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ABSTRACT

An investigation of the effects of systematic
reflections on the nature of electron microscope images
of crystals containing stacking faults has been carried
out. At the exact Bragg condition of a low order re-
flection it was found that effects of systematic reflec-
tions can change markedly with crystal thickness and
defect depth. Under these diffraction conditions good
agreement was obtained between predictions of the two
beam dynamical theory and experimental observations
when thin or moderately thick crystals were considered.
In thicker crystals, however, good agreement with experi-
ment was only obtained by taking the effects of system-
atic reflections into account in the theory. That
defect depth is also a factor in determining whether
or not systematic reflections play an important role in
image contrast was demonstrated by the fact that fringes
near the edges of faﬁlts in thick crystals are two beam
in character, while the contrast of fringes near the
centre of the fault can only be predicted by taking
systematic reflections into account.

It was also shown that the effect of low order
systematic sets, which is to reduce contrast in thick
crystals can be avoided by choosing a high order sys-
tematic set. This procedure can give rise to strong con-=

trast in much thicker crystal than would otherwise be

possible.



Effects of systematic reflections on image con-
trast were also studied over a range of crystal orien-
tations. Optimum contrast in the bright field occurred
near the Bragg orientation of a low order reflection.
Tilting away from this orientation resulted in a rapid
decrease in bright field image contrast. Stacking
faults in the dark field images exhibited good contrast
and were therefore easy to observe over the entire range
of orientations considered.

The results of stacking fault contrast obtained
under weak beam diffraction conditions showed that the
dark field image of a stacking fault is highly sensitive
to variations in crystal thickness. When crystal thick-
ness was equal to n effective extinction distances very
high contrast was observed. At crystal thicknesses of
(n+%) effective extinction distances the stacking fault
could barely be detected. At these crystal thicknesses
there is a possibility that errors of interpretation
could arise by attributing a phase angle a= 0 to the
fault.

The dependence of stacking fault contrast in
thick crystals on accelerating voltage was explored
by performing theoretical calculations which employed
the dynamical theory. The results indicated that two

beam contrast can persist in thicker crystals if the
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accelerating voltage is raised in a certain range of
electron energies. These results were obtained pro-
vided that the crystal orientation corresponded to the
exact Bragg condition of a low order reflection. At
very high accelerating voltages (~1000 kV) it was found
that thickness fringe and stacking fault contrast in
the bright field was significantly improved in thick
~crystals by tilting away from the symmetry position.
These results suggest that the symmetry orientation at
'high accelerating voltages may not be the best crystal
orientation for carrying out observations of stacking
faults in thick crystals as suggested by rocking curve
data.

Finally in order to gain some insight into the
mechanisms which give rise to image contrast, the
results obtained in the present work were analyzed in
terms of Bloch wave interactions. In order to carry
out such an analysis the multibeam expressions describ-
ing the inter- and intrabranch scattering of Bloch waves
which occur in the faulted crystal were derived. It was
found that it is possible to deduce the general behaviour
of stacking fault contrast from a knowledge of the
number and characteristics of the Bloch waves excited

at the top surface of the crystal.
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CHAPTER 1

INTRODUCTION

The classic work of Heidenreich [l1] has shown
that the intensity of high energy electrons transmitted
through thin sections of crystalline matter depends
upon both the thickness and orientation of the specimen.
These early experiments laid the physical basis for the
powerful technique of transmission electron miscroscopy
which enables electron images of crystals containing
lattice imperfections to be obtained.

In the early developments of transmission elec-
tron microscopy, (see for example the work of Hirsch,
HOwie and Whelan [2]) image contrast was interpreted
in terms of the kinematical theory of electron diffrac-
tion. This theory gave electron microscopists a gquali-
tative description of image properties. It became
evident, however, that the kinematical approach suffered
from major difficulties when predictions of the theory
were tested by experimental observations (see section
1:3.1(a), and references [3 to 8]). Due to the limited
applicability of the kinematical approach electron
microscopists turned to the dynamical theory of electron
diffraction in an attempt to explain experimental obser-

vations.



The dynamical theory was proposed by Bethe [9]
in 1928. In his theory Bethe gave a wave mechanical
description for the motion of the high energy electrons
in the periodic potential of the crystal. This treat-
ment resulted in an infinite set of equations relating
the amplitude coefficients of the Bloch waves excited
in the crystal, and thus no general expression for
image intensity could be deduced. Therefore, in order
to obtain solutions to problems in electron diffrac-
tion, approximations had to be made. The simplest
approximation to make is that there are only two impor-
tant beams, the directly transmitted beam and one
diffracted beam. This two-beam dynamical theory has
been widely used in calculations of diffraction con-
trast, both in perfect and in lattice defect containing
crystals. Although the theory has been successful in
providing a qualitative understanding of diffraction
contrast, its applicability is limited because in prac-
tice it is not possible to excite only two beams. The
situation which best satisfies two beam diffraction
conditions is obtained by orienting the crystal such
that only one low order reflection, g, satisfies Bragg's
law. However, even under these conditions the systematic
reflections ..., -29, -9, 29, .... are always excited.

Previous work which examined diffraction pheno-

mena in perfect crystals has indicated that for certain



diffraction conditions experimental results could only
be explained by taking these systematic reflections
into account. Prior to the work undertaken in this
thesis some results had also been reported on the
effects of systematic reflections on images of lattice
defect such as stacking faults indicating that in
this case as well, the two beam theory was limited in
its applicability. However, no extensive investigation
of the effects of systematic reflections on stacking
fault contrast had been reported. It was with this
objective in mind that the work presented in this
thesis was undertaken.

As an introduction to the presentation of the
results obtained on the effects of systematic reflec-
tions on stacking fault contrast, it was thought
important to give an account of the previous work
concerned with the interpretation of the nature of
stacking fault images obtained in transmission elec-
tron microscopy. This chapter is therefore devoted to
a literature survey of such studies (section 1:3), as
well as describing in more detail the objectives of

the present work (secticn 1:4).



1:1 STRUCTURAL ASPECTS OF STACKING FAULTS IN CLOSE

PACKED STRUCTURES

Close packed structures are generated by stacking
close packed layers or top of one another in the fashion
iliustrated in fig. 1. Given a layer A, close packing
can be extended by stacking the next layer so that its
atoms occupy B or C sites, where A, B and C refer to
the three possible layer positions in a projection
normal to the close packed layers (see fig. 1). It is
important to note that close packing is generated pro-
vided that'two layers of the same letter, such as AA,
are not stacked in juxtaposition to one another.

The stacking sequence corresponding to an fecc

crystal type is:

...A B C A B C...

while in an hcp crystal the third alternate layer is

always missing and the sequence becomes:

...A B A B A B...

in fcc crystals the close-packed planes are of
the {111} type, while in hcp lattices these are the
{0001} planes. It is possible, without destroying the
close packing of the crystal, to change from one pack-

ing sequence to another. Thus we may have breaks in the



A LAYER

C LAYER

B LAYER

Fig. 1

Packing of atoms in close packed structures.
Note that the displacement vectors
-5

R a R
Rl ’ R2 , an 3
are given in cubic notation. If hexagonal
notation is used, then

>

-1 011
Rl =3 [0110]
+_£-
R2 = 3 [1010]
->_l -
R3 =3 [1100]



stacking order, as for example, in the cubic case,
¥
... A B CcC A C A B cC A ...
or in the hexagonal case,

¥
A B A B C A C A C ...

The arrows indicate where breaks occur in the correct

stacking order, defining a stacking fault.

1:1.1 TYPES OF FAULTS IN CLOSE PACKED STRUCTURES

A classification cf the types of stacking faults,
in close packed structures, has been discussed by Frank
[10], who classified them as being either intrinsic or
extrinsic. In the intrinsic type, a fault is formed by
removing one atomic layer from the normal stacking se-
quence. Thus for example, if we consider an fcc struc-
ture, an intrinsic fault can be formed by the removal of
an A layer, giving:

¥
A B C A B C B C A B C ...

An extrinsic stacking fault on the other hand, is formed
by the addition of a layer of atoms to the normal stack-

ing sequence, giving:

¥
A B C A B C B A B C A B c ...



It is important to realize that the above types
of faults can be produced by shearing operations in the
{111} planes in the fcc case, and in the {0001} planes
of the hcp structure. In order to clarify this point,
suppose that the plane marked A in fig. 1 is a plane in
a perfect fcc crystal, and that the next plane above it
is a B plane. If the B plane and all the planes above
it are displaced by a vector % [211] the B plane will
move into a C position, and the planes above it undergo
the transition: 2 - B, B > C, and C + A, relative to the
position fixed in the original A plane. This shear dis-
placement ﬁl in fig. 1 is represented by the arrows in

the following reaction,

... A B C A

0O«~w
P« 0

B
¥
C

P« 0
W <«

giving the intrinsic fault,
¥
... A B C A C A B C A ...
An extrinsic fault can be produced, on the other hand,
if the C plane below the fixed A plare and all
successive lower planes are displaced by (-ﬁl) i.e.,

with a displacement equal to % (211] .



1:2 THE TECHNIQUE OF TRANSMISSION ELECTRON MICROSCOPY

The technique of transmission electron microscopy

(TEM) has been extensively used to study lattice defects

in crystalline matter. Although the initial work of

Heidenreich [1] in 1949 showed considerable promise, it

was nearly 10 years later before any further deveiop-

ments of the technigue took place. The developments

which laid the basis for the extensive application of

TEM in material sciences are:

(1)

(2)

(3)

(4)

The use of the electropolishing techniques for
preparing thin specimens, due to Bollmann [11].
The improvements in resolution of the electron
microscope and the availability of the double
condenser system.

The design of specimen stages which permit the
specimen to be manipulated inside the microscope.
The development of a theory of contrast in images
of crystal defects. A detailed review of this
theory is given in Chapter 2 with particular
reference to stacking fault images. A literature
survey of the relevant experiments which have
been carried out using the technique of TEM, and
the interpreteration of the results obtained by
using the different theories of diffraction con-

trast will be given in the next section.



1:3 PREVIOUS WORK ON THE INTERPRETATION OF THE NATURE

OF STACKING FAULT IMAGES

The first explanation of the nature of stacking
fault images was based on the assumption that only two
diffracted beams give rise to image contrast. Sections
1:3.1(a), (b), (c), and (d) will present an account of
the two-beam interpretation of stacking fault contrast.
In the later sections,1:3.2 and 1:3.3, the results of
previous investigations concerned with studying the

effects of other reflections will be reviewed.

1:3.1 TWO BEAM INTERPRETATION OF STACKING FAULT CONTRAST

Two different approaches [2,12] have been adopted
in considering the nature of stacking fault contrast
obtained when only two diffracted beams are considered.
The first of these is the kinematical approach [2] where
the assumptions made are:

(1) An electron can only be scattered once, and
(2) The depletion of the incident electron beam

while progressing through the crystal can be

ignored.

These assumptions resulted in the kinematical theory [2]
being limited to very thin crystals when the crystal
orientation is near to satisfying the Bragg condition

of a low order reflection. However, for large deviations
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from the Bragg condition, the kinematical approach will
be better approximation in thicker crystals. On the
other hand, in the two beam dynamical theory [12] the
assumptions of the kinematical approach are not required

and the above limitations are therefore removed.

1:3.1(a) Results of the Kinematical Approach

Hirsch, Howie, and Whelan [2] were the first to
use the two beam kinematical approach in order to
obtain the properties of stacking fault images.

In their calculations they considered a fault

which was sloping with respect to the surfaces of a

thin crystal. They assumed that the effect of the fault
was to cause an abrupt phase change o = 2n§.§ of the two
diffracted waves. R is the displacement vector of the
fault defined in section 1:1.1, and 3 is the reciprocal
lattice vector corresponding to the diffracted beam
concerned. They found that the intensity of the dif-
fracted beam along the bottom surface of the faulted

crystal is given by,

I = _Eii— {sinz(thg— /2) + sin® a/2

g
s
T ®g

+ 2 sin & sin(ﬂth— a/2) cos ﬂSg(t-—Ztl) (1.1)

2

where Sg is a deviation parameter with magnitude equal
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to the distance of the reciprocal lattice point g from
the Ewzld sphere in a direction perpendicular to the
top surface of the crystal, t is the crystal thickness,

and t, is the depth of the fault in the crystal. The

1
above equation describes the properties of the dark

field image. The bright field image in the kinematical
approach is obtained by assuming I0 = (1- Ig), where Io
is the intensity of the directly transmitted beam.

The kinematical approach of Hirsch et al [2],
although containing over=-simplified assumptions, was
able to explain the fact that stacking fault images
consisted of fringes (see equation 1.1). The periodi-
city of these intensity variations given by the kine-
matical theory can be seen from equation 1.1 to be
equal to gg = S;l where the parameter, gg, is commonly

known as the extinction distance.

1:3.1(b) Failure of the Xinematical Approach and Inter-

pretation of Fault Contrast by Using the Two-

Beam Dynamical Theory

Whelan and Hirsch [12] re-examined the results
of the kinematical approach and pointed out that such
an approach cannot explain the nature of image contrast
when the deviation parameter Sg is sufficiently small.

Under these conditions the reflection, g, will be close
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to its exact Bragg condition, and equation 1.1 predicts
fringes with periodicity tending to infinity. Since
this was clearly an unacceptable result, Whelan and
Hirsch [12] decided to analyze stacking fault image in
terms of the two beam dynamical theory. The expression
for the amplitude of the directly transmitted beam, ¢,
at the bottom surface of the faulted crystal which they

obtained was,

: Tt . . 7t
¢o = cos(g;) - 1 cosB 51n(E;
-ig .2 T(2t, = t)
L@ T-D)sinB oo mhy oo "1 Ty (1.2)
2 Eg g

The parameter B8, in equation 1.2, is a deviation para-
meter with B = m/2 at the exact Bragg condition, and
B » 0 for very large deviations from the Bragg condition.
In the two beam theory the extinction distance gg depends
on the deviation parameter through the relation gg(B) =
£y (8 = 7/2)/(1 +cot? B)%. It can thus be seen that the
extinction distance tends to a finite wvalue gg(e = 71/2),
at the exact Bragg condition, and decreases as crystal
is tilted away from this orientation, thus avoiding the
difficulties of the kinematical theory.

Whelan and Hirsch [12] have used equation 1.2 to
describe the properties of the bright field stacking

fault image. A survey of the fringe patterns obtained
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under different conditions was given in their original

paper [13]. The characteristics of these fringe pat-

terns are summarized below:

(a) Fringe periodicity is Eg/2, i.e., fringes are
doublets rather than singlets as predicted by
the kinematical approach. Thus for a given
value of the deviation parameter B, increasing
crystal thickness by one extinction distance
results in the generation of two new fringes in
the stacking fault image.

(b) Fringes across the stacking fault have the same
contrast, i.e., there is no change in fringe
visibility across the fault.

(c) If crystal thickness is kept constant, tilting
away from the Bragg condition results in a de-
crease in the visibility of stacking fault
fringes. This is seen from equation 1.2 which
shows that the value of sin28 decreases as the
crystal is tilted away from the Bragg condition,
and as a consequence the last term in the ex-
pression for ¢o will have smaller contribution.
It is important to note that properties of dark

field stacking fault image in the two beam theory were

found to be generally similar to those discussed above
for the bright field image, except that [13] bright and

dark field images were predicted to be complementary
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in nature.

1:3.1(c) Effects of Absorption on Stacking Fault Contrast

Although the agreement between the two beam theory
of Whelan and Hirsch [12] with experimental observations
was certainly better than that of the kinematical theory,
good agreement was only obtained [13] when thin crystals
were considered. The experimental observations of
Hashimoto et.al.[14] indicated that fault contrast ob-
tained in thick crystals was quite different from that
given in section 1:3.1(b).

These differences were:

(a) Contrast in a stacking fault image depended on the
depth of the fault in the crystal. For a thick
crystal a marked decrease in the visibility of
fringes near the centre of the fault was observed
both in the bright and dark field.

(b) Bright and dark field images were found not to be
complementary to one another. Bright field images
on one hand exhibited fringes which were symme-
trical about the centre of the fault, while dark
field images on the other hand were asymmetrical.
It might be noted that these properties of stack-
ing fault images in thick crystals have been used
to distinguish between top and bottom surfaces of

the crystal.
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Hashimoto et.al. [14] in an attempt to explain
their experimental observations introduced the concept
of absorption. Their arguments were that in a thick
crystal, some of the high energy electrons are inelas-
tically scattered. These electrons can give rise to
'absorption' effects since they may be scattered outside
the objective aperture of the microscope and will there-
fcre not contribute to the image.

Effects of absorption were included phenomenolo-
gically [14] in the two beam theory through the addition
of an imaginary part to the crystal potential. When
Hashimoto et.al. [14] used this approach good agreement
was obtained between theory and experimental observations
in thick crystals.

In a later paper Hashimoto et.al. [15] studied
the mechanism responsible for producing fault contrast
in thick crystals. This was done by examining scatter-
ing transitions between Bloch waves. These results will
be discussed in more detail in section 2:6 of Chapter 2.
This method of analysis was alsc used by Drum and Whelan
[16] to study the contrast resulting from o = 7 stacking
faults in AYN. The contrast of this type of fault was
found [16,17] to be similar to that cf an o = 27/3 fault

when thin crystals were considered. 1In thick crystals
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effects of absorption become important and no contrast
was found [16,17] to result from T-faults. This was
used [17,18] as a method to distinguish between the two

kinds of stacking faults.

1:3.1(d) Other Work

A number of other workers have made significant
contributions to the understanding of the nature of stacking
fault contrast obtained by using the two-beam dynamical
theory. Gevers [19] and Gevers, Art and Amelenickx [20]
studied stacking fault image contrast through an exami-
nation of the mathematical expressions for image intensity
in the two-beam theory. Using this approach these
authors [20] have found that the central fringes in a
stacking fault image which exhibit weak contrast could
be singlets or doublets depending on the value of total
crystal thickness. Although these authors have made
many other contributions to the literature on stacking
fault contrast, these are not reviewed here as they do
not pertain directly to the present investigation.

Other studies of stacking fault contrast included
the work of Booker [21], Booker and Hazzeledine [22] who
studied the dependence of contrast on different parameters
which appear in the two beam theory. The parameters they

studied were:



(a)
(b)

(c)
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The value of o in the range 7/10 to w.

The deviation parameter w= cot B (see equation 1.2)
in the range 0.4.

The magnitude of anomalous absorption parameters

in the range 0.035 to 0.1.

In calculating their intensity profiles both in the

bright and dark field the only fixed parameter was the

value of total crystal thickness which was taken to be

six times the extinction distance. The main additional

features of stacking fault contrast obtained from these

theoretical calculations were:

(a)

(b)

(c)

All bright field profiles exhibited fringes which
are symmetrical with respect to the centre of the
fault. On the other hand all dark field profiles
were asymmetrical except for o = 7 at w = 0.

When w = 0 and o = w, stacking fringes exhibit
very weak contrast (as found by Drum and Whelan
[16]1). On the other hand, for w # 0 strong
fringes are generated.

Effects of absorption were such that the image
obtained at a given orientation is characterized
by main fringes and subsidiary fringes. This
complex fringe pattern was found [21,22] to be
highly sensitive to changes in the value of ¢ and

w, and also the value of anomalous absorption

parameters used.
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Finally in this section it is important to mention
the work of Head [23] and Humble [24,25]. These authors
have described a method of producing simulated images of
stacking faults which employs the two beam dynamical
theory. The information is presented, not in the form
of profiles, but as half-tone pictures using the computer
line printer. Humble [25] used this method to study the
contrast due to overlapping 2m/3 faults. He found that
although o = 271 for 3 overlapping stacking faults, there
was still some contrast retained, possibly due to the
strain field of a nearby dislocation. Similar interest-
ing contrast features were found by Morton and Clarebrough

[26] in studies involving different fault configurations

and interactions.

1:3.2 PREVIOUS RESULTS INDICATING THE IMPORTANCE OF OTHER

REFLECTIONS ON DIFFRACTION CONTRAST

Up to this point all the work mentioned has assumed
the validity of the two beam approximation of the dynami-
cal theory. There has been, however, considerable work
on diffraction phenomena in perfect crystals which indi-
cates that the two-beam theory has a limited degree of
validity. For example the work of Sheinin [27] and Goringe
et.al. [28] on the effects of systematic reflections on ex-
tinction distance have shown that marked deviations from the

two beam extinction distance can occur due to the presence
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of systematic reflections. Systematic reflections were
also found toc alter image intensity (Howie [29]) and
image contrast in perfect crystals (Fukuhara [30], and
Goodman and Lehmfuhl[31]) from their two beam values.
Previous work reported in the literature [27 to 33]

has shown that the effects of systematic reflections

on images of perfect crystals are determined by the

following parameters:

(a) type of material and image considered
(b) accelerating voltage
(c) the deviation of the lowest order reflection, g,

in a systematic set from its exact Bragg condi-
tion.
Previous work which considered effects of systematic
reflections on the nature of stacking fault contrast

is considered in the next section.

1:3.3 STUDIES OF THE EFFECTS OF SYSTEMATIC REFLECTIONS

ON STACKING FAULT CONTRAST

Prior to the work presented in this thesis only
few investigations have studied some aspects of stack-
ing fault contrast due to the presence of systematic
reflections. One such investigation was that of
Humphreys, Howie, and Booker [34]. These authors

have used the two and multibeam dynamical theories to
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calculate fault profiles in both bright and dark field
images of stacking faults. The orientation they con-
sidered corresponded to setting the crystal at the
exact Bragg condition of a low order reflection. When
these calculations were performed for the (220) system-
atic set in silicon, they found that there were no
differences between the two and multibeam profiles.
However, when the (111) set of systematic reflections
in gold was considered, large differences were found
between the two and multibeam profiles. In this case
the multibeam profiles indicated that stacking fault
fringes should exhibit higher contrast than predicted
by the two beam theory. Another difference was found
for fringes near the centre of the fault. Multibeam
fringes for these fault depthsdid not show a marked
decrease in visibility as was the case for the two beam
profiles. The conclusion of Humphreys et.al. [34] was
therefore that effects of systematic reflections are
quite weak in materials of low atomic number like sili-
con, while these effects can be quite pronounced in
materials of high atomic number, like gold.

Gevers, Van Landuyt and Amelinckx [35] studied
the effects of systematic reflections in a different
manner. The orientation they considered also corres-

ponded to setting the crystal at the exact Bragg
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condition of a low order reflection. These authors [35]
obtained the properties of higher order dark field images
by considering the reflections -2g, 2g, ... etc. 1In
their calculations the two strong reflections in a sys-
tematic set were considered to interact according to

the dynamical theory. However the other reflections
were considered to be 'weak' so that their dynamic
interactions were neglected. The intensities of these
diffracted beams along the bottom surface of the faulted
crystal were obtained by using a kinematical approach
similar to that described in section 1:3.1(a). In order
to test their theory, high order dark field images of
stacking faults in stainless steel were recorded. They
found that the experimental results they obtained did not
show some of the fine details predicted by their theory.
Gevers et.al. [35] attributed the lack of good agreement
as being due to poor image quality resulting from lens

abberations in the electron microscope.

1l:4 OBJECTIVES OF THE PRESENT WORK

The previous work described in section 1:3.3 has
indicated that systematic reflections can have an effect
on stacking fault contrast. However a detailed study
of the nature of these effects and the conditions under

which they occur has not been previously carried out.
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The present work was therefore undertaken to explore for
a variety of diffraction conditions, the manner in which
stacking fault image contrast is influenced by the
presence of systematic reflections.

The first question which arose in defining the
approach to be adopted in this investigation was the
following: What are the different parameters which can
influence the role that systematics play on stacking
fault contrast? Guided by the factors which are impor-
tant in producing contrast when two beams only are
important, the possible parameters in the multibeam
situation were taken to be:

(1) The type of reflection in the material considered.

(ii) The phase angle of the fault o = ng.ﬁ, and the
crystal structure of the material.

(iii) The deviation of the lowest order reflection of

a systematic set from its Bragg condition, and

the accelerating voltage employed.

(iv) Depth of the fault in the crystal, and the value
of crystal thickness.

(v) Whether the image considered is bright or dark
field.

It was realized at the outset that a simultaneous
study of all the above parameters would be prohibitive.

Thus the investigation was divided into four separate
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areas. The first three of these were concerned with
exploring the nature of stacking fault contrast at low
accelerating voltages under a wide variety of conditions,
and the fourth was devoted to studying the effects on
stacking fault contrast of raising electron energy. In
the following few sections the objectives of each area

of study are given in greater detail.

1:4.1 INVESTIGATIONS OF STACKING FAULT CONTRAST AT LOW

ACCELERATING VOLTAGES WHEN A LOW ORDER REFLECTION

SATISFIES THE EXACT BRAGG CONDITION

Strong beam images of lattice defects [36 to 41]
are normally observed in the conventional low voltage
microscopy by setting the crystal so that the lowest
order reflection, g, of a systematic set is quite close
to its exact Bragg condition. It has been commonly
assumed (see section 1:3.1) that the fault image obtained
under these strong beam diffraction conditions can be
adequately described by the two beam approximation of
the dynamical theory. The theoretical calculations of
Humphreys et.al. [34] (see section 1:3.3) have indicated
however that strong beam images of stacking faults are
affected by the presence of systematic reflections in
materials of high atomic number, The possibility that

factors other than atomic number might play an important
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role in determining the effects of systematic reflections,
has not been previously explored. These factors can be:
(1) Defect depth and crystal thickness.

