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iii.

ABSTRACT

Two examples of quantum mechanlical dissipative
systems are studied. The first one is the multichannel
Schrddinger equation with a nonlocal separable potential.
This problem can be solved exactly and the partial-wave scatter-
ing amplitude can be found. A comparlson 1s made with the |
well-known N/D method for one-channel and for multichannel.
problems. It is found that the generalization of treating
N and D as matrices in the n-channel problem is not
possible for this solvable example. Bound-state and resonance

poles of the partial-wave amplitude are also discussed.

The second example is that of a bound electron
(assumed to have two levels only) interacting with the
electromagnetic field. This model is similar to the Lee
model. In this model, the transition of the bound electron
from the higher level to the lower level 1s accompanied by
the emission of one photon. Results for level shift, line
breadth and the probability amplitude‘are obtained, which
correspond to the characteristics of a classical damped
system, i.e. natural line breadth and the exponential decay
form. Modification to this model 1s also considered.

This modification essentially changes the eigenstates of



iv.
the photons, i.e. the bare photon becomes a coherent mixture
of physical photons. Hence, the original interaction term

is altered accordingly.
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Chapter 1.  INTRODUCTION

In classicai mechanics, when the.forces acting on
a particle (or particles) are known we can write down the
equation of mbtion by virtue of Newton's Second Law of Motlom.
‘With the given initilal conditlons on position and velocity of
the particle, the equation of motion can be integrated and thus
the motion of the particle is determined completel&. ‘We note
here that the force on the particle can be a function of |
position and velocity of the particle as well as an expliclt
function of time, i.e. the force may either be conservative

or dlssipative.

One can introduce canonical variables to form a
Hamiltonian function which is the total energy of the particle
(expressed in terms of canonical variables). With the
Hamiltonian function, the classical equation of métion can
be Written concisely in Polsson bracketsl . A natural
way to quantize the classical equation of motion is to treat
the canonical variables as dyngmical operators (usually
noncommutative) in quantum mechanics and to interpret the
Poisson bracket as  1/ifi times the commutator. In this
. way;ithe_01assica1 equation of motion can be taken into
quantum theory by Heiéenberg's equation of motion. Another

way 1s by the use of -Schrodinger equation whose solution



corresponds to the Hamilton's principal function in the

geometrical optics limit. These two methods are mathematically

2
equivalent .

When one looks at the Helsenberg picture of
quantization, the imposition of the Poisson bracket on the
commutator would seem an added postulate in the theory.
This raises the question: "Do the equations of motion
determine the quantum‘mechanical commutation felations?"

(by Wigner)3 . The answer is found to depend on the form of
the Hamiltonian and is in the negative for a free particle
and for the simple harmonic oscillator. This noﬁuniqueness
in the commutation relation for the oscillator has been
resolved by several au.thor'sll . Granting the Helsenberg's
equations of motion for operators determine the commutation

relations uniquely, there i1s still the question of the form

of Hamiltonilan.

Usually, the total energy of the system, when expressed
in canonical variables, 1s the Hamiltonian function which can
then be taken over as the Hamiltonlan operator in Helsenberg
picture. However, as pointed out by Havas5 , for a glven
classical equation of motlon many different Hamiltonlans

exist, one of which may be the total energy of the system.

Quantization procedures using different Hamlltonlan other



than the total energy will be quite different from the
Heisenberg method or impossible, even though all these
Hamiltonians do generate the same classical equatioﬁ of
motion. At this point, one would rather take the notlon
that eduations of motlon,classical or quantal, are
fundamental and unique, then one would have to look for
different equationsfor different systemsS. This can be done
in classical mechanics, but one is lost, when dealing with
quantum mechanics, in searching for the equation of motion

without falling back on the Hamlltonlan.

In this thesis, we are interested in dissipative
system. For instance, in classical dynamics, the simple
equation of motion for a damped oscillator can be solved
uniquely with two given initial conditions on position and
velocity of the oscillator. When we try to study thils
problem in quaﬁtum hechaniés, we have to find the Hamiltonlan
that generates Heisenberg's equations of motion. However,
since this Hamiltonian is not the total energy, the usual
Helsenberg's quaﬁtization procedure does not apply and
the correct quantization rule for this particular Hamlltonian
is nbt known.- Here, Hamilton's canonical equations are
inconsistent with the usual commutation relations. Another
way to consider this problem is just to "write down" the

correct quantal equation of motion for the damped oscillator



avoiding-the use of Hamiltonian entirely. Of coursa, we
search in vain for this quantal equation. There seems to be
a third way of tryiné-to solve thié problem by taking the
total energy as the Hamiltonian (which is not explicitly
time-dependent) plus the Rayleigh's dissipation function6 .
This last hope diminishes quickly, as pointed out by
Brittin7 that, for a dissipative system with a Hamiltonian
not explicitly depending on time, quantization can be
carried out in Heisenberg picture only if the dissipative
force is a function of position and no dissipative force

