
EMSE manuscript No.
(will be inserted by the editor)

An Exploratory Study on Assessing the Energy Impact

of Logging on Android Applications

Shaiful Chowdhury · Silvia Di Nardo ·

Abram Hindle · Zhen Ming (Jack) Jiang

Received: date / Accepted: date

Abstract BACKGROUND: Execution logs are debug statements that devel-
opers insert into their code. Execution logs are used widely to monitor and di-
agnose the health of software applications. However, logging comes with costs,
as it uses computing resources and can have an impact on an application’s per-
formance. Compared with desktop applications, one additional critical com-
puting resource for mobile applications is battery power. Mobile application
developers want to deploy energy efficient applications to end users while still
maintaining the ability to monitor. Unfortunately, there is no previous work
that study the energy impact of logging within mobile applications.

OBJECTIVE: This exploratory study investigates the energy cost of log-
ging in Android applications using GreenMiner, an automated energy test-bed
for mobile applications.

METHOD: Around 1000 versions from 24 Android applications (e.g., Cal-
culator, FeedEx, Firefox, and VLC) were tested with logging enabled
and disabled. To further investigate the energy impacting factors for logging,
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controlled experiments on a synthetic application were performed. Each test
was conducted multiple times to ensure rigorous measurement.

RESULTS: Our study found that although there is little to no energy im-
pact when logging is enabled for most versions of the studied applications,
about 79% (19/24) of the studied applications have at least one version that
exhibit medium to large effect sizes in energy consumption when enabling and
disabling logging. To further assess the energy impact of logging, we have con-
ducted a controlled experiment with a synthetic application. We found that the
rate of logging and the number of disk flushes are significant factors of energy
consumption attributable to logging. Finally, we have examined the relation
between the generated OS level execution logs and mobile energy consumption.
In addition to the common cross-application log events relevant to garbage
collection and graphics systems, some mobile applications also have workload-
specific log events that are highly correlated with energy consumption. The
regression models built with common log events show mixed performance.

CONCLUSIONS: Mobile application developers do not need to worry about
conservative logging (e.g., logs generated at rates of ≤ 1 message per second),
as they are not likely to impact energy consumption. Logging has a negligi-
ble effect on energy consumption for most of the mobile applications tested.
Although logs have been used effectively to diagnose and debug functional
problems, it is still an open problem on how to leverage software instrumen-
tation to debug energy problems. 1

1 Introduction

Execution logs are generated by output statements (e.g., System.out.println
or printf) that developers insert into their source code. Execution logs record
the run-time behaviour of the application ranging from scenario executions
(e.g., “Browsing scenario purchase for user Tom”) to error messages (e.g.,
“Database deadlock encountered”) and resource utilization (e.g., “20 out 150
worker threads idle”). Software developers, testers and operators leverage logs
extensively to monitor the health of their applications [70], to verify the
correctness of their tests [36] and to debug execution failures [72,74]. To cope
with these tasks, there are many open source and commercial log analysis
and monitoring frameworks available for large-scale server applications (e.g.,
Chukwa [1], Splunk [4], and logstash [2]).

Excessive logging could cause additional overhead inducing higher resource
utilization or worse run-time performance [23]. For example, Google has shown
that turning on the full logging would slow down their systems’ run-time by
16.7% [65]. Developers, testers, and system administrators are concerned about
the impact of logging on their applications [19]. This is also the case for mo-
bile application developers [37,33,34]. Compared with desktop applications,
one of the additional critical computing resources for mobile applications is

1 EMSE-D-16-00048R3 http://rdcu.be/v4DT
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battery power. Mobile application developers (short for app developers) want
to deploy energy efficient applications to end users while still maintaining the
ability to monitor and debug their applications using logs. However, the en-
ergy impact of logging on mobile applications is not clear to the developers.
When one app developer asked whether logging would drain the battery for
Android phones, on the Stack Overflow forum [59], he received three conflict-
ing responses: “yes”, “no”, and “it depends”. This lack of definitive response
is similar to the disagreement between practitioners on energy consumption
questions observed by Pinto et al. [53].

In this paper, we have studied the energy impact of logging on Android
applications using the GreenMiner [29]. The GreenMiner is an automated
test-bed for studying the energy consumption of mobile applications. It auto-
matically tests the mobile applications while physically measuring the energy
consumption of mobile devices (Android phones). The measurements are auto-
matically reported back to developers and researchers. Using the GreenMiner
the following three research questions are studied to assess the energy impact
of logging on mobile applications:

– RQ1: What is the difference in energy consumption for Android
applications with and without logging?
This research question investigates whether the energy consumption of an
Android application would be different when enabling and disabling log-
ging. Around 1000 versions from 24 real-world Android applications, in-
cluding Calculator, FeedEx, Firefox, and VLC, were studied.

– RQ2: What are the factors impacting the energy consumption of
logging on Android applications?
This research question aims to identify the important factors in logging
that impact software energy consumption. Controlled experiments were
conducted to investigate two factors of logging energy consumption: log
message rate and log message size. In addition, the relationship between
energy consumption and the number of disk flushes was analyzed.

– RQ3: Is there any relationship between the logging events and
the energy consumption of mobile applications?
This research question explores the relationship between log events and
software energy consumption to see if some log events are more correlated
with energy consumption than others. Data analyses, like correlation and
multiple linear regression, were carried out to study the relationship be-
tween events recorded in logs and mobile energy consumption.

The contributions of this paper are summarized as follows.

1. To the best of our knowledge, this is the first work that proposes a system-
atic approach to study the energy impact of logging on mobile applications.

2. The findings of this paper were based on an extensive set of measure-
ments/experiments (approximately 70 days of testing time), which includes
a wide variety of Android applications with logging enabled and disabled,
and a controlled experiment with varying logging rates and message sizes.
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Each experiment was repeated multiple times to avoid measurement bias
and errors.

3. We provide evidence for developers that they need not worry about impact-
ing energy consumption of their mobile applications if they conservatively
employ logging.

4. To encourage replication and further study on this important topic, we have
disclosed our dataset and source code for our analysis in our replication
package. We believe such data can be very useful for software engineering
researchers and app developers [3].

The rest of this paper is organized as follows: Section 2 provides some
background information on logging and the GreenMiner. Sections 3, 4, and 5
discuss the research questions RQ1, RQ2, and RQ3, respectively. Section 6
discusses the threats to validity. Section 7 explains the prior works in the area
of mobile energy analysis and execution logs. Section 8 concludes this paper.

2 Background

This section provides the background information on software logging. It is
broken down into three parts. First, we discuss the general approaches for
software instrumentation. Then, we explain how logging is realized in Android
applications. Finally, a brief description of our automated energy test-bed for
mobile applications, GreenMiner, is provided.

2.1 General Approaches for Software Instrumentation

Execution logs are generated by the instrumentation code that developers in-
sert into the source code. Execution logs are widely available for software sys-
tems to support remote issue resolution and to cope with legal compliance [5].
There are three types of instrumentation approaches [69]:

– Ad-hoc logging: Developers insert logging in an ad-hoc manner using out-
put methods such as print statements like System.err.println. Although
this is the easiest approach to instrument, unexpected side effects might
happen if one is not careful. For example, logs lines can be garbled if there
are multiple threads trying to output log lines to the same file using I/O
methods that are not thread-safe.

– Systematic logging: The general purpose instrumentation frameworks (e.g.,
Log4j [9]) address the limitations of the ad-hoc logging approach, as the
frameworks support thread-safe logging. In addition, these frameworks pro-
vide better control of the types of information outputted. For example,
the Log4J framework provides multiple verbosity levels: ERROR, WARN,
INFO, DEBUG, and VERBOSE. Each of these verbosity levels can be used
for different software development activities. For example, implementation
level details can be logged using DEBUG or VERBOSE level, whereas
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critical errors should be logged under the ERROR level. When deploying
a particular application, a verbosity level should be set. For example, if
the verbosity level is set to be DEBUG, all the logs instrumented with
DEBUG and higher (a.k.a., ERROR, WARN, INFO) are printed whereas
lower level logs (a.k.a., VERBOSE) are discarded.

– Specialized logging: There are also instrumentation frameworks available to
facilitate special purpose logging. For example, it is easier to instrument
the system using the ARM (Application Response Measurement) frame-
work [24] to gather performance information from the running application,
than to manually instrument the system.

