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Abstract

Visual navigation is a major goal in both the robotics and computer vision
communities. One specific example of this goal ix the design of a vision-based
navigation system. To achieve this task, there are two basic components that
should be considered. The first one is sensors which provide information
about the environment (obstacle and motion detection) whereas the other
component is a controt strategy that decides  out the next planning step
(motion planning and collision avoidance) based on the available information.

In motion planning, the problem of planning a sale (collision-free) path
for a mobile platform, in the presence of static and moving obstacles. based
on local information is to be solved. First, we study the problem in static do-
mains. We place constraints on the velocity and the acceleration of the robot.
The concept of safety optimization is proposed and used in conjunction with
two heuristics to solve the problem. Morcover, we propose a new technique
for generating not only safe but also smooth piccewise sub-trajectories that
minimize acceleration amidst - © ular obstacles in local envireniments. Based
on the above, we extend our investigation of the problem to dynamic do-

mains. Wz take into account uncertainties in estimating the velocity of each



obstacle as well as the mobile robot.

As for motion detection, we address the problem of detecting moving
objects from a moving camera using backgroand constraints. Background
compensation is used to correlate pixels in different images. The use of mor-
phological filtering of motion images is explored to de-sensitize the detection
algorithm to inaccuracies in background compensation.

Theoretical analysis of all of the above techniques are described and im-
plemented. Experim<tal results, which demonst ate the validity of these

techniques, are also presented.
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whapter 1

Introduction

1.1 Motivations

An important issue in robotics research is the development of autonomous
vehicles that can operate in the real world without human intervention. An
autonomous land-vehicle is an example of a system towards this goal, combin-
ing research from the areas of motion planning (in the robotics community)
and motion detection (in the vision community).

A vision-based navigation system needs to recognize the presence of static
objects as well as moving ones in order to avoid collisions. In other words,
1t needs to interact adaptively with its environment. There are two major
components in such a system: sensors which provide information about the
environment, and a control strategy that «ccides on the next move.,

The first component requires that the robot senses the environment through

some sort of sensory media to guide its motien. In our model, we use a cani-



era to acquire such information. Cne important function of a vision svstem
15 to recognize the presence of moving objects in a scene. This problem, how-
ever, is considerably more diffienlt if the camera is moving. This is because
of the need to detect objects moving with respect to the environment. rather
than the much sirapler problem of finding objects moving with respect to a
stationary camera. In our rescarch, we will examine moving object detection
based primarily on background constrainis.

The second component can be loosely defined as the ~apacity of the robot
to decide what motions to exeoute in order to achieve i o<k specified by ini-
tial and goal spatial arrangements of physical objects. The motion planning
problem, however, does not consist. of a single, pre-determined problem. In-
stead, it can be viewed as a collection of several problems. which are more
or less variants of cach other.

Current research in path planning revolves arsund two models that are
based on different assumptions about intormation available for planning. In
the first model, called path planning with complete mformation (the Piaro
Movers Problem), perfect knowledge about the environment is assumed. The
second model, named path planning with incompletc information (or path
planning with wncertainty), assumes partial knowledge about the environ-
ment. This thesis uses the second model.

In our research. we try to solve the problem of motion planning in a
static domain by translerring the problem of motion planning from its phys-
ical form into a geometric one. This requires two assumptions. The first is
that the robot is the only moving object in the workspace (i.e. static environ-

el ignoring its dynamic properties. The second is to overlook the issues



related to mechanical interaction between two physical objects in contact.
Furthermore, we simplify the geometric issues by assuming that we robot is
a single rigid object. Unlike the static motion problem, the dvramic motion
problem cannot be solved by merely constructing a geometric path. Instead,
a continuous function of time specifying the robot’s configuration at cach
instant has to be generated. The dynamic motion planning problem can be
made more realistic by imposing constraints cn the robot’s acceleration and
velocity bounds. It is worth mentioning that, from a computational point
of view, the problem with bounded velocity and acceleration is substantially
harder than the problem without such bounds.

Next we present a brief summary of the existing techniques for motion

planning.

1.2 Planning Approaches: An Overview

There exist many methods for solving the basic motion platining problem.
As yet only a few solve the problem in its gencrality. For instance, some
methods require a two-dimensional workspace; others require the obstacles to
be of a spec&ﬁc shape. Despite the external differences. the existing methods
can be classified into three main approaches: roadmap, cell decomposition,
and potential fields. In addition, a minor fourth approach which uses tactile
sensing will be considered. These methods are introduced briefly in the

following subsections.
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1.2.1 Roadmap Approach

The general idea behind roadimaps is to capture the cennectivity of the
robot’s free space in the forin of a network of one-dimensional eurves. Onee
it is constructed, path planning is redueed to connecting the initial and goal
configuration by searching the roadmap. The resultant path is a concate-
nation of three subpaths: a subpath (rom the initial configuration to the
roadmap. a subpath centained in the roadmap. and a subpath connecting
the roadmap to the goal confignration.

The fundamental idea in this approach is chvionsly the construction of the
roadmap. Different methods have heen proposed 1o produce various tyvpes
of roadiiaps. They are: visibility graphs, Voronoi diagrams (retraction).
freeways, and silhoucttes. With the exception of the last method. the others
are liniited to two-dimensional (or three-dimensional) spaces. However. they
are clficient and easier to implement.

The visibility graph method is not only one of the carliest for path plan-
ning, it is also one of the simplest [26]. 1t is constructed by connecting every
pair of the obstacle’s vertices in the free space by a straight segment which
does not pass through the interior of any other obstacle. An example of a
visibility graph is shown in Figure 1.1. This method has been used widely
in the implementation of path planners for mobile robots. and several algo-
rithms have been proposed. Such examples are given elsewhere {22, 2, 13].
Morcover, the method has been considered a seed for a strean of research
work ov the shortest path problem [1]. Exiensions of the basic concept of this

method are studied by Canny {7].
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Figure 1.1: (Left) The visibility graph for a sel of obstacles. (Right) The
Vororoi diagram for the same sct of obstacles (note that the free space is
assumed to be externally bounded by a polygon). Free paths are shown in bold
straight (and parabolic) segments.

Tk retraction method [27] consists of constructing a roadmap by defin-
ing a continuous mapping, called retraction, of the free workspace onto the
roadmap. In a two-dimensional space, the free workspace is retracted on its
Voronoi diagram (one-dimensional subset of the free workspace that maxi-
mizes the clearance between the robot and an obstacle). This diagram is the
set of all possible free positions whose minimal distance from the obstacles
is achieved with at least two points on the boundary of two obstacles. The
frec paths that generated by this method are safer than the paths generated
by the visibility graph methods. This is because this method maximizes
the clearance between the robot and the obstacles. When the obstacles are
of a polygonal type, the Voronoi diagram consists of straight and parabolic

segments as shown in Figure 1.1. Different algorithms have been proposed
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Obstacles

Figure 1.2: (Left) The basic geomelry of a frecway. (Right) 4 path generated
using lhe freeway method is shown. The robol translates along the spines
(straight line segments).

based on this method [21, 12].

The freeway method. developed by Brooks [5]. is specifically applied to
robots translating and rotating among * Slvgonal obstacles, Tt is simply a
graph (freeway net) in which geometric fignres (freeway) from the workspace
are connected. A freeway is a straight lincar generalized cylinder whose
straight axis (spine) is annotated with the description of the free orientation
of a robot when it moves along it. The freeway net is a representation of the
possible motions of a robot aiong the spines and between them. The pair
of edges of different obstaciex that construct the freeway should be facing
cach other. Figure 1.2 illustrates the geometry of a freeway, and shows a

free path where the robot translates along the spines and may rotate at the
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intersecting points. It has been shown that this method works quickly for a
relatively uncluttered workspace. The method, however, is incomplete, and
hence may not always find a frec path even if one exists [14].

Canny [7] developed the silhouctte method which is guaranteed to find a
path if one exists, or reports failure otherwise. It is the only known complete
path planning algorithm. Nevertheless, it is complex to understand and to
implement. It involves tools from Differential Geometry, Elimination Theory,

and Topology.

1.2.2 Cell Decomposition Approach

Cell decomposition methods are the most extensive methods studied so
far. The basic idea is to decompose the free workspace into simple regions
called cells. A non-directed graph (connectivity graph) representing the ad-
jacency relation between the cells is constructed and then searched for a free
path. Each cell represented by a node and every two adjacent cells are linked
together. This approach can be subdivided into two classes of methods: exact
and approximate.

Exact methods decompose the free workspace into cells whose union is
exactly the free space. As in the Voronoi diagram, the free space is externally
bounded by a polygon. The free space is exactly decomposed into rectangular
cells. These cells are constructed by drawing vertical rays from the obstacle’s
vertices. Two cells are adjacent if they share a portion of an edge of nonzero
length. Once the connectivity graph has been built, a free path is computed

by connecting the initial and goal positions through the midpoints of the
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intersections of every two successive cells. Several references [29, 8, 3] provide
examples of planning algorithms that use this method.

The difference between approximate methods and exact methods is that
the union of the decomposed cells of the workspace does not always give the
original free space. Furthermore, the cells in this class are required to have a
simple pre-specified shape (e.g. rectangular shape). Such cells do not. in gen-
cral allow one to represent the free space exactly. Instead, an approximation
of this [ree space is constructed. The free space is recursively decomposed into
smaller rectangles. Each decomposition generates four identical new rectan-
gles. If the interior of a rectangle lies completely in either the free space or
an obstacle, it will not be decomposed any further. Otherwise, the process
of decomposition will continue until a predefined resolution is attained. The
free path is obtained as a sequence of free cells that are adjacent to each
other starting with the cell containing the initial position and ending at the
cell containing the goal. This technique was first proposed by Lozano-Peréze

and Brooks [6]; then. it was used by other rescarchers [10, 15].

1.2.3 Potential Field Approach

The potential field approach presents a different idea other than comn-
structing the global connectivity of the robot’s free space in the form of a
graph that is subsequently searched for a path. Rather, it treats the robot
represented as a point in the configuration space as a particle under the influ-
ence of an artificial potential ficld. The potential function is typically defined

as the sum of an attractive potential pulling the robot towards the goal and



a repulsive potential pushing the robot away from the obstacles.

The potential field method was originally developed as an on-line collision-
avoidance approach applicable when the robot does not have a prior model
of obstacles, but rather senses them while in motion [17]. In this approach
emphasis is put on real time cfficiency, rather than on guaranteeing the at-
tainment of the goal. Because of the on-line criterion, this approach may
get stuck at a local minimum of the potential function other than the goal
configuration. Therefore, most planning methods based on the potential field
approach are not complete. However, some of them are quite fast in a wide
range of situations [18, 19, 11, 4]. A generalized potential field function,
proposed by Krogh [20]. is an extension in which the potential function is
defined by both the position and the velocity of the robot. [t is constructed
in such a way that the robot is repelled by an obstacle only if it is close to
that obstacle and its velocity points towards the obstacle. An application of

this idea is reported by Tilove [31].

1.2.4 Algorithms Based on Tactile Sensing

Lumelsky and Stepanov [24] proposed two path planning algorithms where
no prior knowledge of the workspace is available. They assumed that the
robot is equipped with a position sensor and a touch sensor. It is then shown
that tactile sensory information is sufficient to guarantee reachability of the
goal. They also have presented upper and lower bounds on the length of the
paths generated by the algorithms. Later, Sankaranarayanan and Vidyasagar

[28] proposed new set of algorithms for the same problem but with lower time
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complexity. In [23], a study is made after incorporating vision into the nav-
igation module as another sensor. Lumelsky and others [23, 30, 9] described
other algorithms in robot motion planning (for manipulators and mobile

robots).

1.3 Thesis Organization

This thesis is presented in a paper format. Each subsequent chapter,
except the last one, represents a separate rescarch study!.

In Chapter 2 we describe a heuristic technique for solving the problem of
path planning based on local information for a mobile robot with accelera-
tion constraints moving amidst a set of stationary obstacles. The concept of
safety is introduced to design a planning strategy. A path which maximizes
the product of safety (based on local information) and attraction towards
the goal is chosen. The safety function depends on the acceleration bounds.
The attraction towards the goal depends on the distance from the goal. Two
additional heuristics are proposed to improve the efficiency of the search pro-
cess, and to enhance the ability of the robot to avoid obstacles. FFurthermore,
we incorporate a sensing capability such as vision in the planning model.

A new approach to gencrating smooth piccewise local trajectories for mo-
bile robots is proposed in Chapter 3. Given two configurations (position and
direction), we search for the trajectory that minimizes the integral of accel-

eration (tangential and normal). The resulting trajectory should not only be

!Chapters 2 and 3 are already accepted as journal publications whereas Chapters 3 and
4 are still under revision.



smooth but also safe in order to be applicable in real-life situations. There-
fore, we investigate two different obstacle-avoidance coustraints that satisfy
the minimization problem. Unfortunately, in this case the problem becomes
more complex and not suitable for real-time implementations. Therefore, we
introduce two simple solutions, based on the idea of polynomial fitting, to
generate safe trajectories once a collision is detected with the original smooth
trajectory. Simulation results of the different algorithms are presented.

In Chapter 4 we address the problem of planning a safe path for a mobile
robot, in the presence of moving obstacles, based on local information. We
consider constraints on the speed and acceleration of the robot. Moreover,
we take into account uncertainty in estimating the velocity of each obstacle.
The concept of safety is used to design a planning strategy. A path which
maximizes the product of static safety, goal attraction, and dynamic safety,
is chosen. The static safety depends on the acceleration bounds. The goal
attraction depends on the distance from the goal. Dynamic safety depends
on how far the robot is from a moving obstacle. We show that the velocity-
decomposition technique [16] is a sub-case of our approach when the direction
of motion is fixed locally. Simulation results of this approach are presented.

We introduce a technique for detecting moving objects from a moving
camera using the background constraintin Chapter 5. The camera is mounted
on a platform that can both rotate and translate. Motion is detected by
computing a mapping that correlates pixels in successive images whenever it
is possible. Assuming the background is planar provides knowledge that is
used to recover projected local velocity (u,v). Background compeisation can

be used to eliminate the effects of rotation and translation on the mapping

11



function. To increase the robustness of this technique, false motion caused
by inaccuracies in sensor readings are eliminated. This is achieved by using a
morphological filter, which consists of two successive operations erosion and
dilation, performed on the motion detection image. Experimental results
with real images are presented, which show the robustness of the proposed
algorithm in detecting independently moving chjects from a mobile platform.

The interrelationships among Chapters 2, 3. 4. and 5 and the conclusions
arrived at due to this whole work are presented in Chapter 6. As well,

possible future research avenues are discussed.
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Chapter 2

“Yeuristics for Locsa! Path

Planning!

2.1 Introduction

The problem of path planning for autonomous vehicles can be classified
according to two criteria: global versus local, and exact versus heuristic.

Global path plannitg requires a complete specification of the environ-
ment. This may not be possible in many real life situations. For example,
when driving on the road we only have local information about surround-
ing obstacles and vehicles. Thus we need planning strategies based on local

information.

YA, Elnagar and A. Basu. Heuristics for Local Path Planning. [EEE Transactions
on System, Man, and Cybernctics, 23(2).624-634, 1993. Preliminary results of this paper
appeared in the Proceedings of the 1592 IEDE Tnternational Conference on Robotics and
Automation.



Exact path planning requires that a path be found if one exists. This
can often be very difficult to accomplish even when a complete and precise
description of the surroundings is available. Various researchers have proved
that most exact path planning problems are intractable, unless the environ-
ment or planning task is extremely simple. Heuristic strategies, on the other
hand, may not find a path even if one exists. However, these methods have
significantly lower time complexity. In situations where complete informa-
tion aboul the environment is not available, heuristic schemes are useful since
global algorithms are not applicable.

The algorithm discussed in this work is a heuristic strategy based on local
information. We introduce a new concept of “safety-optimization” for path
planning. Consider the problem of driving on the highway. An experienced
driver will not drive a ~ports car and a family sedan the same way. 1t is safer
to drive a sports car at higher speeds than a family sedan because of: higher
bounds on its normal acceleration (due to lower center of gravity, better
tires, etc.) and better ability to speed up or stop (i.e., higher tangential
component of acceleration). There are two factors that control our strategy
when we drive: how safe it is to drive with a certain speed given the present
envirorment and how far we are from where we want to go. These factors
are henceforth referred to as safety and goal attraction, respectively. Safety
is a function of the speed. It is important to note that it may not necessarily
be safer to drive slower since speeding up would be more diflicult. Similarly,
driving too fast may make it more difficult to slow down when necessary.

Goal attraction is inversely proportional to the distance from the goal

(i.c. it attracts the robot towards the goal). This ensures that a generated
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path gets closer to the goal, if possible. Also, the importance of the attraction
towards the goal affects safety. Goal attraction in effect measures the urgency
of reacking the goal. For example, the way we drive can be quite different
depending on whether we are late for work or going on a weekend vacation.

In order to solve the problem of finding collision-free paths based on local
information cfficiently, it is often necessary to develop a heuristic approach.
Thus. we introduce two special-purpose heuristies: the “dead-end” and the
avoid-region”. Both heuristics will prune the scarch space and guide the
mobile robot towards its destination avoiding collision.

The next section briefly describes work in the area of path planning. Sec-
tion 2.3 introduces the notation used and defines our problem. The concept
of salety optimizing path planning is deseribed in Section 2.4. Section 2.5 de-
scribes the algorithm for planning a local path. Obstacle avoidance heuristics
are described in Section 2.6. Some experimental results are given in Section

2.7.

4

2.2 Previous Work

In the past, several authors |16, 8. 14, 11. 27, 1] have worked on the path
planning problem in a static, completely known environment, In [10], Hary
and Torras proposed an approach based on the idea of a configuration space
[16]. All the above references used global methods, which can generally be
viewed as a search process for a path in a graph. Several fundamental ques-

tions related to the complexity of various formulations of the path planning

problem in a static and known environment are answered in (3,23, 6, 4]. But
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in reality, information about the enviromment is generally not completely
known, with the exception of some specific industrial environments.

Khatib [12] has indicated that global methods will limit the real time
capabilities of robots in a cluttered environment because of the time needed
to perform the planning task. Consequently. he and other researchers studied
the problem of navigating between initial and goal positions in a static and
unknown environment.

Khatib [12] and Krogh [13] developed the idea of using artificial potential
fields from two different perspectives. The main idea was to model a repulsive
potential field around each ! stacle and an attractive potential field around
the goal. The net force ol hoth fields will push the robot away from the
obstacles and towards the goal.

Chattery [5] introduced some heuristics to move a mobile robot using
sonar sensors, in an unknown environment. However, these schemes can-
not always guarantee a path simply because the mobile robot can eithes be
trapped or oscillate between obstacles under certain conditions. As a result,
several researchers attacked this problem proposing different solutions, for
example see [7].

Tilove [26] presented an overview of the artificial potential field method,
described the common variations in a unified framework, compared the per-
formance of different algorithms, and corrected some misunderstandings on
this topic.

In [20], Mitchell presented a path planning algorithm for a special domain
which contains roads, trees, and cars. Rowe [21] extended Michell’s work by

including some extra objects in the domain and by considering some new



Licuristics.

Lumelsky and Stepanov [18, 19] studied the problem of reaching a given
goal position in an unknown static environment. They proposed two non-
heuristic algorithms to solve this problem. Recently, Sankaranarayanan and
Vidyasagar [22] discussed the time complexity of the previous non-heuristic
algorithms, and proposed a new set of algorithms with a lower complexity.
Unfortunately, these algorithms are not always applicable in real time. es-
pecially in cluttered environments where intensive computation is needed to
generate a path. Lumelsky and Skewis proposed other algorithms for the
same problem after incorporating vision [17, 24].

Steer and Larcombe [25] presented an algorithm designed to provide a
robot vehicle with suflicient intelligence to optimize its behavior while navi-
gating between different configurations iu the workspace. They studied issues
concerned with producing planned paths that cannot be achieved in practise
by a real vehicle.

