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... Forgetting what is behind and straining toward what is ahead
Philippians 3:13



It is strange to say that there are some significant incidents which
left no piece of memory in my mind. My happy childhood and family's
depression after my father's death seem no longer to be in reminiscence. In their
place, there exists my terrible experience forming a concrete, never-forgotten
image inside me. That is my escape.

... Vet there lies ahead of me an inscrutable future. As a stray, I am
wandering pointlessly. Nostalgic feeling always fills up my mind.

from My Escape (Lawrence Le, 1980, Grade 13,
Rideau District High School, Elgin, Ontario)

Since I came to Canada as a refugee, eleven years have passed by.
Many people have thought that I have accomplished a great deal, of course, with
lots of struggle and hardships. Indeed, there has been so much blessing. I am
very proud that I have done it in a righteous way. However, my
accomplishments can not be achieved without the support of many people
around me. I fully understood my mothers feeling and sacrifice when she said:
‘T don't think we will have a chance to see each other again.’ Doris always said
to me: 'Le, this is your family and please do come back if you need any help.’
Simple words of thanks can not express my gratitude to the Crowe's family. [
owe Doris and Marshall so much for their continuous encouragement and
support. I am grateful to Jenny and George Neilson for their caring all these
years. Also, my wife, Ping, has had so much confidence on me since we first
met.

This thesis is dedicated to
my parents and my sisters
who have sacrificed themselves for my way to freedom,
my Canadian parents, Doris and Marshall Crowe,
who have given me a chance for better education
and
my wife, Ping,
who has been standing by me all these years.



ABSTRACT

The basic theory and numerical implementation of P-SV wave propagation in an
anelastic layered half-space due to a point P-source is presented using the Fourier-Bessel
representation. The formalism allows the inhomogeneity of the medium to take any form
along the depth axis with homogeneous discrete layers as a special case. The
displacements for a set of receivers located on the free surface are expressed as a linear
combination of factors involving the source term and the 2nd order minors governing the
contribution of the P- and S-wave type in the inhomogeneous layer. These terms can be
obtained by integrating directly the 4th order differential system for P-SV waves and the
6th order differential system for the 2nd order minors using a Runge-Kutta integration
method.

Utilizing the Cagniard-de Hoop method, the particle velocity from an impulsive line
source for transmitted SH-waves through a boundary separating two homogeneous and
solid half-spaces is derived. With a series of examples the properties of the evanescent
wave, such as their equivalent ray path and the decay with depth, are displayed.

Computations of two elastic and anelastic half-spaces problem for an SH line
source have been performed using an improper @-k double integral. Attenuation does not
radically change the physical picture seen in the elastic case but rather modifies it: there is
continuous variation with dispersion and attenuation. For viscoelastic media, the
seismograms present features due to the non-planar wavefronts propagating from a line
source. Such features cannot be explained by inhomogeneous plane wave theory.

Synthetic results for the case of a layer overlying a half-space compare favorably with
computations based on the Cagniard-Pekeris-de Hoop method for a similar case.
Numerical sections for four simple models simulating crustal and shallow structures with

low velocity and velocity gradient zones show results which conform to those predicted by



ray tracing. Study of the numerical results from the multilayered "Cold Lake" structures
indicates that there are significant changes in seismic signatures due to changes in

Poisson's ratio. These changes can be detected if far-offset recording is employed.
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CHAPTER 1
INTRODUCTION

In solid earth geophysics and earthquake engineering, synthetic seismograms are
basic tools to predict the kinematic and dynamic properties of elastic waves propagating
through the Earth. Improvements in numerical techniques and advances in high speed
computers in the past decades have made feasible the computation of theoretical
seismograms for realistic models. Starting with the mid-fifties, more and more such
seismograms were computed and analysed. The first models were very crude so that
comparisons with records were not very successful but later on, especially during the
seventies, the calculated seismograms resembled field seismic records, at least in some
time-intervals, so that they could serve in the interpretation of the data. However, due to
the heterogeneity of the real Earth, no simple analytic solutions of the elastic wave equation
exist. Many approximate methods based on geometrical ray theory such as ART (Hron and
Kanasewich, 1971), WKBJ theory (Chapman, 1978), to mention a few, are fast, but have
limitations in representing a variety of phenomena, notably caustics, attenuation and
guided-waves (Foster and Huang, 1990). Fundamentally, most of these methods give
incomplete results. Kerner (1990) points out that the full understanding of the complexity
in the seismograms can only be achieved through the use of total wave field modeling.

Many numerical schemes such as finite-differences (FD) have been employed to
generate seismograms in extremely complicated structures and dispersion relation and
stability criterion are difficult to specify except in simple media (Mora, 1990). The results
thus produced present various kinds of errors, thus prohibiting a reliable convergence to a
valid solution. Analysis of FD schemes also indicate that conservation of energy does not

guarantee numerical stability (Mora, 1990). The seismograms are, therefore, trustworthy



only if the limitations of the numerical schemes are well understood. One way to find out
these limitations is to check the numerical results obtained by purely nucaerical algorithms
against exact numerical seismograms obtained by numerical computations of analytic
solutions. However, analytic solutions or closed form solutions of the elastic wave
equations are known only for simple structures such as the ones dealt in this thesis.
Nevertheless, the fundamental study of these simple models should not be overlooked
and should proceed in parallel with the improvement of the purely numerical solutions since
from both the practical and theoretical viewpoints their solutions provide us with references
and quantitative checks against various approximate and purely numerical methods. Froni
such studies, one may find the conditions under which the numerical methods are valid and
understand features, such as evanescent waves, whose solution can not be easily predicted
or even obtained by any approximate means. The purpose of the thesis is to provide some
exact solutions for the cases where two half-spaces are in welded contact and a half-space

is layered.

1.1 Ray and Wave Theoretical Approaches in Solving Elastic Wave

Propagation Problems

One of the basic approximations frequently used to simulate the structure of the
solid crustal mantle is the layer-cake model in which there is an inhomogeneous layer
welded on top of a homogeneous half-space. This multilayered model appears to be very
simple with no allowance for geoidal curvature, lateral variation of the medium and
anisotropy, etc. Synthetic seismograms generated from such a medium have been used
successfully to guide the determination of bounds on crustal structures and to interpret
actual records of elastic waves for earthquake and artificial sources (Helmberger, 1968;

Helmberger and Wiggins, 1971; Fuchs and Miiller, 1971; Vered and Ben-Menahem, 1974
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and Braile and Smith, 1975). When sphericity of the medium is considered, an earth-
flattening transformation can be used to approximately transform the spherical layers into
plane layers (Gilbert and Helmberger, 1972; Chapman, 1973 and Miiller, 1985). For
decades, a substantial amount of research effort has been devoted to finding means to
obtain exact solutions to the physical problem of wave propagation in such a medium due
to an impulsive disturbance occurring internally or on the free surface. The absence of the
computing power and powerful analytical tools has so far restricted the solution to
approximate type or models with simple structures which are approximations to the real
Earth.

One of the common features of early synthetic seismograms was that they were
based not on the double Fourier integral, but were obtained by means of the Laplace
transform and its inversion using the so-called Cagniard-Pekeris-de Hoop method. The
concept that the double Fourier-Bessel integral cannot lead to a practical way of calculating
numerically the disturbance, while the inversion of the Laplace transform can, stressed by
Pekeris (1960) in the opening stages of this period, was motivated by the number-
crunching power of electronic computers. Although this power increased steadily, the
scalar computers of the sixties and seventies were indeed inadequate for the task.
Nowadays, this concept begins to lose its grip, due to the appearance of vector and parallel
machines and an accelerated pace of progress in computer technology. As a result, what
seemed impossible thirty years ago becomes manageable today, if not on a routine basis, at
least experimentally. For our purposes there are two main theories to compute the complete
response of a layered structure due to point source, i.e. generalized ray theory (using the
Cagniard-Pekeris-de Hoop method) and full wave theory (using the @-k method).

In generalized ray theory, there are two approaches as classified by Abramovici
and Gal-Ezer (1978): analytic and synthetic. In the analytic approach (Spencer, 1960;
Helmberger, 1968 and Gilbert and Helmberger, 1972), each physical ray is represented by
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an integral whose integrand consists of a product of generalized plane-wave reflection and
transmission coefficients (Spencer, 1960) of the interfaces that the ray encounters and a
phase factor accounting for the source and receiver configuration. In the synthetic
approach, the solution represented by an integral is obtained from the wave equation
associated with the assigned boundary conditions. The integral is expressed in closed
algebraic form and is then expanded in a series (Abramovici and Gal-Ezer, 1978). In this
manner, an individual ray cannot be identified but there is a group of rays of the same type.
By using the synthetic approach, Pekeris et al. (1965) and Abramovici (1970) managed to
obtain the vertical and horizontal displacements due to an explosive point P-source in an
elastic one-layered half-space.

In either approach, one has to invert the Laplace transform for the integrals
representing the rays or group of rays. The method of inversion was devised almost at the
same time by Cagniard (1939 and 1962) and Pekeris (1940). The first treated the case of a
point source of P-waves acting causally in a model consisting of two homogeneous half-
spaces, while the second considered the case of a point torque-source acting on the surface
of a homogeneous half-space. Later on, de Hoop (1958) presented a modified version of
the method which is more amenable to numerical evaluations. During the sixties and the
seventies, the method was extended to more complicated structures, the extension being
based on one of the following versions: Gilbert and Helmberger (1972) and independently
Ben-Menahem and Vered (1973) extended the de Hoop's version to a multilayered
structure, while a similar extension based on the original Cagniard formulation was
presented by Abramovici (1978). The essence of the method involves some legitimate
change of variables (thus change of integration contours) so as to bring the integral to a
recognized form of a Laplace integral transform over a real path with a Laplace kernel. The
integrand besides the kernel is the Green's function of the problem. Recently, Abramovici
(1978) gave a generalization of the method for more complex integrals arising from

different source types and time-dependence.



However, the computation of the method is prohibitively time-consuming since one
has to sum up many rays to have a complete physical picture even though there is a finite
sum of rays within a finite time-interval. Usually, rays of small amplitude are neglected to
reduce computation time. Another drawback of the theory is the inability to consider
absorption by the medium. Helmberger (1973) attempted to incorporate the effects of
anelasticity by convolving the solution with an average Q operator being constant for a
particular ray characterized by the arrival time. However, for rays with the same arrival
time but different ray paths, this is certainly erroneous. Kelamis et al. (1983) made some
improvement by Fourier transforming each generalized ray, incorporating absorption in the
transformed domain and performing an inverse FFT to the spectrum to give an attenuated
ray.

There are phenomena for which the ray interpretation is not adequate. For example,
in the ray expansion individual rays have tails of growing amplitude rather than decreasing
amplitude (Kelamis et al., 1983). In this case only groups of rays yield a physical solution
(Abramovici and Gal-Ezer, 1978; Kelamis et al., 1983). A second example is the
occurrence of the evanescent event in both elastic (Abramovici, Le and Kanasewich, 1989)
and anelastic media (Abramovici, Le, Kanasewich, 1990). The evanescent wave is better
explained by the interaction of the curved wavefront with the boundary (Brekhovskikh,
1980; Richards, 1984). Consequently full wave interpretation of the wave equation
becomes necessary.

In full wave theory, which is the main subject of this thesis, the physical problem
is treated as a boundary value problem in which the wave equation is solved in the Fourier
transformed domain, i.e the frequency-wavenumber (@-k) domain or its variant, the
frequency-slowness (@-p) domain. The solution corresponding to a monochromatic plane
wave of angular frequency @ with horizontal wavenumber k (k= @ p, where p, is

the horizontal slowness) satisfies all the boundary conditions, which consist of the



continuity conditions at the velocity discontinuities of the medium, stress-free condition on
the free surface and the source condition at the level of the source. By superposition, the
total solution can then be expressed as an improper double integral over @ and k. Given
the computer power to perform the integration, the solution gives a complete response
within a frequency-wavenumber window and the formalism allows a natural
implementation of intrinsic attenuation by making the velocities of the medium complex.
Usually, the evaluation of the integral can be performed by (1) direct numerical integration
of the k-integral and then a FFT inversion of the o-integral or (2) a combination of the
methods of residues and stationary phase. A brief account of some of the published works
in this field was given recently by Abramovici (1990) and a complete account would take a
full book. The compromise is to turn the reader to an excellent textbook on theoretical
seismology such as Aki and Richards (1980).

The first representation of solutions to seismic problems by Fourier integrals was
given in a classical paper by Lamb (1904) in which the displacements due to concentrated
forces acting on a homogeneous half-space were expressed as a double infinite integral
over frequency, o, and wavenumber, k. This representation can be used for analyzing
the solution and the waves related to it, but can also provide numerical evaluations of the
disturbance, by approximating the double integrals. Lamb applied both these procedures.
Since Lamb's fundamental paper, theoreticians have followed the first of these avenues,
extending Lamb's analysis in every possible direction, discovering various types of waves
and building new and sophisticated methods to treat them. As these methods were usually
related to the physical characteristics of wave propagation in various media, they were able,
even with the limited means of the precomputer era, to learn much about the properties of
the earth in various regions and even of the earth as a whole.

In work immediately following Lamb, theoretical seismograms were given only for

the simple case of a half-space overlaid by a layer. Pekeris (1948) first treated a point
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source problem in a layered liquid by reducing the internal k-integral to a sum of normal
propagating modes, each being approximated by the saddle-point method. Recently, Panza
(1985) employed the modal approach to calculate synthetic seismograms for a multilayered
anelastic structure. The normal mode calculation is valid for moderate to long ranges and at
lower frequencies. For small ranges, the contribution of the branch-line integrals which are
neglected in the normal modal approach are important (Abramovici, 1968a). For a
multilayered case, the results were mostly restricted to the dispersion curves calculation by
using a Thomson-Haskell propagation matrix approach (Thomson, 1950 and Haskell,
1953). Synthetic seismograms were not obtained routinely until recently by various
methods due to the excessive amount of computation time required.

A first attempt at carrying out a direct integration of the improper k-integral was
performed by Fuchs (1968) in an original version of the reflectivity method. Later, Fuchs
and Miiller (1971) extended the method to include transmission losses and time delays due
to overburden on top of the reflectivity zone. Previously, Gilbert and Backus (1966) laid
down the basic theory for wave propagation in a layered medium of which the Thomson-
Haskell based algorithm is a special case. The reflectivity method has now been modified
in various mairix formulations based on the Thomson-Haskell algorithm and with different
source and receiver structures by Kind (1979 and 1985), Stephen (1977), Wang and
Herrmann (1980), Franssens (1983), Kennett (1983), Schmidt and Tango (1986), Mallick
and Frazer (1988) and others. Chin et al. (1984) recently summarized and compared some
of the matrix methods in a review paper. The intrinsic assumption of the reflectivity
formalism lies in its consideration of any vertically inhomogeneous zone as a stack of
homogeneous sublayers. For flat and homogeneous media, the method gives exact results.
However many thin homogeneous sublayers are usually taken to approximate the
inhomogeneous zone as closely as possible. This homogenization process is necessary to
make use of the Thomson-Haskell algorithm since the eigenfunctions for a homogeneous

medium can be determined more easily than for inhomogeneous medium. However, it is






well known that, due to the factors such as compaction of overburden, closure af pore
spaces at great depth and chemical alterations, the velocity increases continuously with
depth.