2.2 Android Logging

Android handles application logs similar to how UNIX handles syslog logs.
Calls to the Android logging API [9] write logs to a circular buffer in memory.
This buffer can be ignored or dumped to disk. Periodic writing of logs can lead
to log rotation where old logs are renamed and kept until too many logs are
allocated. While running the Android applications, the circular buffer could
be filled causing it to periodically dump the logging data to the disk, these
dumps or writes are referred to as disk flushes. Different mobile phones can
have different buffer sizes (e.g., 256 KB or 512 KB). To collect and filter logs for
Android applications, there is a utility called logcat [10]. Similar to Log4j,
the Android API for logging [9] provides multiple verbosity levels. Table 1
shows a set of sample log lines from the Android Calculator application.
At the beginning of each log line, there is a letter (e.g., “I/” or “D/”). These
letters correspond to different verbosity levels. “I/” corresponds to the INFO
level logs and “D/” to the DEBUG level logs. The words after the verbosity
level show the components where the logs are generated. For example, the first
log line is generated by the ActivityManager component from the calculator
application. The second log line is generated by the dalvikvm component,
which is the Java Virtual Machine used by the Android operating system.

When released, ERROR, WARN, and INFO level logs are printed for An-
droid applications. Logging for Android applications can also be completely
disabled. The following are mechanisms to enable and disable logging for An-
droid applications:

– Logging Enabled: First, the log buffer is cleared with the command
logcat -c [10]. Then, the following command is invoked to redirect the
log output of a particular application to a log file (logcat.txt) on the SD
card.

logcat -d | grep -e $PID -e \
net.fred.feedex > /sdcard/logcat.txt

– Logging Disabled: The configuration shown below was added to the
build.prop file in the /system folder of the smartphones. The /dev/log

folder was removed, along with all its contents.
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Table 1 Sample log events from the Calculator application

# Log lines

1 I/ActivityManager( 387): START u0 flg=0x10000000
cmp=com.android2.calculator3/.Calculator from pid 21740

2 D/dalvikvm(21750): GC CONCURRENT freed 177K, 3% free 8922K/9128K,
paused 2ms+3ms, total 18ms

3 D/libEGL (21750): loaded /vendor/lib/egl/libEGL-POWERVR-SGX540-120.so
4 D/OpenGLRenderer(21750): Enabling debug mode 0
5 I/ActivityManager( 387): Displayed com.android2.calculator3/.Calculator:

+643ms
6 I/WindowState( 387): WIN DEATH: Window(41e6d7c8 u0

com.android2.calculator3/.Calculator)
7 I/ActivityManager( 387): Force stopping package com.android2.calculator3 ap-

pid=10062 user=0

logcat.live = disable

2.3 GreenMiner

To measure the energy consumption of the selected Android applications, we
used the GreenMiner framework [29]. The GreenMiner has been widely used
and accepted in the software energy research community. There are many
published works on energy research that used the GreenMiner as their energy
measurement tool [27,14,16,29,56,7,6].

The GreenMiner is a hardware-based energy measurement system that op-
erates 4 Android Galaxy Nexus phones in parallel. Table 2 shows the detailed
hardware and software specifications for these phones. These phones are used
as the systems under test and are controlled by 4 different Raspberry Pi model
B computers. Each Pi acts as a test manager for one single phone. It deploys
and runs tests, collects energy measurements, and uploads the results to a
central server. When a batch of tests are submitted to the GreenMiner, one of
the four phones are selected randomly to execute a test. In this way four tests
can be executed in parallel, enabling the expedient evaluation of experiments,
reducing data collection time significantly. It is important to note that after
completing a test for an app, the GreenMiner uninstalls the app and deletes
app related data. This is to make sure that each test run is independent and
is not affected by any of the previous test runs.

A constant voltage of 4.1 V, from a YiHua YH-305D power supply, was first
passed through an Adafruit INA219 breakout board, and then to an attached
phone. The pins, where the phone’s battery is usually attached, were wired
to receive energy from the power supply. This voltage and amperage were
reported to an Arduino Uno by the INA219. The INA219 [?] relies on a shunt
resistor to measure changes in amperage. The Arduino Uno then delivers the
readings to a Pi through a serial USB connection. Figure 1 depicts the innards
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Table 2 Specs of the Samsung Galaxy Nexus phones used for the experiments.

Component Specs

OS Ice Cream Sandwich, 4.4.2
CPU Dual-core 1.2 GHz Cortex-A9
GPU PowerVR SGX540

Memory 16 GB, 1 GB RAM
Display AMOLED, 4.65 inches
WLAN Wi-Fi 802.11 a/b/g/n

of the GreenMiner (one out of the four identical settings). For a more detailed
GreenMiner methodology and architecture, please refer to [29,54].

As energy measurements can vary slightly between different runs for the
same tests, it has been a common practice in software energy research to run
each test at least 10 times, to achieve acceptable statistical power, and to
report average measurements [16,14,7,27].

Fig. 1 GreenMiner consists of an Arduino, a breadboard with INA219 chip, a Raspberry
Pi, a USB hub, and a Galaxy Nexus phone connected to a Power Supply. Photo used with
permission from the Green Miner paper [29].

We measure energy consumption by the integration of power (watts) over
time. This energy measurement is called joules (J). Joules are typically stored
within a mobile device battery when it charges, and are expended for com-
putation, communication, and peripherals while the device is in operation. 1
joule is 1 watt-second. The phones we use typically consume 0.7 J per second
while idle with the screen on, and 1.5 J to 3 J per second when very busy with
the screen on. Thus the difference of 10 J between 2 test runs could be due to
14 seconds of runtime or a few seconds of high CPU workload difference. All
the measurements of energy consumption in this paper are in joules.



8 Shaiful Chowdhury et al.

3 RQ1: What is the difference in energy consumption for Android
applications with and without logging?

3.1 Motivation

On one hand, execution logs can bring insights about the run-time behaviour
of mobile applications. On the other hand, should app developers be con-
cerned about the potential energy overhead of logging on their applications?
The energy impact of execution logs on 24 real-world Android applications is
examined in this section.

3.2 Experiments

In order to draw a reliable conclusion on how logging impacts energy consump-
tion of existing apps, we experimented with 24 Android applications from
different domains (e.g., Games, Entertainment, Communication, News, and
Utility). To capture the general behaviour of each studied application, multi-
ple versions for each application are studied. One version in this paper refers
to one binary compiled from one distinct commit from a source code repos-
itory, or one compiled binary released by the project. For example, we have
studied 46 code commit versions (a.k.a., 46 versions) for the VLC app. The
source code for the multiple versions of these 24 applications are part of the
GreenOracle dataset collected by Chowdhury et al. [16].

Software changes over time. The logging changes of some versions of an
app may consume much more energy than the other versions. Hence, it is
worthwhile to study a number of versions for the same application. Another
important aspect of studying the energy impact of logging is that writing test
cases manually is difficult. But if we use multiple versions of the same app (ver-
sions with identical user interface) then writing a single test script is enough
for all the versions. This can enlarge the size of our measurements and thus al-
lows more reliable analysis. Out of the 24 Android applications in GreenOracle

dataset, we had to exclude Yelp from our analysis, as this particular applica-
tion disables logging internally. We included one more application (FeedEx
with 35 versions) in our dataset as a compensation. Table 3 shows the details
of the studied Android applications.

Figure 2 illustrates the process for this study. For each version of the se-
lected applications, we measured the energy consumption with logging enabled
and disabled with one realistic test case per app. A test scenario for an ap-
plication, which is automated by a test script written in Android adb shell,
simulates how an average user would use the application. For example, the
FeedEx first adds RSS feeds from Google News. Then it emulates a normal
user opening and reading the first two RSS feeds. The Calculator applica-
tion test converts miles to kilo-meters, calculates tax amounts, and solves an
equation using the quadratic formula.
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Table 3 The applications under test, selected from the GreenOracle [16] dataset.

Categories App App # of Versions and Repo

Names Descriptions Committed time

Games

2048 Puzzle game 44 GitHub

(03/2014 - 08/2015)

24game Arithmetic game 1 F-Droid

(01/2015 - 01/2015)

Agram Anagrams 3 F-Droid

(03/2015 - 10/2015)

Blockinger Tetris game 74 GitHub

(04/2013 - 08/2013)

Bomber Bombing game 79 GitHub

(05/2012 - 11/2012)

Vector Pinball Pinball game 54 GitHub

(06/2011 - 03/2015)

News

FeedEx Reading news feeds 35 GitHub

(05/2013 - 04/2014)

Exodus Browse 8chan 3 GitHub

(01/2010 - 04/2015)

Eye in the Sky Weather app 1 Google Play

(09/2015 - 09/2015)

Entertainment

Acrylic Paint Finger painting 40 GitHub

(03/2012 - 09/2015)

Memopad Free-hand Drawing 52 GitHub

(10/2011 - 02/2012)

Paint Electric Sheep Drawing app 1 Google Play

(09/2015 - 09/2015)

VLC Video player 46 GitHub

(04/2014 - 06/2014)

References

AndQuote Reading quotes 21 GitHub

(07/2012 - 06/2013)

Wikimedia Wikipedia mobile 58 GitHub

(08/2015 - 09/2015)

Communication

ChromeShell Web Browser 50 APK repository

(03/2015 - 03/2015)

Face Slim Connect to Facebook 1 F-Droid

(11/2015 - 11/2015)

Firefox Web browser 156 APK repository

(08/2011 - 08/2013)

Business

Budget Manage income/expenses 59 GitHub

(08/2013 - 08/2014)

Calculator Calculations 97 GitHub

(01/2013 - 05/2013)

GnuCash Money Management 16 GitHub

(05/2014 - 08/2015)

Temaki To do list 66 GitHub

(09/2013 - 07/2014)

System Utilities

DalvikExplorer System information 13 code.google

(06/2012 - 01/2014)

Sensor Readout Read sensor data 37 GitHub

(03/2012 - 03/2014)
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Fig. 2 Process to Investigate the Energy Impact of Logging (RQ1)

Table 4 shows the list of test scenarios for all the applications. The test sce-
narios and the test duration are the same across different versions of the same
application. For example, a single FeedEx test (with or without logging),
lasts for 100 seconds. Table 4 also shows the average number of log lines per
test run, the average test duration in seconds, the average logging rate (events
per second), and the joules consumed with logcat enabled (logging enabled)
and logcat disabled (logging disabled).

