
Approximation Schemes for the Airport and Railway
Problem

by

Lijiangnan Tian

A thesis submitted in partial fulfilment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Lijiangnan Tian, 2024

Abstract

In this thesis, we present approximation schemes for the airport and railway

problem (AR) on several classes of graphs. The AR problem, introduced by

Adamaszek et al. [4], is a combination of the capacitated facility location prob-

lem (CFL) and the network design problem. An AR instance comprises a set

of points, which are called cities, residing in some metrics, each of which is

associated with a non-negative cost and a number k, which represent respec-

tively the cost of establishing an airport in the corresponding city, and the

universal airport capacity. A feasible solution is a network of airports and

railways providing services to all cities without violating any capacity, where

railways are edges connecting pairs of points, with their costs equivalent to

the distance between the respective points. The objective is to find such a

network with the least cost. In the strict setting, the network is divided into

components, each with an open airport and a maximum of k cities. In a more

relaxed setting of the problem, the railway paths heading to different airports

are allowed to share edges, either the cost of each city-to-airport path is paid

separately (which is the setting we used for AR with a uniform opening cost),

or the railways have a universal edge capacity k and we are allowed to use par-

allel edges (which is called AR′ by Adamaszek et al. [3]). Adamaszek et al. [4]

presented a PTAS for AR in the two-dimensional Euclidean metric R2 with a

uniform opening cost in the strict setting. Adamaszek et al. [3] presented a bi-

criteria 4
3

(︁
2 + 1

α

)︁
-approximation algorithm for AR with non-uniform opening

ii

costs in the general metric, with the airport capacity (1+α)k where 0 < α ≤ 1,

a
(︁
2 + k

k−1
+ ε
)︁
-approximation algorithm and a bicriteria QPTAS for the same

problem in the Euclidean plane R2. In this work, we give a Quasi-Polynomial-

Time Approximation Scheme (QPTAS) for AR with a uniform opening cost

in graphs of bounded treewidth, QPTAS for AR′ in graphs of bounded dou-

bling dimensions, graphs of bounded highway dimensions and planar graphs,

and quasi-polynomial-time
(︁
2 + k

k−1

)︁
· (1+ε)-approximation for AR with non-

uniform opening costs for the aforementioned metrics. For general metrics, we

give a 2-approximation for AR with a uniform opening cost in the strict set-

ting of the problem, and an O(log n)-approximation for AR with non-uniform

opening cost.

iii

To my parents

iv

Real knowledge is to know the extent of one’s ignorance.

– Confucius (551–479 bc).

Wonder is the beginning of wisdom.

– Socrates (469–399 bc).

v

Acknowledgements

First and foremost, I would like to extend my gratitude to my supervisor,

Professor Mohammad Reza Salavatipour, for his unwavering support and guid-

ance throughout my graduate research journey. Mohammad’s professionalism,

wealth of knowledge, and patience in addressing my inquiries and revising my

thesis write-ups have been invaluable. From my early years as an undergrad-

uate student, I have known him as not only a mentor but also as a source

of inspiration, and I am truly fortunate to have had the opportunity to work

under his supervision.

I want to thank Assistant Professor Mohsen Rezapour as well, for his contribu-

tions to my academic and personal growth. Mohsen’s casual chats, engaging

discussions on the intricacies of my thesis, and insightful perspectives on the

problems I tackled have been instrumental in shaping my understanding of

the subject matter in the beginning phase of my research as well as my thesis

presentation. Both Mohammad and Mohsen have consistently illuminated the

path for me, offering valuable guidance on my academic writing and presenting

skills, and pointing me in the right direction when needed.

I am also grateful to all members of our Algorithmics Research Laboratory

(also known as the Theory Group) at the Computing Science Centre, along

with others, for their enduring friendship and riveting discourses during my

graduate program in Alberta. Beyond things related to study, research and

teaching assistants, we often discussed regional and cultural matters. Our

interactions have been a source of joy, adding depth and diversity to my aca-

demic journey and my worldview. I appreciate the intellectual camaraderie

and the collective enrichment we’ve experienced together.

vi

I am thankful to the members of my examining committee—Associate Pro-

fessor Zachary “Zac” Friggstad, Professor Martin Müller and Professor Os-

mar R. Zaïane (the chair)—for their time, effort, and constructive feedback,

which have significantly contributed to the refinement of this thesis. In partic-

ular, I want to thank Zac for his comments that led to a huge improvement in

the constant-factor approximation of Section 2.3, in terms of decreasing the ap-

proximation factor and simplifying the algorithm. Additionally, I express my

gratitude to the Department of Computing Science for their financial support

throughout my study. Their commitment to fostering academic excellence has

played a crucial role in the successful completion of this thesis, and I am truly

thankful for the opportunities they have provided.

Finally, I express my deepest appreciation to my parents, to whom this thesis

is dedicated. Their unconditional support, encouragement, and belief in my

abilities have been the cornerstone of my academic journey.

vii

Contents

List of Figures x

1 Introduction 1

1.1 Problems Considered . 1

1.1.1 Problem Definition . 1

1.2 Preliminaries . 2

1.2.1 Graphs . 2

1.2.2 Metrics . 4

1.2.3 Optimization Problems and Approximation Algorithms 5

1.2.4 Metric Embeddings . 7

1.2.5 Concentration Inequalities 8

1.2.6 Matroids . 8

1.3 Related Work . 9

1.4 New Results . 11

1.5 Assumption on Edge Costs . 11

2 AR with a Uniform Airport Cost 13

2.1 On Trees . 13

2.1.1 Preliminaries . 13

2.1.2 Structure Theorem for Trees 18

2.1.3 Dynamic Programming for Trees 20

2.1.3.1 Consistency Check 24

2.1.3.2 Algorithm Efficiency 27

viii

2.1.4 Solution for the Original Problem 27

2.2 On Graphs with Bounded Treewidth 29

2.2.1 Preliminaries . 29

2.2.2 Structure Theorem for Graphs with Bounded Treewidth 30

2.2.3 Dynamic Programming for Graphs of Bounded Treewidth 34

2.2.3.1 Consistency Check 37

2.2.3.2 Algorithm Efficiency 41

2.2.4 Solution for the Original Problem 42

2.2.5 Generalisation for AR with Steiner Vertices 42

2.3 Constant-factor for General Metric 43

2.3.1 Algorithm for AR in General Metric 43

3 AR with Nonuniform Airport Costs 47

3.1 Preliminaries . 47

3.2 Exact Algorithm for AR′ on Trees 49

3.2.1 Algorithm Efficiency 52

3.3 AR′ on Graphs with Bounded Treewidth 53

3.3.1 Algorithm Efficiency 57

3.3.2 Generalisation for AR with Steiner Vertices 57

3.4 Extension to Other Metrics 57

3.4.1 Embedding Lemma for AR′ 58

3.4.2 Constant Quasi-Polynomial-Time Approximation for Graphs
of Bounded Doubling Dimension 59

3.4.3 Constant Quasi-Polynomial-Time Approximation for Graphs
of Bounded Highway Dimension 59

3.4.4 Constant Quasi-Polynomial-Time Approximation for Minor-
Free Graphs . 60

4 Conclusion and Future Problems 62

4.1 The 0/+∞ Case of AR . 62

References 67

ix

List of Figures

1.1 Summary of previous work of AR 10

2.1 This is an example where k = 4, f = 5 and the cost of every
edge is 1. Note how the two clusters (each colour represents a
cluster) in the solution share an edge emphasised by the dashed
pattern of both colours. Both clusters will pay for the cost of
the shared edge separately. 15

2.2 The illustration for the inner DP. To be more precise, each sub-
tree Tui includes its root vertex ui. 24

2.3 An example bipartite graph G′ showing affiliations 28

2.4 An example showing a bag β with its two children bags β1 and β2 38

2.5 Illustrations for proof of Lemma 8 44

3.1 A simplest example of crossing flows in AR′. The red vertices
are open facilities. 48

3.2 The crossing flow is at the edge uw 49

3.3 Here µ and ζ are non-negative integers. The label on edge vw1

represents ψw1 and the label above v stands for ψ1
v 51

3.4 An example showing a bag β with its two children bags β1 and
β2, and its parent bag β0. These are the three adjacent bags of
β in the tree T . The inter-bag edges in T only connect between
copies of the same vertices. 54

3.5 We need to check if the number of units being sent and received
matches up on each of the inter-bag edges. The illustration
shows an inter-bag edge “carrying” f units of demands coming
from the copy pβ1 ∈ β1 to p ∈ β. 56

4.1 Incident edges of each potential facility before and after changes 64

x

4.2 On the left is the original triangle in G. On the right is the
scenario in G′ where one of the vertex is a facility. 65

4.3 On the left is the scenario in G′ where two of the vertex is a
facility. On the right is the scenario in G′ where all of the vertex
is a facility. 66

xi

Chapter 1

Introduction

1.1 Problems Considered

In this thesis, we will discuss the Airport and Railway problem (AR), also

Airport Routing, which is first defined in [3], [4]. We will first define the

problem and then list some of its variants later in this chapter.

1.1.1 Problem Definition

In the problem of Airports and Railways (AR), we are given a complete

graph G = (V,E) embedded in some metric space (for instance the Euclidean

plane), with two cost functions α : V → R≥0 for opening facilities (also known

as airports) at vertices (also known as cities) and ρ : E → R≥0 for installing

railways on the edges in order to connect cities to airports. We are also given a

positive integer k ∈ Z+ as the capacity of each airport. The task is to find the

set of vertices A ⊆ V and the set of edges R ⊆ E, which form a forest (as each

airport will serve the city it is at), such that each component (also known as a

cluster) thereof contains only one airport and has at most k vertices therein,

including the airport. Our goal is to minimise the total cost

C =
∑︂
v∈A

αv +
∑︂
e∈R

ρe.

To be more precise, a cluster is an airport and the set of all the cities served

by it, together with the set of railways connecting the cities to the airport. In
1

a more relaxed setting, each edge is allowed to be used by multiple clusters

each of which needs to pay the cost of the edge separately. To differentiate

the relaxed setting from the above definition, we will call the latter one the

strict setting when necessary. Note that in the relaxed setting, each connected

component in a feasible solution may contain multiple clusters and the total

cost that we want to minimise is∑︂
v∈A

αv +
∑︂
e∈R

ρe · ϕ(e)

where ϕ(e) is the number of clusters using the edge e.

1.2 Preliminaries

First, we provide a number of essential terminologies, definitions and notations

that are indispensable to understanding our problems and this thesis. The

definitions listed here are referenced and adapted from [11], [12], [14], [19],

[22], [23], [26], [29]–[33].

1.2.1 Graphs

A graph G consists of a vertex set V (G) and an edge set E(G), where each

edge is an unordered pair of distinct elements from V (G), which are called its

endpoints. When u, v are endpoints of edge e, we say u, v are neighbours

or adjacent, and say edge e is an incident edge of u and v, or e is incident

on u and v.

A directed graph (or digraph) is a graph where each edge is an ordered

pair of vertices. An edge (also known as an arc) from vertex u to vertex v is

denoted by (u, v). An undirected graph is a graph where each edge is an

unordered pair of vertices.

The degree of a vertex in an undirected graph is the number of edges incident

on it. A vertex whose degree is zero is isolated. In a directed graph, the out-

degree of a vertex is the number of edges leaving it, and the in-degree of a

2

vertex is the number of edges entering it. The degree of a vertex in a directed

graph is its in-degree plus its out-degree.

A loop is an edge whose endpoints are equal. Multiple edges (or parallel

edges) are edges having the same pair of endpoints. This thesis only discusses

situations where the input graph is an undirected graph.

A path is a simple graph whose vertices can be ordered so that two vertices are

adjacent if and only if they are consecutive in the list. A cycle is a graph with

an equal number of vertices and edges whose vertices can be placed around a

circle so that two vertices are adjacent if and only if they appear consecutively

along the circle.

A bipartite graph is a graph G = (V,E) in which the vertex set can be

partitioned into V = B ∪W , where B and W are disjoint and all edges in E

go between B and W .

A planar graph is an undirected graph that can be drawn in the plane with

no edges crossing.

A subgraph of graph G is a graph H that V (H) ⊆ V (G) and E(H) ⊆ E(G),

and the assignment of endpoints to edges in H is the same as in G. We then

write H ⊆ G and say that “G contains H.”

There is a uv-path in graph G if G contains a path starting from u and ending

at v. If there is a path P from u to v, we say that v is reachable from u

via P . A graph G is connected if it has a uv-path for each pair of vertices

u, v ∈ V (G), otherwise, it is disconnnected. A directed graph is strongly

connected if every two vertices are reachable from each other.

A walk in a graph is an alternating sequence of vertices and edges, whose

first and last elements are vertices, and such that each edge joins the vertices

immediately preceding it and succeeding it in the sequence. A tour is a closed

walk with no repeated edges.

The process of contracting an edge e with ends v and u means deleting e and

identifying v and u. A graph H is a minor of a graph G if it can be obtained

from a subgraph of G by contracting edges sequentially.
3

A complete graph is a graph whose vertices are pairwise adjacent. A graph

with no cycle is called acyclic. A tree is a connected acyclic graph. A rooted

tree has one vertex r chosen as the root. For each vertex v, let P (v) be the

unique vr-path in tree T . The parent of v is its neighbour on P (v); its

children are its other neighbours in T . Its ancestors are the vertices in the

set P (v) \ v. Its descendants are the vertices u such that P (u) contains v.

Again, the degree of each vertex is the number of vertices adjacent to it. The

leaves are the vertices with degree equal to one. A binary tree is a rooted

tree where each vertex has at most two children, and each child of a vertex is

designated as its left child or right child.

A tree decomposition of a graph G = (V,E) is a tree T = (V ′, E ′) and

a mapping Ξ : V ′ → 2V where each vertex β ∈ V ′ (also known as a bag)

corresponds to a set of vertices of G, such that

• (Vertex Coverage) For each vertex v in G, it must be included in at least

one bag of T .

• (Edge Coverage) For each edge uv in G, the pair of vertices u, v ∈ V

must be included in at least one bag of T .

• (Coherence) For each vertex v in G, consider the set of all the bags in T

that include v. These bags induce a connected component in T .

The width of a tree decomposition is defined as the cardinality of the largest

bag therein minus one. The treewidth of a graph G is the minimum number

Q such that G has a tree decomposition where the cardinality of the largest

bag therein is Q+ 1.

1.2.2 Metrics

A metric space (X, d) consists of a set of points X and a distance function

d : X ×X → R≥0 which satisfies the following properties:

1. For every x, y ∈ X, d(x, y) ≥ 0.

2. For every x ∈ X, d(x, x) = 0.

3. (Symmetry) For every x, y ∈ X, d(x, y) = d(y, x).

4

4. (Triangle inequality) For every x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

A weighted graph is a graph with numerical labels on edges, denoted by

w(e) for an edge e (and w(e) is call the weight of edge e). In this thesis,

we only discuss graphs with non-negative edge weights. Any metric (X, d)

can be converted into a complete weighted graph G such that V (G) = X

and w(uv) = d(u, v) (i.e. the weights represent distances). The length of a

path is defined to be the sum of weights of all of its edges. Let dG(u, v)

denote the length of the shortest uv-path in G, and if u, v are not connected

in G, we define dG(u, v) = +∞. Define dmax = maxu,v∈V :u̸=v dG(u, v), dmin =

minu,v∈V :u̸=v dG(u, v), and aspect ratio ∆ = dmax

dmin
.

A metric space (X, d) is called a tree metric if there is an edge-weighted

tree T = (V,E) such that X ⊆ V and, for every pair of points x, y ∈ X, the

distance d(x, y) in the metric space is equal to the distance dT (x, y) in the tree.

A metric space (X, d) is said to be doubling if there exists some constant

κ > 0 such that for any point x ∈ X and radius r > 0, one can cover the ball

Br(x) = {x′ ∈ X | d(x, x′) ≤ r} with the union of at most 2κ balls of radius
r
2
, where κ is referred to as the doubling dimension of the metric. [17]

The highway dimension of a weighted graph G = (V,E) is the smallest

integer ξ such that for some universal constant c ≥ 4, for every number r ∈ R>0

and every vertex v ∈ V , there are at most ξ vertices in the ball Bcr(v) of radius

c·r hitting all shortest paths of length more than r that lie completely in Bcr(v).

Additionally, we define λ = c− 4 as the violation. [1], [2], [13]

1.2.3 Optimization Problems and Approximation Algo-
rithms

The definitions of this section also come from [16], [24], [27], [32].

A decision problem is a problem to be answered with either “Yes” or “No”.

The class P consists of those decision problems that are solvable in polynomial

time. More specifically, they are problems that can be solved in O(nc) time

for some constant c, where n is the size of the input to the problem. NP is

5

the class of decision problems that, given a proposed solution, can be verified

in polynomial time.

A problem is NP-hard if all problems in NP are polynomial time reducible

to it. A problem is NP-complete it is NP-hard and it is in NP.

An NP-optimization problem Π consists of:

• a set DΠ of valid instances, recognisable in polynomial time,

• each instance I ∈ DΠ has a set SΠ(I) of feasible solutions,

• every solution s ∈ SΠ(I) is of length polynomially bounded in |I|,
• there is a polynomial-time algorithm that, given a pair (I, s), decides

s ∈ SΠ(I),

• there is a polynomial-time computable objective function fΠ that as-

signs a non-negative rational number to each pair (I, s),

• finally, Π is specified to be either a minimization or a maximization

problem.

An optimal solution for an instance of a minimization (maximization) prob-

lem is a feasible solution that achieves the smallest (largest) objective function

value. We use OPT(I) to denote the objective function value of an optimal

solution to instance I. We use opt(I) to denote its cost.