To speed up the reflectivity approach, Mallick and Frazer (1987) incorporated
inhomogeneous layers using a nonuniform WKBJ formulation. By solving a second order
hyperbolic system of elastic wave equation, Alekseev and Mikhailenko (1980) have
developed a wavenumber summation approach which combines a finite-difference
calculation with a finite Hankel integral transformation. The FD implementation is
necessary to simulate the response from the inhomogeneous zone. Kerner (1990) has
modified the method by finding a solution to a first-order system of elastodynamic
equations and has developed a code which has less numerical dispersion and anisotropy
than the Alekseev and Mikhailenko's algorithm (1980) and is claimed to be not sensitive to
Poisson's ratio. With the advent of powerful computers, the computation of synthetic
seismograms can now be carried out practically by many different methods, each having
some approximation in one way or the other. Richards (1979) and Miiller (1985)
summarized these methods.

Abramovici (1968a and b) reformulated the eigenvalue problem associated with the
layered half-space and derived closed form solutions for both displacement and stress
components without assuming homogeneity of the layers. For each (w-k) pair, the
evaluation of the integrand requires integrating directly the governing differential systems
using a Runge-Kutta method. For a study of surface waves, this has been considered a
much better and more accurate way for obtaining the response from inhomogeneous zones
(Takeuchi and Saito, 1972). Unlike the reflectivity method, the theory provides a simpler
algorithm without keeping track of the upgoing and downgoing waves. Results using such

a numerical integration approach have been presented by Le, Abramovici and Kanasewich

(1990a and b).



1.2 Outline of the Thesis

The The:.. consists of six chapters.

In Chapter 1 a brief overview of the ray and wave theoretical approaches in
studying wave propagation in layered structures has been given together with the contents
of the thesis.

In chapter 2 the transmission term for a SH-line source problem with two half-
spaces in welded contact (Cagniard's problem) is solved using the Cagniard-de Hoop
method. In addition to the arrivals predicted by geometrical acoustics, an evanescent wave
shows up as part of the solution. The properties of the evanescent wave are discussed and
demonstrated using synthetic sections with horizontal and vertical arrays of receivers.

In Chapter 3 a different solution of the same Cagniard's problem discussed in
Chapter 2 is derived using the frequency and wavenumber (@-k) double integral. Direct
numerical integration of the k-integral is performed using Euler's transformation.
Anelasticity of the medium is considered and the behavior of the evanescent wave and all
the arrivals including incident, head wave, reflected and transmitted waves are studied.
Inhomogeneous plane wave theory cannot be used to explain the findings in this chapter
since curvature of the wavefront generated by a line source cannot be neglected.

In Chapter 4 the mathematical formulation of wave propagation in a layered
anelastic solid half-space due to a point P-source is given. In this problem, the
displacement-stress vector satisfies the causality property, the discontinuity at the source
and the boundary conditions consisting of the vanishing of the stresses on the free surface
and the continuity of displacements and stresses on each interface. A system of equations
of order 6 is used to partly overcome the order-of-magnitude (stiffness) difficulty.
Implementation of the algorithm and numerical evaluation of the Fourier-Bessel integrals is

discussed. The rationale used in choosing the numerical parameters such as fp,,, and the
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frequency increment and the use of cosine-tapers in -k space are also given.

In Chapter 5 numerical experiments are presented. Synthetic seismograms from a
layer over a half-space obtained by the -k method and the Cagniard-Pekeris-de Hoop
method are compared. A crustal two-layered half-space with large ranges is given to
establish the ability of the method in crustal modeling. Shallow exploration models
simulating the Cold-Lake area in Alberta with different Poisson's ratio are used to produce
synthetic results simulating pre- and post-steam injection.

Chapter 6 summarizes the work presented in the thesis and concludes the thesis

with some remarks on future directions.
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CHAPTER 2
THE EVANESCENT WAVE IN CAGNIARD'S PROBLEM
FOR A LINE SOURCE GENERATING SH-WAVES

2.1 Introduction

The existence of evanescent (otherwise called pseudo-surface or tunneling) waves
has long been established both on earthquake records (Oliver and Major, 1960) and in
controlled source experiments either in the laboratory (Gilbert and Laster, 1962) or, more
recently, in underwater acoustics (Stephen and Bolmer, 1985). The theoretical aspects of
evanescent waves generated by a point source in two fluid half-spaces have been given by
Brekhovskikh (1980) using an asymptotic approach. For a line source in two fluid half-
spaces similar phenomena have been studied by Drijkoningen and Chapman (1988) using
the Cagniard-de Hoop method. It is well known that the evanescent waves are
distinguishable only under certain conditions related to the physical properties of the
structures involved and to the location of source and receiver.

This chapter deals with a structure consisting of two homogeneous and elastic half-
spaces in welded contact having, in the upper half-space, an impulsive line source
generating SH-waves (case 1b of Drijkoningen and Chapman, 1988 and Abramovici, Le
and Kanasewich, 1989). Particularly, it is only concerned with the calculation of the
particle displacement or velocity for receivers located in the lower half-space since the
responses for receivers located in the same half-space as the source have been discussed in
standard references like Aki and Richards (1980). The particle velocity for an arbitrary
time-variation is obtained by convolving the Green's function with the time-derivative of a

delayed Gaussian function of relatively high frequency. Apart from the main transmitted
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wave arrival, the evanescent wave shows up in the numerical output.

2.2 Theory

A general procedure presented by Cagniard (1939, 1962) was followed. Let a
right-handed Cartesian coordinate system be oriented so that the positive z-axis faces
downward (Figure 2.1). Two elastic, homogeneous and isotropic half-spaces,
characterized by densities P, and shear moduli K, (i=1,2) are welded along the (x,y)-
plane. A line source generating SH-waves is located along the y-axis at a height -z, (z,
> 0). The problem is two-dimensional in (x,z) and the only displacement component v

is in the y-direction, satisfying the inhomogeneous wave equation

p gz—t:-- UV = 8(x) &(z+2,) fU1) . (2.1)

Here f(r) represents the time-variation of the source, measuring the strength of the
external body force acting in the y-direction and having the physical dimension of force
per unit length. In addition to equation (2.1), the solution v must obey the initial (I.C.)
and boundary (B.C.) conditions as follows:
(1.C.) the displacement, velocity and other physical quantities that depend
on time must be zero for ¢z < 0 (causality property);
(B.C.) a.displacement and stress are continuous along the interface,
b. the radiation condition, i.e., no energy comes from infinity.
Instead of applying Fourier transform to the space-time variables (Drijkoningen and

Chapman, 1988), the Laplace transform was used in our approach. The Laplace transform
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17 =L vy (x,2,t) e~Pt dt 2.2)

of the particle displacement for the transmitted wave that satisfies the transformed wave

equation (2.1)

Vi = 0 (23)

with the shear wave velocities

'\/— i=12) | (2.4)

is obtained by taking a bilateral Laplace transform with respect to x of (2.3), coupled with
the boundary conditions of the problem and by inverting the result to the space domain (de-

Hoop, 1960). The result is

5o 40 1o L T op(Gemmee- 1 dl (2.5)

where Im[...] and Re[...] denote the imaginary and real part of a complex quantity, fip)

is the Laplace transform of the source time function, T is the transmission coefficient

= __ﬁnl— (2.6)
W + jTp
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and

2 .
ni = _15_; , Re(m)20 (i=1,22). Q.7
Bi
The problem is, therefore, to invert (2.5) into the time-domain by bringing the
integral to a form which is an obvious Laplace transform, allowing us to read off the
original time-function. Such would be the case if the coefficient of p in the exponent was

the time-variable and the integration was taken with respect to this variable from 0 to eo. In

order to have such a case, we consider the formal change of variables

=@ =8+ Mz, + Mz . (2.8)

It can be shown (see Cagniard, 1939, 1962; Longman, 1961 and Abramovici,
1978) that expreséion (2.8) is a genuine change of variables, i.e., it is one-to-one, if: (1)
the (£)-plane is cut in order to define uniquely the square roots 7; and 7,, e.g., we take
branch cuts along the semi-axes from 1/B, and 1/B; to infinity going right and from
-1/B, and -1/B,; to infinity going left respectively (Figure 2.2a); (2) the square roots 7;
(i =1,2) are defined to have non-negative real parts; (3) the (7)-plane is cut along the real

axis between 7, given by

=% +2z, ’\/——1;—_——1—-2_ (2.9)
ﬁZ ﬂ] ﬁz

and 7, = @({,) (Figure 2.2b), where {, is the real number between -1/B, and 1/B3,
for which ¢’ is zero. The proof is based on the argument principle in complex analysis
(Copson, 1960) and is similar to other cases when the Cagniard method is used

(Abramovici, 1978).
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Figure 2.2: (a) The path ¥ traversed by the compiex variable ¢ in the complex -
plane. The branch cuts are shaded; (b) the corresponding path I’ traversed by the
complex variable 7 in the complex (t)-planc where { and 7 are related by equation
(2.8) in the text; (c) the change of integration path from contour C to one along the
positive real semi-axis.



17

A brief proof is given that the change of variables 7 and { related by the
expression (2.8) is one-to-one. The case ; < B, will be treated below since the other
case f3; > B, is similar and the result is the same. In order to define the square roots of
7; (i = 1,2) with the non-negative real parts, the cuts are defined in the complex ({)-
plane to be the real semi-axes running from 1/f; to +eo and from -1/, to —oo (see Figure
2.2a). As the point in the complex ({)-plane traverses the closed path ¥ along

Capbc 808ae Grbel, {along the real axis above the cuts and along the semicircular arc in
the upper half-plane [Im({)20]}, the corresponding point in the complex (t)-plane follow
the closed path I (7, %%, %,%,%,%7,7,) in Figure 2.2b. The real axis is cut from 7, to 7, in
order to define the correspondence of the variables one-to-one.

Now we consider the function
T-T=-Ux+Mzy+ Mz -1 (2.10)

with T being any point in the complex (7)-plane corresponding to ¢ (¢=i{)) purely
imaginary going from O to ies. The image C of the imaginary axis in the ({)-plane is
located in the fourth quadrant of the (7)-plane (Figure 2.2c), starts from

v'=z,/P,+2/, and goes to infinity in the direction given by
t=§l[(zo+z)—ix] . 2.11)

Obviously, the point in the complex (7- :i')-plane corresponding to { traversing
the path ¥ will move on the path obtained by translating I" through . The conclusion is
that the argument of T-T changes by exactly 2x when the original variable { goes
around the path ¥ once. According to the argument theorem, the transformation (2.8) is

one-to-one and the integral given by equation (2.5) is then rewritten as
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{l%%} e-PTdt (2.12)
c ) .

which is a line integral along the contour C. If we connect the contour C with the positive
real axis with an arc, say £, of large radius (Figure 2.2c), it can be easily shown that the
integrand of (2.12) is analytic on and inside the domain D and the integral along E does not
contribute since the integrand is a rational function and the exponential term vanishes for
large 7. Therefore, by the Cauchy theorem, we can change the integration path from Cto
the positive real axis. Denoting the real part of T by r and H(r) as the Heaviside step

function, we have

00

y, = L. (%42 I_ﬂ} -

For f{p) = 1, i.., for an impulse as time-function, the inversion into time-domain is read
off as

=L H{-(2+2))1 {—T-d—g} . 2.14
\{’ T {t (ﬁ1+ﬁz)} m T at) e ( )

The quantity (z,/B; + z/B;) represents the minimum possible travel time of a
wave traveling vertically from the source to the interface and vertically from the interface to
the receiver. A more careful analysis shows, however, that v,(x,z,t) is zero until the
arrival of the so-called transmitted wave at ¢ =1,. More precisely, equation (2.14) can be

written as
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v = —=L— H(t - 1,) Im [-L- 1 (2.15)
2mhy M x+2,gdm &) + 2gM() fz=:

where { is the solution of the implicit equation (2.8) given 7 =t and denotes the
Cagniard path in the second quadrant of the ({)-plane (Figure 2.2a), for t21,. The
arrival time ¢, of the transmitted wave is given by the expression (2.8) at { = {, where

&, is the negative root of the equation

Zobo , %o (2.16)

+ -X .

m&) ml)

The particle velocity v, for an arbitrary time-variation of the source is obtained by
taking the time-derivative of the convolution between the source time-function f{r) and the

Green's function

t
V= j fie-v)w(v) dt (2.17)
{

]

where the dot denotes the derivative with respect to the whole argument. We found it
convenient to perform a change of variables from 7 to { using expression (2.8). Upon

changing the integration variable, we get

<())

71 _ _aL
V= 2MIH(t to)ImLo .f(t 7) 711 da¢ . (2.18)

In order to simulate realistic sources that satisfy also the above assumption of
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causality, we consider a Gaussian time-variation (Alford et al., 1974) with a small time

delay ¢ = /1”2 :

RO =H(@)e -1 (2.19)

The derivative of this time function (Figure 2.3a) has the frequency-domain representation

(Figure 2.3b):
~ 2 R
Flw) = io 1/ % g~ V40— oL (2.20)

and, therefore, the damping parameter & controls the dominant radian frequency
w d=(20)‘/2 of this pulse, i.c., the larger o, the higher the dominant frequency. The
energy of this signal is contained mostly in a narrow band around @ =z For numerical
purposes, we restricted f(f) to the interval (t7— t,,,t4 + tp, ) containing the main

contribution in the time domain if ¢, is chosen conveniently. Thus, if

_ / In(10)
tn = m o ’ (2.21)

the relative height If(s)/f(¢z)! of the source function drops by m decades outside the
mentioned interval, e.g., it is practically zero for m = 5. The integration limits of the
integral (2.18) are affected by the described restriction as follows: the integral has the lower
limit ¢, only for t < t,+tz+t,,, whereas for ¢ 2 f,+1 +ty, the lower limit is {={(¢
~(t4+ 1)) obtained by solving (2.8) with 7=t~ (t5+ #,,); the upper limit is £=£()

for 15 < t,, and §={(r ~ t4+ 1) for 152 8,
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Figure 2.3: The derivative of a Gaussian time function with &= 5*10* (f, = 50 Hz, =
0.03): (a) the time-variation and (b) the amplitude spectrum.
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2.3 Derivation of the Evanescent Wave Path