The methed presented in [9] contributed some of the basic ideas used
in developing the algorithm described here. Our algorithm computes a path
under certain constraints on the mobile robot such as the acceleration bounds
and the local visibility. Now, we will introduce some notation and define the

problem.

2.3 Notation and Basic Definitions

First we describe a theoretical approach to addressing our problem to

motivate the concepts, such as safety optimizing strategies, introduced in

(8



this paper. Then we will describe a practical approach to this problem and

show some implementation results.

2.3.1 Notation and Problem Statement

Specifically, the problem can be stated as follows:

A mobile robot (M R) has to be continvously moving from p,. the starting
point, with an initial orienlation (0) to p,. the goal, in a 2-dimensional plane
with obstacles. At any point on its path, the robot knows only its current co-
ordinates and those of the goal. Nothing is known aboul the obstacles outside
a given visible region. Also there are bounds on the speed and acceleration
of the MR. Undecr the above conditions we want to find a local velocity such
tha! « given function (to be defined) is optimized. Failure is reported if a path
does not exist.

To address the above problem we need the following notations:



Notations
Symbol Definition
v velocity @ (v, vy)
s speed @ y/(vZ + v2)
sy | future speed, an unknown variable which is assumed to

l. follow a certain distribution.

Ar Maximnm tangential component of acceleration.
An 5 Maximum normal component of acceleration.
AT | Time within which a velocity change needs to be
achieved.
S Maximum bound on speed.

Tangential acceleration at time t.

Normal acceleration at time t.

an(t)
k(L) Curvature at time t.
0 Orientation of the robot.
o) Angle of visibility ficld.
r Radius of visibility field.
n Number of obstacles.
m Number of rays in any local search window.
k Number of local search windows.
/ Indicator function, defined by :

1 if coudition A is true

0 if A is false

I(A) =




2.3.2 Definitions

To introduce the problem formally, some basic definitions are needed.
Consider W to be the workspace of all possible positions in which a mobile
robot (M R) may be placed. W is represented as a subset of the Euclidean
space R%. Fyy is a fixed frame of reference embedded in 1. Similarly Fag is
the cartesian frame of M R. At any time, we shall consider the M R (circular
object) as a point in W which can be represented by its coordinates with
respect to [y, and an orientation (4) of Fy;p with respect to Fiy. The
initial and goal positions in W are denoted by p, and p, respectively. 7
defines the M R position in W. The function d : 1 x " — R denotes the
Euclidean distance.

Definition 2.3.1 A configuration q of M R is a specification of the position
and the orientation of Farp wilh respecl to Fyy. The position refers to the
carlesian coordinates (x,y) in W, and the orienlation refers to the angle (0)

between the y-azes of Farp and Fyy.
Definition 2.3.2 Let Oo,0y,...,0,_; be fized static polygonal objects dis-
tributed in W. Each O; represents a subset of W. We define a function

Fo : 1 — {Oi}iel
where I = {0,1,...,n — 1} is the domain, and the family of sets {O0:}ier is
the range .

Definition 2.3.3 The total workspace region occupied by n obstacles is given

by:

n—1

Wo = | Fo(i)
=

o
o1



Definition 2.3.4 The Local Search Window (LSW) specifies the visibility
range of the MR, which is defined as a circular sector with an area sor,
where ¢ (¢ € [0,27)) is the visibilily angle, and r is the radius of the visibility
range. We define r* (1~ ) as the right (left) sides of the circular sector. The
LSW is represented by a set of cqually spaced bounded rays, {R;}jes. FEach
ray is defined by a set of points. The number of points =[r/¢], where ¢ is the
discrelization size. A¢ is the angle belween any two successive rays. Thus

the actual set of grid points in the i LSV is:

LSW! = {R;}es.

qp

where J={0.1.....m —1}. and m = |

| S—

3l

Definition 2.3.5 The sel of grid points that are free in the ith LS is:

n—1 m-—1
Lswi, = {Lswi \(JO;NU R
7j=0 =0

Definition 2.3.6 Thc set of grid points that are visible to the MR in the ith
LSW is:

m-1
L.S'\'Vlf,”) = {|J R}, where
) =0
min B if (RN (05) = { )
RI =

R; otherwise

The number of grid points in Ry = |r/c|. whercas in R;

n-1

I'Ype (i ()(0;)

J=0

. L:l‘l.i7z. d(p, p)

4



Definition 2.3.7 The Reachability Condition (REACH) is a ir:i , e
formed at each grid point (p) to verify if it is rcachable from the curreat

position of the MR given constraints on the acccleration and the speed.

{p} Ullar(p) < Ar) Aan(p) = Av) A{sy{p) < S)]

{} otherwvise

REACHY(p) =

Definition 2.3.8 The set of reachable grid points for the A1 iu the it L.SW

s

LSW! == {{plpe LSW!

rap vyp

} () REACH (p)}
where p is a grid point.

Definition 2.3.9 The local frec workspace along the gencrated path is a sub-

set of W given by:

Wit = {(LSW, o ier, 1=1{0,1,...,k—1}

Sree

Definition 2.3.10 A free path of the MR from p, to p, is a continuous
mapping
T [0,y — Wl

where T(0) = p; and T(ty) = p,.

The next section describes the two factors that are used in our planning

algorithm.



2.4 Safety and Goal Attraction

There are two factors that are taken into account while computing the

optimum local velocity. They are :

o The likelihood of remaining within the acceleration bounds at a future

instant of time,.
e IIO\\' “]ll(_'}l ('1()3(3!' are we Lo Ih(‘ ‘C,;O“l‘

For the current analysis we do not consider clearance from obstacles [26] as
a criterion for safety. However, this factor can also be taken into account.
The first condition above generates a value which we refer to as the safety.

The second factor measures the attraction to the goul.

2.4.1 The Safety Function

To compute safety we consider all velocities in a given range to be equally
likely at a future instant of time. Then. given a local velocity and the ac-
celeration bounds, we compute the probability that the vehicle can maintain

the kincodynamic constraints. Thus the safety corresponding to a speed s is:
f(s) = Prlep(t) € Ay and an(t) < Avls]o 01 <y

Since obtaining an optimal acceleratic i straicgy is not easy, we assume for

the analysis:




l.e., the rate of change of direction is constant with respect to time in the
interval AT in which the velocity change takes place. It follows immediately

that:

do dt 1 A0
di dl — s(t) AT

So, il s is the speed before time 4y ! and s is the speed after {g, and AT is a

r(t) =

small time interval around #o in which the velocity change has to be achieved,

then
) _ i(t)s? =58 ifs> s
maximum normal acceleration =
.s/% if s < sy

Now assume that all speeds between (0. S) and all directions between (0,

IT) are equally likely in future. Then,

. 1 s il Al (S-—Sf)
S = — < An) J(———2 < Ap) dOds
f(s) SH/O,/O I(SAT" ~) I < Ayp) dOdsy
1 s Al (sy—s
= <Ay I L < Ap) dod
SH/S /o Horg < An) IR S Ar) dodsy

We can show that,

+

A NAT

if < IT and A4AT < s, then

S -
ANAT ArAT
IS s

f(s) + (log(s + ApAT) = log(s)))

Similarly, f(s) can be obtained for several other cases (see Appendix A for
details). It can be shown that the safety function increases monotonically to
a peak, the safest speed, then decreases monotonically. Figure 2.1 shows the

shape of f for a given set of parameter values.

1o is the time between successive planning steps. We assume velocity changes contin-
uously in the interval (0, AT') (i.c. acceleration is constant in this interval). Note that AT
is less than ¢g.
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Figure 2.10 The cffect of acecleration bounds on the safcty function

Proposition 2.4.1 The safcty function | increasea monotonically to a peak
and then decreases monotonically. In the degencrate cases where the peak is

at the left (or vight) boundary. f is monotonically deercasing (or increasing).

Proof:

Refer to Appendix B.

2.4.2 The Goal Attraction Function

The second criterion that we consider for planning & path is: “How im-
portant is it to reach the goal quickly?” If there is no urgency in reaching
the goal, then all we need to do is be safe at present. As the importance

of reaching the destination is increased the relative importance of being safe



at present is decreased. This can be modeled by selecting a velocity which

maximizes the product of the salety and the goal attraction.

Goal attraction (g(c))

0.0 100.0 200.0 300.0 400.0 500.0

Distance from the goal (d)

Figure 2.2: The cffect of K on g(d).

Let us now conside: the second function, the goal attraction. We define :

K .

g(d) = (m,-

, where N and C are constants > 0.

This implies that g(d) increases as d (the distance to the goal) decreases. As
in other potential field methods, this property makes g(d) a parabolic-well
function. The parabolic-well functions have good stabilizing characteristics:
they converge to a certain maximum value (1 for g(d)) when the robot gets
closer to the goal position [12]. Thus, if we maximize the product of f and g,

the strategy would be to try to maximize safety and at the same time reduce
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the distance to the goal?. The constant & in the function ¢ Indicates the
importance of getting closer to the goal. If i is large, ¢ increases slowly as
d decreases. This implies that the urgency of reaching the goal is inversely

related to A Figure 2.2 shows the shape of the function ¢ for various values

of k.
1 .0 v T M T T T
e g(d)=[100,/{100+d)]° .
——— Q(d)=[300/(300+d)]°
.8 Cm=§1,...5¢
=
= o.6
[ ==
=
E
T o4
=
(=]
o
0.2
0.0 100.0 200.0 300.0 400.0 500.0

Distance from the goal (d)

Vigure 2.3: The offeet of C on g(d).

The constant € can be used to determine if ¢ dominates foo s
increased, g increases more sharply as d decreases. The shape of ¢ lor various
values of (" is shown in Figure 2.3, We now procecd 1o deseribe our algorithm

in greater detail.,

*The attraction function (g(d)) may be redelined as a constant-magnitude function
{conic-well type) that is independent of the distance to the goal [2]. However the conie-
well functions do not have the stabilizing characteristies of the parabolic-well functions

(15].
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2.5 Algorithm

We model the local nature of information about the environment by con-
sidering a visibility range. Inside this range the regions that are accessible
with a single velocity from the current point (referred to as reachable regions)
are determined. The reachable regions are then searched, using a grid, to
obtain the optimum local velocity that maximizes the product of safety and
goal attraction. This process is continued until the goal is reached. Thus the

algorithm used can be described by the following steps:
g A g |

L. Discretize the lovcal visibility window. Searching a continuous space for an
optimum local solution is hard. So we discretize the local visible region
into a set of equally spaced grid points, and scarch for the optimum in
the discretized space. The size of the window scarched represents the

region that is visible to the robot.

I1.  Find optimum velocity. First we determine if a local grid point is reach-
able by a single velocity from the current point, without going through
any obstacles and maintaining the acceleration constraints. T'he points
selected are then pruned so that a direction which leads the robot into a
local obstacle is avoided. The “dead-end™ and “avoid-region” heuristics
are used for obstacle avoidance, and are described in section 2.6. For
a reachable grid point we compute the product of goal attraction and
safety. Then, we choose the grid point for which this praduct (hence-
forth referred to as overall safety) is maximum. Thi¢ & termines the

optimum local velocity.



1. Continuc process. Repeat steps 1 and T1 until the goal is reached.

Note that we do not construct the reachable regions, but, for cach grid
point we check whether it is reachable or not. This makes the algorithm
inherently parallel and easily implementable in real time. We now outline a

simple proposition.

Proposition 2.5.1 The local velocity seleeted always lakes the robot closer

to the goal, if any such reachable points crist, provided:

(a) The safety function f has a positive value at 0.

(b) C is large enough.

Proof:

Suppose a robot is at a distance « from the goal. There are many reachable
points that the robot can move to. However, they can be classified into two
sets. The first one contains all reachable points that takes the robot closer
to the goal. On the other hand, the second set contains all reachable points
that does-not take the robot closer to the goal. If we want the robot to get
closer to the goal, if possible, the value of the overall safety for any point in
the first set should be higher than the corresponding value for any point in
the second set. In other words, the minimum overall safety for the first set

should be greater than the maximum overall safety for the sccond.

e The minimum in the first set is achicved for a point which is at a
distance (a — €), ¢ is the discretization size, from the goal, with safety

Sg.



e The maximum in the second set is achieved for a point which is at a

distance « from the goal with safety $,.,,.

It is important to note that € < a and (o — €) < a. Also, s < Spas-
Overall safety for the first point is:
K c
Sog(a —€¢) = sg(—————-r
Og( ) 0(]\ +(()—C))

and, overall safety for the second point is:

K -
Smu.r.q(a) = Sma;zr(m)c
In order for the robot to choose the first position instead of the second one,

C has to be large enough so that the following inequality is satisfied:

'Sﬂ(ﬁ%—_—_—a)c > s.,,m.(l\’]_:_ - c
[’ . ! Smar
= Clog(T\’é%i_c)) S log(s’;(’)”’)
log(*3%)
= C > m

. [ log(2usz) J
= Kto
log( l\'-}-\(o—c) )
In the case sg = Smaz, the first point will be always chosen, since the value

of the attraction to goal function of the first point is higher than the corre-

sponding value of the second point.



2.6 Heuristics for Obstacle Avoidance

In this section, we introduce two special-purpose heuristics that exploit
domain-specific knowledge to guide the search for a solution avoiding ob-
stacles. The “dead-end” heuristic is used to guide the mobile robot (M R)
around an obstacle in a dead-cnd situation, and the “avoid-region” heuristic

prunes the search space.

The mobile i
robot. c

Set of points
to be searched.

{C) A part of tire obstacle that (D)
D

; A part of the obstacle that is -
¢ not detected by the robot. c

Figure 2.4: (A) shows compleie blockage with the M R stuck at c. (B) skows
partial obstruction, where the obstacle is totally inside the M R’s local search
window. {C) and (D) illustrate the case where a part of the obstacle has been
detected.

The local path, computed as described in the algorithm, defines a solution
unless the M gets stuck in front of an obstacle (Figure 2.4(A)). We define

a dead-end point (DEP) as follows:
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Definition 2.6.1 Dead-End Point (DEP) is a point where the MR faces

an cbstacle which blocks its LSW while navigating towards the goal.

For example, the point ¢ in Figure 2.4(A) is a DEP where the arca (ach)
represents the local search window of the A/ R at point c.

A local cycle is defined by:

Definition 2.6.2 A path contains a local cycle if the MR encounters a pre-

viously wisited DEP in its path towards the goal.

2.6.1 Dead-End Heuristic

The “dead-end” heuristic is designed to avoid an obstacle whenever a

DEP is encountered. Formally, it is:

Definition 2.6.3 Dead-End Heuristic (DEH) is a special-purpose heuris-
tic applied whenever a DEP is encountered. We define (FP(R)) as a function
which takes a set (R) as inpul and returns the first clement of that sel or the
empty set as outpul. If the MR encounters a DEP in the i'" LSW, then

m-—1

LSWREH = | J{(pIFP(R;) = p) N(REACH (p))}

7=0

For instance, if there is an obstacle which blocks the local search window
of the MR at a certain instant of time, the heuristic will guide the MR to go
around the obstruction. This can be achieved by selecting a new position and
a new orientation for the A R. The new position should be at a minimum
distance from the current position of the M R, and have a maximum possible

angi (@) from its current orientation so that the M R avoids the obstruction



as much as possible. It is clear that we have two sets of positions satisfying
the above requirement. One set is to the left of the M R and the other is to
its right. The choice between these sets is determined randomly at a DEP,
and the chosen direction is followed until the current obstacle is avoided.
If the MR encounters another DEP with a different obstacle, it will apply
the heuristic again. We adopt this approach because randomization is much
better than choosing a specific direction (left or right) along the path. It
guarantees that the A/ R does not keep on moving in a loop (Proposition
2.6.2). Afterselecting a set of points, the 3/ /7 starts testing for the point that
has the maximum possible orientation angle from its current orientation (0).
If the point is reachable then the 3/ £ will move to it and start planning again
from that point, otherwise it will look for the point with the next maximum
orientation, and repeat the process until it finds a suitable position.

One advantage of the above heuristic is that it increases the capability of
the MR to avoid dead-end situations. Another benefit is that it prunes the
scarch space. However, it does not take into account partial obstructions.
the removal of which constitutes a key factor in improving the efficiency of
the algorithm (Figure 2.4(B,C and D)). Therefore we introduce the “avoid-

region” heuristic.

2.6.2 Avoid-Region Heuristic

The “avoid-region” heuristic is applied whenever the A/ R defines its local

search window. It can be defined formally as follows:

Definition 2.6.4 Avoid-Region Heuristic (ARH) is a special-purpose
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heuristic applied whenever the MR encounters an obstacle or part of an ob-
stacle in its LSW, and d(ps,p,) > r. We define (RI(p)) as the function
which takes a point (p) as input and relurns the nearest ray index to p in
the i" LSW as output. Then we define three cases depending on the obstacle

(O1) intersecting v+, r=, or ncither.

{(plp € (UiR1p) B5)) A(REACH (p))} if O et # {}
LSW™ = ¢ {(plp e (UL R;)) A(REACH (p)}  if O,n 1= #{}
{(plp & (UiZRite) B5)) N(REACH (p)} if O C LW,

where py, pa, p3, and py represent the obstacle vertices (O)) that are in the

i*" LSW (see Figure 2.4(B,C, and D) for explanation), and p is a grid point.

The purpose of this heuristic is to detect the nearest visible obstacle from
the M R, if one exists. When the detection is successful there are two possible
cases. First, when the MR detects an obstacle that is entirely inside its local
search window (Figure 2.4(B)), and second when the MR detects a part of
an obstacle in its local search window (Figure 2.4(C and D)). In both cases
the MR will define the area which will be avoided and no longer searched.
The shaded areas in Figure 2.4 represent the avoided regions. For the first
case (Figure 2.4(B)) the MR will search two arcas (L and R) to the left
and to the right of the obstacle. Note that the AR does not need to know
exactly if an obstacle is entirely inside the LSW but rather its visible parts
from the M R position. In the other situation (Figure 2.4(C and D)) the MR
will search only one area (L or R) either to the left or to the right of the

obstacle.



In some cases the collision-free paths generated after applying the pro-
posed heuristics may lack smoothness. This happens because the proposed
search process may lead to sudden direction changes, in particular when the
“dead-end” heuristic is applied. It should be noted that the M R will never
generate these paths without the heuristics. Thus, we sacrifice the smooth-
ness criterion for increasing the M R’s capability of generating collision-free
paths in specitic environments. Experimentally it has been observed that
both heuristics help in reducing the scarch time.

Using the obstacle-avoidance heuristics the local free workspace may be

reduced. Hence the local free space needs to be redefined as:

Definition 2.6.5 The local free workspace along the gencrated path is a sub-

set of W ogiven by:
Wil = {LSW, o tier, [={0,1,... k- 1}

In the following subsection we will describe some formal results of the

heuristics.
2.6.3 Properties of Heuristics

Lemma 2.6.1 Ifp;, € LSI'Vrjyp then Pz € [.6'1'1/',?9}) provided that Ps_i €
LSWJ

vgp*

Proof:
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Since p; and p_s_ _; are symmetric around the radius (). Then
ag¢

d(ﬁ’pi) = d(ﬁ’pﬁ%—i)’ and
lop.' -0 = Iopl_'. —0|.

==  Both points have the same speed and acceleration.

So, pi € LSWi

Zop N Pe i € LSW) = Pe ;i € LSW} .0

vgp
Lemma 2.6.2 At any DEP, the choice of a new configuration ¢ = (pir 0p,)
should satisfy the condition: (771’a‘7:0p,e[0-§.0+¢] |0p, —01), Vpi € LSW,!Q‘.

2

Proof:

Suppose that the M R is at a DEP (p;_;) with an orientation 0p,_,. According
to the algorithm, the new position of the MR (p;) should have a maximum
possible orientation angle (0,,) from 8, _,. That is

O, 2 Ops + 2V (05, < (0, = 2))

provided that p; € LSW/

+op- Hence the proof. O

Proposition 2.6.1 Consider an obstacle (O;) that is not overlapping with
any other obstacle (O, 1 € {0,1,...,n = I} A(l # 7)) in W. If the MR
encounters a DEP (p) with O;, it will define a finite minimal number of
DEP’s in ils chosen direction of motion before clearing from 0O; provided

that a reachable point exists.

