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Abstract

As internal gravity wavepackets propagate upward in the atmosphere, their amplitude ex-

periences exponential growth so that nonlinear effects influence their evolution. This thesis

examines the weakly and fully nonlinear evolution, stability, and overturning of horizontally

and vertically localized internal gravity wavepackets propagating in a stationary, non-rotating

anelastic model atmosphere. The weakly nonlinear evolution is examined through the deriva-

tion of an expression for the flow induced by the propagating wavepacket, which is used to

formulate a nonlinear Schrödinger equation. The induced flow is manifest as a long, hydro-

static disturbance qualitatively resembling a bow wake. The direction of this flow transitions

from positive on the leading flank of the wavepacket to negative on the trailing flank. As

such, we find that two-dimensional internal gravity wavepackets are always modulationally

unstable. Consequently, enhanced amplitude growth is focused either on the leading or the

trailing flank of the wavepacket. When combined with exponential amplitude growth pre-

dicted by linear theory, we anticipate that two-dimensional wavepackets will overturn either

somewhat below or just above the overturning heights predicted by linear theory. The non-

linear Schrödinger equation is solved numerically, and its solutions are compared with the

results of fully nonlinear simulations of the equations of motion to establish the validity of

weakly nonlinear theory. Actual wave overturning heights are determined quantitatively from

a range of fully nonlinear simulations.
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Chapter 1

Introduction

1.1 Motivation

A (stably) stratified fluid is a fluid whose effective density decreases vertically. If the change

is continuous, the fluid is called a continuously stratified fluid. Examples of stratified fluids

include a liquid such as the ocean and a gas such as the atmosphere. In the ocean, the density

depends primarily on the salinity and temperature, so that relatively warmer, fresher water

overlies colder and more saline water. The density variations in the ocean are very small in

comparison with the mean density (Vallis, 2006). Therefore, when considering such a fluid, it

is common to apply the Boussinesq approximation in the equations of fluid motion, in which

background density is treated as constant, except where it appears in the buoyancy term in

the vertical momentum equation.

In the atmosphere, background pressure and density are greatest near sea level, and de-

crease to zero where the atmosphere transitions to outer space. The atmosphere is subdivided

into layers, each characterized by its vertical temperature profile, with the boundaries between

layers being approximately located where the temperature transitions from decreasing to in-

creasing with height, or vice-versa. From the surface to approximately 10 km, the temperature

decreases with height. Despite this, the colder fluid aloft does not necessarily descend so as

to underlie warmer fluid, as in the ocean. This is due to compressibility: if cold air were

to descend, higher pressure would compress the air and hence increase its temperature, as-

suming the entropy associated with the descending air is constant. Such a process is termed

adiabatic, which means the warming is due to the mechanical energy of compression being
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converted to thermal energy without loss to the environment. Likewise, if this process oc-

curs in reverse, air rises adiabatically, and the resultant cooling is caused by expansion. An

appropriate description of atmospheric stratification must take these thermodynamics into

account. In particular, atmospheric stratification is conveniently described by the potential

temperature, which is the temperature dry air would have if brought adiabatically to some

reference pressure (Holton and Hakim, 2013). As such, in a stably stratified atmosphere, the

potential temperature increases with height.

The basic behaviour of oscillations in stratified fluids is conceptualized with parcel theory.

A parcel is a hypothetical fixed mass of fluid (whose volume is not necessarily constant). A

vertically displaced fluid parcel will experience a buoyant restoring force that acts to return

the parcel to its initial undisturbed (equilibrium) position. This concept is straightforwardly

illustrated by considering, for example, a fluid parcel displaced upward from its initial position

on an otherwise motionless water surface overlain by air: being surrounded by less dense fluid

upon being displaced, gravity forces the parcel to descend toward its initial position. However,

the parcel, having mass and therefore momentum, overshoots its equilibrium position at the

water-air interface. Buoyancy forces then cause the parcel to rise again, and so on. This

oscillation is referred to as a surface gravity wave (e.g. see Sutherland, 2010). When such a

phenomenon occurs within a continuously stratified fluid, as opposed to on a fluid surface,

the resulting oscillation is called an internal gravity wave. The natural frequency of the

oscillation is called the buoyancy frequency (or Brunt-Väisälä frequency), and is denoted by

N . An important qualitative difference between surface and internal gravity waves is that

the latter are not restricted to propagate along the surface of constant effective density from

which they originate.

Internal gravity waves propagate both horizontally and vertically within stratified fluids. In

particular, upward-propagating waves in the atmosphere are of interest because they transport

momentum upward (Holton and Hakim, 2013; Sutherland, 2010). As they propagate vertically

within the atmosphere, their amplitude experiences exponential growth due to momentum

conservation, owing to the atmosphere’s approximately exponentially decreasing background

density (Eliassen and Palm, 1961; Bretherton, 1966). Because the background density varies

greatly over the total depth of the atmosphere, the Boussinesq approximation can be applied
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only to small vertical scales over which waves can propagate (Dutton and Fichtl, 1969).

The limitations imposed by this restriction motivated the development of several so-called

anelastic approximations, the simplest of which—and that used in this thesis—is that of

Ogura and Phillips (1962). This approximation models the exponential amplitude growth

with height experienced by the waves, while also filtering sound waves from the equations of

motion. (See Klein (2009) for a discussion and comparison of select anelastic-type models).

Throughout this thesis, the exponential growth of waves with height will be referred to as

“anelastic growth”. Once the wave amplitude becomes sufficiently large, the waves begin to

overturn, meaning the waves carry denser fluid over less dense fluid. As the waves continue

to propagate upward, overturning continues and the waves can eventually convectively break,

thus irreversibly depositing their momentum to the ambient fluid (McFarlane, 1987).

One ongoing challenge is to incorporate the effects of momentum deposition by wave break-

ing into atmospheric general circulation models. Because internal gravity waves typically

exist on too small a scale to be explicitly resolved by such models, it is necessary to apply

parameterization schemes, which attempt to predict the effect of the breaking waves using

only explicitly resolved variables (Holton and Hakim, 2013). Lindzen (1981) proposed that

wave breaking generates turbulence that prevents further anelastic growth as the waves con-

tinue propagating vertically. It was anticipated that waves would thereafter continuously

deposit their momentum in a layer approximately bounded below by their breaking height

and bounded above by their critical level, which is the height at which the wave’s horizontal

propagation speed is equal to the mean zonal (eastward) atmospheric wind. In particular,

this approach used linear theory to estimate the wave breaking heights. Based on Lindzen’s

conclusions, so-called gravity wave drag schemes were implemented in several general circu-

lation models (Palmer et al., 1986; McFarlane, 1987; Scinocca and McFarlane, 2000). Their

inclusion led to predictions of mean zonal winds and temperatures in the middle atmosphere

that more closely resembled observations (McLandress, 1998).

Even if a wave has small amplitude initially, before reaching an overturning amplitude

the wave may nonetheless grow to such an amplitude that linear theory ceases to predict its

evolution correctly. The process of wave breaking is itself nonlinear. As such, Dosser and

Sutherland (2011) (henceforth DS11) questioned whether it was appropriate to use linear
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theory for the development of gravity wave drag schemes. In their study of one-dimensional

(horizontally periodic, vertically localized, and spanwise-uniform) wavepackets, DS11 found

that weakly nonlinear effects significantly altered wave breaking heights. Depending on the

wavepacket’s initial frequency, the waves grew to overturning amplitudes and broke either

well above or well below the heights predicted by linear theory.

In order eventually to improve gravity wave drag schemes, it is necessary to gain a more

complete understanding of the processes that ultimately cause waves to grow to overturning

amplitudes. The motivation behind the research presented herein is to understand the weakly

nonlinear effects that dominate the evolution and overturning heights of two-dimensional

(horizontally and vertically localized, and spanwise-uniform) anelastic wavepackets. As a non-

trivial extension of the work of DS11, in this thesis the weakly and fully nonlinear dynamics of

two-dimensional wavepackets is investigated. In particular, this is done through the derivation

of weakly nonlinear equations, and the comparison of their numerical solutions with the results

of fully nonlinear simulations. In doing so, the validity of weakly nonlinear theory is assessed.

1.2 Background

1.2.1 Some Introductory Concepts in Wave Theory

Much research on vertically propagating atmospheric internal gravity waves has focused on

either monochromatic waves or horizontally periodic, vertically localized wavepackets. To

facilitate the discussion throughout this thesis, here we briefly introduce these and key related

concepts more formally. A monochromatic (plane) wave, whose structure is denoted by η, is

conveniently expressed as a complex exponential

η(x, t) = A0e
i(k·x−ωt), (1.1)

in which A0 ∈ C is a constant that encodes the amplitude and phase of the wave, and η is

understood to be the real part of the right-hand side expression. The one-, two-, or three-

dimensional vector k contains the wavenumbers in the x- and/or y- and/or and z-directions.

The wavenumber in any given direction is 2π divided by the wavelength in that direction. In

this thesis, the wavenumber vector will always be k = (k,m) = 2π(λ−1
x ,λ−1

z ), in which λx and
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λz are the wavelengths in the x- and z-directions, respectively. In (1.1), ω = ω(k) > 0 is the

frequency of the waves, which is conventionally taken to be positive to ensure the waves are

forward-propagating in time. The expression for ω is given by the dispersion relation, which

relates the wave’s frequency to its wavenumber. From the dispersion relation are derived

two important wave quantities: the phase velocity, cp = (cpx , cpz), whose components are

the speed of propagation of points of constant phase in the x- and z-directions, respectively;

and the group velocity, cg = (cgx , cgz), whose components are the speed at which the wave’s

energy is transported in the x- and z-directions, respectively. The phase and group velocities,

respectively, are found using

cp =
ω

|k|2k and cg =

(
∂ω

∂k
,
∂ω

∂m

)
. (1.2a,b)

Explicit expressions for the dispersion relation and group velocity are provided in Chapter 2.

Alternatively, quasi-monochromatic wavepackets are localized in one-, two-, or three di-

mensions, and their structure is expressed as

η(x, t) = Aη(x, t)e
i(k·x−ωt), (1.3)

in which the amplitude envelope function, Aη : R2×R → C, describes the amplitude envelope

of the waves. In this thesis examining two-dimensional wavepackets, the amplitude function

depends spatially on x and z alone. In (1.3) as in (1.1), η is understood to be the real part

of the right-hand side expression. As is the case for monochromatic waves, the phase and

group velocities for waves within the wavepackets are likewise defined using (1.2a) and (1.2b),

respectively. For wavepackets, the group velocity corresponds to the propagation speed and

direction of the wavepacket.

1.2.2 Review of Previous Research

Many numerical studies have tended to focus on interactions between the waves and an ex-

isting background flow. In the first numerical study of its kind, Jones and Houghton (1971)

found that the background flow, through momentum coupling with an upward-propagating

wave, could be accelerated by wave breaking, hence modifying the critical level height, where

the horizontal phase speed of the waves matched the background flow speed. Incorporating
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the effects of background wind shear into a critical level-internal wave interaction model,

Grimshaw (1975) found that small and large amplitude waves behaved qualitatively differ-

ently. In particular, waves with small initial amplitude narrowed and grew in maximum

amplitude while approaching a critical level, dissipating thereafter. Conversely, initially large

amplitude waves remained broad, grew to a smaller maximum amplitude than the initially

small amplitude waves, and dissipated less rapidly after interacting with their critical level,

compared to the initially small amplitude waves. For both initially small and initially large

amplitude waves, decay resulted in a transfer of energy and momentum to the mean flow.

Fritts (1982) performed quasi-linear simulations of vertically propagating internal gravity

waves generated from a shear layer. It was found that, by extracting energy from, then

transporting energy through the shear layer, waves could significantly accelerate the mean

flow above and below the shear layer.

Dunkerton (1981) found that linear, slowly varying, topographically forced waves in an

anelastic atmosphere could spontaneously form descending regions of strong wind shear.

Conversely, evolving self-acceleration effects were found by Fritts and Dunkerton (1984) to

cause quasi-linear wavepackets to Doppler-shift their frequency to such an extent that the

wavepacket could propagate well above its original critical level. Furthermore, Fritts and

Dunkerton found qualitative differences between small and large amplitude wavepackets. In

particular, the relatively smaller degree of self-acceleration and rate of vertical propagation

near the wave front of the small amplitude wavepacket at early times caused the long-time

evolution to proceed more slowly than their larger amplitude counterparts.

Even in the absence of pre-existing background flow, finite-amplitude internal gravity wave-

packets induce a time-evolving mean flow as they propagate. This is analogous to the Stokes

drift induced by surface waves on deep water. The Stokes drift is an order amplitude-squared

correction to the horizontal velocity field that causes fluid parcels to advect further forward

upon passage of a wave crest than backward upon passage of a trough. Hence there is a net

movement of fluid in the direction of wave propagation (Stokes, 1847; Kundu et al., 2016).

Interactions between internal gravity waves and their induced flow have been shown to

be the dominant mechanism governing the weakly nonlinear evolution of one-dimensional

Boussinesq wavepackets (Sutherland, 2006a,b). An explicit equation for the mean flow, U1D,
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induced by one-dimensional Boussinesq wavepackets, derived from the principle of wave action,

has been known since Acheson (1976). (Wave action is a conserved analogue to wave energy,

which is not conserved when background shear is present). Alternatively, Sutherland (2010)

used conservation of momentum for quasi-monochromatic wavepackets to show that

U1D = uDF =
⟨uw⟩
cgz

=
1

2
N |k||A|2. (1.4)

Here, ⟨·⟩ denotes the horizontal average over a period, u and w are the horizontal and vertical

velocity fields of the waves, respectively, cgz is the vertical group speed of the wavepacket,

N is the buoyancy frequency, k = (k,m) is the wavenumber vector, and A is the vertical

displacement amplitude, which depends on the vertical coordinate, z, and time, t, for one-

dimensional waves. The subscript DF denotes that the wave-induced mean flow arises from

the divergence of momentum flux per unit mass. The flow described by (1.4) is horizontally

uniform, unidirectional, and vertically constrained to the vicinity of the amplitude envelope.

The corresponding expression for the flow induced by one-dimensional wavepackets in

an anelastic gas was derived using Hamiltonian fluid mechanics by Scinocca and Shepherd

(1992) and by DS11. Explicitly, the wave-induced mean flow (henceforth denoted by U with

no subscripts) for one-dimensional wavepackets in an anelastic gas is given by

U =
1

2
NK|A|2ez/Hρ . (1.5)

This differs in two ways from its Boussinesq counterpart, given by (1.4). The coefficient

K = (|k|2 + 1/4H2
ρ )

1/2 includes the anelastic correction term, 1/4H2
ρ , in which Hρ is the

density scale height or e-folding depth, which is the spatial distance over which the density

decreases by a factor of e−1. Also, the right-hand side of (1.5) contains the factor ez/Hρ ,

which models the anelastic growth with height experienced by the wave-induced mean flow

as it translates vertically with the wavepacket into less dense ambient fluid.

For a two-dimensional (horizontally and vertically localized, and spanwise uniform) wave-

packet, the amplitude envelope function depends on the horizontal coordinate, x, as well as

on z and t. An explicit integral expression for the horizontal flow induced by two-dimensional

wavepackets having Gaussian structure in the horizontal direction in a non-rotating Boussi-

nesq fluid was derived by van den Bremer and Sutherland (2014) (henceforth vdBS14), and
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is given by

u(2)(x̃, z̃) = −1

4
N
km

|k| σxσz
∫ ∞

0
|̂A|2µ2 sin(µz̃ + µ2cgz |x̃|/N)dµ. (1.6)

Here, σx and σz are the horizontal and vertical extents, respectively, of the wavepacket;

the caret denotes that |A|2 is horizontally and vertically Fourier transformed; and (x̃, z̃) =

(x−cgxt, z−cgz t) are spatial coordinates in a frame of reference translating with the wavepacket

at its group velocity. In the integrand of (1.6), the integration variable µ is the transform

variable associated with z in Fourier space. The flow induced by a two-dimensional wavepacket

in a Boussinesq fluid is qualitatively different than its one-dimensional counterpart, given

by (1.4). Rather than being horizontally uniform and unidirectional, the two-dimensional

horizontal induced flow, u(2)(x̃, z̃), resembles a bow wake. Thus the induced flow is manifest

as a long, hydrostatic wave, that propagates far horizontally and below an upward-propagating

wavepacket. Crucially, in the flow described by (1.6), the flow direction changes sign from

positive on the leading flank of the wavepacket to negative on the trailing flank, in agreement

with the predictions of Bretherton (1969) (see also Akylas and Tabaei, 2005; Tabaei and

Akylas, 2007).

A model describing the weakly nonlinear evolution of internal gravity wavepackets, as

it depends upon the interactions between the waves and their induced mean flow, is the

nonlinear Schrödinger equation. This partial differential equation describes the spatial and

temporal evolution of the amplitude envelope of a moderately large amplitude wavepacket.

The nonlinear Schrödinger equation for a one-dimensional wavepacket in a uniformly stratified

(constant buoyancy frequency), non-rotating Boussinesq fluid with no background flow was

derived by Akylas and Tabaei (2005). A special case, that furthermore explicitly includes the

wavepacket’s translation at its vertical group speed, was derived by Sutherland (2006b), and

is given by

∂tA = −cgz∂zA+ i
1

2
ωmm∂zzA+

1

6
ωmmm∂zzzA− ikUA. (1.7)

Here, A = A(z, t) is the vertical displacement amplitude of the wavepacket, m is the vertical

wavenumber, cgz = ∂ω/∂m is the vertical group speed, and ωmm = ∂2ω/∂m2 and ωmmm =

∂3ω/∂m3 are the constant coefficients respectively given by the second and third partial

derivatives of the dispersion relation, ω = ω(k,m), with respect to m. The rightmost term in
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(1.7) is the nonlinear term, in which the wave-induced mean flow U ∝ |A|2 is given by (1.4).

This describes the Doppler-shifting of the waves by the flow they induce. Numerical solutions

of (1.7) showed that interactions between waves and their induced mean flow dominate the

weakly nonlinear evolution of Boussinesq wavepackets.

The nonlinear Schrödinger equation corresponding to (1.7), but for one-dimensional wave-

packets in an anelastic gas, was derived by DS11, and is given by

∂tA = −cgz∂zA+ i
1

2
ωmm∂zzA+

1

6
∂mmmA− ikUA+

ω2

2N2kHρ
(3mHρ − i)(∂zU)A, (1.8)

in which U is the wave-induced mean flow, given by (1.5). Equation (1.8) describes the weakly

nonlinear evolution of one-dimensional wavepackets in a uniformly stratified, non-rotating

anelastic atmosphere. The primary difference between (1.8) and its Boussinesq counterpart

(1.7) is the inclusion of the rightmost term that represents the interactions of the waves and

the shear in their induced flow. Through numerical solutions of (1.8), DS11 concluded that

the weakly nonlinear evolution of anelastic wavepackets is dominated by interactions between

the waves and their induced mean flow.

In a study of three-dimensional wavepackets, Shrira (1981) derived a nonlinear Schrödinger

equation for effectively two-dimensional Boussinesq wavepackets (not reproduced here, but

elaborated on in §2.4). In particular, the nondimensionalization of the governing equations

resulted in prescribing the relative order of magnitude of the nonlinear advection terms a pri-

ori. Separately, nonlinear Schrödinger equations for two- and three-dimensional wavepackets

were derived by Akylas and Tabaei (2005) and Tabaei and Akylas (2007), respectively. How-

ever, relatively small amplitude waves were the focus of their numerically computed solutions.

Moderately large amplitude dispersive wavepackets exhibit the weakly nonlinear effects

of modulational stability and instability, which cause the wavepackets either to broaden and

decay in amplitude (modulational stability) or to narrow and grow in amplitude (modulational

instability) at a faster rate than that predicted by linear theory. This instability arises in

the solutions of the nonlinear Schrödinger equations for both Boussinesq and anelastic one-

dimensional wavepackets due to interactions between the waves and their induced mean flow

(Akylas and Tabaei, 2005; Sutherland, 2006b; Dosser and Sutherland, 2011). Whether in the

Boussinesq or anelastic contexts, the wave-induced mean flow acts in a conceptually identical
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manner: the frequency of the waves is Doppler-shifted by the induced flow, which results in

a local change in vertical group speed, which in turn results in wave spreading (associated

with modulational stability) or accumulation (associated with modulational instability). In

particular, DS11 found that waves having initial frequency greater than that of waves with

the fastest vertical group speed are modulationally unstable, and consequently, overturn at

a height lower than that predicted by linear theory. Conversely, hydrostatic waves with

frequency lower than that of waves with the fastest vertical group speed, are modulationally

stable and propagate well beyond the height predicted by linear theory before overturning.

The key difference between the modulational stability properties of one- and two-dimen-

sional Boussinesq waves is that two-dimensional wavepackets are always modulationally un-

stable. This result was first shown by Tabaei and Akylas (2007), who arrived at this result

using a linear stability analysis. In this thesis we will show that this result extends to two-

dimensional anelastic wavepackets and explore the consequences of modulational instability

on the overturning heights of two-dimensional anelastic internal gravity wavepackets.

That a wavepacket is modulationally unstable is not sufficient to ensure that it will over-

turn. It is possible for such a wavepacket to exhibit the Fermi-Pasta-Ulam recurrence phe-

nomenon (Fermi et al., 1974), in which an approximate equipartition of energy among the

modes of vibration is followed by a return to the initial state. The first known documented

observation of this phenomenon in the solution of the nonlinear Schrödinger equation in a

hydrodynamic context was by Benjamin and Feir (1967) in their study of weakly nonlin-

ear wavetrains on deep water (see also Lake et al., 1977). However, modulational stability

and instability, arising through interactions between the waves and their induced mean flow,

have emerged as the dominant mechanisms governing the weakly nonlinear evolution of one-

dimensional wavepackets in a Boussinesq fluid (Sutherland, 2006a) and in an anelastic gas

(DS11). In particular, DS11 credit the effects of higher-order linear and nonlinear dispersion,

via the inclusion of third-order terms in their nonlinear Schrödinger equation, with prevent-

ing the onset of the Fermi-Pasta-Ulam recurrence. It is expected that, by similarly including

higher-order terms in our nonlinear Schrödinger equation, modulational instability will like-

wise dominate the weakly nonlinear evolution of anelastic internal gravity wavepackets in two

dimensions. This will be shown in the comparisons between the results of the weakly and
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fully nonlinear simulations.

Even if a one-dimensional anelastic wavepacket evolves nonlinearly to the point of over-

turning, the actual turbulent process of wave breaking due to convective instability does not

immediately occur (DS11). Where a wave overturns and advects denser fluid above less dense

fluid, locally the fluid is negatively buoyant. Sutherland (2001) found that in such situations

the oscillatory motion of a plane wave could restore stability to an unstable region if the

wave’s period was shorter than the time scale for the growth of convective instability. The

one-dimensional wavepackets studied by DS11 were eventually unable to stabilize the rapidly

developing regions of intense negative buoyancy. Though not of primary interest, we will like-

wise show for two-dimensional wavepackets that there is a delay between wave overturning

and breaking.

In Chapter 2 we first derive the expression for the horizontal flow induced by two-dimen-

sional anelastic internal gravity wavepackets, analogous to (1.6). The nonlinear Schrödinger

equation for two-dimensional wavepackets in a Boussinesq gas is then derived, followed imme-

diately by the derivation of its anelastic counterpart. It is useful to derive the weakly nonlinear

equations in this order, as the Boussinesq derivation will serve as a template for the anelastic

derivation, and as a check on the algebra involved. The numerical methods used to solve the

weakly and fully nonlinear anelastic equations are discussed in Chapter 3. The results of the

weakly and fully nonlinear simulations are presented and compared in Chapter 4. Finally, in

Chapter 5 we discuss the results with a particular emphasis on the discrepancies between the

overturning heights recorded by our fully nonlinear simulations, the fully nonlinear simula-

tions of one-dimensional anelastic wavepackets studied by DS11, and the overturning heights

predicted by linear theory.1

1A condensed version of the work presented in Chapters 2, 3, 4, and 5 has been submitted to the Journal of
the Atmospheric Sciences, and is currently under review: Gervais, A. D., G. E. Swaters, T. S. van den Bremer,
and B. R. Sutherland. “Evolution and Stability of Two-Dimensional Anelastic Internal Gravity Wavepackets”.
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Chapter 2

Weakly Nonlinear Theory

2.1 Governing Equations

The weakly nonlinear theory of two-dimensional (horizontally and vertically localized) internal

gravity wavepackets in an anelastic gas involves the derivations of the nonlinear Schrödinger

equations governing the evolution of a wavepacket amplitude envelope in first a Boussinesq

then an anelastic gas. The former derivation will serve as a template for the latter and as a

means of checking the algebra. The latter derivation will itself require the equation for the

flow induced by the waves as they propagate. To enable the mathematical development of the

weakly nonlinear theory, we first establish the starting point common to all of the derivations

that follow.

