.delayFrominatoout
- actual value: 8.51e-8
- constrained value: 8.0e-8
- importance: Important

TestCellA.delayFrominbtoout
- actual value: 6.76e-8
- constrained value: 6.0e-8
- importance: Important

TestCellA.delayFromuictoout
- actual value: 7.81e-8
- constrained value: 7.5¢-8
- importance: Important

Actions Taken By Viola:

Handling constraint: a MaximumbDelayPredicate ( TestCellA.delayFrominbtoout )
- viclaton margin: 12.6667
- redesign list pefore MOs: OrderedCollection (SAO1 SAO3)
- relaxation list before MOs: DrderedCollection ()
- redesign list after MOs: OrderedCollection (§SAO1 SAO3 )
- relaxation list after MOs: OrderedCollection ()
- decided to redesign
- replaced subcells: Nand3B.1 (a Nand3B) InverterB.1 (an InverterB)
Nand3B.2 ¢a Nand3B)

Handling .onstraint: a MaximumAreaPredicate ( TestCellA.area )
- violation margin: 7.53118
- redesign list before MOs: OrderedCollection (HEO12 HEO5 SAOI SAO3)
- relaxation iist before MOs: OrderedCollection (SAOS )
- redesign list after MOs: OrderedCollection (HEO12 HEOS SAO1 SAQO3 )
- reiaxation list after MOs: OrderedCollection ()
- decided to redesign
- replaced subcells: Nand2B.4 (a Nand2B) Nand2B.3 (a Nand2B)
Nand2B.1 (a Nand2B) InverterD.1 (an InverterD)

Handling constraint: a MaximumDelayPredicate ( TestCellA.delayFrominatoout )
- violation margin: 8.75
- redesign list before MOs: OrderedCollection (SAO1 SAQ3 )
- relaxation list before MOs: OrderedCollection (HEO3 HEO7 )
- redesign list aftsr MOs: OrderedCollection ()



- relaxation list after MOs: OrderedCollection (HEO3 HEO7 )
- decided to relax

Handling constraint: a MaximumDelayPredicate ( TestCellA.delayFrominbtoout )
- violation margin: 7.33333
- redesign list before MOs: OrderedCollection (HEO6 HEQ5 SAO] SAO3)
- relaxation list before MOs: OrderedCollection (HEO3 HEO13)
- redesign list after MOs: OrderedCollection ()
- relaxation list after MOs: OrderedCollection (HEO3 HEO13 )
- decided to relax

VIOLATION HANDLING COMPLETE!
Results:

TestCellA.area
- actual value: 42770.5
- constrained value: 43000.0
- importanca: Very Important

TestCellA.delayFrominatoout
- actual value: 8.7¢-8
- constrained value: 8.7¢-8
- importance: Important

TestCellA.delayFrominbtoout
- actual value: 6.44e-8
- constrained value: 6.44e-8
- importance: Important

TestCellA.delayFrominctoout
- actual value: 7.4e-8
- constrained value: 7.5e-8
- importance: Important
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Record Of Violation Handling For Test Case 4
Constraints:

TestCellA.area
- actual value: 40580.3
- constrained value: 50000.0
- importance: Important

TestCellA.delayFrominatoout
- actual value: 8.51e-8
- constrained value: 6.0e-8
- importance: Important

Actions Taken By Viola:

Handling constraint: a MaximumDelayPredicate ( TestCellA.delayFrominatoout )

- violation margin: 41.8333

- redesign list before MOs: OrderedCollection {SAQ1 SAO3 )

- relaxation list before MOs: OrderedCollection ()

- redesign list after MOs: OrderedCollection (SAO1 5A403)

- relaxation list after MOs: OrderedCollection ()

- decided to redesign

- replaced subcells: Nand3B.1 (a Nand3B) InverterB.1 (an InverterB)
InverterB.2 (an InverterB) Nand2B.1 (a Nand2B) Nand3B.2 (a Nand3B)
Nand3B.3 (a Nand3B) Nand2B.3 (a Nand2B)