For both logging conditions (logging enabled and disabled), the experi-
ments were repeated 10 times (for each version) to address measurement error
and random noise [22,38]. For an approximate average test duration of five
minutes (including uploading data to a server after each test), it took around
70 days to run and collect all the measurements from GreenMiner. All of these
measurements were then used to compare the energy consumption between
logging enabled and disabled.

3.3 Analysis

For the logging enabled tests, the log files have on average 142 log lines, ranging
from 12 messages to 1080 messages per test run. The average test duration
can last from 52 seconds (AndQuote) to 210 seconds (FireFox). We will
perform a two-step analysis on the energy measurement data. First, we will
perform a hypothesis testing to examine whether the energy consumption with
and without logging for each version of the app is different. Then we will study
the magnitude of the differences (a.k.a., effect sizes) to help quantify the size
of the differences.

Comparing the Differences Between Two Groups: Some of the
measured energy distributions are not always normally distributed, according
to the Shapiro-Wilk normality test. Hence, we will use non-parametric tests
throughout this paper. Different from parametric tests, non-parametric tests
do not have any underlying assumptions of the distribution of the data be-
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Table 4 Test scenarios and test results for the selected Android applications.

App Test Avg # of Avg Test Avg Rate Avg Energy(J) with
Names Scenarios log lines Duration of Logging logcat logcat

Enabled Disabled

2048 Makes some 15.737 60.008 0.262 58.369 59.057
random moves

24game Randomly tries 110.000 80.014 1.375 85.816 84.407
different numbers

Acrylic Paint Draws a hexagon 24.621 95.011 0.259 82.838 83.998
with legs

Agram Generates anagrams 46.447 77.006 0.603 75.299 74.985
(single and multiple)

AndQuote Reads a series 24.265 52.003 0.467 44.671 44.473
of famous quotes

Blockinger Repositions/rotates 58.715 150.002 0.391 197.315 197.984
blocks randomly

Bomber Drops bombs 194.091 130.008 1.493 170.483 170.826
at fixed intervals

Budget Inserts and calculates 101.684 125.010 0.813 113.017 113.007
expenses

Calculator Converts units, calculates 24.413 125.008 0.195 107.781 107.062
taxes, and solves equations

ChromeShell Opens a webpage 153.224 100.010 1.532 106.621 107.049
and scrolls

DalvikExplorer Reads the system’s 20.799 80.004 0.260 65.750 65.591
information

Exodus Reads threads from 239.297 84.012 2.848 96.981 96.001
different topics

Eye in the Sky Looks for the current 182.583 130.008 1.404 116.768 119.310
temperature in Edmonton

Face Slim Connects to Facebook 24.500 60.009 0.408 65.935 66.571
homepage and access

the help page

FeedEx Adds and reads feeds 94.451 100.000 0.945 95.430 92.956
from Google News

Firefox Opens a webpage 75.325 210.004 0.359 213.679 211.544
and scrolls

GnuCash Creates an account 90.810 75.012 1.211 76.150 76.713
and saves transactions

Memopad Draws a hexagon 17.966 95.011 0.189 79.649 79.908
with legs

Paint Electric Draws a hexagon 30.000 60.007 0.500 56.296 57.601
Sheep with legs

Sensor Readout Shows graphs for 166.220 182.998 0.908 176.278 177.226
different sensor reads

Temaki Makes a TODO 12.244 75.010 0.163 72.373 72.189
list, updates and
deletes the list

Vector Pinball Throws the ball 17.340 120.009 0.144 116.359 116.700
several times and
tires to hit the
ball randomly

VLC Plays a fireworks 1, 079.676 110.010 9.814 116.464 117.460
.3gp video

Wikimedia Searches for the 169.783 120.011 1.415 160.015 160.171
Bangladesh page

and scrolls
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ing analyzed. For each version of the mobile applications, the Wilcoxon Rank
Sum test is performed to check whether the differences in energy consumption
between the cases of logging enabled and disabled are statistically significant.
Table 5 shows the results of these tests.

Table 5 Wilcoxon Rank Sum Tests (α = 0.05) comparing energy consumption between
logging enabled versus disabled per version. p ≤ 0.05 means that there is a statistically sig-
nificant difference in the energy consumption between logging enabled and disabled, whereas
p > 0.05 means otherwise. Cliff’s δ magnitude across applications versions is from [30].

App % versions Mean Effect Sizes
Names with p ≤ 0.05 Cliff’s δ % Negligible % Small % Medium % Large

2048 0.000 −0.165 40.909 31.818 20.455 6.818
24game 0.000 −0.077 100.000 0.000 0.000 0.000

Acrylic Paint 7.500 −0.439 5.000 17.500 35.000 42.500
Agram 0.000 0.038 33.333 66.667 0.000 0.000

AndQuote 0.000 0.127 47.619 23.810 19.048 9.524
Blockinger 0.000 −0.085 41.892 37.838 14.865 5.405
Bomber 0.000 −0.120 34.177 46.835 13.924 5.063
Budget 0.000 −0.080 40.678 44.068 8.475 6.780

Calculator 3.093 0.352 21.649 22.680 22.680 32.990
ChromeShell 0.000 −0.159 32.000 42.000 22.000 4.000

DalvikExplorer 0.000 −0.073 53.846 38.462 0.000 7.692
Exodus 0.000 0.340 33.333 0.000 33.333 33.333

Eye in the Sky 0.000 −0.375 0.000 0.000 100.000 0.000
Face Slim 0.000 −0.319 0.000 100.000 0.000 0.000
FeedEx 54.286 0.612 8.571 5.714 14.286 71.429
Firefox 0.000 0.152 34.615 37.179 19.872 8.333
GnuCash 0.000 −0.147 37.500 18.750 37.500 6.250
Memopad 0.000 −0.187 34.615 36.538 17.308 11.538

Paint Electric Sheep 0.000 −0.597 0.000 0.000 0.000 100.000
Sensor Readout 0.000 −0.085 43.243 37.838 16.216 2.703

Temaki 0.000 −0.028 43.939 39.394 12.121 4.545
Vector Pinball 0.000 −0.047 40.741 35.185 20.370 3.704

VLC 4.348 −0.294 15.217 45.652 13.043 26.087
Wikimedia 0.000 −0.123 43.103 36.207 12.069 8.621

Overall (paired) p = 0.3748 0.0139 (Negligible)

Given α = 0.05, p ≤ 0.05 means that there is a statistical difference in
the energy consumption between the logging enabled and logging disabled
tests, whereas p > 0.05 means otherwise. We also correct for multiple com-
parisons/hypotheses using the Benjamini and Hochberg method [12] which
attempts to control the false discovery rate. Most applications (e.g., 2048 and
AndQuote) do not have statistical differences in terms of energy consumption
in any of their versions between the logging enabled and disabled tests. How-
ever, for some other applications (e.g., FeedEx and Acrylic Paint), many
of their versions exhibit statistical differences between the logging enabled
and disabled tests. Figure 3 depicts the p-values per application per version
comparing logging enabled (logcat enabled) and logging disabled tests. Only
4 out of 24 applications exhibit cases where their energy consumption in the
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logging enabled and disabled tests are statistically significantly different after
correction for multiple hypotheses.
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Fig. 3 Wilcoxon Rank Sum p-values per application of energy consumed with logging and
without logging. p-values less than 0.05 indicate that logging enabled and logging disabled
consumed different amounts of energy. p-values were corrected for multiple hypotheses using
Benjamini and Hochberg correction [12]

Effect Sizes: Although the Wilcoxon rank sum test can examine whether
there is a statistical difference in terms of energy consumption between the
logging enabled and disabled tests, it cannot quantify the magnitude of the
differences. Hence, Cliff’s δ (Cliff’s delta) is used to calculate the differences
of energy consumption for logging enabled and disabled tests. Cliff’s δ is a
non-parametric effect size measure that quantifies the proportional difference
(or dominance) between two sets of data [55]. Cliff’s δ has four categories: neg-
ligible effect, small effect, medium effect, and large effect. Effect sizes, which
can be applied regardless of significance of a T-test or a Wilcoxon rank sum
test, is used to characterized the observed differences of the effect in the mea-
surements [66]. Reporting effect size is recommended in cases where there is
not enough statistical power [46]. For instance given the number of repeated
tests and given the number of hypotheses—how many times we repeated a
statistical test—the critical value will be low. This means in order to be con-
servative enough to reduce false positive rates the p-value correction will make
the multiple Wilcoxon rank sum tests quite conservative. This effectively turns
the Wilcoxon rank sum test into a measure of sample size, but the effect still
remains. Thus we report effect sizes to give the reader an idea of the differ-
ences between logging and not logging within the data, regardless of statistical
significance.