With every NP-optimization problem, one can naturally associate a decision

problem by giving a bound B on the optimal solution. Thus, the decision

version of an NP-optimization problem Π consists of pairs (I, B) with I being

an instance of Π and B being a rational number. Given (I, B), we ask whether

there is some s ∈ SΠ(I) such that fΠ(s) ≥ B for a maximization problem

(fΠ(s) ≤ B for a minimization problem).

An α-approximation algorithm for an optimization problem is a polynomial-

time algorithm that, for all instances of the problem, produces a solution whose

value is within a factor of α of the value of an optimal solution. For an α-

approximation algorithm, we will call α the performance guarantee of the

algorithm. In the literature, it is also often called the approximation ratio

or approximation factor of the algorithm. Conventionally, we have α > 1 for

6

minimization problems, whereas α < 1 for maximization problems.

A polynomial-time approximation scheme (PTAS) is a family of poly-

nomial time algorithms {Aε}, where there is an algorithm for each ε > 0, such

that Aε is a (1 + ε)-approximation algorithm (for minimization problems) or

a (1 − ε)-approximation algorithm (for maximization problems). That is, for

a fixed ε > 0, the running time is in nO(1).

A quasi-polynomial-time approximation scheme (QPTAS) is an ap-

proximation scheme such that, given a fixed ϵ > 0, the running time of every

Aϵ is bounded by some polylogarithmic function in n, i.e., the runtime is in

nlogO(1) n.

A maximization problem (or a minimization problem) L is said to be in APX

(short for approximable) if L is an NP-optimization problem and there exists

a polynomial-time approximation algorithm A such that for all instances I of

L, there exists c > 1 such that A is a c-approximation for L (i.e. constant

approximation) [21]:

OPT(I)

A(I)
≤ c,

(︃
or

A(I)

OPT(I)
≤ c

)︃
.

If P ̸= NP, then no APX-complete problem admits a PTAS.

1.2.4 Metric Embeddings

In this section, we adapt definitions from [9], [22]. The goal of metric em-

bedding is to map graphs into more special and restricted classes of graphs in

order to make the problem more tractable.

A mapping f : X → Y , where X is a metric space with a metric ρ and Y

is a metric space with a metric σ, is called an isometric embedding if it

preserves distances, i.e., if σ(f(x), f(y)) = ρ(x, y) for all points x, y ∈ X.

A mapping f : X → Y , where X is a metric space with a metric ρ and Y is

a metric space with a metric σ, is called a D-embedding of metric spaces,

where D ≥ 1 is a real number, if there exists a number r > 0 (scaling factor)

7

such that for all points x, y ∈ X,

r · ρ(x, y) ≤ σ(f(x), f(y)) ≤ D · r · ρ(x, y).

The infimum of the numbers D such that f is a D-embedding is called the

distortion of f .

1.2.5 Concentration Inequalities

The following theorem is based on [23]. Chernoff bound gives exponentially

decreasing tail bounds for the sum of independent bounded random variables.

Roughly speaking, a tail bound bounds the tail distribution, the probability

that the value of a certain random variable is far from its expectation [25].

Theorem 1 (Chernoff bound (from [23])) Let Y =
n∑︂
i=1

Yi where

Yi =

{︄
1 with probability pi
0 with probability 1− pi

and all variables Yi’s are independent. Denote µ = E[Y], we have

Pr[Y > 2µ] ≤ e−
µ
3 and Pr

[︂
Y <

µ

2

]︂
≤ e−

µ
8 .

1.2.6 Matroids

These definitions are from [20].

A set system (E,F) is a matroid if

(M1) ∅ ∈ F ;

(M2) If X ⊆ Y ∈ F then X ∈ F .

(M3) If X, Y ∈ F and |X| > |Y |, then there is an x ∈ X \ Y such that

Y ∪ {x} ∈ F .

A matroid (E,F), where E is the set of edges of some undirected graph G

and F := {F ⊆ E | (V (G), F) is a forest}, is called the cycle matroid of G

and denoted by M (G). A matroid that is the cycle matroid of some graph,

which may contain loops, is called a graphic matroid.
8

1.3 Related Work

We begin by providing the definitions of several related problems.

Definition 1 Capacitated Facility Location (CFL): The input comprises a

metric graph G = (V,E), a set of potential facilities F ⊆ V each having a

capacity κ, a set of clients C ⊆ V each of which has a demand to be satisfied,

a metric cost function cij representing the assignment cost of serving client j

from facility i, and the opening cost of each facility fi. The goal is to choose a

subset of potential facilities to open and assign clients to these open facilities

to minimise the total cost, which is the sum of the cost of all the open facilities

and the cost of all assignments, such that no facility serves more than κ clients.

Definition 2 (Definition from [18]) Capacitated Vehicle Routing Problem (CVRP):

Given a graph G = (V,E) with metric edges costs w(e) ∈ Z≥0, a dépôt r ∈ V ,

and a vehicle of bounded capacity Q > 0. The goal is to find the minimum cost

collection of tours, each starting from (and ending at) the dépôt and visiting

at most Q customers, whose union covers all the customers.

We define the concept of a flow network.

Definition 3 (Definition from [11]) Let G = (V,E) be a flow network with

a capacity function c : E → R+. Let s be the source of the network, and let t

be the sink. A flow in G is a real-valued function f : E → R that satisfies the

following two properties:

Capacity constraint: For all pairs of vertices u, v ∈ V , we require

0 ≤ f(u, v) ≤ c(u, v).

The flow from one vertex to another must be nonnegative and must not exceed

the given capacity.

Flow conservation: For all vertices u ∈ V \ {s, t}, we require∑︂
v∈V

f(v, u) =
∑︂
v∈V

f(u, v).

9

The total flow into a vertex (other than the source or sink) must equal the total

flow out of that vertex.

When (u, v) /∈ E, there can be no flow from u to v, and f(u, v) = 0.

We also define bicriteria approximations.

Definition 4 A (ν, ς)-bicriteria approximation algorithm for AR finds a so-

lution where each cluster has size at most ν · k, whose cost is at most ς times

the optimal cost of a solution (where each cluster has size at most k), where

ν, ς > 1.

We list here a few notations defined in [3], [4]:

• ARβ, for some constant β > 1, is the bicriteria version of AR, i.e. AR

with resource augmentation, where the new airport capacity is β · k.
• AR∞ is a relaxed version where the airport capacity is dropped, or equiv-

alently, set to infinity: k = +∞.

• 1AR means the airport-opening cost function α : V → R≥0 is constant.

In this thesis, 1AR is called AR with a uniform opening cost.

• ARF , or just AR, is the general version of the problem, where the result

forms a forest. ARF is related to capacitated facility location (CFL)

problem.

• ARP is a special case of AR where each component is a path with both

endpoints having an airport. ARP is a relaxation of the capacitated

vehicle routing problem (CVRP) due to lack of a centralised dépôt.

General metric Euclidean plane

Nonuniform
airport cost

Bicriteria: 4
3
· (2 + 1

p
)-

approximate for AR1+p,
p ∈ (0, 1] (in particular,
4-approximate for AR2)

PTAS for AR∞
P ; exact

for AR∞
F ; QPTAS for

AR1+µ, µ > 0; (2 +
k
k−1

+ ε)-approximate
for AR

Uniform
airport cost

PTAS for both 1ARF

and 1ARP

Figure 1.1: Summary of previous work of AR

10

1.4 New Results

Currently, the AR problem has not been studied in the tree metrics, graphs

of bounded treewidth, graphs of bounded doubling dimensions, graphs of

bounded highway dimensions, minor-free graphs, etc. For AR with a uniform

facility opening cost, we propose a QPTAS for trees and graphs of bounded

treewidth in the relaxed setting of the problem, as well as a constant ap-

proximation for the general metric in the strict setting. For AR with non-

uniform facility opening costs, we propose a constant approximation for trees

and graphs of bounded treewidth, graphs of bounded doubling dimension,

graphs of bounded highway dimension, and minor-free graphs in the strict set-

ting of the problem, as well as an O(log n)-approximation for general metric

in the strict setting.

1.5 Assumption on Edge Costs

In this section, similar to [4] and [18], we show how we can assume the input

graph G = (V,E) has an aspect ratio ∆ that is polynomial in n = |V |.

Let OPT denote the optimal solution to AR on G. WLOG, we consider the

relaxed setting. Note that for the strict setting of the problem, we can simply

set ϕ(e) = 1 for each edge e ∈ R. The cost of OPT is

opt =
∑︂
v∈A

αv +
∑︂
e∈R

ρe · ϕ(e)

where αv is the facility opening cost of vertex v ∈ V , ρe is the cost of the edge

e ∈ E, A and R are the set of vertices opened as facilities and the set of edges

chosen by OPT respectively, and ϕ(e) is the number of times the edge e is

used by a cluster in OPT.

We construct a new instance G′ with all the costs defined as follows. Firstly, we

guess the maximum edge weight W = maxe∈R ρe in OPT,1 and eliminate every

edge of cost larger than W . Round up the costs of each edge to the maximum
1We can enumerate all |E| possibilities for such a guess.

11

of its cost and ε
n3 · W , that is, set the new edge cost ρ̃e ← max

{︁
ρe,

εW
n3

}︁
.

Every edge now has cost at least εW
n3 . Equivalently, the cost of each edge has

increased by at most εW
n3 .

Note that ϕ(e) ≤ n since there are at most n clusters in OPT. Let opt′ denote

the cost of the optimal solution to AR on G′. Using the fact that |E| ≤ n2

and W ≤ opt, we have

opt′ ≤
∑︂
v∈A

αv +
∑︂
e∈R

ρ̃e · ϕ(e)

=

(︄∑︂
v∈A

αv +
∑︂
e∈R

ρe · ϕ(e)

)︄
+
∑︂
e∈R

(ρ̃e − ρe) · ϕ(e)

≤ opt +
∑︂
e∈R

εW

n3
· ϕ(e)

≤ opt +
∑︂
e∈R

εW

n3
· n

≤ opt + n2 · εW
n3
· n

= opt + εW

≤ opt + ε · opt

= (1 + ε)opt.

As mentioned above, for every edge in G′, we have

εW

n3
≤ ρ̃e ≤ W.

Therefore, the aspect ratio of G′ satisfies

∆ ≤ n3

ε
.

12

Chapter 2

AR with a Uniform Airport Cost

In this chapter, we first present a Quasi-Polynomial-Time Approximation

Scheme (QPTAS) for the AR problem (in the relaxed setting) on trees that

have logarithmic heights. Subsequently, we extend this approach to the class

of graphs with bounded treewidth. This implies a QPTAS on trees in general,

because graphs with bounded treewidth include trees as special cases. We will

also give a constant approximation for general metrics for the strict setting of

the problem.

2.1 On Trees

Let us consider when the input tree T = (V,E) has a logarithmic height

δ log n, where n = |V | and δ is some positive constant. Each edge in E has a

non-negative cost, and facility opening cost is f for all vertices of V , for some

positive constant f .

2.1.1 Preliminaries

The thought process here is to ignore the concept of facilities/airports ini-

tially in order to utilise the linear grouping procedures of Jayaprakash and

Salavatipour [18] to get a set of clusters each of which is essentially a tree, and

then assign airports to all the trees in that solution to get a solution to the

original problem, without any increase in the cost.

13

We first describe the notion of demands on vertices. We view each vertex in

V to initially have one unit of demand which needs to be sent to an airport

to be served. Note that we may add dummy demands to a vertex during the

algorithm, so a vertex may end up having more than one unit of demand. The

size of a cluster is defined to be the sum of demands on all its vertices, instead

of just the number of vertices.

There are two equivalent ways of viewing the addition of dummy vertices at a

vertex v. The first one is to simply superimpose some dummy vertices onto the

vertex v, and the other is to add more demands to v according to the number

of dummies needed. Also note that a component may not include every vertex

that it passes through, as a component may be simply using the edges of a

vertex to get to somewhere else, which can also be seen as not picking up

the demand of the vertex. Be mindful that, from the perspective of demands,

the size of a component is the number of demands it includes, instead of the

number of vertices.

Note that the clusters in the solution are therefore not necessarily edge-disjoint

or vertex-disjoint, but the total number of demands in each cluster obeys the

capacity constraint.

We begin by defining a new version of the problem which we call UAR (mean-

ing AR with undetermined airports). In this relaxed version, we do not open

airports anywhere in the solution and instead simply charge each component

in the solution a cost of f .

Definition 5 (UAR) The goal is to find a set T of (not necessarily disjoint)

clusters (i.e. trees) using edges in the graph (each costs the corresponding edge’s

cost). The size of each cluster must not exceed the capacity constraint k. Each

cluster γ ∈ T has a cost of f and we want to minimise the total cost, which

is defined as

|T | · f +
∑︂
γ∈T

cost(γ)

where cost(γ) denotes the railway cost of the cluster γ.

Since this is a relaxed version of the original problem (as we do not specify
14

the location of the facilities), its cost is a lower bound of that of the original

problem.

v

a

bc

d

ef

(a) The input graph

v

a

bc

d

ef

(b) The optimal solution to UAR

Figure 2.1: This is an example where k = 4, f = 5 and the cost of every edge is
1. Note how the two clusters (each colour represents a cluster) in the solution
share an edge emphasised by the dashed pattern of both colours. Both clusters
will pay for the cost of the shared edge separately.

We can view each city as having a demand of 1, and a tree (also called a

cluster) does not violate the capacity constraint as long as it does not pick

up more than k units of demand. We use a modified version of the method

from [18] to solve our problem. The preliminary steps are the same as in that

paper.

Two concepts are required to describe the following data structures, namely,

the notions of partial and complete clusters. At any non-root vertex v ∈ V

with parent edge e, a complete cluster in the subtree Tv is a cluster that does

not use the edge e, and a partial cluster in the subtree Tv is one that does.

Similar to [18], we first assume that the number of clusters in OPT is suf-

ficiently large, that is, at least ς log n for some large number ς. Otherwise,

if the number of clusters in OPT is upper-bounded by Σ = ς log n then we

can use the following dynamic programming algorithm. Define a DP table

with entries of the form A[v,xv, av] at each vertex v with xv =
(︁
x1v, . . . , x

Σ
v

)︁
,

and av =
(︁
a1v, . . . , a

Σ
v

)︁
, where xiv ∈ [0, n] and aiv is a Boolean variable, for all

1 ≤ i ≤ Σ. The entry A[v,xv, av] stores the minimum cost of the solution

where the i-th cluster is covering xiv many vertices in Tv, and it is a complete
15

cluster only if aiv = True (otherwise it is a partial one). To obtain the final

solution, we calculate minxρ{A[ρ,xρ, aρ] | aiρ = True, 1 ≤ i ≤ Σ} where ρ is

the root vertex. Note that this table has O(nΣ · 2Σ) = O(nς logn) entries. The

time it takes to compute the table from the bottom up is in O(nς logn).

Assume the optimal solution costs opt. We aim to find a near-optimal solu-

tion, of cost (1+O(ε))opt, where each vertex has at least one unit of demand,

and the size of partial clusters in any subtree Tv can only be one of polyloga-

rithmically many values, where v ∈ V .

The following is a summary of the modified data structures. We will use them

to help show the existence of the kind of near-optimal solution mentioned

above, and then give a dynamic programming algorithm that aims to obtain

such a near-optimal solution.

1. Consider the subproblem on Tv (the subtree rooted at v). In Tv, there are

partial clusters as well as complete ones. Now consider those partial

ones as well as their other halves (called the top) connecting to them

via v from outside the subtree Tv. We define a set of threshold values

{σ1, . . . , στ} the same way as in [18].

2. Define the i-th bucket of city v (denoted as (v, bi)) to be the set of

partial clusters whose size falls into the range [σi, σi+1).

3. For each big bucket of v (defined below), we further divide those partial

clusters into g groups of equal size.

Definition 6 Define the threshold values {σ1, . . . , στ} where

σi =

⎧⎪⎪⎨⎪⎪⎩
i 1 ≤ i ≤

⌈︃
1

ε

⌉︃
⌈σi−1 · (1 + ε)⌉ i >

⌈︃
1

ε

⌉︃
in such a way that the last threshold στ = k. So τ ∈ O(log k/ε).

Given an optimal solution OPT, we will show how we can transform it to a

near-optimal solution with less complexity in terms of types of cluster sizes in

each subproblem, in a manner that is from bottom to top, one level at a time,
16

starting from the bottom level. We denote the solution before modifying the

level ℓ as OPTℓ and after modifying as OPTℓ−1. We assume the root vertex

is at level 1. Suppose v is at level ℓ.

We use the following definitions and notations from [18].

Definition 7 At a vertex v, we define its i-th bucket, denoted as bi, to store

clusters in OPTℓ that have a size between [σi, σi+1) inside Tv, where σi is

the i-th threshold value. Denote a vertex and its i-th bucket as a pair (v, bi).

Denote the number of clusters in bucket bi of v as nv,i.

Definition 8 A bucket b is said to be small if it contains no more than

α log2 n/ε clusters and is otherwise said to be big, for some constant α ≥
max{1, 12δ}.

Within each big bucket, we further divide its partial clusters into g groups of

equal size (pad the bucket with the least amount of dummy cluster with size

0 such that all the groups can have an equal size).

Definition 9 For a big bucket bi of vertex v, we define g groups, denoted as

Gv
i,1, G

v
i,2, . . . , G

v
i,g, where g = 2δ log n/ε. Sort the clusters in the padded bucket

in non-decreasing order, and put the first nv,i

g
clusters into Gv

i,1, the second nv,i

g

into Gv
i,2, etc. For each group Gv

i,j, denote the size of its smallest cluster as

hv,min
i,j and the size of its biggest cluster as hv,max

i,j .