Proof:

Follows from Lemma 2.6.2. DO



Lemma 2.6.3 I[N Fol(i) = {} then a frec path always exists from p, to

Pg-
Proof:
Follows directly from Lemma 2.6.2 and Proposition 2.6.1. O

Lemma 2.6.4 W[l C |yjec!

Proof:

Follows directly from Definition 2.3.10, and Definition 2.6.5.

Proposition 2.6.2 The MR always finds a path from py to Py i the follow-

ing conditions hold:

(1) A path cxists.

(2) Wil # {}. and p, € Wit

Proof:

To prove this proposition, we have to consider two cases :
(a) Vi,j ((#£)AO<ij<n—1)) = (0;N0,)={}
(b) 3ij (£ NAQO<ij<n—1) = (0,100,)# {)

The proof of (a) follows from Lemmas (2.6.1 and 2.6.5), and Proposition
2.6.1. Whereas to prove (b) we nced to consider the case where the MR
is located among a set of obstacles. Consider the case when ! obstacles

are overlapping (say {Oo,0s,...,0,_,} and | < n). Since a path exists



(condition (1)) then there should be a gap > ¢ between two obstacles (say
Op and O,-1). The M R will either escape through this gap and then generate
its path towards the goal (Proposition 2.6.1), or get trapped in a local cycle
by looping and returning to the same DEP. But this is impossible because
the probability that the A R will repeat the same cycle (after applying the

DEH) forever is: lim,_« 2—1,; =0 0

2.7 Experimental Results

In this section, some simulation examples of the algorithm described be-
fore are discussed. These simulations correspond to different navigation en-
vironments. As mentioned earlier, several parameters have to be input to
the system. We will study the effect of varying some o/ them, namely: ac-
celeration bounds, initial orientation, and visual range. Moreover, we will
present some experiments where the dead-end heuristic is applied. The mov-
ing circular sactor in all figures corresponds to the local search window or
the visual range. Keeping the distance between the grid points small helps
in generating smooth paths. The shaded areas in the local search windows
correspond to the forbidden areas generated by the avoid-region heuristic.
For illustrative purposes, we used three grey levels and a unique dark shade,
next to black, for indicating blockage zones (Figure 2.5).

We start with the following parameter values: distance between grid
points = 1 cm, i.e. the navigation space is represented by a square grid
of 10 x 10 m?, attraction to goal factor K = 300, C =1, tangential accel-

eration bound = 5 em/sec?, normal acceleration bound = 4 cm/sec?, time
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Figure 2.5: A simulatcd environment to explain the shades and components
of the planning process.

to accelerate from current velocity to the next one = 3 sec, maximum speed
bound = i3 cm/sec, initial speed for the car while approaching the start
point = 1 em/scc, initial orientation = 130°, time to plan a path in the local
search window = 10 sec, radius of local search window = :0 cm, angle of
local scarch window = 60°. Figure 2.6 illustrates the path generated by the
MR from the starting point to the goal according to the data given above.
Subsequent experiments will depend on the same set of data except for the
values of one or two parameters that will be studied. The arrow, at the

starting point in all figures, represents the initial orientation of the MR.



45

Folygon
Fath N
Froject
Cisplay
Cigar

exit

Figure 2.6: [nitial path
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Figure 2.7: A new path generated after a slightly different allocation of ob-
stacles.
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Figure 2.7 shows the effect of modifying obstacle locations in the work
space. It demonstrates how a slightly different allocation of obstacles may

change the path. Figure 2.3 shows the path after increasing the tangential

Figure 2.8: A new Path where Ay = 9 cm/sec? and A, = 8 cm/sec?.

and normal acceleration bounds to 9 em/sec? and 8 cm/sec? respectively.
From the vewly aenerated path, we conclude that the time needed for the
MR to plan znd {eilow its new path is much less than the time needed before
(Figure 2.6). Thir is a direct consequence of the reduced number of local
secarch windows used. The effect of changing only the normal acceleration
bound is studied in Figures 2.9 and 2.10. We start with A, = 6 cm/sec?
and then decrease it to 3.5 cm/sec” in Figure 2.10. The resulting path shows
clearly the ability of the MR to make <harper turns. For example, the turn
alter the third obstacle in Figure 2 v i- <harper than the corresponding one

in Figure 2.9.
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Figure 2.9: A new path where A, = 9 cm/sec? and A, = 6 cm/sec?. Note
the turn after the third obstacle.
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Figure 2.10: A new Path where A, = 9 cm/sec® and A, = 3.5 cm/sec?. Note
how the turn after the third obstacle has been smoothed.
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Figure 2.11: A new path where A, =5 cm/sec* and A, = 6 cm/sec?.

Figure 2.11 shows the path generated after reducing the tangential ac-
celeration bound from 9 cm/sec?, in Figure 2.9, to 5 cm/sec? keeping the
normal acceleration bound fixed. In order to investigate the effect of tan-
gential acceleration on smoothness of the path, we show the paths in 3D,
where the vertical axis represents time. Figures 2.12 and 2.13 corfespond to
projections of the path in Figure 2.9 from different viewpoints. Similarly, we
generate the [igures 2.14 and 2.15 of the path in Figure 2.11 from the same
points of view. The comparison of both sets leads to the conclusion that
the path of Figure 2.11 is smoother. For clarity, we show all obstacles only
in the first set in 3D, and do not display temporally grown obstacles in the
remaining figures.

Examples using the dead-end heuristic are shown in Figures 2.16 and 2.17.

oo
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Figure 2.12: 3D projections for the path of Figure 2.9. (Left) shows the
obstacles in 3D. (Right) the same path from another viewpoint.
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Figure 2.13: (Left) A projection wkere we can see the last part of the trajectory
is not very smooth. (Right) Another projection of the same path.
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Figure 2.14: 3D projections for the path in Figure 2.11. (Left) and (right)
show different views.
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Figure 2.15: (Left) A projection where we can see the last part of the trajectory
is smooth. (Right) Another projection {compare with Figure 2.13(right)).
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Figure 2.16: A new path where the MR chooses the left direction. Note the
DEP in front of the fifth obstacle.
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Figure 2.17: A new path where the MR selects to go right randomly. Also, it
follows the fifth obstacle boundary.



As mentioned earlier. the direction of navigation is chosen randomly when
the MR gets stuck in front of any obstacle. We show two experiments in
which the MR chooses the left direction in one (Figure 2.16), and goes right
in the other (Figure 2.17). The dark gray color, next to black, corresponds
to the blocked region. For example, consider the DEP in front of the fifth
obstacle in both experiments. Due to the goal attraction, in Figure 2.17, we
notice that the MR follows the boundary of the obstacle. This will be clearly

explained in the last set of experiments?.

Folygon
Fath N
Project
Cisplay
Mear

exit

Figure 2.18: A new path after increasing 0 to 210°.

Finally, we study the effect of changing the initial direction. In Figure
2.18 we let § = 210°, while in Figure 2.19, § = 30°. We also show two cases

of obstacle boundary following. The first one appears in Figure 2.18, when

30Obstacles can be expanded with a certain tolerance to overcome the problem of touch-
ing obstacle boundaries.
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Figure 2.19: A new path after decreasing 0 to 30°. Note how the MR follows
the boundary of the first obstacle.

the MR detects the last obstacle on its way to the goal. The MR selects
the direction shown in the Figure because it is the shortest way to the goal.
Similarly, the MR finds its way around the first obstacle in Figure 2.19.

A major drawback of most potential field methods is the possibility of
getting stuck at a local minima. In Figure 2.20 we illustrate this problem
with an example taken from [15]. Here the robot gets trapped at position X,
where the net repulsive force (F},) from the obstacle exactly balances the
attractive force of the goal (F'm). Thus X is a local minimum of the total
potential function®. However, using our method we generate a free path for

the same environment (Figure 2.21).

“For more details on this subject, please refer to [15, 26).
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Figure 2.20: An ezample where a potential ficld method Jails to find a path.
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Figure 2.21: (Left) The MR plans its path avoiding the obstacle totally using
the avoid-region heuristic. (Right) The resulting path after reducing the LSW
(note that the dead-end heuristic is applied first).




2.8 Conclusion

We presented a new approach with heuristics to path pi « ni..g using culy
local information and a knowledge of the start and the goal positions.
experimental results showed how heuristics help enhance the search process,
and the robot’s ability to avoid obstacles. The concept of safety was intro-
duced. Safety is a function of the speed of the vehicle with the acceleration
bounds being the parameters. In order to draw the robot closer to the goal,
a goal attraction function was used. To avoid obstacles, we proposed iwo
special-purpose heuristics: the “dead-end” and the “avoid-region”. Both
heuristics were used to prune the search space and to enhance the ability of
the mobile robot to avoid obstacles.

In future we intend to address the planning problem in the presence of
moving obstacles. For instance, the safety model described in this paper is
intended for generalization to dynamic domains. We assume that the robot
may need to speed up in order to avoid other moving obstacles. We have not

completed the work yet.
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Chapter 3

Piecewise Smocth and Safe

Trajectory PlanningT

3.1 Introduction

The problem of finding a time-minimal path within a certain class of
paths defined on a time interval was first addressed by Dubins [5]. He found
a solution to the shortest curvature bounded path in the absence of obstacles.
Later, Laumond [13] studied this problem in the case where obstacles in the
workspace must be avoided. Unfortunately, his solution is not guaranteed to
always find a path. Different treatments of the above problem may be found

in [9, 4].

YA. Elnagar and A. Basu. Piecewise Smooth and Safe Trajectory Planning. Accepled
to appear i the International Journal of Information, Education and Rescarch in Robotics
and Artificial Intelligence (Robotica). Part of this work will appear in the Proceedings of
the 1993 TEEE/RSY International Conference on Intelligent Robots.
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The problemn of finding the plane curve of minimal elastic energy with pre-
scribed endpoints and end-directions was solved by Horn [8]. lle minimized
the integral of the squared curvature in order to obtain a smooth planar tra-
Jectory that passes through two different points with given directions. Kallay
[10] extended Horn’s work by adding another constraint ou the length of the
trajectory. Recently, Brucktein and Netravali [1] presented an interpolation
meihod, based ¢ the work of Horn and Kallay, that is simple to implement
and yields optimal trajectories with expected behavior (i.e., circular arcs in
symmetric situations). Moreover, they described a simple numerical proce-
dure for computing piecewise linear approximations of optimal trajectories
as a solution to the discrete two-point boundary value problem.

Kanayama and Hartman [11] proposed “cubic spiral” curves, which pro-
vide optimal smooth paths for turns. They used two different measures for
smoothness of curves: one expressed in terms of curvature and the other in
terms of the derivative of curvature.

Smooth trajectories are useful in many different fields of research, such
as computer graphics, geometric design, and robotics (motion planning). We
want to address the problem of finding a smooth trajectory between two
given positions and two given orientations of a mobile robot (MR) in 2D.
The trajectory of the MR can be represented as a sequence of configurations,
where each configuration specifies the position and orientation of the MR at
a specific instant of time. In rohotics, this problem is addressed in most of
the nonholonomic motion planners that have been proposed so far by the use
of straight segments of lines and/or arcs to connect configurations [9, 6].

Smooth trajectories are desirable, and may be essential in some cases, for
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mobile robots.  We optimize a smoothness criterion which is a function of
acceleration. There are two components of acceleration: tangential (forces
on gas pedal or brakes) and normal (forces that tend to drive a car off the
road while making a turn). We want to search for the trajectory along which
a mobile robot will be able to accelerate (or decelerate) to a safe speed in an
optimal way. We assume partial knowledge about the environment, and the
presence of stati- obstacles.

In the next section we brielly describe the different components of ac-
celeration. In Section 3.3 we introduce the minimization problem, and then
divide it into two subproblems which are solved to find smooth trajectories.
In Section 3.4 we answer the question: “How can we find a trajectory that
1s not only smooth but also safe 7. Finally. we present some experimental

results,

3.2 Tangential and Normal Acceleration

Suppose that at time t a mobile robot is located at point p = (r,y) with

orientation ¢(t) on a curve 7. 7 is defined parametrically in 2D by
= f(1)and y = g(1)

where " and ¢" exist. If we denote the speed (%) by s: L is the arc length

along 7; and the curvature x = ﬁ, witere p is the radius of the curvature of

7, then the acceleration at time t can be expressed in terms of a tangential

ds

component (4

2
) and a normal component (%) as follows:

ds, . s?
alt) = T + SV
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where T'(1) and N(!) are the tangential and normal unit vec! r .. anectively.

Note that

2
an = 8T q.quﬁ dt d¢

pdtdl T Su

where %—‘f is the rate of change in orientation with respect to time along 7.

Figure 3.1 illustrates the geometric interpretation of a. If the tangential and

Figure 3.1: A geomelric inlerpretation of @ = apl + ayN.

normal components of @ are denoted by ag and ay. respectively, then we
may write:

a=arl +ayN
Since T' and N are mutually orthogonal unit vectors

a? = arfv + (L?V



3.3 The Minimization Principle

A trajectory 7 represented parametrically by (z(¢),y(t),¢(t)) on a time
interval I = [t;,{;] is called smooth if 2/(t) and y'(t) are continuous on 1
and not simultancously zero, except possibly at the endpoints. 7 is called
piccewise smooth if it is smooth on cach subinterval (7,) of some partition of
I :[{{, t’f] A trajectory 7 can be represented as a sequence of sub-trajectories
7. T (nis the number of planning steps). Fach sub-trajectory (say ;) 18
represented by a sequence of configurations (a(1), y(1). (1)) VL € [l{ ijf] join-

ing the boundary-configurations («(),y(t}), 6(t?)) and (e(t7), yliy), o(l}))
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The problem described here is as follows: given two boundary-configurations

(i yi,¢i) and (27,95, ;) in a 2D plane. we want to determine and to com-
pute the smoothest sub-trajectory 7; joining these boundary-configurations.
The minimization function that finds the smoothest sub-trajectory (75)
is defined as:
5
J = min/ a’dt (3.1)
a )

1
!

- min/ﬂl[s'(t)]" + [s(D)e'(1)]2dt

S,

We now proceed to find the set of actual extremizing functions s(¢) and o(t)

of J. Let

J = x‘nin/f(f,,.s,s',gé,@’)(Zt

$,¢



--“‘(lg} = S0

. . s(th) = s
subject to the boundary conditions: .

¢(t1) = do

¢(’t]f) = ¢

From calculus of variation [7], *he system of simultaneous Euler-Lagrange
equations which must be satistied by the functions s(1) and ¢(¢) that render

the above integral an extremuin are:

d . d
F, — a_’,7—'5, =0, and Fo— ‘(E]:cb' =0

where F,, Fo, Fs, and Fyu are the partial derivatives of F with respect to s,

s', ¢, and ¢, respectively. Solving these Euler-Lagrange equations we obtain:
s¢? —s" =0, and s¢"+2¢'s' =

This set of nonlinear equations should determine the set of extremals: s(¢)
and ¢(¢). Howeve., it is not only hard to solve them, but also impossible to
come up with a closed form solution. Therefore this minimization problem is
not suitable for on-line (real-time) trajectory nlanning in this form. Instead,
we divide the problem into two minimization subproblems. and look for a

solution of the second problem:

l)

/. sts e

in the class of s() (the solution of the first problem) where

/;]f [s'())2dt



is minimized. In other words, the smoothest speed used for tangential ac-
celeration will be considered in choosing the smoothest speed for performing
the normal acceleration too. As a result, the minimization problem can be

rewrilten in the form

J < Jis)+ Ta(¢) (3.2)
N L S .4 12
= mm/ [s"(1)}°dt + min /, [s(1)o' (1)) dt
s t! 5.6 J1]

Now the problem is to find the curve for which 7 is minimum. We first find
the optimal curve for 7, and then use it to solve for the set of extremals of

Ja as in the following subsections.

3.3.1 Tangential Acceleration

To find the extremal (s(t)) of J;. let

!

Ji(s) = msin/}"(t,.s,.s’)d/ = msin/ f[.s’(l)]'z(lt (3.3)

1
subject to the boundary conditions: .s(l{) = s and s(f}) = s;. The Euler-

Lagrange equation is:

Fo— Ll]:s: =90
di

The set of extremals (solutions of the E-1. equation) are:
s(ty=~k+c¢

where & and ¢ are constants. Using a boundary condition, we can deduce the

admissible arcs (extremals satisfying boundary conditions) to be:

3(1) = kt + (s; — kt?) (3.4)
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Proposition 3.3.1 All admissible solutions (5(1)) are weakly local mini-

mum,.

Proof:

FeC?,
Fog=2>0.
Let G(t,k), and G(t, k) € C?, such that:
o G(t,k) is extremal for J(s), and G(t!, k) = sq.
o Gt,k) =25 cad Gt} k) = s;.

Now to check whether or not ! has conjugate points in (i, t]j], we let

a

Gr(t,k) = t—t!=0
=t = t!, which &€ (4, t7]
So by the Jacobi Theorem, §(t) is a weakly local minimum. O

Lemma 3.3.1 §(t) is embeddable in a field of extremals G(t, k).

Proof:

Follows directly from Proposition 3.3.1, since for every admissible solution

3(t) there exists k such that 8ty =G, k). O

Proposition 3.3.2 All admissible solutions (3(t)) are strongly local mini-

mum.



Proof:

Let § be an admissible arc, then by the Weierstrass function [7):

N . i .
Ji(3) - T(3) = /t E(1, 3, p, &) dt

1
Iz

= /t,’(f(t,é,é’) — F(t,3,p) — (3 — p(t, &) Fult,5,p)) dt

where p(1, 3) is the slope of the tangent of the extremal passing through (¢, ).

Using Taylor theorem [7], we obtain

o] o—

N /l‘j (8= p(, &) Fos( 30(0))dl; o(t) € [3'(0). p(t.3)] (3.5)

ki
Since Fyg = 2> 0, it follows from (3.5) and Lemma 3.3.1 that § is a global

strong minimum. O

3.3.2 Normal Acceleration

Similarly, we minimize J,, which can be written in the form:

Iz

Ja(@) = Il'ljl'l/.;r(t, é,0')dl = mill/JI[S(If)QI(l)]Q([l (3.6)
¢ @ ty
subject to the boundary conditions: cb(t{) = ¢, and (é(t’j') = ¢;. s(t) is
determined from (3.3). To compute k, we use the other boundary condition
(.s(tjj) = 1) to obtain a unique solution:
si(l = t]) + solty = 1)
(&~ 0)

Substituting for s(¢) in (3.6), and then solving the Buler-Lagrange equation

(Fo = £ F 4 = 0) yields:

s(t) = (3.7)

2[(s1(t=t]) +s0(t) = 1)) (s1=50)]'(1) + [s1(1 = t]) + s = 1)]26"(1) = 0 (3.8)
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Applying reduction of order, separation of variables, and integration on (3.8),

we obtain:

<

16 = i .
S P TR S PR

Integrating again yields:
._ecl

(s1 = so)(sa(t — 1) + so(t) = 1))

#(t) = +Cs

where C; and C} are integration constants. Using one of the boundary con-
ditions (say @(t!) = dy), the set of admissible arcs is:

e (1L = ) + solt] = 1) ~ so(t) — &)
so(s1 = s0)(t} — t])[(s1(t — t}) + so(t] — 1))

(t) = g0 + (3.9)

where (sp # $1).

Proposition 3.3.3 In the case (sy = s;),

. &1 (t — t1) + go(t? — 1)
o(1) = FT; !

Proof:

Follows directly as for 8(¢). O

Proposition 3.3.4 All admissible solutions (c,’;(t)) are weakly local mini-

mum.