Table 5 tabulates the effect size values, Cliff’s δ, for different versions of the
Android applications. For example, in Table 5, the values of Cliff’s δ show that
21% of the versions of the Calculator application have negligible effect, 23%
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of versions with small effect, another 23% versions with medium effect, and the
remaining 33% of versions with large effect. In addition to the Calculator
application, there are five other applications that have more than half of their
versions exhibit medium to large effect sizes.

Thus based on these observations, we want to statistically verify the ef-
fect of logging on applications. Between applications, aggregated by averaging
joules across versions, we find that with the paired Wilcoxon signed rank test
there is no statistically significant difference between enabling and disabling
logcat across these applications (p = 0.3748 and p > α). The effect size, over all
applications, according to Cliff’s δ is negligible (0.0139). The paired Wilcoxon
signed rank test is used because the samples are related and paired (e.g., mean
joules of Firefox with logging, and mean joules of Firefox without logging).

The results show that the differences in energy consumption are not statis-
tically significant for most versions of the studied 24 applications. Furthermore,
within the same applications we find that the effect of enabling or disabling
logging is typically statistically insignificant and of negligible to small mag-
nitude. However, 79% (19/24) of the studied applications have at least one
version with medium to large effect sizes in terms of the differences of energy
consumption when enabling and disabling logs.

In order to have more insight into the impact of logging on energy consump-
tion, we select FeedEx, an application in our dataset, which shows not only
statistically different energy measurements between logging enabled and dis-
abled tests (in 54% versions), but also have 71% versions with large effect size.
For instance, there is a big difference (≈ 10 joules) in terms of energy consump-
tion between logging enabled and disabled tests for the version 1.6.0. Com-
pared to the previous versions, there were 178 more Dalvikvm WAIT FOR-

CONCURRENT GC log lines and 224 more Dalvikvm GC CONCURRENT

log lines. These logs are related to the memory management of the applica-
tions. This version of the FeedEx app, seemed to suffer from memory bloat
issues and produces a larger log file than its predecessor.

Figure 4 shows the energy consumption of FeedEx over time, for both
logging enabled and disabled tests. It is clear that the later versions are more
energy inefficient than their predecessors. Figure 5 shows the energy consump-
tion for the FeedEx versions against the number of log lines. With few ex-
ceptions, we observe a monotonous increase in energy consumption with the
increase in logging. This suggests that with more information in log files, one
could investigate what types of log events can impact the energy consump-
tion, and thus motivated us for RQ3. However, the energy differences between
logging and no logging do not show any consistent pattern with the increase
in log messages. With randomly selected real-world applications, there can be
many factors that can significantly impact the energy consumption [16,51,68]
of Android applications. Such uncontrolled tests can indicate if logging mat-
ters or not, but cannot offer an accurate estimation of the impact of logging
on energy consumption.

These results indicate the need for a more controlled experiment—to show
how much logging can be harmful in terms of energy consumption. We did
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Fig. 4 FeedEx Energy consumption over time. Versions 32 to 35 exhibit very different
energy profiles compared to the previous versions.
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Fig. 5 Energy consumption against the number of log lines across different FeedEx versions.
The graph depicts 2 measurements and the lines connects between adjacent versions. The
line depicts how the FeedEx versions move through the space of log length and energy
consumption. Essentially consecutive FeedEx versions use more and more energy.

not have control over the development of these applications and their use of
logging. Furthermore, high logging rates (a.k.a., consistent logging rates faster
than 20 msg/sec) were not observed from these applications and tests. Hence,
in the next RQ (Section 4), we will study the factors impacting the energy
consumption of logging on Android applications using controlled experiments
and with various logging rates.
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3.4 Summary

Findings: The energy consumption between logging enabled and disabled
tests are not statistically significant for most versions of the studied mobile
applications. However, approximately 79% of the studied applications have
at least one versions with effect sizes larger than or equal to medium.
Internal factors such as memory management issues are the causes behind
the energy increases correlated with logging.
Implications: Logging usually does not have a noticeable impact on the
energy consumption of Android applications, although in some cases it
can. Developers should be careful when adding additional instrumenta-
tion code, yet still leveraging this valuable debugging tool. Characterizing
the best practices on making energy-efficient logging decisions in mobile
applications is still an open research problem.

4 RQ2: What are the factors impacting the energy consumption of
logging on Android applications?

4.1 Motivation

Currently, there are few guidelines regarding logging on mobile devices and
logging’s energy impact for mobile developers to follow. It is not clear to
mobile developers how much they can log and how often. This section seeks
to provide some insights into this aspect of logging and energy consumption.

4.2 Experiments

There are three orthogonal factors that can potentially impact the energy
consumption of logging: (1) the rate of logging, (2) the size of log messages,
and (3) the number of disk flushes. The rate of logging and the size of log
messages can be controlled by the individual applications, but not the number
of disk flushes. Depending on the volume of the logs and the buffer size, the
number of disk flushes can vary. The volume of the logs (a.k.a., the size of the
log file) depends both on the rate of logging and the size of log messages. Bigger
log messages and more frequent logging lead to higher volumes of logs. The
buffer size varies depending on the mobile phones. Our test-bed uses Android
phones with 256 KB circular buffer sizes. The disk flush happens when the
buffer gets filled up.

It is not easy to investigate the energy impacting logging factors with real-
world applications. First, isolating the pure energy costs for logging is difficult;
these applications interact with other components that also consume energy
(e.g., radio and screen). Second, unstable logging rates and log size with real-
world applications hinder controlled experiments.
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Table 6 Controlled experiments with varying logging rates and message sizes.

Logging Rate Message Size
Rate (msg/sec) Rationale Size (bytes) Rationale

0.01 infrequent logging 64 a single line of text
0.10 browsing UI level logging 512 a medium sized line of text
1.00 UI event level logging 1024 a URL sized line of text

10.00 network traffic level logging 1536 maximum ethernet data frame size
100.00 printf debugging logging 2048 a large log message

1000.00 very frequent logging 8192 an exceptionally large log message

Hence, we have built a test Android application to assess the energy-
impacting factors for logging. Our test application, which consists of only the
MainActivity and a JUnit test case, performs only one task: generating logs
at different rates and with different message sizes. For each test, the operations
are the same: the MainActivity is launched. Then the application starts to
generate log messages of a specific size at a specific rate for 120 seconds and
stops. The duration of 120 seconds is chosen to help stabilize measurements
against unexpected CPU frequency switches. By the first 60 seconds of the
test, the CPU frequency should be appropriately set for the logging workload.
Table 6 lists the set of different message rates and message sizes that were run.
For each of the specified message rates and sizes, the rationale is also included.
For example, app developers might be interested in printing and storing stack
traces or packet dumps in a log file. A typical stack trace is around 8192 bytes
(8 KB) and a typical Ethernet packet is 1536 bytes (1.5 KB). If one logged UI
level events, the UI events are usually generated at a rate of 1 to 5 events per
second.

Much like RQ1, each experiment was repeated multiple times (40 times) to
avoid measurement errors and random noise [22,38]. It took 70 hours in total
to run these tests. The testing results are gathered for further analysis.

4.3 Analysis

The average energy consumption of each test is calculated. The data is grouped
according to the rate of the logging (a.k.a, msg/sec). The average energy con-
sumed for the idle tests (a.k.a., generating zero msg/sec) is used as the baseline
in order to track the percentage increase in terms of energy consumption for
the log generating tests. Table 7 shows the results. For example, there is a
0.2% energy increase under 0.01 msg/sec with 64 bytes as the message size.