The particle velocity for the transmitted wave can be written as a Fourier integral
; = 1 iox 2
Vi(x,z,t) Inn L, Flow)et=* V,dow , (2.22)
where F(w) is the Fourier transform of the source time function defined by (2.19) and

Vi(w) = L&I T e-ikx~KizoKzdf | (2.23)

—00

- 2011 =7 .
T=——r d K=4/k -2 (=12). 2.24
AR A/ o g=12) . @29

J

We note the similarity between (2.23) and (2.5).
Making further the change of variables

k =k, siné with k= (2.25)

@Q
B
where 6, is the incident angle and allowing the new integration variable 6, to take also
complex values, which is always the case in Weyl's representation for point sources (Aki
and Richards, 1980), we find that (2.25) can be made one-to-one if we split (2.23) into

two integrals, one from —eo to 0 and the other from 0 to e=. Denoting @, = 9,' + i61" , we

find that for — o <k <0,



[ o for -Z<6; 50
6 = (2.26)
\ -1%+i61" for 0581"<oo
andfor 0 < k < oo
l 6, for 0<6, < L
6 = (2.27)
‘ —7;-—1'91" for 0<8; <oo
We have also used the following expressions for K
K;=ikjcos6;, (j=1,2) (2.28)

with k; = @/f; and the incident angle 6, and refracted angle 0, are related by Snell's

law

sin91 — sinGz . (229)

BB

As a result, V, is represented by an integral on @, taken along the contour r,
described by Brekhovskikh (Fig.28-1, p.243, 1980)

x_-

. e
v,w:%[ T (6)) e-iki(xsinBiszcos8imzcos8) cosh, d6,  (2.30)

Etie
2
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where

T(6)=- 2mi 2.31)

*
m cos6, + ¥ n?-sin’6

m<® amd n=P . (2.32)
H B

In order to make use of the approximation obtained by Brekhovskikh, it is enough
to show that our integral (2.30) has all the essential ingredients of his expression for the
refracted wave given in Section 32 of his book. Brekhovskikh did not give all the details
of his calculations since he gave them when approximating the refracted and the lateral
waves in Sections 28-31. It is easy, however, to see that his expression for the refracted
field y; on p.280 is brought first to the form of an integral along the contour I'y by
performing the same steps as those leading from [(26.24) on p.233, Brekhovskikh, 1980]
to [(28.2) on p.242, Brekhovskikh, 1980]. Ignoring the (kr)-1 term, the result for the

refracted wave would be, in Brekhovskikh's notation,

e

vi(@) = €39 55 14V ) T sin@ eiktxsindrzcosg-nzcosé) 49 . (2.33)
. J-Fiine
2

Using the expression [(2.17) on p.8, Brekhovskikh, 19801 for V we find that

L+ = 2 cos@ : (2.34)

m cos@ +V n?-sin%6

Hence (2.30), representing our case and (2.33) representing Brekhovskikh's case can be

brought to an "almost" identical form by multiplying (2.33) by
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C= r "—ﬁ‘—e-""—m— ) (2.35)

4
k 2m V sin@

The meaning of "almost” is that Brekhovskikh has an exponent of the form
ik(z,cos6-nzcosO I+rsin9) whereas we have (in his notation), the exponent with the
sign reversed: —ik(zocos@+nzcos@ +rsinf), the reason being that he considered
harmonic waves of the form exp(—iwr) and we have harmonic components of the form
exp(ior). This difference, however, is not an impediment in using his final results, as
they are based on the saddle-point approximation and the path of steepest descent: the
position of the saddle point is obtained by differentiating the expression in the exponent and
equating the result to zero.

The results for our case are obtained, therefore, from Brekhovskikh's expressions
on p.281-282 multiplying by the factor (2.35) and with the sign in the exponent reversed
(in our notation, i.e., denoting his k by k;, his r by x and his angle of incidence B by
9. If 7 is less than the critical angle, the motion is approximated by just one term
representing the geometrical transmitted ray, but if ¥ is larger than the critical angle (siny
> n), there is an extra term expressed by a branch-line integral representing the so-called
lateral wave. If the receiver is located in the same half-space as the source and n < 1, this
will be the head wave, whereas if the receiver is located on the other side of the interface,
the lateral wave is felt only in the vicinity of the interface as an evanescent wave, appearing
to have travelled from the source to the point on the interface directly above the receiver and
then penetrated below. According to Brekhovskikh's expression (32.14) on p.282, this

evanescent wave is approximated as follows: if m(n/2 —9) << Y1-n?,

V'(evan.) ~ A(kl,sin” e—iklR‘—kli !sinzy_ n?
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Alsing = /28 KB -2 _m cosy im
kTR Vsm m cosy+ i +/sin?y— n? kal(n2 1)
(2.36)

and if m(rf2-7y)>>Y1-n?, V‘(e"“’") is approximated by a similar expansion, with

p R2 > 4/1 - n2 cos3y replacing the second term in the brackets defining A(k;, siny).
1Kqym
Here R, = Yx?+z2. This will be, therefore, an evanescent wave, generated by a ray

arriving at the interface at an angle beyond the critical one so that it will be totally reflected
back in the upper half-space. Still, this ray generates some disturbance in the lower half-
space, but only very near the interface. The path along which the evanescent wave travels
is therefore the one implied in Fig.2.6A which is based on Fig.32.2, p.281 of
Brekhovskikh's book (see also Fig.1b in Drijkoningen and Chapman, 1988).

For n > 1, the contribution of the evanescent wave, based on Brekhovskikh's

relation [(32.11) on p.282, 1980], is

V;‘evm') = B(ky,siny) e-ikRe-kizol nPsin’y-1

kxl31 .3 cosy ;

B(ky,sin 4/ ‘ + L
sinn) = ‘9 51“7[ ncosy+ im A/ nisinfy—1  m(l —n®)kiR: ]
2.3

where R, = Yx2 +z2 . The form of the exponential leads to the travel path depicted in
Fig.2.6B.
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2.4 Numerical Examples

The SH-elastic case we have solved is similar to the acoustic case solved by
Drijkoningen and Chapman (1988). The basic difference in the result lies in the
transmission coefficient defined by equation (2.6). In the elastic case, the transmission
coefficient does not have cross terms, i.e., each term either in the numerator or
denominator bears the same index; while, in the acoustic case, it has cross terms (Aki and
Richards, 1980). Substituting u by 1/p in equation (2.6) and B by o in equation
(2.7), the acoustic counterpart is obtained, i.e. the transmission coefficient should be
T=2p,M,;/(p2M;+p;M2) in Drijkoningen and Chapman's paper (1988) in which vertical
slowness 7 replaces their g. Figure 2.4A is the computation of the pressure responses
which is similar to their Figure 4 and Figure 2.5A to their Figure 5. The absence of the
"kick" at transmitted arrival in their Figure 4b is probably due to the coarse sampling width.
Figures 2.4B and 2.5B show the time-derivative of the convolution of the pressure
responses with the source wavelet having dominant frequency of 123 Hz (0=3*10%).
Hereafter, we use this source wavelet to generate synthetic seismograms. Even though the
onset of the transmitted arrival is not seen in Figures 2.4A(a) and 2.5A(a), its presence is
obvious as a small pulse in the convolved result in Figures 2.4B(a) and 2.5B(a). Also, the
arrival time for the evanescent event is more precisely given in the latter form.

For synthetic results in the elastic case, we have chosen the velocity and density of
the lower half-space to be twice as large as those in the upper half-space. The other
parameters are given in the insets and legends of the figures. We work with non-
dimensional quantities and the basic scale factors, E for velocity, p for density and / for
length, are 1 km/s, 1000 kg/m? and 5 m, respectively.

Figure 2.6 presents synthetic seismograms for a horizontal array of receivers at 1 m
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Figure 2.4: (A) Pressure responses for an acoustic model: aj:a, =133, p;ip,= 1.2,
receiver depth = 100 m, x =500 m. The source heights zj are respectively (a) 1 m, (b)
7.5 m, (c) 30 m above the interface. This result is similar to Figure 4 of Drijkoningen
and Chapman (1988); (B) the time derivative of the convolution of the pressure pulses in
(A) with the Gaussian source function. The transmitted and evanescent arrivals are
denoted as r and e.
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Figure 2.5: (A) Pressure responses for an acoustic model: a;:a,= 20, p;ip, = 2.0,
receiver depth = 100 m, x =250 m. The source heights z; are respectively (a) 1 m, (b)
7.5 m, (c) 30 m above the interface. This result is similar to Figure 5 of Drijkoningen
and Chapman (1988); (B) the time derivative of the convolution of the pressure pulses in
(A) with the Gaussian source function. The transmitted and evanescent arrivals are
denoted ast and e.
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Figure 2.6: Synthetic seismograms for a horizontal array of receivers located below the interface for either the two cases
depicted in insets (A) and (B). The ransmitted and evanescent arrivals are denoted as ¢ and e.  For case (A), the
velocities are 1 kin/s and 2 knys for the upper and lower half-spaces, respectively; for case (B), the high velocity half-
space is above the low velocity one with a reversed source/receivers configuration. The rays show the paths of
propagation and energy leakage for the postcritical event in each case. A scale factor S, equal to the basic scale factor {
for length, was applied to the graph in both cases.
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below the interface to illustrate the behavior of the evanescent wave with offset. The
critical distance is 57.7 m in this case. The evanescent wave appears at trace 4 and persists
up to 530 m with almost the same amplitude as the transmitted arrival. The nature of the
evanescent wave either called tunneling wave by Drijkoningen and Chapman (1988) or
direct wave root by Stephen and Bolmer (1985) is well known and can be explained in
terms of the so-called wave of the lateral type studied by Brekhovskikh (p282, 1980).
The evanescent wave, which attenuates perpendicular to the boundary, bears a superficial
resemblance to an anelastic wave propagating in a medium with finite Q (Borcherdt,
1973). For plane waves in an anelastic solid, it is found that the phase propagation is ata
different angle to that of maximum attenuation. There is an important distinction in our
elastic case, however, in that the phase velocity for an evanescent wave varies with the
incident angle which is always greater than critical (inset A of Figure 2.6). The description
of the wave path is given by the exponent in the first relation of (2.36). In inset A of
Figure 2.6, the first line with an arrow represents a ray with propagation direction and
phase velocity B;. The second arrow does not represent a ray path but indicates the
direction of energy leakage and the direction of maximum attenuation. The energy diffuses
into the lower medium with an approximate velocity B,.

By the reciprocity property, the seismograms for model 6A and 6B (case A and B
of Figure 2.6) are identical. In model 6B, the high velocity half-space is on top of the low
velocity one (B;:B; = p:p2 = 2) and the source is at 1 m above the interface with the
receivers at 100 m below the interface. The explanation for case 6B is similar to that given
above for case 6A and the wave path is described by the exponent in the first relation of
(2.37). In this case, the evanescent energy are incident vertically from the source to the
interface and excites the ordinary homogeneous wavefield in the lower medium. These
waves then propagate to the receivers at all anglc;:s ¥ satisfying the condition siny> B,/ B,

(inset B of Figure 2.6).
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Figure 2.7A is a vertical seismic profile (VSP) with offset greater than the critical
distance for any receiver. The line of receivers intersects the horizontal profile shown in
Figure 2.6, the trace 39 of Figure 2.7A being the same as the trace 12 of Figure 2.6. All
the essential arrivals (direct, reflected, head wave and transmitted) are present. At receiver
39, which is located at 1 m below the interface, an evanescent wave arrives after the
transmitted arrival and at approximately the same time as the incident arrival at receiver 37
located 3 m above the interface. The traces below the interface (with five additional traces)
are magnified in Figure 2.7C to demonstrate the damping effect of the evanescent wave
with depth. When the receiver is close to the interface, the amplitude of the evanescent
wave is almost identical to that of the transmitted arrival (see trace 39 in Figure 2.7C). The
event dies off rapidly with depth.

Figure 2.8 displays the logarithmic amplitudes of both the transmitted and
evanescent waves versus depth. The evanescent amplitudes were measured from enlarged
plots with respect to the tails of the transmitted waves. Several interesting properties can be
observed from this plot. In the proximity of the boundary, the amplitudes of the transmitted
and evanescent arrivals are comparable. A little deeper, the evanescent wave amplitude
decreases, at first with a non-linear gradient on the logarithmic plot, but eventuaily, at about
two characteristic wavelengths from the interface, the gradient on the logarithmic plot is
linear. This is in accordance with Brekhovskikh's theory applied to the evanescent wave
[see (2.36)], based on the asymptotic approximation for large k;z. Expressing k; and z
in terms of wavelength k; = 2n/A4 and z = nAy4, we find k;z =2%tn. Forn = 1.6 we
have k;z equal to about 10 which seems to define for this case what a "large" number is,
i.e., the limit of applicability of the asymptotic approximation given by (2.36), which, for
fixed x and z,, is obtained by retaining only the first term in an asymptotic expansion in

powers of (k Iz)‘l .
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Figure 2.7: (A) The synthetic seismograms of a vertical seismic profile (VSP) for an
elastic model. Only seismograms for "odd" receivers are shown. The direct, reflected,
head waves, transmitted and evanescent arrivals are, respectively, denoted as d, r, h, ¢
and e; (B) the model used in (A) with 47 receivers. The source is indicated by a star
(*); (C) a magnified VSP for the ten traces below the interface. Each of the seismic
profiles is magnified by the indicated scale factor.
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Figure 2.8: Logarithmic amplitudes of transmitted and evanescent waves versus depth.
The results were obtained graphically from enlarged plot similar to Figure 2.7C with 21
subsurface receivers. The first receiver is at 0.3 m below the interface while the second
one is 1 m away from the interface and all the other receivers are located further down at
2 m spacing. The slope of the dashed line having angle ¢, (= 31% f;= 123 Hz) with
respect to depth axis, is given by [2n(sin?y— (B1/B; JH2)/A, where A4 is obtained
at the peak frequency. The other two limits, ¢ (= 46% f; =208 Hz) and ¢;3 (=
159 f3 =55 Hz), are obtained at frequencies with respect to two-thirds of the peak

spectral value. Note that the slope for ¢3 corresponds to the leakage of the evanescent
wave at greater depths (> 30 m).
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2.5 Conclusion

The study of the evanescent wave is important because its existence is not just a
theoretical solution of the wave equation but also its actual presence has been widely
observed: in favorable model and source/receivers configurations as illustrated in some of
our figures, the amplitude of the evanescent wave is almost as big as the transmitted arrival.
The properties of amplitude decay with depth or horizontal separation is a valuable means
of retrieving the shallow crustal velocity information unattainable by conventional body

wave analysis as mentioned by Stephen and Bolmer (1985).
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CHAPTER 3
THE SOLUTION OF CAGNIARD'S PROBLEM
FOR AN SH LINE SOURCE IN ELASTIC AND ANELASTIC MEDIA,
CALCULATED USING THE -k INTEGRALS

3.1 Introduction

The problem considered in this chapter is one with an SH-pulse generated by a line
source acting in a model consisting of two homogeneous, isotropic, linear viscoelastic h=lf-
spaces separated by a plane boundary. A previous treatment of this problem was done by
Buchen (1971a) using asymptotic theory of Brekhovskikh (1980). In Chapter 2 the case
when the half-spaces are elastic was presented with numerical results calculated using the
Cagniard's method. It has been showed that the particle velocity at various source-receiver
separations presents all the features predicted by our physical intuition, such as reflected
and transmitted phases. It has also been demonstrated that for offset§ beyond the critical
distance, evanescent waves can occur, their artival times and amplitude variation being
consistent with Brekhovskikh's asymptotic theory for lateral waves. These results
confirm, on the practical side, that the solution obtained by the Cagniard's method is exact,
and the only errors are those introduced in the numerical evaluation of the integrals in the
analytic representation of the solution. These errors can be made as small as desired by
taking a sufficient number of integration nodes, and no other approximations are involved
with this method. Unfortunately, for more complicated structures, like a stack of layers of
variable elastic properties or a stack of anelastic layers, we are not able to use the
Cagniard's method. Hence, if one wants an accurate solution, anoth<r Jirection must be:

sought. An immediate choice would be the classical representation of the solution for flat
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structures in terms of double improper integrals, representing inverse integral transforms.