is possible in Schrddinger picture. Since we believe in

the equivalence of these two pictures (two different methods
of quantization), the above inconsistency rules out the hope
to quantize a classical system with velocity-dependent
dissipative force like that of the damped osclillator
(classical electrodynamics is the exception). We accept

the idea that a dissipative system can only be treated as

a subsystem of a conservative system 1n gquantum mechanics,
in contrast to classical mechanics in which both conservative
and dissipative systems can be studied separately -from

theilr respective equations of motion.

We consider some examples of dissipative systems
in quantum mechanics. The multichannel problem (Chapter 3.)

has been applied to inelastic nuclear reactions for some



years8’9 . The effect of all other channels on a particular .
chanrel is to create an absorptive potential which can be
considered as the quantum mechanical analogue of a damped
classical system. We choose a solvable example wlth nonlocal
separable potential to study mainly the behaviour of the

S matrix and to comparé the exact form of the S matrix

with the well-known N/D method used in dispersion relations,

Another example (Chapter 4.) is that of a bound charged
particle interacting with an electromagnetic field (non-
relativistic). A bound electron (having two levels only)
decays into the lower level with the emission of one photon
and the reverse process. This problem, which in some ways
is similar to the Lee model10 , can be solved exactly., We
obtain results for level shift and line breadth which can
be cdmpared with those obtained by time-dependent perturbation
method. More important is that, in classlcal electrodynamics,
a moving point charge emits radiation which in turn reacts
on the charge's own motion. The equation of motion for the
charge (Dirac's equation) is in certaln ways similar to
that of a damped harmonic oscillator. The emitted line
by the charge is not infinitely sharp but has a certain
natural breadth due to the damping force of the emitted
radiation on the charge itself (Heitler's 8 4.)11 . Now

our quantum mechanical dissipative system (which is a sub-



system of a conservative system) exhibits the same characterlis-
tics as a classical damped system. This convinces us that
although a classical damped system cannot be quantized
dipectly,.it can always be considered as part of a conservative
system which can be quantized, and then the quantum mechanical
damped behaviour (quite similar to that of classical) can be

found from the complete solution of the conservative system.

Modification to the above model is presented in
Chapter 5, which changes the interaction term as well as

the vacuum state for the photon.



Chapter 2. VQUANTIZATION OF DAMPED CLASSICAL SYSTEM

A damped classical system can be specified uniquely
by its equation of motion (plus initial conditions). Generally,
the classical damped system cannot be quantized directly. In’
Section 1, we discuss some of the difficulties in quantizing
a damped classical system and conclude that quantum mechanl-
cally a damped system can only be treated as a subsystem of
a conservative system. We present a simple quantal system
(Section 2.), similar %o the Wigner-Weisskopf model, which

exhibits the character of damping.

1. Quantization of Damped Classical System

It has been shown by Havas5 that with a suitable
"integrating factor" a very broad class of classical equations
of motion can be derived from a variational principle and
hence the Lagrangian and the Hamiltonian can also be obtalned
in the usual way. However, due to the multiplicity of possible
integrating factors, for a glven equation of motion many '
different Lagrangians exist. Quantization for different Lagran-
gian will be quite different or even impossible. In spite of
this general finding, there are several papers12 \attemnting
to quantize the damped harmonic oscillator. The common

feature in those papers 1s that starting from the classical



equation of motion for the damped oscilllator,

£ + ax + w2x: = 0, (2.1)

which is derivablé from a time-dependent Hamiltonian (not the

energy of the damped oscillator),

H= (1/2m)e~%%p? + ymw2e%Px2, (2.2)

where p = meOLt X. Quantization is then by the usual commu-

tation relation

[X,'p]= j{ﬁ, (2-3)

or

[x, %1 = e %%/m. (2.1)

Eq. (2.4) implies that

AxAX »(A/m)e”%F (2.5)
violates the uncertainty principle for an oscillator,

AxA%X > A/m, (2.6)



which iswvalid even for the damped osc:lllator'7 .

