
An Investigation on Data Center Congestion Control Algorithms

by

Kunlin Zhang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering
University of Alberta

© Kunlin Zhang, 2023

Abstract

With the rapid growth of data-intensive applications, congestion control algorithms

for datacenter networks under RDMA over Converged Ethernet protocol have be-

come vital in managing various traffic patterns that demand ultra-low latency and

high end-to-end throughput. Although many rule-based and learning-based algo-

rithms have been proposed to enhance throughput and reduce latency, challenges

still remain in ensuring fair and efficient control under dynamic, bursty, and variable-

sized flows which are prevalent in datacenter networks. In this thesis, we analyze the

traffic control mechanism existing in modern data center networks and propose the

Fair Datacenter Congestion Control (FDCC) algorithm based on deep reinforcement

learning that leverages Long Short-Term Memory (LSTM) and historical memory

augmentation to enable predictive control. FDCC operates from a window-based

perspective, and introduces a staged reward design to effectively learn from network

states based on in-band network telemetry acquired from various sources along the

flow path to achieve fair congestion control under dynamic traffic. We perform exten-

sive experiments under a variety of datacenter traffic patterns, including incast flows,

long-short flows, and real-world traffic flows. The results suggest that our approach

significantly enhances fairness for dynamic flow patterns over a range of state-of-the-

art rule-based and learning-based congestion control algorithms, while maintaining

comparable flow completion time and goodput.

ii

Preface

A portion of the content presented in this thesis, including Chapter 2, 3, 4, 5, and 6

have been submitted to IEEE INFOCOM 2024 for review.

iii

Acknowledgements

I am profoundly grateful to Dr. Di Niu and Dr. Zhan Shu for their invaluable guidance

throughout my research journey. Their mentorship was instrumental in navigating the

challenges I faced, and their depth of knowledge and unwavering patience illuminated

my path, instilling in me the ideals of rigorous research.

My heartfelt appreciation extends to my family, my girlfriend Xi, and friends

Jerry, Ruiqing, Ruichen, Haoran, Yiming, Jianming, Weidong, Yuxuan, and other

esteemed labmates. Your support and encouragement have been a pillar of strength

throughout my graduate studies.

iv

Table of Contents

1 Introduction 1

1.1 Problem Motivation . 1

1.2 Our Contribution . 2

1.3 Thesis Outline . 3

2 Related Work 5

2.1 Data Center Traffic Control in General 5

2.1.1 Loss Recovery Algorithms . 5

2.1.2 Congestion Control Algorithms 6

2.2 Learning-Based Congestion Control 7

3 Background and Preliminaries 9

3.1 Deep Reinforcement Learning . 9

3.2 Remote Direct Memory Access Technology 12

3.3 Data Center Network Congestion Event 13

3.4 Main Challenges for Data Center Congestion Control 15

3.5 In-band Network Telemetry . 18

3.6 Reinforcement Learning for Datacenter Congestion Control 18

4 Method Designs 21

4.1 Overview . 21

4.2 State-transition Pair Components Definitions 22

4.3 Neural Network Architecture and Optimization Objective 25

4.4 Training Procedure . 27

5 Common Experiment Settings 28

5.1 Simulator and RL Environment . 28

5.1.1 Experiment Setup . 28

5.2 Baselines . 28

5.3 Benchmarks . 29

v

5.4 Test Metrics . 30

6 Evaluation and Analysis 32

6.1 Long-short Traffic Experiments . 32

6.2 Incast Traffic Experiments . 32

6.3 Mix Burst Traffic Experiments . 35

7 Conclusions & Future Work 38

7.1 Conclusions . 38

7.2 Future Work . 38

7.2.1 Algorithm Optimization . 38

7.2.2 Next Generation of In-band Network Telemetry 39

Bibliography 40

vi

List of Tables

3.1 Algorithm attributes comparison. BW denotes host link capacity,

min rate denotes the minimum threshold of pacing rate, hyperAI de-

notes the addictive factor, RTT denotes the round-trip time, Goodput

denotes the correct throughput. 16

6.1 Normalized goodput comparison of n-to-1 traffic in fat-tree. 34

6.2 Comparison of different algorithms in dumbbell topology with n-to-1

fan-in traffic. Qlen denotes buffer occupation in bytes, FCTSD denotes

FCT slow down, and Unfair Ratio denotes the bandwidth allocation

deviation (i.e., (BWmax−BWavg)

BWavg
). 37

vii

List of Figures

3.1 A high-level overview of Broadcom product switch used during our

simulation . 13

3.2 4-to-1 Dumbbell Topology Bottleneck Switch Queue Length 15

3.3 Flow Completion time comparison in 4-to-1 fan-in traffic. Flow com-

pletion time is the absolute time period of each flow. 16

3.4 The overview of network state perception in an n-to-n dumbbell topol-

ogy within a data center network. 17

4.1 Compare the buffer occupation change w and w/o host inflight bytes

window. 64-to-1 incast traffic with flow initialized within 1µs in a

dumbbell topology. 24

4.2 Actor-critic architecture of FDCC at training phase. For simplicity

only one pair of actor-critic network is demonstrated here, the other

parts’ implementation follows standard TD3 architecture[41]. The

memory buffer stores each observation-action pair incorporating a max-

imum sequence length of k historical observations. 26

5.1 NS-3 and Python Algorithm Communication. 29

5.2 Two-level fat-tree topology. 30

6.1 Long-short term traffic test. 33

6.2 Fair-share comparison in flow join traffic. 33

6.3 n-to-1 Two-Level fat-tree evaluation. Flow slow percentage w.r.t. per-

centile of flow slow down, Fraction of pause time w.r.t. percentile of

PFC pause time over flow completion time, Unfair ratio w.r.t. the

bandwidth allocation deviation. 34

6.4 Web Search Two-Level fat-tree evaluation. 36

6.5 FB Hadoop Two-Level fat-tree evaluation. 36

viii

List of Symbols

Latin

A Set of all possible actions

a Action

p State transition probability distribution function

Q Q-value function

r Step reward

S Set of all environmental states

Greek

γ Discounted factor

π Policy

ρ Reward function

τ Trajectory

θ Parameter of state-action value function

ix

Abbreviations

ACK Acknowledgment.

BW Link Bandwidth.

CC Congestion Control.

DCN Data Center Network.

DCQCN Data Center Quantized Congestion Notification.

DCTCP Data Center TCP.

DDPG Deep Deterministic Policy Gradient.

DQN Deep Q Learning Network.

DRL Deep Reinforcement Learning.

ECN Explicit Congestion Notification.

HPCC High Precision Congestion Control.

LSTM Long Short-Term memory.

NIC Network Interface Card.

PACC Proactive and Accurate Congestion Control.

PFC Priority Flow Control.

PPO Proximal Policy Optimization.

RCC Receiver-Driven RDMA Congestion Control.

x

RDMA Remote Direct Memory Access.

RL Reinforcement Learning.

RoCE RDMA over Converged Ethernet.

TD3 Twin Delayed DDPG.

TRPO Trust Region Policy Optimization.

w.r.t With reference to.

xi

Chapter 1

Introduction

1.1 Problem Motivation

Serving as the backbone for large-scale data-intensive applications [1], data centers

have adapted to the increasing demand for high throughput and ultra-low latency

by continually ramping up their link speeds from 10 Gbps to well over 400 Gbps.

Given the extremely high data rates, traditional transmission protocols like TCP/IP,

which operate on the system’s network stack, are now impractical for deployment

since software-based data packet processing can lead to significant overhead [2]. To

alleviate the intensive kernel load and conserve CPU cycles, modern data centers have

adopted a bypassing technology known as Remote Direct Memory Access (RDMA).

This technique enables direct memory access between the memory of one computer

and another without involving the operating system. Moreover, to meet the require-

ments of high throughput and ultra-low latency, the RDMA domain necessitates a

lossless and reliable network to mitigate and manage potential packet loss and net-

work congestion.

The original solutions are two simple low-level mechanisms named Priority Flow

Control (PFC) and Go-Back-N (GBN) [2], which were retained for port-level control

at the lower network layer. However, PFC may lead to potential problems such as

Head-of-Line blocking [3] or a PAUSE frame storm [4] since it broadcasts PAUSE

packets back to all flow sources from a congested port, which is likely to degrade the

1

performance across the entire RDMA domain. To effectively prevent the activation

of PFC, designing more concise and specialized congestion control (CC) mechanisms

for RDMA-enabled data center networks (DCNs) has become an urgent need and

motivated many research efforts in recent years.