The fully nonlinear, two-dimensional, non-rotating anelastic Euler equation for the con-

servation of momentum, including the buoyancy term (Ogura and Phillips, 1962; Lipps and

Hemler, 1982), is given by

Du

Dt
= −∇

(
p

ρ̄

)
+
g

θ̄
θêz, (2.1)

in which u = (u,w) is the velocity, p is the pressure, ρ̄ is the background density, g is

the acceleration due to gravity, and θ̄ and θ are the background and fluctuation potential

temperatures, respectively. The operator D/Dt = ∂t+u ·∇ is the material derivative, and êz

is the standard unit basis vector in the z-direction. Equation (2.1) states that the acceleration

of a fluid is forced by horizontal and vertical pressure gradients and buoyancy.

Also included in the complete set of anelastic equations is a statement of conservation of
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internal energy, expressed as

Dθ

Dt
= −wdθ̄

dz
, (2.2)

in which the background potential temperature is defined by

θ̄ = T̄

(
p̄

p0

)−κ
.

Here, T̄ is the background temperature, p̄ is the background pressure, p0 is a reference pressure,

and κ ≈ 2/7. For simplicity we assume our model atmosphere is isothermal, that is, the

ambient temperature T̄ = T0 = θ0 is constant. Furthermore, we assume the background

pressure and density decrease exponentially with height with an e-folding depth given by the

density scale height. Explicitly, Hρ = −ρ̄/(dρ̄/dz) = RaT0/g, in which Ra is the ideal gas

constant for dry air and the background density is

ρ̄ = ρ0e
−z/Hρ . (2.3)

The corresponding background potential temperature is

θ̄ = θ0e
z/Hθ , (2.4)

in which Hθ = Hρ/κ is the potential temperature scale height. The squared buoyancy fre-

quency is

N2 =
g

θ̄

dθ̄

dz
=

g

Hθ
, (2.5)

which is constant in our isothermal model atmosphere.

The final governing equation is the statement of mass conservation for an anelastic gas,

∇ · (ρ̄u) = 0. (2.6)

Together, (2.1), (2.2), and (2.6) form the set of equations governing fluid motion in an anelastic

gas. The condition given by (2.6) has the effect of filtering acoustic waves from the equations

of motion. In addition to having negligible effect on wave dynamics on the physical scales of

concern in this thesis, acoustic waves present numerical challenges due to their relatively fast

propagation speed. By filtering such waves, numerically integrated solutions of the governing

equations may use larger time steps while remaining numerically stable (Durran, 2010).
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The Boussinesq momentum equation is recovered from its anelastic counterpart by taking

the so-called “Boussinesq limit” of (2.1). In this limit, the density scale height is allowed

to become arbitrarily large. Taking Hρ → ∞ in (2.1) and (2.6) corresponds to setting the

background density ρ̄→ ρ0 and potential temperature θ̄ → θ0 to constant characteristic values

in the anelastic momentum and mass conservation equations, respectively, which yields

ρ0
Du

Dt
= −∇p+ g

ρ0
θ0
θêz; (2.7)

∇ · u = 0. (2.8)

In the context of Boussinesq fluids, (2.8) is a consequence of the incompressibility condition.

The Boussinesq internal energy equation remains identical to its anelastic counterpart, given

by (2.2). The expression for squared buoyancy frequency also remains identical to its anelastic

counterpart, given by (2.5).

2.2 Wave-Induced Mean Flow

The integral expression for the flow induced by two-dimensional Boussinesq internal gravity

wavepackets, reproduced in (1.6), was derived by vdBS14. The extension of that work to

waves in the model anelastic atmosphere described in the previous section is presented here

and follows a similar approach as that of vdBS14. The governing equations for internal waves

in an anelastic atmosphere are given by (2.1), (2.2), and (2.6). The first step is to re-cast the

internal energy equation (2.2) in terms of vertical displacement ξ using the relation

ξ = −θ/θ̄′, (2.9)

where θ̄ is the background potential temperature profile given by (2.4) and the prime denotes

differentiation with respect to z. Rearranging (2.9) for fluctuation potential temperature

and substituting the resulting expression into the internal energy equation (2.2) yields the

equation for the evolution of vertical displacement,

Dξ

Dt
= w − wξ

θ̄′′

θ̄′
≈ w. (2.10)
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The rightmost approximation holds assuming a mean potential temperature profile given by

(2.4), which reveals that

θ̄′′

θ̄′
=

θ̄

H2
θ

Hθ

θ̄
=

1

Hθ
∼ 1

105 m
,

using a typical value of Hθ for the atmosphere (Vallis, 2006). Hence the wξ(θ̄′′/θ̄′) term in

(2.10) is found to be negligibly small.

The pressure terms are now eliminated by taking the curl of the momentum equation, the

result of which is

Dζ

Dt
= −ζ(∇ · u)− g

θ̄
∂xθ

= −ζ(∇ · u) +N2∂xξ. (2.11)

Here, ζ := (∂zu − ∂xw) · êy is the spanwise vorticity, in which êy is the standard unit basis

vector in the spanwise (y) direction, and the squared buoyancy frequency N2, given by (2.5),

arises upon re-casting the potential temperature in terms of vertical displacement via (2.9).

We combine the time derivative of (2.11) with the x-derivative of (2.10), and rearrange the

result so that linear terms appear on the left-hand side and nonlinear terms appear on the

right-hand side:

∂ttζ −N2∂xw = −∂t(u · ∇ζ)−N2∂x(u · ∇ξ)− ∂t(ζ∇ · u). (2.12)

The mass-streamfunction, denoted by Ψ, is defined implicitly via (2.6) by the relations

u = −1

ρ̄
∂zΨ and w =

1

ρ̄
∂xΨ. (2.13a,b)

Consequently, the spanwise vorticity is also expressed in terms of the mass-streamfunction as

ζ = −1

ρ̄

[
∇2Ψ+

1

Hρ
∂zΨ

]
. (2.14)

Together, the relations (2.13a,b) and (2.14) allow us to express the left-hand side of (2.12)

purely in terms of mass-streamfunction Ψ. After some manipulation the resulting partial

differential equation is written as a linear operator L acting on the mass-streamfunction on

the left-hand side and the density-scaled divergence of a nonlinear vector F on the right-hand
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side, written explicitly as

[
∂tt

(
∇2 + 1

Hρ
∂z

)
+N2∂xx

  
:=L

]
Ψ = ρ̄∇ ·

[
∂t(uζ) +N2∂x(uξ)− N2

Hρ
wξêx

  
:=F

]
, (2.15)

where êx is the standard unit basis vector in the x-direction. Together, equations (2.10) and

(2.15) form the set of coupled equations governing ξ and Ψ. The set is closed by inclusion of

the relations (2.13a,b) and (2.14).

In seeking a wave-like solution of (2.15), we first consider substituting into (2.15) a plane

wave given in terms of the vertical displacement

ξ = A0e
iϕ+z/2Hρ , (2.16)

where ϕ = kx+mz−ωt is the phase, the amplitude A0 is constant, and the actual displacement

is understood to be the real part of the right-hand side of (2.16). The remaining basic wave

fields are given by the polarization relations in the centre column of Table 2.1. The expressions

in the centre column of Table 2.1 are valid for plane waves (in which A is understood to be

constant) and for quasi-monochromatic wavepackets (in which it is understood that A =

A(x, z, t)). On the left-hand side of (2.15), derivatives with respect to time will manifest as

factors of −iω, derivatives with respect to x will manifest as factors of ik, and derivatives

with respect to z will manifest as factors of im− 1
2Hρ

. Substituting a plane wave solution into

the left-hand side of (2.15) together with the dispersion relation yields

LΨ ≡ 0.

Because we are interested in the mean forcing contributed by the divergence of F, it is

convenient to express (2.16) as

ξ =
1

2
A0e

iϕ+z/2Hρ + c.c.,

in which we have explicitly included its complex conjugate, denoted by c.c., in order to

compute the products on the right-hand side of (2.15). Taking the means of the products in

F amounts to retaining only terms in which e±i2ϕ does not appear. Computing the means

reveals that wζ ≡ 0 and wξ ≡ 0, a result of the fact that the vertical velocity is exactly 90◦
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Field (Amplitude) O(αϵ0) O(αϵ)

Vertical displacement (Aξ)
(1)
0 = A (Aξ)

(1)
1 = 0

Mass-streamfunction (AΨ)
(1)
0 = −ρ̄ωkA (AΨ)

(1)
1 = −iρ̄ N

K3

[
kAX +mAZ

]
A

Horizontal velocity (Au)
(1)
0 = ω

k (im− 1
2Hρ

)A (Au)
(1)
1 = N

K3

[
ik(im− 1

2Hρ
)AX

+(K2 −m2 − im
2Hρ

)AZ
]

Vertical velocity (Aw)
(1)
0 = −iωA (Aw)

(1)
1 = N

K3

[
(k2 −K2)AX + kmAZ

]

Vorticity (Aζ)
(1)
0 = −NKA (Aζ)

(1)
1 = iNK

[
kAX +mAZ

]

Table 2.1: Expressions for the amplitudes of various fields as they relate to the vertical displacement amplitude, at
O(αϵ0) (centre column) and at O(αϵ) (right column). The actual polarization relations are found by multiplying
each amplitude function by e iϕ+z/2Hρ , where ϕ = kx + mz − ωt. In each expression, partial derivatives of A are
denoted by subscripts, and K = (k2 + m2 + 1/4H2

ρ)
1/2. If one considers a plane wave then A is constant and the

polarization relations from linear theory are given by the centre column and all expressions in the right column are
identically zero; if one considers a slowly varying two-dimensional wavepacket then A = A(X ,Z ,T ) in the centre
and right columns.

out of phase with both the vorticity and the vertical displacement. Since A0 is constant, the

two (unique) remaining terms are

uζ =
1

4

ω

k

NK

Hρ
A2

0e
z/Hρ and uξ = −1

4

ω

k

1

Hρ
A2

0e
z/Hρ , (2.17a,b)

which have retained functional dependence only on the vertical coordinate via the factor ez/Hρ .

As such, substituting (2.17a,b) into F readily shows that F = 0. This is consistent with the

fact that plane internal gravity waves are an exact solution to the fully nonlinear equations

of motion, and that such waves do not induce a mean flow (Sutherland, 2010). We therefore

pursue the following perturbation-theoretical approach to determine a solution in the form of

a quasi-monochromatic wavepacket.

We first define “slow” variables in a frame of reference translating with the wavepacket at

its horizontal and vertical group velocities:

X = ϵ(x− cgxt), Z = ϵ(z − cgz t), T = ϵ2t, (2.18a,b,c)

in which ϵ = ϵz = 1/(kσz) ≈ ϵx = 1/(kσx) is a nondimensional measure of inverse wavepacket

extent, where we have set ϵx ≈ ϵz for simplicity.

Neglecting dispersion, that is, dependence on the variable T in the amplitude envelope

function, we have at leading-order

ξ
(1)
0 := A(X,Z)eiϕ+z/2Hρ ,
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where the superscript and subscript on ξ
(1)
0 denote the field’s order in α and ϵ, respectively.

Here, α = kA0 is a nondimensional measure of wavepacket amplitude. Substituting terms of

O(αϵ0), given in the centre column of Table 2.1, into the right-hand side of (2.15), we find

that F
(2)
1 = 0 and hence (∇ · F)(2)2 = 0 at this order. It is therefore necessary to include the

first-order correction terms to the polarization relations in the right column of Table 2.1.

We write the perturbation expansions for each field as η = η0 + ϵη1 + ϵ2η2 + · · · , where η

is any wave field of interest. Furthermore, in order to close the set of polarization relations

at first-order in ϵ it is necessary to impose the structure of one field. Somewhat arbitrarily,

we impose the structure of the vertical displacement field, and so we set ξ
(1)
n ≡ 0 ∀n ≥ 1. To

obtain the remaining O(αϵ) fields we extract derivatives of the amplitude envelope function,

noting that X- and Z-derivatives contribute one order in ϵ.

It is convenient to begin by finding the first-order correction to the mass-streamfunction

using the relation ∂tξ = w = 1
ρ̄∂xΨ, the result of which is

− [cgx∂XA+ cgz∂ZA]e
iϕ+z/2Hρ = −ω

k
(∂XA)e

iϕ+z/2Hρ +
1

ρ̄
ikΨ1. (2.19)

Upon rearrangement and substitution of cgx = N(K2 − k2)K−3 and cgz = −NkmK−3 into

(2.19) we find that

Ψ1 = −iρ̄ N
K3

[k∂XA+m∂ZA]e
iϕ+z/2Hρ .

Now the remaining fields can be determined from

Ψ ≈ Ψ0 + ϵΨ1 = −ρ̄
[
ω

k
A+ iϵ

N

K3
(k∂XA+m∂ZA)

]
eiϕ+z/2Hρ .

It is natural to proceed in determining u using (2.13a). Explicitly omitting the O(ϵ2) terms

arising from the second-order X- and Z-derivatives of the amplitude function, we have

u = −1

ρ̄
∂zΨ =

ω

k

(
im− 1

2Hρ

)
Aeiϕ+z/2Hρ

+ ϵ

[
i
Nk

K3

(
im− 1

2Hρ

)
∂XA+

(
i
Nm

K3

(
im− 1

2Hρ

)
+
ω

k

)
∂ZA

]
eiϕ+z/2Hρ .

Similarly, we determine w using (2.13b). However, we retain the O(ϵ2) terms for reasons that
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will be made clear shortly. We find that

w =
1

ρ̄
∂xΨ

= −
{
iωA+ ϵ

N

K3

[
(k2 −K2)∂XA+ km∂ZA

]
+ iϵ2

N

K3

[
k∂XXA+m∂ZZA

]}
eiϕ+z/2Hρ .

Having determined the expressions for u and w, we readily find that the expression for

spanwise vorticity is

ζ = ∂zu− ∂xw =

[
−NKA+ ϵi

N

K
(k∂XA+m∂ZA)

]
eiϕ+z/2Hρ ,

where we have again explicitly omitted the O(ϵ2) terms. We recover u
(1)
0 , w

(1)
0 , and ζ

(1)
0 directly

from the O(ϵ0) parts of their respective perturbation expansions. Likewise u
(1)
1 , w

(1)
1 , and ζ

(1)
1

are given by the O(ϵ) parts. The resulting O(αϵ) polarization relations are summarized in the

right column of Table 2.1. The averages of the O(α2ϵ) fields are found by taking the product

of the O(αϵ0) and O(αϵ) fields, the results of which are

(uζ)
(2)
1 =

1

4
ϵ
N2

K2

[
2km∂X + (2m2 −K2)∂Z

]
|A|2ez/Hρ ;

(wζ)
(2)
1 =

1

4
ϵ
N2

K2

[
(K2 − 2k2)∂X − 2km∂Z

]
|A|2ez/Hρ ;

(uξ)
(2)
1 =

1

4
ϵ
N

K3

[
− km∂X + (K2 −m2)∂Z

]
|A|2ez/Hρ ;

(uξ)
(2)
1 =

1

4
ϵ
N

K3

[
− (K2 − k2)∂X + km∂Z

]
|A|2ez/Hρ ,

where | · | denotes the modulus. That the rightmost term in F has neither x-, z-, nor t-

derivatives applied to it (as opposed to the first two terms in F) suggests the need to include

the contribution of (wξ)
(2)
2 . This is achieved using the product of the w

(1)
2 and ξ

(1)
0 fields, in

which w
(1)
2 is recovered from the O(ϵ2) part of the perturbation expansion for w. However,

we remark that because the coefficient on w
(1)
2 is purely imaginary and the coefficient on ξ

(1)
0

is purely real, it follows that (wξ)
(2)
2 ≡ 0. Hence, substituting the O(α2ϵ) mean fields into F,

computing the divergence, and simplifying the resulting equation finally yields

(∇ · F)(2)3 = −1

4
ϵ3
N3

K5
ez/HρK |A|2, (2.20)
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where, for notational ease, the partial differential operator K is defined as

K := km[3K2 − 2k2]∂XXX +
[
3m4 − 4k2m2 − k4 + 3(m2 − k2) 1

4H2
ρ

]
∂XXZ

− km[3K2 + 2m2 − 4k2]∂XZZ + [2k2m2]∂ZZZ

− 1

ϵHρ
K2[K2 − k2]∂XX +

1

ϵHρ
[K2km]∂XZ .

(2.21)

In previous studies of Boussinesq wavepackets (Bretherton, 1969; Tabaei and Akylas, 2007;

van den Bremer and Sutherland, 2014), the induced flow was found to be a horizontally long,

hence hydrostatic wave. Assuming this result likewise holds for anelastic wavepackets, X-

derivatives of |A|2, acting through K , are assumed to be negligibly small compared to the

term with Z-derivatives alone (vdBS14). Hence

(∇ · F)(2)3 ≈ −ϵ3 1
2

N3k2m2

K5
ez/Hρ∂ZZZ |A(X,Z)|2. (2.22)

Following Bretherton (1969), vdBS14 approximated the X-dependent contribution to (2.22)

as a Dirac delta function. In seeking an analytic solution, the wavepacket was subsequently

prescribed to be a Gaussian. In contrast, we require only that the wavepacket satisfy sufficient

differentiability and integrability properties in order to perform Fourier transforms later on.

Otherwise we make no assumptions about the structure of the wavepacket amplitude envelope

function. We denote such a generic vertical displacement amplitude function by A := Aξ =

A0A(x̃, z̃, t), where A may be complex-valued and maxx̃,z̃ |A| = 1 initially. Furthermore, we

will write the following results in terms of the fast-scale variables translating at the group

velocity of the wavepacket,

x̃ =
X

ϵ
= x− cgxt and z̃ =

Z

ϵ
= z − cgz t. (2.23a,b)

Under this change of variables, the nonlinear forcing given by (2.22) is written

(∇ · F)(2)3 ≈ −1

2

N3k2m2

K5
A2

0e
z/Hρ∂z̃z̃z̃|A(x̃, z̃, t)|2,

in which we have explicitly re-introduced dependence on t in the amplitude function.

The operator L , defined in (2.15), is re-cast in terms of x̃ and z̃. Using the anticipated

long wave response, the constituent operators in L are consequently expressed as ∂tt ≈ c2gz∂z̃z̃
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and ∂x̃x̃ + ∂z̃z̃ ≈ ∂z̃z̃ (vdBS14). Equation (2.15) thus reads

[c2gz∂z̃z̃z̃z̃ +
1
Hρ
c2gz∂z̃z̃z̃ +N2∂x̃x̃]Ψ

(2) = −1

2
ρ0
N3k2m2

K5
A2

0∂z̃z̃z̃|A(x̃, z̃, t)|2. (2.24)

For an appropriate function η, we denote by a caret the (two-dimensional) Fourier trans-

form of η, and we define the Fourier transform pair

η̂ =
1

(2π)2

∫

R2

ηe−i(κx̃+µz̃)dx̃dz̃;

η =

∫

R2

η̂ei(κx̃+µz̃)dκdµ.

In Fourier space, on the left-hand side of (2.24) derivatives with respect to x̃ are expressed

as multiplicative factors of iκ and derivatives with respect to z̃ are similarly expressed as

factors of iµ. Taking the Fourier transform of (2.24) and rearranging yields the equation for

mass-streamfunction in Fourier space,

Ψ̂(2)(κ,µ) =
i

2
ρ0
N3k2m2

K5
A2

0

µ3 |̂A|2
c2gzµ

4 − i 1
Hρ
c2gzµ

3 −N2κ2
. (2.25)

The solution for the mass-streamfunction in real space is found by taking the inverse Fourier

transform of (2.25). Upon rearranging the denominator in the integrand to factor N2 out of

the κ2 term, this is given by

Ψ(2) =
i

2
ρ0
Nk2m2

K5
A2

0

∫

R2

µ3 |̂A|2ei(κx̃+µz̃)
c2gz
N2

[
µ4 − i 1

Hρ
µ3

]
− κ2

dκdµ. (2.26)

This equation can be explicitly integrated with respect to κ as was done by vdBS14 for

Boussinesq wavepackets, their integral expression being equivalent to letting Hρ → ∞ in

(2.26). Here, this task in non-trivial due to the presence of complex singularities in the

integrand. The details of the integration of (2.26) are provided in Appendix A. In practice,

when numerically solving the governing equations for two-dimensional wavepackets, it is more

convenient instead to compute the wave-induced momentum, ρ̄u(2), in Fourier space using

(2.13a) and (2.25), so that

ˆ̄ρu(2) = −∂̂z̃Ψ(2) = −iµΨ̂(2) =
1

2
ρ0
Nk2m2

K5
A2

0

µ4 |̂A|2
2C(µ)

[
1

κ+ C(µ)
− 1

κ− C(µ)

]
, (2.27)

in which the function C(µ) is given by (A.2). The wave-induced momentum in real space is
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Figure 2.1: (a) Plot of wave-induced momentum, ρ̄u(2)(x , z , 0), using the fast Fourier transform method detailed
in §3.2.4. (b) Three vertical profiles of wave-induced momentum. The black solid curve is that extracted from the
induced momentum field shown in (a); the dashed red profile is that computed using (A.16); the dotted black curve
is that computed using (A.16) for an effectively Boussinesq gas, for which Hρ = 1000k−1.

found by horizontally and vertically inverse transforming (2.27), which yields

ρ̄u(2)(x̃, z̃) =

∫

R2

ˆ̄ρu(2)ei(κx̃+µz̃)dκdµ. (2.28)

The wave-induced mean flow through the horizontal centre of the translating wavepacket, in

fixed coordinates, is found using

U(z, t) = u(2)(x = cgxt, z, t). (2.29)

Details of the numerical procedures used to evaluate (2.28) and (2.29) are provided in §3.2.4.

For illustrative purposes, the initial horizontal momentum field, ρ̄u(2)(x, z, 0), computed

using (2.28), is shown in Fig. 2.1a. Qualitatively the induced long wave resembles a bow

wake, predicted by Bretherton (1969) and shown for two-dimensional Boussinesq wavepackets

by vdBS14 (c.f. figure 2 in that work). Fig. 2.1b shows three vertical profiles of the wave-

induced momentum taken through the horizontal centre of the wavepacket (that is, through

x̃ = x− cgxt = 0). The solid black curve is the profile found by directly extracting the profile

through x̃ = 0 in Fig. 2.1a computed by applying fast Fourier transforms to (2.28). The

dashed red curve is computed using x̃ = 0 in the integral expression (A.16). That the curves

overlap demonstrates the agreement between the results of the fast Fourier transform method

detailed in §3.2.4 and the residue method detailed in Appendix A. The dotted black curve is
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the profile computed for an effectively Boussinesq gas, using Hρ = 1000k−1 in (A.16). This

demonstrates the qualitative similarities among the anelastic and Boussinesq wave-induced

momentum profiles. In particular, the values are positive along the leading flank of the

wavepacket and negative on the trailing flank, and approximately symmetric about z = 0.

The magnitude of the anelastic induced momentum profile is smaller on the leading flank

than on the trailing flank. However, it should be kept in mind that, due to anelastic effects,

the wave-induced mean flow U will generally be of greater magnitude along the leading flank

than along the trailing flank after dividing ρ̄U by the background density.

A key difference between the mean flows induced by one- and two-dimensional wavepackets

is their order in α and ϵ. Crucially, in two dimensions U ∼ O(α2ϵ), whereas in one dimension

U1D ∼ O(α2). In the next sections, these quantitative differences will be exploited in the

derivations of the Boussinesq and anelastic weakly nonlinear governing equations.