(ii) The row of systematic reflections excited.

(iii) Whether the image is bright or dark field.

In order to explore the effects of the above
parameters, an experimental study was undertaken. 1In
this investigation image contrast was studied over a
range of crystal thicknesses and different systematic sets
of reflections were considered. The results obtained are
given in chapter 5.

In order to determine whether or not the observed
images were affected by the presence of systematic reflec-
tions, the experimental results must be compared to the
predictions of the two and multibeam dynamical theories.
However in order to carry out such a comparison absorp-
tion must be included in the theory. This required an
accurate knowledge of the appropriate absorption para-
meters in the material investigated. To this end an
experimental method was developed to measure the values
of the absorption parameters (see sections 3:3.1, 3:3.2

of chapter 3).
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1:4.2 INVESTIGATION OF THE EFFECTS OF TILTING ON THE

NATURE OF STACKING FAULT IMAGES

Previous work [42] has shown that the nature of
thickness fringes in images of crystal wedges can change
appreciably by tilting the crystal away from strong beam
diffraction conditions. These results suggested the
possibility that crystal orientation can also be an
important factor in determining whether or not stacking
fault images will be affected by the presence of system-
atic reflections. Since this question had not received
much attention in the literature an investigation of the
dependence of stacking fault contrast on the deviation
parameter Sg was undertaken. The results are presented

in chapter 6 of this thesis.

1:4.3 INVESTIGATION OF STACKING FAULT CONTRAST OBTAINED

UNDER WEAK BEAM DIFFRACTION CONDITIONS

The recent work of Cockayne, Ray and Whelan [43]
has shown that significant improvements of images of
dislocations can be obtained from dark field micrographs
recorded under weak beam diffraction conditions. Thus
for example,for the case of partial dislocations, each
partial appears as a sharp peak of excellent contrast
superimposed on a low background intensity.

The nature of the stacking fault image to be

obtained when the crystal is tilted to the high values
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of the deviation parameter Sg, corresponding to weak
beam diffraction conditions, has not been previously
investigated. As a result a study of the different

factors affecting stacking fault contrast under these

weak beam conditions was undertaken (see chapter 7).

1:4.4 INVESTIGATION OF STACKING FAULT CONTRAST OBTAINED

AT HIGH ACCELERATING VOLTAGES

There is considerable current interest in using
high voltage electron microscopes to observe thicker
specimens than would otherwise be possible. In the
development of physical techniques to be used in ob-
taining maximum penetration, electron microscopists
have explored the conditions which maximize electron
transmission through perfect crystals [44 to 50].

Very limited work, however, has been reported on aow

- stacking fault contrast would change as a result of
raising the electron energy. This point and its impli-
cation regarding observations of stacking faults in
thick crystals, is investigated in some detail in the

present work. The results are presented in chapter 8.
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1:4.5 ANALYSIS OF STACKING FAULT IMAGES IN TERMS OF THE

SCATTERING MECHANISMS RESPONSIBLE FOR PRODUCING

CONTRAST

As indicated in section 1:3.1(c), Hashimoto et.al.
[15] were able to explain the nature of stacking fault
contrast in thick crystals oriented under strong beam
diffraction conditions by studying the interactions of‘
the two Bloch waves appearing in the two beam theory.
This method offers a basic understanding of image con-
trast since it explores the scattering mechanisms which
are responsible for producing contrast. However, in
order to analyze the results of the present investigation,
the theory had to be extended to the multibeam case.
This is done in chapter 4. This multibeam theory of
Bloch wave transitions is then used in chapters 5 to 8
to analyze stacking fault contrast obtained under a wide

variety of conditions.
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CHAPTER 2

ASPECTS OF THE DYNAMICAL THEORY OF ELECTRON DIFFRACTION

2:1 REVIEW OF DYNAMICAL THEORY FOR PERFECT CRYSTALS

2:1.1 BASIC OUTLINE OF THE THEORY

The dynamical theory of electron diffraction,as
first proposed by Bethe [9] and further developed by
Mcgillavry [51] and Heidenreich [1],starts with
Schrodinger equation which describes the motion of
the high energy electron in the potential field of the
crystal V(¥). This equation can be written as

8ﬂ2m e

V() + —2 (B + V@) @) =0
h

where w(%) is the wave function of the electron, T is
a position vector, mg and e are the rest mass and charge
of the electron, E is the potential through which the
electron is accelerated before entering the crystal, and
h is Planck's constant.

Since the crystal potential is periodic in nature
it can be expressed in the form of a Fourier series:

v(E) = v + g' Vg exp 2mig.F . (2.1)

Vo is the mean inner lattice potential, E is a reciprocal

lattice vector, and Vg is the gth Fourier coefficient of
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the lattice potential. The prime in the summation indi-
cates that the term g = 0 is excluded.

In the case of electron energies normally employed
in transmission electron microscopy, E >> V(¥) and it is
thus possible to solve Schrddinger equation by using a
perturbation approach. The solutions outside the
crystal, when V(;) = 0, are plane waves of the form
exp 2ni§.§, where the magnitude of the wave vector § is
given by

eE = h2x2/2m .

The effect of the lattice potential is to give
solutions which are combination of plane waves. Since

the potential is periodic these solutions must be Bloch

functions of the form

>1 >

b®EL,?) =7 cg(ii) exp 2mi (KT + ) .7 (2.2)
g

where k* represents the Bloch wave vector. Substitut-

ing equations (2.1) and (2.2) into Schrddinger equation

gives,
»i, 2 | i, 2GS >i
¥y [-(kM+g)° c_(k7) + —— (E+V_) C_(k")
g g h o’ g
2m,e 2mi (K1+3) . T _

+

o 1 >i
" ) Cqup (K VyIe

where the prime on the second summation indicates the

exclusion of the term h = 0. Since the terms 2ﬂi(il+§).§
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are linearly independent, their coefficients must all
be identically equal to zero. This condition results

in a set of equations of the form

2 >i, > 2 >1 ' >1
K™= (k— + Cc_(k + C kT)u, =0 2.3
K - (K7+9)71c, () I' o ®N0y (2.3)
where,
2 2moe
K™ = 3 (E + V_)
h o
and,
2moe
Uu_ = \Y . (2.4)

g h? g

> . - - .
K in equations 2.4 is a wave vector, associated with the

mean lattice potential Vg -

The above set of equations 2.3, called by Bethe
[9] the dispersion equation, gives the general relation-
ship between the amplitude coefficients Cg, the Fourier
coefficients Ug and the Bloch wave vectors Ei.

The question which arises at this stage is what
approach should be taken in solving the dispersion
relation of equation 2.3. One approach which has been
extensively used in the past [12, 52] is to assume that
only two beams are important. Under these circumstances
the dispersion relation 2.3 consists of only two equations

for which analytical solutions exist. However, in the
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present work we are primarily interested in studying
the effects of systematic reflections. If n systema-
tic reflections are considered then the dispersion
relation 2.3 consists of n equations for which analy-
tical solution cannot generally be found. Numerical
solutions of these equations must therefore be adopted.
There have been a number of formulations of the multi-
beam dynamical theory which can be used to obtain such
numerical solutions (see for example Sturkey [53],
Fujimoto [54], Niehrs [55 to 57] and Fisher [58]}). The
formulation considered in the present work is that of
Howie and Whelan [59] which reduces the problem to an
Eigen-Value equation. This formulation is particularly
useful since any number of beams can be included and
since the form of the equation is most suitable for nu-
merical solutions.

The manner in which the Eigen-Value equation is
derived can be understood by considering Fig. 2. This
figure shows the dispersion surface drawn for the two
beam case, K being the electron wave vector after allow-
ing for effects of refraction. The wave points of the
possible Bloch waves inside the crystal are obtained from
the condition that the tangential components of the
possible Bloch wave vectors must be equal to that of the

incident beam. Thus through a point A we draw a line
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(1) D'
_ F—* ., Sphere of radius K
“\ A Y' centred ot G

(2)

Sphere of radius K
centred at O

9

O

Reflecting Sphere of
radius K centred at E

BRILLOUIN ZONE
BOUNDARY

Fig. 2 The dispersion surface for high energy electrons
in the two beam approximation. The two Bloch
waves excited have wave vectors ki, and k2 res-
pectively.
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normal to the entrance surface of the crystal to inter-
sect the branches of the dispersion surface. In the
symmetrical Laue case shown in Fig. 2 this line will

be parallel to the Brillouin zone boundary, but our
arguments still hold to a very good approximation even if
the Bragg reflecting planes are not exactly perpendicular
to the crystal surface. Now let y, as shown in Fig. 2,
be the distance of a possible wave point from A, and

let S_ be the distance of the reciprocal lattice point

g from the Ewald sphere, measured in a direction normal
to the reciprocal lattice vector E in the z-direction.

From Fig. 2 we can see, for small v and Sg, that
2 2
K"-k™ = K= (K+ ycos eo) =~ -2Ky cos 6o

K2 - (k+g)2 = K2- (K-f(y-Sg)cos eg)2 > 2K(Sg— Y) cos eg
(2.5)

Substituting these expressions into the dispersion

equation 2.3, we obtain the eigen value equation,

aAct=yct o (2.6)
Here, gl is a column vector whose elements C; are the
components of the Bloch wave eigen vector, A is a matrix
with elements Aoo =0, Agg = Sg, Agh = Ug_h/ZK where

g # h (we have assumed cos eo ~ cos eg ~ 1 in equation

2.5), and Yl is the corresponding eigen value. If we
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consider a crystal with a centre of symmetry, then the
Fourier components Ug of the crystal lattice potential
are real, positive quantities. Under these conditions
U_ = U__g and the matrix A will be a real, symmetric

g
matrix since, A = A = Ug_h/ZK.

gh hg

As indicated by equation 2.6, the problem now
is reduced to an eigen value equation, and the inclusicn
of any desired number of reflections is possible. If
n beams are considered the matrix A will be an nxn
symmetric matrix, whose aiagonal elements depend upon
S _ the deviation parameter of each reflection considered,
and whose non-diagonal elements depend upon the Fourier
components of the crystal potential. Given such an
input matrix, computer programs can be written to cal-
culate n eigen values yi and the associated eigen
vectors [Cé .o Ci ...]. By carrying out such matrix
diagonalization procedures for a series of crystal
orientations, it is possible to determine the shape
of the different branches of the dispersion surface as

well as the exact form of each Bloch wave associated

with every point on it.

2:2 CALCULATION OF THE AMPLITUDES OF THE DIFFERENT

DIFFRACTED BEAMS IN A PERFECT CRYSTAL

The total wave function w(f), of the high energy

electron inside the crystal, can be written as a linear
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combination of all the Bloch waves bl(El,;) excited as

follows:

N . . .
v(z) = ¥ ¢ prE,D) (2.7)
i=1

where the coefficient w% commonly known as excitation
amplitudes, determine the extent to which the associated
Bloch waves are excited inside the crystal. In order

to calculate the diffracted wave amplitudes, the diffe-
rent terms in the summation of equation 2.7 can be

sorted out into components in the directions of the
directly transmitted and diffracted beams. The expres-
sion for a particular diffracted beam ¢, can be seen from

equation 2.7 to be,

>

o = I v Cf exp 2mi(k*+H).¥ (2.8)
i
Now if equation 2.8 is multiplied through by the phase
e
factor exp-2r7iK.r, we get
-2mik.T _ J el ol R T T
¢, © = L C, exp 2Ti(y~ + h).r
i
but since the eigen values, ?l, are defined to be in the
z-direction, (see Fig. 2), the above equation will reduce
to

> >
-27iK.r
o= 2T

*n =] - Ci exp 21i(y*+h)z . (2.9)
1
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The phase term on the left hand side of equation 2.9

can in fact be dropped out since it will not affect the

final intensity of that beam. Furthermore, if we assume

propagation to be mainly in z-direction then the ampli-

tude of the diffracted beam at a depth z in the crystal

will be given by,

¢4, (2) = ¥ wl C; exp Zwi(yl + h)z . (2.10)
i

Similar exeressions to equation 2.10 can be written for

all the other diffracted beams. All these equations

can now be reduced to one matrix equation of the form,

0g(2) = C {exp 2 inylz} o (2.11)

where C is a matrix whose elements are the eigen vectors
of equation 2.6, Yy is a column vector whose elements

are the excitation amplitudes of the Bloch waves on
various branches of the dispersion surface, and the
curly bracket indicates a diagonal matrix, with non-
zero elements equal to exp Zniyiz. We proceed now to
calculate the elements of the vector y. Equation 2.11
can be written at the top surface of the crystal (z=0)
as

99(0) =Cy (2.12)
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Since A is a real and symmetric matrix, the C matrix

will be orthogonal with elements satisfying,

=5 ana yclcl=s5 ., . (2.13)

C Cj .
g 1,] 3 g gt 9,9

i
g

Qg

Thus by inverting equation 2.12, we obtain g==g’lgg(0)=
é gg(O). Now by choosing the normalization conditions
(6,(0) = 1, ¢g(0) =0, ¢,(0) =0, ....) it immediately

follows that

Substituting ¥ = gflgg(o) into equation 2.11, we get,

o4(2) = Clexp 2riytzict 0g(0) . (2.14)
Equation 2.14 expresses the diffracted beam amplitudes

at a depth z in a perfect crystal in terms of gg(O) the
corresponding values at the top surface. This equation

can be written in terms of a scattering matrix, P(z),

as
gg(z) = P(2) Qg(O)
where
= i -1
P(z) = C {exp 2miy~z} C . (2.15)

P(z), the scattering matrix of the crystal, is a matrix

which relates the amplitudes of the different diffracted
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beams at any arbitrary depth z in the crystal to the

values of those amplitudes at the top surface.

2:3 INCLUDING EFFECTS OF ABSORPTION IN THE DYNAMICAL

THEORY

The theory described so far in the previous sec-
tions does not take into account the effects due to
inelastically scattered electrons. Electrons which
are inelastically scattered outside the objective aper-
ture of the microscope do not contribute to the image
and can therefore be considered absorbed. The effects
of those absorbed electrons were taken into account in
the dynamical theory phenomenologically by Hashimoto
et.al. [14] through adding imaginary terms iVé to the
Fourier components Vg of the crystal potential.

Yoshioka [60] has given a gquantum mechanical justifi-
cation of this procedure. Later calculations by Yoshioka
[61] and Whelan [62] indicated that the most significant
contribution to v'(r) usually come from thermal diffuse
scattering processes. This new term V'(?), can be
expanded as a Fourier series in the same way as the real
lattice potential V(;), i.e.

2,—>->
49T | (2.16)

v =] v
5 9

-4
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The ratio, Vé/Vg, which is taken as a measure of ihe
strength of absorption was shown by Hashimoto et.al.
[15] and Humphreys and Hirsch [63] to be small for
most materials. Thus it is usually adequate to treat
the problem of calculating the associated Bloch wave
absorption coefficients by using first order perturba-
tion theory. The effect of the perturbation iv' (r) is
to change the energy of the Bloch wave by an amount,

eAE, given by
*i . .
eAE = -1 J bt v'(r brdr . (2.17)

This energy change can be related to a change Ak; in the

z-component of the Bloch wave vector x* by,

i o e
Akz = - AE .

= -iq . (2.18)

The absorption coefficient qt of Bloch wave b* can there-

fore be obtained by evaluating the integral 2.17 to give

i_ 1

1 [
= c_c. U . 2.
T 7 =X . Sg g-g* (2.19)

i
gl

Qo

)
g

Including the effects of absorption in the theory involves
simply replacing each eigen value Yl by (Yl + iql), with

ql calculated from equation 2.19.
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2:4 PHYSICAL ORIGINS OF ABSORPTION, AND THE EFFECTS OF

INELASTIC SCATTERING ON TRANSMISSION ELECTRON IMAGES

There are three important physical processes which
can give rise to inelastic scattering. These are plasmon
scattering, electron-electron interaction and phonon or
thermal diffuse scattering.

Thermal diffuse scattering involves very small
energy losses, but scattering angles are moderately
large. The contribution of this type of energy loss
is of prime importance to electron absorption, since
in general most electronssuffering this type of loss
will not enter the objective aperture, and are therefore
considered to be absorbed. The effects of thermal diffuse
scattering are likely to be smaller when the crystal
temperature is lowered. This, in fact, has been experi-
mentally observed by Steeds and Valdre [64], and Howie
and Valdre [65], who found that electron penetration can
increase from two to three times by going from room to
liquid helium temperatures.

Plasmon scattering, on the other hand, occurs when
the high energy electrons excite collective plasma oscil-
lations in the valence electron gas as a whole. The
mean free paths for plasmon excitation lie typically
[66] in the range 1000-5000 A° for 100 kV electrons, so

that in many cases almost all electrons emerging from the
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crystal have lost energy. The plasmon wave length is
long compared with lattice spacing (i.e. the wave
vector q <<g) and it is not expected therefore that

the Bragg reflection would occur during plasmon exci-
tation. Only small angle scattering is therefore
expected and most electrons suffering this kind of

loss will therefore pass through the objective aperture.

The third type of energy loss namely electron-
electron scattering involves short range interaction
with the valence or core electrons of individual atoms.
Most of the electrons suffering this type of energy
loss also pass through the objective aperture of the
microscope [60 to 62].

The effects on image contrast of the inelastically
scattered electrons passing through the objective aper-
ture are not taken into account by the procedure outlined
in section 2:3. Howie [67], however, has studied the
effects of those electrons on the resulting images.

His conclusions were that small angle inelastic scatter-
ing gives rise to contrast effects very similar to that
of elastically scattered electrons. These effects had
been observed experimentally by Kamiya and Uyeda [68]
who displaced the objective aperture in a manner such
that only inelastically scattered electrons contributed

to the image. Their results showed that images very
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similar to those obtained with elastically scattered
electrons resulted. The work of Yoshioka [60, 61],
Whelan [62] and Humphreys and Whelan [69] has also
shown that contrast preservation results from electron-

electron scattering processes.

2:5 CALCULATION OF STACKING FAULT CONTRAST USING THE

DYNAMICAL THEORY

2:5.1 CASE OF A STACKING FAULT PARALLEL TO BOTH CRYSTAL

SURFACES

Matrix methods have been applied to crystals
containing stacking faults by Howie and Whelan [59].
The situation is illustrated in Fig. 3 which shows a
composite crystal made up of two slabs of thicknesses
ty and tor of similar lattice orientation but with a
relative displacement R due to the stacking fault. The
waves transmitted through such faulted crystal are found
by allowing the waves ¢o(tl), ¢g(tl) ... leaving slab 1
to be scattered again by slab 2. In terms of the scat-
tering matrix notation, this means that we must multiply
(in the correct order) the scattering matrices of the

individual slabs of thicknesses tl and ty, as

I
"9
o

ig(t)

= P(t,) B(t)) ¢ _(0) . (2.20)

.y
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Fig. 3 A crystal containing a stacking fault at a depth

El parallel to both surfaces of the crystal.
R is the displacement vector of the fault.
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For the upper portion of the crystal, the amplitudes
of the different diffracted waves incident on the
fault are the same as for a perfect crystal of thick-
ness tl’ where scattering matrix g(tl) is given by
g(tl) = C{exp 2niyitl}§fl. The question which arises
now is how to calculate g(tz) of the lower slab. The
effect of the displacement of the lower crystal is to
cause terms containing C; to be multiplied by a phase
factor given by exp - 2ni§.§. The reason for this can
be seen from Schrodinger equation where the potential
energy for the upper crystal can be written as,

5 o
T1g.r

=v_+ ) (V)
o g g'l

and for lower crystal as,

. > >
v, =V + g' (Vg)2 exp 2n1(g+§).r .

Thus

—2ni§ R
(Vg)2 = (Vg)l e .

This last equation is merely restating the fact that for
any point T in the lower crystal, the potential is the

same as that of the upper crystal for an atom at a posi-
tion (¥-R). The expression for a Bloch wave in the lower

part of the crystal will accordingly be,
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. . Pl > - s . >
Jc (kl)eznl(k +g).(r-§)=:e-2n1k.§ JC (Kl)e—2w1g.§ .
g 9 g 9

o2mi(K+g) . ¥

The phase term, exp -Zwifi.ﬁ, can in fact be ignored,
since it is independent of E. Therefore, the displace-
ment R will also cause phase changesin the off-diagonal
elements of the matrix A of equation 2.6 and correspon-
ding changes in the scattering matrix P. The off-
diagonal elements of A will behave the same as Uh and
e—ZWiK.ﬁ. The effects of the

will therefore become Uh

displacement R of the lower crystal can conveniently

be expressed by defining a matrix Q given as
Q = {exp Znia.ﬁ}

where the curly bracket indicates a diagonal matrix.

1

The matrix A thus becomes Q "AQ in the lower part of

the crystal and the matrix P becomes Q—lgg, i.e.

Bty = Q7' ¢ fexp 2miyle, il o . (2.22)

The amplitudes of the diffracted beams at the bottom

surfaces of the faulted crystal can now be written as,
9 _(t) =Q"lc{exp Zniyit }c'ch{exp 21riyit }c'lq; (0)
g = = 2°'= == 1= Xg'7 " -~

(2.23)



46

Effects of absorption can be included in the usual way
in equation 2.23, by replacing the eigen values Yl by

(yl + iql).

2:5.2 THE CASE OF A FAULT INCLINED TO BOTH CRYSTAL

SURFACES

Image contrast from a crystal containing a
stacking fault can only be observed when the fault is
inciined to the surfaces of the crystal. Equation 2.23
shows that if the fault lies at a constant depth tys
the intensity of the diffracted beams at the bottom
surface will remain constant and consequently no con-
trast result. It is clear therefore that image contrast
can only occur when tl varies, i.e. for the case of an
inclined fault.

The calculation of image contrast from an
inclined stacking fault requires detailed wave matching
of the electron wave function at the fault plane, which
obviously will involve the inclination angle of the fault
to the crystal surfaces. The work of Whelan and Hirsch
[12] has shown, however, that for angles up to 80°,
image contrast can be described to a good approximation,
by varying the fault depth tl in 2.23. This approxima-
tion assumes, as in Fig. 4b, that each point on the

inclined fault can be considered to correspond to a
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stacking fault at the same depth but lying parallel to
both surfaces of the crystal. It is important at this
stage to examine this approximation as presented by
Whelan and Hirsch [12].

Consider a crystal containing an inclined
stacking fault, and let KF in Fig. 4a be in a direction
normal to the fault plane and n be the normal to the
crystal. In the upper part of the crystal the incident
electron beam excites two Bloch waves corresponding to
the wave points Dl and D?. These wave points are deter-
mined by the intersection of the normal n to the top
surface of the crystal with the two branches of the
dispersion surface. When a Bloch wave encounters the
stacking fault correct wave matching, which ensures the
continuity of the tangential components of Bloch wave
vector across the fault plane (see Whelan and Hirsch [12]).,
requires the excitation of additional wave points Di, D'i.
The additional wave points are determined from the inter-
section of the normal of the fault ;F' with the two
branches of the dispersion surface.

In order that image contrast for an inclined
fault be described by equation 2.23, the values of the
relevant Bloch wave parameters Cé and Yi for wave points
Di and D'i must be equal to a good approximation. This
situation can only be achieved when the separation, 2y,

of these wave points is quite small. The separation Ly,
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Fig. 4a Two beam dispersion surface for a crystal
containing a stacking fault.
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Fig. 4b The portion of the stacking fault in the narrow
column AB (left) is equivalent in the column
approximation to a stacking fault lying at the
same depth but parallel to the surfaces of the
crystal (right).
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of Dl and D'l can be seen from the geometry of Fig.4a

to be

Ay = Ay tan ¢ (2.24)

where, ¢, is the angle of slope of the fault, and Ay is
the wave vector difference DlDz. Equation 2.4 can be

rewritten in the form

Ay = £(46) Ay, tan ¢ (2.25)

Ayo in equation 2.25 is the value of Ay when the exact
Bragg condition is satisfied, and £ (A6) is the function
which relates Ay and Ay, (The exact form of this func-
tion is not required for the purposes of the present
argument). From the geometry of Fig. 4a, by, = |§| tan 6
where eB is the Bragg angle, and the separation Ay

becomes,

Ay = £(28) |g| tan 6y tan ¢ . (2.26)

In practice the Bragg angles are quite small (eB ~ 10_2

radians) indicating that the value of Ay in equation
2.26 is very close to zero, as long as the angle ¢ is
not too close to m/2. Therefore, if the fault is not
too steeply inclined to crystal surfaces, the additional
wave points D‘i can, to a very good approximation, be

considered to coincide with the corresponding wave points



50

Di. This approximation allows therefore the use of
equation 2.23 in calculation of image contrast from
a sloping fault.