The violation of the uncertainty principle may
seem to arise from the explicit dependence of H and p on
time. Some years ago Seegerg5 considered the same problem.
He chose a time-independent Hamiltonian plus the Rayleigh's
dissipation function (depending on velocity) and then
quantized the damped oscillator by the ordinary commutation
relation‘working,entirely in thé matrix form of quantum
mechanics, Helsenberg representation. However, it was shown
by Brittin7 that for a dissipative system not explicitly
depending on time, quantization can be carried out in the
Heisenberg representation only if the dissipative force 1is
a function of position (not velocity) and no dissipative
force whiéh is a function of position or momentum is possible
in Schrodinger representation. This kind of inconsistency
rules out the Possibility of quantizing a dissipative system
by the usual procedure. Even within the frame work of quantum
mechanics, Raéavy recently showed13 that in nuclear physics
an often used class of velocity-dependent Hamiltonlans,
which attempts to explain the strong short-range repulsion
of the two-nucleon_interadtion_at high energies, leads to
unacceptable results. Though the velocity-dependent
Hamiltonian satisfies the general requiirements of Hermiticity

and invariancepropertieé, the Helsenberg equation of motion
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for the energy operator (closely related to the Hamiltonian)

cannot be satlsfled.

~In view of the‘difficulties,oi~quantization,

apparently the Hamlltonian chosen for quantization can only

be the energy of the sys’cem5 which 1is uniquely defined in
classical mechanics. As for the quantization of a dissipétive
system, one should treat the dissipative system as a subsystem
of a non-dissipative system. The complete system will then

be solved by some approximation 1i needed. The behaviour:-

‘'of the disslpative system can then be 1nterpretedvfrom the

solution of the complete non-dissipative system.

2. The Wigner-Weisskopf Model

A simple solvable model for inelastic processes
was considered some years ago by Wigner and Weisskopf14 .
It consists of a mofionless particle whose wave function is
X (t), and another moving particle of mass m with the wave
function W(¥,t). These two particles act as one another's
sources with a real form factor P(r). The Schrodinger

equations are

(13/3t + v2/2m)p(T,t) = Gp(r)x(t)
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(id/dt - w)x(t) = GJp(r)w(i:,t)dF. (2:7)

Assuming P(r) depends on the magnitude of the radius
vector, then only S-waves are coupled. Usually [r) is
of a very short range r, with the point interaction (local)

limit as r,—~ O. The solutions for (2.7) have terms in rgd .

Martin15 studied the time development of a prepared state
|Y=0,X=1) for this model at &t = O. He found that such

a state 1s not physically acceptable, since the mean energy

of the system diverges at t = O, which implies that the
decay curve has a cusp at t = 0. Recenﬁly Razavy"6 remedied
the above defect by a noncausal coupling in the SchrBdinger'
equations. In the follbwing we shall consider a similar

system with nonlocal interaction, which will glve results

similar to Razavy's.

The Schrodinger equations for two channels coupled

by a nonlocal separable potential are

(V224 (P) = av() [Virn)epEaE

(V2-k?)9, (¥) GV(r)fV(r')w+(F'>d?', (2.8)
k - k
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where K2=g-%" » 0, € is the internal energy of the two
particles described by the wave function ¢ . -Eq. (2.8)
will be considered in more detail in the next chapter. Our
main purpose here 1s to show that the phase shift in ¥ is
qualitatively the same as Razavy's and a state of finite

mean energy can be prepared for the system at t = O.

Since V(r) depends on |T| , Eq. (2.8) will only
couple S-waves. We have assumed that \<2>'0, so there
will be no incoming wave 1in ¢ as well as no spherical

-KkY

outgoing wave, i.e. ¢—>e”  /r as r->. With little

modification, namely by putting

£11=82220, g12=47G, ki=k?, and k3=-k?, (2.9)

the results for the wave functions and the partial-wave
amplitude in chapter 3, Eq. (3.11), (3.12), and (3.13), can

be taken over to give

—~ 257 = A
¥,.(3) =5 (3-%)+2 V(x)V(p) |V2(p")ap' [,
k p2_k2_i€ p'2+ Kz
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$,(3) = - GVO)V(P) f,
k p2 + k? (2.10)
where
A= 1.g2 |VR)aR  |Wip')dp! . (2.11)
p2-k2-ig | p'%+x?

The tilde indicates Fourier transforms of the respective
quantities. We may choose V(p)e<c1/(k* + b*), Eq. (3.18),
then from g’l‘/}%(b’), we can find 1//1.(;.('1:") whose asymptotic

condition at Pr-w yields the scattering amplitude ( S-wave),

2032472 v2 P ¥
_ 2n2G2Vv2(k) {Vvi(p)dp _ € sind . (2.12)

A p2+ic? k
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From this relation it follows that

keots = Re(a™!) = [1-G? V2 (p" )dL(P Vz(p)dp

p'2+k? —k2

~ ~2 x _
[21[2G2V2(k) Y;_i%:_;iﬂ] 1 (2.13)

where P stands for the principal value of the integral.