2.3 Schrödinger Equation for a Boussinesq Gas

Before deriving the nonlinear Schrödinger equation for horizontally and vertically localized

anelastic wavepackets, it is necessary to derive its Boussinesq analogue. Most importantly,

this will serve as a template for deriving the anelastic nonlinear Schrödinger equation, and as

a partial means of confirming its correctness. This derivation is closely based on the approach

taken by Dosser (2010). We begin with the incompressible Euler equations for a Boussinesq

gas given by (2.7), (2.2), and (2.8). However, we will explicitly write the velocity vector

components in terms of “total” fields, which we denote by a subscript T . A total field is

defined as the sum of background and fluctuation components. Explicitly, the total velocity

fields are given by

uT = u(x, z, t) + U(z, t);

wT = w(x, z, t),

in which U(z, t) is the local wave-induced mean flow for a Boussinesq gas, found by taking

Hρ → ∞ in (2.29). The vertical component of the induced flow field, W , is not included in

the total vertical velocity field, wT , under the hydrostatic approximation that ∥W∥ ≪ ∥U∥.
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Expressed explicitly in terms of total fields, the momentum equation, internal energy equation,

and incompressibility condition thus read, respectively

ρ0
DuT
Dt

= −∇p+ gρ0
θ0
θêz; (2.30a)

Dθ

Dt
= −wT

dθ̄

dz
; (2.30b)

∇ · uT = 0, (2.30c)

where D/Dt = ∂t+uT ·∇ is the material derivative expressed in terms of total fields and the

total velocity vector is uT = (uT ,wT ).

We eliminate the pressure terms by taking the curl of the momentum equation (2.30a),

which upon rearrangement yields

ρ0
DζT
Dt

= −gρ0
θ0
∂xθ, (2.31)

in which the total spanwise vorticity is defined as

ζT := (∇× uT ) · êy. (2.32)

The incompressibility condition (2.30c) allows us to express the total velocity components as

derivatives of the total streamfunction, ψT , given implicitly by the relations

uT = −∂zψT , and wT = ∂xψT . (2.33a,b)

Here, ψT = ψ(x, z, t) + ψ̄(z, t), in which ψ̄(z, t) is the O(α2ϵ) induced streamfunction given

by (2.26) in the limit Hρ → ∞ and evaluated at x̃ = 0. The vorticity is related to the

streamfunction by substituting the relations (2.33a,b) into the definition of ζT , which reveals

that

ζT = −∇2ψT .

Substituting this relation into (2.31), applying the incompressibility condition, expanding the

material derivative, and explicitly separating the total velocity and streamfunction into their

background and fluctuation components, then simplifying the resulting expression, yields

∂t∇2ψ − ∂tzU + u∂x∇2ψ + U∂x∇2ψ + w∂z∇2ψ − w∂zzU =
g

θ0
∂xθ, (2.34)

24



in which we have identified that ∂zψ̄ = −U using (2.33a).

We assume evolution of the wavepacket envelope function occurs on a much slower scale

than that of the waves themselves. We hence re-introduce the slow variables X, Z, and T ,

defined in (2.18a,b,c), and express the fluctuation streamfunction and potential temperature

in terms of the slow variables:

ψ = Aψ(X,Z,T )eiϕ; (2.35)

θ = Aθ(X,Z,T )eiϕ, (2.36)

where ϕ = kx+mz − ωt is the phase, and it is understood that ψ and θ are the real parts of

the right-hand sides of (2.35) and (2.36), respectively. Note that subscripts T denote partial

derivatives with respect to the slow variable T . Under the change of variables, derivatives of

any basic wave field η = Aη(X,Z,T )eiϕ are given by

∂x → ϵ∂X + ik; (2.37a)

∂z → ϵ∂Z + im; (2.37b)

∂t → ϵ2∂T − ϵcg · ∇ − iω, (2.37c)

in which cg = (cgx , cgz) is the group velocity vector and, somewhat ambiguously, ∇ = (∂X , ∂Z)

is henceforth understood to operate in terms of the slow variables.

Substituting (2.35) and (2.36) into (2.34), making the change of variables (x, z, t) →

(X,Z,T ) and extracting only terms contributing to wave-like motion (i.e. extracting only

those terms containing the factor eiϕ) yields a partial differential equation in terms of a non-

linear operator acting on the streamfunction amplitude on the left-hand side and a linear

operator acting on the potential temperature amplitude on the right-hand side. Explicitly,

{
(ϵ2∇2 + 2iϵk · ∇ − |k|2)(ϵ2∂T − ϵcg · ∇ − iω + U [ϵ∂X + ik])− ϵ2(ϵ∂X + ik)∂ZZU

}
Aψ

=
g

θ0
(ϵ∂X + ik)Aθ, (2.38)

in which k = (k,m) is the wavenumber vector, and |k| = (k2 + m2)1/2 is its Euclidean

norm. We eliminate the dependence on the potential temperature by substituting (2.36)

into the internal energy equation (2.30b), retaining only terms containing the factor eiϕ, and
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multiplying both sides of the resulting equation by (g/θ0)(ϵ∂X + ik) to obtain

g

θ0
(ϵ2∂T − ϵcg · ∇ − iω + U [ϵ∂X + ik])(ϵ∂X + ik)Aθ = −dθ̄

dz

g

θ0
(ϵ∂X + ik)2Aψ. (2.39)

Applying the operator (ϵ2∂T − ϵcg ·∇− iω+U [ϵ∂X + ik]) to both sides of (2.38) and equating

the left-hand side of the resulting equation with the right-hand side of (2.39) finally yields

a single equation for the evolution of the streamfunction amplitude at all orders in α and ϵ.

Explicitly,

(ϵ2∂T − ϵcg · ∇ − iω + U [ϵ∂X + ik])×
{
(ϵ2∂T − ϵcg · ∇ − iω + U [ϵ∂X + ik])(ϵ2∇2 + 2iϵk · ∇ − |k|2)− ϵ2[ϵ∂X + ik]∂ZZU

}
Aψ

= −N2(ϵ2∂XX + 2iϵk∂X − k2)Aψ, (2.40)

in which α = A0k is a nondimensional measure of wavepacket amplitude identical to that

used in the derivation of the wave-induced mean flow. We now assume the streamfunction

amplitude and the local wave-induced mean flow can be expanded in perturbation expansions

of the forms Aψ = α(B0 + αB1 + α2B2 + · · · ) and U = α2ϵ(V0 + αV1 + · · · ), respectively.

Substituting these into (2.40), the nonlinear Schrödinger equation is derived by extracting

O(αrϵs) terms of the resulting equation up to and including combined order r+ s = 4. Upon

completion of this procedure, it will be assumed that α ∼ ϵ so that dispersion balances

nonlinearity.

The O(αϵ0) equation recovers the linear dispersion relation for internal gravity waves given

in Table 2.2. The O(α2) = O(α2ϵ0 + αϵ) equation yields 0 = 0 as a consequence of working

in a frame of reference translating at the group velocity of the wavepacket. The O(α3) =

O(α3ϵ0 + α2ϵ + αϵ2) equation yields the linear Schrödinger equation for two-dimensional

wavepackets in a frame of reference translating at the wavepacket’s group velocity,

∂TB0 = i
{

1
2ωkk∂XX + ωkm∂XZ + 1

2ωmm∂ZZ

}
B0,

in which the subscripts on ω denote partial derivatives with respect to the wavenumber com-

ponents. Before proceeding to computing the O(α4) = O(α4ϵ0+α3ϵ+α2ϵ2+αϵ3) equation, we

remark that the O(αϵ3) equation in particular contains mixed time-space derivative terms.
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Dispersion relation and its derivatives

ω = Nk/|k| ωkkk = 3Nm2(4k2 −m2)/|k|7

cgx = ωk = Nm2/|k|3 ωkkm = 3Nkm(3m2 − 2k2)/|k|7

cgz = ωm = −Nkm/|k|3 ωkmm = −N(2k4 − 11k2m2 + 2m4)/|k|7

ωkk = −3Nkm2/|k|5 ωmmm = 3Nkm(3k2 − 2m2)/|k|7

ωkm = −Nm(m2 − 2k2)/|k|5

ωmm = −Nk(k2 − 2m2)/|k|5

Table 2.2: Expressions for the linear dispersion relation, ω, and its derivatives up to third-order, for internal gravity
waves in a Boussinesq gas. Here, |k| = (k2 +m2)1/2 in which k and m are the horizontal and vertical wavenumbers,
respectively.

These mixed derivatives are eliminated by applying the following linear operation to the

O(αϵ2) equations:

1

2iω|k|2
{
O(αϵ3) + i

1

|k|2k (2k
2 +m2)∂XO(αϵ2) + i

m

|k|2∂ZO(αϵ2)

}
. (2.41)

Taking slow spatial derivatives of the O(αϵ2) equations raises those equations by one order in

ϵ. The resulting combined O(α4) equation is

∂TB1 =
{

1
2 iωkk∂XX + iωkm∂XZ + 1

2 iωmm∂ZZ

}
B1

+
{

1
6ωkkk∂XXX + 1

2ωkkm∂XXZ + 1
2ωkmm∂XZZ + 1

6ωmmm∂ZZZ

}
B0 − ikV0B0,

which includes leading- and next-order linear dispersion terms and the nonlinear term repre-

senting the Doppler-shifting of the waves by their induced mean flow.

Finally, recombining all orders and returning to the fast-scale variables in a fixed frame of

reference reveals the nonlinear Schrödinger equation for horizontally and vertically localized

wavepackets in a Boussinesq gas,

∂tAψ = −
{
ωk∂x + ωm∂z

}
Aψ +

{
1
2 iωkk∂xx + iωkm∂xz +

1
2 iωmm∂zz

}
Aψ

+
{

1
6ωkkk∂xxx +

1
2ωkkm∂xxz +

1
2ωkmm∂xzz +

1
6ωmmm∂zzz

}
Aψ − ikUAψ,

(2.42)

in which the subscripts on ω denote partial derivatives with respect to the horizontal and

vertical wavenumbers k and m. The dispersion relation ω and its derivatives are summarized

in Table 2.2.

The first set of braced terms on the right-hand side of (2.42) represents advection at the
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wavepacket’s horizontal and vertical group speeds, respectively. The second and third sets

of braced terms represent linear dispersion at leading- and second-order, respectively. The

derivatives purely in x or z represent dispersion in their respective directions, whereas mixed

spatial derivatives represent dispersion in neither the x- nor z-direction. We therefore refer to

these as “oblique dispersion” terms. The inclusion of third-order derivative terms is necessary

to balance the effects of dispersion with nonlinearity arising at O(α2ϵ) through interactions

between the waves and their induced mean flow. Moreover, third-order derivative terms are

necessary to capture the dispersion of waves traveling at the fastest horizontal and vertical

group velocities, for which ωkm ≈ 0 and ωmm ≈ 0, respectively (Sutherland, 2006b). The

final term on the right-hand side represents the leading-order effects of nonlinearity through

the interaction between the wavepacket and its induced mean flow U = u(2)(x = cgxt, z, t), in

which u(2) is explicitly a function of time because Aψ evolves in time according to (2.42).

In the limit as the wavepacket becomes arbitrarily long (i.e. as σx → ∞), the wavepacket’s

structure becomes uniform in the horizontal. Hence all terms containing at least one x-

derivative vanish and the linear part of the resulting equation exactly recovers the linear

part of the Boussinesq nonlinear Schrödinger equation derived by Sutherland (2006b) for

horizontally periodic, vertically localized wavepackets (c.f. equations 2.10 and 2.11 in that

work). The wave-induced mean flow U does not recover its one-dimensional analogue, given

by (1.4), because the induced flows in one and two dimensions are qualitatively different

(Tabaei and Akylas, 2007; van den Bremer and Sutherland, 2018).

2.4 Schrödinger Equation for an Anelastic Gas

Having established the expression for the flow induced by horizontally and vertically localized

wavepackets in an anelastic gas, and the Boussinesq nonlinear Schrödinger equation modeling

the interactions between the waves and their induced flow, we are now able to derive the non-

linear Schrödinger equation that models the evolution of horizontally and vertically localized

wavepackets in an anelastic gas. In the following derivation, we assume a background density

profile described by (2.3). We begin with the incompressible Euler equations for an anelastic

gas, given by (2.1), (2.2), and (2.6). Following the approach taken in the derivation of the
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Boussinesq nonlinear Schrödinger equation, we write the velocity vector components in terms

of the total fields, given by

uT = u(x, z, t) + U(z, t);

wT = w(x, z, t),

in which U(z, t) is the local wave-induced mean flow given by (2.29). By the hydrostatic

approximation, ∥W∥ ≪ ∥U∥, where W is the vertical component of the induced flow field.

Hence W is not included in the total vertical velocity field, wT . Expressed explicitly in terms

of total fields, the momentum equation, internal energy equation, and anelastic condition thus

read, respectively

DuT
Dt

= −∇
(
p

ρ̄

)
+
g

θ̄
θêz; (2.43a)

Dθ

Dt
= −wT

dθ̄

dz
; (2.43b)

∇ · (ρ̄uT ) = 0, (2.43c)

where D/Dt = ∂t+uT ·∇ is the material derivative expressed in terms of total fields and the

total velocity vector is uT = (uT ,wT ).

The pressure terms are eliminated by taking the curl of the momentum equation (2.43a),

which, upon rearrangement, yields

DζT
Dt

= −(∇ · uT )ζT − g

θ̄
∂xθ, (2.44)

where ζT is the total spanwise vorticity, defined as in (2.32).

The anelastic condition (2.43c) allows us to express the total velocity components as

density-normalized derivatives of the total mass-streamfunction, ΨT , given by the relations

uT = −1

ρ̄
∂zΨT , and wT =

1

ρ̄
∂xΨT . (2.45a,b)

Here, ΨT = Ψ(x, z, t) + Ψ̄(z, t), in which Ψ̄(z, t) is the O(α2ϵ) induced mass-streamfunction,

given by (2.26), evaluated at x̃ = 0. The total spanwise vorticity is related to the mass-
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streamfunction by substituting the relations (2.45a,b) into ζT , which yields

ζT = −1

ρ̄

[
∇2ΨT +

1

Hρ
∂zΨT

]
. (2.46)

The anelastic condition ∇ · (ρ̄uT ) = 0 is equivalently stated as ∇ ·uT = wT /Hρ. Substituting

this and (2.46) into (2.44) yields

D

Dt

{
1

ρ̄

[
∇2ΨT +

1

Hρ
∂zΨT

]}
= −wT

Hρ

[
1

ρ̄

(
∇2ΨT +

1

Hρ
∂zΨT

)]
+
g

θ̄
∂xθ.

Expanding the material derivative, multiplying both sides of the resulting equation by ρ̄,

and explicitly separating the total velocity and mass-streamfunction fields into their back-

ground and fluctuation components, yields a nonlinear equation involving Ψ, Ψ̄, u, U , and w

on the left-hand side and θ on the right-hand side. Applying the relations (2.45a,b) to the

fluctuation components of uT , and identifying that ∂zΨ̄ = −ρ̄U using (2.45a), the equation

can be re-written purely in terms of the fluctuation mass-streamfunction Ψ and the wave-

induced mean flow U on the left-hand side and the fluctuation potential temperature θ on the

right-hand side. Explicitly,

∂t∇2Ψ− ρ̄∂tzU +
1

Hρ
∂tzΨ− 1

ρ̄
∂zΨ∂x∇2Ψ− 1

ρ̄Hρ
∂zΨ∂xzΨ+ U∂x∇2Ψ+

1

Hρ
U∂xzΨ

+
2

ρ̄Hρ
∂xΨ∇2Ψ+

2

ρ̄H2
ρ

∂xΨ∂zΨ+
1

ρ̄
∂xΨ∂z∇2Ψ− ∂xΨ∂zzU +

1

ρ̄Hρ
∂xΨ∂zzΨ

= N2ρ̄

(
dθ̄

dz

)−1

∂xθ, (2.47)

in which we have used the definition of the squared buoyancy frequency for an anelastic gas,

given by (2.5), on the right-hand side of (2.47).

Because we are working with wavepackets, it is reasonable to assume that the amplitude

envelope function evolves much more slowly than the waves themselves, and hence we re-

introduce the slow-scale variables X, Z, and T , as defined in (2.18a,b,c). Explicitly expressed

in terms of the slow variables, the fluctuation mass-streamfunction and potential temperature

fields are

Ψ = AΨ(X,Z,T )eiϕ−z/2Hρ ; (2.48)

θ = Aθ(X,Z,T )eiϕ−z/2Hρ , (2.49)
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where ϕ = kx +mz − ωt is the phase, and it is understood that Ψ and θ are the real parts

of the right-hand sides of (2.48) and (2.49), respectively. Note that subscripts T now denote

partial derivatives with respect to the slow time variable T . Under this change of variables,

derivatives of any basic wave field η = Aη(X,Z,T )eiϕ−z/2Hρ are given by

∂x → ϵ∂X + ik; (2.50a)

∂z → ϵ∂Z + im− 1/(2Hρ); (2.50b)

∂t → ϵ2∂T − ϵcg · ∇ − iω, (2.50c)

in which cg = (cgx , cgz) is the group velocity vector and ∇ = (∂X , ∂Z) is understood to operate

in terms of the slow variables.

Substituting (2.48) and (2.49) into (2.47), making the change of variables (x, z, t) →

(X,Z,T ), and extracting only terms containing the factor eiϕ yields a partial differential

equation in terms of a nonlinear operator acting on the mass-streamfunction amplitude on

the left-hand side and a linear operator acting on the potential temperature amplitude on the

right-hand side. Explicitly,

NU (ϵ
2∇2 + 2ik · ∇ −K2)AΨ − (ϵ2∂ZZU + ϵ 1

Hρ
∂ZU)(ϵ∂X + ik)AΨ

= N2ρ̄

(
dθ̄

dz

)−1

(ϵ∂X + ik)Aθ, (2.51)

in which K2 = |k|2 + 1/(4H2
ρ ) and we have defined the nonlinear partial differential operator

NU := ϵ2∂T − ϵcg · ∇ − iω + U [ϵ∂X + ik]

for notational convenience. We eliminate the dependence on the potential temperature

using a similar procedure as in the derivation of the nonlinear Schrödinger equation for

a Boussinesq gas. We substitute (2.48) into the internal energy equation (2.43b), retain

only terms containing the factor eiϕ, and multiply both sides of the resulting equation by

N2ρ̄(dθ̄/dz)−1(ϵ∂X + ik), thus obtaining

NUN
2ρ̄

(
dθ̄

dz

)−1

(ϵ∂X + ik)Aθ = −N2(ϵ∂X + ik)2AΨ. (2.52)

Applying the operator NU to both sides of (2.51) and equating the left-hand side of the
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resulting equation with the right-hand side of (2.52) yields a single equation for the evolution

of the mass-streamfunction amplitude at all orders in α and ϵ. Explicitly,

NU

{
NU (ϵ

2∇2 + 2iϵk·∇ −K2)− (ϵ2∂ZZU + ϵ 1
Hρ
∂ZU)(ϵ∂X + ik)

}
AΨ

= −N2(ϵ2∂XX + 2iϵk∂X − k2)AΨ, (2.53)

in which α = A0k is the nondimensional measure of wavepacket amplitude used in the deriva-

tions of the wave-induced mean flow and the Boussinesq nonlinear Schrödinger equation. We

perform a regular perturbation expansion of the mass-streamfunction amplitude function,

written as AΨ = α(B0 + αB1 + α2B2 + · · · ), and of the wave-induced mean flow, written as

U = α2ϵ(V0 + αV1 + · · · ). Substituting these expansions into (2.53) and taking the Boussi-

nesq limit Hρ → ∞, we observe that the resulting equation—and hence its O(αrϵs) terms—is

identical to the Boussinesq nonlinear Schrödinger equation (2.40).

As such we may exactly follow the procedures from the previous section for extracting each

O(αrϵs) term, and for eliminating the mixed time-space derivative terms appearing at O(αϵ3).

We then assume that α ∼ ϵ and recombine all terms up to and including the combined O(α4).

Returning to the fast-scale variables in a fixed frame of reference, the resulting equation finally

yields the nonlinear Schrödinger equation for horizontally and vertically localized wavepackets

in an anelastic gas,

∂tAΨ = −
{
ωk∂x + ωm∂z

}
AΨ +

{
1
2 iωkk∂xx + iωkm∂xz +

1
2 iωmm∂zz

}
AΨ

+
{
1
6ωkkk∂xxx +

1
2ωkkm∂xxz +

1
2ωkmm∂xzz +

1
6ωmmm∂zzz

}
AΨ − ikUAΨ,

(2.54)

in which the subscripts on ω denote partial derivatives with respect to the horizontal and

vertical wavenumbers k and m, respectively. The dispersion relation ω and its derivatives are

summarized in Table 2.3.

The nonlinear Schrödinger equation for two-dimensional anelastic wavepackets (2.54) is

similar in form to its Boussinesq counterpart, given by (2.42). In particular, the respective sets

of braced terms have identical physical interpretations, and in both equations the nonlinear

term represents the Doppler-shifting of the waves by their induced mean flow.

The linear part of (2.54) is identical to the linear part of the nonlinear Schrödinger equa-

tion derived by Shrira (1981) (c.f. equation 20 in that work). In particular, that equation
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Dispersion relation and its derivatives

ω = Nk/K ωkkk = −3N(K2 − k2)(K2 − 5k2)/K7

cgx = ωk = N(K2 − k2)/K3 ωkkm = 3Nkm(3K2 − 5k2)/K7

cgz = ωm = −Nkm/K3 ωkmm = −N
[
K2(3K2 − 5k2)

ωkk = −3Nk(K2 − k2)/K5 −5m2(K2 − 3k2)
]
/K7

ωkm = −Nm(K2 − 3k2)/K5 ωmmm = 3Nkm(3K2 − 5m2)/K7

ωmm = −Nk(K2 − 3m2)/K5

Table 2.3: Expressions for the linear dispersion relation, ω, and its derivatives up to third-order, for internal gravity
waves in an anelastic gas. Here, K 2 = k2 + m2 + 1/(4H2

ρ) in which k and m are the horizontal and vertical
wavenumbers, respectively, and Hρ is the density scale height.

was derived for three-dimensional (horizontally, vertically, and spanwise localized) Boussinesq

wavepackets in which dependence on the spanwise coordinate was significantly weaker than

on x or z. The principal difference between (2.54) and equation (20) of Shrira is that the

nonlinear terms in the latter are proportional to A(cg · ∇A⋆) − |A|2cg · ∇A, in which the

star denotes the complex conjugate of A. Conversely, in (2.54) the nonlinear term is propor-

tional to UA, in which U ∝ |A|2 is given by (2.29). Tabaei and Akylas (2007) also derived

a wavepacket evolution equation for two-dimensional wavepackets which, in the absence of

modulations in the x-direction, reduced to a nonlinear Schrödinger equation (c.f. equations 66

and 72 in that work). Our equation (2.54) is similar to those of Tabaei and Akylas in that the

nonlinearity arises through interactions between the waves and their induced mean flow. Like

Shrira’s equation (20), but unlike the nonlinear Schrödinger equation of Tabaei and Akylas,

our equation (2.54) remains sensitive to modulations in the x-direction, although their effect

is generally weaker than the effect of modulations in the z-direction.

If the horizontal extent of the wavepacket, σx, is taken to be arbitrarily large, the wave-

packet becomes horizontally uniform and so all terms containing at least one x-derivative

in (2.54) vanish. The linear part of the resulting equation is identical to the linear part

of the nonlinear Schrödinger equation for one-dimensional anelastic wavepackets derived by

DS11, which is reproduced in (1.8). The nonlinear part of (2.54) does not reduce to its one-

dimensional analogue because the wave-induced mean flows are qualitatively different (Tabaei

and Akylas, 2007; van den Bremer and Sutherland, 2018).

