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Abstract

This thesis presents techniques that allow a generalized minimum variance self-tuning
power system stabilizer to damp the local and interarea oscillatory modes of a genera-
tor connected to a power generation and load pool. The multimode damping provided
by the self-tuning power system stabilizer in response to stochastic and deterministic
disturbances is described as are the effects of multivariable feedback.

The research reported in this thesis emphasized procedures for improving the iden-
tification portion of the adaptive coatroi algorithm. This involved the development
of frequency and time domain techniques to obtain models of the simulated power
system. The sensitivity of the on-line identification algorithm within the self-tuning
stabilizer was investigated using the models developed by the off-line studies as a ref-
crence. The improvement yielded by numerically stable techniques was studied using
single and double precision implementations of both the conventional and factorized
covariance update in the recursive least squares identification algorithm. Quantiza-
tion effects of practical analog to digital and digital to analog converters were fournd
to have little effect on the operation of the self-tuning stabilizer.

This research has led to the testing of the self-tuning stabilizer on a 400 MW
thermal-powered synchronous generator. Results of preliminary field tests were en-

couraging and some examples are presented.
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Chapter 1

Introduction

1.1 Background to Power System Damping

Modern electrical power generation and distribution systems are made up of many
interconnected generators, each equipped with several control elements. An indica-
tion of the degree of interconnection can be found in [94] where it is noted that more
than 40% of the power generated by major utilities is sold to other utilities. Secu-
rity of supply is one factor leading to increased interconnection since the loss of a
single generating unit or plant has less effect when that unit or plant makes up
smaller fraction of the available generation. Economic grounds encourage intercon-
nection when a utility can purchase power from another more cheaply than it can
generate that same power. An unfavorable effect of highly interconnected systems is
the possibility of stability problems involving entire groups of generators{109).

Many direct and indirect factors contribute to the stability of synchronous gen-
erators. Stability encompasses the behavior of a generator to both transient, large
scale, disturbances and to continuous, small scale, disturbances. Lightly-damped ro-
tor oscillations are influenced by a number of factors, one being the setting of the
generator's automatic voltage regulator (AVR). Generators are equipped with high-

gain, fast-acting AVR’s which enhance large scale stability by holding the generator



in synchronism with the power system during large transient fault conditions. An ad-
verse effect of these high-gain excitation systems is a decrease in the damping torque
of the generators, leading to a system prone to oscillatory instability. Other factors
contributing to this oscillatory instability are weak transmission lines between gen-
erators and loads, operation of generators at wide power angles as a result of heavy
loading, and particular load characteristics. Counteracting these factors directly by
building more transmission lines or adding generating capacity can be expensive or
impractical since the characteristics of a given load may be impossible to change.
Underdamped rotor dynamics are characterized by several oscillatory modes orig-
inating from one or more generators interacting in a power pool. The modes can
be grouped into three categories. The local mode of oscillation is the underdamped
response of a single generator relative to the power system. A number of generators
at a single generating station may exhibit oscillations relative to each other. These
are referred to as the intermachine modes of oscillation. Low frequency interarea os-
cillations result when entire groups of generators exchange electromechanical energy.
These poorly-damped, or even unstable, oscillations in the 0.2 to 0.8 Hz range place
significant limitations on power transfer among utilities. In a paper presenting an
approach to the analysis of interarea oscillatory modes, Pagola et. al [102] noted that
increases in interconnection and power exchanges between distant geographic areas
have made some power systems even more susceptible to interarea oscillations. The
nature and source of these oscillations have been the focus of considerable attention

by power engineers[61, 62, 66, 91, 94, 102, 126)].



Since the early 1970’s supplementary excitation controllers, commonly referred to
as power system stabilizers (PSS’s) have been added to generators to counteract the
effect of the high-gain AVR’s and other sources of negative damping. A PSS uses a
generator’s excitation system to provide a component of the electrical torque to damp
rotor oscillations. Through this exchange of electromagnetic and mechanical energy
the oscillatory mode of a generator can be effectively damped. The PSS feedback
loop provides an economical way of enhancing the stability of a power system.

A PSS tuned only to reduce the local oscillatory mode could have a detrimental
cffect on the low frequency stability if the tuning procedure does not consider the
interarea mode. Stabilizers capable of damping both the local and interarea oscillatory
modes pose a challenge to researchers and power engineers.

The design and synthesis of PSS’s are further complicated by the fact that the
electric generator is a non-linear device whose characteristics, as seen by the PSS, vary
with changes in generator loading and changes in the external network resulting from
transmission line switching and load changes. Conventional, fixed-parameter. PSS’s
are usually tuned for a single operating point and may exhibit poor performance under
different synchronous generator loading conditions. Constraints of time and system
security during on-site commissioning make it impossible to test the operation of a
PSS under all operating conditions. The number of variables makes it impossible to
investigate every possible case using large scale power system simulations. Limitations
of fixed parameter PSS’s indicate a need for an adaptive PSS capable of tracking

changes in the operating conditions of the generator to which it is attached. While



several adaptive PSS strategies have been proposed [33. 34, 50. 34. 56, 57, 71, 4.
92, 116. 130]. little attention has been paid to their ability to damp modes other
than the local oscillatory mode. The research presented in this thesis investigates the
multimode damping provided by an adaptive PSS.

The adaptive control strategy investigated in this thesis is an extension of that
proposed by Gu [56, 57], Fan, Ortmeyer and Mukundan [50], and Xia and Heydt {130).
The main emphasis has been to develop and test improvements in the identification
portion of the adaptive control algorithm and to investigate and develop improvements
in the numerical stability of the implementation. A practical contribution of this
thesis is the extension of the adaptive control algbrithm to damp multiple modes as
well as a presentation of the results of preliminary field tests of a PSS hased on the
adaptive algorithm.

The following section presents a review of techniques and test results presented by
others in the field of synchronous generator stabilization. Design techniques for fixed-
parameter PSS’s are described which show some of the requirements and restrictions
placed upon practical stabilizers. This is followed by an overview of methods used
to obtain models of electric generators. The identification of such models is inherent
either explicitly or implicitly in the operation of many adaptive control schemes.

Pertinent adaptive PSS control strategies are then reviewed.



1.2 Fixed-Parameter Stabilizer Tuning Methods

This section reviews some of the many tuning strategies that have beer. proposed
for obtaining settings for fixed-parameter PSS'’s. The review provides insight into
some of the practical constraints that are imposed on PSS control strategies. The
security of synchronous generator operation and practical limitations on control signal
magnitudes are two of several factors that must be addressed.

A paper by de Mello and Concordia [44] in 1968 described the stabilization of a
single generator supplying power through an external impedance to ana infinite bus.
A technique for stabilizing the generator through supplementary excitation control
and a stabilizing method using shaft speed as the supplementary feedback signal were
presented. The small signal model for which the PSS is designed was derived from a
linearized model based on the machine reactances and time constants. The transfer
function between shaft speed and the torque produced by the stabilizing signal was
derived and a PSS which provided appropriate phase compensation over the frequency
range of expected oscillations was synthesized. The effect of different loading condi-
tions on the frequency response between the shaft speed and the stabilizing torque
was shown. The PSS was designed as a compromise between the range of responses
noted at the different loading conditions. Analog computer simulation results were
presented and showed improved damping of the generator local mode in response to
small step changes in the mechanical torque. The paper concluded that the compro-

mise PSS provided significant damping but noted that in a real power system there



are many modes of oscillation and that synthesis of a universal function adequate for
the spectrum of possibilities remained a challenge.

A PSS design procedure based on pcle-placement was presented in 1975 by Laha
and Bollinger [81]. The transfer-function of the generator to be controlled was derived
by fitting a straight-line approximation to the frequency response obtained by Fourier
Transform analysis of wide bandwidth excitation signals applied to a large-scale power
system simulation program. The state-space model of the generator was obtained
from the transfer function thus obtained and the PSS was designed to place the
closed-loop poles at locations which provided the desired response. The technique
was shown to be effective in damping the local oscillatory mode of the generator for
the loading conditions at which the frequency response was obtained.

Alsoin 1975, Bollinger, Laha, Hamilton and Harras [23] described a design method
based on root locus techniques. The open-loop poles and zeros of the generator were
determined from the frequency response between the voltage regulator input and the
generator electric power measured while the generator was in operation. The PSS
poles and zeros were then placed so as to move the generator’s lightly-damped local
mode s-plane poles to the left. Performance of the PSS in response to a distur-
bance was tested by disconnecting one of the other generators at the plant. Improved
damping of of the local oscillatory mode over the uncompensated system was noted.
Another application of this design method was reported in 1977 by Bollinger and
Lalonde [25] in which the AVR settings for a 300 MW generator were derived. Set-

tings derived from a generator model measured while the generator was operating



were shown to provide a definite improvement in terminal voltage damping over the
AVR tuned for open-circuit conditions. A phase-compensation tuning technique us-
ing frequency response data obtained by applying wide-bandwidth noise signals to a
generator operating on-line was used by Bollinger, Winsor and Campbell [29] to de-
sign a stabilizer to damp power oscillations on a tie-line linking two large power pools.
Of note is that the power flow from the tie-line itself was used as the supplementary
feedback signal. Field test results showed improved damping of the tie-line power
oscillations. More recently, the on-line frequency response measurement technique
combined with the root locus controller design method described in [23] was used by
Bollinger and Mistr [27] to design a PSS for a pumped storage plant. Step changes
in the AVR reference signal showed that the PSS provided a definite improvement in
the damping of the local oscillatory mode.

Eigenvalue and eigenvector analysis techniques for determining the generators
which will provide greatest damping when equipped with PSS’s and for determining
the form of the stabilizer were described by de Mello, Nolan, Laskowski and Un-
drill [43] in 1980. The technique of de Mello et al. was extended by Abe and Doi [2]
in 1983 and by Abdalla, Hassan and Tweig [1] in 1984. Further investigations of
this method were performed by Lim and Elangovan [86] in 1985 and by Huang and
Hsu [66] and by Yu and Li [132] in 1990.

The use of eigenanalysis methods to gain insight into the source and nature of in-
terarea oscillations with a view to discovering effective ways to damp the modes has

recently been the focus of considerable attention. Recent papers addressing this prob-
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lem include ones by Rogers and Kundur [109], Pagola, Rouco. and Pérez- Arriaga [102],
Sauer, Rajagopalan and Pai [112], and Mansour [94]. A method known as Prony anal-
ysis has also received considerable attention. The method is used to directly estimate
the frequency, damping strength, and relative phase of modal components present in
a given signal. It can be used to provide transfer functions for PSS dusign that pro-
duce a reduced-order model of a generator connected to a large system. The method
is described by Hauer, Demeure and Scharf [61] and its application to PSS design is
presented by Trudnowski, Smith, Short and Pierre [126].

Use of eigenanalysis to perform optimal regulator design was presented by Yu and
Moussa {97, 133] in 1972 but the method was impractical in that it required full state
feedback. Other papers describing the use of optimal output feedback techniques
for PSS design include 1976 papers by Wilson, Raina and Anderson [129], and by
Quintana, Zohdy and Anderson [107] and a 1982 paper by Okongwu, Wilson and
Anderson [99]. The former paper employs non-linear output feedback and different
coefficients depending on the operating point of the generator. The latter two papers
used a linearized model of the generator as a basis for their design and both showed
good damping of the local oscillatory mode.

A detailed analysis of tuning concepts and practical aspects of PSS design was
presented by Larsen and Swann [83] in 1981. The advantages and disadvantages
of shaft speed, terminal voltage frequency, electrical power and accelerating power
as supplementary feedback signals are discussed. The conclusion reached is that

either electrical or accelerating power is the most appropriate signal to be used. The



paper continues with the descriptios of a design procedure based on a combination
of phase compensation and root locus techniques applied to the linearized model
of the generator at some loading condition. The design procedure focuses on the
damping of the local mode. It should be emphasized that the design procedure did
not present a general method for damping both local and interarea modes. The effect
of the stabilizer on the interarea mode was investigated through simulations of a three
machine system only when the design had been completed. Simulations of the three
machine system indicated that interarea damping in response to a transient fault
condition was not reduced by the original PSS design. A modified PSS providing
less local mode damping was shown to provide better interarea damping following a
transient fault.

The choice of feedback signal from the synchronous generator for supplementary
excitation control is a matter of considerable debate. Power system stabilizers using
shaft speed, or changes in shaft speed, as the feedback signal are described in (1], [43],
[44]. [86] and [132]. Stabilizers using electric power as the feedback signal are described
in (2], [23], [27] and [81]. Papers advocating the use of accelerating power, defined
as the difference between the mechanical power supplied to the generator and the
clectrical power supplied by it, as the supplementary feedback signal were presented
by de Mello, Hannett, and Undrill [42] in 1978, by de Mello, Hannett, Parkinson and
Czuba [41] in 1982 and by Ishiguro, Tanaka, Shimomura, Maeda, Matsushita and
Sugimoto [72] in 1986. A recent paper by Bollinger, Gu and Norum [20] compares

electrical and accelerating power as feedback signals. Electrical power feedback was



chosen for the research presented in this thesis but the adaptive control strategy could

be applied to generators using accelerating power or shaft speed feedback as well.

1.3 Generator System Identification

Inherent in the synthesis of fixed-parameter stabilizers or in the operation of almost
any adaptive stabilizer, either implicitly or explicitly, is some mathematical model
of the generating unit to be controlled. In the case of the fixed-parameter stabilizer
the model is used in the design procedure to derive the PSS parameters. For the
adaptive stabilizer the model is updated as the operating conditions change and a
new control strategy is calculated based on the updated model. The accuracy of the
identification process is critical since it directly affects the damping provided by the
adaptive controller.

A number of techniques have been proposed to establish the model of large elec-
tric generators and their excitation systems. The models have several applications,
including large scale computer simulations of power systems|70] as well as their direct
application to feedback controller synthesis[28]. The following paragraphs present
a review of the literature in the field of on-line identification of generator models.
Measurement methods which require that the generator be removed from service are
described in (2], [9], [10], [40], [68], [69], [73], [77] and [119] but are not directly
applicable to adaptive control strategies.

On-line frequency response tests of a generator using direct sinusoidal signal in-

jection were performed by Manchur, Lee, Coultes, Griffin and Watson [93]. System
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response over a frequency range of 0.01 to 10.0 Hz was obtained. The transfer func-
tions were then estimated from the measured frequency response. The actual method
of deriving the transfer function parameters from the frequency response data was not
reported. An alternative frequency response test method in which a second machine
would be used to provide the source signal was proposed. An advantage claimed for
the alternative method was its ability to provide better estimates of the machine’s
quadrature axis parameters. A method for determining the machine parameters from
similar frequency response data was presented by Kazovskii and Lerner[75].

On-line measurement of the frequency response of a 60 MW hydroelectric gen-
erator using Pseudo-Random Binary Sequence (PRBS) excitation and Fast Fourier
Transform (FFT) techniques was presented by Bollinger, Winsor and Cotcher [30].
The results of the FFT method were shown to compare well with those of the discrete
sinusoid method. The ability of the method to operate in the precence of noisy data
acquired from on-line tests was noted.

Application of the PRBS/FI'T method was expanded to the individual responses
of the voltage regulator components and machine by Bollinger, Khalil and Norum [22].
The paper presents practical suggestions for choice of sampling frequency and exper-
imental conditions. Transfer functions were estimated from the frequency response
using a trial and error technique. A direct transfer function parameter identification
method based on the least squares technique applied to the input/output time series
measurements was introduced and shown to give excellent parameter estimates of

low-order, noise-free simulations.
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An identification method based on an extended Kalman filter was used by Namiba,
Nishiwaki, Yokokawa and Ohtsuka [98] to estimate the parameters of a hydroelectric
generator and its voltage regulator components. The system response was measured
during transient conditions resulting from switching a tie-line in and out of service.
No tests with other perturbing signals were reported. Problems with signal to noise
ratios were noted but simulation studies using the identified parameters were shown
to more accurately reflect the operation of the generator than were simulation studies
using the design data provided by the manufacturer.

Barret, Colot, Herouard, Meyer, Michard and Monville [11] determined the fre-
quency response of a 1080 MVA turbogenerator and its excitation system while the
generator was in operation. The paper presents practical limitations on the vari-
ance of output signals for machines operating on-line and describes the concepts of
pseudo-random ternary excitation and frequency response measurement from the sig-
nal spectral densities. Transfer functions and machine parameters were estimated
from the frequency responses obtained by the application of sinusoidal signals to the
voltage regulator reference input. Most of the tests were performed under no-load
conditions. The tests under load conditions show considerably more scatter in the
frequency response measurement as a result of the noise introduced from the rest of
the power system. No estimate of the effect of this noise on the parameter estimates
was made.

Bollinger, Khalil, Li and Norum [21] applied the least squares estimation technique

introduced in [22] to simulated second and seventh order systems in the presence of
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noise and to a hydroelectric generator penstock system. The simulation studies show
zood parameter cstimates even when a noise signal is added to the simulation.

Lang, Hutchison and Yee [82] used pseudo random ternary signal injection and
correlation techniques to determine the impulse response of a small single-machine
infinite-bus system. The system transfer function and machine parameters were de-
rived from the impulse response obtaiued. The same method was applied to the
open-circuited machine and the voltage regulator parameters were derived. System
noise was reduced by averaging several acquisition records though the effect of the
noise with fewer averages was not reported. The parameter estimates from the av-
craged data closely matched the theoretical values but no estimate of the parameter
variances were reported.

Swidenbank, Boyd and Hogg [124] used pseudo random binary signal injection
and recursive least squares identification to estimate the parameters of a 270 MW
turbogenerator. The relatively poor match between the real system and model out-
puts seems to indicate that the system noise adversely affected the estimates. The
300 millisecond sampling period employed was considerably larger than that used by
other researchers.

The recursive least squares technique is often employed as part of an adaptive
control scheme. Papers describing this identification technique as part of an adaptive
PSS are discussed in following section of this thesis.

A generalized least squares parameter estimation technique employing an observer

to estimate unmeasurable generator signals was reported by Keyhani and Miri[76].
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The method was applied to a noise-free computer simulation and good parameter
estimates were obtained.

Sanchez Gasca, Bridenbaugh, Bowler and Edmonds [52] applied a trajectory sen-
sitivity algorithm to data recorded under transient conditions to determine the pa-
rameters of a simulated single-machine infinite-bus system. Generalized least squared
parameter estimates obtained from data acquired under similar circumstances is pre-
sented by Le and Wilson[84]. The disturbance in this case was a 10%, 100 millisccond
step to the voltage regulator reference. Rapid decline in parameter accuracy in the
presence of noise was noted. Tests with wider bandwidth perturbation signals were
not reported.

Lee and Tan(85] used an iterative non-linear weighted least squares algorithm to
derive the machine parameters from data acquired from a sudden three-phase short
circuit applied to a machine operating at rated speed and no load. The method was
applied to noise-free data from a simulation program and identified the parameters
of a fifth-order model with great accuracy. In [21] and [22] the same algorithm was
applied to on-line measurements of generator input/output signals. The algorithm
was shown to provide a model whose response closely matched that of the system

from which the data were acquired.

1.4 Adaptive Power System Stabilizers

A wide range of adaptive control strategies have been proposed for power system

stabilization applications. In a 1987 review paper, Pierre [105] refers to over 90 papers
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in the field of adaptive power system control, including applications to adaptive load
frequency control, combined governor and excitation control as well as primary (AVR)
and supplementary (PSS) excitation control. Some of these adaptive supplementary
excitation contro! publications are reviewed below.

An adaptive control scheme for the combined control of both prime mover and
excitation control paths was described by Malik, Hope and El-Ghandakly [92] in
1978. The controller used a batch least squares identification technique using a slid-
ing window of the three most recently acquired input/output samples to obtain a
two-input, two-output, second-order model of the generator and derived an optimal
control strategy based on the model. The algorithm was applied to a sixth-order
model of a single-machine infinite-bus system and the response to a number of three-
phase fault conditions was observed. A pseudo-random noise signal was applied to
the generator output to ensure that the identification portion of the algorithm was
continuously supplied with data. The published results show that the model identi-
fied by the algorithm was able to give a good estimate of the rotor angle and speed
of the simulated machine. The damping provided by the controller was somewhat
better than that obtained by a fixed-parameter stabilizer. The damping provided by
dual excitation and governor control was shown to be better than that provided by
excitation control alone.

A model-reference adaptive controller for a generator excitation path was de-
scribed by Irving, Barrett, Charcossey and Monville [71] in 1979. Three state vari-

ables, namely changes in terminal voltage, changes in shaft speed and changes in
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electric power were used as inputs to the controller. No explicit model of the gen-
erator was derived in the algorithm. A state feedback vector was derived to match
the output of the combination of the generator and a series-connected model to the
output of a parallel mod:l. This series-parallel combination was said to diminish
the effects of sudden unmeasurable disturbances. Experimental results on a micro-
alternator single-machine infinite-bus system show considerably better damping of
the local oscillatory mode for the adaptive regulator over a conventional AVR/PSS
combination.