The approximation involved in the above discussion
is commonly referred to as the column approximation.
Fig. 4b illustrates the nature of this approximation
as applied to the case of the stacking fault. In order
to obtain the diffracted beam amplitudes ¢o(tl), ¢g(tl),..
a narrow column of crystal AB is considered. The calcu-
lation is carried out by assuming that the stacking fault
in the column AB is parallel to both the crystal surfaces,
permitting the approach discussed in the previous para-
graph to be used. The column approximation gives accurate
results in electron diffraction, mainly because the Bragg
angles are very small. Thus the fan included by direct
and diffracted rays emanating from point A on the top
surface (see Fig. 4b) is very slender, and such rays
essentially sample a portion of the stacking fault which,
to a good approximation, lies in a plane parallel to both
surfaces of the crystal. It can be seen from Fig. 4b
that the column approximation will obviously be better
when the inclination of the fault in the crystal de-
creases.

In the previous paragraph, the column approxima-

tion as it applies to two beam calculations of stacking
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fault contrast was discussed. The multibeam case however
is somewhat different. 1In this case the curvature of
higher order branches of the dispersion surface is con-
siderably more than that of the upper most two branches
considered preceedingly in this section. Accordingly
the relative change in the values of Cé and yi between
wave points Di and D'i will be expected to be higher for
those branches, and consequently more serious errors
might result by making the column approximation. The
work of Howie and Basinski [70] has shown however, that
the errors introduced by making the column approximation

in the multibeam case are small.

2:6 STACKING FAULT CONTRAST IN TERMS OF BLOCH WAVE

INTERACTIONS

Some physical insight into the mechanisms produc-
ing contrast can be obtained by considering the disper-
sion surface representation of the dynamical theory for
a crystal containing a stacking fault. In this section,
an account will be given of the method originally used
by Hirsch et.al. [71] to describe fault contrast in the
two beam theory in terms of Bloch wave interactions.

The multibeam expressions which allow the extension of
this analysis to the case when more than two Bloch waves

are important have not been previously derived and are
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presented in Chapter 4 of this thesis.

In order to examine stacking fault contrast in
terms of Bloch wave interactions, Hirsch et.al. [71]
considered the relationship between the excitation

coefficients wl above and below the fault. They found

that
2 2 . . 27iAvyt -2TAQt
1 _ I 1 ig, 1 1.2,._ _ic 1 1 2
by = (Co-l-Cg e )y + COCo(l e e e Y
and
. . -27iAyt iTAgt
2 _ 22,22 _ia,, 2 1.2,.__i«¢ 1 1 1
wl = (Co +Cg e )y + COCO(l e e e ]

(2.27)

where wi represent the excitation amplitudes below the
fault, Ay = yl - Y2, Ag = ql— q2, and t is the depth
of the fault in the crystal. The above equations show
that the values of wi (i=1,2) below the fault depend on
the amplitude of the same Bloch wave above the fault,
interpreted as intrabranch scattering, as well as the
amplitude of the other Bloch wave above the fault, in-
terpreted as interbranch scattering. In the original
terminology of Hirsch et.al. [71] these two processes
were referred to as interband and intraband scattering.
However, since transitions occur between the Bloch waves
associated with different branches of the dispersion

surfaces, it is thought that a more accurate description
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Fig. 5 Analysis of image contrast from a thick crystal
containing a stacking fault in terms of Bloch
wave interactions.
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of the physical processes involved is given in terms of
inter- and intrabranch scattering. The two intrabranch
terms appearing in equation 2.27 are,in fact,represented
in Fig. 5 by the wave points Dl and D2, while the wave
points D'l, D'2 in Fig. 5 represent interbranch scatter-
ing. Stacking fault contrast in this picture arises due
to the beating effects between the Bloch waves associated
with the different wave points Dl, D'l, D2, and D'2.

It is interesting to discuss in some detail how
image contrast was interpreted by Hirsch et.al. [71]
for a fault lying in a thick crystal, when the crystal
was oriented such that a low order reflection satisfied
the exact Bragg condition. Under these conditions the
effects of anomalous absorption are most pronounced [151],
and a wide difference exists between the absorption co-
efficients of the two Bloch waves considered (i.e.
ql:»>q2). In region A of Fig. 5 both wave points Dl and
D2 are excited. Since the Bloch wave associated with the
wave point Dl is heavily absorbed, then for thick regions
of the crystal and near the bottom surface, effects due
to Dl can be neglected. This behaviour is indicated by
the broken arrows of Fig. 5. 1In the lower wedge crystal
at A interbranch scattering occurs from Bloch wave 2 to
Bloch wave 1 and only the wave points D2 and DJ are

important. The interference between the Bloch waves
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associated with these two wave points will give rise, as
shown in Fig. 5, to fringes with periodicity 1/4ay (i.e.,
fringes will have the periodicity of the extinction
distance).

In thin parts of the upper wedge crystal, and

1
near B both D~ and D2 reach the fault, and due to inter-
1

and intrabranch scattering, the four wave points D™, D'l,
D2 and D'2 will be excited below the fault in crystal 2.
However, Dl and D‘l aée characterized by a high value of
absorption coefficients, gl, and thus will be effectively
removed by absorption before reaching the bottom surface
of the crystal. Fringe contrast in this region therefore
arises from the interaction between D2 and D'2 and fringe
periodicity will be again equal to the extinction distance.
Near the middle of the fault only D2 reaches the
stacking fault. The ornly scattering which can occur
will be an interbranch transition to branch 1 of the
dispersion surface, thus exciting the additional wave
point D'l. However, since the latter is heavily absorbed

only p? reaches the bottom surface giving rise to very

weak image contrast.

2:7 CORRECTIONS TO THE DYNAMICAIL THEORY

2:7.1 RELATIVISTIC EFFECTS

The dynamical theory so far discussed, neglects

relativistic effects, which can amount to about 10% at
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100 kv. Fijiwara [72, 73] has developed a relativistic
dynamical theory by employing Dirac's equation. His
results [73,74] have shown that a non-relativistic
theory developed by using Schrodinger equation can be
corrected for relativistic effects by:

(i) replacing the non-relativistic wave length by a
relativistically corrected one.

(i1) multiplying the Fourier coefficients of the
lattice potential by 8, with B = (l-VZ/c?‘);5
where v‘and c are the speeds of the electrons
and light respectively. This multiplication in
fact corrects for the relativistic mass of the
electron.

(iii) For the imaginary part of the lattice potential
U' the correction involves multiplying Ué by
v~1g (see Howie [74]).

The validity of these simple substitutions, have in fact

been confirmed experimentally by Hashimoto [75], Dupouy

et.al. [76], and Goringe et.al. [28].

2:7.2 THERMAL VIBRATION OF ATOMS

Another type of correction which must be consi-
dered when employing the dynamical theory is due to the
thermal vibration of the atoms. Thermal vibrations can

result in an appreciable decrease in the Fourier
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coefficients of the lattice potential Ug, since it tends
to distort the periodic nature of the crystal potential.
Including these effects in the dynamical theory is
usually [77,78] accomplished by multiplying Ug by

exp -D|§|2/4, where D is the Debye Waller factor and

|§} is the magnitude of the reciprocal lattice vector E.
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CHAPTER 3

DETAILS OF THE EXPERIMENTAL MEASUREMENTS AND

PROFILE CALCULATIONS

The work presented in this thesis explores some
of the effects that systematic reflections have on
stacking fault images. This has been done by first
studying experimentally the dependence of image con-
trast on crystal thickness and orientation, and then
comparing these results to predictions of the dynamical
theory. The present chapter is devoted to a discussion
of the details of the eXperimental measurements carried
out, as well as calculational details. This has been
done by dividing this chapter into three major sections
3:1, 3:2, and 3:3.

Section 3:1 is devoted to a discussion of the
experimental conditions under which stacking faults
were observed in the electron microscope, and includes
details such as the use of tilting stages (section
3:1.3) indexing of diffraction patterns (section 3:1.4),
as well as the way in which experimental stacking fault
profiles were obtained at different crystal thicknesses
and orientation (sections 3:1.5, 3:1.6).

In section 3:2 some details concerning the cal-

culation of theoretical profiles, which were not
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explicitly described in Chapter 2 of the theory, are
given. Sections 3:2.1, 3:2.2, and 3:2.4 discuss,
respectively, the calculation of the deviation para-
meters Sg for the different reflections in a particular
row of systematics, the calculation of Fourier coefficients
of crystal potential, and the criterion used to limit

the number of reflections to be taken into account in

a particular calculation.

Finally, sections 3:3.1 and 3:3.2 of this chapter
present the methods used to measure experimentally the
values of the absorption parameters for the material
concerned. These parameters are required in calculating
theoretical stacking fault profiles which take into
account effects of absorption, thus allowing a compari-
son to be made between predictions of the theory and

experimental results.

3:1 EXPERIMENTAL DETAILS

3:1.1 TEST MATERIAL

The metal cobalt was chosén as a test material.
Pure cobalt undergoes a phase transformation of the
matrensitic type [79]. During cooling the high temper-
ature fcc phase undergoes a transformation to the hep
structure at about 417°C. Previous work on cobalt [80

to 82] has shown that the degree of the transformation
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was dependent on grain size and prior heat treatment.
Thus it is possible, under certain conditions [82] to
obtain at room temperature both phases of cobalt. Both
the fcc and hcp phases have low stacking fault energies
[83,84] with the result that stacking faults can be
observed quite frequently in either phase at room tem-
perature. The heat treatment used to stabilize more of
the high temperature cubic phase at room temperature,
was to anneal the specimen for about 3 hours at 800°C
and then to cool it rapidly (~50°C/min) to room tempera-
ture.

In the present work 3 mm discs were cut from the
annealed sheets using a spark cutting machine. These
discs were first polished in a jet polishing arrangement
to obtain a dimple shaped specimen, and were then made
ready for observation by electrolytic polishing using

pointed shaped stainless steel electrodes.

3:1.2 ELECTRON MICROSCOPE EXAMINATION

Experimental observations were carried out in a
JEM-150 electron microscope using a tilting-rotating
stage. The stage allowed a specimen to be tilted about
two mutually perpendicular axes through a range of x15°
and +5° respectively. The specimen could also be rota-
ted through 360°. 1In ord~r to facilitate tilting

through a known angle, a high precision click-type
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control was used which allowed angle changes to be made

in increments of 0.005°.

3:1.3 DETERMINATION OF TILT AXIS DIRECTION AND TILT

CALIBRATION

In actual observations of stacking fault contrast
as function of angle of tilt, the specimen must be til-
ted about an axis perpendicular to the row of systematic
reflections chosen. Thus the set of crystal planes
involved must be oriented in the direction of the one
of the tilting axes of the stage. Under these conditions
a given change in the angle of tilt of the specimen
results in an equal change in the value of deg the devia-
tion of a reflection, g, from the exact Bragg condition.
However, in order to orient the specimen in this manner
the direction of the axis of tilt, as seen on the view-
ing screen, had to be determined. This was done by
using the fact that, as the specimen is tilted, the
associated Kikutchi pattern must move in a direction
perpendicular to the tilt axis. The direction of motion
of the Kikutchi pattern was determined from a series of
diffraction patterns of the specimen taken as it was
being tilted. This method permitted the direction of
the tilt axes as seen on the screen to be determined to

an accuracy of *3°,
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The specimen tilt system was also checked for
both long range errors, which might change the average
increment of tilt from the designed value of 0.005°,
and short range errors which might result from the
random variation of this increment. In an actual
check the specimen was oriented so thaﬁ a row of sys-
tematic reflections was perpendicular to the tilt axis
direction. The specimen was then tilted from an
orientation in which the reflection, g, was in the
exact Bragg condition to one in which the reflection,
—~g, satisfied the Bragg condition. The exact Bragg
orientation was determined from the fact that a bright
Kikutchi line must pass through the middle of the spot
concerned. Tilting the specimen in this manner results
in an orientation change equal to twice the Bragg angle
of the gth reflection. This angle was calculated from
Bragg's law and then compared to the corresponding
angle as read from tilt control. It was found that
the angles given by tilt control were accurate to 1%.

The short range random variations in increment
were checked by using a method suggested by Sheinin
[85]. 1In general they were found to be within 10% of
the increment size. However, these variations usually
occurred in pairs in a manner such that the average

increment was still approximately 0.005°.
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The accuracy of rotation control was not checked
except for smoothness since precise rotations of the

specimens were not required.

3:1.4 IDENTIFICATION OF COBALT PHASE AND INDEXING OF

DIFFRACTION SPOTS

In order to correctly interpret a particular
stacking fault image, it is important to know the type
of cobalt phase in which the fault is lying and also
to correctly determine the orientation from the result-
ing diffraction pattern. The procedure adopted for an
accurate determination of these two parameters was as
follows:

(1) The camera constant AL was determined by using
a standard gold specimen.

(2) Using a model for the reciprocal space of both
fcc and hcp lattices, the spacings, £, of the
different possible diffraction spots from the
directly transmitted beam were calculated.

For each reciprocal lattice section 3 non-collinear

reflections (000), (hlklll), (h2k212) were chosen

and the ratios of their distances gl/gz ’ 51/53

and £2/£3 were then calculated.

(3) Experimentally by using both tilt controls plus
rotation if necessary, a symmetrical diffraction

pattern from the area concerned was recorded.
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From such micrograpls the experimental values of El,

62 and 83 were measured and the ratios were calculated.
These were then compared to the theoretical values.

Using the procedure outlined above it was always possi-
ble to index the diffraction pattern and identify the
crystal structure of the area concerned. It is interes-
ting to mention that in some instances an easier method
for determining crystal structure was used. This involved
the detection of magnetic domains. Due to the anisotropy
of the hcp structure of cobalt a direction of easy magni-
tization exists [86,87]. Thus if in a hexagaonal grain
the direction of easy magnetization [0001] has a
resolved component in a direction parallel to the bottom
surface of the crystal, magnetic domains will be visible.
The observation of these domains offered a guick method
of determining whether or not the area considered was

hep.

3:1.5 PROCEDURES ADOPTED FOR OBSERVING STACKING FAULTS

After indexing the diffraction pattern, the par-
ticular row of systematics chosen was made to coincide
with one of the tilting axes of the stage. The rotation
control was usually used to achieve this situation.
Next, the specimen was tilted about that axis, until

the non-systematic reflections (i.e. reflections which

-4
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are not collinear with the row of reflections chosen)
were as far as possible from satisfying their Bragg
conditions. Caution was also taken to ensure that

none of the second zone spots which occur due to the
finite curvature of the Ewald sphere were close to
satisfying their Bragg orientations. It is important
to mention; however, that in scme instances the above
requirements needed to minimize the effects of non-
systematic reflections could not be met experimentally.
When this was the case no attempt was made to carry out
observations of stacking faults.

The next step, after tilting non-systematic re-
flections to orientations where their effects were
expected to be minimal,was to orient the specimen so
that the desired value of Sg was obtained. The pro-
cedure adopted to do this was first to determine the
number of clicks on the tilt control corresponding to
one Bragy angle, and then to calculate the number of
clicks necessary to tilt the crystal to the required
value of ssg. Thus for example when the desired orien-
tation was between the reflection 2g and 3g, the
crystal was tilted initially to the exact Bragg con-
dition of the reflection 3g as judged by the Kikutchi
line passing through the middle of the reflection.

Then the tilt control was utilized to tilt through the
number of clicks corresponding to one half of a Bragg

angle.



66

Dark field observations of stacking fault images
were carried out by tilting the illumination system of
the microscope so that the diffracted beam concerned
was parallel to the axis of the microscope. This pro-
cedure was adopted so that the image considered would

be subjected to minimum spherical abberation.

3:1.6 DETERMINATION OF EXPERIMENTAL STACKING FAULT
PROFILES AT DIFFERENT CRYSTAL THICKNESSES

Stacking fault contrast was studied as func-
tion of crystal thickness by comparing experimental
profiles recorded at different crystal thicknesses.
The question which arises is how to specify the value
of crystal thickness for which a particular profile is
recorded. One way this can be done is through the
determination of the absolute value of crystal thick-
ness, which involves a knowledge of the wedge angle
as well as the distance perpendicular to the edge of
the specimen to the point where the trace was recorded.
This procedure is generally quite difficult since in
most cases the wedge angle of the crystal cannot be
accurately determined. An alternative method which was
adopted in the present work was to specify the crystal
thickness in terms of the extinction distance. This
procedure involves obtaining stacking fault profiles
at points where the intensity of the associated thick-

ness fringes can be accurately defined. The positions
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which were found most convenient correspond to crystal
thicknesses of n and (n+%) extinction distances where
n is an integer. At these values of crystal thickness,
thickness fringes exhibit either intensity maxima or
minima.

The manner in which actual profiles were recorded
from a micrograph like that given in Fig. 6 was as
follows: The micrograph was placed on the stage of a
microdensitometer and was aligned so that the direction
of thickness contours appearing at both sides of the
stacking fault image, were as far as possible in the
direction in which the trace was taken. The plate was
advanced until the tracing direction coincided with a
position of a maximum in directly transmitted intensity.
Tracing the image in this way gave an experimental stack-
ing fault profile corresponding to a fault in a crystal
of thickness n extinction distances where n is known.

The next trace was recorded by advancing the plate through
a distance corresponding to half the extinction distance,
and so on.

The important question which arises when carrying
out theoretical calculations of stacking fault profiles,
which are to be compared to the experimental traces, is
what are the values of crystal thickness at which the

calculations should be performed. In investigations



Fig. 6

Micrograph showing bright field image of
stacking faults in wedge crystal of fcc
cobalt. Experimental profiles such as those
in Figs. 10, 14 were obtained by taking
microdensitomer traces in a direction parallel
to the extinction contours.

68
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carried out in the past [29,34] the appropriate value
of crystal thickness was obtained by defining the
extinction distance, as in the two beam theory, by
l/Yl—yz, i.e. the reciprocal separation of the two
uppermost branches of the dispersion surface. There
are two reasons why this definition of extinction
distance, can in fact, lead to serious errors in
determining crystal thickness at which stacking fault
calculations are to be carried out. The first reason
is due to possible variations in the peak-to-peak
spacing in actual multibeam extinction contour plots
from the value l/yl—yz. These variations occur because
of the presence of Bloch waves other than one and two
(For more details on this point see section 5:1). The
other reason is that, under certain circumstances eigen
values other than Yl, Y2 can determine the extinction
distance. Therefore the approach adopted in the present
work was to determine values of crystal thickness in a
manner quite analogous to the way in which experimental
profiles were recorded. The method was to calculate a
theoretical extinction contour profile for the same
diffraction conditionsunder which the experimental
images were recorded. From such intensity plots the
crystal thicknesses corresponding to positions of inten-

sity maxima and minima were then determined. Stacking

fault profiles were then calculated using these values
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of crystal thickness.

3:2 DETAILS OF PROFILE CALCULATIONS

The calculation of theoretical intensity profiles
was carried out by using the scattering matrix approach
of the dynamical theory as outlined in Chapter 2. 1In
order to calculate diffracted beam intensities, the
Bloch wave parameters C; and Yi must be known. These
were obtained by solving the eigen value relation of
equation 2.6. Therefore the starting point in a par-
ticular calculation involved setting up the input matrix
A. If n systematic reflections are to be included in a
calculation, the A matrix will be an nx n matrix. The
diagonal elements are the deviation parameters Sg of
the different reflections in a systematic set (see
section 2:1.1), and the off-diagonal elements are given
by Agh = Ug_h/ZK. The manner in which these two para-
meters were calculated is considered next.

3:2.1 CALCULATION OF Sg FOR THE CASE OF SYSTEMATIC

REFLECTIONS

The vector, §g, which represents the deviation
of a particular reflection, g, from its Bragg condition
can be calculated from the relation Sg = ]3[560 , where

699 is the deviation angle of the reflection g from

~d
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EWALD SPHERE

o—

Fig.

7

(o} g 2g

The Ewald sphere construction showing the
deviation parameter S, for the reflection
g in a systematic set? Sq = DM- DR, since

1
2coszd))2

DM = (Kz— K
and
2 2. 3%
DR = (Kg - {g-K cos ¢}°)7,
the value of Sg will be given by equation
3.2.



72

satisfying the exact Bragg angle. This relationship
assumes that the Ewald sphere can be considered to be

a plane in reciprocal space, and therefore neglects

the finite curvature of that sphere. In the calculations
presented in this thesis, this curvature was taken into
account since for large deviations from the Bragg condi-
tions the approximation |g|68g can lead to serious
errors. The manner in which this was done can be
understood by considering Fig. 7. The vector BO in
that figure represents the incident electron beam 4
when the lowest order reflection 3 of a systematic set
satisfies the exact Bragg condition. Under these condi-

tions Sg= 0 and the angle between the directions X and
> . .
g is given by

->

cos ¢ = -®.9/|X] |9 - (3.1)

The vector 53} on the other hand, represents the situa-
tion at a deviated orientation. The angle ¢(K,§) at
this new orientation is ¢ = (¢o + deg), and the devia-

tion parameter can be calculated by using,

sg = K| {(1 - cos?0)® - (1- (|3]/|R] - cos $) %)%} .
(3.2)
Equation 3.2 was used to calculate the deviation para-
meters of all the reflections considered in a systematic

set. However, it can be seen that for small enough



73

deviations from the Bragg condition the use of equation
3.2 can lead to numerical errors, since it involves
taking the differences between the square roots of two
large and nearly equal quantities. Under these condi-
tions it can be shown that if equation 3.2 is expanded
in a series and if higher order terms are neglected

Sq becomes very nearly equal to lglaeg. This was the
relation used to calculate Sg when a reflection was

quite close to its Bragg condition.

3:2.2 CALCULATION OF THE FOURIER COEFFICIENTS OF THE

LATTICE POTENTIAL

The potential that the high energy electron sees
while travelling through a crystal is derived from the
charge density at the atomic positions. Thus by express-—
ing both the crystal potential V(¥) and the charge
density p(f) in a Fourier sum of the form given in
equation 2.1, and then relating these two quantities
through Poisson's equation, it is possible to show that
the Fourier coefficient Ug-h of the crystal potential

is written as

2
Ugen = T © Fyon /] (3.3)

where V_ is the volume of the unit cell, Fg-h is the
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kinematical structure factor, and fe{sin e(g_h)/A]

is the atomic scattering factor for electrons [77].
Ibers [88], Vanshtein and Ibers [89], and Ibers and
Vanshtein [90] have published values for these atomic
scattering factors, for specific values of (sin 6/\),
and for elements with atomic number in the range (1-18)
and (20-104). However, in view of the importance of
this quantity in electron diffraction anaiyses, Smith
and Burge [91] expressed fe(sin 8/A) for each element

in terms of a single analytical expression of the form

£,00) = ] al B X7 (3.4)
i

where x = (sin 6/X). In their calculations which
involved using Thomas-Fermi-Dirac atomic wave functions,
Smith and Burge [91] have considered three terms in the
above equation. Doyle and Turner [92] using an expres-—
sion of the same form recalculated the electron scatter-
ing factors by employing relativistic Hartree-Fock
atomic wave functions. In their calculations they found
it necessary to include four terms in the summation of
equation 3.4.

The calculation of Ug in the present work employed
equation 3.3. Either Smith and Burge or Doyle and Turner
parameters were used. It was found that image profiles

obtained by using either set of parameters were almost
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identical for all cases checked. The appropriate value
of the Debye Waller factor D was also used in these
calculations in order to include the effects due to

thermal vibrations of atoms.

3:2.3 EIGEN VALUES AND EIGEN VECTORS

The next step after calculating the elemants of
the matrix A was to apply a standard diagonalization
procedure in order to obtain its eigen values and eigen
vectors of equation 2.6. There are four programs avail-
able for diagonalizing a real and symmetric matrix in
the Computing Centre at the University of Alberta. These
programs employed either the Jacobi [93] or Householder
[94] methods of matrix diagonalization. A comparison
was made of the speed and accuracy of those available
routines. In the present work the subroutine Eigen [95]
which employs the Jacobi [93] method was chosen since
it was found most accurate. The diagonalized matrix
contained the eigen values yi (i=1,2,..,n) arranged in

order of decreasing Bloch wave vector, i.e.
1l 2 3
x| 2 |k;| 2 |kZ| «.... etec.

This Bloch wave numbering system is similar to the one
proposed by Humphreys and Fisher [96] for electron
diffraction which considers only systematic reflection

to be excited.
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3:2.4 NUMBER OF SYSTEMATIC REFLECTIONS INCLUDED IN THE

CALCULATIONS

One question which arises when performing multi-
beam calculations of intensity profiles is that of how
many reflections should be included. In view of the
fact that the computing time required for a particular
calculation increases considerably with the number of
reflections taken into account it was necessary to develop
a criterion which selects only those beams which are
relevant to the results obtained. 1In previous investiga-
tions this was done by selecting some image property and
increasing the number of beams taken into account until
the variation in the value of the guantity chosen became
guite small. Metherell and Fisher [97], for example,
chose the convergence in the values of Bloch wave para-
meters C;, Yi and qi while Serneels and Gevers [98] chose
the convergence in the value of the multibeam extinction
distance. Since the present investigation was mainly
concerned with image contrast, the detailed shapes of
the theoretical profiles were taken to be the important
factor. The procedure was to increase gradually the
number of reflections included until a stage was reached
where the addition of further reflections did not change
in any significant way the details in the intensity
plots. In most cases the number of systematic reflec-
tions which had to be considered was in the range 1l to

15.

