INFORMATION TO USERS

This manuscript has been reproduced frecm the microfiim master. UMi fiims
the text directly from the original or copy subriitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or iliustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

University of Alberta

Retargetable Arithmetic Architecture for Low-Power Baseband

DSP Supporting the Design for Reusability Methodology

Hongfan Wang

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Fall 2000

i~

National Library
of Canada

Acquisitions and
Bibliographic Services

385 Wellington Street
Ottawa ON K1A ON4

Bibliotheéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-59896-9

University of Alberta
Library Release Form

Name of Author: Hongfan Wang

Title of Thesis: Retargetable Arithmetic Architecture for Low-Power Baseband DSP

Supporting the Design for Reusability Methodology
Degree: Master of Science
Year this Degree granted: 2000

Permission is hereby granted to the University of Alberta to reproduce single copies of
this thesis and to lend or sell such copies for private, scholarly of scientific research

purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material form

whatever without the author’s prior written permission.

e V4
Hongfan Wang
8907-112 St., Apt. 02B

Edmonton, Alberta

Canada T6G 2C5
Date: %k/ﬁ 2, 2900

Abstract

Given the prevalence and sophistication of wireless communication devices,
contemporary digital designers are increasingly challengéd while developing various
baseband digital signal processing (DSP) systems with better adaptability, higher
throughput and less power consumption. Much attention is being paid to improve the
performance of key DSP components like the multiplier, largely due to its importance in
the performance of the whole baseband DSP system.

This thesis presents a novel retargetable multiplication component with high
throughput and power efficiency. This component was developed based on the study of
(1) low-power wireless multimedia communication systems and (ii) addition and
multiplication schemes for baseband DSP components. It is capable of handling both 8-
and 12-bit operands, and switching between radix-4 and 8 Booth recoding schemes.
Structurally, this unit incorporates various architectural level techniques including
pipelining, parallelism, etc., and suitable addition schemes like carry save and carry
lookahead designs. Overall, it has eight pipelining stages. Meanwhile, this unit takes the
form of a soft embedded core and serves as a reusable module for System-on-a-Chip
(SoC) designs. During the development process, design for reusability methodology was
adopted to ensure the fulfillment of desired features. Extensive verification and
simulation proved that this unit performs correct retargetable operation, achieved over
150 MIPS throughput, and obtained at least a 50% chance of reducing the number of

additions needed for multiplication as compared to those of the conventional scheme.

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommended to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled Retargetable Arithmetic
Architecture for Low-Power Baseband DSP Supporting the Design for Reusability
Methodology submitted by Hongfan Wang in partial fulfillment of the requirements for

the degree of Master of Science.

ey)/ K,\ /‘\/Q
Dr. Martin gala /

N .zD,N

Dr. Nelson G. Durdle

Dr. Douglas M. Gingn/éh

Date: %/JA[(/V«\ QO/;Z\;\MOO

Acknowledgements

I would like to express my sincere gratitude and appreciation towards my supervisor, Dr.
Martin Margala, for his support and guidance throughout my research process. Also, [am
grateful for the productive and friendly environment created by my fellow students and
colleagues in the Department and TRLZabs. And most importantly, I would like to thank
my wife for her understanding and support.

Finally, I would like to acknowledge and thank the support from TRLabs

(Telecommunications Research Labs) and CMC (Canadian Microelectronic Corporation).

Table of Contents

CHAPTER 1 INTRODUCTION

I.1 Wireless Multimedia Communication Systems
1.2 Digital Signal Processing Systems
1.3 Research Objectives

1.4 Thesis Organization

CHAPTER 2 LOW-POWER WIRELESS MULTIMEDIA

COMMUNICATION SYSTEMS
2.1 Low-Power Wireless Communication Protocol Design
2.1.1 Data Link Layer
2.1.2 Transport Layer
2.1.3 Formal Design Approach

2.1.4 Miscellaneous

8]
§S]

Low-Power Front-end Design

D

.2.1 Heterodyne Architecture

o
N
to

Homodyne Architecture
2.2.3 Low-IF Architecture

2.3 Low-Power Baseband Design
2.3.1 Algorithmic Level Low-Power DSP Design
2.3.2 Architectural Level Low-Power DSP Design
2.3.3 Lower Level Low-Power DSP Design

2.3.4 Conclusions

13

14

14

15

16

16

17

17

18

CHAPTER 3 ADDITION AND MULTIPLICATION SCHEMES FOR

BASEBAND DIGITAL SIGNAL PROCESSING

COMPONENTS

3.1 Addition

3.1.1 Basic Operations

3.1.1.1

3.1.1.2

Half Adder

Full Adder

3.1.2 Implementation Schemes

3.1.2.1
3.1.2.2
3.1.2.3
3.1.24
3.1.2.5

3.1.2.6

3.1.2.8
3.1.29
3.1.2.10
3.1.2.11

3.2 Multiplication

Bit Serial Adder

Carry Ripple Adder
Carry Completion Adder
Carry Skip Adder

Carry Lookahead Adder
Manchester Adder
Conditional Sum Adder
Carry Select Adder
Carry Save Adder
Digit-Serial Adder

Redundant Number Addition

3.2.1 Basic Operations

3.2.2 Implementation Schemes

3.2.2.1

Multiple Scan & Shift Multiplication

20

20

20

21

21

21

22

23

24

26

30

31

33

34

35

35

35

35

3222

3223

3.224

3.2.25

3.2.2.6

3.2.2.7

3.2.28

3.229

String Recoding and Booth Multiplier
Canonical Recoding

Array Multiplier and its Modification
Wallace Tree / Dadda Multiplier
Digit-Serial Multiplier

Other Array Multipliers

ROM-Adder Multiplication Networks

Logarithmic Multiplication

3.3 Circuit Design Styles

3.3.1 Static CMOS Logic

3.3.2 CMOS Transmission Gate Logic

3.3.3 Complementary Pass-Transistor Logic and Double Pass-Transistor

Logic

3.3.4 Cascode Voltage Switch Logic

3.3.5 Differential Cascode Voltage Switch Logic

3.3.6 Other Circuit Design Styles

3.4 Characterization

3.5 Conclusions

CHAPTER 4 RETARGETABLE ARITHMETIC ARCHITECTURE FOR

LOW-POWER BASEBAND DSP SUPPORTING THE DESIGN

FOR REUSABILITY METHODOLOGY

4.1 Introduction

4.2 Features of the Multiplication Component

36

39

39

R

45

45

46

46

46

46

47

47

47

48

49

49

50

4.3 Structures of the Reusable Multiplication Component

43.1 Overview

4.3.2 Recoding Section

4.32.1

4322

4323

4324

Code Generate Stage
Enable Generate Stage
Value Generate Stage

Partial Product Generate Stage

4.3.3 Custom Addition Section #1

4.33.1

4332

First Carry Save Addition Stage

First Carry Propagate Addition Stage

4.3.4 Custom Addition Section #2

4.34.1

4342

Second Carry Save Addition Stage

Second Carry Propagate Addition Stage

4.4 Design Methodology

4.4.1 Design Flow

4.4.2 Timing and Synthesis Considerations

4.5 Results

4.5.1 Retargetability

4.5.2 Throughput

4.5.2.1

4.5.2.2 Timing Report for Enable Generate Stage
4.5.2.3 Timing Report for Value Generate Stage

4.5.2.4 Timing Report for Partial Product Generate Stage

Timing Report for Code Generate Stage

51

51

53

53

55

57

57

60

60

64

64

65

67

67

69

70

70

71

72

73

74

76

4.5.2.5 Timing Report for First Carry Save Addition Stage 77
4.5.2.6 Timing Report for First Carry Propagate Addition Stage 78
4.5.2.7 Timing Report for Second Carry Save Addition Stage 80

4.5.2.8 Timing Report for Second Carry Propagate Addition Stage 81

4.5.29 Summary of Maximum Delay for Each Pipeline Stage 83

4.5.3 Power 84

4.6 Design for Testability of the Multiplication Component 85
4.6.1 Scannable Registers 85

4.6.2 AND/OR Tree Based Technique 86

4.6.3 C-testable Technique for Iterative Logic Arrays 87

4.6.4 Application to the Multiplication Component 88
4.6.4.1 AND/OR Tree for the Recoding Circuit 88

4.6.4.2 C-testable Technique for the Adders 89

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 90
BIBLIOGRAPHY 93

APPENDICES 102

List of Tables

Table 1.1: Overview of characteristics of the multiplication component.

Table 3.1: Radix-4 Booth recoding algorithm.
Table 3.2: Radix-8 Booth recoding algorithm.

Table 3.3: Radix-4 canonical multiplier recoding algorithm.

Table 4.1: Function of the control signal.
Table 4.2: Correspondence between cod_i and the partial product needed.

Table 4.3: Maximum delay of each pipeline stage.

Table 4.4 Simulation result comparing addition needed with and without recoding.

37

37

39

53

55

83

84

List of Figures

Figure 1.1: RF design hexagon.

Figure 1.2: Schematic of a digital signal processing system.
Figure 2.1: A hybrid reference model.

Figure 3.1: Schematic of a bit serial adder.

Figure 3.2: Schematic of an 8-bit carry ripple adder.

Figure 3.3: Schematic of a carry completion adder.

Figure 3.4: Schematic of a carry propagation (CP) cell.
Figure 3.5: 16-bit constant-block-width carry skip adder.
Figure 3.6: 16-bit variable-block-width carry skip adder.
Figure 3.7: Schematic of a 4-bit carry lookahead adder.
Figure 3.8: A 16-bit adder using hierarchical carry lookahead.

Figure 3.9: Schematic of a 4-bit Manchester adder.

Figure 3.10: Schematic of a 4-bit conflict free Manchester adder.

Figure 3.11: Schematic of an 8-bit conditional sum adder.
Figure 3.12: Schematic of an 8-bit carry select adder.

Figure 3.13: Schematic of a carry save adder.

10

22

25

27

28

29

Figure 3.14: Schematic of a pipelined carry propagate adder (CPA).

Figure 3.15: Carry save and propagate adder using 2-bit multiplier scan.
Figure 3.16: Schematic of a 4-bit scanning Booth multiplier using CSA/CPA.
Figure 3.17: Schematic of an 8-bit array multiplier, with a unit cell.

Figure 3.18: Schematic of an 8-bit Wallace tree multiplier.

Figure 3.19: Reduction scheme of an 8-bit Dadda multiplier.

Figure 4.1: Nlustrative diagram of main structures of the multiplication co mponent.

Figure 4.2: Code generate stage.

Figure 4.3: Enable generate stage.

Figure 4.4: Value generate stage.

Figure 4.5: Partial product generate stage.

Figure 4.6: First carry save addition stage.

Figure 4.7: First carry propagate addition stage.
Figure 4.8: Second carry save addition stage.

Figure 4.9: Second carry propagate addition stage.
Figure 4.10: Traditional ASIC design flow.

Figure 4.11: Core design flow.

Figure 4.12: Timing report for code generate stage.
Figure 4.13: Timing report for enable generate stage.
Figure 4.14: Timing report for value generate stage.
Figure 4.15: Timing report for partial product generate stage.

Figure 4.16: Timing report for first carry save addition stage.

33 |
35
38
41
42

43

52
54
56
58
59
61
63
65
66
67
68
73
74
76
77

78

Figure 4.17:
Figure 4.18:
Figure 4.19:
Figure 4.20:
Figure 4.21:
Figure 4.22:
Figure 4.23:

Figure 4.24:

Timing report for first carry propagate addition stage.
Timing report for second carry save addition stage.
Timing report for second carry propagate addition stage.
Scannable registers.

ADD/OR tree based structure.

C-testable structure for an ILA.

Coding circuit with AND/OR trees.

Application of C-testable technique to a CLA adder.

80

81

83

86

87

87

88

89

Chapter 1

Introduction

Given the rapid development of wireless multimedia communication devices, various
digital signal processing (DSP) systems are under intensive investigation for better
adaptability, higher throughput, and less power consumption [1]. These demands, in turn,
are prompting research on algorithmic and architectural levels during DSP system design.
From a hardware perspective, various DSP components are rigorously studied in order to
achieve better overall system performance. Among them, addition and multiplication
components are major parts in all DSP systems and are considered bottleneck of
improvements in the aforementioned areas.

This thesis research was to develop a novel retargetable, high throughput and power-

efficient multiplication component for possible use in DSP systems. Besides having these

functional features, it was also developed through the adoption of a formal design
methodology and takes the form of a reusable module ready for incorporation into
various digital systems. As will be addressed in a later chapter, this approach is a
promising way of tackling the ever-increasing gate-count and system complexity

problems facing contemporary hardware designers.

1.1 Wireless Multimedia Communication Systems

Generally speaking, wireless multimedia communication systems include the adopted
wireless communication protocols, along with wireless terminals and base stations that
physically transmit and receive information between communicating parties. Hardware
designers normally pay attention to wireless terminals, which can be divided into front-
end and baseband portions although exact definition varies, and the quantification of their
interactions is still under investigation [2]. The front-end portion handles radio frequency
signals and normally includes low noise amplifier, mixer and image rejection filter, etc.,
while the baseband portion deals with low-frequency analog and digital signal processing
tasks.

Due to the many design tradeoffs [3] (Figure 1.1 [4]), as well as designer expertise
requirements and the lack of suitable CAD tools, the front-end portion of the wireless
terminal is still the design bottleneck of the entire system although the baseband portion

involves far more components.

o

Linearity Frequency

e

Supply 4+—> Gain
Voltage

Figure 1.1 RF design hexagon.

In the baseband portion of a wireless terminal, mainly DSP systems carry out various
functions so as to facilitate wireless multimedia communications. These functions can be
categorized into (i) communication functions like speech coding, channel coding,
demodulation, equalization, etc.; and (ii) multimedia user interface functions like audio
compression, video compression, speech and handwriting recognition, and speech
synthesis. (Some of the functions are not yet available on current commercial wireless
terminals, but are certain to appear in the future.) It is also expected that more signal
processing tasks will be shifted from the front-end to the baseband in order to make up

for the inherent limitations in the front-end.

1.2 Digital Signal Processing Systems

Digital signal processing systems (Figure 1.2) generally include an analog-to-digital
converter (ADC) and a digital-to-analog converter (DAC), which connect the digital
signal processor with real-world analog signals. Within the digital signal processor are

memory elements and addition and multiplication components [5].

Analog Digital Digital Digital Analog
signal A/D signal | 57 signal | D/A signal
? converter > & : converter)
processor

Figure 1.2 Schematic of a digital signal processing system.

Digital signal processing systems have rapidly developed in the past several decades,
largely due to their inherent advantages over analog signal processing systems and the
advances in very-large-scale-integration (VLSI) technology. These advantages include
much better (i) immunity towards environmental and aging effects, (ii) flexibility in
reconfiguration and adaptation for applications, and (iii) control over accuracy, etc. On
the other hand, the drawbacks of DSP systems compared to analog signal processing
systems are (i) the need for ADC and DAC, and (ii) the possibility that throughput
requirements for digital components may exceed those available from current state-of-

the-art VLSI technology. This thesis research partially addressed the latter drawback.

1.3 Research Objectives

This thesis research focused on the research and development of a novel multiplication
component for possible use in baseband DSP systems. The uniqueness of this component
is demonstrated in three areas: (i) functionality, (ii) structure, and (iii) design

methodology, as summarized in the following table.

Functionality

Retargetability

Expected to be capable of handling both 8- and 12-bit operands and
switching between radix-4 and 8 Booth recoding schemes

High Throughput

Expected throughput exceeding 150 MIPS

Low Power Operation

Expected power consumption less than that required for conventional

multiplier, i.e., array multiplier

Structure

Architecture

Incorporation of wvarious architectural level techniques, i.e.,
pipelining, parallelism, etc.

Addition Components

Selective usage of suitable addition schemes within certain pipelining

stages, i.e., carry save addition, carry lookahead addition, etc.

Design

Methodology

Design Flow
Top-down, yet recursive approach
Timing, Synthesis and DFT Considerations

Robust and reliable core design

Table 1.1 Overview of characteristics of the multiplication component.

Functionality: Retargetability is provided to avoid multiple multiplier inclusion in
cases when different wordlengths and Booth recoding schemes are required, thus
increasing overall system efficiency. For example, when both radix-4 and 8 Booth
recoding schemes are used from time to time, this multiplication component can be
adopted instead of using two separate multipliers. Thus, substantial savings in hardware
can be achieved resulting from hardware sharing within this component. On the other
hand, since this component is to be incorporated into baseband DSP systems, high
throughput, which in this project is over 150 MIPS, is desired to handle the increasing
signal processing tasks needed within the mobile terminal. This retargetability and
throughput requirement should also be obtained at the expense of less power
consumption as compared to that of conventional multipliers, because the increase in
battery power occurs at a much slower pace.

Structure: The structure of this multiplication component was developed in order to
meet the above-mentioned functionality requirements, after a comprehensive literature
review and comparison between different implementation schemes. From an architectural
point of view, it involved the combination of various architectural level techniques, like
pipelining and parallelism. Also, within certain pipeline stages, a combination of different
addition schemes were used, including carry save addition and carry lookahead addition.

Design Methodology: This multiplication component was developed in the form of a

reusable soft embedded core following the design methodology, which included an
enhanced design flow, as well as timing, synthesis and DFT considerations. This design
methodology was adopted to produce a developed component for possible incorporation

into System-on-a-Chip (SoC) designs. The SoC design approach, which will be further

described in Section 4.1, provides an efficient way for designing system with no
inalienable discrete components. It is gaining increasing popularity in the semiconductor

industry.

1.4 Thesis Organization

This thesis is organized into five chapters. Chapter 1 provides a brief explanation of the
motivation for undertaking a research project about multiplication components for
baseband DSP systems. Chapters 2 and 3 explain the background information in more
detail and result from comprehensive literature reviews on broader topics. Among them,
low-power wireless multimedia communication systems are discussed in Chapter 2 and
addition and multiplication schemes for baseband DSP components are reviewed in
Chapter 3. Chapter 4 describes the research and development of a novel multiplication
component for baseband DSP systems. It includes (i) introduction to SoC designs, (ii)
features and (iii) structures of the reusable multiplication component, (iv) design
methodology, (v) results, and (vi) design-for-testability (DFT) considerations. Finally,
Chapter 5 provides conclusions for this thesis research and makes recommendations for

research in the future.

Chapter 2

Low-Power Wireless Multimedia

Communication Systems’

Currently, much of the information technology (IT) industry’s attention is being paid to
low-power wireless multimedia communication systems, largely due to the surging
demand for better connectivity and stronger mobile computing ability, and the relatively
slower progression in battery power [6]. Design approaches for low-power wireless
multimedia communication systems normally fall into three areas: (i) wireless

communication protocols used by mobile terminals and the wireless communication

" This section is part of a published paper. Hongfan Wang and Martin Margala, Low-Power Wireless
Multimedia Communication Systems, Proceedings of the 2000 Canadian Conference on Electrical and
Computer Engineering, May 2000, pp. 1063 — 1067.

network, (ii) the front-end portion, and (iii) the baseband portion of the mobile terminal.
(However, the quantification of interactions between these two portions is still under
investigation.) These design approaches are reviewed in this chapter.

In the communication protocols area, low-power design approaches for data link
protocols, especially the medium access control (MAC) protocol, and for network
protocols are addressed, along with formal design suggestions for communication
protocols and the practice of software partitioning.

In the mobile terminal front-end area, various architectures are reviewed, including
heterodyne, homodyne, and low-IF (intermediate frequency), along with their
implications for integration and power consumption.

In the mobile terminal baseband area, various signal processing units carry out
communication functions and multimedia user interface functions. General approaches

for low-power digital signal processing system design are addressed.

2.1 Low-Power Wireless Communication Protocol Design

The research on designing low-power communication systems used to be in the hardware
domain, focusing on various components in a mobile terminal, like the transmitter,
receiver and the baseband signal processing units. However, significant power saving can
also be achieved through tailoring the protocols used by wireless communication
networks according to the environment they operate in. Basically, most networks are
organized in a layered structure, with each layer having a specific function, while

protocols are designed as rules and conventions for effective and robust electronic

communication. An easy to understand (though neither OSI nor TCP/IP) hybrid reference
model is shown in Figure 2.1 [7]. Currently, more attention is being paid to the data link

layer and transport layer in which fine-tuning protocols can achieve more power-saving.

Application layer

Transport layer

Network layer

Data link layer

Physical layer

Figure 2.1 A hybrid reference model.

2.1.1 Data link layer

Generally speaking, the data link layer provides a well-defined service interface to the
network layer [7]. For wireless communications, this process involves grouping network
layer packets into frames, wireless link error control, and wireless flow control to
facilitate the data transportation between the network layers of the two communicating
parties.

I[n terms of low-power design research, the data link layer is receiving more interest
than the transport layer, while within the data link layer, the power-conserving MAC

protocols are most sought after.

10

The MAC protocol allocates the multi-access wireless channel among competing
mobile users. Some power-conserving design guidelines for the MAC protocol were
suggested [8, 9], including (i) eliminating collisions and the resulting retransmission; (ii)
broadcasting the data transmission schedule for mobiles, so that they can switch to the
standby mode according to the schedule; (iii) buffering packets by the base station until
the mobile becomes active and decides to receive them; (iv) allocating contiguous slots
for the mobile to transmit and receive data so as to minimize the switching between these
two modes; and (v) using a single packet to reserve bandwidth in multiple cells. These
suggestions are based on the fact that the transmission mode consumes much more power
than the reception mode, while little power is spent during the standby mode. Also, much
power is spent during the switching between the transmission and reception modes.

Some power-conserving MAC protocols were proposed, and a comparison between
some existing MAC protocols was carried out [9] and showed that less contention
normally leads to lower power consumption. These MAC protocols include [EEE 802.11
(10], PRMA (Packet reservation multiple access) [11], MDR-TDMA (Multiservices
dynamic reservation TDMA) [12], EC-MAC (Energy-conserving MAC) [13], and

DQRUMA (Distributed-queuing request update multiple access) [14].

2.1.2 Transport layer

The transport layer provides reliable, cost-effective data transportation between the
communicating parties [7], a function achieved through the adoption of transport

protocols like TCP (Transmission Control Protocol). They handle error control, flow

11

control, etc., with the former being extremely important for wireless communications due
to the inherent high error rate resulting from various noise sources and signal fading.
Some power-conserving design guidelines for transport protocols were suggested [8],
including (i) incorporating effective error-control mechanisms, and (ii) splitting the
transport connection into wired and wireless network portions. Both of these guidelines

aim at reducing retransmission.

2.1.3 Formal design approach

In order to facilitate formal verification and architectural-level exploration, a formal
design approach for wireless communication protocols was suggested [15]. The process
includes (i) formal specification, (ii) detailed extended finite state machine (EFSM)
model development, (iii) debugging through high-level simulation and formal

verification, (iv) formal verification and performance estimation, and (v) implementation.

2.1.4 Miscellaneous

Besides the above-mentioned protocols, other techniques like software partitioning can
be adopted in the application layer for building low-power wireless multimedia
communication systems. In a software partitioned system, the base station performs
power-intensive computation, while the mobile supports the operation of the wireless

link, and the acquisition and display of multimedia data [16].

Several prototypes have been made. (i) ParcTab [17], serving as a preliminary testbed
for ubiquitous computing, integrates a palm-sized mobile computer into an office
network. During the design, attention was paid to reduce the cost and size of the mobile
(tab), and most of the general-purpose computing is performed on servers. (ii) InfoPad
[16], an indoor mobile multimedia system, emphasizes the low power operation of the

mobile (pad), and all general purpose computing is performed on servers.

2.2 Low-Power Front-End Design

Besides tailoring communication protocols for power conservation, researchers still focus
much attention upon wireless terminals, trying to reduce their power consumption. As
mentioned in Chapter 1, the front-end portion of the wireless terminal handles radio
frequency signals and normally includes low noise amplifier, mixer and image rejection
filter, while the baseband portion is concerned with Low-frequency analog and digital
signal processing.

For low-power front-end design, higher integration and miniaturization are always
desirable [18], although current technology normally requires discrete or bulky parts
(e.g., inductors) for bandpass amplifiers and filters in order to meet performance
specifications [19]. This review, however, focuses on architectural level exploration,
since it can lead to possible removal of these discrete or bulky components, which
generally consume much power and yield orders of magnitude in power reduction, as

demonstrated by the development of radio [20, 21] and paging [22] receivers.

13

Most commonly used architectures are briefly addressed, which include heterodyne,
homodyne, and low-IF architectures, with their limitations and implications for

integration and miniaturization stressed.

2.2.1 Heterodyne architecture

In heterodyne architectures, the desired signal in a high-frequency narrow channel is
downconverted from its carrier frequency to IF through a mixer (converter) to make it
feasible to filter out strong interferers surrounding the signal channel {83]. After the first
downconversion, the signal can be demodulated or further downconverted.

Heterodyne architectures are the most commonly used transceiver front-end
architecture. Their major problem is that of mirror frequency resulting from the mixer’s
inability to differentiate the polarity of frequency differences. Consequently the
transceiver needs at least one high-quality, tunablem high-frequency filter, which is still
available only in discrete form. Also, high-frequency amplifiers are normally required

and are not very power-efficient.

2.2.2 Homodyne architecture

In homodyne architectures, the desired signal is directly downconverted from its carrier
frequency to the baseband through simple or quadrature downconversion with local
oscillator (LO) frequency equal to the carrier frequency, and the IF becomes zero [83].

Quadrature downconversion generates both in-phase (I) and quadrature (Q) components

14

of the signal while translating the spectrum to zero frequency, and works for frequency-
and phase-modulated signals. Simple downconversion can be used for double-sideband
AM signals.

Homodyne architectures have no mirror frequency problem, and thus a low-quality,
broadband, high-frequency filter can be used. After downconversion, lowpass filters and
baseband amplifiers can be used and are ready for integration. However, a serious
problem associated with this architecture is DC offset caused by transistor mismatch, LO
leakage to input, or rectification due to even order distortion. Besides problems to itself,
radiation due to leakage of the LO signal to the antenna can cause interference to other

receivers in the same band and using the same wireless standard [4].

2.2.3 Low-IF architecture

In low-IF architectures, the same downconversion principle is used, except that the IF is
chosen to be in the range of hundreds of kHz to a few MHz, instead of zero Hz [23][83].

This architecture can also have a high degree of integration, since filtering is mainly
carried out at low frequency. Moreover, DC offset can be avoided if the downconverted
signal channel does not cover zero frequency. However, in-band image rejection requires
high-performance image reject mixers and is still under investigation [19].

Due to the inherent tradéoffs in key front-end components and the quick
sophistication of digital signal processing units in the baseband, it is expected that more
signal processing tasks will be shifted to the baseband so as to make up for the

imperfections in the front-end.