Existing datacenter congestion control algorithms can be classified into three types

depending on the control-driven point (i.e., host, switch, or receiver) in a datacenter

network. Host-driven approaches, such as DCTCP[5], TIMELY[6], DCQCN[7], and

HPCC[8], employ information carried in acknowledgment packets to trigger conges-

tion control actions. This type of control is resource-saving and has already been

deployed in real-world data centers. In addition, recently proposed learning-based

congestion control methods such as RL-CC[9], DeepCC[10], and Pareto[11] are also

host-based approaches. Switch-driven approaches, exemplified by PACC[12], aim to

reduce the delay in the control loop by directly generating explicit control actions

from switches to hosts. Receiver-driven approaches, e.g., RCC [13], operate on the

assumption that most congestion occurs in the ToR downlink and estimate the num-

ber of flows transmitted to the receiver to regulate traffic. This type of approach

enables one-step control in certain traffic scenarios and requires switching between

the last-hop phase and the in-network congestion phase during the flow’s life cycle.

Although these prior studies have shown great promise under multiple traffic scenar-

ios, challenges still remain in achieving fair and fast-responding congestion control,

especially under incast, bursty and dynamic traffic flows which are prevalent in data

centers.

1.2 Our Contribution

We propose the Fair Datacenter Congestion Control (FDCC) algorithm that learns

to make predictive and fair congestion control decisions by fully utilizing historical

information and network states along the flow path based on deep reinforcement

2

learning. In designing FDCC, our contributions can be summarized as follows:

• We propose a new DRL algorithm named FDCC to solve the partially observ-

able Markov decision process in data center networks by leveraging LSTM and

augmented memory to learn the traffic pattern to proactively and predictively

control the congestion.

• We introduce a window-based control action, which achieves faster restrain

upon congestion compared with the rate-based method, and multi-source in-

band network telemetry to offer more effective control on congestion inspired

by HPCC[8].

• We design a two-stage reward that takes advantage of the heuristic rule for the

queue-draining stage to control congestion and encourages fairness and band-

width utilization during the bandwidth-probing phase. We further employ cur-

riculum learning to enable our agent to generalize from a small training traffic

workload to other large-scale scenarios.

We conduct extensive experiments on NS-3 simulator[14] to evaluate the FDCC

algorithm under various dynamic datacenter traffic types, including incast flows, long-

short flows, and real-world traffic workloads (Web Search[5] and FB Hadoop[15]).

The results suggest that FDCC outperforms a wide range of rule-based and learning-

based congestion control algorithms in terms of fairness under multiple traffic patterns

while maintaining comparable performance with these algorithms in terms of flow

completion time and goodput.

1.3 Thesis Outline

The content of this thesis is organized in the following manner. Chapter 2 is a sur-

vey of related works. Chapter 3 provides a comprehensive background introduction

and the main challenges of designing congestion control algorithms for data center

3

networks. Chapter 4 explains the choices of states, action and reward from a rein-

forcement learning perspective, the neural network architecture of our approach, and

the training procedure. Chapter 5 details our experiment setup, benchmark, and test

metrics. Chapter 6 presents the experimental results of FDCC(ours) with a range of

state-of-the-art congestion control algorithms. Chapter 7 contains the conclusion and

discusses potential future works.

4

Chapter 2

Related Work

2.1 Data Center Traffic Control in General

RDMA over Converged Ethernet (RoCEv2) relies on a lossless network guaranteed

by two main mechanisms: congestion control part and loss recovery part. in this

chapter, we briefly summarize the related works based on these two aspects over the

past decades.

2.1.1 Loss Recovery Algorithms

Host-driven loss recovery. Recovering packet loss based on UNACK packets and

retransmitting the packets in correct sequences have been a conventional rule since the

TCP design. BGN[2] is a simple and straightforward way. It only needs to check the

sequence number of the next frame it expects, and if it is not correct, the receiver will

discard the following packets. IRN[16] maintains a bitmap to track which packets have

been cumulatively and selectively acknowledged. When in the loss recovery mode,

the sender selectively retransmits lost packets as indicated by the bitmap, instead

of sending new packets, in such a way, that it can avoid duplicated retransmission.

MELO[17] utilizes off-chip memory to store and re-order out-of-order packets and

leverages an on-chip linked list to manage the bitmap to retransmit packets.

Switch-driven loss recovery. Switch-assisted loss recovery can benefit timeout

avoidance. CutPayload[18] allows switches to send the notification to the destination

5

and echos it back to the source when packet drops occur. This echo-back process

may aggregate congestion. On the contrary FastLane[19] directly sends back the

notification to the source, which is similar to lightning[20], however, the latter one

does not need the entire network (switches and NICs) to be upgraded at once, and can

be deployed as a building block on programmable switches which is more convenient.

2.1.2 Congestion Control Algorithms

Host-driven Congestion Control. In these algorithms, the hosts primarily rely

on the information conveyed directly by ACK packets or data that can be derived

through basic mathematical operations. The main challenge for this type of method

is to mitigate the side effects resulting from reliance solely on feedback from receivers.

Factors such as delay and severe congestion can significantly compromise the effec-

tiveness of host-based control methods. DCTCP[5] is the first congestion control

for data center network, it utilizes ECN marking to adjust the rate within RTT.

DCQCN[7] operates similarly to DCTCP, but incorporates ECN more accurately.

TIMELY[6] and SWIFT[21] are both purely delay-based CCs. SWIFT mainly ad-

dresses the convergence issue observed in TIMELY. HPCC[8] leverages the in-band

network telemetry (INT) collected from each hop to adjust both the rate and sending

window. Despite their utility, these algorithms are encumbered by the long control

loop problem and require further improvement in handling instantaneous bursty traf-

fic adequately.

Switch-driven Congestion Control. Switch-based methods measure congestion

and insert accurate control information into the packet header. Priority flow control

(PFC) is the basic control mechanism in data center networks. Following a port-level

dynamic threshold calculated by the usage of shared switch buffer size, PFC sends

back PAUSE signal to sources to stop transmission until the congestion on this port

is mitigated. Despite this approach being easy to deploy and almost resource-free,

the performance degradation caused by head-of-line blocking, and PAUSE storm has

6

been a notorious issue. XCP[22] and RCP[23] adjust the window size and flow fairness

proactively. TFC[24] use a token-based bandwidth allocation approach over a certain

time interval. RoCC[25] proactively feedback fair rate based a queue-length-based

PI on the switch. PACC[12] tracks the queue length based on a dynamic interval

to distinguish bursty traffic and congestion and generate notifications directly from

the switch. However, these methods might impose overhead on switch computational

resources, as they require complex calculations and additional memory that most

commodity switches lack.

Receiver-driven Congestion Control. Receiver-driven techniques are devised to

alleviate incast traffic performance degradation, drawing on the conclusion that most

congestion happens at the ToR downlink[26]. Solutions like pHost[27], and Express-

Pass[28] send explicit control signals back to hosts, e.g., tokens. HOMA[29] and

NDP[30] are credit-based solutions which is a significant shift from the state-of-the-

art in practice since they have complex receivers. RCC[13] combines the control of

last-hop congestion as fairness signal and in network congestion by PD controller on

the switch as a two-stage process. However, PD controller will sacrifice bottleneck

link throughput before entering into the fairness stage. The switching between these

two stages might be nontrivial and require manual tuning.

2.2 Learning-Based Congestion Control

Pcc Vivace[31] is the first design that introduces online optimization into congestion

control. Aurora[32] explores this idea by involving deep reinforcement learning. For

internet CC, there are several works such as Remy[33] and Indigo[34], which perform

optimization via offline learning. DeepCC[10] and MOCC[35] both proceed as on-

line policy tuning after offline learning to achieve balance of different targets (i.e.,

throughput, delay and loss). Pareto[11] takes advantage of a state-machine reward

design inspired by BBR[36] to achieve fairness for small fan-in flows. However, the

internet network conditions may vary significantly depends on different types of com-

7

munication, and the initial rate of the network is not aligned with link capacity.

On the contrary, the data center network has a consistent hardware setup and the

start rate always matches the link rate. Nevertheless, DCN faces design challenges

due to rapidly changing flow numbers and bursty traffic patterns. As a consequence,

algorithms trained for the internet, may not maintain the same performance if just

simply migrate to DCN without fine-tuning. In DCN CC, RL-CC[9] benefits from

simple end-to-end states and LSTM, but the action space is smaller and may poten-

tially exceed the threshold of the underlying flow control algorithm.

8

Chapter 3

Background and Preliminaries

in this chapter, we explain the background of the data center congestion control

problem and preliminary knowledge for designing a learning-based method.