-4
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3:3 MEASUREMENTS OF ABSORPTION PARAMETERS

Absorption is taken into account in the dynamical
theory by assuming an imaginary part for the lattice
potential. (See section 2:3 of Chapter 2). The rela-
tion between complex and real parts of the lattice
potential is normally expressed as

N =V .
g g/vg

The effects of image contrast arising from the coefficient
No,associated with the mean lattice potential is referred
to as normal absorption. The higher order parameters,

N_, will in general result in Bloch waves having different
values of absorption coefficients qi (see equation 2.19

of Chapter 2). The effects of these Bloch waves on image
constrast is commonly known as anomalous absorption.

The anomalous absorption parameters, Ng' have been deter-
mined theoretically by Humphreys and Hirsch [63] who
showed that, to a good approximation, the value of Ng
varies linearly with g. The method used by most inves-
tigators for determining these parameters experimentally

is based on the two beam approximation of the dynamical

theory [99]. This method suffers from two major sources

E£2 e
pupriraysy

of error. The + of these is associated with the

effects of systematic reflections, while the second is

due to inelastically scattered electrons which pass
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throvgh the objective aperture. The fact that systema-
tic reflections have an effect on the values of the
absorption parameters measured by the two-beam method

was first illustrated by the results of Uyeda et.al.
[78]. These authors measured values of absorption
parameters in MgO as a function of accelerating voltage
and found a marked departure from the two beam theory for
higher accelerating voltages. These results were ex-
plained by Goringe et.al. [28] who applied the two-

beam method for measuring absorption parameters to
multibeam intensity profiles obtained by taking the
effects of systematic reflections into account. The
effects of low angle inelastic scattering on measurements
of absorption parameters have been investigated by several
authors [75,99,100] who showed that the values of the
anomalous absorption parameters, Ng,were a function of
objective aperture size. Measurements of No on the

other hand, were found to be independent of objective
aperture size used.

The limitations of the two beam nethod indicate
the desirability of developing an alternative technigque
for determining absorption parameters. In a recent
paper Spring and Steeds [101] have proposed a method
which employs the multibeam theory. Their method is

based on observations of the fringe pattern obtained
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when a specimen is bent. In order to avoid the effects
of non-systematic reflections, a cylindrically bent
speciment is required and the computer calculation
requires a two—dimensional display of intensity expressed
as a function of both crystal thickness and A6, the de-
viation from the Bragg condition. The multibeam effects
observed are more marked in heavy metals and the tech-
nique is therefore especially suitable for these
materials.

In the present work a method was developed to
measure absorption parameters in the material concerned
which avoids the difficulties and limitations of the
method suggested by Spring and Steeds [101], as well
as the two-beam method. The method is based on a
comparison of the intensity profile obtained at a given
value of A6 with the results obtained from computer
calculations. Experimentally a small region of crystal
of constant orientation is required, and computer cal-
culations therefore require only the usual "one-
dimensional" plots of intensity as a function of depth
in the crystal.

It is important to mention that a check on the
values of absorption parameters obtained by using the
present method was also carried out by employing an
alternative technique which uses stacking fault pro-
files. Details on both of these techniques are des-

cribed in the next sections.
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3:3.1 DETERMINING OF ABSORPTION PARAMETERS USING A

PERFECT CRYSTAL WEDGE

This method [102] is based on the results reported
by Sheinin [103], Sheinin and Cann [104], and Cann and
Sheinin [105] which showed that for certain crystal
orientations multibeam effects in perfect crystals be-
come important. Under these conditions, thickness
contours in the dark field image of a crystal wedge
exhibited fringes which are complex in character. Fig.8
shows an example of these extinction contour profiles.
In this figure the variation of diffracted beam inten-
sity at the bottom surface of an fcc cobalt crystal is
calculated assuming that the (111) set of systematic
reflections only is excited at 150 kV. The deviation
of the (111) reflection from its Bragg condition was
taken to be A8;4; = 1.75 6441 (Aeg, hereafter will be
taken to indicate the deviation of the lowest order
reflection in the systematic set concerned. This de-
viation parameter which is expressed in terms of frac-
tions of the Bragg angles, has a sign convention the
same as that of Sg.)

In order to illustrate the effects of absorption
on the image profiles, calculations have been performed
for the same diffraction conditions and for progres-

sively higher values of anomalous absorption

-
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DEPTH IN CRYSTAL (A°)

Fig.8 Dark field thickness fringe profiles for the (111)
systematic row in fcc cobalt at a value of 48;;:=
1.75 8371 and at an accelerating voltage of
150 kVv. Ng is kept constant at 0.03 and the anoma-
lous absorption parameters were a) N.= 0, N = 0..,

2
b) Ng= .03, Npg= .06... and c) Ng= 0306, NpgZ 0.12...
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parameters, Ng‘ The results of these calculations

are shown in Fig. 8. If anomalous absorption is

absent as in Fig. 8a, the profile obtained shows that
thickness fringes exhibit a doublet structure which
persists to any value of crystal thickness. Figs. 8 b,c
illustrate what happens when the anomalous absorption
parameters are increased. These profiles show that
fringes in thinner parts of the crystal are complex

in shape and are doublets while fringes obtained in
thicker crystal are sinusoidal in character and are
singlets. The number of fringes which are complex in
shape can be seen to depend upon the set of anomalous
absorption parameters used. Fig. 8b, for example, shows
suppression of the doublet structure beyond a crystal of
thickness about 2200 A°, while for Fig. 8c this suppres- -
sion shifts to a value of about 1200 A°.

It is clear therefore that the values of the
anomalous absorption parameters chosen have a marked
effect on the character of the profile obtained. This
fact provides a method for determining these parameters
experimentally. The method consists of obtaining an
experimental microdensitometer profile from a dark field
micrograph recorded under the same diffraction conditions
mentioned in obtaining Fig. 8. A set of anomalous ab-

sorption parameters can then be chosen by comparing the



experimental trace with the theoretical profiles such
as those given in Fig. 8, and choosing the set which
gives best fit between the theory and experiment.

It should be noted that the method mentioned
does not permit a unique set of absorption parameters
to be obtained. The reason for this was given by
Metherell and Fisher [106] who investigated the
effects of using different functional relationships

between Ng and g. The relationships they used were

N_« |g|] , N_« L, and N, = constant.

Their results showed that a profile of the same shape
can be obtained by using each of the above relations
if the value of the parameters were suitably adjusted.
These results indicate,therefore,that a unique set of
absorption parameters cannot be associated with a
profile of given shape and also that experimental
determination of absorption parameters requires a
certain functional relationship between Ng and |g| to
be assumed. In the present work the relation

Ng « |g| has been assumed since it approximates

closely to the theoretical results of Humphreys and

Hirsch [63].
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The value obtained by using the method described
above was N;,q = 0.060 + 0.005 with higher order Fourier
coefficients obtained by assuming Ng «< ]3[, This mea-
sured value was found to be in close agreement with the
theoretical value of 0.060 given by Humphreys and Hirsch
[63]. This theoretical value is, however, approximate
since it was obtained by interpolation from Fig. 2a of
their paper [63], noting the dependence of abscrption
parameters of different materials on their number.

Sheinin, Botros and Cann {102] have shown that
once a set of anomalous absorption parameters have been
deduced, the same method can be used to find a value
for No‘ However, the value of this parameter is not
required for purposes of the present work which is
mainly concerned with stacking fzult contrast. That
NO does not affect stacking fault contrast can be seen
from Fig. 9, which shows the profiles obtained for an
o = +27/3 fault in fcc cobalt crystal, when 08411 0.0.
The value of No in Figs. 9a, b, and c were 0.01, 0.03,
and 0.06 respectively, and the values of Ng were kept
constant in each case. It is clear by comparing Figs.
9a, b, and ¢ that although the overall image intensity
changes, stacking fault contrast remains identical and
is therefore independent of normal absorpticn.

Finally it is important to mention that the dif-

fraction conditions used in the present investigation
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Fig.9 Multibeam bright field profiles for an a=27n/3 stack-
ing fault in a crystal of thickness equal to five
extinction distances. The anomalous absorption para-
meter in each case was Ng= 0.06 while the normal ab-
sorption parameters were-a) No= 0.01, b) No= 0.03 and
c) N_=0.06.
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for fcc cobalt were different from those used by Sheinin
et.al. [102]in molybdenum. It is therefore suggested
that different crystal orientations must be investigated
in the material concerned in order to determine the con-
ditions which are most suitable for use in determining

absorption parameters.

3:3.2 DETERMINATION OF ABSORPTION PARAMETERS FROM

STACKING FAULT PROFILES

Since the present work is mainly concerned with
studying stacking fault contrast, it was thought to be
guite important to have an independent check on the
values of absorption parameters obtained in section
3:3.1. To this end, a method which uses stacking fault
profiles was utilized. Hashimoto et.al. [14,15] have
shown that when a low order reflection satisfies the
exact Bragg condition, the effects of anomalous absorp-
tion on stacking fault contrast are most pronounced.
These effects result in stacking fault fringes which
have a structure depending on the value of anomalous
absorption parameters. A method can be used,therefore,
which is based on a comparison of experimental stuacking
fault profiles obtained at different crystal thicknesses
to theoretical profiles calculated under the same con-

ditions. The correct values of absorption parameters
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10

Experimental bright field profiles for an

e = 2m/3 stacking fault in fcc cobalt. The
(111) reflection was in the exact Bragg
condition and the accelerating voltage was
150 kV. Crystal thicknesses are: a) 3.5;
b) 5.5; and c) 7.5 extinction distances.
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would again be those which give best fit between theory
and experiment.

The actual experimental arrangement was to re-
cord bright field stacking fault images in fcc wedge
cobalt crystals, when the (111) reflection was at the
exXact Bragg condition. Care was taken so that as far
as possible only the (111) set of systematic reflec-
tions was excited. Experimental microdensitomer traces
were then recorded from the resulting micrographs at
values of crystal thicknesses corresponding to maxima
and minima in directly transmitted intensity (i.e., at
crystal thicknesses corresponding to n and (n+%) extinc-
tion distances). The experimental results are illus-
trated in Fig. 10 by the profiles obtained at values of
crystal thicknesses of 3%, 5%, and 7% extinction distances
respectively. It can be seen from Fig. 10 that a gradual
disappearance of the structure of stacking fault fringes
occurs as crystal thickness increases. This behaviour
actually consists of a transition from the doublet struc-
ture obtained in relatively thin crystal (see Fig. 10a)
to singlets in thicker crystals (Fig. 10c). The change
in the structure of stacking fault fringes is sensitive
to the values of the set of absorption parameters used.
This can be seen from Fig. 11 where the theoretical

multibeam profiles are presented for two different values
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Multibeam bright field profiles correspond-
ing to the experimental profiles in Fig. 10.
The sets of anomalous absorption parameters
used are given namely Ng= 0.04 and Ng= 0.06.
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of N_, namely .04 and .06. The profiles on the left
of Fig. 11 show that when Ng = ,04 the doublet struc-
ture would persist to crystals of thickness 7% extinc-
tion distances. On the other hand when Ng = .06
(profiles in the right hand side of Fig. 11) the doub-
let structure is not observed for crystals of thickness
over 5% extinction distances. Thus by comparison of
experimental profiles such as those given in Fig. 10,
with theoretical profiles,such as those of Fig. 11, it
is possible to obtain a set of anomalous absorption
parameters which gives good agreement between theory
and experiment. The values obtained by the procedure
outlined above were in very good agreement with the
values Ng = 0.06 +.005 obtained by the method discussed
in section 3:3.1.

The last point to note in this section is the
relative insensitivity of the profiles to the values
of absorption parameters used when crystal thicknesses
were n extinction distances. This is illustrated in
Fig. 12 by the multibeam profiles obtained for crystal
thicknesses 4, 6, and 8 extinction distances at two
values of Ng namely 0.04 and 0.06. As can be seen from
Fig. 12, the structure in the stacking fault fringes
at those crystal thicknesses changes only slightly as
N_ increases. It is therefore clear that when the

bright field image is used to determine absorption
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Ng=0.04 Ng=006

Fig.

12

Multibeam bright field profiles for an o = 2m/3
fault in fcc cobalt. The (111) set of systematic
reflections only are assumed excited at 150 kV,
with A63733= 0. The values of anomalous absorption
parameters used are given on the graphs, and the
values of crystal thicknesses considered are a)
4.0, b) 6.0 and c) 8.0 extinction distances
respectively.
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parameters, attention should be focused on profiles
corresponding to crystals (n+%) extinction distances
thick since these profiles are the most sensitive to

the value of anomalous absorption parameters used.
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CHAPTER 4

ANALYSIS OF IMAGE CONTRAST IN TERMS OF

BLOCH WAVE INTERACTIONS

4:1 INTRODUCTION

The motion of high energy electrons in a crystal
is represented in the dynamical theory in terms of the
propagation of Bloch waves. Consequently an understand-
ing of the nature of image contrast in transmission
electron microscopy is based on the study of the extent
to which the different Bloch waves are excited and the
extent to which they contribute to the amplitudes of
the different diffracted beams.

The first part of this chapter (section 4:2)
presents the way in which image contrast can be analyzed
in perfect crystals in tefms of the different Bloch wave
interactions. 1In order to follow the different Bloch
wave interactions down through a crystal containing a
stacking fault, interbranch and intrabranch scattering
of these Bloch waves at the fault has to be considered.
The multibeam expressions which allow stacking fault
contrast to be studied when more than two Bloch waves
are important have not presented in the literature and

are therefore derived in section (4:3) of this chapter.
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4:2 ANALYSIS OF THICKNESS FRINGE CONTRAST FOR A

PERFECT CRYSTAL

The starting point is equation 2.15 of Chapter
2. By carrying out the matrix multiplication of
equation 2.15, it is possible to show that the ex-

pression for a particular diffracted beam is,

N . .
¢.(z) = J ¢ exp 2riyz
g(®) = 1%

where

.

1

g &*P ~27nqtz . (4.1)

¢t = ctc
g o)
The summation in equation 4.1 is carried out over all

the Bloch waves considered in a particular calculation.

th

It can be seen that the contribution of the i Bloch

wave to the diffracted beam intensity depends upon the
value of ¢; = Cé Cé exp —Zquz. In the present work a
Bloch wave will be referred to as being important or
otherwise on the basis of its contribution to the dif-
fracted beam intensity and will therefore be determined
by the value of this quantity. It can also be seen

from equation 4.1 that two important Bloch waves give
rise to sinusoidal fringes of high contrast in a perfect
crystal wedge. On the other hand one important Bloch

wave gives rise to weak fringe contrast and more than
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two Bloch waves with unequal values of yi will in
general give rise to fringes which are non-sinusoidal
in character.

The above discussion shows therefore that a
study of thickness fringe contrast in perfect crystals,
can be carried out by following the magnitudes of the

¢;'s at different depths in the crystal.

4:3 MULTIBEAM THEORY OF INTERBRANCH AND INTRABRANCH

SCATTERING FOR A STACKING FAULT

The diffracted beam amplitudes for a crystal
containing a stacking fault at a depth tl, can be
written,as in equation 2.20 in terms of the total

scattering matrix P(t) of the faulted crystal

og(6) = B() $.(0) . (4.2)

9
An alternate expression for the diffracted beam ampli-

tudes, analogoué to that of equation 2.11 of the per-

fect crystal,can be written as

¢ (&) = ot explanityt + igh ey, (4.3)

-9

where the column vector il contains the new excitation

amplitudes Wi below the fault which are functions of

depth of fault in the crystal. Now by linearly
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transforming equation 4.3 an expression for !1 can be

written as,

¥y = {exp 2mi(y! + ighe} P ¢l g LML

Substituting the value of gg(t) from equation 4.2 we
get:

_ .o i . i -1 -1
¥; = {exp 2mi(y™ + ig )t} =~ ¢~ 9 P(¢t) 99(0)

but from equation 2.12 we have gg(O) = C ¥. Substitu-

ting this into the above equation we get,

[o]

¥y = fexp 2ni(yt + igh ey T et opty c v

or simply il =BY. (4.4)
The elements of the matrix B are given in the case of a
crystal containing a stacking fault as,

P : . . . - . A=«
BY = exp - 2mi(vy*- y))t; exp 2ni(gt - qd)t, ] c3cl e?Tig R
g

(4.5)
where the summation in equation 4.5 extends over all
reciprocal lattice vectors 3.

It can be seen from equation 4.5 that the value
of wi below the fault depends upon the excitation am-

plitude of the same Bloch wave above the fault wl, as
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well as the amplitudes of all the other Bloch waves
above the fault wj. Thus the matrix elements B'J

represent interbranch scattering from Bloch wave b7

h branch of the dispersion surface) to Bloch

th

(or the jt
wave bi (or the i branch of the dispersion surface).
On the other hand, the matrix element Bii will repre-
sent scattering of Bloch wave bi into itself and is
referred to as intrabranch scattering.

The contributions of the various interbranch and
intrabranch scattering terms to the diffracted beam

amplitudes can be obtained by substituting 4.4 into

4.3 giving,

90,(8) = @7t ¢ fexp 2mityt + ight}B ¥ . (4.6)

From equation 4.6 the expression for the amplitude of

a particular diffracted beam ¢g(t) can be easily seen

to be,
0. (t) =) ) ¢X) exp 2miy't
g Li%
J
where
¢;3 = c; Cg piJ exp - 2mig.R exp - 2mgit .

(4.7)

The summation in equation 4.7 is from 1 to N, where N
is the number of beams taken into account in a parti-

cular calculation.
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An important point to note from equations 4.5
and 4.7 is that fringe contrast for a stacking fault
inclined to the surfaces of a foil must mainly arise
due to interbranch scattering. This can be seen from
the fact that intrabranch contributions (terms like
¢;i) will contain the matrix elements Bii which are in
turn independent of tl, the depth of the fault in the
crystal. On the other hand, the interbranch contribu-
tions (terms like ¢;j) are dependent on tl. It should
also be noted that the interbranch and intrabranch con-
tributions to the diffracted beam amplitudes (equation
4.7) are complex guantities, and can therefore best be
studied by utilizing phase amplitude diagrams.

In the present work analysis of image contrast
for the faulted crystal was facilitated by writing a
computer program which calculates the magnitudes as
well as the phase angles of the different Bloch wave
contributions ¢;, and ¢éj. For any fault depth tl’ the
calculations of ¢;'s were carried out at the top surface
of the crystal, and just above the fault. The contri-
butions ¢;j's, ¢;i's from inter- and intrabranch scat-
tering were then calculated just below the fault as

well as at the bottom surface of the crystal.
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CHAPTER 5

ON THE NATURE OF STACKING FAULT IMAGES AT LOW
ACCELERATING VOLTAGE WHEN A LOW ORDER REFLECTION

SATISFIES THE EXACT BRAGG CONDITION

5:1 INTRODUCTION

In the course of using theoretical multibeam
extinction contour profiles for deducing values of
crystal thickness at which stacking fault calculations
were to be carried out (see sections 3:1.6, 3:3.2)
it was found that the effective extinction distance
depended on the value of crystal thickness. This can
be seen from Fig. 13 which shows the bright field
extinction contours obtained by assuming the (1lil) set
of reflections to be excited. The accelerating voltage
was taken to be 150 kV in the calculation and Aelll = 0.
The effective peak-to-peak separation (extinction dis-
tance) in thin parts of the crystal can be seen to be
250 A°, while in thick crystal the effective extinction
distance decreases to a value of only 180 A°.

Botros and Sheinin [107] have analyzed these
results in terms of the important Bloch waves which
give rise to thickness fringe contrast. Their analysis
indicated that in thin parts of the crystal, the multi-

beam extinction distance was close to l/(Yl—Yz)showing
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Fig. 13 The variation of directly transmitted
intensity with crystal thickness for the
(111) systematic row in fcc cobalt when
the (111) reflection is assumed to be in
the exact Bragg condition and at an
accelerating voltage of 150 kv.
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that in this thickness range, the character of thickness
contours can be described, as in the two beam theory,

in terms of Bloch waves 1 and 2. In thick crystal,
however, the extinction distance was found to be close

to 1/0v2- %(v3+yH 1 with v ~ y?, indicating that in
this thickenss range, fringes arise from the interactions
of Bloch waves 2, 3 and 4. The above results show there-
fore, that the effects of systematic reflections increase
by increasing crystal thickness. The possibility arises
that similar effects might occur in crystals containing
stacking faults. In order to explore this possibility

an investigation of the dependence of fault contrast on
crystal thickness was undertaken. The experimental re-
sults (section 5:2) have been compared with computer
calculations of image contrast based on the two and
multibeam dynamical theories. Finally in order to gain
some insight into the mechanisms producing image contrast,
the results have been analyzed and discussed in terms of
interbranch and intrabranch transitions of Bloch waves

(sections 5:3 and 5:4).

5:2 RESULTS

Observations of stacking fault contrast both in
the bright and dark field, as function of crystal thick-

ness were carried out using wedge crystals of cobalt.
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All observations were made at 150 kV after orienting

the crystal so that, as nearly as possible, only the
(111) set of systematic reflections was excited and
setting the (111) reflection in the exact Bragg condi-
tion. Experimental stacking fault profiles were
examined at values of crystal thickness in the appro-
ximate range of five to fifteen extinction distances.

1+ was found that the variation in contrast of the central
fringes of a stacking fault image with crystal thickness
was quite different from that of edge fringes. Therefore
the results of each are presented in separate sections.
Sections 5:2.1(a), (b), and (c) describe the behaviour
of the central fringe pattern as crystal thickness
increases, while section 5:2.2 is devoted to present-
ing the results which describe the manner in which edge
fringes in a stacking fault image depended on crystal

thickness.

5:2.1 THE DEPENDENCE OF THE CENTRAL FRINGE CONTRAST

IN A STACKING FAULT IMAGE ON CRYSTAL THICKNESS

The results obtained for the contrast of central
fringes have been divided into two ranges of crystal
thickness. These are referred to as moderately thick
and thick respectively. A moderately thick crystal, for

the case of the (111) set of systematic reflections in

-1



Fig. 14

Experimental bright field profiles for an

a = -27/3 fault in crystals of the following
thickness: a) 6.5 extinction distances, b)
7.0 extinction distances. The (111) set of
systematic reflelctions only was excited at

150 kv, with A6 = 0.

111
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fcc cobalt, was taken to be one with thicknesses in the
range of five to nine extinction distances, while thick
crystals were those with thicknesses greater than nine
extinction distances. Bright field results are pre-
sented in sections 5:2.1(a), 5:2.1(b), while the manner
in which dark field contrast depended on crystal thick-

ness is discussed in section 5:2.1(c).

5:2.1(a) Fringe Contrast in Moderately Thick Crystals

The manner in which central fringe contrast
changes with crystal thickness in moderately thick
crystals is illustrated by the experimental profiles
given in Fig. 1l4. These bright field profiles show the
stacking fault fringes of an o = -27/3 fault at values
of crystal thickness corresponding to 6.5 and 7.0
extinction distances. As can be seen from Fig. 14b,
when the crystal is n extinction distances thick, the
stacking fault fringes near the centre of the fault
consist of doublets which exhibit relatively weak
contrast. Fig. l4a on the other hand, shows that when
crystal thickness is (n+%) extinction distances, the
fringes near the centre of the fault are singlets and

exhibit relatively high contrast.
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a
b
Two Beam Multibeam
Fig. 15 Two and multibeam profiles for an o = -271/3

stacking fault in crystals of the following
thickness a) 6.5 and b) 7.0 extinction
distances. Profile calculations took into
account the (11l) set of systematic reflec-
tions in fcc cobalt with AB 11= 0. The
accelerating voltage was ta%en to be 150 kv.
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The next point to consider is the comparison of
these results with theoretical calculations based on
the two and multibeam dynamical theories. Fig. 15
illustrates the theoretical results obtained for
moderately thick crystals. The first feature of
interest in comparing Figs. 14 and 15 is that good
agreement is obtained between experiment and the two
beam profiles. That this is so can be seen by comparing
the detailed shapes of both experimental and theoretical
profiles as well as noting that the marked difference
in contrast obtained experimentally between stacking
fault images in crystals of thickness n and (n+%) extinc-
tion distances is also predicted by the two beam theory.
A second point of interest to note from the theoretical
profiles given in Fig. 15, is that there are no signi-
ficant differences in the results obtained from the two
and multibeam calculations, thus indicating that in the
range of crystal thickness so far considered, systematic
reflections have no significant effect on the contrast

of the central fringe pattern in a stacking fault image.