Proof:

Fecl®



K =280 > 0.
Let G(¢,Cy), Ge, (t,Cy) € C? sucti that:
o G(t,Cy) is extremal for J(s), and G’(t{,Cl) = ¢y.
o G(t,Ch) = ¢(t), and G(£},Cy) = ¢y
Now to check whether or not # has conjugate points (¢, t’}], we let

GCI(S](t — l{) + S()(tj; - t) — So([? — t{))
solst = so)(t — t1)[(s1(8 = 1) + so(t] = 1))
= (sill = t]) +so(th —t) = so(th = 1) =0

G'C'l (la C?l ) = =90

= (=t which ¢ ({.t}]

So by the Jacobi Theorem, (¢(t)) is a weakly local minimum. O

Lemma 3.3.2 :.?)(t) is embeddable in a fieid of extremals G(1.C,).

Proof:

Follows directly from Proposition 3.3.4. since for every admissible arc ot
Y ! N

there exists € such that g?)(t) = G(¢, c, ). @

Proposition 3.3.5 All admissible solutions (g;(l)) are strongly local mini-

mum.

Proof:

Let ¢ be an admissible arc, then by the Weierstrass condition

. . Hf ) . .
Ta(@) — T2(d) = /H E(t,¢,p,¢") dl
g

= [(FW8,8) = F(,6.0) ~ (¢ = plt,8) Furlts b, )
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Using Taylor theorem,

t) . - . . .
= /,’ (& = Pty 8 Faa(ts 6, 0()) s (1) € [3(L; ot 33,1

Since Fygr = 28* > 0, it follows from (3.10) and Lemma 3.3.2 that bis a

global strong minimum. O

Proposition 3.3.6 Among the class of sub-trajectories defined ont € [t t’j.],
the smoothest and safe sub-trajectory is the one that is compuled by (3.4) and

(3.9) provided that there are no obstacles.

Proof:

Follows directly from Propositions 3.3.1 and 3.3.5 as both (3.4) and (3.9)
are proven to be strongly local minimum which implies smoothness of the
-nb-trajectory. The trajectory is also safe since there are no obstacles in the

en ‘ronment. O

3.4 Obstacle Avoidance

The theory introduced in the previous section shows how to generate
a smooth trajectory that minimizes the acceleration, but is not necessarily
safe. In a local environment where partial knowledge of the environment
is known, it is impossible to generate smooth trajectories unless the initial
and goal positions are in the same local domain. However, il is possible to
generate piecewise smooth trajectories (sub-trajectories are smooth locally).

These sub-trajectories may not be safe because they do not take into account,



obstacles that may be present in the environment. To avoid this situation, we
have cither to consider obstacles as constraints in the minimization problem,
or use other strategies in order to generate smooth and safe paths.

We assume that obstacles are static and circular in shape. We further
assume that obstacles are detectable if they exist within a specific region
(visibility field). 1f more than one obstacle is detected in a planning step, then
we consider the one closest to the line segment that connects the boundary-
configurations of this planning step. In the following subscction. we will

explore obstacle avoidance techniques in more detail.

3.4.1 Minimizing Strategies

The smoothness problem can be theoretically described as a classical
problem of calculus of variation to find a new trajectory that minimizes
(3.1), and subject to a specific constraint — “obstacle avoidance constraint”
— under the same boundary conditions. The choice of this constraint plays
an important role in defining the exact nature of the minimization problem.
We introduce two different constraints. The first one is to constrain the
arc length of the smooth trajectory (to be computed) to be of length L
(equality constraint). Wherecas the second constraint is to always keep the
distance between the smooth trajectory and the detected obstacle greater
than a certain value (inequality constraint).

The first constraint can be expressed mathematically as follows:

= [ (3.11)




The parametric representation of (x,y) along a smooth trajectory (7;) is:

x(t) = wo+ s(t)lcos(d(t)) (3.12)
y(t) = yo+ s(t)tsin(a(1)) (3.13)
where (o, yo) is the start position on 7;. Minimizing (3.1) under the above
constraint is a typical isoperimetric problem of calculus of variation. For

example, consider minimizing (3.3) subject to (3.11). The E-L equation is:

d
qu“a

(l
F(t,8,¢") = [s(t +A\/ Ty g (W

For =0, where

(/t
where A is a Lagrange multiplier. The E-L equation vields the following

nonlinear equation for determining the extremals o(l):

" = A(d)¢ + B(6")¢', where

/ 255'(2C% + \C) — A(2ss' + 25 + s5'¢'2)
Al¢) = - e 2

2520’3 — As2 2

. As2C

B(¢') = — 2 Iy
2822 — As2¢?
C = [(s+ 1)+ (s¢')]

Solving this nonlinear cquation is not only complicated but is a time consum-
ing process. It also does not have an enclosed general solution form. There-
fore, this method is not suitable for real-time applications (on-line planning).
However, numerical methods — shooting methods — can be used to find a
solution [12, 14].

Another way of avoiding obstacles is to constrain the distance between

an obstacle and the smooth trajectory to be always greater than a given



distance value (say ). Mathematically this constraint can be expressed as:
o (7 e — o )2 —y.PN<0: F=n F) 3.14
P —llr -z +(y—y)PS0; F=r+ (3.14)
where (z.,y.) is the center of the obstacle, and r is its radins. Minimizing
(3.3) under (3.14) becomes a constrained optimization problem. From the

local theory of constrained optimization. we want to evaluate the following

function:

/[; Fodt + /t; vedN = F.= ¢ (3.15)
where ¢ € [17, t]j], cis a constant, an. .. - «‘:'i,/§] and is nondecreasing
(normalized bounded vector). Substiiuiiiv ( .., (3.13). and (3.14) into
(3.15), we obtain:

/;j 2s(ttfeesin (o)) = yecos (G())]dN = 255 (0) (1) = ¢ (3.16)

The solution of (3.16) vields a nonlinear equation that has to be scarched over
A. It is clear that this method suffers from the same problems as the previous
technique. To avoid these problems, we introduce simpler techniques (in the

next section) that can generate smooth and safe arcs to avoid obstacles.

3.4.2 Polynomial Fitting

There are several types of mathematical models that can be used for

curve-fitting techniques. Most typical ones are polynomials because of their

easc of handling, storing, and computation. In the past, for example, Kanayama

and Hartman [11] used splines and cubic-spirals for curve fitting. In this pa-
per, we explore two other techniques that can be used also as smoothness

models.



If a smooth trajectory is not sale (i.e. the pain generated collides with an
obstacle), a new smooth path should be generated. Knowledge about times
of collision between the obstacle and the smooth trajectory (sce Appendix
C), in addition to knowing a point (to be defined) on the obstacle is needed
to generate smooth trajectorics. We propose two techniques to resolve the
problem of finding safe and smooth trajectories. The first one uses a cubic
fitting technique and the other uses Bezier curves. Note ihat both techniques

will be applied only when the gencrated smooth trajectory is not safe.

Cubic Fitting

This technique is easy to compute and to implement compared with the
methods of the previous subsection. Because of the availability of information
about the desired orientation at both initial and goal positions, and the
first derivatives at these two points, we use a cubic curve. The parametric

representation of such a curve is:
6(t) = AP+BI4+ClL+D

where A, B, C, and D are real constants. To determine these constants,
we compute the closest point (f’ : (L, r;ﬁ)) (sce Appendix D) on the detected
nbstacle from the line segment that connects the initial and goal positions

(say Po and Py, respectively). Given (g, ¢o) and (11, ¢;) at these points,

the slopes of two line-constraints ( 2 P and P f’) are casily determined (Fig-
ure 3.2). Thus we obtain four equations in four unknowns to solve for o(1).
The resulting unique solution should pass through Py, P; and should satisfy

the slopes of the line-constraints at £ and . Since the curve is dependent
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Fligure 3.2: Cubic and Bezicr curves.

on time, we can obtain more than one cubic polvnomial that satisfies the
above conditions by changing the arrival time ({). For example. C and ¢ in
Figure 3.2 are different, but both arc safe and smooth. Note that the cubic
fitting curve may cross any of these line-constraints — for example, ¢} in
Figure 3.2, In our particular application. this feature is of no importance as
long as there is only one obstacle. Otherwise, the problem may be divided
into two parts, where cach one is treated as a separate problem. Another
solution is 1o use other types of curve fitting techniques. In the following

subsection, we present Bezier curves as an example.

Bezier Curve

In this method, the knowledge of three points is sufficient to determine

6



a unique quadratic Bezier curve that is defined using the points: (o, ¢o),

(t1, 1), and (£, gg) The parametric representation of the curve is:
o(t) = (L—1%)do+2(1 — t)¢ + 124,

where (0 < ¢ < 1). For example, B in Figure 3.2 represents a Bezier curve.

For more details on this subject see [3, 2].

3.5 Experimental Results

1500.0 |~

1000.0 +

500.0 |-
- = = = gmooth poth

o—————a original path

obatocles

= Start & goal
poslitions

500.0 1000.0
Figure 3.3: Generating a piecewise smooth trajectory.

The following simulation results show how a mobile robot may plan
smooth and safe trajectories in a static 'scal environment. Obstacles in
the environment are represented by circles. We assume furtier that a mobile

robot is mapped to a point and that obstacles are grown correspondingly.
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Figu: 2 1 The wariation of ¢ along the time azxis.

Figure 3.3 deicribes ¢ i ujectory of 16 sub-trajectories that have been
generated by a planning system in a cluttered environment with obstacles,
The size of the navigation space is: 1250x 1750 (units). The start and goal
positions are: (0,9) and (1220,1380), respectively. Data obtained fror. the
planning system are loaded into the GRTOOLS package in order to study
parts of interest from the original trajectory, and to produce clearer figures
that are easy to understand. The original path is described by a sequence
of line segments used to connect boundary-configurations of each planning
step. We allow the mobile robot, to perform sharp turns (for example 90°),
The piecewise smooth trajectory computed by (3.7), (3.9), (3.12), and (3.13)
is also shown (the dotted curve). The corresponding change in the value of

@ over time is demonstrated in Figure 3.4 for both trajectories.



1300.0

1100.0

N

~ 7 (4
A .
A ’
~ .
A .
. .
A . - = = - smooth path
A . ————= origincl path
> ‘ — obstaciosn
\ .
. .
.
’ -
]
0
900.0 U L .
250.0 550.0

1300.0

850.0

1100.0

- = = = amooth path
-~ Orlg'nal path
obatocles

— - —— - old peosltion
.
900.0 Ve L 1
2£0.0 550.0 a50.0
10N 2o
iigure 3.6

: Modifying obstacle positions in the environment.

79



Figure 3.5 shows a portion of the trajectory of Figure 3.3. Note how
close the smooth trajectory is to Obstacle 10. Let us change the positions
of Obstacles 7 and 10 so that the smooth trajectory collides with them (Fig-
ure 3.6). Since the piecewise smooth trajectory is not applicable any more
(leads to collisions), a new smooth sub-trajectory is generated instead. Us-
ing the ~i 7 'ting and Bezier techniques (described before), two (or more)

smooth .- @+ .u-ctories can be generated to replace the old one. Figure 3.7

1075.0 = i o

P
/
1025.0 -
e
.-
9750 - -1
— = — Cubic curvea
= = = =~ Belrer curve
Smooth curve
= = —— = Obsatccis 7
e OFiQinQl path /
225.0 L 4.
275.0 325.0 375.0 425.0

Iigure 3.7: Generating new sub-trajectories.

shows an example of new smooth sub-trajectories that are generated to re-
place the sub-trajectory that collides with Obstacle 7. Note that the Bezier
curve overlaps with cne of the cubic fitting curves. Similarly, Figure 3.8
describes smooth sub-trajectories that can be used to resolve the collision

problem with Obstacle 16. In Figures 3.7 and 3.8, two cubic fitting curves
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Figure 3.8: Generating new sub-trajectories.

are generated in each case. We may obtain even more sub-trajectories by
changing the arrival time (f) at P. However, cubic curves that are close to
the Bezier curves in shape are the ones generated by the planning system.
They are smoother than the others because the speed achieved at i is the
desirable speed. But, in dynamic path planning, controlling the speed of a
mobile robot at # is very useful since time plays an important role in avoiding
moving obstacles.

Figures 3.9 and 3.10 show two different experiments (obtained from the
planning system) of generating smooth and safe piecewise trijectories. The
initial orientation is indicated by the arrow placed at the start positicn. We
use cubic fitting techniques only to generate safe sub-trajectories when it is

necessary to do so.
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Figure 3.9: A smooth and safe piecewise trajectory gencrated amonyg obstacles.

Figure 3.10: Another smooth end safe piccewise trajectory generated in a
different environment.



3.6 Conclusion

We presented a new approach to generating piecewise smooth trajectories for
mobile robots in a local environment. The algorithm minimizes the integral
of the acceleration. It was shown how equality and inequality constraints can
be taken into account in the minimization problem to a.oid nearby obsta-
cles. Since the solution was complex and therefore not suitable for real-time
implementation, two other techniques were used, namely. cubic and Bezier
curves. Each of these curves generated a smooth and safe trajectory once a
collision was detected with the original smooth trajectory. Currentiv, we are
interested in investigating the minimization problem in a dynani + wiron-
ment where obstacles are moving. We also intend to study the .. .- ility
of obtaining a numerical procedure that solves the constrained nsit; + -ation

problems discussed in this paper.
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Chapter 4

Safety Optimizing Strategies
for Local Path Planning in

Dynamic Environments’

4.1 Introduction

The problem of path planning for autonomous vehicles can be classified
according to two criteria: global versus local. and exact versus heuristic.
Global path planning requires a complete specification of the environment
which may not be possible in many real life situations. For example, when
driving on the road we have only local information about surrounding obsta-

cles and vehicles and so we need planning strategics based on local informa-

"A. Basu and A. Elnagar. Safety Optimizing Strategies for Local Path Planning in
Dynamic Environments. Submitted for publication.
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tion.

The algorithm discussed in this work uses the concept of “safety-optimization”
(introduced in [8]) to solve the dynamic motion planning problem in a local
domain containing one {or more) moving obstacle. Moreover, we take into
account the uncertainty in estimating the velocity of each moving obstacle.
To solve this problem, it is necessary to define a continuous function of time
which specifies the positions of the robot and the obstacles at each instant
of time. We therefore add a time dimension to the configuration space in
order to generate a configuration time-space. Consequently, we grow all ob-
stacles with time and then try to find a free path among the grown obstacles.
It is worth mentioning that the dynamic motion planning problem in 2-D is
mapped to a static motion planning problem in 3-I. For a detailed discussion
on the configuration time-space, please sce [16].

There are three factors that control our strategy when we drive: how
safe it is to drive at a certain speed given the present environment; how
far we are from where we want to go; and how far we are from the closest
moving obstacle. These factors are henceforth referred to as static safety,
goal attraction, and dynamic safety, respectively. Static safety is a function
of the speed. It may not nccessarily be safer to drive more slowly since
speeding up would be more difiicult.  Similarly, driving fast may make it
more difficult to slow down when necessary. Goal atiraction is a decreasing
function of the distance to the goal which ensures that a generated path gets
closer to the goal, if possible. The importance of the attraction towards the
goal also affects safety since goal attraction, in effect, measures the urgency

of reaching the goal. Dynamic safety is a function of time-to-collision and



helps the robot choose safer positions in which it will he relatively far from
moving obstacles,

We assume that the robot is equipped with a camera through which it
can detect the positions of moving and static obstacles in a local visibility
window. In general, seasory data are not robust; they do not provide an
exact knowledge of the environment because of the presence of noise. It is
therefore necessary for the planner to deal with nneert ainty,

The next section briefly deseribes work in the arca of dyviamic motion
planning. Section 4.3 describes the planning moduale in which a mathematical
nodel for solving the problem with uncertainty is introduced. Section 4.4

cribes the navigation strategy. The planning algorithm is presented in

ton 4.5, Experimental results ave shown in Section 4.6,

Previous Work

heveral authors have worked on the problem of path planning in a static.
completely known environment (for example [3, 1, 17. 7. 15]). Some funda-
mental questions related to the complexity of various formulations of this
problem are answered in [3, 21, 6, 5]. In reality, however. information about
the environment is generally not completely known. with the exception of
some specific industrial environments. Lumelsky [18] studied the problem of
reaching a given goal position in a static but unknown euviromment.

Khatib [14] has indicated that global methods will limit the real time
capabilities of robots i a cluttered cuvironment, due to the tie needed to

perform the planning task. He and other researchers have studied the probh-



lem of navigating between initial and goal positions in a static and nnknown
environment.

Recently, some attempts have been made to solve the motion path plan-
ning problem in dynamic environments. Farly works by Reif. Sharir, and
Canny show some complexity results {rom specific cases of the general prob-
lem.  For example, Reif and Sharir [19] show that motion planning in a
3D time-changing environment is PSPACE-hard when the robot’s velocity
15 bounded, and NP-hard without such a bound. A more powerfe! result. is
reported later by Canny and Reifl [5]. They show that motion pla -5 for a
point robot in the plane with bounded velocity is NP-hard when tue moving
obstacles are complex polygons moving at a constant linear velocity without
rotation.

Kant and Zucker propose the “path-velocity™ decomposition technigue
[11]. A trajectory is assumed to be known from “off-planning™. Next the
velocity is changed along this trajectory so that collisions are avoided. Later.
the work is extended te include uncertaintios in the positions of obstacles
and the robot [12]. Fujimura introduces the concept of accessibility graphs
as a generalization of the visibility graph method, and shows how it can
be used to solve for minimal-time paths in a dynamic environment, [9]. An
application of an unsteady diffusion equation model to path planning in a
time-varying known world is described in [20]. Another navigation scheme
nsed an “iterated forecast and planning”™ approach to solve this problem [23].
In this model, the planning and motion are iterated frequently according
to a specific plan. All the preceding references. which have addressed the

dynamic motion problem, assume complete knowledge of the environment.
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The problem appears to be much more difficult when partial knowledge
of the environment is available. Lamadrid [10] proposes a method that has
to follow a predefined path with a given tolerance and reach the goal before
a given time. Pronabilistic models also have been used to solve the problem.
One approach proposed by Kehtarnavaz [13] is to establish a collision zone
around each moving obstacle and then treat such zones as stationary obsta-
cles. Collision zones represent forbidden regions which are defined based on

a high likelihood of collision. Other probabilistic models may be found in

The method presented in [2] contributed some of the ideas used in the
approach described here. Now we will introduce some notations and define

the prohlem.

4.3 Dynamic Planning under Uncertainty

4.3.1 Statement of the Problem

A mobile robot (M R) has to be continuously moving from p;, the start-
ing point, with an initial orientation () to p,, the goal. in the presence of
other moving obstacles. Motion of cach obstacle is estimated locally with
uncertainty. At any point on its path, the robot knows only the current
coordinates and those of the goal. Nothing is known about the obstacles
outside a given visible region. There are also bounds on the speed and accel-

eration of the M R. Under these conditions, we want to find a local velocity
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such that a given function (to be defined) is optimized. Failure is reported

if a path does not exist.

To audress this problem we make the following assimption
e The obstacles Lo be cousidered are of elliptic shape. (In general for a
polygonal obstacle, we consider the smallest covering cllipse.)

-~
“

e Fach obstacle moves with a constant velocity locally.

o The robot is equipped with sensors through which it estimates the

position of moving obstacles with a given accuracy,

o The robot is mapped to a point. .d obstacles are grown accordingly.

4.3.2  Growing Obstacles with Uncertainty

—

Given the velocity vector (T = (v,.1,)) of an object (obstacle or robot)

we estimate its speed and direction as follows:

o~

0. =

The motion of any object is estimated locally with uncertainty. That is, s,
and 0. have errors ¢, and ¢; respectively, and the actual speed and direction

are in the range:
(s¢ = coem F¢) il s, >
S¢ €
(0,8, + ¢4) otherwise

on € (ac ~¢p. 0. + 60)



Consider a point in the configuration space-time located initially at (2, y).
Then at time ¢ the estimated speed of the point lies in the interval [$e—¢€5, 8o+
¢s] if se > €, or in the interval [0, s, + ¢,] if s, < c.. Taking into account 0,

and ¢g, the new position of the point at time t is:
(x + stcos(0),y + stsin(0)) (4.1)

where (max{0, s, — ¢,} <s < s.+¢;) and (0, — ¢ <0 <0, + ¢4).

p. X
' ()

Figure 4.1: (a) and (b) show examples of growing a point and a line respec-
lively in space-time with uncertainty.