One of the advantages of using the double integral representation is that we are able
to treat the anelastic structures in the same way as we treat the elastic ones. For the case of
two homogeneous half-spaces treated here, we have found that all the types of waves
present in the elastic case, are propagated also in anelastic structures, including the
evanescent wave. As expected, the arrival times of all the phases have a delay, the pulse is
dispersed and their amplitude decreases with increasing O~ 1,

The outline of this chapter is as follows. The solution is presented for a line source
acting in a homogeneous space and subsequently in a model consisting of two half-spaces.
The solution for an anelastic medium is obtained from the solution for an elastic one by
making the elastic parameters complex. After describing the implementation of absorption
using Azimi's dispersion law (Azimi et al., 1968 and Aki and Richards, 1980) and some
related aspect of inhomogeneous plane wave theory (Lockett, 1962 and Cooper, 1967), a
numerical procedure is given based on a similar treatment of elastic wave guides
(Abramovici, 1968a and b) and of electromagnetic wave propagation due to antennas

placed on the surface of a conducting earth (Abramovici and Chlamtac, 1978).
3.2 The Source Solution

Assume that in a homogeneous elastic space, a SH line source acts along the y-
axis at the origin. Any motion due to the line force is directed along the y-direction and is
independent of y, i.e., the problem is two-dimensional. The displacement component v

in the y-direction away from the origin satisfies the force-free S-wave equation

0% 202 7
OV _gvi=0 , p=q/L | 3.1)
or? P
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V2 being the Laplace operator. Here u is the rigidity and B, the velocity. In cylindrical

polar coordinates having the line source as axis, the Fourier transform

V= I we) e~i 4, satisfies the Bessel equation

-—00

v 1av

1
dr2 r

+k2V=0 , k=% . (3.2)

Assuming that the disturbance is generated along the line source and is propagated away

from this line, the only acceptable solutions are of the form
v=CHP () (33)

with H(()z) the Hankel function of the second kind of zerc order and C a constant that

depends on w. The time-dependent displacement is:
v=vnzd) = .2_11? j Cl) HP () ™ do (3.4)

The connection between C{(w) and the physical properties of the source is
obtained as follows. Consider a small cylinder of unit length along the y-axis as depicted
in Figure 3.1 and assume that on the lateral surface of this cylinder a given force is acting in

the y-direction. The force per unit length f = f{r) satisfies

fy=lim @rnre,) . (3.5)

r-0
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Figure 3.1: A line source of unit length along the y-axis generating SH waves
and the geometry of the model.
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Denoting by f,, the force per unit length, per unit time and assuming that the time variation

of the source g(¢) is causal, we get, using Hooke's law,

” @)
, dH " (kr
fiy=-fHg= n| Clw e Hmo[er_(—l]dw . (3.6)
r—

-—00

However, (Watson, 1966)

)
dH® (r
, __o__(_)_] 2 3.7
r—0 ar T
leading to
c@=-2L6w |, 38)
rm

with G() the Fourier transform of g(f). Using the integral representation for the

Hankel function (Watson, 1966), H(()z)(kr) - L f Vi ~ikx 0Ky here
T v

=00

2
kz'"‘;g? 1f|i<|>‘%|

| @? . o
i %’;—kz 1f|14<‘73-|

(3.9)
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one arrives at the following representation for the displacement generated by the source at

the origin:

y= Jo_ f G(w)ei“"dwj Vi -ikxdk (3.10)
87t2u —o0 v

—00

3.3 The Solution In Two Half-Spaces

Consider two homogeneous elastic half-spaces in welded contact. Choose a right-
handed Cartesian coordinate system depicted in Figure 3.1 and ussume that a line source
located at a height z, (z, < 0) in the upper half-space, generates a force directed only in
the y-direction. The differential equations governing the particle displacement v
wverywhere except at the source are
32v i 2

The boundary conditions to be satisfied at the interface, z =0 are:

d d
vVi=wn ,#1-£=I~l23:-2' . (3.12)

We take v; and v, in the same form as v for the homogeneous whole-space case , [eq.

(3.10)), i.e., we seek P; and P,, asfunctions of @ and &, so that:

v = Jo fG(w)ei“"da)j Pie & dk  for z< 0 (3.13)
8w #l —00 —00
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and
vy = fo j G(w) & dw I P2 e—k* di for z > 0 .(3.14
8”2#1 —o0 —o0
Equations (3.11) and the source condition will be satisfied if we take Py and P as
follows:
p =LeM l=20| 4 ge¥1 2 (3.15)
V1
and
P2 = B e-v2 z (3.16)

where v; are defined by (3.9) with p replaced by l3j. for j=1,2. The boundary
conditions (3.12) will be satisfied if:

- V1 2
_ mvi—Hava e  B= 2M1 nn 3.17)
HIVI+M2V2 VI H1VL + U2V

Hence, the solution of the problem for z <0 is:

v = Jo j G(w) £ dw I _I_[e—-w |z-20| , H1V1 —H2V2 vy (z+20)| g-ikx g
87241 Jwo VI H1Vi + H2V2

(3.18)

and for z>0 itis:

vp= o1 Gl eiordo 2 vizo-vaz e-ikrgk.  (3.19)
8m2uy mwi + 2v2

=00
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3.4 Attenuation

One of the most natural ways of introducing absorption into the media is to make
the velocity complex (Knopoff, 1964b; Sato, 1967; Clowes and Kanasewich, 1970;
Kennett, 1975; Silva, 1976; O'Neill and Hill, 1979 and Kelamis et al., 1983) with the
degree of intrinsic absorption characterized by the quality factor Q. In order for the pulse
to be causal, we must also consider dispersion with the real part of velocity being
frequency-dependent. We adopt Azimi's law (Azimi et al., 1968 and Aki and Richards,
1980) for frequencies no less than: the reference frequency f,. = 0.1 Hz:

- 1 ntfe o
c(w)—c,[l+ann(/r +2Q} . (3.20)

¢, is found by assuming that c(w) approaches the model velocity at f = 250 Hz.

Below the reference frequency there is no dispersion, the elastic velocity being replaced by
c,( 1 +§l§ ) . The seismic waves in media with absorption are inhomogeneous. The
characteristic properties of monochromatic plane waves in two half-spaces have first been

examined by Lockett (1962) and Cooper (1967) and further explored by Buchen (1971b),
Borcherdt (1973, 1977) and Krebes (1980). Such waves are of the form:

~iK-T _ - iP—iA) T (3.21)

e

where the complex wave vector K has modulus squared given by

—_—

K2=R. K=(P-ik) (P-ik)=-22_ . (3.22)
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- a
The vector P points in the direction of increasing phase delay such that I—f—'_l is the phase

speed, while A points in the direction of maximum attenuation such that exp(— A )

contributes to the spatial decay of amplitude.
3.5 The Numerical Integration

In order to compare results based on the -k integration with results calculated by
the Cagniard's method, we computed the particle velocity for the same source, a Gaussian

time function with Fourier transform
G(e) = i \/—g - Pldo-iota (3.23)

This is identical to the one we used in Cagniard's problem [see equation (2.20) and Figure

2.3] with dominant frequency 50 Hz (@g = V20, ta= \/—%- and ¢ = 5%10%). As the
spectrum | G ()| of the considered time function decreases rapidly for frequencies not close
to the dominant one, even when multiplied by | @), the integral on @ extends practically
over a relatively short interval. Hence, a fast Fourier transform with not too many
frequency points will take care of the integration with respect to @. However, in order to
avoid high frequency computational noise coming from outside the relevant interval, we
applied a cosine taper (0/5/230/250 Hz).

The price in accuracy paid when using the taper consists in having the peaks of the
main events lower in height and slightly broadened. This source of accuracy loss should
be compounded with that due to using only a finite set of frequency components. In view
of the large reduction of the needed computer time and the total elimination of the high

frequency noise, we found that the price is worthwhile, as one can see in Figures. 3.6a and



45

3.6b. However, improving the numerical methods and going over to either a
supercomputer or a parallel computer, we will achieve a much higher accuracy, so that the
-k seismograms will be much closer to the exact ones, e.g., the smooth onset seen on the
mentioned figures will be much closer to the sharp one seen on the seismograms calculated
by the Cagniard's method.

As to the k-integral, its integrand decreases eventually to zero, but has an
oscillatory character as can be seen on Figure 3.2 representing the real and imaginary parts
of the integrand for z < 0 at a frequency approximately equal to 5 Hz. The method to be
used to calculate the k-integral, therefore, takes into account the possibility of this
oscillatory character. We use the Euler's transformation method (Hildebrand, 1974) which
was employed for the first time for the integrals occurring in seismology by Longman
(1956) and proved to work also in antenna problems (Abramovici and Chlamtac, 1978).
For intervals bounded by the zeros of the cosine function we used a 16-points Gaussian
quadrature integration scheme with four split intervals. The number of terms used for
Euler's transformation was related to the decay character of the integrand, having the
calculation terminated when the terms do not contribute significantly to the integral. The
tolerance used was 10~7.

For the receiver in the same half-space as the source, it took on the average 4 min
CPU on the Amdahl 5670 to obtain a whole seismogram while for a receiver in the other
half-space it took less than 2 min. All the controlled parameters used are quite conservative
as we want to compare with the exact result using Cagniard's method. Each seismogram
presented here was calculated using 512 frequency points. Considering only half the
number of frequencies, we obtained similar seismograms with a 16-point Gauss rule. A

flow-chart of the computer code is provided in Figure 3.3.
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Figure 3.2: The behavior of the integrand P; given by the expression (3.15) at 5 Hz for
the elastic model in Figure 3.4¢ with the receiver being at the same level as the source. k
is the dimensionless horizontal wavenumber.
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Figure 3.3: A flow-chart of the computer code LA.SHCAG.
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3.6 Discussion Of Results

For the presented synthetic seismograms, we have chosen the velocity and density
of the lower half-space to be twice as large as those in the upper half-space. The other
paranseters are on the figures themselves or their legends. We worked with non-
dimensional quantities, the basic scale factors, [_3 for velocity, p for density and ] for
length being 2 km/s, 2000 kg/m> and 5 m, respectively. As displayed in Figures 3.4 and
3.5, the results calculated for a sequence of receivers compare very well with the
corresponding results calculated by the Cagniard's method, although they cannot be
identical. We can see the differences when we plot two traces on an enlarged scale, €.g. in
Figure 3.6a we compare the results for a configuration when the receiver is in the same
half-space as the source and in Figure 3.6b the comparison is for a receiver on the other
side of the interface. All the results described above represent elastic structures. We did,
however, a number of calculations for anelastic structures and the corresponding
seismograms show delays in the arrival times of the various phases, dispersion of the
pulses and a decrease in amplitude. In Figure 3.4c we show seismograms for a vertical
array of receivers for half-spaces having Q = 50. All the phases seen on the seismograms
for the perfectly elastic structure (Figures 3.4a and b) are present on the anelastic case too
(Figures 3.4c and d), including the evanescent wave, but the amplitudes are smaller.
Similar features are seen also on Figure 3.5c for a horizontal array of receivérs located at 1
m just beneath the interface.

Borcherdt (1977), in one of his theorems, implied that in viscoelastic media, if the
incident angle 6, is equal to the critical angle 6, , then the transmitted i’.t propagates along
the interface; however, if 6; increases beyond 6, then Py is not parallel to the interface.
On our numerical seismograms, both head! waves and evanescent waves are present when a

certain critical distance condition is satisfied. It seems, therefore, that even when Pyt is
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Figure 3.4: Comparison of results from two methods: (a) Synthetic seismograms of a
vertical seismic profile (VSP) for an elastic structure using the w-k method. The direct,
reflected, head waves, transinitted and evanescent arrivals are denoted, respectively, as
d.r, h,tand e. (b) The same VSP calculated using the Cagniard's method. Profiles
(a) and (b) are individually normalized by the biggest absolute amplitude in that profile.
(c) Synthetic seismograms of a VSP for an anelastic structure using the w-k method.
The profile is normalized by the same scale factor as obtained in (3). (d) A VSP for the
five traces below the interface on plot (c), magnified by a factor of 10. (e) The model
used in all calculations. .
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Figare 2.5: Comparison of results using two methods: (a) Synthetic seismograms for a
horizontal array of receivers located below the interface for an elastic structure using the
% method. The transmitted and evanescent arrivals are denoted as zand e. (b) The
sam~ cction calculated using the Cagniard's method. Profiles (a) and (b) are
inaviually normalized by the biggest absolute amplitude in that profile. (c) Synthetic
seismograms for the same receiver configuration for an anelastic structure using the &-k
method. The profile is normalized by the same scale factor as obtaincé in (a). (d) The
model used in all calculztions.
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Figure 3.6: Comparison of results from two methods for an elastic structure: Cagniard
(solid line) and @-k (dashed line). (a) The receiver is in the same half-space as the
source (z, = ~100 m, x = 250 m, z = -100 m). (b) The receiver is in the other half-
space (z = 3 m). The direct, reflected, head waves, transmitted and evanescent arrivals
are, respectively, denoted as d, r, h, t and e. (*) and (V) symbolize the source and
the receiver. The seismogram calculated by the -k method is normalized by the same
factor of the corresponding seismogram obtained by the Cagniard's method.
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not parallel to the interface, itis almost so (Krebes, 1980). As the concept of a critical
angle or distance is somehow degraded for plane waves in viscoelastic medium, the
appearance of head and evancscent waves seems to be explained better by considering the
effect of the boundai y conditions on a curved wavefield produced by a source of finite or
infinite extrnt (Richiazds, 1984).