15

2.3 Low-Power Baseband Design

In the baseband portion of a wireless terminal, most communication functions, like
speech coding, channel coding, demodulation, and equalization, and multimedia user
interface functions like audio compression, video compression, speech and handwriting
recognition, and speech synthesis, (some are to appear in the future), are carried out
through various digital signal processing systems.

For the predominant CMOS digital circuits, power consumption comes from mainly
three sources, as shown in the following equation [24, 25]:

Potat = Py o(CreVeVygef) + Lc®Vyg + lieakage® Vg 2.1)
where Py is the total power dissipation, P, is the activity factor, C_ is the loading
capacitance, V is the voltage swing, Vg4 is the supply voltage, fuy is the clock frequency,
I 1s the direct-path short circuit current, and ljcakage 1S the substrate injection current and
subthreshold current. Normally, the first component of the equation plays a major role in
total power dissipation; thus making algorithmic and architectural level exploration
highly desirable and effective for low-power digital design. Much attention was spent on

this area while designing low-power DSP systems.

2.3.1 Algorithmic level low-power DSP design

Algorithmic level low-power DSP design techniques include pipelining [24, 26], retiming

[27], unfolding [28, 29], loop-unrolling [30], look-ahead, [31], and algebraic

16

transformation [32], and comprehensive reviews have been published [33, 34]. Most of
these techniques unveil or create concurrency to increase throughput and allow voltage
scaling, but these are achieved at the expense of larger silicon area consumption. For
example, pipelining involves delay element insertion at appropriate intermediate points in
the data-flow graph of an algorithm/structure to facilitate concurrent signal processing.
Retiming involves moving around delays in a data-flow graph while not changing the
computation and can be used to reduce the critical path of the data-flow graph.

From another perspective, algorithmic level low power design can be pursued
through: (i) reducing the switched capacitance by minimizing the complexity of the

system; (ii) reducing switching activity by data coding [35].

2.3.2 Architectural level low-power DSP design

Architectural level low-power DSP design techniques include pipelining [24, 26],
parallelism, [24], distributed processing [35, 36], and dynamic and static power
management [35]. From a hardware design perceptive, these techniques lie at the second
highest level of abstraction, the “register-transfer level” (RTL), in which the system is

described in terms of data storage and transformation units.

2.3.3 Lower level low-power DSP design

Besides the investigation of the algorithmic and architectural levels, low power DSP
design can also benefit from lower level techniques such as technology optimization, as

well as physical, circuit and logic style optimization [24]. Detailed discussions about

17

these fields can be found in the references [35, 37, 38]. However, these optimizations
often reduce the power consumption of DSP systems in a rather indirect way by

improving the power performance of various DSP sub-components.

2.4 Conclusions

Major issues in the design of low-power wireless multimedia communication systems
have been briefly reviewed. Generally speaking, wireless communication protocol
selection and design should reflect power-conserving principles, e.g., minimizing
retransmission, shortening active mode duration, and decreasing mode switching, to
preserve battery power on the mobile terminal. Meanwhile, the front-end of mobile
terminals must strive for a higher level of integration and miniaturization, possibly
through architectural innovation, so as to reduce power consumption while still meeting
prescribed specifications and maintaining a certain quality of service (QoS). On the other
hand, power reduction in the baseband of mobile terminals can take advantage of the
developments in low-power CMOS digital design, while higher level algorithmic and/or

architectural modifications provide more options for much better power efficiency.

18

Chapter 3

Addition and Multiplication Schemes for

Baseband Digital Signal Processing

Components’

Attention normally focuses on three major areas of contemporary VLSI designs:
performance, area, and energy consumption. Different applications have different criteria
in terms of performance. For general-purpose processors, achieving maximum

computation speed is always desirable, while for various baseband digital signal

" A version of this section has been published. Hongfan Wang and Martin Margala, Addition and
Multiplication Scheme for Energy-Efficient DSP Component, Proceedings of the 2000 Canadian
Conference on Electrical and Computer Engineering, May 2000, pp. 636 — 641.

19

processing (DSP) applications, catering for their throughput requirements is a more
realistic choice. Besides performance, minimization of the die area is also a much sought-
after attribute. In recent years, power consumption has become a major concern for many
applications. Obtaining minimal power consumption is not only attractive to elongate
battery life in wireless devices, but also useful to reduce the cost associated with cooling
for conventional desktop devices.

In this chapter, the design of various fixed-number addition and multiplication
systems is reviewed. Different addition and multiplication schemes are presented along
with their implication for performance, area, and power consumption. Also briefly

mentioned are circuit design styles, characterization criteria and test strategies.

3.1 Addition

3.1.1 Basic Operations

[n the following two sections, basic addition operation will be illustrated using half adder

and full adder models.

3.1.1.1 Half Adder
The half adder is the simplest and most primitive arithmetic system. [t gets two input bits
and produces a sum and a carry-out bit. The relationship between the outputs and inputs

is represented in Equations (3.1) and (3.2).

Sum=A®B 3.1)

Carry=A B (3.2)

3.1.1.2 Full Adder
For multi-bit addition, half adders are not enough, since the carry-in from a proceeding
bit addition should also be taken into account. A full adder operation can thus be defined

as in Equations (3.3) and (3.4).

Si=Ai®B; & G (3.3)

Ci+[=Ai.Bi+Ci‘Ai+Ci°B;=Ai.Bi+Ci0(Ai+Bi) (34)

In order to achieve desirable performance, area, and energy consumption, different

implementation schemes have been proposed and adopted.

3.1.2 Implementation Schemes

3.1.2.1 Bit Serial Adder

In a bit serial adder, operands are taken in bit-by-bit with results produced in the same
manner. Memory elements are used to hold intermediate and final results (Figure 3.1).
Three registers, A, B and S, are all shift registers, among which, A and B hold two
operands, while S holds the sum. A delay element, normally implemented using a D-

flipflop, is used to ensure proper alignment of carry-out with adjacent input bit pairs.

21

The performance of a bit serial adder is low. However, it consumes the least area
among its peers and is considered when area is of utmost importance. Another way of

using it is to operate many concurrently, as in some parallel SIMD machines [40].

Aj
Register A |

B, Full Add Ly Register S
Register B —> “ er Sumy;

Carry;.;
—>
Carry;
Delay |q— |

Figure 3.1 Schematic of a bit serial adder.

In order to achieve a better performance, various kinds of bit parallel adders were

proposed.

3.1.2.2 Carry Ripple Adder
Among all adders, the carry ripple adder [26] most resembles a human being carrying out
addition by using paper and pencil. An n-bit carry ripple adder consists of n full adders
with their carries connected as in a linked list fashion (Figure 3.2 [41]).

A carry ripple adder does not yield a much better performance than that of a bit serial
adder, despite a much heavier investment in hardware, largely due to the long path of

carry propagation.

22

A; By

L

g

Cg Cy
FA < FA
S7 SG

3.1.2.3 Carry Completion Adder

Cs

C,
4_

A; By

L

Aq

L

Bo

Cy
FA ¢ FA
S So

Figure 3.2 Schematic of an 8-bit carry ripple adder.

The carry completion adder [42, 54] can be constructed from a carry ripple adder through

the incorporation of carry-propagation-complete detection logic (Figures 3.3 and 3.4).

The underlying idea is to determine the length of the critical path, according to the worst

case carry propagation required for each pair of operands. When the carry completion

signal is asserted, the addition process will be complete after a delay equivalent to the

latency of a full adder.

However, there are two practical concerns: the high fan-in required of the carry

completion AND gate, and the asynchronous operation of the adder, which may

complicate the overall synchronous system design, so that the resynchronization time

may well outweigh any gain from using this design approach.

23

(Carry in)
C_;

H
(Inhibit)

Carry completion senser
Carry (An n — input AND ing unit

——g——{

completion
signal

Figure 3.3 Schematic of a carry completion adder.

A; B
v T
| - r-—""—— i
! U Gy
: 2 e
C; (
{ |
z H |
{
[|
I \ L
[[:
{ |
i
— ! {
c l Y e
R Wl 52
i I — I
4 — dcp

Figure 3.4 Schematic of a carry propagation (CP) cell.

3.1.2.4 Carry Skip Adder

The principal idea for carry skip adders is that if corresponding bits in the two operands
are not equal, carry-in passed into that bit position will propagate to the next bit position.
The adder is designed by making a carry-in skip any block for which it is known that the

carry will propagate through.

24

The carry skip adder has two varations, shown in Figures 3.5 and 3.6 [41],
respectively: (i) the constant-block-width carry skip adder [26], which uses only a single
level of skip logic, where the optimal width of each block is determined by a formula
based on the number of bits to be added; and (it) the variable-block-width carry skip
adder [43], in which multiple levels of skip logic and variable block sizes are used. Both
schemes make it possible to determine the carryout from each block before the

calculation inside each block is done, thus resulting in faster addition.

Cis ={FA FAIFAIFA F:IFAIFA FA|Fa|FA FAIFA]FAH(F,\IF,\IFA}-— C,

Skip Skip Skip Skip

Figure 3.5 16-bit constant-block-width carry skip adder.

Cout

Figure 3.6 16-bit variable-block-width carry skip adder.

Although the theoretical performance of carry skip adders is not among the highest,
they can be combined with other schemes, i.e., Manchester adders. to achieve adder
structures of high regularity, (only two kinds of modules are needed, i.e., FA and Skip);

thus, carry skip adders can be made desirable for VLSI implementation.

25

3.1.2.5 Carry Lookahead Adder (CLA)
Carry lookahead is a parallel carry generation scheme [44, 45] for speeding up addition.
Addition at each operand bit will produce a carry because either it is generated at this bit
position, or one is propagating from the preceding bit position. A carry is generated if
both operand bits are 1, and it is propagated if one of the operand bits is 1 and the other is
0. This observation is shown in the definition of the following two auxiliary functions:
Gi=A;je B; 3.7)
Pi=A; ®B; (3.8)
The carry-generate function G; reflects the condition that a carry is originated at the
ith bit position. The carry-propagate function Py is asserted when the ith bit position will
pass the incoming carry C; to the next higher bit position. Thus, the calculation of sum
and carry can be modified as
Si=P;® G (3.9)
Ci=Gi+PieCy (3.10)
Practical usage of this pure CLA algorithm is limited to the smallest adders (< 4 bits),
due to the rapid increase in fan-out and fan-in requirements as the adder size grows.
Modified approaches were proposed, i.e., Ripple-block CLAs, Block CLAs, etc. For
ripple-block CLAs, bit-stages of the adder are grouped into blocks. The carry lookahead
scheme is implemented within each block, with carries rippling from block to block. For
block CLAs, the situation is the opposite, with carries rippling within each block, and
lookahead being used between blocks. However, neither of these two schemes is popular
for practical large adders. Instead, a scheme using hierarchical carry lookahead is adopted

due to its high efficiency in terms of performance gain over hardware investment.

For a 4-bit carry lookahead block (Figure 3.7 [25]), two additional terminal functions,

namely, block carry generate G and block carry propagate P, are defined as

* = P,P,P,P;

G‘ = Gy + GyP3 + G1P,P3 + GoPP1P;

(P; = P<i>; G; = G<i>; C; = C<i>). The carry out of the block can be derived as

C3=G +P" «CI

(3.11)

(3.12)

(3.13)

where CI is the carry into the block. (For 4-bit adders, faster carry generation can be

achieved through the use of a single C; gate using a Manchester adder covered later.)

cle—1—{>0—-co

-Cco —
P<0> —— C<0>
G<0>

-C0 —— \
P<0>
P<t>

G<0>
P<l1>

G<1>———-———)

—-CO0 ——
P<0> ——
P<l> ——

P<2> —

G<0> — \
P<t> ——)
P<2> ———

G{<1>——~‘

P<2> —
G<2>
P<0> -Co
P<1>
G<0>

G<2>
P<3>

G<3> ————

|

Carry Generation

P<l> —

P<2>)3
P<3>

G<l> ——

P<2> ——)
P<3> —

C<l1>

C<2>

C<2:0>.C1 — 5

) x4 = SUM |
X
P<3:0> " :
-G<3:0> J
Sum Generator
C<3>
A<3:0>
0 > paaos
B8<3:0>
4
i - 4 4 x4 i G<3:0>
;%}O——— -G<3.0>
PG Generator

Figure 3.7 Schematic of a 4-bit carry lookahead adder.

A 16-bit adder using a hierarchical carry lookahead can then be constructed, as shown
in Figure 3.8 [39], in which Cq is the possible carryin into the whole adder, and Cq 1s

needed in both the 4-bit adder unit and the lookahead carry unit.

SRR S QR SR U SN |

Ce [A15-121B015-12]) - [Al11-8] B(11-8]] o, [A74] Bl74l} ¢ [A(3-0l B(3-0]| ¢

-« 4-bit Adder 4-bit Adder 4-bit Adder 4-bit Adder j}e—ro

p G P G P G P G

4 4 4 4
S[15-12} S[11-8] S(74] S(3-0]
4 Y 4 r v ¥ Y

Py G G P Gz C2 P Gy C Py Go

Clﬁ CO
Cs Lookahead Carry Unit Ca
P3-0 G3-0

oy

Figure 3.8 A 16-bit adder using hierarchical carry lookahead.

3.1.2.6 Manchester Adder
Basically, the Manchester adder is a modification of the carry lookahead scheme to
further speed up carry generation through the use of a single carry-out gate that is
implemented with multiplexers.
Using readily available generate and propagate signals, carries are produced using the
iterative formula, in which Py’ is the complementary of P,
Civ1 =P,C; + G =PiCi + PGy (3.14)

leading to an implementation based on multiplexer, shown in Figure 3.9 [25].

G<0>P<0> G<i> P<l> G<2> P<2> G<3> P<3>

0] |

clk _—‘{E' P GP G P G P
Ct cof—tjct cof—tct cof—Tict cof C<3>
cl ——{ -P —p —p l -p

_1 -Ci —C<0> —C<i> —~C<2> -C<3>
-P<0> -P<1> —P<2> -P<3>

Figure 3.9 Schematic of a 4-bit Manchester adder.

A 4-bit conflict free Manchester adder implementation is shown in Figure 3.10 [25],
where the control signals Ty, T, and T3 are defined as
Ty = -(PoPP2)P3; Ty = - P3; T3 = PoP 1 P2P; (3.15)

Very wide, fast adders may be constructed by extending the carry bypass.

l l l -Tt—
P
a > > 5 > — C<3>
ﬂ %/ 7
=
_ — |
F’<O>—{1 l P pS P<2>-—; -T2, i
G 0>—:>—- Get> — —G<2> -G<dm— ;
f T2 !
{ .
~P<0> -P<i> —-P<2>
~T3 —
~
:>c —
g

Figure 3.10 Schematic of a 4-bit conflict free Manchester adder.

3.1.2.7 Conditional Sum Adder
The general idea of a conditional sum adder is to use multiplexers to recursively combine

successively larger blocks of conditional sum and carry bits (Figure 3.11 [41]). The basic

cell accepts two bits to be added and produces both sets of sum and carry for assumed

carry-ins of zero and one (based on the Sklansky “H” cell [46]).

A7 5'1 -‘l\s Te As Bs Aq i’h A3 By Ay By A By]‘o To Co
H H H H a H H FA
& 3 [S ct® g | S ct® dd|ck® ¢ g dflc s

21 u 21 z1 2.1 21 FC 1 2t

21 21 P4 21 2:1

Cc
21 s 24— EC nz:' :
T2y
Cs

FC [Tl 2t
C: S4q S13 Sy So

L

t (]

2IMUX Sf— =
out

l

Figure 3.11 Schematic of an 8-bit conditional sum adder.

Advantages of this design include high performance, low fan-in, and the likelihood of
pipelining the design. However, the large fan-out poses a problem at the last level of the

adder.
3.1.2.8 Carry Select Adder

The carry select adder [47] uses the same principle as the conditional sum adder. It uses

the generated distant carries to select the correct sum outputs from two simultaneously

30

generated provisional sums under zero and one carry input conditions. However, instead
of generating bit-wise provisional sums and carriers, the carry select adder partitions a
long adder into fixed-size adder sections and uses the correct carry input to select the true
sum output from two sets of simultaneously produced section addition results. A simple

schematic of an 8-bit carry select adder is shown in Figure 3.12 [39].

Ca 4-Bit Adder .0 Adder
[7:4] Low
4-Bit Adder 1 Adder
[7:4] High
HEEEEN
L R e B o 2-Bit Adder Go
{3:0]

| | | | I | | |

\ \ \ \ Y Y v

S7 Se Ss Ss Ss S» St So

Figure 3.12 Schematic of an 8-bit carry select adder.

Generally speaking, this kind of adder provides a good example of achieving high

performance at the expense of heavier hardware investment.

3.1.2.9 Carry Save Adder (CSA)

The adders described above are designed for two-operand addition. Carry save adders are
used in fast addition of many binary numbers (a direct application is to add partial
products during multiplication) with limited hardware. Carry propagation is avoided until
all additions are completed and then takes one (or several) final cycles to complete carry

propagation for all additions [48].

31

Practically, for an n-bit CSA, carries and sums are registered in 2n registers. Figure
3.13 [25] shows an implementation of an adder circuit, which uses two 4-bit CSAs.

Usually, a fast architecture is used for the final carry propagate adder (CPA) for
computation of the final result of the sums and carries of each CSA. One scheme (Figure
3.14 [25]) is to use cascaded CSAs. Registers are used at the input and output of the CPA

to ensure synchronous operation.

— nc
| i
|
. —
— | cout
|
| | o z
3 H]
SIN<3>ﬁO . | — !
+ i : i — =
S | E —
A<d> | " ! i [1) ;
CIN<2> ! E >_ N
t B<3> i i @-— S<3>
; \ { -
i — i : | :
! | [- N :
@ > i . :
SlN<2>—ﬁ\@ — 5 I’——"?'_J
OO
’ —_— 7 | ; .
CiN<1> A<2> - 8<=2 ! : ‘z_ ‘\‘
. > @—‘“ S<2>
| | -
! — H !)
L —_—
! —_— . ;
SIN<1> - : — ‘ . o
/@ ! P @ i
CIN<O A<l> v X = / ; 3>‘ ' ?
: : : <1>
i] -
, T : i : :
i : P ‘ - '
i 1 L . -
| > '

CPA Adder

)
SIN<O> i — i >
+ 1 : . E —
; : i = /@ } ’ S<0>

CSAAdders

Figure 3.13 Schematic of a carry save adder.

The carry save technique is mainly used for pipelined parallel arithmetic, and its
success lies mostly in DSP applications such as filtering, where achieving maximum
throughput is the goal. Also, carry-save arithmetic is the basis of the well-known

Wallace-tree multiplier.

A<3> F :—_—: r_‘ﬁ -
i o |
| I (:)——*-, S<3>
I“E (—2 — N :
, | oo :
I i —
i | Lot
;) i [
| L
A<2> T T -

' [: i . —_—

; T @_ L s
Do . Do

} L : T

; —_— = -~ :

i —

—_ .

'
—
A<l> ;
: 1 _— ——— ———e - S«li>
) ~ . - :

—_— -

A<0> : . . .
j @ : ‘ ; S<0>

clk

Figure 3.14 Schematic of a pipelined carry propagate adder (CPA).

3.1.2.10 Digit-Serial Adder
Generally speaking, digit-serial [49] implementation is used mainly for signal processing

applications. It is suggested as an alternative choice for cases where the sampling rate

demand is too high for bit-serial systems, while bit-parallel systems require excessive
hardware. The number of bits processed in a clock cycle is referred to as the “digit-size”,
and it is chosen to match the clock cycle of the circuit and sample rate of the application,

when the design is used for real-time signal processing applications.

3.1.2.11 Redundant Number Addition

Redundant number representation allows serial operations to proceed in a most-
significant-digit-first (MSD-first) mode and is mainly used in MSD-first serial arithmetic
(also called on-line arithmetic). The particular number representation is also referred to as
“signed-digit number representation”.

The normal carry propagation delay is overcome by the underlying carry-free
operation of redundant number systems, which is achieved through limiting carry
propagation to one position to the left during addition or subtraction. The addition time
for such SD numbers of any length is equal to the time required for adding only two
adjacent digits, and thus is practically independent of the total world length. However, the
transfer digit between adjacent digits might assume both positive and negative values in
SD operation and will never propagate past the first adder position on the left.

Meanwhile, redundant number arithmetic can also be used in conventional least-
significant-digit (LSD) first addition [50, 51] and multiplication [52]. It can take
advantage of the equivalence between redundant-to-binary (RB) conversion and binary

addition {53].

3.2 Multiplication

34

3.2.1 Basic Operations

Generally speaking, multiplication can be viewed as repeated shifts and additions, and in
an extreme case, it can be achieved through the use of a single set of adder, shift register,
and minimal control logic. In most cases, however, multipliers are not implemented this
way because it is prohibitively slow due to its low-speed addition and the maximum

number of additions performed.

3.2.2 Implementation Schemes

3.2.2.1 Multiple Scan & Shift Multiplication
Scanning more than one multiplier bit per cycle can speed up multiplication if multiple
shifts are performed after each addition. An non-overlapped 2-bit scanning multiplier can

be constructed using a carry save adder (Figure 3.15 [54]).

Oid
Parual
Product

24
A V'l MR, \!_ Muluplier
{ [I—_—MROJ Bits

(AC) w]

Carry—Save Adder,
(n ~ 1) — Bit CSA

U

Carry Propagate Adder
(n - 2) — Bit CPA

UNew Partial Product

Cose'Sn-~-- 5Sq

out

Figure 3.15 Carry save and propagate adder using 2-bit multiplier scan.

In practice, more sophisticated approaches like various recoding schemes were
purposed for handling more than one bit per cycle, and they can be realized in both serial

and parallel forms.

3.2.2.2 String Recoding and Booth Multiplie
The underlying principle of string recoding is illustrated by Equation 3.16 (i, k are
integers), in which the number of additions can be effectively reduced through shifting
across a string of zeros in the operand:

gitkel | oitk2 | Sitl | oi _ aitk _ 5 (3.16)

This observation is normally utilized through grouping and recoding several adjacent
bits using signed-digits (SD). It is attractive for converting binary vectors containing long
sequences of ones, while binary vectors with many isolated ones deteriorate the
performance of the scheme.

One realization of this scheme is the Booth recoding multiplier [55, 56, 57]. Radix-4
recoding (also called the “modified Booth recoding”, whose algorithm is shown in Table
3.1, in which MR is the multiplier and PP is the partial product), which scans three bits
while recoding two of them per cycle, is the most commonly used. Higher radix recoding
schemes were also proposed [58], like the radix-8 recoding scheme (Table 3.2).

One implementation of the Booth recoding scheme is shown in Figure 3.16 [54]. This
implementation carries out the multiplication of two 2’s complement numbers. In the
Figure, AC is the partial product storage; MR is the multiplier; A is the multiplicand;
CSA is the carry save adder; CPA is the carry propagation adder; C is the carry; and S is

the sum.

36

MR;,,,; MR;; Action
00 0 Shift PP 2 places.
00 I Add MD, shift PP 2 places.
01 0 Add MD, shift PP 2 places.
01 1 Add 2xMD, shift PP 2 places.
10 0 Subtract 2xMD, shift PP 2 places.
10 l Subtract MD, shift PP 2 places.
11 0 Subtract MD, shift PP 2 places.

11

Shift PP 2 places.

Table 3.1 Radix-4 Booth Recoding Algorithm.

MRz, ie1, i MR, Action
000 0 Shift PP 3 places.
000 1 Add MD, shift PP 3 places.
001 0 Add MD, shift PP 3 places.
001 1 Add 2xMD, shift PP 3 places.
010 0 Add 2xMD, shift PP 3 places.
010 1 Add 3xMD, shift PP 3 places.
Ol1 0 Add 3xMD, shift PP 3 places.
011 l Add 4xMD, shift PP 3 places.
100 0 Subtract 4xMD, shift PP 3 places.
100 1 Subtract 3xMD, shift PP 3 places.
101 0 Subtract 3xMD, shift PP 3 places.
101 l Subtract 2xMD, shift PP 3 places.
110 0 Subtract 2xMD, shift PP 3 places.
110 l Subtract MD, shift PP 3 places.
111 0 Subtract MD, shift PP 3 places.

111

Shift PP 3 places.

Table 3.2 Radix-8 Booth Recoding Algorithm.

37

Muttipiier

Multipticand

n-—1 e o w0 e 2 1 0 —1
. -] U
A
A A A
Lo Lo o
r MO, MD- MD Mutziore
| " cecoce
: -
8, B_. A lllf; Lllf: A, Mutticias 37 muItiancang
e —— e e |
! 1
| 1
| ‘ | L
1 { —
{ | R L =
l 4
: ! 1 CSA
| ~N— r | '
| = 1 s s
| | —
{ | ¥ 4 { k
[! 1 .
| | CSA |
: .\‘xD‘ : 4 A’
{ I . |c s
| | -)
L_"_-‘T-"J y vy
M. CcsA ’
Cc S
Y
1 ¥
Y Y
CPA

LTO AC MR {Procuct)

Figure 3.16 Schematic of a 4-bit scanning Booth multiplier using CSA/CPA.

Practical implementations of the Booth recoding scheme normally yield a high

performance at relatively low power-consumption. One concern is possible glitches

during operation, and a method addressing them was reported [59].

38

3.2.2.3 Canonical Recoding

Another recoding scheme is called “canonical recoding” [54], in which non-zero digits
are separated by zero(s). Its adoption can result in more shifts and less addition. A simple
canonical recoding algorithm is shown in Table 3.3. Higher radix recoding algorithms are

also available.

Input: Carry-in: Recoded: Carry-out:
MR, G D; Cin

00 0 0 0

01 0 1 0

10 0 0 0

11 0 -1 l

00 l l 0

01 1 0 1

10 1 -1 1

11 [0 l

Table 3.3 Radix-4 Canonical Multiplier Recoding Algorithm.

Due to the demand for high-performance multipliers and the prevalence of VLSI
technology, the design of high-speed cellular array multipliers is justified and can be

viewed as another example of trading hardware investment for performance.

3.2.2.4 Array Multiplier and its Modification
The advantages of array multipliers lie in their regular structure and local interconnects,

which translate into easier and more efficient layout. Moreover, their performance can be

39

further improved by incorporating a high-speed adder during the last stage (Figure 3.17
[41]). In a modified array multiplier, the last level can be implemented using CPA. Also,
CSAs s can be used to implement full-adders.

However, a study {60] showed that almost 50% of the power was lost due to spurious
transitions of internal nodes before they settled down to their final values, a problem
resulting from non-uniform path delays. These spurious transitions can be reduced by
equalizing path delays from inputs to outputs using latches and/or self-timed techniques
using replicated circuit blocks. New array topology that reduces waits between signals at
various intermediate stages was suggested, and results in higher speed and lower p;)wer
dissipation [61].

An algorithm for designing array multipliers using multiplexers was reported [62],

which permits efficient VLSI realization, yet achieves high performance.