3.1 Deep Reinforcement Learning

Reinforcement Learning (RL) is a learning approach that maps from environmental

states to actions. The goal is to enable an agent to achieve the maximum cumulative

reward during its interactions with the environment[37]. The Markov Decision Pro-

cess (MDP) is commonly used to model RL problems. An MDP is typically defined

as a quadruple (S,A, ρ, f), where:

1. S is the set of all environmental states. st ∈ S denotes the state of the agent

at time t.

2. A is the set of all possible actions the agent can take. at ∈ A represents the

action taken by the agent at time t.

3. ρ : S × A → R is the reward function. rt ∼ ρ(st, at) represents the immediate

reward received by the agent for taking action at in state st.

4. p : S × A × S → [0, 1] is the state transition probability distribution function.

st+1 ∼ p(st, at) denotes the probability of the agent transitioning to state st+1

after taking action at in state st.

9

In reinforcement learning, the policy π : S → A is a mapping from the state space to

the action space. This can be expressed as the agent selecting action at in state st,

executing this action, transitioning to the next state st+1 with probability p(st, at),

and receiving a reward rt as feedback from the environment. If we assume that the

immediate rewards received in all future time steps are discounted by a factor γ, the

sum of the rewards from time t to the end of the episode at time T is defined as

Rt =
T∑︂

t′=t

γt′−trt′ ,

where γ ∈ [0, 1] serves to balance the influence of future rewards on the cumulative

reward.

The state-action value function Qπ(s, a) indicates the cumulative return that an

agent receives by taking action a in state s and following policy π until the end of

the episode. It is given by

Qπ(s, a) = E[Rt|st = s, at = a, π].

For all state-action pairs, if a policy π∗ has an expected return greater than or equal

to all other policies, then π∗ is deemed the optimal policy. While there might be

multiple optimal policies, they all share a single state-action value function:

Q∗(s, a) = max
π

E[Rt|st = s, at = a, π].

This is known as the optimal state-action value function and follows the Bellman

optimality equation, which is

Q∗(s, a) = Es′∼S

[︂
r + γmax

a′
Q(s′, a′)|s, a

]︂
.

In conventional RL, the Q-value function is typically found by iteratively applying

the Bellman equation:

Qi+1(s, a) = Es′∼S

[︂
r + γmax

a′
Qi(s

′, a′)|s, a
]︂
.

10

As i → ∞, Qi → Q∗. Iteratively applying this will ultimately converge the state-

action value function and yield the optimal policy:

π∗ = argmax
a∈A

Q∗(s, a).

However, for practical problems, solving for the optimal policy using iteration as

in Equation (5) is infeasible due to the computational cost, especially in large state

spaces. To address this, RL algorithms commonly employ linear function approxima-

tors to represent the state-action value function, i.e.,

Q(s, a|θ) ≈ Q∗(s, a).

Additionally, nonlinear function approximators, such as deep neural networks, can be

used to approximate either the value function or the policy.

However, conventional RL techniques can face challenges in high-dimensional or

continuous state or action spaces. As the number of possible states or actions grows,

it becomes computationally infeasible to represent and compute the value function or

policy for every state-action pair. This is where Deep Reinforcement Learning (DRL)

comes in. Many of the successes in DRL have been based on scaling up prior work

in RL to high-dimensional problems. This is due to the learning of low-dimensional

feature representations and the powerful function approximation properties of neural

networks. By means of representation learning, DRL can deal efficiently with the

curse of dimensionality, unlike tabular and traditional nonparametric methods[38,

39].

Among the plethora of strategies, value-based (e.g., DDPG[40], TD3[41]) and

policy-based (e.g., TRPO[42], PPO[43]) approaches are of paramount importance

due to their foundational nature. Value-based algorithms work by approximating the

value of states or state-action pairs, and then make decisions based on these approx-

imated values. The epitome of this category is the Deep Q-Network (DQN). For a

11

given state s, action a, next state s′, and reward r, the Q-value update rule is:

Q(s, a)← r + γmax
a′

Q(s′, a′).

The corresponding loss, fundamental to Q-learning and minimized during training, is

defined as

L(θ) = E(s,a,r,s′)∼U(D)

[︃(︂
r + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θ)

)︂2]︃
,

where U(D) is the process of drawing a transition from the replay buffer, θ are the

parameters of the Q-network, and θ− are the parameters of the target Q-network.

On the other hand, policy-based methods directly model and optimize the agent’s

policy. The policy, π(a|s), defines the probability distribution over actions given a

state. The main objective of optimization is to maximize:

J(θ) = Eτ∼πθ
[R(τ)],

where τ represents a trajectory (s0, a0, s1, a1, . . .), and R(τ) is the cumulative return

for that trajectory. The policy gradient, which indicates the direction in which to

modify the policy parameters to improve performance, is given by:

∇θJ(θ) = Eτ∼πθ

[︄(︄
T∑︂
t=0

∇θ log πθ(at|st)

)︄
R(τ)

]︄
.

3.2 Remote Direct Memory Access Technology

Remote Direct Memory Access (RDMA) is a technology that enables two networked

computers to exchange data in main memory without relying on the processor, cache,

or operating system of either computer. An RDMA-enabled NIC must be installed

on each device that participates in RDMA communications. Today’s RDMA-enabled

NICs typically support one or more of the following two network protocols:

RDMA over Converged Ethernet. RoCE is a network protocol that enables

RDMA communications over an Ethernet The latest version of the protocol – RoCEv2

12

– runs on top of User Datagram Protocol (UDP) and Internet Protocol (IP), versions

4 and 6. RoCEv2 is currently the most popular protocol for implementing RDMA,

with wide adoption and support.

InfiniBand. InfiniBand provides native support for RDMA, which is the stan-

dard protocol for high-speed InfiniBand network connections. Because of its ability

to speedily connect large computer clusters, InfiniBand has found its way into addi-

tional use cases such as big data environments, large transactional databases, highly

virtualized settings and resource-demanding web applications.

3.3 Data Center Network Congestion Event

Figure 3.1: A high-level overview of Broadcom product switch used during our sim-
ulation

In the context of the dumbbell topology depicted in Fig. 3.4, an analysis of the

congestion event on the left switch allows us to identify pivotal components indicative

of congestion severity.

Fig. 3.1 illustrates that each port is assigned a distinct ingress queue of modest

size, typically 4k bytes. Additional packets are accommodated in a communal buffer.

13

If a particular port’s shared buffer utilization surpasses a defined limit, the header

room associated with that port is leveraged to further buffer burst traffic. The priority

flow control (PFC) threshold for a port, discussed in Chapter. 2.1.2, is determined

by the equation:

PFCthreshold =
buffer size− total hdrm− total ingress− sharedBuffer size

16
,

where:

• buffer size denotes the cumulative memory capacity of the switch.

• total hdrm represents the aggregate headroom size across all ports.

• total ingress signifies the collective ingress queue size for all ports.

• sharedBuffer size measures the present shared buffer consumption across all

ingress flows.

Concurrently, flows directed towards a common subsequent hop utilize the same egress

queue at the egress port. Based on the switch’s memory architecture, we can scrutinize

the egress queue size in conjunction with the ingress and egress data rates to elucidate

the correlation between queue length and data rate. In a 4-to-1 dumbbell topology,

each sender transmits a flow to the receiver at 1Gbps, matching the link rate of

1Gbps. Consequently, the switch’s queue length growth rate will be 3Gbps. Post-

congestion control, even if the aggregate ingress data rate aligns with the egress data

rate, congestion—manifested as packet delays—is reduced. Nevertheless, the queue

length persists at an elevated state. By further constraining the ingress data rate to

be less than the egress data rate, the buffer transitions to a queue length draining

phase, thereby further alleviating congestion, as depicted in Fig. 3.2.

From this rudimentary modeling and validation, it becomes apparent that our focus

should be on devising an algorithm that accelerates queue growth and also efficiently

drains queue occupancy. Given that the egress rate is invariably set to the link rate

14

0

20000

40000

60000

80000

100000

120000

140000

0 50000 100000 150000 200000 250000 300000 350000 400000

B
o
tt

le
n
e
ck

 Q
le

n
 (

B
y
te

s)

Time (ns)

Simulation

Theoretical

(a)
∑︁

Ingress rate > Egress rate

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 100000 200000 300000 400000 500000 600000

B
o
tt

le
n
e
ck

 Q
le

n
 (

B
y
te

s)

Time (ns)

(b)
∑︁

Ingress rate = Egress rate

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

B
o
tt

le
n
e
ck

 Q
le

n
 (

B
y
te

s)

Time (ns)

Simulation

Theoretical

(c)
∑︁

Ingress rate < Egress rate

Figure 3.2: 4-to-1 Dumbbell Topology Bottleneck Switch Queue Length

in the topology, adjusting the ingress rate from the flow sources emerges as the main

viable strategy for congestion control.