In Figure 3.7, we depict, on the same scale, seismograms for an elastic case and for
two anelastic sructures: one having @ = 100 in both half-spaces (Figures 3.7a and b), the
other Q = 50 (Figures 3.7c and d). Receivers have been located in both half-spaces so
that we see the incident wave arriving from the source, then the head wave and the reflected
one in the source medium (Figures 3.7a and c) and also the transmitted wave in tho
refracted medium (Figures 3.7b and d). For Jower values of Q (higher attenuation), we
have consistently a bigger time-delay for the arrival, greater dispersion and a greater
diminishing of the amplitude.

In Figure 3.8 we considered two cases when one of the half-spaces is elastic and
the other anelastic with Q = 50. Figures 3.8a and b show a case when the source is
located in the elastic half-space while in Figures 3.8¢ and d the source medium is anelastic.
As we can see from the {igures, the dispersion and attenuation are stronger in the latter

case.

3.7 Conclusion

The synthetic seismograms calculated using the @-k integrals seem to be accurate
en.«tgh even when the number of frequencies used is not too high to make the amount of
needed computer time unreasonable. The advantage of this method is that it shows
complete seismograms in relevant time and frequency windows both for perfectly elastic

media and also for viscoelastic ones.
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Figure 3.7: Comparison of elastic (solid line) and anelastic (dashed line) results. The
elastic results are calculated by the Cagniard's method. (a) The receiver is in the same
half-space as the source (z, =-100 m, x = 250 m, z = -100 m) with Q; = @, = 100.
(b) The receiver is in the othe: half-space (z = 3 m) with @; = @, = 100. The direct,
reflected, head waves, ransmitted and evanescent arrivals are, respectively, denoted as
d,r, h,tand e. (c)same as (a) but @; = Q7 = 50; (d) same as (b) but @, =0, =
50. (*) and (V) symbolize the source and the receiver. The seismogram calculated by
the @-k method is normalized by the same scale factor of the corresponding seismogram
obtained by the Cagniard's method.
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Figure 3.8: Comparison of elastic (solid line) and anelastic (dashed line) results. The
elastic results are calculated by the Cagniard's method. (a) The receiver is in the same
half-space as the source (z, = ~100 m, x = 250 m, z = -100 m) with @; = and O,
=50. (b) The receiver is in the other half-spacé (z=3m) with @; = and @, = 50.
The direct, reflected, head waves, transmitted and rvanesceat arrivals are, respectively,
denoted as d, r, h, t and e. (c) same as (a) but @; = 50 and Q5 = o; (d) same as
(b) but @; = 50 and @5 =<o. (¥) and (V) symbolize the source and the receiver. The

seismogram calculated by the @-k method is normalized by the same scale factor of the
corresponding seismogram obtained by the Cagniard's method. '
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For the simple model of two half-spaces in welded contact considered here, it
seems that attenuation does not change radically the physical picture seen in the elastic case,
but modifies it in a continuous manner, lengthening the time elapsed before a certain phase

arrives to a receiver, broadening the pulse and diminishing its amplitude.
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CHAPTER 4
SEISMOGRAMS USING THE o -k INTEGRALS FOR
A POINT P-SOURCE IN A VERTICALLY INHOMOGENEOUS
ANELASTIC MODEL: THEORY AND COMPUTATIONAL ASPECTS

4.1 Introduction

The -k method has already been successfully applied to a simple case of two
half-spaces in welded contact (Chapter 3). The present effort is to consider the much more
complicated case of a stratified model, consistir:s; of a vertically inhomogeneous layer
welded to a homogeneous half-space, the layer being assumed to consist of a finite number
of sublayers, that present singularities at interfaces. Each sublayer is assumed to be
anelastic and not necessarily vertically homogeneous. The eigenvalue problem studying the
wave propagation in stratified anelastic media can be formulated as a set of first order
ordinary differential equations. The coefficient matrices of the systems thus formed depend
on the elastic parameters of the media which are in turn continuous functions of the vertical
coordinate, z within each sublayer. The displacement components on the free surface can
be calculated by integrating directly the differential systems involved using a Runge-Kutta
method. The solutions thus obtained are free from any approximation except numerical
one.

The basic theory for elastic stratified models was known since the mid-sixties and
beginning seventies, a landmark being the Gilbert and Backus (1966) paper, in which the
first order ordinary differential systems for vertically inhomogenecus seismic structures
were described and solved in terms of propagator matrices. Their approach was used by

Abramovici (1968a) to calculate transfer functions for complex structureés, by integrating
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numerically the differential systems. In that paper, the exciting field was a random
pressure acting on the surface of a homogeneous liquid layer present on the top of the
structure. In a subsequent paper (Abramovici, 1968b), the disturbance was due to a point-
source generating P-waves.

In the present chapter the basic theory pertaining to the solution of the wave
equation for a layered anelastic solid half-space from a P-source is presented using the
Fourier-Bessel representation (Abramovici, 1968a and b). In the mentioned papers of
Abramovici, diagnostic diagrams were calculated to study waveguide problems. The new
work developed in the next two chapiers is the direct integration of the improper integrals in
the k-space to obtain synthetic seismograms. The formalism allows the inhomogeneity of
the medium to take any form along the depth axis with homogeneous discrete layers as a
special case. The source is assumed to be in a homogeneous layer. The numerical
methods to handle the boundary conditicns in the presence of the source are also described.
Azimi's law is used to account for dispersion and anelasticity (Abramovici, Le and
Kanasewich, 1990). The k-integral is calculated first up to a user-controlled k., using a
Romberg integration scheme. Long series of wavenumber and frequency are computed
and are then cosine-tapered in f-k (or w-k) space to avoid aliasing or wraparound events
in the spatial-temporal domain. The inversion into the temporal domain is achieved through
an inverse fast Fourier transform. The code was implemented on a parallel machine,
Myrias SPS-2, with 64 processors using double precision FORTRAN 77. The final fast
Fourier transform was carried out usually on the Amdahl 5670 main frame as were the
graphical plots. In principle all the computation can be accomplished on a work station
such as a SUN SPARC station 330 and this has been done occasionally although several
days are required for a run to be completed. The numerical results and discussion of their

significance will be given in Chapter 5.
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4.2 The Mathematical Problem and its Formal Solutions

4.2.1 The Problem

Assume a vertically inhomogeneous model consisting of a stack of anelastic
sublayers in welded contact with a homogeneous half-space. Within each sublayer, the
elastic velocities, o and B and density p may vary continuously with the vertical
coordinate. Anelasticity, quantified by the quality factor Q, is introduced ir the frequency
domain through Azimi's law (see Section 3.4). A point source generating P-waves in any
sublayer is activated at an initial time ¢ = 0. The disturbance at any point in the structure
consists of both P and S-waves, due to reflection and transmission, and has cylindrical
symmetry with respect to an axis that contains the source and is at right angle with the
interfaces. Hence it is natural to use cylindrical coordinates in which all the quantities are
independent of the azimuthal variable around the axis of symmetry. In order to satisfy the
boundary conditions at the free surface and interfaces, as well as the radiation ¢zndition at
infinity, one has to separate variables in the partial differential system involved and find the
eigenfunctions of the problem.

A cylindrical system of coordinates, as depicted in Figure 4.1, is adopted with the
z-axis oriented upwards from the bottom interface. For simplicity it is assumed here that
the receiver is located anywhere on the free surface, at z = H, with H the total thickness of
the inhomogeneous layer. The interfaces are located at z = Zj, Jj=0,1,..,N-1, with z,
= 0 corresponding to the bottom interface, N being the number of sublayers. The Lamé
parameters A, 4 and the density p are given functions of z in cach sublayer, their
constant values in the half-space being Ap, Kp and pg.

Denoting the displacement components in cylindrical coordinates as s,, s,, and
the stress components as T,,, T,;, €tc., the mathematical problem for P-SV wave

propagation, in the absence of body forces, consists in solving the momentum equations
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(Love, 1945; Eringer, 1965; Fung, 1977):

2
pa Sz=afzz+afzr+%

a2 9z or

2

pas’=a’”+a’”+ff’;’” (4.1)
o2 o oz

taking into account Hooke's law, (Love, 1945; Fung, 1977):

1'”—2;11’4 AA

or

Ty = 2 Qi’- +A4
0z

7:99=2us7’+1A

Tr=M (ai+§s—’) 4.2)

where A is the divergence of the displacement vector,

=%‘L+?+§; (4.3)
r r4

so that:
1. zero initial conditions are satisfied for ¢ < 0 (causality property);

2. boundary conditions of zero stress at the top surface and continuity of displacements
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and stresses at any interface hold;
3. the Sommerfeld radiation condition holds for z — —eo;
4. in one of the sublayers which is homogeneous, a point source located on the z-axis
at z = z; generates P-waves according to a given time-dependence g(1).
The system of equations may be separated by using the following expressions of
the displacement and stress components as products of functions of only one of the

dependent variables (Ben Menahem, 1960; Abramovici, 1968b):

5z = k w(2) J o(kr) eiot

5r = 4z )a"’"") ior

Toz = k Ty(2) J o(kr) eiwt

aJ O(b' ) elot

=Tg(2) —— 4.4)

where k is the horizontal wavenumber, , angular frequency and Jg, the ordinary

Bessel function of order zero..

One obtains a more compact notation by defining a displacement-stress vector in

physical variables (r,z,t):
Sz
U= :’ (4.5)
2z
Tr

and its z-components as:

T, . (4.6)
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The connection between U and u is
U = Du 4.7)

through the offset-dependent diagonal matrix:

D = diag [ K7 o), 2229, 7 otr), 2LOFD | i 4.8)
or or
Taking (4.8) into account and using simple recursion relations between Bessel functions,

one finds that u satisfies the following system of ordinary differential equations of fourth

order (Gilbert and Backus, 1966; Abramovici, 1968b; Aki and Richard, 1980):

%lz'- = Mu (4-9)
where
( 0 Ak 1 0 \‘
A+2u A+2u
-k 0 0 1
M= H (4.10)
- po? 0 0 k
\ 0 X  -—Ak 0
A+2u
with

2
=—p€02 +k2(l+2#-2__2L2—) . 4.11)
+
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The system given by (4.9) governs the propagation of the disturbance anywhere in the

medium once it is initiated.

4.2.2 The Solution In Homogeneous Media

There are two good reasons to seek first the solutions of system (4.9) in a
homogeneous medium, i.e. one having A, u, p constant. First, as it was already
explained, the source acts in an homogeneous sublayer and therefore, until the motion
reaches the upper or lower boundary of this sublayer, the disturbance coincides with the
solution in a homogeneous space having the same Lamé constants and density. Second,
the half-space is assumed to be homogeneous and the integration process starts with the
~omponents of solutions in the half-space taken as initial values.

It is well known (Coddington and Levinson, 1987) that the solutions of a

differential system with constant coefficients are of the form

Cenz (4.12)

with 77 equal to any simple eigenvalue of the system, the constant coefficient C being in
general different for each component and all the coefficients being determined up to a
multiplicative factor.

The eigenvalues of system (4.9) are obtained from

det M-In=0 (4.13)

where I is the unit matrix of order (4 x 4). As expected, these eigenvalues are equal to

K, K B where



2 2
Ka=A| -2 Kg=4/ kZ-% . (4.14)
(04

The square roots of the eigenvalues are defined uniquely as:

e el

Ko= (4.15)

ia @-i2 i k<2

o2 a
and K B takes the same definition with ¢ replaced by B. Physically, K, and K B
correspond to downgoing P- and S-waves while the negative counterparts denote

upgoing components.

The corresponding eigenvectors are:

Ky
v @)= ; etKa? (4.16A)
(A +2u) K% - Ak?
and

k

+K
uPl= g etKpe (4.16B)

+2ukK g
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4.2.3 The Boundary Conditions

In the inhomogeneous layer, i.e. for
O0<z<H

a closed analytical solution to system (4.9) only exists in particular c2ses. In general, we
can represent the solution only formally in a closed form, e.g. by ‘sing propagator
matrices, as these matrices are known to exist but there are no close expressions for them,
e.g. finite combinations of quadratures. One way to overcome this difficulty is to replace
the inhomogeneous layer by a stack of sublayers for which such closed for. ; exist, e.g.
by a stack of homogeneous sublayers. This is the approximation used when applying the
Thomson-Haskell method (Thomsen, 1950; Haskell, 1953), in one of its variants (see Aki
and Richards, 1980 and Kennett, 1983 foi references). An alternative way is to integrate
numerically system (4.9) using an z.curate and stable numerical scheme. This alternative
has been used successfully in order to calculate dispersion curves and transfer functions by
Abramovici (1968a and b). The basic idea, used with any approach, is to integrate from
the bottom interface up, i.e. from z=0te z = H in the coordinate system chosen here.
Taking as initial values at z = 0, the components of either u (@ oru SP) in the haif-spacc
and integrating upwards, we obtain solutions u (@) and u (B) in th= entire structure (i.e.,
for —oo < z < H ) that sat'sfy the radiation condition. The components of u () and u )
at each interface, z = z; are used as initial values for a further integration for z;< z <

J J

2j, - In this manner the solutions u (#) and u () in the structure are continuous at the
interfaces, thus satisfying all the required houndary conditions. The same is true for any

linear combinadon

C'au(a) + Cﬂu(ﬂ) (4.17)
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with coefficients ¢ = and C B being arbitrary functions of @ and k and also for any
superposition (discrete or continuous) of such linear combinations. The values of the
coefficier~ + ‘termine the amount of contribution of each wave type to the response for
each (w-k) pair. By choosing a particular set of coefficicnts and a particular superposition,

one is able to satisfy the conditions related to the pre..>nce of the source.

4.2.4 The Source

It is well known (Ewirg, Jardetsky, Pres-, 1957) that tire displacement and stress
components of a homogeneous space generatcd by a point-source of -waves located at r

=0, z = z, (in cylindrical coordinates) are derived from a potential

Vo R
=--—2_po(t-2 4.1
$=- 8= (4.18)
where R = [r2 + (z - zs)z]‘/2 is the distance from the observation point to the source,
V, is the volume gererated at the source in one second and g, as above, characterizes the
time-dependence of the source, being equal to zero for £ <0.