3.2.2.5 Wallace Tree/Dadda Multiplier

The principle behind Wallace tree multipliers [63] is to create maximum concurrency
among their carry save adders. The scheme is shown in Figure 3.18 [41]. Every carry
save adder at each stage takes in three operands and produces two results, reducing the
number of outputs (inputs to the next stage) by a factor of 3/2. The total number of stages
needed is calculated to be [log; sN/2]. Final addition is carried out when there are only

two outputs left, and by a carry propagate adder (2N-bit wide for NxN multiplication).

40

X<l>

X<2>

X<2»

Xed>

XS5>

Xab>

X<7>

Pci>

~—
Y<2>

\.
L

c,
~H
A

Pe2>

-
Y<3>

£

R
|
N

c,
T [
s
f‘\-ET
e

:

Xefty ™ P<T>

Xcl> -

1=t 21 [y) O | 3%) ‘\J ~~\. Y g Ty g Yol AR
AL AT @_,,\ E E2a RN S Tt
4 A IN-Z5 L 1 sl I M50
TP TP TP B R e |
/ / : | TN
121 1] A0 Z -) | Yt R | £ hoaisndi DN | st B I -
21 AL A A] R A
. " Qq YC% u:g Al .WYI . ,.W;'ml.a;w,
e e A IV
=1 — = - p) mr_.- -) |51 - r)) 5 ~ Joe l.al..-ﬂx.vx. 'nnlav.ﬂ.\. lsl,ll‘n‘\grvtm i
S| T AL A i Al 77l [EAIRN
)) s .W(sl
, K - nl\\.llllv R T |It.r||. -
121 2113) RN 1 Z . 3 U | Jomay) Y | Sameevs B | i) [T £ -
G 7 835 _ﬁ)a A1 oAl S S T m .
cHEE e e e e et
‘ X.\p.»lo,L ' A B
_G \\ _nN ~ 7 _.MW Po\; _v__—w n\\ ~_m._W o\\Im o\\ @.’a'.lvﬁn.nm‘\m - -
TP P e B e e
’ 4 ’ e DI&
S0) O) e e

Y<!

Y<3>

”

Y <S>

Y<6>»

'
—

Pelld>

Pclt> P<10> Pcd» P>

Pci2>

P<lia»

P<1S>

)

sum

Full Adder

[

ca

h a unit cell.

ler wit

i

1p

fan 8-bit array mult

1C O

ure 3.17 Schemat

o
o

i

F

41

FPA c <
I |
i ey R
! Vool
CPAS CPAS
R]
! ——
cPAr]s
CPAS
CPA
P=AxB

Figure 3.18 Schematic of an 8-bit Wallace tree multiplier.

Generally speaking, a Wallace tree multiplier has fewer stages than a parallel array
multiplier, given the same operand width. As a result, it generally yields a better
performance, assuming no pipelining [64]. Also, it is arguably more energy-efficient due
to the parallel summation of partial products (PPs) [65]. However, these improvements in
performance come with a price: Wallace tree multipliers require wider carry propagate
adder during the final stage, and adder connection patterns are much more complex
(irregular) than those in parallel array multipliers, a factor translating into the need for a

larger area and more efforts for VLSI implementation.

Dadda modified the Wallace tree by noting that a full adder can be viewed as a
counter of ones in input, and which then outputs the amount in binary form [66]. The
height of the matrix at each stage could be maximally reduced by a factor of 1.5, and the
following sequence can serve as a reference for reducing the partial product matrix to the
final two rows to be added using a carry propagate adder. An 8-bit multiplier is shown in
Figure 3.19 [41].

{2,3,4,6,9,13,19,28,42,63, ... } (3.17)

%

Final two rows summed

SSSSSSS LSS wunacea

Figure 3.19 Reduction scheme of an 8-bit Dadda multiplier.

In the Figure, each dot represents a bit in the partial product. Ovals indicate half or
full adders. Lines into the next level indicate sum and carry out of adders. Crossed lines

indicate half adder outputs. The two rows in the last section are summed up using a CPA.

43

Compared with the Wallace tree, they have the same worst case delay, while Dadda’s
method generally requires fewer full and half adders, but a slightly wider CPA. This

benefit comes at the expense of an even less regular implementation.

3.2.2.6 Digit-Serial Multiplier
As introduced in the addition section, digit-serial implementation is used mainly for
signal processing applications requiring moderate sampling rates.

Digit-serial multiplier design was reported [67], as well as its design methodology

[68]; the research claimed achieving reasonable performance and low power operation.

3.2.2.7 Other Array Multipliers
Other schemes for array multiplication have been proposed, including (i) Pezaris array
multiplier [69] and its modifications, which use a mixture of different types of full adders
to carry out direct two’s complement array multiplication; and (ii) Baugh-Wooley two’s
complement multiplier {70], which uses conventional Type-0 full adders to construct and
achieve a uniform array structure.

Besides the above-mentioned rather conventional multiplication schemes, other

designs were also reported.

3.2.2.8 ROM-Adder Multiplication Networks [71]
A lookup table can also be used for fast multiplication taking advantage of the
availability of inexpensive ROM. The results of all possible combinations of operands

can be stored in ROM, and the m-bit multiplicand and n-bit multiplier are combined to

define a unique address in the memory. If no rounding is allowed, the capacity required
for the ROM is
N =2"™" x (m+n) bits (3.18)
When exceedingly large ROM is to be avoided, the product can be rounded to p bits,
and the required capacity becomes

N =2""x p bits (3.19)

3.2.2.9 Logarithmic Multiplication [72]
Another method of reducing the required ROM capacity is through converting
multiplication/division into addition/subtraction by means of logarithm and antilogarithm
transformations. Thus, instead of storing the whole table, one need to store only the much
smaller logarithm, antilogarithm, and addition tables. However, this scheme has inherent
error problems, and slower speed due to more ROM accesses.

Other schemes have been proposed, including no bit-slice summing tree

multiplication and recoded array multiplication [73].

3.3 Circuit Design Styles

Besides various addition and multiplication schemes, circuit design styles are also being
intensively investigated in search of a better compromise among performance, area, and
power consumption. [n this respect, most attention is paid to full adder design, not only
because addition is the deciding factor for performance and power consumption in

normal multipliers, but also because multiplier design involves more complex tradeoffs.

45

3.3.1 Static CMOS Logic
A full adder can be implemented using static CMOS logic, made up of both P and NMOS
trees [25]. For this style, both true and complemented inputs, sum, and carry are required

or produced, while the sum and carry are computed independent of each other.

3.3.2 CMOS Transmission Gate Logic
The XOR logic and thus the adder can be realized using transmission gates [25]. One

noteworthy thing about this implementation is the equal sum and carry delay times.

3.3.3 Complementary Pass-Transistor Logic and Double Pass-Transistor Logic

Complementary Pass-Transistor Logic (CPL) and Double Pass-Transistor Logic (DPL)
are examples of logic families designed for high performance, yet low power operation
[55, 74]. However, logic styles like CPL, which generates threshold voltage drops at any
point in the circuit, are dangerous for low-voltage operation, even when level restoration
logic is used. Different opinions exist about the comparison between CMOS and CPL in
terms of performance and power [75, 76]. DPL is claimed to be fast and energy-efficient
(74, 77, 78]. The problem with DPL arises when layout issues are considered. The
differential nature of DPL and the limited ability to exploit source-drain sharing in layout

make DPL less efficient than CMOS.
3.3.4 Cascode Voltage Switch Logic (CVSL)

CVSL [41] belongs to the dynamic logic family and requires a two-phase clock with no

complementary clock signal. For full adder operation, the outputs and their complements

46

are all pre-charged high while the clock is low. When the clock goes high, the
complementary cascoded differential NMOS tree pulls either the output or its

complement low.

3.3.5 Differential Cascode Voltage Switch Logic (DCVS)
DCVS can be constructed as a static version of CVSL by replacing the PMOS with a
cross-coupled pair of PMOS. DCVS yields very fast operation in terms of worst case

delay [41].

3.3.6 Other circuit design styles
Other circuit design styles include [41] No Race Dynamic CMOS Logic (NORA), CMOS
Non-Threshold Logic (CNTL), and Enable/disable CMOS Differential Logic (ECDL), as

well as several others proposed for low-power operation [79, 80].

3.4 Characterization

Several commonly used criteria characterize designs in terms of area, delay, and power
consumption.

Area usage is normally estimated through the number of transistors used. Delays are
measured through worst case delay between input and the slowest output, typically the
most significant sum bit. Power consumption is often approximated through (i) peak

switching current, which is defined as the largest difference between the steady state

47

current of the power supply and the power supply current during computation, and (ii)
average power dissipation.
Commonly used test strategies can normally be divided into logic simulation, switch-

level simulation and physical measurement.

3.5 Conclusions

This chapter presented a comprehensive review of various fixed-number addition and
multiplication designs, highlighting their underlying principles, realization methods, as
well as tradeoffs between performance, area usage and power consumption.

Among addition designs, carry lookahead adders are the fastest. Carry select adders
are also fast, but they achieve high performance with area and power overhead. Carry
save adders achieve reasonable speed at relatively lower power consumption. They are
selectively used in most high-performance DSP systems.

Among multiplication designs, array multipliers used to be adopted because of their
ease of layout. Wallace tree multipliers are commonly used now due to their high speed.
When power consumption is a concern, Booth recoding multipliers are normally selected.
Since the multiplication components in baseband DSP systems need to satisfy high
throughput, small area usage, and low power-consumption requirements, it will be
desirable for these components to adopt Booth recoding schemes, incorporate various
architectural level techniques like pipelining and parallelism, as well as use suitable
addition designs within certain pipeline stages. Based on this study, a novel retargetable,

high throughput yet power-efficient multiplication component has been developed.

48

Chapter 4

Retargetable Arithmetic Architecture for Low-Power
Baseband DSP Supporting the Design for Reusability

Methodology

4.1 Introduction

Due to the rapid advances in VLSI fabrication technology, it is now feasible to
implement complete systems on single integrated circuits. This approach of doing
hardware design, also called “System-on-a-Chip” (SoC), is gaining increasing acceptance
and support in the semiconductor industry. Hardware designers are now facing system
designs with not only tens of millions of transistors, but also of unprecedented
complexity. These factors, when coupled with the ever-pending time-to-market pressure,
and the stringent requirements for performance and power-efficiency, makes developing

contemporary systems from scratch virtually impossible. Thus, to design reusable

49

component cores (macros) and incorporate them in SoC designs becomes a promising
approach for bridging the gap between available gate-count and designer productivity.
However, effective use of this core-based design approach for SoC designs requires an
extensive library of reusable pre-designed and pre-verified cores, which are created
following a consistent design methodology.

Aiming at possible incorporation in the baseband DSP system, a reusable SoC
multiplication component was developed during this thesis research. Its features,
structures, design methodology, verification results, and design-for-testability

considerations are discussed in the following sections.

4.2 Features of the Reusable Multiplication Component

Based on the study and understanding of underlying principles and past work discussed
in Chapters 2 and 3, a novel reusable multiplication component was developed focusing
on providing the following features: (i) retargetability, (ii) high throughput, and (iii) low-
power operation. As well, the component takes the form of a reusable soft core.
Retargetability was demonstrated through the component’s ability to switch between
radix-4 and 8 recoding schemes for carrying out multiplication, and its capability to
handle different operand lengths. In this project, 8 and 12-bit two’s complement operands
were considered for the module, with the two operands accepted simultaneously being of
the same length. The choices for different radix recoding schemes and operand widths
were sent to the component through two control signal bits. The calculation results were

also in two’s complement form. This retargetability was successfully obtained and

50

verified through exhaustive simulation. Other features were achieved through the
incorporation of architectural level design styles like pipelining, parallelism and gated
circuits. The estimated throughput after synthesis is 171.5 MIPS, and this component will
need at least 52.6% fewer addition operations than those required by a conventional
multiplier, i.e., an array multiplier. All these results fulfill the research objectives stated

in Section 1.3.

4.3 Structures of the Reusable Multiplication Component

4.3.1 Overview

This novel retargetable multiplication component has three main sections (Figure 4.1).
The recoding section transforms the multiplicand into coded operands based on slices of
the multiplier and the recoding scheme adopted. The number of coded operands produced
varies, depending on the word length of the multiplicand and multiplier, as well as the
recoding scheme, with six being the maximum number when the original operands are
[2-bit, and redix-4 recoding is adopted. This recoding section is further divided into four
pipelining stages, along with other architectural level techniques for higher throughput
and power efficiency.

The first custom addition section adds together two adjacent coded operands from the
preceeding recoding section and produces up to three partial products. In this section,
carry-save, carry lookahead, and carry select addition schemes are used, while on the
architectural level, pipelining, parallelism and methods for reducing circuit switching are

utilized and will be explained in more detail later this section.

51

The second custom addition section adds together up to three partial products from
the preceding custom addition section and produces the final result of multiplication. In
this section, carry-save, carry-lookahead, and carry select addition schemes are also used,
though taking a different form from the first custom addition section, along with

architectural level techniques.

Code Generate Stage

Enable Generate Stage

> Recoding Section

Value Generate Stage

Partial Product Generate Stage)

J

First Carry Save Addition Stage

> Custom Addition Section #1
First Carry Propagate Addition Stage

Second Carry Save Addition Stage

>~ Custom Addition Section #2
Second Carry Propagate Addition Stage

Figure 4.1 Illustrative diagram of main structures of the multiplication component.

Control signals of this multiplication component are made up of two bit, namely,

sel_rad and sel_bit, with their function illustrated in Table 4.1.

sel_rad | sel_bit Selected Mode
0 0 Accepts 8-bit operands, and uses Rad-4 recoding scheme.
0 l Accepts 12-bit operands, and uses Rad-4 recoding scheme.
1 0 Accepts 8-bit operands, and uses Rad-8 recoding scheme.
l | Accepts 12-bit operands, and uses Rad-8 recoding scheme.

Table 4.1 Function of the control signal.

4.3.2 Recoding Section

As mentioned in the overview of this multiplication component, the recoding section is

further divided into four pipelining stages.

4.3.2.1 Code Generate Stage
The code generate stage (Figure 4.2) is the first pipeline stage in the recoding section. It
consists of two 12-bit registers, one 2-bit register, and one code generate unit.

The registers accept and store both operands and control signals, and synchronize the
operation of this stage. The functionality of this stage is mainly carried out in the code
generate unit. Basically, it divides the multiplier (mr) into three to six 2-bit or 3-bit wide
slices, depending on the recoding scheme selected. When radix-4 recoding scheme is

chosen, three digits of the multiplier are scanned at a time, with two of them recoded

53

based on the rule prescribed in Table 3.1. On the other hand, when the radix-8 recoding

scheme is chosen, four digits of the multiplier are scanned at a time, with three of them

recoded based on the rule prescribed in Table 3.2. Generated codes indicate the partial

products that need to be produced (Table 4.2). The structure of the code generate stage

can also be captured in the form of the VHDL code (Appendix 1).

md mr sel_rad & sel_bit
clk clk clk
CLK DIN
> > CLK DIN > > CLK DIN _>>
Ist g RST 12-bitReg Ist [RST 12-bitReg ISL__p! RST 2-bitReg
—p ENB DOUT —»{ ENB DOUT narrr
sel_bit sel_bit
Code Generate Unit
//
¢ & o
v v v
md cod_5 cod_O sel_rad & sel_bit
md: multiplicand
mr: multiplier
sel_rad: control signal for selecting radix-4 or radix-8 recoding scheme
sel_bit: control signal for selecting 8-bir or 12-bit operand wordlength
clk: clock signal
rst: reset signal
cod_i: code indicating the partial product that needs ro be produced, i= 0,1, 2, 3, 4. 5

Figure 4.2 Code generate stage.

54

Partial Product Needed cod_i
I xmd 0001
-1 x md 1111
2 x md 0010
-2 x md 1110
3 xmd 0011
-3 xmd 1101
4 x md 01006
-4 x md 1100

Table 4.2 Correspondence between cod_i and the partial product needed.

4.3.2.2 Enable Generate Stage

The enable generate stage (Figure 4.3) is the second pipeline stage in the recoding
section. It consists of one 12-bit register, one 2-bit register, six 4-bit registers, and one
enable generate unit.

The registers accept and store the multiplicand, control signals, six 4-bit codes
generated from the preceding stage, and synchronize the operation of this stage. This
stage’s functionality is carried out mainly in the enable generate unit. It accepts the six 4-
bit codes (cod_5, cod_4, cod_3, cod_2, cod_1, cod_0) and produces eight enable signals,
namely, enb_n4, enb_4, enb_n3, enb_3, enb_n2, enb_2, enb_nl and enb_!, which

indicate that ~4emd, 4emd, -3emd, 3emd, -2emd, 2emd, -lemd, and 1emd, respectively,

55

are needed later in the calculation. The structure of the enable generate stage can also be

captured in the form of the VHDL code (Appendix 2).

md sel_rad & sel_bit cod_S cod_0
e o o
//
. : Ik
clk : clk : ¢ CLK DIN
LK DIN ____’> CLK DIN _>> D
st RST 4-bitReg rst RST 4-bitReg
ISt 0 RST 12-bitReg = < = N
——»{ FENR DOIT bouT pouT
sel_bit
// o e o
A 4
clk CLK DIN
—’> Enable Generate Unit
st ! RST 2-bit Reg
DOITT
* e o
v v
md sel_rad & sel_bit enb_nd enb_1
md: multiplicand
sel_rad: control signal for selecting radix-+4 or radix-8 recoding schene

sel_bit: control signal for selecting 8-bir or 12-bir operand wordlength

clk: clock signal

rst: reset signal

cod_i: code indicating the partial product that needs to be produced, i =0, [, 2, 3, 4, 5

enb_i: code indicating that iemd is needed later in the calculation. i = I, nl, 2, n2, 3, n3, 4, n4

Figure 4.3 Enable generate stage.

4.3.2.3 Value Generate Stage

The value generate stage (Figure 4.4) is the third pipeline stage in the recoding section. It
consists of one 12-bit register, one 2-bit register, six 4-bit registers, eight 1-bit registers,
and one value generate unit.

The registers accept and store the multiplicand, control signals, six 4-bit codes, eight
1-bit enable signals, and synchronize the operation of this stage. This stage’s
functionality is carried out mainly in the value generate unit. It generates the values of —
4emd, 4emd, -3emd, 3emd, -2emd, 2emd, -1emd, and lemd if the respective enable
signal passed on from the preceding stage is asserted. Otherwise, the value is not
calculated and generated. The structure of the value generate stage can also be captured

in the form of the VHDL code (Appendix 3).

4.3.2.4 Partial Product Generate Stage

The partial product generate stage (Figure 4.5), is the fourth and last pipeline stage in the
recoding section. It consists of one 2-bit register, six 4-bit registers, eight 14-bit registers,
and one partial product generate unit.

The registers accept and store control signals, six 4-bit codes, eight 14-bit
multiplicand products, and synchronize the operation of this stage. This stage’s
functionality is carried out mainly in the partial product generate unit. It generates the
value of the partial product corresponding to each slice of the multiplier. Basically, for
each partial product, the unit selects one value among —4emd, 4emd, -3emd, 3smd, -
2emd, 2emd, -lemd, and lemd according to the code generated in the first stage. The

structure of this stage can also be captured in the form of the VHDL code (Appendix 4).

57

cod_5 cod_O md
e e oo
clk CLK DIN clk CLK DIN clk CLK DIN
st pf RST 4-bitReg | ISt | RST 4-bitReg | ISL__pf RST 12-bitReg
DOUT DOUT ——1 ENR DOIIT
sel_bit
A e o 0 - P
sel_rad & sel_bit
enb_n4 enb_1
e o o
clk clk clk
> > CLK DIN > > CLK DIN > > CLK DIN
ISt pf RST I-bitReg | ISL__gpt RST I-bitReg | ISL__p] RST 2-bitReg
DOUT DOUT notTrT
-
1 i !
Value Generate Unit
eee
e e o
v v v
cod_S5 cod_0O n_md4 mdl sel_rad & sel_bit
md: multiplicand
sel_rad: control signal for selecting radix-4 or radix-8 recoding scheme
sel_bit: control signal for selecting 8-bit or 12-bit operand wordlength
clk: clock signal
rst: reset signal
cod_i: code indicating the partial product that needs to be produced, i =0, 1, 2, 3,4, 5
enb_i: code indicating that iemd is needed later in the calculation, i = I, nl, 2, n2, 3, n3, 4, n4

(n_)mdi: value of (-)iemd, i = I, 2, 3, 4

Figure 4.4 Value generate stage.

58

cod_5 cod_0 sel_rad & sel_bit

® o e
clk CLK DIN clk CLK DIN clk CLK DIN
— : —p —D
st gyl RST 4-bitReg | ISL__p| RST 4-bit Reg LSt pi RST 2-bit Reg
DOUT DOUT NOIIT
A o oo P P
n_md4 mdl
® o o
clk clk
_,> CLK DIN _,> CLK DIN
ISty RST I4-bitReg | ISL g RST I4-bitReg
NOUT DOUT
/‘/ /‘/
[X N] ® e o
\ 4 A 4
Partial Product Generate Unit
® e e
\ 4
md_cod5 md_codO hot_one sel_rad & sel_bit

sel_rad: control signal for selecting radix-4 or radix-8 recoding scheme

sel_bit: control signal for selecting 8-bit or 12-bit operand wordlength

clk: clock signal
rst: reset signal
cod_i: code indicating the partial product that needs to be produced, i =0, 1, 2, 3,4, 5

(n_)mdi: value of (-)iemd, i=1, 2, 3, 4
md_codi: ith partial product, i =0, 1, 2, 3, 4. 5

hot_one: code having birwise correspondence with the sign of each partial product

Figure 4.5 Partial product generate stage.

4.3.3 Custom Addition Section #1

Immediately after the recoding section is the first custom addition section, which is

divided into two pipeline stages.

4.3.3.1 First Carry Save Addition Stage

The first pipeline stage in the first custom addition section is a carry save addition (CSA)
stage (Figure 4.6). It consists of one 2-bit register, two 13-bit registers, four 14-bit
registers, one 6-bit register, one align and ready unit, and three CSA units.

The registers accept and store control signals, two 13-bit and four 14-bit partial
products, one 6-bit sign code, and synchronize the operation of this stage. After each pair
of adjacent partial products is aligned and becomes ready for addition along with the
corresponding hot-ones through the align and ready unit, the pair is fed into three custom-
designed carry save addition units for parallel addition. Each addition unit handles two
adjacent partial products as well as the hot-ones associated with them, and produces one
set of partial sum (resultl_i) and carry-out (coutl_i) for use in the following carry
propagate addition stage. The structure of the first carry save addition stage can also be

captured in the form of the VHDL code (Appendix 5).

60

md_cod5 md_cod3 md_codl
c c CLK DIN
.>CLK DIN .>CLK DIN — '
st I RST 13-bitReg | ISt [RST 14-bitReg | ISL—p| RST 14-bit Reg
DOUT DOUT DOUT
-4~ md_cod4 4" /Pnd_codz 1 gd_codo
i,> CLK DIN Clk_,> CLK DIN &, CLK DIN
ISt _yf RST 13-bitReg ISt __yf RST 14-bitReg ISL__pf RST 14-bitReg
DOUT DOUT DOUT
] /‘/ /‘/
/‘/ //
v v { hot_on% sel_rad & sel_bi%
.) clk clk
Align and Ready Unit —— »NCLK DIN _>> CLK DIN
sty RST 6-bitReg st g0 RST 2-bit Reg
nourT norvrrT
md_codi_ready hot_i_ready P P
P /]o'o]/ & /[P 7 7]
by Lod
CSA Unit #3 CSA Unit #2 CSA Unit #1
resultl_2 coutl_3 resultl _I coutl_2 resultl_0 coutl_1 sel_rad & sel_bit

Figure 4.6 First carry save addition stage (cont’d on the next page).

61

sel_rad: control signal for selecting radix-4 or radix-8 recoding scheme

sel_bit: control signal for selecting 8-bit or 12-bit operand wordlength

clk: clock signal

rst: reset signal

md_codi: ith partial product, i =0, 1,2, 3,4, 5

hot_one: code having bitwise correspondence with the sign of each partial product
resultl_i: partial sum, i =0, 1, 2

coutl_i: carry-out,i= 12,3

Figure 4.6 (cont’d) First carry save addition stage.

4.3.3.2 First Carry Propagate Addition Stage

The other pipeline stage in the first custom addition section is a carry propagate addition
(CPA) stage (Figure 4.7). It consists of one 2-bit register, one 15-bit register (expanded to
L6-bit for synthesis), one 16-bit register, two 17-bit registers (expanded to 18-bit for
synthesis), two 18-bit registers, three CPA units, and one post-addition unit.

The registers accept and store control signals, three partial sums, three carry-outs, and
synchronize the operation of this stage. There are three custom carry propagate addition
units in this stage. Each accepts a pair of partial sum and carry-out produced in the
preceding carry save addition stage and adds them together to provide an intermediate
result (result2_i). As before, these additions are carried out in parallel. Within each carry
propagate addition unit, carry lookahead and carry select addition schemes (both being
described in Section 3.1.2) are adopted in order to speed up the calculation. The structure
of the first carry propagate addition stage can also be captured in the form of the VHDL

code (Appendix 6).

result2_2 result2_1 result2 0

sel_rad & sel_bit

Figure 4.7 First carry propagate addition stage (cont’d on the next page).

resultl_2 resultl_1 resultl_0O
clk % clk % clk CLK DIN
s\ CLK DIN »]\ CLK DIN —
st RST 15-bitReg | ISt RST 17-bitReg | [SL—pf RST 17-bitReg
DOUT DOUT DOUT
//%coutl_3 g $coutl__2 1 goutl_l
Clk_>>cu< DIN i,>cu< DIN C_”‘_, CLK DIN
sty RST 16-bitReg || ISL—p] RST 18-bitReg || ISL__p| RST 18-bit Reg
NDOUT nouUT DOUT
A - P
// // //
\ 4 Y \ 4
CPA Unit #3 CPA Unit #2 CPA Unit #1
- // .
sel_rad & sel_bit
l Y Ik %
<X JNCLK DIN
Post-addition Unit st pf RST 2-bitReg
nOUIT
v

63

sel_rad: control signal for selecting radix-4 or radix-8 recoding scheme
sel_bit: control signal for selecting 8-bit or 12-bit operand wordlength
clk: clock signal

Tst: reset signal

resultl _i: partial sum, i =0, [, 2

coutl_i: carry-out,i= 1,2, 3

result2_i: intermediate result, i = 0, 1, 2

Figure 4.7 (cont’d) First carry propagate addition stage.

4.3.4 Custom Addition Section #2

The second custom addition section is the final section of the multiplication component

and is also divided into two pipeline stages.