Suppose we are considering a big bucket of v and a partial cluster Γ is in the

group j > 1 of the big bucket. We find its top (that is, the part of the cluster

that is outside of Tv) and reassign it to another partial cluster (that is no

bigger than Γ) with the same order in the previous group (i.e., group j − 1)

as the order of Γ in group j. The vertices that were originally covered by the

partial clusters in the last group are referred to as orphans.

We will first obtain a structure theorem and then come up with a dynamic

programming algorithm.

17

2.1.2 Structure Theorem for Trees

Recall we have assumed that the number of clusters in OPT is at least ϖ log n

for some large number ϖ. This assumption is crucial for our proof.

The steps of modifying OPT to a near-optimal solution (denoted as OPT′)

are largely the same as the ones in [18]. Let’s assume we randomly choose

clusters from OPT, denoted as C, with a probability of ε. After selecting

these clusters, we duplicate each chosen one and assign both duplicates of

each chosen cluster to one of the levels ℓ that it visits1, with equal probability.

These duplicated clusters are referred to as the extra clusters. We will bound

their total cost. The proof is very similar to the one in [18] and we only need

to show the part concerning the facility costs.

Lemma 1 The total cost of the extra clusters sampled is at most 4ε · opt

w.h.p.

Proof. Consider the parent edge e of some vertex v in the tree. Let ϕ(e)

denote the number of clusters using the edge e in OPT. Let ϕ′(e) denote the

number of sampled clusters using e. Considering we duplicated each sampled

cluster, 2ϕ′(e) corresponds to the total number of extra clusters using e in

OPT′. Let T and T ′ denote the number of clusters in OPT and sampled

clusters respectively. We have

opt′ = f · (|T |+ 2|T ′|) +
∑︂
e∈E

w(e) · (ϕ(e) + 2ϕ′(e))

where the cost of extra clusters is f · 2|T ′|+
∑︂
e∈E

w(e) · 2ϕ′(e). We can assume

ϕ(e) ≥ α log2 n/ε for every edge e that is used by some extra cluster, since

otherwise v does not have a big bucket and thus none of the extra clusters

needs to go there.

Using the proof in [18], we know ϕ′(e) ≤ 2ε · ϕ(e) with high probability.

Additionally, we know

E[|T ′|] = ε · |T | ≥ ε ·max
e∈E
{ϕ(e)} ≥ α log2 n ≥ 6 log n.

1If a cluster γ passes by a vertex of level ℓ, we say γ visits or crosses level ℓ.

18

Using Chernoff bound, we get

Pr[|T ′| > 2E[|T ′|]] ≤ e−2 logn =
1

n2
.

Thus |T ′| ≤ 2ε · |T | with high probability. We see that the total cost of these

extra clusters is, with high probability, at most

f · 2|T ′|+
∑︂
e∈E

w(e) · 2ϕ′(e) ≤ f · 2(2ε · |T |) +
∑︂
e∈E

w(e) · 2(2ε · ϕ(e))

= 4ε · f · |T |+ 4ε
∑︂
e∈E

w(e) · ϕ(e) = 4ε · opt.

We also use the following modified definitions and lemmata from [18]. They

apply to our problem as the proofs of the lemmata are almost identical.

Denote the vertices in level ℓ of T as Vℓ. Define the set Xℓ to comprise the

extra clusters assigned to level ℓ. For every vertex v ∈ Vℓ and its bucket

(v, bi), let Xv,i represent the extra clusters in Xℓ whose partial clusters inside

Tv has a size that falls within the range defined by bucket bi. For an extra

cluster γ ∈ Xv,i, it covers some partial cluster ζ ∈ Gv
i,g (which is without its

top). That is, the extra cluster γ only picks up demands at the levels ≥ ℓ and

acts as the top of ζ, in particular, this combined cluster picks up only those

demands of ζ’s vertices (which are all orphans).

Lemma 2 At any level ℓ, each vertex v ∈ Vℓ and its big buckets (v, bi) satisfy,

w.h.p. ⃓⃓
Xv,i

⃓⃓
≥ ε

δ log n
· nv,i.

Lemma 3 For all vertices v at level ℓ, their big buckets (v, bi) and partial clus-

ters in Gv
i,g ⊆ bi, we can make adjustments to the extra clusters present in Xv,i

without incurring any additional cost, and introduce some dummy demands

into Tv, if required, so that:

1. The partial clusters in Gv
i,g are now incorporated into some clusters in

Xv,i. (That is, the cities that were covered by some partial cluster in Gv
i,g

are picked up by some cluster in Xv,i.)
19

2. The modified partial clusters that cover the orphans (i.e., vertices in Gv
i,g)

have precisely the size of hv,max
i,g and all clusters remain within the size

limit of k.

3. For each modified partial cluster of Xv,i, its partial clusters at a vertex

v′ ∈ Vℓ′ is also of one of O
(︁
log k log2 n/ε2

)︁
many sizes, where ℓ′ is any

lower levels > ℓ.

Using the previous lemmata and an argument similar to the proof of Theorem 6

in [18], we can obtain a structure theorem for our UAR problem. Again, recall

the size of a cluster is the sum of the demands of its vertices.

Theorem 2 (Structure Theorem) Consider an instance I for the UAR prob-

lem. Denote its optimal solution as OPT, with cost opt. We can transform

OPT to another solution OPT′ so that with high probability OPT′ is a near-

optimal solution of cost at most (1+4ε)opt. Additionally, at every v in OPT′,

all the partial clusters in subtree Tv have one of O(log k log2 n/ε2) possible sizes.

Consider a bucket (v, bi) in OPT′. We must have

• If bi is small, the number of partial clusters in Tv whose size falls within

bi is at most α log2 n/ε.

• If bi is big, it has exactly g = 2δ log n/ε group sizes which are denoted as

σi ≤ hv,max
i,1 ≤ hv,max

i,2 ≤ · · · ≤ hv,max
i,g < σi+1

Each cluster in bi has a size of one of the h-values above.

2.1.3 Dynamic Programming for Trees

The subproblem here corresponds to the subtree Tv rooted at some vertex v,

whose cost is the railway cost of all the clusters (partial clusters and complete

ones), plus f times the number of complete clusters, and plus the cost of the

parent edge of v times the number of partial clusters (which will be using that

edge). That is, for a partial cluster spanning down from v, its cost is the sum

of the cost of all its edges, together with the cost of the parent edge of v. For

a complete cluster that includes v (we also say the cluster is independent or
20

stops growing), its cost does not include the cost of the parent edge of v but

its cost needs to include the facility opening cost f .

We will come up with a dynamic programming algorithm that finds a solution

with the properties stated in the structure theorem.

We adapt the definitions of the ones in [18]. Recall that τ is the total number

of threshold values. Also recall that the bucket (v, bi) stores the size of all

those clusters spanning κ vertices in Tv where σi ≤ κ < σi+1, and for all

1 ≤ i ≤ ⌈1/ε⌉ this interval degenerates to simply {i} (by the definition of the

threshold values).

Note that the total number of clusters is bounded by n (as each cluster needs

to cover at least one unit of demand), so is the number of clusters of some

subtree Tv. Throughout the algorithm, although we will add dummy/extra

demands, those are added within each cluster (hence already covered) so will

not result in an increase in the number of clusters.

For each vertex, we define a vector s ∈ [n]τ where si stores the cardinality of

its i-th bucket bi, for all 1 ≤ i ≤ τ . In particular, si is the precise number of

clusters of size i, if 1 ≤ i ≤ ⌈1/ε⌉.

Define ov to be the overall number of demands of all the vertices to be covered

in Tv. We know ov ≥ |V (Tv)| because we may add dummy demands at v.

Since we do not know if bi is small or big in advance, we also need the following

three vectors. In case bi is small (meaning its cardinality is bounded by ξ =

α log2 n/ε), all the sizes of the partial clusters therein are stored precisely,

with the help of a vector ti ∈ [n]ξ where tij stores the size of the j-th partial

cluster in bi. On the other hand, in case bi is big, there will be g = 2δ log n/ε

potential cluster sizes in bi, and we will store the information in the following

two vectors. Recall that hmax
i,j denotes the size of the maximum partial cluster

in group j of bi.

• hi ∈ [n]g is a vector that stores all those g cluster sizes, where hij = hmax
i,j .

• li ∈ [n]g is a vector storing the corresponding number of partial clusters

that are of one of the g sizes, with lij representing the number of partial

21

clusters picking up hmax
i,j demands (lij is also the cardinality of group j).

For a given triplet (tiv,h
i
v, l

i
v), it is impossible that none of them are zero

vectors. Since bi is either small or big, it must be the case that either only tiv

is equal to the zero vector, or the other two vectors are.

Moreover, we use the shorthand zv =
(︁(︁
t1v,h

1
v, l

1
v

)︁
,
(︁
t2v,h

2
v, l

2
v

)︁
, . . . , (tτv ,h

τ
v , l

τ
v)
)︁
.

Just like the vector zv is used for partial clusters, we define another vector z̃v
with the same structure as zv, except that z̃v is intended for storing information

on complete clusters in Tv. We define t̃
j

v, h̃
j

v, l̃
j

v similarly.

Denote yv to be a configuration/profile of clusters for v.

yv = (ov, sv, zv, z̃v) .

Each entry A[v,y] stores the cost of the cheapest solution to the subproblem

at v having its cluster profile in accordance with y, which consists of the cost

of all the partial and complete clusters spanning in Tv as well as the cost from

v’s parent edge e. Eventually, we compute minyr A[r,yr], where r is the root of

the entire tree T and yr cannot contain any partial clusters. By the definitions

of our data structures, it is easy to see the solution we constructed satisfies

the properties described in the structure theorem. Recall that we have shown

the existence of a near-optimal solution of cost opt′ ≤ (1 + 4ε)opt that has

such properties. Since our algorithm finds the cheapest solution with such

properties, it follows that this result corresponds to a solution of cost bounded

by opt′.

We calculate the table from the bottom up. Base cases: Any leaf v can only

have exactly ov = 1 demands as there cannot be any dummies generated at

this stage. If the number of demands picked up by the partial and independent

clusters in yv is ov = 1, then we set

A[v,yv]← w(e) · ψv + f · ϱv

where ϱv and ψv are the number of complete and partial clusters in yv, respec-

tively. Note that it can exclusively be the case that only one of ψv and ϱv is

one, and the other zero. If ψv = 0 and ϱv = 1, it means v is independent by its
22

own and does not need to use its parent edge, hence the cost is A[v,yv]← f .

On ther other hand, if ψv = 1 and ϱv = 0, it means v needs to use its parent

edge and belongs to a partial cluster, hence the cost is A[v,yv]← w(e).

For entry A[v,yv] where v is not a leaf, an auxiliary table B comes in handy.

Say v has ζ children u1, . . . , uζ . Assume the entries A[uj,y] have been com-

puted for all 1 ≤ j ≤ ζ and all possible vectors y. An entry in table B[v,yjv, j]

for each 1 ≤ j ≤ ζ stores the cost of the cheapest solution covering demands

of the vertices in Tu1 ∪ · · · ∪ Tuj ∪ {v} if yjv is the cluster profile for the union

of the first j subtrees as well as v. Equivalently, B[v,yjv, j] is what A[v,yv]

would be when v has its children uj+1, . . . , uζ discarded. Therefore, we set

A[v,yv]← B[v,yv, ζ].

For simplicity, assume the root node has a parent edge of zero cost. Suppose

Tui has oi demands, then the number of demands in Tv (that is, ov) would be

at least 1 +
k∑︂
i=1

oi. Now we describe the computation for the auxiliary table.

Consider j = 1. Then it is as if v has only the child vertex u1. Abbreviate yu1

as y′. Recall that e is the parent edge of v.

B[v,yjv, 1] = min
y′

{︁
A[u1,y

′] + w(e) · ψjv + f · (ϱjv − ϱ′)
}︁

where ψjv is the number of partial clusters in yjv, and ϱjv, ϱ
′ is the number of

complete clusters in yjv,y
′ respectively. Note that the difference of ϱjv and ϱ′

is the number of newly independent clusters.

In addition, we need the configuration y′ to be consistent with yjv. A configu-

ration y′ is consistent with yjv if each cluster γ from y′ is part of some cluster

γ̃ from yjv. That is, either γ is the same as γ̃, or γ̃ includes γ together with

some other dummy demand(s) at v.

For the case where 2 ≤ j ≤ ζ: Assume the entries B[v,y′, j − 1] and A[uj,y
′′]

have been computed for all possible configurations y′ and y′′. We define

B[v,yjv, j] = min
y′, y′′

{︁
B[v,y′, j − 1] +A[uj,y

′′] + w(e) · (ψjv − ψ′) + f · (ϱjv − ϱ′)
}︁

23

v

u1

Tu1

u2

Tu2

. . . uj−1

Tuj−1

uj

Tuj

Figure 2.2: The illustration for the inner DP. To be more precise, each subtree
Tui includes its root vertex ui.

where ϱjv, ϱ′ is the number of complete clusters in yjv,y
′ respectively, and ψjv, ψ′

is the number of partial clusters in yjv,y
′ respectively. Note that yjv,y′ and y′′

should be consistent. Informally, the configurations yjv,y′ and y′′ are consistent

if the clusters from y′ and y′′ can be combined or augmented to form the

clusters in yjv (as well as covering the dummy demands at v).

2.1.3.1 Consistency Check

Continue from the previous section, recall that v is a vertex with ζ children

u1, . . . , uζ and we have three configurations yjv,y
′,y′′ in question for entries

B[v,yjv, j] where 2 ≤ j ≤ ζ. We adapt the checking procedure in [18] to suit

our data structures. The following list is a recap of the meanings of these three

configurations.

1. yjv keeps track of clusters covering demands in {v} ∪
j⋃︂
i=1

Tui

2. y′ keeps track of clusters covering {v} ∪
j−1⋃︂
i=1

Tui

3. y′′ keeps track of clusters covering the single subtree Tuj

Given the three numbers of demands, ojv being the total demands of Tv with

24

the first j children (and subtrees), o∪ being the demands for the set of vertices

{v}∪
j−1⋃︂
i=1

Tui , and ouj being the demands for Tuj , it is obvious that the clusters

in yjv need to pick up ôjv = ojv − o∪ − ouj extra dummy demands at v. Each

cluster γv in yjv that spans down Tv picking up demands in subtrees Tu1 , . . . , Tuj
can take one of the following four forms.

1. γv only covers demands at v and not the ones from
j⋃︂
i=1

Tui .

2. γv covers demands at v as well as the ones from
j−1⋃︂
i=1

Tui .

3. γv covers demands at v as well as the ones from the subtree Tuj .

4. γv covers demands at v as well as the ones from
j⋃︂
i=1

Tui .

Denote a cluster exclusively covering demands from {v} ∪
j−1⋃︂
i=1

Tui as γ∪, and a

cluster exclusively covering demands from Tuj as γuj .

Let |γ| denote the number of demands the cluster γ picks up, that is, the sum

of demands on all vertices of γ.

Definition 10 We say configurations yjv,y
′ and y′′ are consistent if the fol-

lowing holds:

• Each cluster in y′ corresponds to a cluster in yjv.

• Each cluster in y′′ corresponds to a cluster in yjv.

• Each cluster in yjv has zero, one or two clusters that correspond to it.

If it has two then these two clusters must be one from y′, and the other

from y′′.

• If a cluster γv in yjv has only one cluster γ∪ that corresponds to it, then

γv covers |γv| − |γ∪| dummy demands at v.

• If a cluster γv in yjv has two clusters γ∪ from y′ and γuj from y′′ that

correspond to it, then γv covers |γv| − |γ∪| − |γuj | dummy demands at v.

• Clusters in yjv cover those ôjv = ojv − o∪ − ouj dummy demands at v.

By verifying consistency at each entry of the table, the clusters in the cur-

25

rent subtree will contain all the clusters of the corresponding subproblems

as well as cover all the dummy demands at the root of the current sub-

tree. To achieve this, we will define the consistency table C. Recall that

v’s cluster configuration is yv = (ov, sv, zv, z̃v) where the core information is

zv = ((t1v,h
1
v, l

1
v) , (t

2
v,h

2
v, l

2
v) , . . . , (t

τ
v ,h

τ
v , l

τ
v)) as well as z̃v, since all other vari-

ables in yv can be obtained through these two. Recall |γ| denotes the total

number of demands picked up by cluster γ. Define2

C[ôjv, (z
j
v, z

′, z′′), (z̃jv, z̃
′, z̃′′)] =

⎧⎪⎨⎪⎩
True if yjv,y′,y′′ are consistent and yjv

covers ôjv dummy demands at v
False otherwise

for each vertex v. Base case: trivially, C[0, (0,0,0), (0,0,0)] = True, since

in Tv we can cover zero units of demands with no clusters. Next, it examines

all potential ways of merging y′ with y′′ into yjv, including extending some

of the clusters in order to cover those ôjv dummy demands. In the following

expression, the notation z \ γ represents a new configuration that is obtained

by removing a cluster of size |γ| from z. This can be achieved by manipulating

vectors t’s and l’s. Define3

C
[︁
ôjv, (z

j
v, z

′, z′′), (z̃jv, z̃
′, z̃′′)

]︁
=

⋁︂
γv ∈ yjv, γ∪ ∈ z′, γuj ∈ z′′ :

|γv | = |γ∪|+|γuj |+ô

(Ω)

where the inside of the parentheses (Ω) should be

C
[︁
ôjv − ô, (zjv \ γv, z′ \ γ∪, z

′′ \ γuj), (z̃jv, z̃′, z̃′′)
]︁
∨ C

[︁
ôjv − ô, (zjv, z′ \ γ∪, z

′′ \ γuj), (z̃jv \ γv, z̃′, z̃′′)
]︁
.