The potential ¢ can be expressed as a Fourier-Bessel double integral

o=- 4103 ch ) eia de ko(k)okkr)dk (4.19)
2 | A
where
oty = £Kalz=2 (4.20)
-_— Ka Y .

2(w) is the Fourier transform of g(z) and Re stands for "real part”.

Taking the gradient and using Hooke's law, it is found that the displacemeni-stress
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vector (Abramovici, 1990) for a P-source in a homogeneous space is as follows:

Usource=Rej dw] DufSirce dk 4.21)
0 0

where
u(_a)(z -25) ifz> 1z

ud -V (4.22)

source ZK(Z ’

ug_a)(z -¢) ifz<z;

., _ Vo gl .-
AL 4.23)
2r

and u ;a) ~-- given by (4.16A). The Lam¢ parameters and density are those
contesponding 1o the sublayer containing the source.

Once the displacement-stress vecior u{@;.. due to the source in a homogeneous
space is found, its value at the interface defining the source sublayer can be used to find
numerically the source solution denoted as ug in the entire inhomogeneous layer: we
integrate from z = zjs, downwards and from z = zjs +1 upwards where the source
sutlayer is defined by Zj <zg zjs +1- This vector function, ug, satisfies system 4.9),
the source conditions and all the boundary conditiens at interfaces. Since it is assumed that

the receivers are at the free surface, the initial values for the system (4.9) due to the source

are explicitly given by the first expression of (4.22) for z > z.

4.2.5 The Free Surface Conditions and the Solutions

In order to sat'sfy the boundary conditions at the top surface, we add the source
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solution, defined above, to the generai solution (4.17) of system 4.9),
u=Cqul® +CpulP +uy (4.24)

and determine the constants C, and Cﬂ so that the stress components vanish for z = H:

CaT“(,a) + CﬁTugﬂ) + TWS = O
CaT [P +CorP Ty, =0 . (4 25)

Performing the needed algebra and going back to the w-k integrals, one finds the
following expression for the displacement components at the frec surface, z=H

(Abramovici, 1968b and 1990):

raG (! 3)-ac(}
573

$2 = Vo Rej 2(w) e it dw J; Jotkr) 1 k — kws | dk
0

272

N SO TG (2 3)-rac(? 5
s,=——2-Re | g(we'?dw J1tkr) [ & ~— — kg | dk

= 73
(4.26)

where G ('{' ; ) is the second-order minors formed by rows m and n and columns 1

and 2 from the matrix

G={u@,u®) . (4.27)



69

Here, the quantities within the brackets, [ ...], in (4.26) include the effect of transmission
and reflection at the interfaces and are referred to as the reflectivity functions, S, n(0.k,25)

where n=4{ is the vertical component and n=1 is the horizontal component.

4.2.6 The Second-Order Minors

Straightforward algebraic manipulation leads to the solution of the displacement
components which has terms involving subtraction of products of elements from the
solution u of the fourth-order differential ~+stem (4.9). The algorithm derived from direct
:mplementation of the equations thi's obtained has been found to be highly unstable since,
at high frequencies, the elements bocome very large and accuracy is reduced after
subtraction due to loss of significant digits. Tt:is numarical difficulty caused by loss
significant digits when large or small numbers exist has been studied extensively by
researchers such as Knopoff (1964a), Dunkin (1965), Giibert and Backus (1966) and
recently by Franssens (1983) and Kundu and Mal (1985). It is possible to avoid the
inaccuracies due to possible cancellations occurring when adding and subtracting products.
The proposed remedy to the problem, which involves the concept of subdeterminants or
minors, is to calculate these terms directly from a higher order differential system. The
version that will be used is attributed to Gilbert and Backus (1966). These minors,
G ('1" ; ) , can be obtained directly by integrating numerically the sixth-order differential
system from the top of the half-space to the free surface, z = H (Abramovici, 1968a and b;

Abrenrovict, Le and Kanasewich, 1990):

dl’ _or (4.28)
dz

where
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(4.29)

, (4.30)

(4.31)

(4.32)
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where A, 4, p as well as the P- and S-wave velocities are those of the homogeneous

half-space and the square roots for K, and K g are defined by (4.14) and (4.15).
4.3 Numnerical Considerations and Computational Methods

The computation of the two displacement components given by (4.26) is achieved,

1 our approach, by integrating first the k-integral in the general form

S(r,z=H,w) = (—1)"1) Jn(kr) Sp(wyk.z5)dk (= 0,1) (4.33)

and then inverting the spectral result after being modified by the source function into the
time domain by means of an inverse fast Fourier transform. This is usually known in the
literature as spectral method (Frazer, 1988). The code 1s implemeated in double precision
using FORTRAN 77 on a parallel machine, Myrias SPS-2, with 64 processors in the

following way:

PARDO over frequency
DO overk
calculate §,,( ,k,25)
ENDDO
ENDPARDO .

The PARDO-loop structure which is the analogue to the DO-loop structure in Fortran,
converts a sequential iteration into a parallel series of tasks in the Myrias's environment

(Myrias, 1989). Other seismic applications in Myrias SPS-2 have been reported by
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Kapotas (1990).

Figure 4.2 shows a flow-chart of the computer cuae. Note that the reflectivity
functions, which are dependent on the model and source location, are calculated in parallel
for all the frequencies. The reason that the Bessel functions are left out at this stage is that
they are the only factor depending upon the layout of the receivers. Therefore, one can use
the calculated reflectivity functions for all receivers in a horizontal array, without redoing
the calculation. A synthetic section for any receiver's configuration can later be assembled
by multiplying the -k series with Bessel functions having appropriate offset argument.
The Bessel functions are computed with an accuracy up to seven digits by the polynomials
provided by Abramowitz ans: $t>cur (p. 369-370, 1965). For illustrative purposes, a

theoretical model was used to ger.zr:"s some intermediate results.

4.3.1 The Theoretical Mode!

The theoretical model (Pekeris et al., 1965) consists of a homogeneous elastic
layer, 1 km thick, overlaying a homogeneous elastic half-space, having rigidity u, equal to
twice the rigidity u, of the layer, both media satisfying the Poisson's hypothesis 4 = p.
The S-wave velocity, B, in the half-space is assumed to be 10% higher than that of the
layer f3;:

p,= 115, .

Qq=0p= 1000 were employed to simulate the elastic result using the -k method. All
the quantities were non-dimensionalized with the scale factors for length, density and

velocity being H km, 6000 kg/m3 and 10 km/s respectively.

4.3.2 The Numerical Integration of the Differential Systems
For every mode! and source location, the main computational effort is to find the

propagated displacement-stress vector and 2nd order minors at each level, for any pair
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(w,k), thus composing the reflectivity functions, Sa(w,k,z5). For small , at least one of
the square roots K or Kg is imaginary, even in the elastic case [see equation (4.15)].
Hence, the differential systems to be integrated have complex solutions, although the
independent variable is real. Moreover, anelastic structures are considered with anelasticity
being introduced via Azimi's law (Section 3.4; Aki and Richards, 1980; Abramovici, Le
and Kanasewich, 1990), so that the coefficients of the differential system are also complex.
As a result, systems of equations of orders eight and twelve have to be integrated
respectively over a real independent variable.

Even though many multi-step schemes are used in practice to solve the initial value
systems (4.9) and (4.28), a one-stc;: scheme has ‘ . n implemented as these are self-
starting and always stable (Isaacsvs: 254 Keller, 19¢3). A great advantage is that this
approach allows handling inhomoger:zous sublayers (like transition layers with linear
variation of seismic velocities) in a straightforward manner rather than by dividing them
into homogeneous sublayers. The fact that the ease of analyzing the ‘runcation error and
high accuracy can be easily obtained by reducing the stepsize also contributed to our
decision of using a one-step scheme. The only disadvantage of a one-step scheme is the
high number of evaluations per step. Some experiments vvere carricd out with a set of
Runge-Kutta methods of orders between 2 and 8 included in a package built originally for
calculating phase velocities and transfer functions (Abramovici, 1968c) and used
subsequently in electromagnetic wave propagation (Abramovici, 1974; Abramovici and
Chlamtac, 1978). It was found :hat, for the purpose of the present study, the wanted
accuracy is obtained using a sixth-order scheme involving six intermediate evaluations
(Shanks, 1966), which is the minimum number of evaluations for this order. The step size
used for all the results given in Chapter 5 was 0.004.

The difficulty also encountered by others (Schwab and Knopoff, 1970; Phinney et
al., 1987) when using the Thomson-Haskell based algorithm is the overflow problem
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associated with the elements of the solution (4.29) of the sixth-order system. However,
this overflow problem can be easily eliminated by normalizing all the elements by the

magnitude of the largest one which exceeds a threshold value set at 107,

4.3.3 The k-Integral

Since S, n(w,k,z5) is a rational function for perfectly elastic medium, the function has
singularities which prohibit straightforward numerical integration of the k-integral along
the nonnegative real axis unless some appropriate integratic-a cortour transformation is
taken. These singularities represent surface wave poies. [hese poles represent the
slownesses of the free oscillations of the system. There is aiwiys a finite nu: her of them
but their positions change and their number increases witl: {cqunncy, (n order to
circumvent the difficulty many techniques have been suggested. . ilundu and Mal (1985)
applied the theory of residues to remove the poles for idealized elastic structures. Phinney
(1965) suggested the use of complex frequency @ = @, — iw, with 2 small positive
imaginary part, @, to smooth the k-spectrum and the smoothing effect was then removed
by multiplying the result by the exponential exp(@jt ) in temporal domain. Sincc it is a
common observable fact that e22rgy dissipates as wave propagates into the Earth (Knopoff,
1964b and Sato, 1967), the poles are removed in our c-se by introducing anelasticity into
the medium to make velocities complex through Azimi's law (Section 3.4). In the presence
of attenuation, the singularities are moved into the fourth quadrant of the complex (k+
i6)-plane away from the real k-axis.

A typical behavior of the reflectivity functions for the theoretical model can be seen
in Figure 4.3, where the real parts of the functions are presented for three source locations
and four different frequencies, two lower and two higher ones. The arrows point to the
locativ:n of the real paris of the branch points fc;r the square roots K and K, i.e. to the

slownesses of the P- and S-waves in the half-space and layer respectively, multiplied by
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Figure 4.3: Plots of the real parts of the reflectivity functions at three different source
depths and four different frequencies for the theoretical model. The same source depth is
used along the column and the same frequency applies along row. The arrows point to
the location of the real parts qf the branch points for the square roots Ky and K4. The
first two are from the P-wave velocities and the last two are from the S-wave

velocities.
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the corresponding angular frequency. The rows show the functions for a fixed frequency,
while the columns show them for a fixed source location. Even thought the poies are
located away from the real k-axis for anelastic media, their presence in the proximity of the
integration path is felt strongly. As a result, one needs to increase the number of
integration points to cover the highiy-o: illating portion of the integrand.

Another \«umerical problem that must be solved ir calculating the k-integral is the
fact that the integration interval extends to infinity. However, in practice, a finite range of
k-values is required only. As a general pattern in Figure 4.3, it is seen that with increasing
frequency the integrand becomes more oscillatory. For higher frequencies the magnitude
of the functions is governed by the slowness of the P-wave in the layer; u little past this
point . he %-axis, the functions decay exponentially. For very low frequencies (0.08 Hz
in Figure 4.3a) and a near-surface source (Figure 4.3C), Rayleigh energy dominates ::nd
the functions decay at a much higher value for &, which is expected from the known
properties of Rayleigh waves (Ewing, Jardetsky and Press, 1957). Taking into account the
described behavior, the effective k-interval [0, kpay), for which the internal integral is
calculated, is determined in each case. The application of kn,y is €quivalent to using a
high-pass velocity-filter which eliminates events with apparent velocities slower than ¢y
(¢min = @/ kmax)-

After being modified by the Bessel factors, the integrand becomes extremely
oscillatory, especially for large offset. Adequate sampling is necessary to track the highly-
oscillating portion of the integrand. A Filon scheme has long been used to evaluate integral
involving highly varying funcuon (Davis and Rabinowitz, 1984). Recently, Frazer and
Gettrust (1984) and Frazer (1988) employed a modified version of Filon's scheme to
evaluate a slowness integral similar to equation (4.33). Xu and Mal (1985) also suggested
an adaptive Clenshaw-Curtis quadrature scheme. However, in our approach the range was

divided into three or four subintervals and within each a Romberg scheme (Henrici, 1964)
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of 513 points was used, thus resulting in a long k-series. Abrupt truncation of the k-
series would give rise to wraparound events in r-space. In order to avoid this, the k-
series was also cosine-tapered. As for each integration point one has to perform the above
described Runge-Kutta process; therefore, the total computer time needed for all the 512
frequencies became forbiddenly high for an ordinary scalar or vector computer, no matter
how powerful it is. The total CPU time for one model was no less than 2 hours on the
Myrias SPS-2 system with 513 processors but (2 * 512/64) hours with only 64
processors and the disk space required was more than 20 Megabytes in binary format.