4.3.4.1 Second Carry Save Addition Stage

The first pipeline stage in this section is a carry save addition (CSA) stage (Figure 4.8). It
consists of one 2-bit register, one 16-bit register, two 18-bit registers, one align and ready
unit, and one CSA unit.

The registers accept and store control signals, three intermediate results, and
synchronize the operation of this stage. Three intermediate results (result2_i) are
provided from custom addition section #1. After being aligned and becoming ready for
addition, they are fed into the custom carry save addition unit for addition and produce a
partial sum (result3) and carry-out (cout). The structure of the second carry save addition

stage can also be captured in the form of the VHDL code (Appendix 7).

64

result2_2 result2_1 result2_0

{ { {

clk clk clk

K DIN
.>CLK DLN '>CLK DIN '>CL '
st pf RST 16-bitReg | LSL gt RST 18-bitReg | [SL_pf{ RST 18-bitReg
DOUT DOUT DOUT
I E S |
sel_rad & sel_bit %
Align and Ready Unit

clk
> > CLK DIN

{ { { Ist 3! RST 2-bitReg

NOIIT
e
CSA Unit 7]
% % v
result3 cout sel_rad & sel _bit

sel_rad: control signal for selecting radix-4 or radix-8 recoding scheme
sel_bit: control signal for selecting 8-bit or 12-bit operand wordlength
clk: clock signal

rst: reset signal

result2_i: intermediate result, i = 0, [, 2

result3: partial sum

cout: carry-out

Figure 4.8 Second carry save addition stage.

4.3.4.2 Second Carry Propagate Addition Stage
The other pipeline stage in the second custom addition section is a carry propagate

addition (CPA) stage (Figure 4.9)). It consists of one 2-bit register, two 23-bit registers,

and one CPA unit.

65

The registers accept and store control signals, the partial sum and carrry-out produced
in the preceding carry save addition stage, and synchronize the operation of this stage.
There is a custom carry propagate addition unit in this stage. It adds the partial sum
(result3) and carry-out (cout) together to produce the final result (result_final). Again,
carry lookahead and carry select addition schemes (both described in Section 3.1.2) are
adopted in order to speed up the calculation. The structure of the second carry propagate

addition stage can also be captured in the form of the VHDL code (Appendix 8).

result3 cout sel_rad & sel_bit
clk clk clk CLK DIN
.>CLK DIN ___>> CLK DIN _*,> _
ISt gt RST 23-bitReg | ISL__pf RST 23-bitReg | IS5 RST 2-bitReg
DOUT DOUT DOUT
CPA Unit

result_final

sel_rad: control signal for selecting radix-4 or radix-8 recoding scheme
sel_bit: control signal for selecting 8-bit or 12-bit operand wordlength
clk: clock signal

rst: reset signal

result3: partial sum

cout: carry-out

result_final: final resulr

Figure 4.9 Second carry propagate addition stage.

66

4.4 Design Methodology

4.4.1 Design Flow

As discussed in this chapter’s introduction, a new chip design approach, System-on-a-
Chip (SoC), comes into play along with the advances in VLSI fabrication technology.
These pose new challenges to hardware designers, that is, while the time-to-market
pressure still exists and the design team and tool see no dramatic change, the gate-count
and complexity of the chip increase exponentially. Thus, hardware designers must seek
possible opportunities for design reuse instead of building everything from scratch each
time a new design is undertaken. However, these pre-designed and verified reusable cores
need to be developed under a consistent design methodology in order to facilitate their
successful integration into system designs.

Figure 4.10 shows the traditional ASIC design flow. This approach is also called the
“waterfall model” and minimizes dependency and interaction between design teams. It

works well for designs with up to 100k gates and with feature size no finer than 0.5 um.

Specification —® Timing verification
h 4 A 4
RTL coding Place and route
h 4 A 4
Functional verification Prototyping and test
: '
Synthesis Sign-off

Figure 4.10 Traditional ASIC design flow.

67

For contemporary designs using state-of-the-art submicron technology and with reuse
in mind, modified approaches need to be adopted in order to manage complexity and
guarantee first-time success. The methodology adopted for the design of this reusable
multiplication component (Figure 4.11), can be considered as a top-down, yet recursive

approach.

Specification

Develop behavioral

model & partition l«——{ Develop testbench
design into sub-blocks

Subblock specification

!

Constraints RTL coding Testbench
Synthesize Simulate
!

Final check & sign-off

Figure 4.11 Core design flow.

68

During the development process, the component is handled at different abstraction
levels. Testbenches are developed at each level for extensive verification and simulation
to ensure that correct functionality and operation are achieved at each level. Also checked
are various design constraints like timing and synthesis considerations. If anything turns
out to be unsatisfactory, the coding for this block needs to be modified with detrimental
effects mitigated and results later re-verified. This cycle ends only when all the
functionality and constraint requirements are fulfilled. From another perspective, this
whole process can also be considered as “Construct by Correction.” This design flow is
adopted in order to guarantee that the core has a well understood and stable behavior and

can be safely reused and incorporated into a larger system design.

4.4.2 Timing and Synthesis Considerations

Besides design flow, other system-level issues, namely, timing and synthesis
considerations, were decided as part of the design methodology.

This multiplication component operates synchronously, with only one clock domain
being used for the entire core. Proven to simplify the timing issue, synchronous designs
normally result in robust systems and are a common choice for reusable cores. On the
other hand, the reset signal is also implemented synchronously because it is
straightforward to synthesis since reset becomes another synchronous input to the core.
However, a power-up reset is required. All memory elements are implemented using
registers to take advantage of the increase in available gate counts and, more importantly,

to avoid the time ambiguity associated with latches.

69

4.5 Results

4.5.1 Retargetability

Exhaustive functional verification of this reusable multiplication component core was
carried out, which included (i) modeling of the multiplication behavior, (ii) developing
the exhaustive testbench, and (iii) running the simulation.

The VHDL code for multiplier behavior modeling is shown in Appendix 9. In this
model two operands are accepted along with the clock and reset signal, and the
multiplication result is produced as the only output.

This model and the developed core were combined into the testbench (Appendix 10).
The testbench, by itself, generates the clock and reset signals along with the test vectors,
and sends them as inputs to both the model and the core. Then, the calculated results from
both units were compared. The exhaustive verification approach was adopted in
developing the testbench, that is, the generated test vector covered all possible
combinations of the multiplicand and multiplier. Another feature of this testbench is its
automatic error detection ability, which is illustrated as the following. During the
simulation and comparison, if everything is fine, the process will go on until all the test
vectors are exhausted; if not, the process will also go on, but a warning message will be
shown on the simulator display, indicating a discrepancy between the model and the core,
along with the time when this discrepancy occurs. This feature greatly reduces the
designer time and energy spent on filtering through long and complex waveforms
produced by exhaustive testing.

The simulation was carried out using Mentor Graphics Quick VHDL software. For 8-

bit operands, 28x2® cycles were run for the radix-4 recoding scheme and repeated for the

70

radix-8 recoding scheme. For 12-bit operands, 2'2x2'? cycles were run for the radix-4
recoding scheme and repeated for the radix-8 recoding scheme. Not until several
iterations of simulation were run and extensive debugs were carried out did the developed

core show satisfactory performance with retargetability requirements being fulfilled.

4.5.2 Throughput

Each pipeline stage of the developed core was synthesized using Synopsys Design
Analyzer software. The basic logic gates used in the synthesis came from the technology
library provided by the Canadian Microelectronic Corporation (CMC) called “wcells”,
which uses the 0.35-micron CMOS (CMOSP35) technology provided by the Taiwan
Semiconductor Manufacturing Company Ltd. (TSMC). The model for interconnecting
wires (wire load model) used in the synthesis is called “conservative_8k.”

The timing part of the synthesis report file for each pipeline stage is included in the
following sections. These timing reports show the worst path (maximum delay) in each
pipeline stage and are summarized in Table 4.3. Since the core has a pipeline
architecture, the maximum delay in each pipeline stage not only decides how fast each
stage can run, but also determines the overall core throughput because no correct result
can be obtained unless each pipeline stage successfully accomplishes its task. Thus, the

throughput of the core can be estimated using the following equation,

Throughput = 1 / Delaymax 4.1)

in which Delayma, is the maximum delay of all pipeline stages.

71

4.5.2.1 Timing Report for Code Generate Stage

Basically, the following timing report (Figure 4.12) shows the worst path (maximum
delay) in the code generate stage. The startpoint of this worst path is one of the register
inputs, while the endpoint is one of the outputs in the code generate unit. This
observation corresponds to the structure of this pipeline stage (Figure 4.2). Meanwhile,
the first column of the timing table indicates the logic gates or wires on this worst path,
the second column shows their contributions to the total delay, and the third column
accumulates all these delays and provides the maximum delay in the stage. For the code

generate stage, the maximum delay is 2.27 ns.

Startpoint: mr_reg/DOUT_reg(9]

(rising edge-triggered flip-flop)
Endpoint: COD_3[2] (output port clocked by clk)
Path Group: (none)
Path Type: max

Point Incr Path

mr_reg/DOUT_reg(9]/ck (wdp_2) 0.00 0.00 r
mr_reg/DOUT_reg[9]/q (wdp_2) 0.50 0.50 £
mr_reg/DOUT[S] (REG_OP_0) 0.00 0.50 £
code_generate/MR_IN[9] (COD_GEN) 0.00 0.50 £
code_generate/Ul064/op (winv_2) 0.25 0.75 r
code_generate/U1l078/0op (wxor2_2) 0.33 1.08 r
code_generate/Ul1040/0p (winv_2) 0.17 1.25 £
code_generate/U997/op (wor2_2) 0.28 1.54 £
code_generate/U%96/0p (winv_2) 0.09 1.63 r
code_generate/U995/0p (wnand2_2) 0.13 1.76 £
code_generate/Ul048/o0p (wnand2_2) 0.12 1.88 r
code_generate/Ul046/0p (wnand2_2) 0.17 2.05 £
code_generate/U1049/op (winv_2) 0.10 2.15 r
code_generate/Ul044/0p (wnand2_2) 0.12 2.27

72

code_generate/COD_3([{2] (COD_GEN) 0.00 2.27 £
COD_3[2] ({(out) 0.00 2.27 £

data arrival time 2.27

(Path is unconstrained)

Figure 4.12 Timing report for code generate stage.

4.5.2.2 Timing Report for Enable Generate Stage

The following timing report (Figure 4.13) shows the worst path in the enable generate
stage. The startpoint of this worst path is one of the register inputs, while the endpoint is
one of the outputs in the enable generate unit. This observation corresponds to the
structure of this pipeline stage (Figure 4.3). The first column of the timing table indicates
the logic gates or wires on this worst path, the second column shows their contributions
to the total delay, and the third column accumulates all these delays and provides the
maximum delay in the stage. For the enable generate stage, the maximum delay is 1.44

ns.

Startpoint: cod_1_reg/DOUT_regll]

(rising edge-triggered flip-flop)
Endpoint: ENB_1 (output port clocked by clk)
Path Group: (none)

Path Type: max

cod_1_reg/DOUT_reg(l]/ck (wdtp_2) 0.00 0.00 r
cod_1_reg/DOUT _regll]/q (wdtp_2) 0.65 0.65 £
cod_1_reg/DOUT([1l] (REG_N4_4) 0.00 0.65 £
enable_generate/COD_1[1l] (ENB_GEN) 0.00 0.65 £

73

enable_generate/Ul49/op (wnor2_2) 0.22 0.87 r
enable_generate/UlS56/0p (wnand3_2) 0.20 1.07 £
enable_generate/Ul54/o0p (wnand2_2) 0.14 1.21 r
enable_generate/U228/op (wnor2_2) 0.11 1.32 £
enable_generate/U224/0p (wnand3_2) 0.12 1.44 r
enable_generate/ENB_1 (ENB_GEN) 0.00 1.44 ¢
ENB_1 (out} 0.00 1.44 r
data arrival time 1.44

(Path is unconstrained)

Figure 4.13 Timing report for enable generate stage.

4.5.2.3 Timing Report for Value Generate Stage

The following timing report (Figure 4.14) shows the worst path in the enable generate
stage. The startpoint of this worst path is one of the register inputs, while the endpoint is
one of the outputs in the value generate unit. This observation corresponds to the
structure of this pipeline stage (Figure 4.4). The first column of the timing table indicates
the logic gates or wires on this worst path, the second column shows their contributions
to the total delay, and the third column accumulates all these delays and provides the

maximum delay in the stage. For the value generate stage, the maximum delay is 5.83 ns.

Startpoint: md_reg/DOUT_reg(0]

(rising edge-triggered flip-flop)
Endpoint: MD3[11l] (output port clocked by clk)
Path Group: (none)

Path Type: max

Point Incr Path

74

md_reg/DOUT_reg[0]/ck (wdp_2) 0.00 0.00 r
md_reg/DOUT_reg[0]/q (wdp_2) 0.72 0.72 £
md_reg/DOUT[0] (REG_OP) 0.00 06.72 £
value_generate/MD_IN[0] (VAL_GEN) 0.00 0.72 £
value_generate/U449/B[0] (VAL_GEN_DW01l_add_14_0) 0.00 0.72 £
value_generate/U449/U131/0p (winv_2) 0.15 0.86 r
value_generate/U449/U90/0op (wnand2_2) 0.15 1.02 £
value_generate/U449/U89/op (wnand2_2) 0.15 1.16 r
value_generate/U449/U117/0p (winv_2) 0.17 1.33 £
value_generate/U449/U%2/0p (wnand2_2) 0.11 1.44 r
value_generate/U449/U91/op (wnand2_2) 0.20 1.64 £
value_generate/U449/U118/o0p (winv_2) 0.16 1.80 r
value_generate/U449/U80/op (wnand2_2) 0.16 1.96 £
value_generate/U449/U96/0p (wnand2_2) 0.11 2.08 r
value_generate/U449/U94/0op (wnand2_2) 0.21 2.28 £
value_generate/U449/U99/op (wnand2_2) 0.12 2.40 r
value_generate/U449/U97/op (wnand2_2) 0.24 2.64 £
value_generate/U449/U82/0op (wnor2_2) 0.19 2.83 r
value_generate/U449/U132/0op (wor2_2) 0.20 3.03 ¢
value_generate/U449/U100/o0op (wnand2_2) 0.17 3.20 £
value_generate/U449/U104/0p (wnand2_2) 0.12 3.32 r
value_generate/U449/U0102/0op (wnand2_2) 0.24 3.56 £
value_generate/U449/U84/0p {(wnor2_2) 0.19 3.75 r
value_generate/U449/U133/0op (wor2_2) 0.20 3.95 r
value_generate/U449/U105/o0p (wnand2_2) 0.17 4 .12 £
value_generate/U449/U111/0op (wnand2_2) 0.12 4.23 r
value_generate/U449/U109/0op (wnand2_2) 0.24 4.47 £
value_generate/U448/U86/op (wnor2_2) 0.19 4.66 r
value_generate/U448/Ul134/0p (wor2_2) 0.20 4.86 r
value_generate/U449/U114/op (wnand2_2) 0.17 5.03 £
value_generate/U449/U121/0p (winv_2) 0.12 5.15 r
value_generate/U449/Ul41/op (wxor2_2) 0.36 5.52 r
value_generate/U449/SUM[11] (VAL_GEN_DWO1l_add_14_0) 0.00 5.52
value_generate/U560/o0p (winv_2) 0.15 5.67 £
value_generate/U533/0op (wnor2_2) 0.17 5.83 r
value_generate/MD3[(11] (VAL_GEN) 0.00 5.83 r
MD3 [11] (out) 0.00 5.83 r

data arrival time 5.83

(Path is unconstrained)

Figure 4.14 Timing report for value generate stage.

4.5.2.4 Timing Report for Partial Product Generate Stage

The following timing report (Figure 4.15) shows the worst path in the enable generate
stage. The startpoint of this worst path is one of the register inputs, while the endpoint is
one of the outputs in the partial product generate unit. This observation corresponds to
the structure of this pipeline stage (Figure 4.5). The first column of the timing table
indicates the logic gates or wires on this worst path, the second column shows their
contributions to the total delay, and the third column accumulates all these delays and
provides the maximum delay in the stage. For the partial product generate stage, the

maximum delay is 2.38 ns.

Startpoint: cod_2_reg/DOUT_reg(0]
(rising edge-triggered flip-flop)
Endpoint: MD_COD2_0UT([12]
(output port clocked by clk)
Path Group: (none)

Path Type: max

Point Incr Path

cod_2_reg/DOUT_reg(0]/ck (wdtp_2) 0.00 0.00 r
cod_2_reg/DOUT_reg(0l/qg (wdtp_2) 0.65 0.65 £
cod_2_reg/DOUT[0] (REG_N4_1) 0.00 0.65 £
md__coded_generate/COD_2_IN{0] (MD_COD_GEN) 0.00 0.65 £
md_coded_generate/U2548/0p {(winv_2) 0.21 0.86 r
md_coded_generate/Ul1593/0op (wnor2_2) 0.13 0.99 £

76

md__coded_generate/U2716/0op (wnand2_2) 0.25 1.24 r
md_coded_generate/U2717/op (winv_2) 0.13 1.37 £
md_coded_generate/U2718/o0p (winv_2) 0.40 1.77 r
md_coded_generate/Ul927/0op (wnor2_2) 0.17 1.94 £
md_coded_generate/U2278/0op (wnor2_2) 0.18 2.12 r
md_coded_generate/U2275/cop (wnandd_2) 0.26 2.38 £
md_coded_generate/MD_COD2[12] (MD_COD_GEN) 0.00 2.38 £
MD_COD2_OUT[12] (out) 0.00 2.38 £
data arrival time 2.38

(Path is unconstrained)

Figure 4.15 Timing report for partial product generate stage.

4.5.2.5 Timing Report for First Carry Save Addition Stage

The following timing report (Figure 4.16) shows the worst path in the first carry save
addition stage. The startpoint of this worst path is one of the register inputs, while the
endpoint is one of the carry-outs. This observation corresponds to the structure of this
pipeline stage (Figure 4.6). The first column of the timing table indicates the logic gates
or wires on this worst path, the second column shows their contributions to the total
delay, and the third column accumulates all these delays and gives out the maximum

delay in the stage. For the first carry save addition stage, the maximum delay is 4.06 ns.

Startpoint: sel_reg/DOUT_regl[l]

(rising edge-triggered flip-flop)
Endpoint: COUTI1_1[8] (output port clocked by clk)
Path Group: (none)

Path Type: max

77

sel_reg/DOUT_regf{l]l/ck (wdp_2) 0.00 0.00 r
sel_reg/DOUT_reg[l]l/q (wdp_2) 0.50 0.50 £
sel_reg/DOUT([1] (REG_N2) 0.00 0.50 £
U324/0p (winv_2) 0.19 0.69 r
U261/0p (wnand2_2) 0.15 0.84 £
U345/0p (winv_2) 0.50 1.34 r
U348/0op (winv_2) 0.73 2.07 £
U352/0p (wnand2_2) 0.39 2.46 r
U353/0p (winv_2) 0.25 2.71 £
U354/0p (winv_2) 0.45 3.16 r
Ulé6/op (wnand2_2) 0.19 3.35 £
U267/0p (wnand2_2) 0.24 3.59 r
csa_11/A(7] (CSA_1_N17_1) 0.00 3.59 r
csa_11/U216/0op (winv_2) 0.12 3.71 £
csa_11/U146/0p (wnand2_2) 0.11 3.82 r
csa_11/U184/0op (wnand2_2) 0.13 3.95 £
csa_11/U0182/0p (wnand2_2) 0.11 4 .06 r
csa_11/COUT([8] (CSA_1_N17_1) 0.00 4.06 r
COUT1_1[8] (out) 0.00 4.06 r
data arrival time 4.06

(Path i1s unconstrained)

Figure 4.16 Timing report for first carry save addition stage.

4.5.2.6 Timing Report for First Carry Propagate Addition Stage

The following timing report (Figure 4.17) shows the worst path in the first carry
propagate addition stage. The startpoint of this worst path is one of the register inputs,
while the endpoint is one of the intermediate results. This observation corresponds to the
structure of this pipeline stage (Figure 4.7). The first column of the timing table indicates

the logic gates or wires on this worst path, the second column shows their contributions

78

to the total delay, and the third column accumulates all these delays and provides the

maximum delay in the stage. For the first carry propagate addition stage, the maximum

delay is 4.57 ns.

Startpoint: coutl_1_reg/DOUT_regll]

(rising edge-triggered flip-flop)

Endpoint: RESULT2_0([15]

(output port clocked by clk)

Path Group: (none)

Path Type: max

coutl_1_reg/DOUT_reg(l]/ck (wdtp_2)
coutl_1_reg/DOUT_regl(ll/g (wdtp_2)
coutl_1_reg/DOUT(1]

cla_11/B{1] (CLA_1_2)

cla_11/U301/0p
cla_11/U206/0p
cla_11/U254/0p
cla_11/U182/0p
cla_11/U0181l/0p
cla_11/U193/0p
cla_11/U0191/0p
cla_11/U215/0p
cla_11/U0213/0p
cla_11/U263/0p
cla_11/U262/0p
cla_11/U227/0p
cla_11/U271/0op
cla_11/U238/0op
cla_11/U237/op
cla_11/U240/0p
cla_11/U239/0op
cla_11/U243/0p
cla_11/U242/0p

(winv_2)
(wnand2_2)
(wnand2_2)
(wnor2_2)
(wnor2_2)
(wor2_2)
(wvnand2_2)
(wnand2_2)
(wnand2_2)
(winv_2)
(wnand2_2)
(wnand2_2)
(wnand2_2)
(wnand2_2)
(wnand2_2)
(wnand2_2)
(wnand2_2)
(wnand2_2)
(wnand2_2)

(REG_N18_3)

K m N MmN Mmoo R

MR m R MM R MR R R

a

)]

79

cla_11/U246/0p (wnand2_2) 0.12 3.87 r
cla_11/U245/0op (wnand2_2) 0.16 4.03 £
cla_11/U329/0p {(wxor2_2) 0.34 4.37 r
cla_11/SUM{[15] (CLA_1_2) 0.00 4.37 r
U69/0p (wand2_2) 0.20 4.57 r
RESULT2_0{15] (out) 0.00 4.57 r
data arrival time 4.57

(Path is unconstrained)

Figure 4.17 Timing report for first carry propagate addition stage.

4.5.2.7 Timing Report for Second Carry Save Addition Stage

The following timing report (Figure 4.18) shows the worst path in the second carry save
addition stage. The startpoint of this worst path is one of the register inputs, while the
endpoint is the partial sum..This observation corresponds to the structure of this pipeline
stage (Figure 4.8). The first column of the timing table indicates the logic gates or wires
on this worst path, the second column shows their contributions to the total delay, and the
third column accumulates all these delays and provides the maximum delay in the stage.

For the second carry save addition stage, the maximum delay is 4.11 ns.

Startpoint: sel_reg/DOUT _reg[l]
{rising edge-triggered flip-flop)
Endpoint: RESULT3([20]
(output port clocked by clk)
Path Group: (none)

Path Type: max

Point Incr Path

80

o
o
o
o
o
[a

sel_reg/DOUT_reg(ll/ck (wdp_2)
sel_reqg/DOUT_reg{ll/q (wdp_2)

fee]
~
o
w
~
at

sel_reg/DOUT(1] (REG_N2)

[89]
W
[
N
pat
m R

Ul22/0p (winv_2)
Ul4l/op (wnand2_2)

IS
[\S]
N
o
o
rhoN

0
0]
0
0
0
Ul42/0p (winv_2) 0
U95/0p (wnand2_2) 0.15 2.15
Ul44/0p (wnand2_2) 1
csa_2/C[20] (CsSA_1_N23) (0]
csa_2/U1l75/o0p (wxor2_2) 0
csa_2/Ul52/o0p (wxor2_2) 0
csa_2/RESULT1({20] (CSA_1_N23) 0
RESULT3 [(20] (out) 0

wn
&)
w
for]
w
Lon N N o T o TR ot SR) B

data arrival time 4.11

(Path is unconstrained)

Figure 4.18 Timing report for second carry save addition stage.

4.5.2.8 Timing Report for Second Carry Propagate Addition Stage

The following timing report (Figure 4.19) shows the worst path in the second carry
propagate addition stage. The startpoint of this worst path is one of the register inputs,
while the endpoint is the final result. This observation corresponds to the structure of this
pipeline stage (Figure 4.9). The first column of the timing table indicates the logic gates
or wires on this worst path, the second column shows their contributions to the total
delay, and the third column accumulates all these delays and provides the maximumm
delay in the stage. For the second carry propagate addition stage, the maximum delay 1s

491 ns.

81

Startpoint: result3_reg/DOUT_reg([l16]
(rising edge-triggered flip-flop)
Endpoint: RESULT_FINAL[22]
(output port clocked by clk)
Path Group: (none)

Path Type: max

Point Incr Path

result3_reg/DOUT_reg(l6]/ck (wdtp_2) 0.00 0.00 r
result3_reg/DOUT_regl[l6]/q (wdtp_2) 0.67 0.67 £
result3_reg/DOUT([16] (REG_N23_1) 0.00 0.67 £
fa_1/A[0] (FANBIT_N7_1) 0.00 0.67 £
fa_1/U66/0op (winv_2) 0.13 0.80 r
fa_1/U29/0op (wnand2_2) 0.13 0.93 £
fa_1/U38/0p (wnand2_2) 0.11 1.04 ¢
fa_1/U36/o0p (wnand2_2) 0.18 1.21 £
fa_1/U54/0p (winv_2) 0.1l6 1.37 r
fa_1/U31/0p (wnand2_2) 0.16 1.53 £
fa_1/U41/0op (wnand2_2) 0.11 1.64 r
fa_1/U039/0p (wnand2_2) 0.24 1.88 £
fa_1/U32/0p (wnor2_2) 0.19 2.07 r
fa_1/U44/0p (wor2_2) 0.19 2.27 r
fa_1/U42/0p (wnand2_2) 0.17 2.44 £
fa_1/U55/0p (winv_2) 0.16 2.59 r
fa_1/U33/0p (wnand2_2) 0.16 2.75 £
fa_1/U47/0p (wnand2_2) 0.11 2.86 r
fa_1/U45/0p (wnand2_2) 0.24 3.11 £
fa_1/U34/0p (wnor2_2) 0.19 3.30 r
fa_1/U050/0p (wor2_2) 0.19 3.49 r
fa_1/U48/0op (wnand2_2) 0.17 3.66 £
fa_1/U56/0p (winv_2) 0.16 3.82 r
fa_1/U35/0p (wnand2_2) 0.16 3.98 £
fa_1/U53/0op (wnand2_2) 0.11 4.09 r
fa_1/U51/0p (wnand2_2) 0.24 4.33 £
fa_1/U67/0p (wxoxr2_2) 0.35 4.68 r
fa_1/S[6] (FANBIT_N7_1) 0.¢¢ 4.68 r
Ul2/0p (wmux2_2) 0.23 4.91 r

RESULT_FINAL[22] (out) 0.00 4.91 r

data arrival time 4.91

(Path is unconstrained)

Figure 4.19 Timing report for second carry propagate addition stage.