In fact, for 10 msg/sec there is a very small energy increase (≤ 2.46%),
with the largest message size. However, the impact is significant with larger
message rates. As the logging rate increases to 100 msg/sec, the increase in
the energy consumption ranges from 8.26% to 14.20% for different message
sizes. For 1000 msg/sec, the increase of the energy consumption can go up
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Table 7 Percentage growth rates of energy consumption (joules) for the log generating tests.
All the calculations below used the energy consumption of the idle tests as the baseline.

msg/sec 64 bytes 512 bytes 1 KB 1.5 KB 2 KB 8 KB

0.01 0.20% 0.21% 0.18% 0.51% 0.28% 0.37%
0.10 0.27% 0.31% 0.38% 0.73% 0.30% 0.61%
1.00 0.65% 0.64% 0.70% 0.99% 0.64% 0.90%

10.00 1.38% 1.59% 1.71% 2.16% 1.91% 2.46%
100.00 8.26% 8.48% 9.23% 10.33% 10.55% 14.20%

1000.00 27.88% 30.66% 36.50% 45.14% 48.26% 75.47%

to 75.47%. Another interesting observation is that the energy increase for 10
msg/sec and 8 KB message size is much smaller than 100 msg/sec and 64 byte
message size (2.46% vs. 8.26%), even though the unit volume of the generated
logs are much higher (80 KB/sec vs. 6.25 KB/sec). Evidently, logging rate is

a more dominant factor than message size for energy consumption

For further verification, we apply factor analysis to verify the importance
of message size and log rate. Kruskal-Wallis (Kruskal-Wallis X2) tests are per-
formed to check whether the factors of logging rates and the message sizes have
statistically significant impacts on the energy consumption. Kruskal-Wallis test
is a non-parametric statistical test for checking whether the measurements of
3 or more groups, under different kinds of treatments, come from the same dis-
tribution. We test 2 factors independently: logging rates and logging message
sizes. We correct for multiple/hypotheses with the Benjamini and Hochberg
method [12]. Logging rate was a significant factor (p < 2.2e − 16) for energy
consumption. Although the message size is also statistically significant factor,
the p-value (p < 0.0471) is very close to our α (α = 0.05). In fact, when
we test with the pairwise Wilcoxon rank sum test between the message sizes,
corrected using Benjamini and Hochberg, we find no statistically significant
differences in energy consumption between distributions of different message
sizes (p > α). Yet a pairwise Wilcoxon rank rum test shows there are statis-
tically significant differences (p ≤ α) for all log rate comparisons except for 2
comparisons of log rates of 0.01 to 0.1 and log rates of 0.1 to 1.0. The similar
distributions of energy consumption at low frequency log rates also helps to
explain the mild inconsistency in trend observed in energy consumption with
the message sizes.

In order to better understand the relationship between the message size
and the energy consumption, we calculate the Pearson correlation coefficient
between them—an indicator of a linear relationship between two random vari-
ables. The correlation coefficient is low (only 0.17 with p ≈ 0) when the mes-
sage rate is not fixed. However, with fixed and high message rate (e.g., 100
msg/sec), the correlation is high (0.72 with p ≈ 0). This is also consistent when
the message rate is fixed at 1000 msg/sec. These observations corroborate the
results in RQ1 whereby most differences were not statistically significant as
the message sizes and logging rates in RQ1 were often low.
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We observe that with the increase in logging rate energy consumption
also increases; but the same does not apply for message size. However, in
case of heavy logging both the rate and the size become significant factors
towards energy consumption. This also explains the observed inconsistencies
in Table 7. One would expect that with the increase in message size, the
energy consumption would also increase. However, no such trend is observed
from Table 7 when the message rate is low. For instance, the energy increase
in joules for 10 msg/sec with 1.5 KB message size is 2.16%, which is higher
than 2 KB message size with the same rate (1.91% increase). This led us
to evaluate if the differences in energy consumption with this two settings
are really different, because Table 7 only shows the increase in percentage
considering the average of the 40 measurements for each scenario.

To investigate the difference across both factors at once, we run a hand-
ful of tests to investigate trends depicted in Table 7. We apply the Wilcoxon
rank sum test (a non-parametric test), and found that the energy consump-
tion between the above mentioned two settings (10 msg/sec with 1.5 KB log
message size versus 10 msg/sec with 2 KB log message size) are not statisti-
cally different (p-value > 0.05). The difference is not statistically significant
either (p-value > 0.05) for 0.01 msg/sec with 1.5 KB log message size versus
0.01 msg/sec with 2 KB log message size. However, when the message rate
is high, the difference in energy consumption with different message sizes are
significant. For example, the energy consumption differences are statistically
significant (p-value < 0.05) for 1000 msg/sec with 1.5 KB log message size vs.
1000 msg/sec with 2 KB log message size. This is another confirmation that
message size only has a noticeable effect with high message rates.

We also build a linear regression model to estimate the energy consump-
tion using the message sizes, the logging rates, and the number of disk flushes.
This further clarifies the impact of these factors on energy consumption, as we
executed the same application that does nothing than writing log messages.
The logging rates and the message sizes are obtained from each test config-
uration (Table 7). The number of disk flushes can be calculated by dividing
the estimated file size with the buffer size. For example, after 120 seconds
of testing, the size of the log file from the 1000 msg/sec and 1536 bytes test
would be 180,000 KB. Hence, with 256 KB buffer size, the estimated number
of disk flushes would be 703. The resulting regression model is shown below
as Equation 1 and has an adjusted R-squared value of 0.87.

joules =0.03370×message rate +

0.00006×message size +

0.01328× number of disk flushes +

112.10958

(1)

This model also confirms that message rate, and subsequently the num-
ber of disk flushes are more significant factors for energy consumption than
message size. The rationale is that, as we have already shown, with very low



20 Shaiful Chowdhury et al.

message rate message size does not impact the number of disk flushes signifi-
cantly.

In summary, our results suggest that mobile application developers do not
need to prematurely optimize and trade-off energy consumption for logging.
Infrequent logging has limited impact on the overall energy consumption. How-
ever, if there is a need to generate large amount of logging content, to conserve
energy, it is preferable to log infrequently with larger message sizes rather than
logging frequently with smaller message sizes. This is similar to the earlier
findings [42,51,32] that bundling smaller packets together reduces significant
energy consumption in data communication.

4.4 Summary

Findings: Small amounts of logging (≤ 10 log messages per second) have
little or no energy impact on the mobile applications. In fact, message size
does not have any significant impact on energy when the logging rate is
very low. On the other hand, both the message rate and size are significant
factors towards draining energy under heavy logging. Under heavy logging,
logging large amounts of data infrequently consumes much less energy than
frequently logging smaller amounts of data.
Implications: To conserve energy, developers should strategically instru-
ment their code. The preferred logging points can contain more contex-
tual information but are less frequently executed (e.g., avoid logging within
loops or commonly called library functions). When heavy logging is needed,
developers should group small log messages and write them together to
conserve energy.

5 RQ3: Is there any relationship between the logging events and
the energy consumption of mobile applications?

5.1 Motivation

Are the causes of energy consumption, events correlated with energy con-
sumption, apparent in the log? Measuring energy consumption directly often
requires both hardware instrumentation and software instrumentation. It is
a time-consuming process as hardware test-beds instrumented with a power
monitor must run tests multiple times to get a statistically reliable estimate
of power use [28,56]. Moreover, such a test-bed might be expensive for many
app developers.

The execution logs are debug statements that developers inserted into their
code. These instrumentation locations are strategically selected to debug and
monitor the functionalities of the applications. The key steps (e.g., displaying
the hand-drawn objects or performing email reconciliations) during the exe-
cutions are often logged and can provide us hints on the energy consumption
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patterns of the applications. It would be cheaper and faster for developers
to diagnose their mobile application energy regression problems by analyzing
their log files.

This RQ investigates the feasibility in terms of using the readily available
execution logs to understand the energy consumption of mobile applications.
In particular, we want to check if there is any relationship between the logging
events and the energy consumption of the mobile applications. The question is
what events, that get recorded in the log, induce energy consumption. Thus,
we are not seeking to truly estimate energy but we seek to investigate the
relationship between common events that get recorded in logs, and energy
consumption.

5.2 Experiments

We do not perform additional performance testing in this RQ. Rather, we
reuse the log files and the energy measurements from RQ1. In particular, we
reuse the measurements of the log-enabled tests of the 24 Android applications,
including all of the versions used.

5.3 Analysis

There are three steps involved in this analysis. First, the free-form log messages
are abstracted into log events. Second, correlations are calculated between in-
dividual log events and energy consumption. Third, we look into the combina-
tion of variables using multiple regression—by exhaustive model building we
hope to better understand what log events work together to consume energy.

Step 1 - Log Abstraction

Execution logs typically do not follow a strict format. Each log line contains
a mixture of static and dynamic information. The static information is the
descriptions of the execution events, whereas the dynamic values indicate the
corresponding context of these events. For example, the last log line in Table 1
contains static information like “I/ActivityManager”, “Force stopping package
com.android2.calculator3”, “appid” and “user”. The numbers “387”, “10062”
and “0” are likely generated during run-time.

Such free-formed log messages need to be abstracted into events so that
they can be used in automated statistical or data mining analysis. We apply
the log abstraction technique proposed by Jiang et al. [35] to automatically
map log messages to log events.