The two entries above consider both of the scenarios where the cluster γv is

either partial or complete. Each examines whether the remaining clusters in

the (modified) profile yjv (that is defined by zjv and z̃jv) cover ôjv − ô dummy

demands at v or not.
2Recall we have only defined consistency on y. Besides, given z and z̃, we can always

compute the corresponding y.
3According to the third point in Definition 10, we know |γ∪| and |γuj

| are potentially
zero.

26

2.1.3.2 Algorithm Efficiency

Recall that we have assumed the height of the input tree to be logarithmic.

Following a very similar analysis as the one in [18], we know for each vertex

v ∈ V , there are

• O(nτ) = nO(log k/ε) = nO(logn/ε) different choices for sv.

• O(nα log2 n/ε) = nO(log2 n/ε) different choices for tiv.

• O(ng) = O(n2δ logn/ε) = nO(logn/ε) different choices for hiv and liv.

• nO(log2 n/ε)+O(logn/ε) = nO(log2 n/ε) different choices for (tiv,h
i
v, l

i
v).

•
∏︁τ

i=1 n
O(log2 n/ε) = nτ ·O(log2 n/ε) = nO(log k log2 n/ε2) choices for zv and z̃v.

• Thus, nO(log k log2 n/ε2) choices for yv.

By definition, to calculate an entry for table B, we generally need to consider

all possible y′ and y′′, which have the same number of different choices as

that of yv. Assuming the computation is from the bottom up, each entry of

B takes nO(log k log2 n/ε2) to compute. To fill the entire table of A and B, we

need to consider all vertex v ∈ V as well as its cluster profile yv, so it takes

nO(log k log2 n/ε2) in total.

Consider the consistency table C. A triplet (z, z′, z′′) has nO(log k log2 n/ε2) pos-

sibilities, so the table have nO(log k log2 n/ε2) entries. To compute each entry,

we need to consider all possible combinations of three clusters from y,y′,y′′

respectively. This has nO(log k log2 n/ε2) possibilities, since each cluster is either

from z or z̃. Therefore, the runtime to fill the entire table is nO(log k log2 n/ε2).

Given the time for calculating both the DP table and the consistency table

is in nO(log k log2 n/ε2), our algorithm has runtime nO(log k log2 n/ε2). Moreover, the

runtime is in nO(log3 n/ε2) as the capacity k satisfies k ≤ n. Thus the algorithm

is a QPTAS.

2.1.4 Solution for the Original Problem

Now we discuss how to get a solution for the UAR problem, and then how

to get a solution for the AR problem based on that. Using the DP from the

27

previous section, it is easy to adapt the algorithm so that we obtain a set T of

clusters/trees, which is essentially depicted by one of the cluster configurations

of the root vertex.

Consider a bipartite graph, denoted as G′, with two sets of vertices: B and

W . The set B consists of vertices representing trees (clusters) γ in T , while

the set W consists of vertices representing individual vertices v in the input

tree T = (V,E). In G′, each vertex γ ∈ B is connected by an edge to a vertex

v ∈ W if the vertex v ∈ V belongs to the cluster γ ∈ T .

γ1 γ2 γ3 . . . γ|T |

v1 v2 v3 . . . vn

B

W

Figure 2.3: An example bipartite graph G′ showing affiliations

Observe that, for every subset Λ of B, we have |Λ| ≤ |NG′(Λ)| where N

denotes the set of neighbours. This is because each cluster γ ∈ T must

possess at least one vertex, and therefore the cluster(s) represented by Λ ⊆ B

must possess at least |Λ| vertices (i.e. picking up their demands). It follows

that the number of neighbours of the set Λ in G′ must be at least |Λ|. Thus, by

Hall’s marriage theorem [15], we have a B-perfect/saturating matching. This

implies that we can assign an airport to every cluster in T such that every

cluster has a distinct airport, without increasing the cost (since the facility

cost f is already paid when every cluster becomes independent). This implies

that the solution T to the relaxed problem (UAR) can be transformed into a

feasible solution to the original problem with the same cost, which is at most

(1 + 4ε)opt.

28

2.2 On Graphs with Bounded Treewidth

2.2.1 Preliminaries

Given a graph G = (V,E) of treewidth ω, there is a tree decomposition4 T =

(V ′, E ′) of G where T is binary, with depth h ∈ O(log n) (where n = |V |) and

treewidth not exceeding ω′ = 3ω+2, according to Bodlaender and Hagerup [8].

For simplicity, denote ω′ as ω instead. We assume the tree height h = δ log n

for some constant δ > 0. For clarity, we refer to the vertices in T as bags, to

differentiate them from the vertices in G. For the notation β, we refer to it

as the name of the bag β ∈ V (T) as well as the corresponding set of vertices

β ⊆ V (G). For each bag β, denote the union of vertices in all of the bags in

the subtree Tβ as Cβ. Note that Cβ also denotes the set of all bags in Tβ.

Each vertex of G may appear in multiple bags of T as tree decomposition

generates duplicates. In order to make sure the demand of a vertex does

not get duplicated in T , for every vertex v ∈ V (G), we assume that the

copy/instance of v in the bag β̃ that is the closest to the root bag (we know

there is a unique one and we denote this copy of v as ṽ) has a demand of one,

and the rest of the copies of v (which resides in other bags) have demand zero.

Given an optimal solution denoted as OPT, we will demonstrate a process for

transforming it into a near-optimal solution and thereby show the existence of

such a near-optimal solution. This transformation occurs incrementally on T ,

moving from the bottom to the top, one level at a time. The solution before

modifying level ℓ is denoted as OPTℓ, and after the modification as OPTℓ−1.

To generalise the method we used previously for the case of trees, we generalise

the notations first. We adapted the definitions from [18]. Consider a bag β

that is situated at level ℓ.

Definition 11 For a bag β at level ℓ in T , consider the set b℘S

S which contains

the clusters that use exactly the set of vertices S ⊆ β to span into Cβ, where

℘S denotes a partition of the set S. Define the i-th bucket of b℘S

S , denoted
4See section 1.2.1 for its definition.

29

as bi, to store clusters in OPTℓ that have a size between [σi, σi+1) inside Cβ,

where σi is the i-th threshold value. Denote this bucket by a tuple (β, bi, S, ℘S).

Denote the number of clusters in bucket (β, bi, S, ℘S) as nS,℘S

β,i .

Essentially, the set S represents the interface that the clusters in the bucket

(β, bi, S, ℘S) use to attach to the rest of their parts in Cβ, and ℘S is a set that

describes the connectivity between the vertices of S in Cβ. That is, each part

in the partition ℘S specifies a subset of vertices of S that need to be connected

below. So if u, v ∈ S and there is some set P ∈ ℘S such that P ⊇ {u, v}, then

u and v need to be connected in Cβ by some cluster. For simplicity, we just

write ℘S as ℘.

Definition 12 A bucket b is said to be small if it contains no more than

α log2 n/ε clusters and is otherwise said to be big, for some constant α ≥
max{1, 20δ}.

Definition 13 For a big bucket (β, bi, S, ℘), define g groups where g = 2δ logn
ε

,

denoted as Gβ,S,℘
i,1 , Gβ,S,℘

i,2 , . . . , Gβ,S,℘
i,g . Sort the clusters in the padded bucket in

non-decreasing order, and put the first
nS,℘
β,i

g
clusters into Gβ,S,℘

i,1 , the second
nS,℘
β,i

g

into Gβ,S,℘
i,2 , etc. For each group Gβ,S,℘

i,j , denote the size of its smallest cluster

as hβ,S,℘,min
i,j and the size of its biggest cluster as hβ,S,℘,max

i,j .

We will use the approach for trees as in the previous sections, that is, we first

come up with a structure theorem that shows the existence of a near-optimal

solution with certain structures, and then provide a dynamic programming

algorithm for the UAR problem.

2.2.2 Structure Theorem for Graphs with Bounded Treewidth

Using the same way of picking and assigning extra clusters, we now prove

the following lemma. Recall f is the (uniform) facility opening cost, ε is the

probability each cluster γ in OPT is selected as the extra cluster, k is the

capacity of each cluster, and ω is the treewidth of G.
30

Lemma 4 The expected cost of the extra clusters sampled is 2ε · opt.

Proof. Consider an edge e in the input graph G. Let ϕ(e) denote the number

of clusters using the edge e in OPT. Let ϕ′(e) denote the number of sampled

clusters using e. Considering we have duplicated each sampled cluster, 2ϕ′(e)

corresponds to the total number of extra clusters using e in OPT′. Let T and

T ′ denote the number of clusters in OPT and sampled clusters respectively.

We have

opt′ = f · (|T |+ 2|T ′|) +
∑︂
e∈E

w(e) · (ϕ(e) + 2ϕ′(e))

where the cost of extra clusters is f · 2|T ′|+
∑︂
e∈E

w(e) · 2ϕ′(e).

Using the proof in [18], we know E[ϕ′(e)] = ε · ϕ(e).5

Additionally, we know

E[|T ′|] = ε · |T |

Thus we see that the expected total cost of these extra clusters is

E

[︄
f · 2|T ′|+

∑︂
e∈E

w(e) · 2ϕ′(e)

]︄
= 2f · E[|T ′|] +

∑︂
e∈E

w(e) · 2E[ϕ′(e)]

= 2f · (ε · |T |) +
∑︂
e∈E

w(e) · 2(ε · ϕ(e))

= 2ε

(︄
f · |T |+

∑︂
e∈E

w(e) · ϕ(e)

)︄
= 2ε · opt.

We make use of the following modified definitions and lemmata from [18].

They apply to our problem as the proofs of the lemmata are almost identical.

Denote the bags in level ℓ of T as Bℓ. Similar to what we did in the last section

where we discussed about the case of trees, define the set Xℓ to comprise the

extra clusters assigned to bags at level ℓ. For every bag β ∈ Bℓ and its bucket
5For the notations, ϕ(e) corresponds to f+(e) + f−(e) in [18], and ϕ′(e) corresponds to

m+(e) +m−(e).

31

(β, bi, S, ℘), let XS,℘
β,i represent the extra clusters (using vertices in S to span

into Cβ, with ℘ depicting connectivity downwards) in Xℓ whose partial clusters

inside Cβ has a size that falls within the range defined by bucket bi. For an

extra cluster γ ∈ XS,℘
β,i , it covers some partial cluster ζ ∈ Gβ,S,℘

i,g (which is

without its top). That is, the extra cluster γ only picks up demands at the

levels ≥ ℓ and acts as the top of ζ, in particular, this combined cluster picks

up only those demands of ζ’s vertices (which are all orphans).

Lemma 5 At any level ℓ, each bag β ∈ Bℓ and its big buckets (β, bi, S, ℘)

satisfy, w.h.p. ⃓⃓⃓
XS,℘
β,i

⃓⃓⃓
≥ ε2

δ log n
· nS,℘β,i .

Proof. The part before the union bound is very similar to the proof in [18].

That is, we know

Pr

[︃⃓⃓⃓
XS,℘
β,i

⃓⃓⃓
<

1

2
E
[︂⃓⃓⃓
XS,℘
β,i

⃓⃓⃓]︂]︃
≤ 1

n5
.

where

E
[︂⃓⃓⃓
XS,℘
β,i

⃓⃓⃓]︂
=

2ε

δ log n
· nS,℘β,i .

Note that in a bag β (as a set it satisfies |β| ≤ ω + 1), the number of set

of vertices through which the clusters span into Cβ (i.e., all possible S) is

O(2ω+1), for S ⊆ β (i.e. 2β ∋ S) has 2|β| ∈ O(2ω+1) possibilities. In addition,

given a set S with s = |S|, the set ℘ has Bs possibilities, where Bn denotes

the n-th Bell number. Note that the Bell numbers Bi are used to calculate the

number of all the possible partitions of a set of size i, defined in [5], [6]. For a

specific bag β, set S and partition ℘, the number of buckets (β, bi, S, ℘) is by

definition the same as the number of threshold values, which is τ ∈ O(log k/ε).
Since τ ∈ O(log n/ε) and there are in total O(ωn) bags in T , we know the

total number of buckets (β, bi, S, ℘) in T is O(ωn log n/ε · 2ω+1 ·Bω). Union

bound over every bucket (β, bi, S, ℘), we have∑︂
all (β, bi, S, ℘)

Pr

[︃⃓⃓⃓
XS,℘
β,i

⃓⃓⃓
<

1

2
E
[︂⃓⃓⃓
XS,℘
β,i

⃓⃓⃓]︂]︃
≤ O

(︃
1

n

)︃
.

32

Lemma 6 For all bags β at level ℓ in T , their big buckets (β, bi, S, ℘) and

partial clusters in Gβ,S,℘
i,g ⊆ bi, we can make adjustments to the extra clusters

present in XS,℘
β,i without incurring any additional cost, and introduce some

dummy demands within β when necessary, so that:

1. The partial clusters in Gβ,S,℘
i,g are now incorporated into some clusters in

XS,℘
β,i . (That is, all the demands that were covered by some partial cluster

in Gβ,S,℘
i,g are picked up by some cluster in XS,℘

β,i .)

2. The modified partial clusters that cover the orphans (i.e., vertices in

Gβ,S,℘
i,g) have precisely the size of hβ,S,℘,max

i,g and all clusters remain un-

derneath the size limit of k units of demand.

3. For each modified partial cluster in the set XS,℘
β,i , its partial clusters at a

bag β′ ∈ Bℓ′ is also of one of O
(︁
log k log2 n/ε2

)︁
many sizes, where ℓ′ is

any lower levels > ℓ.

Note that when we add dummy demands for some cluster γ in some bucket

(β, bi, S, ℘), we simply add these dummy demands onto the vertices in S. Using

these lemmata and a very similar proof to the one in [18], we can obtain a

Structure Theorem for our UAR problem in the case of graphs with bounded

treewidth.

Theorem 3 (Structure Theorem) Consider an instance I for the UAR prob-

lem. Denote its optimal solution as OPT, with cost opt. We can transform

OPT to another solution OPT′ so that, with high probability, OPT′ is a near-

optimal solution of cost at most (1+2ε)opt. Additionally, at every β in OPT′,

all the clusters in Cβ has one of O(log k log2 n/ε2) possible sizes. Consider a

bucket (β, bi, S, ℘) in OPT′. We must have

• If bi is small, the number of partial clusters in Cβ whose size falls within

bi is at most α log2 n/ε.

• If bi is big, it has exactly g = 2δ log n/ε group sizes which are denoted as

σi ≤ hβ,S,℘,max
i,1 ≤ hβ,S,℘,max

i,2 ≤ · · · ≤ hβ,S,℘,max
i,g < σi+1

Each cluster in bi has a size of one of the h-values above.
33

2.2.3 Dynamic Programming for Graphs of Bounded Treewidth

The subproblem here corresponds to the problem for Cβ which is rooted at

some bag β, whose cost is the railway cost of all the clusters (partial clusters

and complete ones), plus f times the number of complete clusters. Again, for

a complete cluster, we say it is independent or stops growing.

We will come up with a dynamic programming algorithm that finds a solution

with the properties stated in the previous Structure Theorem.

We adapt the definitions of the ones in [18]. Recall that τ is the total number

of threshold values. Also recall that the bucket (β, bi, S, ℘) stores all those

clusters spanning ζ demands in Cβ, using vertices in S ⊆ β to span into

Cβ and ℘ depicting downwards connectivity, where σi ≤ ζ < σi+1, and in

particular, for all 1 ≤ i ≤ ⌈1/ε⌉ this interval degenerates to simply the set {i},
by definition of the threshold values.

Note that initially, we have n demands, so the total number of clusters is

bounded by n. Throughout the algorithm, although we will add dummy/extra

demands, those are added within each cluster (hence already covered) and thus

will not result in any increase in the number of clusters.

For each bag β, set S ⊆ β and ℘, we define a vector mβ,S,℘ ∈ [n]τ where its

i-th component mβ,S,℘
i stores the cardinality of the bucket (β, bi, S, ℘), for all

1 ≤ i ≤ τ . In particular, mβ,S,℘
i is the precise number of clusters of size i, if

1 ≤ i ≤ ⌈1/ε⌉.

As each bag β contains at most ω + 1 vertices, define dβ ∈ [n]ω+1 to be a

vector storing the numbers of demands in β, where dβ,v represents the number

of demands to be covered at the vertex v ∈ β. Note that ∥dβ∥ =
∑︁

v∈β dβ,v.

In addition, let oβ represent the overall demands of every vertex in the bags

of Cβ. That is, oβ =
∑︁

β̃∈Cβ
∥dβ̃∥.

Since we do not know if a bucket (β, bi, S, ℘) is small or big in advance, we also

need the following three vectors. In case bi is small (meaning its cardinality

is bounded by ξ = α log2 n/ε), all the sizes of the partial clusters therein are

34

stored precisely, with the help of a vector tβ,S,℘,i ∈ [n]ξ where its j-th element

tβ,S,℘,ij stores the size of the j-th partial cluster in bi. On the other hand, in

case bi is big, there will be g = 2δ log n/ε potential cluster sizes in bi, and we

will store the information in the following two vectors. Recall that hβ,S,℘,max
i,j

represents the size of the maximum partial cluster in group j of bucket bi.

• hβ,S,℘,i ∈ [n]g is a vector that stores all those g cluster sizes, where

hβ,S,℘,ij = hβ,S,℘,max
i,j .

