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ABSTRACT -
In this thesis, we mainly deal with Chebyshevian splines, and in&rpolat.ion by
Chebyshevian splines. l’olynomihal splines and/interp()lation by pqun()nliiil spli{ws
<were given a unified and extensive treatment in the book‘Birkhoff Interpolation,
written by G.G. Lorentz, K. jetter and S.D. R‘iemenschneider [1]. The rslain purpose
of ()ur. investigation is to .carry the theory of Birkhoff splines and Birkhoff spline
interpolation as pr;!sented in [1] over to Chebyshevian splines.
\ »

In the first part of the thesis, from Chapter One to Chapter Seven, we discuss
the Birkhoff kernel for Birkhoff inter/polatign by extended complete Chel)yshev-ia,n
systems. We also investigate Chebyshevian splines based on an interpolétionfma—
trix, and the zeros of Chebyshex’nan splines. We get similar results to ones obtained

@3 ’
in Chapter seven of the book Birkhoff Interpolation for algebraic polyn(imial inter-
polation. l

The Second part of the thesis consists of Chapter Eight through Eleven. We
disc.uss the generalized si)line interpolation mat;x. In these tCHapters‘, we depart
from the book Birkhoff Interpolation in two ways. Not only\ do we carry of{t the
analysis for Chebyshevian splines, but we also permit one-sided interpolation- af the

knot points when the splines are permitted to have a jump disco'ntinuiﬁy at these

points, And we get the generalized Goodman Theorem.

iv
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Introduction

Over the past more than twen‘ty years, the concept of a polynomial spline has
been generalized iy many ways, resulting in many kinds of splines. (fh(‘by:s;hvvim\
spjnes are of particular i’nterest, because they have almost all of the nice proper-
ties of the classical polynomial splines. Interpolation of functi(>n§ is a much older
topic, but it too has seen rapid development in the last twenty years. Polynomial
interpolation and interpolation by polynorﬁial splines were given a unified and ex-
tensive treatment in the book Birkhoff Interpolation, written by G. G. L()r(‘nt.z,.K.
Jetter, and S. D.-Riemenschneider [1]. The main purpose of our investigation is to
carry the theory of Birkhoff splines and Birkhoff s’pline inte.rpolati(m as presented in
[1] over to Chebyshgvian splines. Interpolation by Chebyshevi;n splines and other
generalized splines has been treated by many authors, for example L. L. Schumaker
(2], but not in terms of the general theoryv presented in [1].

In Chapters 1 and 2, we introduce extended\complete Chebyshev systems,
a concept which generalizes the polynomie;.ls while retajning many of their nice

properties. We give some of their basic properties that will be necessary for our
<
investigation. Most of these properties are proven in |2, Chapter 9] where a much

more extensive treatment can be found. Also in Chapter 1, we define an .interpo-
lation matrix and some other basic concepts from Birkhoff intérpolation. Birkhoff
interpolation is the interpolation function and derivative values at a set of points

in a pattern that is described by the matrix.
\



Chapter 3 is devoted to the potion of a Birkhofl kernel for BirkhotT interpola

tion by extended complete Chebyshev systems. We get similar results to the ones

obtained in |1, Chapter 7] for algebraic polynonmal interpolation.

Chebyshevian splines based on sn interpolation matrix are introduced in
Chapter 4. The Chebyshevian splines are piecewise Chebyshevian polynomials,
i.e. they are piecewise linear combinations of functions from an extended complete
(fh’('l)y.sjh(-v systemn connected at points called knots. 'l‘ho-(‘()nt,inuity conditions at
the knots are dvi(‘rminvd by the matrix. Most previous ('(msid("mt.i()ns of Cheby-

_shevian sphines correspond to special types of matrices called Hermitian matrices.
We compare our definition in this last case to the old one as given in [2].

In Chapters 5-to 7, we discuss'the zeros of Chebyshevian splines. Actually,
we get the same theorems as in [bl, Chapter 7|, althoﬁgh we use the more general
notien of splines. Most proofs of these theorems can be done by checking the proofs
of the corresponding theorefns in [1] essentially word by word once sorme properties
about extended complete Chebyshev systems are known.

The second part of the thesis c()_lis‘ists of Chapters 8 through 11. We discuss
generalized Chebyshevian spline interpolation by introducing a generalized sp‘lim*

’ i
mterpolation matrix. Ih these chapters we depart froxgx the book [1] in two ways. Not
only do we carry out the analysis for Chebyshc;viaﬁ sélinesc: but we also permit one-
sided in;terpolation at the knot points when the splines are permitted to have jump

discontinuities at these points. We succeed in carrying this through far enough to

obtain the analogy of the most general theorem known the well-poisedness of spline

. "
- L4



interpolation, the theorem of Goodiman I the tinal chapter. we present the notion

of duality for our generalized spline mterpolation, and prove o duality theorem.



/ " CHAPYER |1
BASIC CONCEPTS AND NOTATIONS
,
In this chapter, we introduce some basic concepts and notations. Given posi-
N
: Ly
tive functions w, ¢ (N 41 [a 8], 1 1,2,‘ ., IV, détine
up  wy(r)
. I
l us u) (I)/ U)z(.’iz) (152
a

~/

z . % SN 1
up wl(r)/ wy (s2) / '/ S wy(sn)dsy .. dsy.
a a @

.

From the reference book [2], we know these functions are the can()n1('al:_r(*pr(*svn—

tation for an extended complete Chebyshevian- (ECT) system on [a,b]. We shall
)

write Un for both the system {u,}f\(l and its span. For emphasis, a linear combi-

, <N . . -
nation u, }_‘}, , @,u; with real number a, will be called a Upn-polynomial in the
4

FLCL-system Un.

A matrix
E o esx koo m > 1, n>'0, (n=N 1),

f® an interpolation matrix, if its elements e, x are 0 or 1 and if the number of 1's in
I .is equal to N, that is |E| = e, x = N. In general, we do not allow empty rows,
N )
that is, an t for which ;4 =0,k =0,1,...,n.
A set of knots X = .{xl, ...,Zm} consists of m distinct points from an interval

[a,b]. The elements E, X,Uy and the data (c,x) (defined for e;x = 1) determine

-



a Birkhoff interpolation problem which s to find an unfque Up polynomial 5 that

satisfies - f

o

/

and

L.f D Dyf. (1.3)

, ¢

JThe system (1.1) consists of N linear equations with N unknowns a,. The
pair E, X, is called regular if the equations (1.1) have an<|{nique solution for cach

given set of ¢, x, otherwise the pair I, X is singular. A pair £, X is regular if and

)

D(E,X) - det [Lyui () Leun(z);  ewx 1]‘ (1.4)

|

1s different from zero.

only if the determinant of the system

A matrix is a regular interpolation matrix, if th pair £ X is regular for each
set of knots X C [a,b]. We call an intor‘polation matrix normal if it has as many
V’s as columns.

‘Formula (1.4) displays only one row of the déterr;xinant, namely, the row corre-
Spo’\g to a pair (7, k) with e,y = 1. We order the pairsin (1.4) lexicograghicél‘ly;
the pair (1, k) precedes (i’,k’j ifandonly if i < ¢ or i = 1" and k < K. By A(E, X)

we -dQ;\ote the N x N matrix that appears in (1.4).

L



(i« 1) interpolation maties Fhenomyg AN

' columns A and
-

nntnber of

Al \ Ty NN ok
e “ A E—
koo A0 1

v thesmmber of s o columns of F nambered 01, r o For normal mﬂ*ﬁl’«‘n‘ the

}'umhlnm
L/ M, r v 1. r 0. 1.2, " (t

i~ called the Polva condition Then automatically, M, nov 1 Subtracting ths

from the yvnequality (15) we see that for normal matrices (15) s equnalent to

\ iy - ontr, r 0. 1.2, o (16l



cHAPTER 2
PROPERTIES OF Folm SYSTIRNMS V4

In this chapter we will give some basic properties of FC T syatems Some ol
N

‘)

¢
them are trom

Lo we ot the prool of those theorems

Theorvem 2.0 Suppose that f, [, S are given real numbers Then for an

e lalhy there exints an umique member w of Us such that

{ u(c) /.. 1 0.1 N 1
Proot- 1et
u [ASRIETENS S R PaNun
Since
J 0. A
L (c) Do (e). it A ! L.
l 1w () [ J BRI (sxv2) ey (s, ) ds, dasgoy o b A L.
) -l 3 . '
the N« NV coethicient matrix for the system of equations
/,ku((‘) /k‘ k (),'- ,A\rv -1
in the unknowns ay. ... o~ s upper triangular with diagonal elements a,, uy (o)

. . . N vy
Hence, the determinant of this system equals [ | w, (¢} - 0. This completes the
proof of uniqueness. 1

Define

9,(7,9) {h’(r’y)’ Ty i (2.1)

0, otherwise



ASY h1‘ll'

he(riy) "'1(’)/ YH:(_'\:)/ ‘ / TON N T din

Theorem 2.2 Let ho l,l[u‘b] and suppose [, PN are ginven teal numibers

Lt u be the unique member of Upny such that
Lou(a) f. ! 0.1, N 1

Then
&

flr) u(r) / an (1 u)h(v) dy

s the unique solution of the mitial-value problem

Ly f(r) h(r) o la b

L, f{a) f. 1 0,1, N 1

Proot |2] Page 376 Theorem 9.15. |

Theorem 2.3, Suppose that Ly f« Lila, bl then for alla - o b

b
S{r)  ug(r) s / gn(r.y) Ln fy) dy

where ugis the function in Uy such that

4 )

Liug{a) Lyf(a) o 0,1, N

Proof: {2] page 375 Theorem 9.16. 1

Now we introduce a dual set of functions associated with a canonical KCT-
)

system {u, N Given u,,---,uy defined as in the beginning of the Chapter 1,
1 N g



L)

with the weight functions wy, wea, we detine the dual canontcal O systen

(o
A
o Can .
Uy / wa(sn) / : / wo(sy)dsy o dsy
AT S [}
Associated with this dual £ T system, we have the operators
L DDy ¢ 0L N, (2 3)
where DS f f and
i 1 . . .
D, Dy, 1 1.2, N “ (1)
AN 1]

Clearly, span {u] }:V,l i~ the null spaec of Ly, and

Given an ECT system Upn and its dual canonical F/CT system Uy asan (2:2),
. .

we define their jth reduced systems, 3 0,1, N 1, by

u],l : IUJ,I(I) !
I

Ujzz = Wy (I)/ w]+2(5102)d3)02
a

¢

p 4 3542 SN 1
u;N-; (1) j.wﬂl(r)/ w102(5102)/ / wn (sn)dsn - dsyiz,
’ ’ : ’ (2.5)
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for Un, and

R .
u;'._. / N 7 (h"\' 7 )({AN 7
@
I AN Sy ”
”;,N , (r) / wn (s )/ / wy(se) dsy - dsy
13 @ Ja

for Uy Note that when )

(2 6)

0 the reduced systems are just the original systems.

A very useful formula that involves the reduced systems is

s 0 ‘
e (I)/ / : / “/"(.\])-‘A'U',.'J (sp42 ) dsy - ds e
v v v
J

Yoy

v ortl

S L N

A proof of this appears in |2, p374]. It is proved by using the following cquation,

not proven in {2}, which will also be used later.

o

y Sra2 1 - »
/ / / w(sy)) Wiy (Sey2)dsy o dspyg
1} v y
, v RS Set
('’ : / / / Wy g (Srv2) - wy(sy) dspe oo dsy.
a a [43

Proof:(cf [2] page 375) We prove it by induction. For ;7 r 2 1T we have

Theorem 2.4. Forr t 2 7 1,

v Srt2
/ / Uy 3 (5r+3 )“’r+2 (5r+2 ) dsy 43 dsr 2
a Jy .

a Sr2 N
- / / Wy 43 (Sr +3 )wr+2 (3r+2 ) ds,y3 ds,y2 . -
y y

. y Sr+3
. - ("l)/ / Wy 43 (Sr43)wry2 (Sre2) dSrezdsryr.
a a



Wesuppose that for ) v 2 &, the result holds and prove it foryp v 2 k|
)

It

v ~ R 42 frp2eA
A / / / Wik 3 (Svoko:x ) ’“’vox(-\'voz)d-\'uko:x e 4/-*y.;’
ol y y

Further, suppose that

{3 oo

Iy W
Wr k2 (srfko'z)/ Weiky3 (579k¢.’l)‘15rok+3 “':,k,g(~"roko'z)-
v

~

Then - N

! - v DY W fewy
( l) / / // "’rQY(-*voz)"'Il';,k,z (**roke‘z )‘1-"792 s
[¢3 a a
X v Seake oy
(1) / w;.k” (Sriki2 )</ / Wy (Sepz )
a @ ‘ a

&

“Weyk (Sevkg )‘fsro‘z Cdse ke >‘1~*r¢k92

X y RERY XY RN NN
(1) / Weyky2 (Sriks2 )/ We ks (Srinvs ) dse ks </
a y 23
Sr43
/ u/rf'z(SrQZ)”"wrikOl (Srfk#l )(lSVQ'Z "‘d-s‘rfkol >{lsroko;‘
a .