Since the same test scenario was executed for the same version of an ap-
plication, the generated log events should be similar or even identical. Hence,
test runs on the same version are combined into a single log file, by averaging
the count of each log event obtained during the repeated test.
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Table 8 summarizes the number of unique log events and log length per
application across all of the different test runs of their multiple versions.

Table 8 Summary of unique log events per application across all the versions.

App Total # of Unique Events Standard
Names Versions total minimum median average maximum Deviations

2048 44 15 12 13.000 13.091 14 0.603
24game 1 53 53 53.000 53.000 53

Acrylic Paint 40 19 11 14.000 13.800 17 1.324
Agram 3 15 15 15.000 15.000 15 0.000

AndQuote 21 11 11 11.000 11.000 11 0.000
Blockinger 74 168 23 27.000 27.392 35 1.560
Bomber 79 24 17 20.000 20.152 22 1.292
Budget 59 74 13 37.000 31.525 41 9.482

Calculator 97 53 9 11.000 14.526 23 5.354
ChromeShell 50 105 92 101.000 100.680 104 2.860

DalvikExplorer 13 17 16 16.000 16.308 17 0.480
Exodus 3 88 52 54.000 54.000 56 2.000

Eye in the Sky 1 58 58 58.000 58.000 58
Face Slim 1 18 18 18.000 18.000 18
FeedEx 35 39 14 17.000 17.486 28 4.231
Firefox 156 138 29 44.000 52.340 80 22.350
GnuCash 16 399 39 54.500 54.688 62 5.449
Memopad 52 13 12 13.000 12.712 13 0.457

Paint Electric Sheep 1 21 21 21.000 21.000 21
Sensor Readout 37 12 11 11.000 11.189 12 0.397

Temaki 66 15 8 9.000 9.485 12 1.231
Vector Pinball 54 56 14 16.000 16.463 21 1.342

VLC 46 492 385 390.000 390.022 396 2.679
Wikimedia 58 214 71 96.000 94.000 116 8.840

Average 42 88 42 46.646 46.911 52 3.597

The number of unique log events for each application ranged from 11 unique
log events forAndQuote to 492 unique log events forVLC. The mean number
of unique log events per application is 88, while the median was 46.646.

Now we look into how the prevalence of unique log events varies within log
files from different runs and versions. The total number of unique log events
can change across different versions of an application. The average standard
deviation of total unique log events per application across versions was 3.597
events with a minimum standard deviation of total log events was 0.000 unique
log events (no change) for AndQuote and Agram and a maximum standard
deviation of total unique log events 22.350 for Firefox. The statistics about
each application are described in Table 8.

Step 2 - Correlation between Log Events and Energy Consumption

Table 9 depicts the Spearman correlation coefficients between each log event
and the energy measurements for all the 24 applications.
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Table 9 Spearman’s ρ correlation coefficient distribution between log event types and joules
per application. Each column shows how many log events correlated with the correlation
scale proposed by Hopkins et al. [31]

App # of % Trivial % Small % Mod- % Large % Very % Near
Names Unique Log erate Large Perfect

Events [0.0, 0.1) [0.1, 0.3) [0.3, 0.5) [0.5, 0.7) [0.7, 0.9) [0.9, 1.0]

2048 15 80.000 13.333 6.667 0.000 0.000 0.000
24game 53 100.000 0.000 0.000 0.000 0.000 0.000

Acrylic Paint 19 36.842 15.789 26.316 21.053 0.000 0.000
Agram 15 80.000 0.000 0.000 6.667 0.000 13.333

AndQuote 11 72.727 27.273 0.000 0.000 0.000 0.000
Blockinger 168 62.500 36.905 0.595 0.000 0.000 0.000
Bomber 24 33.333 25.000 41.667 0.000 0.000 0.000
Budget 74 39.189 22.973 13.514 5.405 18.919 0.000

Calculator 53 18.868 47.170 24.528 9.434 0.000 0.000
ChromeShell 105 22.857 70.476 6.667 0.000 0.000 0.000

DalvikExplorer 17 94.118 0.000 0.000 5.882 0.000 0.000
Exodus 88 21.591 0.000 0.000 21.591 39.773 17.045

Eye in the Sky 58 100.000 0.000 0.000 0.000 0.000 0.000
Face Slim 18 100.000 0.000 0.000 0.000 0.000 0.000
FeedEx 39 38.462 17.949 0.000 35.897 7.692 0.000
Firefox 138 20.290 78.261 1.449 0.000 0.000 0.000
GnuCash 399 21.554 30.576 39.850 7.769 0.251 0.000
Memopad 13 69.231 0.000 0.000 7.692 23.077 0.000

Paint Electric Sheep 21 100.000 0.000 0.000 0.000 0.000 0.000
Sensor Readout 12 91.667 0.000 8.333 0.000 0.000 0.000

Temaki 15 46.667 26.667 26.667 0.000 0.000 0.000
Vector Pinball 56 16.071 23.214 26.786 3.571 30.357 0.000

VLC 492 41.260 13.415 2.236 1.423 41.667 0.000
Wikimedia 214 22.897 1.402 53.738 21.963 0.000 0.000

Spearman’s ρ correlation is a non-parametric test that assesses the rela-
tionship between two variables. The characterization of the strength of the
correlation (trivial, small, medium, large, very large and near perfect) is pro-
posed by Hopkins et al. [31]. For example, 205 out of the 492 unique events
in VLC exhibit very large correlations with the energy consumption; whereas
all the log events in Face Slim have little or no correlation. The correlation
values in the table show that 79% of the studied applications have at least one
log events which exhibit medium to near perfect correlation values with the
energy consumption of the mobile applications. If only large to near perfect
correlations are considered, there are still 50% of the studied applications that
have some log events strongly correlated with energy consumption.

Across most applications (e.g., Firefox, Agram, Acrylic Paint, and
Memopad), the log events with the highest correlation with energy con-
sumption are often related to the Dalvik Virtual Machine, DalvikVM. The
DalvikVM is the Java Virtual Machine used by the Android operating system
to run mobile applications. The lists of events that are highly correlated with
energy consumption are shown below. Some of them are related to identified
“energy greedy APIs” [67].
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– Dalvikvm: GC CONCURRENT (X1): this event is triggered when the heap
starts to fill up;

– Dalvikvm: GC FOR ALLOC (X5): this event occurs when there is not enough
memory left on the heap to perform an allocation;

– Dalvikvm: GROW HEAP (X6): in order to save memory, Android does not
allocate maximum amount of requested memory to every application auto-
matically. Instead, the OS waits until the application requests more mem-
ory. Then this event is triggered to give more heap space until the maximum
amount of memory is reached.

For these 3 events, the median magnitude of Spearman’s ρ correlation
(absolute value) over all applications with more than 1 version is 0.333 for
Dalvikvm: GC CONCURRENT, 0.308 for Dalvikvm: GC FOR ALLOC, and 0.219
for Dalvikvm: GROW HEAP. This shows a small to medium relationship between
Dalvikvm memory management and energy consumption.

Not all log events that are correlated with energy consumption are common
across applications. Some of the highly correlated log events are workload spe-
cific for a particular application. For example, in GnuCash, workload-specific
log events regarding the onCreateView method for the DatePickerDialog class,
and a log event about replacing account entries in the database exhibited large
positive (ρ = 0.6873) and very large negative correlations with energy con-
sumption (ρ = −0.7515), respectively. For Vector Pinball, trying to load
the JNI library for Box2D, a 2D physics library, (DalvikVM trying to load

lib.data.app.lib.com.dozingcatsoftware.bouncy libgdx.box2d.so) has
a very large negative correlation (ρ = −0.7923) with joules. VLC has very
large positive correlation (ρ = 0.8377) with input controls (VLC core input

control stopping input).

Step 3 - Building Energy Consumption Models Using Logs

In this step, the relationship between these log events and energy consumption
is further studied through multiple regression analysis. If an independent vari-
able (i.e., a log event) reoccurs in numerous models, then we argue that that
variable demonstrates a strong relationship with software energy consumption
for different mobile applications. The intent of this section is not necessarily
to build reusable predictors, but to further study the relationship between en-
ergy consumption and common log events. We use multiple linear regression to
study the relationship between different log events (as independent variables)
and the energy consumption (as the dependent variable).

There were 122 log events that commonly occurred across 3 or more appli-
cations. When considering common log events shared by four or more applica-
tions, there are only a total of 17 log events. There are 10 log events commonly
shared by 6 or more applications. Hence, in this step, we pick the common log
events that are shared by at least four applications, as we want to derive more
general prediction models in order to study the effect of common log events
on software energy consumption. Table 10 shows the 17 selected log events.
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For the sake of brevity, a short log event name is shown instead of the fully
abstracted log events.