5:2.1(b) Fringe Contrast in Thick Crystals

The next question which arises is whether or not
the results presented in section 5:2.1(a) for moderately

thick crystals are also characteristic of thick crystals.
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In order to investigate this question experimentally
some difficulties were encountered. These difficul-
ties resulted from the fact that images of thickness
fringes became too faint in thick crystals to permit
stacking fault profiles to be recorded at a particular
value of crystal thickness. In an attempt to over-
come this difficulty, long exposure micrographs were
recorded. Although this procedure increased the
visibility of the contours, there was still too much
uncertainty in determining the positions of intensity
maxima or minima of these thickness fringes to permit
accurate determination of crystal thickness. This
difficulty was finally overcome by determining from
extinction contours in relatively thin parts of the
crystal, the distance perpendicular to the contours
required to give a certain crystal thickness increment.
This distance would give the same thickness increment
in thicker parts of the crystal provided a specimen
with a uniform wedge was under observation. The
uniformity of the wedge was easily judged from the
overall shape of the stacking fault image (such as the
one shown in Fig. 6) since the fault runs from the top
to the bottom surface of the crystal. Using this method
to determine changes in crystal thickness with distance
from the edge of the specimen, microdensitomer traces

were recorded at thickness increments of about 25 A°
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3

Experimental bright field profiles for an

o = -271/3 fault in fcc cobalt crystal of
thickness in the range 13 to 14 extinction
distances. The (l11ll) reflection was in the
exact Bragg condition and the accelerating
voltage employed was 150 kV. The value of
crystal thickness in each case is given with
the profile.
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(which corresponds approximately to 1/10 extinction
distance in thinner parts of the crystal) in the
approximate range of crystal thickness from 10.5 to
15.5 extinction distances. The experimental results
illustrated in Fig. 16 for the crystal thickness range
13.0 to 14.0 extinction distances is typical of what
was obtained in thick crystals. These profiles indi-
cate that there is no pronounced thickness dependence
of the contrast for fringes near to the centre of the
fault and also that these fringes exhibit weak contrast.
The interesting point to note here is that the diffe-
rence in contrast of the stacking fault fringes in
crystals of thicknesses equal to n and (n+%) extincticn
distances observed in moderately thick crystals (see
section 5:2.1(a)) does not persist in thick crystals.
In an attempt to understand these results,
calculations of stacking fault contrast were performed
in the range of crystal thickness from 10.5 to 15.5
extinction distances. The results obtained are
illustrated in Fig. 17b,c which shows the results
obtained for a crystal of thickness 12.5 extinction
distances for both the two- and multibeam cases respec-
tively. Fig. l7a is the experimental profile obtained
for the same value of crystal thickness. The two beam
profile in Fig. 17b is in poor agreement with the ex-

perimental profile in that it shows that fringes near
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Fig. 17 Bright field profiles for an a = -27/3
stacking fault in a crystal of thickness
12.5 extinction distances. a) experimental
profile, b) two beam profile and c¢) multi-
beam profile taking the (111) set of systematic
reflections into account.
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the centre of the fault should be singlets of good
contrast. The profile obtained by taking the effects
of multiple reflections into account, given in Fig.l7c,
is in good agreement with experimental results and
shows that the central pattern consists of fringes
which exhibit poor contrast. It can therefore be seen
that effects of systematic reflections become important
in thick crystals and that the effect of these reflec-

tions is to reduce contrast.

5:2.1(c) Behaviour of Central Fringes in Dark Field

Images

The way the contrast of central fringes in a
dark field image depended on crystal thickness was
found to be quite analogous to that described in
sections 5:2.1(a), (b). However, for moderately thick
crystals, singlets of high contrast were obtained at
values of crystal thickness of n extinction distances
rather than (n+%). Doublets of weak contrast occurred
in the dark field when the values of crystal thicknesses
were (n+%) rather than n extinction distances. In thick
crystals the behaviour of the central fringes of the
dark field image was the same as in the bright field,
i.e., they exhibited poor contrast which was independent

of crystal thickness.

o
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5:2.2 THE DEPENDENCE OF THE CONTRAST OF FRINGES NEAR

CRYSTAL SURFACES ON CRYSTAL THICKNESS

The variation in the contrast of the edge fringes
of a stacking fault image with crystal thickness was
quite different from that found for the ceatral fringes
in sections 5:2.1(a), (b), and (¢). This is illustrated
for a fault in a moderately thick crystal in Fig. 14
which shows that edge fringes are singlets regardless
of whether the crystal thickness is n or (n+%) extinc-
tion distances. The results obtained in thick crystals
indicated that the character of these fringes remained
unchanged. This is evidenced by the experimental pro-
files given in Fig. 16 which show that for a thick crys-
tal in the range of 13 to 14 extinction distances the
edge fringes obtained were singlets of relatively high
contrast.

A comparison of these experimental results with
the theoretical profiles obtained from two and multi-
beam thecries shown in Fig. 17b, ¢ indicates that in
each case good agreement is obtained. It can therefore
be concluded that the effects of systematic reflections
on the contrast of edge fringes are small, regardless
of crystal thickness. This of course is in contrast to
the results obtained in sections 5:2.1(a), (b) and (c),
which showed that effects of systematic reflections on

central fringes increased with crystal thickness.
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It is next of interest to ccnsider the contrast
exhibited by the two fringes which are immediately
adjacent to the edges of the fault. The contrast of
these fringes, as mentioned in section 1:3.1(b), is of
particular interest from a practical point of view in de-
termining the sense of slope of the fault in the crystal
(see also the discussion given in section 5:4). It is
important therefore in such determinations that the
contrast exhibited by the outermosc fringes can be
easily and clearly recognized in both bright and dark
field images. The ease with which these outermost
fringes can be observed will depend on the ratio, $§I/I,
of the difference §I between maximum (or minimum)
fringe intensity and background intensity, to that of
background intensity I.

In moderately thick crystals this ratio, 6I/I,
was found to be dependent on whether the crystal thick-
ness is n or (n+%) extinction distances. This is seen
by examining the contrast of outermost fringes given in
Fig. 18, which shows the bright and dark field profiles
calculated for an o = 27/3 fault in fcc cobalt for
crystals of thicknesses 6.0 and 6.5 extinction distances.
When crystal thickness is n extinction distances, the
contrast of the outermost fringes is most pronounced in

the dark field profile of Fig. 18c. The reason for this
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is the low value of background intensity (at this
crystal thickness a minimum occurs in diffracted beam
intensity) and the high value of maximum fringe inten-
sity. Consequently the ratio 8§I/I for the outermost
fringes is significantly greater in the dark field than
the corresponding value obtained when bright field image
is considered (compare Figs. 18a, c¢). The situation
is reversed when crystals of thickness (n+%) extinction
distances thick are considered. Fig. 18b shows that
the rétio 8I/I is highest in the bright field image and
therefore the outermost fringes are most easily observed
for these crystal thicknesses using bright field images.
It is important to mention that in thick crystals, the
above dependence of the contrast of outermost fringes on
crystal thickness was not observed. This can be under-
stood by considering the extinction contour profile given
in Fig. 13 where it is clear that the variation in
background intensity is significantly reduced in thick
crystals. Consequently, in thick crystals the contrast
of outermost fringes in images of stacking faults will
be relatively independent of crystal thickness.

It can be concluded from the results presented
above that in order to avoid possible errors in iden-
tifying the nature of outermost fringes in a stacking

fault image one of the following methods can be employed:
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(a) Observe the stacking fault in a wedge crystal

when moderately thick crystals are considered.

or

(b) Observe the fault in a thick crystal where the
contrast of the outermost fringes is independent

of crystal thickness.

5:3 EXPLANATION OF RESULTS IN TERMS OF THE IMPORTANT

BLOCH WAVE INTERACTIONS

Physical insight into the contrast producing
mechanism can be gained by analyzing the resulting image
in terms of the important Bloch wave interactions.
Hashimoto et.al. [15] and Hirsch et.al. [71] considered
an extremely thick crystal containing a stacking fault
and analyzed the resulting image in terms of inter- and
intrabranch scattering of Bloch waves 1 and 2 (see sec-
tion 2:6 of Chapter 2). Their analysis explained the
reasons for obtaining extremely poor contrast near the
centre of the fault and relatively high contrast for
edge fringes. Such an analysis, however, is qualitative
in nature and is only relevant to faults lying in ex-
tremely thick crystals. In order to explain the thick-
ness dependence of the contrast of central fringes
obtained in moderately thick crystal (sections 5:2.i(a),

(c)), it is therefore important to carry out a more
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detailed analysis of image contrast. This

analysis for moderately thick crystals of thickness

n and (n+%) extinction distances is given in sections
5:3.1(a), (b). The next point to be considered is the
explanation of the deleterious effects of the (111)

set of systematic reflections on the contrast of

fringes near the centre of a fault in a thick crystal.
The results of this multibeam analysis are given in
section 5:3.2. Finally in section 5:3.3 the effects

of systematic reflections on the contrast of edge fringes

are discussed.

5:3.1 MECHANISMS RESPONSIBLE FOR CENTRAL FRINGE CONTRAST

IN MODERATELY THICK CRYSTALS

The analysis presented in this section is perti-
nent to the central fringes in the bright field image of
a stacking fault lying in a moderately thick crystal.

A dark field analysis is not presented since it was
found to be quite similar to that of the bright field
except for the differences noted, in section 5:2.1(c)
regarding the values of crystal thickness at which sing-
lets and doublets in the central fringe pattern occur.

The analysis of image contrast performed involved
following interactions of Bloch waves 1 and 2 down

through a faulted crystal for fault depths near the
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Two beam analysis of the contrast of central
fringes for an a=-271/3 stacking fault in fcc
cobalt crystal of thickness equal to seven

extinction distances.
carried out at 150 kv with A6

The calculations were

a) Magnitudes of ¢1 and ¢1J relevant to a fault

at the middle of the crystal.

b) Phase amplitude diagram showing the relation
between the contribution of interbranch and
intrabranch scattering to the amplitude of

the directly transmitted beam.
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middle of the crystal. This was done for the bright
field image by calculating at the top surface and

just above the fault the values of ¢é, ¢g, which are
the contributions of Bloch waves 1 and 2 to the am-
plitude of the directly transmitted beam (see equation

4.1). The next step was to calculate the values of ¢il, ¢

and ¢é2, ¢§l, the contributions of intra- and interbranch
scattering of the two Bloch waves considered to the am-
plitude of the directly transmitted beam (see equation
4.7). These contributions are calculated just below the
fault and at the bottom surface of the crystal. All
these calculations were performed by assuming the (111)

reflection in fcc cobalt to satisfy the exact Bragg con-

dition, at 150 kV.

5:3.1(a) Mechanism Responsible for Contrast in Crystals

of Thickness n gill

The manner in which central fringe contrast arises
in crystals of thickness equal to n extinction distances
can be seen when Fig.l1l9 is considered. The results given
in Fig. 19a were obtained by assuming a crystal of thick-
ness 7.0 gill containing an o = -271/3 stacking fault.

The first point to note from Fig. 19a is that in contrast
to the analysis given previously by Hirsch et.al. [71]

and Hashimoto et.al. [15], the magnitudes of interbranch

22
o
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o to the directly transmitted beam

contributions ¢i2, o}
amplitude at the bottom surface of the crystal are
approximately equal. The physical reason for obtaining

this result can be explained in the following manner.

Since ql >> qz, the contribution of Bloch wave 1 (¢é)

to the directly transmitted beam amplitude just above

the fault is considerably smaller than that of Bloch wave

2 (¢§). As these two Bloch waves encounter the fault intra-
branch scattering of Bloch wave 1 giving rise to #f}and inter-
branch scattering from 1, resulting in ¢gl, will be weak,
while ¢§2 and ¢i2 will be strong. However, since ¢i2
is characterized by the absorption coefficient ql, it
will weaken considerably before reaching the bottom
surface of the crystal whereas ¢§l will not. Thus at
the bottom surface of the crystal th2 two interbranch
contributions ¢é2, ¢§l will be approximately equal.

In order to explain the nature of the resulting
fringe contrast, the magnitudes as well as the phase
angles of the different contributions have to be con-
sidered. This is done in the phase-amplitude diagram
of Fig. 19b. From this figure it is seen,as noted in
section 4:3, that the resultant contribution of intra-

ranch scattering to the amplitude of the directly

transmitted beam does not vary with depth of fault in

the crystal, while the resultant of interbranch

~d
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scattering does. As the depth of fault changes the
vectors representing the interbrénch contributions

¢i2, ¢§l rotate in the manner indicated so that the
resultant interbranch contribution is always at right
angles to that of intrabranch scattering. The vector
representing the resultant interbranch contribution
varies in magnitude from a maximum CB to zero to a
maximum again CD in one half of the extinction distance.
The resulting fringes will therefore be doublets since
the total amplitude varies from a maximum AB to a mini-
mum AC to a maximum again AD when stacking fault depth
changes by one half of the extinction distance. Fig. 19b
shows also that the relative magnitudes of the resultant
of inter- and intrabranch scattering determines the dif-
ference between maximum amplitude (AB) and minimum
amplitude (AC) and therefore determines the contrast.
The reason for the relatively poor contrast observed in
moderately thick crystals can be seen from table 1 which
gives the magnitudes of AB (i.e. [¢il| + l¢§2]) and AC

(i.e. ]¢é2| + |¢gl|) for crystals of different thick-

nesses in the range 4 to 10 5211‘
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Table 1

nEn | 19571+ fo

4 0.44 0.31
7 0.26 0.26
10 0.16 0.24

5:3.1(b) MECHANISM RESPONSIBLE FOR CENTRAL FRINGE

CONTRAST IN CRYSTALS OF THICKNESS (n+%) ggll

In order to understand the mechanism responsible
for central fringe contrast in crystals of thickness
(n+¥) extinction distances we consider the results of an
analysis performed for a crystal of thickness 7% g?ll.
From Fig. 20a it can be seen that the magnitudes of
the different inter- and intrabranch contributions
remain essentially the same as that presénted in Fig.
19a for a crystal 7.0 extinction distances thick.
However, Fig. 20b shows that the phase relationships
are quite different. When crystal is (n+k%) Eill the
resultant interbranch term is always parallel (or
antiparallel) to that resulting from intrabranch scatter-
ing. When the stacking fault depth varies, the total

amplitude will thus change from a maximum AD (see Fig.
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20b) to a minimum AB in one half of the extinction dis-
tance. Fringes will therefore be singlets and the
difference between maximum and minimum total ampiitude,
and therefore the contrast is considerably greater

than that obtained in the case of a crystal of thickness

(o}
n&ig-

5:3.2 MULTIBEAM EFFECTS ON THE CENTRAL FRINGE PATTERN

A multibeam analysis of the contrast of central
fringes for a fault lying in a moderately thick crystal
is not presented since it was found that the effects due
to higher order Bloch waves were quite small and did not
change the mechanisms discussed in sections 5:3.1(a),

(b) which involved Bloch waves 1 and 2 only. However,
when a thick crystal was considered effects due to Bloch
waves 3, 4 were found to be important. This is discussed

in the next section.

5:3.2(a) MULTIBEAM EFFECTS ON THE CENTRAL FRINGE

PATTERN FOR A FAULT IN A THICK CRYSTAL

Although in the multibeam analysis of image con-
trast in thick crystals eleven systematic reflections,
including (555) ... (555) were taken into account, it
was found that only interactions between Bloch waves 1,

2, 3, and 4 had to be considered. The contributions of
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higher order Bloch waves were quite small and were there-
fore ignored. The manner in which systematic reflections
were found to affect fringe contrast for a stacking fault
lying near the middle of a thick crystal can be seen

from the results in Fig. 21. Fig. 2la gives the con-
tributions of Bloch waves 1 to 4 to the amplitude of

the directly transmitted beam in a faulted crystal of
thickness 14.5 Eill‘ From this figure it can be seen

that at the bottom surface of the crystal the main con-
tribution to the amplitude of the directly transmitted
beam is from the intrabranch component ¢22. At first
sight it might be concluded that all the other interbranch
contributions can be neglected since they are small and
hence will have no effect cn image contrast. However

these conclusions cannot be correct since if all the
interbranch contributions to the amplitude of the dir-
ectly transmitted beam remain in phase their total mag-
nitude would be about 1/3 of the contribution from intra-
branch scattering ¢g2. If this was so then fringes of higher
contrast than observed would result on the basis of the me-
chanisms discussed in sections 5:3.1(a) and (b). It is there-
fore quite important to consider the phase relationships
between the different interbranch contributions to the
amplitude of the directly transmitted beam. These are

illustrated in the phase-amplitude diagram in Fig. 21b
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for fault depths near the centre of the fault. From
this figure it can be seen that,unlike the situation
discussed in section 5:3.1(b) of the two beam theory,
the resultant of the interbranch contributions to the
total amplitude is neither parallel nor antiparallel
to the resultant intrabranch contribution. This
point can be explained from equations 4.5 and 4.7.
The individual interbranch components arising from
the scattering transitions (bl a b2), (b2 =2 b3), and

2 = b4) depend upon the phase terms exp 2ni(yl— Yz)tl,

(b
exp Zwi(yz— Y3)t1 and exp 2ni(yz— y4)tl respectively.
Consequently as tl changes, the vectors representing
those contributions will rotate through unequal phase
angles, resulting in a complex change in the magnitude

as well as phase angle of their resultant vector shown

in Fig. 21b. The total directly transmitted beam ampli-
tude will therefore depend on t in a complex manner,
which explains the reason for the presence of a central
fringe pattern exhibiting complex periodicity. Since the
two beam phase relationship given in section 5:3.1(b)

is a requirement for optimum fringe contrast to be
obtained, these results indicate that the effects of

systematic reflections tend to reduce contrast of the

central fringe pattern.



5:3.3 - EFFECTS OF MULTIPLE REFLECTIONS ON THE CONTRAST

OF STACKING FAULT FRINGES NEAR TO THE SURFACES

OF THE CRYSTAL

The results in sections 5:2.1(b) and 5:3.2(a)
have shown that in thick crystal systematic reflec-
tions have a deletarious effect on the contrast of
stacking fault fringes for fault depths near the
middle of the crystal. However, as noted in section
5:2.2, comparison of two and multibeam theoretical
fault profiles with experiment has shown that the
character of edge fringes is not affected by the
presence of systematic reflections. This result can
be understood by comparing the magnitudes of the
inter- and intrabranch contributions of the important
Bloch waves excited in the two and multibeam theories.
These are given in Table 2 for two crystal thicknesses,

7.0 and 14.0 extinction distances. In each case, the
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stacking fault depth considered corresponds to the bottom

surface of the crystal. The two beam results in Table

2

<

show that in both moderately thick and thick crystals good

contrast should result, since the two important contri-
butions to the total amplitude of directly transmitted
beam ¢é2 (due to the transition b2 - bl) and ¢g2 (due
to intrabranch scattering of b2) are of nearly equal

magnitudes. It can also be seen from the results of
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multibeam calculations that contributions due to Bloch
waves 3 and 4 are considerably smaller than the two
important contributions ¢é2, ¢§2. This indicates that
the two beam approximation gives an adequate descrip-
tion of contrast of edge fringes. It should be noted
that similar results to those discussed above were
obtained when fault depths near the top surface of the

crystal were considered although in this case image

contrast arises from ¢22 and ¢§l.

Table 2
Crystal 11 12 13 14
? ¢o ¢o ¢o <I’o
thickness
. . 11 12 21 22 23 24
in units ¢O ¢o bo ¢o ¢o ¢O
of
21 22 31 32 33 34
extinction ¢o ¢o %0 ¢0 ¢o ¢o
distance 41 42 43 44
oo b5 b5 9o
.00 .32 .02 .00
.025 .41514} .01 .20 .01 .OO
7.0
.043 .241} .00 .03 .01 .00
.00 .02 .00 .00
.00 .31 .00 .00
.002 .399| .00 .18 .00 .00
14.0
.004 .231| .00 .02 .00 .00
.00 .00 .00 .00

~d



130

5:4 DISCUSSION

In section 5:3.2(a) it was shown that the (111)
set of systematic reflections in fcc cobalt has a
deleterious effect on the contrast of fringes at the
centre of the fault. This fact suggests that if a
systematic set can be chosen for which effects of mul-
tiple reflections are minimal, good contrast should be
obtained in much thicker crystals than would otherwise
be possible. In order to test this hypothesis two and
multibeam calculations of stacking fault contrast were
performed assuming that only the (220) set of systematic
reflections was excited and that the (220) reflection
was in the exact Bragg condition. The two and multibeam
profiles obtained from these calculations were very simi-
lar to those shown in Fig. 15 and are therefore not
reproduced. The results showed that fringes at the
centre of a fault will exhibit relatively high contrast
in crystals of thickness up to about 10.5 extinction
distances. Since the (220) extinction distance is appro-
ximately 500 A° this indicates that good contrast should
be obtained in crystals of about 5000 A° in thickness.
For the (111) set of systematic reflections it was found
that good contrast in crystals of thickness equal to
(n+%) extinction distances did not persist beyond about

8.5 extinction distances. Since the (111) extincticn
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distance is about 250 A°, this result indicates that
with the (111l) set of systematic relfections excited,
good contrast would not be obtained in crystals
greater than around 2000 A°. These results are of
particular interest in view of the work of Sheinin
and Botros [42, 108] (see also section 6:5),that
increased contrast in thick crystals results in better
effective penetration. The above comparison of the
contrast obtained when different systematic sets are
excited therefore indicates that in choosing the con-
ditions for obtaining optimum penetration, particular
attention should be paid to the systematic row excited.
The last point to be discussed in this chapter
is in regards to the dependence of the contrast of the
outermost fringes in a stacking fault image on crystal
thickness. The results given in section 5:2.2 indi-
cated that for moderately thick crystals the visibility
of the outermost fringes depended on whether the crys-
tal thickness was n or (n+%) extinction distances while
on the other hand, for thick crystals the visibility of
those fringes became independent of crystal thickness.
These results suggest that if the character of the outer-
most fringes is to be identified correctly for a fault
lying in a moderately thick crystal, observations must
be carried out by using a crystal of varying thickness.

This point is of particular importance in view of the
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work of Art, Gevers, and Amelinckx [109] who showed
that identification of a fault as being intrinsic or
extrinsic involves determination of the top and bottom
surfaces of the crystal as well as the sign of the
phase factor o. These two parameters are readily
obtained if the character of the outermost fringes in
both bright and dark field images can be correctly

recognized.

5:5 SUMMARY AND CONCLUSIONS

The results of the present investigation have
shown that stacking faults in moderately thick crystals
of cobalt (thickness range from five to nine extinction
distances) exhibit contrast of a two beam character
when the (111) set of systematic reflections is excited.
This contrast is characterized by the fact that fringes
at the centre of faults in crystals n and (n+%) extinc-
tion distances thick exhibit a marked contrast diffe-
rence. This result was explained in terms of inter-
and intrabranch scattering of Bloch waves 1 and 2. It
was found that crystal thickness, through the phase term
exp 2niy2tl, acts like a phase factor which determines
the phase relationship between the inter- and intra-
branch components of the amplitudes of the diffracted

beam. This relationship is critical in determining
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contrast. In thicker crystals the effects of systema-
tic reflections become important and central fringes
exhibit weak contrast regardless of crystal thickness.
The fringes at the edges of the fault, on the other
hand, remain two beam in character for all values of
crystal thickrness investigated.

These results illustrate the following points:
first that the (111) set of systematic reflections has
a deleterious effect on the contrast of fringes in
images of stacking faults in fcc cobalt. This is in
contrast to results reported elsewhere [34] on the
effects of systematic reflections on stacking fault
contrast in gold. The second point to note from these
results is that crystal thickness and defect depth are
important factors in determining whether or not effects
of the systematic reflections play an important role in
determining image contrast. These factors are in
addition to others such as accelerating voltage and
crystal orientation which are to be discussed in Chapters
6, 7 and 8.

Finally it has been shown that the deleterious
effects of systematic reflections on fringe contrast
can be avoided if the (220) systematic set only is excited

thus giving rise to strong contrast in much thicker crys-

tals than would otherwise be possible.
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CHAPTER 6

EFFECTS OF TILTING ON THE NATURE OF STACKING FAULT

IMAGES OBTAINED AT LOW ACCELERATING VOLTAGE

6:1 INTRODUCTION

The recént work of Sheinin [42] has shown that
~significant changes take place in the character of
thickness fringes observed in dark field images of
wedge crystals when the crystal is tilted away from the
orientation corresponding to Sg = 0 (g is the lowest
order reflection in a systematic set). These changes
were shown to be due to the differences in the Bloch
wave excitations which occur as the crystal is tilted.
Thus for example thickness fringe contrast was found to
be considerably enhanced when the reflection 3g was close
to the Bragg condition. This enhanced contrast occurred
due to the strong channeling of Bloch waves 2 and 4
which are equally excited at this orientation. These
results suggest that significant changes might also occur
for stacking fault contrast if the crystal is tilted away
from the orientation corresponding to Sg = 0. The work
to be presented in this chapter was undertaken with a
view to exploring the nature of these changes.

In investigations of fault contrast as function

of S, it is desirable that observations be carried out
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for different types of faults over a range of crystal
thicknesses. This was done, as described in Chapter 5,
by using wedge crystals of cobalt. Bright and dark
field observations were carried out for values of Aeg
in the range -1.0 eg up to about 2.2 eg. These results
are presented in section 6:2. In the following section,
6:3,the experimental results are compared to computer
calculations of image contrast based on the dynamical
theory. Next a discussion of the results in terms of
the scattering mechanisms responsible for producing
'image contrast is given in section 6:5. The last point
to be considered in this chapter (see section 6:6)

is an examination of the implications of the results
obtained in maximizing stacking fault contrast in thick

crystals (referred to as stacking fault penetration).