We consider

Stk
Wy 4 k42 (S,*k+2 )/ Wy 2 (S,*z)"‘u},4k§l (S,,k,] )(lS,yz "'(IS;Okol

a

-

as a funct'i\on of s; k42 and use the result for 7 - r 2. 1 to obtain

. °

A - ' -

x y Sr4k+3 3r 43 .
(ml) 1 / / / Wy 42 (5r+2)"'wr+k+3 (51+k+3 )d5r42 coedsy kg
a Ja a

This completes the equality. §



For the dual £ system Uy, we also need functions q;(_r,y) and /1;(}\‘1/)

correspouding to g, (r,y) and h,(r.y) for the system Un:

. hi(r,y), v -y )
. 7 : : 2.8
“ (r.v) { 0, otherwise” (2.8)

where

I Tl ‘;N !
h]‘(f\.’/) ”’;H(I)/ / / 11’;\/(3[\/)~~«11)],2(s],2)(l,s'N-»-ds],;u
v y v

b, we have

Theorem 2.5 YFor all r and y, a -y -
] -
hy(r,y) ZJ w () une o v () D ;LN .
[ | . . o
and -
N
. = -~ N
) > w s ek @0 DY LN
LI A .
- [}

Moreover, for each fixed y,

0,1,....; 1, ;

[,((l)q](r,y”l Y o 1;1)](;/) 1

and for each tixed r,

Lo, . b (DN kol

Proof: [2] page 374 Theorem 9.13. 1.
For the determinant

I«kul(In) “'[/kUN(l‘z); €1,k

D(E, X) - det

-

and
ui(z) - wn(Jw‘)/azwzv'(sz)/aﬂ2 "'/‘:H wi(s) ds; - - dsy

we can consider D(E, X) as a function of a sometimes. To emphasize that D(E, X) ;

is a function of a, we denote D(E,X) by D(E, X),.

.o
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Theorem 2.6. The determinant

where Lyu (r)  Lyu,(r}, and

Liu(r)s
0, N

117,(1),

W 41 (I)ful .

15 wrdependent of a.

N

we have

D(E,X)

det | Lyuy(r,) - Lyun(r,), Coi 1

ik o,
itk 1 1.

-ﬁ:' ' Wiyo (Spy2 ) w(s)dsy - odsgye, ik 1,

b
(:"(u) /
af{u)

Therefore, if kK <« 1 1

dlgu, (1),
da

I B
Wk 41 (T)/ Wk 42 (Skn )
a

d

and is O otherwise. The second term of the above formula is 0, so that

d

Wk+1 (I)/ u”k+2 (5k+2 )(‘i;

d fkop2 L
B {/ Wk 3 (sk +3 ) o / ur, (31) (13: o dsko.'& (l.ﬂk.z
a a a .

w1 (2)wkz (@) /

Proof: First we notice that for -

bu) . \
(i (u) / flr u)dr _ z

fi(z,u)dr v f(b(u), u)b'(u)  fla{n). u)a'(n)

%

a KR
wkﬁg(SkL‘;)"'/ wy(sy) dsy - dskey,
a

a N

A\

Sk42 Mg
[/ W43 (sk+3)~-/ wy(s,) dsy - dsgys {dsky2
< a a



11
when A - 1 1 Continuing this process, we gel
'(ll,ku,(f),, { 0, , f k-,
da w, (a) Ly u, p (), bk 1 \
- w, (a) Lgw, | (1)

J)r D(F, X), we compute the derivative with respect to a for the ath column
w, (a),

- 0. The derivative of each column is the proceding column multiplied by

. . N . d(INE,X rs -
and the derivative of the first column is 0. Hence, ()ﬁdl; ) 0. Therefore,

D(FE, X) is independent of a.

As a consequence of this Theorem and its proof, we note the following:

Corollary 2.7. If w is an Upy-polynomial on an interval [c,d] < la, b] and w has
more than N 1 distinct zeros in |c,d|, then u - 0.

Proof: Suppose that o - zn are distinct zerosof u aqup t -t anun

where Un - uyp, . .., upn 1S an\(i‘)(f'llsys&cm with weight functions wy(z), .., wp (z).

The determinant for the system of equations u(x,) - 0,1
det [ul (z.) - -un(z); ¢ -1, N»}

By Theorem 2.6, we may replace a by z; in the definition of u, in this determi-

nant. The first row of the resulting determinant is w,(z;),0,...,0. Hence, the
determinant equals
u2(x2)11 o uN(IZ)Il
wy (z1)det : :
ug(zn)z, - un(ZN)a

The same argument as in Theorem 2.6 shows that t}\e remaining determinant is

independ}:nt of z;. Therefore, we may continue this process to find that the deter-

A

minant of our original system is Hﬁl wy(z;) > 0. 1

.
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CHAPTER 3
HIRHI,\'()FF‘S KERNEL FOR ECT-SYSTEMS
In this chapter we discuss the Birkhott kernel for ECT systems. The pre

sentation follows closely that of [I, Chapter 7], but the details are quite different.

Let

[ PN,

.
vt 1k O ’
3

be a normal interpolation matrix with 0’s in the last columun, and let X

{(1 Fa

R b} be an arbitrary set of knots. We assume that o,

N IR S BN
the determinant D(#£, X) defined in (1.4), we replace the entries in the last column

by the element Lggn 1 (z,,t). The resulting real function

h’[.;()\’,f) K([)

det [Lyui(z,) - Lxuny 1 () Lagn 1(1,,!), ek 1

is the Birkhoff kernel associated with £, X and Uy . The Birkhoff kernel will be a

Chebyshevian spline (sce Chapter 4) for the system U},

Theorem 3.1. (Properties of Birkhoff kernel) Let £ be anm > n, (n N 1),

A
normal interpolation matrix with O’s in the last column and let X

{a -

-+ < Iy < b}. Then Birkhoff’s kernel

&

KE(X,t) = det Lkul(z‘) - Lgupn.g (I‘) Lign (.’L',,t), €k 1

has(the following properties:

a. Kg(X,t) is a Uy _, -polynomial on each int/rval (zi,...,Zi41), ¢ 1,...,m 1,

?

15



and /,‘;(‘) Kp(N,rpt) / [/;(!) Kp(X, 1o ) is possible only if ey 1, U oand
l):,n. I g (\) / (), where
Din 1oy (X)) detfLyug(z) - Leun 1 (n); en 1, L S

-

b. su;:p[l\'[.;(.\',t)lk [ry, Tl
;..
j/" wn (OKE (N, O dt D(FE,X).

. If E s not a Polya matrix, then Kp: (X, t) 0.
L ]
Proof: a. By the definition of Kg(X,t) and gy 1 (z,t), and evaluating the
J ‘ i
determinant by the last column, we know that Kg (X, t) is the sum of the
thy 1w gn 1 (z,t) det [ Lyuy(z,) - Leun. g (20);

oA

R

ek 1, 1 f kA1 K

for ey L

Since each Ln 1 v gn 1 (74,t) is a pilecewise continuous Uy | -polynomial

with knots z;,.. ., z,, and L, | x» gn 1 (zy,t) € Up_, on each interval (z,,1,,,),

we have that Kg(X,t) isa Uy , -polynomial on each interval (zy,z,41), 1~ 1t

It is clear that 1,;“) Ke(X,z,t) £ I:;(t) Kg(X,z, -) only if there is not equal-

ity ast »zx,t andt » 1, - in one of the terms of the form
LyLn-1-k gn-1 (20,8) Din-1-k (X)
for esn-1-x = 1. If k < gq, we ha\"e

L;(') La_y-k gn-1 (7i,t) =

N-1- . : =y ~
{EN—:—Z Uki—k (Ii)uq’N_q_,‘ (t)(—l)N oift <y
0, ‘ otherwise,



and /,;(() Lo v 2 gn (1 t) 800 A - g Theretfore,we have

ot .
I/q( ) Iln 1 kYN 1 (‘riw-’-! *) Ilq({) I'n 1k YN (-I|\~r| )

it -y

. L,
[/q({) I'n 1 & IN 1 (Il‘t) { 0

otherwise
Therefore, 1,‘“) Kp(X,r0t) / 1,;(() Ke (XN, r, ) is possible onlyaf c',_% 1y band

Din 1 ¢ (X) £0. \
’ o . N
b. If ¢ < 1, by using the same argument as in Theorem 2.6, for arbitary real

N

values y the determinant

/

K () : det [I,ku](r‘)y- Lxuny (1) Lkgn 1 (1t ok 1
, )

is independent of y where
’

I O
ux(f)y : wl(r)/ wo () / wy (s, )ds, - dsy.
1 y

So that K, (1) Ke(X,t). If we choosey t,if t « x, for all 1, we get that the

-

]

last column and the second to last column of the determinant are identical. Hence

Ky (t) =0 - Kg(X,t). Ift - x,, the last column of Kp(X,t) is all zeros.
vt g

That completes the proof of b.

c. By Theorem 2.4 we get,

I z, 2, %12
[ wntsgn st~ [Conten = [
z) 1 ¢ .

SN -1
/ w1 (SN-1) Wiz (Skez ) dsnry - dskya dl
t

z, t SN -1 Sk 43
= wryr (z4) (- I)N'k / / / / wn(t)wy 1 (sy 1)
[ Iy I, I, z

1

c Wk (5k+2)d5k+2 coedsy oy dt.



Using Theorem 2.4 again with sy {, we get

777]
/ wn () Legn 1 (1., t) dt
I .

z, v
“’kn(f:)/ / wN(sN)---wk,z(sk,z)(lsN-'-ds“g
) Iy P

Lyun(r,).

Therefore,
)
/ wN(t)K[q(,\’,l) dt / wN(t)KE()(,t)d[
(A 9] 1) .
det {Lguy(x,) - Lyun o (1) / wn(t)Legn 1 (x.,t)edt; €1k 1
1)

dvt[l,ku,(f,)~-[,kuN'l(r,) Lyun(z,), ex 1

D(E, X).

d. If £ is not a Pélya matrix, then let r, 0 < r << N 3, be the first integer for

which M, L By rearranging the rows, we get
rtl N 1
S~
M,
Kg(X,t) - det
0 * }N M,

This shows that K vanishes identically. I

Theorem 3.2. Let K be an m x N normal interpolation matrix with O’s in the

last column, and let X = {a = ) <Ip << Iy e b}. Then for all f such/that

Ly f€ Lyla,b we have

Im

Z D (X)L f(zi) =/ Ln-y f(t)Ke(X, 1) dt,

ek =1 a2

Py



~
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where Dy (X) denotes the algebraic complements of the entrios of the last column

of the determinant defining K (X, t).
A}
2

Proof: Since Ly 1 f ¢ Lya,b], by Theorems 2.1 and 2.3, there s uy o Un

such that
In

f(r)  uy(r) / gn i lrw) by () dy

1

Therefore, /

>
ug(r) caw(r) b oN TuN 1 (1)

and
Lif(z) | g YA !
af(x)  Lrug(r) Ly gn v (mv) Ly S () dy

“a

Hence,

L\I)hk (X)Lxf(2,)
ek L

det | Lyuy(x.) - Lxun 1 (z4) Lef(x)] ek 1\

det [I,kul(rt) - Lyun.y (24)

2

[,Y)g/v ,(I,,t)l,([i,/) . f(y)dy; ek 1

t dct[l,kul(r,)---l,kuN 1 () /

1

The first term vanishes since the last column is a linear combination of the preceding

columns. The secogd term gives

/ Ln_1 f(y)det Lkul(zg)-uLkuN-l(r,-) Lign - (z,y); ek ] dy
z

~ :/ " Ln-1 f(y)Ke(X,y)dy. B

1

(e

Remark: The algebraic complements D x will differ only by a sign from

D(Ex,X), where the matrix E;x 1s derived from E by replacing ek - 1 by 0

>

and. by omitting the last column of K.