3.4 Main Challenges for Data Center Congestion

Control

Fairness of flows in burst traffic. Congestion algorithms may not be able to

accurately estimate the available bandwidth or the degree of congestion as each flow

departs from the switch buffer at different times, resulting in different observed in-

formation. As a result, they might under-react or over-react to the traffic bursts,

15

Figure 3.3: Flow Completion time comparison in 4-to-1 fan-in traffic. Flow completion
time is the absolute time period of each flow.

leading to suboptimal performance and unfair allocation of network resources. For

example, 4-to-1 fan-in traffic simultaneously starts in a dumbbell topology as Fig.

3.4, a fine-grained flow level CC like HPCC illustrates some performance degrada-

tion. As shown in Fig. 3.3, all four flows under HPCC control demonstrate different

completion times. Different instantaneous observations in the burst scenario can lead

to unfair flow pacing rates. Therefore, our goal is to enable our algorithm to predict

global changes from local observations, in order to expedite the convergence process

for fairness.

Table 3.1: Algorithm attributes comparison. BW denotes host link capacity, min -
rate denotes the minimum threshold of pacing rate, hyperAI denotes the addictive
factor, RTT denotes the round-trip time, Goodput denotes the correct throughput.

Algo Environment Provided States Action Space

HPCC Inflight bytes of the most congested link (0, BW
min rate

]

DCQCN ECN [0.5, BW−min rate
2

]

TIMELY RTT (0, hyperAI
min rate

+ 1]

RLCC RTT, Current rate [0.8, 1.2]

OURS Inflight bytes of the most congested link, RTT, Goodput, Current rate [0.5, 2]

16

… …

S1

S2

Sn

SW1 SW2

Rn

R2

R1

TIMESTAMP INT SW1 INT SW2 GOODPUT

UDP UDP 1 UDP UDP

ACK

Flow from
S1 to R1

Figure 3.4: The overview of network state perception in an n-to-n dumbbell topology
within a data center network.

Feedback and control delay due to previous congestion. Feedback delay has

long posed a significant challenge in congestion control. This disadvantage becomes

evident when the flow source receives an acknowledgment from the receiver (i.e.,

qlent for the buffer occupation at time t), and the current buffer occupation may

have changed to qlent+1 such that qlent+1 ≫ qlent or qlent+1 ≪ qlent. This sce-

nario can occur in incast situations. In such cases, a component capable of learning

the dependencies of feature changes over time could prove valuable in addressing the

congestion control problem. Furthermore, our analysis of previous learning-based

congestion control methods for data center networks indicates a significantly smaller

action space for rate manipulation, compared to heuristic rule-based algorithms, as

demonstrated in Table 3.1. We estimate the action space by calculating the maximum

potential rate magnitude change after a single update step. The result may not be

sufficiently accurate, as the rate increase stage is typically designed as an additive

process. Nonetheless, the action space remains considerably larger than that of a

learning-based method. As both types of algorithms are event-triggered, a smaller

action space could potentially result in less efficient control at the same step size.

Adjusting the action space size could enhance the performance of the learning-based

algorithm.

17

Information utilization across the flow path. Upon comparing previous algo-

rithms, it is evident that the design of these algorithms often utilizes only a subset of

available network statistics. Specifically, Table 3.1 enumerates the different features

each algorithm considers. Given that different network features can contribute to an

algorithm’s convergence, it would be beneficial to consider all these features collec-

tively. This would allow us to leverage the specialized feature representation learned

by a deep neural network to develop an enhanced control policy.

3.5 In-band Network Telemetry

In-band network telemetry (INT) technology[44] collects hop-by-hop network status

information through business packets to achieve end-to-end visualization of network

services. In-band network telemetry uses the data plane to directly drive the network

measurement process, subverting the research idea of traditional network measure-

ment that treats network switching devices as an intermediate black box. It also

has the advantages of flexible programming, strong real-time, less noise and path-

level network status perception, etc. In our design, we follow the INT structure of

HPCC[8], add an additional flow number information, and abandon the pathID dur-

ing the training phase.

3.6 Reinforcement Learning for Datacenter Con-

gestion Control

First, we reformulate the problem from a reinforcement learning perspective. Consid-

ering a dumbbell topology (as depicted in Fig. 3.4), multiple senders are transmitting

packet flows to the receivers via a single bottleneck link, connected by two switches.

It’s worth noting that no specialized scheduler exists on each host to ensure fairness,

such as round-robin scheduling between each flow. Instead, rate adjustment is an

18

event-triggered process, i.e., it reacts upon receiving an ACK. Therefore, each flow is

assigned an agent to control its packet pacing rate, and these agents are expected to

achieve optimal control wherein all flows traversing the bottleneck link at a given time

can evenly share the bandwidth and fully utilize the link capacity. More specifically,

as an agent is allocated per flow, it can only pace the packets based on the ACK

packets it receives from its corresponding receiver. Based on the above preliminaries,

the problem here can be defined as a partially observable Markov decision process

(POMDP) under multi-agent control, as each flow perceives the network states ac-

cording to local observation and cannot communicate with each other.

To address the issue more formally, comparing the tuple description of MDP

⟨S,A, p, ρ, γ⟩ and POMDP ⟨S,A, p, ρ, ω,O, γ⟩, where S is the states set, A is action

set, p is the state-transition functions, which defined as P (st+1 ∈ S|st ∈ S, at ∈A), ρ

is the reward function, ω is the observation transition function ω(ot+1∈O, st+1∈S),

i.e., the probability of obtaining an observation o from global state s, O is the the set

of observations of one agent, γ is the discounted factor. In a POMDP, an agent only

gets to observe a certain representation of the state, which may not capture all the

relevant aspects. This uncertainty introduces significant challenges when it comes to

finding optimal policies.

There are several existing approaches to tackle this kind of problem, e.g., recurrent

neural network[45] and memory-augmented neural network[46, 47].

Inspired by the previous work[48], we believe that leveraging the recurrent com-

ponent of neural network can help our agents learn the representation of the state

and be capable of predicting the congestion status. Also, for the multi-agent settings,

regarding the homogeneous property of each agent (i.e., identical observation and ac-

tion space), we utilize parameter sharing, i.e., all the agents share both the policy and

value function parameters, for which proven work has illustrated promise in learning

efficiency [49, 50].

Based on the aforementioned problems and potential solutions, we have designed

19

a deep reinforcement learning algorithm that utilizes historical sequences and long-

short term memory to directly modify the inflight window size of each flow through

control signal generation. The algorithm incorporates explicit reward guidance for

both queue draining and maintaining fairness. The following chapters will detail

our method and present evaluation results for various traffic patterns across different

topologies.

20

Chapter 4

Method Designs

4.1 Overview

Our FDCC aims to achieve better fairness in bursty traffic scenarios. Compared

with conventional learning-based algorithms or heuristic rule-based algorithms that

only take specific network features into algorithm design, we consider all available

observations during one control loop, i.e., the round-trip of a packet. The workflow

of FDCC can be concluded as two stages: 1) observations collection: When NIC

is able to deliver a new packet, the sender inserts the current timestamp into the

packet header, then upon each time the packet gets dequeued from a switch, the

switching ASIC inserts some meta-data that reports the current load of the packet’s

egress port, which is the same as HPCC[8]. Once the packet arrives at the receiver,

the receiver migrates the UDP packet header to the ACK packet header and inserts

the corresponding timestamp and payload received so far into the header for further

goodput calculation. 2) Event triggering control: The agent deployed on the sender

will adjust the inflight bytes window and data pacing rate per ACK after data pre-

processing of observations stored in ACK header. The details will be discussed in

Chapter. 4.2.

Besides, traditional transmission rate modulation such as AIMD[51], is not efficient

enough in data center bursty traffic scenarios. The success of HPCC[8] has proven

a combination of AIMD and MIMD can effectively control the congested link within

21

one RTT. Also, a window-based control can be more proactive as it directly restrains

inflight bytes within one Bandwidth-delay product, thus in our approach, the policy

will generate a factor to manipulate inflight bytes window size as in MIMDmodulation

and calculate packet pacing rate based on the window as Ratet = WINt/baseRTT .