• lβ,S,℘,i ∈ [n]g is a vector storing the corresponding number of partial

clusters that are of one of the g sizes, with lβ,S,℘,ij representing the num-

ber of partial clusters picking up hβ,S,℘,max
i,j demands (which is also the

cardinality of Gβ,S,℘
i,j , that is, group j of the bucket).

For a given triplet
(︁
tβ,S,℘,i,hβ,S,℘,i, lβ,S,℘,i

)︁
, it is impossible that none of them

are zero vectors. Since bi is either small or big, it must be the case that either

only tβ,S,℘,i is equal to the zero vector, or the other two vectors are.

Moreover, we use the shorthand

zβ,S,℘ =
(︂(︁

tβ,S,℘,1,hβ,S,℘,1, lβ,S,℘,1
)︁
,
(︁
tβ,S,℘,2,hβ,S,℘,2, lβ,S,℘,2

)︁
, . . . ,

(︁
tβ,S,℘,τ ,hβ,S,℘,τ , lβ,S,℘,τ

)︁)︂
.

Just like the vector zβ,S,℘ is used for partial clusters, we define another vector

z̃β,S,℘ with the same structure as zβ,S,℘, except that z̃β,S,℘ is intended for storing

information on complete clusters that pick up demands at β using vertices in

S to span into Cβ with ℘ depicting downwards connectivity. We also define

t̃
β,S,℘,j

, h̃
β,S,℘,j

, l̃
β,S,℘,j

in a similar way.

To make the notations more compact, we define another shorthand

pβ,S,℘ =
(︁
mβ,S,℘, zβ,S,℘, z̃β,S,℘

)︁
.

Let pβ be the vector containing all the pβ,S,℘, i.e., pβ,S,℘ for all possible combi-

nation of the set S ⊆ β and its partition ℘. Note that there are O(2ω+1 ·Bω)

possibilities for such combinations of S and ℘.

Define yβ to be a configuration/profile of clusters in Cβ that involves bag β

yβ = (oβ,dβ,pβ) .

35

Each entry A[β,yβ] stores the cost of the cheapest solution to the subproblem

at β having its cluster profile in accordance with yβ, which consists of the

cost of all the partial and complete clusters spanning in Cβ. Eventually, we

compute minyr A[r,yr] to obtain the final answer, where r is the root bag of

the entire tree T and yr is a configuration that does not contain any partial

clusters. An argument similar to the one for the case of trees in the previous

section shows that this result corresponds to a solution of cost bounded by

opt′ ≤ (1+2ε)opt with other properties described in the structure theorem.

Within each bag β, if no edge is between two vertices v, w ∈ β then we simply

add an edge vw between them and assign it a cost that is equal to the cost of

the shortest path between v and w in G.

We calculate the table from the bottom up. Base cases: consider each leaf

bag β, roughly speaking, we will store the minimum cost of all the clusters’

edges, which lies between the vertices within β, together with the cost of all

the independent clusters, if any. Note that all these clusters need to pick up

oβ demands in total, and in more detail, pick them up in accordance with dβ.

The formal definition will be given later.

Note that we can ignore the case where β has only one child because we can

make all the non-leaf bagsϖ in T with only one child to have two children bags,

by adding another child bag which is trivially composed of some vertices in ϖ.

Given that T is binary, we can just focus on the case where a non-leaf bag β has

two children β1 and β2. If Cβ1 and Cβ2 have oβ1 and oβ2 demands respectively,

then Cβ has oβ = ∥dβ∥ + oβ1 + oβ2 . Given A[β1,yβ1] and A[β2,yβ2], we also

need to define the following two auxiliary tables. We explain their functions

here and define them formally later.

• The edge-cost table E[dβ,yβ,yβ1 ,yβ2] stores the cost of a set of chosen

edges which go between vertices from β and β1, also β and β2. Note that

these chosen edges merge some of the clusters in yβ1 and yβ2 to form

certain clusters in yβ.

• The Boolean consistency table H[dβ,yβ,yβ1 ,yβ2] checks if yβ,yβ1 ,yβ2

are consistent.

36

Note that if the configurations yβ,yβ1 and yβ2 are consistent, it means (infor-

mally) the clusters from yβ1 and yβ2 can be combined or augmented to form

the clusters in yβ (as well as picking up the dummy demands at the vertices

in β).

Recall that yβ = (oβ,dβ,pβ) where pβ,S,℘ =
(︁
mβ,S,℘, zβ,S,℘, z̃β,S,℘

)︁
. Thus from

yβ we can obtain the number of independent clusters in Cβ, which we denote

as ϱβ. We define

A[β,yβ] = min
yβ1

,yβ2
:

H[dβ ,yβ ,yβ1
,yβ2

]=True

{︁
A[β1,yβ1]+A[β2,yβ2]+f ·(ϱβ−ϱβ1−ϱβ2)+E[dβ,yβ,yβ1 ,yβ2]

}︁
.

The third term in the curly brackets is to account for the change in the cost

of independent clusters.

Now we can define the entries in the table for the leaves. For a leaf bag β, it

has no children so we set both yβ1 ,yβ2 to the zero vector. We define

A[β,yβ] = f · ϱβ + E[dβ,yβ,0,0].

where E[dβ,yβ,0,0] is the minimum railway cost for clusters in yβ, which pick

up demands in β in accordance with dβ.

2.2.3.1 Consistency Check

Continue the discussion from the previous section, recall that β is a non-leaf

bag with children β1, β2 and we have three configurations yβ,yβ1 ,yβ2 . We

adapt the checking procedure in [18] to suit our data structure. The following

list is a recap of the meanings of these three configurations.

• yβ keeps track of clusters covering demands of the vertices in Cβ =

{β} ∪ Cβ1 ∪ Cβ2 .
• yβ1 ,yβ2 keep track of clusters covering demands of the vertices in Cβ1 , Cβ2

respectively.

Denote a cluster from yβ,yβ1 ,yβ2 as γβ, γβ1 , γβ2 respectively. Recall we define

|γ| as the number of demands the cluster γ picks up. Each cluster γ in yβ that

spans down Cβ picking up demands in Cβ1 , Cβ2 can take one of the following

four forms.
37

1. γ only covers demands at β and not the ones from Cβ1 ∪ Cβ2 .
2. γ covers demands at β as well as the ones from Cβ1 .

3. γ covers demands at β as well as the ones from Cβ2 .

4. γ covers demands at β as well as the ones from Cβ1 ∪ Cβ2 .

v1 v2 v3 v4 v5

v1 v4 v7v5 v8 v1 v2 v4 v6 v9

β1 β2

β

Figure 2.4: An example showing a bag β with its two children bags β1 and β2

Definition 14 We say configurations yβ,yβ1 and yβ2 are consistent if the

following holds:

• Each cluster in yβ1 corresponds to a cluster in yβ.

• Each cluster in yβ2 corresponds to a cluster in yβ.

• Each cluster in yβ has at most 2ω+1 clusters that correspond to it, from

each of yβ1 and yβ2.

• Each cluster γβ in yβ has qβ1 clusters γ1β1 , γ
2
β1
, . . . , γ

qβ1
β1

from yβ1 and

qβ2 clusters γ1β2 , γ
2
β2
, . . . , γ

qβ2
β2

from yβ2 that correspond to it, where 0 ≤
qβ1 , qβ2 ≤ 2ω+1, with the help of a set Υγβ of edges between vertices in β,

β1 and β2 to patch them up to get γβ. Besides, γβ covers |γβ|−
qβ1∑︂
i=1

|γiβ1 |−

qβ2∑︂
j=1

|γjβ2| dummy demands within β.

• Clusters of yβ cover all demands at β in accordance with dβ.

Recall pβ is the vector containing all the pβ,S,℘, i.e., pβ,S,℘ for all possible com-

binations of S ⊆ β and its partition ℘, where pβ,S,℘ =
(︁
mβ,S,℘, zβ,S,℘, z̃β,S,℘

)︁
.

38

Recall |γ| denotes the total number of demands picked up by cluster γ. We

now use pβ as arguments for both of the auxiliary tables, instead of yβ. The

notation pβ \γβ represents a new configuration obtained by removing a cluster

of size |γβ| from pβ. This can be achieved by manipulating vectors t’s and l’s.

Now we define the Boolean consistency table H for each bag β.6

H[dβ,pβ,pβ1 ,pβ2] =

⎧⎪⎨⎪⎩
True if yβ,yβ1 ,yβ2 are consistent

and yβ covers dβ demands
False otherwise

Base case: trivially, H[0,0,0,0] = True, since we can cover zero units of

demands with no clusters. Next, it examines all potential ways of merging yβ1

with yβ2 into yβ, including extending some of the clusters in order to cover

those dβ dummy demands. Recall dβ ∈ [n]ω+1 is a vector storing the numbers

of demands in β, where dβ,v represents the number of demands to be covered

at v ∈ β. Define d
γβ
β ∈ [n]ω+1 to be a vector storing the numbers of demands

in β covered by γβ, where dγββ,v represents the number of demands covered at

the vertex v ∈ β by γβ. By definition, its L1-norm ∥dγββ ∥ =
∑︁

v∈β d
γβ
β,v is the

total number of demands in β covered by γβ.

According to Definition 14, we know it is necessary to check the existence of

subclusters γ1β1 , γ
2
β1
, . . . , γ

qβ1
β1

from yβ1 and γ1β2 , γ
2
β2
, . . . , γ

qβ2
β2

from yβ2 , as well

as a set of edges Υγβ for merging them. Besides, for every γβ, we need to

check each part of S (which corresponds to some element in ℘) that needs

to be connected is actually made into one part thanks to these subclusters.

Consider the downwards interface set Sγjβi
and the connectivity set ℘γjβi

of the

subclusters γjβi , for i = 1, j ∈ [1, qβ1] and i = 2, j ∈ [1, qβ2]. We need to check

whether the partition

℘′ =

⎛⎝ ⋃︂
1≤j≤qβ1

℘γjβ1

⎞⎠ ∪
⎛⎝ ⋃︂

1≤j′≤qβ2

℘
γj

′
β2

⎞⎠
matches ℘γβ , that is, to check whether the downward connectivity between

the vertices of Sγβ can be achieved by these subclusters. To be more precise,

if ℘γβ ∋ Ψ and Ψ ⊇ {u, v} (meaning the pair of vertices u, v ∈ β needs to be

6Recall we have only defined consistency on y. The notion of consistency works on p as
well since the omitted information oβ does not affect anything.

39

connected downwards), then there needs to be a set X such that X ⊇ {u, v}
and X ∈ ℘′. We denote this test as (†).

Define the recurrence relation of H as follows, where 0 ≤ qβ1 , qβ2 ≤ 2ω+1 and

the clusters γ1β1 , γ
2
β1
, . . . , γ

qβ1
β1
, γ1β2 , γ

2
β2
, . . . , γ

qβ2
β2

are a part of γβ.

H[dβ,pβ,pβ1 ,pβ2] =

⋁︂
γβ, γ

1
β1
, γ2β1 , . . . , γ

qβ1
β1
, γ1β2 , γ

2
β2
, . . . , γ

qβ2
β2
,d

γβ
β :

|γβ| =
qβ1∑︂
i=1

|γiβ1|+
qβ2∑︂
j=1

|γjβ2|+ ∥d
γβ
β ∥, and (†)

Ω

where the expression Ω should be

H
[︁
dβ − d

γβ
β , pβ \ γβ, pβ1 \ γ1β1 \ γ

2
β1
\ · · · \ γqβ1β1

, pβ2 \ γ1β2 \ γ
2
β2
\ · · · \ γqβ2β2

]︁
.

Recall 0 ≤ qβ1 , qβ2 ≤ 2ω+1. This is a shorthand way of expressing it, as it in fact

corresponds to the union of 2 entries of H and considers both the situations

where γβ is independent and where it is partial. That is, pβ \ γβ means two

possibilities where γβ is deleted from some z, or z̃ from pβ. This expression

above essentially examines whether the remaining clusters in the (modified)

profile yβ (which is defined by the new pβ) cover dβ − d
γβ
β demands in Cβ.

Recall the second auxiliary table E[dβ,pβ,pβ1 ,pβ2] is used to compute the

cheapest cost of edges between vertices from β and β1, also β and β2 to merge

the clusters at Cβ1 and Cβ2 in order to get clusters in pβ. Initially, we set every

entry of E to be +∞. An entry E[dβ,pβ,pβ1 ,pβ2] will be computed only if the

three corresponding configurations yβ,yβ1 ,yβ2 are consistent, that is, only if

H[dβ,pβ,pβ1 ,pβ2] = True. The base case is to trivially set E[0,0,0,0] = 0,

for it does not cost anything to conjoin zero cluster. For the recurrence, given

a cluster γβ from yβ, recall from Definition 14, we need to consider the clusters

γ1β1 , γ
2
β1
, . . . , γ

qβ1
β1

from yβ1 and γ1β2 , γ
2
β2
, . . . , γ

qβ2
β2

from yβ2 .

Besides, note that some of the partial clusters γ1β1 , γ
2
β1
, . . . , γ

qβ1
β1

from yβ1 may

have been connected in Cβ1 (the same may happen in Cβ2 for γ1β2 , γ
2
β2
, . . . , γ

qβ2
β2

from yβ2). Recall S is the set of vertices in bag β used by γ to extend into

lower levels of T . Again, we need to consider partitions of S into the form
40

of {S1, S2, . . . } where the partial clusters extending below using Si are all

connected for each i. We also consider a set of edges Υ℘
γβ

between the vertices

of bag β and vertices from β1 as well as vertices from β and vertices from

β2. Set Υ℘
γβ

is used to patch up the subclusters into a single one. We define

cost
(︂
Υ℘
γβ

)︂
=
∑︁

e∈Υ℘
γβ
cost(e).

We define, only for entries satisfying H[dβ,pβ,pβ1 ,pβ2] = True,

E[dβ,pβ,pβ1 ,pβ2] = min
γβ, γ

1
β1
, γ2β1 , . . . , γ

qβ1
β1
, γ1β2 , γ

2
β2
, . . . , γ

qβ2
β2
,d

γβ
β ,Υγβ :

|γβ| =
qβ1∑︂
i=1

|γiβ1|+
qβ2∑︂
j=1

|γjβ2|+ ∥d
γβ
β ∥,

γβ consists of γ1β1
, γ2β1

, . . . , γ
qβ1
β1

, γ1β2
, γ2β2

, . . . , γ
qβ2
β2

and edges in Υγβ

Θ

where Θ should be the expression{︂
cost

(︂
Υ℘
γβ

)︂
+E

[︂
dβ − d

γβ
β , pβ \ γβ, pβ1 \ γ1β1 \ γ

2
β1 \ · · · \ γ

qβ1
β1

, pβ2 \ γ1β2 \ γ
2
β2 \ · · · \ γ

qβ2
β2

]︂}︂
.

2.2.3.2 Algorithm Efficiency

We first discuss the runtime for table A and then we talk about E and H.

The runtime analysis is very similar to that in [18], so from the analysis

there, we see for a triplet of the form (tβ,S,℘,i,hβ,S,℘,i, lβ,S,℘,i), there exists

nO(log2 n/ε) possibilities. Since zβ,S,℘ contains τ ∈ O(log k/ε) such triplets, it

has nO(τ log2 n/ε) = nO(log k log2 n/ε2) possibilities. By definition of pβ,S,℘, we see

it also has nO(log k log2 n/ε2) possibilities. Given pβ contains O(2ω+1 ·Bω) many

pβ,S,℘, we know pβ has nO(2ω+1·Bω ·log k log2 n/ε2) possibilities. By definition of

yβ, it therefore also has nO(2ω+1·Bω ·log k log2 n/ε2) possibilities. The number of

possibilities is the same for yβ1 and yβ2 , so it takes nO(2ω+1·Bω ·log k log2 n/ε2) to

calculate the entries of table A[β, ·] for a single bag β (according to A’s recur-

rence), assuming the other tables E and H are already computed. The time

it takes to calculate the entries across all the bags in T is the same.

For a single entry of the table E[dβ,pβ,pβ1 ,pβ1], we need to consider ev-

ery possible combinations of
(︁
γβ, γ

1
β1
, γ2β1 , . . . , γ

qβ1
β1
, γ1β2 , γ

2
β2
, . . . , γ

qβ2
β2
,d

γβ
β ,Υγβ

)︁
,

41

which is nO(2ω+1), because the possibilities for all the clusters are nO(2ω+1), and

dβ has nO(ω) possibilities, also we know Υγβ has O(2ω2
) possibilities by defini-

tion. Since there are nO(2ω+1·Bω ·log k log2 n/ε2) possibilities for (dβ,pβ,pβ1 ,pβ1),

we know it takes nO(2ω+1·Bω ·log k log2 n/ε2) to compute the table E. From a similar

analysis, we conclude the same runtime for the consistency table H. There-

fore, our algorithm has a runtime of nO(2ω+1·Bω ·log k log2 n/ε2) = nO(2ω ·Bω ·log3 n/ε2),

since the facility capacity k satisfies k < n. According to the following lemma

by Berend and Tassa [7], the runtime is thus in nO((1.584ω)ω ·log3 n/(ε2 logω ω)).

Lemma 7 (Theorem 2.1 in [7]) The Bell numbers satisfy

Bn <

(︃
0.792n

ln(n+ 1)

)︃n
, ∀n ∈ N+.

2.2.4 Solution for the Original Problem

We use the same method as the one described in the previous section (where

we talked about the case of trees) to transform the solution obtained (that is,

to the UAR problem) into a solution to the AR problem, without any increase

in the cost.