An adaptive controller based on recursive least squares identification of a discrete-
time, third-order model of the generator and a control strategy which shifted the
closed-loop poles of the generator/controller combination towards the center of the
unit circle was presented by Ghosh, Ledwich, Malik and Hope [54] in 1984. The
algorithm was shown to be more effective in damping the local oscillatory mode of a
single-machine infinite-bus simulation than was a conventional stabilizer or a stabi-
lizer designed using LQ optimization techniques. The LQ controller and a direct pole
assignment controller were dismissed as being too computationally intensive to be
implemented in a practical adaptive controller. A minimum-variance control strategy
was said to be unsuitable for excitation control as a result of its poor performance on
non-minimum phase systems. The simulation studies ensured continuous excitation
for identification by adding a pseudo-random noise signal to the output of the con-
troller. An advantage of the pole shifting strategy is the single tuning value, namely

the amount of shift towards the center of the unit circle, for adjusting the extent of
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the control action. The method provides no guarantee that the derived controller will
not have unstable poles, however.

Further simulation results of the adaptive pole shifting technique were presented
by Cheng, Chow, Malik and Hope [33] and by Cheng, Malik and Hope [34] in 1986.
Here the technique has been improved to use a variable forgetting factor for the
recursive least squares identification and an dynamic choice of the pole shifting factor
based on control action limits. The action of the self-tuning stabilizer was shown not
to conflict with similar stabilizers on other machines in a multi-machine simulation.

Adaptive control based on selection of a control strategy from a table of predeter-
mined values is presented by Sharaf, Hogg, Abdalla and El-Sayed [116]. A controller
based on an artificial neural network is presented by Hsu and Chen [65]. Both these
methods suffer from the necessity to predetermine the action of the controller at all
operating points, the former through the synthesis of the preselected controllers, and
the latter through the training process of the network.

A novel rule-based control strategy was proposed by Hiyama [64] in 1990. The
selection process for the rules was based on an optimization procedure at one operating
point. Improved damping of the local oscillatory mode over a conventional stabilizer
was noted at three operating points.

A self-tuning PSS based on a generalized minimum variance control strategy was
present by Xia and Heydt [130] in 1983. A recursive least squares identification
algorithm was used to identify a fourth-order discrete-time model of the generator.

A fixed forgetting factor of unspecified value was employed to keep the identifier
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alert to changes in the system parameters. The problem of covariance matrix blowup
associated with a fixed forgetting factor was circumvented by adding an ur~orrelated,
zero-mean noise signal to the controller output. The numerical advantages of matrix
factorization methods to ensure the positive definiteness of the covariance niatrix was
noted but not implemented. The control action weighting of the generalized minimum
variance control strategy was very small, leading to a control strategy similar to
minimum variance control. Simulation studies of a single-machine infinite-bus system
showed excellent parameter tracking at operating point changes. Good rotor damping
is mentioned but no plots of this were shown.

In 1989, Gu and Bollinger [57] describe a generalized minimum variance self-
tuning PSS similar to that described in [130]. The algorithm was improved by the
addition of a variable forgetting factor to maintain the alertness of the identification
while limiting covariance matrix blowup. No noise had to be added to the controller
output. As in [130], a sampling frequency of 20 Hz was chosen, but in the cost
function to be minimized control action variations were given nearly as much weight
as output signal variations. Simulation results using a sixth-order nonlinear model
of a single-machine infinite-bus system were presented. The response to step changes
in mechanical torque and to a six-cycle three-phase fault with successful reclosing
were shown. In all cases parameter tracking was fast and rotor damping was greatly
improved over the generator not equipped with a stabilizer.

A multivariable version of the generalized minimum variance controller for com-

bined control of the prime-mover and excitation control paths was presented in Gu’s

18



PhD. thesis [56]. A detailed proof of the convergence properties of the multivari-
able self-tuning with variable forgetting factor generalized minimum variance control
algorithm is given. Simulation studies of a single-machine infinite-bus system show
improved local mode damping over a generator equipped with a conventional stabi-
lizer.

Application of self-tuning generalized minimum variance control to a ten-machine
simulated system was described by Fan, Ortmeyer and Mukundan [50] in 1990. Three
signals, the terminal voliage, electric power and changes in shaft speed, were provided
as inputs to each of the stabilizers. A dynamic goal pointing algorithm was used in
which the reference point to which the system outputs are to be driven is calculated at
ecach step as some fraction of the current output value. This was advocated to reduce
control effort and overshoots during transient periods. The effect of this dynamic goal
pointing were not compared with the effect of different control action weightings in
the standard generalized minimum variance control algorithm. The response of the
system under three different operating conditions and four different fault conditions
was presented. Under all conditions the local mode damping of the systems equipped
with adaptive stabilizers was better than that of the systems with conventional or no
stabilizers.

The above review makes it clear that adaptive exciter control can provide im-
proved generator performance over conventional control strategies. Only one of the
techniques is said to be in operation on a full-scale power system{71], and none specif-

ically addressed the problem of damping multiple oscillatory modes.
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1.5 OQutline of this Thesis

This thesis presents the results of research investigating self-tuning generalized min-
imum variance power system stabilizer strategies that address the damping of two
oscillatory modes. This research is an extension of that presented by Gu [36]. In-
cluded in this extension are improvements to the identification portion of the adaptive
control algorithm to provide better tracking of changes in the small-signal model of
the generator arising from changes in operating conditions as well as improvements in
numerical properties of the algorithm to make it practical for implementation on exist-
ing digital stabilizer hardware. The identification of a model of a generator exhibiting
multiple oscillatory modes is studied. Simulation studies are used to investigate the
multimode damping capabilities of an adaptive PSS. Results of preliminary field tests
of the adaptive stabilizer are presented.

Chapter 2 presents the theory of the adaptive control techniques pertinent to
the thesis. A description of the generalized minimum variance control algorithm for
single-input single-output systems is given. The theory of the system identification
process on which the self-tuning action of the controller is based is presented. Tech-
niques which improve the parameter tracking and numerical stability of the identifi-
cation portion of the algorithm are described. Examples showing the effects of these
improvements are given.

The simulation program used to study the self-tuning controller is described in

chapter 3. The mathematical model of the synchronous generator is presented and
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the method by which this model is coupled to the model of the power transmission
network is described. The chapter concludes with a description of the simplified power
system used for the studies presented in chapter 4.

In chapter 4 the results of a number of system identification techniques used to
determine the characteristics of the simulated two-machine infinite-bus test system
are shown. Both frequency-domain and time-domain models are obtained.

Chapter 5 presents the results of simulation studies investigating the performance
of a simulated power system and the self-tuning PSS in response to a variety of
stochastic and deterministic disturbances. The effect of analog to digital and digital
to analog converter quantization and noise is shown in the following section. The
simulation studies present the response of the self-tuning PSS to a number of different
disturbances. The disturbances include a step load disturbance, a Gaussian load
disturbance, a transient fault condition, and a change in the operating point of the
test machine.

Chapter 5 concludes with a presentation of the results of preliminary field tests of
the adaptive stabilizer. The self-tuning PSS was tested in existing digital stabilizer
hardware connected to both steam and hydro-powered generators.

Chapter 6 presents the conclusions gleaned from the controller studies and rec-

ommends some directions for further research.
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Chapter 2

Review of the Pertinent Theory

The chapter presents a review of theory and algorithms applicable to a class of self-
tuning controllers. The two main components of the self-tuning controller are the
Recursive Least Squares (RLS) parameter identification method by which a model
of the process to be controlled is obtained, and the Generalized Minimum Variance
(GMV) control strategy which computes the control action at each sampling interval.
The application to a self-tuning PSS is described and examples illustrating some of

the concepts are presented at the end of the chapter.

2.1 Recursive Least Squares Parameter Identification

The recursive least squares algorithm for system parameter identification is well-
known and commonly used. A full derivation of the method is presented here since
the algorithm is of fundamental importance to the self-tuning action of the controiler.
Detailed discussions of the convergence and statistical properties of the method can
be found in [87], [88] and [118].

Application of the method to adaptive control systems is discussed in [39] and [535].
Improvements to the method are presented in [60], [78], [80], [111], [114], and [120].

A number of these improvements are discussed later in this chapter.
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Recursive least squares identification is a member of a group of identification
techniques known as prediction error methods in which the parameter estimate is

adjusted to minimize the difference between the predicted output of the system and

the actual output[4].

The least squares technique deals with models of the form,

y(t) = ¢ ()6 (2.1)

where,
y(t) is some measurable quantity,

o(t) is an n-vector of known quantities, commonly referred to as the vector of regres-

sors, and,
# is the n-vector of unknown parameters.

For the applications considered in this thesis the regressor values are previous samples

of the plant output and control action.

The problem is to find an estimate 8 of the parameter vector 8 from the measured

values y(1), ..., y(V) and &(1), ..., ¢(N). The N measurements form a system of

linear equations,
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Y = %4 (2.3)

where Y is the NV X 1 vector of measured values and ® is the .V X n matrix of regressor
values.

The equation errors, or residuals, are given by,

e(t) = y(t) — ¢7(t)0 (™4

or, in matrix form,

e=Y — &0 (2.5)

where ¢ is the V X 1 vector of equation errors.
The least squares estimate of the parameters is the vector § which minimizes the

sum of the squares of the equation errors,

V() = ele (2.6)

DN —

N
A
t=1

N =

Substituting thc expression for the equation errors from (2.5) into the above expres-
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sion yields,

20)) % [Y - @8] [y — &6]

= -;- [YTY —YT30 —4TQTY + oTcpTcpo]

(2.7)

The parameter vector which minimizes the cost function is found by first determining

the derivative of the cost function with respect to the parameters,

av ()

06

[-YT® - (87TY)" +(2796)" + 67oT 3|

0N} —

and then solving for the value of § which sets the derivative to zero,

N = -YTd+67TdTd

(@7®) 19Ty

D>
|

(2.8)

(2.9)

The second derivative of the cost function with respect to the parameters is,

82V (0)

—&T
ez ¢

(2.10)

which is non-negative, indicating that the solution of (2.9) does, in fact, minimize the

cost function.

The statistical properties of the parameter estimate are derived subject to the
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assumption that the data are of the form,

y(t) = o7 (t)8o + e(t) (2.11)

where 6y is the true parameter vector and e(t) is a sequence of zero-mean white noise

with variance r. In matrix form this is written as,

Y =876, +e (2.12)

The difference between the parameter estimate 8, from (2.9), and the true param-

eter vector is,

D,
|
kY
[=)

= (87%)"'87Y - 6

= (®T®)"10T(9, +e) — 6

(®T®)'¢7e (2.13)
The covariance matrix of the parameter estimate 6 is given by,
E{(6-60)(8—60)"} = E{((27®)"'@"e)(e"2(373)™")} (2.14)
where FE is the expectation operator. The assumption of white noise means that,

E {eeT} =rl (2.15)
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The ¢ matrix is known and can be taken outside the expectation, so the expression

for the covariance matrix reduces to,
E{(6 - 60)(6 - 60)} = (@7 )" (2.16)

The derivation of the recursive form of the least squares identification technique

begins by rewriting the expression for the parameter estimate, (2.9), at time ¢ as,

t

.
b(t) = [z ¢(s)¢T(s)] LZ ¢(s)y<s)] (2.17)
=]

s=1

From (2.16) the value of the covariance matrix at time ¢ is,
¢ -1
Pl =[S 00870 (2.18)
=1
Expressed as an update from the previous sample, the covariance is,
Pl t) = PNt — 1)+ ¢(t)r~ o7 (2) (2.19)

This expression requires a matrix inversion at each time step. The inversion can be

eliminated by application of the matrix inversion lemma which states that,
[A+BCD]™' = A™' — A7'B[C™! + DA™'B]"'DA™! (2.20)

provided the inverses exist. Substitution of the corresponding values from (2.19)
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vields an expression requiring only a scalar division,

_ Pt —1)o(t)o” (t)P(t — 1)

P(t) = P(t = 1) = —— o7 (t)P(t — 1)g(t)

Combining (2.17) and (2.18), and taking the term at time ¢ out of the summation

yields,
; P(t) [
dey = £ [Z Bls)y(s) + ¢<t)y<t>] (2.22)
s=]
The parameters at time ¢ — 1 were,
_ t-1
bt -1 = 2 [ ols)uts)| (2.23)
=1 4

Substituting the summation term from (2.23) into (2.22) yields,

-

o(t) = f-f—) [rP=(t = 1)A(t — 1) + o(t)y(t)] (2.24)
From (2.19) the covariance at time t — 1 is,
Pt = 1) = P7i(t) - o(t)r~"¢" (t) (2.25)
Substituting this value into (2.24) produces,
P(t)

bt) = —=[r (P71(t) — o(t)r'6" (1) 6t ~ 1) + o()y(t)]  (226)

r
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which reduces to,

d(t) =6t — 1) + Z(1) [y(2) - 70 - 1)] (2.27)

T

From (2.27) two new values are defined,

e(t) 2 y(t) - oT(2)(t - 1) (2.28)
K(t) & P—de)(t) (2.29)

The terin £(t) is a prediction error, being the difference between the measured output
and the output predicted using the previous parameter values. The elements of the
vector K(t) are weighting factors, often referred to as the Kalman gains, that show
how much the prediction error will adjust each element of the parameter vector.

Substituting the value of P(t) from (2.21) into (2.29) yields,

(t — 1)¢(t)e” (t)P(t — 1) 8(t) (2.30)

o P
K@t)=r""(P(t-1)- r+ T ()Pt — 1)g(t)

This reduces to,

oy Plt=1)6(t)
M= o ore - 160 (231

The set of (2.21), (2.27), (2.28) and (2.31) form the recursive least squares iden-

tification algorithm. At each time step the following calculations are performed to
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update the parameter covariance P(t) and the parameter estimate 6(t),

s(t) = y(t) = oT()b(t - 1) (2.32)

P(t - 1)¢(t)
r+ oT(t)P(t — 1)6(t)

P(t) = P(t 1)~ K(t)o"(t)P(t—1) (2.34)

6(t) = 6(t—1)+ K(t)e(t) (2.35)

These equations are often presented with the r term in the denominator of (2.33)
replaced by the value 1. This version of the Kalman gain calculation can be given
two interpretations. The first is that the I/O regressor, ¢, has been scaled so that
the variance of the disturbance, e(t) in (2.11), is, in fact, one. The second is that the
covariance matrix, P, must be scaled by the variance of the disturbing signal in order
to represent the statistical properties of the parameter estimate, 6. For example,
if the I/O regressor has been scaled so that the variance of the disturbance signals
is p, and if the recursive least squares identification is performed with the r term in
the denominator of (2.33) set to 1, then the statistical properties of the parameter
estimate § are given by P/p rather than by P.

One of these interpretations must be considered when implementing the algorithm,

particularly when the initial value of the covariance matrix is being chosen. For
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cxample, if the incoming data are scaled down by a factor of 10, the algorithm will
hehave differently unless r is divided by a factor of 100, or the initial covariance
estimate is multiplied by a factor of 100.

Several improvements to the recursive least squares identification algorithm have
been proposed ([60], [78], [80], [111] and [120]). The following sections present modi-
fications that improve its numerical properties and enable it to track parameters that

change with time.

2.1.1 U-D Factorization of the Covariance Matrix

Implementations of the recursive least squares identification algorithm based directly
on (2.32) through (2.35) are sensitive to computer roundoff[14, 15]. An improved im-
plementation was presented by Bierman in 1976{15]. The improved implementation
factors the covariance matrix so that factors of the covariance matrix, rather than the
covariance matrix itself, are updated. This improves the numerical stability in two
ways. The first improvement is due to the reduction in the numerical range of the
variables involved in the computation of the covariance matrix. Numerical operations
in the original algorithm involving numbers in the range of 10~" to 10" are replaced
in the improved algorithm by operations involving numbers in the range of 10~¥/2 to
10"/2. The improved algorithm thus requires only half the numerical precision to yield
results as accurate as the original algorithm. The second improvement arises from
the modification of the covariance update equation (2.34). A direct implementation

of (2.34) involves the subtraction of values that may be nearly equal. This operation
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can cause considerable loss of accuracy when performed using finite-precision arith-
metic. The accumulated loss of accuracy over several covariance updates can result
in a covariance matrix that is no longer non-negative definite.

Replacing the covariance matrix update with an update of the factors of the
covariance matrix ensures that the covariance matrix remains positive definite at
all times. The improved algorithm is based on the decomposition of the covariance
matrix into the factors,

UDUT =P (2.36)

where U is unit upper triangular and D is diagonal. The algorithmn ensures that the
elements of D remain positive and thereby ensures that the covariance matrix remains
positive definite. The following paragraphs present a derivation of the algorithm.

In the following derivation accents are employed to provide a more compact nota-

-~
.

tion. A tilde over a variable (*) indicates the value prior to the update operation and
a caret over a variable (*) indicates the value following the update. In this notation
the covariance update (2.34) is written as,

Ppg" P
r+ ¢TPo

~

P=pP-~ (2.37)

Writing the covariance update equation in terms of the factored covariance yields,

. an -~ UDUT¢¢TUDUT
T T
UDOT = UDUT - P TS (2.38)
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Extracting some common factors and taking the transpose of some of the inner terms

produces,

T (2.39)

a = UT¢ (2.40)
b = DUT¢ (2.41)
(o = r+¢"UDUT¢ (2.42)

When written in terms of the vector components and the diagonal elements of D the

latter equation becomes,
=1+ gagb; =r+ ,2:; J,-a? (2.43)
Substituting (2.40), (2.41) and (2.42) into (2.39) yields,
UDUT =T [D - ¢;'eb”) OT (2.44)
Defining the factorization of the term in brackets as,

UDUT = D — ¢'bbT (2.45)
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and substituting these values into (2.44) produces,

UDUT =0T DCTOT (2.46)

From this it can be seen that,

-
il
.
(S
®
=
[a N
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il
(]}
o
"
2!

Substituting these values into the left hand side of (2.44) yields,
CODUTOT =0 [D - ¢;'ob™] 07 (2.48)

which reduces to,

UDOT = D ~ ¢;'obT (2.49)

This simpler update can be performed in a numerically stable and computationally

efficient fashion. The update is performed by taking,
e = —=1/Cy (2.50)

and performing the backwards recursion for j =n to j =1,

di = dj+c;b? (2.51)
Cji-1 = c—';—" (252)
J
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U; = 2= i=1,...,j—-1 (2.53)

The update of the elements of the diagonal factor of the covariance matrix in (2.51)
involves the addition of a positive term, and a negative term, since from (2.42)
and (2.50) ¢; is always negative. This form of computation can lose accuracy when
the two terms are nearly equal and could possibly result in some of the elements of
the diagonal factor becoming negative which would result in a negative-definite co-
variance. This difference computation can be avoided as follows. From the definition

of b in (2.41) it can be seen that the elements of b are,
bj = d;a; (2.54)
Substituting this expression into (2.51) gives,
d; = d; (1 + ¢;d;a?) (2.55)

This is then substituted into (2.52), the inverse is taken and the expression is rear-

ranged to give,

1 1 s,
vl d;a? (2.56)

This can be rearranged as,

1]
N

-2 (2.57)
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Substituting this expression into (2.55) and simplifying vields,

-~ ~ C;
di=d.—2— (:
J ch_l

o
c
w
—_—

From (2.43) and (2.50),

o
[$4]
=)

'1_=—Cn=_<r+id-ka.l2c> (2.

Cn k=1

Using the backwards recursion in (2.56), this can be expressed as,

I

k=1

Replacing ¢; and c¢j—; in (2.58) with (; and (;-, allows the backwards recursion

in (2.51) and (2.52) to be replaced by the initialization,

G=r+ba (2.61)

s TJl
d = — (2.62)

TG

and the forwards recursion frora j = 2,...,n,

G = Ci-1 + bja; (2.63)
dj = d;5= (2.64)

G
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The update of the upper triangular factor of the covariance matrix, U can also be

simplified. From (2.53) the updat~ of the columns of U can be written as,
O=1+[0 b Agp® .o 2bY)] (2.65)

where each column is the product of a scalar,

b .
S, = i/ —b—]. (2.66)
d; Cid;

and a column vector,
n—j

b =6y .- b; 0 ... 0 (2.67)

Expressions (2.54) and (2.64) can be substituted into (2.66) to give the simpler

expression,

A= -t (2.68)

Combining (2.47) and (2.65) gives the updated upper triangular factor as,
U=00=U+[0 2060 A0 ... A0 (2.69)

Introducing the column vector,

Kj. = 0o (2.70)

37



the expression for the updated upper triangular factor can be written as

-

U=U00=U+[0 \yKo MR3 - AnAn) (.

to
-1
—
A

From the special structure of U and %), and using i; to represent the j-th column
of U, it can be seen that the update in (2.69) and (2.71) can be expressed as the

recursion,

Kjy1 = U = K; + b;i (2.72)

This recursive update requires a factor of n fewer operations than the direct update
formed by computing & and UU. The recursive update also yields the Kalman gain

vector required for the parameter since from (2.33), (2.41) and (2.72),

Py  UDUT¢

= = 2.7
K= Fem= "0 (2.13)
Ub
= — 2.74
a (2.74)
Kn+l
= e—— 2.75
a (2.75)
The full U-D factored covariance update can thus be summarized as,
a = U9 (2.76)
b = Da (2.77)
(G = r+ab (278)
d = dir/¢ (2.79)
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Ko = [by 0---0] (2.80)

n-1

followed by the recursion from j = 2,...,n,
(=Gt bja; (2.81)
d; = di¢i1/G (2.82)
i = i — a;K;/G-1 (2.83)
Kipn=K; + b;i; (2.84)

The parameter update is performed as in (2.32), and (2.35) with the Kalman gain
vector calculated as described in (2.75).