Another problem that mainly obstacles learning-based algorithm to work efficiently

in DCN is the generalization problem. Agents need to be trained in different traffic

patterns to learn a set of Pareto-optimal or near-optimal policies. In the training of

FDCC, we conduct a curriculum learning process and design stage reward to facilitate

our DRL agent to be able to generalize to different bursty traffic and achieve better

fairness. In the following chapters, we explain the details of our method design.

4.2 State-transition Pair Components Definitions

We elaborate on the choices in the design of the action space, observations, neural

network model, reward function and optimization objective.

Observations. The input of our model consists of observations available from the

sender, switches, and receiver.

• RTT: Round-trip time calculated by subtracting the current timestamp and

timestamp stored in ACK header, normalized by standalone RTT.

• QLEN: Buffer occupation obtained while UDP packet dequeue from switch. Here

we use the in-band network telemetry(INT) same as paper[8], and only consider

the most congested link, normalized by the bandwidth-delay product of the

corresponding link.

• SWITCHRATE: Throughput of the most congested link, we compared the QLEN

of current and previous timestamp to estimate the bytes on fly of the link,

normalized by the bandwidth of corresponding link.

• GOODPUT: The data received at Receiver following the correct sequence between

22

each action interval, normalized by the bandwidth of the receiver’s link.

• △RTT: The derivative of delay change between two steps, calculated as (RTTt−RTTt−1)
dt

,

dt is the time interval in milliseconds.

• △QLEN: The derivative of QLEN change between two steps, calculated as (QLENt−QLENt−1)
dt

.

• INSRATE: Current packet pacing rate of the flow.

• last action: The action took at last step.

Actions. In HPCC, the control mechanism can be divided into two parts: rate-

pacing adjustment based on the inflight bytes of the most congested link and host-

sending restriction based on the inflight bytes of the flow’s source link. The relation-

ship between these two parts can be formulated as: WINt=ratet · baseRTT , where

baseRTT stands for the longest standalone RTT of a single flow’s round-trip time,

WIN stands for the size of inflight bytes of a flow, which is restricted by bandwidth-

delay product, rate represents the pacing rate of packets. We found that with only

the rate modification based on the most congested link, the buffer can easily become

full, as shown in Fig. 4.1, and may even trigger PFC signals in small fan-in traffic.

The key insight here is that the inflight bytes of the host can be considered as the

only feedback signal in congestion control, one that experiences no delay. Therefore,

we believe that using window-based control to calculate the corresponding pacing

rate can be a more reasonable and robust approach for handling bursty traffic. Upon

obtaining observation o, the DRL agent will choose action a. The output of neural

network will be rescaled by following formula to reduce oscillation and ensure algo-

rithm can converge under different circumstances. The rescale function denotes as

below:

actiont+1 =

{︄
actiont · (1 + α · output) if output >= 0

actiont/(1− α · output) if output < 0

where α is a scaling factor. In this thesis we set it equal to 0.5. The new inflight

23

Figure 4.1: Compare the buffer occupation change w and w/o host inflight bytes
window. 64-to-1 incast traffic with flow initialized within 1µs in a dumbbell topology.

window on host will be updated as WINt+1 = WINt · action, and the new packet

pacing rate is derived as INSRATEt+1=WINt+1/baseRTT

Rewards. Inspired by Pareto[11], our reward is designed for two phases. As the

default initial rate in DCN is set to link rate, we do not need to consider a startup

phase, instead, we only consider queue-draining and bandwidth-probing phases. As

we have collected INT information from the switches along our flow path, we first

compare the sum of SWITCHRATE and QLEN to identify the most congested link, then

we compare it with a tolerant threshold to decide which stage our flow is on. For

queue-draining phase, we use round-trip time with a tolerance threshold to help the

agent mitigate congestion. For the bandwidth probing phase, we want to force flow to

fully utilize the bottleneck link while remaining fairness if there is flow competition.

The details of reward calculation can be found in Algo. 1. We take the reciprocal

of normalized RTT to ensure a similar influence of latency and throughput in reward

contribution. In addition to available observations, we add a flow number counter

at each egress port of the switch to calculate the number of competing flows on

the most congested link. We enhance the INTheader by incorporating an additional

field, denoted as the opcode, derived from the InfiniBand Basic Transport Header[52].

24

Consequently, we are able to concurrently retrieve routing information and monitor

the first and last packet of any flow traversing the egress port as shown in Algo. 2.

However, this operation is not enabled during the experiments to reduce computation

overhead. Also, considering the delay of feedback, we use n-step discounted cumula-

tive reward instead of instant one for each step, i.e., rt =
∑︁i<n

i=0 γ
i · rt+i.

Algorithm 1 Reward Calculation Demonstration

1: for Each step in one episode do
2: if SWITCHRATE+ QLEN− 1 > 0.5 then
3: reward = −RTT
4: else
5: reward = THROUGHPUT+ 1

RTT
− (THROUGHPUT− 1

Total flow num
)2

6: end if
7: end for

Algorithm 2 Flow number count on switch

Input: pkt.sip, pkt.dip, pkt.sport, pkt.dport, opcode
Output: Total flow num
1: flow id = hash32(sip,dip,sport,dport)
2: if flow id in Egress port flow then
3: if opcode is not Write Last then
4: pass
5: else
6: del Egress port flow[flow id]
7: end if
8: else
9: Egress port flow[flow id] = True
10: end if
11: return Egress port flow.size()

4.3 Neural Network Architecture and Optimiza-

tion Objective

Neural Network Architecture. We use a modified Twin Delayed DDPG (TD3)

as our deep reinforcement learning algorithm based on memory-based TD3[53]. As

25

shown in Fig. 4.2, the memory buffer will not only store observation-action pair

⟨ot, at, rt, ot + 1⟩1 but also a historical batch of observations before time step t and

t + 1, the historical batch length k ∈ K, where maxK ≤ 8. It happened that the

current observation is the end of an episode, thus the length of history may not align

with each other, and padding is mandatory for the input of LSTM layer. Therefore,

the lengths of historical observations will be an additional input and be used as an

index for torch.gather operation to retrieve the non-zero output of LSTM. During

the inference phase, the input consists solely of a sequence of observations from t− k

to t. The representation of the observations thus far is established by default as the

last vector derived from the LSTM layer.

Figure 4.2: Actor-critic architecture of FDCC at training phase. For simplicity only
one pair of actor-critic network is demonstrated here, the other parts’ implementation
follows standard TD3 architecture[41]. The memory buffer stores each observation-
action pair incorporating a maximum sequence length of k historical observations.

Policy Optimization. Twin delayed DDPG is an off-policy reinforcement learn-

ing algorithm that learns a Q-function (action-value function). TD3 extends the

DDPG[40] algorithm by introducing twin critics and delayed policy updates to mit-

igate the overestimation bias common in Q-learning algorithms. The actor network

approximates a policy as a=πϕ(s), and the critic network gives the value function

1The subsequent references to observations and states in this thesis pertain to the identical set
of features accessible to each agent, given that none of them have access to the global states.

26

regarding policy as Qπϕ(s, a|θi), i=1, 2. The optimization objective of the actor net-

work is to maximize the expected return of value function J(ϕ) = E[Qπϕ(s, a|θi)]. In

order to approximate the optimal action-value function, which satisfies the Bellman

equation:

Qπϕ(s, a|θi)=r(s, a) + γE[Qπϕ(s′, a′|θ′i)]. (4.1)

The critic network will be updated by minimizing TD error:

L=argminθiN
−1
∑︂

(y −Qπϕ(s′, a′|θi)), (4.2)

where y=r(s, a) + γmini=1,2Q
πϕ(s′, a′|θ′i). Then the actor network will be updated

by deterministic policy gradient:

∇ϕJ(ϕ) = N−1
∑︂
∇aQ

πϕ(s, a|θ1)|a=πϕ(s)∇ϕπϕ(s). (4.3)

After training, the actor parameter will converge to a near-optimal policy with the

help of critic function.

4.4 Training Procedure

We use curriculum learning to gradually help our policy be able to generalize to dif-

ferent traffic scenarios in offline training. In our data center network environment, we

have static hardware conditions, the only changing schemes are the topology and the

traffic patterns. However, as our algorithms take normalized observations which are

also topology independent, we only train our algorithms on dumbbell topology and

evaluate it on both dumbbell and two-level fat-tree topology.

During the offline training, we first train the agents in a 2-to-1 fan-in traffic sce-

nario, where two flows are scheduled to send to the same destination within 1 ms.

Afterward, we add 4-to-1 fan-in traffic into training and then 8-to-1 traffic; the fan-in

number increases by 2 times every 10k episodes until 32-to-1. The action interval is

a hyperparameter here as there is delay of both observations feedback and previous

action effect illustration. We set this interval to be dynamic, based on 1/2 of the

previous RTT.