2.2.5 Generalisation for AR with Steiner Vertices

Assume the input graph is G = (V,E). In this section, we describe how we

can easily generalise the algorithm above to suit the case where Steiner nodes

may exist, and more generally, the set of cities/clients or the set of potential

airports/facilities may not be V . This is useful for future extensions of this

algorithm to other graph metrics. First observe that a Steiner vertex (or more

generally, if this vertex is not in the set of cities) should not have a demand

initially (but can be assigned with dummy demands), and the same applies

to all of its copies in the tree decomposition. Additionally, a Steiner vertex

(or more generally, if this vertex is not in the set of potential airports) should

not be opened as an airport. We add these requirements into the consistency

check of the algorithm. The runtime of the algorithm is asymptotically the

same as the one above.
42

2.3 Constant-factor for General Metric

We assume we are given a complete metric graph G = (V,E). Note that for

simplicity, we write k − 1 as k (the capacity of each airport) below. We first

define a modified instance G̃ for each input graph G. The graph G̃ is obtained

by adding a dummy node δ to G and connecting δ to all the vertices v ∈ V
with an edge of cost cvδ = f (the facility opening cost). We first define the

MSTχ
δ problem and prove the following lower bound.

Definition 15 In the MSTχ
δ problem, we are given a graph G = (V,E) where

V ∋ δ. The task is to find the minimal cost of the spanning tree of the input

graph, while ensuring that the degree of the vertex δ in the solution is χ.

Lemma 8 The cost of an optimal solution to the MSTχ
δ problem on G̃ is a

lower bound on the optimal solution to AR on G.

Proof. Consider an optimal solution ξ to AR on G. Say there are χ compo-

nents in ξ. After adding into ξ a dummy node δ and connecting δ to vertices

that are open facilities with an edge of cost f , we obtain a spanning tree T

for G̃ of the same cost, where the vertex δ has a degree of χ. That is, this is

a feasible solution to MSTχ
δ . Therefore, an optimal solution to MSTχ

δ on G̃

cannot cost more than the optimal solution to AR on G.

2.3.1 Algorithm for AR in General Metric

First we guess the number of components in the optimal solution. We do this

by enumerating all possibilities. Say there are χ components in the optimal

solution for some integer χ ≤ n. Note that we know χ ≥
⌈︁
n
k

⌉︁
for certain, as

otherwise there must exist some cities that are not getting served.

Our algorithm is as follows:

• Construct the instance G̃. Solve the MSTχ
δ problem on instance G̃. After

removing the dummy vertex δ, we obtain a set T = {T1, T2, . . . Tχ} of χ

connected components (i.e. trees).
43

v1

v2

v3

v4

v5
v6

v7

v8

v9

v10

v11

v12

v4

v5 v9

(a) An example showing three trees each having a facility drawn in
green. This is the solution to AR on G.

v1

v2

v3

v4

v5
v6

v7

v8

v9

v10

v11

v12

δ

(b) This shows in red the changes added to G in order to generate
G̃. The dummy node δ (red) connects to every vertex in G. Each
of these red edges costs f .

v1

v2

v3

v4

v5
v6

v7

v8

v9

v10

v11

v12

δ

v4

v5 v9

(c) This shows the spanning tree T in G̃ created based on the afore-
mentioned solution to AR on G.

Figure 2.5: Illustrations for proof of Lemma 8

44

– Note that we solve the MSTχ
δ problem using the technique of ma-

troid intersection. Let M1 = (Ẽ, I1) represent the graphic matroid

of G̃, where the ground set Ẽ is the set of edges in G̃, and the

set of independent sets I1 consists of acyclic subgraphs of G̃. Let

M2 = (Ẽ, I2) denote the partition matroid, where the set of in-

dependent sets I2 is defined as follows, where ∆ represents all the

edges incident to the vertex δ and Ṽ is the vertex set of G̃,

I2 =
{︂
S ⊆ Ẽ

⃓⃓⃓
|S ∩∆| ≤ χ, |S ∩ (Ẽ \∆)| ≤ |Ṽ | − 1− χ

}︂
.

Note that a feasible solution to MSTχ
δ is an independent set of both

matroids. The underlying graph must form a spanning tree, so it is

an independent set of M1. The set of edges must satisfy the degree

requirement for vertex δ, so it is an independent set of M2.

• For each connected component Ti ∈ T , we obtain a cycle Ci in the

following way: double the edges of Ti and trace them while short-cutting

whenever we encounter a vertex that has been visited.

• We cut each cycle Ci into a set of disjoint subpaths of fixed length k,

except for at most one subpath per cycle that is strictly shorter than k.

Essentially, we have transformed the trees in T into a set of paths. Let

Pk denote the set of paths with length exactly k. For each path in Pk,

we simply open one of its cities as an airport.

– Note that |Pk| ≤
⌊︁
n
k

⌋︁
since there are at most n vertices (other than

the vertex δ) in the graph. In addition, as we know χ ≥
⌈︁
n
k

⌉︁
, we

have |Pk| ≤
⌊︁
n
k

⌋︁
≤
⌈︁
n
k

⌉︁
≤ χ. Consequently, the cost of opening

these |Pk| airports is |Pk| · f ≤ χ · f .

– For those subpaths of length less than k, we simply open one of

its vertices as the facility. Note that since there are |T | = χ trees

Ti (hence there are χ corresponding cycles Ci), we have at most χ

such short subpaths. The current cost is bounded by twice the edge

cost of all the trees in T , as well as the facility cost of all these

subpaths, which is at most f · χ + |Pk| · f ≤ 2χ · f . Meanwhile,

the cost of the MSTχ
δ solution is the edge cost of all the trees in T ,

plus the cost of incident edges of δ in the solution, which is f · χ.
45

Thus, it is obvious that the cost is no more than twice the cost of

the MSTχ
δ solution.

From the analysis above, we conclude with the following theorem.

Theorem 4 This algorithm is a 2-approximation.

46

Chapter 3

AR with Nonuniform Airport
Costs

3.1 Preliminaries

In AR with non-uniform airport cost, unlike the previous chapter, each vertex

ν has a potentially distinct opening cost aν .

A relaxation of the problem, called Relaxed AR (denoted as AR′, also

known as Edge-Capacitated Capacitated Facility Location problem (Edge-

Capacitated CFL)), has been defined by Adamaszek et al. [3]. Informally,

AR and AR′ differ in that each connected component χ in a feasible solution

to AR′ is allowed to have more than one airport (denote Φχ as the set of air-

ports in χ), and each edge in the input graph can be chosen multiple times,

that is, the solution is allowed to contain numerous copies of any of the edges.

Additionally, each connected component χ ensures the routing of demands of

all its cities/clients to the airports in Φχ, with each airport having a capacity

of k cities, and each copy of an edge also having a capacity of k demands.

As pointed out by Adamaszek et al. [3], it is obvious that, in each connected

component χ, we can build a flow network Fχ (aka transportation network)

that depicts how the demands of the cities are transported to Φχ. That is,

consider taking an instance I of AR′, along with its solution ∆. There exists

a feasible flow denoted as F∆ that corresponds to the solution ∆. The flow

F∆ is essentially an assignment/mapping of all the cities to all the airports,

47

including the paths that connect each city to the airport that serves it, in

accordance with the solution ∆.

Definition 16 (Relaxed AR (i.e. AR′) from [3]) Given a graph G = (V,E)

where each vertex v ∈ V has a non-negative opening cost av and each edge e ∈
E has a non-negative weight ce. Every edge and vertex has capacity k ∈ N+.

Find a subset of vertices Φ ⊆ V as facilities (also known as airports), and

a multiset Ξ of edges from E to get a transportation network that ensures

one unit of flow from each vertex in V can be sent to facilities in Φ, without

violating the capacity constraint on any edge or facility. The goal is to find

such a network while minimising the total cost∑︂
v∈Φ

av +
∑︂
e∈Ξ

ce.

Adamaszek et al. [3] have shown that if one has an α-approximation for the

Relaxed AR, then one can obtain a
(︁
2 + k

k−1

)︁
· α-approximation for AR,

through the procedure described in [3].

Adamaszek et al. [3] have proposed a DP-based QPTAS algorithm for the case

of Euclidean planes (R2). We modify their DP algorithm for the cases of trees

and graphs of bounded treewidth. In each case, we use the algorithm to find

the optimal solution to AR′, and then use the aforementioned procedure to

obtain a solution to AR. The following assumption of uncrossing flows holds

in these cases.

α1

vι

vj

α2

Figure 3.1: A simplest example of crossing flows in AR′. The red vertices are
open facilities.

Lemma 9 (Uncrossing Flows) One can assume there are not any flows of

opposite directions on the same edge, as we can uncross them by redirecting

each flow and attain a lower cost.
48

Note that it is allowed for multiple clients to use the same edge to send their

demands in the same direction.

Proof.

v′ u w υ

α1

α2

path

pa
th

pa
th

path

Figure 3.2: The crossing flow is at the edge uw

WLOG, assume the vertices v′ and υ caused crossing flow at edge uw. That

is, the demand of v′ travels from v′ to u, crosses the edge uw from u to w,

and from w to a facility α2; and the demand of υ travels from υ to w, crosses

the edge uw from w to u, and from u to a facility α1. We can reroute so that

the demand of v′ travels from v′ to u, and then from u to the facility α1; and

similarly, the demand of υ travels from υ to w, and then from w to the facility

α2. It is easy to see such a rerouting makes the total cost decrease, for the

demands of both vertices v′ and υ now take a shorter path to be served.

3.2 Exact Algorithm for AR′ on Trees

Consider a tree T as the input graph. A subproblem here is defined on the

subtree Tv for each vertex v. Since we aim to obtain a flow network in T ,

each vertex v, as the root of the subtree Tv, will be considered a portal in

the corresponding subproblem. There is thus a DP cell for each vertex v in

T . Note that at each vertex v, the portal configuration ψv simplifies to the

direction and value of the flow at v

ψv = ±fv

where we use − (minus sign) to signify the flow is leaving Tv, and + (plus sign)

to signify the flow is entering Tv. fv is the absolute value of the signed integer
49

ψv and denotes the value of the unidirectional (integral) flow passing through

the vertex v and satisfies 0 ≤ fv ≤ n, where n is the number of vertices in T .

Note that in AR′, if an edge needs to carry a flow fv, then we need to install⌈︁
fv
k

⌉︁
parallel edges in the solution. At each vertex v, we also consider both

of the scenarios where v is an airport or it is not. We use a Boolean variable

πυ = True (or πυ = 1) to indicate that the portal υ is opened as an airport.

We define the DP table D as follows, for each v in T , let the entry D[v, πv, ψv]

store the cost of the optimal solution to AR′ on Tv with the amount of flow

going in/out of Tv conforming to ψv, with portal v opened as an airport if and

only if πv.

At each node, we also consider its parent edge and see it as part of the subtree

Tv. For the root node ϑ, we assume its parent edge has cost 0. The result will

be minπϑ{D[ϑ, πϑ, ψϑ = 0]} as there will be no flow entering or leaving T at

the root.

Base cases: At a leaf node v, denote the parent edge of v as e. Recall fv = |ψv|.

D[v, πv, ψv] = av · πv +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ce if ψv = −1

ce ·
⌈︃
fv
k

⌉︃
if 0 ≤ ψv < +k and πv = 1

+∞ otherwise

Here ψv = −1 means there is one unit of flow going out of the leaf v (actually

does not need to open a facility at v). If 0 ≤ ψv < +k, it means v does not emit

any flow or it is absorbing flows, then we have to make sure πv = True. Note

that in this case,
⌈︁
fv
k

⌉︁
= 1 when 0 < ψv < +k, and

⌈︁
fv
k

⌉︁
= 0 when ψv = 0. If

ψv ≥ +k then we know it is not achievable, since a facility has capacity k and

cannot absorb more flows. If ψv < −1 then it is simply impossible, as a vertex

only has one unit of demand and cannot emit more than that. For these cases,

we set the entry to +∞.

For a node v with z children w1, w2, . . . , wz, similar to the case of uniform

facility cost on trees in the previous chapter, we define an inner DP table B.

Assume we have computed D[wj, πwj
, ψwj

] for all possible πwj
and ψwj

, for all

1 ≤ j ≤ z. Let B[v, πjv, ψ
j
v, j] store the cost of the optimal solution to AR′

50

on Tv as if the portal v only has children w1, w2, . . . , wj. Lastly, we define

D[v, πv, ψv] = B[v, πv, ψv, z].

Case 1: j = 1. Only consider the first child of v.

B[v, π1
v , ψ

1
v , 1] = min

ψw1

{︄
D[w1, πw1 , ψw1] + av · π1

v + ce ·
⌈︃
f 1
v

k

⌉︃ ⃓⃓⃓⃓
⃓ η(π1

v , ψ
1
v , ψw1) = True

}︄

where η(π1
v , ψ

1
v , ψw1) is a Boolean indicator function that takes into account

the flow on v’s parent edge and the edge vw1, as well as the decision about

whether or not to open the portal v as an airport. It is true if and only if all

these parameters are compatible. Recall that fv is the absolute value of ψv.

η(π1
v , ψ

1
v , ψw1) =

⎧⎪⎨⎪⎩
True if 0 ≤ ψ1

v − ψw1 < k ∧ π1
v = True,

or if ψw1 − ψ1
v = 1

False otherwise

The case ψw1 − ψ1
v = 1 means that v does not act like an airport as it is

not absorbing any flow, and is sending its own demand elsewhere (hence not

necessary to open an airport there).

v

w1

−µ

−(µ+ 1)

(a) Portal v is sending its demand
outside Tv

v

w1

+(ζ + 1)

+ζ

(b) Portal v is sending its demand
into Tw1

Figure 3.3: Here µ and ζ are non-negative integers. The label on edge vw1

represents ψw1 and the label above v stands for ψ1
v .

The case 0 ≤ ψ1
v − ψw1 < k means the portal v is absorbing flows and v must

be opened as an airport. The other cases are impossible, either because v

is absorbing too much flow which violates its capacity limit, or because v is

sending out more than one unit of flow.

51

Case 2: For 2 ≤ j ≤ z. Assume we have computed all entries of the form

B[v, πj−1
v , ψj−1

v , j − 1].

We define

B[v, πjv, ψ
j
v, j] = min

πwj ,π
j−1
v ,ψwj ,ψ

j−1
v :

πjv ≥ πj−1
v ,

η
(︁
πjv, ψ

j
v, ψ

j−1
v , ψwj

)︁
= True

(Ω)

The expression Ω should be{︃
D[wj, πwj

, ψwj
] +B[v, πj−1

v , ψj−1
v , j − 1] + av ·

(︁
πjv − πj−1

v

)︁
+ ce ·

⌈︃
f jv − f j−1

v

k

⌉︃}︃
where we define the indicator function η as follows

η(πjv, ψ
j
v, ψ

j−1
v , ψwj

) =

⎧⎪⎨⎪⎩
True if 0 < ψjv − (ψj−1

v + ψwj
) ≤ k ∧ πjv = True,

or if ψj−1
v + ψwj

= ψjv
False otherwise

Let e denote v’s parent edge. The case ψj−1
v + ψwj

= ψjv means that after

taking wj (the j-th child of v) into consideration, the flow on e whilst only

considering the first j − 1 children (which is ψj−1
v), and the flow on the edge

vwj adds up to the flow on e while considering all the j children (which is ψjv).

This means the portal v is not absorbing any of the flow from Twj
, and thus

there is no need to open it as an airport if it has not been opened. The case

0 < ψjv− (ψj−1
v +ψwj

) ≤ k means after taking wj into consideration, the portal

v is absorbing flows and needs to be opened, if it has not been opened.

Note that
⌈︂
fjv−fj−1

v

k

⌉︂
can be negative if f jv < f j−1

v , which means the “load” on

the parent edge of v has decreased and we pay less on the edge cost.

This exact algorithm on trees suggests we have an O(log n)-approximation

algorithm for the general metric (using metric approximation, also known as

embeddings by tree metrics).

3.2.1 Algorithm Efficiency

We will use a bottom-up approach, assuming that the relevant entries for

subproblems have already been pre-computed. At any step, checking the value

52

for the indicator function η takes O(1) time. To compute B[v, πjv, ψ
j
v, j], we

need to consider all possible ψwj
and ψj−1

v , which is in total O(n2) possibilities.

Since there are n nodes in the tree, the time for computing the table D is in

O(n4).

3.3 AR′ on Graphs with Bounded Treewidth

As in the case of uniform opening cost, given an input graph G = (V,E) of

treewidth ω, we can assume there is a tree decomposition T = (V ′, E ′) of G

that is binary, with depth O(log |V |) and treewidth no bigger than ω̃ = 3ω+2,

according to Bodlaender and Hagerup [8]. For simplicity, we write ω̃ as ω.

Recall that we refer to the vertices in T as bags, to differentiate them from

the vertices in G. For each bag β, denote the union of bags in the subtree Tβ
as Cβ. For the notation bag β, we refer to it as the name of the bag in T as

well as the corresponding set of vertices in G.

Consider any two adjacent bags β1, β2 in T . The coherent set of the two bags

is defined as the intersection of the two sets, β1∩β2, a nonempty set containing

the vertices of a vertex-cutset in G. Thus, while considering any bag β (other

than the root bag) in T , we can first obtain the intersection of β and β’s parent

bag, and use the vertices in the intersection as portals. So when a flow in T is

“jumping” to another bag, it would cost nothing as it is essentially at the same

portal, before the flow goes elsewhere. This way we can ensure the railway

cost would only arise inside each bag.