6:2 EXPERIMENTAL RESULTS

Observations of bright and dark field images of
stacking faults have been carried out near the symmetry
orientation and at values of Aeg for which the reflec-
tions g, 2g, and 3g were close to the Bragg condition.
The change in image contrast which occurred as the
specimen was tilted to each of these orientations is
illustrated by the densitometer traces in Fig. 22.
These results were obtained when the (111) set of sys-

tematic reflections in fcc cobalt was excited and at



R,

{c)

rtd

L

(d)

S

BRIGHT FIELD DARK FIELD

Fig. 22 Densitometer traces obtained from bright and
dark micrographs of an a = -27/3 fault in fcc
cobalt. The (111) set of systematic reflec-
tions was excited at 150 kV and the crystal
thickness at which the traces were obtained
was 1500 A°., The trace in a) was obtained
just inside the symmetry position while b),
c), and d) were obtained when the reflections
g, 29, 3g respectively were close to their
Bragg condition.
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an accelerating voltage of 150 kV. The crystal thickness
at which these profiles were recorded was 6.0 extinction
distances (referred to the extinction distance at Aeg =
0.0). It is important however tc mention that similar
results were obtained when other crystal thicknesses
were explored.

It can be seen from Fig. 22b that optimum contrast
in the bright field is obtained when the reflection g
was close to the Bragg condition. Fig. 22a shows that
as the specimen was tilted toward the symmetry position
the bright field contrast became weaker, although fringes
could still be resolved at this orientation. For increa-
sing positive values for Aeg, the fringe contrast in the
bright field became progressively weaker as is illustra-
ted by the microdensitometer traces in Fig. 22c¢c, 4. Fig.
224, for example, shows that when the crystal was tilted
so that the reflection 3g was close to its Bragg condi-
tion, contrast in the bright field has decreased to the
extent that stacking fault fringes can barely be detec-
ted. It should be noted that for all stacking faults
observed in both fcc and hcp cobalt, the variation of
contrast in the bright field with angle of tilt of the
crystal was similar to that shown in Fig. 22. In com-
paring various sets of results with those illustrated
in Fig. 22, however, differences in how rapidly the

fringe contrast disappeared with increasing values of
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Aeg were noted. Thus for example, in the case of the
(200) systematic set of reflections in fcc cobalt,
fringes could no longer be detected when the reflection
(600) was near the Bragg condition, although some resi-
dual contrast indicating the presence of the fault still
remained. TFor the (112) systematic set in hcp cobalt,
on the other hard, even this residual contrast was
absent with the result that, at this orientation, the
presence of the stacking fault could not be detected in
the bright field image.

The dark field results which are shown in Fig. 22
indicate that the variation of contrast with Aeg is con-
siderably different from that obtained in the bright
field. Fig. 22b shows that, as in the bright field,
good contrast is obtained when the reflection g is close
to the Bragg condition. As the specimen is tilted away
from this orientation, however, contrast in the dark
field does not decrease in the same way as is the case in
the bright field. This is illustrated by comparing the
bright and dark field profiles given in Fig. 22d obtained
when the reflection 3g was close to the Bragg condition.
As can be seen, excellent contrast is obtained in the
dark field whereas, as previously noted, stacking fault
fringes at this orientation can barely be detected in the

bright field. This wide difference between the contrast
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in bright and dark field images of stacking faults which
occurs as the specimen is tilted away from the reflection
g in the Bragg condition is graphically illustrated by
the micrographs given in Fig. 23. It should be noted
that for all stacking faults observed in both fcc and

hcp cobalt, this wide difference in contrast between dark

and bright field was found.

6:3 COMPARISON EETWEEN THEORY AND EXPERIMENT

In order to determine whether or not the diffe-
rences found between bright and dark field images of
stacking faults can be accounted for by the dynamical
theory, calculations of contrast were performed for
diffferent values of Aeg in the range -1.0 eg up to
2.2 6 . Both the two and multibeam theories were em-
ployed in these calculations and different systematic
sets of reflections were considered. In the multibeam
calculations twelve systematic reflections including
the reflections 79, ..., -4g were considered and the
calculations were performed for an accelerating voltage
of 150 kV. From these calculations it was found that
good agreement with experimental results can only be
obtained by employing the multibeam theory. The multi-
beam results corresponding to the experimental profiles

of Fig. 22 are presented in Fig. 24. This figure shows,
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24 Theoretical multibeam intensity profiles for
an o = -27/3 stacking fault in fcc cobalt
crystal of thickness 1500 A°. a) to d4) are
calculated for the same diffraction conditions
used in obtaining the experimental traces in
Fig. 22.
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in good agreement with experimental results in Fig. 22,
that there is a marked decrease in bright field con-
trast as the crystal is tilted from the Bragg condition
of the reflection g, while under the same circumstances
good contrast is retained in the dark field image. It
should be mentioned, however, that when the multibeam
calculations were repeated for other values of crystal
thickness, similar results to those shown in Fig. 24 were

obtained.

6:4 EXPLANATION OF THE DIFFERENCES BETWEEN BRIGHT AND

DARK FIELD IMAGES

Insight into the physical reasons for the diffe-
rences in behaviour between bright and dark field images
of stacking faults can be gained by analyzing each image
in terms of the relevant Bloch wave interactions. This
analysis was carried out in a manner analogous to that
mentioned in Chapter 5 by following the Bloch wave
interactions from the top to the bottom surfaces of the
crystal. This was done by calculating the values of
pertinent Bloch wave contributions ¢; at the top surface
ijig
g
just below the fault and at the bottom surface of the

and just above the fault as well as the values of ¢

crystal. The results given in sections 6:4.1, 6:4.2 were

obtained by assuming in the calculation that the (111)
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set of systematic reflections in fcc cobalt was excited
at 150 kV, with the value of Aeg = 2.2 elll' In these
results only interactions between Bloch waves 1, 2, and
4 are included since all the other Bloch wave inter-
actions were small and could be neglected. The reason
for ignoring an analysis which employs the two beam
theory, as noted in section 6:3, was that better agree-
ment between theory and experiment was obtained by in-

cluding effects of systematic reflections in the calcula-

tion.

6:4.1 ANALYSIS OF BRIGHT FIELD IMAGE AT LARGE DEVIATIONS

The reason for the poor contrast exhibited by
bright field stacking fault image at large deviations
can be seen by considering Fig. 25. This figure gives
the important Bloch wave contributions to the amplitude
of the directly transmitted beam for an o = -271/3 fault
lying at the middle of the crystal. It can be seen from
the figure that at the top surface of the crystal Bloch
wave 4 is strongly excited and that other Bloch waves
are of negligible importance. Thus it is mainly Bloch
wave 4 which will be incident on the fault. The only
scattering which can occur as this Bloch wave ancounters
the stacking fault will be due to the scattering of Bloch

wave 4 into itself (i.e., an intrabranch transition).

-~
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That this is so can be seen from Fig. 25 by comparing
the magnitude of ¢g4 to the other inter- or intrabranch
contributions. At the bottom surface of the crystal

the only contribution to the directly transmitted beam
amplitude will therefore be due to ¢g4. Since the value
of intrabranch scattering is independent of the fault
depth tl (see equation 4.7) the total amplitude of the

directly transmitted beam will remain essentially cons-

tant at the bottom surface and thus poor contrast results.

6:4.2 ANALYSIS OF DARK FIELD IMAGE AT A6777 = 2.2 6777

FOR DEVIATIONS OUTSIDE THE REFLECTION 3g IN THE

BRAGG CONDITION

At crystal orientations corresponding to the re-
flection 3g outside the Bragg condition, dark field
images of stacking faults were found, as noted in sec-
tion 6:2, to exhibit fringes of high contrast. An
additional feature of the stacking fault image at this
orientation is its relative insensitivity to small varia-
tions in crystal thickness. This feature can be seen by
comparing the dark field micrographs given in Fig. 23.

In the analysis of image contrast to be presented in

this section an attempt will be made to explain the above

results.
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In order to illustrate the reason for the good
contrast obtained at Aelll = 2.2 elll Bloch wave in-
teractions are followed down through the crystal for
a fault depth near the middle of the crystal. These
Bloch wave interactions can be seen by considering Fig.
26. As can be seen from this figure the three Bloch
waves 1, 2, and 4 give important contributions to the
amplitude of the diffracted beam at the top surface of
the crystal. However since ql>> q2 ~ q4, the contri-
bution of Bloch wave 1 will decrease in comparison to
that of Bloch waves 2 and 4 just above the fault. As
these Bloch waves encounter the stacking fault the
interbranch transitions b2 > bl, b4 > bl give rise to

¢12 and ¢é4 respectively, while the transition b4 & b2

g

results in the components ¢;4 and ¢§2. On the other hand,
the only important intrabranch transitions are those of
Bloch waves 2 and 4 which give rise to the components

¢éz and ¢§4 respectively. The relative magnitudesof the
different inter- and intrabranch contributions to the
amplitude of the diffracted beam will change before
reaching the bottom surface of the crystal due to
differences in zbsorption coefficients. This can be

seen from Fig. 26 by noting that the magnitudes of ¢32

and ¢;4 are relatively small at the bottom surface of

the crystal. It can also be seen from Fig. 26 that, to

-
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a good approximation, the main contribution to the total
diffracted beam amplitude is due to ¢;4 and ¢§4. In
fact the main reason for obtaining good contrast can
be explained in terms of these two components. The
explanation for this lies in the fact that the magni-
tudes of these two components are approximately equal.
Thus when stacking fault depth changes, the vector
representing ¢§4 in a phase amplitude diagram will

4

rotate around the vector ¢; which is stationary since

it is an intrabranch contribution. A complete rotation
of ¢§4 can be seen to occur as the depth of fault changes
by l/yz— y4, the effective extinction distance. As a
result the total amplitude will change from a maximum
(~|¢;4] + |¢34]) to a minimum (~[¢;4[ - [¢;4|) to a
maximum again. The resulting fringes will be singlets
which exhibit high contrast, due to the large differences
between maximum and minimum amplitudes. The differences
in detail between stacking fault fringes shown in Fig.
244, which exhibit some degree of complexity, and the
above arguments can be accounted for by considering the
i4 21 22

g’ ¢g ' ¢g which have

been neglected in the above discussion.

other small contributions ¢;2, ¢

It is next of interest to gain some understanding
of the reasons why image contrast is relatively insensi-

tive to small variations of crystal thickness. The way
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in which contrast analyses were carried out for this
case was to increase crystal thickness by regular
increments and to repeat, in each case, calculations
similar to those presented in Fig. 26. The results

of these calculations have shown that for variations
of crystal thickness in the range of an effective
extinction distance, the magnitudes of the inter- and
intrabranch contributions given in Fig. 26 remained
essentially undhanged. The only differences which
occurred were in the values of phase angles of the
different inter- and intrabranch contributions to the
diffracted beam amplitude. These results therefore show
that at a new crystal thickness image contrast again
essentially arises from the rotation of ¢§4 around ¢§4
in a phase amplitude diagram. Image contrast will
therefore remain high and independent of the value of

crystal thickness.

6:5 CONDITIONS FOR OBTAINING OPTIMUM PENETRATION FOR

STACKING FAULTS

The effective penetration obtained in electron
microscopy of thin crystals is defined as the maximum
crystal thickness in which electron microscope observa-
tions of lattice defects can be made. Up to the present,

investigations of penetration [15,46] have been concerned
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primarily with the diffraction conditions for which
maximum diffracted beam intensity is obtained. This
intensity information, in the case of perfect crystals,
is normally presented in a form of rocking curves which
are plots of diffracted beam intensity at the bottom
surface of a crystal of constant thickness as function
of Aeg. The diffraction conditions for maximum pene-
tration, as deduced from these rocking curves, are the
values of A8 _ for which maximum intensity is diffracted
through the crystal. At low accelerating voltages
rocking curves normally show that maximum in directly
transmitted and diffracted beam intensities occurs when
the values of Aeg are close to zero. The work of
Sheihin {42] on the other hand, has shown that these
values of Aeg do not necessarily give the maximum thick-
ness of crystal in which thickness fringes can be
observed. His results raised the possibility that
effective penetration obtained in observations of lattice
defects might also be different from that indicated on
the basis of rocking curve considerations alone. In
order to explore this possibility in the stacking fault
case, it was decided to examine the diffraction condi-
tions which give rise to good fault penetration in more
detail. This point is of considerable interest to the

electron microscopist who is concerned with observing

~f
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defects in thick crystals where their properties and
interactions can be more easily related to what happens
in bulk material.

The effective stacking fault penetration has been
determined experimentally by examining stacking faults
in wedge crystals of cobalt. Observations were carried
out at an accelerating voltage of 150 kV and over a wide
range of Aeg. In these experiments only uniform wedges
containing stacking faults were considered, the reason
being that under these conditions relative values of
crystal thickness can easily be determined from measure-
ments of the appropriate distances from the edge of the
specimen. For a fault lying in a crystal wedge which is
oriented to a given value of Aeg, several micrographs
were recorded with progressively increasing exposure time.
Observations of penetration were only carried out when
it was found that increasing exposure time did not change
the visibility of the fault in thicker parts of the wedge.

The bright and dark field results of fault penetra-
tion obtained when the (111l) set of systematic reflec-
tions was excited in fcc cobalt are illustrated in Fig.
27. Figs. 27a, c show that when the crystal is tilted
from a value of Aelll~0 to Aelll~2elll, a marked decrease
in fault penetration in the bright field occurs. This can

be seen by comparing the maximum crystal thicknesses in
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Fig. 27 Micrographs of stacking faults in a wedge
crystal of fcc cobalt imaged at 150 kvV.
a) is a bright field image at A8 1.~ 0, and
b) is the corresponding dark fieié image;
c) is the bright field image for A6;;; ™~ 2 elll’
and d) is the corresponding dark
field image.
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Figs. 27a,c for which good stacking fault image is observed.
It is interesting to note that these bright field results
are consistent with inferences which can be made from the
bright field rocking curve given in Fig. 28a. This
figure shows that directly transmitted intensity decreases
when the crystal is tilted from Aelll ~ 0 to Aelll~2 elll'
The results of stacking fault penetration in the dark
field for the same range of angles of tilt were found
to be quite different. This can be seen by comparing
the dark field micrographs giveh in Figs. 27b, d. From
these micrographs it is clear that the maximum value of
crystal thickness in which the stacking fault can be
observed is roughly the same for £6y99 ~ 0 and Aelll ~
2 elll. Therefore fault penetration at both these
orientations is almost the same. These dark field
results are, however, not consistent with the infor-
mation obtained from the dark field rocking curve shown
in Fig. 28b which indicates a marked drop in diffracted
beam intensity when the crystal is tilted away from the
Bragg condition of the (111) reflection. It is impor-
tant to mention that similar results to those presented
above were obtained when other systematic sets of reflec-
tions were explored.

The difference in effective stacking fault pene-

tration shown in Figs. 27c¢ and d can be understood if
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image contrast in the two cases is compared. As men-
tioned in section 6:2 of this chapter, only weak fringe
contrast was detected when Aelll ~ 2 elll and the bright
field image was considered, whereas under the same con-
ditions the dark field image exhibited excellent con-
trast. It may therefore be concluded that investigations
of the diffraction conditions for obtaining maximum fault
penetration should not be based on intensity considera-
tions alone, but should also take into account the effects

associated with image contrast.

6:6 DISCUSSION

The results presented in this chapter indicate
that the effects of systematic reflections on stacking
fault imageschange appreciably as a result of crystal
tilting. These effects were also found to be different
depending on whether the stacking fault is imaged in the
bright or dark field. This point is evidenced, as noted
in section 6:2, by the similarity of bright and dark
field image contrast when a low order reflection g was
close to its Bragg condition and the wide differences
in bright and dark field contrast obtained at orientations
corresponding to the reflection 3g close to its Bragg
condition.

The physical reasors for obtaining these results

are associated with the changes which occur in Bloch wave
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excitations as the crystal is tilted. Near the Bragg
condition of a low order reflection Bloch waves 1 and

2 have nearly equal excitation amplitudes (Cé ~ Cg),

and since the Fourier coefficients Cé ~ C; are also
nearly equal, these Bloch waves will give equal contri-
bution to both directly transmitted and diffracted beam
amplitudes. Consequently bright and dark field contrast
is similar. On the other hand, when the reflection 3g
is close to its Bragg condition, only one Bloch wave
(Bloch wave 4) has a high vaiue of excitation amplitude
Cg. This Bloch wave will be the only one which gives
contribution to directly transmitted beam ampliitude.
Poor bright field contrast results according to the
mechanism discussed in section 6:4.1. In the dark field

Cl ~ 02 >> Cg, and thus at the top surface of the crystal

g g
three Bloch waves, namly 1, 2, and 4 will have important

contributions ¢; ~ ¢§ ~ ¢4. Strong contrast results in

g
the dark field image according to the scattering mecha-
nism discussed in section 6:5.2.
The difference in contrast between bright and
dark field images of stacking faults is of interest from
a practical view point. Because of the limited range of

orientations for which good contrast can be obtained in

the bright field, observations of stacking faults must
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be normally made for values of Aeg close to zero. This
often presents a practical difficulty in that many
specimens are bent to a certain extent so that, as the
specimen is traversed in the microscone, it must be
continuously re-oriented or the Presence of the defect
may remain undetected. The results of the present in-
vestigation indicate, however, that those observations
would be more easily performed in the dark field since
good stacking fault contrast is maintained over a con-

siderably wider range of orientation.

6:7 SUMMARY AND CONCLUSIONS

The behaviour of stacking fault contrast as the
crystal was tilted showed a marked difference between
bright and dark field images. Near the Bragg orienta-
tion of a low order reflection good contrast was
obtained both in the bright and dark field images of
stacking faults. As the Ccrystal was tilted to orien-
tations where the reflection 3g was close to its Bragg
conditions, very weak contrast was observed in the
bright field while excellent contrast was retained in
the dark field. An exXplanation of these differences
between bright and dark field contrast has been given
in terms of the scattering mechanisms of the important

Bloch waves which give rise to contrast in each image.
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Finally, it has been shown that the maximum value of
crystal thickness in which good stacking fault image
is observed in the bright field decreases sharply as
the crystal is tilted away from the Bragg orientation
of a low order reflection. & similar decrease did not
occur when the dark field image was considered.

These results illustrate the following points:
First, crystal'orientation is an important factor
which determines the effects of systematic reflections
on stacking fault image. Image contrast can be in-
creased or decreased as a result of tilting away from
strong beam diffraction conditions depending whether
the image considered is bright or dark field. Secondly,
the ability to observe stacking faults in thick crystals
does not depend on image intensity alone, as was consi-
dered to be the case in previous work [15,46], but is
aiso influenced by effects associated with image con-

trast.

"11!
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CHAPTER 7

ON THE NATURE OF STACKING FAULT IMAGES OBTAINED

UNDER WEAK BEAM DIFFRACTION CONDITIONS

7:1 INTRODUCTION

There is considerable current interest in the
applications of the weak beam technique of transmission
electron microscopy in the study of lattice defects in
crystalline matter (see for example Cockayne et.al.
[43] for studies of dislocation partials and Halissermann
[110] for studies of defect clusters). However, little
attention has been given to the stacking fault images
obtained under these diffraction conditions. The work
presented in this chapter was carried out with a view
to exploring the nature of diffraction contrast from
stacking faults imaged under weak beam diffraction con-
ditions. The nature of the image obtained is discussed
in sections 7:4 and 7:5, and the.mechanisms responsible
for producing image contrast are discussed in section

7:6.

7:2 WEAK BEAM DIFFRACTION CONDITIONS

For a particular row of systematic reflections,

Cockayne [111l] has defined weak beam diffraction condi-

l .

. . . . o
tions in terms of the dimensionless parameter [wl=[£gsg
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Two conditions are required, namely

10~

v

v
w
.

and () |w]

For the case of the (11l) set of systematic reflections
in fcc cobalt, excited at 150 kv, these conditions cor-
respond to values of Aelll > 3.2 elll, i.e. setting the
crystal at an orientation between the (444) and (555)

reflections in the Bragg condition.

7:3 EXPERIMENTAL PROCEDURE

The method used to study different stacking fault
images at values of Aeg corresponding to weak beam dif-
fraction conditions was similar to that described in
Chapter 6. Wedge crystals were used in order that
stacking fault contrast could be observed over a range
of crystal thicknesses. For the case of the (111) sys-
tematic set in fcc cobalt, the specimens were tilted
to values of Aelll in the range 3.2 elll to 3.8 6111.
Observations were carried out at 150 kV and images were
recorded aftér appropriately tilting the illumination in

order to obtain high resolution dark field micrographs.
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7:4 EXPERIMENTAL RESULTS

The images obtained by the procedure outlined
above showed that at certain values of crystal thick-
ness stacking fault images exhibit very strong fringe
contrast while at other values of crystal thickness very
weak contrast is observed. This marked difference in
image contrast is illustrated in Fig. 29. It can be
seen from this figure that the variation of stacking
fault contrast with crystal thickness is periodic in
nature with changes from strong to weak to strong con-
trast occurring when the crystal thickness changes by
an amount equal to g%ll’ the effective extinction dis-
tance at the value of Aelll concerned.

Several other interesting contrast features can
be seen from the stacking fault image in Fig. 29. The
first of these is that the fringes are singlets rather
than doublets (i.e. the fringe spacing is zﬁll rather
than % zéll)' This can be determined from the fact that
a change of one in the number of stacking fault fringes
occurs when the crystal thickness changes by one effec-
trive extinction distance. This was also verified by the
observation that the image of a stacking fault in a
crystal of thickness equal to nz%ll contains n fringes.
The next point of interest that can be seen from Fig. 29

is that fringe contrast does not appear to depend on the

-4
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Dark field micrograph for an a = 2m/3 stacking
fault image at 150 kV under weak beam diffrac-

tion conditions (Aelll = 3.2 6111).

~4
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depth of the fault in the crystal. This is evidenced

by the fact that no change in the visibility of the
fringes across the fault can be observed. Finally

Fig. 29 shows that the dark field images are symme-
trical with respect to the centre of the fault. It
should be noted that all the characteristics of stack-
ing fault contrast described above were observed in both
thin and relatively thick crystals and were found to
persist up to the maximum value of crystal thickness

investigated of about 152?11.

7:5 COMPARISON OF EXPERIMENTAL RESULTS WITH MULTIBEAM

DYNAMICAL THEORY

Many beam theoretical calculations of stacking
fault contrast were performed by including the fifteen
systematic reflections (555)...(999). The acclerating
voltage was taken to be 150 kV. Fig. 30 shows the
(111) dark field profiles for an q = 2n1/3 fault obtained
for crystal thicknesses of 10, 10.5 and 115%11 respec-
tively and a value of Aelll = 3.2 elll' It can be seen
from these results that a periodic variation in contrast
from strong to weak to strong again occurs when the
crystal thickness changes by one extinction distance.

It can also be seen from the profiles in Figs. 30 a,c
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Fig.

30

{a)

(b) {e)

Theoretical dark field profiles corresponding
to the stacking fault in Fig. 29 at crystal
thicknesses a) 10.0, b) 10.5, and c¢) 11.0 2111.
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that the images are symmetrical with respect to the
centre of the fault and that no modulation in fringe
contrast occurs with position of the fault in the
crystal. Finally the fringe spacing was found to be
equal to the effective extinction distance thus veri-
fying that the fringes are in fact singlets and not
doublets.

The theoretical results discussed above are in
good agreement with the experimental contrast features
described in section 7:4 and illustrated in Fig. 29.
It should be noted that similar agreement was obtained

for the range of crystal thicknesses up to 152%11,

the maximum for which experimental results were obtained..

Theoretical calculations indicated, however, that the
characteristics of image contrast described above should
persist to crystal thicknesses of twice this value
(~3000 A°).

A final question arises as to whether or not the
stacking fault contrast illustrated in Fig. 30 changes
in character at values of Aelll greater than those for
which experimental results were obtained. It was not
possible to look into this question experimentally
because the image intensity became too low to permit
good micrographs to be presented. Theoretical calcula-
tions indicated, however, that all the contrast features

mentioned remain essentially unchanged except that the
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residual contrast shown in Fig. 30b became progressively
weaker as Aelll increases, provided that none of the

high order systematic reflections is too close to its

Bragg condition.

7:6 ANALYSIS OF WEAK BEAM STACKING FAULT CONTRAST IN

TERMS OF BLOCH WAVE INTERACTIONS

The method of approach in analysing image contrast
is similar to that discussed in Chapters 5 and 6, and
involves following the Bloch wavé interactions from the
top to the bottom surface of the faulted crystal. These
interactions are followed in the usual way by calculating
the contributions of the various Bloch waves to the dif-
fracted beam amplitude at different positions in the
crystal. The results of calculations carried out in the
range of Aelll from 3.2 elll to 3.8 elll were all simi-
lar. These results are illustrated in Fig. 31 which
shows the magnitudes of ¢;'s and ¢;j's obtained at A9111=

3.2 8 Only interactions between Bloch waves 3 and

111°
5 are given since all other Bloch wave interactions were
quite small and could therefore be neglected.