Eq. (2.13) is the ratio of two polynomials in k% and
Razavy's result is a polynomial in k> . Hence, our system
gives qualitatively the same scattering as the one with
noncausal coupling. This is to be expected. As pointed out
by Gasiorowicz and Ruderman17 that, under ceftain condlitions,
nonlocal interaction is equivalent to noncausal interaction,

in the sense that they produce the same scattering amplitude.

For simplicity, we shall assume there 1s only one
bound state 4% (normalized) in ¢ when G = 0. Let us
prepare a state |W(t =0))= |Y=0, 47) for our system

at t =0 and study its subsequent development. We can
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expand [¥(0)) in terms of the eigenstates (2.10),

1¥(0)> = jaﬁx<i>|wi(¥>,¢i(?>>, (2.11)

with )\_(fc) given by

A (k)

<y, (F),9,(F)|0,6,>
k k

~ > >
= (2n)_3/2g;ﬁ(g)eip'rd§¢b(§)d?

-K

~ > > r
(2ﬂ)-3/2g¢+(§)eip'rd§( ik, /2me b /pyar
k

/Egyn85+<5)/(p2 + k2)dp - (2.15)
k
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At a later time, the state will be given by

l¥(t)> = fdm(i)e‘ikztw‘z(?), ¢i(§)> . (2.16)

The mean energy of the system at t =0 1is

<¥(0) |H|¥(0)> = <w(0)|1—3‘?\r(t)t=0> = szd'ﬁlx(ii)lz , (2.17)

where H 1is the Hamiltonian (a matrix) for the two-channel
Schrddinger equations (2.8). With A(%k) given by (2.15),
the mean energy above is finite. Hence, the decay curve for
this model does not have a cusp at t = O. The probabllity
amplitude that the system remains in [\(0)) after t 1s
determined by (Q{(O)IYY(t)) which has damped exponential
behaviour for small ¢t and ultimately goes as some inverse
péwer of t for t-»wo ., More detall of a similar prepared

state will be given in CGhapter 4.
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Chapter 3. MULTICHANNEL PROBLEM WITH NONLOCAL

SEPARABLE POTENTIAL

A well-known method of treating inelastic scattering
and résonance reaction is to extend the one-channel Schrddinger
equation to the multichannel equation. After a brief discussion
on the multichanned Schrédinger equation (Sectioﬁ 1.), we
solve an example with a nohlocal separable potential
(Section 2.). Although, for one channel, the partial-wave
amplitude can be put into the often used N/D form, a straight-.
forward generalization of N/D to multichannel is not
possible for this solvable example (Section 3 }. In Section
4, the analytic properties of the 2- channel partial-wave |
amplitude is studied with the attention to bound states and

resonances.

1. The Coupled Schrddinger Equation

A general situation in nuclear scattering experiment
consists of a projectile nucleon impinging on a target nucleus
which can be excited into many higher levels. Such a reaction

gan be described by the coupled-channel Schrddinger equation8’9:

(3.1)

<\
&\
I
et
€|

“5MT1V2Y 4+
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where we consider n coupled channels interacting-with two-
body potentials. Eg. (3.1) is written in the centre-of-mass
coordinates of the two-body channels. The name "channel"

has the following meaning: the lincoming nucleon plus the
target nucleus in 1ts ground state 1s designated the Incident
channel which is capable of going into n exlit channels
having an out-going nucleon plus the target nucleus in one

of its excited states or its ground state. We confine our-
selves to two-body interactions by V so that particles in
each channel are grouped into two bodies, e.g. projectile
plus target, out-going particle plus excited nucleus. - The
diagonal matrix M has elements WM, the reduced mass of

the two bodies in a certain channel &. The matrix £ has
elements Eub=(E - ed')d;B , where E 1is the total energy
of the whole system or the kinetic energy of the incident ﬁucleon
(taking ground state energy of the target as zero), and €«
is the internal energy of the two bodles in channel & or
the excitation energy of the target nucleus. We shall call
€tx the "threshold" of channel & because it is the

minimum kinetic energy that the incident nucleon must possess
in order to make the interaction energetically possible in
channel « . The potential matrix V is symmetric due to
time~reversal invariance18 . 'iF is the wave-function
matrix describing the interaction between n channels. Each

column of ¥ and the whole matrix ¥ are solutions of
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(3.1).

Eq. (3.1) can be reduced to a simpler form by
defining

V= oM® T ME (3.2)

where M™% is the diagonal matrix with elements 'pdf%a.

Substitution of (3.2) into (3.1) yields

| -V2y + VY = K2V ©(3.3)

where K 1is the diagonal matrix of the channel wave numbers,

ky = J2Uqa(E - £,). We may, therefore, consider all
channels having the same reduced mass 1/2, and take (3.3)

as our coupled-channel equation. At a given total energy E
it may be possible to excite the target nucleus into some
levels and sti1ll have some (positive) kinetic energy left
over for the out-going particle; other higher levels may not
be so accessible. The channels corresponding to the former
are said to be open, i.e. E > £y, and those corresponding

to the latter are said to be closed, E < £4 . The energy
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at which a channel opens up is its threshold.