; , 20
k"l'lmnrvln 3.3, Let Fobe anm o N notmial m!m;mla(mr/ mm‘u\ with O oo the Lot
colurmm, and let X {a ry - 1o S I by It at least one of the algebran

-
%.Z‘: complements Dy g is not O and of the constants e,y and the mntegrable function g on

vl r] satisty 7/
L \ Cok l)“k(l) / ‘(/([)I\'[.j(,\',f)(“, (3 1)
- A. ll RS
then there v a unigue function [ such that Lx o f(0) o Ly, Fo| with the prop
erlies
I‘k/(l'l) Cok (:ﬁ 2(1)
for ey 1 and
La v f(r) gqlr) ae (5 2h)
-
-
Proof: Since Ly ) f(r) ¢ Ly|ry1, rm], by Theorems 2.3 and 21 there exists
N\
wy o Upn oy osuch that for all oo oy r,,j we have
I
flr) ug(r) / anv 1 (roy) by o S (y) dy
Ty
“‘,i" As
<N
waere uy{r) N ll a,u, () and ‘7
’ AN
s laug(ry)  Lof(r) age w(ry), Q<1+ N 2
®

The conditions (3.2) are equivalent to the system

[/kf('zl») Cl,k . P
N -1 'y Im
- Y al Ly LY d
a,Liu,(z,) 4 v gn o (zny) Ly fly)dy -
=1 - I (33\
J )
1'Vil

o :".“
«



-
AN
So that
N -
° (1) .
}J a, Lyu () oy / R I C S A A RTLY (3 1)
;! o

at mont N oequations are uniquely solvable for the N |

We have to show that the

unknowns

. /m/(ll) . I ':f(’l) ]
« N N
: wy (1) wy ()

We notice that (3 1) means the vanishing of the deternmant

f

det [Lguy(r,)  Lyun o (1) o / //(:\If),‘/,\' Vinay)a(u)dy, e 1

1

Since one of the [ (X)) does not vanish,

Rank (A) N 1

>
- -
= ’

-

Therefore, the equations (3 4) have an umique solution By Theorem 2 20 a4 function

[ with La | [ ¢ 1,1311‘1,”] s unmquely detined by Lo f(1y), onoo f(r) and

ILn 1 f gqguptoace. 1

\ . ) = o renon P . N
Let X be aregular paur, £/ jegx )y ot N, and X {a 1,

Iy ~ - < Xm b}. Let r o 'ry 1, and ¢ 0,1, N 1 be fixed for the

®

moment. We define the extended set of knots

X - {.l'l( Ty Iy I Iy oo Il



Cand the extended mterpolation matnix £oas tollows b oy -0y we pul
R b ] N
’ ‘(‘ kiy 1 &k o
1o 1 : €1y : CIN 1 0
1
0 €1 S €14 - N 1 (0
0 (0 . | I 0 0
10 Crell (‘],|.q ('I'l‘N 1 ]
A
Con 0 Crn s Com g .- Con N 1 0
where the Jin the row ) 4 Lis €40, 1.

mot N R Ty o , N \1 ’
M o s obtamed from B by replacig

Ifr, rande, 0, then ek

the entry e, 0 by €, I and adding a column of zeros. If r 1, and ¢}, 1,

we do not define £ but put 1\'[;(,\"t) 0. Then we get

Theorem 3.4, Suppose that uy(z) ¢ Uy 15 the Uy polynomial which interpolates

Ay

a function f with Ly f ¢ Lyla,b] as specttied by the regular pair 2, X1t 11 N and

q are as described before, then

. /

( l)nolu p N ) S
Lgf(r) I,qu/(.r) D(E.X) I,Nf(l)}\p:(,\,t)dl,
.

-

where ¢ is the number of 1's in I that precede the new 1 (in the lexicographic

order).

Proof: For the situation £ - z, for some j, and €, - 1, since we put

[\’:;;(XJ) = 0, and since uy interpolates f at z,, the result is obviously true.

For the other cases, by using Theorem 3.2 for the function f(z) - us(z), we

get

e



Stnee wg (o) Ao baug(0) 00 Se that

s 1.,

(L,f (1) Lyu ()0, /lI,N/(!)I\[_'.(.\",r)({{.

L

B3y the definttion of £ we have
I)I.IJ ( l)n‘ll, I)([,‘\)‘

where ¢ is the number of I's in £ that precede the new 1 (in the Texicographic
order).

Therefore,

( I)vnln

Lof(r)  Lyus(r) D(E ,\')/ Laf(OK, (X t)de 8

Theorem 3.5, For matrices £ as o Theorem 32 and for all functions [ with

Ly f([) ¢ (VIII’I"Ii‘ we have

[

for some &« (ry.1,), if and only 1f Birkholt's kernel Ky (X, t) does not change

sign.

Proof: Sufticiency: By Theorem 3.2

Y D Lifr) /
1 I

€k 7

Ly f(!)Kp;(X,t)dt

1

/ "’ LZ}}:({)(t)wN(t)Kﬂ(X,t) dt.
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Since w00 Ly o f{) /wn () o Clay, 1',"} and wa (R (N 1) does not change
sign. Therefore, by the mean value theorem and Theorem 3 e, thereas & (ry.rm)

such that

. I,
. L “:,k I,kf(r‘) : l:) l(é(f) / mN(l)[\'h‘(.\',l)dl
x| N T
RAPAY D(E,X).

U)N({)

On the other hand, we shall show that if the piccewise continuous function A

changes sign, then there is a continuous function ¢, for which the formula

" . g(¢) [ .
gt) K (X, t) dt wn (R (N ) dt
I, “yN(é) I
does not hold, for any &¢ [ry, 1]
Assume K changes sign, that is, K - 0 and A - 0 both hold on sets of

positive measure. Let

b
b sgn / w ()N E (X, t) dt.
u :
We assume & £ 0. Sinde Kg(X,t) i1s a piecewise continuous function, we may find

a continuous function ¢ > 0 such that

O fsuppg « {t: sgnAp(X,t) o}

Then

sen [ Kp(X,Og(0)dt 6 (3.5)

I

but )

sgn (w"[fa) /lm wi (8) K (X, 1) dz>‘ ~bor0

for any £ € [1,zm]. If § = 0, then one simply chooses ¢ so that the integral in

(3.5) is not zero. I



CHADPTER 4

CHEBYSHEVIAN SPLINES

Let K leor |1 r . bean interpolation matrix, and let X' - a Iy oo I
Ton b. Instead of ., the inverted matrix F e, x| with clements ¢4
en k15 often more convenient. The Chebyshevian spline space § S(FE, N UN)

consists of the functions

S(r)  ou(r) 4 }; ok Gkvi (I, 14)

ek 1
l 1em

K
where u(r) « Uy, and n N 1. The real numbers o, are defined whenever

ok 1, while ¢, (r,y) 1s defined in (2.1) of Chapter 2.

Proposition 4.1. The Chebyshevian splines S S(E, X, UN) are precisely the
piccewise Upn-polynomials with knots r,, 1 -~ 1 - 1, for which LyS{r,t)

LyS(ry ), 1+ 1 m,except possibly when e, ¢ 1 and a, /0.

Proof: lLet

S(r) ji(r)* L ak grar (1, 14)

& 1
l<twm

be a Chebyshevian spline in S(E, X,U). Since each g,(z, 1) 1s a piccewise Un-
polynomial with knots r,, I <t < m, and since u(z) is a Un-polynomial, S{x) s a
piecewise U -polynomial with knots z,, 1 << 1 < m.

Since’

6 w I lfkl - 1,'..7k
L gk (2,23) looz, - {Ok’,k k+1 (71) ok

25



Ly giyy (r,ry) may have a (jump) discontinuity only if r r, and only if & A

Therefore, LgS(rt) / LyS(r ) only at knots oo 1, and only if e, &

a

with ax /0.1

We will now compare the Chebyshevian splines S(F, X, Upn) with the Cheby-
shevian splines with multiplicities as discussed in IZ]

Let X {a 1y .19 < < Im b} be a partitionof tht-‘intcrval la, b], and

let # {ryy. . oTm 1 } be a vector of integers with 1 < r, ~ N, 1 2,0,

Suppose Uy {u, }[Vl is defined as in Chapter 1, we say that an element S belongs

to S(I, X, Up), if there exist Sy, -+, Sm in Uy such that

S '(

I T4t )
and
Dvs o (x,) 1 bSi(z,), I T o Y U 2

The space S(R, X,Un) forms the space of Chebyshevian spline functions with knots

Ia, -, um 1 of multiplicities ryy o Jr 1 -
¥

From the reference book (2] page 365, we have for any function f(z) ¢ Ccho

| D' f(z) N
[J‘ T e T T e n )J .
f(I) wl(z)--~w|(r) t : Qv (I)I f(I)
. 7=0
Thus for an arbitary function f(z) the conditions .

f(t) :Llf(t):"':Lz—df(t)zo#sz(t)



are actually equivalent to

SO DI DT 0 D)

]

Therefore, in the definition of S(R, X, Un), in place of the required continumty of the
ordinary derivatives across the knots we could just as well have required contimuity

of the corresponding L,’s for an equivalent definition.

» , m n . : . t . : Vo i .
Let K I“,kL Lk oo b1 N, be an interpolation matrix, we call a row
of the matrix £ Hermitian, if for some r,, e, & 1for k < ry and e, Ofor k- r,
“A matrix F is-quasi-Hermitian if its rows, ¢ 2, m 1, are Hermitian,

Theorem 4.2. Let E be am x N quasi-Hermitian interpolation matrix and let r,

denote the number of 1’s in each row of I forv -~ 2,---,m 1. Then

1 [

S(R, X, Un)  S(E, X, Un).
©

Proof: That S(E, X, Un) ¢ S(&, X,Un) follows from Proposition 4.1,
Suppose now that S(z) ¢ -S(R, X,Un). We want to show that S has the

representation

i

S - u(z) 4+ Z: ayk gkt (Z,74).

E|.k =1
I<it<m !

"This is certainly true for z € (z;,z2). Assume that a,x, 1 < 1 < 7, have been
£

chosen so that
.

S(z) =u(z) + D curgrs (z,2.)

ek =1
1<4<y

“holds on [z,, ;]\ X.



Suppose that [y S(r) has a jump at 1, when ¢, I, Set ay i Li(r,t)

Ly(ry ) and put

flr) w(e) b Y awkgen (5.1).
“ 4 ok 1
loae g0
Then S(r)  f(x) ¢ Uy for o« (1,,2,41), and LgS(r, ) Lef(r,t) 0 for

ko0, --,N 1. Therefore, S(r)  f(r)  Ofor r¢ (r;,z,41), by Theorem 2.1

Hence,

S(r)  u(r) 4 2; gk gkt (1, 10)

holds on [y, r,y A\ X

By the induction principle, we get

S} w(n) t Y akgrn (1,5)
€y k 1

~ l-tem

holds for [z,, r, J\X. 1

Chebyshevian Birkhoff splines S, L}l("(ilass SU L SUE, X, Un) C S(E, X, Un),
are defined as the splines (4.1) that are\Uy-polynoinials on each of the intervals
(oo, xy), (21, 12), -, (1m, ), are identically 0 outside of the interval (z;,z,,),
and LeS(xot) # LeS(z, Jonly if e,n gk = 1,0+ 1,...,m. Examg)les of Cheby-

-

shevian llirkhoff;{)lin('s are given by : .
Proposition 4.3. If £ is as in Theorem 3.1, then Kg(X,t) € S°(E, X,Uy).

Proof: This follows from Theorem 3.1. ]



CHAPTER S
DIAGRAMS /\Nl)/.'/,l‘ll(()h‘ (’)l CHEBYSHEVIAN SPLINES
In this chapter we give forims of Rolle’s Theorem for Chebyshevian splines and
use them to count the number of zeros that a (fhcl)yshvv};m spline can have i ats
support. Our discussion parallels |1, Sections 7.3 and 7.4]. We repeat many of the

S
definitions from [1] that are required for iis discussion.
Ll
N N
A Chebyshevian spline could have interval zeros. ‘To distinquish this possibil
ity, we say that a point ¢, a ~ ¢ < b, is a point zero of the spline 5, only it S satisfies
3

S{ct R)S{c k) # Qforall sufficiently small h. We say that a point of discontinuity
L

c of S(x) is a discontinuous zero (of multiplicity 1) if and only it 5(r) changes sign

at ¢, that is, if and only if S(c t h)S(c k) - 0 for all sufliciently small h. A

continuous zero of S(z) is-a point ¢ at which 5(r) is continuous (S(rt)  S(r )

for l_(nots) and S(c) - 0.

The multiplicity of the zero at a point ¢ is defined as follows: Let

. 4 . -
be a maximal sequence with the property that ¢ is a continuous zero of s® (),
k- 0,1,---,¢ - 1, and that c is continuous or discontinuous zero of s (r). Then
the multiplicity of ¢ as a zeroof S'is{ ¢+ 1.

From the formula

Lif(z) = _ D) + Za‘-,,(x)f)’ f(z)

wy(z) - -wi(z) =0

29 <



30
and the fact that w,(r) - 0 on [a,b] for all 1, we see that the above definition of
multiphecity is equivalent to replacing S(r), - - -, SW(x) by S(x), Ly S(r), -, LiS(x)
in that definition.

Let I be the lattice points (1,k), ¢+ 1,...,m, k - 0,... n. Foreach k, let a
set of disjoint subintervals [7, 7] of [1,m] be defined; we call them intervals of level
k. This set of intervals 1s a lower set ¢ (or upper set W) in I, if each interval [7‘),_]'|
of level k, kK > 1, 1s (‘f)nLainvd in an interval of level & 1 or correspondingly, i
cach interval of level k. k < n, is contained 1n an interval of level & + 1. Simple

N\
examples of lower or upper sets are provided by pectangles 1) ~ 1+ 15,0~ &k »
orty s ot oag;rg < koo ﬁ

A lower set @ defines a ,s‘egall of points (1, k) that belong to the intervals of .
We also denote 1t by ¢ However, to a set of points there may correspond several
lower sets by virtue of different definitions of the disjoint subintervals |7, 7’| for each
k.