It can be seen from Fig. 31 that at the top
surface of the crystal, Bloch waves 3 and 5 are of

apprdximately equal importance. The contributions of

these Bloch waves to the diffracted beam amplitude

~d
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just above the fault will, to a good approximation, be
equal and independent of the fault depth, since the
absorption coefficients of both Bloch waves are nearly
the same. As Bloch waves 3 and 5 encounter the fault,
interbrgnch and intrabranch scattering occurs. It
might at first be thought that interbranch transition
from Bloch waves 3 to 5 (resulting in ¢§3) and from 5
to 3 (resulting in ¢35) would be equally likely. The
results in Fig. 31 show, however, that ¢g3 << ¢§5,
i.e. interbranch transitions from Bloch waves 3 to 5

are for all intents and purposes forbidden. The reason

for this can be seen from equations 4.5 and 4.7, and the

. It can also

3 5 5 3
fact that |CJ| << [C | and ICgl << ]Cg
be seen from Fig. 31 that just below the fault and at
the bottom surface of the crystal the following rela-

tionships exist berween the interbranch and intrabranch

components:
55 33, .1, 35

In order to understand the thickness dependence
of image contrast it is necessary to consider not only
the magnitudes but also the phase relationships between
the various ¢;j's at the bottom surface of the crystal.
These relationships can best be illustrated by phase

amplitude diagrams such as the one in Fig. 32a which
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Phase amplitude diagram showing the relation-

ship between the contributions of interbranch
and intrabranch scattering to the diffracted
beam amplitude for an o = 21/3 stacking fault.
The crystal thicknesses considered are:

a) néﬁll , and

B) (n+s) E};; -
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shows the results obtained for a crystal thickness

of né%ll, where n is an integer. The manner in which
contrast arises can be understood by noting that, for
a crystal of given thickness, contrast in images of
stacking faults results from a change in fault depth

t Equations 4.5 and 4.7 show that the intrabranch

1
components of the diffracted beam amplitude, ¢;i, are
independent of tl' The interbranch components ¢éj '

on the other hand, will change with fault depth ty
according to the term exp 2ni(yj- yi)tl. Thus as ty
changes ¢;5 will rotate as indicated in Fig. 32a, making
1 complete cycle when ty changes by the effective extinc-
tion distance, l/(Y3—ys). Thus the diffracted beam am-
plitude varies from a maximum AC to zero to a maximum
again when the stacking fault depth changes by one
effective extinction distance. Singlets of strong
contrast will therefore be obtained, in agreement with
the experimental results in Fig. 29 and the theoretical
profiles in Figs. 30a,c.

The phase amplitude diagram corresponding to a
crystai thickness of about (n+g)§§ll is shown in Fig.
325. It can be seen that ¢§3 and ¢§5 are antiparallel,
and there is therefore no intrabranch contribution to
the diffracted beam amplitude. The total diffracted

beam amplitude is therefore constant and equal to ¢;5,



171

with the result that no image contrast should be obtained.
The fact that the theoretical profiles in Fig. 30b
exhibit weak contrast is due to the small contribution
of Bloch wave 1 to the diffracted beam amplitude which
has been neglected.

Finally, it should be mentioned that calculations

were carried out for values of AGlll in the ranges 4.2

111 111 111 to 5.86111. These calcu-

lations showed that the scattering mechanisms which

6,,, to 4.8 8.., ané 5.2 6
give rise to contrast are essentially the same as those
described above except that the Bloch waves involved
were 4, 6 and 5, 7 respectively. In addition the con-
tribution of Bloch wave 1 became smaller with increasing

A6 resulting in a further increase in the already

111
weak contrast exhibited in Fig. 30b.

7:7 DEPENDENCE OF WEAK BEAM STACKING FAULT IMAGE ON

ACCELERATING VOLTAGE

Observations of weak keam images of lattice
defects are normally made at low accelerating voltages
[110 to 113]. It is of interest, however, to explore
the advantages, if any, of increasing electron energy.
In order to investigate this point, weak beam stacking
fault contrast was calculated at different accelerating

voltages. All the values of Aeg used were high enough
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to insure that weak beam diffraction conditions at all

electron energies were obtained. For the case of the

(111) set of systematic reflections and in the range

100-500 kv, the values of Aelll used were greater than

6.2 elll’ which corresponded to setting the crystal at

an crientation outside the reflection (777) being in

the Bragg condition. The results of these calculations

indicated the following points:

(1)

(2)

(3)

The nature of the image at all accelerating vol-
tages was found to be quite similar to that
described in section 7:4 for 150 kvV.

As accelerating voltage increased the effective
i+2

extinction distance Eg = 1/(v"-y¥"%) aiso

increased. Thus for a crystal of given thickness

‘the number of stacking fault fringes would de-

Crease as the accelerating voltage is raised.
(Compare the number of fringes in Figs. 33 a,b).
At higher accelerating voltages the overall image
intensity increased (compare Figs. 33 a,b). This
would have the practical advantage of allowing
weak beam images to be more conveniently observed

at higher accelerating voltages.

7:8 SUMMARY,DISCUSSION AND CONCLUSIONS

The results presented in this chapter show that

weak beam images of stacking faults arise due to the
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interaction of two Bloch waves, i and j, where j=i+2
and i > 2. These Bloch waves are characterized by the
fact that they have nearly equal absorption coefficients
and that, above the fault, they make equally important
contributions to the diffracted beam amplitude
(cic; z cgcg). Further it was found that Cé << Cg
and Cg << C; resulting in one of the possible inter-
branch transitions being essentially forbidden. The
interbranch transitions which did occur resulted from
the scattering of the Bloch wave with the highest value
of excitation amplitude (Cg) to the one with the highest
value of the Fourier coefficient (C;). Similar inter-
branch transitions were reported by Cockayne [11l1l] in
his analysis of weak beam dislocation contrast.

It has also been shown that crystal thickness
is an important factor in determining contrast in
stacking fault images obtained under weak beam con-
ditions. This was evidenced by the fact that when the
crystal thickness was n extinction distances, strong
fringe contrast was obtained. For crystal thicknesses
of about (n+%) extinction distances, on the other hand,
image contrast was found to be very weak. This result
was found to be a consequence of the fact that the
phase relationship between the two intrabranch com-

ponents of the diffracted beam amplitude is a critical
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factor in determining the nature of the contrast
obtained. This phase relationship is determined
by the value of the crystal thickness.

The fact that image contrast changes so
dramatically with crystal thickness has important
implications if stacking faults are to be observed
under weak beam conditions. If the crystal thickness
is (n+%)§§, then stacking faults will exhibit poor
contrast and may therefore remain undetected. One
possible error of interpretation which might arise
under these circumstances is that of attributing a
phase angle o = 2w§.§ = 0 to the fault. This diffi-
culty can be avoided if the extinction distance can be
changed to obtain the condition that crystal thickness
is equal to ngé. This can be achieved by simply tilt-

ing the cryvstal.
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CHAPTER 8

ON MAXTIMIZING STACKING FAULT CONTRAST IN THICK

CRYSTALS AT HIGH ACCELERATING VOLTAGES

8:1 INTRODUCTION

Probably the greatest advantage of high voltage
electron microscopes is that they enable the study of
thicker specimens than is possible by using conven-
tional low voltage instruments. In order to utilize
this advantage fully it is important to choose the
diffraction conditions which enable observations to
be carried out in crystals which are as thick as possi-
ble. The results given in section 6:5 of Chapter 6
indicated that the maximum thickness of crystal in
which observations can be carried out depends on both
image intensity and image contrast.

At low accelerating voltages image intensity is
maximized by choosing the strong beam diffraction condi-
tions i.e. orienting the crystal so that a low order
reflection is close to its exact Bragg condition. It has
been found however [45,46] that in the vicinity of 1000
kV, maximum transmission normally occurs at the symme-
try position of a low order systematic set. Thus there

will be a low voltage range where strong beam images are



177

obtained near Aeg = 0, and a high voltage range where
those images are obtained at Aeg = -1.0 Sg.

The first question which arises is how would
contrast in thick crystals, imaged under strong beam
diffraction conditions, change as a result of increas-
ing electron energy in the low voltage range. The
work presented in section 8:2 of this chapter examines
this question for both thickness fringe contrast and
stacking fault contrast.

The next question is what contrast should be
obtained in thick crystals when strong beam diffraction
conditions in the high voltage range are used. The
recent work of Humphreys et.al. [46] has shown that the
reason for the high transmission obtained at the symme-
try position, where Bloch waves 1 and 3 are strongly
excited, is due to the channeling properties of Bloch
wave 3. However, since Bloch waves 1 and 3 have
widely different absorption coefficients, it would be
expected that the nature of image contrast obtained at
at these diffraction conditicns would be characteristic
of anomalous absorption. The effects of anomalous
absorption when two Bloch waves of widely different
absorption coefficients are excited was shown in
Chapter 5 to give rise to a decrease in the visibility

of the central fringe pattern corresponding to a stacking
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fault in a thick crystal. On the other hand the

results of Chapters 6 and 7 indicated that tilting
the crystal away from orientations where effects of
anomalous absorption are pronounced can result in
significant contrast improvements. Thus the possi-
bility arises that similar effects can occur by tilt-
ing the crystal away from the symmetry position at
1000 kV. The work presented in section 8:3 of this
chapter explores these possibilities for the case of

thickness fringe and stacking fault contrast.

8:2 DEPENDENCE OF IMAGE CONTRAST IN THICK CRYSTALS ON

ACCELERATING VOLTAGE WHEN A LOW ORDER REFLECTION

SATISFIES THE EXACT BRAGG CONDITION

Thickness fringe contrast obtained under strong
beam diffraction conditions can be strongly influenced
by the presence of systematic reflections(see section 5:1).
However, in the case of cobalt this effect only occurs in
thick crystals. This was evidenced by the fact that in thin
parts of the crystal thickness fringes were two beam
in character while in thick crystal thickness fringe
contrast was multibeam in character (see section 5:1).
The question which arises is in regard to the electron
energy dependence of these contrast features. In order
to examine this question, bright field profiles of

thickness fringes were calculated at different
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accelerating voltages. The mange of accelerating
voltages explored was from 50-500 kV. The calculations
were carried out assuming the (111) set of systematic
reflections to be excited in fcc cobalt with 88,41 = 0.
The results are given in section 8:2.1. In section
8:2.2 the consequance of these results on stacking fault
contrast in thick crystals are examined. Finally in
section 8:2.3 an attempt is made to explain the results
in terms of the changes which occur in the properties

of the Bloch waves as electron energy is raised.

8:2.1 DEPENDENCE OF THICKNESS FRINGE CONTRAST AT Aelll=0

ON ACCELERATING VOLTAGE

The manner in which the contrast of thickness
fringes obtained in the bright field at A8,,,=0 changed
with accelerating voltage can be seen by considering
the multibeam profiles in Fig. 34. It can be seen from
these profiles that the value of crystal thickness in
which thickness fringes are two beam in character
increases as the accelerating voltage is raised in the
range 50-250 kV. That this is so can be seen by com-
paring Figs. 34 a,b and noting that at 50 kV the two
beam fringes extend up to about 1000 A° while at 250 kV

these fringes extend to about 2300 A°. The results in
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Fig. 34 Multibeam field thickness fringe profiles calcu-
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condition.
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Figs. 34 c,d show, however, that at accelerating vol-
tages higher than about 300 kV thickness fringes, even
in thin parts of the crystal, exhibit the complex
behaviour characteristic of multibeam effects.

The above results indicate therefore that in
the range of about 50-250 kV raising electron energy
results in an extension of the range of crystal thick-
ness in which the two beam theory can be employed.
These results are contrary to what was initially ex-
pected, namely that effects of systematic reflections

increase by raising the accelerating voltage.

8:2.2 IMPLICATIONS OF RESULTS IN MAXIMIZING STACKING

FAULT CONTRAST IN THICK CRYSTALS

The results presented in Chapter 5 indicated that
at 150 kV the presence of systematic reflections has a
deletarious effect on the contrast of stacking fault
fringes obtained near the centre of a fault lying in
a thick crystal. On the other hand, the results of the
previous section indicate that increasing the electron
energy from 50 to 250 kv, for the (111) systematic
set in fcc cobalt, results in almost doubling the value
of crystal thickness in which thickness fringe contrast
can be described to be two beam in character. These

results raise the possibility that stacking fault contrast
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can be similarly enhanced in thicker crystals by in-
creasing the accelerating voltage. In order to explore
this possibility further, the dependence of stacking
fault contrast in the bright field on crystal thickness
was calculated at crystal thicknesses of n and (n+%)
extinct:ion distances at different accelerating voltages.
These calculations were carried out in a similar manner
to that described in Chapter 5. The results of these
calculations showed that the differences between two
and multibeam profiles decreased in thicker crystals

as the electron energy was raised from 50 to 250 kV.
These theoretical calculations indicate therefore that
it is possible to decrease the deleterious effects of
systematic reflections on the contrast of central fringes
in a stacking fault image by raising the accelerating
voltage in the range 50-250 kV.

It is important to mention that when an accele-
rating voltage higher than about 300 kV was considered
in the calculation, stacking fault profiles obtained on
the basis of two and multibeam theories were quite
different. The multibeam dynamical theory predicted
that the stacking fault image would be characterized
by fringes which are complex in nature regardless of

the value of crystal thickness considered.
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8:2.3 EXPLANATION OF RESULTS

Insight into the physical reasons for obtaining
the results described in the last two sections can be
gained by examining the changes which occur in the
values of the relevant Bloch wave parameters as acce-
lerating voltage is raised. In Fig. 35a the contribu-
tions, ¢i, of Bloch waves 1 to 4 to the amplitude of
directly transmitted beam at the top surface of the
crystal are plotted as function of accelerating voltage.
In these calculations the (111l) set of systematic re-
flections in fcc cobalt was assumed excited with a value
of 0811 = 0. It can be seen from this figure that as
electron energy is raised, the excitation of Bloch waves
1 and 2 decreases while that of Bloch waves 3 and 4
increases. If only these results were considered, the
importance of higher order Bloch waves would be increased
as accelerating voltage increases and consequently sys-
tematic reflections would have stronger effects at
higher electron energies. It is important, however, to
note that the situation will be quite different when
the effects associated with changes in Bloch wave absorp-
tion coefficient are considered. It can be seen from
Fig. 35b that in the range of accelerating voltages 50-
250 kV, the value of the absorption coefficient of Bloch

wave 1 decreases very rapidly compared to those of Bloch
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A6111= 0.
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waves 2,3, and 4. Consequently the difference (ql— qz)
of the two most important Bloch waves will decrease as
the accelerating voltage is raised.

The results obtained in section 8:2.2 which
indicated that two beam stacking fault contrast was
obtained in thicker crystals by going from 50 kV to
250 kV can now be understood as follows. If electron
energy is low (say 50 kV) then Bloch wave 1 has a very
high value of absorption coefficient, and consequently
its contribution ¢i to the directly transmitted beam
amplitude just above a fault near the middle of a thick
crystal will be much less than ¢§ of Bloch wave 2. Very
weak central fringe contrast results according to the
mechanism discussed in section 5:3.2(a) of Chapter 5.
On the other hand, as a higher accelerating voltage is
employed, say 250 kV, the absorption coefficient of
Bloch wave 1 decreases appreciably. The contribution
¢é of Bloch wave 1 just above a fault lying near the
middle of a thick crystal will not be small as the case
discussed above. Image contrast in this case will to
a good approximation arise from the interaction between
the main Bloch waves 1 and 2. According to the mechanisms
discussed in sections 5:3.1(a), (b) of Chapter 5, two
beam contrast will therefore result. Central fringes

will therefore be singlets of high contrast when crystal
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thickness is (n+%) extinction distances, and doublets
of lower contrast when crystal is n extinction dis-
tances thick.

At accelerating voltages above about 300 kV,

Fig. 35b shows that the changes in Bloch wave absorp-
tion coefficients are small. Under the same conditions
the excitation of Bloch waves 1 and 2 decreases while
that of 3 and 4 increases. Raising the accelerating
voltage in this energy range will therefore result in
increasing the effects of multiple reflections, and
image contrast becomes complex.

The analysis presented in this section shows that
in deducing the changes in the role that systematic reflec-
tions have on stacking fault contrast as the accelerating
voltage is raised it is important to take into account
the changes in Bloch wave absorption coefficients and not

only the changes in Bloch wave excitations.

8:3 ON THE DIFFRACTION CONDITIONS WHICH MAXIMIZE IMAGE

CONTRAST IN THICK CRYSTALS AT 1000 kV

At 1000 kV, maximum electron transmission nor-
mally [45,46] occurs at the symmetry position of a low
order systematic set. However, as noted in section 8:1,
image contrast expected at this orientation would be

characteristic of anomalous absorption. In order to
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explore the diffraction conditions which maximize image
contrast in thick crystals at 1000 kV, calculations

of thickness fringe and stacking fault contrast were car-
ried out at orientations in the range from the symmetry
position Aeg = =-1.0 eg up to the reflection g in the
Bragg orientation A6 _ = 0. These results are presented
in section 8:3.1. In section 8:3.2 anvexplanation of
these results is given in terms of the scattering me-
chanisms which are responsible for producing image

contrast.

8:3.1 RESULTS OF STACKING FAULT CONTRAST AND EXTINCTION

CONTOURS AT HIGH ACCELERATING VOLTAGES

All the theoretical calculations presented in
this section were performed for an fcc cobalt crystal.
The (11l) systematic set of reflections was considered
and the reflections 555 ----- 555 were taken into
account. Bright field images only were considered
and the orientations investigated correspond to values
of the deviation parameter in the range from Aelll =
-1.0 6,17 to Aelll = 0.0.

It is first of interest to consider the changes
in thickness fringe contrast which occur as the crystal

is tilted away from the symmetry position. The results

in Figs. 36 a,b which show the intensity profiles
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Fig. 36 Theoretical bright field intensity profiles
for an fcc cobalt crystal at 1000 kV with the
(111) set of systematic reflections excited.
a) and b) extinction contour profiles obtained
for valuesof A6y3; equal to -1.0 83337 and -0.2
8111 respectively. c¢) and d) profiles for an
a = -27/3 fault in a 1000 A° thick crystal at
the same values of Aelll‘
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obtained at values of Aelll = -1.0 elll and -0.2 elll'
illustrate this change. It can be seen from Fig. 36a
that at the symmetry position, thickness fringes in
thick parts of the crystal exhibit poor contrast. On
the other hand, the results in Fig. 36b show that when
the crystal is tilted away from the symmetry position,
thickness fringes in thick parts of the crystal exhibit
very good contrast. These results can be understood by
calculating the values of ¢é at the top surface of the
crystal in the range of orientations considered. These
results, shown in table 3, indicate that at the symmetry
pPosition thickness fringes result from the interaction
of Bloch waves 1 and 3. Since these two Bloch waves
have widely differing absorption coefficients, the thick-
ness fringes would be expected to exhibit the poor
contrast characteristic of anomalous absorption. At
Aelll = ~-0.2 elll' on the other hand, the important
Bloch waves are 1, 2 and 3. Since ql>> q2 ~ q3, thick-~
ness fringes in thick crystals result from the inter-
action of two Bloch waves of approximately the same
absorption coefficient. The thickness fringes would
therefore be expected to exhibit the good contrast
characteristic of normal absorption.

It is next of interest to ask what stacking fault
contrast is to be expected at these orientations. 1In

order to answer this question, calculations of stacking



190

fault profiles have been carried out for an a = -27/3
fault in an fcc cobalt crystal of thickness equal to
1. The profile obtained at the symmetry orientation
is shown in Fig. 36c and, as can be seen, the fringes
near the centre of the fault exhibit weak contrast.
This behaviour is characteristic of the two beam
anomalous absorption profiles obtained at low accele-
rating voltages [14,15]. The profile at Aelll = =-0.2
elll is shown in Fig. 36d and, as can be seen, these
fringes exhibit strong contrast in a crystal of the
same thickness. It can also be noted from Fig. 36d
that, except close to either surface of the crystal,
the fringe spacing is equal to the effective extinction

distance, l/(yz— y3) or about 900 A°.

Table 3
AB i=1 i=2 i=3 i=4
-1.0 0.49 0.00 0.51 0.00
-0.8 0.48 0.05 0.47 0.00
-0.6 0.47 0.14 0.39 0.00
-0.4 0.45 0.23 0.32 0.00
-0.2 0.43 0.31 0.27 0.00
0.0 0.39 0.38 0.11 0.11
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8:3.2 ANALYSIS OF STACKING FAULT PROFILES IN TERMS

OF INTERBRANCH AND INTRABRANCH SCATTERING

The results obtained in section 8:3.1 show that
marked changes in the nature of stacking fault fringes
near the centre of a fault occur when the crystal is
tilted away from the symmetry position. The purpose
of this section is to explain these results in terms
of the scattering mechanisms which give rise to image
contrést. These mechanisms can best be illustrated by
following the Bloch wave interactions from the top to
the bottom surface of the crystal. 1In order to follow
these interactions at the two orientations of interest,
calculations have been carried out of the values of ¢i
at the top surface of the crystal and just above the
fault and of values of ¢ij just below the fault and at
the bottom surface of the crystal. The results which
are shown in Fig. 37 only include interactions between
Bloch waves 1, 2 and 3 since all other Bloch wave inter-
actions were small and could be neglected.

The reason for the poor contrast exhibited by
fringes near the centre of a fault in a crystal at
the symmetry position can readily be seen by follow-
ing the Bloch wave interactions in Fig. 37a. At the
top surface of the crystal only Bloch waves 1 and 3

are important. Since ql >> q3, Blioch wave 1 will be
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Fig. 37 The magnitudes of ¢é and ¢éj for an a= -271/3
stacking fault in an fcc cobalt at 1000 kV.
It was assumed that the (111) set of system-
atic reflections was excited. a) and b) at
values of Aelll equal to -1.0 6337 and -0.2
6111 respectively.
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relatively weak in comparison with Bloch wave 3 just
above the fault. As a result, the only significant
interbranch scattering which can occur when the Bloch
waves encounter the fault is from Bloch wave 3 to
Bloch wave 1 (¢i3). Since ql is relatively high, this
interbranch component of Bléch wave 1 will decrease
rapidly with increasing distance from the fault with
the result that it is negligible at the bottom surface
of the crystal. The fringe contrast is therefore weak
since a strong interbranch component is required in
order to obtain good contrast.

The Bloch wave interactions which occur when the
crystal is oriented so that Aelll = —0.26lll can be seen
from the values of ¢i and ¢ij in Fig. 37b. At the top
surface of the crystal the three important Bloch waves
excited are 1, 2 and 3. Since ql is relatively high,
Bloch wave 1 will be weak in comparison with Bloch waves
2 and 3 just above the fault. As a result intrabranch
scattering of Bloch wave 1 (¢él) and interbranch scatter-

él and

ing from Bloch wave 1 to Bloch waves 2 and 3 (¢
621) will be weak while all the other interbranch and
intrabranch components will be relatively high. Because
of the high absorption coefficient of Bloch wave 1, the

interbranch components ¢é2 and ¢é3 will weaken consi-

derably before reaching the bottom surface of the crystal
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Fig. 38 DPhase amplitude diagram showing the relation
between the contributions of interbranch
and intrabranch scattering to the amplitude
of the directly transmitted beam for an
a = =-21/3 stacking fault at the centre of
a 1000 A° thick crystal. The accelerating
voltage was taken to be 1000 kV and A9111=

-0.2 elll.
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leaving only ¢§2, ¢23, ¢§3 and ¢g2 with appreciable
values. The reason that strong contrast is obtained
follows directly from the fact that both Bloch waves

2 and 3 have strong interbranch components (¢§3 and

¢32). In order to understand why fringe spacing is

o
equal to the effective extinction distance l/(Yz- 73),
the phase relationships between the interbranch and
intrabranch components must be considered. A schema-
tic representation of these phase relationships is
shown in Fig. 38. This diagram can be understood by
recalling that the interbranch component ¢gj will vary
with the fault depth ty according to the term

exp 21i(y3 - y')t; (see equations 4.5 and 4.7). Thus

at a value of tl equal to n extinction distances the

3

two interbranch components ¢§ and ¢22 are in the same

direction, giving a resultant amplitude equal to AC.

As t. increases the vectors representing ¢§3 and ¢22

1
rotate in the directions indicated with the result that
when tl = (n+%) extinction distances the resultant
amplitude is zero. When tl is equal to (n+l) extinc-
tion distances the resultant amplitude is a maximum
again and equal to AC. Thus it can be seen that the
amplitude of the directly transmitted beam varies from

a maximum to a minimum to a maximum again if the stack-

ing fault depth changes by one extinction distance.
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It might be noted that the differences in detail between
the fringe profile given by the above qualitative argu-
ments and the fringes in Fig. 36d can be understood by

carrying out a more detailed analysis.