2. A Solvable Example of Nonlocal Separable Potentlal

It is well known that effects of many-bodyvforces19 s
exchange forces (Ma,jorana20 s particle-exchang;e21 ), velocity-
dependent forces,'and the usual relativistic correction to
the energy, all give rise to nonlocal potentials in the
Schrddinger equation. In the coupled equation (3.3) with
locél (real) interaction, we can single out a particular
channel, e.g. the incident channel 1, by eliminating all

other channels. The resulting Schrodinger equation for chan-

9

nel 1 contains a generalized "optical" potential whose

imaginary part is negative definite. This means that the
effect of other channels on 1 1is to produce an absorptive
potential since the incident nucleon may be "absorbed"

(not literally but with kinetic energy changed) in different
ways through n exit channels. This generalized "optical"
potential is nonlocal though not separable *. This is the

quantum mechanical analogue of the damped classical system.

In our discussion we shall take a real nonlocal

separable potential matrix, which will be specified later,

* A general type of nonlocal potentials, with separable
and local as two extreme cases, can be expressed as a sum of
separable potentials.
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and shall ignore spin variables in the coupled Schrodinger
equation (3.3). ILet us make the usual partial-wave decomposi-

-tion for the wave functlon and the nonlocal potential,

¥, (P = Eu;g)(r)/r P, (cos8)

Vo (F,F1) = %(22+1)V§$)(r,r')/(Mﬂrr') P (Pef1) ,  (3.)

where we have assumed the nonlocal potential to be “"central,
i.e. depending only on the magnitude of the distance p=p!

(F and ©'/ are the unit vectors in the directions of ? and F‘
respectively). The nonlocal potential is not only symmetric

in ® and Y , as mentioned in the last section, but also
symmetric in ¥ and ;' due to the requirgpent‘of Hermiticity?

Then Eq. (3.3) becomes

(%)
[d2/dr? + k; - 9,(!L+1)/r'2]u0‘B (r)

oo

-1 | v el enart = 0 (3.5)
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which shows that only partial waves of the same order are
coupled. For our real nonlocal separable potential, we choose

the simple form,

- 2
v (r,et) = gl v @B ey, (3.6)
where go(('e = g;i) are the real coupling constants. The

S matrix for the {-th partial wave is determined by the

boundary condition at r — 002H H

uég)(r),;-3eilén(zﬂ)(kaks)-42(Gase-ikwr_eikpre-inzség))_ (3:7)

In the following discussion we shall suppress the £ indices

in ;1““) o(ép) .

*e gg’% s V(D , and S

Eq. (3.5), with the potential given by (3.6), can

be written in momentum space by the following transform:

uaB(r)/r = »/2/1rj:1a8(P)Jz(pr)p2dp

o0
v(r)/r = ¥2/7 f;(p).ﬁz(pr)pzdp
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;dB(p) = /27n.J;aB(r)/r Jz(pr)rzdr

o0

;(p) = V2/7 Jv(r)/r Jz(pr)rzdr . (3.8)

o

From (3.6) and (3.8), we obtain for (3.5)

o
(kg-pz)uas(p)-ZsWV(p)Jv(p')uYB(p')p'zdp' =0 (3.9)
with.the general solution:
3 §(k -p) "( ) N |
= vip 12 .
uug(P) = 8.g " pz_kz_ieisaij(p')uw(p')p dp' . (3:10)
¢ ] a

0

oo

The integration constants _JVIp)E}ﬂ(p)padp can be evaluated
from a set of simultaneous equations obtained by substitutions

of (3.10) into the constants themselves. We get finally

Uag(P) = 8= Lt - pz—kz-iezgaY(A ) g¥(ky), (3.11)
o o
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where the matrix A 1s given by

o0

-~

v2(p)p%dp | (3.12)
pz—ké-ie e

[}

A ,=6

of o.B + gaB

- The S matrix can be obtained by writing E@ﬁ(p)
in configuration space, Eg. (3.8), and from the asymptotic
condition (3.7),

_ -~ - -1
Sag = Sap iw/Eaka(ka)v(kB)ZgaY(A )YB
=8 t 2i/kak8 348, (3.13)

where 2yp is the {- th partial-wave amplitude. As implied
by time-reversal invarlance, the S matrix is symmetric,

which can also be shown explicitly from (3.13) and (3.12).