- also had to relax by 12.8333

Handling constraint: a MaximumAreaPredicate ( TestCellA.area )
- violation margin: 4.52313
- redesign list before MOs: OrderedCollection (HEO5 SAO1 SAQ03)
- relaxation list before MOs: OrderedCollection (HEO3 )
- redesign list after MOs: OrderedCollection ()
- relaxation list after MOs: OrderedCollection (HEO3 )
- decided to relax

VIOLATION HANDLING COMPLETE!
Results:

TestCellA.area
- actual value: 52261.6
- constrained value: 52261.6
- importance: Important

TestCellA.delayFrominatoout
- actual value: 6.77e-8
- constrained value: 6.77¢-8
- importance: Important



Record Of Violation Handling For Test Case §
Constraints:

TestCellA.area
- actual value: 40580.3
- constrained value: 39000.0
- importance: [mportant

TestCellA.delayFrominatoout
- actual value: 8.5le-8
- constrained value: 9.0e-8
- importance: Important

Actions Taken By Viola:

Handling constraint: a MaximumAreaPredicate ( TestCellA.area )

- violation margin: 4.05202

- redesign list before MOs: OrderedCollection (SAO1 SAO3 )

- relaxation list before MOs: OrderedCollecucn ()

- redesign list after MOs: OrderedCollection (SAO1 SAO3)

- relaxation list after MOs: OrderedCollection ()

- decided to redesign

- replaced subcells: InverterB.3 (an InverterB) Nand2B.2 (a Nand2B)
Nand2B.5 (2 Nard2B) Nand2B.4 (a Nand2B)

VIOLATION HANDLING COMPLETE!
Results:

TestCellA.area
- actual value: 38572.6
- constrained value: 39000.0
- importance: Important

TestCell A .delayFrominatoout
- actual value: 8.51e-8
- constrained value: 9.0e-8
- importance: Important

89



90

Record Of Violation Handling For Test Case 6
Constraints:

TestCellA.area
- actual value: 40580.3
- constrained value: 40000.0
- importance: Important

TestCellA.delayFrominatoout
- actual value: 8.51e-8
- constrained value: 8.0e-8
- importance: Important

Actions Taken By Viola:

Handling constraint: a MaximumDelayPredicate ( TestCellA.delayFrominatoout )
- violation margin: 6.37501
- redesign list before MOs: OrderedCollection (SAO1 )
- relaxation list before MOs: OrderedCeiieciion ()
- redesign list after MOs: OrderedCollection (SAO1 )
- relaxation list after MOs: OrderedCollection ()
- decided to redesign
- performed 50% relaxation
- replaced subcells: Nand2B.1 (a Nand2B)

Handling constraint: a MaximumAreaPredicate ( TestCellA.area )
- violation margin: 4.18852
- redesign list before MOs: OrderedCollection (HEO5 SAO1 SAO3 )
- relaxation list before MOs: OrderedCollection ()
- redesign list after MOs: OrderedCollection (HEOS5 SAO1 SAQ3 )
- relaxation list after MOs: OrderedCollection ()
- decided to redesign
- replaced subcells: InverterB.3 (an InverterB) Nand2B.2 (a Nand2B)
Nand2B.5 (a Nand2B) Nand2B.4 (a Nand2B)

VIOLATION HANDLING COMPLETE!
Results:

TestCellA.area
- actual value: 39667.7
- constrained value: 40000.0
- importance: Important

TestCellA.delayFrominatoout
- actual value: 8.21e-8
- constrained value: 8.255¢-8
- importance: Important



Record Of Violation Handling For Test Case 7
Constraints:

TestCellA.area
- actual value: 40580.3
- constrained value: 40000.0
- importance: Important

TestCellA.delayFrominatoout
- actual value: 8.51e-8
- constrained value: 7.0e-8
- importance: Important