Table 10 OS Level Log events shared by all the applications

# # applications Event Name

X1 25 dalvikvm GC CONCURRENT
X2 24 dalvikvm WAIT FOR CONCURRENT GC
X3 21 libEGL loaded vendor lib egl lib-

GLESv2 POWERVR SGX540 120
X4 20 OpenGLRenderer Enabling debug mode
X5 19 dalvikvm GC FOR ALLOC
X6 17 dalvikvm heap Grow
X7 14 dalvikvm Late enabling CheckJNI
X8 8 dalvikvm Turning on JNI app bug workarounds for target

SDK version
X9 6 TilesManager Starting TG

X10 6 Choreographer Skipped frames The application may be doing
too much work on its main thread

X11 4 dalvikvm Jit resizing JitTable
X12 4 webviewglue nativeDestroy view
X13 4 GLWebViewState Reinit transferQueue
X14 4 dalvikvm null clazz in OP INSTANCE OF single stepping
X15 4 InputMethodManagerService Focus gain on non focused
X16 4 dalvikvm VFY replacing opcode
X17 4 GLWebViewState Reinit shader

Many log event counts are highly correlated with other event counts. We
have exhaustively tried all subsets of variables in the model and ignored models
that included co-linearity whereby any two independent variables had a Pear-
son correlation greater than 0.3 or less than −0.3. The models are kept if all
the independent variables are reported as statistically significant to the model
(p ≤ 0.05). Models that do not produce a significant F-statistic (p ≤ 0.05) are
not kept.

The final models are the ones with the largest number of significant events.
Several regression models with more than two log events are found. These
models are for both the individual applications and all the applications at once.
Table 11 shows the models extracted and their adjusted R-squared values.

Some applications do not have enough versions, or their common log events
do not correlate well enough to produce a significant linear model (e.g., 24Game,
2048, and Blockinger). Each model has the following form:

joules ∽ c0 + c1 × event1 + c2 × event2 + ...+ cn × eventn (2)

In general, different models from the same application share similar predic-
tion performance. The three models from FeedEx show that the top common
log events can predict the energy consumption of FeedEx very well (with
Adj-R2 ≥ 0.92) . However, the models from the Calculator and the Fire-
fox applications show moderate prediction performance with Adj-R2 ≥ 0.39
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Table 11 Linear models of energy consumption based on log events across numerous An-
droid applications. Top three models are shown only if they are significant (p ≤ 0.05).

Events# Adj-R2 p-value

All applications/Versions X4 + X6 + X17 0.4755 1.1222e-140
X1 + X4 + X6 0.4965 1.4197e-149
X1 + X4 + X6 + X9 0.5233 2.3270e-160
X1 + X4 + X6 + X13 0.5328 9.2390e-165
X1 + X4 + X6 + X17 0.5328 9.2390e-165

Acrylic Paint X3 + X5 0.4870 1.6392e-06
X4 + X5 0.4870 1.6392e-06
X2 + X5 0.5306 3.1700e-07

Bomber X6 + X14 0.2375 3.1351e-06
X4 + X6 0.2375 3.1351e-06
X6 + X13 0.2375 3.1351e-06

Calculator X3 + X5 0.3991 2.3918e-12
X5 + X16 0.3991 2.3918e-12
X5 + X17 0.3991 2.3918e-12

ChromeShell X1 + X15 + X16 0.1076 2.5888e-02
X1 + X13 + X16 0.1076 2.5888e-02
X1 + X2 + X16 0.1112 3.8161e-02

Firefox X2 + X3 + X11 0.2242 1.3689e-09
X2 + X3 + X13 0.2242 1.3689e-09
X2 + X3 + X10 0.2242 1.3689e-09

GnuCash X1 + X5 + X6 0.5914 3.0130e-04
X1 + X4 + X5 0.5914 3.0130e-04
X1 + X3 + X4 0.5914 3.0130e-04

Memopad X1 + X8 + X12 0.6377 5.9170e-12
X1 + X8 + X13 0.6377 5.9170e-12
X1 + X8 + X14 0.6377 5.9170e-12

Sensor Readout X1 + X2 0.4276 2.8786e-05
X1 0.4427 4.2210e-06

Budget X2 + X15 0.8176 7.6227e-22
X1 + X5 0.8262 1.9788e-22
X1 + X6 0.8330 6.4611e-23

Vector Pinball X1 + X5 + X7 + X8 0.9456 3.1336e-32
X1 + X5 + X8 + X16 0.9456 3.1336e-32
X1 + X8 0.9465 1.4174e-33

Temaki X1 + X7 + X15 0.4848 1.2541e-09
X1 + X3 + X7 + X15 0.4848 1.2541e-09
X1 + X7 + X15 + X17 0.4848 1.2541e-09

VLC X1 + X5 + X16 0.6134 5.0341e-10
X1 + X3 + X5 0.6134 5.0341e-10
X1 + X5 + X17 0.6134 5.0341e-10

Wikimedia X3 + X5 0.6396 3.1125e-14
X1 + X5 0.6666 2.8477e-14
X2 + X5 0.7289 9.6649e-17

FeedEx X17 0.9297 8.2694e-21
X16 0.9297 8.2694e-21
X13 0.9297 8.2694e-21
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and Adj-R2 ≥ 0.22, respectively. The Chromeshell app is not modeled well
by the common log events with an Adj-R2 ≥ 0.11, while the Vector Pinball
app performs the best for predictability with models with an Adj-R2 ≥ 0.94.

Across all the studied version of Android applications, typically events X1,
X5, and X6 are part of the successful models. These events are related to the
Dalvik Virtual Machine. The listed events are related to memory management
operations such as garbage collection and memory allocations. In the models
utilizing all applications and versions, X17 and X4 were also quite significant,
as well as X1 and X6. X4 and X17 are OpenGL and graphics relevant.

5.4 Summary

Findings: Around 80% of the applications have at least one log event
whose correlation with the energy consumption are medium or stronger.
Memory management and graphics-related (OpenGL) log events are the
most correlated log events related to mobile software energy consump-
tion. For some applications, there are also some workload-specific log
events which exhibit high correlation with the energy consumption. Mod-
els trained on top common log events demonstrate a clear relationship
between those log events and the energy consumption for some but not all
mobile applications.
Implications: App developers should watch out for log events related
to garbage collection and graphics if they are concerned with the energy
consumption of their applications — especially changes in the number of
these log events. Furthermore, although logs have been used effectively to
debug and troubleshoot functional problems, there is still no clear relation
between the logging contents and the energy consumption for some appli-
cations. Researchers should investigate into innovative logging approaches
which can help debug both energy and other performance-related prob-
lems.

6 Threats to Validity

In this section, we discuss the threats to validity.

6.1 Construct Validity

Reliability of the Energy Measurement

It is important to ensure reliable performance measurement, as performance
measurement is subject to measurement error and random noise [22,45,38].
In this paper, we have used two strategies to mitigate this threat: (1) around
1000 versions from 24 Android applications were studied with both logging
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enabled and disabled; and (2) each version of the same application was re-
peatedly tested and measured to ensure measurement accuracy. We did not
have clear control over laboratory temperature, but according to the INA219’s
specification [?], measurements do not deviate much over the range of tem-
peratures expected while running the tests. Energy measures can suffer from
sampling, but the INA219 does sample at a high rate and output aggregated
measurements at a lower rate. This aggregation can induce error but given the
high rate of sampling by the INA219 it is unlikely to have meaningful effect
on test runs. Most importantly energy consumption is a physical process thus
one must measure multiple times as we do in this paper.

6.2 Internal Validity

Controlling Confounding Factors While Assessing the Energy Impact of Log-

ging on Real-world Android Applications

There are many Android applications that try to log data in a real-world
setting. Hence, while executing our performance tests on real-world Android
applications, we make sure all the applications under test are running in the
same Android running environment. In addition, we also make sure the ap-
plication under test is the only running user application during the tests. For
each application under test, we have executed two types of performance tests:
logging enabled and logging disabled. All the test configurations are the same
for these two types of tests, except for enabling and disabling logs. We ran the
experiments one after the other. Each experiment takes less than five minutes.
Hence, for some applications that access outside resources (e.g., Firefox re-
questing data from Wikipedia), the chances of a resource changing during a
test (e.g., content updates in the Wikipedia webpage) exists but would be very
low.

Controlling Various Logging Factors While Investigating the Energy Consump-

tion of Logging on Android Applications

There are many factors impacting the energy consumption of logging on An-
droid applications. Factors such as the logging rate and the log message sizes
cannot be easily controlled on real-world use cases and applications. In ad-
dition, real-world applications also perform other tasks (e.g., networking and
video playing), which makes it difficult to isolate the energy impact of logging.
Hence, to control the various confounding factors, we have developed a testing
Android application which is dedicated only to log messages at different rate
and size. The values of the logging rates and message sizes were derived based
on actual scenarios in practice (e.g., the size of a network packet and the size
of a typical stack trace). Since the logging rates and the message sizes com-
bined could have an impact on the size of the log files, an additional factor,
the number of disk flushes, is introduced to assess the combined impact of
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logging rate and log message size. Yet the Android operating system is a com-
plex piece of software, thus state will slowly change while the operating system
running, for instance the file system state will change between runs. Future
tests could replace the file system each and every time in order to control the
non-determinism in the file system.