27

Chapter 5

Common Experiment Settings

5.1 Simulator and RL Environment

in this chapter, we conduct extensive experiments using the most common traffic

patterns in data centers on different scales.

5.1.1 Experiment Setup

We conducted experiments on our algorithm and other baselines using NS-3, a C++-

based simulated network environment that is commonly used in previous papers[7,

8]. The infrastructure of network is inherited from previous work as well. To set

up the reinforcement learning environment, we utilized ns3ai [54], a shared memory

communication tool that enables the transmission of states and actions between the

Python DRL algorithm and the simulator. The workflow of our proposed system is

illustrated in Fig. 5.1. Each flow on a host is associated with a dedicated DRL agent.

Notably, all these agents share a common parameterized policy network to determine

the magnitude of the WIN adjustment.

5.2 Baselines

After a thorough examination of several previous works, we have selected three com-

mon baselines based on heuristics, namely HPCC, DCQCN, and TIMELY, as well as

one learning-based baseline named RL-CC. We used the default parameters recom-

28

Figure 5.1: NS-3 and Python Algorithm Communication.

mended in their respective papers for all the baselines. In our approach, we rounded

down the updated window to an integer to implement a more conservative control

strategy, considering that each packet in our experiment has an identical MTU size

of 1000 bytes.

5.3 Benchmarks

To evaluate the impact of our algorithms on performance metrics, we conducted tests

on both dumbbell and fat-tree topologies, comparing them to baselines. For dumbbell

topology, we compare the n-to-1 and long-short traffic pattern in a 64-to-64 topology

described in §3.6. For the n-to-1 traffic pattern, the evaluation starts from 4-to-1 in-

cast. Once the flow number exceeded the number of hosts of our topology, each host

29

… … … …

16 hosts 16 hosts 16hosts 16hosts

Figure 5.2: Two-level fat-tree topology.

sent multiple flows. All flows were initialized following a Gaussian distribution with

an interval of 1 millisecond. In the case of the fat-tree topology, we utilized a two-

level fat-tree network with 4 aggregation and 4 access switches. Each access switch

was connected to 16 hosts, as depicted in Fig. 5.2. We compare n-to-1 and n-to-n

traffic patterns. For n-to-1, we used the same traffic initialization interval as dumb-

bell. For n-to-n, we generated our flows using two publicly available distributions:

Web Search[5] and FB Hadoop[15] to generate our flows. In all our experiments,

the algorithms compared had the host inflight bytes window enabled. This means

that an additional threshold was added to each flow to prevent any flow from having

more than one bandwidth-delay product unacknowledged packets in flight. For all

the links in our topologies, the bandwidth is set to 100Gbps which is compatible with

real-world data center networks.

5.4 Test Metrics

In our performance evaluation, we utilize several commonly used metrics for compar-

ison purposes.

• FCT slow down: Flow completion time slow down is calculated as the ratio

between the practical absolute1 flow completion time and the standalone flow

completion time. A smaller value is preferable.

1The term ’absolute’ refers to the time interval calculated as the difference between the end
timestep and the beginning timestep, rather than a relative interval based on the global time simu-
lation start and endpoints.

30

• Qlen: Qlen size is the buffer occupation of the switch. A lower value is prefer-

able.

• PFC pause time: Priority flow control is the underlying flow control mech-

anism to facilitate the lossless communication of data center network. It is a

dynamic threshold based on the shared buffer occupation and individual occu-

pation on the switch ingress port. A smaller pause time percentage indicates

more effective control.

• Goodput: Goodput refers to the effective throughput measured by the receiver.

Higher values indicate better performance.

• Unfair ratio: The unfair ratio is calculated as the deviation of the normalized

bandwidth of each flow during an incast event(i.e., (BWmax−BWavg)

BWavg
). A smaller

value is preferred.

31

Chapter 6

Evaluation and Analysis

6.1 Long-short Traffic Experiments

Long-short setup. A continuous long flow is maintained in the background, while

a short flow starts transmitting at 1 ms and completes within 1.5 ms.

Evaluation results. The results demonstrate that our algorithm utilizes the bot-

tleneck link more efficiently than HPCC (as shown in Fig. 6.1). We also conducted

a fair-share experiment where 4 flows join a link one by one every 35 ms, as shown

in Fig. 6.2. Our algorithm exhibits reduced fluctuations upon the introduction of a

new flow, leading to a more equitable distribution of bandwidth. This behavior is at-

tributed to our algorithm’s ability to anticipate future congestion changes. Although

a constrained action space might render the algorithm less efficient in extensive in-

cast scenarios, as detailed in Sec. 6.2, it potentially enhances stability in scenarios

involving small, long-short traffic patterns.

6.2 Incast Traffic Experiments

Incast setup. For incast simulation, we compared different baselines and our algo-

rithm in both dumbbell and fat-tree topology. In dumbbell topology, all flows share

a single bottleneck link. We conducted an n-to-1 fan-in experiment where each flow

has a 20MB payload size in total and is initialized within 1 ms following Gaussian

distribution. For fat-tree topology, the n-to-1 flows are generated from the first three

32

(a) OURS (b) HPCC

Figure 6.1: Long-short term traffic test.

(a) Fairness of OURS (b) Fairness of HPCC

Figure 6.2: Fair-share comparison in flow join traffic.

clusters and sent to the receiver in the final cluster.

Evaluation results. For dumbbell topology, the results are summarized in Table 6.2.

Due to the additional header needed to store network states, it’s expected that both

our algorithm and HPCC demonstrate a larger slowdown in flow completion time as

all flows here are long flows. However, our FDCC provides better overall fairness and

comparable goodput. It’s worth noting that our algorithm does not exhibit a better

Qlen control compared with HPCC. This is reasonable since our action space is still

much smaller than HPCC, even if we control the inflight window by our action.

For fat-tree topology, the same as in dumbbell, each flow has 20MB payload in total

and starts within a 1ms interval. Unlike the dumbbell topology, the fat-tree topology

33

Table 6.1: Normalized goodput comparison of n-to-1 traffic in fat-tree.

DCQCN TIMELY HPCC RL-CC OURS

48-to-1 0.99 0.99 0.87 0.98 0.98

192-to-1 0.98 0.98 0.88 0.89 0.93

768-to-1 0.97 0.96 0.86 0.88 0.94

(a) FCT Slow Down (b) PFC Pause Comparison

(c) Fairness Comparison

Figure 6.3: n-to-1 Two-Level fat-tree evaluation. Flow slow percentage w.r.t. per-
centile of flow slow down, Fraction of pause time w.r.t. percentile of PFC pause time
over flow completion time, Unfair ratio w.r.t. the bandwidth allocation deviation.

features multiple bottleneck links where the most congested link may transfer from

hop to hop. Consequently, the feedback may experience further delays and all the

algorithms might trigger the flow control mechanism. The results resemble dumb-

bell experiments where the inclusion of INT header causes a slowdown in both our

algorithm and HPCC. Meanwhile, ours performs the best fairness and triggering less

PFC and offers comparable goodput compared with DCQCN, TIMELY, and RL-CC,

as shown in Table 6.1 and Fig. 6.3.

34

6.3 Mix Burst Traffic Experiments

Mix burst setup. We employ a public flow distribution to generate flows for our

n-to-n mixed burst flow experiments, with a particular emphasis on short flow slow-

downs. The flow intervals are determined using a Poisson distribution, where λ is

equivalent to the average packet arrival interval, derived from the public flow size

distribution. This is given by:

ArrivalIntervalavg =
1

BW × workload%
8×flow sizeavg

× 109,

where BW denotes the link capacity connected with the hosts, The workload is in-

crementally increased from 20% to 80% to assess the resilience of the algorithms.

Evaluation results. As illustrated in Fig. 6.4 and Fig. 6.5, our algorithm con-

sistently outperforms the others, demonstrating better control over the slowdown of

short burst flows.

35

(a) Work Load 20% (b) Work Load 40%

(c) Work Load 60% (d) Work Load 80%

Figure 6.4: Web Search Two-Level fat-tree evaluation.

(a) Work Load 20% (b) Work Load 40%

(c) Work load 60% (d) Work Load 80%

Figure 6.5: FB Hadoop Two-Level fat-tree evaluation.

36

Table 6.2: Comparison of different algorithms in dumbbell topology with n-to-1 fan-
in traffic. Qlen denotes buffer occupation in bytes, FCTSD denotes FCT slow down,
and Unfair Ratio denotes the bandwidth allocation deviation (i.e., (BWmax−BWavg)

BWavg
).