TestCellA.delayFrominbtoout
- actual value: 6.76e-8
- constrained value: 6.5e-8
- importance: Important

TestCellA.delayFrominctoout
- actual value: 7.81e-8
- constrained value: 7.0e-8
- importance: i.aportant

Actions Taken By Viola:

Handling constraint: a MaximumDelayPredicate ( TestCellA.delayFrominatoout )

- violation margin: 21.5714

- redesign list before MOs: OrderedCollection (SAO1 )

- relaxation list before MOs: OrderedCollection ()

- redesign list after MOs: OrderedCollection (SAO1 )

- relaxation list after MOs: OrderedCollection ()

- decided to redesign

- performed 50% relaxation

- replaced subcells: Nand3B.1 (a Nand3B) InverterB.2 (an InverterB)
InverterB.1 (an InverterB)

Handling constraint: a MaximumDelayPredicate ( TestCellA.delayFrominctoout )
- violation margin: 1.7143
- redesign list before MOs: OrderedCollection (SAO1 )
- relaxation list before MOs: OrderedCollection (HEO7 HEO4 )
- redesign list afir MOs: OrderedCollection ()
- relaxation list after MOs: OrderedCollection (HEO7 HEO4 )
- decided to relax

Handling constraint: a MaximumAreaPredicate ( TestCellA.area )
- violation margin: 16.0523
- redesign list before MOs: OrderedColiection (SAO1 SAO3 )
- relaxation list .fore MOs: OrderedCollection (SAOS )
- redesign list after MOs: OrderedCollection (SAO1 SAO3)
- relaxation list after MOs: OrderedCollection ()



- decided to redesign

- used 50RH to relax by 6.80936
- replaced subcells: Nand2B.2 (a Nand2B) Nand2B.4 (a Nand2B)
Nand2B.1 (a Nand2B) Nand2B.3 {(a Nand2B) InverterD.2 (an InverterD)

Handling constraint: a MaximumDelayPredicate ( TestCellA.delayFrominatoout )

- violation margin: 8.57511

- redesign list before MOs: OrderedCollection (HEG6 HEOS SAO1 SAO3 )
- relaxation list before MOs: OrderedCollection ()

- redesign list after MOs: OrderedCollection (HEQ6 HEOS SAO1 SAQ3 )

- relaxation list after MOs: OrderedCollection ()

- decided to redesign
- performed 50% relaxation

- replaced subcells: InverterB.1 (an InverterB) Nand2A.3 (a Nand2A)

Handling constraint: a MaximumDelayPredicate ( TestCellA.delayFrominbtoout )

- violation margin: 1.07693

- redesign list before MOs: OrderedCollection (SAO1 )
- relaxation list before MOs: OrderedCollection (HEO7 )
- redesign list after MOs: OrderedCollection ()

- relaxation list after MOs: OrderedCollection (HEO7 )

- decided to relax

Handling constraint: a MaximumAreaPredicate ( TestCellA.area )

- violation margin: 5.23602

- redesign list before MOs: OrderedCollection (SAO! SAO3)

- relaxation list before MOs: OrderedCollection (HEO7 HEO4 SAQS )
- redesign list after MOs: OrderedCollection ()

- velaxation list after MOs: GrderedCollection (HEO7 HEO4 )

- decided to relax

VIOLATION HANDLING COMPLETE!

Results:

TestCellA.area
- actual value: 44960.8
- constrained value: 44960.8
- importance: Important

TestCellA.delayFrominatoout
- actual value: 7.84e-8
- constrained value: ¢ 3875e-8
- importance: Important

TestCellA.delayFrominbtoout
- actual value: 6.57¢-8
- constrained value: 6.57¢-8
- importance: Important

TestCellA.delayFrominctoout
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- actual value: 7.12e-8
- constrained value: 7.12¢-8
- importance: Important
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