There are three key differences between our two-dimensional nonlinear Schrödinger equa-
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tion and the one-dimensional nonlinear Schrödinger equation derived by DS11 for horizontally

periodic, vertically localized wavepackets. Two-dimensional wavepackets can disperse in the

horizontal and in the vertical, as expressed through terms containing derivatives with respect

to x in (2.54), as opposed to dispersing in the vertical only, as is the case for waves strictly

localized in the vertical. The wave-induced mean flow is qualitatively different: rather than

being unidirectional and horizontally localized with maximum value spatially co-located with

the peak in the amplitude function, in two dimensions the induced flow is positive on the

leading flank of the wavepacket and negative on the trailing flank. Finally, with U being

of O(α2ϵ) for two-dimensional wavepackets, the nonlinear (Doppler-shift) term in (2.54) bal-

ances dispersion terms with three spatial derivatives. For one-dimensional wavepackets U is

of O(α2), and so the Doppler-shift term in (1.8) balances the leading-order dispersion term,

whereas the next-order dispersion term is balanced by the wave-induced mean flow shear term,

as expressed through the term involving ∂zU in (1.8).

The coefficients in the nonlinear Schrödinger equation (2.54) allow us quantitatively to

investigate the modulational instability of two-dimensional wavepackets (Whitham, 1974;

Phillips, 1981). Mathematically, wavepackets are modulationally unstable if kUωmm < 0.

This condition is derived in Appendix B (see also Sutherland (2010, section 4.2.4) and

Whitham (1974)). For one-dimensional wavepackets, kU > 0 and so modulational insta-

bility occurs only for waves having frequency less than that of waves with the fastest vertical

group speed, for which ωmm = 0. For Boussinesq waves, the critical transition frequency is

ω∗ =
√

2/3N occurring at the critical vertical wavenumber m∗ = k/
√
2. Two-dimensional

wavepackets are always modulationally unstable because kU changes sign over the vertical

extent of the wavepacket, consistent with the findings of Tabaei and Akylas (2007). In par-

ticular, where kUωmm < 0, the waves accumulate, leading to relative amplitude growth, and

where kUωmm > 0, the waves spread, leading to relative amplitude decay. Whether the lead-

ing or trailing flank exhibits relative growth or decay is determined by the magnitude of the

critical transition wavenumber, m̃∗ relative to k, defined by (B.10), which is itself set by the

condition ωmm = 0. For reference, (B.10) is

m̃∗ = |m∗/k| :=
1√
2

[
1 +

1

4k2H2
ρ

]1/2
.
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If |m/k| < m̃∗, wave accumulation occurs on the leading flank (where U(z, t) > 0), while

the trailing flank exhibits amplitude decay and vertical spreading, leading inevitably to the

trailing flank running into the leading flank. Conversely, if |m/k| > m̃∗, the leading flank

spreads vertically while the trailing flank accumulates.

Although typically weaker than vertical modulations, the wavepacket also exhibits modu-

lational instability in the horizontal if kUωkk < 0. This condition is derived in Appendix B.

However, because ωkk < 0 ∀m ∈ R, horizontal narrowing and amplitude growth or broadening

and amplitude decay is determined by the sign of U . In particular, on the leading flank, where

U(z, t) > 0, the wavepacket will narrow and the amplitude will grow, whereas on the trailing

flank, where U(z, t) < 0, the amplitude will decay and the wavepacket will broaden. These

effects are much less pronounced than the effects of vertical modulations. This is confirmed

by the results of the weakly and fully nonlinear simulations presented in Chapter 4.
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Chapter 3

Numerics

Along with the insights provided through the analysis of the governing equations in the previ-

ous chapter, numerical simulation is one of the primary means by which we seek to understand

the dynamics of horizontally and vertically localized internal gravity wavepackets. Two types

of simulations were conducted: “fully nonlinear” simulations, which solve a modification of

the nonlinear equations of motion, and “weakly nonlinear” simulations, which solve the non-

linear Schrödinger equation (2.54). The methods of both types of simulations are detailed

herein. The final section in this chapter presents the numerical methods that will be used to

analyze quantitatively the results shown in Chapter 4.

The fully nonlinear code was provided by Dr. Bruce Sutherland. The core of this code uses

the numerical algorithms of Press et al. (2007). I wrote the section of the code that diagnoses

wave overturning for two-dimensional wavepackets (previously this part of the code was valid

only for one-dimensional waves). The weakly nonlinear code was originally written by Ms.

Hayley Dosser to numerically integrate (1.8) for her study of horizontally periodic, vertically

localized weakly nonlinear anelastic wavepackets (Dosser, 2010; Dosser and Sutherland, 2011).

I re-wrote each part of this code to numerically integrate (2.54), and I designed and wrote

the subroutine that computes the wave-induced mean flow, u(2)(x, z, t). The core of this

subroutine uses the fast Fourier transform algorithms of Press et al. (2007). Both the fully

and weakly nonlinear codes are written in C. All simulations were run in serial on an Apple

iMac using a 2.9 GHz Intel Core i5 processor. The average run time for the fully nonlinear

simulations, using the parameters detailed below, was 95 hours; the average run time for the

weakly nonlinear simulations, using the parameters detailed below, was 18 hours.
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3.1 Fully Nonlinear Anelastic Solver

The fully nonlinear anelastic code solved the coupled momentum equations for vorticity and

vertical displacement. For numerical stability, all fields explicitly evolved by the code were

scaled to remove anelastic effects. In this way the exponential amplification of numerical noise

in the vertical extremes of the domain was avoided. In the present discussion, the subscript

s will distinguish the “scaled” fields evolved by the code from the actual anelastic fields. The

relationships between the scaled and actual fields are given by

(ξs,us,ws, ζs) = (ξ,u,w, ζ)e−z/2Hρ and Ψs = Ψez/2Hρ . (3.1a,b)

Without explicitly separating the mean and fluctuation components of the total vorticity

and vertical displacement fields, their respective fully nonlinear evolution equations are given

nondimensionally by

∂ζs
∂t

= −ez/2Hρ

[
us · ∇ζs +

3

2Hρ
wsζs

]
+N2∂ξs

∂x
+ CζDζs; (3.2)

∂ξs
∂t

= −ez/2Hρ

[
us · ∇ξs +

1

H∗wsξs

]
+ ws + CξDξs, (3.3)

where we have defined 1
H∗ := 1

2Hρ
+ 1
Hθ

for notational ease. The effects of viscosity and thermal

diffusion are included via the terms CζDζs and CξDξs. Although these terms were excluded

in the derivations of the wave-induced mean flow and the nonlinear Schrödinger equations,

their purpose here is to assist with numerical stability by damping small-scale noise, while not

acting to attenuate the waves. For all simulations, Cζ = Cξ = 10−3Nk−2. The operator D

applied diffusive effects uniformly at all vertical levels, to all horizontal wavenumbers greater

than a specified viscous diffusion threshold wavenumber, kd. For all simulations, the viscous

diffusion threshold wavenumber was set to kd = (3/2)kw = 384, in which kw = 256 is the

specified number of horizontal wavelengths of waves within the wavepacket that can exist in

the domain.

3.1.1 Discretization and Grid Generation

The relative scales for time and domain size were set by fixing N = 1 and k = 1, respectively.

The fully nonlinear code solved (3.2) and (3.3) in a vertically real, horizontally spectral do-
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main. This domain used no-slip boundary conditions on the lower and upper boundaries,

and was horizontally periodic. The vertical domain was set to −30 ≤ kz ≤ 15kHρ for all

simulations and was discretized by nz = 1024 grid points for simulations using Hρ = 10k−1,

and by nz = 512 grid points for simulations using Hρ = 5k−1. Alternatively, the width of

the domain, Lx, was set according to kw := Lx/(2π/k). All simulations were conducted using

kw = 256, hence Lx = 2πkw/k and so the horizontal domain in real space was |kx| ≤ 804.3.

In Fourier space this domain was discretized by 8192 horizontal wavenumbers.

Upon horizontally Fourier decomposing (3.2) and (3.3), the partial differential operators

involving x are Fourier decomposed according to

∂

∂x
→ −ikn, (3.4)

with kn denoting the n-th horizontal wavenumber in the Fourier domain.

3.1.2 Initialization

The horizontal component of the scaled mass-streamfunction, denoted here by the superscript

⊥, was initialized in real space according to

Ψ⊥
s (x, 0) = ρ0

ω

k
Aξ0e

−(x−x0)2/2σ2
x cos(k(x− x0)), (3.5)

where Aξ0 is the initial vertical displacement amplitude, σx is the initial horizontal extent

of the wavepacket, and the phase has been chosen so that (3.5) is purely real initially. For

generality the initial horizontal position of the wavepacket, x0, can be offset from the ori-

gin. However, for the simulations conducted for this thesis we have always set x0 = 0. The

polarization relations from linear theory, given in the centre column of Table 2.1, were used

to initialize the mass-streamfunction amplitude, AΨ0 = |ρ0(−ω/k)Aξ0 |. As a more physi-

cally intuitive quantity, the initial vertical displacement amplitude was specified in favour of

the mass-streamfunction amplitude. For all simulations, we set Aξ0 = 0.05k−1 so that the

wavepackets would be of relatively small amplitude initially, yet be large enough to grow to

moderately large amplitude not long after the start of the simulations.

The horizontal component of the scaled mass-streamfunction field, given by (3.5), was

then horizontally fast Fourier transformed, with the result being used to initialize the vertical
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component of the scaled mass-streamfunction, given by

Ψ̂s(z, 0) = Ψ̂⊥
s e

−(z−z0)2/2σ2
zeim(z−z0), (3.6)

where the caret denotes that the field has been horizontally fast Fourier transformed, thus

the horizontal component depends on the discrete horizontal wavenumbers kn. The initial

vertical extent of the wavepacket is denoted by σz, and the initial vertical position of the

wavepacket, z0, was always set to z0 = 0. Together, equations (3.5) and (3.6) correspond to

the real initial scaled mass-streamfunction

Ψs(x, z, 0) = AΨ0e
−x2/2σ2

x−z2/2σ2
z cos(kx+mz).

The scaled vorticity field was initialized through derivatives of the scaled mass-stream-

function using the horizontal Fourier decomposition of relation (2.46), the result of which

is

ζ̂s(z, 0) = k2nΨ̂s −
∂2Ψ̂s

∂z2
− 1

Hρ

∂Ψ̂s

∂z
.

Finally the scaled vertical displacement field was initialized using the polarization relations

from linear theory, given in the centre column of Table 2.1, that is,

ξ̂s(z, 0) = − k

ω

∂Ψ̂s

∂z
.

Uniform stratification was set by the density profile ρ̄ = ρ0e
−z/Hρ . For generality the code

was designed such that an arbitrary background flow u0(z) could be specified. However, in

all simulations conducted for this thesis, we set u0(z) ≡ 0.

3.1.2.1 Wave-Induced Mean Flow

Although it is physically realistic to include the initial horizontal wave-induced flow field,

u(2)(x, z, 0), when initializing the fully nonlinear simulations, doing so is impractical because

very large domains are required in order to accurately compute the induced flow. Despite this,

the induced flow begins to develop outwards and downwards from the wavepacket shortly after

initialization. Furthermore, the weakly nonlinear evolution of the wavepacket is dominated

by the interactions between the waves and their induced mean flow only over the extent of
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the wavepacket. We denote by tσ the time scale over which the induced flow develops over

the horizontal extent of the wavepacket. In particular, we predict that tσ is given by the ratio

of the horizontal wavepacket extent, σx, and the horizontal group speed, c̄gx , of the induced

long wave. Denoting by over-bars quantities pertaining to long waves, vdBS14 (c.f. section

III C in that work) provide the relationships

ω̄ =
Nk̄

|m̄| , |m̄| = 2π

σz
, c̄px =

ω̄

k̄
≈ c̄gx . (3.7a,b,c)

Here, ω̄ is the dispersion relation for long waves; |m̄| is the magnitude of the vertical wavenum-

ber, in which we have assumed the vertical wavelength of the long wave corresponds to the

vertical extent of the wavepacket; and c̄px is the horizontal phase speed for long waves, which

is approximately equal to the horizontal group speed for long waves. Hence,

tσ =
2π

c̄gx
=

2πσx
Nσz

. (3.8)

For horizontally and vertically localized wavepackets, for which σx ∼ σz, (3.8) shows that

the induced flow became well developed over one buoyancy period. As such, the long-time

behaviour of the wavepackets was negligibly affected by the exclusion of the initial wave-

induced mean flow upon initializing the simulations.

3.1.3 Advection and Temporal Advancement

For a given ζ̂s, the relationship (2.46), in which the operator was horizontally Fourier decom-

posed according to (3.4), was inverted to obtain the Ψ̂s field. From this, the code constructed

the scaled horizontal velocity field from

û = −1

ρ̄

∂Ψ̂

∂z
⇒ ûs = − 1

ρ0

(
∂Ψ̂s

∂z
− 1

2Hρ
Ψ̂s

)
.

The horizontal vorticity advection term, us∂xζs in (3.2), was then computed by horizontally

inverse fast Fourier transforming the ûs and ∂̂xζs fields, multiplying the results in real space,

and horizontally fast Fourier transforming the product. The vertical vorticity advection term,

ws∂zζs, was similarly computed using

ŵ =
1

ρ̄

∂̂Ψ

∂x
⇒ ŵs = − 1

ρ0
iknΨ̂s (3.9)
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and the ∂z ζ̂s field. The product of vertical velocity and vorticity, 3
2Hρ

wsζs, was likewise

computed. The resulting term and the vorticity advection terms were then summed and

multiplied by −ez/2Hρ to construct the bracketed term in equation (3.2). The linear baroclinic

term, N2∂xξs, was added to the result using

N2 ∂̂ξs
∂x

= −iknN2ξ̂s.

The code proceeded to determine the advection of scaled vertical displacement, us ·∇ξs in

(3.3), using the horizontal fast Fourier transform method described above. The 1
H∗wsξs term

was added to the result and the sum of these terms was multiplied by −ez/2Hρ to construct

the bracketed term in equation (3.3). Vertical velocity was added to this using the rightmost

relation in (3.9).

Finally the code computed the diffusion terms using

D ζ̂s = −k2nζ̂s +
∂2ζ̂s
∂z2

and D ξ̂s = −k2nξ̂s +
∂2ξ̂s
∂z2

,

in which D applied only to the horizontal wavenumbers kn > kd = 384. The derivatives with

respect to z employed a centred, second-order finite difference scheme.

Time stepping was performed using a leapfrog scheme. Explicitly, the scaled vorticity and

vertical displacement fields were advanced according to

ζ̂s(z, t+∆t) = ζ̂s(z, t−∆t) + 2∆t
˙̂
ζs(z, t);

ξ̂s(z, t+∆t) = ξ̂s(z, t−∆t) + 2∆t
˙̂
ξs(z, t),

in which
˙̂
ζs and

˙̂
ξs are the right-hand sides of (3.2) and (3.3), respectively. In order to avoid

numerical “splitting” errors, every 20 time steps the vorticity and vertical displacement fields

were advanced by −∆t and the resulting fields were averaged with those from the previous

time step (see also Durran (2010, section 2.4.2)). This procedure is referred to as an “Euler

backstep”. For all fully nonlinear simulations, time was advanced by a small increment of

∆t = 0.0125N−1.
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3.2 Weakly Nonlinear Anelastic Solver

The weakly nonlinear anelastic code solved the nonlinear Schrödinger equation (2.54) for the

mass-streamfunction amplitude envelope. Because the anelastic part of the field was removed

as a consequence of the derivation (except as it appeared in the wave-induced mean flow),

the precautions taken to ensure the numerical stability of the fully nonlinear code are not

necessary here.

3.2.1 Grid Generation

Equation (2.54) was solved on a finite difference grid. The horizontal domain was set by inte-

ger multiples of the horizontal domain used for the fully nonlinear simulations. In particular,

for all weakly nonlinear simulations, the horizontal domain was set to |kx| ≤ 2πkw ≈ 1608.6,

with kw = 256 being the number of wavelengths in the horizontal domain of the fully nonlinear

simulations. Such a width was necessary to ensure that the long waves induced by the wave-

packet were of negligibly small amplitude near the left and right boundaries. Likewise, the

vertical domain was chosen to be deep enough that the downward-propagating induced long

waves were of negligible amplitude at the lower boundary, yet tall enough that the wavepacket

could propagate vertically well above its initial position without interacting with the upper

boundary. The need for such a wide, deep domain is illustrated in Fig. 2.1a. In particular,

for simulations using Hρ = 10k−1 the vertical domain was set to −250 ≤ kz ≤ 150, and for

simulations using Hρ = 5k−1 the vertical domain was set to −325 ≤ kz ≤ 75. The horizontal

and vertical domains were discretized by nx = 2049 and nz = 513 grid points, respectively.

As will be detailed in §3.2.4, the induced flow field, u(2)(x, z, t), was computed in a doubly

periodic Fourier domain, with only the profile U(z, t) = u(2)(x = cgxt, z, t) used in (2.54).

The horizontal Fourier space domain contained 1 + (nx − 1)/2 = 1025 evenly spaced hor-

izontal wavenumbers, κn ∈ [0,πnx/Lx], separated by an increment of size ∆κ = 2π/Lx.

The vertical Fourier space domain contained nz = 513 evenly spaced vertical wavenumbers,

µm ∈ [−πnz/Lz,πnz/Lz], separated by an increment of size ∆µ = 2π/Lz. Here, Lz = 400k−1

is the total height of the vertical domain.
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3.2.2 Initialization

All weakly nonlinear simulations were initialized with a bivariate Gaussian vertical displace-

ment amplitude function, given explicitly by

Aξ(x, z, 0) = Aξ0e
−x2/2σ2

x−z2/2σ2
z , (3.10)

in which σx and σz are the horizontal and vertical wavepacket extents, respectively. In the

weakly nonlinear simulations, as in their fully nonlinear counterparts, the initial vertical

displacement amplitude was specified in favour of the mass-streamfunction amplitude. The

value of Aξ0 = 0.05k−1 was chosen so that the results of the weakly nonlinear simulations

could be compared to the results of the fully nonlinear simulations. The polarization relations

from linear theory, given in the centre column in Table 2.1, were used to convert the initial

vertical displacement amplitude to the mass-streamfunction amplitude,

AΨ(x, z, 0) = −ρ0
ω

k
Aξ(x, z, 0).

3.2.3 Spatial and Temporal Advancement

All spatial derivatives in (2.54) were approximated by centred second-order finite differences.

Expressions for each finite difference scheme, including the associated error terms, were derived

by taking linear combinations of the Taylor series of A expanded in x and z, which was

truncated at fifth-order. The details of this procedure are included in Appendix C.

For any time step, the linear part of the right-hand side of (2.54) was computed using

the finite difference schemes detailed in Appendix C. The nondimensionalized coefficients

multiplying each term are included in Table 3.1. Separately, the wave-induced mean flow U

was computed using the method described in §3.2.4, and the result was added to the linear

part.

The solution was advanced in time using the leapfrog scheme as described in §3.1.3. An

Euler backstep was likewise taken every 20 time steps. For all weakly nonlinear simulations

using Hρ = 10k−1, time was advanced by a small increment of ∆t = 0.005N−1; for all weakly

nonlinear numerical simulations using Hρ = 5k−1, time was advanced by ∆t = 0.0025N−1.
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m/k ω/N cgx
k
N cgz

k
N ωkk

k2

N ωkm
k2

N

−0.4 0.928 0.130 0.319 −0.335 −0.504

−0.7 0.819 0.270 0.384 −0.543 −0.388

−1.4 0.581 0.385 0.275 −0.390 −0.004

m/k ωmm
k2

N ωkkk
k3

N ωkkm
k3

N ωkmm
k3

N ωmmm
k3

N

−0.4 −0.468 1.105 1.072 0.170 −1.904

−0.7 −0.008 1.126 0.270 −0.717 −1.048

−1.4 0.193 0.268 −0.365 −0.266 0.086

Table 3.1: Nondimensional frequency, ω/N, and values of the coefficients in the anelastic nonlinear Schrödinger
equation (2.54), using the range of relative vertical wavenumbers, m/k, to be considered in the weakly nonlinear
simulations. All values were computed using Hρ = 10k−1.

3.2.4 Computation of the Wave-Induced Mean Flow

For computational convenience, in the weakly nonlinear code the wave-induced mean flow at

each time step was computed from a modification of equation (2.27) and the fact that u(2) =

−1
ρ̄∂z̃Ψ

(2). Because the amplitude function used in (2.27) was that of vertical displacement,

the polarization relations from linear theory, given in the centre column of Table 2.1, were used

to re-cast the right-hand side of (2.27) in terms of mass-streamfunction amplitude. Explicitly,

ˆ̄ρu(2) = −∂̂z̃Ψ(2) = −iµΨ̂(2) =
1

2
ρ0
k2m2

NK3

µ4 |̂AΨ|2
2C(µ)

[
1

κ+ C(µ)
− 1

κ− C(µ)

]
. (3.11)

Here, the function C(µ) is given by (A.2). When evaluating C(µ), it was necessary to choose

the branch cut corresponding to induced long waves that propagate outwards and downwards

from the translating wavepacket (Bretherton, 1969). In (A.2) we deliberately re-express the

function Φ as

Φ = ±1
2 tan

−1(1/Hρ|µ|) (3.12)

in order to give us maximum liberty in choosing the appropriate branch cut. In particular,

the branch cut corresponding to outgoing waves is that for which the ± sign in (3.12) is equal

to sgn(µ).

During initialization, the fixed complex valued matrix M(κn,µm) was constructed into

which was mapped the κ- and µ-dependent part of the right-hand side of (3.11). Explicitly,

M(κn,µm) =
µ4m

2C(µm)

[
1

κn + C(µm)
− 1

κn − C(µm)

]
.
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At any time step tj , the induced flow field, u(2)(x, z, tj), was computed by first horizontally

and vertically fast Fourier transforming the squared modulus of the mass-streamfunction

amplitude. The result was multiplied entry-wise into M, and the product was horizon-

tally and vertically inverse fast Fourier transformed and multiplied by the leading coefficient

1
2ρ0k

2m2N−1K−3, thus obtaining the induced momentum field, that is, the left-hand side of

(3.11) in real space. Finally this was multiplied by 1/ρ̄, from which the wave-induced mean

flow followed directly via U(z, tj) = u(2)(x̃ = 0, z, tj), which amounts to extracting a vertical

profile through the horizontal centre of the translating wavepacket. Linear theory was used

to determine the point at which x̃ = 0 (equivalently, the point at which x = cgxtj). A simple

weighted mean was used to interpolate the actual value of the wave-induced mean flow should

x have been situated between two nodes in the discretized domain.

3.3 Quantitative Analysis Methods

In order to gain a more quantitative understanding of the weakly nonlinear evolution of two-

dimensional wavepackets, here we introduce the numerical tools used to examine the numerical

results presented in the next chapter.

The normalized L2-norm of the wave-induced momentum through the horizontal centre of

a translating wavepacket is defined by

∥M̃(t)∥ :=
∥ρ̄U(z, t)∥L2

∥ρ̄U(z, t∗)∥L2

=

[ ∫ zmax

zmin

ρ̄2U2(z, t)dz

]1/2

[ ∫ zmax

zmin

ρ̄2U2(z, t∗)dz
]1/2 , (3.13)

in which ρ̄U(z, t) is the wave-induced momentum. From the profiles of local wave-induced

momentum output by the weakly and fully nonlinear simulations, (3.13) will be used to

generate time series of wave-induced momentum. The composite Simpson’s rule was used to

compute the integrals on the right-hand side of (3.13) in practice (e.g. see Allen and Isaacson,

1998). The choices of particular values of t∗ used for the normalization factor, ∥ρ̄U(z, t∗)∥L2 ,

were based on the type of simulation being examined. For the weakly nonlinear simulations,

the normalization factor used the t∗ = 0 profile of wave-induced mean flow predicted by

setting x̃ = 0 in (A.16). For the fully nonlinear simulations, the normalization factor used the
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resolved wave-induced momentum profile at t∗ = tσ, with tσ given by (3.8). This corresponds

to the time at which the induced long wave was expected to be fully developed over the

horizontal extent of the wavepacket.

To compare the results of our simulations with those of one-dimensional wavepackets, it is

useful to estimate the height and time at which weakly nonlinear effects become significant.