The endpoints of the maximal int.ervals [7,7'] of @ at level k m‘akc up the
horizontal boundary of ¢ at level k. The number of boundary points 1s an even
number 2L(®). We also need the n()Li(m. of the vertical boundary of . An interval
[7,7'] is part of the vertical boundary of ® at level k, & = 0,1,...,n, if it&s\ a
maximal connected uniorn of intervals |t,1 + 1] with the following property: Each

»

[t,4 + 1] is contained in an interval of k of ¢, but not contained in an interval of

higher level.

#
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Outside and i;s.id(' corners of ¢ are casily defined. An outside corner 13 a point

{1,k) in the horizontal boundary of ® for which (1.& ¢+ 1) is not in the horizontal

boundary. For an inside corner (1, k), the point (1, & + 1) belongs to the horizontal
boundary but (1,k) does not.

A spline S(x) ¢ S(E,X,Un) defines a lower set in a natural way. For cach

k, we take the maximal interval [r;, r;/] on which Ly S(r) does not vanish except

at 1solated points. We denote the collection of these intervals by Xg. The corre

sponding intervals |7, ;'] form a lower set called the diagram, ®(5), of 5. For the

interval |7, 7' of the vorticai boundary of ®(5) at kth level, Ly S(r) consists of piece-

wise nonzero constant multiples of wg,y (£) on each interval fry, o] o oy, 1]

Observe that LgS(x) is discontinuoys at r, if (1, k) is an outside corner.

Lemma 5.1. Let S(z) ¢ S(E,X,Un), then each interior position (1,k) ¢ ®(5)

(i.e. a position not on the horizontal or vertical boundary) is supported on the

right in Fg.

:"'T;
Here we say that a position (1,k) ¢ ®(5) is supported from the right (or left)
in Eg, if there are €, &, - €k, 1 in Ko with 1, + 1 j 1y, ki, kz - k (or
L

respectively ky, kg < k). 2

Proof: Since LiS is discontinuous at z, if (1,k) is an outside corner, we must

have € x = 1 by Proposition 4.1. Therefore, the proof of Lemma 7.9 in [1] is
applicable in this case as well. § .s

To investigate the zeros of a spline, we need following definition. If L, f(z)

is an absolutely continuous function on interval (c,d), then we say that c is a left

-
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Rolle’s point of L, f(r) and L,y f(r) provided that cither L, f(ct) Oorforevery
. there exists some t, ¢ < ¢« ¢t e, with L, f(t)L,y f(t) ~ 0. Similarly, we say
that d is a right Rolle’s point of L, f(z) and L, f(z) provided either L, f(d ) 0

or for every ¢ there exists some t, d € - ¢« d, with L, f(t)Ly f(t) - 0.

Theorem 5.2. (Extended Rolle’s Theorem) Suppose Ly f(z) exists on (c,d) (ex-
cept for jumnp discontinuities at isolated points) and that ¢ and d are left and right
Rolle’s points respectively of L, f(x) and Ly f(x), then Ly f(x) has at least one
sign change on (c,d). If L,y f(x) is continuous on (c,d), then it has at least one

zero there,

Proof: In 2| page 371. B

l,(:L E ek, : o beanmoxn 1, N - n t 1, interpolation matrix, and
let X - {a Iy - T2 < - < T, - b} bea cz)rres.ponding set of knots. lFor
the Hir\}shoff spline S(z) ¢ SO(#, X,Un), we would like to estimate the number of
its zeros. We conduct our investigation within the diagram ¢(S) of S. This will
require another version of Rolle’s Theorem, Lem.ma 5.3, and will lead to an estimate
for the nu;nber of zeros based on I:'q,(g) , Theorem 5 .4.

If the Chebyshevian spline S(z) defined on |a,b] does not vanish on intervals,
then for each € € (a,b), the product m = S{€ + hy)S(€ i71\2) is either always > 0
or always < O for small hy,h, > 0. In the first case, S(z) does not change sign
at €. In the second case, it does change sign there. This definition applies also to
arbitrary Chebyshevian splines S{z), but there is a third possibility = = 0 for all

small hy > O or hy > 0.
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Lemma 5.3, Let S(x) be a Chebyshevian spline on (&, &) with I,JS(Q]VQ)
1,5(& ) 0. Suppose that {mt.h L,S(r) and L, S(r) do not vanish on intervals,
f.hf‘ll there is a point £ & < £ « &, such that either A) € is zero of Ly S(x)
with change of sign, but not zero of L, S(x), or B) € is discontinuousvzvr() of L;5(x)
with change of sign, on which L, S(x) preserves sign. (Continuity here means

g(xt+) = g(x ) at knot points.)

Proof: First we can 555111110 that (€1, &2) contains no other continuous zeros
of L,5(z), for otherwise “we could replace the interval by a smaller one.

Secondly we notice that, by our definition of Chebyshevian spline, for arbitary
S(z) ( S(F,X,Un), the splines LgS(z), 0 = k = n, have their only possible
discontinuity points at the knots z,, 1 <t < m.

Therefore, for £; we have ¢; such that when & < t < & t ¢, L,S(z) and
L; 11 S(z) are continuous and do not change sign (see Corollary 2.7). So that if
& <z < & +e,and L;S(x) > 0, then L,; S(x) should be greater than zero,
since w; 4 (z) > 0. :rherefore, L;S(z)L,41 S(z) > 0as & < < & . Likewise,
if L;jS(z) < 0,then L;4; S(z) < Ofor & < z < & t . Similarly, thereis an ¢z = 0
such that L;S5(z) and Ljs; S(z) do not change signon & ¢z < z < o, and one
can deduce that L;S(z)L;j4; S(z) < O on this interval.

Let ¢ = min{e;, €2}, we have forall 0 < h <, L;S(& + h)L,“ S(& +h) >0
and L;S(& ~h)Ljs (& —h) < 0. Therefore, L;S(z) and Ly, S(z) have numbers
of chang#s of sign of different parity in (fl,fg) . Hencé, there exists a point £ at

which L;4; S(z) but not L;S(z), or conversely L;S(z) but not Ly, S(z) changes

r~



al
s I the st cooe O cannot e a vero of L5 (1) (continuous or discontinuous)
and we have A) I the second case, & s o discontinuous zero of yrr S () s
«
) u
Remark: We could check every knot in interval (&, &) if necessary. If there
v some knot oo cat which L, S(r) changes sign, but L,y S(r) does not, then take
I, ¢ for case B) I there s some knot r, | such that at r,, Ly S(r) changes sign
but 1,5(r) does not, then take £ r, tor a speaial case of case A) I there are no
I
such knots ryor v, then tor any knots in interval (&0 &), Ly S{r) and 1,0, S(r)
change or do not change sign at the same tirme Then the point € at which Ly S(r)
4
but not 1,5(r) or conversely L,S(r) but not 1,,; 5(r) changes sign is not a knot
7 A 3 X! 24 124

TTNBut we have assumed that L, 5(r) has no continuous zeros in (&;, &), hence, the
second of these cases does not hold, and € is a continuous zero of L, S The latter

5 a special case of A

Y

For a Chebyshevian sphne S(r) that does not vanish on the interval (a,b) we

call £ (a,b) an<ven point ot S(r), if S{r) does not change sign At g“band odd
{ (\\

{1

&

)

pont it S(r) changes sign at & We say that [, 5(z) and Ly S(r) alternate at £,

it & s a pomnt of ditferent parity for L,S(r) and L) S(z). Lemma 5.3 asserts the
L 4

existence of a zero §of L, 5(r) or L,y S(r), at which L,S(z), L,;; S(x) alternate.

For a Birkhoff spline S(r) « S$Y(E,X,Un), we define its diagram &(S) as

%

above. A sequence in ®(S) .

\ B a,, S T g,_5+t =1 ‘ (51)
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R
5 a maxinal sequence of s iprow 1ol the matony Fp b s antenion b e ho(r k),
s k< s b tas interior to ¢(5) By Z(S(e.d)), wegdenote the number ot pont

zeros (counting multiplicities) of the Chebyshevian spline S(r) defined on Je d].

Theorem 4. Let S(x) ¢ 5()(”,“ N, Un) have support {e d] o, r | it @ s the

diagram of S(r), & . d(N), then

~

Z(S(ed)) - T Ea ] L) 1T (Fa) (52)

where y(F1) is the number of odd interior = quences in Iy,

Proof: (Even though the proof requires only small changes to the proot of
the 'l‘h(:ormn 711 in {1}, we give all t.}l("\d(-t.uil.\) Let the matrixn Fgoand the
Chebyshevian sphne ﬁ‘(f)‘ with all its zeros in (c.d) be grven Weantroduce the
following notations:

{y:  the nunber of intervals of Xy (or of &) of level &,

ug - the number of continuous zeros of LgS(r) mside Xo which are also
zeros of S(rx) of multipheity > k + 1;

vx © the number of €, & 1 in the interior of level & of $,

¢x - the number of sequences of 1's ending at point (¢, k) of & but with the
property that (1,k + 1) is inside  and Lg,, S(1) 7/ O,

nk - the number of €& = 1 for which z, is a zero of S(r) of multiplicity
kt1;

hix := the number of 1’s on the horizontal boundary of E@ of level k.



Suppose that L, S(e) O We note that u, 0, ¢, 0 and [, 1 We

.

would like to find a lower bound, g, for the number of continuous Rolle zeros of
I/k.\'.(‘f) ( they are disjoint from the zeros counted by uyg ). We begin with jeo 0.
We apply Lemma 5.3 to derive a lower estimate gy from gy Then LgS(r) has
jx b ug continuous zeros inside the itervals of Noo These continuous, zeros may
or may not be at the knots. We add 24,k continuous zeros at the end points of

mtervals, This wall give:

r b oug b2l hy

continuous zeros of Ly S{r) with

intervals between them.

The endpoints of these intervals cannot belong to the vertical boundary of
¢ For LgS(r) consists of nonzero p‘u*('vwnsv constant multiples of wy,y (r) in con
tradiction to LgS(r) having a continuous zero at the endpoints of the intervals.
Neither can endpoints of the ;;nvrvn]a in (5.3) belong to the [ 1 complements

I to intervals of X of level k + 1, but intervals in (5.3) may contain some [. If we

omit all of the latter intervals, we end up with at least
e bt ug b 2 hg -1 Lk 1) e +toug + 2 iy hi (5.4)

intervals I of level k to which we can apply Lemma 5.3, since then LiS(z) and
| .
» Lg41 S(z) vanish only in isolated points on each of /. Applyink Lemma 5.3 gives a

peat ¢ inside each /. This £ 15 even inside the intervals s of level k + 1.



In particular, £ mav be a continuous zeto ot Ly, S{r) (special case of A)
Lemma 5 3) By the remark after Lemma 5 3, any other possibihity Would require
R r, for some ry inside of the wtervals of N of level A ¢ 1 To single out continuous
zeros, we first discard all [ that contain r, where Ly S(r) could be discontinuons
There are at most {vg neer ) such o Then discard s at which LyS(r) s
discontinuous, Ly, S s continuous, but L,y s(r,) / 0. There are at most u-.\m‘h
r, Thus the difference between the number given in (5.4) and (vi ) b oG

will be a lower estumate for gegy g

[t ts important that this estunate can be improved  We call a pair (t.k)

1

-

nonconfirming (to Lemma 5 3) if 1, is counted by (veyg kit ) Of €k, but cannot
be obtained as a continuous zero £ of level k by Lemma 5.3 and its remark This
will be the case if r, does not belong to any I, or in case Ly S(r), Le oy S(x) do not
alternate at r,. For cach k., kK * 0,1,---.q¢ 1, we examune all pairs (t,k) « & and
denote by Ng the number of noncomfirming (1, &) for this k. Since ek and ve o ko
count disjoint pairs, ¥V L\:Z 11 Ni will be the total number of nonconfirming pairs

n ¢.

At step k. we need to discard only
(visr mevr )+ Ni

intervals /. The remaining intervals will contain continuous Rolle zeros of Ly S(z).

’

Thus

i1 2 e tue t 20 leyr he (vesr e )t Neo 6



Sinee 1, 21,1 h,, we obtain by summation
q q g 1
0 .y \ (uk { r/k) > Uk > %

L. - — —

ko0 ko1 k 0
q q

t N 1o Lhk t 2 lk t 1.

k O k0

D% o e L(®). Hence

The first sumis Z{S(c,d)), while \,: olve t he) | [:,'q»
Z(S(e,d)) - [ Eal L(®) 1+ A N

~g 1
where A \11 otk b1 v .

We want to find an upper bound for A N for cach sequence B of Eg given by
(5.1). We study the contributions of B, denoted by Ay and Ng, to the numbédrs A

and N respectively. Here Np is the number of nonconfirming pairs in the sequence
(.5 1), (e,s), - (a5 t 4 1) (s - 0). (5.9)

Clearly, Ny > 0. The contribution of the sequence B to ng - vg i1s . 0, whereas its
contribution to >4Z o €% it is the same as its contibution to €,4¢ which may be 0 or

1. Hence,

Ap Npg <1 V. “ (5.6)

We shall discard many sequences B for which the difference (5.6) is < 0. In
first place, we can assume that none of the pairs (i,k) in (5.5) is nonconfirming.
Since (1,s — 1), (s,s) is not °n(‘)nconﬁrming, that is z; can be obtained By Lemma 5.3
for Ly, S(z) and L,S(x), z, cannot be a continuous zero of L,_; S(z). Moreover,

since none of the pairs {t,s — 1),---,(1,s + t + 1) is nonconfirming, the sequence

L1 S(x:),- -+, Lo+t S(20), Lsse41 S(z4) will alternate. .