The U-D factored RLS implementation presented above provides greatly improved
numerical properties with little increase in computational complexity{125]. Table 2.1
summarizes the operation counts required to perform a parameter and covariance
update of an n parameter system using the unfactored and factored covariance update

algorithms. For all bu! the smallest n, the operation counts are nearly identical.

Table 2.1: Operation Count to Update n x n Covariance Matrix.

Covariance Operations
Matrix Additions  Multiplications Divisions
Unfactored (P) 1.5n2 +3.5n  1.5n°+4.5n 1
Factored (UDUT) | 1.5n2 +1.5n  1.5n% +3.5n 2n

The operation counts noted in table 2.1 are slightly different than those reported

in [14]. In [14] the algorithm was implemented to minimize the number of division
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operations, requiring n fewer divisions, but 2n more multiplications at each sampling
interval. The computer on which the self-tuning PSS was implemented has a small
ratio between the execution times of the division and multiplication instructions so

the algorithm was adjusted to minimize the number of operations in general.

2.1.2 Exponential Forgetting

The RLS algorithm derived above has the deficiency that the covariance matrix, P(t),
continuously decreases as time progresses. The algorithm is unable to track parameter
changes since all data since ¢t = 0 are equally weighted. A method commuily emplayed
to circumvent this problem is the application of exponential forgetting in which newer
data are given more weight than older data[6]. The cost function to be minimized is
then,

N

V() = —;—Z7N"52(t) (2.85)

t=1
where v is the forgetting factor which discounts the effect of older data.
The derivation of the recursive identification algorithm with exponeniial forgetting
begins by rewriting the summation form of the parameter esu.mation expression,
(2.17), as,

t -lr
f(t) = LZ 7"’¢(s)¢7‘(s)} LZ ~ﬁ"¢(s)y<s)} (2.86)
=1

=]

The derivation proceeds as presented in the previous section.
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The value of the covariance matrix at time t is,
-1
P(t) =T [Z ~/'-°o<s)¢T<s)] (2.87)
Breaking out the last term of the summation produces,
-1 -1
P(t) =7 [Z 1 0(5)67(s) + ¢(t>¢T(t)] (2.88)
s=1
The covariance matrix at time ¢t — 1 is,
-1
P(t-1) LZ 7712(s ¢T(s>] (2.89)

Combining the last two equations gives the covariance at time ¢ expressed as an

update of the covariance at time t — 1 as,
Pl (t) = yP7H(t - 1)+ (t)r 197 (2) (2.90)

Applying the matrix inversion lemma eliminates the matrix inversion required at each
time step and results in the covariance matrix update expression,

1 2Pt~ 1)e(t)e" (t) 1 P(t ~ 1)

U e UL VD) (291

P(t) =
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which can be simplified to,

1 [P(t _y_Pu- Do(t)oT(t)P(t — 1)
7L yr + @ (1) P(t — 1)o(t)

The remaining three equations making up the recursive least squares update at
each time step are unchanged by the addition of the forgetting facte:.

The exponential forgetting factor can also be applied to the U-D factored co-
variance matrix update. Applying the forgetting factor in this case is particularly
cfficient since the scaling in (2.92) need be applied only to the diagonal factor, D, of
the covariance matrix and thus requires only n operations rather than the n{(n +1)/2
operations of (2.92).

The application of a fixed forgetting factor to the covariance matrix poses a prob-
lem if the system is not continuously subjected to disturbances. In this case the
covariance matrix can increase exponentially so that when some disturbance does
affect the system the parameters vary wildly. A number of solutions to this problem
of covariance ‘blow-up’ have been proposed. Among these are the placing of an upper
limit on the trace of the covariance beyond which covariance updating is inhibited [53],
holding the trace of the covariance matrix constant [55], and inhibiting covariance up-
date when incoming data carry little information [120]. In 1981 Fortescue et al.[51]
proposed a variable forgetting factor whose value was determined at each sampling in-
terval based on the information contained in the current regressor vector. This method

has been employed in a number of adaptive PSS algorithms [33, 34, 50, 56, 57]. The
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method handles the case of nonuniform information distribution in time, but does not
address the problem of nonuniform distribution in parameter space. In [60] and [79]
it is noted that variable forgetting factor of [51] may cause problems when applied
to systems whose input signal is formed from the feedback of the system output. A

forgetting method that avoids these problems is discussed in the following section.

2.1.3 Restricted Exponential Forgetting

When the excitation signal used for system identification is derived from feedback
of the system output the information content of the regressor vector is not uniform
in all directions of the parameter space. The application of exponential forgetting
in this situation can lead to poor parameter identification. The problem can be
illustrated using a two-dimensional example in which the parameter vector 6 has two
components, §, and 6. A plot of the confidence limits of the parameter values is

given by the solution of,

(8. — 6(t))P~'(t)(8, — 6(t)) = constant (2.93)

The solution, ., of (2.93) forms an ellipse in the 8,0, plane where the center of the
cllipse is the current parameter estimate. The size of the ellipse indicates the uncer-
tainty of the estimate in a particular direction. The problem caused be exponential
forgetting is shown in figure 2.1. The long arrow joining the centers of the ellipses

shows the direction of the Kalman gain vector. The ellipse decreases in size in the
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3. After Forgetting

1. Before Update 2. After Update
)
2.

Figure 2.1: Covariance update using exponential forgetting.

direction of this vector. The exponential forgetting factor subtracts information, thus
expanding the ellipse, in all directions. If, over a period of time, the incoming data
contains informaﬁion in only one direction, the covariance ellipsoids will become very
large in the directions orthogonal to the incoming data. This condition arises when
the excitation signal used for identification is computed as a feedback from the output
signal. This is exactly the case when the identification is being performed as part of a
self-tuning controller. When the excitation conditions change as a result of a change
in disturbances affecting the plant, or as a result of a change in the plant parameters,
the large covariance elements can cause the identified parameters to jump far from
their desired values. This phenomenon of occasional large excursions in the parameter
values is referred to in the literature as ‘parameter bursting’.

An improved forgetting scheme, referred to as restricted exponential forgetting
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has been proposed by Hagglund [60] and Kulhavy [78, 79, 80]. The premise of the
restricted exponential forgetting scheme is that information is forgotten only in the

direction that new information is added.

The original inverse covariance update expression with no forgetting and assuming

unit variance of the disturbance is (2.19),
P7H(t) = Pt = 1)+ ¢(t)¢" (1) (2.94)
Application of an exponential forgetting factor, v to thLis yicids,
P7H(t) =y (P!t~ 1) + ¢(t)s" (1)) (2.95)
The restricted exponential forgetting covariance update is given by,
P7i(t) = P7H(t ~ 1) +7'8(t)¢" () (2.96)
Where 4’ is calculated from the forgetting factor as,

11—~
"=y - —— 2.97
Y=1-7pg (2.97)
The effect of the restricted exponential forgetting method on the same two-
dimensional system is shown in figure 2.2. It can be seen that the forgetting in the

direction of the Kalman gains is the same as that provided by exponential forgetting,



3. After Forgetting

1. Before Update 2. After Update
/

\

Figure 2.2: Covariance update using restricted exponential forgetting.

but that information is neither added nor subtracted in the orthogonal direction.

The implementation of restricted exponential forgetting is particularly convenient
since the only change in the covariance update expression (2.33) or (2.78)-(2.79) is
the replacing of r with v'~!. The forgetting can thus be applied with no more calcu-
lations than those involved with the original covariance update. The only additional
calculations are the two subtractions and one division involved in calculating 7.

In [80] a method for computing a forgetting factor that varies with the information
contained in the present sample is described. At each step the following calculations

are performed,

e(t) = y(t) - o7 (1)6(t) (2.98)
((t) = ¢(t)TU(t—1)D(t — 1)UT(t - 1)¢(t) (2.99)
n(t) = E—(%)(GT()Q (2.100)
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)
e = M (2.101)

YO 14 ¢(t) +0(t)
5 _ ) 5 -
(t+1) = |1+ (1+p) ln(l+((t))+1+C(t)(eN(t)—1) (2.102)
Alt+1) = ~/(t+1)[A(t)+f(j_)z((tt))] (2.103)
vit+1) = y(t+1)p(t)+1] (2.104)
¥(t) = ~,(:+1)_L‘_z_(‘tt_)ﬂ_) (2.105)

The value ¥'~'(t) is then used in the place of  in the covariance update expres-

sions (2.78) and (2.79). The parameter update equation becomes,

U(t —1)D(t - )UT(t — 1)é(t)
1+¢(t)

6(t) = 0(t) + €(t) (2.106)

An alternative method for computing the forgetting factor at each sampling in-

terval was proposed by Sripada and Fisher {120]. The forgetting factor is computed

as,

L) =+ goy? - AR DSOI

5 (2.107)

Tt=1-

The above two methods for computing the forgetting factor were evaluated in
simulation sfudies of a self-tuning PSS. Results are presented later in this thesis.

Another method for discounting the effect of old information in least squares
identification was proposed by Salgado, Goodwin and Middleton [111]. The method
does not easily permit the update of the factorized covariance matrix though, and

was not evaluated.
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2.2 Generalized Minimum Variance Control

This derivation of the generalized minimum variance control algorithm parallels that
presented by Clarke and Gawthrop [35] which itself is an extension of Astrém and
Wittenmark’'s minimum variance regulator [3, 7, 63].

The system to be controlled is linear, time-invariant, has a single input, a single
output and is subjected to random disturbances. It is described by the ARMAX

(autoregressive, moving average with exogenous input) difference equation,

Yoaiyi =Y bt +d+ Y il (2.108)
i=0 =0 i=0

At a particular instant of time ¢, u, is the system input, y, is the system output,
and & is the value of an unmeasurable, uncorrelated, zero-mean, random sequence
disturbing the system. The system is of order n with an inherent delay of k sampling
intervals and operates around a constant output level d. It is conventional to set
the values of ay and ¢y to 1 and to scale the b coefficients and the variance of the
disturbance sequence & accordingly. This model is more often expressed in terms of

polynomials in the backwards shift operator z~!

as,

Az Yy = 27*B(z"Yu, + d + C(z71)E, (2.109)

The coupling of the disturbance is minimum phase so the roots of C(z) = 0 are within

the unit circle.
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The cost function to be minimized is the expectation of the weighted control
action u,, and weighted deviations of the system output y, from the setpoint w,.

2 2
I=FE { (Z Dilfirk—i — 3 riwt—i) + (z quz—i) } (2.110)
i=0 i=0

i=0

The cost function can also be written in terms of polynomials in the backwards shift

operator,

I=E{(P(z"")yues = R +(Q (7w} (2.111)

Fortescue, Isershenbaum and Ydstie [51] expand on this with P, Q' and R as ratios
of polynomials in the backwards shift operator.

A special case of the cost function results when all the weighting parameters but
po are zero. The controller minimizing this cost function is known as the minimum
variance regulator [7, 8] and operates by predicting the system output k steps ahead
and choosing u, so as to set the prediction to zero. The controller minimizing the cost
function in the case of general weighting parameters is referred to as the generalized

minimum variance controller.

2.2.1 k-Step Ahead Output Predictor

The generalized minimum variance control strategy is based on the minimization of
the expected value of a number of terms. One of the terms includes the value of the

system output k steps in the future. A method for predicting this value is the subject

of the following paragraphs.

49



As noted in the previous section the system can be expressed as,

Ay =B e+ d + C(2 e (2.112)

This can be expressed more concisely by dropping the (:~!) notatiou from the

polynomials. The system output is then expressed as,

B d C
Y=z kI“‘+E+§€‘ (2.113)

The output at k steps in the future is given by applying the shift operator :* to

the right hand side of this equation and noting that z*d = d since d is constant,

B d C
yt+k=zul+z+3kz t (2.114)

The last term of this expression can be split into two components, the first being
the effect of future disturbances and the second the effect of disturbances up to and

including time t,
€

F! .
6= FELE + ka‘ (2.115)

The polynomial Ej(z~!) is the first k terms of the quotient C(z7!')/A(z™!) and
:7*F[(z~!) is the remainder.
The two components of the disturbance are defined as,

ek 2 ZFELE (2.116)
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e, & g (2.117)

Substituting these values into (2.114) yields,

B Fy d
Yerk = [Eut + -le t+ Z] + €ryk (2.118)

Define yy, ;,, as the optimal (in the least squares sense) predictor of the system
output y at time ¢t + j, given input and output samples up to, and including, time
t. The actual output at time ¢ + k is then the predicted output plus the effect of

disturbances occurring between time ¢t and time ¢ + k. This can be expressed by,

- A
Yt+k)t = Ytk — €14k (2.119)

Substituting the value of 4 from (2.118) into (2.119) produces,

) B ! q
Yiewe = U+ &+ 5 (2.120)

From (2.116), the effect of future disturbances is given by,

ersr = 2FELE (2.121)



Taking the time shift out of both sides gives.
e = EL&, (2.122)
Taking (2.119) and shifting it back & steps in time yields,
Yije~k = Yt — €1 (2.123)

Merging the last two equations produces,

Yo = Yije—k

9
5 (2.124)

& =

Substituting this value into the expression for the predicted output, (2.120), yiclds,

B F d
- _ — —_— — " — 12
yl-}-kl! Aut + E[kA(yl y!lt—k‘) + ‘4 (2 1 ‘))

Grouping the predictions on the left hand side gives,

x — B F! d
Yegiie + E;:k}ytlt-k =3 + E’,c_kgyt + a (2.126)

Expressing the t.mne shift in the second term on the left hand side as the application



of 2~* and placing both left hand terms over a common denominator produces,

) ~—k -
Elch-'/Hklt +z FI:yt+k|t
ELA

F d |
— — 2127
+ E,’c.'lyt+ ‘4 ( ')

_B,
_2,

Rearranging some terms in the numerator of the left hand side of (2.127) to reflect

the effect of past and future disturbances, as shown in (2.115), yields,
C=EA+:"FF] (2.128)

The numerator of the left hand side of (2.127) can thus be written as,

c . Is 04 d
myzwe = U + ;_",;yr + 3 (2.129)
Multipling both sides by Ej.A produces,
Cyriap = ExBu + Fry + Ed (2.130)

Since d is a constant the expression E}d can be replaced by the term y.d, where v

is the sum of the first k terms of the E' polynomial,
k=1
Ve =) & (2.131)
i

Substituting this term in (2.130) results in the recursive expression for the k-step



ahead predictor,

C!,/Lk“ = Fou + E.Bu, + d (2.132)

The term recursive applies since the estimate Uiy e 18 required to determine the
value of y7, .., The recursion begins by caleulating vy, ;. and continues till Ur ke

(where k is the svstem delay) has been determined.
2.2.2 Generalized Minimum Variance Control Strategy for Systems with
Known Parameters

The derivation of the generalized minimum variance control strategy begins by sub-
stituting the value of the system outrput fraan (2.119) into the cost function (2.111),

producing the expression,
I=F {(P(yr.+k|t +ern) = Ruw)* + (Qlul)g} (2.133)

The only non-deterministic component of this expression is the error term, e,
which is uncorrelated with the other terms. It can thus be separated from the other
terms and the expectation operator can be dropped from those terms. The expression

for the cost function then becomes.
I = (Py; e = Ru)® +(Que) + E {(Pews)’} (2.134)

The polynomial P is time-invariant and tihe disturbances are crgelic s6 tae ex-



pectation can be replaced by the variance of the random sequence, Pe, .. as follows.
[ =(Py; 0 — Rw)? +(Qu)* +4° (2.135)

The goal is te choose a control action u. that will minimize the value of this cost
function. To that end the partial derivative of the cost function with respect to u; is
taken,

oI . OUr vkt
g, = 2P = R =5,

+2¢,Q"u, (2.136)

The partial derivative on the right side of this expression can be formed from the
k-step ahead prediction expression, (2.132), as.

Yyt _ eobo

9, - (2.137)

The first coefficient of the E polynomial, ey, is ag /co, and both of these coefficien's

are equal to 1, so the partial derivative of the cost function can be written as.

ol

B 2Py — Ruwe)bo + 20Q"u, (2.138)

The partial derivative of (2.138) with respect to u, is positive so the cost function

is minimized when (2.138) is set to zero. This gives the control strategy,

/
Pyiie — Ruwe + -q%?—u, =0 (2.139)
0

(S]]
(1]



Substituting a new polynomial Q. defined as g{Q’/by. into (2.139) vields the ex-

pression for the control action,

Pyl g — R+ Que =0 (2.140)

An alternative method of computing the control actic: can be formed by defin-
ing two new auxiliary signals in terms of the setpoint, control action, and real and

predicted outputs,

- JaN -
ke = Pyl — Ruc+ Quy (2.141)

Grak 2 Pypes — Ruy + Quy (2.142)

From (2.119) the real system output can be written as the sum of the predicted

output and an error term as,

Ytk = yl‘+klt + €14k (2.143)

Substituting (2.143) into (2.142) gives,

Quphe = Pyl--bl".' + Pe¢+k - th + QU( (214‘;)



Combining (2.141) and (2.144) gives,
Quep = Q;+k“ + PeH-k (2145)

The error term e,y in (2.143) is uncorrelated with the prediction y;, . Another
function can be defined in terms of this error term and the first & coefficients of the

P polynomial as,

k-1

€rph = ZP:’&-&-k—i (2.146)
=0

Substituting (2.146) into (2.145) yields,
ik = a:+k|¢ + €tk (2147)

From (2.147) it can be observed that a;,,, is the optimal least squares predictor

of /44 Defining another cost function as the variance of the auxiliary signal, as,
J = E {(ae)?} (2.148)
and then substituting the values of €4+ and aj,,,, into (2.148) yields,
J = E {(0}yu — Pewrr)’} (2.149)

The polynomial P is time-invariant and the disturbances are ergodic so the expec-

tation can be replaced by the variance of the random sequence. The same expectation

e
~1



can be seen in (2.133). The prediction term is deterministic and can thus be removed

from the expectation. The cost function can thus be expressed as.

J = aj+0o° (2.150)
J = Pyt-+k|(_wa+Qut+02 (2.131)
Taking the partial derivative of (2.151) with respect to u, yields,

aJ

du,

o
—
[}
tS

] Yy sk
=2 (Pyt+k|t — Ruw, + QUt) ( 0‘;:“ + (Io> (2.

Setting this derivative to zero results in the same control law as derived ear-
lier (2.140). namely.

Pyro — Rey+Que =0 (2.153)

From the definition of the auxiliary signal (2.141) it can be seen that (2.153) can
be equivalently stated as,

ke =0 (2.154)

Inserting the expressicn for predicting the system output, (2.132), into (2.141)
vields.

p , -
a,'+k|, = E [F/iyt + EkBUl + ']’kd] - th + Qu, (2150)



and expressing the P polynomial as an explicit summation gives,

k-1
afpaye = > BC-{— [Fk’._jy, + E;_;Bu, + ')'k_jd] —Ru, 4 Q. (2.156)
j=0

Three new polynomials and a new constant are defined from the terms of (2.156)

as,

F 1 Ay ik 'F’ - -

(:77) = ZPJ k—j (2.157)
j=0
k—1

G(:"") & Y pi=7E,_;B+CQ (2.158)
Jj=0

H(:"') & —CR (2.159)
=

6 = Y pin-jd (2.160)
j=0

Substituting these polynomials into (2.156) yields,
Cogppe = Fyy+Gu,+ Hw + 6 (2.161)

In (2.154) it was noted that the control action that minimizes the value of the
cost functions I and J sets aj,,, to zero at each step. The desired control action is

thus computed as,



2.2.3 Self-Tuning Generalized Minimum Variance Control

The generalized minimum variance control strategy described in the previous section
can be easily adapted to the self-tuning case where only an estimate of the plant
parameters is available.