Recall that a vertex of G can potentially show up in many bags of T , we thus

assume that for any vertex v ∈ V (G), the copy of v in the bag β̃ that is the

closest to the root bag (we know there exists such a unique one) has a demand

of one, and the rest of the copies of v (in other bags) have demand zero. We

denote the vertex v in its corresponding closest-to-the-root bag β̃ as ṽ. Note

that, in the perspective of the flow network, if ṽ is not a facility then it is a

source emitting one unit of demand. In addition, if v is to be opened as a

facility, only the copy of v in the bag β̃ (that is, ṽ) will be opened. In this

53

case, ṽ is a sink of capacity k. Note that if a portal p is not p̃, then it can be

neither a source nor a sink.

For each bag β, we define a vector Πβ where its v-th component Πv
β is a Boolean

variable saying whether the vertex v ∈ β is opened as an airport. The portal

configuration Ψβ of a bag β will include three signed integers
(︂
ϕpβ0 , ϕpβ1 , ϕpβ2

)︂
for each portal p ∈ β, indicating the amounts and the directions of the demands

going in or out of it. Note that we need three such values because the portal

p may send flows to (or receive flows from) some other copies of the vertex p

in β’s parent bag β0 (denote this copy of p as pβ0) or in β’s two children bags

β1 and β2 (denote these copies of p as pβ1 and pβ2). If p does not have some

of these copies (i.e. pβ0 , pβ1 and pβ2) then the corresponding directed values

of it are simply set to 0. For a directed value ϕpβi = ±fpβi of a portal p ∈ β,

fpβi represents the value of the flow, and “+” means going into p ∈ β from the

copy pβi ∈ βi whereas “−” means coming out of p to the copy pβi .

v0 v1 v4 v5 v10

v1 ṽ2ṽ3v4 v5

v1 v4 ṽ7v5 ṽ8 v1 v2v4ṽ6 ṽ9

β0

β1 β2

β

Figure 3.4: An example showing a bag β with its two children bags β1 and β2,
and its parent bag β0. These are the three adjacent bags of β in the tree T .
The inter-bag edges in T only connect between copies of the same vertices.

54

We have a DP cell D[β,Πβ,Ψβ] for each bag β, its portal configuration Ψβ, and

the facilities to be opened within β given by Πβ. We let the entry D[β,Πβ,Ψβ]

store the cost of the optimal solution to AR′ on the induced subgraph G[Cβ],

where the vertices in bag β conform to the portal configuration Ψβ, and are

opened as airports according to Πβ. The notation G[Cβ] denotes the subgraph

of G on the vertex set Cβ. Essentially, the copy of a vertex v in bag β has

signed values the same as Ψv
β =

(︂
ϕvβ0 , ϕvβ1 , ϕvβ2

)︂
, that is, the copy v ∈ β

sends/receives ϕvβi ∈ [−n,+n] units of flow to the copy vβi ∈ βi for i = 0, 1, 2.

A vertex v ∈ β is opened as an airport only if Πv
β = True. We will discuss

about consistency check later.

The final result would be minΠθ,Ψθ
{D[θ,Πθ,Ψθ]} where θ is the root bag of T ,

with ϕpθ0 set to 0 for every vertex p ∈ θ as the parent bag θ0 does not exist.

In the base case, we consider the leaf bags of T . For a leaf bag β, ϕpβ1 and

ϕpβ2 need to be 0 for every vertex p ∈ β, as the children bags β1 and β2 do

not exist. For a leaf bag β, its portals are simply the vertices in the coherent

set of β and β0, i.e. β’s parent bag. So if there is a vertex v ∈ β such that

ϕvβ0 ̸= 0 then the entry D[β,Πβ,Ψβ] should be set to infinity and we call the

entry invalid, for v does not have a copy in bag b0 and thus is not a portal.

Furthermore, let us consider the edge cost. To do this, we need to define a

flow network. If a vertex v ∈ β is actually ṽ, then it has a demand 1 and

is a potential facility. On the other hand, if a vertex v ∈ β is not ṽ and

Πv
β = True, then the entry D[β,Πβ,Ψβ] is invalid, as we can only open the

copy ṽ as an airport. In the perspective within bag β, each portal p can be

a source or sink depending on Ψp
β =

(︂
ϕpβ0 , ϕpβ1 , ϕpβ2

)︂
. For instance, if vertex

v ∈ β receives x units of flow outside of leaf bag β (i.e. we have ϕvβ0 = +x),

then inside bag β, it must be a source of x + 1 units of flow, where the extra

one unit is its own demand. This is called a source portal for bag β. A sink

portal is defined similarly.

As in the case of trees, whether or not ṽ is opened as a facility, it has one

unit of flow to be sent to an airport or a sink portal. When ṽ is opened, it

is capable of absorbing k units of flow. On the other hand, if v is not ṽ or a

55

sink/source portal, then it is neither a source nor a sink inside β. For each of

these ṽ’s in the bag β, the Boolean variable Πv
β depicts whether it is opened or

not opened. From a portal configuration Ψβ, we are given the portals together

with the information of the flows going through them, we can compute the

min-cost flow Fβ(Πβ,Ψβ) in β. For each Πβ and Ψβ, we store the cost of the

flow Fβ(Πβ,Ψβ), plus the cost of the opened facilities into D[β,Πβ,Ψβ]. If

there is no valid flow given Ψβ, or some copy v ̸= ṽ is opened by vector Πβ,

then we set D[β,Πβ,Ψβ] to +∞. The situations leading to an invalid flow are

similar to the case of trees discussed in the previous section.

Since we assume that T is binary, we can make sure that a non-leaf bag β has

two children β1 and β2. The portals of β are the union of the coherent sets of

β and β’s parent bag β0, that of β and β1, and that of β and β2. We calculate

the min-cost flow Fβ(Πβ,Ψβ) in β according to Πβ and Ψβ, the same way as

the base case. Let λ(β,Πβ,Ψβ) denote the sum of the cost of the flow network

Fβ(Πβ,Ψβ), and the cost of the airports opened by Πβ. Define

D[β,Πβ, ψβ] = λ(β,Πβ,Ψβ) +D[β1,Πβ1 ,Ψβ1] +D[β2,Πβ2 ,Ψβ2]

where Ψβ, Ψβ1 and Ψβ2 are compatible. We say a pair of portal configurations

Ψβ and Ψβi are compatible if the configurations of all the portals (i.e., all the

vertices in the coherent set of β and βi) therein can match up with those of

their copies. For instance, if the vertex p ∈ β has ϕpβ1 = +f then at the copy

pβ1 ∈ β1 we must have ϕp = −f .

p· · · · · ·

p · · ·· · · β1

β

f

Figure 3.5: We need to check if the number of units being sent and received
matches up on each of the inter-bag edges. The illustration shows an inter-bag
edge “carrying” f units of demands coming from the copy pβ1 ∈ β1 to p ∈ β.

For consistency check, as mentioned above, at each bag, we check if the flow
56

is valid and if the portal configurations between the current bag and its child

(or two children) match.

Note that we do not need to worry about the decisions on opening airports at

each bag contradicting each other, since only one copy of each vertex v ∈ V ,

namely the copy ṽ, can be opened as an airport, and such a copy only exists

in one of the bags.

3.3.1 Algorithm Efficiency

For each bag β, there are O(2ω+1) possibilities for Πβ and nO(ω) possibilities

for Ψβ. Assume we calculate the table from the bottom up. For each entry of

D, it needs to do the consistency check and then find the min-cost flow, which

takes O(ω3). Thus, the runtime to fill the table is in nO(ω)2O(ω) = (2n)O(ω).

3.3.2 Generalisation for AR with Steiner Vertices

In this section, we describe how the algorithm above can be generalised for AR

with Steiner vertices with a few modifications. More generally, this algorithm

can apply to the case where the set of facilities or the set of clients is not the

same as the entire vertex set of the input graph. If a vertex v is not part of the

set of facilities, it should not be opened as a facility (after all, no facility cost

has been defined for it). So the Π-vector should not allow any copy of v to be

opened. If a vertex v is not part of the set of clients, it carries no demand,

and so does any of its copies in the tree decomposition.

Note that this will be useful for the following sections where we extend the

algorithm to other graph metrics where the host graph of the input graph (via

graph embedding) may have Steiner vertices.

3.4 Extension to Other Metrics

For the AR′ problem, we follow a similar procedure as the one used by

Jayaprakash and Salavatipour [18] to show we can make use of our algo-

57

rithm for graphs with bounded treewidth to obtain a QPTAS for graphs of

bounded doubling metrics, graphs of bounded highway dimension, and minor-

free graphs. In each of these graph metrics, the QPTAS obtained for AR′ im-

plies a constant quasi-polynomial-time approximation algorithm for AR with

non-uniform airport cost.

3.4.1 Embedding Lemma for AR′

First, we introduce the concept of a probabilistic embedding ϕ : G→ H with

distortion (1+ ε). This means for any pair of vertices v1, v2 in the input graph

G, we have, on expectation, the distance between them in H will be at least

their original distance in G, but will be upper-bounded by a factor of (1 + ε),

i.e.

dG(v1, v2) ≤ dH(v1, v2) ≤ (1 + ε)dG(v1, v2).

The idea is to embed the input graph G into a host graph H through such a

probabilistic embedding ϕ : G → H, and solve the AR′ problem on the host

graph H. If we can obtain a near-optimal solution SH on H, we can lift the

solution SH back into a solution for G, with a factor-ε extra cost.

Consider a probabilistic embedding ϕ : G → H with distortion (1 + ε) for an

arbitrary positive number ε and G is an input graph. Let OPTG denote the

optimal solution to AR′ on G and optG denote its cost. We use ϕ to embed

G into a host graph H and solve AR′ on H to obtain the solution OPTH . We

obtain a feasible solution to AR′ on G by lifting the solution OPTH from H

to G, where costG(OPTH) ≤ (1 + ε)optG. This is easy to see.

In the following sections, we will prove a QPTAS for AR′ for different graph

metrics, which then proves a constant quasi-polynomial-time approximation

algorithm for AR. See the previous chapter for the relationship between AR′

and AR.

58

3.4.2 Constant Quasi-Polynomial-Time Approximation for
Graphs of Bounded Doubling Dimension

We achieve this by proving a QPTAS for AR′. We begin by introducing the

following lemma proposed by Talwar [28] about embedding graphs of doubling

dimension D into a graph with treewidth ω ≤ 2O(D)
⌈︂(︁

4D log∆
ε

)︁D⌉︂
.

Lemma 10 (Theorem 9 in [28]) Let (X, d) be a metric with doubling dimen-

sion D and aspect ratio ∆. Given any ε > 0, the metric (X, d) can be (1 + ε)

probabilistically approximated by a family of treewidth ω-metrics for

ω ≤ 2O(D)

⌈︄(︃
4D log∆

ε

)︃D⌉︄
.

We adapt Theorem 8 and its proof from [18] to get the following result.

Theorem 5 For any ε > 0 and D > 0, given an input graph G of the AR′

problem where G has doubling dimension D, there is an algorithm that finds a

(1 + ε)-approximate solution in time nO(D
D logD n/εD).

Proof. We use the algorithm A of AR′ for graphs with bounded treewidth as a

subroutine (see Section 3.3). We see this follows from Lemma 10. Essentially,

we embed G into a host graph H with treewidth ω ≤ 2O(D)
⌈︂(︁

4D log∆
ε

)︁D⌉︂
and

obtain a solution OPTH by solving AR′ on H using algorithm A. Then we

lift OPTH back to G. Thus, simply plug ω ≤ 2O(D)
⌈︂(︁

4D log∆
ε

)︁D⌉︂
into the

runtime of the algorithm A, which is (2n)O(ω), and we obtain an algorithm

of runtime (2n)
O
(︂
2O(D)

⌈︂
(4D log∆

ε)
D
⌉︂)︂

. Since we have assumed that the aspect

ratio ∆ is polynomial in n, the runtime is nO(D
D logD n/εD), which means the

algorithm is therefore a QPTAS.

3.4.3 Constant Quasi-Polynomial-Time Approximation for
Graphs of Bounded Highway Dimension

We achieve this by proving a QPTAS for AR′. We begin by introducing the

following lemma proposed by Feldmann et al. [13] about embedding graphs of

highway dimension W into a graph with treewidth ω ∈ (log∆)O(log
2(W

ελ)/λ).
59

Lemma 11 (Theorem 1.3 in [13]) Let G be a graph with highway dimension

W of violation λ > 0, and aspect ratio ∆. For any ϵ > 0, there is a polynomial-

time computable probabilistic embedding H of G with expected distortion 1+ ε

and treewidth ω where

ω ∈ (log∆)O(log
2(W

ελ)/λ).

We adapt Theorem 9 and its proof from [18] to get the following result.

Theorem 6 For any ε > 0, λ > 0 and W > 0, given an input graph G of the

AR′ problem where G has highway dimension W and violation λ, there is an

algorithm that finds a (1 + ε)-approximate solution in time n
O

(︄
log

log2(W
ελ)· 1λ n

)︄
.

Proof. We use the algorithm A of AR′ for graphs with bounded treewidth

as a subroutine. We see this follows from Lemma 11. Essentially, we embed

G into a host graph H with treewidth ω ∈ (log∆)O(log
2(W

ελ)/λ) and obtain a

solution OPTH by solving AR′ on H using algorithm A. Then we lift OPTH

back to G. Thus, simply plug ω ∈ (log∆)O(log
2(W

ελ)/λ) into the runtime of

the algorithm A, which is (2n)O(ω). Since we have assumed that the aspect

ratio ∆ is polynomial in n, the runtime is n
O

(︄
log

log2(W
ελ)· 1λ n

)︄
, which means the

algorithm is therefore a QPTAS.

3.4.4 Constant Quasi-Polynomial-Time Approximation for
Minor-Free Graphs

We achieve this by proving a QPTAS for AR′. We begin by introducing the

following lemma proposed by Cohen-Addad et al. [10] about embedding minor-

free graphs (including planar graphs, which is a kind of K-minor-free graphs)

into a graph with treewidth OK

(︁
(ℓ+ lnn)6/ε · ln2 n · (lnn+ ln ℓ+ ln(1/ε))5

)︁
where ℓ is the logarithm of the aspect ratio of the input graph.

Lemma 12 (Theorem 1.1 in [10]) For every fixed graph K, there exists a ran-

domised polynomial-time algorithm that, given an edge-weighted K-minor-free

graph G = (V,E) and an accuracy parameter ε > 0, constructs a probabilistic
60

metric embedding of G with expected distortion (1+ε) into a graph of treedepth

(the treedepth of a graph is an upper bound on its treewidth)

OK

(︁
(ℓ+ lnn)6/ε · ln2 n · (lnn+ ln ℓ+ ln(1/ε))5

)︁
where n = |V | and ℓ = log∆ is the logarithm of the aspect ratio ∆ of the

metric induced by G.

Theorem 7 For any ε > 0, given an input graph G of the AR′ problem

where G is a minor-free graph, there exists an algorithm that finds a (1 + ε)-

approximate solution in time nOK(log8 n·(logn+log(1/ε))5/ε).

Proof. We use the algorithm A of AR′ for graphs with bounded treewidth as

a subroutine. We see this follows from Lemma 12. Essentially, we embed the

minor-free graph G into a host graph H with treewidth

ω ∈ OK

(︁
(ℓ+ lnn)6/ε · ln2 n · (lnn+ ln ℓ+ ln(1/ε))5

)︁
and obtain a solution OPTH by solving AR′ on H using algorithm A. Then

we lift OPTH back to G. Thus, simply plug this bound on the treewidth into

the runtime of the algorithm A, which is (2n)O(ω), and we obtain an algorithm

of runtime nOK(log8 n·(logn+log(1/ε))5/ε), as we have assumed that the aspect ratio

∆ is polynomial in n. The algorithm is therefore a QPTAS.

As Cohen-Addad et al. [10] pointed out, in terms of planar graphs, which

exclude K5 as a minor, with edge weights in [1, nc] for any constant c, the

upper bound of the treewidth ω obtained from the theorem is polylogarithmic

in n, namely we have ω ∈ O
(︁
log13 n/ε

)︁
, as ℓ ∈ log(nc) = O(log n).1

Corollary 1 For any ε > 0, given an input graph G of the AR′ problem where

G is a planar graph, there exists an algorithm that finds a (1+ ε)-approximate

solution in time nO(log
13 n/ε).

1ℓ is in O(log n) assuming the aspect ratio ∆ is polynomial in n.

61

Chapter 4

Conclusion and Future Problems

Throughout the thesis, we have studied AR with uniform and non-uniform

facility opening costs, in both trees and graphs of bounded treewidth. We have

also extended the algorithm for AR with non-uniform facility opening costs

to graphs of bounded doubling metric, graphs of bounded highway metric and

minor-free graphs. In addition, for the general metrics, we have obtained a

constant approximation for AR with a uniform facility opening cost, and a

logarithmic approximation for AR with non-uniform facility opening costs. In

view of all the quasi-polynomial time approximation schemes (QPTAS) in our

current results, an important point for consideration involves improving these

QPTAS to achieve polynomial-time approximation schemes (PTAS).

A crucial open problem is to get a constant approximation for the general

metric. Below we will show that, if you can get a constant approximation for

the case of AR where the facilities are given free, then you can get a constant

approximation for AR with general airport costs.

4.1 The 0/+∞ Case of AR

The 0/+∞ case of AR is a special setting of the AR problem where the

facilities are predetermined and given as free, which is equivalent to being

defined as a subset of the vertices having a zero opening cost, and the rest of

the vertices having opening cost +∞.

62

Getting an O(1)-approximation algorithm for this problem has remained open.