4.5.2.9 Summary of Maximum Delay for Each Pipeline Stage

According to the timing reports, the maximum delay of each pipeline stage is
summarized in Table 4.3 (Total latency: 29.57 ns). Two observations can be made. First,
the maximum delay of all pipeline stages occurs in the value generate stage, which
corresponds to the fact that the value of 3*multiplicand is calculated in this stage. This
calculation involves the major power-consuming operation of multipliers — addition — as
indicated in Chapter3, and the addition carried out here is not manually optimized.
Second, the value of this maximum delay is 5.83ns; thus, the throughput of the core can

be estimated using Equation 4.1 as l/(5.83x10'9) = [71.5 MIPS.

Pipeline Stage Maximum Delay (ns)
Code Generate Stage 2.27
Enable Generate Stage 1.44
Value Generate Stage 5.83
Partial Product Generate Stage 2.38
First Carry Save Addition Stage 4.06
First Carry Propagate Addition Stage 4.57
Second Carry Save Addition Stage 4.11
Second Carry Propagate Addition Stage 491

Table 4.3 Maximum delay of each pipeline stage.

83

4.5.3 Power

As indicated in Chapter 3, the major power-consuming operation for a multiplier is
addition. Various recoding schemes can effectively reduce the number of additions
performed during multiplication, and thus decrease the power consumption. One feature
of this reusable multiplication component is its power-efficiency compared to that of
conventional multipliers. Moreover, this feature was demonstrated through simulation
results showing a large reduction in the number of additions required for multiplication.
The modeling file and testbench were modified in order to compare the number of
additions performed during multiplication using recoding schemes to that without
recoding. Simulation was then run using 500 random test vectors, and the result is

summarized in Table 4 4.

Mode More Equal Less
Addition Addition Addition
8-bit operands, radix-4 recoding 7.8% 25.4% 66.8%
8-bit operands, radix-8 recoding 23.8% 23.6% 52.6%
12-bit operands, radix-4 recoding 6% 12% 82%
12-bit operands, radix-8 recoding 10% 2% 88%

Table 4.4 Simulation result comparing addition needed with and without recoding.

The table shows that, regardless of the recoding scheme and operand wordlength, the
use of recoding schemes can have at least a 52.6% chance of reducing the number of
additions needed for multiplication, and rhus effectively lower power-consumption and

increase power-efficiency.

84

4.6 Design for Testability of the Multiplication Component

Design verification for this reusable multiplication component core is function oriented,
that is, to verify that the system meets functionality requirements. The exhaustive
approach for verification may also be used for module testing. However, the resulting test
pattern is too long to be practical since a long test pattern leads to an excessively high
testing cost. In order to keep testing costs within reasonable bounds while still achieving
high fault coverage, design-for-testability (DFT) techniques are highly recommended for
contemporary chip designs. Generally speaking, controllability and observability are the
two most important factors in determining the testability of a device [81].

As an extension of this thesis research, several DFT techniques are suggested in this
section in order to achieve better observability and controllability for the testing of this
multiplication component. These include scannable registers, the AND/OR tree based

technique [82], and the C-testable technique for iterative logic array [81].

4.6.1 Scannable Registers

An effective way of improving the observability and controllability of the internal states
in a digital system is to make the registers in the system directly accessible during the
test. For this multiplication component, doing so means the tester can arbitrarily control
and easily observe the bit value in each register. This is achieved through the use of the
suggested scanable register (SRs). These registers have four modes: normal, shift,
snapshot and test mode (Figure 4.20). In the normal/shift/snapshot/test mode, data are
applied from normal/test/normal/test data input ports and come out at

normal/test/test/normal data output ports.

85

l Normal data in

Mode Select Mode Mode I
00 Normal mode CLK >Scannable Test data
. PPRegister [>
01 Shift mode Test data in
10 Snapshot mode — "
11 Test mode l Normal data out

Figure 4.20 Scannable registers.

4.6.2 AND/OR Tree Based Technique

The AND/OR tree based technique was originally used in the testing of configurable
logic blocks (CLBs) in field programmable gate arrays (FPGAs) [82]. If circuits under
test (CUTs) all have the same architecture, then outputs of these CUTs must be the same
under the same test pattern if they are fault-free.

Figure 4.21 shows the basic structure for three CUTs and under the condition that one
output of each CUT is considered at a time. Given an AND tree made up of 2-input AND
gates, if each leaf of the tree is taken as an input (I,), the output is given by OUT =
LN .. N, Similarly, for an OR tree, OUT = ULy ... Ul,. The AND/OR tree has
the property that the effect of a stuck-at-0/1 fault on any input, or any other faults that
make the logic value of the input change from [(0) to 0(1), can always be propagated to
the output (root) of the AND/OR tree if all other inputs of the tree are at logic value 1(0).
The AND/OR tree technique can be applied to this multiplication component because it
contains identical sub-components such as adders and flip-flops. The feature of this
technique is that it has strong multi-fault detectability. With an exhaustive test for each

CUT, the AND/OR tree can completely detect any practical multiple-fault CUTs.

86

CUT[T CUT|[T CUT[T

O D)
e N

Figure 4.21 ADD/OR tree based structure.

4.6.3 C-testable Technique for Iterative Logic Arrays (ILAs)

Pseudo-exhaustive testing techniques based on partitioning are perfectly suited for circuit
structures such as ILAs, which are composed of identical CUTs interconnected in a
regular pattern. Figure 4.22 shows an ILA with three CUTs. The partitioning problem is
solved by exhaustively testing every CUT. Combined with the SRs shown in Figure 4.20,
the ILAs have the useful property that they can be pseudo-exhaustively tested with a
number of tests that depend not on the number of CUTs in the ILA but only on one CUT,
which is said to be “constant testable” (C-testable).

In the normal operation mode, the data (c;) goes into each SR from “normal data in”
and comes out (¢;’) at “normal data out.” When the circuit is under test, the applied test

patterns (s;) are first shifted into the SRs under “shift mode,” and then applied to each

g

CUT (¢;") under “test mode.”

W 4

—> = =
Cn Ci S ci' C» S cy' Ca S ca'
R > R > R >

St S9 Sz

v v v

Figure 4.22 C-testable structure for an ILA.

87

4.6.4 Application to the Multiplication Component

The developed multiplication component can be re-divided into two main parts: the
recoding circuit and the addition circuit, with the latter incorporating the final two custom

addition sections shown in Figure 4.1.

4.6.4.1 AND/OR Tree for the Recoding Circuit
The recoding circuit produces the partial products following either the radix-4 or 8 Booth
recoding scheme and depending on slices of the multiplier. Figure 4.23(a) shows how to

generate the partial products applicable to the AND/OR tree.

Multiplier Multiplicand Operands % % Control signals

[] [(TTTT]

Partial Products

Recoding circuit

AND/OR |—p
l I—‘V tree |
I >
l —> To AND/OR Partial products
'_____l_’ tree (to adders)
(a) (b)

Figure 4.23 Coding circuit with AND/OR trees.

The radix-4 Booth recoding scheme can be used as an example. It generates a partial
product after examining three bits of the multiplier at a time. One partial product may not
be the same as the next generated partial product since they share a common bit but at a

different location. However, this problem can be solved when they are under test (not in

88

the normal system operation mode) by replacing the common bit of slices with a bit value

from either of the two independent registers storing one or zero. Therefore, each partial

product can be the same as other partial-products and hence be exhaustively generated

and tested. Figure 4.23(b) shows the recoding circuit with the AND/OR tree.

4.6.4.2 C-Testable Technique for the Adders

The addition circuit can be divided into smaller sub-units with the same function. Figure

4.24 shows the application of C-testable technique on a 16-bit carry lookahead adder.

Using the C-testable technique, the 4-bit subadders and the carry generation circuit

can be exhaustively tested with the number of test vectors being greatly reduced (from

219219 10 4x24x2%y.

4 4
<--—-—
A B

—1 Pout Pin fd— —1 Pout Pinj€&—
— Gout Ginje€— 1 Gout Ginj€—
BCle | |® * ° BC |¢-
Sum Sum
-Is R} {s R}----[s R}---T---- R]-
v
w vw

Carry Generation Circuit

Figure 4.24 Application of C-testable technique to a CLA adder.

89

Chapter 5

Conclusions and Recommendations

Digital signal processing systems have rapidly increased in demand due to the prevalence
of various wireless communication devices. However, their application is still restricted
by adaptability, throughput and power-consumption limitations. Research into baseband
DSP systems with better adaptabiltiy, higher throughput, and more power efficiency has
been carried out at algorithmic and architectural levels. On the other hand, superior
overall systems can also be achieved through the research and development of various
baseband DSP components with better performance in terms of adaptability, throughput,
and power efficiency. This applies especially to multiplication components, largely due

to their importance in the performance of the whole baseband DSP system.

90

During this thesis research, comprehensive reviews on (i) low-power wireless
multimedia communication systems and (ii) addition and multiplication schemes for
baseband digital signal processing components were first carried out. A multiplication
component was then developed based on the review and understanding of underlying
principles and past work. The development of this comaponent also reflects a design
concept that could be applied to the development of reusable embedded component cores
for SoC designs. This concept consists of three areas of focus, namely, functionality,
structure, and design methodology. The development process and results prove that the
design concept could be adopted in order to achieve retargetability, high throughput, and
reduced power consumption.

Retargetability is one of the functionality requirements . [t is demonstrated through the
core’s ability to switch between radix-4 and 8 recoding schemes for carrying out
multiplication, and its capability to handle different operand lengths: 8- and 12-bit two’s
complement operands, with the two operands accepted simultaneously being of the same
length. The calculation results are also in two’s complement form. The choice for
different radix recoding schemes and operand widths is sent to the core through two
control signal bits.

Throughput of this multiplication component core is expected to exceed 150 MIPS
and is achieved through the incorporation of architectural level design styles like
pipelining and parallelism. The whole core is divided into eight pipeline stages, while
parallelism is utilized within several pipeline stages. Besides these, various high
performance addition and multiplication schemes like carry save, carry lookahead, carry

select, and Booth recoding approaches are adopted so as to speed up calculation.

91

Low power operation compared to that of conventional multipliers, i.e., array
multipliers, is expected to be obtained. This result is achieved by using Booth recoding
schemes, which reduce the most power-consuming operation in all multipliers — addition.
The usage of the carry save addition scheme also contributes to the overall power
efficiency.

After the research and development, this multiplication component core underwent
extensive verification and simulation. This process was necessary due to the lack of
previous results and reporting. Exhaustive testing showed that the prescribed
retargetability was successfully achieved. Also, the estimated throughput after synthesis
is 171.5 MIPS, which exceeds the expected 150 MIPS. As well, this component needs at
least 52.6% fewer addition operations than a conventional multiplier, and thus effectively
reduces power consumption and meets the expected objective.

Besides the above-mentioned functional features, a formal methodology was adopted
during the development of this multiplication component core as part of the design
concept, in order to make the core reusable and ready for integration into the System-on-
a-Chip (SoC) designs that are being increasingly accepted and supported in the
semiconductor industry.

Finally, as an extension of this thesis research, it is recommended that design-for-
testability considerations be incorporated into this multiplication component core. Several
suitable approaches have been proposed and can be incorporated into the core in the

future.

92

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

A. Gatherer, et al., “DSP-based architectures for mobile communications: past,
present and future,” in [EEE Commun. Mag., Vol. 38, No. 1, 2000, pp. 84 — 90.

K. Feher, Wireless Digital Communications, Prentice-Hall, Englewood Cliffs, NJ,
1995.

L.E. Larson, “Integrated circuit technology options for RFIC’s — present status and
future directions,” in [EEE Journal of Solid-State Circuits, Vol. 33, No. 3, 1998, pp.
387 —399.

B. Razavi, RF Microelectronics, Prentice-Hall, Upper Saddle River, NJ, 1998.

J.G. Proakis and D.G. Manolakis, Digital Signal Processing: Principles, Algorithms,
and Applications, 3" ed., Prentice-Hall, Upper Saddle River, NJ, 1996.

J.S. Eager, “Advances in rechargeable batteries spark product innovation,” in Proc.

1992 Silicon Valley Computer Conf., 1992, pp. 243 —253. °

93

(71

(8]

[9]

[10]

[11]

(12]

[13]

[14]

A.S. Tanenbaum, Computer Networks, 3 ed., Prentice-Hall, Upper Saddle River,
NJ, 1996.

P. Agrawal, “Energy conservation design techniques for mobile wireless VLSI
systems,” in Proc. IEEE Computer Society Workshop on VLSI'98, 1998, pp. 34 —
39.

J.-C. Chen, K.M. Sivalingam, P. Agrawal, and S. Kishore, “A comparison of MAC
protocols for wireless local networks based on battery power consumption,” in
Proc. [EEE INFOCOM, 1998, pp. 150 — 157.

IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY)
Spec,” P802.11/D5, Draft Standard IEEE 802.11, May 1996.

D.J. Goodman, R.A. Valenzuela, K. T. Gayliard, and B. Ramamurthi, “Packet
reservation multiple access for local wireless communications,” [EEE Transactions
on Communications, Vol. 37, 1989, pp. 885 — 890.

D. Raychaudhuri and N.D. Wilson, “ATM-based transport architecture for multi-
services wireless personal communication networks,” IEEE Journal on Selected
Areas in Communications, Vol. 12, 1994, pp. 1401 - 1414.

K.M. Sivalingam, M.B. Srivastava, P. Agrawal, and J.-C. Chen, “Low-power access
protocols based on scheduling for wireless and mobile ATM networks,” in Proc.
IEEE International Conference on Universal Personal Communications, 1997, pp.
429 — 433.

M.J. Karol, Z. Liu, and K. Y. Eng, “An efficient demand-assignment multiple access
protocol for wireless packet (ATM) networks,” in ACM/Baltzer Wireless Networks,

Vol. 1, 1995, pp. 267 —279.

94

[15]

[16]

(17]

[18]

[19]

[20]

(21]

(22]

(23]

T.E. Truman, R.W. Brodersen, “A. design methodology for highly-integrated

wireless communications systems,” i Proc. IEEE Computer Society Workshop on

VLSI'98, 1998, pp. 66 — 70.

S. Narayanaswamy, et al., “Application and network support for InfoPad,” in IEEE

Personal Communications, April 1996, pp. 4 — 17.

R. Want, et al., “An overview of the PParcTab ubiquitous computing experiment,” in

IEEE Personal Communications, December 1995, pp. 28 —43.

A.A. Abidi, “Low-power radio-frequmency IC’s for portable communications,” in

Proceedings of the IEEE, Vol. 83, No.. 4, 1995, pp. 544 — 569.

P.R. Gray and R.G. Meyer, “Future directions in silicon ICs for RF personal

Communications,” in Proc. of the Custom Integrated Circuits Conf., 1995, pp. 83 —

90.

W.G. Kasperkovitz, “An integrated FFM receiver,” in Microelectronics Reliability,

Vol. 21, No. 2, 1981, pp. 183 — 189.

T. Okanobu, H. Tomiyama, and H. .Arimoto, “Advanced low-voltage single chip

radio IC,” in IEEE Trans. on Consumezr Electronics, Vol. 38, No. 3, 1992, pp. 465 —

475.

LLA.W. Vance, “Fully integrated radieo paging receiver,” in [EE Proc. Part F, Vol.
29, No. 1, 1982, pp. 2 —-6.

J. Crols and M. Steyaert, “A single-ckhip 900 MHz CMOS receiver front-end with a

high performance low-IF topology,” in [EEE Journal of Solid-State Circuits, Vol.

30, 1995, pp. 1483 — 1492.

95

[24]

(25]

[26]

(27]

(28]

(29]

(30]

[31]

A.P. Chandrakasan, S. Sheng and R.W. Brodersen, “Low-power CMOS digital
design,” in IEEE Journal of Solid-State Circuits, Vol. 27, No. 4, 1992, pp. 473 —
484.

N.H.E. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems
Perspective, 2" ed., Addison-Wesley, Reading, MA, 1993.

D.A. Patterson and J.L.. Hennessy, Computer Architecture: A Quantitative
Approach, 2nd ed., Morgan Kaufmann Publishers, San Francisco, CA, 1996.

C.E. Leiserson, F. Rose and J. Saxe, “Optimizing synchronous circuitry by
retiming,” in Proc. of the Third Caltech Conference on VLSI, March 1983, pp. 87 —

116.

K.K. Parhi and D.G. Messerschmitt, “Static rate-optimal scheduling of iterative
data-flow programs via optimum unfolding,” in IEEE Trans. on Computers, Vol.
40, 1991, pp. 178 — 195.

K.K. Parhi, “A systematic approach for design of digit-serial signal processing
architectures,” in IEEE Trans. on Circuits and Systems, Vol. 38, 1991, pp. 358 —
375.

C. Wang and K.K. Parhi, “High-level DSP synthesis using concurrent
transformation, scheduling, and allocation,” in IEEE Trans. CAD, Vol. 14, No. 3,

1995, pp. 274 — 295.

K.K. Parhi and D.G. Messerschmitt, “Pipeline interleaving and parallelism in
recursive idgital filters — part [pipelining using scattered look-ahead and
decomposition,” in IEEE Trans. Acoustic, Speech, Signal Processing, Vol. 37, No.

7, 1989, 1099 — 1117.

96

(32]

[33]

[34]

[35]

[36]

[37]

[38]

(39]

[40]

(41]

S.-H. Huang and J.M. Rabaey, “Maximizing the throughput of high performance
DSP applications using behavioral transformations,” Proc. EDAC-EUROASIC,
March 1994, pp. 25 - 30.

T.Arslan, A.T. Erdogan and D.H. Horrocks, “Low power design for DSP:
methodologies and techniques,” in Microelectronics Journal, Vol. 27, 1996, pp- 731
—744.

K.K. Parhi, “High-level algorithm and architecture transformations for DSP
synthesis,” in Journal of VLSI Signal Processing, Vol. 9, 1995, pp. 121 — 143.

A. Bellaouar and M.I. Elmasry, Low-power Digital VLSI Design: Circuits and
Systems, Kluwer Academic Publishers, Boston, MA, 1995.

D.B. Lidsky and J.M. Rabaey, “Low-power design of memory intensive functions,”
in [EEE Sym. on Low Power Electronics, Tech. Dig., October 1994, pp. 16 — 17.

A. Chandrakasan and R. Brodersen (eds), Low-power CMOS Design, [EEE Press,
New York, NY, 1998.

G.K. Yeap, Practical Low Power Digital VLSI Design, Kluwer Academic
Publishers, Boston, MA, 1998.

R.H. Katz, Contemporary Logic Design, Benjamin/Cummings Publishing Company
Inc., Redwood City, CA, 1994.

A.R. Omondi, Computer Arithmetic Systems: Algorithms, Architecture and
Implementation, Prentice-Hall, Englewood Cliffs, NJ, 1994.

J.M. Rabaey and M. Pedram (eds), Low Power Design Methodologies, Kluwer

Academic Publishers, Boston, MA, 1996.

97

[42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

[50]

[51]

[52]

B. Gilchrist, et al., “Fast carry logic for digital computers,” in IRE Trans. EC-4,
Dec. 1955, pp- 133 — 136.

S. Turrini, “Optimal group distribution in carry-skip adders,” in Proc. of the 9™
Sym. on Computer Arithmetic, 1989, pp. 96 — 103.

R.P. Brent and H.T. Kung, “A regular layout for parallel adders,” in [EEE Trans.
Comput., Vol. C-31, No. 3, 1982, pp. 260 — 264.

O.L. MacSorley, “High-speed arithmetic in binary computers,” in IRE Proceedings,
Vol. 49, 1961, pp. 67 —91.

J. Sklansky, “Conditional-sum addition logic,” IRE Transactions on Electronic
Computers, Vol. EC-9, 1960, pp. 226 — 231.

O.J. Bedrij, “Carry-select adder,” IRE Transactions on Electronic Computers, Vol.
EC-11, 1962, pp. 340 — 346.

S. Waser and M.J. Flynn, Introduction to Arithmetic for Digital Systems Designers,
CBS College Publishing, Taipei, Taiwan, 1983.

K.K. Parhi, “A systematic approach for design of digit-serial signal processing
architectures,” in [EEE Trans. on Circuits and Systems, Vol. 38, No. 4, 1991, pp.
358 - 375.

H.R. Srinivas and K.K. Parhi, “A fast VLSI adder architecture,” in [EEE JSSC, Vol.
27,No. 5, 1992, pp. 761 - 767.

J.M. Dobson and G.M. Blair, “Fast two’s complement VLSI adder design,” in
Electronics Letters, Vol. 31, No. 20, Sept. 1995, pp. 1721 — 1722.

H. Makino, et al., “An 8.8-ns 54x54-bit multiplier with high speed redundant binary

architecture,” in IEEE JSSC, Vol. 31, No. 6, 1996, pp. 773 — 783.

98

(53]

[54]

[55]

[56]

(57]

(58]

(591

(60]

[(61]

[62]

[63]

K.K. Parhi, “Fast low-energy VLSI binary addition,” in Proc. 1997 IEEE Int’l Conf.
on Computer Design (ICCD), 1997, pp. 676 — 684.

K. Hwang, Computer Arithmetic: Principles, Architecture, and Design, John Wiley
& Sons, New York, NY, 1979.

LS. Abu-Khater, A. Bellaouar, and M.I. Elmasry, “Circuit techniques for CMOS
low-power high-performance multipliers,” in IEEE JSSC, Vol. 31, No. 10, 1996,
pp. 1535 - 1546.

C.J. Nicol and P. Larsson, “Low power multiplication for FIR filters,” in ISLPED,
1997, pp. 76 — 79.

Y. Hagihara, et al., “A 2.7ns 0.25um CMOS 54x54b multiplier,” in IEEE ISSCC,
1998, pp. 296 — 297.

E.M. Schwarz, R.M. Averill III and L.J. Sigal, *‘A radix-8 CMOS S/390 multiplier,”
in Proc. [EEE 13™ Sym. on Computer Arithmetic, pp. 2 — 9.

R. Fried, “Minimizing energy dissipation in high-speed multipliers,” in ISLPED,
1997, pp. 214 - 219.

C. Lemonds, et al., “A low power 16 by 16 multiplier using transition reduction
circuitry,” in Proc. of 1994 Int’l Workshop on Low Power Design, 1994, p 139.

S.S. Mahant-Shetti, C. Lemonds and P. Balsara, “Leap frog multiplier,” in [SLPED,
1996, pp. 221 — 223.

K.Z. Pekmestzi, “Multiplexer-based array multipliers,” in IEEE Trans. on
Computers, Vol. 48, No. 1, 1999, pp. 15 —23.

C. Wallace, “A suggestion for a fast multiplier,” in [EEE Trans. On Electronic

Computers, Vol. EC-13, Feb. 1964, pp. 14 —17.

99

[64]

[65]

[66]

(671

[68]

[69]

(70]

(71]

(72]

(73]

D. Carlson, et al., “A 667MHz RISC microprocessor containing a 6.0ns 64b integer
multiplier,” in IEEE ISSCC, 1998, pp. 294 —295.

P.C.H. Meier, R.A. Rutenbar and L.R. Carley, “Exploring multiplier architecture
and layout for low power,” in IEEE 1996 CICC, 1996, pp. 513 —-516.

L. Dadda, “Some schemes for parallel multipliers,” in Alta Frequenza, 34, 1965, pp.
349 —356.

Y.N. Chang, JH. Satyanarayana and K.K. Parhi, “Low-power digit-serial
multipliers,” in 1997 IEEE Int’l Sym. on Circuits and Systems, 1997, pp. 2164 —
2167.

Y.N. Chang, J.H. Satyanarayana and K.K. Parhi, “Systematic design of high-speed
and low-power digit-serial multipliers,” in IEEE Trans. on Circuits and Systems, II:
Analog and Digital Signal Processing, Vol. 45, No. 12, 1998, pp. 1585 — 1596.

S.D. Pezaris, “A 40ns 17-bit-by-bit array multiplier,” in IEEE Trans. Computers,
Vol. C-20, No. 4, Apr. 1971, pp. 442 — 447.

C.R. Baugh and B.A. Wooley, “A two’s complement parallel array multiplication
algorithm,” in [EEE Trans. Computers, Vol. C-22, No. 12, 1973, pp. 1045 — 1047.
A. Hemel, “Making small ROMs do math quickly, cheaply and easily,” in
Electronic Computer Memory Technology, W.B. Riley, ed., McGraw-Hill, New
York, NY, 1971, pp. 133 — 140.

T.A. Brubaker and J.C. becker, “Multiplication using logarithms implemented with
read-only memory,” in IEEE Trans. Computers. Vol. C-24, 1975.

E. Abu-Shama, M.B. Maaz and M.A. Bayoumi, “A fast and low power multiplier

architecture,” in Midwest Sym. on Circuits and Systems, Vol. 1, 1996, pp. 53 — 56.

100

(74]

[75]

[76]

(77}

(78]

[79]

(80]

(81]

(82]

(83]

U. Ko, P.T. Balsara, and W. Lee, “Low-power design techniques for high-
performance CMOS adders,” in IEEE Trans. VLSI Systems, Vol. 3, No. 2, 1995,
pp- 327 — 333.

R. Zimmermann and R Gupta, “Low-power logic styles,” in ESSCIRC, 1996.

B. Ackland and C Nicol, “High performance DSPs — what’s hot and what’s not?” in
ISLPED, 1998, pp. 1 - 6.

M. Suzuki, et al., “A 1.5-ns 32-b CMOS ALU in double pass-transistor logic,” in
[EEE JSSC, Vol. 28, No. 11, 1993, pp. 1145 — 1151.

M. Margala and N.G. Durdle, “Low-voltage power-efficient BiDPL adder for VLSI
applications,” in Microelectronics Journal, Vol. 30, No. 2, 1999, pp-193-197.

A.M. Shams and M.A. Bayoumi, “A structured approach for designing low power
adders,” in Conf. Record of the Asilomer Conf. on Signals, Systems, and
Computers, Vol. 1, 1997, pp. 757 - 761.

A. Sayed and M. Bayoumi, “A new low power building block cell for adders,” in
Proc. 1997 40™ Midwest Sym. on Circuits and Systems, Part 2 of 2, 1997, pp. 818 —
822.

M. Abramovici, M.A. Breuer and A.D. Friedman, Digital System Testing and
Testable Design, [EEE Computer Society Press, Piscataway, NJ, 1992.

W.K. Huang, F.J. Meyer and F. Lombardi, “Multiple fault detection in logic
resources of FPGAs,” in Proc. IEEE Int’l Workshop on Defect and Fault Tolerance
in VLSI Systems, 1997, pp. 186 — 194.