Figure 4.1(a) shows an example of growing a point (p) located initially
at (0,0). The shaded region (R) represents all possible positions of point,
pi at time t. In the case of a line segment, we determine the shape of
the grown obstacle region by growing its end points (an example appears

in Figure 4.1(b)). This procedure can be applied 1o determine the grown



obstacle region for a polygon. Modeling the resulting obstacle region (of a
polygon) mathematically is not easy. Therefore cach polvgon (i.c. obstacle)
1s enclosed in a minimum covering ellipse.

{({ h+s tcos(0)) ( k +stsinfe))

T-axis

-{

(0,0,0) X-axis
Owstacle region.

(A) ®) 1

U |

Figure 4.2: (A) growing an ellipse in space-time with wneertainty. (B) 3 =

a-- «a.

Let us consider the general form of the equation of an ellipse centered at
(hyk) and with axes rotated by an angle ¢:

(F = (Lo s5(0) — ksin(g)))? L= thsin(o) + kcos(0)))?

a? ' h?

where,

ro= acos(@) — ysin(o)
g = wxsin(@) + ycos(o)
The major axis, is along the x-axis (¢ > b). The foci lie on the major axis

¢ units from the center (k) with ¢ = «* — 4%, Note that the major axis is
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along the y-axis if « < b. Equation (4.1) describes an ellipse (obstacle region)
in the xy-plane at t=0. We want to compute the grown obstacle region at
time t, provided that the obstacle is moving with speed s, and in direction

0c. To define the new equation. we make the following assumptions:
o The center of the ellipse is moving with speed (s,.) and direction (0,)
along the time axis.
o At each instant of time, the resulting obstacle region is approximated
by an ellipse that includes the uncertainty in both speed and divection,
by growing the major and minor axes only (Figure 4.2(A)).

The resulting equation, which describes the grown obstacle region. is:

(# — (hcos(@) — ksin(o)))? Ll (hrsin(o) + k cos(o)))?

Py = =1(4.2)
where,
h = h+sdt cos(0.) (4.3)
k= k+ sctsin(0,) (4.4)
a = a+p3
b = b+~

B o= 21252 4 eos(eo)( — 57) +

vy = 2\/1232 + t2cos?(cg)(e? — s2) + C,

C1 = ta((escos(f)cos(eg) + ssin(0)sin(cy))
Cy = tb((esco:{0)cos(eg) + ssin(0)sin(eg))

Equation (4.2) is an elliptic cone which defines all ellipses along the line seg-

ment connecting the center of the cllipse at time t with the center of the



cllipse at time t=0 (Figure 4.2(A)). For cach eflipse, the major and minor
axes are redefined in a way to include the uncertainties in speed and di-
rection (¢, ¢g, respectively). To illustrate this, consider Figure 4.2(B). The
maximum distance that can be obtained between the center C and a vertex
A1s when C moves to O or C'y and A moves to A, or - respectively., The
new major and minor axes lengths computed at that instant of time will be
(@ + #) for the major axis and (b + =) for the minor one. 3 and ~ define the
valie of the maximum error that can be obtained due to the uncertainties €s

and ¢g. Formally, 4 = (@ —a) and 4 = (b= b).

4.3.3 Obtaining‘ Safe Strategies under Uncertainty

On-e the grown obstacles arc obtained. the next step is determining which
arca is reachable without chauging velocity in a given interval.  Consider
Figure 4.2(A) where p, and p, are the start and goal positions. We want to
compute at what time(s) the line segment pgp, intersects the obstacle volume.
if there is an intersection.

Let ps = (a1,1.4;) and Py = {ra2,ya.12). The direction vector of PsPg 18

{ay = @y — a0 = yy — yyoay = 1o — ). The parametric equations for Dshy

are:
ro= rt+al (1.5)
¥y o= y+ay (46)

To compute the times of intersection, we substitute (4.3) and (4.4) in

(4.2). Expanding and simplifying the resulting equation vields a polynomial



of degree 4. The solution set (7°) of this polynomial may include some imag-
inary roots. If all roots are imaginary then there is no point of intersection.
In the case where T includes two imaginary roots, the line segment will in-
tersect the obstacle at either one or two points. depending on whether or not
the real roots are repeated. Similarly, if all the roots in 7" are real, either the
line falls on the boundary of the conic volume or there are repeated roots.
The next proposition derives the points of intersection of a line with a conic

volume.

Proposition 4.3.1 [n the case where the grown obslacle is a circular cone,

a line segment (not lying on the conc) interscets it in, al most, two points.

Proof:
Equating the major and minor axes in Equation (4.2) (@ = b), and not

considering the rotation of axes vields a circular cone:

e B (y-hy
Ll ke W)

To compute times of intersection with a given line segment, we substitute

{4.3,4.4,4.5, and 4.6) into (4.7) obtaining:

= 1

((xy + art) — (h + s.t cos(d,)))? + ((y1 4+ axt) — (k + set cos(6.)))?
(a +1/3)2 (a+173)2

which simplifies to:
AP+ BL+C = 0 (4.8)
where,

A = d+d+s*—p%-2s.(a cos(0,) + aqsin(0,))
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Bo= 2s(cos(0) x4+ h) —sin(0)(y; + k) + D
C o= a3+ yb+h2 4+ = =2 h + yik)

D = 2ay(xy = hy+2ay(yy — k)= 2a3

Solving th - unadratic Equation (4.8). for the times of intersection, produces:

-B+ VB2 —-14C

‘)‘

]‘ T {(/1’[2) = (19)

Now if £} and f; are real, we substitnte (1.9) in (1.3) and (1.1) to compute

the points of intersection:

{(er + ety + aaty), (@ + arty oy + wytz)} O

4.4 Navigation Strategy

To obtain a safe strategy for path planning with uncertainty. there are
three factors which must be taken into account while computing the optimum

local velocity. They are:

e The static safety at the destination point where the robot can maintain
its acceleration bounds. This is given by the static safety function

(f(s)).

¢ How much closer the robot is to the goal, which is modeled by the goal

attraction function (g(d)).

o Clearance from obstacles (or dynamic safety) as modeled by h(t.). This

is a function of the time to collision.



4.4.1 Preliminaries!

To introduce the motion planning problem formally, some basic defini-
tions are needed. Cousider W to be the workspace of all possible positions
in which a mobile robot (M R) may be placed. W is represented as a subset
of the Euclidean space R%. Fiy is a fixed frame of reference embedded in W.
Similarly Farp is the Cartesian frame of AMTR. At any time, we shall consider
the M1t (circular object) as a point in W which can be represented by its
coordinates with respect to [y, and an orientation (0) of Fyin with respect
to Fy. The initial and goal positions in W are denoted by py and Py respec-
tively. The M R position in W is defined by p. The function d : W x W — R
denotes the Euclidean distance. The time nceded for the AfR to plan its
trajectory is denoted by 7" = [0,t5]. The symbol ¢; denotes the final (ar-
rival) time. A configuration P is a specification of the position (x,y) and
the orientation of fip with respect to [y at time ¢, (t; € [0,44]). The
set of obstacles (elliptic rigid objects) distributed in W are represented by
O = 00,0;,...,0,_1. Bach O; represents a subset of W at a specific instant
of time. The space occupied by these (n) obstacles at time t is given by:

n—1
o(t) = |J o), vteT
i=
It is assumed that each moving ob.tacle has a known trajectory 7. At any

instant of time t, 7; defines the center of obstacle i.

Definition 4.4.1 Locu/ Search Window (LSW) specifies the visibility range

I This section is similar to Section 2.3 but definitions are revised to suite the dynamic
case.
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of the MR, which is defined as a circular scclor with an arca Lor?, where &
(¢ € [0,27)) is the visibility angle, and r is the radius of the eisihility range.
LSW is represcnted by a set of equally spaced bounded rays, {R},cy. Fach
ray is defined by a sct of points. The number of points =|r/e|. where ¢ is the
discretizalion size. A is the angle betiween any two sucecssive rays. Thus
the actual sctoof grid points in the (" LSW s

- .1 . ‘

ll.bliyl) —_ {1))1 }Je_],

where J = {0,1..... me—iboand ne e

Definition 4.4.2 The sct of grid poinis that are frec in the i LSV at time

{is:
n~1} ni—1
LSWy, 0 = {Lswi N (U oMy fon)
FE) =0

The set of grid points that arc visible to the ME in the i LSV js:

ni—1
LW () = {UJ B ). where
(=0
| [ B omaeztom) = ()
h);nm - R,

1 R othorwise

The nwmber of grid points in ;= |r/c|, whercas in IR

nun d(p, p) n-l
= L—~(’—’J Ype (B ((0,(1)))
j=0

Definition 4.4.3 The Reachability Condition (REACH) is a test performed

at cach grid point (p) to vervify if it is veachable from the current position of
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the MR, given constraints on the acceleration and the speed.

REACIH(y) = {p} I llar(p) < Ar) Alan(p) < Ax) A (s4(p) £ 9))
{}

otherwise
Consequently, the set of reachable grid points for the MR in the it" LS at

time t is:

LSW ) = {{ple€ LSWI ()} ) REACH (p)}

rgptt vgp
where p is a grid point.
Definition 4.4.4 A free trajectory of the MR from py lo Py 1S a conlinuous
mapping

R (T I e

where 7(0) = ps and 7(ly) = p,, and

‘.1,710&11 —_ {L.S"'t/"rgp(t)}iefo.]'--~vk"'l}’ Vt E '!j

free

k is the number of planning steps along the lrajectory.

Proposition 4.4.1 If p, € [SW/

rap

then po o € LSWY o provided ihat
A :

Pe € LSW,, .

Proof:

Since p; and p_s _. are two points symmetric around the radius (). Then
A

d(p,pi) = d(p,pe_;), and
ap



f”w, - 0‘ = [(}p_i> — 0.
307"
== Both points have the same speed ans aeccleration.

So. (p; € L..s’li;{,”,) ANpe_, € [,._S’H’,JY”,) = (p. _, € [SW7 ) O

Py D

Proposition 4.4.2 [f (N2 Q1) = { } then thore is a froe Drajectory from

=0

ps lo py given that reachable points always crist.

Proof:

Follows directly from definitions above, @

4.4.2 Static Safety

To compute safety we consider all velocities in a given range to he equally
likely at a future instant of time. Then. eiven a local veloetty, and the
tangential and normal acceleration bounds (L and Ay respectively), we
compute the probability that the vehicle can maintain the kincodvnamic
constraints. Thus the safety corresponding to a speed s is:

S8y = Prlap(t) < Apandev(f) < Avish 0 <t <ty

i
ol

where ap(t) and ax(t) are the computed tangential and normal acceleration

at time {, and ¢y is the time interval.

4.4.3 Goal Attraction

The second criterion that we consider for planning a path is: “How im-

portant is it to reach the goal quickly?”. If there is no urgeney in reaching



the goal, then all we need to do is to be safe at present. As the importance
of reaching the destination is increased the relative importance of being safe
at present is decreased. Let d define the Euclidean distance between the new
selected position and the goal. Then the goal attraction function is defined
as:

Ko
['-\{- 71)('-, K and C are > 0.
VG

g(d) = (

4.4.4 Dynamic Safety

Let Tr be the solution set of all real roots of the polynomial in Equa-
tion(4.2). The function (min(Ty)) outputs the minimum root in Tpx. We
define 1. (time-to-collision) as the differcnce hetween min{7r) and {y (time
to plan a step of the path), i.e. ¢ = min(7) — ly. Let s represent a safety
time margin. Given a line segment that intersects the obstacle region at two
points (say p; and p;) at two different times (f; and (, respectively) and
the destination point py, we define d = Ipspal, dv = |pspi|, and dy = |p,py).

Henceforth, the function 2(t.) is defined as follows:

0 il (t < 0)
h{t.) = 1 Th={}V{.>1t,)
ST 0 <l < LA (A< dy)V(d > da))

where A is a positive constant. Figure 4.3 shows how h(t.) — dynamic safety
— varies with A, considering ¢, = 4.0.

Suppose we have a M R at location p, (Figure 4.2(A)) and want it to move
to p; while an obstacle is passing through. The function h(t.) allows the robot

to head towards its destination only if it is safe to do so. For example, if the
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Figure 4.3: The cffect of X on h(i.) (considering 1, =4.0).

robot does not collide with the grown obstacle (e, Ty = { }) then the value
of h(t.) will be maximum (i.c., ). On the other hand. if the time of collision
is less than the time used for the robot to plan its path step. then the value
of h(t;) will be minimum (i.c., 0). Otherwise the value of A(l.) will depend
on how far from the obstacle the robot is. The closer the robot gets to the
obstacle, the less the value of h(t.) will be. As a result. the overall safety
function for navigating between two points (optimality criterion) is defined
as:

N(s,d t;) = f(s)g(d) h(t.) (4.10)

Thus if we maximize N(s,d,t.), the strategy would be to try to maximize
static as wel' as dynamic safety and, at the same time, reduce the distance

to the goal.
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Proposition 4.4.3 The local velocity sclected always takes the robot closer

to the goal, if any rcachable points crist. provided:

(a) The safety function f has a positive value al 0.
(b) t.>t,.

(c) C is large enough.

Proof:

Suppose a robot is at a distance d from the goal. There are many reachable
points that the robot can move to. They can be classified into two sets. The
first one contains all reachable points that take the robot closer to the goal.
The second set contains all reachable points that take the robot further away
from the goal. In order to move the robot closer to the goal, the value of
the overall safety for any point in the first set should be higher than the
corresponding value for any point in the second set. In other words, the
minimum overall safety for the first set should be greater than the maximum

overall safety for the second.

e The minimum in the first set is achieved for a point which is at a
distance (d — ¢) from the goal, ¢ is the discretization size with static

safety sg and dynainic safety h(l,,).

e The maximum in the second set is achieved for a point which is at a

distance d from the goal with static safcty sm. and dynamic safety

h(tc,).
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[t is important to note that ¢ < d and (d = ¢) < d. Also, sg < sy

Overall safety for the first point is:

K .
sgld = hlte) = sulgrp=r)’
and, overall safety for the sccond point is:
KN .
-";m/ T / t‘) = 'S/H'XJ' . ('
wygld)h(t,) )

In order that the robot chooses the first position instead of the second one.

C has to be large enough so that the following inequality is satisfied:

Koo, Ko
b‘u( ]——,—*‘— 5 5”1«11:( -
v+ (d —¢) N +d
1y + d )(7' Smar
T “
K +d
= Clog(——T0 ) o g
Do) > )
e )
[Ug( I\i(.:i() )

In the case so = $par, the first point will be always chosen, since the value of

the goal attraction function of the first point is higher than the corresponding

value of the second point.

Consider that the MR is moving with a fixed direction locally while a

moving obstacle is approaching it. In order to avoid collision. the M R should

cither speed up and pass in front of this moving obstacle. or slow down

and let the obstacle pass first (more details are given in the experimental

section). This idea of controlling the speed along a planned path to avoid

collisions is the main concept behind the velocity-decomposition technique



106

[11]. Using our approach the M R (in addition to the above solution) can also
plan paths to other intermediate positions. Morcover, it takes into account
uncertainty in obstacles™ positions. The following proposition shows how the
MR can control its speed when its direction of motion is locally fixed to

avoid obstacles.

Proposition 4.4.4 Consider a mobilc robot (MR) moving in a fived di-
rection locally whilc a moving obslacle is approaching it. The MR avoids

collision with this obstacle by adjusting its speed (s) so thal s docs not lic in
/’\‘rul.lision Scollision].

[T *“mar

Proof:

Let p = (&,7,1) represents the current location of the A/ 2 at time £. Since

the direction of motion of the MR is fixed, all possible destination points

are constrained to lie on a one dimensional locus of points that is perpen-

dicular to the xy-plane. Given the motion equation of the grown obsta-

cle (detected in LSW), the locus intersects this obstacle in. at most, two
collision

: collision _ (., . . . ; — (o ;
points. Let plti*™™ = (Tumins Ymin, bmin) and plEe™ = (2,00, Yrmaz, tnas) de-

fine points of intersection (fmin < tmaez). All points that lie on the locus
between pf,‘{fffs"”" = (Tmin; Ymin, bmin) and pf,fffj.“"" = (Tmar Ymars bmaz) are
collision points. The MR avoids moving to a collision point by controlling
its speed (s).

The direction vectors of the two lines tangent to the grown obstacle (ppecllisionand
ppllision) are respectively:

Py

(all = (:L‘mi'n - ’i), dig = (ymin - ?))a a3 = (tmin - t)),



(“21 = (-T'mn.r - 3")5“22 = (ymuJ; - l/)* a3 = (tmlzr - t))
Consequently, the points of intersection (in parametric form) are:
('T + alllmhn Yy + ”l'ztmin) and (~l' + (l'.llt'mru'-, Y + ”22lm(u:)

Thus the speeds at points of intersection are:

A collision
qcollision - |P1)min I = [ - 2 + .2
“min - { = bmin\f U1y ayy
¢}
~ collision) I
Lcollision ’1)1)7711117 | { 2 2
miaa - | = lnar\f Uy + 4y
-0

To determine whether or not the speed (s) of the MR leads to a collision,
we check if i lies in the interval [seellsion geollisin] =g yvoid collision, s

min *“mar

has to be modified by either slowing down (s < sSisimy o sheeding up
3 2 I g uj

min

(s > sollisiony " For more illustration, consult Figure 4.2(A). O

maxr
In the case where there is no speed (s) satisfying the tangential accelera-
o (=]
tion bound such that s g[seollision geollision] "o colligion is inevitable since there
is no safe speed. This situation occurs when the visibility field of the MR
1s narrow (r and ¢ are very small in LSW), and an obstacle is moving with
high speed towards the M . Note that in our approach. the MR mav avoid
g I ; A
this collision by planning for an intermediate position (direction of motion
(=)

is not fixed). In general most local dynamic planning approaches fail to deal

with this situation.

Corollary 4.4.1 Given a fived local dircction of the Al R s motion, the velocity-

decomposition technique[l1] is a special casc of our approach.

Proof:

Follows directly from Proposition 4.4.4. O



4.5 Algorithm

As stated in the problem statement, there are several parameters that
control the planning process. These parameters are necessary to define, for
example, the dimensions of the local search window (, &), the robot’s velocity
and acceleration bounds, and the time interval within which the velocity
change needs to be achieved. We model the local nature of information
about the environment by a circle (visibility field). Inside this field, the
LSW is represented by a circular sector where the robot can plan its planing

step. The algorithm used can be described by the following steps:

I Inmitielization. The user should specify the values for the parameters as
well as choose an initial configuration (p,,0) and a final goal position

pg for the robot to navigate.

I1. Discretize the local visibility window. Searching a continuous space for an
optimum local solution is hard. So we discretize the local visible region
into a set of equally spaced grid points. At this stage we grow obstacles
with time taken into account uncertainties. We also determine LSW; .,

LSWi

g / 1 e 4 1 "OCOSS @17 i 1
wgpr @and LSW - at time t. This process enable the robot to avoid

choosing any grid point that will lead it to a collision (illustrated in the

previous propositions).

III. Find optimum velocily. First we determine if a local grid point is
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reachable? by a single velocity® from the current point, without go-
ing through any obstacles and while maintaining the acceleration con-
straints. For a reachable grid point we compute the product of goal
attraction, static safety, and dynamic safety. Then, we choose the grid
point for which this product (henceforth referred to as overall safety)

is maximum. This determines the optimum local velocity.

IV. Conlinue process. Repeat steps I and 11 until the goal is reached.
We now outline a simple proposition which emerges from the last fwo
propositions.

Proposition 4.5.1 Given p, and p, (slart and goal configurations). there
exists a frec path from pg to p, provided thai:

(a) ps and p, € Wit

(b) LSW; () #{}\VteT, i={0,1,... k- 1}.