4-to-1 Qlen avg Qlen 99th FCTSD avg FCTSD 99th Unfair Ratio Goodput

DCQCN 42993.3 48208 4.0 4.1 0.00002 0.96

TIMELY 43653.6 49632 4.0 4.0 0.00002 0.95

HPCC 1089.1 3354 3.3 4.3 0.29881 0.93

RL-CC 49564.8 52546 4.3 4.3 0.00001 0.90

OURS 49275.3 51128 4.1 4.1 0.00002 0.93

16-to-1 Qlen avg Qlen 99th FCTSD avg FCTSD 99th Unfair Ratio Goodput

DCQCN 135259.8 151960 15.4 16.0 0.03805 0.99

TIMELY 130874.7 144672 15.8 16.2 0.01845 0.96

HPCC 2804.3 6708 17.4 17.6 0.01279 0.88

RL-CC 253288.8 253786 17.0 17.0 0.00003 0.89

OURS 30716 31525 16.9 16.9 0.00002 0.90

256-to-1 Qlen avg Qlen 99th FCTSD avg FCTSD 99th Unfair Ratio Goodput

DCQCN 1098612.9 2882000 253.0 255.5 0.00997 0.96

TIMELY 1372074.3 4037088 293.8 296.1 0.00762 0.83

HPCC 131961.3 3274622 294.5 295.2 0.00243 0.83

RL-CC 4167130.2 4286572.2 255.1 255.4 0.00117 0.95

OURS 3578233.5 3688457.3 254.5 254.7 0.00091 0.96

1024-to-1 Qlen avg Qlen 99th FCTSD avg FCTSD 99th Unfair Ratio Goodput

DCQCN 6718384.9 6764840 975.4 982.1 0.00683 0.99

TIMELY 1914594.7 6554592 1026.1 1028.3 0.00218 0.95

HPCC 1347184.6 6502288 1089.2 1091.4 0.00195 0.89

RL-CC 3085705.3 6987246 984.35 986.5 0.00225 0.98

OURS 2495439.2 6572722 975.6 977.1 0.00153 0.99

37

Chapter 7

Conclusions & Future Work

7.1 Conclusions

In our study centered on the congestion control of data center networks, we metic-

ulously examined the critical elements closely associated with the degree of traf-

fic congestion. We identified RTT, GOODPUT, QLEN, and SWITCHRATE as the primary

measurable variables along the flow path. Moreover, the WIN, computed using the

bandwidth-delay product, emerges as the sole delay-free state and serves as our ac-

tion within our DRL algorithm for host pacing rate adjustment.

We have proposed a learning-based, model-free congestion control algorithm called

FDCC. It aims to provide improved fairness and compatibility for flow completion

time (FCT) and goodput in various burst traffic scenarios. The results have demon-

strated the effectiveness of a more stringent control by directly adjusting the host’s

inflight bytes window and utilizing all available information from the current time

step and historical records with staged reward-guided training.

7.2 Future Work

7.2.1 Algorithm Optimization

Based on simulation results, it is evident that several trade-offs warrant further in-

vestigation and optimization in upcoming research. The primary challenges can be

categorized as:

38

1) Action Space Size: Compared to heuristic rule-based approaches, learning-based

algorithms, especially model-free methods, confront issues where the action space is

significantly influenced by both the training traffic distributions and scaling functions.

Given that all host-driven approaches utilize reactive control, the steps taken upon

congestion are limited, making them a valuable resource. Thus, determining how to

select actions both efficiently and judiciously remains a challenge.

2) Computation Resources : With data centers leveraging RDMA technology to di-

minish overhead from software-based data processing, it becomes imperative to con-

template how to implement learning-based algorithms in high-traffic environments

like data center networks. Asynchronous handling for each flow and model compres-

sion should be prioritized in future research. An avenue worth exploring is model

quantization, which has gained traction in large language models[55].

7.2.2 Next Generation of In-band Network Telemetry

From a macroscopic viewpoint, the primary challenge in monitoring traffic status

within data center networks stems from the vast scale of clusters, compounded by the

need to conserve resources and prevent additional congestion resulting from monitor-

ing activities. With the advent of modern programmable switches offering advanced

capabilities for packet manipulation and on-chip computation, there is potential for

exploring enhanced telemetry strategies. Such approaches, encompassing flow path

encoding and heightened microburst awareness, could pave the way for optimized

congestion control.

39

Bibliography

[1] K. Hazelwood et al., “Applied machine learning at facebook: A datacenter in-
frastructure perspective,” in 2018 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), IEEE, 2018, pp. 620–629.

[2] C. Guo et al., “Rdma over commodity ethernet at scale,” in Proceedings of the
2016 ACM SIGCOMM Conference, 2016, pp. 202–215.

[3] B. Stephens, A. L. Cox, A. Singla, J. Carter, C. Dixon, and W. Felter, “Prac-
tical dcb for improved data center networks,” in IEEE INFOCOM 2014-IEEE
Conference on Computer Communications, IEEE, 2014, pp. 1824–1832.

[4] R. Mittal et al., “Revisiting network support for rdma,” in Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication,
2018, pp. 313–326.

[5] M. Alizadeh et al., “Data center tcp (dctcp),” in Proceedings of the ACM SIG-
COMM 2010 Conference, ser. SIGCOMM ’10, New Delhi, India, 2010, 63–74,
isbn: 9781450302012.

[6] R. Mittal et al., “Timely: Rtt-based congestion control for the datacenter,”
SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, 537–550, 2015, issn: 0146-
4833.

[7] Y. Zhu, M. Ghobadi, V. Misra, and J. Padhye, “Ecn or delay: Lessons learnt
from analysis of dcqcn and timely,” in Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and Technologies, ser. CoNEXT
’16, 2016, 313–327, isbn: 9781450342926. doi: 10.1145/2999572.2999593.

[8] Y. Li et al., “Hpcc: High precision congestion control,” in Proceedings of the
ACM Special Interest Group on Data Communication, ser. SIGCOMM ’19, Bei-
jing, China, 2019, 44–58, isbn: 9781450359566.

[9] C. Tessler et al., “Reinforcement learning for datacenter congestion control,”
SIGMETRICS Perform. Eval. Rev., vol. 49, no. 2, 43–46, 2022, issn: 0163-
5999.

[10] B. He et al., “Deepcc: Multi-agent deep reinforcement learning congestion con-
trol for multi-path tcp based on self-attention,” IEEE Transactions on Network
and Service Management, vol. 18, no. 4, pp. 4770–4788, 2021. doi: 10.1109/
TNSM.2021.3093302.

40

https://doi.org/10.1145/2999572.2999593
https://doi.org/10.1109/TNSM.2021.3093302
https://doi.org/10.1109/TNSM.2021.3093302

[11] S. Emara, F. Wang, B. Li, and T. Zeyl, “Pareto: Fair congestion control with
online reinforcement learning,” IEEE Transactions on Network Science and
Engineering, vol. 9, no. 5, pp. 3731–3748, 2022. doi: 10 . 1109/TNSE.2022 .
3185253.

[12] X. Zhong, J. Zhang, Y. Zhang, Z. Guan, and Z. Wan, “Pacc: Proactive and
accurate congestion feedback for rdma congestion control,” in IEEE INFOCOM
2022 - IEEE Conference on Computer Communications, 2022, pp. 2228–2237.
doi: 10.1109/INFOCOM48880.2022.9796803.

[13] J. Zhang, X. Zhong, Z. Wan, Y. Tian, T. Pan, and T. Huang, “Rcc: Enabling
receiver-driven rdma congestion control with congestion divide-and-conquer in
datacenter networks,” IEEE/ACM Transactions on Networking, vol. 31, no. 1,
pp. 103–117, 2023. doi: 10.1109/TNET.2022.3185105.

[14] Network simulator 3, 2023. [Online]. Available: https://www.nsnam.org/.

[15] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the social
network’s (datacenter) network,” in Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, 2015, pp. 123–137.

[16] R. Mittal et al., “Revisiting network support for rdma,” in Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication,
2018, pp. 313–326.

[17] Y. Lu et al., “Memory efficient loss recovery for hardware-based transport in
datacenter,” in Proceedings of the First Asia-Pacific Workshop on Networking,
2017, pp. 22–28.

[18] P. Cheng, F. Ren, R. Shu, and C. Lin, “Catch the whole lot in an action: Rapid
precise packet loss notification in data center,” in 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14), 2014, pp. 17–28.