From (2.161) the prediction of the auxiliary signal is given by,

C’a,'_,_k,, = Fy( + Gut + ng +6 (2163)

From (2.147) the actual value of the auxiliary signal at time t + & is equal to the

predicted value plus a disturbance. This can be expressed as,

Quyke = 0:+k|¢ + €tk (2164)

The generalized minimum variance control action sets the predicted value of the
auxiliary signal to zero at each sampling step. The true value is thus equal to the

disturbance component only, as in,

Qeik = €4k (2.165)

If the C polynomial in (2.163) is equal to 1 it can be seen that the combination
of (2.163) and (2.164) reduces to the form used in the derivation of the least squares
identification algorithm,

ok = OO + €14k (2.166)
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The regressor vector is given by,
ol =y yr-. oo Wy oo Wiy .. 1] (2.167)
The vector of parameters to be identified is,
6T =[fofi .- 9og1 -.- hohi ... 6] (2.168)

The disturbance ¢, is uncorrelated with the elements of the regressor, ¢, so the
recursive least squares identification of the parameter estimates, é,, will converge to
the actual parameters. The control action is calculated at each sampling interval
using the latest estimate of the parameter vector to set the predicted value of the

auxiliary signal to zero. This is given by,
Cojpue = Fyi+ Guo+ Hu + 8 =076, =0 (2.169)

If the C polynomial has more than a single term the elements of the regressor
are not uncorrelated with the disturbance. Under these conditions the parameters
identified by recursive least squares will not converge to the true parameter values.
In [7] it is shown that the bias in the identified parameters is such that the control
action still converges to that of the GMV controller based on the known A, B and
C polynomial coefficients. In effect, the C polynomial is implicitly identified and the

values are incorporated into the control strategy. An identification technique which
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explicitly identifies the coefficients of the €' polynomial is briefly described in chapter
four.

In [35] it is noted that good control action can be achieved by the self-tuning
GMV controller even when identification is imprecise. If a parameter is ditlicult to
identify because it has little effect on the prediction error of the recursive least squares
identification it will have correspondingly little effect on the calculation of the control
signal. An example of this is included later in this chapter.

Further analysis of the self-tuning generalized minimum variance control algorithm
may be found in [55]. An analysis of the convergence properties of the multivariable
implementation of the algorithm is in [36]. A recent paper by Guo and Chen [59]
presents a rigorous proof of the stability and optimality of the self-tuning regulator
presented in [7] and gives a proof of convergence of extended least squares adaptive

trackers.

2.3 Examples Illustrating Concepts and Algorithms

2.3.1 Example of U-D Factorization

To illustrate the effectiveness and importance of U-D factorization of the covariance
matrix update an example of recursive least squares ident..cation with and without

factorization was performed.
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Counsider the fourth-order continuous-time plant given by,

Yis) 180s s24+0.1s+ 36

. 2.170
Ul(s) $24+0.1s5+100 s2+0.1s+ 25 ( )

The discrete-time ARMAX model of this plant, assuming a zero-order hold on the

input and a 25 millisecond sampling interval is,

A(z7hy(t) = B(zYu(t) + £(t)
A(z71) = 1.0+ 3.91732:7! — 5.83082:72 + 3.90754:73 — 0.995012:-¢  (2.171)

B(z7') = 445284271 — 13.2474:72 + 13.2363273 — 4.4417224

The coefficients of the 4 and B polynomials are the parameters to be identified
by the recursive least squares algorithms. The excitation sequence u(t) and noise
sequence §(t) consist of samples from a Gaussian, zero-mean, unit-variance pseudo-
random number generator. One thousand samples of the excitation sequence and the
plant output sequence y(t) are processed by four recursive least squares identification
algorithms. The first two algorithms use a U-D factored covariance update algorithm
implemented in double and single precision floating point arithmetic, respectively.
Double precision arithmetic on the simulation machine has a precision of about 16
decimal digits while single precision arithmetic has a precision of about 7 decimal dig-
its. The second two identification algorithms are double and single precision versions
of the recursive least squares method employing the non-factored covariance matrix.

Figure 2.3 shows plots of the trace of the covariance matrix calculated by each
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of the algorithms. The single and double precision version of the factored update
are virtually identical. The trace calculated by the single precision version of the
non-factored updated is not monotonically decreasing and in fact becomes negative,
as noted by the gaps in the plot, for considerable intervals.

The effect of numerical instability is even more dramatic on the identification of
the 4 and B polynomial coefficients. As shown in figures 2.4 and 2.5 the parameters
identified by the factored covariance update algorithm converge quickly and remain
near the values used by the simulation. On the other hand, the parameters identified
by the algorithm employing a non-factored covariance update make occasional bursts
far from their true values. The double precision version of both the algorithms yield
parameter updates virtually identical to the factored single precision algorithm.

Clearly the factored covariance update algorithm is much more numerically stable.
The single-precision, non-factored update algorithm is numerically unsound even for
identification of models as simple as fourth order. Algorithms which permit the use
of single-precision arithmetic are very desirable since the existing digital stabilizer
hardware on which the self-tuning controller was implemented imposes a considerable

speed penalty for double precision calculations[45].

2.3.2 Example of Self-Tuning GMV Control

In section 2.2.3 it was noted that the self-tuning GMV control algorithm can provide
good control even when system parameter identification is imprecise. This ability

was investigated using a discrete-time simulation of a fourth-order continuous-time
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syvsten'. The continuous-time transfer function of the system to be controlled was

Yi(s) 18s s2+0.25 + 36
U(s)  s2403s+100 s2+40.4s+ 16

The discrete-time equivalent of this system sampled at 20 Hz can be expressed as,

ATHyt) = Bz Hy(t) + C(z1E(t) (2.173)

with polynomial coefficients,

A=[1.0 -3.66075 5.30778 -3.59768 0.965635 ]

B = [ 0.0 0.856219 -2.48382 2.47541 —0.847804}

C=[1.0 0.0 0.0 0.0 0.0 ]
and with £(t) formed as samples of a zero-mean, unit-variance, Gaussian sequence.,

The frequency response of the transfer function coupling the disturbance and the

output. C(z)/A(z), was computed and plotted. The system response with .0 control
action is shown as the short dashed line in figures 2.6 and 2.7. The two resonant nicdes
are clearly visible. The frequency response of the disturbance transfer function - h
a generalized minimum variance controller based on the true parameter vaiies wis
also plotted. This response is shown as the long dashed lines in the figures. The
inaximum response has been suppressed iy over 15 db und both resonant modes have

been considerably damped. Plant output ariations were given twice as much weight

as control signal var’..tions when forming the GMV control strategy. The c:efficients

of this controller are
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F=|

3.66075

Frequency thia}

-5£.30778 3.59768 -0.965605 |

G =[ 1.356219 -2.48382 2.47541 -0.847804 ]

After 2000 steps the self-tuning GMV controller had adjusted its control param-
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;ters to

F =[] 3.62550 -4.98795 3.27592 -0.759499 ]

G = [ 1.35578 -2.38040 2.30003 -0.691289 ]
The first three coefficients of the F and G polynomials were identified quite closely.
The final coefficient of each polynomial was somewhat farther away from the actual
parameier value. The frequency response of the transfer function when the identified
parameters are used in the control strategy is shown as the solid line in tigure 2.6.
The response is almost indistinguishable from that of the controller formed using the
true parameters. This indicates that the control action is quite insensitive to the
discrepancy in the final polynomial cocfficients.

The variances o: ::e control action and the plant output over the 2000 steps were
computed. The square root of the variance of the plant output was 28.0 and the square
root of the variance of the controller output was 55.9. These * :lues correctly reflect
the relative weights given the signals in the self-tuning component of the controller.
An indication of the effectiveness of the GMV controller in damping the plant output
is made by noting that the square root of the variance of the uncontrolled plan: output
was 137.2.

A further check on the ability of the GMV control strategy to provide good controi
with pocrly identified parameters was made by applying the same sequence to the
system but this time stopping = ter only 100 steps.

At this point the self-tuning GMV controller had adjusted its control parameters
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F ={ 3.16766 -3.60796 1.82135 -0.165505 ]

G =[ 1.38883 -1.99010 1.43846 -0.187817 ]
Ouly the first coefficient of the G polynomial is close to the true parameter value.
The other coefficients differ from the true values by as much s a factor of six. The
frequency response of the transfer function when the identified parameters are used
in the covtrol strategy is shown as the sciid line in figure 2.7. It can be seen that
the control action with the identified parameters is still very close to that of the
controller based on the true parameter values. In particular, the two resonant modes
of the uncontrolled plant are almost identically suppressed by hoth controllers. The

rapid convergence to an effective control strategy is evident from this test.
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Chapter 3

Model of Power System for Simulation Studies

An existing power system simulation program was used to study the operation of
the self-tuning PSS. The program was originally developed with controller studies in
mind thus the detailed characteristics of the power distribution network are assigned
secondary importance. Features such as over-current protection, tap-changing trans-
formers, different load representations and unsymmetrical faults are not included in
the program. Several of the concepts on which the program is based are taken from
an earlier program by Podmore and Fleming[106).

The following sections present the salient features of the simulation program. Each
picce of equipment is modelled as an analog-computer simulation of the actual system
hardware. The synchronous generator model is the most critical component of the
simulation and is described in depth. The remaining components are quite simple in

comparison to the generator model. These pieces of equipment are described in terms

of their block and analog computer diagrams.

3.1 Mathematical Model of the Synchronous Generator

The synchronous generator model used in the transient stability program is similar

to the model described by Olive [100, 101] and is based upon the d — g — o variables



obtained by Park’s equations {103, 104] from phase quantities.

The equations of a synchronous machine can be derived from a lincar two-pole
model. The stator is considered to be three identical, symmetrically-placed, lumped
windings called a. b and ¢. Two unequal lumped windings with axes 90° apart are
located on the periphery of the rotor. The winding in the direct axis is called f
and represents the field winding. The winding in the other axis is called ¢ and is a
fictitious winding inserted to account for transient behavior in the quadrature axis.
Subtransient effects in both direct and quadrature axes are ignored. The IEEE Task
Force on definitions [70] refers to a representation of this complexity as Model 1.1.

The assumptions made in the development of the model are:

1. All inductances are independent of current. This restriction is lifted in sec-

tion 3.1 where the effects of saturation are¢ added to the model.

[SV]

All self and mutual inductanc~s can be represented as coustants plus a sinusoidal

component based upon the rotor angle 8, or 26,
3. All distributed windings can be represented as lumpzei! = indiugs.

4. The effects of currents flowing in the iron parts of the rcto or in a damper

winding can be represented by a single lumped rotor coil «.

Park’s equations for a machine with the windings noted above are,

d\

Vg = —Raid+-d—td- —w,/\q (3.1)
dA

v, = —Raig+ —Et—" + wrAg (3.2)
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(4]

l‘/

dt
, dX\s
szf-i--gt—
d’\
Ryiy+ 22 = 0

—Lgia + Lasmis
—Lgig+ Lagmiq
Lot

~3Lagmia + Lyyis

3 . .
—5Lagmig + Lgglg

For studies focussing on mechanical oscillations and transient behavior below

10 Hz the transformer voltages

d—/\td and d—/\g- can be neglected. The zero-sequence

dt

variables need not be considered since only symmetrical faults are coasidered. With

these simplifications the equations become,

Ud

Uy

vy

—R,ig — wrAq

-—Raiq + wrAg

Cd
R/Z/'*'W

. d
Rglg-}-—(-it—g = 0

—~Lgiqg + La[mij
—Lgig + Lagmig

—%Lafmid + Lff'éf

=~1
ot

(3.17)



Ny = =3Lagmiy+ Lygi, (3.18)

These equations are presented in terms of the flux linkages. currents, and induc-
tances of the model windings. Some of the parameters can be be measured physically,
but many consist of coupling between equivalent inductances and are difficult to ob-
tain. The equations can be reformulated in terms of the direct and quadrature axis
voltages and currents and the steady state and transient inductances and associated
time constants. This eliminates some of the measurement problems by allowing pa-
rameter determination from a group of reasonably simple tests [17, 69] and relates
the behavior to a set of more familiar variables. For transient and dynamic stability
studies the deviatious in frequency are small and little error results from substitut-
ing the reactance at synchronous frequence, X', for inductance, L, in the generator

equations.

3.1.1 Mechanical Equations

The remaining equations needed to simulate a generator are those relating the applied
torques and the position of the rotor. Assuming a rigid shaft with total coupled inertia

2H and linear friction D the equation is,

Ty —Te = 2HO + D8 (3.19)

where Ty is the externally applied mechanical torque and T is the electrical torque

due to the interactions of the magnetic fields within the generator.
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The steady-state energy balance,

P.=P,~-P (3.20)

states that the power delivered to the generator terminals, P,, is equal to the applied
wechanical power, P, minus the losses within the generator, F;. In terms of the

terminal voltage and current these values are,

Po = VixI} (3.21)

P = RaxI? (3:22)

Since shaft speed changes are relatively small, the torques and powers can be
considered to be equivalent in per-unit notation. Applying this ass ;0. to (3.19)

vields the mechanical inertia equations,

. _ Py-P —P-Duw
wo o= 5 (3.23)

b = 2nfw (3.24)

where w is the rotor speed deviation from synchronous speed, é is the rotcr angle

relative to a synchronous reference, and f, is the synchronous frequency.

-~
b |



3.1.2 Air-Gap Voltage

The remaining equations consider the effects of saturation on the generator reactances
and time constants. As lescribed in section 3.1.4 the magnitude of the air-gap voltage.
E4:. is required to determine the level of saturation within the generator. The air-gap
voltage is the difference between the voltage induced by the field and q-axis damper
windings and the armature reaction of the stator current. The armature reaction is
equal to the stator current times the stator self-inductance reduced by the leakage
inductance, L;.

‘I'he q-axis component of the air-gap voltage is,

Eog=Ej—w(Ly— L)ig (3.25)
The d-axis component of the air-gap voltage is,

Ea=E)+ w,.(L; - Ly)i, (3.26)

The total air-gap voltage is the vector sum of the components,

Ea=/E% + E2, (3.27)
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3.1.3 Open Saturation Curve

The field current required to produce a given open-ciicuit steady-state terminal volt-

age is given by the expression,

i = %o (3.28)

(3.28) is derived from (3.15) by removing the armature current term, noting that the
terminal voltage has the same per-unit value as the direct-axis flux and replacing the
mutual inductance with X2, the mutual reactance. The ° superscript indicates an

unsaturated value.

The difference between ihe current given by (3.28) and the field current actually

required to produce the same terminal voltage provides an indication of the degree of
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magnetic-circuit saturation within the generator. A typical open-circuit saturation
curve is shown in figure 3.1.

To a first approximation the saturation curve can be calculated as,

iy = ——(1+ AeBt) (3.29)
“tad

The saturation value as a function of the terminal voltage is then given by,

o
S(v,) & i—" —1= 4B (3.30)

Ut

The coefficients 4 ~nd B can be determined directly from the open-circuit char-

acteristics. If two points are selected, say Si(ij,,v;,) and Sy(ip,vy,), it follows

’

from (3.30) that,

B = ——1__—1nﬁ (3.31)
vtl vtz S2
S

A = ev_j (3.32)

The measurement points S} and S, are typically taken at the machine’s rated voltage
and at 1.1 or 1.2 times the rated voltage, respectively.
The saturation factor, &, used to modify the unsaturated reactances and time

constants is defined in terms of the air-gap voltage as,

1 1

k2 =
14+ S(Ea) 1+ AeBEu

(3.33)

80



3.1.4 Saturation Effects

A number of assumptions are made before considering the effect of saturation on the

model reactances and time constants:

1. For round-rotor machines the degree of saturation is dependent on the magni-

tude of the air-gap voltage and is equal in both axes.

2. For salient-pole machines the degree of saturation is dependent on the q-axis

component of the air-gap voltage and affects only d-axis quantities.

3. The saturation level in a given axis exists for all rotor and stator circuiis in that

axis.

4. The distortion of any air-gap flux waves does not change the unsaturated reac-
tance values or destroy the sinusoidal variations assumed for rotor and stator

reactances.

. Leakage flux paths are unaffected by saturation.

ot

With these assumptions and the definition of the saturation factor from (3.33) the

generator saturated mutual reactances vary according to the expressions,

Xaa = kX2 (3.34)
Xog = kXS, (3.35)
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The direct-axis saturated and unsaturated synchronous reactances are defined as.

X: & Xu+X (3.36)
o A o -
Xg = Xau+X (3.37)

(3.38)

Substituting (3.34) and (3.37) into (3.36) yields the expression for the direct-axis

saturated synchronous reactance,

Xg=EXS+(1- k)X, (3.39)

It follows that the expression for the quadrature-axis saturated synchronous reac-

tance is,

X, = kX2 + (1 - k)X, (3.40)

The direct-axis saturated open circuit time constant is,

- Xe - X!
do = T4y (1—(1 ;)‘,(_‘_"’Xl X“)) (3.41)
d

Similarly, the quadrature-axis saturated open circuit time constant is,

o 1-k)(X° - X!
T!, =TS (1-( X);th, ")) (3.42)
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3.1.5 Generator Block Diagram

With all saturation factors applied, the set of dynamic equations governing the be-

havior of the synchronous generetor may be summarized as follows,

e d-axis stator equaticn:

va = Ej + X.iq — Raig

g-axis stator equation:

— ] .. .
Vg = Eq - Xgia — Raig

d-axis air-gap equation:

Eu = Ej+ (X, - X))ig

e g-axis air-gap equation:

Eu = B! — (X) = X)ia

air-gap voltage equation:

Eg = \/Efd + E‘fq

saturation equation:

k= —————
14 AeBEa

83

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)



o d-axis field equation:

_ kEf - EtI] - (x\’d - ./\-:i)'iu’

E; T (3.49)
e (-axis damper equation:
. -Ei+ (X, - X))
gy = 2Bt (e = Xo)ig (3.50)
T,
¢ inertia eqations:
X P,-P,-P—-Dw
w o= 55 (3.51)
b6 = 2nfw (3.52)

The blor k diagram form of these equations is shown in figure 3.2. The Py, input
tc the power summing junction can be used to apply a disturbance signal during
simulations. The analog computer form of the equations are the basis of the transient

stability program'’s simulation of the generator dynamics.

3.1.6 Steady-State Generator Equations

The steady-state generator equations are used to calculate the initial conditions for
the simulation. The equations can be derived by considering the vector diagram for

a synchronous generator under steady-state conditions as shown in figure 3.3. The
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Figure 3.3: Synchronous generator steady-state vector diagram.

voltage Eyq is defined as,

Eqq = (va +Jvg) + (Ra + 3 Xq)(1a + jig) (3.53)

Under steady-state conditions this voltage has the useful property of lying along the

quadrature axis since the real part of Eyq is,

R(Eqd) = vg + Ratqa — Xqig (3.54)

and from (3.11) and (3.16),

Vg + Raig — Xgig = —wr Lagmig (3.55)

At steady state i, = 0, hence R(Eyq) = 0. This property of Eqq is used to calculate
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the initial rotor position 1elative to the synchronous reference frame of the terminal

voltage and current as,

Fiu=Vi+ (Ra+ jXo) 1y (3.56)
and,
0 = [Ey (3.57)
T .
0 = 6- 3 (3.58)

From the steady-state vector diagram it can be seen that,

E} = |Eqal — (Xq = X)ia (3.59)

The remaining equations used to calculate the generator initial conditions are
obtained by setting the derivative terms to zero in the q-axis damper equation (3.49)

and the d-axis field equation (3.50), giving rise to,

E; = (X,-X)i, (3.60)

Ey

E, + (X4 — Xp)ia (3.61)

The procedure for determining the initial conditions is in fact iterative, since

saturation effects must also be considered.
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3.2 Network Model and Generator Stator Equations

The final portion of the transient stability generator simulation concerns the power
flow in the ~etwork to which the generator is connected and the effect of this flow on
the generator terminal conditions. The variables used in the solution of the equations
are the rotor eclectrical position § and the internal voltages E| and E;. The values to
be solved for are the complex voltages, currents and power at the generator terminals.

The transmission and load network is represented by a matrix of driving-point and
transfer admittances as seen from the generator terminals. The matrix includes the
system loads represented as constant impedances. The equivalent admittance matrix

YT can be used to write the matrix nodal equation for the reduced system as,

I=YyprV (3.62)

where,

I is the complex. vector of generator terminal currents referred to the network syn-

chronous reference,

V is the complex vector of generator terminal voltages referred to the network syn-

chronous reference, and,
Y71 is the admittance matrix for the reduced power system.