Following the approach of DS11, we assume weakly nonlinear effects become significant when

the magnitude of the weakly nonlinear term in the nonlinear Schrödinger equation (2.54)

approximately equals the magnitude of the smallest of the linear advection terms in (2.54).

Explicitly, this is the condition

|ikUAΨ| = min{|cgx∂xAΨ|, |cgz∂zAΨ|}. (3.14)

For one-dimensional wavepackets, |∂zAΨ/AΨ| ∼ 1/σz. Similarly, for horizontally and verti-

cally localized wavepackets, for which σx ∼ σz, it follows that |∂xAΨ/AΨ| ∼ 1/σx. Hence

(3.14) simplifies to the condition |U | ∼ ϵmin{|cgx |, |cgz |}. Van den Bremer and Sutherland

(2018) derived an asymptotic approximation for the maximum horizontal velocity of the long

wave induced by a fully three dimensional Boussinesq wavepacket (c.f. equation 3.27 in that

work). We somewhat heuristically adapt their result to spanwise-uniform anelastic wavepack-

ets by multiplying their result by ρ̄/ρ0 = e−z/Hρ , and replacing all instances of |k| in their

result with its anelastic correction, K, to predict

max
z̃
U
⏐⏐⏐
x̃=0

=
1

2
NKA2

0

[
1.45

k2|m|
K3

ϵ
σ2x
σ2z
ez/Hρ

]
. (3.15)

The height, z∆, at which we expect weakly nonlinear effects to become significant is thus

predicted by equating the right-hand side of (3.15) with ϵmin{|cgx |, |cgz |} = ϵ N
K3 min{K2 −

k2, |km|}, the result of which is re-arranged to read

z∆
Hρ

= ln

(
1.38σ2z

A2
0k

2|m|Kσ2x

)
+

⎧
⎪⎪⎨
⎪⎪⎩

ln(K2 − k2), |m|+ 1/(4|m|H2
ρ ) < |k|;

ln |km|, |m|+ 1/(4|m|H2
ρ ) > |k|.

(3.16)

Assuming the vertical phase speed of the induced long wave approximately equals the vertical

group speed of the wavepacket, as expressed by (3.7c), the time, t∆, at which weakly nonlinear
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effects are expected to become significant is approximately

t∆ =
z∆
cgz

. (3.17)

In the fully nonlinear simulations, wave overturning was diagnosed by computing the mini-

mum value of the total squared buoyancy frequency, N2
T = N2+∆N2, in which the fluctuation

component, ∆N2, is defined by

∆N2 :=
g

θ̄

∂θ

∂z
≈ −N2 ∂ξ

∂z
.

Wave overturning occurs where N2
T < 0. The fully nonlinear simulations computed ∆N2

at every time step by first horizontally inverse fast Fourier transforming the scaled vertical

displacement field, ξ̂s, and multiplying the result by ez/2Hρ to obtain the actual vertical

displacement field, ξ. A second-order centred finite difference scheme was used to approximate

∂ξ/∂z, the result of which was then used to compute N2
T . The time of wave overturning, tb,

was taken to be the first time at which minN2
T < 0 was satisfied. The corresponding vertical

location, zb, at which minN2
T < 0 was taken to be the location of wave overturning.

Using linear anelastic theory, the waves are predicted to overturn where |∂ξ/∂z| = 1. Ex-

plicitly, for a plane wave with vertical displacement field given by ξ = Aξ0e
i(kx+mz−ωt)ez/2Hρ ,

the linear theory overturning condition corresponds to a predicted overturning height, zb,L,

given nondimensionally by

zb,L
Hρ

= 2 ln

(
1

Aξ0 |m|

[
1 +

1

4m2H2
ρ

]−1/2)
. (3.18)
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Chapter 4

Results and Comparison

In this chapter we compare the results of the weakly and fully nonlinear simulations. In each

simulation the buoyancy frequency N and horizontal wavenumber k were fixed. Our primary

focus is on bivariate Gaussian wavepackets with horizontal and vertical extents σx = 10k−1

and σz = 10k−1, respectively, in an atmosphere with density scale height Hρ = 10k−1. How-

ever, simulations were also performed setting σx = 40k−1 and Hρ = 5k−1, and using combina-

tions of these parameter values. The range of vertical wavenumbers spanning −0.4k, −0.7k,

and −1.4k corresponds to modulationally unstable, marginally unstable, and modulationally

stable one-dimensional wavepackets studied by DS11. In two dimensions, the qualitatively

different structure of the wave-induced mean flow means that all the vertical wavenumbers

in this range correspond to modulationally unstable wavepackets, as shown and discussed

below.

4.1 Weakly Nonlinear Simulations

The weakly nonlinear evolution of a Gaussian wavepacket initialized using (3.10) with Aξ0 =

0.05k−1, m = −0.4k, σx = σz = 10k−1, and Hρ = 10k−1 is shown at four times in Fig. 4.1.

The times shown span the wavepacket’s evolution from early to very late times. The leftmost

column shows the actual vertical displacement field, ξ; the centre-left column shows the mod-

ulus of the vertical displacement amplitude function, |Aξ|; the centre-right column shows the

wave-induced momentum field, ρ̄u(2); and the rightmost column shows vertical profiles of the

wave-induced momentum through the horizontal centres of their corresponding wavepackets,

ρ̄U .
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Figure 4.1: Snapshots of the evolution of a weakly nonlinear Gaussian wavepacket initialized using (3.10) with
Aξ0 = 0.05k−1, m = −0.4k, and σx = σz = 10k−1 as it propagates upward through an atmosphere with density
scale height Hρ = 10k−1 at times t equal to (a) 50N−1, (b) 100N−1, (c) 150N−1, and (d) 200N−1. The leftmost
column shows the actual vertical displacement field; the centre-left column shows the modulus of the vertical
displacement amplitude envelope; the centre-right column shows the horizontal wave-induced momentum field; and
the rightmost column shows vertical profiles of the wave-induced momentum through the horizontal centre of the
translating wavepacket. Note that the horizontal axis limits in the rightmost panel of (d) are an order of magnitude
larger than those in the corresponding panels in (a) – (c), as is the colour bar in the centre-right panel of (d).
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At t = 50N−1 (Fig. 4.1a), the amplitude envelope has changed little from its initial Gaus-

sian shape. At this early time in its evolution, the wavepacket has translated upward and

rightward according to linear theory. This is evident in part by the small relative discrepancy,

δc, between the observed and predicted locations of the wavepacket envelope’s peak amplitude,

defined by

δc :=

(
xpeak − cgxt

σx
,
zpeak − cgz t

σz

)
, (4.1)

in which (xpeak, zpeak) is the location of the observed maximum value of the amplitude enve-

lope. At this time (Fig. 4.1a), δc|t=50N−1 ≈ −(0.02, 0.03), indicating that the peak amplitude

is very slightly below and to the left of the location predicted by linear theory. The induced

momentum field, shown in the centre-right panel in Fig. 4.1a, has translated upward and

rightward with the wavepacket, and is symmetric about x̃ = 0. The profile of induced mo-

mentum through the centre of the wavepacket has translated vertically with the wavepacket.

The flow is nearly symmetric about the vertical centre of the wavepacket, with positive flow

on the leading flank and negative flow on the trailing flank.

Fig. 4.1b shows the wavepacket evolution at t = 100N−1. Linear dispersion has caused the

wavepacket amplitude envelope to broaden horizontally and vertically, and the peak amplitude

has decreased accordingly. The vertical displacement amplitude envelope has ‘tilted’ clockwise

somewhat. This will be shown later to be an effect owing to oblique dispersion terms, that

is, those terms in the nonlinear Schrödinger equation (2.54) whose coefficients have mixed k-

and m-derivatives of ω. The slight decrease in the peak value of the amplitude envelope is

likewise observed in the magnitude of the wave-induced momentum, comparing the rightmost

panels of Fig. 4.1b and Fig. 4.1a.

The results at this time suggest that weakly nonlinear effects have not yet begun signif-

icantly to affect the wavepacket’s evolution, in contrast to the results at this time for one-

dimensional anelastic wavepackets (DS11). The relative delay in the onset of nonlinear effects

is due to the wave-induced mean flow, which arises at O(α2ϵ) for two-dimensional waves, as

opposed to at O(α2) for one-dimensional waves. Thus the waves must grow to relatively larger

amplitude, which takes more time as they propagate to correspondingly higher altitudes.

At t = 150N−1 (Fig. 4.1c), linear dispersion has caused the wavepacket amplitude to con-
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tinue decreasing in peak value, and oblique dispersion in particular has caused the amplitude

envelope to continue its clockwise ‘tilt’. Consequently, the maximum vertical displacement at

this time (Fig. 4.1c) is ξ ≈ 0.54k−1, just over 60% of the corresponding value of ξ ≈ 0.85k−1 for

one-dimensional wavepackets (DS11). The vertical displacement field of the two-dimensional

wavepacket achieved this value at t ≈ 178N−1 (not shown), over four buoyancy periods later.

Weakly nonlinear effects have begun to affect the wavepacket. This is seen in the wave-

induced momentum field, which now exhibits a slight horizontal asymmetry manifesting as

slightly larger magnitudes where x̃ < 0. A second bow wake-like structure is emerging below

the original long wave at a more acute angle to the vertical than the initial long wave. Asso-

ciated with this is a vertical asymmetry in the centreline wave-induced momentum profile.

At t = 200N−1 weakly nonlinear effects dominate the wavepacket evolution, and have al-

tered the waves to a significant degree. Phase lines in the vertical displacement field, shown in

the leftmost panel of Fig. 4.1d, have tilted strongly to the vertical, with some phase lines ap-

pearing to tilt opposite their initial orientation. The vertical displacement amplitude envelope

no longer resembles a Gaussian, being now formed of a group of localized peaks. As a measure

of the departure from linear theory of the location of the wavepacket’s peak value, the use of

the relative discrepancy, δc|t=200N−1 ≈ −(0.08, 0.29), is rendered questionable. However, the

maximum value of the amplitude has increased to |Aξ|max ≈ 0.05k−1 after a period of steady

decrease throughout the earlier times in its evolution (Figs. 4.1a,b,c). Similarly, the peak

values of the induced momentum field and centreline wave-induced momentum have grown

by an order of magnitude, indicating that weakly nonlinear effects developed rapidly between

times t = 150N−1 and t = 200N−1. The induced long waves are oriented more acutely to

the vertical than at previous times, and the induced flow is seen to have degenerated into a

series of positive and negative jets. Diagnostics presented later will show that the wavepacket

is overturning at this time.

The weakly nonlinear evolution of a Gaussian wavepacket initialized using (3.10) with

Aξ0 = 0.05k−1, m = −0.7k, σx = σz = 10k−1, and Hρ = 10k−1 is shown at four times in

Fig. 4.2. The respective columns in Fig. 4.2 correspond to the columns in Fig. 4.1. Having a

relative vertical wavenumber of m = −0.7k means this wavepacket translates vertically at the

fastest vertical group speed. Furthermore, waves having this relative vertical wavenumber are
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Figure 4.2: As in Fig. 4.1 but for a wavepacket with relative vertical wavenumber m = −0.7k. Note that the colour
bar limits in the centre-right panels are double the limits of the colour bars in the corresponding panels in Fig. 4.1.
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near the margin separating whether modulational instability will cause the leading or trailing

flank of the wavepacket to grow in relative amplitude.

At t = 100N−1 (Fig. 4.2b), the wavepacket has begun to ‘tilt’ due to oblique dispersion,

and its peak amplitude has decreased by 12% of its initial value to |Aξ|max = 0.044k−1. A

slight horizontal asymmetry is developing in the induced long wave, in which the magnitude

is mildly enhanced on the left half of the induced flow relative to the right half. However, this

feature appears to have no effect on the structure of the wave-induced momentum profile.

At t = 150N−1 (Fig. 4.2c), the vertical displacement amplitude envelope exhibits both

horizontal and vertical asymmetry due to oblique dispersion. The horizontal asymmetry

in the wave-induced momentum field has continued to develop, enhancing the relative flow

magnitudes on the left half. The magnitude of the positive induced momentum on the leading

flank of the wavepacket at kz̃ ≈ 70 has ‘flattened’ somewhat, while the negative flow on the

trailing flank has grown in magnitude.

At t = 200N−1 (Fig. 4.2d), the wavepacket has degenerated to such a degree that it may

no longer be justifiably considered quasi-monochromatic. Rather, the ‘wavepacket’ appears

as a series of closely spaced peaks, with |Aξ|max = 0.057k−1. As such, crests and troughs in

the vertical displacement field are only vaguely identifiable. The induced long wave has lost

most of its horizontal structure, now appearing as a series of jets localized in the vicinity of

the wavepacket. The magnitudes of the peaks in the induced mean momentum profiles have

accordingly increased by an order of magnitude from earlier times (Figs. 4.2a,b,c). Diagnostics

presented later will show that the wavepacket is overturning at this time.

The weakly nonlinear evolution of a Gaussian wavepacket initialized using (3.10) with

Aξ0 = 0.05k−1, m = −1.4k, σx = σz = 10k−1, and Hρ = 10k−1 is shown at four times in

Fig. 4.3. The respective columns in Fig. 4.3 correspond to the columns in Fig. 4.1. Having

a relative vertical wavenumber of m = −1.4k means that these waves translate rightward at

approximately the fastest horizontal group speed. For this reason the fields of view in the

leftmost and centre-left columns of Fig. 4.3 have been shifted rightward. For one-dimensional

wavepackets, this vertical wavenumber corresponds to modulationally stable waves. However,

when the wavepacket is horizontally and vertically localized, the negative values of the wave-

induced mean flow along the trailing flank of the wavepacket lead us to expect that this region
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Figure 4.3: As in Fig. 4.1 but for a wavepacket with relative vertical wavenumber m = −1.4k. The evolution is
shown at times t equal to (a) 100N−1, (b) 150N−1, (c) 200N−1, and (d) 250N−1. The fields of view in the leftmost
and centre-left column have been shifted rightward because the wavepacket translates rightward at approximately
the fastest horizontal group speed. Note that the horizontal axis limits in the rightmost panels and the colour bar
limits in the centre-right panels each increase linearly in time through (a) – (d).
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will exhibit vertical narrowing and relative amplitude growth while the leading flank of the

wavepacket is expected to exhibit vertical broadening and relative amplitude decay. Being

located in a region of weaker anelastic growth relative to the leading flank, the trailing flank

of the wavepacket requires more time to propagate vertically in order to reach an amplitude

sufficient for the development of weakly nonlinear effects. Hence we expect the life cycle of

a wavepacket with m = −1.4k to be relatively long compared to waves with relative vertical

wavenumbers m equal to −0.4k or −0.7k. As such, the times shown in Fig. 4.3 are later by

50N−1 than the corresponding panels shown in Figs. 4.1 and 4.2.

Fig. 4.3a shows the wavepacket evolution at t = 100N−1. The wavepacket behaves accord-

ing to linear theory, evident in part by the small relative discrepancy δc ≈ −(0.08, 0.02) and

maximum vertical displacement amplitude |Aξ|max = 0.048k−1. The wave-induced momen-

tum field is horizontally symmetric and the magnitudes of the positive and negative flows on

the leading and trailing flanks of the wavepacket, respectively, are of similar magnitude.

Weakly nonlinear effects have begun to manifest at t = 150N−1 (Fig. 4.3b). This is most

noticeable in the induced momentum field. Modulational instability is focused on the trailing

flank of the wavepacket because the induced flow is initially negative there. As such, the

trailing flank is prone to wave accumulation and hence relative amplitude growth, which is

observed in the slightly increased magnitude of the negative flow in the rightmost panel of

Fig. 4.3b. The induced flow on the leading flank of the wavepacket has decreased in magnitude

and spread vertically, as expected.

The development of weak nonlinearity continues to affect the evolution of the wavepacket

through t = 200N−1 (Fig. 4.3c) until it has caused the wavepacket to become vertically

asymmetric at t = 250N−1 (Fig. 4.3d). The vertical displacement amplitude envelope has

broadened significantly on the leading flank of the wavepacket, while the initial centre of the

wavepacket has become effectively the trailing edge of the wavepacket. This is partly due

to the vertical spreading of the trailing flank of the wavepacket due to the development of a

positive peak in the wave-induced momentum on the trailing flank (of approximately half the

magnitude of the negative peak) coupled with ωmm > 0. Perhaps counter-intuitively, the peak

value of the amplitude envelope has steadily decreased by ∼ 20% of its initial value during

the simulation. While the trailing flank of the wavepacket is unstable to vertical modulations,
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leading to relative amplitude growth, horizontal modulations are strongest for m = −1.4k

because this wavenumber corresponds to waves having approximately the fastest horizontal

group speed. This is coupled with the relatively strong (negative) peak value of the induced

momentum, so where this peak is located, horizontal modulations act to decrease the peak

amplitude.

4.1.1 Effect of Oblique Dispersion Terms

Oblique dispersion terms are those whose coefficients involve mixed k- and m-derivatives of ω

in the nonlinear Schrödinger equation (2.54). To determine the qualitative effects of oblique

dispersion, three weakly nonlinear simulations were conducted in which the oblique dispersion

terms were removed from the nonlinear Schrödinger equation. Each simulation was initialized

using (3.10) with Aξ0 = 0.05k−1, σx = σz = 10k−1, Hρ = 10k−1, and either m = −0.4k,

−0.7k, or −1.4k. Results from the corresponding simulations with oblique dispersion are

shown in the left column of Fig. 4.4, and the results without oblique dispersion are shown

in the centre column. The right column shows profiles of the wave-induced momentum from

both simulation types. Snapshots at t = 150N−1 (Figs. 4.4a,b) and t = 200N−1 (Fig. 4.4c)

were chosen because the effects of oblique dispersion were deemed to have had sufficient time

to develop to a degree that qualitative comparisons would be meaningful.

Fig. 4.4a compares the results of the simulations with and without oblique dispersion for

a wavepacket with m = −0.4k. The moduli of the vertical displacement amplitude functions

from the respective simulations are shown in the left and centre panels. Clockwise ‘tilting’ of

the wavepacket with oblique dispersion is absent in the wavepacket without oblique dispersion.

Comparing the maximum vertical displacement amplitudes in each case, we find that oblique

dispersion accounts for ∼ 13% of the observed amplitude decay. This is also seen qualitatively

in the right panel, which compares the wave-induced momentum profiles through the centres

of the wavepackets with oblique dispersion (solid curve) and without (dashed curve). The

corresponding locations in the horizontal through which the profiles were taken are indicated

by the solid and dashed lines in the left and centre panels. The local extrema in the induced

momentum profiles are approximately co-located, although the magnitudes are diminished in

the presence of oblique dispersion.
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Figure 4.4: Comparison of the moduli of the vertical displacement amplitude envelopes of wavepackets resolved by
weakly nonlinear simulations conducted with oblique dispersion terms (left column) and without (centre column).
The snapshots shown in panels (a) and (b) were taken at t = 150N−1 and the snapshots shown in panel (c) were
taken at t = 200N−1. The panels in the left column are identical to the leftmost panels shown in Figs. 4.1c, 4.2c,
and 4.3c, respectively. In the right panels, the solid curves are vertical profiles of the wave-induced momentum
through the horizontal centres of the translating wavepackets shown in the left panels. The dashed curves are the
same, but through the horizontal centres of the translating wavepackets shown in the centre panels.
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A comparison of the results of simulations with and without oblique dispersion for a wave-

packet with m = −0.7k is shown in Fig. 4.4b. The individual panels correspond to those

in Fig. 4.4a. In the left panel of Fig. 4.4b, the clockwise ‘tilting’ effect of oblique dispersion

is focused on the trailing flank of the wavepacket, whereas the leading flank appears largely

unaffected by oblique dispersion. In the right panel, local extrema in the induced momentum

profiles below kz ≈ 50 are approximately co-located, whereas there is a peak at kz ≈ 65 that

was not resolved in the simulation with oblique dispersion.

For a wavepacket with m = −1.4k, oblique dispersion terms have negligible effect on

the evolution over moderately long time scales, as shown in Fig. 4.4c. Qualitatively, the

wavepacket in the simulation with oblique dispersion is indistinguishable from the wavepacket

without oblique dispersion, as seen by comparing the left and centre panels. Comparing the

maximum vertical displacement amplitudes we find that the amplitude of the wavepacket

without oblique dispersion is 99.7% that of the wavepacket with oblique dispersion.

Oblique dispersion appears to be an effect unique to two-dimensional wavepackets. A

search of the literature did not reveal any earlier discovery of this or qualitatively similar

phenomena. A more detailed exploration of its effects on the evolution and overturning of

two-dimensional internal gravity wavepackets was beyond the scope of this thesis.

4.1.2 Wave-Induced Mean Flow

Another method for representing wavepacket evolution is through time series of the density-

scaled wave-induced mean flow through the horizontal centre of the translating wavepacket,

x̃ = x − cgxt = 0. Such profiles are more succinctly referred to as profiles of the centreline

induced momentum. Fig. 4.5 shows time series of the centreline induced momentum pro-

files from the previously discussed weakly nonlinear simulations. The results in each panel

are plotted in a frame of reference translating at the wavepacket’s vertical group speed,

z̃ = z − cgz t, and further normalized by the peak initial value of the wave-induced mean

flow, ρ0U0 = maxz{ρ̄U(z, 0)}, as determined from the numerical output from their respective

simulations. The selections in each panel show the evolution only until t = 250N−1, less than

the duration of the simulations. In each case the wavepacket dynamics were well represented

in the selections shown.
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Figure 4.5: Time series of the density-scaled wave-induced mean flow, ρ̄U(z , t), through the horizontal centres
of translating wavepackets with relative vertical wavenumbers m equal to (a) −0.4k, (b) −0.7k, and (c) −1.4k,
as computed by weakly nonlinear simulations. Each simulation was initialized using (3.10) with Aξ0 = 0.05k−1,
σx = σz = 10k−1, and Hρ = 10k−1. The results in each panel are normalized by the peak initial value of the
wave-induced mean flow, ρ0U0, determined from the output of their respective simulations at t = 0, and plotted in
a frame of reference translating at the wavepacket’s vertical group speed, z̃ = z − cgz t.

Fig. 4.5a shows the time series of the centreline induced momentum from the weakly non-

linear simulation with m = −0.4k (corresponding to the snapshots shown in Fig. 4.1). The

effects of linear dispersion are visible between t = 100N−1 and t = 150N−1, marked by de-

creasing magnitudes of both the positive and negative flows along the leading and trailing

flanks of the wavepacket, respectively. Shortly thereafter, weakly nonlinear effects cause the

induced flow to degenerate into a series of positive and negative jets. A similar phenomenon

was observed in the flow induced by the one-dimensional wavepackets studied by DS11. How-

ever, in their results the jets developed in time toward the trailing edge of the wavepacket and

their flow was unidirectional. Doppler-shifting of the wave frequency by the induced mean

flow is responsible for the weakly nonlinear evolution. On the leading flank, where U > 0 and

ωmm < 0, the wave-induced flow suddenly peaks, forming the positive jet located at kz̃ ≈ 10.

On the trailing flank, where U < 0 initially, Doppler-shifting causes an increase in the vertical

group speed, which causes the trailing edge of the wavepacket to advance toward the leading

edge. After t ≈ 200N−1, the jets themselves degenerate into small, disorganized structures.

Diagnostics shown later will reveal that these structures are present in the solution of the

nonlinear Schrödinger equation after wave overturning has commenced. As such, we accord

these structures little dynamical significance.

The time series of the centreline induced momentum from the weakly nonlinear simulation
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with m = −1.4k (corresponding to the snapshots shown in Fig. 4.3) is shown in Fig. 4.5c.

On the leading flank of the wavepacket, where U > 0 and ωmm > 0, Doppler-shifting has

increased the vertical group speed and the wavepacket has spread accordingly. From t ≈

150N−1 onward, the induced momentum is sufficient in magnitude that Doppler-shifting

significantly retards the vertical advance of the wavepacket, and the resulting accumulation of

waves causes a sustained intensification of the magnitude of the negative induced momentum.

At t ≈ 180N−1 a positive jet develops below the negative jet. This is due to wave spreading

from the existing positive flow, hence wave accumulation behind the more slowly translating

negative jet. A positive jet does not develop from the existing positive flow on the leading

flank because this upward-translating flow experiences increased vertical group speed, thus

spreads away from the negative jet, rather than toward it.