J. Crols and M. Steyaert, CMOS Wireless Transceiver Design, Kluwer Academic

Publishers, Dordrecht, The Netherlands, 1997.

101

Appendices

Appendix 1: Structure of Code Generate Stage in VHDL Code

. o —_— e . . e, . e — — — — — — — — —— — — —— — — — — — — — ——— — — ————— e — —

-- Code Generate Stage
-- Hongfan wWang, 05/725/2000

library ileee;
use ieee.std_logic_1164.all;

entity REC_1 is

port (
MD_IN, MR_IN : in std_logic_vector(ll downto
CLK, RST : in std_logic;
SEL_RAD_IN, SEL_BIT_IN : in std_logic:
MD_OUT : out std_logic_vector (1l downto
SEL_RAD_OUT, SEL_BIT_OUT : out std_logic;
COD_5, COD_4, cCoD_3 : out std_logic_vector(3 downto
COD_2, COD_1, COD_O : out std_logic_vector(3 downto
end REC_1;
architecture STR of REC_1 is
component REG_OP
port {
DIN : in std_logic_vector {11l downto 0);
CLK, RST, ENB : in std_logic;
DOUT : out std_logic_vector (1l downto 0});

end component;

0);

[eNe]

~

~

102

component REG
generic (

std_logic_vector (N-1 downto 0);
std_logic;

N : in integer) ;
port

DIN : in

CLK, RST : in

DOUT : out

end component;

component COD_GEN
port (
MR_IN

SEL_RAD_IN, SEL_BIT_IN
COD_5, COD_4, COD_3
cop_2, Ccop_1, COD_0

end component;

signal MR

signal SEL_IN, SEL_OUT

begin

std_logic_vector (N-1 downto 0));

in std_logic_vector(1l1l
in std_logic;

out std_logic_vector(3
out std_logic_vector(3

Y R TR

: std_logic_vector(ll downto
: std_logic_vector(1 downto

SEL_IN <= SEL_RAD_IN & SEL_BIT_IN;

md_reg : REG_OP
port map (
DIN => MD_IN,
CLK => CLK,
RST => RST,

ENB => SEL_BIT_IN,

DOUT => MD_OUT)

mr_reg : REG_OP
port map (
DIN => MR_IN,
CLK => CLK,
RST => RST,

.

ENB => SEL_BIT_IN,

DOUT => MR} ;

sel_reg : REG
generic map (
N => 2)
port map (
DIN => SEL_IN,
CLK => CLK,
RST => RST,

DOUT => SEL_OUT) ;

SEL_RAD_OUT <= SEL_OUT(1l);
SEL_BIT_OUT <= SEL_OUT(0):;

code_generate : COD_GEN

port map (

MR_IN => MR,
SEL_RAD_IN => SEL_OUT(1l),

downto 0);

downto 0);
downto 0));

0)
0}

103

SEL_BIT_IN => SEL_OUT(O0),

COD_S5 => COD_S5,

coD_4 => COD_4,

coD_3 => COD_3,

cOoD_2 => COD_2,

COD_1 => COD_1,

COoD_0 => COD_0);
end STR;

Appendix 2: Structure of Enable Generate Stage in VHDL Code

-- Enable Generate Stage
-- Hongfan Wang, 05/25/2000

library ieee;
use ieee.std _logic_1164.all;

entity REC_2 is
port (

MD_IN
CLK, RST
SEL_RAD_IN, SEL_BIT_IN
COD_5_IN, COD_4_1IN, COD_3_IN
COD_2_IN, COD_1_IN, COD_O_IN
MD_OQUT
SEL_RAD_OUT, SEL_BIT_OUT
COD_5_OUT, COD_4_OUT, COD_3_OUT
CcopD_2_0uT, COD_1_ouT, COoD_0_ouT
ENB_N4, ENB_4, ENB_N3, ENB_3
ENB_N2, ENB_2, ENB_N1, ENB_1

end REC_2;

architecture STR of REC_2 1is

component REG_OP
port (
DIN
CLK, RST, ENB
DOUT
end component;

e e

component REG
generic (
N : in integer);
port (
DIN :
CLK, RST : in std_logic;

D Y T T T R Y R T R Y R P T

in
in
in
in
in
out
out
out
out
out
out

std_logic_vector(1l1l
std_logic;
std_logic;
std_logic_vector(3
std_logic_vector(3
std_logic_vector (11l
std_logic:
std_logic_vector(3
std_logic_vector(3
std_logic:
std_logic) ;

in std_logic_vector(1ll downto 0} ;
in std_logic;
out std_logic_vector (1l downto 0));

in std_logic_vector(N-1 downto 0);

downto

downto
downto
downto

downto
downto

0):

0)
0)
0)

YR YR

0);
0);

104

DOUT : out std_logic_vector(N-1 downto 0));
end component;
component ENB_GEN
port (
COD_5, COD_4, COD_3
coDp_2, COD_1, COD_0
ENB_N4, ENB_4, ENB_N3, ENB_3
ENB_N2, ENB_2, ENB_N1, ENB_1
end component;

in std_logic_vector(3 downto 0);
in std_logic_vector(3 downto 0);
out std_logic;
out std_logic);

signal COD_5, COD_4, COD_3
signal COD_2, COD_1, COD_O

std_logic_vector (3 downto 0)
std_logic_vector (3 downto 0)

e Ny oW

signal SEL_IN, SEL_OUT : std_logic_vector (1 downto Q)
begin
SEL_IN <= SEL_RAD_IN & SEL_BIT_IN;

SEL_RAD_OUT <= SEL_OUT(1):;
SEL_BIT_OUT <= SEL_OUT(O0);
coDp_5_ouT <= COD_5;
cobD_4_ouT <= COD_4;
cop_3_ouT <= COD_3;
cop_2_outT <= COD_2;
CcoD_1_ouT <= COD_1;
cop_0_ouT <= COD_O0;

md_reg : REG_OP
port map (
DIN => MD_IN, CLK => CLK, RST => RST, ENB => SEL_BIT_IN,
DOUT => MD_OUT) ;

sel_reg : REG
generic map (N => 2)
port map (
DIN => SEL_IN, CLK => CLK, RST => RST, DOUT => SEL_OUT};

cod_5_reg : REG
generic map (N => 4)
port map (
DIN => COD_5_IN, CLK => CLK, RST => RST, DOUT => COD_5):

cod_4_reg : REG
generic map (N => 4)
port map (
DIN => COD_4_IN, CLK => CLK, RST => RST, DOUT => COD_4);

cod_3_reg : REG
generic map (N => 4)
port map (
DIN => COD_3_IN, CLK => CLK, RST => RST, DOUT => COD_3):

cod_2_reg : REG
generic map (N => 4)
port map (
DIN => COD_2_IN, CLK => CLK, RST => RST, DOUT => COD_2);

105

cod_1l_reg : REG
generic map (N => 4)
port map (

DIN => COD_1_IN, CLK => CLK, RST

cod_O_reg : REG
generic map (N => 4)
port map (

DIN => COD_O_IN, CLK => CLK, RST

enable_generate : ENB_GEN
port map (
COD_5 => COD_5, COD_4 => COD_4,
COD_2 => COD_2, COD_1 => COD_1,

end STR:

=> RST, DOUT => COD_1);

> RST, DOUT => COD_0) ;

COD_3 => COD_3,
COD_0 => COD_0,
ENB_N4 => ENB_N4, ENB_4 => ENB_4,
ENB_3 => ENB_3, ENB_N2 => ENB_NZ,
ENB_N1 => ENB_N1, ENB_1 => ENB_1);

ENB_N3 => ENB_N3,
ENB_2 => ENB_2,

Appendix 3: Structure of Value Generate Stage in VHDL Code

-- Value Generate Stage
-- Hongfan Wang, 05/25/2000

library ieee;
use ieee.std_logic_1164.all;

entity REC_3 1s

0);

0);
0):

0):
0);
0);

port (

MD_IN : in std_logic_vector (1l downto
CLK, RST : in std_logic;

SEL._RAD_ IN, SEL_BIT_IN : in std_logic;

COD_5_IN, COD_4_IN, COD_3_IN : in std_logic_vector(3 downto
COD_2_IN, COD_1_IN, COD_O_IN in std_logic_vector{ 3 downto
ENB_N4, ENB_4, ENB_N3, ENB_3 in std_logic:

ENB_N2, ENB_2, ENB_N1, ENB_1 in std_logic;

SEL_RAD_OUT, SEL_BIT_OUT : out std_logic:

COD_S5_0OuUT, COD_4_0OUT, COD_3_0UT: out std_logic_vector({ 3 downto
CoD_2_0UuT, COD_1_0UT, COD_0_OUT: out std_logic_vector{ 3 downto
N_MD4, MD4, N_MD3, MD3 : out std_logic_vector{(1l3 downto
N_MD2, MD2, N_MD1l, MD1l : out std_logic_vector (13 downto 0));

end REC_3;
architecture STR of REC_3 is

component REG_OP
port (

106

DIN : in std_logic_vector(ll downto 0);
CLK, RST, ENB : in std_logic;

DOUT : out std_logic_vector(ll downto 0});
end component;

component REG

generic (
N : in integer);

port (
DIN in std_logic_vector(N-1 downto 0);
CLK, RST in std_logic;

DouT : out std_logic_vector(N-1 downto 0});
end component;

component VAL_GEN
port (

MD_IN
SEL_RAD_IN, SEL_BIT_IN
ENB_N4, ENB_4, ENB_N3, ENB_3
ENB_N2, ENB_2, ENB_N1, ENB_1 in std_logic;
N_MD4, MD4, N_MD3, MD3 out std_logic_vector (13 downto 0);
N_MD2, MD2, N_MD1l, MD1l : out std_logic_vector (13 downto 0)):;

end component;

in std_logic_vector(ll downto 0)
in std_logic;
in std_logic;

-~

L T T I T SN

signal MD : std_logic_vector(1ll downto 0);
signal SEL_IN, SEL_OUT : std_logic_vector(1 downto 0);
signal ENB_IN, ENB_OUT : std_logic_vector(7 downto 0);

begin

SEL_IN <= SEL_RAD_IN & SEL_BIT_IN;

SEL_RAD_OUT <= SEL_OUT(1);

SEL_BIT_OUT <= SEL_OUT(0);

ENB_IN <= ENB_N4 & ENB_4 & ENB_N3 & ENB_3 & ENB_N2 & ENB_2 &
ENB_N1 & ENB_1;

md_reg : REG_OP
port map (
DIN => MD_IN, CLK => CLK, RST => RST, ENB => SEL_BIT_IN,
DOUT => MD) ;

sel_reg : REG
generic map (N => 2)
port map (
DIN => SEL_IN, CLK => CLK, RST => RST, DOUT => SEL_OUT):;

cod_5_reg : REG
generic map (N => 4)
port map (
DIN => COD_S5_IN, CLK => CLK, RST => RST., DOUT => COD_S5_O0UT)

-~

cod_4_reg : REG
generic map (N => 4)
port map (
DIN => COD_4_TIN, CLK => CLK, RST => RST, DOUT => COD_4_O0OUT)

~

cod_3_reg : REG

107

generic map (N => 4)
port map (
DIN => COD_3_1IN, CLK => CLK, RST => RST, DOUT => COD_3_OUT)

~

cod_2_reg : REG
generic map (N => 4)
port map (
DIN => COD_2_IN, CLK => CLK, RST => RST, DOUT => COD_2_0OUT)

~

cod_1_reg : REG
generic map (N => 4)
port map (
DIN => COD_1_1IN, CLK => CLK, RST => RST, DOUT => COD_1_0OUT)

~

cod_0_reg : REG
generic map (N => 4)
port map (
DIN => COD_Q_IN, CLK => CLK, RST => RST, DOUT => COD_0_OUT)

N4

enable_reg : REG
generic map (N => 8)
port map (
DIN => ENB_IN, CLK => CLK, RST => RST, DOUT => ENB_OUT):;

value_generate : VAL_GEN
port map

MD_IN => MD, SEL_RAD_IN => SEL_OUT(l), SEL_BIT_IN => SEL_OUT(0),
ENB_N4 => ENB_OUT(7), ENB_4 => ENB_OUT(6), ENB_N3 => ENB_OUT(5),
ENB_3 => ENB_OUT(4), ENB_NZ2Z2 => ENB_OUT(3), ENB_2 => ENB_OUT(2),
ENB_N1 => ENB_OUT(1l), ENB_1 => ENB_OUT(Q0),
N_MD4 => N_MD4, MD4 => MD4, N_MD3 => N_MD3, MD3 => MD3,
N_MD2 => N_MD2Z, MD2 => MD2, N_MD1 => N_MD1, MDl1l => MD1l);

end STR;

Appendix 4: Structure of Partial Product Generate Stage

in VHDL Code

-- Partial Product Generate Stage
-—- Hongfan Wang, 05/25/2000

library ieee;
use ieee.std_logic_1164.all;

entity REC_4 is
port (

108

CLK, RST : in std_logic;
SEL_RAD_IN, SEL_BIT_IN : in std_logic;
COD_S5_IN, COD_4_IN, COD_3_1IN : in std_logic_vector(3 downto
COD_2_IN, COD_1_IN, COD_O_IN : in std_logic_vector(3 downto
N_MD4_IN,MD4_IN,N_MD3_IN,MD3_IN: in std_logic_vector(1l3 downto
N_MD2_IN,MD2_IN,N MD1_IN,MD1_IN: in std_logic_vector(1l3 downto
SEL_RAD OUT, SEL_BIT_OUT : out std_logic:
MD_COD5_0OUT, MD_COD4_OUT : out std_logic_vector(1l2 downto
MD_COD3_0OUT, MD_COD2_0UT : out std_logic_vector(1l3 downto
MD_COD1_0OUT, MD_CODO_OUT : out std_logic_vector(l3 downto
HOT_ONE : out std_logic_vector(S5 downto O
end REC_4;
architecture STR of REC_4 is
component REG
generic (
N : in integer);
port (
DIN : in std_logic_vector (N-1 downto 0);
CLK, RST : in std_logic;
DOUT : out std_logic_vector(N-1 downto 0));
end component;
component MD_COD_GEN
port (
COD_5_IN, COD_4_IN, COD_3_IN : in std_logic_vector(3 downto
COD_2_IN, COD_1_IN, COD_O_IN : in std_logic_vector(3 downto
N_MD4, MD4, N_MD3, MD3 : in std_logic_vector (13 downto
N_MD2, MD2, N_MD1l, MD1l : in std_logic_vector (13 downto
MD_CODS, MD_COD4 : out std_logic_vector (12 downto
MD_COD3, MD_COD2 : out std_logic_vector (13 downto
MD_COD1, MD_CODO : out std_logic_vector (13 downto

HOT_ONE :
end component;

signal SEL_IN, SEL_OUT

out std_logic_vector(

std _logic_vector(1 downto

signal COD_5, COD_4, COD_3 : std_logic_vector(3 downto
signal COD_2, COD_1, COD_O : std_logic_vector(3 downto
signal N_MD4, MD4, N_MD3, MD3 : std_logic_vector(l3 downto
signal N_MD2, MD2, N_MD1l, MDl : std_logic_vector(1l3 downto

begin

SEL_IN <= SEL_RAD_IN & SEL_BIT_IN;

SEL_RAD_OUT <= SEL_OUT(1l);
SEL_BIT_OUT <= SEL_OUT(0):

sel_reg : REG
generic map (N => 2)
port map (
DIN => SEL_IN, CLK => CLK, RST

cod_5_reg : REG
generic map (N => 4)
port map (

=> RST, DOUT

[oNeNeoNoNe]
~— o~
LU VI T I T 1Y

=> SEL_OUT) ;

DIN => COD_S5_IN, CLK => CLK, RST => RST, DOUT => COD_5);

OO0O0O0o
~ e
T

0):
Q)
0):;
0):
0):
0):
0):

S downto 0));

109

cod_4_reg : REG
generic map (N
port map (

=> 4)

DIN => COD_4_IN, CLK =>

cod_3_reg : REG
generic map (N
port map (

DIN => COD_3__

cod_2_reg : REG
generic map (N
port map (

DIN => COD_2_

cod_1l_reg : REG
generic map (N
port map (

DIN => COD_1_

cod_0_reg : REG
generic map (N
port map (

DIN => COD_O0_

n_md4_reg : REG
generic map (N
port map (

DIN => N_MD4_

md4_reg : REG
generic map (N
port map (

DIN => MD4_IN, CLK

n_md3_reg : REG
generic map (N
port map (

=> 4)

IN, CLK

=> 4)

IN, CLK

=> 4)

IN, CLK

=> 4)

IN, CLK

=> 14)

IN, CLK

=> 14)

=> 14)

CLK,

CLK,

CLK,

CLK,

CLK,

CLK,

=> CLK, RST

RST

RST

RST

RST

RST

RST

RST,

RST,

RST,

RST,

RST,

RST,

=> RST, DOUT

DouT

DOUT

DOUT

DOUT

DouT

bouT

=>

=>

=>

=>

=>

COD_4) ;

COD_3) ;

COD_2)

e

CoD_1)

~

COD_0) ;

N_MD4) ;

=> MD4} ;

DIN => N_MD3_IN, CLK => CLK, RST => RST, DOUT => N_MD3);

md3_reg : REG
generic map (N
port map (

DIN => MD3_IN, CLK => CLK, RST

n_md2_reg : REG
generic map (N
port map (

=> 14)

=> 14)

=> RST, DOUT

=> MD3) ;

DIN => N_MD2_IN, CLK => CLK, RST => RST, DOUT => N_MD2);

md2_reg : REG
generic map (N
port map (

=> 14)

DIN => MD2_IN, CLK => CLK, RST => RST, DOUT => MD2);

n_mdl_reg : REG

110

generic map (N => 14)
port map (
DIN => N_MDI1_IN, CLK => CLK, RST => RST, DOUT => N_MD1l);

mdl_reg : REG
generic map (N => 14)
port map (
DIN => MD1l_IN, CLK => CLK, RST => RST, DOUT => MD1l):;

md_coded_generate : MD_COD_GEN
port map (

COD_S_IN => COD_5, COD_4_IN => COD_4, COD_3_IN => COD_3,
COD_2_IN => COD_2, COD_1_IN => COD_1, COD_O_IN => COD_O,.
N_MD4 => N_MD4, MD4 => MD4, N_MD3 => N_MD3, MD3 => MD3,
N_MD2 => N_MD2, MD2 => MD2, N_MD1l => N_MD1l, MDl1l => MD1,
MD_COD5 => MD_CODS5_OUT, MD_COD4 => MD_COD4_OuUT,

MD_COD3 => MD_COD3_OUT, MD_COD2 => MD_COD2_0QUT,

MD_CODl1 => MD_COD1_OUT, MD_COD0O => MD_CODO_OUT,

HOT_ONE => HOT_ONE) ;

end STR;

Appendix 5: Structure of First Carry Save Addition Stage

in VHDL Code

-- First Carry Save Addition Stage
-- Hongfan Wang, 05/25/2000

library ieee;
use ieee.std_logic_1164.all;

entity ADD1_1 is

port (

CLK, RST : in std_logic;

SEL_RAD_TIN, SEL_BIT_IN : in std_logic;

MD_CODS5_IN, MD_COD4_IN : in std_logic_vector (12 downto
MD_COD3_IN, MD_COD2_IN : in std_logic_vector (13 downto
MD_COD1_IN, MD_CODO_IN : in std_logic_vector (13 downto
HOT_ONE_IN : in std_logic_vector(5 downto
RESULT1_2 : out std_logic_vector (14 downto
RESULT1_1, RESULT1_0 : out std_logic_vector(l6 downto
couTli_3 : out std_logic_vector (15 downto
couTl_2, COUT1_1 : out std_logic_vector (17 downto

SEL_RAD OUT, SEL_BIT_OUT : out std_logic);
end ADD1_1;

0});

0);

0):

(O
0);

111

architecture STR of ADDI1_1 is

component REG
generic (
N : in int
port (
DIN H
CLK, RST :
DpouUT :
end component;

eger) ;

in std_logic_vector (N-1
in std_logic;
out std_logic_vector (N-1

component CSA_1

generic (
N : in int
port (
A, B, C :
RESULT1 :
court :
end component;

signal SEL_IN,
signal MD_CODS5
signal MD_COD3
signal MD_COD1l
signal HOT_ONE
signal MD_CODS
signal MD_COD3
signal MD_COD1

signal HOT_3_READY
signal HOT_2_READY, HOT_1_READY

begin

SEL_IN <=
SEL_RAD_OUT <=
SEL_BIT_OUT <=

sel_reg : REG
generic map
port map (

eger) ;

in std_logic_vector (N-1

out std_logic_vector (N-1
out std_logic_vector(N
SEL_OUT

, MD_COD4
, MD_COD2
., MD_CODO

T T IY]

"

_READY, MD_COD4_READY
_READY, MD_COD2_READY
_READY, MD_CODO_READY

YR YENETY

SEL_RAD_IN & SEL_BIT_IN;
SEL_OUT (1) :;
SEL_OUT(0) ;

(N => 2)

downto

downto

downto
downto
downto

0):
0);
0)):

std_logic_vector(
std_logic_vector (12
std_logic_vector(1l3
std_logic_vector ({13
std_logic_vector!{
std_logic_vector(l4
std_logic_vector (18
std_logic_vector (16
std_logic_vector (14
std_logic_vector (16

1

5

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

DIN => SEL_IN, CLK => CLK, RST => RST, DOUT => SEL_OUT):

md_codS_reg :
generic map
port map (

REG
(N => 13)

DIN => MD_COD5_IN, CLK => CLK, RST => RST, DOUT => MD_CODS5) ;

md_cod4_reg
generic map
port map (

REG
(N => 13)

DIN => MD_COD4_IN, CLK => CLK, RST => RST, DOUT => MD_COD4):;

md_cod3_reg :
generic map
port map (

REG
(N => 14)

DIN => MD_COD3_IN, CLK => CLK, RST => RST, DOUT => MD_COD3);

0):
0):;
0);
0y
0):;
Q)
0):;
0):
0):
0);

112

md_cod2_reg : REG
generic map (N => 14)
port map (
DIN => MD_CODZ2_IN, CLK => CLK, RST => RST, DOUT => MD_COD2):;

md_codl_reg : REG
generic map (N => 14)
port map (
DIN => MD_COD1_IN, CLK => CLK, RST => RST, DOUT => MD_COD1l)

~

md_cod0_reg : REG
generic map (N => 14)
port map (
DIN => MD_CODO_IN, CLK

> CLK, RST => RST, DOUT => MD_CODO) ;

hot_one_reg : REG
generic map (N => 6)
port map (
DIN => HOT_ONE_IN, CLK

> CLK, RST => RST, DOUT => HOT_ONE) ;

MD_CODS5_READY <= MD_COD5 & "00*"
when SEL_OUT = "01°"
else (MD_CODS_READY'range => ‘Q0');

MD_COD4_READY <= MD_COD4(12) & MD_COD4(12) & MD_COD4
when SEL_OUT = "Q01"
else(MD_COD4_READY'range => ‘0’):

MD_COD3_READY <= "00000" & MD_COD3 (8) & MD_COD3(8 downto 0) & "00"
when SEL_OUT = "0O"
else ‘0’ & MD_COD2(12) & MD_COD3(12 downto 0) & "00*
when SEL_OUT = "01-"
else (MD_COD3_READY'range => ‘0°)
when SEL_OUT = "10"
else MD_COD3 & "00OC"
when SEL_OUT = "11*"

else (MD_COD3_READY'range => ‘0');

MD_COD2_READY <= "00000" & MD_COD2(8) & MD_COD2(8) & MD_COD2(8)
& MD_COD2 (8 downto 0)
when SEL._OUT = "00"
else ‘0’ & MD_COD2(12) & MD_COD2(12) & MD_COD2(12)
& MD_COD2 (12 downto 0)

when SEL_OUT = "Q01*

else "000000"& MD_COD2(9) & MD_COD2 (9 downtec 0)
when SEL_OUT = "10"

else MD_COD2(13)&MD_COD2(13)&MD_COD2(13)&MD_COD2
when SEL_OUT = "11*

else (MD_COD2_READY‘range => ‘0'):

MD_COD1_READY <= "00000" & MD_COD1(8) & MD_COD1(8 downto 0) & "00"

when SEL_OUT = “0O0"
else ‘0’ & MD_COD1(12) & MD_COD1(12 downto 0) & "00"
when SEL_OUT = "01"
else "000"& MD_COD1(9) & MD_COD1(9 downto 0) &"000"
when SEL_OUT = "10"

else MD_COD1 & "0OQO"

113

when SEL_OUT =
else (MD_COD1_READY'range =>

MD_CODO_READY <= “00000"

& MD_CODO (8)

" ll ”
Q") ;

& MD_CODO(8) & MD_CODO(8)

& MD_CODO0 (8 downto 0)

when SEL_OUT =

else ‘0’
& MD_CODO0O (12

when SEL_OUT =

& MD_CODO0 (12)

IIOOII

& MD_CODQ(12)
downto 0)

llol"

& MD_CODO (12)

else "000" & MD_CODO(9) & MD_CODO0O(9) & MD_CODO0(9)
& MD_COD0O(9) & MD_CODO(9 downto Q)
when SEL_OUT = 10"
else MD_CODO(13)& MD_CODO(13)& MD_CODO (13)& MD_CODO
when SEL_OUT = "11"
else (MD_CODO_READY'range => ‘0');
HOT_3_READY <= (2 => HOT_ONE(S5), 0 => HOT_ONE(4), others => ‘0")
when SEL_OUT = "01*"
else (HOT_3_READY’'range => ‘0');:
HOT_2_READY <= (2 => HOT_ONE(3), 0 => HOT_ONE(2), others => ‘0’)
when SEL_OUT = "00°"
else (2 => HOT_ONE(3), 0 => HOT_ONE(2), others => 0’)
when SEL_OUT = "*0l1°
else (0 => HOT _ONE(2), others => 0')
when SEL_OUT = "10"
else (3 => HOT_ONE(3), 0 => HOT_ONE(2), others => '0‘)
when SEL_OUT = "11*"
else (HOT_2_READY'range => ‘0');
HOT_1_READY <= (2 => HOT_ONE(1l), 0 => HOT_ONE(Q), others => ‘0’)
when SEL_OUT = "00"
else (2 => HOT_ONE(l), 0O => HOT_ONE(0), others => ‘0)
when SEL_OUT = "01"
else (3 => HOT_ONE(1l), 0 => HOT_ONE(0), others => Q')
when SEL_OUT = "10"
else (3 => HOT_ONE(1), 0 => HOT_ONE(0), others => "0’}
when SEL_OUT = "11*“
else (HOT_2_READY‘range => ‘0');
csa_13 : CSA_1
generic map (
N => 15)
port map (
A => MD_CODS_READY,
B => MD_COD4_READY,
C => HOT _3_READY,
RESULT1 => RESULT1_2,
couT => COUT1_3):
csa_12 : CsSAa_1
generic map (
N => 17)
port map (
A => MD_COD3_READY,
B => MD_COD2_READY,
C => HOT_2_READY,