For each generator in the system there are two scalar equations describing the
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stator circuits. Written in matrix form the equations are,

Uq E"i Rﬂ —.\.,; id
= - (3.63)

Vg E, X, R. iq
In (3.63) the voltages and currents are referred to the individual d and q reference
frames of each generator. In order to obtain a combined solution of (3.62) and (3.63)
for all the generators, the equations must be transformed to a common reference
frame. If I is the generator terminal current relative to the network reference, and #
is the angle between the generator d-axis and the network reference, then the currents

are related by the expression,

iq + jig = Ie™° (3.64)

If transient saliency is neglected (i.e. if E; = E}) the simultancous solution
of (3.62) and {3.63) is quite simple. The two scalar equations in (3.63) can be com-
bined into a single complex equation and solved along with (3.62).

If transient saliency is not neglected, the simultaneous solution of the stator and
nodal equations becomes considerably more difficult. In this case, when (3.63) is

transformed into the synchronous reference frame it becomes,

Vieal real cos§ -—sind R, -X] cosf siné Lreal
Vimag imag sinf cosé X, R, | —sinf cosd Limag
(3.65)

Two difficulties arise in the solution of (3.65)
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Figure 3.4: Generator equivalent circuit showing fictitious voltage and admittance for
generator stator equations.

1. It can not be combined into a single complex equation and solved as part of the

nodal equation.

2. The coefficients of I,.q and [imag are functions of 6 and therefore change with

time,.

It is possible to combine (3.62) and (3.65) to obtain a set of 2V (N = the number
of generators) real equations which can be solved directly. However, because the
coefficients are time-varying, the matrix must be factored or reinverted for every
integration step, which is a very time-consuming process.

An effective method for overcoming these difficulties has been presented by Dom-
mel and Sato [46]. The method requires iterations at each integration step, but uses
a matrix which is constant as long as a certain network configuration exists. Calcu-
lation of the power flows requires an iterative solution at each integration step in any
case so the iterative stator equation solution does not add appreciably to the com-
putation time. The method is based upon representing the generator as a fictitious

slack voltage behind a fictitious admittance as shown in figure 3.4. The fictitious
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admittance is defined as,

Rq = J4(X}+ X))

9 P
R2 + -\.‘,‘.\.‘; {3.60)

}'fll‘f =

The next step is to derive an expression for the fictitious voltage. Solving (3.63)

for the direct and quadrature-axis currents yields,

14 1 R, .\'; Efy—- vy

= = (3.67)
RZ + XX} ‘

=t
iq -X, R, E, -,

This can be expressed as a single complex equation,

. 1 . . -t ! s ! /
Ia+ )1, = BN VAV [Ra(E,’, +JE,) — Ra(va + jvg) + Ny(Eg — vg) = JNY(Ey — r,,)]
a “*d“*q

(3.68)
Applying Kirchoft’s voltage law to the circuit in figure 3.4, and using Y., from (3.66).
the generator terminal current can be written as,

Ra — j4(X5+ X1)
RZ+ X)X

I+jl,= (B +FE) = (va + jv,)] (3.69)

Equating the currents from (3.68) and (3.69) and solving for Ey,, yields,

E‘{ict +jE‘{"‘" =E| +jE;+ ) [(E; _jE;) — (vq —jv‘,)] (3.70)

In the manner given by (3.64) the relationship between the values on the generator
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reference and on the network synchronous reference is,

E({in +J‘qul'ct = E'iﬂfe‘jo (3.71)
E&+]E‘,, = E’e’jo (372)
vt jr, = Vel (3.73)

The complex conjugates of the latter two expressions are then,

Ey-jE, = E"é° (3.74)

Ve (3.75)

vq — jvq

Substituting these values into (3.70) gives the expression for calculating the value

of EJ't as,
i3 (X - X3)

~— [E" - V") ¥ (3.76)
R, -1 (Xy+35X;)

Efict —_ El+

Each time the transient stability program reads a new terminal admittance ma-
trix, Yo . it invokes Kron’s reduction formula to absorb the fictitious generator
admittances into the matrix thus forming the augmented admittance matrix, Y.

The nodal matrix equation is then written as,

I = YipEfct (3.77)

The simultaneous solution of (3.76) and (3.77) at each integration step proceeds
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by iterating the estimate of the terminal voltage vector V. The steps in this process

are:

1. Set the initial estimate of V to the terminal voltage obtained in the previous

time step.

2. Transform the generator internal voltages to the network synchronous reference.

For each generator calculate,

EI

(Ey+3Ey) (3.79)

3. Use (3.76) to calculate the fictitious internal voltage E/* for cach generator.

Use the values to form the vector Efict,
4. Use (3.77) to calculate the vector I of generator currents.

5. Form a new estimate of the terminal voltages. For each generator calculate,

. . I
= pfict _ _ -
V=E v (3.80)

6. Check for convergence. For each generator calculate,

Ip+jI, = Ie™#® (3.81)

g+ ji, = Ve 7° (3.82)



If
|, — (B} = Xila - Raly)| < € (3.83)

and,

|6a = (B4 + X1, - Ralu)| <€ (3.84)

for every generator then the solution has converged. If not, the solution has not

converged and the next iteration begins at step 3.

3.3 Turbine/Governor and AVR Models

The block diagram of the turbine/governor model used in the simulation studies
is shown in figure 3.5. The model represents a three-stage steam turbine and a
mechanical hydraulic governor. For the simulation studies the model was used to
represent a single-stage turbine by setting Fyp and Fpp to zero and Fyp to one.
The block diagram of the AVR model used in the simulation studies is shown
in figure 3.6. The model represents a simple prototype static exciter. Although
not shown in the figure, the V,. signal is actually the sum of the machine voltage
reference, an optional identification excitation signel and an optional disturbance

signal. The parameter values used in the simulation studies are presented in table 3.1.
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Figure 3.5: Block diagram and analog wiring diagram of Turbine/Governor type 3
(three-stage steam turbine and mechanical hydraulic governor).
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Figure 3.7: Data flow in transient stability program.

3.4 Program Overview

Figure 3.7 shows the flow of data within the transient stability program. At each time
step a new network condition is calculated, then for each unit the stabilizer, AVR
and turbine/governor subroutines are called. For each unit the generator subroutine
is called and finally the integration routine is called to determine the new values of

the state variables.

3.4.1 Initial Conditions

Calculation of the initial (steady-state) conditions begins with a call to the gener-
ator ‘initial condition’ subroutine for each unit in the simulation. This subroutine
receives the terminal voltage and current with respect to the synchronous reference
and produces the steady-state value of the generator state variables w, 6, E} and Ej

and the steady-state field voltage and mechanical power. The procedure is iterative
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since the machine reactances are dependent upon the saturation factor which must

also be determined. The following steps describe the procedure:
1. Set initial estimate of saturation factor k = 1.
2. Calculate saturated reactances X4 and X, from (3.39) and (3.40).

3. Calculate angle of generator rotor with respect to the synchronous reference

using (3.56), (3.57) and (3.58).

4. Calculate d- and q-axis components of generator terminal current from (3.64).

Calculate generator transient voltages and field voltage using (3.59), (3.60)

(1]

and (3.61).
6. Calculate the air-gap voltage from (3.25), (3.26), and (3.27).

Use the air-gap voltage to calculate a new estimate of the saturation fac-

-1

tor, (3.33).

8. If the saturation factor has converged continue to the next step, otherwise return

to step 2.

9. Calculate steady-state mechanical power as the sum of the generator output

and armature loss.

10. Return from the subroutine.

The ‘initial conditions’ subroutines for the other components of the simulation are

called after the generator initial conditions have been determined. These subroutines
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calculate AVR and governor setpoints and perform other initialization specific to a

given piece of equipment.

3.4.2 Step by Step Simulation

The stabilizer, excitation system and turbine-governor subroutines are called cach
simulation step to calculate the new value of the field voltage and mechanical power
as well as the value of the state variable derivatives specific to each piece of equipment.

The geuerator subroutines are called after the other equipment subroutines. The
saturation factor and the state variable derivatives are calculated for each generator

as follows:

1. Calculate d- and g-axis components of the terminal current from (3.64).
2. Calculate the generator electrical output and losses using (3.21) and 3.22.

3. Calculate the saturated reactances X4, X, and time constants Ty, T,, from (3.39),

(3.40), (3.41), and (3.42).
4. Calculate the air-gap voltage from (3.25), (3.26), and (3.27).
5. Use the air-gap voltage to calculate the saturation factor, (3.33).

6. Calculate the time derivatives of the generator state variables using (3.49),

(3.51), (3.52) and (3.50).

7. Return from the subroutine.

99



3.4.3 Numcrical Integration Algorithm

The heart of the transient stability simulation program is the subroutine which pre-
dicts the state variable vector for the next simulation step based on the current value
of the state variables and the state variable derivatives. The algorithm is referred to

as the modified Euler method and is given by the expression,

xH.Ag = X¢ + [xt + m] At (385)

The preiction is made on the assumption that the change of the state variable

derivative from time ¢ to time t 4+ At will be the same as from time ¢t — At to time ¢.

3.5 Two-Machine Infinite-Bus Test System

A block diagram of the power system used in the simulation studies is shown in
figure 3.8. The system parameters are summarized in table 3.1. Parameter values are
in per-unit using the generator’s rated power as the power base. Time constants are
in seconds.

The test system is intended to simulate a single generator connected to a large
generation/load pool in turn connected to an even larger generation/load pool. The
test machine parameters are those of an actual 300 MW turbogenerator on which
previous AVR and PSS studies were performed[81]. The large generation/load pool is
simulated as a single equivalent machine providing a response similar to that exhibited

by a large interconnected system. The equivalent machine was not equipped with a
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Figure 3.8: Block diagram of two-machine infinite-bus test system.
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Table 3.1: Two-machine infinite-bus test system parameter values.

Generator Parameters

Test Machine

Equivalent Machine

Piase | 100.0 250.0
H 2.70 15.0
R, 9.0 x 1074 9.0 x 1074
Xi 0.24 0.24
Xy 1.83 1.83
X} 0.29 0.29
X, 1.78 1.78
Xg 0.44 0.44

o 4.60 4.60
To 0.373 0.373
D 2.00 3.00
A 3.0 x 10°° 3.0x10°°
B 6.00 6.00

AVR Parameters
Test Machine | Equivalent Machine

T, 1.00 1.00
T 10.0 10.0
K, 125.0 30.0
T. 0.05 0.05
Vimaz 9.00 9.00
Vimin | -9.00 -9.00
K—atab 100 - :J

Turbine/Governor Parameters

Test Machine

Equivalent Machine

Py, | 100.0 250.0
Typ 0.11 0.11
Tip 5.50 5.50
Trp 0.424 0.424
Fyp 0.28 0.28
Frp 0.42 0.42
Frp 0.30 0.30
R 0.047 0.047
T 0.18 0.18
T 0.00 0.00
T3 0.15 0.15
Imin -1.00 -1.00
Gmaz 0.10 0.10
Gmin 000 000
Gmaz 1.10 1.10
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power system stabilizer.

This simple two-machine infinite-bus test system exhibits two oscillatory modes.
The first is the local oscillatory mode of the test machine itself. The second. low
frequency mode is provided by the large inertia constant of the equivalent machine,
In a realistic system these modes would correspond to a single machine swvinging
relative to a large generation pool and a group of generators interchanging power
with another area. This represents the interarea mode of the generation/load pool
oscillating relative to the infinite bus. Both the test machine and the equivalent
machine were equipped with simple static AVR's. As described in chapter 1, the
electric power signal from the test machine was used as the supplementary feedback
signal for the PSS. The adaptive control strategy could also be applied to gencrators

using accelerating power or shaft speed feedback.
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Chapter 4

System Identification of the Two-Machine Infinite-Bus

System

Identification of the model of the system being controlled is fundamental to the op-
eration of the self-tuning PSS. An investigation of the identification of models of the
particular system considered in this thesis was performed under varying conditions
prior to studies of the self-tuning control algorithm itself. The models thus obtained
provided insight into the form of the controller required to provide good damping of
both the interarea and the local oscillatory modes.

A number of system identification techniques were used to determine the char-
acteristics of the simulated two-machine infinite-bus test system shown in figure 3.8.
The test system comprises a single generator connected to a large generation/load
pool, in turn connected to an even larger generation/load pool. The large pcwer pool
is simulated by a single large machine and the larger pool is represented by an infinite
bus. The results of the identification procedures are presented in this chapter.

Two models of the test system were obtained. The first representation of the
system was the frequency response model. The model thus obtained was used to
gauge the quality of the second representation which was expressed as the discrete-

time transfer function model of the system. The aim was to determine the simplest
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transfer function representation which exhibited the same major oscillatory modes
as the test system. This lower limit of model complexity indicates the order of the
controller required to effectively damp both modes. A linear response around a given
operating point was assumed. This assumption permits the use of the identification
techniques described in chapter 2. The results presented in this chapter were obtained
with the test machine supplying 0.95 p.u. real power and 0.23 p.u. reactive power to

the network.

4.1 Frequency Response Model

The frequency response of the transfer functions linking the test machine's electric
power output to its AVR PSS input and to the equivalent machine’s electric power
disturbance input were measured using Pseudo-Random Binary Sequence (PRBS)
excitation and Fast Fourier Transform (FFT) analysis[12]. The excitation signal
was formed by passing a 4095-point PRBS signal through a sixth-order low-pass
Butterworth filter. The clock rate of the PRBS signal and the sampling rate of
the test machine electrical power were fixed at 20 Hz. The low-pass filter limited
the effects of the aliasing of high frequency components into the frequency range of
interest. The harmonic content of the filtered PRBS excitation sequence is shown
in figure 4.1. The signal has a uniform harmonic content over the frequency range
of interest[16, 127]. The filtered 4095-point excitation signal was applied to the test
simulation three consecutive times but only the final 4095 samples of the test machine

electrical power were recorded. The two ‘pre-acquisition’ cycles of excitation provide
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Figure 4.1: Harmonic content of filtered PRBS excitation signal.

time for the initial transient response of the systern to decay. No shaping window
was applied to the samples of excitation or electrical power since harmonic analysis,
rather than spectral analysis, was used to determine the frequency responses.

Two tests were performed to obtain the frequency response models. The first test
determined the frequency response between the test machine’s AVR stabilizer input
and the electrical power output by the test machine (P./Vj,s). This is the response
of the ‘external plant’ seen by the self-tuning PSS. The second test measured the
frequency response between the equivalent machine’s electric power disturbance input
and the electrical power produced by the test machine (P,/Puist,,.;,)- This response
shows the coupling between the test machine electrical power output and disturbances
within the power pool represented by the equivalent machine.

The two frequency response models are shown in figures 4.2 and 4.3, respectively.
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Figure 4.2: Frequency response (P,/Vys) of two-machine infinite-bus test system.
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The two oscillatory modes are clearly evident in both responses. The local mode of
the test machine can be seen at 1.75 Hz and the interarea oscillatory mode can be
seen at 0.4 Hz. The challenge of damping the interarea mode with a PSS attached
to the test machine can be seen by comparing the two responses. The coupling of
both modes from the disturbance input is nearly identical, while the coupling of the
interarea modg from the AVR input is over 20 db lower than the coupling of the
local mode. A PSS attached to the test machine will thus be able to provide only a
limited amount of damping of the interarea mode. One of the difficulties in providing
significant damping at low frequencies is that the machine’s AVR attempts to ‘correct’
the terminal voltage difference induced by the PSS.

The magnitude and phase information in figure 4.2 can be used to deduce the
form of the discrete-time (z-plane) model of the ‘external plant’ seen by the PSS.
At low frequencies the response approaches derivative action, indicating a zero near
the (1,0) point in the z-plane and a corresponding pole inside the unit circle on the
real axis. The resonant peak of the interarea mode then shows the presence of a
complex pole-pair. The presence of only a temporary drop in the phase angle near
the interarea mode shows that a complex zero-pair is present at a frequency slightly
higher than the interarea complex pole-pair. Finzlly, the resonant peak of the local
mode indicates the presence of another complex pole-pair. A fifth-order discrete-time
model should thus be able to represent the dynamics of the local and interarea modes.
Identification of the parameters of such a discrete-time model is the subject of the

following section.
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4.2 Off-Line Time-Domain Identification

Several attempts to identify the parameters of a fifth-order discrete-time model of the
two-machine infinite bus test system were made. In all cases a record of input/output
samples was obtained by applying a filtered PRBS sequence to the test machine’s
AVR stabilizer input and recording samples of the electrical power produced by the
test machine. This method is similar to that used by the first frequency response
measurement described in the previous section (P./V,s) except that only one PRBS
record was applied and the electric power was recorded immediately rather than
waiting for the initial transients to decay. This matches the assumption of the time-
domain identification techniques that the system being identified is initially operating

under steady-state conditions.

4.2.1 Least Squares Identification

The first identification technique applied to the data was the batch least squares
algorithm given by (2.9). The Fortran LINPACK library[47] provides numerically-
stable subroutines for computing this expression.

A comparison of the magnitude response of the discrete-time model obtained using
the batch least squares method and the response obtained in the previous section is
shown in figure 4.4. The method was able to accurately identify the local mode,
but was unable to identify the poles and zeros of the interarea mode. In fact the

complex pole/zero-pairs correspondii z to the interarea mode suffer almost complete

cancellation.
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Figure 4.4: Comparison of frequency response (P./V,p) of two-machine infinite-bus
test system and 5-th order model obtained using batch least squares (— Response of
fifth-order model, — — True response).
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4.2.2 Generalized Least Squares Identification

The second identification method employed is referred to as the Generalized Least
Squares (GLS) technique. This is a more complex prediction error technique which
attempts to identify the coefficients of the C' polynomial as well as the coefficients
of the A and B polynomials of the ARMAX model. The method is briefly described
below with full descriptions presented in [87], [95] and [118].

The parameter vector consists of the coefficients of the A, B and C polynomials

as follows,

0T=[a1...a,m bl...b,,bcl...c,,c] (41)

The cost function V(@) is a nonlinear function of the parameters so an iterative numer-
ical search technique is required to perform the minimization. A typical minimization

technique is the Gauss-Newton algorithm which is expressed algebraically as,

okt = gk 1 o, x (4.2)

N ~lrnN
zwa,o*)w(t,ek)] [zw(t,o*)e(t,ok>]
t=1 1

i=

Here, ay is an acceleration factor used to improve the convergence of the algorithm,
g* is the old parameter estimate, 8(+1 is the new parameter estimate, and ¥(t, 8) is

the vector of gradients of the error e(t) with respect to the parameters, given by,

T
¥(t,0) = - (a—egéi)) (4.3)
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A comparison of the expression for performing the batch least squares operation (2.9),
and (4.2) shows that the second line of (4.2) can be computed by the same subroutine
used to compute the batch least squares.

The vector of gradients required by (4.2) is computed by first forming the filtered

signals,

y(t)

y(t) = Ce) (4.4)
t

uF(t) = 5’% (4.5)

() = o (4.6)

from the system output y, input u and the prediction error between model and system

output e. Then ¥(t,8) is given by

vT(,0) = =yt -1)...95 @t —n) uF(t - 1) (4.7)

uF(t=n)ef(t-1)...eF(t - n)

The GLS method permits models with non-unit C polynomials to be accurately
identified. In this case, though, the model identified by the GLS method was almost
identical to that identified by the batch least squares method in the previous section.

The local mode was accurately identified but the interarea mode was not.
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4.2.3 Excitation Shaping

The inability of the preceding two attempts to identify the interarea mode arises
from the fact that the evergy in the output spectrum in the frequency range of the
interarea mode is much ‘ower than that in range of the local mode. A solution to this
problem is to prefilter the excitation sequence to provide a more uniform harmonic

content of output signal. This was performed as follows.

1. A record of input/output data was acquired using the filtered PRBS signal

shown in figure 4.1.
2. A third-order model was identified using the batch least squares method.

3. The numerator and denominator of the third order discrete-time transfer func-

tion obtained above were interchanged to form a ‘prewhitening’ filter.

4. A new excitation sequence was formed by passing the PRBS signal through

both the low-pass Butterworth filter and the prewhitening filter.

The harmonic content of the resulting excitation sequence is shown in figure 4.5. The
corresponding output harmonics are shown in figure 4.6. The harmonic content of
the output signal is more or less constant over the 0.2 Hz to 3.0 Hz frequency range
of interest. In particular, the local mode resonant peak is no longer present in the
output signal. Prediction errors over the frequency range of interest are thus given

equal weight.
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When this prewhitened and filtered excitation sequence was applied to the system.,
and the GLS identification algorithm was applied to the recorded data, both the local
and interarea modes were successfully identified. A comparison of the frequency re-
sponsc of the discrete-time model obtained using the generalized least squares method
and the response obtained using FFT techniques is shown in figure 4.7.

The z-plane pole-zero plot of the identified system is shown in figure 4.8. The
interarea complex pole-zero combination are very close together. It is the proximity
of these poles and zeros that makes their identification difficult. The zero on the
negative real axis of the z-plane is a result of the zero-order hold present in the
excitation signal.