Tgp

4.6 Experimental Results

In this section, some simulation examples of the algorithm described be-
fore are discussed. These simulations correspond 1o different navigation en-

vironments.

2A point is reachable if it is within the LSW, accessible with a velocity satisfying the
acceleration bounds, and visible from the current point.

3We consider velocities while maintaining the acceleration bounds, which may be dif-
ferent from the current velocity. However, we do not change the computed velocity before
the next step.
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Figure 4.4: (Left) A free path is generated in 3-D. (Right) A new free path is
generated after increasing to for the same environment.

Figure 4.5: (Left) A different viewpoint of the path in Figure 4.7(Left). (Right
) A similar different viewpoint for the path in Figure 4.7(Right).
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Figure 4.6: How far is the M R from obstacles?

In all experiments, the space is represented by a square grid. The start
position is located at the "-wer left corner in the xy-plane at t = 0, and the
goal is located at the upper right corner (the goal is grown over time to be a
line).

The circle and the circular sector in Figure 4.4(}cft) correspond to the
visibility field and the local search window, respei tively. The local search
window is the part of the visibility field that k- robot can plan through.
It is described by a grid map distributed in specific area determined by
a radius (r) and an angle (¢). For illustraive purposes, we used four grey
levels for indicating grown obstacies i -5i?" -ent time intervals.

Figure 4.4(Left) illustrates the path ~cnerated by the MR from the start-

ing point to the goal, according to certain parameter values. Figure 4.4(Right)



Figure 4.7: Ezamples of different dynamic environments.

shows the effect of increasing the time interval ¢;. Different viewpoints for
the paths of Figure 4.4 are shown in Figure 4.5. Note the difference in the
total time needed to plan the paths and how it affected the size of the grown
obstacles in both figures.

Figure 4.6 shows the distance-graphs between the M R and each obstacle
in the environments of Figure 4.4. Each distance-graph provides a geometric
interpretation of how far each obstacle is from the MR in the time interval
0, t;]. In order to match each obstacle with its distance-graph, we assume
that all obstacles in a certain-environment are numbered from left to right
(along the x-axis) and bottom-up (if the same x-position is occupied by more
than one obstacle) in the xy-plane at t=0. Note that there is another graph
labelled Radius which represents the radius of the largest detected obstacle

at a specific instant of time. When all obstacles have the same size, the
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Figure 4.8: Distance graphs between the M R and obstacles of Figure 4.10.

radius-graph is represented by a piecewise horizontal line. [f any obstacle’s
distance-graph intersccts the radius-graph at a certain time, then a collision
occurs between the MR and the obstacle at that time. In Figure 4.6(Left),
it can be observed that the M R comes very close to Obstacles (1, 2, and 3)
at different times. Similarly the M R approaches both Obstacles (1 and 3) in
the time interval [10,12] in Figure 4.6(Right).

We show two different examples in Figure 4.7. In the first one (Fig-
ure 4.7(Left)), the robot avoids all obstacles that are moving horizontally
towards its path by either speeding up or slowing down while navigating
towards the goal. Similarly, in the second example (Figure 4.7(Right)), the

robot avoids obstacles heading towards it. The robot passes in front of a mov-

ing obstacle (the path is hidden) if the time-to-collision is large enough to do
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Figure 4.9: (Left) A free path is generated amidst stationary and moving
obstacles. (Right) A new free path is generated after decreasing the speed of
the first moving obstacle (moving downwards).

so. Otherwise, the robot waits for the moving obstacle to pass (the path is
drawn over the obstacle). This is illustrated in Figure 4.8. The M R gets very
close to Obstacle 1 at t = 9 (units) — the time when the MR passed before
Obstacle 1 in Figure 4.7(Left)). Figure 4.8(Right) depicts distance-graphs of
obstacles in Figure 4.7(Right). Note that the radius-graphs in Figure 4.8 are
not horizontal due to the difference in obstacle sizes used in this experiment.

Finally, Figure 4.9 presents an example in which the MR plans its path
amidst stationary and moving obstacles (there are two moving obstacles: the
first one is moving downwards and the second one is moving upwards). Two
different paths have been generated due to changing the speed of the first
moving obstacle. In both figures, the M R avoids the first dynamic obstacle by

moving in the direction opposite to the obstacle’s motion. The MR behaves
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Figure 4.10: Distance gravhs beiween the MR and obstacles of Figure 4.12.

similarly when facing the second moving obstacle in Figure 1.9(Left), whereas
in Figure 4.9(Right) the M R passes in front of the second moving obstacle
(path is hidden) because it is safer to do so. Corresponding distance-graphs
of Figure 4.9 are described in Figure 4.10. We omit the distance-graphs
of Obstacles 10 and 11 because the package used to generate these graphs

(GRTOOLS) has a capacity of 10 graphs per figure.

4.7 Conclusion

We have presented a new method for dynamic path planning using only
local information and a knowledge of the start and goal positions. Uncer-

tainty in obstacle positions was a'so taken into account. The concept of safety
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was introduced, static safety being a function of the speed of the robot with
the acceleration bounds being the parameters. Dynamic safety was described
as a function of the time-to-collision with an obstacle. In order to draw the
robot closer to the goal, a goal attraction function was used. We showed that
the velocity-decomposition technique is a special case of the overall safety
function when the dircction of motion of the robot is fixed in a planning
step. Currently we are working on obstacle detection using visual informa-
tion. In the future we intend to integrate the vision and planning modules,

and develop a real-time implementation on a TRC lab-mate platform.
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Chapter 5

Motion Detection Using

Background Constraints'

5.1 Introduction

One of the ultimate goals in robotics is to create autonomous vision-based
robots that are capable of exccuting different tasks, in a real world, without
the need for human intervention. An autonomous land-vehicle is an example
of a system towards this goal, combining research from the areas of motion
planning (in the robotics community) and motion detection (in the vision
community).

A vision-based navigation system needs to recognize the presence of static

objects as well as moving ones in order to avoid collisions. In other words,

'A. Elnagar and A. Basu. Motion Detection using Background Constraints. Submitted
for publication.
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it needs to interact adaptively with its environment. There are two major
components in such a system: sensors which provide information about the
environment, and a control strategy using which a decision about the next
move is made. We have already addressed the second component and pro-
posed methods for the motion planning problem {[3, 9, 10]). In this paper we
describe a technique for independent motion detection (related to the first
component) from a mobile platform.

For a static camera, a simple technique that subtracts successive images
and marks non-zero regions in the resulting image can be wed for detecting
motion. For a moving camera, the problem is more complex because of the
possibility that every object in the environment may be moving with respect
to both the camera and the environment!. Several researchers have proposed
methods for detecting motion in the case of a static camera, but few of them
addressed the problem for a moving camera. Motion detection techniques, for
a moving camera, can be divided gencrally into two bread classes which are
termed quantitative and qualitative. in the first class, the aim is to produce a
3-D representation of the environment (structure-from-motion). Whereas in
the second class, the objective is to recognize a particular pattiern (situation)
of interest. Both classes of techniques use optic flow fields for detecting
motion.

This paper argues that the problem of motion detection in vision-based
navigation systems can be solved using background constraints and without

the need for optic flow estimation. The basic idea of this constraint stems

!For an example that shows how hard the motion detection problem can be in a dynamic
environment, please see [36].
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from the fact that in vehicular motion moving objects are usually in con-
tact with a planar surface. Therefore, if objects are not moving within the
camera’s field of view, equations show that the motion field varies inversely
with distance from a fixed point. Since depth discontinuities do not occur on
planar surfaces, any abrupt change indicates a point on the boundary of an
object. Using knowledge about the background and the camera motion, the
displacement field at cach point in the image is computed. A point that lies
on a moving object is unlikely to satisfy the estimated displacement field at
that specific point (i.c.. it is inconsistent with the global pattern of motion).

In order to make this technique more robust. we take into account in-
accuracies in determining the displacement field. These errors may result
from inexact rotation aud/or position readings which generate false motion
detection (narrow regions on the boundaries of objects in the environment).
To overcome this problem, we use a morphological filter that consists of two
operations — erosion followed by dilation. This filter proves to be sufficient
for removing false motion due to inaccurate background compensation.

The organization of this paper is as follows: In the next section we survey
past research in the arca of motion detection. Section 5.3 describes the
camera model used throughout this paper. In Secction 5.4 we introduce the
cartesian displacement field. The related motion equations based on the
background constraint are developed in Section 5.5, and then present the
algorithm for independent motion detection from a translating and rotating
camera. Experimental results demonstrating the validity of the background
constraint are presented in Section 5.6. Finally, error analysis dealing with

magnitude and type of inaccuracies caused by rotation and/or translation is



discussed in Section 5.7.

5.2 Previous Work

In the past few years, several researchers have worked on the motio..
detection and estimation problems Vsa5¢4 on optic flow or motion fieldd vactors.
Since there are different approaches fo: «siimating optic flow, three different
classes of techniques to detect motion have i won introduced. The first one
used feature based methods to estimate motion field [21], while the second
group used correspondence of points or lines [32, 35, 38, 40]. The third class
viewed the problem of optic flow estimation as a minimization problem under
certain constraints. For example, Horn and Shunk [16] used the smoothness
constraint, whereas Nagel [25] and later he and Enkelmann [26] used the
oriented smoothness constraint. Shunk [31] developed the line clustering
constraint. For a comparative discussion of these constraints see [41].

Motion detection in the case of a stationary camera can be solved simply
by svbtracting successive images, and then looking for significant differences
which identify the boundaries of moving objects [18]. This procedure is also
used when a camera is moving but the environment is static 5, 22, 39]. Most
of the above references are restricted to one rigid moving object. However,
they are not suitable for detecting motion when both the camera and the
objects are undergoing motion.

The early work of Ullman [40] is considered the first trial to detect motion
while the camera and multiple rigid objects are in motion. He proposed a

decomposition procedure of the resulting optic flow into sets that correspond



to each moving object in the scene. Later, Jain [17] studied the problem in
the case of a translating camera. e used the motion epipolar constraint after
applying a complex logarithmic mapping on the image. A similar approach
for detecting only the vertical motion is reported by Frazier and Nevatia
[13]. Heeger and Hager [15] described a technique that first estimates the
motion parameters of the camera and then finds any inconsistent values (that
correspond to a moving object) with respect to the estimated parameters.
Zhang et ¢l [42] used a similar approach but based it on rigidity constraints.

In arecent detailed study by Thompson and Pong [36]. two general classes
of techniques are presented. One class uses the motion epipolar constraint
while the other one exploits information about camera motion and depth.
However, it is not clear how some of these techniques can be implemented in
practice.

All techniques presented so far are cousidered to be cuantitative except
for some methods in [36]. On the other hand. there are some qualitative
techniques in which rescarchers argue that the motion detection problem can
be solved without having to solve the entire structnre-from-motion problem.
Thompson and Kearney [34] described a strategy that makes use of inaccu-
rate optic flow to detect motion. Later, Bhanu ¢ al. [4] proposed a technique
for motion detection that is based on identifving a fuzzy focus of expansion
and a qualitative measure of the motion of scene points. Nelson [28] described
a technique that use - ormal flow component and two qualitative mea-
sures to tag motion "hat * inconsistent with some stored motion patterns.
Aloimonos et al. [1, 2] presented a more comprehensive study to solve some

of the vision problems in the context of the purpose of a specific problem. Re-

o
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cently, Tistarelli and Sandini [37] have explored more applications of active
vision -— obstacle detection being one of them.

Motion detection in some particular applications such as obstacle avoid-
ance has also been researched. Olin el al. [30] tried to segment single images
in order to detect obstacles, while Daily et al. [8] used range data. Moreover,
the idea of field divergence has been exploited, for example [29, 7]. Grosso ef
al. [14] used stereo vision and motion analysis to infer scene structure and to
control the movement of a mobile robot. Among these works, Mallot et al.
[23] and Enkelmann [11] studied approaches similar to ours. Both of them
assumed a camera moving parallel to the planar surface. Mallot used spatial
disparities to detect obstacles while Enkelmann used temporal disparities.
Our approach is close to Fnkelmann’s approach. However, our methodology
is more general since we consider both translation and rotation. Morecer,

we do not use optic flow in motion detection.

5.3 Camera Model

Motion detection requires a mathematical model which describes the rela-
tionships between a 3-D point (P), its projection on the image plane (p),
and the motion parameters of the camera. We will define the coordinate sys-
tems that will be used and derive relationships between them in the following
section.

Throughout this work, the pinhole camera model is used. As shown
in Figure 5.1, the origin of a cartesian coordinate system OXY Z is the

viewpoint of the camera and its optical axis is aligned with the Z axis. The



Figure 5.1: Camcra coordinate system and image coordinate system.

image is the projection of a 3-I scene onto a plane located at distance f
(focal length) from O. The image coordinate system is represented by oxy
in Figure 5.1. Using the above model and assuming perspective projection,
the relationships beiween points in the image plane and points in 3-D with

respect to the camera coordinate system are:

X Y
¥r= ./}7 y= ./_«,'Zf (5.1)

where P: (X, Y, Z)is a point in the camera coordinate system. and pi(r,y)

is its projection on the image plane: f.: number of pixels correspound to f

along the x-axis; f,: number of pixels correspond to f along the y-axis.
The camera system considered in this work is mounted on a pan/tilt

device that allows rotation and a platform that supports translation. Since
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Figure 5.2: The camera model

we are interested in mobile robots (i.e., vehicular motion), we only consider
rotating the camera around the pan axis (Yg-axis) keeping the tilt angle fixed.
We allow translation to take place only in the X7 plane (always in contact
with tire planar surface). The relative motion of the camera with respect to
a rigid nriace is described by a translational velocity 7' = (U, ¥V, W); and
a rotational velocity Q = (4, B,C) around O (see Figure 5.1). A =imple
drawing of the camera system is depicted in Figure 5.2. We will now show

the derivation of the displacement field.

5.4 Cartesian Displacement Field

We assume the camera is moving parallel to a planar surface. We further
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assume that the ego-motion parameters with respect 1o the planar surface
are known?. To estimate the displacement field, lot £ = (X.Y.Z) be a
point in the camera coordinate system at time t, and £ = (Y. V, Z) be the
corresponding coordinates at time § = ¢ + 8. Let (x,y) and (r.y) be the
image prejections of P and P, respectively. The components of the displace-
ment field (u,v) are computed from the displacement vectors (assuming time

imterval to be unity) as follows:

o= -y {5.3)
where & = (fo ) and 7= (/,2). X and Y are compnted using the rolation
3 i=(% 1 g

P = RxpP+T (5.4)

where 1?2 1s the rotation matrix defined as:

Solving (5.4) and substituting in (5.2) and (5.3). we obtain:

—HA+(fy+ %)13 — ey Lt

fyu - -
u = L (5.3)
A _rB W
I+ 7 7. -+ 7
A S S P L T
( f!/ -/!I \ oS I} +- f.rf( L 4 =
voo= , e (5.6)

ud 2B W
] + "rl, J’) + Z

“If Ego-motion parameters are not known, several different techniques can be used to
estimate them {6, 12, 19, 27, 33).
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If %.1 << 1, the camera field of view is relatively narrow, and image sampling
is assumed to be fast (i.e., the rotation angles are small, less than 5°) then
the denumerator in (5.5) and (5.6) is approximately equal to 1. Thus the
displacement field becomes the same as the velocity fields [5]. Note that cach
displacement vector above can be represented as the sum of a translational

component and a rotational one:

U = up+u,
frU —alWW Sy ? fz . -
e+ [~ A (S ) B 2 5.7
[ Z } [ ‘/y ( ‘/I ) ‘/‘!/!/ ] ( )
o= vyt
f,V —yW —y: yr o, o fy -
eI = A+ B R0 (3

5.5 Background Constraint

If moving objects are in contact with the planar surface (vehicular motion)
a technique that depends only on knowing thie image plane locations corre-
sponding to discontinuities in range is needed. If no object is moving within
the camera field of view, motion equations show that flow varies inversely
with distance for a given fixed point on tlie pilanar surface. Discontinuities
in motion field correspond to discontinuities in depth of that point. In the
case of a planar surface depth discontinuities are not possible, therefore any
significant variation in motion field should correspond to the boundary of a
moving object.

Consider a planar surface which can be described in both spatial and
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image coordinate systems as follows:

D = kELX+EY +k7Z or

D X Y
- e /\‘,J',—‘ + l.f -— + ll':_: (5‘9
7 fo 7V, » )

where (kz, ky, k), denoted N, is the planar surface’s normal with respect

to the camera coordinate system, and ) is a constant.

Figure 5.3: The transformation graph that relates camera, robot, and world
coordinate systems.

Since we assumed that a mobile robot moves parallel to the planar surface,
the plane’s normal (slope of the plane) with respect to the world frame of

reference, denoted N, is chosen to be (0,0,1). To compute N with respect
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to the camera coordinate system, we substitute in the following relation:

(NC)T . (NW)T
=T (5.10)

1 1

where T is a 4 x 4 homogeneous transformation matrix defined as:

(7'11 T2 Tz O

7€ — 2y T2 T3 5y
W= i
T3 T3z Tyy O

60 0 0 1

The 3% 3 sub-matrix (R§, = [r))...r33]) represents the rotation matrix relating
the world coordinate system ({I¥'}) to the camera coordinate system {Ch,
and [6z, 6y, 6] denotes the dispiacement vector from the origin of {W} with
respect to {C}.

Figure 5.3 describes the transformation graph between three coordinate
systems: the world, the robot {T'}, and the camera. To obtain the ori-
entation of {C} from {T} (or {IW}). we rotate W about Z by an angle
—90 (Rot(Zw,~90)), and then rotate about Xy by an angle —(90 + 7)
(Rot(Xw,—(90 4 7))), where 7 is the tilt angle. Formally,

R = RY = Rot(Zw, —90) Rot( Xy, ~(90 + 7))
From the transformation graph of Figure 5.3, we know:

iy "W
T = TYTY
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1 000 0 sin(7) cos(t) &,
o100 10 0 5,
- 0 0 1 6 0 cos(r) —sin(r) &,
_0 0 01 _J _U 0 ] l |
[ 0 sin(r) cos(t) &, ]

1o 0 8,

N 0 cos(r) —sin(r) 6.
_U 0 0 i ]

where 6, = 6. +6.,. Since 'l'g.‘ is an orthogonal matrix. it follows directly:

e Iy -1
Ty = (1)
- ;

0 1 0 &,
_ sin(r) 0 cos(7) —b,sin(7) — &, cos(r)
- cos(t) 0 —sin(7) —b,cos(r)+ d.sin(7)
| 0 0 0 ] ]

Substituting in (5.10) yields:

0 8,
(NOT L o]0 | (1=6:)cos(r) = 6, sin(r)
1 SV | (6 = Dsin(r) = 6y cos(r)
|1 R J
Consequently,
ky = &,
ky, = (1 =06;)cos(t)— &psin{r)

Posad
e
H

(6. — 1)sin(r) — &, cos(7)
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An equation of the plane (background) through P{ = (X§, Y€, Z€) with
normal vector N is:

NC (P —PS)=0 (5.11)

where P¢ = (X,Y,Z) and PC is the origin of {T'} in the world’s frame of

reference with respect to the camera frame of reference computed as follows:

[ 6, -
(PE)T P %) T —6:cos(7) ~ &, sin(T)
= Ly =
1 H 0:sin(1) — &, cos(t)
1

Substituting in (5.11) and using the perspective projection equations, we
obtain:
: 6:(8: — 1) + 6,° + 6,2
Z = *(A_'I )k - J; . (5.12)
'r'f_ + 'yjy + 2

I

where 6, 6, are updated as the camera translates. This is simply because the
camera coordinate system changes in position. As an illustration consider
Figure 5.4 and assume the origin of the camera coordinate system to be at
(X1,Y1, Zy) before motion, and at (X, Y3, Z,) alter the camera moves with
a speed S for t seconds (time elapsed between the two processed images). It

follows:
by = 6+ (Xo—=Xi)t = 6,4+ Scos(B) -t
6, = b+ (Ya—-Y) = 6y + Ssin(B) - ¢

6, = 6,

z

These relationships are described graphically in Figure 5.4. The new position

of the camera coordinate system after motion is denoted by {C'}.