We can further assume that the contribution of the sequence IS to ey
I, then (1,8 ¢ t) will be an interior posttion in ¢, Hence the whole sequence B
will be interior to [;,‘.p, because ¢(5) is a lower set. Mnn‘nv«'r, r, will be an odd
point of L.y S(x), for if it were an even point | then alternation of [, S{r) and
Lovesr S{r) at 7, and € 4464 0 would imply Ly S(ry) 0 in contradiction

LO Cayy L.

Let B be one of the remaining even sequences (for which tis odd ). First,

let s - 0, by the alternation of the sequence L, | S(r), -, Layeyr S(x), 1y o0n
an odd point of Ly | S(r) and since e, 0, we have 1, 1s continuous zero of
, a contradiction. 1If s 0, then r, is an even point of S(r), hence r,

L.\ S(r)

15 not a\disc()ntimums zero of S(x), then the contnibution of /5 to 1y 1s 0, and its
contribution to vy 1s 1. So we have Ap - 0

Therefore, we need only count the odd interior sequences £ of l:,"p, and con-
1\(‘(1(1(‘11Lly, we obtain

A N <+(Eg). 1



CHAPTER 6
71RO COUNTS FOR CHEBYSHEVIAN R{LINICS
We now formulate some consequences of Theorem 5.4 to results that count
reros of Chebyshevian splines. The presentation in this and the next chapter par
allels the discussion in the book [1, Section 7.5] for polynomial splines. In many
cases the proofs are virtually unchanged.
We say that a Chebyshevian spline, S{r), on {a,b] has degree g, if L,S(r) s

nonzero somewhere in the interval, but Lg S(x) vanishes identically in the interval.

Theorem 6.1. For an arbitrary Chebyshevian Birkhotf spline 5(z) « SU(E, X, UN)

on |a,b], we have

Z(S(a, b)) < |Eal t v(Fao) L(®) r (6.1)
where r is the number of intervals in the support of S(z).

Proof: We can write S(z) > Si{z) t -t S, (z) where the S;(r) are sup-

ported on disjoint intervals /,, 7 - 1,...,r. We obtain (6.1) by adding the relation

(5.2) of Theorem 5.4 for ; - 1,---,r, and by noticing that for each 9,(r) and

~r

o) |- 2250

\I?,'@(Sl)] and ’7‘(1;(;») ‘

its gorresponding matrix Ee(s,), we have

N
A,./]

L (Ees)) ) 1
‘ Al
An important consequence of Theorem 5.4 is the following result stated in

terms of the degree of the spline S(z) rather than its diagram ®(S). It is formulated

in terms of the matrix E rather than E.

40
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Theorem 6.2, 1fS(r)« 5”([‘}, N Un)isa Chebyshevian spline of degree g, q - 1,

whose support Is an interval, then
Z(S{a,b)) « [El v A(E) 9 2 (6.2)

Here ~v(E) is the number of odd sequences in F supported on the left and by is the

truncated matrix consisting of the last ¢ t 1 columns of 1.

Proof: By Lemma 5.1, we know any interior sequence of Fegs) 1s supported

on the right. So it is supported on the left in E. And for the lower set @ ®()
~—

in the truncated matrix, L(®) - ¢ t 1 since S(r) has degree of ¢ So that by the

fact that S(z) ¢ SV(k, X,Un) and Theorem 5.4, we get the result.

1A

in (6.2). This gives a formulation

-~

by

Going further, we can replace

E,
that requires no a priort knowledge of the degree of S. Observe that if F satisfies
2t

the Pélya condition, then > q. Hence,

1‘/“1

Theorem 6.3. If S is as in Theorem 6.2 and if the matrix F satisfies the Polya

—-

condition, then

Z(S({a, b)) <K

ty(E) no 2

To go further, wetnoed the notion of multiplicity u for an interval zero £ e, d

of a spline S(z). A spline S(z) on |a, b] can have interval zero |c,d|,a < ¢ < d - b
only if S(z) =0,¢c <z < dand only if this is a maximal interval of this type. Thus,
 S(c—h)S(d+h) # 0 for all small A > 0. In this case, |c, d} is a continuous zero of ’3'(1)
if S(z) is continuous at ¢ and d, and a discontinuous zero of multiplicity 1 if S(z) is

discontinuous at one of the points and changes sign on [c,d]. The multiplicity of



12
¥ f
the zero o, d] is defined by means of the maximal sequence S(r), Ly S (), LiS(r).

/With the property that [e,d] is a zero for L,5,0 < 5 < 1 and is a continuous zero

ity - L Thenp U 1. Clearly,
o< min(q,q') + 1

where ¢ and ¢ are the degrees of S(r) on the intervals adjoining [, df.

Theorem 6.4, If S(r) « 5”(1‘,‘, X, UnN), and if q is the the degree of S{rh~then
1
k

70 (S(a, b)) - by(E) g 1 (6.1)

where r is the number of intervals in the support of S(r).

Proof: Let S(r) 7:; 4 9,(z), where S, (1) are Chebyshevian splines of
degree g, supported on disjoint intervals I,, 5 - 1,2,---,r. It J; Is the interval
between [ and 1,4, and g, is its multiplicity as a zero of S(z), then

L(8(S,) = g, 4 1 :
and
r 1 r o1
By }_lmin(q]-,q“l) tro1
J 1 =1
,
<Y atr-1<L®(S) gL :
g=1

Adding this to (6.1), we obtain (6.4). 1

-



CHAPTER 7

'

A BUDAN-FOURIER THEORENM
Let v (vi,- -, va) be a vector of real numbers. We define the number of
strong sign changes of v by 7 (v) : the number of sign changes in the sequence

“,Un, where zeros are ignored. Similarly, we define the number of weak

171 “(’27 cC
sign changes of v by ' (v) © the maximum number of sign changes of v in the
sequence vy, - vy, where each zero can be regarded as either 11 or 1 whichever

makes the count largest.
It is clear that (& (v) - ! (v) for all v. From |2, page '.ZS], we have the result

that for all vectors v
(,"(m, vy, (1) l“r) e (vl,“-,v,) S

Let f(z) be a function on (c,d). We say that ¢ is a zefo of L, f(r) on [e,d]if
either L, f(ct). Oorelse Lyf(ct)L,k f(ct) > 0, where k is the smallest integer
kK 1,2, n with Lisk f(et) £ 0O

Sunilarly, d is a zero of L, f(x) on [e,d},if L, f(d ) 0orif

[’ Lf(d ) 1) Ly f(d ) -0

-

with k defined as the smallest integer for which Ly f(d-) /0.

Theorem 7.1. Let S(z) be a Chebyshevian spline on (c,d) C [z;,b]. If the point ¢
(6r d) is a zero of I4S(z) on [c,d] in the sense defined above, then ¢ (or d} is a left

(or right) Rolle’s point for L;S(z).

43
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Proof: First notice that for a spline S(r) « S{&,. N Upn) and for cach A,

0 k- N 1, LgS(x) is piecewise continuous. So that there exists o, such that

fore -1 - r\r ¢r, LeS(r) is continuous and non-zero for 0« k - N 1 unless
LyS(z)  0in aninterval [r,, x.y1 ) containing c.

Now we prove the theorem. If L;S5(ct) 0, then ¢ is automatically a left

Rolle’s point. If L,5(ct) £ 0,say L,5(ct) -0, then there exists r, such that
[,],]AS‘(C§) [,],,.S'((‘1) ()‘ [’]QYQl .S((f) / 0

and L,S(ct) Ly S(ct) - 0. S0 Ly S(et) - 0. Therefore,

I . Sy 4e
Lyyi S(r) - w},qt(r)/ / w3 (s],z)--~
- N c C »
A R

cond T wy e (S )i Sy Jdsy e dsy
. ) ] )

- 0

for ¢ ~ 1 < ¢t ¢, if ¢ is sufficigntly small. This proves that ¢ 1s a left Rolle’s

{

pomnt for L, S in this case. If L,5(ct) < 0, the proof is simmilar. The same kind of
argument may be given to show that if d is a zero of L, S(z) in the sense above,

then d is a right Rolle’s point for L, 5(z). 11

~—

Theorem 7.2, Let”S(z) be a Chebyshevian spline on (&, &2) C |a,b] with zeros,
L,S(&+)and L;S(€—), of L,S(x) on [£,,€,] as above. Suppose that both L;S(z)

and Ly S(z) do not vanish on subintervals of |£1,&,], then there is a point £,
AN

IS
N

£1 < € < &, such that either A) € is a point zero of Lj4; S(x) with change of sign,



A5
but not a point zero of L, S(x), or B) £ is a discontinuous zero of LyS(r) (with

change of sign) over which L,y S(z) preserves sign.

Proof: By checking the proof of the Lemma 5.3, we find that we only use the
fact that £, £, are Rolle’s points and Theorem 5.2 can be applied. Thus, the result
‘

follows by Theorem 7.1. 8§

b
Remark: The remark to Lemma 5.3 also holds for Theorem 7.2,

Now we come to the main theorem of this chapter.

-

)

Theorem 7.3. Let S(z) be a Birkhoff Chebyshevian spline of degree g that cor

’

responds to an m x (¢ + 1) matrix E and a set of knots X, and suppose that S(r)

does not vanish identically in neighborhoods of r; and . Let S,(x) denote the

restriction of 'S(z) on (z,,z,41), ¢+ = 1,---,m 1. Suppose that at least one of
these Si(r) is of exact degree q, and that S)(x) and S,, | (x) are of exact degree d,
and d,, | respectively. Then

Z(S(t1,tm)) < G {S(z1 1), LeS(z1 1)} G {S(Em ) LyS(rm )}

bEC] + (E)

o <
v

where ' (G are defined as in the beginning of this chapter, F° is the matrix

g N "o . .
les ll"‘zl x. o and~(E) is the number of odd sequences in E supported on the left.

Proof: From the given E and the spline S(z) we geﬂ‘the corresponding 1:5\
the diagram ¢(S). We introduce the following notation:

lg := the n}xmber of intervals of X¢ (or of ®) of level k;

u; := the number of continuous zeros of L;S(z) inside Xg which are atso

zeros of S(z) of multiplicity > k + 1;
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vg - the number of €, 1 in the interior of intervals of level & of ¢,

the numbel‘"ﬁf‘5(‘(111(!11((‘5 of I’s ending at some point (1, k) of ¢ with the
, WA

k)

property that (i,lé\f 1) is inside ¢ and Ly S(xy) fOand v £ 1,0 /oy

€k

nk © the number of e, - 1 for which 1, is a zero of multiplicity k& t 1 and

z’/ l,e /o

hy o the number of 1's on the horizontal boundary of g of level &, but not

counting the I’s on the first row and the last row.
/

Let

Ay GHC ) LS(xt) (0D Ly, S(x )]

J

B, GULS(xm )y Ly S(zm )]

and let ayg, Ak, 1 Ak, and Jy, B, Br,o 1< ky < dy, 1< ky ~ dy,.
Clearly, ag, and f, can take only the valu"es 0 or 1. We claim that «ay, ~ 1 is

possible only if 2, is a left Rolle’s point of Ly, . S(z). If Lg, 1 S(z) 1) O, then 1,
~

is automatically a Rolle’s point of Lg, | S(z). Now suppose that Lg, | S(x,) - 0,7

then, since ky < dy, A, 1 must have the pattern : /s

If ( l)ltl '/ 1 and r is even, then, since Ag, 1~ Ag, = land ( l)k‘ o= 1, we

A

have Lg, 14r41 S(z1) > 0. For the case when r is odd, the proof is the same. And
for (--1)¥171 = 1, we also can show that Lk, —14r41 S(z1) > 0. Since Li, 1 S(z)

is a Chebyshevian spline, we know by Theorem 7.1 that Ly, _; S(z) has J:¢\ as a left
P

8§ a

Rolle’s point.
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It Lg, 1 S(x1) « 0, the proof is the same. Moreover, the same kind of argu-
ment may be given to show that (g, = 1 is possible only if b is a right Rolle’s point
of Ly, 18(r).