This manifests the intractability of the AR problem in more general cases. In

the following, we show how to reduce the metric AR problem with general

facility opening costs to the 0/+∞ case with anO(1)-approximation algorithm.

We will prove that we can transform the general cost case of AR in general

metric into the 0/+∞ case and show that the metric properties are not violated

during the process. Without loss of generality, we assume the set of clients C

and potential facilities F are disjoint.1

We first note that there exists a near-optimum factor-2 solution where the de-

gree of each opened facility is two. To see this, let us consider each component

in the result of AR, which is simply a tree. We double all the edges of the

tree and trace along the new edge set and shortcut if necessary. This way we

can transform the original result, which is a forest, into a set of cycles, with

the cost increasing by a factor of at most 2. That is, for every solution Σ to

AR on the general metric graph G, we can convert Σ into a solution Σ′ of cost

at most 2cost(Σ) through this procedure. We define the following cycle-AR

problem.

Definition 17 (Cycle-AR) The goal is to find a min-cost set of cycles each

having at most k vertices, using edges in the graph. Each cycle C has one

opened facility.

Note that since we have assumed the set of potential facilities and the set of

clients are disjoint, and considering we only need to cover the clients, we might

have some potential facilities not used at all in the solution. We will consider,

in particular, the cycle-AR problem in the 0/+∞ setting, i.e. 0/+∞ cycle-

AR. This means the input graph is also an instance to the 0/+∞ AR problem.

Theorem 8 If there is a c-approximation algorithm for the 0/+∞ cycle-

AR problem for some constant c > 1, then there exists a 2c-approximation

algorithm for the general metric AR problem.
1If they are not, say a vertex v is a client as well as a potential facility with opening cost

α, then we make v only a client (i.e. v ∈ C and v ̸∈ F), and add another vertex ṽ to the
set F that overlaps/superimposes on v, where ṽ has opening cost α.

63

Proof. Given an instance of the general metric AR problem, say graph G, we

can transform it into another instance G′ for the 0/+∞ cycle-AR problem

in the following way: For any potential facility v, move one half of its opening

cost av onto each of its incident edges, that is, we update the cost of each edge

e incident to v from ce to ce + 1
2
av and set v’s opening cost to zero.

As mentioned above, we know we can transform any solution to the general

metric AR problem on G into a solution to the 0/+∞ cycle-AR problem on

G′ with no more than twice the original cost. Let opt and opt′ denote the

cost of the optimal solution to the general metric AR problem on G and the

0/+∞ cycle-AR problem on G′ respectively. It follows that opt′ ≤ 2opt.

v

v1c1

v2

c2v3

c3

v4 c4

v5

c5

v6

c6

v7

c7
v8

c8
v

v1

c1 + 1
2
av

v2

c2 + 1
2
av

v3

c3 + 1
2
avv4

c4 + 1
2
av

v5
c5 + 1

2
av

v6

c6 + 1
2
av

v7

c7 + 1
2
av

v8c8 + 1
2
av

Figure 4.1: Incident edges of each potential facility before and after changes

In summary, for every input graph G to the general metric AR problem, we

transform the graph to G′ (in the manner mentioned above) to make it a

0/+∞ AR instance, and then solve the cycle-AR problem on G′ to obtain

a solution Ψ. It is easy to see that, if Ψ is a solution to cycle-AR on graph

G′ with cost copt′, then Ψ is a solution to cycle-AR on graph G with the

same cost, i.e. 2c · opt, as opt′ ≤ 2opt. Since a solution to cycle-AR on

graph G can be easily transform into a solution to general metric AR on the

same graph (simply delete an edge from each cycle in the solution), we know

Ψ can be transformed into a solution to general metric AR on graph G with

cost 2c · opt.

64

Now we show the transformation fromG toG′ preserves the triangle inequality.

Lemma 13 The above transformation preserves the triangle inequality.

Proof. Consider any triangle in the graph G, there are three types as depicted

below. Say there are three vertices A,B and C in the triangle, and the cost of

the edges are cAB = c, cAC = b and cBC = a. Denote their respective opening

cost as αA, αB and αC . Since G is metric, we know the following inequalities

are true

a+ b ≥ c

a+ c ≥ b

b+ c ≥ a

There are three scenarios that the triangle can become in the transformed

graph G′ (via the transformation mentioned above), which depends on how

many vertices in the triangle are facilities.

A

B C

bc

a

A

B C

b+
1

2
αAc+

1

2
αA

a

Figure 4.2: On the left is the original triangle in G. On the right is the scenario
in G′ where one of the vertex is a facility.

Say only one of the vertices is a facility. WLOG, assume A is the facility. It

is easy to see the following inequalities hold.

a+

(︃
b+

1

2
αA

)︃
≥ c+

1

2
αA

a+

(︃
c+

1

2
αA

)︃
≥ b+

1

2
αA(︃

b+
1

2
αA

)︃
+

(︃
c+

1

2
αA

)︃
≥ a

Say two of the vertices are facilities. WLOG, assume B and C are the facilities.

65

A

B C

b+ 1
2
αCc+ 1

2
αB

a+ 1
2
αB + 1

2
αC

A

B C

b+ 1
2
αA + 1

2
αCc+ 1

2
αA + 1

2
αB

a+ 1
2
αB + 1

2
αC

Figure 4.3: On the left is the scenario in G′ where two of the vertex is a facility.
On the right is the scenario in G′ where all of the vertex is a facility.

It is easy to see the following inequalities hold.(︃
a+

1

2
αB +

1

2
αC

)︃
+

(︃
b+

1

2
αC

)︃
≥ c+

1

2
αB(︃

a+
1

2
αB +

1

2
αC

)︃
+

(︃
c+

1

2
αB

)︃
≥ b+

1

2
αC(︃

b+
1

2
αC

)︃
+

(︃
c+

1

2
αB

)︃
≥ a+

1

2
αB +

1

2
αC

Say all of the vertices are facilities. It is easy to see the following inequalities

hold. (︃
a+

1

2
αB +

1

2
αC

)︃
+

(︃
b+

1

2
αA +

1

2
αC

)︃
≥ c+

1

2
αA +

1

2
αB(︃

a+
1

2
αB +

1

2
αC

)︃
+

(︃
c+

1

2
αA +

1

2
αB

)︃
≥ b+

1

2
αA +

1

2
αC(︃

b+
1

2
αA +

1

2
αC

)︃
+

(︃
c+

1

2
αA +

1

2
αB

)︃
≥ a+

1

2
αB +

1

2
αC

We have shown any arbitrary triangle in the transformed graph G′ still obeys

the triangle inequality. Thus the transformation does not break metric.

66

References

[1] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and R. F. Wer-
neck, “VC-dimension and shortest path algorithms,” in International
Colloquium on Automata, Languages, and Programming, Springer, 2011,
pp. 690–699.

[2] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and R. F. Werneck,
“Highway dimension and provably efficient shortest path algorithms,”
Journal of the ACM (JACM), vol. 63, no. 5, pp. 1–26, 2016.

[3] A. Adamaszek, A. Antoniadis, A. Kumar, and T. Mömke, “Approximat-
ing Airports and Railways,” in 35th Symposium on Theoretical Aspects
of Computer Science (STACS 2018), R. Niedermeier and B. Vallée, Eds.,
ser. Leibniz International Proceedings in Informatics (LIPIcs), vol. 96,
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2018, 5:1–5:13, isbn: 978-3-95977-062-0. doi: 10.4230/LIPIcs.STACS.
2018 . 5. [Online]. Available: http : / / drops . dagstuhl . de / opus /
volltexte/2018/8518.

[4] A. Adamaszek, A. Antoniadis, and T. Mömke, “Airports and Railways:
Facility Location Meets Network Design,” in 33rd Symposium on The-
oretical Aspects of Computer Science (STACS 2016), N. Ollinger and
H. Vollmer, Eds., ser. Leibniz International Proceedings in Informat-
ics (LIPIcs), vol. 47, Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2016, 6:1–6:14, isbn: 978-3-95977-001-9. doi:
10.4230/LIPIcs.STACS.2016.6. [Online]. Available: http://drops.
dagstuhl.de/opus/volltexte/2016/5707.

[5] E. T. Bell, “Exponential polynomials,” Annals of Mathematics, pp. 258–
277, 1934.

[6] E. T. Bell, “The iterated exponential integers,” Annals of Mathematics,
pp. 539–557, 1938.

[7] D. Berend and T. Tassa, “Improved Bounds on Bell Numbers and on
Moments of Sums of Random Variables,” Probability and Mathematical
Statistics, vol. 30, no. 2, pp. 185–205, 2010.

67

https://doi.org/10.4230/LIPIcs.STACS.2018.5
https://doi.org/10.4230/LIPIcs.STACS.2018.5
http://drops.dagstuhl.de/opus/volltexte/2018/8518
http://drops.dagstuhl.de/opus/volltexte/2018/8518
https://doi.org/10.4230/LIPIcs.STACS.2016.6
http://drops.dagstuhl.de/opus/volltexte/2016/5707
http://drops.dagstuhl.de/opus/volltexte/2016/5707

[8] H. L. Bodlaender and T. Hagerup, “Parallel Algorithms with Optimal
Speedup for Bounded Treewidth,” SIAM Journal on Computing, vol. 27,
no. 6, pp. 1725–1746, 1998. doi: 10.1137/S0097539795289859. eprint:
https://doi.org/10.1137/S0097539795289859. [Online]. Available:
https://doi.org/10.1137/S0097539795289859.

[9] J. Bourgain, “On Lipschitz embedding of finite metric spaces in Hilbert
space,” Israel Journal of Mathematics, vol. 52, pp. 46–52, 1985.

[10] V. Cohen-Addad, H. Le, M. Pilipczuk, and M. Pilipczuk, Planar and
Minor-Free Metrics Embed into Metrics of Polylogarithmic Treewidth
with Expected Multiplicative Distortion Arbitrarily Close to 1, 2023.
arXiv: 2304.07268 [cs.DS].

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[12] M. Cygan, F. V. Fomin, Ł. Kowalik, et al., Parameterized algorithms.
Springer, 2015, vol. 4.

[13] A. E. Feldmann, W. S. Fung, J. Könemann, and I. Post, “A (1 + ϵ)-
Embedding of Low Highway Dimension Graphs into Bounded Treewidth
Graphs,” SIAM Journal on Computing, vol. 47, no. 4, pp. 1667–1704,
2018. doi: 10.1137/16m1067196. [Online]. Available: https://doi.
org/10.1137%2F16m1067196.

[14] M. Gromov, Metric Structures for Riemannian and Non-Riemannian
Spaces. Jan. 2007, isbn: 978-0-8176-4582-3. doi: 10.1007/978-0-8176-
4583-0.

[15] P. Hall, “On Representatives of Subsets,” Journal of The London Math-
ematical Society-second Series, pp. 26–30, 1935. [Online]. Available:
https://api.semanticscholar.org/CorpusID:23252557.

[16] M. Hatzel and H. Seidler, Advanced Algorithmics, Acknowledgements:
This unofficial document contains notes for the lecture “Advanced Algo-
rithmics” given by Prof. Rolf Niedermeier (TU Berlin). We assume/ac-
cept no liability for being complete, correct and/or up-to-date. This
script was initiated by Meike Hatzel and Henning Seidler., 2015. [Online].
Available: https://fpt.akt.tu-berlin.de/notes/aa-overview.pdf.

[17] J. Heinonen, Lectures on Analysis on Metric Spaces. Springer Science &
Business Media, 2001.

[18] A. Jayaprakash and M. R. Salavatipour, “Approximation Schemes for
Capacitated Vehicle Routing on Graphs of Bounded Treewidth, Bounded
Doubling, or Highway Dimension,” ACM Trans. Algorithms, vol. 19,
no. 2, 2023, issn: 1549-6325. doi: 10.1145/3582500. [Online]. Avail-
able: https://doi.org/10.1145/3582500.

[19] J. Kleinberg and E. Tardos, Algorithm Design, 2003.

68

https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1137/S0097539795289859
https://arxiv.org/abs/2304.07268
https://doi.org/10.1137/16m1067196
https://doi.org/10.1137%2F16m1067196
https://doi.org/10.1137%2F16m1067196
https://doi.org/10.1007/978-0-8176-4583-0
https://doi.org/10.1007/978-0-8176-4583-0
https://api.semanticscholar.org/CorpusID:23252557
https://fpt.akt.tu-berlin.de/notes/aa-overview.pdf
https://doi.org/10.1145/3582500
https://doi.org/10.1145/3582500

[20] B. H. Korte, J. Vygen, B Korte, and J Vygen, Combinatorial Optimiza-
tion. Springer, 2011, vol. 1.

[21] A. Lee and B. Xu, “Classifying approximation algorithms: Understand-
ing the APX complexity class,” CoRR, vol. abs/2111.01551, 2021. arXiv:
2111.01551. [Online]. Available: https://arxiv.org/abs/2111.01551.

[22] J. Matoušek, “Embedding finite metric spaces into normed spaces,” in
Lectures on Discrete Geometry, Springer, 2002, pp. 355–400.

[23] M. Mitzenmacher and E. Upfal, Probability and computing: Randomiza-
tion and probabilistic techniques in algorithms and data analysis. Cam-
bridge University Press, 2017.

[24] C. Moore and S. Mertens, The Nature of Computation. OUP Oxford,
2011.

[25] V. Nagarajan. “Approximation algorithms - lecture notes.” Chernoff
Bounds, Multicommodity Routing. (Feb. 2017), [Online]. Available:
https://viswa.engin.umich.edu/wp- content/uploads/sites/
169/2016/12/12.pdf.

[26] S. Norin, Graph Theory & Combinatorics, Instructor: Prof. Sergey Norin,
Notes by: Tommy Reddad, Last updated: September 12, 2015. [Online].
Available: https://www.math.mcgill.ca/snorin/math350f2015/
notes.pdf.

[27] M. Sipser, “Introduction to the Theory of Computation,” ACM Sigact
News, vol. 27, no. 1, pp. 27–29, 1996.

[28] K. Talwar, “Bypassing the Embedding: Algorithms for Low Dimensional
Metrics,” in Proceedings of the Thirty-Sixth Annual ACM Symposium
on Theory of Computing, ser. STOC ’04, Chicago, IL, USA: Association
for Computing Machinery, 2004, 281–290, isbn: 1581138520. doi: 10.
1145/1007352.1007399. [Online]. Available: https://doi.org/10.
1145/1007352.1007399.

[29] V. V. Vazirani, Approximation Algorithms. Springer Science & Business
Media, 2013.

[30] J. Verstraete, Introduction to Graph Theory: A Short Course, Depart-
ment of Mathematics, University of California at San Diego, California,
U.S.A, 2020. [Online]. Available: https://cseweb.ucsd.edu/~dakane/
Math154/154-textbook.pdf.

[31] D. B. West et al., Introduction to graph theory. Prentice hall Upper
Saddle River, 2001, vol. 2.

[32] D. P. Williamson and D. B. Shmoys, The design of approximation algo-
rithms. Cambridge University Press, 2011.

[33] R. Wilson, Introduction to Graph Theory. Longman, 2010, isbn:
9780273728894. [Online]. Available: https://books.google.ca/books?
id=wwxTRAAACAAJ.

69

https://arxiv.org/abs/2111.01551
https://arxiv.org/abs/2111.01551
https://viswa.engin.umich.edu/wp-content/uploads/sites/169/2016/12/12.pdf
https://viswa.engin.umich.edu/wp-content/uploads/sites/169/2016/12/12.pdf
https://www.math.mcgill.ca/snorin/math350f2015/notes.pdf
https://www.math.mcgill.ca/snorin/math350f2015/notes.pdf
https://doi.org/10.1145/1007352.1007399
https://doi.org/10.1145/1007352.1007399
https://doi.org/10.1145/1007352.1007399
https://doi.org/10.1145/1007352.1007399
https://cseweb.ucsd.edu/~dakane/Math154/154-textbook.pdf
https://cseweb.ucsd.edu/~dakane/Math154/154-textbook.pdf
https://books.google.ca/books?id=wwxTRAAACAAJ
https://books.google.ca/books?id=wwxTRAAACAAJ

	List of Figures
	Introduction
	Problems Considered
	Problem Definition

	Preliminaries
	Graphs
	Metrics
	Optimization Problems and Approximation Algorithms
	Metric Embeddings
	Concentration Inequalities
	Matroids

	Related Work
	New Results
	Assumption on Edge Costs

	AR with a Uniform Airport Cost
	On Trees
	Preliminaries
	Structure Theorem for Trees
	Dynamic Programming for Trees
	Consistency Check
	Algorithm Efficiency

	Solution for the Original Problem

	On Graphs with Bounded Treewidth
	Preliminaries
	Structure Theorem for Graphs with Bounded Treewidth
	Dynamic Programming for Graphs of Bounded Treewidth
	Consistency Check
	Algorithm Efficiency

	Solution for the Original Problem
	Generalisation for AR with Steiner Vertices

	Constant-factor for General Metric
	Algorithm for AR in General Metric

	AR with Nonuniform Airport Costs
	Preliminaries
	Exact Algorithm for AR' on Trees
	Algorithm Efficiency

	AR' on Graphs with Bounded Treewidth
	Algorithm Efficiency
	Generalisation for AR with Steiner Vertices

	Extension to Other Metrics
	Embedding Lemma for AR'
	Constant Quasi-Polynomial-Time Approximation for Graphs of Bounded Doubling Dimension
	Constant Quasi-Polynomial-Time Approximation for Graphs of Bounded Highway Dimension
	Constant Quasi-Polynomial-Time Approximation for Minor-Free Graphs

	Conclusion and Future Problems
	The 0/+∞ Case of AR

	References