We note that, from (3.12), Aup can be considered as a

functlion of the total energy E = k;-}aw s Which may also be
analytically continued for a complex E 1in a certain region

if we choose V¢ (p) analytic in that region (and of course
vanishing fast enough for large p to make the integral in

(3.12) convergent). As a function of the complex variable E,
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A“p will have a cut on the positive real axis starting from
the threshold &, to infinity (the ground state energy €,
can be taken as zero). Since we have taken V2 (p) to vanish
for large p, Aﬁﬁvf xp as E-~»o0 , i,e. Aup is analytic and
normalized for ‘E=0 ., In the following sections, we shall

study the analytic properties of the S matrix in more detail.

3. The N/D Form for the Partial-Wave Amplitude

It has been shown by many authorszzp that, for a
one-channel problem, the partial-wave amplitude a(s) ls a
function of s, the total centre-of-mass energy squared.

It has a right-hand cut (kinematical cut) in the complex s
plane coming from the unitarity of the S matrix and a left-
hand cut (dynamical cut) due to the interaction between the
two particles in the channel. For nonrelativistic potential
scattering26 that we are interested in, s = kz' the centre-
of -mass momentum squared if we take the internal energy of

the two particles as zero, i.e. the threshold for this
interaction is at kzs O. The general analytic behaviour

mentioned above enables one to write

a=N/D , (3.18)
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whére ‘D has the same right-hand cuﬁ.as a but no left-hand
cut, while N haé'the same left-hénd}cut as a with no
right-hand cut. D is normalized ét k% = » and its Zeros
with Im(k) > 0 (Re k = 0) correspond to thé-bound states.

N and D can then be_expréssed_as some kind of dispersion
relations. These two dispersion relations; two coupled
integral equations, may be solved by successive approximations.
This is a roundabout way to solve a scattering problem, though
we do not need it to solve potential scattering since it is '
easler to solve the Schrédinger equation. However, at high
energies, where the governing equations are not solvable or
simply are nonexistént,.the N/D method furﬁishes an appro-
ximation that can be handled'without knowing the exact dynam-
ical.  structure of the systém. Usualiy when the pfojectile
gets more and more energetic it is capable of producing diff-
erent kinds of reactions, elastic, inelastic, rearrangements.
In these cases, a single-channel formulation will not be
sufficient. One must take aécount of the channels that are

most relevant to the problem concerned.

There have been many attempts to generalize the
single-channel N/D method to multichannel processes27’28’29.
An obvious way to generalize (3.14) is to treat N and D
as matrices27 because the partial—wave amplitude becomes an

n x n matrix aaB for n coupled channels:

- n-1
a ., =7 N&Y(D )YB (3.15)
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with the usual respective analytic propertles assigned to

the N and D matrices, namely that:

(2) dynamical cut only in N;

(b) physical cut (unitarity cut) only in D; and

(c) bound-state poles are produced by zeros of D (the
-déterminant of matrix D ),

Another way to account for the effect of other channels on a

particular channel is to introduce an "absorptive parameter"

into the single-channel scattering.amplitude29 and thus

keep the simple form of single-channel N/D. However, it

has been shown that results obtained from "absorptive

parameter" N/D are not equivalent to those from multichannel

N/D 30. Though D still has only the right-hand cut, N will

have both the left and the right-hand cut. Moreover, condi-

tion (¢) is not fu1f111ed31 .

For our solvable example, it is easy to check if the
N/D form (single or multichannel) is acceptable with the
above three conditlons imposed. For one channel, from

(3.13) and (3.12), we obtain the partial-wave amplitude,

a(k?)

N(k2)/D(k?)

o0

_ungv?(k)/(14g | XR)R7dD) (3.16)
pz-kz-ie‘
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which fulfills conditions (a), (b), and (c¢), provided that 32

v(r)/rrVO(r-5/2) for r =+ 0,
and

v(r)/r~const. exp(-br) for r + o , (3.17)

We may then assume that our potential (3.8) is of the form

;(k) « 1/(k2+b?), (3.18) -

where 1/b can be considered as the range of the potentilal.
With Eq. (3.18), the left-hand cut of N Dbecomes an isolated

double pole.

For multichannel, we have already noticed, at the
end of last section, that matrix Ayg of (3.12) (with (3.17))
1s equivalent to the D matrix in (3.15). If we make the
assumption that all channels have the same threshold, say O,

we can write an exact N/D form for our partial-wave amplitude,

i.e.