Two-dimensional internal gravity wavepackets with relative vertical wavenumber m =

−0.7k have frequency ω & ω∗ (hence ωmm . 0), in which the critical transition frequency

ω∗ separates frequencies corresponding to narrowing and relative amplitude growth on the

leading versus trailing flank of the wavepacket. As such, for wavepackets with m = −0.7k

the dynamics of the wave-induced momentum are expected to resemble a combination of the

dynamics of the cases using m = −0.4k and m = −1.4k. Indeed, this is seen in Fig. 4.5b

(which corresponds to the snapshots shown in Fig. 4.2). Until t ≈ 150N−1 there is minor

spreading over the vertical extent of the wavepacket due to linear dispersion. After this time

a negative jet develops from the negative flow on the trailing flank of the wavepacket, followed

by the development of a positive jet below it at t ≈ 175N−1. These dynamics are similar to

those observed on the trailing flank in the case with m = −1.4k. Approximately concurrent

with the development of these features is the sudden emergence of short-lived positive and

negative jets between kz̃ = 10 and kz̃ = 15, which rapidly develop in time toward the centre

of the wavepacket until t ≈ 200N−1. These dynamics are similar to those observed on the

leading flank in the case with m = −0.4k.

The wave-induced momentum profiles just discussed are examined more quantitatively

by considering the time series of their L2-norms. Fig. 4.6 shows the relative wave-induced

momentum, ∥M̃(t)∥, given by (3.13), of the results in Fig. 4.5. Included for reference is

the dotted line corresponding to ∥M̃(t)∥ = 1, below which linear dispersion dominates the
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Figure 4.6: Time series of the relative L2-norms of the centreline wave-induced momentum profiles, given by (3.13),
for weakly nonlinear simulations with relative vertical wavenumbers m equal to (a) −0.4k, (b) −0.7k, and (c) −1.4k.
Each panel (a) – (c) corresponds to the time series of density-scaled wave-induced mean flow profiles shown in panels
(a) – (c) in Fig. 4.5. The vertical bars correspond to the times, t∆, given by (3.17), at which weakly nonlinear
effects are predicted to become significant.

wavepacket dynamics, and above which nonlinear effects dominate the wavepacket dynamics.

The relative wave-induced momentum for the simulation with m = −0.4k is shown as

the solid black curve in Fig. 4.6a. Until t ≈ 170N−1, the induced momentum magnitude

steadily decreases due to dispersion. Afterward, the magnitude rapidly increases, indicating

that weakly nonlinear effects have become significant. This sudden increase is associated with

the degeneration of the induced flow into the positive and negative jets seen in Fig. 4.5a. The

vertical bar located at t∆ = 167N−1, with t∆ given by (3.17), denotes the time at which

weakly nonlinear effects are predicted to become significant. That it is located near the

minimum value of ∥M̃(t)∥ indicates good agreement between the predicted and actual times

at which weakly nonlinear effects became significant.

The time series ∥M̃(t)∥ for the simulation with m = −1.4k is shown in Fig. 4.6c. The

induced momentum magnitude does not noticeably decrease below unity as this wavepacket

is less dispersive than wavepackets for which m = −0.4k. Weakly nonlinear effects become

significant at t ≈ 150N−1, indicated by the increasing magnitude of the induced momentum.

However, the vertical bar located at t∆ = 210N−1 indicates that the time at which weakly

nonlinear effects were predicted to become significant was over-estimated by ∼ 40%.

The time series ∥M̃(t)∥ for the simulation with m = −0.7k is shown in Fig. 4.6b. The

observed evolution of the induced momentum magnitude is a combination of the evolution

in Figs. 4.6a,c. In particular, the magnitude decreases slightly below unity, but not by the
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amount seen in the case withm = −0.4k. This is followed by a sudden increase at t ≈ 170N−1

to a maximum magnitude of ∥M̃(198)∥ = 7.56, which is ∼ 60% of the magnitude of the first

peak in the case with m = −0.4k, and ∼ 220% greater than the peak magnitude in the

case with m = −1.4k. The time at which weakly nonlinear effects are predicted to become

significant, t∆ = 150N−1, is somewhat under-estimated.

4.1.3 Effect of Changing σx and Hρ

Here, we discuss the effects of quadrupled horizontal wavepacket extent (i.e. setting σx =

40k−1) and of halved density scale height (i.e. setting Hρ = 5k−1) on the weakly nonlinear

wavepacket dynamics. Rather than discussing in detail snapshots of wavepacket evolution,

we will discuss time series of centreline wave-induced mean flow and of relative induced mo-

mentum, with an emphasis on representative cases of wave evolution using σx = 40k−1 and

Hρ = 5k−1, and their comparison with the cases already discussed.

Time series of the density-scaled wave-induced mean flow through the centres of relatively

long wavepackets (for which σx = 40k−1) as they propagate through an atmosphere with

density scale height Hρ = 10k−1 are shown in Fig. 4.7. Panels (a) – (c) correspond to wave-

packets with relative vertical wavenumbers m equal to −0.4k, −0.7k, and −1.4k, respectively.

The results in Fig. 4.7 are compared with the corresponding panels in Fig. 4.5, for which

σx = 10k−1.

In each panel in Fig. 4.7, weakly nonlinear effects become significant at earlier times than for

wavepackets for which σx = 10k−1. This is because, compared to the initial mean flow induced

by a wavepacket with σx = 10k−1, the flow induced by a long wavepacket is approximately

four times greater in magnitude, as predicted by (A.16). Hence, the long wavepackets achieve

an amplitude sufficient for the onset of weakly nonlinear effects at a lower altitude than for

their counterparts with σx = 10k−1.

Fig. 4.7a shows the results for a relatively long wavepacket with relative vertical wavenum-

ber m = −0.4k. Like its counterpart with σx = 10k−1 (Fig. 4.5a), the mean flow degenerates

into a series of positive and negative jets. However, fewer jets were resolved by the simu-

lation of the long wavepacket, and jets were typically of smaller peak magnitude than their

counterparts using σx = 10k−1.
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Figure 4.7: Time series of the density-scaled wave-induced mean flow, ρ̄U(z , t), through the horizontal centres
of translating wavepackets with relative vertical wavenumbers m equal to (a) −0.4k, (b) −0.7k, and (c) −1.4k,
as computed by weakly nonlinear simulations. Each simulation was initialized using (3.10) with Aξ0 = 0.05k−1,
σx = 40k−1, σz = 10k−1, and Hρ = 10k−1. The results in each panel are normalized by the peak initial value of
the wave-induced mean flow, ρ0U0, determined from the output of their respective simulations at t = 0, and plotted
in a frame of reference translating at the wavepacket’s vertical group speed, z̃ = z − cgz t.

The results of the simulation of the long wavepacket with m = −1.4k is shown in Fig. 4.7c.

Like its counterpart using σx = 10k−1 (Fig. 4.5c), the positive flow along the leading flank of

the wavepacket decays in magnitude. A negative jet develops at t ≈ 150N−1 with a region of

positive flow below it developing at t ≈ 175N−1. The negative flow reaches a peak magnitude

between t ≈ 175N−1 and t ≈ 225N−1. Unlike the wavepacket with σx = 10k−1, the jet then

narrows slightly while decaying in magnitude, which is associated with an observed increase

in the rate of its vertical translation.

The flow induced by a long wavepacket with m = −0.7k is shown in Fig. 4.7b. Like its

counterpart with σx = 10k−1 (Fig. 4.5b), the dynamics resemble a combination of those in

the cases with m = −0.4k and m = −1.4k (Figs. 4.7a,c, respectively). The most obvious

qualitative similarity between the time series of the flows induced by the wavepackets with

σx = 10k−1 and σx = 40k−1 is the development of negative jets from the negative flow on the

trailing flank of the wavepackets at t ≈ 150N−1 and at t ≈ 125N−1, respectively. However, for

the long wavepacket the jet rapidly spreads vertically and grows in magnitude at t ≈ 160N−1.

The short-lived leading edge jets observed in Fig. 4.5b are similarly resolved by the simulation

of the long wavepacket, although the jets are positive, as opposed to positive and negative,

as was the case for the wavepackets with σx = 10k−1.

A plot comparing the time series of relative induced momentum profiles, ∥M̃(t)∥, of wave-
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Figure 4.8: Time series of the relative L2-norms of the centreline wave-induced momentum profiles, given by (3.13),
for weakly nonlinear simulations with relative vertical wavenumbers m equal to (a) −0.4k, (b) −0.7k, and (c) −1.4k,
using either σx = 10k−1 (black curves) or σx = 40k−1 (blue curves). The black curves and the black vertical bars are
identical to those shown in the corresponding panels in Fig. 4.6. The blue curves in each panel (a) – (c) correspond
to the time series of density-scaled wave-induced mean flow profiles shown in panels (a) – (c) in Fig. 4.7. The blue
vertical bars correspond to the times, t∆, given by (3.17), at which weakly nonlinear effects are predicted to become
significant in the simulations using σx = 40k−1.

packets using σx = 10k−1 and σx = 40k−1 is shown in Fig. 4.8. The black curves correspond

to wavepackets with σx = 10k−1 and are identical to those shown in Fig. 4.6. The blue curves

correspond to long wavepackets, and represent the L2-norms of the density-scaled induced

flow time series shown in Fig. 4.7. Panels (a) – (c) of Fig. 4.8 correspond to wavepackets with

relative vertical wavenumbers m equal to −0.4k, −0.7k, and −1.4k, respectively.

During the early times in the evolution of the long wavepackets, the induced momentum

magnitudes do not decay below unity to a degree comparable with their counterparts using

σx = 10k−1. In particular, the long wavepackets with m = −0.7k and m = −1.4k do not

decay noticeably. This suggests that long wavepackets are less dispersive than their counter-

parts with σx = 10k−1. The earlier onset of weakly nonlinear effects for long wavepackets

is reflected in the departures of the blue curves from the reference value of ∥M̃(t)∥ = 1, as

seen in Figs. 4.8a,b,c. This observation is in agreement with the fact that longer wavepackets

more closely resemble one-dimensional wavepackets, for which the onset of weakly nonlinear

effects is earlier than for two-dimensional wavepackets (see DS11). For each relative vertical

wavenumber examined, the peak value of the induced momentum for long wavepackets is

approximately half the peak value for their counterparts using σx = 10k−1. Finally, the pre-

dicted times, t∆, given by (3.17), at which weakly nonlinear effects are predicted to become

significant, are substantially under-estimated for long wavepackets, as seen in the blue vertical
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Figure 4.9: Time series of the relative L2-norms of the centreline wave-induced momentum profiles, given by (3.13),
for weakly nonlinear simulations with a density scale height of Hρ = 5k−1. The relative vertical wavenumbers m
are equal to (a) −0.4k, (b) −0.7k, and (c) −1.4k, and the simulations use either σx = 10k−1 (black curves) or
σx = 40k−1 (blue curves). The black and blue vertical bars correspond to the times, t∆, given by (3.17), at which
weakly nonlinear effects are predicted to become significant in the simulations using σx = 10k−1 and σx = 40k−1,
respectively.

bars, which are significantly dislocated from the times at which the blue curves begin to grow

in magnitude (although less so in the case with m = −1.4k).

Finally we compare the effects of quadrupled horizontal wavepacket extent in an atmo-

sphere with density scale height Hρ = 5k−1. Fig. 4.9 shows time series of the relative

wave-induced momentum for simulations of wavepackets with σx = 10k−1 (black curves)

and σx = 40k−1 (blue curves), in an atmosphere with density scale height Hρ = 5k−1. Panels

(a) – (c) of Fig. 4.9 correspond to simulations with relative vertical wavenumbers m equal to

−0.4k, −0.7k, and −1.4k, respectively.

For all relative vertical wavenumbers and horizontal wavepacket extents examined, the

onset of weakly nonlinear effects is earlier for wavepackets propagating through an atmosphere

with density scale heightHρ = 5k−1 than withHρ = 10k−1. This is because in the atmosphere

with Hρ = 5k−1, anelastic growth is more pronounced at any given height. Thus, it is

expected that any two-dimensional wavepacket will grow to an amplitude sufficient for the

onset of weakly nonlinear effects at a lower altitude than its counterpart in an atmosphere

with Hρ = 10k−1. The delay between the onset of weakly nonlinear effects for wavepackets

using σx = 10k−1 and σx = 40k−1 is less than the delay in the atmosphere with Hρ = 5k−1.

When Hρ = 10k−1 (Fig. 4.8), the peak magnitude of the induced momentum was observed to

decrease as the absolute value of the relative vertical wavenumber increases. This tendency
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is not observed in the simulations with Hρ = 5k−1 (Fig. 4.9). Rather, the peak magnitudes

remain relatively large and the peak magnitudes for long wavepackets are approximately half

that of their counterparts using σx = 10k−1, for all relative vertical wavenumbers examined.

The times, t∆, at which weakly nonlinear effects are predicted to become significant for

wavepackets using σx = 10k−1 are in better qualitative agreement for the cases with Hρ =

5k−1 than for those with Hρ = 10k−1. Conversely, the times at which weakly nonlinear effects

are predicted to become significant remain substantially under-estimated for long wavepackets,

as was the case in the results with Hρ = 10k−1.

4.2 Fully Nonlinear Simulations

Here, we compare the results of the previous section with those of fully nonlinear numerical

simulations. In this way we assess the validity of weakly nonlinear theory. In all simulations

reported on below, the bivariate Gaussian wavepackets were initialized using (3.10) with

Aξ0 = 0.05k−1 and σz = 10k−1.

Snapshots from the weakly and fully nonlinear simulations were found to be generally in

very good qualitative agreement. As a representative example, Fig. 4.10 compares the vertical

displacement fields from weakly (left column) and fully nonlinear (right column) simulations of

a wavepacket with horizontal extent σx = 10k−1 and relative vertical wavenumber m = −0.4k

at three different times as it propagates upward through an atmosphere with density scale

height Hρ = 10k−1. Fig. 4.10b compares the vertical displacement fields at t = 100N−1. At

this time, the maximum values of the vertical displacement fields for the weakly and fully

nonlinear simulations, respectively, are ξ = 0.249k−1 and ξ = 0.255k−1. The small difference

between these maxima confirms that the diffusive terms introduced on the right-hand sides of

fully nonlinear equations of motion (3.2) and (3.3) indeed have negligible effect on the wave

dynamics.

Fig. 4.10c demonstrates that the qualitative agreement among the vertical displacement

fields for the weakly and fully nonlinear simulations extends until at least t = 187N−1, the

first time wave overturning was recorded by the fully nonlinear simulation. At this time, the

maximum vertical displacement for the weakly nonlinear simulation was ξ = 1.046k−1, located
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Figure 4.10: Comparison of the vertical displacement fields from weakly (left column) and fully nonlinear (right
column) simulations of a wavepacket initialized using (3.10) with relative vertical wavenumber m = −0.4k and
horizontal extent σx = 10k−1 as it propagates upward through an atmosphere with density scale height Hρ = 10k−1.
The evolution is shown at times t equal to (a) 50N−1, (b) 100N−1, and (c) 187N−1. The left panels in (a) and (b)
are identical to the leftmost panels in Figs. 4.1a,b, respectively.

67



at z = 69.5k−1. The corresponding value for the fully nonlinear simulation is ξ = 1.272k−1,

located at z = 68k−1. While the locations of these maxima agree within 3% of the fully

nonlinear value, the actual maxima agree only within ∼ 18% of the fully nonlinear value.

Alternatively, if the wavepacket had evolved strictly according to linear theory, it would have

translated vertically to z ≈ 60k−1 and its predicted maximum vertical displacement would be

ξ = A0e
60/(2Hρk) ≈ 1.00k−1, owing to anelastic growth alone.

4.2.1 Wave-Induced Mean Flow

For comparison with the time series of centreline wave-induced mean flow profiles from the

weakly nonlinear simulations, time series of centreline wave-induced mean flow profiles from

fully nonlinear simulations using σx = 10k−1 and Hρ = 10k−1 are shown in the right column

of Fig. 4.11. The corresponding time series from the weakly nonlinear simulations shown in

Figs. 4.5a,b,c are reproduced in the left panels of Figs. 4.11a,b,c, respectively. In the right

panel of Fig. 4.11b, the simulation terminated at t = 191N−1, hence the blank area is left in

the figure intentionally.

Fig. 4.11a compares the time series of wave-induced mean flow profiles from weakly (left

column) and fully nonlinear (right column) simulations with m = −0.4k. Qualitatively the

results are nearly identical until just beyond t = 150N−1, in part because the wavepacket

evolves according to linear theory during this time. In the results of both simulations the

induced flow degenerates into a series of positive and negative jets. Although fewer such

features exist in the fully nonlinear results, stronger velocities developed at earlier times. It

is remarkable that both simulations captured the splitting of the uppermost negative jet at

kz̃ ≈ 5 just before t = 200N−1, although quantitatively the jet in the fully nonlinear results

is of larger magnitude.

The time series of induced flow from weakly and fully nonlinear simulations withm = −1.4k

are compared in Fig. 4.11c. Qualitatively, the results are nearly indistinguishable, save for

the slightly larger magnitude in the negative induced flow from the nonlinear simulation until

t ≈ 125N−1, during which the wavepacket evolves according to linear theory. The timing and

location of the negative and positive jets which develop in succession from the negative part

of the negative flow are likewise nearly identical. Diagnostics presented later will reveal that
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Figure 4.11: Comparison of the time series of vertical profiles of the density-scaled wave-induced mean flow,
ρ̄U(z , t), through the horizontal centres of translating wavepackets from weakly (left column) and fully nonlinear
(right column) simulations with relative vertical wavenumbers m equal to (a), −0.4k, (b), −0.7k, and (c) −1.4k.
All simulations were initialized using (3.10) with Aξ0 = 0.05k−1, σx = σz = 10k−1, and Hρ = 10k−1. The results
are plotted in a frame of reference translating at the wavepacket’s vertical group speed, z̃ = z − cgz t. The results
in the left column are identical to those shown in Figs. 4.5a,b,c, respectively. In the right column, the results are
normalized by the peak value of the induced flow profile predicted by setting x̃ = 0 in (A.16).
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qualitative agreement among these two simulations persisted for over eight buoyancy periods

after wave overturning was first recorded by the fully nonlinear simulation. One qualitative

difference between the two simulations is the development of a series of small-magnitude

positive and negative jets from the remnants of the positive induced flow at t ≈ 190N−1 in

the fully nonlinear simulation that were not resolved by the weakly nonlinear simulation.

A comparison of the time series of induced flow from the weakly and fully nonlinear sim-

ulations with m = −0.7k is shown in Fig. 4.11b. A prominent negative jet develops out of

the negative flow on the trailing flank of the wavepacket in both simulations at t ≈ 160N−1,

followed shortly thereafter by the development of a positive jet below it. However, in the

weakly nonlinear simulation these retard the vertical advance of the wavepacket, whereas in

the results of the fully nonlinear simulation no such consequence is observed. A series of

positive and negative jets develop at t ≈ 180N−1 from the positive wave-induced flow in both

simulations, although these are more disorganized and of smaller scale in the weakly nonlinear

simulation compared with the fully nonlinear simulation.

Fig. 4.12 compares the time series of the mean flows induced by relatively long wavepackets,

for which σx = 40k−1, from weakly (left column) and fully nonlinear (right column) simula-

tions. For wavepackets with m = −0.4k (Fig. 4.12a), the induced flows exhibit qualitative

differences after t ≈ 150N−1. In particular, the positive jet centred at kz̃ ≈ 5 develops more

suddenly in the weakly nonlinear simulation, and the negative jet centred at kz̃ ≈ −15 is

unresolved by the fully nonlinear simulation. The fully nonlinear simulation develops larger

magnitudes overall, noticeably, in the negative flow on the trailing edge of the wavepacket

until t ≈ 100N−1. For wavepackets with m = −1.4k (Fig. 4.12c), the qualitative features of

the induced flow are well captured by both the weakly and fully nonlinear simulations. In

particular, the negative jet decreases in magnitude at t ≈ 225N−1, and there is an associated

increase in the wavepacket’s vertical group speed. The fully nonlinear simulation tends to

resolve larger magnitudes overall, in particular in the positive jet situated below the negative

jet from t ≈ 200N−1 onward. Finally, for wavepackets with m = −0.7k (Fig. 4.12b), the neg-

ative jet which developed from the negative induced flow acts to retard the vertical advance of

the wavepacket in both the weakly and fully nonlinear simulations. Both simulations capture

the development of positive and negative jets from the positive part of the induced flow on

70



0 50 100 150 200
−30

−20

−10

0

10

20

30

k
z̃

−5 0 5

ρ̄U
ρ0U0

a) m = −0.4k

0 50 100 150 200

−5 0 5

ρ̄U
ρ0U0

0 50 100 150 200
−30

−20

−10

0

10

20

30

k
z̃

−5 0 5

ρ̄U
ρ0U0

b) m = −0.7k

0 50 100 150 200

−5 0 5

ρ̄U
ρ0U0

0 50 100 150 200 250
Nt

−30

−20

−10

0

10

20

30

k
z̃

−5 0 5

ρ̄U
ρ0U0

c) m = −1.4k

0 50 100 150 200 250
Nt

−5 0 5

ρ̄U
ρ0U0

Figure 4.12: As in Fig. 4.11 but for relatively long wavepackets, for which σx = 40k−1. The results in the left
column are identical to those shown in Figs. 4.7a,b,c, respectively.
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Figure 4.13: Time series of the L2-norms of relative wave-induced momentum profiles, given by (3.13), for weakly
(solid curves) and fully nonlinear (dashed curves) simulations with relative vertical wavenumbers m equal to (a),(d)
−0.4k, (b),(e) −0.7k, (c),(f) −1.4k. All simulations were conducted for an atmosphere with density scale height
Hρ = 10k−1. Panels (a) – (c) correspond to simulations of wavepackets with horizontal extent σx = 10k−1 and
panels (d) – (f) correspond to simulations of relatively long wavepackets with horizontal extent σx = 40k−1. The
vertical bars denote the times, t∆, given by (3.17), at which weakly nonlinear effects are predicted to become
significant. The curves corresponding to the weakly nonlinear simulations are identical to the black and blue curves
in Fig. 4.8, for σx = 10k−1 and σx = 40k−1, respectively.

the leading flank of the wavepacket, although in the fully nonlinear simulation these features

develop more slowly, and to greater magnitude than those in the weakly nonlinear simulation.

A plot summarizing the time series ∥M̃(t)∥ for all weakly and fully nonlinear simulations

with Hρ = 10k−1 is shown in Fig. 4.13. In each panel, solid and dashed curves correspond

to weakly and fully nonlinear simulations, respectively. Simulations of wavepackets using

σx = 10k−1 and σx = 40k−1 are shown in panels (a) – (c) and (d) – (f), respectively. In each

panel in Fig. 4.13, the solid vertical bars denote the times, t∆, at which weakly nonlinear

effects are predicted to become significant. That the solid and dashed curves overlap in

each panel of Fig. 4.13, during which time wavepackets exhibit linear evolution, indicates

excellent agreement between the results of the weakly and fully nonlinear simulations until
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t ≈ 100N−1. Thereafter, in each panel the magnitudes of the wave-induced mean flows from

the fully nonlinear simulations diverge from those of the weakly nonlinear simulations.

For the wavepackets with m = −0.4k (Figs. 4.13a,d), the L2-norms increase until just

beyond t = 187N−1 (for σx = 10k−1) and t = 154N−1 (for σx = 40k−1), the first times

at which wave overturning was recorded by the respective fully nonlinear simulations. The

corresponding overturning heights are zb = 65.92k−1 and zb = 52.09k−1 for the simulations

with σx = 10k−1 and σx = 40k−1, respectively. These values are approximately 17% and 33%

lower, respectively, than the overturning height predicted by linear theory, zb,L = 78.09k−1,

with zb,L given by (3.18). Though overturning, convection develops after another three buoy-

ancy periods in both simulations (see Sutherland, 2001). Unable to resolve the small, fast

convective scales, the code terminates the simulations.