6.3 External Validity

Generalizing the Energy Impact of Logging on Real-world Android Applications

To ensure our findings on the energy impact of logging on real-world Android
applications are generalizable, we have selected 24 Android applications from
different application domains. In addition, many of the applications in our
dataset have many versions. These versions correspond to a range of different
software development activities (e.g., new features and bug fixes). Increasing
both the number of applications and versions covered would provide better
generality. However, our findings might not be able to generalize to other
mobile application platforms (e.g., BlackBerry, iOS or Windows phones) and
other Android phones.

In addition, although we have designed our test cases to closely mimic the
realistic user usage of mobile applications, the resulting test cases may not
cover all the possible uses for the studied applications.

7 Related Work

In this section, we will discuss three areas of prior research that are related
to this paper: (1) energy testing and modeling for mobile applications, (2)
empirical studies on energy-efficient mobile development, and (3) execution
logs.

7.1 Energy Testing and Modeling for Mobile Applications

Hindle et al. developed the GreenMiner, an automated test-bed to assess the
energy consumption for each revision of a given mobile application [28,29].
Since running performance tests on each revision is time consuming, Romansky
et al. [56] proposed a search-based test approximation technique to reduce
the testing efforts in GreenMiner. Li et al. [41] proposed a test minimization
technique that prioritizes the test suites with higher energy consumption. This
paper leverages the GreenMiner [28,29] to perform energy testing on different
versions of the mobile applications with and without logging enabled.

There have been many studies dedicated to modeling energy consump-
tion for mobile applications. In general, there are three approaches, which
use three different datasets, collected by different monitoring and profiling
tools, to model mobile energy consumption: (1) hardware-based counters [13,
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64,25,20,75,18]; (2) program instructions from the applications [60,26,40];
and (3) system calls [7,16,51]. Different mobile monitoring and profiling tools
can bring different insights into the mobile applications’ dynamic behavior.
However, they all have some runtime overhead. Different from the above three
approaches, this paper builds the energy consumption models to explore fac-
tors of energy consumption prevalent in execution logs.

7.2 Empirical Studies on Energy-efficient Mobile Development

We further divide the empirical studies on energy-efficient mobile development
into the following three sub-areas:

– App Developers: Pinto et al. [53] investigated questions on StackOver-
flow that programmers had about energy. They found that programmers
lacked the resources to answer questions about software energy consump-
tion. Similar findings were confirmed by other studies that surveyed pro-
grammers about their understanding on software energy consumptions [44,
48]. Chowdhury et al. [15] compared energy-aware software projects with
projects that did not consider energy-efficiency as one of the non-functional
requirements. They found that energy-aware software projects are more
popular in terms of number of forks, and contributors.

– Code Obfuscation: Sahin et al. studied the impact of code obfusca-
tion [58] and refactoring [57] on energy consumption of several Android
applications. They found that code obfuscation does impact energy con-
sumption but the differences could be too small for users to notice, whereas
the impact of code refactoring could be mixed (a.k.a., either increases or
decreases in energy consumption).

– Energy Greedy APIs, Frameworks, and Platforms: Li et al. [39]
leveraged their technique of estimating energy consumption for source lines
in [40] and studied the API level energy consumption patterns of different
mobile applications. They found that the networking component consumes
the most energy and more than half of the energy consumption is spent
on idle state. This observation indicates that reducing the number of idle
states can optimize energy consumption for mobile applications. Linares et
al. [67] identified energy greedy Android APIs that can be helpful for the
developers to write energy efficient code. Chowdhury et al. [14] found that
employing HTTP/2 server can save energy for the mobile clients. Pathak
et al. suggested that around 70% of mobile software energy bugs are the
direct result of problems linked to wake locks [49]. Hence, many studies have
focused on understanding and optimizing wake lock in mobile applications
[50,8,43,11,68,52]. Tail energy leaks, the energy cost of powering up and
eventually powering down peripherals, have been studied as a source of
energy consumption in mobile applications [51,14,42]. Tail energy leaks
can be optimized by bundling I/O operations together [14,42]. Hasan et

al. [27] studied the energy profiles of frequently used Java collection classes
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and suggested that using the most energy efficient collection classes can
save up to 300% software energy.

Logs are widely used in software development for various purposes like
debugging, monitoring and user behavior tracking. However, there are no prior
studies focused on the energy impact of logging for mobile applications. Hence,
in this paper, we performed an empirical study on another aspect of energy-
efficient mobile development: the energy consumption of software logging.

7.3 Execution Logs

We will discuss two areas of related research on execution logs:

– Empirical Studies on Execution Logs: There have been a few em-
pirical studies conducted to investigate the logging activities in practice.
Shang et al. [61] analyzed how log events evolve over time by executing
the same scenarios across different versions of the same applications. They
found that logs related to domain level events (e.g., workload) are less
likely to change compared to logs related to feature implementations (e.g.,
opening a database connection). Yuan et al. [73] analyzed the source code
revision history for 4 C-based open source software systems. They found
that log events are often added as “after-thoughts” (a.k.a., after failure
happens). They also developed a verbosity-level checker to automatically
detect anomalous log levels (e.g., DEBUG vs. FATAL) using clone analy-
sis. Fu et al. [21] performed a similar log characteristic study but on the
source code of two large industry systems at Microsoft. Shang et al. [63]
studied the release history of two open source applications (Hadoop and
JBoss) and found that files with many logging statements have higher post-
release defect densities than those without. Unfortunately, all of the prior
empirical studies on execution logs focused on desktop and server-based
applications. This paper is the first research work focused on studying the
execution logs on mobile applications.

– Analyzing Execution Logs Execution logs have been used extensively
by developers, testers and system operators to monitor and diagnose prob-
lems for large-scale software systems [47,72]. Execution logs have a loosely-
defined structure and a large non-standardized vocabulary. Due to its sheer
volume of size (hundred megabytes or even terabytes of data), it is usually
not feasible to analyze the logs manually. Techniques have been proposed
to automatically abstract the loosely structured execution log events into
regularized log events [35,71]. Then automated statistical and AI tech-
niques can be applied on these regularized log events to analyze the results
of load tests [36], and to monitor, detect and diagnose problems in big data
applications [62,71,70]. In addition to leveraging the existing logs, Yuan et

al. proposed a technique to automatically suggest logging points to aid the
debugging activities using program analysis [74]. Finally, Ding et al. [17]
proposed a cost-aware logging mechanism so that informative logs can be
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generated while still ensuring the performance overhead is within the spec-
ified budget. Their performance overhead is defined in terms of resource
usage (e.g., CPU, memory and disk I/O) and their target applications are
large-scale server applications. In this paper, we used the log abstraction
technique proposed by Jiang et al. [35] to build our energy consumption
model.

8 Conclusion

Software developers use execution logs to debug and monitor the health of
mobile applications. This paper investigates the energy impact of execution
logs on Android applications. Around 1000 versions of 24 Android applications
were tested and measured under logging enabled and disabled. In addition,
a controlled experiment with varying rates of logging and sizes of the log
messages was carried out.

Our experiments show that limited logging (e.g. ≤ 1 msg/sec) has little
to no impact on the energy consumption of mobile applications. Although
there is little to no impact on the energy consumption of logging for most of
the versions, there are still many versions with medium to large effect sizes
when comparing the energy consumption between when logging is enabled
and logging is disabled. The rate of logging, the size of log messages, and the
number of disk flushes are three statistically significant factors that impact the
energy consumption of logging. Log events can be used in energy consumption
debugging as some events common across applications, that are logged as
log events, are highly correlated with energy consumption—especially those
regarding garbage collection or graphics. Depending on the application, some
workload-specific log messages are also correlated with energy consumption.
However, building energy consumption models with log events yield mixed
performance. It would be an interesting future work to leverage event logs, as
a proxy to predict the energy consumption of applications.

In conclusion we have presented evidence that logging under relatively lib-
eral conditions of less than 1 log message per second does not have a significant
effect on energy performance. Furthermore we have shown with numerous ex-
isting Android applications that logging typically has a negligible effect on en-
ergy consumption. Although there are some log events recorded in logs which
are highly correlated to the energy consumption of the mobile applications, it
is still an open research question on how one can leverage software logging to
debug energy problems.

Replication Package

To aide replicability, we freely disclose and share our dataset and source code
for our analysis in our replication package [3]. The GreenOracle tests that
were run on the GreenMiner are located at https://github.com/shaifulcse/-
GreenOracle-Data/tree/master/Tests.

https://github.com/shaifulcse/GreenOracle-Data/tree/master/Tests
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