Suppose S(z) has degree ¢, so that S(z) ¢ 5‘;)” (I‘I,X,UN).’ We note g,
0,¢g  Oandly -2 1. We would like to find a lower bound, ug, for the number of the
continuous Rolle zeros of Ly S(x). (They are disjoint from the zeros counted by ug )
We begin with g 0. We apply Lemma 7.2 to derive a lower estimate gy from
Ik . Th% function LxS(z) has pux t ux continuous zeros inside the intervals of Xg of

. J
level k. Endpoints of X for which ¢,x 0 and 1 /0,1 / m, have LyS(z, t) 0,
and are continuous zeros of LxS(r). Thus, we get for 0 ~ k - min(dy, do, 1‘),
LgS(z) has

e tug 2l Ry 2

continuous zeros. For min(d;,d,, ) < k < max{(d,,dn 1), L;S(I) has
pp tug 2 - he -1
continuous zeros. And for k - max(dy,dm 1), LxS(z) has
g toug + 2l - hy

confinuous zeros. For simplication of notation, we will assume that d; < dpn.; .
he phof in the opposite case would proceed in an analogous-manner.
. We add the endpoints z;, z,, to this collection gf continuous zeros if they

are Rolle’s points. The intervals determined by this collection bf points will be



AN

»

candidates tor the apphoation of Rolle™s Theorem 720 Uhe nnber of such ntervals

-

jix boug b2y I B0 agy gy i L S ST P
Jeg b oug Qlk ,lk 2ot /“,l 1t ‘{l S o

pr boug 4 200 hy 1 b - A

We omit those intervals tor which Theorem 7 2 will not applv For example,
the endpoints of the ntervals cannot belong to the vertical boundary of ¢ fo
there, Ly S{r) consists of nonzero precewise constant multiples of wyyy (1) which
contradicts the fact that Ly S(r) equals zero at a corresponding endpoint of the
mterval For the same reason, the endpoimnt of the intervals cannot belong to the
Ly vy I complements l“()f the intervals of Xy of level &+ 1. But the intervals may

tontain some [ if we omit all these, we end up with at least

Jtg b g zlk hk IkOl 2 Xy, iﬂk¢1 i A - l{l,
ek boug b2y hi Ly 1+ ey ity ke d (v 1)
e t ug ot Zlk hk lk” 4 Hk‘l if (1,” 1 - k

intervals [ of level k. to which we can apply Theorem 7 2. Application of Theorem
7.2 gives a point £ inside each . This € 1s even inside of Xg at level k 11
. ;
In particular, € may be a continuous zero of Lgy S (special case of A n

Theorem 7.2}, By the remark of Theorem 7.2, any other possibility would require
e

.

£ 1, for some 1, inside of the intervals of Xg at level k+ 1. To single out continuous

zeros, we first discard all 7 that contain z, where Lgy S(z) could be discontinuous.

-~

There are at most (viy; - nksy ) such z;. We next discard z,’s at which Ly S(z) is

discontinuous but Lg4y S(z) is continuous and Lgy; S(z,) # 0. There are at most
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ex such o Thus the difference between (7 1) and {ra a4 e wall be a lowe
cstimate for gog

As i the proot of Theorer 54, 1t s maportant that this estimate can bhe
tnproved. We call a pair (1. h) nonconficming (to Theorem 7.2) f 1, is counted
by (vxy eyt ) or ex, but cannot be obtamed as a & ot level & by the Theorem
72 and ats remark. This wall be the case it 1, does not belong to any [, o o
LeS(x), Leyvy S(r) donot alternate at oy For cach A A 0.1, \q l(f w?’v\.umn("
all pairs (1,k) ¢ ¢, and denote by N¢ the number of nonconfirming (1, &) for the

[

.. , ol
level k. Since o and {vy 4, M1 ) count disjoint pars, NV \1 , N will be the

total number of nonconfirnmng paies in ¢ At step b, we need to discard only
(“kOl 7“0]) by Ny

mtervals [ The remaiing mtervals will contam continuous Rolle zeros of Ly, S(r).

Thus, we have the estimates

Pkl opp boug b 20 ey e 2% oy b e (v Near ) b Ny

-

for k « d, -
fksr o gk boug 200 Leyr he Ly By {ver o mear ) ok b Nk
U

ford; <k <d, ;;and

k41 2 ettt ug 4 20 leyr o he (vksr Mk ) e N



for A -y Since 4 1, ;’1,, h,, we obtaim by summation
() ity
q q 7 1 {
N Ter N N
STRPRER SHUTEE
. ko1 ’ kot koo ko
d,,, q ¢
t L/’k (fl (1," 1 1 L/ \ /'k ! \ [k "
k1 koo ko0
The first sumoas Z(S(ry, r,,)) while
q
N (ex ot ki) B N
k'"’”
q
N L) g
k O
£
o It .
Mook GUS(rt) 0 DT Ly S )
ko1
d, 1
Y e GU(S(rm )e L S )
ko1

Therefore, we have

250, 1))

\‘\'h(‘[’(‘

Since

dy <« GH(S(x ), -,

q 1

A Z;(k t o v

kO

(~1)% Ly, S(zy)) + G (S(zy #) -, La, Slri 1)),

H0



we obtam

A () T g b de 0 (Y N G (ST ). L ST )

A ]
[EY) 8 G (S( ) LSy )
GH(S(rn ) LyS(ract)) 1 (N N)
By the same ;1rgl’1mvnt. as i the proof of the Theorem 5 4, we get A N - y(Fy),

where y(Fg) is the number of odd interior sequences of g Since @ 15 a Jower set|
an interior sequence supported on the right in Fgois a sequence supported on left

i F Therefore, y([;,"r.) - y(FE), so



CHAPTER R
GENERALIZED SPLINE INTERPOLATION MATRICKS

A peneralized spline interpolation matrix s any matrix
24

. m N 1 .
l‘ [/l,klu 1k O /l'k‘ (), l, 1l or [‘,_k,

where [y () or (). Weconsider Fyp as anentry ol the matrix £ and call

it a4 box. The spline interpolation matrices considered in ]l] only contained entries
' .

0, t 1. The usefulness of boxes will become clear later. The defimitions and concepts

y
.t

useful for ordinary spline interpolation matrices are given in this chapter in modified
form for generalized spline mterpolation matrices.

For technical reasons, we shall always assume that (he exterior rows of F
contain no 0’s and boxes. That is f, & lor 1ift lor: m.

We denote [f, x| as the value of fox,and set [fix]  fix,if fox 0,1,0t 1,

and [fix] - 000f fix is (’1 box.
The sum of the value of all entries of F is denoted by |F|. That is,
Fl > I fux):
1,k
This definition is the same as the definition given in |1} when the entries of / are

only 0, 1 1.

—

For an arbitary spline interpolation matrix F, the matrix F'* is obtained by

replactng inrows 1+ = 1 and 1 = m of F all —1's by 0’s. A matrix F is normal, if

N
Bt N,

52 s
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We consider aspace of Chiebyshevian splines, S(F, N, U A )y associated with &

It 1s the huear span of the functions
[ 4

A {u‘}‘Nl U{{]q¢l(f,‘f,,)1fl,'q& { LD (kY pm g 0, - N 1}

The functions & form a basis for the space S FoX,UN) e a Chebyshevian spline
I { , A I

S S(FOX U ) has the unique representation

N
S(r) L agug(r) L g gyt (1, 0,) (8 1)
v St () 00D
L« e tn

As a comparison with earlier chapters, we observe that S(F, X, Up) is the space

S(F, X, Un) where .

ax b > finvog e LY (D))

For an arbitary set of knots X ©a 1y < 1,--- <« 1,, b, we consider the
interpolation functionals for a given function g(z) defined by:

Avkg(z) » Lig(z)) Vik 1
L4 ;.;
Axkg(z) » Lig(x, ) V/ik ('), and (8.2)

Ax,k g(I) * I’kg(]-l 1 ) vfl,k ( 11)-
This definition allows one-sided interpolation by splines at their knots. The one-
sided interpolation by LS at z,; and the fact that LyS may have a jump at r,

are both specified by the box in position (1,k). The orientation of the one-sided

interpolation is determined by the form of the box.



H

A pair X is regular for sphine interpolation, if for each choice of values

{evns ik I or fix 1s a box } there is a unique dpline S(r) o S(F, X Upn). for
which 3

LeS(r)  cox. fik l;

I/kb‘(f, ) Cok s [.'k ( 11 ); (8.3)

LgS{r ¢ L Cok s fix ()
Fquivalently, /X is regular if S(r) « 5(1 X, Un) and LegS(xr,)  0Oforall fix 1,
LeS(ry ) Oforall fi, ('), and LgS(r, ) O for allef, & ()i Fimplies
S{r) 0. This can happen only if the functionals Acx, fix 1, or a box are
lincarly independention the space S(F, X, Un), and if their total number is equal to

the dimension of the space. That is, only if F'1s normal. In this case, the equations

N - .
Ly 55(x,) L”" Lgwg(x,) 1 >_; ap g Lkggin (I,,IP),
91 f:"l*{ l~( l1)'( 11)}
I~ p-m
fx,k 1,
(8.4)
N !
LgS(z, ) 2‘ aglyug(r, )t Z‘ Qg Akgq,l (re ,xp),
g1 St 4 l»( ll)'( |l )} ;
t- p-m

) fl,k ( ll )v
(5:5)
and
N
LiS(zot) = L agLruq(z, t) + L apg Lkgqr1 (z:+,2p),
(D)
1<p<m

for = (1)
(8.6)

will have a unique solution. |
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Let B be any basis for S(F, X Un) written in some order. The system (8 1)

of the m.[u;\t.ions (R.4),(8.5) and (8.6) has the coethicrent “natnix
A A(F, X, B) Ak (@) o o L) Db elr) 8

with the rows correspondingto (1,k), fix © {1 () )}. ordered lexicographically
and columns corresponding to the elements of B The regulanty of £ X is equivalent

p

to the condition

D(F,X,B)  det A(F, X, B) /0

The matrix s regular i the paif F, X is regular for cach X
Let @ be a lower set, F be a spline interpolation matnix, Fg [fik ]‘ pep be
the restriction of F to & (that is F with lower set ¢ ). The notions of horizontal

boundary, vertical boundary, and inside and outside corners are carried over to

’

-

Fp in a natural way. However, some additional discussion about boxes on the
horizontal boundary is necessary. We can imagine that there are horizontal lines
passing through the entries on each segment of the horizontal boundary of Fg. The
lines pass between 1’s and  1’s, when they meet boxes. The lines have two sides.
One side of the line is outside of the intervals of the lower set &, we call it the
‘
outside of the line. The other side is inside of the intervals of the lower set ¢, we
-call it the inside of the line. We can divide the boxes on the horizontal boundary
into two types. Type I boxes are the boxes for which the number on the inside of
the line is 1, and on the outside of the line is - 1. Type O boxes are the boxes with

-~

1 and —1 interchanged in above definition. .
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We define 111 by first replacing the 0's and the boxes of type I on the horizon- |

&
5

tal boundary of @ by I's, and then replacing the s and the boxes of type O on
-
the horizontal boundary of ® by 0’s. Finally, £§ is the submatrix of Fg restricted
to pairs (1, k) that are not on the horizontal boundary of ¢
We mention that the defnition of the degree of the spline S{r) ¢ S(F, X, Un)
w
is the same as in the preceding chapter. That is [ if £, S(r) does not vamsh in some
subinterval of Ja,b], but L, S(x) is identically zero in la, b, then S has degree J.
First, we prove a theorem about the space of splines that *hve” on a lower
set @ Let X be a set of knots. The set of intervals Xg is given by: [z,,1,] 1s an
interval of kth level in Xo iff {7,7'} is an interval of kth level in . The space $
So.xun » associated with @, X | consists of all S(r) on |a, b], that satisfy the following
conditions: S(z)is a Chebyshevian spline from Uy on each |x,, z,|; Ly S(z) vanishes
outside of the intervals of level k of Xg¢; and, Li'S(r, ) / LgS(z,t) at an interior

point x, of ln interval, of level k only if fix ¢ { 1,(%).( 1‘)}. No restriction is

made on the continuity of Lg@(r) at the endpoints of intervals of level k.

c
-
Theorem 8.1. For each lower set ®, and each set of knots X, the dimension of

Sp Xuy 1S

dim So xuy = L(®) + (number of “1's,(%)'s, and (}')'s in F3). (8.7)

Proof: We prove this by induction in h := the order of the ECT-system and
the number of columns in F.
Ifh =1,let [ = [z;,z,,] be one of the p intervals of Xg of level 0, since h = 1,

the Chebyshevian splines of degree is O on I are spanned by w;(z) and functions



\ ) |
gi(r, ;) corresponding to all fro L), and ( l‘)‘ ty - ) 1o So that for the
h I the result holds.

- ‘\
Suppose we have px{wvd the theorem for A N1 now we try to prove it
for A N.