114

RESULT1 => RESULT1_1,
couT => COUT1_2);

csa_1l1l : Csa_l
generic map (

N => 17)

port map (
A => MD_COD1l_READY,
B => MD_CODO_READY,
C => HOT_1_READY,
RESULT1 => RESULT1_0,
couT => COUT1_1);

end STR;

Appendix 6: Structure of First Carry Propagate Addition Stage

in VHDL Code

-- First Carry Propagate Addition Stage

-- Hongfan Wang, 05/25/2000

library ieee;
use ieee.std_logic_1164.all;

entity ADD1_2 is

port (
CLK, RST : in
SEL_RAD_IN, SEL_BIT_IN : in
RESULT1_2_1IN : in
RESULT1_1_TIN, RESULT1_O0_IN : in
COUT1_3_IN : in
COUT1_2_IN, COUT1_1_IN : in
SEL_RAD_QUT, SEL_BIT_OUT : out
RESULT2_2 : out
RESULT2_1, RESULT2_0 : out

end ADD1_2;
architecture STR of ADD1_2 is

component REG
generic (

N : in integer);
port (
DIN :
CLK, RST : in std_logic;
DouUT :

std_logic;
std_logic;
std_logic_vector (14
std_logic_vector (16
std_logic_vector (15
std_logic_vector (17
std_logic;
std_logic_vector{(1l5
std_logic_vector (17

in std_logic_vector(N-1 downto 0);

out std_logic_vector (N-1 downto 0));

downto
downto
downto
downto

downto
downto

0);
0):
0);
0):

115

end component;

component CLA_1
port (
A, B : in std_logic_vector(l5 downto 0);
CIN : in std_logic;
SUM : out std_logic_vector(1l5 downto 0);
COUT : out std_logic);

end component;

component FANBIT

0);
0);
0);
0);
0);
0);

0)
0)

=> RESULT1_2) ;

generic (
N : in integer):
port (
A, B : in std_logic_vector(N-1 downto 0);
CIN : in std_logic;
S : out std_logic_vector(N-1 downto 0);
COUT : out std_logic);
end component;
signal SEL_IN, SEL_OUT : std_logic_vector(1 downto
signal RESULT_IN2, RESULT1_2 : std_logic_vector (15 downto
signal RESULT_IN1, RESULT1_1 : std_logic_vector(l7 downto
signal RESULT_INO, RESULT1_0 : std_logic_vector(l7 downto
signal COUT1_3 : std_logic_vector (15 downto
signal COUT1_2, COUT1_1 : std_logic_vector(l7 downto
signal C_2, C_1 : std_logic;
signal RESULT2_1_TEMP2, RESULT2_1_TEMPl:std_logic_vector(l downto 0);
signal RESULT2_O0_TEMP2, RESULT2_0_TEMPl:std_logic_vector(l downto 0} ;
signal ZERO, ONE : std_logic;
signal RESULT2_0UT2 : std_logic_vector (15 downto
signal RESULT2_OUT1, RESULT2_OUTO0 : std_logic_vector(l7 downto
begin
SEL_IN <= SEL_RAD_IN & SEL_BIT_IN:
SEL_RAD_OQUT <= SEL_OUT(1l):;
SEL_BIT_OUT <= SEL_OUT(0);
RESULT_IN2 <= RESULT1_2_1IN(14) & RESULT1_2_IN:
RESULT_IN1 <= RESULTI1_1_IN(16) & RESULT1_1_1IN;
RESULT_INO <= RESULT1_O0_IN(1l6) & RESULT1_O_IN;
ZERO <= '0’;
ONE <= *1‘;
sel_reg REG
generic map (N => 2)
port map (
DIN => SEL_IN, CLK => CLK, RST => RST, DOUT => SEL_OUT);
resultl 2 _reg : REG
generic map (N => 16)
port map (
DIN => RESULT_IN2, CLK => CLK, RST => RST, DOUT
resultl_1_reg : REG
generic map (N => 18)
port map (

116

DIN => RESULT_IN1, CLK => CLK,
resultl_0_reg : REG
generic map (N => 18)
port map (
DIN => RESULT_INO, CLK => CLK,
coutl_3_reg : REG
generic map (N => 16)
port map (
DIN => COUT1_3_IN, CLK => CLK,
coutl_2_reg : REG
generic map (N => 18)
port map (
DIN => COUT1_2_IN, CLK => CLK,
coutl_1_reg : REG
generic map (N => 18)
port map (
DIN => COUT1_1_IN, CLK => CLK,
cla_13 : CLA_1
port map (
A => RESULTI1_2,
B => COUT1_3,
CIN => ZERO,
SUM => RESULT2_OUT2,
COUT => open);
cla_12 : CLA_1
port map (
A => RESULT1_1 (15 downto 0),
B => COUT1_2(15 downto 0),

CIN => ZERO,

RST

RST

RST

RST

RST

SUM => RESULT2_OUT1(1l5 downto 0),

CouT => C_2);

fa_21 : FANBIT
generic map (

N => 2)

port map (
A => RESULT1_1(17 downto 16),
B => COUT1_2 (17 downto 16),

CIN => ONE,

S => RESULT2_1_TEMP2,

COUT => open) ;

fa_22 : FANBIT
generic map (

N => 2)

port map (
A => RESULT1_1(17 downto 16),
B => COUT1_2(17 downto 16),

CIN => ZERO,

S => RESULT2_1_TEMP1,

COUT => open) ;

=>

RST,

RST,

RST,

RST,

RST,

DOUT

pouT

DOUT

pouT

pouT

=>

RESULT1_1) ;

RESULT1_0) ;

COUT1_3)

couTi_2)

CouT1_1)

2

’

I3

117

RESULT2_OUT1 (17 downto 16) <= RESULT2_1_TEMP2 when C_2 = ‘1’ else
RESULT2_1_TEMP1;

cla_11 : CLA_1l
port map (
A => RESULT1_0(15 downto 0},
B => COUT1_1(15 downto 0),
CIN => ZERO,
SUM => RESULT2_OUT0(1l5 downto 0),
couT => C_1);

fa_11 : FANBIT
generic map (

N => 2)

port map (
A => RESULT1_0(17 downto 16),
B => COUT1_1(17 downto 16),
CIN => ONE,
S => RESULT2_0_TEMP2,

COUT => open);

fa_12 : FANBIT
generic map (

N => 2)

port map (
A => RESULT1_0(17 downto 16},
B => COUT1_1(17 downto 16),
CIN => ZERO,
S => RESULT2_0_TEMP1,

COUT => open) ;
RESULT2_OUTO0 (17 downto 16) <= RESULT2_0_TEMP2 when C_1 = "1’ else
RESULT2_0_TEMP1;
RESULT2_2 <= RESULT2_OUT2;

RESULT2_1 <= "000000" & RESULT2_OUT1(ll downto 0)

when SEL_OUT = "00" else

"00" & RESULT2_O0OUT1(15 downto 0)
when SEL_OQOUT = "01" else

"00000000"& RESULT2_OUT1{(9 downto 0)
when SEL_OUT = "10" else
RESULT2_0OUT1

when SEL_OUT = "11" else

RESULT2_1l‘range => ‘0’);

RESULT2_0 <= "000000" & RESULT2_OUTO0(1l1 downto 0)

when SEL_OUT = "00" else

"Qo*" & RESULT2_OUTO0 (15 downto 0)
when SEL_OUT = "01" else

“0000" & RESULT2_O0OUT0(13 downto Q)
when SEL_OUT = "10" else
RESULT2_0OUTO

when SEL_OUT = "11" else

(RESULT2_0'range => ‘0');

118

end STR;

Appendix 7: Structure of Second Carry Save Addition Stage

in VHDL Code

-- Second Carry Save Addition Stage

-- Hongfan Wang, 05/25/2000

library ieee;
use ieee.std_logic_1164.all;

entity ADD2_1 1is

port (
CLK, RST in std_logic:;
SEL_RAD_IN, SEL_BIT_IN in std_logic;
RESULT2_2__IN : in std_logic_vector (15
RESULT2_1_IN, RESULT2_O0_IN : in std_logic_vector (17
RESULT3 : out std_logic_vector (22
couT : out std_logic_vector (22
SEL_RAD_OUT, SEL_BIT_OUT : out std_logic):;
end ADD2_1;
architecture STR of ADD2_1 is
component REG
generic (
N : in integer);
port (
DIN : in std_logic_vector (N-1 downto 0);
CLK, RST : in std_logic;
DOUT : out std_logic_vector(N-1 downto 0));

end component;

component CSA_1
generic (

N : in integer);

port (
A, B, C : in std_logic_vector(N-1 downto 0);
RESULT1 : out std_logic_vector (N-1 downto 0);
cout : out std_logic_vector(N downto Q));

end component;

signal SEL_IN, SEL_OUT
signal RESULT2_2
signal RESULT2_1, RESULT2_0

[T T

std_logic_vector(

downto
downto
downto
dowmto

1 downto 0);

std_logic_vector (15 downto 0);
std_logic_vector (17 downto 0);

0);
0);
0);
0);

119

signal RESULT2_2_READY
signal RESULT2_1_READY
signal RESULTZ2_0_READY
signal COUT_TEMP

std_logic_vector(22 downto 0)
std_logic_vector(22 downto 0)
std_logic_vector (22 downto 0)
std_logic_vector (23 downto 0);

LT TR

L Y TR Y]

begin

SEL_IN <= SEL_RAD_IN & SEL_BIT_IN;
SEL_RAD_OUT <= SEL_QOUT(1);
SEL_BIT_OUT <= SEL_QUT(0);

sel_reg : REG
generic map (N => 2)
port map (
DIN => SEL_IN, CLK => CLK, RST => RST, DOUT => SEL_OUT) ;

result2_2_reg : REG
generic map (N => 16)
port map (
DIN => RESULT2_Z2_IN, CLK => CLK, RST => RST, DOUT => RESULT2_2)

~

result2 _1_reg : REG
generic map (N => 18)
port map (
DIN => RESULT2_HI_IN, CLK => CLK, RST => RST, DOUT => RESULT2_1)

~e

result2_0_reg : REG
generic map (N => 18)
port map (
DIN => RESULT2_QO_IN, CLK => CLK, RST => RST, DOUT => RESULT2_0):

RESULT2_2_READY <= RESULTZ_2(14 downto 0) & "00000000"
when SEL_OUT = "0l1" else
{RESULT2_2_READY'range => ‘0’);

RESULT2_1_READY <= ™(00000000" & RESULT2_1(10 downto 0) & "000O0"
when SEL_OUT = "00" else
RESULT2_1(15) & RESULT2_1(15) & RESULT2_1(15)
& RESULT2_1(15 downto Q) & "0000"
when SEL_OUT = "01" else
=Q0000000" & RESULT2_1{(8 downtec 0) & "“000000"

when SEL_OUT = "10" else
RESULT2_1(16 downto 0) & "000000"
when SEL_OUT = "11" else

{RESULT2_1_READY'range => '0');

RESULT2_O0_READY <= "™(00000000" & RESULT2_0(11l) & RESULT2_0(11)
& RESULT2_0(11) & RESULT2_0(11 downto 0)
when SEL_OUT = "00" else
RESULT2_0(15) & RESULT2_0(15) & RESULT2_0 (15)
& RESULT2_0(15) & RESULT2_0(15) & RESULT2_0(15)
& RESULT2_0(15) & RESULT2_0(15 downto 0)

when SEL_OUT = "01" else
™00000000"& RESULT2_0(13) & RESULT2_0(13 downto 0)
when SEL_OUT = "10" else

RESULT2_0(17) & RESULT2_0(17) & RESULT2_0(17)
& RESULT2_0(17) & RESULT2_0(17) & RESULTZ2_0

120

when SEL_OUT = "11" else
(RESULT2_0_READY 'range => ‘0’);

csa_2 : CSA_1l
generic map (

N => 23)

port map (
A => RESULT2_2 READY,
B => RESULT2_1_READY,
C => RESULT2_0_READY,
RESULT1 => RESULT3,
couT => COUT_TEMP) ;

COUT <= COUT_TEMP (22 downto 0);

end STR;

Appendix 8: Structure of Second Carry Propagate Addition Stage

in VHDL Code

-—- Second Carry Propagate Addition Stage
-- Hongfan Wang, 05/25/2000

library ieee;
use ieee.std_logic_1164.all;

entity ADD2_2 is
port (

CLK, RST
SEL_RAD_IN, SEL_BIT_IN
RESULT3_IN
COUT_IN
RESULT_FINAL

end ADD2_2;

in std_logic;

in std_logic;

in std_logic_vector (22 downto 0);
in std_logic_vector (22 downto 0);
ocut std_logic_vector (22 downto 0));

architecture STR of ADD2_2 is

component REG
generic (

N : in integer);
port (
DIN in std_logic_vector (N-1 downto 0):;

CLK, RST : in std_logic;
DouUT : out std_logic_vector(N-1 downto 0));
end component;

121

component CLA_1

port |
A, B : in std_logic_vector(l5 downto 0);
CIN : in std_logic:
SUM : out std_logic_vector(1l5 downto 0);
COUT : out std_logic);

end component;

component FANBIT

generic (
N : in integer);

port
A, B : in std_logic_vector(N-1 downto 0);
CIN : in std_logic;
S : out std_logic_vector (N-1 downto 0);
COUT : out std_logic);

end component;

signal SEL_IN, SEL_OUT :
signal RESULT3 :
signal COUT :
signal C : std_logic
signal ZERO, ONE : std_logic
signal RESULT_TEMP2, RESULT_ TEMP1
begin

SEL_IN <= SEL_RAD_IN & SEL_BIT_IN;
ZERO <= 'Q’;
ONE <= ‘1‘;
sel_reg : REG

generic map (N => 2)

port map (

DIN => SEL_IN, CLK => CLK, RST

result3_reg REG
generic map (N => 23)
port map (
DIN => RESULT3_IN, CLK => CLK,

cout_reg : REG
generic map (N => 23}
port map (

std_logic_vector(1 downcto 0)
std_logic_vector (22 downto 0)
std_logic_vector (22 downto 0} ;

’

12

=>

voNe Ny

std_logic_vector (6 downto 0);

RST, DOUT => SEL_OUT) ;

RST => RST, DOUT => RESULT3) ;

DIN => COUT_IN, CLK => CLK, RST => RST, DOUT => COUT) ;

cla CLA_1
port map (
A =>

B =>

CIN

SUM
couT

RESULT3 (15 downto 0),

COUT (15 downto 0),

=> ZERO,

=>

=> C);

fa_2 : FANBIT
generic map (

N => 7)

RESULT_FINAL(1l5 downto 0},

port map (

A => RESULT3 (22 downto 16},
B => COUT (22 downto 16},

CIN => ONE,

S => RESULT_TEMP2Z,

COUT => open):;

fa_1 : FANBIT
generic map (
N => 7)
port map (

A => RESULT3 (22 downto 16),
B => COUT (22 downto 16),

CIN => ZERO,

S => RESULT_TEMPI1,

COUT => open):;

RESULT_FINAL(22 downto 16) <= RESULT_TEMP2 when C

end STR;

RESULT_TEMP1;

- Ill

Appendix 9: Multiplier Behavior Model in VHDL Code

else

-- Multiplier Behavior Model
-- Hongfan Wang, 05/25/2000

library ieee;

use ieee.std_logic_1l164_all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity MULTIPLIER 1s

generic (

N : in integer);
port (
MD, MR : in std_logic_vector (1l downto 0);
CLK, RST : in std_logic;
RESULT : out std_logic_vector (22 downto 0)):

end MULTIPLIER;

architecture BEH of MULTIPLIER is

signal RESULT_LONG1
signal RESULT_LONG2
signal RESULT_SHORT1
signal RESULT_SHORT?2

std_logic_vector (23 downto
std_logic_vector (22 downto
std_logic_vector (15 downto
std_logic_vector (14 downto

0):
0);
0);
0);

123

begin

process (CLK)
variable MD_SHORT, MR_SHORT : std_logic_vector(7 downto 0);
begin
if (CLK‘event and CLK = ‘1l’) then
if (RST = ’'1’) then
RESULT <= (RESULT'range => ‘0’);
else
if (N = 8) then
MD_SHORT := MD(7 downto 0);
MR_SHORT := MR(7 downto 0);
RESULT_SHORT1 <= signed(MD_SHORT) * signed(MR_SHORT) ;
RESULT_SHORT2 <= RESULT_SHORT1 (14 downto 0);
RESULT <= conv_std_logic_vector (signed(RESULT_SHORT2),
else
RESULT_LONG1 <= signed(MD) * signed(MR) ;
RESULT_LONG2 <= RESULT_LONG1 (22 downto 0);
RESULT <= RESULT_LONG2;
end if;
end if;
else
null;
end if;
end process;
end BEH;

Appendix 10: Testbench in VHDL Code

-—- Testbench of the Multiplier
-~ Hongfan Wang, 05/25/2000

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity TBMUL is
end TBMUL;

architecture BEH of TBMUL is

component MUL

port (
MD, MR : in std_logic_vector(ll downto 0);
SEL_RAD, SEL_BIT : in std_logic;
CLK, RST : in std_logic;
RESULT : out std_logic_vector (22 downto 0));

23);

124

end component;

component MULTIPLIER
generic (

N : in integer);
port (

MD, MR : in

CLK, RST : in

RESULT : out

end component

constant N

constant PERIOD
constant STROBE

signal CLK, RST

signal SEL_R, SEL_B
signal A, B

signal RESULT, RESULT1

begin -- BEH
SEL_R <= '1’;
SEL_B <= ‘0’ when N =
RST <= '0’;
clk_gen : process
begin
CLK <= '0’; wait for
CLK <= ‘1’; wait for

end process;
pO process

variable Q :
begin

A <=

B <=

wait

Q :=

loop

A <=

B <=

(A’ range =>
(B‘range =>
for PERIOD;

(Q'range =>

Il'

IOI

signed ((Q(N-1
wait for PERIOD;
Q := Q(N-2 downto
end loop:;
end process;

check
begin
wait for STROBE;

loop
case SEL_B is
when "0’ =>

process

if (RESULT (14 downto 0)
assert FALSE report

end if;

when ‘1’ =>

111)

conv_std_logic_vector(signed(Q).
conv_std_logic_vector(

std_logic_vector(ll downto 0);
std_logic;
std_logic_vector (22 downto 0));

: integer := 12;
: time := 20 ns;
: time := PERIOD - 5 ns;

: std_logic;
: std_logic;
: std_logic_vector (11 downto 0)
: std_logic_vector (22 downto 0)

8 else

Ilr;

PERIOD/2;
PERIOD/2;

std_logic_vector(N-1 downto 0);

¥
):
12);
} xor (not Q(2)))
0)

& (Q(N-1) xor (not Q(2))):

/=

"not egqual"

& Q(N-1 downto 1)),

RESULT1 (14 downto 0))

12);

then

severity warning;

if (RESULT /= RESULT1l) then
assert FALSE report "not equal" severity warning:;
end if;
when others => null;
end case;
wait for PERIOD;
end loop;
end process;

mul_ut : MUL
port map (

MD => A,

MR => B,
SEL_RAD => SEL_R,
SEL_BIT => SEL_B,
CLK => CLk,

RST => RST,
RESULT => RESULT) ;

mul_cal : MULTIPLIER
generic map (

N => N)

port map (
MD => A,
MR => B,
CLK => CLK,
RST => RST,

RESULT => RESULTI1) ;

end BEH;

Appendix 11: Synthesized Schematic of Code Generate Stage (REC_1)

CLK: clock signal

MD_IN{[11:0]: multiplicand

RST: reset signal

MR_IN[11:0]: multiplier

SEL_BIT_IN: control signal jor selecting 8-bit or [2-bit operand wordlength

SEL_RAD_IN: control signal for selecting radix-4 or radix-8 recoding scheme
MD_OUTI[11:0]: multiplicand

COD_i[3:0]: code indicating the partial product that needs to be produced, i = 0,1, 2, 3. 4, 5
SEL_RAD_OUT: control signal for selecting radix-4 or radix-8 recoding scheme
SEL_BIT_OUT: control signal for selecting 8-bit or [2-bit operand wordlength

REG_OP_i: 12-bit register, i = 0, |
REG_N2: 2-bit register
COD_GEN: code generate unit

126

1 4o 1 1aays cAuvduod -Abojouyaay

pal/visg :ayep Guem 14 geubrsap 1773y ubrisap

1o~ 1187135 <]
Ltno~avy13s <f——m—
:u"mum!OOUA T ﬁ (111npU/sBe s Las tirstgsBa-tas N e
o <t =i A s
(6:£1v"000 < _ |
:u“m_thOUA T (B11n00sBa - tas 1Rt ras o
- @ - . At <N TE TS
te:£127000 <Ina9-ao: IN T
(6:£1 17000] —
16+ €18000 & J— -
17 d0 793 > <@ [EERRRINI RN

e e — - O R Au_m M

1~ d0793

(8: 111 1n0~aW < =
|

L LT - T - R

2

yaaus

getsutsu

ayep

arry o on

1 nca
P

fino0

>
5
e

Ié

4 inow

te- 111 o0 JA--

2 dpn

z-dpn

¢-dpn

Nucmn

7z dpn

¢ dpn

7-dpn

z-dpn

7~ dpr

7 dpn

D000 ¢

- — - -

-

JTatus

77 atuT

7-zsour|d
N..N;%..
N-Nai... C
N-N.ai,.,rlu.ul_

AL B

77 ¢ s0ur}s

7 7 s0urt

INIRINI

foTatu

P

[J0 | :133ys ' cAborouynay
pgisg9tsg @eD ZN"93y :ubisap
|||.— —l_.w._.::
- ﬁ. BCREE
1211000 VARYARLSIVEAl I e
R — N!QUB -
1 _M.::CJ
. 7= quunf- © T
(g:111Nnod

T

aneiqmer
conmomy

i S m——
AR
pl

ssiqn COO_CER
eleqr

e

130

OO | | 0

Ex=—

| [— S Y DY e
] o e e] b
RV B
] |

Appendix 12: Synthesized Schematic of Enable Generate Stage (REC_2)

CLK: clk signal

MD_IN[11:0]: multiplicand

SEL_BIT_IN: control signal for selecting 8-bit or 12-bit operand wordlength
SEL_RAD_IN: control signal for selecting radix-+4 or radix-8 recoding scheme

CODL_i_IN[3:0]: code indicating the partial product that needs to be produced, i =0, [, 2. 3. 4. 5
RST: reser signal

SEL_RAD_OUT: control signal for selecting radix-4 or radix-8 recoding scheme
MD_OUTI[11:0}: mudtiplicand

SEL_BIT_IN: control signal for selecting 8-bit or 12-bit operand wordlength

ENB _i: code indicating that iemd is needed later in the calculation. i = I, nl, 2, n2, 3, n3. 4. n4
REG_OP: 12-bit register

REG_N?2: 2-bit register

REG_N4_i: F-bit register. i =0, 1,2, 3. 4. 5

ENB_GEN: enable generate unit

131

tBotovulay

petserg

ajep

270Ny ubrsap

e g <)
e ENg < -

encanag <

threan3 <] —

A UERGN i INEARCINE

£y
rrana <l
vy <]

10714 s <

g ﬁﬂupzc.CZAn *IJ
40703y

100 vy 135 < J—mieeiige

132

nirtsatsg

ayenp

f

te 111 1noa<<H

[Tkl

=~

anci

SIS

7 dpn

7 dpn

¢-dpn

7 -don

¢-dpn

7 dpn

¢ -dun

7z -dpn

-

”

277 0ur

777 0ur

2 7oourt

2 "7 sourh

&

27 vun

=

77 dnun

o douT

o7 aCur

L3

[

It

133

134

i 10 i c1aays AT

cABorouynan

pe1/791/4 181ep b raubrsap 7N~y cubrsap

[RRSTES

NIN Jaoun

zdpn |-

FEINTO

-4 |

}
i

PINId

r
[4

7z-¢ sounr|-

& . T

(8:11.1N0d

!

~ABojouyaan

aatl/a9t/8

e 1y

g ynN93y ubrsap

(@:€1.LNod

1e11n0Q N.A:U:

p-atbo;

-<Jv

) Lhod Nln:ms

tip 1noo

e

z-dypn

It

b3

) 1000 2-dypn

(@ HINL

135

——

ol

Appendix 13: Synthesized Schematic of Value Generate Stage (REC_3)

ENB_i: code indicating that iemd is needed later in the calculation. i = I. nl, 2, n2, 3, n3. 4. n4
MD_IN: multiplicand

SEL_BIT_IN: control signal for selecting 8-bit or 12-bit operand wordlength

SEL_RAD_IN: control signal for selecting radix-+4 or radix-8 recoding scheme

RST: reset signal

COD_i_IN[3:0}: code indicating the partial product that needs to be produced, i =0, I, 2, 3. 4. 5
CLK: clock signal

(N_)Mdi[13:0]: value of (-)iemd, i = [, 2, 3, 4

CODL_i_OUTI3:0]: code indicating the partial product thar needs to be produced, i =0, 1. 2, 3. 4. 5
SEL_RAD_OUT: control signal for selecting radix-4 or radix-8 recoding scheme
SEL_BIT_OUT: control signal for selecting 8-bit or 12-bit operand wordlength

REG_NS: 8-bit register

VAL_GEN: value generate unir

REG_OP: 12-bit register

REG_N2: 2-bit register

REG_N4_i: J-bit register. i = 0. [.2. 3. 4.5

137

ENE_N4[>——e—
=}

ENE_N2| >—%

LreqrINiPY

 ~egsDINIS:

CregemIaay

REG_NB

3INTLY

(.