Figure 5.4: Updating 6, and §,,.

5.5.1 Motion Detection

The detection of moving objects is certainly a prerequisite for many tasks.
For example, it is an important issue in visual navigation. In this paper, a
general solution for motion detection in mobile robot navigation on planar
surfaces is described. We consider the general case, where an object in view
and the camera are moving rigidly (rotating and/or translating) with respect
to each other as well as the background.

For a stationary camera, the pixel-by-pixel subtraction technique can
be used to detect motion, since with a static scene a given 3-D point will
continuously project to the same position in the image plane. For a moving

camera this is not the case. To apply pixel-by-pixel comparison with an
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active camera image sequence, we must map pixels which correspond to the
same 3-D point to the corresponding image plane positions.

In the following subsections, we will derive the mapping function between
images resulting from camera motion. For each pair of images processed in
the image sequence, the image at time ¢ is mapped so as to correspond pixel-
by-pixel with the image at time t+6¢. Regions with no match between the two
images are ignored since they represent distant regions of the environment

that can be dealt with later on.

Translating Camera

Using (5.12) and the assumptions about wvehicular motion (mentioned
earlier), we can easily compute the displacement field (in the translational

case) denoted by (u,,v,):
(fzU —2W)

up = (5.13)
(LY —yW)
vyo= (5.14)

Given the speed of the camera (S), pan angle (B), and tilt angle (), trans-

lation motion components of the camera (U, V, W) can be determined easily:
U = Scos(r)sin(B)
V. = Ssin(7)
W = Scos(r)cos(B)

The location of the focus of expansion (FOE) on the image plane (see Fig-

ure 52) is
(I’CE FOE ) [ V]
® v H/’ W
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The magnitude of motion field (v=(u,v)) associated with any surface point
on the background (say p=(x,v)) is proportional to the distance between the

point and the camera. It is defined as:

W S
VIl = S [(FOE, — &) + (FOE, = y)?

The orientation of the motiou field at a certain point on the image plane can

be determined if the translational motion parameters are known.

FOE, -y
FOE, = tan~ (oo ty — Y
o =t maE )

Note that (5.13) and (5.14) can be rewritten in terms of FOE:

(FOE, — )W

o r = Z
(FOE, —y)W
s UT = Z

Based on the magnitude and the orientation of the motion field at a
certain point, we can determine casily if this point lies on an obstacle and
whether this obstacle is static or moving®. The magnitude of the motion field
at a certain point on the background is estimated from the motion parame-
ters. We can also determine the motion field at cach point in the image plane
using Horn’s algorithm, for example. The estimated and computed values of
the motion field at a certain point should be approximately the same if this
point lies on the background. Otherwise, this point belongs to an obstacle.

This is a simple way of detecting obstaclos.

3Detecting static obstacles is not discussed lere.
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Given two consecutive images grabbed a short time apart, we would like
to establish a relationship between any pixel in the first image with its corre-
sponding one in the next one, provided that the camera is only translating.
A simple subtraction test between corresponding pixels is used to produce a
binary image in which non-zero regions represent motion. Assume that an
image (I(t)) is grabbed at time t and another image (I(¢+ 1)) is grabbed at
time ¢ + 1. Let P be a 3-D point that is projected on both images:

plt+1) =(z(t +1),y(t+1)) = (2(t) + up y(t) +vp) = pt) + v (5.15)

The basic idea of detecting independently moving objects is based on the
observation that given the camera motion. any point in the image should
satisfy (5.15). Whereas a point that lies on an independently moving object
is unlikely to satisfy (5.15). Therefore, detecting moving objects becomes
easy depending on this constraint, which can be used for both translation
and rotation. The analysis so far dealt with the problem of motion detection
from a translating camera. Next we consider the case of rotational camera

motion.

Rotating Observer

The rotational component around the pan-axis is the only parameter of
motion considered here. This is not a very restrictive assumption because
of the nature of our application (mobile robot navigation). A rotational
component around the Z-axis is not realistic since we, humans, do not roll
our heads while driving. The other component (rotation around the X-axis

(tilt)) is not crucial either. There is no need to abruptly move ones head up
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and down while driving on a road. Therefore we consider varying the pan
angle while keeping the tilt angle fixed.

Similar to the translational case, we would like to establisli a relationship
between pixels that represent the projection of a 3-D point in two images
grabbed at different instants of time. Note that the camera coordinate system
and the change in the image plane as the camera rotates (Figure 5.5). This
is ideal for background compensation, since visual information is invariant

to camera rotation [20].

Figure 5.5: The cffect of rotation on the camera coordinate system.

To develop the theory, let p;;(t) € I(t) correspond to pi(t) € I{t+1) after
a small step of rotation (B) around the pan-axis. Denote the new camera
coordinate system by {C'V}. Given B, any pixel in I{f) can be related to its

new location in I(f + 1) depending on the transformation that relates {C}
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to {CN} except for some pixels in the periphery. The relationship is:

(PO o | (PO
= Y'C'N
1 1
where
[ cos(B) 0 sin(B) 0]
e 0 Lo 0
L oN -
—sin(B) 0 cos(B) 0
0 0 0 1
L .

Assume P¢ = (X(6).Y (1), Z(1)) and PEY = (N(C+ 1) Y0+ 1), Z(E+ 1)),

then
[ X(t+1) ] [ X(t) cos(B) + Z({) sin( B)
Y+ | _ | v 5.6
Z(t+1) ~X({)sin(B) 4+ Z(t)cos(B)
1 1

Using (5.1) and (5.16) we can cstablish the relationship in the image coordi-

nate system:

_ _ x(t)cos B + fsin(B)
2(t+1) = fr—:c(t)sinB-l—fl. cos(B) (5.17)
y(t+1) = 10 (5.18)

—a(t)sin B + [, cos(B)
Assuming a small rotational angle between consecutive frames, we can ap-

proximate (5.17) and (5.18) by

_ UL A _J=y(t)
e iy Al M)
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This defines the relationship between the projections of a 3-D point on two
image planes (c.g., the relationship between p and p' in Figure 5.5). The

rotational component of the displacement field (1, v,) becomes:

o o PO+ 2B - 1
up = .z(t+l)—.1.(t)—m)—1}— (5.19)
(x()y(t))B

vr = YD) —y(t) = «(1)B

This completes the computation of the displacement field v resulting
from a moving (translating and rotating) camera. A simple flowchart of the
algorithm used to detect motion on planar surfaces is described in Figure 5.6.

If we could achieve exact background compensation, the method de-
scribed so far would be sufficient. In the presence of position inaccuracies,
however, the results of these methods deteriorate. Since errors in angle and
position readings are inevitably present, it is desirable to develop methods
of motion detection that can robustly reject the false motion they cause.

An example of the result of motion detection after inaccurate background
compensation is shown in Figure 5.8(C). In this example, no motion should
be detected since all objects are static except the camera (i.e., the resulting
image should be a black image). However, false motion is detected, which is
characterized by narrow (white) bands bordering some of the strong edges
of the scene background. Our approach to removing the false motion utilizes
the expectation of a wide region of true motion being present. By using
morphological erosion and dilation we eliminate narrow regions of detected

motion, while preserving the original size and shape of the wide regions.
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Morphological Filtering

One application of morphological filters is in noise reduction or suppression?.
The basic idea is to apply a mask M over an image /. The value of an element
(my;) in M is either 0 or 1.

Two operations in morphological filtering are of interest 1o us. They are
eroston and dilation. The erosion operation can be considered as a single
pass of a thinning operator. The dilation operation. on the other hand, is
the reverse of erosion. In other words. it is an expansion of a set (c.g.. an
object) into all the background pixel cells which border the set {the object).
Thus. erosion shrinks an object whereas dilation cenlarges it. Formally. given
a mask M (n x n) and a part of a binary image .4 of the same size as the

mask, we can define the erosion operator as follows:

A9 A = L ((vl)if € ‘) A (/)t_/ = 1))

0 otherwise
Dilation is the dual of erosion:

! 1 3)1 El N ) :]H
A Al = E((3p, € A) Ay

0 otherwise
By applying erosion to the image. narrow regions can be eliminated while
wider ones are thinned. In order to restore these wide regions back, dilation is
applied using a mask of the same size. For example Figure 5.8 (C') shows false
motion that has been detected between the frames (A) and (BY of the same

figure due to errors i nosition readings. To eliminate this noise, image (C) is

*For a similar appliciuon of morphiological filtering in motion tracking, sce [24].
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eroded by two different masks of sizes 3x 3 and 5x 5. The results of applying
these masks are shown in Figures 5.8(D) and 5.8(E), respectively. For this
particular iimage sequence we can see that to completely eliminate the noise
due to position inaccuracies, we must use a mask size of 5 x 5. Figure 5.12
(to be introduced in Section 5.7) provides a geometric explanation of these

masks.

5.6 Experimental Results

The camera system used for experimentation is mounted on a pan/tilt
device and a platform that supports translation. The experimental results
presented in this section are from four sequences of images. All image se-
quences use a camera that has a fixed tilt angle and restricts the camera
rotation around the pan-axis. The image sequences are processed ofl-line.

Figure 5.7 (image sequence 1) is taken with camera motion constrained
to translation only, whereas in other experiments (Figures 5.8, 5.10, and
5.11) we use both rotational and translational motions. In image sequence 1,
the twe objects (Figures 5.7(A) and 5.7(B)) are stationary while the camera
is the only moving object in that environment. The camera is translating
towards the scene with speed S parallel to the background. Images (A and
B) of Figure 5.7 are grabbed before and after motion, respectively. If the
computation of the displacement field is exact then no motion should be
detected, which agrees with the experimental rosult of Figure 57(C). In a

variation of this experiment, we consider the camera speed to be % and then
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Figure 5.7: Image sequence 1: The camera is translating in a static environ-

ment. Motion delection is produced as a result of considering the speed to be
(3)-
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Figure 5.8: Image sequence 2: Noise in motion detection and the effect of

morphological filtering (erosion and dilation).
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perform the same computation of the displacement field. In other words, we
assume that both objects are moving towards the camera while the camera is
translating with speed £ towards them. The result is shown in Figure 5.7(D)
which indicates motion around both objects.

Figure 5.8 (image sequence 2) is taken while the camera is translating and
rotating in small steps around the Y-axis. Images (A and B) of Figure 5.8
represent a static scene of three cars. Figure 5.8(C) shows the motion de-
tection result before filtering. After applying morphological filters 3 x 3 and
5 X 5 masks, respectively, better performance is obtained (Figures 5.8(D)
and 5.8(E)). The false motion detected in part (C) is attributed to errors in
the readings of either the pan-rotation angle or the speed (position) of the
camera. This topic will be further discussed in the next section.

Images (A and B) of Figure 5.9 are taken while the fire-truck (closest one
to the camera) is moving to the left while the camera is translating towards
it. The resulting motion detection images are shown in Figures 5.9(C) and
5.9(D). Image (C) describes the motion that took place between image (A) of
Figure 5.8 and image (A) of Figure 5.9 whereas image (D) shows the accumu-

lated motion between image (A) of Figure 5.8 and image (B) of Figure 5.9.

Images (A, B, and C) of Figure 5.10 are taken by a camera moving toward
the center of the image. There are three cars on the background. Two are
moving and one is static. Image (B) is obtained when the car (closest one to
the camera) is passing by from the right. Image (C) describes the situation
in which the second car (to the left of the camera) is moving towards the

camera while the other one is moving backwards. The results depicted in
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Figure 5.9: Image sequence 2: motion delection results from moving the fire-
truck while the camera is moving.
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Figure 5.10: Image sequence 3: An example of motion detection where {wo
objects move between image frames.
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Figure 5.11: Image sequence 4: An ezample of motion detection where two
objects moved (one rotated and the other entered the scene).



images (D, E, and ) correspond to images (A and B), (A and C), and (B
and C), respectively. Note that in image (E), the backward motion of the
sports-car puts it back almost in its original place (i.e., no motion is detected
between frames (A and C) of Figure 5.10).

Finally, Figure 5.11 describes a similar example but with rotation and
translation object motions. This image sequence (Figures 5.11(+% 5.11(1),
and 5.11(C)) is obtained from a translating and r().atiilg camera. We start
with two cups and a block that are stationary (Image (A)). Image (B) is
taken after the camera moves towards the scene and a new object enters
(from behind the left cup) is moving to the right. The detection of this
moving biock is shown in Image (D). Image (C) is obtained after hiding
the new block and rotating the cup ' -ated at the middle-right part of the
image) clockwise -— note the characters (pe) written on it. The result of
this motion detection is shown in image (E). The rotated cup is not detected
since it does not translate. However, the characters (pe) is detected twice.
This is because the rotation applied on the cup is slightly iarge. Image (F)
reflects the motion that took place between images (B and C).

As evidenced from the results shown in Figures 5.7, 5.8, 5.10 and 5.11,
some false motion is detected due to inaccurate background compensation.
In image sequence 2, for example, we can sce that false motion is present.
Specifically, motion is detected along the border of the flashing-light on the
fire-truck. However, our proposed motion detector appears to perform re-
markably well in all the above experiments. Minor false motion is eliminated
by using morphological filtering.

It should be noted that if the heights of objects in the scene are very large
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{i.e.. almost bloc! ' 1g the camera’s field of view) then false motions will be
gencrated at the uppes portion: of these objects.  his is because of the large
distance between the points on the « ,«  portions of these objects and the
backgrou:«d. Therefore, some constrainis wi the height o he objects shoula
be taker into account. Formal derivation of such cuns raints is presented
in Appendix E. However, this problem is significant when the field of view
of the camera is wide, which is not the case in our systemn as well as all
other successful experimental sysiems for motion detection as pointed out
by Thompson and Pong [36].

In the next section, we analyze (theoretically) t".e magmtude and types of
errors caused by different sources — namely, pan angle variation and position

reading.

5.7 FError Analysis

It should be noted that noisy position information corrupts background
compensation algorithms and necessitates additional noise removal techniques.
Morphological filtering has been presented as one alternative to remove nar-
row regions of false motion from subtracted images. For effective noise re-
moval to occur, the morphological erosion mask must be at least as wide as
the regions of false motion. If the mask is not wide enough, some noise will
remain after erosion and will be expanded to its original size after dilation.
This means that no noise will be removed. Because of this behavior, it is
important that we use filters large enough to completely remove the expected

noise. However, in order to reducing computational cost and preserving true



motion, it is desirable to liniit filtering to the minimum required. This mo-
tivates us to investigate the relationship of noise characteristics to filtering

requirements.
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Figure 5.12: The magnitude of error (|E|) in pivel-to-pirci mapping.

5.7.1 Error in Position Readings

Recall that the displacement mapping functions in the translational case

are

Up = Tpp] — Xy =




The error between the correct pixel positions and the pixel position found

with inaccurate position information in the mapping function can be ex-

pressed as
Ev . =u (54 As,B+ Ap) —u, (S5, B) (5.21)
Ee. =v.(S+As, B+ Ap) —v, (S, B) (5.22)

Where E.. and £, are the errors in mapped pixel position in the = and
y directions. Ag and Ag are inaccuracies in measurements of rotation and
translation, respectively. For evaluating the error in pixel mapping, we con-
sider several cases depending on the location of (2, ). In general, the error
in the mapped pixel position is greater as we move further from the center
of the image. Ve use pixel positions in the image center to simplify the
error equaticas when determining general error characteristics, and consider
border pixels to determine the worst case behavior.

To evaluate u, (S+As, B4+ Ag) and v (S+As, B+Ag), we approximate

them using a first order Taylor series expansion as follows:

du )

ur(S+ 85, B+ Ap) = u (S, B) + 5EAs + fal—‘BTAB (5.23)
(S+As, B+ Ag) = v, (S, B)+ Ly + (5.24)

Ur °’ B 95 T gB "k =

Substituting Equations (5.23) and (5.24) into the equations for error in the

compensated pixel position [Equations (5.21) and (5.22)] we obtain
du du,, os(r)[As(B —a)+ ApS] :
E, =2z 5.28
r= 25257 38 7 (5.23)
dv dv, Aslsin(t) — y cos(r)]
E - 2
Y —Ag+ aBA = (5.26)



Er| =

| Ep) Ag £, £,

in cm in cm in pixels | in pixels
0.001788 | 0.127588 | 0.852204 | 0 523366
0.003577 | 0.235177 | 1.704407 | 1.046731
0.C03366 | 0.382765 | 2.556611 | 1.570097
0.007154 | 0.510353 | 3.408811 | 2.093463
0.008942 | 0.637941 | 4.261017 | 2.616G828
0.010731 | 0.765530 | 5.113221 | 3.140194
0.012520 | 0.893118 | 5.965424 | 3.663560
0.014308 | 1.020706 | 6.817628 | 4.186925
0.016097 | 1.148295 | 7.669832 | 4.710291
0.017885 | 1.275883 | 8.522035 | 5.233656
0.019674 | 1.403471 | 9.374239 | 5.757022
0.021462 | 1.531060 | 10.226443 | 6.280388

The magnitude of the error in pixel position due to translation (E£7) is:

Jt
SNl
-1
~—

Table 5.1: Worst-casc compensation ¢rior for (ranslation

To deterimine the translation crror Ag provided that there is no rotation
(i.e., B = Ap = 0), we substitute Equations (5.25) and (5.26) into Equation

(5.27):

| A
\/.'1:'-’ cos(T)? + (sin(7) -- y cos(7))?

Ay =

(5.28)

'The error magnitude increases as a pixel (. y) moves further from the center

of the image and correspond to a 3-D point that is close to the camera. To

estimate the worst- case error, we choose (2, i) = (255, —240) — right bottom
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corner of the image. The tilt angle and the speed of the camera are set to
7 = 17.4° and S = 2 (an/time-unit). Rotation angle (B) is set to zero.
Using Equation (5.28), we generated Table 5.1 for different error values in
|Er]. The values of E“-r and E,,T are also computed and shown in Table 5.1.
Notice how the errors ar distributed along the x and y axes, and observe

the linear relationship between them and Ag.

5.7.2 Error in Pan Angle Variation

The mapping functions in the rotational case are:
(=)

(fr+a*)B

BT TR
fray
v =
r f r = BB

Similar to the analysis in the translational case, the errors in mapped pixel
position 12 the 2 and y directions due to inaccuracies in measurement of the

pan-rotation B are:

E., =05+ As, B+ Ag) —u, (5. B) (5.29)

u R

£, = vn(S + As, B+ Ap) — 'L’R(.S', B) (5-30)

R
To determine the error, we again approximate the function with a first
order Taylor series expansion and then substitute in Equations (5.29) and

(5.30):

Jdu du x? 4 f2
Eu = ,RA‘ JA = J_-——_J_._ 5.5
ST e Ay e (5:31)
a’(’ a” y_'L-
Buy = SEAs + 22 Ap = [0 5.3:
T T e R Ay T (5.32)



The magnitude of the error in pixel position due to rotation (Eg) is:

" — /2 2
,LRl - LuR + LUH

A I 2 P > ..
(/. _Hi)_,.)z "/[('T“ + 2P+ (ay)? (5.33)

For pan-only rotation, the error is predominantly in the « direction. since

E., Ap Ey, | Egl

incm | indegrees | incm | in pixels
0.000894 | 0.020930 | 0.000032 | 0.500311
0.001788 | 0.041860 | 0.00006G3 | 1.000621]
0.002683 | 0.062790 | 0.000095 | 1.500932
0.003577 | 0.083720 | 0.000126 | 2.001243
0.004471 | 0.104650 | 0.000158 | 2.501553
0.005366 | 0.125580 | 0.000189 | 3.001864
0.006260 | 0.146510 | 0.00022] | 3.502175
0.007154 | 0.167440 | 0.000252 | 4.002485
0.008048 | 0.188370 | 0.000284 | 4.502797
0.008942 | 0.209300 | 0.000315 | 5.003107
0.009837 | 0.230230 | 0.000347 | 5.503118
0.010731 | 0.251161 | 0.000378 | 6.003728

Table 5.2: Pan-only compensalion ¢rror

the change in the y component for pixels at different viewpoints is effected
only by changes in perspective. Therefore, to determine the pan-angle crror
Ap, for a given pixel mapping error, from Equation (5.31) we obtain
Y (= B, )?
IJUR(./J' - 1}.1,1)
Ap = TS
Lelad + 17)

Once Ag is determined, we can solve for E“n using Equation (5.34) to verify

(5.34)

our initial assumption that £, is negligible. For our system, where f, =
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Worst-case error graph ——
est-case error graph -
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Figure 5.13: Best-case and worst-case compensation error for translation

2.31595 cm and the maximum @, = 255 we can make a table of values of Ag
for given errors in £, . The corresponding £y, crror for this position and

Eg| are computed. The value for B used was = 2.5° (this is the value of the

angle used in our experiments). The results are shown in Table 5.2; notice
the linear relationship between Ag and E“R'

The magnitude of net error due to translation and rotation is

E| = \J(Euy + Eu ) + (£, + B, )?