For the wavepackets with m = −1.4k (Figs. 4.13c,f), the L2-norms from the fully nonlinear

simulations exhibit small increases at t ≈ 120N−1 indicating that weakly nonlinear effects have

become significant. Almost simultaneously, the L2-norms from the weakly nonlinear simula-

tions exhibit increases, although the rates of increase and the maximum magnitudes are less

than those in the fully nonlinear results. At t ≈ 200N−1, the weakly and fully nonlinear sim-

ulations cease to agree quantitatively, as indicated by the rapid divergence in their respective

L2-norms at this time. In particular, upon termination of the fully nonlinear simulation using

σx = 10k−1 at t = 254N−1, we find that ∥M̃(254)∥ = 5.86, which is greater than the weakly

nonlinear value at this time by ∼ 195%. For the fully nonlinear simulation using σx = 40k−1,

we find that ∥M̃(248)∥ = 4.39, about 500% greater than the corresponding weakly nonlinear

value. Overturning was first recorded by the simulations using σx = 10k−1 and σx = 40k−1

at zb = 59.65k−1 and zb = 55.78k−1, respectively. These values are approximately 12% and

5% higher, respectively, than the height predicted by linear theory, zb,L = 53.17k−1.

For the wavepackets with m = −0.7k (Figs. 4.13b,e), weakly nonlinear effects become

significant at earlier times in the fully nonlinear simulations than the weakly nonlinear simu-

lations. It is remarkable that the L2-norm of the induced momentum at the final time step,

t = 190N−1, of the fully nonlinear simulation using σx = 10k−1 (Fig. 4.13b) is almost identical

to the value at this time step in the weakly nonlinear simulation. In particular, the fully non-

linear value of ∥M̃(190)∥ = 3.01 is ∼ 94% that of the corresponding weakly nonlinear value.
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Figure 4.14: As in Fig. 4.13, but for an atmosphere with density scale height Hρ = 5k−1. The solid curves and
solid vertical bars corresponding to the weakly nonlinear simulations are identical to those in Fig. 4.9.

Such agreement is likewise observed in the simulations of long wavepackets at t = 163N−1

(the fully nonlinear value of ∥M̃(163)∥ = 2.45 is ∼ 88% that of the corresponding weakly

nonlinear simulation). Overturning was first recorded by the simulations using σx = 10k−1

and σx = 40k−1 at zb = 67.38k−1 and zb = 58.07k−1, respectively. These values are approx-

imately ∼ 0.5% higher and ∼ 13% lower, respectively, than the overturning height predicted

by linear theory, zb = 67.00k−1.

A plot summarizing the time series ∥M̃(t)∥ for all weakly and fully nonlinear simulations

for which Hρ = 5k−1 is shown in Fig. 4.14. Compared with the corresponding time series for

wavepackets with Hρ = 10k−1, the L2-norms from the weakly and fully nonlinear simulations

with Hρ = 5k−1 tend to more closely overlap at the times during which the respective wave-

packets evolve nonlinearly. For wavepackets with m = −1.4k (Figs. 4.14c,f), weakly nonlinear

effects become significant in the weakly nonlinear results at earlier times than in the fully

nonlinear results, and the L2-norms from the weakly nonlinear simulations diverge rapidly
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from those of the fully nonlinear simulations. This is opposite the behaviour of the L2-norms

from the simulations with Hρ = 10k−1 (Figs. 4.13c,f).

For the simulations with Hρ = 10k−1 (Fig. 4.13), in all but the case of the long wavepacket

with m = −1.4k (Fig. 4.13f) the times, t∆, at which weakly nonlinear effects were predicted

to become significant, were severely under-estimated. Agreement between the predicted and

actual times at which weakly nonlinear effects became significant was improved in the simu-

lations with Hρ = 5k−1 (Fig. 4.14). In particular, improved agreement is seen in the cases of

wavepackets with m = −0.4k and m = −0.7k using σx = 10k−1 (Figs. 4.14a,b, respectively),

while good agreement persisted for long wavepackets with m = −1.4k (Fig. 4.14f).

Like the heights at which weakly nonlinear effects became significant, agreement between

the predicted and simulated overturning heights for simulations with Hρ = 5k−1 generally

improved from the simulations with Hρ = 10k−1. In particular, the overturning heights, zb,

recorded by the simulations with m = −0.4k were 11% lower (for σx = 10k−1) and 21%

lower (for σx = 40k−1), respectively, than the height predicted by linear theory, zb,L. The

overturning heights recorded by the fully nonlinear simulations with m = −0.7k were within

2% higher than zb,L. Conversely, agreement between the predicted and simulated overturning

heights deteriorated in the results with m = −1.4k, with zb approximately 20% higher than

zb,L for wavepackets with horizontal extents σx = 10k−1 and σx = 40k−1.

4.3 Overturning Heights

The results of the fully nonlinear simulations presented in the previous section revealed that

nonlinear processes significantly affect wave overturning heights. In particular, waves whose

leading flank was prone to narrow and grow in amplitude tended to overturn at a height

somewhat below the height predicted by linear theory, while a wavepacket whose trailing

flank was prone to narrow and grow acted to retard anelastic growth, causing the wave to

overturn at a height just above that predicted by linear theory.

Here, we further investigate how relative vertical wavenumber, density scale height, and

horizontal wavepacket extent affect the locations at which waves overturn. The overturning

heights recorded by fully nonlinear simulations using a range of relative vertical wavenum-
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Figure 4.15: Simulated heights at which waves begin to overturn, as computed by the fully nonlinear simulations for
wavepackets using a range of horizontal wavepacket extents, density scale heights, and relative vertical wavenumbers
m equal to (a) −0.4k, (b) −0.7k, and (c) −1.4k. In (d), the density scale height Hρ = 10k−1 is held fixed and
the relative vertical wavenumber is varied. Each simulation was initialized using (3.10) with Aξ0 = 0.05k−1 and
σz = 10k−1. In each panel, open circles and crosses denote the overturning heights of wavepackets with horizontal
extents σx = 10k−1 and σx = 40k−1, respectively. The overturning heights predicted by linear theory, zb,L, given
by (3.18), are indicated by the solid curves; the heights at which weakly nonlinear effects are predicted to become
significant, z∆, for σx = 10k−1 and σx = 40k−1 are indicated by the dashed and dotted curves, respectively, with
z∆ given by (3.16).

bers, density scale heights, and horizontal wavepacket extents are shown in Fig. 4.15. Each

simulation was initialized using (3.10) with amplitude Aξ0 = 0.05k−1 and vertical wavepacket

extent σz = 10k−1. The horizontal extent of the wavepacket was set to either σx = 10k−1

(open circles) or σx = 40k−1 (crosses). In Figs. 4.15a,b,c, the relative vertical wavenumbers

m are set to −0.4k, −0.7k, and −1.4k, respectively, while the density scale height, Hρ, is

varied. Fig. 4.15d combines the results from Figs. 4.15a,b,c for the fixed density scale height

Hρ = 10k−1. In each panel of Fig. 4.15, the solid curves indicate the overturning heights,

zb,L, predicted by linear theory as given in (3.18); the dashed curves indicate the heights, z∆,

76



at which weakly nonlinear effects are predicted to become significant for wavepackets with

σx = 10k−1; and the dotted curves are the same, but for relatively long wavepackets, for

which σx = 40k−1, with z∆ given by (3.16).

As anticipated for wavepackets withm = −0.4k (Fig. 4.15a), modulational instability along

the leading flank of the wavepacket, enhanced by anelastic growth, causes the wavepackets

to overturn at a height somewhat below that predicted by linear theory. Relatively long

wavepackets overturn at lower heights than those for which σx = 10k−1, in part due to the

earlier onset of weakly nonlinear effects owing to their initial wave-induced mean flow being

approximately four times greater in magnitude, as predicted by (A.16).

Conversely, wavepackets with m = −1.4k (Fig. 4.15c) overturn just above the heights

predicted by linear theory. Here, the effects of modulational instability are focused along

the trailing flank and enhanced by anelastic growth. Simultaneously, anelastic growth on

the leading flank is comparatively stronger, but is partially inhibited by spreading due to

modulational stability on the leading flank. Hence we find that the trailing flank of the

wavepacket grows to an overturning amplitude at earlier times than the leading flank (which

may not necessarily overturn at all).

For wavepackets with m = −0.7k (Fig. 4.15b), the wavepackets with σx = 10k−1 overturn

at almost exactly the height predicted by linear theory, and long wavepackets overturn at or

below the predicted heights. Having relative vertical wavenumber |m/k| . m̃∗ means that

modulational instability favours growth on the leading flank of the wavepackets, but only just.

Combining the results, Fig. 4.15d shows that as the absolute value of the relative vertical

wavenumber increases, the simulated overturning heights for wavepackets using σx = 10k−1

and σx = 40k−1 tend toward the overturning heights predicted by linear theory. This is

opposite the results of DS11 for one-dimensional wavepackets, who showed that as the relative

vertical wavenumber increased in absolute value, the simulated overturning heights became

progressively higher than the overturning heights predicted by linear theory. We also see that

for relative vertical wavenumbers |m/k| & 1.6 the simulated overturning heights are below the

heights at which weakly nonlinear effects are predicted to become significant (for wavepackets

with σx = 10k−1), suggesting that these linear theory predictions are particularly poor for

such wavenumbers.
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Chapter 5

Discussion and Conclusion

In this thesis, I have derived the expression for the horizontal mean flow induced by hori-

zontally and vertically localized internal gravity wavepackets in an anelastic gas, and derived

the nonlinear Schrödinger equations for the weakly nonlinear evolution of such waves in both

a Boussinesq and an anelastic gas. I described the weakly nonlinear code I developed to

solve the anelastic nonlinear Schrödiner equation, and I compared its results to those of fully

nonlinear simulations using a range of wavepacket and atmospheric parameters. I elucidated

the effects of weakly nonlinear dynamics on wave overturning height, and I compared the

overturning heights recorded by the fully nonlinear simulations to those predicted through

the use of linear anelastic theory.

It has been shown that two-dimensional wavepackets are modulationally unstable for any

relative vertical wavenumber. This is because the wave-induced mean flow for two-dimensional

wavepackets changes sign from the leading flank to the trailing flank of the wavepacket. As

such, whether narrowing and relative amplitude growth is focused on the leading flank or the

trailing flank is determined by a combination of the relative vertical wavenumber (and hence

the waves’ frequency) and the sign of the wave-induced mean flow. In particular, waves whose

initial frequency was greater than the critical frequency ω∗ exhibited wave accumulation on

the leading flank of the wavepacket, which, combined with anelastic growth, caused the waves

to overturn at a height somewhat below that predicted by linear theory. Conversely, waves

with initial frequency lower than ω∗ exhibited wave accumulation on the trailing flank, causing

the waves to overturn at a height just above that predicted by linear theory. The boundary

separating these regimes was set by the critical “transition vertical wavenumber”, m∗. Waves
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with relative vertical wavenumber equal to m∗ in absolute value correspond to waves having

the fastest vertical group speed. As such, for kHρ ≫ 1, we find that |m∗| ≈ |k|/
√
2 and the

corresponding critical frequency is ω∗ ≈
√
2/3N ≈ 0.8N .

It was also shown that two-dimensional waves are unstable to horizontal modulations.

Unlike modulations in the vertical, the sign of the wave-induced mean flow alone determined

whether the leading flank or the trailing flank of the wavepacket was prone to horizontal

narrowing and relative amplitude growth or horizontal spreading and relative amplitude decay.

In particular, on the leading flank where U(z, t) > 0, the waves exhibited accumulation, and

on the trailing flank where U(z, t) < 0, the waves exhibited spreading. These effects tended

to be significantly less pronounced than the effects of vertical modulations, except at late

times in the evolution of a wavepacket with relative vertical wavenumber m = −1.4k (e.g.

Fig. 4.3d).

Two-dimensional wavepackets exhibit a phenomenon I have named “oblique dispersion”, in

which a wavepacket appears to ‘tilt’ in the clockwise direction as it propagates. It was shown

that this behaviour is caused by the terms in the nonlinear Schrödinger equation containing

mixed x- and z-derivatives of the amplitude function. The dynamical effect of such terms

was suspected intuitively, knowing that the terms containing derivatives purely in either x

or z represent dispersion in their respective directions. Conversely, the existence of oblique

dispersion is not suspected from such a cursory examination of the fully nonlinear equations of

motion. Weakly nonlinear simulations revealed that oblique dispersion was most pronounced

for wavepackets with relative vertical wavenumber m = −0.4k, and became progressively less

pronounced as the waves became more hydrostatic (Fig. 4.4). Taken together, these results

re-iterate the value of weakly nonlinear theory and simulations.

Through comparisons of the numerically integrated solutions of the nonlinear Schrödinger

equation with those of the fully nonlinear equations of motion, it was shown that the weakly

nonlinear evolution of horizontally and vertically localized wavepackets in an anelastic gas

was well captured by a nonlinear Schrödinger equation describing only the translation and

dispersion of wavepackets, and their interactions with their induced mean flow. Qualitative

and quantitative similarities among time series of the centreline wave-induced mean flow

profiles from weakly and fully nonlinear simulations revealed that weakly nonlinear theory
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well captures the dynamics of internal gravity wavepackets during their early- to mid-life

evolution, during which their amplitude grows from relatively small to moderately large. It

was found that as the relative vertical wavenumber increased in absolute value, qualitative

agreement between the weakly and fully nonlinear results persisted to progressively later

times in the wavepackets’ evolution. In particular, in a pair of simulations of a wavepacket

with m = −1.4k (Fig. 4.11c), such qualitative agreement endured for over eight buoyancy

periods after wave overturning was first recorded by the fully nonlinear simulation. This

duration represents over 20% of the total duration of the fully nonlinear simulation. However,

quantitative agreement became questionable (Fig. 4.13c).

For comparison of our results with those for a one-dimensional anelastic wavepacket, let

us re-visit the example considered by DS11. We consider a model atmosphere with density

scale height Hρ = 10 km. Setting kHρ = 10 yields a horizontal wavelength of λx ≈ 6.28

km. Choosing a relative vertical wavenumber of m = −3.0k yields a vertical wavelength

of λz ≈ 2.09 km. An initial vertical displacement amplitude of Aξ0 = 0.05k−1 corresponds

to an actual peak displacement of 50 m near the source of wavepacket generation. The

results of DS11 suggest that if the wavepacket is horizontally periodic and vertically localized,

the waves should overturn after propagating upward approximately 11 density scale heights,

nearly 190% higher than the height predicted by linear theory. Conversely, if the wavepacket

is horizontally and vertically localized, our results suggest the waves should overturn after

propagating upward only 4 density scale heights. This overturning height is ∼ 5% higher

than that predicted by linear theory, which corresponds to a difference in overturning heights

of ∼ 530 m in our model atmosphere. Alternatively, suppose the relative vertical wavenumber

ism = −0.4k. This corresponds to a vertical wavelength of λz ≈ 15.7 km, and the overturning

height predicted by linear theory is higher than our simulated overturning height by ∼ 12.8

km.

The results presented in Chapter 4 and the illustrative example considered above demon-

strate that the overturning heights predicted by linear theory can be unreliable. Furthermore,

it was found that in the majority of cases, the times at which weakly nonlinear effects were

predicted to become significant (which were likewise derived using linear theory) were gener-

ally poor predictors of the actual times at which weakly nonlinear effects became significant.
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In some physically suspect cases, waves were predicted to overturn earlier than the predicted

onset of weakly nonlinear effects (Fig. 4.15d). This re-iterates the possible dangers of relying

on predictions based on linear theory.

In agreement with previous studies of Boussinesq wavepackets (Bretherton, 1969; Suther-

land, 2001; Tabaei and Akylas, 2007; van den Bremer and Sutherland, 2014), the qualitative

behaviour of two-dimensional anelastic wavepackets is different than that of one-dimensional

anelastic wavepackets. Recent studies (Tabaei and Akylas, 2007; van den Bremer and Suther-

land, 2018) have revealed that fully three-dimensional (horizontally, vertically, and spanwise

localized) Boussinesq wavepackets behave differently again. In order to gain a more com-

plete understanding of atmospheric internal gravity waves, much work remains to be done.

In particular, fully and weakly nonlinear three-dimensional models of internal gravity waves

should be developed to include the effects of Coriolis forces, non-uniform stratification, and

background wind shear. This is the goal of doctoral research I have recently begun. The

anticipated resulting models will thus include a more realistic range of features present in the

actual atmosphere. Incorporating these features into models will enable a more comprehen-

sive understanding of the processes affecting internal gravity wave dynamics, with the intent

ultimately to develop more realistic internal gravity wave drag parameterization schemes.
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Appendix A

Residue Theory Details

Presented here are the detailed computations and intermediate steps involved in integrating

(2.26) with respect to κ using residue theory. The task involves expressing the integral in

a way that is amenable to integration using residue theory, performing the integration, and

demonstrating that the imaginary parts of the results vanish. Also included is an example to

illustrate the functionality of the method.

A.1 Problem Set-Up and Integration

For reference let us define the integrand of (2.26) as

G(κ;µ) :=
−1

κ2 − c2gz
N2

[
µ4 − i 1

Hρ
µ3

] . (A.1)

We observe that G(κ;µ), and hence (2.26), has complex singularities along the two curves

defined by the right-hand side of

κ = ±|cgz |
N

[
µ4 − i 1

Hρ
µ3

]1/2
:= ±C(µ).

It is necessary to determine the intervals on which the imaginary part of C(µ) is positive or

negative to ensure the inverse transform of (2.26) will remain bounded. We begin by analyzing

the square root term in C(µ), which may be written as
√
reiΦ′ =

√
reiΦ

′/2, in which

r(µ) =
⏐⏐µ4 − i 1

Hρ
µ3

⏐⏐ =
√
µ8 + µ6/H2

ρ ;
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1
2Φ

′(µ) = 1
2 tan

−1
(
− µ3

Hρ

1
µ4

)
= −1

2 tan
−1(1/Hρµ) := Φ,

using standard methods from complex analysis. Taken together we have

C(µ) =
|cgz |
N

[
µ8 + 1

H2
ρ
µ6

]1/4
(cosΦ + i sinΦ) = CR + iCI , (A.2)

in which the subscripts R and I respectively denote the real and imaginary parts of C(µ).

From the range of arctangent it is clear that −π
4 < Φ < π

4 and Φ ̸= 0. Whether each curve

of singularities is located in the upper or lower half of the complex plane follows from these

facts according to the sign of sinΦ, and hence the sign of µ. Indeed,

µ < 0 ⇒ sinΦ > 0;

µ > 0 ⇒ sinΦ < 0.

Using (A.2) we decompose the denominator in G(κ;µ), given by (A.1), allowing us to

express (2.26) as

Ψ(2) =
i

4
ρ0
Nk2m2

K5
A2

0

∫

R

µ3eiµz̃

C(µ)

[∫

R
|̂A|2eiκx̃

[
1

κ+ C(µ)
− 1

κ− C(µ)

]

  
:=I(κ;µ)

dκ

]
dµ. (A.3)

In order to apply residue theory when integrating with respect to κ, we first make a change

of variables κ→ z = zR + izI ∈ C, where z is necessary for constructing contours around each

curve of singularities. Let Γ+,+ be the positively oriented, piecewise-smooth semicircular

curve of radius R in the upper half-plane such that the line segment from −R to R lies on the

κ axis and is centred at the origin. Let Γ+,− be analogous to Γ+,+ but in the lower half-plane,

and negatively oriented. Let Γ−,− be the negatively oriented analogue of Γ+,+ and let Γ−,+

be the positively oriented analogue of Γ+,−. Explicitly,

Γ+,+ = {−R ≤ κ ≤ R} ∪ {z = Reiτ , 0 ≤ τ ≤ π} = {−R ≤ κ ≤ R} ∪ γ+,+; (A.4a)

Γ+,− = {−R ≤ κ ≤ R} ∪ {z = Re−iτ , 0 ≤ τ ≤ π} = {−R ≤ κ ≤ R} ∪ γ+,−; (A.4b)

Γ−,+ = {−R ≤ κ ≤ R} ∪ {z = −Reiτ , 0 ≤ τ ≤ π} = {−R ≤ κ ≤ R} ∪ γ−,+; (A.4c)

Γ−,− = {−R ≤ κ ≤ R} ∪ {z = −Re−iτ , 0 ≤ τ ≤ π} = {−R ≤ κ ≤ R} ∪ γ−,−. (A.4d)

In order to integrate over R we will let R → ∞. Decomposing the denominator in (2.26),
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making the change of variables κ→ z, and explicitly separating the integrals with respect to

z and µ, we have

Ψ(2) =
i

4
ρ0
Nk2m2

K5
A2

0

∫

R

µ3eiµz̃

C(µ)

[∮

Γ±,±

|̂A|2eizx̃
[

1

z+ C(µ)
− 1

z− C(µ)

]
dz

]
dµ. (A.5)

Factors of the form e±iC(µ)x̃ will appear in the µ-dependent integrand following the appli-

cation of residue theory. The boundedness of these terms (and hence the boundedness of the

inverse Fourier transform with respect to κ) depends on the choice of Γ±,±, a choice which

must take into consideration the signs of x̃ and µ. It was found that the convergence of the

integral over [−R,R] is determined by the choice of the second ± sign in Γ±,±, and the integral

over the arc, γ, is determined by the choice of the first ± sign in Γ±,±.

For reference, denote the contour integral in (A.5) by

Iκ(z;µ) :=

∮

Γ±,±

|̂A|2eizx̃
[

1

z+ C(µ)
− 1

z− C(µ)

]
dz.

For the time being, let h(z;µ) denote either of the two terms obtained by distributing the

factor |̂A|2eizx̃ into the bracketed terms in Iκ(z;µ). Since the Γ±,± are constructed as the

union of two curves, the integral of h(z;µ) may be written as either

∮

Γ+,±

h(z;µ)dz =

∫ R

−R
h(κ;µ)dκ+

∫

γ+,±

h(z;µ)dz = bΓ2πiRes(h(z;µ)); (A.6a)

∮

Γ−,±

h(z;µ)dz = −
∫ R

−R
h(κ;µ)dκ+

∫

γ−,±

h(z;µ)dz = bΓ2πiRes(h(z;µ)), (A.6b)

where bΓ takes a fixed value of 1 or −1 according to the orientation of Γ±,±. The presence

of the negative sign leading the integral over [−R,R] in (A.6b) is due to the orientation of

Γ−,±, which causes the part of the curve along the real axis to begin at R and end at −R.

The negative sign arises upon reversing the bounds of integration.

If the singularity is a pole, the general formula for computing its residue (Cauchy, 1827;

Beck et al., 2014) is

Res
z=z0

(h(z;µ)) =
1

(n− 1)!
lim
z→z0

dn−1

dzn−1

(
(z− z0)

nh(z;µ)
)
, (A.7)

where n is the order of the pole and z0 is the value of the singularity. Crucially, we consider
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±C(µ) to behave like poles of order 1, so (A.7) simplifies to

Res
z=z0

(h(z;µ)) = lim
z→z0

(
(z− z0)h(z;µ)

)
. (A.8)

Use of (A.8) will be partly justified a posteriori, as this residue-theoretical approach will be

shown via example in §A.3 to produce results consistent with the numerical methods described

in §3.2.4. On the right-hand side of (A.8), multiplication by z−z0 has the effect of eliminating

the singularity from the denominator of h(z;µ). Taking the limit of the resulting function as

z → z0 results in replacing functional dependence on z with dependence on z0 = ±C(µ). With

this in mind we now determine which contour will be used to integrate over each singularity

taking into consideration the signs of µ and x̃ as per the following analysis.

1. Consider the singularity z+ C(µ) = 0 ⇔ z = −C(µ):

(a) µ < 0 ⇒ −CI < 0:

i. If x̃ > 0, then Re{eizx̃} = eCI x̃ → ∞. Avoid this by integrating over Γ+,+.

ii. If x̃ < 0, then Re{eizx̃} = eCI x̃ < 1. Achieve this by integrating over Γ+,−.

(b) µ > 0 ⇒ −CI > 0

i. If x̃ > 0, then Re{eizx̃} = eCI x̃ < 1. Achieve this by integrating over Γ+,+.

ii. If x̃ < 0, then Re{eizx̃} = eCI x̃ → ∞. Avoid this by integrating over Γ+,−.