ENG_GUTIRL

FdgsoInvier

Feiqs0INi et

- egeOINGTL

enMB_CuTiTI

EnB.QUTIeY

€Nt Curis

—

{T>~Nompiirz a2

celue._gener QYOGS XD 21

{T>mn4t13 2y

qic @ -

! mOedts
g yo @
E T

- emetle y ey OIN.N: En8.0uTiEI [veluv_gener ALZICTRD 11
VAL _GEN -1
Y £)gé TR
' ENE_CUTIEE
| ' A
t ! —|
[C g
P! [TN VAR B ' ‘e
N .
. S
End L TUT oz |
~nomven 2> : REG._OP y
| -
Do —_—]
SELBIT LIS i ol b
3 P rEaNz | L
::"%'““”'\'D .7‘: NPT BT vy 1:_-"/00;;“4. ?
S b : —_
: b K - T fEa e) o
i) T ‘.j—-;rduu'(ll : € \ r D e et - S
JE 1 I | !
R.:.l > — — -] -
ceoa e iy j i P
: ! PP e e
cop_z_INt3 e l[>— ! - ——{>» oDz .GuT i3 2
{
F RNT I
CoD_3_INi3 31— i ———{>»coo_j_outis al
]
L
PP fec nas
Cop_4_INI3: 21> ’ ——f > oo < _cutiz a8
|
3
i R
cap_s_in:2 BI[>> T m —{>con s outia el
1 —]
, P
c - L
<[> - Hn co e
Cop.1_INi3 21 1 ——{>»con i _cutis 41
> sew_rap_cus
[C>seL_s17_ouT
design: REC_3 designer: H. Wang date: S/1S5/1&3@
technology: company’ sheet 1 of 3 138

1 Vit e, LR IR I Y

LSS ubitsap

gutsatsa R

¢ dipn

oy 2 dipn

P

&
- l%m: i

1intn

reo | 27d1Em

l%m:

fe1sta

|

W inoy N.Q.U)

1viN1g

=t

|

o | 7 -dipn

vlirea | 27 hipe

b ——

r $
a-=tody

R I
- —

M

L anee AR

A dipn
(e ¢ 1non <A} ¢

1]

139

Ih ==
|

AR

;_—
x
D

3]
Ll
1 ii‘
R
|l
i
1 I
| i
i
] :;'
i
TR
EE
1 gt
E
A ll
I
v
i
1 |
L t =
I iy
b AT oy]
| i T fLmy
i [ecricug ot i
| I BT
i Ty
.w i
i [
ey T e T =]
= ﬁﬂ-‘ i
i ; 1
1‘:11 =
il L 0
L
i
lhh

Tilin =
]3

11 | S——
fil L=
bl o
])~

1

= 0

I

i
i
1}1

fuedun2 ABoouyzay

getsaisg e bBuer saubitsap GOTYY uvlitsap

[KALS &4
_ _‘1,:.1»6'.

LA A a

~
N
3

dad

2odpm &=

1z AELIN

j,. 7 dpo |85

272 s0un) 8

-

iy

[§

ne -7 auury8
' Yru! N&Q:J A

:

77 our)®

z-¢nn 14

v
1
i
v
i
P
i

o
¢

0

'

272 sour

[W A ALl
- -{ 7 don

.

[

ingg J-gJour
—>—1 7-dpr

e 270U
:T,..Yir ¢-due |8 [

r#qanag NxNLCT)

et — N..QC)

———— g

U UL

1
.
i

e L7
e st a0 € | p-oen |-

———

AN

141

I 40 1 1@8ys cAueduon ABajouyasy
pei/g9isg -a1ep buem 1y yaub /N"93y ubisap
:m,:;c
- o N
1811000 77 ¢ dunfge < Jie
z~dpn |-
 — - — (2 LINLO
| g zJoun “
t i 1noa TZ 40ungT
(811 1n00 < J#=+

z-dpn ‘.ﬁ.mnxl

142

Loso |

c19a3ys

Aueduon

cAbojouyoa

gu1/91/4 rajep buem

saublisap

B yNDFy ubisap

18:£)Ln0d

1811100 Nx&:uz

— 4I‘III‘IJ

iing z-dipn

1 1n00 Ntn:ns

=

-
RWWn

7
tzinig

O B st |

—1-

L

11000 z-dypnm

T

u
teinta b

(8. CINIC

143

Appendix 14: Synthesized Schematic of Partial Product Generate Stage

(REC_4)

SEL_BIT_IN: control signal for selecting 8-bit or 12-bit operand wordlength

SEL_RAD_IN: control signal for selecting radix-+ or radix-8 recoding scheme
COD_i_IN{3:0]: code indicating the partial product that needs to be produced, i =0, [. 2, 3. 4. 5
(N_)Mdi[13:0]: value of (-)iemd, 1 = 1. 2. 3. 4

CLK: clock signal

RST: reset signal

SEL_RAD_OUT: control signal for selecting radix-+4 or radix-8 recoding scheme
SEL_BIT_OUT: control signal for selecting 8-bit or [2-bit operand wordlength
HOT_ONE[5:0}: code having bitwise correspondence with the sign of each partial product

MD_CODi_OUT[13:0§: ith partial product. i =0, 1. 2, 3. 4.5
MD_CODi_OUTI[I12:0]: ith partial product, i =4, 5

REG_N2- 2-bir register

REG_NJ _1: S-bit register. i = 0. 1. 2. 3. 4.3
REG_N14 _1: I4-bir register. i = 0. [, 2. 3.4 3
MD_COD_GEN: partial product generate Wit (oniit)

144

SEL_RAD_INI >——] .

SEL_BIT.

CCD_38_INILZ

COD_1_INIZ

COD_Z_INI(Z

CCRD_3_IN(2

COD_4_INIZ

COO_S_IN{Z

~MO7 TN TS

ROFANDE SN

MO4_INIIZ

N_MDTI_IN[13

N_MDI_IN{!

(%)

N_MD4_IN{13

—

sei.reqs0UTIIY

{ > SEL_RAD_QUT

=
>
>

REG_N2
IND -:x--.,/nxq!n ‘-?,'cgloau\’lll
] EG-N-:_J
21—
*tec_ne_]
e i
*fec_Na_;
>
*Yec_ne_d
21>
1 .
EG_N4_;
21>
| 1;'_ EG_N4_Y L
2> -
i ZRNEE
21>]
“0_COD_GER
]
I 1 FETG_NIS
21—
i
3
i
I
Ve
PE R el]
2 [—
—
i
0
| T'? IG_NL4_
2
A IR
2>
Vil He I
21>
i RSB
21>
CLKD FG_Ni14_§
2i>—

{>seL_BIT.OUT

—{ > -cT_onE s 2
—{>»rD_cooe_ouTi:
Mo _copr_curtiis
—{T> o ccoz.ocutirs

MO _CGORIZ_CcuT
~
; o)

)
£.CC

4 _CT i

MT_COCe QU il

el
[\A)

@
3!
2
Z @
.

design REC_4

designer - H. Wang

cate S/15,182

technalogy

company:

sheet -

1t of 1

145

I J0 | :318ays cAyeduwoa .Abojouyaay
@et/9i/g :31eP buem 1 Jaubisap gN"93y ubrsap
taINTIQ
77 Joun-g——— -Jisy
z~dpn
e @ [ERERINIE
4 Z2-z40un T
{g:1)1N0Od z-dpn l% - 1

146

1 49 1 Syaays cAueduon Abojouyzay
gp1/91s8 :ayep Buem "}y aaubitsan g yN"93Iy ubisap
M ——<J15¥
-t »
? L”mzq
1eINTg
1811100 Nla:u:
R Sl AP
Hiky
Ldmnd
IYINIG
. z-dipn
~1-
MES
.:mr_
4 tzinig)
Zouypn ‘..lﬂ
~bw
[mlwm:
¢-dypn - (8- €iNIA
[(8:£)1N0d]

147

DIN(13 e lT—

RSTD——I; .J—— e |
:LKD—F N

-
ucdtp_2 oour
R ¢
thgic—2
L t
wdtp_2 TOuT o 11
BINELT) 'I
ibg =2
[]
>
>
Ldta_2 Dour 11
FRInT Ps
ipg =2
ds }
B4
-
wetp_2 Sour et
OImi100 [
thg 2
s t
-
>
ucdto_2 ERTe
| J
!
[
>
watg_ 2 Scur F
ERITY) P
lhg =2
! []
Pr-3¥- 4 EE
SNt .I
g s
)
i
s -
' el 2 ZeuT v
ER .
!;.t. O ®
i []
>
H i
z !
: 1
: .
I ' ez | 55)
' wQtp o4&
[EERY ! ®
ipgje—2——t
47 Dt []
>
i .
! I
: P .
H Y L | ——
i waoto 2 Gan -
:
1L
H
1
sour §o
ERYED ®
thgie—2
s t
E
>
ugtp_2 seur £
Dimed []
hg =g
L }
E
|
>
MG‘.D-Z [-TVAG))
GImtin 'I
[)g‘— 2
< '
.
|
1o {4«
wdtp_2 aocTie
RN
logyo—2
[]
L

Q
0
[+
-
I
©

gdesign’ REG.N14_.3

des:gner H. Wang

date’ Bs16/182

technalaqy

campany

sheet 1

af

i

148

Appendix 15: Synthesized Schematic of First Carry Save Addition Stage

(ADDI1_1)

CLK: clock signal
RST: reser signal
MD_CODi_IN[13:0]: ih partial produce. i = 0. [, 2. 3
MD_CODi_IN[i2:0]: ih partial product. { =4, 3

HOT_ONE[5:0}: code lhaving binwise correspondence with the sign of cach partial product
SEL_BIT_IN: comtrol signal for selecting 8-hit or 12-bir operand wordlength
SEL_RAD_IN: control signal for selecting radix-4 or radix-8 recoding scheme
RESULTI_2{14:0]. RESULTI_I{16:0]. RESULTI_0[16:0]: purtial sum
COUTI_3[I15:00. COUTI _2[17:0}. COUTI_I{17:0]: carrv-out
SEL._RAD_QUT: control signal for setecting radiv-+ or radix-8 recoding scheme
SEL_BIT_OUT: control signal for selectung 8-bit or 12-bir operand wordlength
CSA_!_NI3: CSA unir #3

CSA_I_NI7_«: CSA wer e = 1.2

REG_N2: 2-bit register

REG _No6: O-hit register

REG_NT3 i [3-bit register. 1 = 0./

REG_NT1_1: 14-bit register. i = G, [, 2.3

149

5 =] s
= T
-5 1
IO ey
”F 2 S) e e
—:,lﬁ:_ T
=T,
=t
[Wi
i l g 2T
II il R L 1
el I
’ ! :_u T
1 | [O
n
; i e OO
i Iy -
l[!‘ M e O
| ! ’| Y
4 ,') o]
]” =
A REp
i " i Tl | S
: =
i ||” fn M
i , i TR it e TN
i 1l il e
b o it il
i 11>h I‘I "?:’.’"D_—
| § iE'| [Hi SHo -
| A 1 1 1
i TR =y B
! ! }E[i 0
f i ‘
| g =
; !
i
iy
|
)

R

ot g aia

;

150

il

v

151

“neet

—h

L
!

||

E

=

=

 —
3

152

e

| oo

pre—

[rmrear

1 1o | c1aays Auvduwon +ABojouynay
gelsglsg :331ep buem H Jaubisap ZN"93y ubrsap
xl_.m_.;_.;:z
{ I PR Pl S WPy JPASY
Z2-dpn
- L= (8- 1INTQ
. 7~z Jdounj- ©
{g:111N0d NIQU_._ -7__ lll:‘.i:.y..zlAuv_gu

153

L4101

y8ays

Aaedunn

Abarouynas

pat/9t1/4y cayep

Buep

Hi

IELY ubrsap

1eINTO
o100 zodvon [y
SR e S
13 1noa 7z dypn
-t
waﬁ_
teinta
1 1n0a andzs
-t
ET
,:.m_ﬁ_
1EiNtD
1]y 1noa 7~dypn
-1
g
.,g!smwn_
1vINtD
1 tnoa Zz-dipn
~-a@
WWWnd
4 151810
t 4t 1nog Z-aypn 4
(851 1n0a < J+—>

154

< T .
DIN[[Z-BID —— wdtp_2 | et DCuT(12 81
lsgé‘ |
-
P udtp_Z oguTE 1)
GINLIL]
Ihgic
é - I
-
— wud lp_z LR ¥
2L AR B
pgi<
g 2 |
.1
> udtp_2 saurifis
[-SCIL R]
Ipg i<
N
1
;:“ wdtp_2 oour e
g e
é E S
F—
udtp_.2 oour ks
Ctat e
[]
pg =i
gl []
[=
|
'?__m
! wdts_2 saut il
Jints | ll
thgyc B
< !
>
P
EIRYA Y wetp-2 ik
g s *
il ¢
E o
E
- wucdtp_2 courdp:
ERYEY)
thg = [|
s t
E ot
E
> watp_2 t:n<\:V|u
L 2CTRRY
thg i<
é’ E S
E
—_ udtp.2 aour
DIMIll
tha= []
SN |
i T
> wdtp_2 oourif
R TR NS
thayco
é - I
k>
- udlp_Z EIELT)
lag ;B
- L
RST% 3
design: REG_N13_@ designer: H. Wang date: Brs/16s188
technolagy - caompany sheet - i of 1

DQuUTI13 81

DINt13: 21— —— ud(p-zu oour

\hgje—2
L]
1
udgp_ZJ oouT i 24
GINtIZE
1)9 fo-a-] p
[]
3
D1
udtp_2 oour 11
SEmernt
thgic 2 b g
Jd, ¢
>
E
wctp_2 taut F €1
RO
tpg g2 T

4 I ®

uotz_2 saur §ir
ERY
o []

)g’
4 i []

>
wcttp .2 LR O
AT
p
thg =2 ;
' 4
_ . Ill‘
r‘l]«
i [
i —
ugtg_2 LS A
RN <

3G <

setp 2 > A
FRaty
g o2 *
1 H
3 f ¢
! >
1
i
i P

[2 T
wotp_ 2 T gt

*
f
! “ctp_2 > 3
p
it
J
E I ad
wetp_2 oout i1
[]
[]
>
-
—
udtp .2 scurt b
R ®

a

’g -
< [¢

BImet

ugtp_2 Dour § 1
R []

n
r
?‘
)
3
¥
——
L]
#

udtp_2 DoLT et

R
log e a []
L]
ES
RSTCT >
design. REG_Ni<_@ designer” H. Wang date Br16/128 156

technclagy’ campany ’ sheet 1 of 1

Appendix 16: Synthesized Schematic of First Carry Propagate Addition

Stage (ADD1_2)

RESULTI1_2[14:0], RESULT1_1{16:0], RESULTI1_0[16:0]: partial sum

COUTI1_3[15:0], COUT1_2{17:0], COUTI1_I[17:0}: carry-out

CLK: clock signal

RST: reset signal

SEL_RAD_IN: control signal for selecting radix-4 or radix-8 recoding scheme
SEL_BIT_IN: control signal for selecting 8-bit or 12-bit operand wordlength
SEL_RAD_OUT: control signal for selecting radix-4 or radix-8 recoding scheme
SEL_BIT_OUT: control signal for selecting 8-bit or 12-bit operand wordlength
RESULT2_2[15:0], RESULT2_1{17:0], RESULT2_O[17:0]: intermediate result
CLA_I_i: carry lookahead adder, i = 0, I, 2

FANBIT_N2_i: 2-bit full adder, i =0, [, 2, 3

REG_N2: 2-bit register

REG_NI16_i: 16-bit register, i = 0, |

REG_NIi8_i: 18-bit register, i =0, 1, 2, 3

157

?F:c-ms_

RESLALTI_2_Int1s 21—

TN

*SLa t1 . kmrtet

X
SN
e LA-1-%

x>

i —4
4ZG-NI &_| J-—q

coutr 3.tners 3

RSTC>

couti_t _Intt7 81>

[L

-

{T> seL_RAD.OUT

> Resu 22015 @)

{T>RESULTZ @117 @)

AT tare

L l"l

he tirmamirt 81 eRvlIAbEL

urua2_ 2

Sl Cha 2 e TEre

FANBIT N2

RESLA T _R_INI1E)

Tourtoaiar age| o |

A TE st

M

P

hart_nf

b T s TR

TSYY TN

_r..mrz_z
LAY 1
- . 7=7
T [ruez-2 it WSS |
I | e

.
|
|
}
} ot
i
| | sehatr 0111 B ‘2
TLALT 20—
]
| (R [! oy s
T l T A
: b Pl
i b .
: . T S —
| HEE RN [! o PrveTE ey
! Do ; N =
! ; /
i Dot ‘ P A
! . v e fuanal d
| P R e —
S v Lo | [s o
[P o 1
. Coh . P i i
; : 1 T T e e e e e
i ; = o : " ord_ 2
i ! 1 Mmez 2| 771 —e——td
i . I\ SFErNTT el | [1 - ; [N "IN
; ! |
. _- i I
i [i
et] i i |
! : i
‘ i |
(T3 **ETRIErTTY 3 ' | i
I i . L 7.2
mar i
l rue2.2 I" I.__.—.
—— ! _— L SN PERTY 1)
1 i
QESLLTI.1.INIIE dl e ‘ i
:
' ! o by
CouTI_Z NG Al : :.:.—1: ~BIT.NIgA = | : :
— thags -t M TR I I l R
o i N s
P erTPIvIn [T i
!
I na2 i |
REG.N2 ——— pa
SEL RAD.IN> oo i
SEL-BIT-INT> mande = .
o
s FLa_1 1 o4
— b
T L Ty { l

PIYNTE =TI

T

ST

and2 2
———g
. [Ty
and2_2
———
AT
ang2_2
—t—————g
[~

I RYITT

! andl_2
» BT T TR
]

: DPRESU T2 1117 @

cesign ADD1.2

designer

H dang date

Bs165/12¢

technolagy

campany

theet lef t

158

i
111
|

- 1 -qmu
e i T
. Lty

i

a
T T

0 1]
LI

110
JL It
Naliin

(O

E*

T

;l
i
!

1

li

@J l

gl
g
{0

]

— s

e R

10 00 o
0t
{

]

-

L

0}
0
:Ell}
0
l_‘il

— el ey

159

1 J0 | :188ys Aueduwod -Abojouyaay
#R1/91/8 -@yep Guepm 10 cuaubisap PTINTLIENY 4 cubrsap

ARYARI R | e

7277 Joxnl=i—
T - it - e < _ZHu
: T 7 30Xy
77z Joxn= A s L_ﬁlo_m":m
———
- 2T 7pugunT
| L-zpueur L L b—-Jie: 11V
- A
P -zpuBul ﬁ]
7= zpueylf——-
— r I i}
- ueus
n_..Do U O.'ll - N — —' fe—

2= gpueus H S A O i S |

y—7puB Ul B e

160

[10 | c192ys

cAuedwod

.Abojouyaay

6@1/91/8

;ajep

buepm

H

aubrsap

IN"93y ubisap

(g:111n0d

z-dpn

NIQUB qu

-z 40un

1PINTO

277 40un

161

CCr
oz [>
DIN(1IS @l —— wctp.2
3G <
—— wdtp 2| ourfer
e
g
é >
]
ot 23 Udtn_z it i
LN
i
$ >-
p-i-
wadtp.2 oauT §
>
>+
wetp 2 2412 1)
>-
gt
wotn.2 oour fer
Breiie
G
< i
> |
wata 2 | e}
FRXT
<
>
> |
wetp 2 et ¥
>-
.
¢ ——e
. wdta 2 LS B
>
!
>
HEH NPYPEL-3 = i
P
|
—e—d
wagtp_ 2| ok
.-
-——
uep .2 asur oo
BRI
gy
<L
.-
watp_2 | weic}:
ER
3
< |
.-
wats_ 2 96Ut i
——
uatp_2 | soutres
des.gn REG_N16.8 desigaer H Wang date gs16s122
conpany sheet 1 af 1

technoloagy

-

N7 a1l

wamep 2| e

a

kS

_r’;]_r

a2 2 ooy B

waeep 2 | eerpe

watn_ 2| = fn

»-
e
g
< L
>
™
bg
< 1l
>
A
1
< L
>

wavtp_ 2 | omer fae

e tg 2 [T b
—
ws tnl? ot B os
—
ws: ta.2 Lt &

simins

,qg—z___._
~—

Sinu- T e
P S
¢ L
s
T
i»
cllee sz
b
fos
o
|
,.‘
.. =%
I
G et i
[
T

DIXJTty7 2t

T
>
i Pee=ts_2{ %
18R i
I
2
wo=tp.2 L
I
thg a2t
< il
.
wettp2]| =t
mam
ilig 8
g ,-
.-
wz==tp_2| e~}
s
_ - N . »-+
eer—! Iu—-.{ |—<|
i = e
L.
wezttpgl2 et rwe
design REG_N1E8_2 grsigner H ang cate BT167188
technalagy carpany sheet 1- of 1

163

Appendix 17: Synthesized Schematic of Second Carry Save Addition

Stage (ADD2_1)

RESULT2_2_IN[15:0], RESULT2_I_IN[17:0], RESULT2_0_IN{16:0]: intermediate result
CLK: clock signal

RST: reset signal

SEL_RAD_IN: control signal for selecting radix-4 or radix-8 recoding scheme
SEL_BIT_IN: control signal for selecting 8-bit or 12-bit operand wordlength
COUT[22:0]: carry-out

RESULT?3[22:0): partial sum

SEL_BIT_OUT: control signal for selecting 8-bit or 12-bit operand wordlength
SEL_RAD_OUT: control signal for selecting radix-4 or radix-8 recoding scheme
CSA_1_N23: CSA unit

REG_N2: 2-bit register

REG_NI16: 16-bit register

REG_NI8_i: 18-bit register, i =0, |

164

L v seaaur

o> L 817 ot

e

== ¥

-
=

4
LS

femd
-

{<=<]

>

L TVE TN SV

warz

165

™

T=
| T

T —
——

| Crrw
[

-t

1 r‘-,

{ I—m

14918

i oEm oD
I alfa sl
i [RAR L

il

il

166

-l

s ot

| ===,

167

1 j0 | . 18ays Auedwon cAbojouyaay
gBl/91,/9 .3yep Buem vy - saubrsap zN"93y ubisap

L 1_100.*2:_

Jdpn | B2y B sy
[RERRE
L - ;_ _.i.. v (8 1INTa
- - m\ e
(8:1)1N00 s—dpn |4 b

courits

21

tpo S
orni1s @It 902
lug!-
1
watp. 2§ oourde
b
>
>
udtp_2 | sourfar
ERIEE
ibg
< | L
]
watp_2] oourda
CROXD
thq,
<l
>3
wap 2| et}
ERIDE
Ihg s
an
1
wats_ 2| seur}er
Tiwe LA
ibgy
il
——
——d
w2ta 2| seut e
FRATT
tbhg
< s
! »-
l
cot
'
~etp 2| e}
.
wato 2 cur
Beat
1
y—
watp_ 2 Lol
Simeer
thg (<
Sl 1
——|
wgip 2| oeurt
atm, 81
[l I
Sl 1
-+
watp.l oour £
R
thig s
<L
>
watp_ 2 | oeur b
Gimeit P
3G o=
<L
wetp 2 Daurres
design® REG.N1B designer . W Wang date 8/16/18@
technolagy: cempany sheet 1t af 1

168

DINIL7 @t o

wdtpg.2] oo

udtp.Z | sor¥s

watp_2 [T

wdtp_2 | i}

-
L1
1S
-
gy
lhg
L1
L1

uatp 2 [soorge

watp_ 2| s fe

CRIE

“atp_2 | oewrfre

wetp 2 | wfer

1=

! wdto 2 LTl &
N
iI:n .
Ll
ks
!
-
il —
wdto_2 Ll

———-e—F

k

&

watp 2| s}

e

E

watp 2| e fe

ey

wadtp_ 2 Ll &
4

4

-ctp.2 L &

>

|
]
N
J
thg et
Ly 1
>

—
uwdtp_2 | oy

lng:&.—
>

wdtp_ 2

RS>

ocuriiz a2l

design REG_N18_2

designer

" Hang

date

grs16s1e8

tecnnalagy

canpany

sheet

1 ef 1

169

Appendix 18: Synthesized Schematic of Second Carry Propagate

Addition Stage (ADD2_2)

RESULT3_IN[22:0]: partial sum

CLK: clock signal

RST: reset signal

COUT_IN[22:0]: carry-out

SEL_RAD_IN: control signal for selecting radix-4 or radix-8 recoding scheme
SEL_BIT_IN: control signal for selecting 8-bit or 12-bit operand wordlength
RESULT_FINAL[22:0]: final result

CLA_l: carry lookahead adder

FANBIT_N7_i: 7-bit full adder, i = 0, |

REG_N2: 2-bir register

REG_N23_i 23-bit register, i =0, |

170

oo 1 yaays Auprdvod ABojuuusag

aetsgt/zg ayen fuer saufitsap 2T zaay ufitsap

E. A DRI S UUURY [P |.AU/:.:.STJ.W.

L T e < vy s

INTOJY

<Jie zeIniT 1IN0

BN TN EINTOH

+a < Jisw

1 ST WY Y gy - .
e t e |_.IAU:W LEINLTELING
uW oo
A TRt oteun rele #y== G
e — |- s + 13 H1ins
zer +
1 IV At
tht ‘—~>‘1n_-
L R b
E B AN
— AR RN N
—,_ ~.sl¢4_ I e
U SERILTFA R LA]
 SUALALL S . Fotenn oo
[’ *

(LR FVE IR
.

10w et

[R Rt
Pt - - ROt den T tE gy

7 eenan B RAN

LN P PR 1)

| SARITINE i
e

7 perae ~.‘,;_,_,, ..:,M..

Atlewdl 177G
[T lp—

I wNLaT iy

Thyitea e
FAr A Rt - S

Alesh
¢ e

[E AR R0

19 2217 WNT 47§15 33 € P = -

Ty

[P -

171

N T

]

[
067
.
T

L
{

T O8]
Hoo
e

At

i

!

4 #BH@

L
2
E]

I

:
EIE
]

L
5
2
E]
0
|
It J (
|3
0 EJE
HEIEI00

a3

il

afaniall i
ajafiji

1 L e Lol
e ﬂﬁ“ Dg!; H-H-!ﬂiu(

.....

—e—
: : Y
i H
i b
U
e el -
[-
—_—

et b
i

|L[

Lo

000
0o, ol
!

—

2
ajjaagm

[Df :
||
1

—t
c
o

B
mj ‘-

T,-

L
00D ool

o
DI

T

e g

I
dl
I
040
Eiju
i
g
0
ML

172

173

LEII_UI
LEHIH | ;
Ir.._HUI _Eﬂu - S o
I — o lll‘
ol = |
S R e]
éQ!ﬂrﬂL ~) S e G ke =T) [J— =
] === R D R pee % Ly _ L],
i) el OO —J ﬁa_g <) %m&uqﬂﬂig.! H!! H.A =

b

(8:1]1N0d

1 40 | :1@88Yys cAuedwod cAbojouyaay
gelsgis/g a21ep buem 4y :as8ubisap ZN"93y ubrsap
o RSB
to11n90 7=g suunftp s
Zz-dpn
7-7J0un o

174

oINIZZ B

“stp.2

o

wate-2

wdta.l

=%

—atp_2

=32l

wato. 2

3.

wdta.2

watn.Z

“ata 2

-atp .l

wata.2

-
[}
i
1l
H TP
:he !
‘e
H
I
IRl
i 2 |-
‘i wara.? [T=Fe
[
g [
.
I»
ot
1) larez
IR

-dto.2

“¢tn. 2

~ato.2

o

~ats 2

wdtp_ 1

wdtp_ 7

“dte.2

“ata.2

watg.l

watp_2

gl oouriaz

1gn MEGNZI e

Teecroer

* Wang

167180

‘l-:hunluQV‘

|

t et

3

]
1

175