The basic least squares algorithm was unable to identify the interarea mode even
with the prewhitening filter employed. This indicates that the C polynomial is re-
quired to allow identification of the interarea mode. As described previously, the
RLS algorithm combined with the GMV control strategy implicitly consider the co-

efficients of the C' polynomial and so should be able to identify the interarea mode,

and damp it as much as possible.
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Figure 4.7: Comparison of frequency response (P,/Vys) of two-machine infinite-
bus test system and 5-th order model obtained using generalized least squares (—
Response of fifth-order model, — - True response).
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gencralized least squares.
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Chapter 5

Performance Studies of the Self-Tuning Power System

Stabilizer

A number of studies were performed to determine the characteristics of the sclf-
tuning power system stabilizer when applied to the simulated two-machine infinite-
bus system described in section 3.5. Results of a number of these tests are presented
in this chapter. Particular attention was paid to the ability of the stabilizer to damp
both the local and interarea oscillatory modes of the simulated power system.

The first series of tests investigated the parameter convergence provided by the
identification algorithm of the self-tuning PSS while Gaussian noise was applied to
the equivalent machine. This would be the typical operating conditions encountered
by the PSS in a real power system. The damping provided by a controller derived
from the identified parameters was noted.

The second group of tests examined the tracking of changes in the generator
parameters arising from a change in the operating point of the test generator. The
combination of the first and second groups of tests demonstrates the ability of the
self-tuning portion of the algorithm to converge quickly to a good control strategy and
yet remain alert to changes in the parameters arising from changes in the operating

conditions.
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Multimode damping provided by the self-tuning PSS in response to a step change
in the load connected to the test machine and to a transient fault condition is the
focus of the next group of tests. These tests demonstrate the stable operation of
the PSS under major system disturbances. The use of additional feedback signals to
provide improved damping was also studied.

The final series of simulation studies investigated the operation of the self-tuning
PSS when the input/output signals of the PSS were quantized as they would be by
an analog to digital and digital to analog converter.

The self-tuning PSS algorithm was implemented on a commercial digital PSS.
Results of preliminary field tests of this version of the self-tuning PSS are included at

the end of this chapter. The stabilizer was tested briefly on both steam and hydro-

power generators.

5.1 Identification Convergence Using Gaussian Load Dis-

turbances Applied to the Equivalent Machine

The first series of simulation studies investigated the operation of the self-tuning PSS
with a Gaussian load disturbance applied to the equivalent machine. This would be
the normal operating condition encountered by a PSS connected to a real generator
since the equivalent machine represents a pool of generators and loads and the effect of
a large number of small random load changes within this pool can be approximated

by a Gaussian disturbance. The simulation conditions are shown schematically in
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Figure 5.1: Simulation conditions for self-tuning PSS tests with Gaussian noise ap-
plied to equivalent machine.

figure 5.1.

The random disturbance applied to the equivalent machine was formed by passing
the output of a zero-mean, normally-distributed random number generator through
a lowpass filter with a cutoff frequency of 10 Hz.

The response of the test system with no PSS was determined by performing a
simulation run with the self-tuning PSS disabled. The simulation cousisted of 5 min-
utes of simulation time. This is equivalent to 240,000 steps of the transient stability
simulation program (1.25 msec per step) or 6000 samples applied to the self-tuning
PSS algorithm (20 Hz sampling). The spectra of the electric power and terminal
voltage of the test machine are shown in figure 5.2. Spectral analysis was performed
on the Hamming-windowed set of samples from the entire simulation interval. The

local and interarea oscillatory modes can be seen in the spectrum of the test machine
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Figure 5.2: Spectrum of test machine electric power (a) and terminal voltage (b) with
Gaussian noise applied to equivalent machine (PSS disabled).

electric power signal. The interarea mode dominates the spectrum of the test terminal

machine terminal voltage.

The simulation was then repeated with the self-tuning PSS enabled. The con-
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trol action weighting parameter, A, was set to assign control action, u,. one-fifth
the weight of plant output variations, y,, in the generalized minimum variance cost
function (2.111). This value was chosen based on reports of prior studies of the
GMYV self-tuning PSS [57]. The variable forgetting factor employed by the parame-
ter identification portion of the PSS was computed using the method presented by
Kulhavy [80]. The method is described in section 2.1.3.

The results of several simulation runs made it apparent that this method of com-
puting the value of the variable forgetting factor was producing ‘bursting’ of the
parameter estimates after several thousand samples had been processed by the re-
cursive least squares identification portion of the self-tuning PSS algorithm. The
bursting became more pronounced as time progressed. A plot of the value of the first
element of the estimated parameter vector is shown in figure 5.3a. The characteristics
of the disturbance applied to the test system remained constant over the entire simu-
lation. The parameter estimate is converging well until approximately 6000 samples
1ave been processed. By sample number 10000 the parameter estimate becomes very
erratic. The corresponding forgetting factor is shown in figure 5.3b. Again, the for-
getting factor is well-behaved until about sample number 6000. By sample number
10000 the forgetting factor has become very erratic as well.

This pattern of erratic forgetting factor values after several thousand samples
had been processed was observed under a number of simulation couditions includ-
ing different types of disturbances, different control action weighting, and different

generator operating points. In all cases the forgetting factor computation hecame
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unstable after several thousand simulation steps. The cause of this instability was
not determined. Numerical instability seemed unlikely, as all calculations were per-
formed using double precision arithmetic and none of the numbers involved seemed
disproportionately large or small. As well, the onset of instability in the calculation
of forgetting factor was very abrupt. For several thousand samples the forgetting
factor remained between 0.995 and 1.0, and then dropped suddenly to less than 0.6
for several samples.

As a result of the above difficulties the algorithm for calculating the value of
the variable forgetting factor was replaced with a method proposed by Sripada and
Fisher [120]. The method is described in section 2.1.3 of this thesis. No problems
with parameter bursting, even with simulation runs consisting of as many as 25,000
samples, were noted with this forgetting factor algorithm. Long term stability is
critical for application of the self-tuning PSS to real generating systems.

The response of the seif-tuning PSS using Sripada and Fisher’s [120] variable
forgetting factor is shown on the following pages. The plots represent 5 minutes
of simulation time. In figure 5.4a the trace of the covariance matrix is seen to drop
rapidly at the beginning of the simulation and then to decrease slowly. The prediction
error, shown in figure 5.4b, exhibits some large excursions near the beginning of the
simulation but settles down quickly. The quality of the parameter identification is
verified by the plot of the frequency spectrum of the prediction error, in figure 5.4d,
which is relatively flat, indicating that there are no resonant modes that have not

been identified. The forgetting factor, shown in 5.4c, is small at the beginning of the
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simnulation so that the initial estimate of the parameter values is quickly forgotten. As
the simulation proceeds the forgetting factor approaches unity reflecting the fact that
the characteristics of the disturbance applied to the system and the true parameter

values are not changing with time.

The values of the elements of the estimated parameter vector are shown in fig-
ures 5.5 and 5.6. Rapid convergence of most of the parameters can be seen in these
plots. The parameters which show slower convergence (f2, f3, fs) have less effect on
the response of the self-tuning PSS and so the fact that their values keep changing
throughout the simulation does not greatly affect the computed control action. An
example of this combined insensitivity to identification and computation of control
action is shown in section 2.3.2. The g parameters, which form the denominator of
the control algorithm and, hence, are the coefficients of the characteristic equation
of the PSS, converge quickly. The go parameter can be thought of as the parameter
which sets the gain of the PSS (sce equation 2.162). This element of the estimated
parameter vector converges very quickly.

Observation of the spectrum of the test machine electrical power and terminal
voltage, shown in figure 5.7, shows the effectiveness of the self-tuning PSS in damping
both oscillatory modes. The local mode resonance of the electrical power has been
suppressed by 20 db compared to the response shown in figure 5.2. The interarea
mode resonance is seen to have been decreased by about 5 db. The spectrum of
the terminal voltage shows that the interarea resonance of this signal has also been

decreased by 5 db.
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The variance of the test machine electrical power and terminal voltage, with and
without the self-tuning PSS, are given in table 5.1. The self-tuning PSS has con-
siderably reduced the variance of both signals. The energy in the electrical power

variations has been reduced by more than a factor of 6.

Table 5.1: Test machine variances with and without self-tuning PSS.
Variance (per unit)

P, Vi
Without PSS | 9.79 x 107° | 1.79 x 10~¢
With PSS 1.50 x 10 | 1.03 x 10~

The improvement in the damping of both oscillatory modes was verified by re-
peating the frequency response measurements described in section 4.1 but this time
equipping the test machine with a fixed PSS using the parameter values taken at the
end of the simulation described above. Fixing the parameters in this way is necessary
to obtain a true frequency rezponse. If the parameters were allowed to continue their
self-tuning they would attempt to adapt to minimize the effects of the identification
excitation signal and a true frequency response would not be obtained. The response
of the system with this fixed PSS in place is shown in figure 5.8. The response of the
system without the PSS is shown by the dashed line. The plots show that the local
oscillatory mode has been completely suppressed and that the interarea oscillatory
mode has been decreased by about 5 db. The energy in the interarea oscillatory mode
has thus been reduced to about one-third of its previous value. Greater damping at

frequencies in the range of the interarea mode and below is difficult to obtain since
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the AVR attempts to “correct” the terminal voltage offset introduced by the PSS at

these lower frequencies.
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5.2 Parameter Tracking During Change in Test Machine

Operating Point

The second series of tests investigated the ability of the sclf-tuning PSS to adapt to
a change in the operating point of the test machine in the two-machine infinite-bus
simulation. The test results illustrate the ability of the self-tuning portion of the
PSS to adapt quickly to a change in the generator operating conditions even after a
considerable period of operation at the original operating conditions.

The operating point of the test machine was changed by reducing the AVR ref-
erence signal and hence changing the reactive power produced by the machine. The
initial operating point, as described in section 4, had the test machine producing
0.23 p.u. reactive power. The new operating point has the test machine absorb-
ing 0.08 p.u. reactive power. The real power output of the test machine remained
unchanged. The self-tuning PSS was initialized with the parameter and covariance
matrix taken from the last sample of the simulations described in the previous sec-
tion. The change in operating point thus appears to the self-tuning algorithm to have
occurred after 6000 samples at the original operating point.

The response of the simulated test machine to the change in operating point is
shown in figure 5.9. The response of the system with no PSS attached is given by the
dotted line on the plots. The test machine is stable both before and after the change
in operating point, but the local and interarea modes are both quite lightly damped.

The improved damping of the local and interarea oscillatory modes when the PSS is
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operating can be seen in the plot of the real power output (P.) of the test machine.

The presence of both oscillatory modes is even more apparent in the plot of the
shaft speed (w) of the test machine when not equipped with a PSS. The local oscil-
latory mode can be seen superimposed on the lower-frequency, more lightly-damped,
interarea mode. The interarea oscillation persists for almost the entire simulation.

The damping provided by the self-tuning PSS is readily seen in the plots of the
clectric power and shaft speed of the test machine. The initial excursion of both
signals is less than half of the same machine not equipped with a stabilizer. The
nearly total suppression of the local oscillatory mode is apparent from the plot of
the test machine shaft speed. The reduction in the amplitude and duration of the
interarea mode oscillation in the test machine shaft speed can also be seen.

The plot of the ficld voltage (Ey) of the test machine shows that the initial ex-
cursion of this value is also reduced when the machine is fitted with the self-tuning
PSS.

The forgetting factor computed by the recursive least squares identification por-
tion of the self-tuning PSS is shown in figure 5.10. Prior to the change in the test
mackine operating point the forgetting factor is near unity, as it was at the end of
the simulation shown in figure 5.4. At the time of the change in the operating point
the forgetting factor drops and the identification algorithm discounts the old data it
has used to form the parameter estimate.

The memory time constant beyond which old data is effectively forgotten is given
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by,

Memory time constant = -1——7 (5.1)

where 7 is the value of the forgetting factor. A fixed forgetting factor of 0.95 thus
corresponds to a memory time constant of 20 samples, or in the simulation study
presented here, 1 second. The plot of the forgetting factor in figure 5.10 shows
that the factor is well below 0.95 for several samples which indicates that the old
information from which the parameters were estimated is being rapidly discounted.
The identified parameter values are shown in figures 5.11 and 5.12. The rapid
change in the parameters at the time of the change in the operating point reflects the
effectiveness of the variable forgetting factor in keeping the identification algorithm
alert even after several thousand samples at the original operating point. All the
parameters settle to their new values very quickly and have ceased changing within

about 30 samples (1.5 seconds) of the change in the reference signal to the AVR of
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the test machine.

The results presented in the above two sections show that the identification por-
tion of the self-tuning PSS provides stable parameter estimates during long periods
of small disturbances while still remaining alert to changes in the generator operating
conditions. The self-tuning PSS is shown to be capable of damping the local oscil-
latory mode and to provide some suppression of interarea oscillations in response to

both random and deterministic disturbances.
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5.3 Suppression of Local and Interarea Modes Following

Step Load Change

The response of the self-tuning PSS to a large disturbance was investigated by apply-
ing a -0.2 p.u. step disturbance to the P, input of the test machine model shown in
figure 3.2. This disturbance represents the sudden loss of a local load. The test results
illustrate the ability of the PSS to adapt quickly to an abrupt change in the generator
operating conditions. As described in the previous section the self-tuning PSS is ini-
tialized with parameter and covariance values from the last sample of the simulations
described in section 5.1. This has the effect of applying the electric power disturbance
after a considerable period of operation at the original operating conditions.

The response of the simulated test machine to the step power disturbance is shown
in figure 5.13. The response of the system with no PSS attached is given by the dotted
line on the plots.

The presence of both local and interarea oscillatory modes is apparent in the plot
of the shaft speed (w) of the test machine when not equipped with a PSS. The local
oscillatory mode can be seen in the first few seconds of the transient superimposed
on the lower-frequency, more lightly-damped, interarea mode.

The damping provided by the self-tuning PSS is readily seen in the plots of the
electric power and shaft speed of the test machine. The initial excursion of the
electric power is the same both with and without the PSS enabled. The reason

for this behavior is apparent by noting that the disturbance injection point in the
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Figure 5.14: Forgetting factor computed in response to step change in test machine
electric power.

simulation model of the generator simulation model is coupled directly to the electric
power. A synchronous generator has no instantaneous coupling path between the PSS
input to the AVR and the electric power produced by the machine, so a step power
disturbance will result in the same initial excursion no matter what type of PSS is
employed. The second excursion of the electric power is reduced by about one-half
by the self-tuning PSS and the electric power is almost completely damped within
one second of the disturbance. The nearly t§tal suppression of the local oscillatory
mode is apparent from the plot of the test machine shaft speed. The amplitude of
the initial excursion is reduced by about one-third by the PSS. The reduction in the
amplitude and duration of the interarea mode oscillation in the test machine shaft
speed can also be seen.

The forgetting factor computed by the recursive least squares identification por-
tion of the self-tuning PSS is shown in figure 5.14. Prior to the change in the test

machine operating point the forgetting factor is near unity, as it was at the end of
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the simulation shown in figure 5.4. At the time of the change in the operating point
the forgetting factor drops and the identification algorithm discounts the old data it
has used to form the parameter estimate.

The identified parameter values are shown in figures 5.15 and 5.16. The rapid
change in the parameters at the time of the step disturbance in the electric power of
the test machine reflects the effectiveness of the variable forgetting factor in keeping
the identification algorithm alert even after several thousand samples under the orig-
inal operating conditions. All the parameters settle to their new values very quickly
and have ceased changing within about 50 samples (2.5 seconds) of the electric power
disturbance.

The results presented in this section emphasize the ability of the self-tuning PSS
to damp the local oscillatory mode and to provide some suppression of interarea

oscillations in response to a fairly large disturbance applied to the test machine.
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5.4 Suppression of Local and Interarea Modes Following

Transient Fault Condition

Operation of the self-tuning PSS during, and immediately following, a transient fault
condition was investigated by applying a three-cycle, three-phase short circuit to the
line joining the test machine and the equivalent machine. As was the case for the
results presented in the previous two sections, the self-tuning PSS was initialized with
the parameter vector and covariance matrix from the final sample of the simulation
described in section 5.1. The fault was located on the line joining the machines
one-fifth of the distance from the test machine.

The response of the test machine, with and without the self-tuning PSS, is shown
in figure 5.17. The response of the system with no PSS attached is given by the
dotted line on the plots.

The presence of both local and interarea oscillatory modes is most apparent in the
plot of the rotor angle (8) of the test machine when not equipped with a PSS. The local
oscillatory mode can be seen in the first few seconds of the transient superimposed
on the interarea oscillation. The interarea oscillation persists for the remainder of the
simulation.

The self-tuning PSS remains stable during the fault even though the field voltage
is held at its upper limit. After the fault has been cleared the local mode oscillations
in the electric power are damped more quickly when the generator is equipped with

the self-tuning PSS. The terminal voltage and reactive power of the test machine show
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the presence of the interarea oscillation even though the electric power oscillations
have been almost completely suppressed. The use of additional feedback signals to
the self-tuning PSS may allow better damping of the terminal voltage and reactive
power cscillations while still retaining the good damping of the real power produced

by the machine. The following section describes the operation of the self-tuning PSS

when additional feedback signals are employed.

5.5 Suppression of Local and Interarea Modes Following
Transient Fault Condition Using Self-Tuning PSS with

Multivariable Feedback

The use of multivariable feedback was studied by modifying the self-tuning PSS al-
gorithm to accept two output signals from the generator to be stabilized. The cost

function to be minimized by the control action is then,
I=E{(Pu(t +k))? + (Paa(t + £))? + (Qu(t))*} (5.2)

where y;(t + k) and yo(t + k) are the two plant outputs, u(t) is the controller output
and P,, P, and Q are weighting polynomials in the backwards shift operator. The
w, term in (2.111) has been deleted since the presence of a washout filter on the PSS
feedback signals yields a zero reference to which the control algorithm attempts to

drive the feedback signals. For the simulation studies described in this section the
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weighting polynomials are simply constants,

P = N (5.3)
Pyz"l) = A (5.4)
Q=" =1 (5.5)

The results presented here used the real and reactive power of the test machine
as the feedback signals to the self-tuning PSS. Similar results were obtained when
the real power and the terminal voltage of the test machine werc used. The terminal
voltage may often be a more appropriate signal to include as a feedback signal since
the stability of the terminal voltage directly reflects the quality of the generated
power. For this particular simulation the reactive component of the power supplicd
by the generator also provided good damping when used as an additional feedback
signal. Results of tests using reactive power feedback are presented here to emphasize
that the self-tuning PSS algorithm can provide good results with a wide selection of
feedback signals.

The initial parameter vector and covariance matrix for the transient fault tests
were obtained as described in section 5.1. A Gaussian disturbance was applied to the
Pyist point of the equivalent machine and the self-tuning PSS was given 6000 samples
(5 minutes of simulation time) to adapt to the system. With these initial values in
place the response of the self-tuning PSS to a three-cycle, three-phase short circuit

along the line joining the test machine and the equivalent machine was obtained.
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The response of the test mach.ine, with and without the self-tuning PSS, is shown
in figure 5.18. The response of the system with no PSS attached is shown as the
dotted line on the plots. The response shows little improvement over the results
obtained using the electric power only of the test machine as the feedback sig:al.

A possible explanation for the poor response is that the parameters identified by
the recursive least squares algorithm make large changes while the fault is present
and do not return to their prefault values quickly enough to produce a control action
capable of providing good damping. A technique whereby this improper identification
can be avoided was described by Fan, Ortmeyer and Mukundan in a paper describing
en adaptive PSS [50]. The method simply inhibits parameter updates when the
terminal voltage of the generator is more than 30% below its nominal value. The
change affects only "+ parameter id: nti? ation po-tion of the self-tuning PSS. The
control action is calculated and fed to the AVR the saice way regardless of the value
of the termiral voltay=, As shown below, this modification makes the self-tuning PSS
considerably more robust in the presence of system fault conditions.

The response of the test machine, with the above modification to the self-tuning
PSS algorithm, is shown in figure 5.19. The dotted line shows the response of the
system with no PSS attached.

The results show much better damping of the local mode oscillation in the real
electric power signal as well as better damping of the interarea oscillation present
in the reactive power signal. The improved damping of both modes is apparent in

the plot of the rotor angle of the test machine as well. The local mode oscillation
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Figure 5.18: Test machine transient response following transient fault condition
(--+ No PSS, — Self-tuning PSS using P, and Q. feedback).
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Figure 5.19: Test machine transient response following transient fault condition
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fication inbibited while terminal voltage out of range).

152



prominent in the rotor angle plot of the unstabilized generator is suppressed within
one second and the amplitude of the lower frequency interarea oscillation is also

reduced.