[19] D. Zats, A. P. Iyer, R. H. Katz, I. Stoica, and A. Vahdat, “Fastlane: An agile
congestion signaling mechanism for improving datacenter performance,” Pro-
ceedings of SoCC, 2013.

[20] Q. Meng and F. Ren, “Lightning: A practical building block for rdma trans-
port control,” in 2021 IEEE/ACM 29th International Symposium on Quality
of Service (IWQOS), IEEE, 2021, pp. 1–10.

[21] G. Kumar et al., “Swift: Delay is simple and effective for congestion control in
the datacenter,” in Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication, ser. SIGCOMM ’20,
Virtual Event, USA, 2020, 514–528, isbn: 9781450379557.

[22] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high bandwidth-
delay product networks,” in Proceedings of the 2002 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communica-
tions, ser. SIGCOMM ’02, Pittsburgh, Pennsylvania, USA, 2002, 89–102, isbn:
158113570X.

41

https://doi.org/10.1109/TNSE.2022.3185253
https://doi.org/10.1109/TNSE.2022.3185253
https://doi.org/10.1109/INFOCOM48880.2022.9796803
https://doi.org/10.1109/TNET.2022.3185105
https://www.nsnam.org/

[23] N. Dukkipati, N. McKeown, and A. G. Fraser, “Rcp-ac: Congestion control to
make flows complete quickly in any environment,” in Proceedings IEEE INFO-
COM 2006. 25TH IEEE International Conference on Computer Communica-
tions, 2006, pp. 1–5. doi: 10.1109/INFOCOM.2006.18.

[24] J. Zhang, F. Ren, R. Shu, and P. Cheng, “Tfc: Token flow control in data cen-
ter networks,” in Proceedings of the Eleventh European Conference on Computer
Systems, ser. EuroSys ’16, London, United Kingdom, 2016, isbn: 9781450342407.

[25] P. Taheri, D. Menikkumbura, E. Vanini, S. Fahmy, P. Eugster, and T. Edsall,
“Rocc: Robust congestion control for rdma,” in Proceedings of the 16th Inter-
national Conference on Emerging Networking EXperiments and Technologies,
ser. CoNEXT ’20, Barcelona, Spain, 2020, 17–30, isbn: 9781450379489.

[26] A. Singh et al., “Jupiter rising: A decade of clos topologies and centralized
control in google’s datacenter network,” SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 4, 183–197, 2015, issn: 0146-4833.

[27] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and S. Shenker,
“Phost: Distributed near-optimal datacenter transport over commodity network
fabric,” in Proceedings of the 11th ACM Conference on Emerging Networking
Experiments and Technologies, ser. CoNEXT ’15, Heidelberg, Germany, 2015,
isbn: 9781450334129.

[28] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded congestion con-
trol for datacenters,” in Proceedings of the Conference of the ACM Special In-
terest Group on Data Communication, ser. SIGCOMM ’17, Los Angeles, CA,
USA, 2017, 239–252, isbn: 9781450346535.

[29] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-driven
low-latency transport protocol using network priorities,” in Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18, Budapest, Hungary, 2018, 221–235, isbn: 9781450355674.

[30] M. Handley et al., “Re-architecting datacenter networks and stacks for low la-
tency and high performance,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’17, Los An-
geles, CA, USA, 2017, 29–42, isbn: 9781450346535.

[31] M. Dong et al., “PCC vivace: Online-Learning congestion control,” in 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
18), Renton, WA, 2018, pp. 343–356, isbn: 978-1-939133-01-4.

[32] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep rein-
forcement learning perspective on internet congestion control,” in Proceedings
of the 36th International Conference on Machine Learning, K. Chaudhuri and
R. Salakhutdinov, Eds., ser. Proceedings of Machine Learning Research, vol. 97,
2019, pp. 3050–3059.

[33] K. Winstein and H. Balakrishnan, “Tcp ex machina: Computer-generated con-
gestion control,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, 123–134,
2013, issn: 0146-4833.

42

https://doi.org/10.1109/INFOCOM.2006.18

[34] F. Y. Yan et al., “Pantheon: The training ground for internet congestion-control
research,” in 2018 USENIX Annual Technical Conference (USENIX ATC 18),
Boston, MA, 2018, pp. 731–743, isbn: 978-1-939133-01-4.

[35] Y. Ma et al., “Multi-objective congestion control,” in Proceedings of the Seven-
teenth European Conference on Computer Systems, ser. EuroSys ’22, Rennes,
France, 2022, 218–235, isbn: 9781450391627.

[36] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, “Bbr:
Congestion-based congestion control: Measuring bottleneck bandwidth and round-
trip propagation time,” Queue, vol. 14, no. 5, 20–53, 2016, issn: 1542-7730.

[37] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[38] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep re-
inforcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34,
no. 6, pp. 26–38, 2017.

[39] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review
and new perspectives,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[40] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “De-
terministic policy gradient algorithms,” in Proceedings of the 31st International
Conference on International Conference on Machine Learning - Volume 32,
ser. ICML’14, Beijing, China, 2014, I–387–I–395.

[41] S. Fujimoto, H. van Hoof, and D. Meger, Addressing function approximation
error in actor-critic methods, 2018. arXiv: 1802.09477 [cs.AI].

[42] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region
policy optimization,” in International conference on machine learning, PMLR,
2015, pp. 1889–1897.

[43] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[44] L. Tan et al., “In-band network telemetry: A survey,” Computer Networks,
vol. 186, p. 107 763, 2021.

[45] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,” in
International conference on machine learning, PMLR, 2016, pp. 1928–1937.

[46] J. Oh, V. Chockalingam, H. Lee, et al., “Control of memory, active percep-
tion, and action in minecraft,” in International conference on machine learning,
PMLR, 2016, pp. 2790–2799.

[47] A. Khan, C. Zhang, N. Atanasov, K. Karydis, V. Kumar, and D. D. Lee, “Mem-
ory augmented control networks,” arXiv preprint arXiv:1709.05706, 2017.

[48] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially observable
mdps,” in 2015 aaai fall symposium series, 2015.

43

https://arxiv.org/abs/1802.09477

[49] F. Christianos, G. Papoudakis, M. A. Rahman, and S. V. Albrecht, “Scaling
multi-agent reinforcement learning with selective parameter sharing,” in Inter-
national Conference on Machine Learning, PMLR, 2021, pp. 1989–1998.

[50] J. K. Terry, N. Grammel, A. Hari, L. Santos, and B. Black, “Revisiting param-
eter sharing in multi-agent deep reinforcement learning,” 2020.

[51] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks,” Computer Networks and ISDN
systems, vol. 17, no. 1, pp. 1–14, 1989.

[52] G. F. Pfister, “An introduction to the infiniband architecture,” High perfor-
mance mass storage and parallel I/O, vol. 42, no. 617-632, p. 10, 2001.

[53] L. Meng, R. Gorbet, and D. Kulić, “Memory-based deep reinforcement learning
for pomdps,” in 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Prague, Czech Republic, 2021, 5619–5626.

[54] H. Yin et al., “Ns3-ai: Fostering artificial intelligence algorithms for network-
ing research,” in Proceedings of the 2020 Workshop on Ns-3, ser. WNS3 2020,
Gaithersburg, MD, USA, 2020, 57–64. doi: 10.1145/3389400.3389404. [Online].
Available: https://doi.org/10.1145/3389400.3389404.

[55] M. Cherti et al., “Reproducible scaling laws for contrastive language-image
learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2023, pp. 2818–2829.

44

https://doi.org/10.1145/3389400.3389404
https://doi.org/10.1145/3389400.3389404

	Introduction
	Problem Motivation
	Our Contribution
	Thesis Outline

	Related Work
	Data Center Traffic Control in General
	Loss Recovery Algorithms
	Congestion Control Algorithms

	Learning-Based Congestion Control

	Background and Preliminaries
	Deep Reinforcement Learning
	Remote Direct Memory Access Technology
	Data Center Network Congestion Event
	Main Challenges for Data Center Congestion Control
	In-band Network Telemetry
	Reinforcement Learning for Datacenter Congestion Control

	Method Designs
	Overview
	State-transition Pair Components Definitions
	Neural Network Architecture and Optimization Objective
	Training Procedure

	Common Experiment Settings
	Simulator and RL Environment
	Experiment Setup

	Baselines
	Benchmarks
	Test Metrics

	Evaluation and Analysis
	Long-short Traffic Experiments
	Incast Traffic Experiments
	Mix Burst Traffic Experiments

	Conclusions & Future Work
	Conclusions
	Future Work
	Algorithm Optimization
	Next Generation of In-band Network Telemetry

	Bibliography