Let @7 be @ restricted to columns 1 to N I and let F' be the restriction of

the matrix F to columns 1, N L. The collection Uy {Lyuy, o lyupn) s

»

an ECT system of order N 1 for the weight functions wy(r), . wn(r). By onr
mduction hypothesis and (8.7)

o

d" dim Squ_,x'qu L(®") 1 (number of U's N ‘l)lx, and (! Vs in ')

Now let S ¢ S¢ xuy - Since Lyu; 0, we have tlm}t LS« S'I“.,\,U’N - On the

other hand | suppose that S* « S‘r".-\'.U'N and define S(r) by

o )
S(I) : wi{r) [ S (e)dt, f x¢ L, ) 1,...,p,

0, otherwise,
where I, I, ., pare the intervals of level 0 in Xg. We claim that S SO Xlin

.- S . . . . . . ) 5
Sice S is continuous inside each interval I,, vanishes outside U; L and LS

ST, 1L remains to prove only that S is a piccewise Upn-polynomial. But this is

obvious since §° {(l ) ;]NZ a; Ly u, implies
z, z N
b‘(I)!(I‘,I‘+I) - w (I)/ é‘(t)dt + un (I)/ L(Ijlzlu](t)dt
a T2 4.9
- SEAPES
= w(z) /; S'(t)dt+§u7': ™ 1 2;0]11](1)
J: ];

Let Sy (z),...,S;(z) be a basis for Seo xu, - Then the correspondingly de-

fined .§1 (z),---, 541 (z) form a basis for a basis for the subspace of all Sec So xun -



P
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On the other hand, Chebyshevian splines of degree 0 on cach | Jxy, ,J‘,:] are

.

spanned by wy (r) and by the functions ¢ (. r,) corresponding to all f,4 - (),
and ('), 1 - 7 - 12. Since each S{r) is nuniquely representable on each [ by the
linear combination of a spline of degree 0 and the splines S (r),S2(zx), -~ ,Sa (1)

restricted to 1, the dimension of ST XUn
A"t p i+ (number of fio (Y ),nnd (}) m Fg). (8.8)

Here pis the portion of the number L L(®) for column 0. Substituting the value
of d' into (8.8), we obtain our statement. i

The generalized lower Goodman Polya conditions for a spline interpolation

matrix F are

|P$| > 1,((D) for each lower set &, ’ (&S))

If the entries of F are only 0, t 1, then this definition of Fql) and the lower Goodman-

Pélya conditions agree with the ones given in 1] for spline interpolation matrices.

Theorem 8.2. If the pair F, X is regular for some set of knots X, then F satisfies

the lower Goodman-Pdlya conditions.

Proof: We subject the spline S(r) ¢ Spxuy to the conditions A x(S) - 0
for all fix = L(4), and (fl‘) in Fql,, where A, are the functionals defined as in
(8.2). If z; is one of the endpoints of intervals of X¢ of level k, this should be
interpreted as the limit of LiS(z) from inside of the interval. Chebysheyian splines
S(z) satisfying these equa.tions will be elements of S(F, X,Uy), anni ilatked by all

Ak correspondiﬁg to fix = 1,(), and (') in FJ,. If the lower Goodman-Pélya

1
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condition s violated for ¢ then by Theorem H_l/t.hv dimension of Sy y. s greater

than the number of 1's, (' )’s and () )’s i 1}\ that s, greater than the number of
» .

'

the equations. Therf there 1s a nontrival S{z) ¢ S(F, X,Un) annihilated by F X

and the pair s singular, which i1s a contradition. @



CHAPTER 9
ESTIMATION OF |Fy|
For a generalized spline interpolation matrix ¥ [f1.x l‘"f”lcvol and a lower
set. ¢, we study the matrices Fyp, Fql). This time, we consider blocks. A maximal

sequence of 1 1’s,  P’s and boxes in a row of Fyg

[}:fl,sv“‘v/l,af{ (()l)

1s a block in Fqu The block 1s interior to F&, if it contains none of the horizontal
or vertical boundary points of F. A block B in Ifql; is supported on the left {or
simply supported), if there are fi, &, ¢ {1,( )} and fi,x, € {1, ()} in Fy for
which 1 <1 < 1, and max(k,, k;) < s. For an interior supported block, elements
fio 1 and fi 44041 belong to F&, and are 0. A block is'odd (or even) if the number
R ¢ ’
of its entries is odd (or even). A block is supported on the right in F if there are
Jooks € { L ()} and figr, € { 1, ()} in Fwith 1z <1 < g, min(ks, kq) > s+t
’ ¥

By using the same way of proof as for Lemma 5.1, we can get that an interior °
block of Fg§ is supported on right in £, when & - ®(S) is the diagram of the

Chebyshevian spline §. s

Theorem 9.1. Let F be an mn x N genéralized spline interpolation matrix a(zd
let X :a =1, < --- < Zm = b be a.’ set of knoté. If a Chebyshevian spline
S(z) € S(F, X,Un) with interval support is annhilated by ‘F, X and if ® = ®(S) is
the diagram of S, then |

F| < L(®) — 1+ 4(F3)

/60 N
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where y(Fy) is the number of interior odd blocks in [".xl‘ that are supported on the

left.

Proof: We apply Lemma 5.3 to a Chebyshevian spline S(r) of degree ¢, and
derive numbers pug, kK . 0,1,---,q, which are lower bounds for the number of

continuous Rolle zeros € of Ly S(x) not already stipulated by Fg. We start with

io 0. (Since we only consider a lower bound for g, we can assume this.)

lxt {g - the nurmaber of intervals in q)(S) (or of Xg) of level & (in particular
ly 1),

ug - the number of 1's in 1"$ in column k;

ve - the number of 1’s in the interior of [‘1}, in column k;

¢x - the number of blocks (9.1) that are supported on the left in Fy, and that

begin in column k with a 1;

by : - the number of blocks (9.1) that are supported on the left in Fy and that

begin in column k with a box;
€x := the number of sequences of 1’s in Fg that end at a point (1,k) with

“(i,k 1 1) in the interior of one of the intervals of @ of level k t 1 (in partivular,

S

points on the vertical boundary of @ do not contribute to €);
nx = the number of —I’s in colummn 'k that are not supported on the left or

that are preceded .by al or a box;

- .

RN )

Wiyl = theb number vof i‘nterior}bloc‘ks in Fql, that end with a 1 in column k

for which L1 S(zi) = Q.

: %



At oty AL there watt be oy 0w contimuons zeros of TS wath g ooy

mtervals between them  Howe omit at most I,y I intervaly trom those of N

of Tevel A 1 1 we obtam at least uq + wg oy antervals oot level A to which we

can apply Lemma 5.3 On each of them, Ly S(r) and Ly, S(r) can vamsh only at

molated pornts For ananterval 1 (&, &), Lemma 5.3 may produce a continuous

on
zero Col Ly S(r) This woulkd be a speaal case of A) of Lemima 5.3 We notice

that ot (1, AN @ box between two continuous zetos &oand S owaith & - 1

)

of xS and [, -~ 1. then we can replace Rolle mterval (&, 8) b $1.1,) or
A I NS IR Yy <

(1‘\‘ £2). because one of mteryals of (&, r,) and (r,. &) should be a Rolle interval

(/urlhvrl;ur(" if there are severd] boxes between two continuous zeros & and & of

LS. we onn replace the Rolle intecval (£, &) by a Rolle interval which does not
k I Sl a2 )

contain any box. Hence, a continuous vero £ obtamed by Lemma 5.3 and equal to

an 1, can be specified already by Fg only if a) fiea l. and r, is not a zero of
Ly S(1) and with (1, k) counted either by ¢4 or 5. Unspecified continuous zeros
will be counted towards ug, g -

Otherwise, Lemma 5.3 will produce a & at which LS (r) and Leyy S(a) al
ternate and that 18 cither ) a discontinuous zero of Ly S{r1) ("()rr(?si;()11(iirlg to
fikan Lor fuka 1s abox, er v) a discontinuous zero of I{k S(z) with f,x 1.
In fact, if fien 1 or a box but'/";t 1, then LxS(z) has continuous zero at
1. If fix is a box, then we can change the Rolle interval as befor¥ if necessary,

. and get a Rolle interval which does not.contain z, on the kth level. If fi x4 =~ 1

:  ,
or a hox but (1,k + 1) is not supported on the left, then either f, &, ¢ {1,( )}



. * ..
m f} for o vand Ay Ao fioas w {T ) {Xl for 1o 1 and A A dn

cither case, ry could not be i a Rolle™s interval ot any lower level, and consequently
-4

could not be in a Rolle’s mterval at level A So ot cannot be i ointerval of Ath level

for which the Lemima 5.3 can be apphed Hence bt f 1 or a box, then the
disjoint cases 4) and ) are counted vy, Mhor by

I fikn 1, 0 or a box, then the digomt canes a) and ;) are counted n
ek boexs Thus, we omit ey e &by v (e ko ) mtervals T oof level A,
the remaining intervals will contobute to g, ,

Apgaimm we shall unprove this estimate We call o pau ('l‘/\)lll $ confirminy,
it ¢ 1y can be obtained from Lemma 53 applied to Ly S(r) under ), ) or ),
14
otherwise 1t s nonconfirming. In particular, (1, &) 5 nonconfirmming, o (¢, A) 1 on
the horizontal or vertical boundary of @ af LiS(1). Lyyy S(r) are not alternating
at roooraf (10k 1) s counted by 4 but either (1 h + 1) s not supported on the
left or LyS(z,) 0O
Let Vi be the number of nonconfirming pairs (1,k) among those counted by
Uk My OF €y b ex + by For b -0, g bowe wall exanmne, without
duplication, all positions (1, k).
Let N }:Z l] Ne and () \‘z 0wk instvml of removing eg, boeg Vb o

(vk+1 — mk41 ) intervals [ under a), ), and v), we need onlyfto remove at most

€k, + €& + (vks1 — Mky1) - Ng of them which contain confirming (1, k). This gives

a lower estimate for ux, . However, zeros of Lg,; S(z) counted by wiy; cannot be
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obtaned in this wav Therefore,
pker vk aa tus oo e b (e ) Ghar b 8 N (902)
Surmming (9.2) for k0,1, ¢ 1Land using ¢ 0,1 vy, ey Ol 0, 11
(), by 0, we obtaim
q q q q {
O gy Y ue Y e N T N e bbb e N (9.3)
koo ko ko1 kO
Since \1 o Uk \: o Uk ][:l and \,: " 1.(®) 1 (because { 1), we
have
[Fal- L(®) 1+ N 0
A
A ~q ~q ~q
where A ‘\lk otk >,k o Mkt .\,k o kot ‘\4,( o bk

We estimmate the contributions Ay, Ny, and {15 to A, N and {1 for each block

(9.1) The block can end at the vertical boundary of 1"41\ only with f, <4 1.
Since b fi I or a box, then L. S(r) has a continuous zero or one-sided
<

zero interior to its support at r, that contradicts the fact that Ly, S(x) consists of
precewise constant multiples of wyy, (¢) and wyy (¢) - 0.
Restricted to a block B, Y €4 counts the number of times 1 is followed by a
1, 0, or box in [3; Y 5, counts tfe number of times  Mis preceded by a 1 or a box
in B3 or B begins with —1 and is not supported from the left; and Y (ex + bx) = 0,
L J
or 1 and is equal 1 precisely when B begins with a 1 or a box and is supported

from the left. Therefore, Y (€x — ni) restricted to B is either 0, 1 or -1. It can be ‘

1 only if B is an interior supported (on the left) block that begins with a sequence

~



of s, and it can be 1T only if His not mterior Altogether we see that Ay !
~

and that Apy 1 can happen only if 715 an illt¢‘ri<)r.<44,pp<>rt.vd (on the lett) block

Y

Now we prove that if the interior block B supportetl on the left s even, then

Ny O implies {1y 1. This will show that Ay Ny 1y o 1 with equahity
posstble only when [$ s an interior supported odd block
Let B be anmterior block (8.2) with s -0, f, feaven O, supported

-~

on the left. Since we assume Ng 0 all pairs among (1,5 |

Arys e 1)
counted by ex gy b beyyr b (veg nev1 ) are confirming. Then Lemma 503
and -the properties of zero multiplicities show that the L, S(r) are alternating at o,
for s 1, s bt b Sincee fy, 0, L, 1 S(r) s continuous at r,, and
since (1,5 1), (1, s) is confirming, L, | 5(r,) / 0; for otherwise, r, 15 a continuon:s

)

zero of Ly S(x). Since L, 1 S(r) is continuous at r,, we have 7, 15 an even point
v
of Ly 1 S(r). Now assuming that the block is even, then o, is an even point of
Leve S(x). This implies fi 40 /1, because if fi o4¢ 1, then (1,8 + 1) could be
confirming only in case ), but in case v) Ly S(z) should be odd at r,. We also
have foove /() or ('), because we have noted that we can change Rolle interval
so that z, no longer belongs to any Rolle intervals at level s t t, which contradicts
» Lo
the fact that the pair (1,5 t+ t) and (1,5 t t + 1) are confirming. On the other hand,

if fis4t =1, we have {1y — 1.

Thus, we need only to consider odd supported b}ocks and obtain
\/

A-N-Q<(F). 1

Y



CHAPTER 10 \
THE GENERALIZED GOODMAN THEOREM g
We can now state and prove a generalized Goodman’s theorem that holds for

generalized spline interpolation matrices.

Theorem 10.1. Let the normal generalized spline interpolation matrix F have
no odd blocks that are supported from both the left and the right. Then F i.J
regular for Chebyshevian spline interpolation if and only if it satisfies the lower

Goodman Polya conditions (8.9).