5.6 Effect of Analog to Digital and Digital to Analog Quan-

tization on PSS Performance

The self-tuning PSS used in the simulation studies described in the previous sections
used double precision floating point values to communicate with the transient stability
simulation program. This corresponds to a quantization level of around 1 part in 10'%,
The resolution of the analog to digital and digital to analog converters commonly used
in existing digital stabilizers is 1 part in 4096. The effect of the quantization errors
introduced by such converters on the operation of the self-tuning stabilizer is described
in this section.

The tests described in section 5.1 were repeated with the self-tuning PSS in-
put/output signals quantized to steps of 0.001 per unit. The quantized control signal
was fed to the identification portion of the self-tuning PSS. Use of the quantized
control signal in this way makes the parameter identification insensitive to the quan-
tization imposed by the digital to analog converter. The quantization of the electric
power signal by the analog to digital is then the only change seen by the parameter
identification algorithm.

The parameter identification reiults obtained from the application of a filtered
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Table 5.2: Test machine variances with and without quantization of PSS signals.
Variance (per unit)

) P. Vi
Without PSS 9.79 x 10=> | 1.79 x 10~7
With PSS (no quantization) | 1.50 x 10~ | 1.03 x 10~7
With PSS (quantized [/O) | 1.57 x 1075 [ 1.05 x 10-2

Gaussian disturbance to the Py, of the equivalent machine are shown in figures 5.20
and 5.21.

The parameter values identified from the quantized signals are nearly identical to
those identified from the non-quantized input/output values and shown in figures 5.5
and 5.6. This result is very good considering that the RMS value of the electric power
signal over the duration of the simulation is on the order of just 5 quantization levels.

The variance of the test machine electrical power and terminal voltage over the
entire simulation, with and without the self-tuning PSS, are given in table 5.2. The
variance of the electric power of the test machine is only slightly greater when the
quantized signals are used.

The damping provided by the self-tuning PSS with input/output quantization was
determined by repeating the frequency response measurements described in section 5.1
using a fixed-parameter PSS with input/output quantization based on the parameter
values from the end of the simulation described above. The response of the system
with this fixed PSS in place is shown in figure 5.22. The response of the system the
PSS formed from the non-quantized input /output signals is shown by the dashed line.

The noise added by the quantization of the input/output signals is most apparent
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at higher frequencies where the energy in the electric power signal is low. The low
energy at higher frequencies is a result of the low pass filter applied to the excitation

signal used to form the frequency response as well as the low-pass filtering effect of

the generator itself.
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The overall frequency response is quite similar to that provided by the PSS with
no quantization. In particular the interarea and local mode resonant peaks are sup-
pressed almost equally well by both stabilizers. The self-tuning PSS is able to provide
good damping even when the constraints imposed by practical analog to digital and

digital to analog converters are present.

5.7 Field Test Results

5.7.1 Implementing the Self-Tuning Algorithm on an Existing Digital

PSS

Field tests of the self-tuning PSS were enabled by implementing the algorithms on a
commercial digital PSS computer system. The recursive least squares identification
and generalized minimum variance control algorithms required no changes to allow
them run on the PSS computer. The source code for these algorithms was merely
recompiled and the subroutines joining the algorithms to the transient stability pro-
gram were replaced with calls to subroutines driving analog to digital and digital to
analog converters. Algorithms providing smooth transfer between the standby and
operating states were also added to the self-tuning PSS program.

The digital PSS systems used for the field tests are based on the PDP-11 proces-
sor family. Bench studies of the self-tuning PSS were performed on a system using
the PDP-11/23 processor. This implementation required about 45 milliseconds to

perform the calculations required by a fourth order self-tuning controller. Field tests
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of the self-tuning PSS employed a more powerful PDP-11/73 processor. This version
required about 5 milliseconds to perform the same calculations. The simulation stud-
ies described earlier in this chapter indicate that satisfactory results can be obtained
with sampling rates as low as 20 Hz so the computer used for the field tests can be
used to implement high order self-tuning PSS’s or, perhaps more complex self-tuning
control algorithms.

The analog to digital and digital to analog converters on the digital PSS system
had a resolution of 1 part in 4096. The effect of this degree of quantization is described
in section 5.6.

The digital PSS system has a number of other features such as output limiters
and watchdog timers that are necessary for secure operation. These features are
important to the long-term unattended operation of the stabilizer but were not used

in the field test results described here.

5.7.2 Results of Preliminary Tests of the Self-Tuning PSS on a Coal-Fired

Generator

Preliminary field tests of the self-tuning PSS were performed as extra activity dur-
ing the commissioning and tuning of a conventional digital PSS by Professor K. E.
Bollinger. Time constraints made more extensive testing ir possible but preliminary
results obtained show that the self-tuning PSS can operate reasonably when operating
with a real generator.

The self-tuning PSS was connected to one of two 400 Megawatt coal-fired genera-
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tors at the power plant. A block diagram of the equipment used for the tests is shown
in figure 5.23. The electric power signal used as the feedback sigr.al for the self-tuning
PSS was isolated. filtered and amplified before being applied to the analog to digital
converter of the PSS. The analog output signal of the self-tuning PSS was isolated
and fed to the stabilizer input of the AVR. A disturbance signal was generated by
a manually-operated switch which applied a step change in the terminal voltage ref-
erence of the generator. This disturbance is similar to that used in the simulation
studies presented in section 5.2. The electric power produced by the generator and
the field voltage provided by the excitation system were recorded on a strip-chart
recorder.

The analog to digital and digital to analog converters have a range of +10 volts
and a resolution of 1 part in 4096. In section 5.6 it was shown that the self-tuning PSS
algorithm is only slightly affected by the quantization errors introduced by converters
with this resolution.

At the time of the tests the generator was supplying 393 Megawa-ts (0.98 p.u.) of
real power and —17 Megawatts (0.04 p.u.) of reactive power Because the generator
was being operated near capacity the applied disturbance was quite small. Neverthe-
less the effect of the disturbance on the electric power produced by the generator was
quite apparent.

The response of the generator with no PSS to the step change in the AVR reference
voltage is shown in figure 5.24. The upper trace shows the electric power produced

by the generator and the lower trace shows the generator field voltage. The chart
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Figure 5.23: Block diagram of equipment used for field tests of self-tuning PSS.
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Figure 5.24: Generator electric power and field voltage transients with »2 PSS. 5 mm
per second. Upper trace-Electric power. Lower trace-Field voltage.

speed was 5 mm per second so the tick marks along the sides of the chart correspond
to a time interval of one second. The initial transients of the electric power are about
11 Megawatts peak-to-peak and are rather poorly damped.

The self-tuning PSS was then connected and the same disturbance was applied to
the generator. The self-tuning PSS remained stable during the entire test even though
the identification algorithm was given no initial information about the coefficients of

the plant model. Improved damping of the electric power was noted as early as the
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Figure 5.25: Generator electric power and field voltage transients with self-tuning
PSS. 5 mm per second. Upper trace-Electric power. Lower trace-Field voltage.

application of the second step disturbance After about a dozen disturbances had
been applied to give the PSS time to tune itsrlf the electric power and field voltage
signals appeared as shown in figure 5.25. The improved damping provided by the self-
tuning PSS is apparent from these traces. The initial transients of the electric power
have been reduced to about 7 Megawatts peak-to-peak and are nearly completely
damped after two cycles of oscillation.

These initial results are very encouraging but additional work is required to in-

corporate practical constraints imposed by the power system and to ensure fail-safe
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operation of the adaptive PSS. Among the requirements for leng term, unattended
operation are supervisory checks for PSS hardware failures or loss of feedback signals
from the generator. Upon detection of such failure conditions the PSS must smoothly

drive the ~entrol output to zero and generate an alarm condition.
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Chapter 6

Summary and Conclusions

The main thrust of this research project was to develop techniques that would allow
the generalized minimum variance self-tuning PSS to damp multiple oscillatory modes
of a generatcr connected to a power generation and load pool. Several key areas were
investigated and specific goals were attained.

The importance of a numerically stable method of updating the covariance ma-
trix in the recursive least-squares parameter identification was illustrated. The UD-
factorized covariance matrix update using single-precision calculations was found to
give good results for covariance matrices as large as 10 x 10 elements. Covariance
matrices of this size arise when forming fifth-order modeis of the plant to which the
PSS is attached. The ability to perform calculations using single-precision values
was critical to the practical implementation of the self-tui:ing PSS on existing digital
stabilizer hardware.

A number of modc!s of the two-machine infinite-bus simulated power system we-
formed and frequency response analysis of the simulated power system provided in-
sight into the dynamics of the system as well as a standard against which the results
of the time domain ideniification techniques could be compared. The frequency re-

sponse of the simulated power system was uetermined using pseudo-random binary
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sequence excitation and harmonic, as opposed to spectral, analysis. The duration of
these studies limit the practicality of the technique in field test conditions where the
operating point of the generator or transmission and distribution network may well
cliange during the course of the excitation and data acquisition. For example, the
frequency response results presented in section 4.1 required a simulation run of over
ten minutes of simulation time.

The offline tine domain identification studies of the simulated power system,
presented in section 4.2, showed that the bimoedal nature of the system could be ac-
curately identified if the excitation signal was filtered so as to provide a relatively flat
power spectrum of the generator over the frequency range of interest. It was found
that time domain identification using the basic least squares method was not able to
identify the poles and zeros giving rise to the interaiea oscillatory mode due to the
low residues of this combination. Use of the generalized least squares method, which
estimates the coefficients of all -+ ee polynomials in the ARMAX system model. pro-
duced a model exhibiting both the local and interarea modes. Neither of these points
should adversely affect the application of the least squares identification algorithm
in the self-tuning PSS since both points are addressed by the characteristics of the
PSS itself. The filtering of the excitation signal is addressed by the action of the PSS
which quickly tunes itself to damp the local oscillatory mode which would otherwise
domninate the power spectrum of the generator output. The bias in the parameter
estimates introduced by the basic least squares identification algorithm is exactly that

required to produce the generalized minimum variance control action that would re-
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sult from the generalized least squares identification of the full ARMAN model. This
‘haracteristic is an important feature of the self-tuning algorithin since the identifi-
cation can be carried out using the simpler basic least squares method and vet the
control action is that which would result from the identification. by ‘he generalized
least squares method, of the unbiased coefficients of the A4 and B polynomials and
the true values of the C polynomial.

The results of simulation studies of the self-tuning PSS applied to the two-machine
infinite-bus system are presented in sections 5.1 through 5.6. A noteworthy result was
that the forgetting factor calculation proposed by Kulhavy [80] became unstable after
several thousand steps. Calculation of the forgetting factor using a technique proposed
by Sripada and Fisher [120], combined with the restricted exponeutial forgetting
algorithm proposc:’ by Hégglund [60] and Kulhavy [79], described in section 2.1.3
of this thesis, was found to remain stable over simulation studies as long as 25,000
samples, or cver twenty minutes of simulation time, while <*ill remaining alert to
changes in the generator or network. A modification to the identification algorithm
which inhibited the update of the parameter estimate when the generator terminal
voltage had dropped by more than 30% from its nominal value was shown to be
useful in preventing large, erroneous, parameter changes in response tc¢ major fault
conditions. Modifications of this type to make the self-tuning PSS more robust ure
necessar:" for the practical implementation on real power systeins.

The simulation studies inc:.:ated that the self-tuning PSS was capable of provid-

ing excellent damping of the local oscillatory mode and always contributed to some
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lessening of the lower frequency interarea oscillations. The self-tunirs; PSS was found
to adapt promptly to the generator to which it was connected and to quickly provide
good damping of the local oscillatory mode. A reduction in the magnitude of the
interarea oscillation was also observed. This multimode damring was noted in sim-
ulation studies involving a number of different disturbanc.: applied to the system.
Damping of the interarea mode following a transient fault condition was s..own to be
improved by the use of additional feedback signals to the self-tuning PSS.

A practical result of the research presented here was the implementation of the
self-tuning PSS algorithm on an existing commercial digital stabilizer system. The
software developmeni system allowed the program written for use with the transient
stability program to be used on the digital stabilizer hardware with no changes to
the source code implementing the generalized minimum variance control algorithm
or the recursive least squares parameter identification. Simulation results presented
in section 5.6 show that the cnntrol and parameter identification algorithms are not
adversely affected by the quantization introduced by the 12-bit analog to digital and
digital to analog converters employed by the digital stab;lizer hardware.

The contribution of the researci: presented in this thesis is summarized as follows:

1. Techniques were developed and evaluated for a self-tuning PSS connected to a
gererator exhibiting both local and interarea oscillatory modes. Damping of

h.h modes was noted in response to various system disturb:aces.

2. A number of methods for keeping the parameter identification alert by discount-
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ing old information were evalnaced. One particular method was found to give

good results in both short and long simulation studies.

3. The effect of the quantization imposed by practical analog to digital and dig-
ital to analog converters was evaluated and shown to have little effect on the

operation of the self-tuning PSS.

4. The algorithms were implemented on a commercial digital PSS system and were

shown to operate reasonably well under field test conditions.

6.1 Recommendations for Further Research

Studies of the self-tuning PSS have shown a number of areas where further research
is advisable.

The generalized minimum variance control algorithm exhibits good damping prop-
erties but is not completely self-tuning since the control action weighting factor, A.
has to be selected. Investigation into the use of more advanced control strategics,
such as generalized predictive control [37, 38|, may lead to true self-tuning action.

The encouraging preliminary results point to the need for more exhaustive field
tests of the self-tuning PSS. Addition of supervisory and protection routines are
necessary to allow secure unattended operation of the self-tuning PSS.

Operation of the self-tuning PSS when a number of machines are equipped with

such stabilizers is also another area requiring further study.

169



[1]

[2]

(3]

[4]

(5]
(6]
[7]

(8]

(9]

[10]

[11]

Bibliography

O. H. Abdalla, S. A. Hassan, and N. T. Tweig. Coordinated Stabilization of
a Multimachine Power System. IEEE Transactions on Power Apparatus and
Systems, 103:483-494, March 1984.

S. Abe and A. Doi. A New Power System Stabilizer Synthesis in Multimachine
Power Systems. IEEE Transactions on Powes ‘pparatus and Systems, PAS-
102(12):3910-3918, December 1983.

Fernando L. Alvarado and Claudio Caiiizares. Synchronous Machine Parame-
ters from Sudden-Short Tests by Back-Solving. IEEE Transactions on Energy

Conversion, EC-4(2):224-236, June 1989.

K. J. Astrom. Maximum Likelihood and Prediction Error Methods. In Peter
Eykhoff, editor, Trends and Progress in System Identification, chapter 5, pages
145-168. Pergamon Press, 1981.

K. J. Astrom. Theory and Applications of Automatic Control—A Survey. Au-
tomatica, 19(5):471-486, May 1983.

K. J. Astrém, U. Borisson, L. Ljung, and B. Wittenmark. Theory and Appli-
cation of Self-Tuning Regulators. Automnatica, 13(5):457-476, September 1977.

K. J. Astrém and B. Wittenmark. On Self Tuning Regulators. Automatica,
9(2):185-198, February 1973.

K. J. Astrém and B. Wittenmark. Analysis of a Self-Tuning Regulator for
Nonminimum Phase Systems. In Proceedings of the IFAC Stochastic Control
Symposium, pages 165-173, Budapest, Hungary, 1974.

J. C. Balda, R. E. Fairbairn, R. G. Harley, J. L. Rodgerson, and E. Eitelberg.
Measurement of Synchronous Machine Parameters by a Modified Frequency
Response Method — Part II: Measured Results. IJEEE Transactions on Energy
Conversion, EC-2(4):652-657, December 1987.

J. C. Balda, M. F. Hadingham, R. E. Fairbairn, R. G. Harley, and E. Eitelberg.
Measurement of Synchronous Machine Parameters by a Medified Frequency
Response Method — Part I: Theory. IEEE Transc~tions on Energy Conversion,
EC-2(4):646-651, December 1987.

Ph. Barret, Y. Colot, M. Herouxw !, J. P. Meyer, J. Michard, and J. P. Monville.
Modelling and Tests at Fessenheim Power Station of a 1080 MVA Turbogener-
ator and of its Excitation System. IEEE Trensactions on Power Apparatus and
Systems, 100:3993-i016, February 1981.

170



(12] Julius S. Bendat and Allan G. Piersol. Random Data: Analysis and Mcasure-
ment Procedures. Wiley-Interscience, New York, 1971.

[13] Arthur R. Bergen. Power Systems Analysis. Prentice-Hall, Englewood Cliffs,
NJ, 1986.

[14] G. J. Bierman. Factorization Methods for Discrete Sequential Estimation. Aca-
demic Press, New York, 1977.

[15] Gerald J. Bierman. Measurment Updating Using the U-D Factorization. Auto-
matica, 12:375-382, 1976.

[16] Richard E. Blahut. Theory and Practice of Error Control Codes. Addison-
Wesley, Reading, Mass., 1983.

[17] E. S. Boje, J. C. Balda, R. G. Harley, and R. C. Beck. Time-Domain Identifica-
tion of Synchronous Machine Parameters From Simple Standstill Tests. [EEE
Transactions on Energy Conversion, 5(1):164~175, March 1990.

(18] K. E. Bollinger. Field Verification of Exciter Models. Technical Report 304 T
639, Canadian [ lectrical Association, May 1990.

[19] K. E. Bollinger, R. Gilchrist, and E. Norum. A Digital Controller for Testing
Control Strategy at Power Plants. In 1979 Power Industry Computer Applica-
tions Conference, pages 260-266, March 1979.

[20] K. E. Bolinger, Wenyan Gri, and W. E. Norum. Accelerating Power Versus
Electrica: Power as Input Signals to Power System Stabilizers. In IEEE/PES
Winter Meeting, February 1991. 91 WM 151-1 I°C.

[21] K. E. Bollinger, H. S. Khalil, L. C. C. Li, and W. £. Novum. A M=«thod for On-
Line Identification of Power System Model Parame:e- > tis Presence of Noise.
IEEE Transactions on Power Apparatus end Sysier.., PAS. 7'79).3108-3111,
September 1982.

[22] K. E. Bollinger, H. S. Khalil, and W. E. Norum. Practical J4¢ :vification Tech-
niques for Excitation Systems. In CEA Spring Meeting I’.:i 5, March 1980.
80-SP-170.

[23] K. E. Bollinger, A. Laha, R. Hamilton, and T. Harras. Fower Stabilizer De-
sign Using Root Locus Methods. IEEE Transactions on Powc- Apparatus and
Systems, PAS-94(5):1484-1488, September 1975.

[24] K. E. Bollinger, A. K. Laha, and R. A. Winsor. System Models From Transient
Stability Programs. In JEEE PICA, New Orleans, Prcceedings, pages TF X11-6
330-334, July 1976.

171



[25] K. E. Bollinger and R. Lalonde. Tuning Synchronous Generator Voltage regula-
tors Using On-Line Generator Models. IEEE Transactions on Power Apparatus
and Systems, PAS-96(1):32-37, January 1977.

[26] K. E. Bollinger and J. C. Mathur. Identifying Power System Models Using
State Space Techniques. IEEE Transactions on Power Apparatus ang Systems,
PAS-90(6):2598-2603, November 1971.

[27] K. E. Bollinger and A. F. Mistr Jr. PSS Tuning at the Virginia Electric and
Power Co. Bath County Pumped Storage Plant. IEEE Transactions on Power

Systems, 4(2):566-574, May 1989.

(28] K. E. Bollinger and R. Saunders. A Comparison of Power System Stabilizer
Tuning Methods. Stabilizer tuning notes, 1979.

[29] K. E. Bollinger, R. Winsor, and A. Campbell. Frequency Response Methods
for Tuning Stabilizers to Damp Out Tie-Line Power Oscillations: Theory and
Field-Test Results. IEEE Transactions on Power Apparatus and Systems, PAS-
98(5):1509-1515, September 1978.

[30] K. E. Bollinger, R. Winsor, and D. Cotcher. Power Sy~‘2m Identification Using
Noise Signals. IEEE/PES Summer Meeting, pages A'io 339-2/1-7, July 1976.

[31) U. Borisson and R. Syding. Self-Tuning Control of an Ore Crusher. In Pro-
ceedings of the IFAC Stochastic Control Symposium, pages 491-495, Budapest,
Hungary, 1974.

[32] F. Cameron and D. E. Seborg. A Self-Tuning Controller with a PID Structure.
In Proceedings of the IFAC Reol Time Digital Control Applications Symposium,
pages 613-622, Guadalajara, Mexico, 1983.

|33] Shi-jie Cheng, Y. S. Chow, O. P. Malik, and G. S. Hope. An adaptive syn-
chronous machine stabilizer. IEZE Transactions on Power Systems, PWRS-
1(3):101-109, August 1986.