8:4 DISCUSSION

Rocking ‘Jurves and Contrast

One of the primary objectives of the electron
microscopist in carrying out observations of lattice
defects is to choose diffraction conditions which give
him high intensity, good contrast images. The crystal
orientation which gives maximum transmitted intensity
in the perfect crystal can be determined from rocking
curves. These data, however, do not provide informa-
tion on such questions as what diffraction conditions
must be chosen in order té obtain optimum contrast or
how contrast changes with crystal orientation and
accelerating voltage. As has been noted the maximum
bright field intensity at low accelerating voltages
occurs when the low order reflection of a systematic
set is in the Bragg condition. The results presented
in Chapter 6 have shown that in the case of bright
field images of stacking faults, a decrease in contrast
occurs when the crystal is tilted away from this posi-

tion. Thus at low accelerating voltages the diffraction
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conditions for obtaining maximum bright field intensity
and optimum contrast are the same [114]. The results
presented in section 8:3 indicate that the situation

at high accelerating voltages is quite different. The
rocking curves obtained by Humphreys et.al. [46] at
high accelerating voltages indicate that the bright
field intensity in the perfect crystal decreases as

the crystal is tilted away from the symmetry position
(note, for example, the difference in background inten-
sities in Figs. 36 c,d). Under the same circumstances,
however, contrast in bright field images of stacking
faults in thick crystals increases markedly. It is
also important to note that although the intensity
transmitted through the perfect crystal decreases
appreciably as the crystal is tilted away from the
symmetry position, intensity in the stacking fault image
does not (compare, for example, the intensities at which
fringe maxima occur in Figs. 36 c,d). These results
therefore suggest that at high accelerating voltages
the symmetry position may not be the best orientation
to carry out observations of stacking faults in thick

crystals.
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8:5 SUMMARY AND CONCLUSIONS

that:

(1)

(2)

(3)

The results obtained in this chapter have shown

The effects of anomalous absorption on (111)
strong beam images in fcc cobalt decrease as
accelerating voltage is raised in the range
50-250 kV.

As a consequence of this, the effect of system-
atic reflections in thick crystals, which is to
reduce contrast, can be decreased. Thus raising
the accelerating voltage in the range 50-250 kV
can be beneficial in obtaining high image con-
trast in thick crystals.

At high accelerating voltages,effects of anoma-
lous abscrption are most pronounced at the
symmetry orientation with the result that
stacking fault fringes near the centre of a
fault lying in a thick crystal exhibit weak
contrast. It has been shown that by tilting
the crystal slightly away from the symmetry
position strong contrast can be generated in

images of thick crystals.
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CHAPTER 9

GENERAL DISCUSSION AND CONCLUSIONS

9:1 BEAMS AND BLOCH WAVES

The first point to note in this section is the
importance of describing electron images in terms of
Bloch wave interactions. Most calculations of image
contrast, based on the dynamical theory, are classi-
fied according to the number of beams taken into
account, (see for example Humphreys et.al. [34] and
Serneels and Gevers [98]). Thus, for example, a stack-
ing fault profile would be referred to in the literature
as being two beam or multibeam. The results presented
in this thesis indicate that when discussing the nature
of image contrast in terms of the dynamical theory, a
more basic description is given in terms of the number
of important Bloch waves excited and their characteris-
tics. An example which serves to illustrate this point
is the similarity between the familiar two beam stack-
ing fault profiles obtained at low accelerating voltages
for a thick crystal oriented so that a low order re-
flection is in the exact Bragg condition, and the multi-
beam profiles obtained at high accelerating voltages
with the crystal oriented at the exact symmetry posi-

tion (see section 8:3 of Chapter 8). The reason for
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this similarity lies in the fact that in both cases
the contrast arises from the interaction of two Bloch
waves of widely different absorption coefficients.

At low accelerating voltages these are Bloch waves 1
and 2 while at high accelerating voltages at the
symmetry orientation Bloch waves 1 and 3 are

important.

9:2 FACTORS DETERMINING THE APPLICABILITY OF THE TWO

BEAM DYNAMICAL THEORY

The results presented in Chapters 5 to 8 of this
thesis indicated that the applicability of the two beam
theory in describing stacking fault contrast is deter-
mined by a number of interconnected factors. In this
section a discussion of these factors is given.

1) Crystal thickness and defect depth

Crystal thickness and defect depth have not
generally been assumed to be factors which determine
the applicability of the two beam theory. The results
in Chapter 5 have shown, however, that under certain
circumstances both these factors can be important in
deducing whether or not effects of systematic reflec-
tions are important. For example it was found, for the
case of the (111) set of systematic reflections in fcc

cobalt, that strong beam images of stacking faults in
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thin or moderately thick crystals were two beam in
character. For thick crystals however fringes near

the centre of the fault were markedly affected by

the presence of systematic reflections while edge
fringes remained two beam in character. These results
indicate that caution should be exercised in interpreting
strong beam contrast of defects lying near the middle

of thick crystals by using the two beam dynamical theory.

2) The order of the systematic set chosen

The results presented in Chapter 5 have also shown
that by choosing a high order systematic set it was
possible to reduce the deletarious effects of multiple
reflections on strong beam contrast obtained from thick
crystals. Thus the range of applicability of the two
beam theory in describing strong beam images can be
extended to thicker crystals by exciting a high order
systematic set of reflections.

3) Material considered

Under strong beam diffraction conditions, thick-
ness fringe and stacking fault contrast was found to be
two beam in character when a moderately thick crystal
of cobalt was considered (see Chapter 5). The calcula-
tions of Humphreys et.al. [34] indicated, on the other
hand, that under similar diffraction conditions, stack-

ing faults in gold are strongly influenced by the
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presence of systematic reflections, even in relatively
thin crystals. It is clear therefore that the atomic
number of the material is an important factor in de-
termining the strength of multibeam interactions. For
low order systematic sets the two beam approach must
therefore be restricted to thin and moderately thick
crystals in materials of low and intermediate atomic
number. For heavy elements however, it would be ex-
pected that the two beam theory would not be applicable
except in extremely thin crystals.

4) Accelerating voltage

It has been commonly assumed [28,29] in the past
that the applicability of the two beam theory decreases
as the electron energy is raised. The results in
section 8:2 have shown however that the two beam theory
is applicable over a wider range of crystal thicknesses,
provided that the accelerating voltage was raised in
a certain range. These results indicate therefore that
the assumptions made in the past with regard to the
relationship between accelerating voltage and effects
of systematic reflections does not hold unless the
accelerating voltage exceeds a certain limit. For
example for the case of the (111) set of systematic
reflections in fcc cobalt this limit was found to be

approximately 250 kV.
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5) Crystal orientation

The crystal orientation for which the two beam
theory has commonly been considered to be applicable
corresponds to setting the crystal so that a low order
reflection is sufficiently close to its Bragg condition.
It would therefore be expected that when the crystal is
tilted away from this orientation, the two beam theory
becomes less applicable in predicting image contrast.
Examples of this have been seen from the results
of the present work in Chapters 6 and 7. For
example dark field stacking fault contrast exhibited a
marked departure from the two beam behaviour when the
crystal was tilted near the Bragg orientation of the

reflection 3g (see section 6:2).

9:3 STACKING FAULT CONTRAST IN TERMS OF BLOCH WAVE

INTERACTIONS

The past several years have seen the development
of a number of new techniques for studying lattice
defects in transmission electron microscopy. The
electron microscopist is confronted with the problem
of choosing from these widely diverse techniques, the
ones which will best suit his purposes. He first must

decide,for example,what accelerating voltage to use.
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He must also choose from such imaging techniques as
the weak beam method [111,112,115], the use of cri-
tical voltage microscopy [116], or the conventional
technique of imaging under strong beam diffraction
conditions [15,117,118]. If he is interested in
increased penetration he may want to use Bloch wave
channeling to obtain increased intensity [45,46] or
enhanced contrast in thick crystals [108,114].

In order to be able to choose from this wide
range of possibilities, it is clearly desirable that
the electron microscopist be guided by a basic under-
standing of the factors which influence diffraction
contrast. Some understanding of these factors can be
obtained by direct calculation of intensity profiles
for different sets of conditions. However, a general
understanding of image contrast can only be gained if
such calculations are complimented by an investigation
of the scattering mechanisms which give rise to image
contrast. Investigations of this kind have been carried
out in Chapters 5 to 8 of this thesis. The method used
to gain an understanding of the scattering mechanisms
responsible for image contrast was based on following
the interaction between the important Bloch waves down
through the faulted crystal. From these analyses it

was observed that the general character of image contrast
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obtained can be deduced from a knowledge of the number
and characteristics of the Bloch waves excited at the
top surface of the crystal. Examples of this behaviour

are discussed in the next few sections.

9:3.1 ONE IMPORTANT BLOCH WAVE

When one Bloch wave only has an important con-
tribution to the amplitude of the diffracted beam at
the top surface of the crystal, very weak stacking
fault contrast is expected. The reason for this, as
noted in the analysis of section 6:4.1, is the absence
of significant interbranch scattering which is essen-
tial in producing contrast.

The conditions under which one Bloch wave is
important at the top surface of the crystal are:

(i) In the bright field at low accelerating vol-
tages when Aeg > 1.0 eg, provided that none of
the high order reflections in the systematic

set chosen satisfies their exact Bragg conditions.
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9:3.2 TWO IMPORTANT BLOCH WAVES OF NEARLY EQUAL

ABSORPTION COEFFICIENTS

The mechanism which gives rise to image contrast
when two Bloch waves of equal absorption coefficients
are important at the top surface of the crystal is quite
similar to that discussed in section 8:3.2 for the
central fringe pattern obtained at high accelating
voltages when Aeg ~ =-0.2 eg. The stacking fault image
for any fault depth will be characterized by nearly
sinusoidal fringes exhibiting high contrast., Similar
to the case discussed in section 7:6 for weak beam
diffraction condition, stacking fault contrast would be
expected tc depend on crystal thickness variations within
the effective extinction distance. However, since the
absorption coefficients are nearly equal it would be
also expected that there will be no variation in image
contrast between thin and thick crystal. Good stacking
fault penetratibn would therefore be expected.

Two Bloch waves of equal absorption coefficients
can be excited at the top surface of the crystal under
the following conditions:

(1) In the bright field when the reflections 2g, 3g,
4g, ... etc. are in the exact Bragg condition

at low accelerating voltages.

(ii) In the dark field when weak beam diffraction

conditions are chosen.
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9:3.3 TWO IMPORTANT BLOCH WAVES OF WIDELY DIFFERING

ABSORPTION COEFFICIENTS

The mechanisms producing contrast when the two
important Bloch waves have widely different absorption
coefficients have been discussed in detail in section
5:3. Fringe contrast was found to depend upon: a)
crystal thickness, and b) defect depth.

For a moderately thick crystal central fringes
are either doublets or singlets depending on the crys-
tal thickness. When the thickness of the crystal is
such that the resultants of inter- and intrabranch
scattering are in phase, central fringes are singlets
of high contrast (section 5:3.1(b)). When these resultants
are at right angles a doublet structure occurs which
exhibits weaker contrast (section 5:3.1(a)).

For an extremely thick crys+tal, central fringes
have poor contrast irrespective of crystal thickness.
The reason is that the interbranch contribution to the
diffracted beam amplitude is much less than that of

intrabranch contribution.

Edge fringes for any crystal thickness exhibit
a singlet structure of high contrast. The reason, as
noted in section 5:3.3, is that these fringes arise
from inter- and intrabranch components which have

nearly equal magnitudes.
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Two Bloch waves of widely different absorption
can be excited at the top surface of the crystal under
the following conditions:

(i) At low accelerating voltages when the lowest
order reflection in a systematic set is at the
exact Bragg condition.

(ii) At high accelerating voltages near the symmetry

position of a low order systematic set.

9:3.4 THREE IMPORTANT BLOCH WAVES: ONE IS HEAVILY

ABSORBED

Analysis of image contrast when three Bloch
waves are important, one of which is heavily absorbed,
has been carried out in sections 6:4.2 and 8:3.2.

For a thick crystal it was found that image contrast
depends primarily upon defect depth. Fringes near the
centre of the fault exhibit high contrast since they
arise from the interaction of two Bloch waves of nearly
equal absorption coefficients. On the other hand, near
either of the crystal surfaces all the three Bloch waves
have important contributions to the diffracted beam
amplitude and a complex fringe pattern results.

The situations encountered in the present work
where three Bloch waves are excited at the top surface

of the crystal, one of which is heavily absorbed were:

~
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(i) At low accelerating voltages in the dark field
at orientations near the reflection 3g being
in the Bragg condition.

(ii) At high accelerating voltages in the bright
field when Aeg ~ =0.2 eg, i.e. at orientations
just inside the reflection g being in the Bragg

condition.

9:4 SUGGESTIONS FOR FURTHER WORK

Stacking fault contrast has been analyzed in the
present work by following the interactions between the
important Bloch waves down through the faulted crystal.
This method of analysis was seen to offer an under-
standing of the nature of image contrast in the presence
of systematic reflections. The results given in section
9:3 have indicated that it should be possible to deduce
the resulting image contrast if the number and the
characteristics of the Bloch waves excited at the top
surface of the crystal are known. In order to further
explore this possibility more detailed analyses of stack-
ing fault contrast under a wide variety of conditions
are required. Such studies would be valuable in provid-
ing the electron microscopist with the diffraction
conditions to be chosen in order to obtain optimum

defect contrast.
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Another important class of diffraction conditions
which has not received much attention in the past is the
case when non-systematic reflections are excited. Study-
ing the nature of stacking fault contrast in the pre-
sence of non-systematics is a logical continuation of
the work presented in this thesis. The objectives of
this kind of study would be to answer important questions
such as what mechanisms give rise to stacking fault con-
trast in the presence of non-systematic reflections, and
what would be the adVantagés of exciting those reflec-
tions in imaging lattice defects.

The next point which is of considerable interest
is the applicability of the column approximation of elec-
tron microscopy in calculating intensity profiles from
sloping stacking faults. Whelan and Hirsch [12] suggested
that if the two beam theory is employed to calculate
stacking fault profiles it would be a good approximation
to employ the column approximation provided that the
angle of inclination of the fault does not exceed about
80° (see section 2:5.2). The results presented in this
thesis have shown that for the fault inclinations used
good agreement between experiment and the multibeam
theory was obtained. However, the stacking faults in-
vestigated in the present work were in the majority of

cases not steeply inclined to the surfaces of the crystal
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(inclination angles were estimated to be in the range
45° - 60°). It would therefore be quite interesting
to explore in future work the nature of contrast of
more steeply inclined stacking faults and investigate
whether or not image contrast can be accounted for by

using the multibeam dynamical theory which employs the

column approximation.



[1]
[2]

[3]
[4]
[5]
(6]
[7]
[8]

[91

[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]

[18]

212

REFERENCES

Heidenreich R.D., J. Appl. Phys. 20, 993 (1949).

Hirsch P.B., Howie A., and Whelan M.J., Phil. Trans.
A252, 499 (1960).

Von Borries B., Ruska E., Naturwiss. 28, 366 (1940).

Hillier J., Baker R.F., Phys. Rev. 61, 722 (1942).

Heidenreich R.D., Phys. Rev. 62, 291 (1942).

Boersch H., Zeit. f. Physik 121, 746 (1943).

Kinder E., Naturwiss. 31, 149 (1943).

Heidenreich R.D. and Sturkey L., J. Appl. Phys. 16,
97 (1945).

Bethe H.A., Ann. Phys. LPZ, 87, 55 (1928).

Frank F.C., Proc. Phys. Soc. (London) 624, 202 (1949).

Bollmann, W., Phys. Rev. 103, 1588 (1956).

Whelan M.J., Hirsch P.B., Phil. Mag. 2, 1303 (1957).

Whelan M.J., Hirsch P.B., Phil. Mag, 2, 1121 (1957).

Hashimoto H., Howie A. and Whelan M.J., Phil. Mag.
5, 967 (1960).

Hashimoto H., Howie A. and Whelan M.J., Proc. Roy.

Soc. A269, 80 (1962).

Drum C.M., Whelan M.J., Phil. Mag. 11, 205 (1965).

Van Landuyt J., Gevers R. and Amelinckx S.,
phys. stat. sol. 7, 519 (1964).

Amelinckx S., Modern diffraction and imaging tech-
nigues in material science (1970), Holland

Publ. (Amsterdam-London).



213

[19] Gevers R., phys. stat. sol. 3, 1672 (1963).

[20] Gevers R., Art A. and Amelinckx S., phys. stat. sol.
3, 1563 (1963).

[21] Booker G.R., Ph.D. Thesis (1960), Cambridge University
(unpublished).

[22] Booker G.R., Hazzeledine P.M., Phil. Mag. 15, 523
(1967).

[23] Head A.K., Aust. J. Phys. 20, 557 (1967).

[24] Humble P., Aust. J. Phys. 21, 325 (1968).

[25] Humble P., phys. stat. sol. 30, 183 (1968).

[26] Morton A.J., Clarebrough L.M., Aust. J. Phys. 22,
393 (1969).

[27] Sheinin S.S., 6th International Congress for Elec-
tron Microscopy 55 (1966), Kyoto.

[28] Goringe M.J., Howie A. and Whelan M.J., Phil. Mag.
14, 217 (1966).

[29] Howie A., Phil. Mag. 14, 223 (1966).

[30] Fukuhara A., J. Phys. Soc. of Japan 21, 2645 (1966).

[31] Goodman P., Lehmfuhl G., Acta Cryst. 22, 14 (1967).

[32] Hoerni J.A., Phys. Rev. 102, 1534 (1956).

[33] Fujimoto F., J. Phys. Soc. of Japan 15, 1022 (1960).

[34] Humphreys C.J., Howie A. and Booker G.R., Phil Mag.
15, 507 (1967).

[35] Gevers R., Van Landuyt J. and Amelinckx S., phys.

stat. sol. 21, 393 (1967) .



[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]
[45]

[46]

[47]

[48]

[49]

[50]

214

Howie A., Whelan M.J., Proc. Roy. Soc. A267, 206
(1962).

Silcock J.M., Tunstall W.J., Phil. Mag. 10, 361
(1964).

Booker G.R., Tunstall, Phil. Mag. 13, 71 (1966).

Wilson M.M., Radiation effects 1, 207 (1969).

Rihle M., Wilkins M. and Essmann U., phys. stat. sol.
11, 819 (1965).

Ashby M.F., Brown L.M., Phil. Mag. 8, 1083, 1649
(1963).

Sheinin S.S., phys. stat. sol. 38, 675 (1970).

Cockayne D.J.H., Ray I.F.L. and Whelan M.J., Phil.
Mag. 20, 1265 (1969).

Thomas G., Phil. Mag. 17, 1097 (1968).

Humphreys C.J., Lally J.S., J. Appl. Phys. 41, 232
(1970).

Humphreys C.J., Thomas L.E., Lally J.S. and Fisher
R.M., Phil. Mag. 23, 87 (1971).

Humphreys C.J., Proceedings of the 25th Anniversary
Meeting of EMAG (Institute of Physics), 12
(1971).

Humphreys C.J., Phil. Mag. 25, 1459 (1972).

Dupouy G., Perrier F. and Durrieu L., J. Microscopic
9, 575 (1970).

Berry M.V., J. Phys. C 4, 697 (1971).



215

[51] Mcgillavry C.H., Physica 7, 329 (1940).

[52] Kato N., J. Phys. Soc. Japan 7, 397 (1952).

[53] Sturkey L., Acta Cryst. 10, 858 (1957).

[54] Fujimoto F., J. Phys. Soc. Japan 14, 1558 (1959).

[55] Niehrs H., Z. Naturf. l4a, 504 (1959).

[56] Niehrs H., Z. Phys. 156, 446 (195¢).

[57] Niehrs H., Proc. IVth Int. E.M. Conf. 1, 295 (1960)
(Springer-Berlin).

[58] Fisher P.M., Jap. Jour. App. Phys. 7, 191 (1968).

[59] Howie A., Whelan M.J., Proc. Roy. Soc. A263, 217
(1961).

[60] Yoshioka H., J. Phys. Soc. Japan 12, 618 (1957).

[61] Yoshioka H. and Kianuma, J. Phys. Soc. Japan 17,
134 (1962).

[62] Whelan M.J., J. Appl. Phys. 36, 2099, 2103 (1965).

[63] Humphreys C.J., Hirsch P.B., Phil. Mag. 18, 115
(1968) .

[64] Steeds J.W., Valdré U., Proc. Eur. Conference on
Electron Microscopy, Rome, Vol. 1, p.43 (1968).

[65] Howie A., Valdré U., Proc. Third Eur. Conference
on Electron Microscopy 1, Prague, 377 (1964).

[66] Pines D., Elementary excitation in solids (Ben-
jamin, N.Y., 1963).

[67] Howie A., Proc. Roy. Soc. A271, 268 (1963).

[68] Kamiya Y., Uyeda R., J. Phys. Soc. Japan 16, 1361

(1961).



[69]

[70]

[71]

[72]
[73]
[74]

[75]
(761

[77]

[78]
[791]

{80]

[81]

[82]

[83]

216

Humphreys C.J., Whelan M.J., Phil. Mag. 20, le4
(1969).

Howie A., Basinski Z2.S., Phil. Mag. 17, 1039 (1968).

Hirsch P.B., Howie A., Nicholson R.B., Pashley D.W.
and Whelan M.J., Electron microscopy of thin
crystals, Butterworth, London (1965).

Fujiwara K., J. Phys. Soc. Japan 16, 2226 (1961).

Fujiwara K., J. Phys. Soc. Japan 17, 118 (1962).

Howie A., see discussion of paper by Fujiwara
(1962).

Hashimoto H., J. Appl. Phys. 35, 277 (1964).

Dupouy G., Perrier F., Uyeda R., Ayroles R. and
Mazel A., J. Microscopie 4, 429 (1965).

Heidenreich S., Fundamentals of transmission elec-
tron microscopy (1964) (Interscience Publ.)

Parthasarathy s Acta Cryst. 13, 802 (1960).

Troiano A.R., Tokich J.L., Trans. Amer. Min (Metal)
Engrso. 175, 728 (1948).

Edwards C©.S., Lipson H., J. Inst, Met. 69, 177
{1943).

Troiano A.R., Tokich J.L., Metal Technol., April
(1948), T.P. 2348.

Botros K.Z., M. Sc. Thesis, University of Cairo
(1965) (Unpublished).

Ericksson T., Acta Met. 14, 853 (1966).



[84]

[85]

[86]

[87]

(88l

[89]

[90]

[91]

[92]

[93]

[94]

[951]

[961

[97]

(98]

.|

217

Kdster E.H., Tholen A.R. and Howie A., Phil. Mag.
10, 1093 (1964) .

Sheinin S.S., Rev. Sci. Instr. 37, 232 (1966) .

Grundy P.J., Phil. Mag. 12, 335 (1965) .

Grundy P.J., Tebble R.S., J. Appl. Phys. 35, 923
(1964) .

Ibers J.A., Acta Cryst. 11, 232 (1960).

vVanshtein B.K., Ibers J.A., Kristallografia 3, 416
(1958).

Ibers J.A., Vanshtein B.K., Kristallografia 4, 641
(1959).

Smith G.H., Burge R.E., Acta Cryst. 15, 182 (1962).

Doyle P.A., Turner P.S., Acta Cryst. A28, 390 (1¢%68).

Ralston A., Wilf H.S., Mathematical methods for
digital computers, Ch. 7 (1962), John Wiley
and Sons (N.Y.).

Martin R.S., Reinsch C. and Wilkinson J.H., Numer.
Math. 11(3), 181 (1968) .

Subroutine eigen is listed in the IBM scientific
subroutine package.

Humphreys C.J., Fisher R.M., Acta Cryst. A27, 42
(1971).

Metherell A.J.F., Fisher R.M., phys. stat. sol.
32, 551 (1969) .

Serneels R., Gevers R., phys. stat. sol. 33, 703

(1969) .



(991

[100]
[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

{110]

[111]

[112]

[113]

218

Metherell A.J.F., Whelan M.J., Phil. Mag. 15, 735
(1967) .

Metherell A.J.F., Phil. Mag. 15, 763 (1969).

Spring M.S., Steeds J.W., phys. stat. sol. 37, 303
(1970).

Sheinin S.S., Botros X.Z. and Cann C.D., phys. stat.
sol. (a)3, 537 (1970).

Sheinin S.S., phys. stat. sol. 21, 247 (1967).

Sheinin S.S., Cann C.D., phys. stat. sol. 28, 187
(1968) .

Cann C.D., Sheinin S.S., phys. stat. sol. 30, 791
(1968).

Metherell A.J.F., Fisher R.M., phys. stat. sol. 32,
217 (1969).

Botros K.Z., Sheinin S.S., Proc. 30th Ann. EMSA
Meeting, 638 (1972).

Sheinin S.S., Botros K.Z., J. Appl. Phys. 42, 1231
(1972).

Art A., Gevers R., Amelinckx S., phys. stat. sol.
3, 697 (1963).

Haussermann F., Proc. 7th Int. Conference Electron
Microscopy, Grenoble, 2, 225 (1970).

Cockayne D.J.H., Z. Naturforsch 27a, 452 (1972).

Stobbs W.M., Sworn C.H., Phil. Mag. 24, 1365 (1971).

Cockayne D.J.H., Jenkins M.L., Ray I.L.F.,

Phil. Mag. 24, 1383 (1971).



[114]

{115]

[116]

[117]

[118]

219

Sheinin S.S., Botros K.Z., phys. stat. sol. (a)l2,
549 (1972).

Sheinin S.S., Botros K.2., phys. stat. sol. (a)l3,
585 (1972).

Lally J.S., Humphreys C.J., Metherell A.J.F. and
Fisher R.M., Phil. Mag. 25, 321 (1972).
Sheinin S.S., Botros K.Z., phys. stat. sol. (a)8,

449 (1971).
Sheinin S.S., Botros K.Z., phys. stat. sol. (a)3,

271 (1970).



ARC-30