_ -1
348 = 2 Moy (D" )yg
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with

NaB(k) -;iﬂvz(k)gas

[-od .
2 .
NaB(p)p dp
p2-k2-ie

- 2
Dus(k) Aas(k) = 60‘8- = s (3.19)

(]

from Egs. (3.12) and (3.13). Iﬂ general, however, different
channelswill have different thresholds, as the target nucleus
would have excited states other than the ground state. From
(3.13), the partial-wave amplitude (matrix) can be written
in matrix form

a = —%ﬂ?@A’l

v, . (3.20)
where ¥ is the diagonal matrix with elements ¥(ky), (contain-
ing the left-hand cut), g the symmetric matrix of the coupling

constants , and matrix A . is given by (3.12). Eg. (3.20)

gmp
is no longer in the exact N/D form. If one still insists
upon Writing aue = 7 Ny (D7')y; with Dyp given by (3.12)
a different N matrix will be found. From the matrix

equation (3.20) (a,N, and D are now matrices)
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a= Np~1 5_-%n?gD-

v

-%ﬂGgD-l

=
]

D , (3.21)

which shows that N will have the right-hand cut (from D)
in addition to the usual left-hand cut (from ¥). Thié may
be compared with the situation in the "absorptive parameter"
N/D29:31 | except that the zeros of det (D) in (3.21) do

produce bound states.

In'conclﬁsion, a straightforward generalization of
the N/D form for the‘parﬁial-wave amp;itude frdm one-channel
to multicﬁannel, Eq. (3.15) plus the three restrictions, is
not appllicable to our simple solvable gxample, and we doubt
its validity in Ehe much morecomplicated problems though it

hgs already been used in the treatment of strong lnteractions.

L, Analytic Properties of the Partial-Wave Amplitude

( 2 - channel)

We shall study the analytic properties of the

partial-wave amplitude in ﬁhe simple case of two coupled
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channels.. The general behaviour of the n-channel amplitude
is similar to that of the two-channel amplitude. The matrix
elements ayp of the partial-wave amplitude can be found

from Egs. (3.13) and (3.12).

oo
_my? o2 2
aii = nii/A =‘_EK_LELl[gI1+(g11g22_g§2) ve(p)p dR]
2A 2 12
jo) -ks-ie
o
- 2
azz = Naa/A = ﬂv (kZ)[822+(g11g22-g12) X—LElE—gEq
—kl-ie
a12 = az1 = Ni2/A = -wv(ky)v(ka)g12/28 (3.22)

where A 1is the determinant of the matrix A, Egq. (3.12),

2_ki-ic p'2-k%-ic

[+]

A = [1+g11f_2—(p-2L21*[1+g o | ¥2plp'®dply _
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]
[%ad

g2, v2(p)p3dp| v2(p")p'2dp’
p2-k3-ie | p'?-k3-ie

o

(3.23)

Let us suppose that channel 2 has a higher threshold.than
channel 1, i.e. €, >81(= 0, the ground state energy).
The channel momenta , k; and k, are not independent
(their signs are indepqndent) but are related to the total
energy E of the system (the kinetic energy of the incldent

particle) by

k2 =E, k3 =E -¢€2 , (3.24)

where we have taken the channel reduced mass as 1/2. .When
au4; are considered as functionspof the complex variable E,
they have (kinematical) cuts (from the integrals) on the
positive real axis, starting from the thresholds at E = 0
and E= £, to infinity, and (dynamical) cuts (from the
potential) below the thresholds along the real axis to - .
We #lso note that ayg— 0, and A— 1, for |E|=® , In

the following discussion, we shall follow a paper by Peier'ls33 .

The characteristics of the 2-channel processes

depend on the incident energy E (real and positive). If E
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- 18 less thané& the only possible real process 1s elastic
scatbtering in channel 1. If E is above the threshold

for channel 2, inelastic scattering is also possible. The
zeros of A , with certain réstrictions 6n kq and ké ,"
corresponds to the bound-state and resonant poles of a*ﬁ .
Thelr positions are determined from the (complex) roots

of (3.23).

Let us look at the bound-state poles first. There
are two kinds of bound states, one has the.bound-state energy
below all the thresholds (the ordinary kind) and the othér
has the bound-state energy between the two thresholds. The -
latter kind is called the bound state embedded in the
continuuﬁy‘ becaﬁse it looks like an ordinary bound state
in channel 2 but with an energy in the continuum of
channel 1, so it is not a bound state in channel 1. Bound
states of the first kind are given by the roots of (3.23)
with both k, and ké positive imaginary, i.e.»