Proof: By Theorem 8.2, we get the necessity. So we only need to prove the suf-
ficicncy of the condition. We assume that S(r) is a nontrivial Chebyshevian spline
in S(F. X, Up) annihilated by F, X thatis, AxS> 0 for all f, & ¢ {"l( L) ( ')

obtain a contradiction.
»

Lemma 10.2. If, in addition to the assumptions of Theorem 9.1, the matrix F
\ .

satisties the lower Goodman-Pdlya conditions, then there is a restriction S*(z) of

S(r) to an interval |z,,, 1,,] and a matrix F*, so that with ¢° O(S*): 1) S (x)

is not trivial in S(F*, X", UN) .and is annihilated by FOXY; 2) FT satidfies the

lower Goodman-Pélya conditions; 3) y(Fg') << p(F) the number of odd blocks in F

supported from the left and from thesight.

Proof: Let & = ¢(S). By the deﬁrnitiori of a sequence supported on the left

-
)

or on the right, we know that a block B of F3 may be supported from the left
Y«bove by f“o'ko = 1 in F} without B being supported from the left above by a
1 or (') in F. If this happens for some B, we say that (10, ko) € U. Similarly,

66
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we dehine (1(,,/\'“) ¢ Vol fll.,,k(. 1 in le\ supports B trom the lelt below, bhat [
is not supported from the left below by a Lor (') I Note that necessarily
(1,k) ¢« V ull belong to the horizontal boundary of ¢ (for Q(.h«‘rwixv, f'l_k fin).

If (10, ko) ¢ U, then none of t,h(“ fok imrectangle o1 0 0,00 k- Ayoas

Lor (')m F. For otherwise, the block B would be supported from the left above

in £, Consequently, fix [ for k& 0,1, ko by the definition of £ From the
-
lower Goodman-Pélya conditions (8.9) for I, we have 1[";‘.| ~ kot 1T follows that

all fix — 0,01 ( ), 1 1y, 0 k- kp.

There is a similar conclusion, if (1(),k(,) ¢ V. That is, fix 1 for k
0, ko, and all fix = 0, or { l‘) for 1 - 1 - 1y and & - ky. We define 1y to
be the largest 1o with (19,ko) ¢ U. (I U is empty, this is to be interpreted as
15 .1.) We also define 14 to be smallest 1o with (10, ko) « V (and 14 m,if Vs
empty). Then 13 < 14, for otherwise, let us suppose (13,03) ¢ U and (14,l4) ¢ V. If
13 << 14, let r min(l3,{4), then the lower Goodman-Pdlya condition (8.9) would
be violated for the rectangle 1 < 1 < m, 0 < k < r. Now, let ki(kq) be largest ko
with (l.’g,k()) € U (or with (14,ko) ¢ V). If g3 is the degree of S{r) on |y, To 4l
we put k3 - m‘m(kg,q;;)v and define k; similarly by ufing the degree, é4 of S{r) on
[Tog1 Ty -

Let F* be the matrix with rows 1,13 <t < 14 obtained from the corresponding
rows of F by changing the 0’s and the boxes in positions (Wk),1 - 13,0 < k <kjg,
and 1 = 14, 0 < k < kj, to —1's. Here, we notice that there are only () ?orm boxes

[

on the 13th row for k < k3, and only (7') form boxes on the 14th row for k < ky.
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Sinee 13 - 14 and S(x) is not trivial in S(F, N Un), we get ST{r), the re
striction of S(r) on [£y, 1], 1s also not trivial (since (145, k4) and (14, ky) support
a common block tn Iq») We also have S*(x) ¢ S(F*, X", Un) where X { ., -
I, } and S (r) 1s annihilated by F*, X" by the definition of F*. This proves

If ¢ 1s any lower set in 1z« 1 14,0~ A= N Joand if (a3,k), A+ AS 0

on the boundary of ¢*, we extend it to the left by adding the interval | N 1y at
g
level k. Similarly, if (14,k), k < kg is on the boundary of ¢, we extend it to the
right by adding the interval 14 < m'at level k. This gives a lower set W of F with.
L(¥) L(®°). Since fe O in‘[*&, and fi, & Oin Fgb for k- kY, dnd similarly,
[onk 0 in l"ql, and f,, x 0in Fi for k < ki, by the definition of 1"‘:1‘, F 1“',{\} ,

we have [Fg| - |Fg!|. Hence, 2) follows by the lower Goodman-Polya contitions

!

(H.S)).for F

An interior odd block of Fg! is also a block of this type in Fj§ . If it is supported

from the left above in 1‘&,' by some 1 or (') in position (19,ko), then also by a 1

or (') in Iql», By the definition of l"qﬂ and the properties of I, we just proved,

we know that if kg < k3, then 19 > 13, and if ko > k3, then 1y > 3. In any case,

by the definition of (13,k3), we know that (19,k9) ¢ U. Therefore, the block is

- supported from the left above in F. Similarly, we can prove the situation for the
block supported from the left below. This proves 3). &

Proof of the Theorem 10.1: Let S(z) € S(F,X,Un) be a nontrivial Cheby-

shevian spline annihilated by F, X, and let S*(z), F' be given as i the lemma.



[
We wish to apply Theorem 91 One small problem is that F* may not be a
spline interpolation matrix since there may be zeros or boxes in the first or last
row. However, the proof of Theorcm 9.1 requires only that S*° be annihilated by

1‘&,1 , X {IH‘...,I“ } For this we only have to check that LiS* (o, t) O it

f‘°‘ X 0, k- qy, and LgS" (1, ) Oaf f.: N 0,k g4. Since [-.,,k * o

k- k: f° 0 vk unphies that (1, A) belongs to the horizontyd boundary of
] l),k 7 ‘ ]

4

$ and I,kb’(r,] t) l,kS(I'I ) 0,7 3.4 This shows that S° 15 annihilated by
Fy. . )

Therefore, by Theorem 9.1 and Lemma 10.2,
[Fad L) 1y (h)

Lt y(F) - 0

This contradicts the lower Goodman Polya conditions. §



(~ .V CHAPTER 11
DUALITY
The generalized m < N spline interpolation matrix £ defines a spline space
S(F, X, Un) for any given l'}(l'l‘.—syst(tm Un {ul,...,uN} on |a,b] and a set of

knots X {u Ty ... I, b}. A l)as{is for this space 1s given by

N
B {Il‘}l\lU{!Iq,l(IYI}’):/}),q( { l»(ll)v(ll)};l‘ P, q 0, -, N l}-

The generalized matrix F also determipes the interpolation problem as given by the
/

functionals

Avkg(xr) » Lig(x,) Ve 1

A-,kg(f) M I'kg(I; ) \/f,“k : (’l); and

o

Avkg(z) o Lrg(zot) Vi (V)

For cach generalized spline interpolation matrix we define a dual generalized matrix
.

F* and a corresponding dual interpolation problem. The generalized matrix £ 1s

-

obtained by

F*o Lkl Lok - fon 1 (11.1)

where (1) (Y)and (1Y) - (') Clearly, .
(E) | v b= -0 v g )1 k] o

The pair F*, X defines an interpolation problem connected with the dual

FCT-system U}, -and the corresponding space S(F*,X,Uy) which is spanned by

¢ ]

8 = {u bl U {oin (@9) : £5q € (-1 ()i <p<mg =0, N1

(11.2)

70
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The interpolation functionals are determined by £ and the dual operators
Avalr) o Lig(ry) VI | Lin 0
A:,k g(r) » Lyg{r. ) \/f("k () (bes fun o ( L)) and (11 3)
Awg(r) v Liglect) Ve () Ge fiv o ()
It is an interesting and useful fact that regularity is invariant under duahity

.
Theorem 11.1. A generalized pair F, X s n‘g}{f‘u' i and only il the dual pan

F* X s regular; that is, we have
k] g’ | ’Y

D(F/N,G)  tD(F', X, G)

for some bases G and G* of S(F, X, Un) and S(F*, X, Uy) respectively. T pactic
ular, F is regular for a given Chebyshevian system if and only 1f I i1s regular for

the corresponding dual Chebyshevian systen.

AN
-

The proof of this theorem requires the study of the quantity
[

N
® . g N
w(r)uy o (WM DT
v
Using (2.7) and Theorems 2.4 and 2.5 (see also |2, equations (9.9) and (9.30)]), Wwe

|

K(z,y)

-

find that

Ly, K(zy) ) _wla)bi jui o ()1 }W ‘

I
—

\
v

] .
. -~ R : N .
Lui(r)uN 7,7 1tl (y)( l) e -

\

i

and °



’l'hl‘rt‘fuh"
ho(r,y) I)N ’L;éy)] K(r,y) and h (r,y)
for j 1,2,... ,N I.
Lemima 11,20 For K(r,y), we have
1) g olv) 4 +( (2) yr o
LY K () LY LRy
Proof: Now by the above

I/;(y) K(r,y) ( 1) hn ;(r.y),

so that
LY K (r,y)
SN
[(kz) L “’l('r)u;,] 1+l - (y)( l)N '
t 1
<N ) .
{ -t k]H’uk.' "(I)u]i,N 714l (y)( l)N ’ if k
0 : if k
Also,
L K(z,y) - R (z,y),
so that
, N _ ..
. z T ugiok (D)t -1y
LJ(V) LS:)K(I’y) — {:%Il , ( ) 3 N—7—1+1 (y)( )
0
Therefore, - .

L9 L7 K(z,y) = L LY K(z,v).

@

4 ' P

~1

LK (),

1< N g,
tL >N g

ifk+1 <N -

ifk+1>N —j.

o



Proof of Theorem 11.1: Define

-

11(1,;,)_.{

K(ry), fr -y

0, otherwise

'(h(\n .

and
P H(x ) gp(et)  t/x
We set
- Wy .(‘) ‘(l)
S v(r) rer U gm0l U B gy 0k
q g : 1
TREA . /{i-(':”\,"' o
c()
U e #HE0l,
Soa (1)
and
L ) z) () 4(
6 Aikalg, o U wlieal U wlueol,
. o ()
: . (z) ; ‘
U Lk)ll(z,t)‘z“z,‘}
' foe- ()
where

. t SN IN-k ->x ‘ ) 4
a;v-;}t) :/ wN(SN)/ / Cwn-k (SN ok )dsN ki -dsw.
z"l I'Yl z'" .

The functions G and G* arebJL.&y\S(F, X,UN) and S(F*, X,Up) respectively.

We apply the functionals A;x for .f‘*_k e {1,(7"), (_‘1)} to functions in ¢ € §.

For i = 1 the result will be 0 unless g is ugy; /wi1 (z1), in which case it will

v



T
give 1 1. Hence, the resulting coeflicient matrix for the system of equations can be

brought to the form

where 1, is an n x n diagonal matrix with diagonal entries tlandn:  #{fix 1}
and A, is a matrix described as follows: The rows of A, correspond to pairs (z, k)
with f, ¢ ¢ {l,(_‘l),( Db L ko and the columns correspond to pairs (p,q)

I
with f,o ¢ {=1,( ). ( l‘)}, 1 = p~ m. The entries of A; are given by the table

1,5}) INY o], L. S land frg o L
LNt it foe o (M)and fog L
L i, i S (4) and foy = 1,
LN ] LT fue o Land fg = (),

‘Nig1 11I14z.f,t4-1,.+ <"if f-k - (1l) and fp,q - (711)’

z ot ™~

[’Sc ) 1’1\5 )qu llle-z.' JgLozpt if fx.k - (—ll) and fp,q = (~ll)’
z ot R

I’Sc ) Ll\g )-q 1 1{’1:._-1..1;1,, if ft,k =1 and fp,q = (All)’

L L0 | it for = () and fpg = (1),

1oz, 4 00T,

L H, it fop = (L) and fpg = ()
//Similarly, we apply the functionals A) n_._, for foq € {(-1,(7). (L)} to’

» functions in ¢ € G*. For p = m the result will be 0 unless g\is Un_q» IN which

4. case it will give 1. Hence, the resulting coefficient matrix for the dual system of

‘equations can be brought to the form

A(F* X, G') = [f:f 1:}



where [+ 1s an ' x 7 adentity matrix with n" © #{f., 1} and Aj is a
&
matrix described & follows: The rows of A} correspond to pairs (p, q) with foag ¢
s’ -

{ L)) ( 11)}» 1 < p < m,and the columns correspond to pairs (1,k) with fix ¢

{1, (%), (1)} 1<t <m._ Theentries of A} arc given by the table

@4

Lt Ly I i for () and frw” L

L L L R (e L

1’;\St,)q,1 1’12) Illz;z‘ tlox, S G and g ),
1';\5:)‘1—-1-.1’22) le,z, £zt LA () and fog (0,

NI A N | f;‘?,,k Cland [, (), AN

| )

O AL e (i ()
1’;\(lt)q -1 Lch) Hl‘z:z.» L=z, it: Jue (W) and pe ()

Y
A
i

It follogvs from Lemma 11.2 and the definition of H(z,y) that

P TR R D TN

&

However, in the above tables ’f(}r the entries of Ay and A5, z, / 7, unlesst  pand
-v ! ’ hd
then only if fix = fpq is a box. In the latter case, the one-sided limits are defined *
and are equal. Consequently, we see that A, and A; are transposes of one another

and

D(F;X,G) = +D(F',X,§"). 1 J
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