4.3.4 The w-Integral

Bouchon (1979) and Mallick and Frazer (1987) have also suggested the use of
complex frequency, @ = @, — ie, with a small positive imaginary part, oy to attenuate
aliasing in the time domain. Aliasing occurs in two cases: (1) when the frequency
increment, Af used is too coarse and (2) when the maximum frequency content fp. ., of
the synthetic signal is larger than the Nyquist frequency. Since Af [Af = 1/(2nAr) = 1/2T
where n is the number of frequency samples] determines the time window T, strong events
which arrive outside T will then appear at the wrong Jocation. In the complex-frequency
approach, energy from times greater than T will be damped by exp(-ayT). Here question
arises as to choosing the appropriate size of the imaginary part and these authors have
suggested some values. In our approach, a conservative way was followed by acquiring a
long @-series of 513 points using finer Af so as to make T bigger. A cosine-taper was
used to eliminate the contribution from frequencies higher than the Nyquist limit.
However, by doing this one restricts the use of high frequency source since the
combination of using large fiyquist And fine Af will require more than 513 frequency
points to make a proper size of time window in temporal space to include all the significant

arrivals.
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CHAPTER 5
SEISMOGRAMS USING THE o -k INTEGRALS FOR
A POINT P-SOURCE IN A VERTICALLY INHOMOGENEOUS
ANELASTIC MODEL: NUMERICAL RESULTS

5.1 The Theoretical Model

In order to demonstrate that the proposed numerical approach and algorithms have
been formulated correctly, 2 theoretical model, gaven in Section 4.3.1, is considered for
which accurate calculations have been performed using the Cagniard-Pekeris-de Hoop
method (Abramovici, 1970 - hereafter referred to as the A-paper). For comparative

purposes, a triangular time-variation for the source is used (Figure 5.1a),

0 for t<0,t 22A
gH= —Z— for 0<t<A (5.1)
\ZAA“ for AST<2A

having a Fourier transform (Figure 5.1b),

§(w) = Eﬂmﬁ_) eind (5.2)

o

The parameter A controls the width of the pulse and was 0.1 in this experiment.
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This time function is very similar, but not identical, with the one used in the A-
paper. There, the source was defined using the potential for the P-waves, the time-
variation of which was a Heaviside function with "rounded shoulders" having quadratic
tirﬁe-variation. As a result, the displacement approached a triangular time-function only in
* the far-field. As seen in Figure 5.1b, most of the energy is concentrated within a narrow
band 0-10 Hz, with very small side lobes. Outside this range, the pulse has a dominant
DC value, the integrand being zero at zero frequency. The low frequency end might create
difficulties in the fast Fourier transform inversion to the time-domain (which is how we
performed the @-integral), due to its sharp edge. However, no low-cut cosine tapering
was applied at this end since it would have reduced significantly the energy content of the
signal, especially that of the Rayleigh wave (Helmberger, 1968). Each seismogram was
calculated in the frequency range 0-30 Hz and multiplied by a cosine taper (0/0/25/30 Hz)
in order to minimnize high frequency integration noise. For the deeper sources with z;=
0.5H and z; = 0.9H, we took kmax = bg + 25 where by is the P-wave slowness in the
layer multiplied by the corresponding angular frequency, whereas for the shallow source at
zg= 0.1H, we took kmax = by + 75. In order to avoid spatial aliasing, we applied also
the following cosine tapers: (0/0/bg + 15/b 4+ 25) for the deeper sources and 0/0/bgy +
60/b 4+ 75) for the shallower source. The finite k-interval was then divided into four
subintervals. |

Figures 5.2b-5.4b show synthetic seismograms calculated using the w-k method
for three different source depths at 7 = SH. The corresponding numerical seismograms in
the A-paper (Figures 3-5 in the A-paper and here referred to as 5.2a-5.4a) are also included
for comparison. As one can see, it is difficult to identify each individual phase in these
seismograms, which is also the case for those in the A-paper, €.g., on Figures 5.2a-5.4a.
Instead, one identifies, as in the A-paper, four groups of rays of the form Py, PyS, PpS

and P,S3 giving together the appearance of a characteristic oscillatory transient oscillation.
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The subscript denotes the type multiplicity. Another common characteristics of the w-k
seismograms and those based on the Cagniard-Pekeris-de Hoop method is the fact that the
horizontal displacement has a larger amplitude than the vertical displacement, for the
mentioned groups of body waves. For a source ot near the surface, their shape is similar.
except for polarity, which is sometimes the same and sometimes opposite. For a ncar-
surface (Figure 5.4), the behavior of the horizontal displacement is not the same, at least in
some time intervals. A marked difference between the @k seismograms and those in the
A-paper is the total absence of the Rayleigh wave for the deep source in Figure 5.2b. Fora
source in the middle of the layer, the Rayleigh wave shows up (Figure 5.3b) and it is by far
the main feature on the seismogram for a near-surface source (Figure 5.4b), similarly to
what one sees in Figure 5.4a.

It should be noted that, from other studies (Ewing, Jardetsky and Press, 1957 and
Lamb, 1904), the w-k seismograms showed the more correct form of the relative
amplitudes of vertical and horizontal components for Rayleigh waves. Both sets showed
the same retrograde particle motion. There are other differences of a general character,
between the @-k seismograms and those in the A-paper, among them:

1. the ratios of the magnitudes of the positive and negative portions of similar waves or
groups of waves are not the same, e.g., the negative oscillation at the arrival of P
is larger on the -k seismograms;

2. the oscillations in Figures 5.3b and 5.4b center around the zero-level, which is not
the case with the oscillations on the corresponding Figures 5.3a and 5.4a;

3. the ratio of amplitudes of the horizontal and vertical displacements of the Rayleigh
wave in Figure 5.4b is different from that in the corresponding Figure 5.4a.

There is no doubt that one of the reasons for the discrepancies between the
numerical seismograms presented here and those in the A-paper is the difference in the

time-variation of the source, mentioned in the previous section. There are, however, two
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additional reasons. One is related to the fact that the models for the -k calculation contain
a certain degree of anelasticity, while the calculation of the A-paper were done for purely
elastic structures. Although a high Q (Q = 1000) was used to simulate structures of a
similar nature, some differences should be present. Finally, the integrands are windowed
both in wavenumber and frequency; as found from previous studies (Chapter 3), some
filtering takes place as a result of applying cosine tapers.

Figure 5.5 shows a pair of synthetic displacemerit sections with true amplitude for
the theoretical model having the source midway in the layer. Clipping has been applied to
the negative amplitudes for plotting purpose. Converted waves and multiples are
prominent and the Rayleigh wave is stronger vertically than horizontally as expected
(Ewing, Jardetsky and Press, 1957). The decaying behavior of the waves is due to
anelasticity and spherical spreading.

Taking into account the difference in the source function in the near field and the
introduction of attenuation, it would appear that the current numerical results are a good
representation of the displacement fields. Further tests would involve comparison with

model experiments.
5.2 The Two-Layered Crustal Model

Figure 5.6 shows a parameter profile for a crustal model with two homogeneous
layers over a homogeneous half-space and the synthetic velocity sections, with no
exponential gain correction are shown in Figure 5.7. The source acts at 50 m below the
surface and has a Gauss-type variation (Figure 2.3) with a dominant frequency of 5 Hz.
The quality factors @, and Qg are the same. The cosine taper (0/0/(bg)s /(bp)s*1.05)
was applied in the k-domain with four subintervals where (bpg)s is related to the S-

slowness of the source layer. In the «>-domain, a cosine taper (0/0/18/19.5Hz) was used.



87

parewxosdde oy o1 wutod smore 4L,
® sey pue JaAe| 3y ul Aempiul S} 3NOS 3YJ, ‘|opows Jakey

-Anondomnu 3dA ap sa10u9p 1duosqns oy, "seseyd pAIBIIPUL Y1 JO SUORBIO]

<usuoduios [Riuozuoy (q) pue yusuodion [eonIaA (8) :uondunj-awn Jein3uewn
-ury | & J0j Suondas uawaoeidsip ouayiuks :¢'s undig

08
% lybiajAey
@w oo ,A i
LM o | yk
\ ittt . -
J i it ., 3
| | | T2
- wxﬁ, _W 2
. 4-Sa'std'%sd
] I —Ya's’d
| . d —€4'sd
THTHE S _ =d
|BlUOZIIOH ERDETN -
LU 1) TN _ 11,
oot 0g 50 0oL 0s o5 S0
(W) 18si0 (e)

(wy) 1SPO (Q)



88

(®)

-OneI S,UOSSIOg Y3 St O “[9POLU [EISTUD pasakej-omi e 10§ s3qyold mrwered 9°¢ am3yy

(p)

(9)

(q)

(e)

r0'G1

+G'cl

+G'C

0

00zt

0004
O

—

008 2°€ 62
(oo/wib) o

92 080

S20
0

020 S

v
(s/w) SA

€ SL S'9
(s/w) A

§'s

(wy) yidag



89

ap Aq parearput 19Ke] oy Suiszaaen Aes 3y jo Knoydnjnw oyt §
parewxoidde i yrew smoLre Y], -Jusuodwiod friuozuoy (q) pue usuodwod [e

© SBY PUB 3JBJIMS 9Y) MO[3q W (S 1B SIB 3DMOS 3y, “[Ipou Pa19Ke}-0M © 10] SUORDIS KIOO[A JUAUAS :L'S am3ng

*1auOsqus

arouop 1duosssadns oy, “saseyd pareorpul Yl JO S[EAU®

OTHI9A (B) :UONBLIBA-JWIN UBISSTED)

ovL
4 ;!
p f l[ .AI
| (][l ¢sis'd
+ : \Mm&.mmrn_
JJ. b
: i -
A'v £ .11111‘ c&.ﬂ&.mm w
J " XA
N Az..... Loy
\ b eiTiay or 2
Iiz l T—Sssd%s%'sld
A"l .- F —.
lii: It A $i2S d 2 b2yt
I . . TR [~ ¢dezdzded
Tl J-'s'd'sld
b L mx\ s ...\‘.IM& .mwm
BjuoZ ~t~ubiolfe
Lo Eotion ooy
oop 002 0 0'0v 002 oi O
(w) 18840 (a) (wy) 19sHO (e)



90

As discussed previously, it is difficult to identify the contribution of each individual
phase, the seismogram being the result of superposition of all the arrivals within the
calculated frequency-wavenumber window. The incident arrival preserves the shape of a
Gaussian pulse, whereas the other arrivals come as a group say P? and P} , thus distorting
the pulse shape. The head wave, P*, is weak and comes approximately after 37 km. The
high amplitude after 9.0 sec is contributed by at least three arrivals as indicated. The
"ghost" arrival, Plsf, which travels from the source to the surface as P and reflects as S at
the surface and the first interface, has significant amplitude especially on the horizontal
component (Figure 5.7b) cutting across some of the major arrivals. Some residual

Rayleigh energy is present, as the k-integral covers parts of the evanescent regime.

5.3 The Cold Lake Models

The Cold Lake deposit is one of Alberta’s oil and tar sands resources in east-central
Alberta. The crude bitumen deposits in this area are mostly confined within the lower
Cretaceous Mannville group which is further subdivided into the McMurray, Clearwater
and Grand Rapids formations. The target formation for most seismic experiments is the
Clearwater formation, approximately S0 m thick and 450 m deep. The bitumen contained
in the Clearwater formation contributes to about one-half of the total bitumen reserves at
Cold Lake (Outtrim and Evans, 1977). A geological and geophysical description of the
Cold Lake area has been given by Harrison et al. 1981) and Kanasewich (1983).

Current Enhanced Oil Recovery (EOR) techniques such as steam injection into the
target zone, have become an integral part of the extraction of heavy oil. However, these
conventional methods recover not more than one quarter of the original oil in-situ.
Recently, open-pit mining, for high percentage recovery using modern mining techniques

has been proposed. In any case, detailed reservoir mapping is essential for later
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development. control and in-situ monitoring processes. In particular, one would like to
determine the size, shape, location of the target zone and the preferred direction of growth
of the steam front. For decades, remote sensing methods such as seismic reflection
techniques have proved to be a very successful tol in delineating these features leading to
improved oil extraction technique and more efficient and cost-effective field operations.
The seismic method provides a higher degree of accuracy and resolution than are achieved
by any other geophysical methods. This is so because the elastic wave has the shortest
wavelength of any wave that can be observed after being modified by the Earth's system in
its passage through Earth's structure and it experiences the least distortion and attenuation
in waveform and amplitude.

In a study of in-situ attenuation of the Clearwater Formation using well-to-well
seismic data by Macrides (1987), the value of O, was found to be as low as 10 in the
steam-invaded zone due to mobilized bitumen of high temperature, and Poisson's ratio was
as high as 0.4 due to steam condensation. Seismic amplitude, signatures and spectral
character were also found to be significantly different in pre- and post-steam areas.

In the present study, computer simulations for the Cold Lake models are carried out
for the following purposes: to study theoretically models with velocity gradient, thus
checking the behavior of the algorithm, the response from finely-layered structure and the
reflection response from the target zone due to small changes in velocity and density. In
particular, one would like to study how Poisson's ratio changing from low to high in the
target zone affects the seismic amplitudes at different frequencies. A low value for
Poisson's ratio represents the pre-steam environment and a high value for the post-steam
environment. Synthetic results at large angles of incidence are also used to justify that it is
necessary to go beyond the current recording offsets for detecting the subtle changes
induced by changes in Poisson's ratio. The synthetic seismograms that follow are

displayed with true relative amplitudes unless otherwise stated. 513 frequency points were
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calculated within the range 0-150 Hz. A Gaussian time-variation with a dominant
frequency of 35 Hz was used and the cosine. taper used was (0/0/125/140 Hz). The k-
integral was calculated with three subintervals.

Figure 5.8a shows a simplified "Cold Lake" model with 7 layers which has a low
velocity zone with Poisson's ratio 0 = 0.2. The source was buried at 10 m deep. Figure
5.9A shows the behavior of the real parts of the reflectivity functions at four different
frequencies: two lower and two higher ones. The arrows point to the location of the real
parts of the branch points for the square roots K and K g, i.e. to the P- and S-wave
slownesses in the half-space and source layer respectively, multiplied by the corresponding
angular frequency. The integrands are smoother especially at high frequencies than those
from the one-layered half-space (Figure 4.3) due to lower 0. However, the basic
behavior is the same: Rayleigh energy is dominant at low frequencies and diminishes at
high frequencies. Figure 5.10 displays a plot Gf the real parts of the branch points versus
calculated frequencies for the simplified models. Lines 1 and 2 are the loci of P- and S-
wave slownesses in the half-space multiplied by the corresponding angular frequency
{denoted as (bg)nait and (bp)naif} whereas lines 3 and 4 are correspondingly due to P-
and S-wave slownesses within the source layer {denoted as (bg)source 2nd (bp)sou,ce].
Two effective values of kyax Were used with different cosine tapering.

Figure 5.11 shows two components of synthetic sections of true relative amplitudes
calculated with kmpax being (b p)sou,ce+145 and cosine taper
{0/0/(bp)source+100/(bp)source +145). The shaded area in Figure 5.10 denotes the
coverage of the k-values involved with line 5 as the boundary. The kpax thus chosen
covers most of the Rayleigh energy at low frequencies, resulting that the Rayleigh arrival is
the most prominent event in both components. By choosing kmax = (PB)source with

{0/0/(b source/ CPsource} 2S tapering, the Rayleigh wave is excluded from Figure 5.12.
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(A) 7 discrete homogeneous (B) 146 layers
layers
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Figure 5.9: Plots of the real parts of the reflectivity functions at four different fregucncics
for (A) 7 discrete homogeneous layers and (B) 146 lay-rs. The arrows point to the
1ocation of the real parts of the branch points for the square roots Ky and Kg. The first
two are from the P- and S-wave velocities of the half-space and the last two are from
the P- and S-wave velocities of the source layer.
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Figure 5.10: Plot of real parts of the branch points versus frequency. These are a function
of the P-wave velocity in the half-space (line 1), S-wave velocity in the half-space (line
2), P-wave velocity within the source layer (line 3) and S-wave velocity within the
source layer (line 4). Line 5 delineates the boundary (or upper limit) of the k-integral for
results shown in Figure 5.11 and the shaded area denotes the coverage.
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The primary reflections have bigger amplitudes in the vertical components than in the
_ horizontal components due to the source type and vice versa for the converted reflections.
These properties are preserved in other synthetic results to be discussed . Due to the high
velocity contrasts, the last three primary reflections are strong events as indicated. The
head wave P* from the half-space is weak while converted reflections, e.g. Pl(SXSZ)2 at
the free surface are noticeable especially in the horizontal section. Most of the converted
reflections arise from the intermediate layers, have large amplitudes (Figure 5.12B) and cut
across the primary arrivals. The strong events after 1.2 sec are due to the constructive
interference of the converted modes and multiples.