[34] Shi-jie Cheng, O. P. Malik, and Z. S. Hope. Self-tuning stabiliser for a multi-
machine power system. IEE Proceedings, 133 Part C(4):176-185, May 1986.

[35] D. W. Clarke and P. J. Gawthrop. Self-tuning controller. IEE Proceedings,
122(9):929-934, September 1975.

[36] D. W. Clarke and R. Hastings-James. Design of digital controllers for randomly
distur’-~d systems. IEE Proceedings, 118(10):1503-1506, October 1971.

[37] D. W. Clarke, C. Mohtadi, and P. S. Tuffs. Generalized Predictive Control—
Part I. The Basic Algorithm. Automatica, 25(2):137-148, 1987.

172



[38] D. W. Clarke, C. Mohtadi, and P. S. Tuffs. Generalized Predictive Cratrol--
Part II. Extensions and Interpretations. Automatica, 25(2):149-160, 1987.

(39] W. D. J. Davies. System Identification for Self-Adaptive Control. Wiley-
Interscience, New York, 1970.

[40] F. P. de Mello and L. N. Hannett. Determination of Synchronous Machine

Electrical Characteristics by Test. JEEE Transactions on Power Apparatus and
Systems, PAS-102(12):3810-3815, December 1983.

[41] F. P. de Mello, L. N. Hannett, D. W. Parkinson, and J. S. Czuba. A Power
System Stabilizer Design Using Digital Control. IEEE Transactions on Power
Apparatus and Systems, PAS-101(8):2860-329, August 1982.

[42] F. P. de Mello, L. N. Hannett, and J. M. Undrill. Practical Approaches to Sup-
plementary Stabilizing from Accelerating Power. IEEE Transactions on Power
Apparatus and Systems, PAS-97(5):1515-1522, September/October 1978.

[43] F. P. de Mello, P. J. Nolan, T. F. Laskowski, and J. M. Undrill. Coordinated
application of stabilizers in multi-machine power systems. IEEE Transactions
on Power Apparatus and Systems, PAS-99(3):892-901, May/June 1980.

[44] Fransisco P. de Mello and Charles Concordia. Concepts of Synchronous Ma-
chine Stability as Affected by Excitation Control. IEEE Transactions on Power
Apparatus and Systems, PAS-88(4):316-329, April 1969.

[45] Digital Equipment Corporation. Microcomputers and Memories. Maynard,
Massachusetts, 1981.

[46] H. W. Dommel and N. Sato. Fast Transient Stability Solutions. IEEE Transac-
tions on Power Apparatus and Systems, PAS-91:1643-1650, July/August 1972.

[47] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK Users’
Guide. Society for Industrial and Applied Mathematics, Pkiladelphia, 1979.

[48] P. Eykhoff. A Bird’s Eye View on Parameter Estimation and System Identifi-
cation. Automatisierungstechnik, 36(11):413-420, November 1988.

[49] Peter Eykhoff, editor. Trends and Progress in System Identification. Pergamor:
Press, 1981.

[50] J. Y. Fan, T. H. Ortmeyer, and R. Mukundan. Power € :=*em Stability Improve-
ment with Multivariable Self-Tuning Control. iL+ " ¥ ansactions on Power
Systems, 5(1):227-234, February 1990.

[51] T. R. Fortescue, L. S. Kershenbaum, and B. E. Yds..~ " ..plementation of Self-
Tuning Regulators with Variable Forgetting Factors. Automatica, 17(6):831-
835, June 1981.

173



[52]

[59]

[60]

[61]

[62]

[63]

J. J. Sanchez Gasca, C. J. Bridenbaugh, C. E. J. Bowler, and J. S. Edmonds.
Trajectory Sensitivity Based Identification of Synchronous Generator and Ex-
citation System Parameters. [EEE Transactions on Power Systems, 3(4):1814~
1822, November 1988.

Nezih C. Gegkinli and Davras Yavuz. Discrete Fourier Transformation and
its Applications to Power Spectra Estimation. Elsevier Scientific Publishing

Company, Amsterdam, 1983.

A. Ghosh, G. Ledwich, O. P. Malik, and G. S. Hope. Power system stabilizer
hased on adaptive control techniques. IEEE Transactions on Power Apparatus

and Systems, PAS-103(8):1983-1989, August 1984.

G.C. Goodwin and R.L. Payne. Dynamic System Identification: Ezperiment
Design and Data Analysis. Academic Press, New York, 1977.

Wenyan Gu. Multivariable Self-Tuning Control of Synchronous Generator Sys-
tems. PhD thesis, University of Alberta, Edmonton, Alberta, 1989.

Wenyan Gu and K. E. Bollinger. A Self-Tuning Power System Stabilizer for
Wide-Range Synchronous Generator Control. IEEE Transactions on Power
Systems, 4(3):1191-1199, August 1989.

Lei Guo. Estimating Time-Varying Parameters by the Kalman Filter Based Al-
gorithm: Stahility and Convergence. IEEE Transactions on Automatic Control,
35(2):141-147, February 1990.

Lei Guo and Han-Fu Chen. The Astrom-Wittenmark Self-T , i-, Pczulator
Revisited and ELS-Based Adaptive Trackers. IEEE Transactior.. **. ..utomatic
Control, 36(7):802-812, July 1991.

T. Hagglund. The Problem of Forgetting Old Data in Recursive Estimation. In
I. D. Landau, editor, Proceedings of the IFAC Workshop on Adaptive Systems
in Cortrol and Signal Processing, pages 213-214, San Francisco, USA, 1983.

Perg: mon Press.

J. F t.uer, C. J. Demeure, and L. L. Scharf. Initial Results in Prony Analysis
of I'ower System Response Signals. IEEE Transactions on Power Systcins,
5(1):80-89, February 1990.

J. F. Hauer and F. Vakili. An Oscillation Detector Used in the BPA Power
System Disturbance Monitor. IEEE Transactions on Power Systems, 5(1):74—
79, February 1990.

J. Hetthéssy and L. Keviczky. Some Innovations to the Minimum Variance
Control. In Proceedings of the IFAC Stochastic Control Symposium, pages 353~
361, Budapest, Hungary, 1974.

174



[64] Takashi Hiyama. Rule-Based Stabilizer for Multi-Machine Power System. [EEE
Transactions on Power Systems, 5(2):403-411, May 1990.

[65] Yuan-Yih Hsu and Chao-Rong Chen. Tuning of Power Systems Stabilizers
Using and Artificial Neural Network. In IEEE/PES Winter Meeting, pages 91
WM 152-9 EC, February 1991.

(66] Pei-Hwa Huang a.d Yuan-Yih Hsu. Eigenstructure Assignment in a Longi-
tudinal Power System via Excitation Contrul. IEEE Transactions on Power
Systems, 5{(1):96-101, February 1990.

(67] IEEE Standard 100. Standard Dictionary of Electrical and Electronics Terms.
IEEE, New York, NY, fourth edition, November 1988.

[68] IEEE Standard 115. Test Procedures for Synchronous Machines. IEEE, New
York, NY, September 1983.

[69] IEEE Task force on Definitions. Supplementary definitions and associated
test methods for obtaining parameters for synchronous machine stability sti.dy
for simulations. IEEFE Transactions on Power Apparatus and Systems, PAS-
99(4):1625-1633, July/August 1980. P. L. Dandeno, Chair.

[70] IEEE Task force on Definitions. Current usage & suggested practices in power
system stability simulations for synchronous machines. IEEE Transactions on
Energy Conversion, EC-1(1):77-93, March 1986. P. L. Dandeno, Chair.

[71] F. Irving, J. P. Barret, C. Charcossey, and J. P. Monville. Improving Power Net-
work Stability and Unit Stress with Adaptive Generator Control. Automatica,
15(1):31-46, January 1979.

[72] F. Ishiguro, S. Tanaka, M. Shimomura, T. Maeda, K. Matsushita, and H. Sug-
im~to. Coordinated stabilizing control of exciter, turbine and braking resistor.
!EEE Transactions on Power Systems, PWRS-1(3):74-80, August 1986.

(73] 1. Kamwva, P. Viarouge, and E. J. Dickinson. Optimal Estimation of the Gen-
eralized Operational Impedances of Synchronous Machines from Short-Circuit
Tests. In JEEE/PES Winter Meeting, February 1990. 90 WM 088-5 EC.

[74] Jagannathan Kanniah, O. P. Malik, and G. S. Hope. Excitation control of syn-
chronous generators using adaptive control-parts i and ii. IEEE Transactions
on Power Apparatus and Systems, PAS-103(5):897-910, May 1984.

[75] E. Ya. Kazovskii and L. G. Lerner. Procedure for Determining the Electromag-
neteic Parameters of a Synchronous Machine Operating under L--ad. In Sei-
entific Council on Theoretical and El:ctrophysical Problems of Ei-ctric Power
Engineering. Academy of Sciences of the USSR in Leningrad, Dec xmnber 1974.



[76] A. Keyhani and S. M. Miri. Obervers for Tracking of Synchronous Machine

Parameters and Detection of Incipient Faults. IEEE Transactions on Energy
Conversion, EC-1(2):184-192, June 1986.

[77] Ali Keyhani, Shangyou Hao, and Richard P. Schulz. Maximum Likelihood Esti-

mation of Generator Stability Constants using SSFR Test Data. In IEEE/PES
Winter Meeting, February 1990. 90 WM 005-9 EC.

(78] R. Kulhavy. Restricted Exponential Forgetting in Real! ™'~ Identification. In

Proceedings of the Tth IFAC/IFORS Symposium on "~ ‘on and System
Parameter Estimation, pages 1143-1148, York, UK.. &

[79] R. Kulhavy and M. Kérny. Tracking of Slowly Var, ;, P*" .neters by Direc-

(80]

(81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

tional Forgetting. In Proceedings of the IFAC 9th Triennial World Congress,
pages 687-692, Budapest, Hungary, 1984.

Rudolf Kulhavy. Restricted Exponential Forgetting in Real-Time Identifization.
Automatica, 23(5):589-600, 1987.

A. K. Laha and K. E. Bollinger. Power-Stabiliser Design using Pole-
Placement Techniques on Approximate Power-System Modles. IEE Prrceedings,
122(9):903-907, September 1975.

R. D. Lang, M. A. Hutchison, and H. Yee. Microprocessor-based identifica-
tion system s ied to synchronous generators with voltage regulators. IEFE

Proceedings. *. C(5):257-265, September 1983.
E. V. Lar. . J. A. Swann. Applying Power System Stabilizers, Parts
I, IT and IL. 7 Transactions . n Power Apparatus and Systems, PAS-

100(6):3017-304v, yune 1531.

L. X. Le and W. J. Wilson. Synchronous Machine Parameter Identification: A
Time Domain Approach. IEEFE Transactions on Energy Conversion, 3(2):241-
248, June 1988.

C. C. Lee and Owen T. Tan. A Weighted-Least-Square Parameter Estimator for
Synchronous Machines. IEEE Transactions on Power Apparatus und Systems,
PAS-96(1):97-101, January/February 1977.

Choo-Min Lim and S. Elangovan. A New Stabilizer Design Technique for Multi-
machine Power Systems. IEEE Transactions on Power Apparatus and Systems.
104(9):2393-2400, September 1985.

L. Ljung. System Identification— Theory for the U-~- Prentice-Hall, Englewood
Cliffs, N.J., 1987.

Lennart Ljung. Analysis of a General Recursive Prediction Error Identification
Algorithm. Automatice, 17(1):89-99, January 1981.

176



[89] Lennart Ljung and Bjérn Wittenmark. Analysis of a Class of Adaptive Regula-

tors. In Proceedings of the IFAC Stochastic Control Symposium, pages 431-437,
Budapest, Hungary, 1974.

[90] Lennart Ljung and Keith Glover. Frequency Domain Versus Time Domain

Methods in System Identification. Automatica, 17(1):71-86, January 1981.

[91] C. Maffezzoni and V. Marchese. Structural Parameter Estimation in Power

Systems. Automatica, 17(1):263-279, January 1981.

[92] O. P. Malik, G. S. Hope, and A. A. M. El-Ghandakly. A Technique for Coor-

[93]

[94]

[95]

[96]

[97]

[98]

199]

[100]

dinated On-Line Control of Exciter and Governor. Journal of Applied Science
and Engineering, 3:39-55, 1978.

Gerald Manchur, David C. Lee, M. E. Coultes, J. D. A. Griffin, and Wil-
fred Watson. Generator Models Established by Frequency Response Tests on
a 555 MVA machine. IKEE Transactions on Power Apparatus and Systems,
91:2077-2084, 1972.

Yakout Mansour. Application of Eigenanalysis to the Western Nor > American
Power System. I. Eigenanalysis and Frequency Domain Method. for System
Dynamic Perforineace, pages 97-103. IEEE Power Engineering Society, 1990.
90THO0292-3-PWR.

The MATH WORKS Inc., 21 Eliot Street, South Natick, MA. MATLAR User’s
Guide, 3.5f edition, June 1989.

Jean-Claude Maun. Comparison Between Identification Methods of Syn-
chronous Machine Dynamic Parameters. In Proceedings of the 1987 Summer
Computer Simulation Conference, pages 145-150, Montreal, Quebec, July 1987.

Hamdy A. M. Moussa and Yao-nan Yu. Optimal Power System Stabilization
Through Excitation and/or Governor Control. IEEE Transactions on Power
Apparatus and Systems, 91(3):1166-1174, May/June 1972.

M. Namba, T. Nishiwaki, S. Yokokawa, and K. Ohtsuka. Identification of Pa-
rameters for Power System Staoility Analysis Using Kalman Filter. IEEE
Transactions on Power Apparatus and Systems, PAS-100(7):3301-3311, July
1981.

E. H. Okongwu, W. J. Wilson, and J. H. Anderson. Microaliernator stabi-
lization using a physically realizable optimal output feedback controller. IEEE
Transactions on Power Apparatus and Systems, PAS-101(10):3771-3779, Octo-
ber 1982.

D. W. Olive. New Techniques for the Calculation of Dynamic Stability. IEEE
Transactions on Power Apparatus and Systems, PAS-85(7):767-777, July 1966.

177



[101] D. W. Olive. Digital Simulation of Synchronous Machine Transients. IEEE
Transoctions »n Power Apparatus and Systems, PAS-87(8):1669 1675, Angust
1968.

[102] F. Luis Pagola, Luis Rouco. and Ignacio J. Pérez-Arriaga. Analysis and Control
of Small Signal Stability in Electric Power Systems by Selective Modal Anal-
ysis. In Eigenanalysis and Frequency Domain Mcthods for System Dynamic
Performance, pages 77-96. IEEE Power Engineering Society, 1990. 90TH0292-
3-PWR.

(103] R. H. Park. Two-Reaction Theory of Synchronous Machines, Generalized
Method of Analysis — Part I. Transactions of the American Irstitv*e of Elec-
trical Engineers, 48(3):716-730, 1929.

[104] R. H. Park. Two-Reaction Theory of Synchronous Machines — II. Transactions
of the American Institute of Electrical Engineers, 52(2):352--355, 1933.

(105] D. A. Pierre. A perspective on adaptive control of power systems. JEEE Trans-
actions on Power Systems, P\WWRS-2(2):387-396, May 1987.

[106] R. Podmore and R. J. Fleming. Power-System Dynamic Simulation Program.
IEE Proceedings, 121(10):1165-1167, October 1974.

(107} V. H. Quintana, M. A. Zohdy, and J. H. Anderson. On the Design of Output
Feedback Excitation Controllers of Synchronous Machines. IEEE Transactions
on Power Apparatus and Systems, 95:954-961, May/June 1976.

(108] J. Richalet. The Model Method. In Peter Eykhoff, editor, Trends and Progress
in System Identification, chapter 1, pages 5-28. Pergamon Press, 1981.

[109] G. J. Rogers and P. Kundur. Small Signal Stability of Power Systems. In Eige-
nanalysis and Frequency Domain Methods for System Dynamic Performance,
pages 5-16. IEEE Power Engineering Society, 1990. 90TH0292-3-PWR.

[110] P. A. E. Rusche, G. J. Brock, L. N. Hannett, and J. R. Willis. Test and Sim-
ulation of Network Dyramic Response Using SSFR and RTDR Derived Syn-
chronous Machine Models. IEEE Transactions on Energy Conversion, 5(1):145~
155, March 1990.

[111] Mario E. Salgado, Graham C. Goodwin, and Richard H. Middleton. Modified
Least Squares Algorithm Incorporating Exponential Resetting and Forgetting.
Internationai Journal of Control, 47(2):477-491, 1988.

[112] P. W. Sauer, C. Rajagopalan, and M. A. Pai. An Explanation and Generaliza-
tion of the AESOPS and PEALS Algorithms. In IEEE/PES Winter Meeting,
Atlanta, Georgia, February 1990. 90 WM 239-4 PWRS.



[113] Dale E. Seborg, Thumas F. Edgar, and Duncan A. Mellichamp. Process Dy-
namics and Control. John Wiley and Sons, New York, 1989,

[114j Sirish L. Shah and William R. Cluett. Recursive Least Squares Based Estima-
tion Schemes for Self-Tuning Control. Canadian Journal of Chemical Engineer-
ing, 69:89-96, February 1991.

[115] M. M. Sharaf and B. W. Hogg. Evaluation of Online Identification Methods for
Optimai Coutrol of a Laboratory Model Turbogenerator. IEE Proceedings, 128
Part D(2):65-73, March 1981.

[116] S. M. Z. Sharaf, B. W. Hogg, O. H. Abdalla, and M. L. El-Sayed. Multivariable
Adaptive Controller for a Turbogenerator. IEE Proceedings Part D, 133(2):83~
89, March 1986.

[117] K. S. Sin and G. C. Goodwin. Checkable Conditions for Identifiability of Linear
Systems Operating in Closed Loop. IEEE Transactions on Automatic Control,
25(4):722-729, August 1980.

[118] T. Soderstrom and P. Stoica. System Identification. Prentice-Hall International,
London, 1989.

[119] S. Sriharan and K. W. Hiong. Synchronous Machine Modelling by Standstill
Frequency Response Tests. IEEE Transactions on Energy Conversion, EC-
2(2):233-245, June 1987.

[120] N. Rao Sripada and D. Grant Fisher. Improved Least Squares Identification.
International Journal of Control, 46(6):1889-1913, 1987.

[121] P. Stoica and A. Nehoria. On the Uniqueness of Prediction Error Models for
Systems with Noisy Input-Output Data. Automatica, 23:541-543, 1987.

[122] Vladimir Strejc. Trends ir Identification. Automatica, 17(1):7-21, January
1981.

[123] V. Subbarao, R. E. Burridge, and R. D. Findlay. Mathematical Models of
Synchronous Machines for Dynamic Studies. In IEEE PES Winter Meeting,

February 1979. A 79 011-8.

[124] E. Swidenbank, I. Boyd, and B. W. Hogg. On-Line Identification of Large
Turbogenerators. 6th European Conference on Electrotechnics, Eurocon 84—
Computers in Communication and Control, pages 74-78, 1984.

[125] Catherine L. Thornton and Gerald J. Bierman. UDUT Covariance Factorization
for Kalman Filtering. In C. T. Leondes, editor, Control and Dynamic Systems
Advances in Theory and Application, pages 177-258. Academic Press, 1980.

179



[126] D. J. Trudnowski, J. R. Smith, T. A. Short, and D. A. Pierre. An Application
of Prony Methods in PSS Design for Multimachine Systems. In IEEE/PES
Winter Meeting, Atlanta, Georgia, February 1990. 90 WM 117-2 PWRS.

[127] H. B. Verbruggen. Pseudo Random Binary Sequences. Journal 4, 16(4):265
207, 1975.

[128] Peter E. Wellstead. Non-Parametric Methods of System Identification. Auto-
matica, 17(1):55-69, January 1981.

[129] W. J. Wilson, V. M. Raina, and J. H. Anderson. Nonlinear Output Feedback
Excitation Controller Design Based on Nonlinear Optimal Control and Iden-
tification Methods. IEEE/PES Summer Meeting, pages A76 343--4/1-9, July
1976.

[130] Daozhi Xia and G. T. Heydt. Self-tuning controller for generator excitation con-
trol. IEEE Transactions on Power Apparatus and Systems, PAS-102(6):1877
1885, June 1983.

(131] Peter Young. Parameter Estimation for Continuous-Time Models-—A Survey.
Automatica, 17(1):23-39, January 1981.

[132] Yao-nan Yu and Qing-hua Li. Pole-Placement Power System Stabilizers Design
of an Unstable Nine-Machine System. IEEE Transactions on Power Systems,
5(2):353-358, May 1990.

[133] Yao-nan Yu and Hamdy A. M. Moussa. Optimal Stabilization of a Multi-
Machine System. IEEE Transactions on Power Apparatus and Systems,
91(3):1174-1182, May/June 1972.

180