Figure 5.13 shows the effect of varying As and Apg on the computations of
E, and FE,. The two erior-graphs depicted in the figure correspond to the
worst-case and best-case error analysis. The worst-case is when z = 255

and y = —244 whereas the best-case is at the center of the image ((z, 3 ) =



(0,0)). As was noted earlier, the relationship between 2, Ag, and |E] is
lincar. In other words, the pixel mapping error is linearly lependent upon
the magnitude of the error in angle and speed information. This +:alysis of
error sources cnable us to predict reasonable filter-mask sizes based on the
information presented in Tables (5.1) and (5.2). Mask sizes of 5 x 5 (in the
worst case) is proven to be sufficient to remove false motions in our particular
system since error percentage (in Ag and Ag) is less than 10% of the actual

readings (Figure 5.12).

5.8 Conclusion

We presented a direct solution for the problem of independent motion
detection on planar surfaces from a moving camera ‘mounted on a mobile
platform) using the background constraint. This technique exploits informa-
tion about the camera motion in order to derive a mapping lunction relating
pixels in two successive images, excluding certain peripheral regions. The
basic ideca is that any point in the image should satisfy the background con-
straint if it is static, whereas a point that lies on an independently moving
object is unlikely to satisfy this constraint. Therefore, detecting moving
objects becomes easy and can he used for both translation and rotation.

Since compensation, in general. is susceptible to errors caused by poor
camera position information, morphological filters are employed to remove
erroncously detected motion. While this method successfully removes false
motion, it imposes an additional computational burden on the system that

is proportional to the filter mask size. In our experiments, masks of small

4

9
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sizes (3 x 3 or 5 x 5) proved to be very effective in removing false motion.
Note that the proposed algorithm for moti-1 .- vetion is inherently parallel,
therefore a significant speed up of the comyp... -+ sns involved in pixel-to-pixel
mapping can be achieved.

Experimental results with real images were presented. Inaccuracy in po-
sition readings was taken into account while conducting all experiments. The
results demonstrated the validity and the robustness of the method/algorithm

based on background constraints.
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Chapter 6

General Discussion and

Conclusions

In this chapter, we summarize the contributions of the dissertation and
show the interrelationships between chapters. As well, we discuss possible

future research directions.

6.1 Contributions of the Research

In this dissertation we have presented algorithms, heuristics. a planning
methodology, and a motion detection technique for a vision-based naviga-
tion system. Our development of these component modules has helped us
understand the issues involved in designing such a system. There are two
major topics that have been addressed throughout the dissertation: motion

planning and motion detection.
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In the first stage of our research (Chapter 2) we preented a new ap-
proach with heuristics to solve the problem of path planni. using only local
information and a knowledge of the start and - »al positions The experimen-
tal results showed how heuristics help in enhancing the s h process, and
the robot’s ability to avoid obstacles. The concept of safety was introduced.
Safety is a function of the speed of the vehicle with the acceleration bounds
being the parameters. In order to draw the robot closer to the goal, a goal
at'raction function was used. To avoid obstacles, we proposed two special-
purpose heuristics: the “dead-end” and the “avoid-region”. Both heuristics
were used to prune the search space and to enhance the ability of the mobile
robot to avoid obstacles. This technique was shown to be less susceptible
to the local minima problem than most potential field methods by using a
heuristic that allowed the robot to follow obstacle boundaries.

The path obtained from the planning algorithm (in Chapter 2) is de-
scribed by a sequence of line segments. This is not a desirable characteristic
of any planning approach in real-life navigation because the path might be
impossible to follow (e.g., zigzag path). Therefore, the smoothness of paths
should be taken into account!. We presented a new approach to gener-
ate piecewise smooth trajectories for mobile robots in a local environment,
which minimizes the integral of the acceleration (tangential and normal). It
was shown how equality and inequality constraints can be taken into account
in the minimization problem to avoid nearby obstacles. Unfortunately, the

solution of nonlinear systems is complex and not suitable for real-time imple-

'In some cases, smooth paths are essential to prevent wheel slippage.
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mentation, two other techniques were used, namely, cubic and Bezier curves.
Each of these curves generated .« smooth and safe trajectory once a collision
was detected with the original smooth trajectory.

In the basic problem of motion planning we assumed that obstacles were
fixed. One obvious extension is to remove this assumption. The problem
then becomes much harder and it can no longer he solved by merely con-
structing a geometric path. Instead, a continuous function of time specifying
the robot’s configuration space at cach instant of time must be generated.
Therefore, we presented a new method for dynamic patl planning using only
local information and a knowledge of the start and goal positions. Uncer-
tainty in obstacle positions was also taken into account. The concept of safety
was used, static safety being a function of the speed of the robot. Dvnamic
safety was described as a function of the time-to-collision with an obstacle.
In order to draw the robot closer to the goal, a goal attraction function was
used. We showed that the velocity-decomposition technique is a special case
of the overall safety function when the direction of motion of the robot is
fixed in a planning step.

In the treatment of the motion planning problem, we assumed that the
robot senses its environment through some sort of a sensory device. A camera
is used to accomplish this task, especially to detect moving obstacles in its
field of view. We presented a direct solution for the problem of independent
motion detection on planar surfaces from a moving camera (mmounted on a
mobile platform) using the background constraint. This technique exploits
information about the camera motion in order to derive a mapping function

relating pixels in two successive images, excluding certain peripheral regions.
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The basic idea is that any point in the image should satisfy the background
constraint if it is static, whereas a point that lies on an independently moving
object is unlikely to satisfy this constraint. Therefore, detecting moving
objects becomes easy and can be used for both translation and rotation.

Since compensation, in general, is susceptible to errors caused by poor
camera position information, morphological filters are employed to remove
erroneously detected motion. While this method successfully removes false
motion, it imposes an additional computational burden on the system that
1s proportional to the filter mask size. In our experiments, masks of small
sizes (3 X 3 or 5 X 5) pixels proved to be very effective in removing false
motion. It should be noted that the proposed algorithm for motion detection
is inherently parallel, therefore a significant speed up of the computations
involved in pixel-to-pixel mapping can be achieved.

Experimental results with real images were presented. Inaccuracy in po-
sition readings was taken into account while conducting all experiments. The
results demonstrated the validity and the robustress of the method/algorithm
based on background constraints.

This completes the study of the basic components of an autonomous nav-
igation systern: motion planning and motion detection. A motion planning
methodology was discussed in Chapters 2, 3, and 4 whereas a novel technique

for detecting motion was described in Chapter 5.

6.2 Future Research Directions

Our work gives rise to a number of possible research problems for future
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investigation:

¢ Refinement of the planning algorithm. We have considered twa types of
obstacles: polygons and circles. An extension is to include arbitrarily-
shaped obstacles. This can be achieved by either developing a geometric
planning technique that takes into account these obstacles or, from
computational geometry, exploring algorithmns that can contain any

arbitrary-shaped object in a minimum circle or ellipse.

* Proposing heuristics to search the robot’s configuration space for a free

path in a time-vary. a0 orment.
¢ Planning shortes: = . Jias or time-minimal paths in dynamic en-
vironments,

e Smoothness of trajectories generated in global path planning where
a complete knowledge of the environment is available. This can be

achieved by applying constraint optimization techniques.

e Proposing numerical procedures for computing piecewise linear ap-
proximation of optimal trajectories as a solution of discrete two-point
boundary value problems (e.g., nonlincar equations described in Chap-

ter 3).

e Generalizing the planning algorithm to deal with 3D motion. For ex-
ample, planning collision-free paths for a manipulator in a dyvnamic
environment. The manipulator might be equipped with a dextrous

multi-joint multi-finger hand allowing complex types of motions within

~1
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the hand. Optimization theory can be used to optimize some perfor-
mance criterion (e.g., minimize the total amount of time needed to

perform a task).

‘The ability to recover robust spatial description from sensory informa-
tion and to efficiently utilize these descriptions in planning algorithms
is a crucial requirement in an autonomous vehicle system. Therefore, a
technique for sensor data interpretation (c.g., building depth naps or

occupancy grid maps) of the environment is needed.

Throughout our rescarch we were interested in controlling one robot
in the workspac.. What if the workspace is populated with more than
one robot? How to coordinate motion between them? How can they
be uscd to achieve a specific task? This is a topic of great importance
and needs to be investigated in detail in order to answer the above

questions.

Further develop nents are necessary to extend our proposed approach
for detecting motion into more complex environments. For example,

motion detection on terrain surfaces or in 3D).

One important issue in motion planning and detection is the compu-
tational complexity (time and space) of the algorithms. Analysis of
the complexity of navigation algorithms is essential before the design
of operational systems. Another topic of interest is parallelism which

could be used to enhance the processing-speed of these algorithms.

[rd

2



e A full implementation of the theory introduced in this dissertation on a
platform robet needs to be done. Of course, there are some other prob-
lems that should be considered. For instance, localization, locomotion,

world modeling (maps), and computational architectures.



Appendix A

Derivation of the Safety
Function

f(s) = A+B (A1)
(S—Sj) -
= §—— y {— < A 3
bH// I “’M— W) 117 S Ar) dodsy
L (s7—s)
— Hsr— < Ap) | < Ap) dods
t 5'11/5 /0 (f;\'l'“ v =57 r) dbds;

Let us first solve 4:

(s —s5)
A = Sﬂ/ / 15___< Av) 57 < Ar) dods,

=ﬁ/0” /’

]
= — A / 2
T A1 Az (A.2)

~) d0)dsg

il 0 M ANAT
M= [Hesmsan @ = [ 22205 g g
0 AT 0 s

To solve A,, we have to consider two cases :
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o If 488T > 1]

0 ANAT , }
/ (ZX2 >0y a0 = 1 (A.3)
JO &
o If dxaL ]
ANAT - -
4 A; A . A,’Al
/ WAT S gy ap = (A.4)
0 S S

s (5 — 5,{) s )
Ay o= [ < ay) ds = / [(s; 2 5 = ApAT) ds
4 /0 (7 =) Ay 2 ) dsy
Like Aq, we have to consider two cases to solve A

o If s < ApAT

/3 I(s; 25— ApAT) doy = s (A.5)
V]
o If s> ArAT

/s Hs; 25— ApAT) ds; = ApAT (A.6)

s—ATAT

'To compute A, we should study all possible combinations of (A.3) and (A.4)

with (A.5) and (A.G), as follows:

2 if (A3)&(A.5)
| AraT if (A.3)&(A.6)
dual il (AL)C(ALS)
AxALALAT 1 (A 4)C(AL6)
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Similarly, B in (A.1) can be computed as follows

1 s o 0 (sy—s)
= — sp— < An) TCE =2 < ap) dod
B sn/ / I Q,A, < An) 1L < ag) dods,

)
= < <
DH./ AT / ] bfAT AN) d())de

= Tn B, B, (A.T)

Since the computation of By affects the computation of By, the final result
of By will take the form, B, = By, + B., depending on the intervals where
the speed is integrable.

Computing By and B, follows as in A, resulting in the following :

AnAT s Ax AT /
- Ta 1[33——5”;<¢-|-»l;k[
Bi=q1-2 if s <5< s+ ApAT < AxdT
dral ils < w4 ApAT < dxdl
22T (1og(S) — log(s)) i 480 < s <S5 < s 4 ApAT
B Al (log(S) — log(24AT)) if s <432l < 5§ < 54 ApAT
2 = T
’gf\‘ (log(s + ATAT) ~ log(s)) if —‘ﬂn“l <s< s+ ApAT < S
| 288 (log(s + ATAT) ~ log(458T)) if s < ABT < 54 ApAT < S

To compute f(s) we should consider all combinations of A, B,, and B,.
There are 16 different combinations. As an example, 4 of them are listed as

fallows :

1. if s <~A—< s+ ApAT < S and s < ApAT

. A /\rAT . A NAT
fls) = - s+ ApATY) — 1o
S(s) o (Lt logls + ArAT) — log( i

)) (A.8)

\



290480 <5 <5 4+ APAT < 5 and s < ApAT

ANAT
f(s) = NS’I" (1 4 log(s + ApAT) = log(s))  (A.9)

3. if ’—1*51—1*\‘—7- s <S5 <s+ ApAT and s < ApAT

ANAT
Zﬁ—(l +log(s + ApAT) — log(s))  (A.10)

f(s) =

4. if —1‘““‘3—1 s <S5 <s+4 ApAT and s > ApAT

_ ANAT ApAT .
fls) = :*n (5 4 log(S) — log(s))  (A.11)

Equations (A.8-A.1") show various for v i [{s) for different values of s

under the above conditions.



Appendix B
Proof of Proposition 2.4.1

Proposition 2.4.1
The safety function [ increases monotonically to a peak and then de-
creases monotonically. In the degencrate cases where the peak is at the left

(or right) boundary, [ is monotonically decreasing (or increasing).

Proof: ~ We will prove the monotonicity for only one of the sixteen dif-
ferent forms of f(s). The proof is similar for the other cases. Consider the
functions of f{s) that we introduced in functions (A.8) through (A.11) in
Appendix A. To prove the monotonicity, it is necessary to study the exis-
tence of the critical points of the functivns (A.8-A.11). From basic calculus

it follows:
Loifs < "l‘m‘ﬁ—ﬂ‘ S s+ ArAT < S and s < A7AT

.»’1NAT i
S s+ APAT

I'(s) ) (B.1)
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2. if iﬁ\l <s<s+ APAT < S and s < A7AT

A,\r.ﬁf 1 l) (B'Z)

I'(s) ST s+ ApAT s

3.0 A8 < o < S < s+ ApAT and s < ArAT

. AnAT l |
"(8) = - _—— B.3
1) ST s 4 7ar 5 (B.3)

o~

F:
IA
N

<SS <s+ ApAT and s > ApAT

ANAT  — Ap AT 1

Pl = S =) (B.4)

where s > 0. Assume that the speed intervals [y, [o, 5, and [, define the
onaes appear above, respectively. Studying the above derivatives shows the

following results:
e f(s)is increasing on 1 sinc f'{s) > 0, Vs € [,.

o [(s)is decreasing on /3, I, and Iy since f'(s) < 0. Vs € [, I, and Iy,

respectively.

The above resnlts indicate the possibility of having a critical point be-
tween (A.8) and (A.9),or (A.8) and (A.10), or (A.8) and {A.11). Tt is a local
maximum (s = lﬂ”il—), and it is unique (Figure 2.1). Similarly, we can study
the monotonicity for other cases.

Intuitive meaning : Proposition 2.4.1 describes the relation between
the safcety function and the speed. For example, if we assume that there is
no normal acceleration bound, then the graph of the safety function will be

symmetric. Moreover, the safety value will correspond to either a peak or a
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plateau. In the case of a plateau, the safest spced would be in the interval
[(S — ATAT), ATAT]. Otherwise, when A7AT = § — ATAT, the safest
speed is given by ArAT. When the normal acceleration bound is introduced,
the graph of the safety function will not be symmetric (Figure 2.1). Instead,
the peak will be skewed to the left. This is because the normal acceleration
bound prefers lower speeds as is clear fror its definition (curvature multiplied

by the square of the speed).



Appendix C

Times of Intersection Between

a Curve and an Obstacle

We outline the computation of times of intersections between a smooth
curve and an obstacle. Let 7 be a curve intersecting an obstacle centered at

(e, ye) with radius ». The curve and the obstacle equations are:

y = atauo(l) (C.1)

(0= 2 + (y = o) = 12 (C.2)
Assume that @y = 0 and yy = 0, then equations (3.12) and (3.13) become:

ro= s(l)tcos(o(l)) (C.3)

y o= s{)isin(o(t)) (C.1)

To find points of intersection, we substitute (C.1) in (C.2) and then solve for

18]



x, which yields:

(zc + yetan (¢)) £ \/(;1,‘,: + ¥y tan ¢)? — sec? ¢la2 + y2 — r?)

sec?o

r =

(C.5)

Equating (C.3) and (C.4) produces:

s(t)t = (2.cos(d) + y.sin(d) % V= (E2sin (d) Ty cos (¢))2 4 r?

The solution of & depends on the value under the square root. We consider

!
|

i

Figure C.1: Intersection-time intervals.
the following cases:
» If zcsin(¢) = y.cos () then

s(tit = [."UC—{—?—C—]COS(QS):{:?' (C.6)
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o If (Lx.sin(¢) Fy.cos(a)) = r then
y? ‘ : .
s(tht = [ec+ =£]cos(o) + =r (C.7)

From principles of infinite series, we may represent cos (&(t)) as a poly-
nomial of ¢(t) depending on certain error value. Since ¢ is a function of .
wo can simply solve for times of intersection. Because of the nature of this
particular problem we will obtain intervals of intersections. instead of points
of intersection. However, we do not need to find points of intersection. but
ratuer we need to know if an intersection oceurs. This is achieved by checking

the interscction time intervals. Figure C.1 illustrates this situation.



Appendix D

Computing P

Since the closest point (£) on the circle from Py P is the one that forms
the minimum distance from P, P, (perpendicular distance). From Figure C.1,

it follows that the equation of the line P,/ is:

Ve = wla —2) if 2y # g

y=
Ye otherwise
where the slope of PP is:
Y1 — Yo
m=————: ) #
€Ty — g

Substituting y in (C.2), and solve for x, Lwo points are obtained. By a simple
distance test we can find P. ¢ can be determined from (C.1), and { from

Equation 3.9. The speed at this point can be computed by Equation 3.7.
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Appendix E

Constraints on the Height

~.
Y ™~
i \\\" \
| JR .
! Qo
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Pigure E.L: A simple gcometry to derive the constraints.

Our aim is to derive some constraints that can be placed on the heights of
objects inside a certain scene. Figure F.1 describes a simple gecometry of the
closest (py) and farthest (py) points on the background that can be viewed by

the camera at a certaicy instant of time. The distances 7y and Zy represent

,_..
o0
ot
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the distances between these points (py and p,) and the camera, respectively.
The height of an object that blocks the camera’s field of view (0) at py is
denoted by k. W is the width of the ficld of view. From Figure I, h can

be estimated in two different wayvs:

b=\ ZEsin?(0) + =2 (E.1)
h = \/(: + \//a/z _ 212 Sm?w))e — W2 (E.‘Z)

Equating both Equations above (E.1 and I2.2), we obtain:

Zrsin®(0) . .
2= = 7 Xy cos(l 1.3
4y — Zycos(0) T cos(f) (1-3)
Consequently from Equation E.1.

Zisin*(0)

Zy # Zycos(0) (E.4)

o= Z,sin(0 ‘ .
z 7y sin( )\‘ I+ (Zy — 7, cos(0))?

The height of an object at py that blocks the camera’s field of view can be
determined by the above relation provided that Z;. Z, . and § are given.
Formally if we let the right hand side of Equation E.4 to be defined as a

function of ¢ (F{0)), then we can place the constraints as follows:
0<h<F(¢), where ¢ € (U.ax*0]

a is a cunstant chosen empirically in the interval (0, 1).