Synthetic results from a 4-layered model with a velocity gradient shown in Figure
5.8B are given in Figure 5.13. The same processing parameters used for Figure 5.12 were
employed. Since the gradient zone replaces the intermediate 4 layers, the primary
reflections and the converted reflections within these layers disappeared accordingly. P1S1
and Pls% show up as early events in both components. Diving rays from the gradient zone
are very weak and interfere with P% and the direct arrival. The head wave, P¥, is also a
weak arrival.

From discretization of the sonic and density logs from Cold Lake area, a
multilayered structure was obtained as shown in Figure 5.14A with 146 layers. Some thin
layers with high velocities are real and consistent with the high density picks. The target
zone is 44 m thick and 440 m deep. Figure 5.14B shows the expanded portion of the
profiles in the target region and represents the undisturbed environment before steam
injection (undisturbed state). The intrusion of steam in the target zone changes the
petrophysical properties of the medium. Figure 4.15C is one of the suggested profiles for
the on-going steam injection or post-steam injection environment (steam state) which has a
P-wave velocity gradient from 2100 m/s at 440 m to 1800 m/s at 470 m and then back to

2100 m/s at 484 m. The zone has an average density of 2.15 gm/cc and a low Poisson’s
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Figure 5.14: Multilayered "Cold Lake” models: (A) an undisturbed model; (B) expanded
portion of an undisturbed model; (C) expanded portion of a steam model with a zone of
Jow Poisson's ratio; (D) expanded portion of a condensation model with a zone of high

Poisson's ratio. O is Poisson's ratio, p is density and the same Q applies for Qg4

and Qﬁ.
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ratio of 0.15 simulating the steam environment. In case steam condensation
(condensation state) is severe, a high Poisson's ratio of 0.4 (Figure 5.14D) was employed
to account for the presence of a non-viscous fluid mixing with the mobile viscous bitumen.
Numerical simulation in these cases assumes that the reservoir is widespread laterally
which is indeed the case, and the reflected rays do sample the interior of the zone without
encountering the edges.

Plots of the reflectivity functions for the undisturbed state at four different
frequencies are shown in Figure 5.9B. Except for some difference in general characters
and amplitude, the behavior of the reflectivity functions of the 7-layered and 146-layered
cases is very similar at all four frequencies. In order to compare theoretical results for
different states of the reservoir, it is convenient to define notations for major reflections.
For all cases P stands for the P-reflection from the thin layer at 426 m with a large
velocity spike and Ppgayf denotes the P-reflection from the half-space. Pp; and Pg) are
the P-reflections from the other two thin layers of high velocity at 460 m and 484 m depth
in model B (Figure 5.14B). Pc; and Pp) have the same arrival time in models C and D
(Figure 5.14C and D) and represent the P-reflection from the velocity discontinuity at
around 484 m in depth.

In order to see some interference effects from finely-layered structure at close offset
and earlier times, incident arrivals are attenuated by choosing a k-taper:
{0/0/(b &) source*09/(ba)source} With kmax being (source- Figures 5.15 and 5.16 show
the synthetic sections of both vertical and horizontal components. The amplitudes have
been exponentially scaled by exp(7t)/ 13. An attempt at identifying reflections from each
interface is difficult even at close offsets since the reflections in finely-layered structure tend
t0 interfere with one another giving rise to a broader integrated pulse. Reflection from the
half-space, Phgif can be seen in all cases (Figure 5.15). P is present at close offsets and

seems to lose its identity when one goes beyond 180 m. The arrival times of Pgj and Pg)
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are hard to define. Converted reflections are strong arrivals cutting the arrival Ppgir in the
middle of the sections (Figure 5.15). Horizontal components (Figure 5.16) are prominent
with many strong converted arrivals.

The spectral character of the components are given in Figures 5.17 and 5.18 for the
closest (=18 m), the middle (r=432 m) and the farthest (r=864 ) traces. The spectra
indicate that the spectral amplitude and frequency content decrease with offset. This is as
expected since high frequencies are more absorbable by the Q of the Earth and seismic
energy is spreading out along bigger wavefronts and anelastically attenuated in its passage
through the Earth. At close offset (r=18 m), the vertical spectra are bimodal and the
horizontal spectra have only one mode. The horizontal spectra have larger amplitudes and
energy content, thus justifying the predominance of the horizontal components over the
vertical ones. The spectra at the same offset for all three states look similar. Spectral
dissimilarity can be seen by taking the difference. For example, Figure 5.18D shows the
difference between the spectra of the undisturbed and condensation states. The difference
indicates the effect of Poisson's ratio on the spectral characters. Differences are mainly
confined within the low frequency band and imposes no difficulty for detection by modern
broadband recording instruments. However, the differences which varies within
approximately £0.05, though significant, may be too subtle to be detected since it has to be
recorded in a background of noise. It should be mentioned that the effect of Q has been
neglected in this study since in steam—condensation state, Q tends to be smaller than 10
and compound effects due to change in O and Poisson's ratio might greatly enhance the
difference (Macrides and Kanasewich, 1987). Also, greater spectral difference might be
expected if a window containing mostly arrivals from the target zone is analysed. Perhaps
the significant change due to the difference in Poisson's ratio can be found by analyzing the
change in seismic amplitudes with angle of incidence (AVO).

Since the only difference in structures lies in the target zone, seismic response
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above the zone should be expected to be the same. This is indeed the case as shown in the
difference plots (Figures 5.19 and 5.20). The plots show the differences of actual
amplitudes of the response between states with no exponential gain. The shaded portion is
positive difference and the unshaded is negative. The differences as shown in Figures
5.19A and B display the effect of structure difference on seismic signatures. The
difference in elastic properties in the steam-invaded zone induce shifts in arrival time and
changes in seismic characters of later arrivals. There are two strong events of difference
between the undisturbed and steam states in Figure 5.19A indicating that there are
significant variation in reflection amplitudes arising from the steam-zone (steam-zone
event) as well as from the half-spaces (half-space event). The former is due to change in
elastic properties and the latter is mainly due to time shift. As well, the plot shows that the
undisturbed amplitudes are stronger than the steam amplitudes and this property persists
across the section. The steam-zone event tends to have two strong peaks which are
stronger at close offset than at far offset. The reverse is true for the horizontal difference as
shown in Figure 5.20A where at close offset, the amplitudes from both states are
comparable and the undisturbed amplitudes are bigger only at far offsets. Differences in
ater arrivals such as multiples are more evident in the horizontal components.

Figures 5.19B and 5.20B show the difference in seismic responses between the
undisturbed and condensation states. Increase in Poisson's ratio reduces the shear wave
velocity. Difference in later arrivals such as converted modes are stronger in this case
especially in the horizontal components (Figure 5.20B). Amplitudes of horizontal response
from the target zone in both states are quite similar giving rise to an "almost” null
difference (Figure 5.20B) as compared with the difference between undisturbed and
steam states (Figure 5.20A). As shown in Figure 5.19B, the strength of the two peaks of
the steam-zone events at close offsets is replaced by a strong trough from 430 m onwards

indicating that the condensation amplitudes are stronger at far offsets. The half-space
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event persists across the section as in the undisturbed-steam states. The effect of
Poisson's ratio on seismic response has been intensively investigated under the category of
amplitude versus offset (AVO) using plane wave theory by Koefoed (1955), Ostrander
(1984), Shuey (1985) and Tsingas (1989), to name a few. The main problem is to infer
the underlying elastic parameters from seismic amplitudes. In cases where the fine-scale
structure of the medium is considered, care has to be taken to analyse the reflection
amplitudes for formation identification and elastic parameters inversion since the effect of
such fine structure give rises to anomalous reflection amplitudes due to interference
(Stephens and Sheng, 1985). Figures 5.19C and 5.20C display the effect of Poisson's
ratio on seismic response. Since P-wave velocity does not change, the difference seen in
these plots originates from the converted shear modes due to change in Poisson's ratio
from 0.15 to 0.4. Significant differences can be seen from moderate to far offsets. At far
offset strong positive difference of the steam-zone event is shown in vertical components
(Figure 5.19C) and strong negative difference in horizontal components (Figure 5.20C).
The half-space event is significant up to 700 m. Differences in later arrivals are more
prominent in horizontal components.

In summary, there are significant changes in seismic amplitudes, frequency content
and arrival time between states. However, most of these subtle differences can only be

detected at the far offsets, i.e. beyond 432 m.

5.4 Conclusion

By making a series of comparison between the three states: undisturbed-steam,
undisturbed-condensation and steam-condensation using the multilayered "Cold Lake"
model, significant changes in seismic response have been found. These subtle changes can

provide valuable information about the state of the target zone, however they can only be
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detected at far offsets.

Although the numerical results obtained using an -k integral representation are
not identical with the results based on the Cagniard-Pekeris-de Hoop method for the elastic
theoretical model, the high degree of similarity gives us confidence that the -k method
may lead to reliable results for complex structures, especially for structures that contain a
certain degree of anelasticity.

Synthetic sections for four simple structures: two deep and two shallow indicate
that within the calculated frequency-wavenumber window, the method gives iises to all the
arrivals predicted by simple ray tracing. Converted reflections are preminent in all cases
and in the horizontal component sections. Multiple-components recording: vertical and
horizontal are beneficial for shear wave analysis since converted events are masked in the

vertical components.
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CHAPTER 6
CONCLUDING REMARKS

An analytic expression for the transmitted SH-wave from an impulsive line source
through a boundary separating two elastic, homogeneous and solid half-spaces has been
derived by means of the Cagniard-de-Hoop method. Besides the transmitted arrival, an
evanescent wave shows up in the synthetic results as part of the solution of the wave
equation when the incident angle is greater than the critical angle.

A very thorough investigation of the properties of the evanescent wave was made,
particularly for the case when attenuation is jntroduced in the medium. This has clarified
the behavior of particle motion which, in the literature, had been extrapolated to point and
line sources with the use of plane wave theory. When either the source or the receiver is
close to the boundary between the half-spaces, the amplitudes of the transmitted and
evanescent waves are comparable. The evanescent wave does not have a definite phase
velocity but depends on the incident angle and has its maximum attenuation perpendicular
away from the boundary. The amplitude decay of waves with distance far from the
interface agrees well with the rate predicted by asymptotic theory. Utilizing the small skin-
depth penetration of the evanescent wave and in favorable velocity contrasts and source-
receiver configurations, valuable elastic properties of the shallow crusts may be retrieved.

The expression for the transmitted SH-wave for the same two-half-spaces problem
has been recast in a form of an improper @-k double integral. In this way, effects of
anelasticity can be incorporated easily by making velocities of the medium complex, For
the simple models of two anelastic or one elastic and one anelastic half-space in welded
contact considered, all the arrivals predicted by the elasticity theory are present. Elastic

results compare well with those obtained by the Cagniard-de Hoop method. Synthetic
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results have demonstrated that attenuation does not drastically change the physical picture
seen in the elastic case but modifies it in a continuous manner. The broadening of the pulse
and the reduction of amplitudes have been anticipated due to dispersion and attenuation.
The evanescent wave is present in anelastic media after a certain threshold distance is
satisfied. The argument in the inhomogeneous plane wave theory that the critical angle is
discrete or non-existent in anelastic medium (Borcherdt, 1973 and 1977; Krebes, 1980)
does not seem to explain the phenomena satisfactorily. The reason for the discrepancy
between our results and those from plane wave theory lies in the importance of curvature of
the wavefronts considered in this case.

The basic mathematical formalism of wave propagation in an anelastic layered half-
space due to a point P-source has been discussed along with its numerical implementation
and computation aspects. The displacement components are expressed in closed form as
improper @-k double integrals. The integrands of the k-integral are products of the
reflectivity functions and offset-dependent Bessel functions. The reflectivity function
depends on the elastic properties of the structures and is a linear combination of factors of
the source terms and the 2nd order minors. These terms can be obtained by directly
integrating the 4th and 6th order differential systems of 1st order equations. The
reflectivity functions are the same for any model and source depth and are calculated only
once. The upper limit, kyqax Of the k-integral, is determined to cover the significant parts
of the integrands by examining some plots of the reflectivity functions. Examination of this
kind is not necessary if a certain k-window (or velocity-window) is desired. The
integration range is then divided into three or four subintervals and within each Romberg
scheme of 513 points is used. Within any frequency band, 513 frequency points are
computed and the @-integral is achieved by an inverse FFT. Fine sampling in frequency
space is necessary to avoid aliasing events in temporal space unless some smoothing

operations are taken such as using complex frequency. Cosine taperings in the @-k plane
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are applied to avoid aliasing events in r-f space.

The -k integration method demonstrated here has the advantage of yielding the
complete solution within a desired frequency-wavenumber bandpass. Surface and direct
waves can be included or excluded by limiting the wavenumber integration. Similar to the
reflectivity method, our formulation is computationally expensive. Computational time can
be greatly reduced if an adaptive integration scheme with automatically-adjusted sampling
interval is employed to avoid oversampling in the smooth part of the integrand. As well,
less computation time is required by finding the eigen-solutions in the homogeneous
sublayers and limiting the Runge-Kutta integration in the inhomogeneous sublayers.
However, unlike the former method, the theory as presented provides a simpler algorithm,
bypassing the bookkeeping required to account for the upgoing and downgoing waves.

Numerical studies from some simple crustal and shallow models have demonstrated
the numerical approach is well adapted to any model on any scale. The results from such
models have also indicated that the occurrence of events agree well with ray tracing.
Synthetic seismograms from finely-layered Cold Lake models have shown detectable
changes in seismic amplitudes and arrival times in pre- and post-steam condition.
However, spectral characters from synthetic results do not show as strong differences
between states as the analysis of real data indicated (Macrides, 1987). Far-offset
recording is able to provide valuable information about the current state: sream or
condensation of the reservoir. Recording of both vertical and horizontal components is
desirable to distinguish the underlying factors inducing the changes.

In this dissertation a complete theoreticai and numerical exposition of the @-k
method has been presented and the synthetic seismograms using the algorithm as presented
have been given for the first ime. The method yields the complete wave solution for a
point P-source in a vertically inhomogeneous and anelastic layer over a half-space. The

method has been shown to be practical with the availability of the latest parallel or vector
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With the current computer power and storage capacity, computing wave

e w-k formalism will be our next

processors.

propagation in anisotropic and porous media using th

phase of investigation.
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