2. Consider the singularity z− C(µ) = 0 ⇔ z = C(µ):

(a) µ < 0 ⇒ CI > 0:

i. If x̃ > 0, then Re{eizx̃} = e−CI x̃ < 1. Achieve this by integrating over Γ−,−.

ii. If x̃ < 0, then Re{eizx̃} = e−CI x̃ → ∞. Avoid this by integrating over Γ−,+.

(b) µ > 0 ⇒ CI < 0

i. If x̃ > 0, then Re{eizx̃} = e−CI x̃ → ∞. Avoid this by integrating over Γ−,−.

ii. If x̃ < 0, then Re{eizx̃} = e−CI x̃ < 1. Achieve this by integrating over Γ−,+.

This analysis motivates a clarification of our notation: henceforth let

h1(z;µ) =
|̂A|2eizx̃
z+ C(µ)

and h2(z;µ) =
|̂A|2eizx̃
z− C(µ)

.
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Here, the subscripts 1 and 2 refer respectively to the first and second terms in the bracketed

part of Iκ(z;µ). The integral of I(κ;µ) with respect to κ, defined in the right-hand side of

(A.3), follows upon rearrangement of (A.6a) and (A.6b). For µ < 0 we have

∫

R
h1(κ;µ)dκ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−
∫

γ+,+

h1(z;µ)dz, x̃ > 0;

−2πi Res
z=−C(µ)

(
h1(z;µ)

)
−
∫

γ+,−

h1(z;µ)dz, x̃ < 0,

(A.9a)

∫

R
h2(κ;µ)dκ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2πi Res
z=C(µ)

(
h2(z;µ)

)
+

∫

γ−,−

h2(z;µ)dz, x̃ > 0;

∫

γ−,+

h2(z;µ)dz, x̃ < 0.

(A.9b)

Similarly, for µ > 0 we have

∫

R
h1(κ;µ)dκ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2πi Res
z=−C(µ)

(
h1(z;µ)

)
−
∫

γ+,+

h1(z;µ)dz, x̃ > 0;

−
∫

γ+,−

h1(z;µ)dz, x̃ < 0,

(A.9c)

∫

R
h2(κ;µ)dκ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∫

γ−,−

h2(z;µ)dz, x̃ > 0;

−2πi Res
z=C(µ)

(
h2(z;µ)

)
−
∫

γ−,+

h2(z;µ)dz, x̃ < 0,

(A.9d)

in which we have explicitly omitted residues evaluating to zero. It is shown in §A.2 that the

integrals over the arcs, γ±,±, in (A.9a) – (A.9d) vanish as R → ∞, given that the correct

contour Γ±,± was chosen as per the analysis presented above. Accordingly the results of the

integrations for µ < 0 are

∫

R
I(κ;µ)dκ = −2πi×

⎧
⎪⎪⎨
⎪⎪⎩

eiC(µ)x̃ |̂A|2
⏐⏐⏐
z=C(µ)

, x̃ > 0;

e−iC(µ)x̃ |̂A|2
⏐⏐⏐
z=−C(µ)

, x̃ < 0,

(A.10a)

which are obtained by combining (A.9a) and (A.9b). Similarly, the results of the integrations

for µ > 0 are

∫

R
I(κ;µ)dκ = 2πi×

⎧
⎪⎪⎨
⎪⎪⎩

e−iC(µ)x̃ |̂A|2
⏐⏐⏐
z=−C(µ)

, x̃ > 0;

eiC(µ)x̃ |̂A|2
⏐⏐⏐
z=C(µ)

, x̃ < 0,

(A.10b)

which are obtained by combining (A.9c) and (A.9d). Substituting (A.10a) and (A.10b) into
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the right-hand side of (A.3), then expressing both regions in µ under a single integral sign,

yields the following integral expression for the induced mass-streamfunction in real space:

Ψ(2) =
π

2
ρ0
N2k2m2

|cgz |K5
A2

0

∫ ∞

0
I(µ; x̃, z̃)dµ,

where the integrand is given by

I(µ; x̃, z̃) =
µeCI |x̃|

{
e−i[µz̃−CR|x̃|−Φ] |̂A|2

⏐⏐
z=C⋆ + ei[µz̃−CR|x̃|−Φ] |̂A|2

⏐⏐
z=−C

}
[
1 + 1

H2
ρµ

2

]1/4 ,

in which C⋆ is the complex conjugate of C(µ). Finally, the expression for the induced flow

field, u(2)(x̃, z̃), follows immediately via the relation (2.13a). Explicitly,

u(2) = −1

ρ̄
∂z̃Ψ

(2) =
iπ

2

N2k2m2

|cgz |K5
A2

0e
z/Hρ

∫ ∞

0

∂I
∂z̃
dµ, (A.11)

where the integrand is given by

∂I
∂z̃

=
µ2eCI |x̃|

{
e−i[µz̃−CR|x̃|−Φ] |̂A|2

⏐⏐
z=C⋆ − ei[µz̃−CR|x̃|−Φ] |̂A|2

⏐⏐
z=−C

}
[
1 + 1

H2
ρµ

2

]1/4 .

A.2 Proof of Vanishing Arcs

We now prove that the integrals over the arcs defined by γ±,± in (A.9a) – (A.9d) vanish as

R → ∞, making use of the Jordan Lemma. The procedure is adapted from Churchill and

Brown (1984, pp. 172–174). The convergence of eight separate integrals is reduced to the

following two generalized cases, in which we assume R > | ± C(µ)| can be chosen for any

choice of µ ∈ R:

Case 1: The singularity z+C(µ) = 0 is handled with Γ+,±. In these cases, ± corresponds

to the sign of x̃ ̸= 0. Let h1(z;µ) = eizx̃g1(z;µ). We have

⏐⏐⏐⏐
∫

γ+,±

h1(z;µ)dz

⏐⏐⏐⏐ ≤
∫ π

0

⏐⏐g1(Re±iτ ;µ)eiRx̃(cos τ±i sin τ)(±i)Re±iτ
⏐⏐dτ

= R

∫ π

0

⏐⏐g1(Re±iτ ;µ)
⏐⏐e∓Rx̃ sin τdτ

≤ RM

∫ π

0
e−R|x̃| sin τdτ

= 2RM

∫ π/2

0
e−R|x̃| sin τdτ ,
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whereM := maxτ∈[0,π] |g1(Re±iτ ;µ)|. The last equality holds by the symmetry sin τ = sin(π−

τ). Since sin τ ≥ 2τ/π ∀τ ∈ [0,π/2], it follows that

⏐⏐⏐⏐
∫

γ+,±

h1(z;µ)dz

⏐⏐⏐⏐ ≤ . . . ≤ 2RM

∫ π/2

0
e−2R|x̃|τ/πdτ

=
2RM

−2|x̃|R/πe
−2R|x̃|τ/π

⏐⏐⏐⏐
π/2

0

=
π

|x̃|M(1− e−R|x̃|)

≤ π

|x̃|M ,

where

M = max
τ∈[0,π]

⏐⏐⏐⏐
A

Re±iτ + C(µ)

⏐⏐⏐⏐ ≤
|A |

R− |C(µ)| → 0, (A.12)

as R → ∞. In (A.12), we have denoted by A = |̂A|2
⏐⏐
Re±iτ the Fourier transformed squared

modulus of the amplitude function whose functional dependence on the variable z has been

replaced by dependence on Re±iτ .

Case 2: The singularity z−C(µ) = 0 is handled with Γ−,±. In these cases, ± corresponds

to the sign of −x̃ ̸= 0. Let h2(z;µ) = eizx̃g2(z;µ). We have

⏐⏐⏐⏐
∫

γ−,±

h2(z;µ)dz

⏐⏐⏐⏐ ≤
∫ π

0

⏐⏐g2(−Re±iτ ;µ)e−iRx̃(cos τ±i sin τ)(∓i)Re±iτ
⏐⏐dτ

= R

∫ π

0

⏐⏐g2(−Re±iτ ;µ)
⏐⏐e±Rx̃ sin τdτ

≤ RM

∫ π

0
e−R|x̃| sin τdτ

≤ π

|x̃|M ,

by an argument identical to that of case 1. Here,

M := max
τ∈[0,π]

|g2(−Re±iτ ;µ)| = max
τ∈[0,π]

⏐⏐⏐⏐
A

−Re±iτ − C(µ)

⏐⏐⏐⏐ = max
τ∈[0,π]

⏐⏐⏐⏐
A

Re±iτ + C(µ)

⏐⏐⏐⏐

≤ |A |
R− |C(µ)| → 0,

(A.13)

as R → ∞. In a similar manner as that shown in case 1, in (A.13) we have similarly let

A = |̂A|2
⏐⏐
z=−Re±iτ . In taking the limits in (A.12) and (A.13), we have relied (somewhat

heuristically) on the property that A, and hence |̂A|2, are localized, becoming vanishingly

small away from the wavepacket despite arbitrarily large R.
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A.3 Example: Bivariate Gaussian Amplitude Function

As an example, suppose the wavepacket is a bivariate Gaussian whose initial vertical displace-

ment amplitude is given by A(x̃, z̃) = e−(x̃2/2σx+z̃2/2σz), in which σx and σz are the horizontal

and vertical extents of the wavepacket, respectively. It is straightforward to explicitly evaluate

(A.11). The Fourier transform of |A|2 is

|̂A|2 = 1

4π
σxσze

−(κ2σ2
x+µ

2σ2
z)/4. (A.14)

Evaluating the right-hand side of (A.14) along z = C⋆(µ) and z = −C(µ), respectively, gives

|̂A|2
⏐⏐⏐
z=C⋆(µ)

=
1

4π
σxσz exp

{
− µ2σ2z/4− (C2

R − C2
I )σ

2
x/4

}
eiCRCIσ

2
x/2; (A.15a)

|̂A|2
⏐⏐⏐
z=−C(µ)

=
1

4π
σxσz exp

{
− µ2σ2z/4− (C2

R − C2
I )σ

2
x/4

}
e−iCRCIσ

2
x/2. (A.15b)

By inspection it is clear that e−µ
2σ2

z/4 < ∞ ∀µ ∈ R. It is likewise readily shown that

e−(C2
R−C2

I )σ
2
x/4 remains bounded. Indeed,

C2
R − C2

I =
k2m2

K6

[
µ8 + 1

H2
ρ
µ6

]1/2
cos(2Φ) > 0,

because cos(2Φ) > 0 ∀Φ ∈ (−π/4,π/4). Substituting (A.15a,b) into (A.11) finally yields the

explicit integral expression for the horizontal flow field induced by a horizontally and vertically

localized wavepacket,

u(2)(x̃, z̃) =
1

4

N2k2m2

|cgz |K5
A2

0σxσze
z/Hρ

∫ ∞

0

∂I
∂z̃

(µ; x̃, z̃)dµ, (A.16)

in which the integrand is given by

∂I
∂z̃

=
µ2eCI |x̃|e−[µ2σ2

z/4+(C2
R−C2

I )σ
2
x/4] sin(µz̃ − CR|x̃| − CRCIσ

2
x/2− Φ)

[
1 + 1

H2
ρµ

2

]1/4 dµ. (A.17)

When evaluating (A.16), it is necessary to choose the branch cut corresponding to outward-

and downward-propagating long waves induced by the translating wavepacket (Bretherton,

1969), as was done in §3.2.4. In particular, Φ is deliberately re-defined using (3.12), which is

reproduced here for reference:

Φ = ±1
2 tan

−1(1/Hρ|µ|).
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The branch cut corresponding to the induced long waves we wish to capture is that for which

the ± sign in Φ is equal to sgn(µ). In implementing the choice of branch cut, we find it is also

necessary to set −CR|x̃| → CR|x̃| in (A.17). The resulting expression for the induced flow

field, u(2)(x, z, t), is found to be not uniformly valid in space, in agreement with the findings

of previous studies of Boussinesq wavepackets (Bretherton, 1969; Tabaei and Akylas, 2007).

However, we only require profiles of the induced mean flow through the centre of a translating

wavepacket, which is found by setting x̃ = 0 in (A.16) after taking the described branch

cut. The resulting vertical profile of the wave-induced mean flow, U(z, t) = u(2)(x̃ = 0, z, t),

is found to be in excellent agreement with the results of the fast Fourier transform method

described in §3.2.4.

Finally it is important to note that, although (A.11) is generally valid for all time up to the

occurrence of wave overturning, (A.16) is valid only when an analytically tractable expression

is known for the amplitude function. In the current example, the amplitude function is exactly

known only at t = 0. For any t > 0, a wavepacket experiences weakly nonlinear effects to some

degree, which alter its initial Gaussian structure. Therefore, in practice, the wave-induced

mean flow is computed using the fast Fourier transform method detailed in §3.2.4.
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Appendix B

Derivation of the Transition

Vertical Wavenumber

Here, we derive the critical “transition vertical wavenumber”, m̃∗, using the approach of

Sutherland (2010), which is based on the results of the variational method of Whitham (1974)

for one-dimensional waves. Here, we apply Sutherland’s method for waves in two dimensions.

For waves propagating in the x-z plane, the phase is given by ϕ = kx+mz − ωt. From this

we have

k =
∂ϕ

∂x
, m =

∂ϕ

∂z
, ω =

∂ϕ

∂t
. (B.1a,b,c)

Dependence on ϕ is eliminated from (B.1a,b) by taking the time derivatives of (B.1a,b) and

assuming mixed partial derivatives are equal, the results of which are the following advection

equations for the horizontal and vertical wavenumber components:

∂k

∂t
= −∂ω

∂x
= −cgx

∂k

∂x
; (B.2)

∂m

∂t
= −∂ω

∂z
= −cgz

∂m

∂z
, (B.3)

where we have used the definitions of the horizontal and vertical group speeds, cgx = ∂kω and

cgz = ∂mω, respectively, given by (1.2b).

Separately we develop an equation for the evolution of the wave-induced mean flow, U ∝

|A|2. Adapting the argument of Sutherland (2010, c.f. sections 4.2.4, 2.2.6, and 3.4.2) for
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small-amplitude one-dimensional waves to two dimensions

∂U

∂t
= − ∂

∂x
(cgxU);

∂U

∂t
= − ∂

∂z
(cgzU). (B.4a,b)

For finite amplitude waves, the left-hand sides of (B.2) and (B.3) are related to (B.4a,b)

through the weakly nonlinear dispersion relation (Whitham, 1974; Sutherland, 2010) of the

form

ω ≈ ω0(k,m) + Uω2(k,m), (B.5)

in which ω2 is the real part of the coefficient on the nonlinear term in the nonlinear Schrödinger

equation (2.54). Specifically, ω2 = k. Furthermore, we have explicitly used U in (B.5), rather

than |A|2 as was the case in the weakly nonlinear dispersion relations derived by Whitham

(1974) and Sutherland (2010). Substituting (B.5) into the right-hand sides of (B.2), (B.3),

and (B.4a,b), and retaining only the leading terms of the latter, we obtain two coupled matrix

equations for k, m, and U :

∂

∂t

(
k

U

)
= −

⎡
⎢⎢⎣

(∇kω0)· ω2

U(∂k∇kω0)· ∂kω0

⎤
⎥⎥⎦
∂

∂x

(
k

0

)
;

∂

∂t

(
m

U

)
= −

⎡
⎢⎢⎣

(∇kω0)· ω2

U(∂m∇kω0)· ∂mω0

⎤
⎥⎥⎦
∂

∂z

(
k

U

)
,

where ∇k = (∂k, ∂m) and the matrices are understood to act as operators. These are readily

uncoupled and simplified if we assume k = k(x, t) and m = m(z, t), the result of which is

∂

∂t

(
k

U

)
= −

⎡
⎢⎢⎣
∂kω0 ω2

U∂kkω0 ∂kω0

⎤
⎥⎥⎦
∂

∂x

(
k

0

)
; (B.6)

∂

∂t

(
m

U

)
= −

⎡
⎢⎢⎣

∂mω0 ω2

U∂mmω0 ∂mω0

⎤
⎥⎥⎦
∂

∂z

(
m

U

)
. (B.7)

The eigenvalues of (B.6) and (B.7) represent the leading-order correction to the horizontal
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and vertical group speeds, respectively. Explicitly, the leading-order corrections are

cAgx = cgx ±
√
Uω2∂kkω0; (B.8)

cAgz = cgz ±
√
Uω2∂mmω0, (B.9)

in which we have adopted Sutherland’s notation on the left-hand sides.

For assessing the modulational stability properties of the nonlinear Schrödinger equation

(2.54), we consider the term under the square root of (B.9). If U∂mmω > 0, the wavepacket

is prone to vertically broaden and decay in amplitude. Conversely, if U∂mmω < 0, the

wavepacket is prone to narrow and grow in amplitude. Modulational instability in the vertical

is more dynamically important than in the horizontal because atmospheric density decreases

with height. The critical “transition vertical wavenumber”, m̃∗, separates the growth and

decay regimes. By setting Uk∂mmω = 0 and rearranging the result, we find that

m̃∗ = |m∗/k| :=
1√
2

[
1 +

1

4k2H2
ρ

]1/2
. (B.10)

Hence we find that wavepackets with |m/k| < m̃∗ are prone to narrow and grow on their

leading flank, whereas wavepackets with |m/k| > m̃∗ are prone to narrow and grow on their

trailing flank.

Two-dimensional wavepackets also exhibit modulational instability in the horizontal. In

this case the instability condition is U∂kkω < 0. Because ∂kkω < 0 ∀m ∈ R, the instability

condition is satisfied where U > 0. In particular, this occurs on the leading flank of the

wavepacket, hence we find that the leading flank of any two-dimensional wavepacket is prone

to horizontal narrowing and amplitude growth, while its trailing flank is prone to horizontal

spreading and relative amplitude decay. However, in most cases these effects are much less

significant than the effects of vertical modulations.
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Appendix C

Discretization of Partial Derivatives

In order to numerically integrate the nonlinear Schrödinger equation for horizontally and

vertically localized internal gravity wavepackets, (2.54), centred finite difference schemes were

developed to approximate each of the partial derivative terms. Here, we present the schemes

for all such terms, including their associated error terms.

For indexing purposes, let (x, z) = (x1,x2), h1 = ∆x1 and h2 = ∆x2. For an amplitude

function at any fixed time step, denoted here by A(x1,x2), let

Ai±α1,j±α2 = A(x1 ± α1h1,x2 ± α2h2),

where α1,α2 ∈ N. Terms such as (∂xA)i,j , etc., are similarly defined, in which subscripts on

∂ denote partial derivatives with respect to that variable in the original (x, z) notation.

To approximate pure and mixed partial derivatives of up to third-order in x1 and x2,

while maintaining O(h21,h
2
2) accuracy, we take linear combinations of the two-variable Taylor

expansion truncated at fifth-order, given by

A(x1 ± α1h1,x2 ± α2h2) ≈
5∑

q=0

[
1

q!

2∑

ℓ1=1

· · ·
2∑

ℓq=1

∂qA(x1,x2)

∂xℓ1 · · · ∂xℓq
(±αℓ1hℓ1) · · · (±αℓqhℓq)

]
,

assuming the equality of mixed partial derivatives of any particular order.

Henceforth using the usual method of linear combinations of Taylor series, the advection

terms, including their respective leading-order error terms, are approximated as

(∂xA)i,j =
1

2h1

[
Ai+1,j −Ai−1,j

]
+

1

6
h21∂xxxA(ξ, z); (C.1a)
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(∂zA)i,j =
1

2h2

[
Ai,j+1 −Ai,j−1

]
+

1

6
h22∂zzzA(x, η), (C.1b)

where ξ ∈ (x− h1,x+ h1) and η ∈ (z − h2, z + h2).

The leading-order linear dispersion terms, including their respective leading-order error

terms, are approximated as

(∂xxA)i,j =
1

h21

[
Ai+1,j − 2Ai,j +Ai−1,j

]
+

1

12
h21∂xxxxA(ξ, z); (C.2a)

(∂zzA)i,j =
1

h22

[
Ai,j+1 − 2Ai,j +Ai,j−1

]
+

1

12
h22∂zzzzA(x, η), (C.2b)

where ξ ∈ (x − h1,x + h1) and η ∈ (z − h2, z + h2). Similarly, the leading-order oblique

dispersion term and its leading-order error term is approximated as

(∂xzA)i,j =
1

4h1h2

[
Ai+1,j+1 −Ai+1,j−1 −Ai−1,j+1 +Ai−1,j−1

]

+
1

6

[
h21∂xxxzA(ξ1, η1) + h22∂xzzzA(ξ2, η2)

]
,

(C.3)

where ξ1, ξ2 ∈ (x− h1,x+ h1) and η1, η2 ∈ (z − h2, z + h2).

The pure second-order linear dispersion terms, including their leading-order error terms,

are approximated as

(∂xxxA)i,j =
1

2h31

[
Ai+2,j − 2(Ai+1,j −Ai−1,j)−Ai−2,j

]
+

1

4
h21∂xxxxxA(ξ, z); (C.4a)

(∂zzzA)i,j =
1

2h32

[
Ai,j+2 − 2(Ai,j+1 −Ai,j−1)−Ai,j−2

]
+

1

4
h22∂zzzzzA(x, η), (C.4b)

where ξ ∈ (x − 2h1,x + 2h1) and η ∈ (z − 2h2, z + 2h2). Similarly, the second-order oblique

dispersion terms, including their respective leading-order error terms, are approximated as

(∂xxzA)i,j =
1

2h21h2

[
Ai+1,j+1 −Ai+1,j−1 − 2(Ai,j+1 −Ai,j−1) +Ai−1,j+1 −Ai−1,j−1

]

+
1

3

[
1
2h

2
1∂xxxxzA(ξ1, η1) + h22∂xxzzzA(ξ2, η2)

]
;

(C.5a)

(∂xzzA)i,j =
1

2h1h22

[
Ai+1,j+1 −Ai−1,j+1 − 2(Ai+1,j −Ai−1,j) +Ai+1,j−1 −Ai−1,j−1

]

+
1

3

[
h21∂xxxzzA(ξ1, η1) +

1
2h

2
2∂xzzzzA(ξ2, η2)

]
,

(C.5b)

where ξ1, ξ2 ∈ (x− h1,x+ h1) and η1, η2 ∈ (z − h2, z + h2).

It is worth noting that, in general, partial derivatives do not have unique finite difference

approximations. In particular, it is possible to derive second-order accurate centred difference
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approximations of the pure second- and third-order partial derivatives of A by composing a

first-order difference equation with itself once (for the pure second-order derivative approxi-

mations) or twice (for the pure third-order derivative approximations). While the arithmetic

involved in this method is simpler, it does not provide the leading-order error terms.

Without loss of generality, as an example we consider the second- and third-order partial

derivatives with respect to x, derived using the described method of composition. This ap-

proach yields an identical expression for the second-order derivative approximation, however

the third-order derivative approximation is

(∂xxxA)i,j =
1

8h31

[
Ai+3,j − 3(Ai+1,j −Ai−1,j)−Ai−3,j

]
. (C.6)

This scheme can alternatively be derived using the method of linear combinations of Taylor

series, which reveals that its leading-order error term is

1

2
h21∂xxxxxA(ξ, z),

where ξ ∈ (x−3h1,x+3h1). While both schemes (C.4a) and (C.6) possess the desired property

of consistency, we immediately note that the error term for scheme (C.6) is twice as large as

that of scheme (C.4a), for a given fixed ξ and z. Moreover, the maximum truncation error

associated with scheme (C.6) is potentially larger than that associated with scheme (C.4a)

due to the larger domain (x − 3h1,x + 3h1) from which the maximizing value of ξ may be

drawn.

The insight provided by this analysis has immediate consequences on our choice of nu-

merical methods: the weakly nonlinear code used by Dosser (2010) to numerically integrate

the nonlinear Schrödinger equation for horizontally periodic anelastic internal gravity waves

employed the z-equivalent of scheme (C.6) to approximate the third-order derivative with

respect to z. Because the weakly nonlinear code used for this thesis is adapted from that of

Dosser, it was re-written to employ scheme (C.4a) and its z-equivalent to approximate the

pure third-order derivatives.
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