pove) -

[1%glll XfiRlEiQE]x[1+g22 vz(p')p'zdpf]

p2+k} p'2+k}
° ]
°0 0o .
~2 2 ~2 ' 12 t
- g3, | Xplp7dp{ vi(pt)p'idp’ . o | (3.25)
p2+ki p'?+e}
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where ky= 1K; =+14E, , k= 1K, =+1 B -&,, and

iEb is the negative bound-state energy. It 1s seen that

no matter what the diagonal elements of the potential matrix
are (attractive or repulsive), if the off-dlagonal elements
are large enough in magnitude, there will be a bound state,
because.only.the square of 840 enters In A . This
corroborates the fact that the eoupling term, e.g. Vye , of
the Hamiltonian alwaye is'effectively attractive9 .
However, there is'no way of ldentifying the channel in which
the bound state 6ccurs, it belongs to both channels. For

a bound state eﬁbedded in the continuum with bound-state

energy E} , OéEi0 < €,, we must look for a root of (3.23)
at a positive real value of k1(= + 1/EL)_and at a positive

imaginary value of ka(.-; iK‘zz +14E'b - EZ), Y,
o0
2 2
[1+g,, | ¥ (9)2 9]x[1+g (p)p’dp',
p2-k?-ic | p'%+k3
(v]
0o o0
~2 2 ~2 { 12 1
g2, | Y2(p)p®dp | ¥ (ptip!7dp! 4 (3.26)

p2-ki-ie |p'2+k3
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The real and imaginary parts of this equation must vanish,

l.e.

ol .

' o2 2
1+ g22 ‘_’__(.Elp__qa=o

p?+k}
A .
2 2 2 2 .
g11[1+g22 __iRlE_QE] 2 ——LRlE-gB' (3.27)
p2+k} p2+k} o
[~]

The first equatioﬂ determines EL , SO gza should be negative
(attractive), while the second equation will require g, = 0
and g,, may be pbsitive or negative. This means that
channelé 1 and 2 are not coupled, then, of dourse,

channel 2 can have bound state above the threshold of chan-
nel 1. 'Howevér, this 1s.a specilal situation, we expect that,
for more.than two channels, some zeros of A  would give rise
to bound states embedded in the continuum without too severe

" a restriction on thé off-diagonal elements of the potentiall

matrix.

Resonant poles, in the one-channel problem, occur in
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the fourth quadrant close to the-positiVe real axlis in the
complex momentum plane. In the two-channel case, there are
two fourth quadrants, one for each channel momentum. Poles,
in either one or both of the two fourth quadrants and close
to the real axis, will correspond to resonances. When the
resonances are sharp, i.e. the width of the resonances is
small compared to their spacing, a more convenient way 6f
determining the resonance energy E, 1is to require the real
part of A to vanish at »Er .2'_8 In this way, we are
working with the real energy E instead of complex E. 6n
writing (3.23) into real and imaginary parts,A(E)= AR(E)+ 1AI(E),
E, is then determined by A’R (Er) = 0 and the resonance
width T" 1is proportional to AI_(Er)‘ For E near Ep,

we can expand

A(E) = (E'Er)A'(Er) + 1A (Er) (3.28)
. R I 2
where Ay (E) 1is the derivative of Ag(E) with respect
to E. Thus, near resonance, the partial-wave amplitude awﬁ
has the denominator (3.28) which can be put into the usual

form of resonance denominator,

(B-E,) + 18 (B)/01(E,) = (B-B) + 1172, (3.29)
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where T° 1s the width of the resonance. The channel in
which the resonance occurs 1s determined by the conditions
of Ep>0 or & . If E <O, then A;=0 (since A is
real for E<O) so that I =0. Hence, there is no

resonance below the lewes?t threshold E = 0. .We can rewrite

Ap (3.22) with the common resonance denominator (3.29) for
Ex Er’
84g(E) & Tog/ (B-E,)¥1T/21, (3.30)
where
Tyg = Pag(B) /A1 (Ep) - (3.31)

which may be taken to be real, 1.e. principal values of the
integrals in no(,B are taken, since the wildth I" is assumed
to be small, If O<E,< Ez , then, from (3.23), the integrals
involving ki‘ (= Ep) will be complex, while those involving
kz?_ (=Ep - &€,) will be real. We can find I from Egs. (3.29),

(3.23), (3.22), and (3.31)>

r/2 = AI(Er)/AI;(Er) = -r“/E_If . (3.32)
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which is the partial width for channel 1. If EP>-EZ'> 0,
then all integrals in (3.23) will be complex, and we find

similarly

r/2 = A (Er)/A'(Er) = -rn/ETl: - Pzzv/Er-Ez » (3.33)
I R

which shows that 1f both channels are open (E >’Ez)’ then the
total width is the sum of the partial widths for each channel.
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Chapter 4. A SOLVABLE MODEL IN NONRELATIVISTIC
ELECTRODYNAMICS

In this chapter we shall discuss the lnteraction
of a nonrelativistic charged particle with an electromagnetic
field. The charged particle is assumed to be spinless
énd bound in a nuclear or atomic potential, i.e. it satisfiles
the ordinary Schrodinger equation; An example}is furnished
by the electron of a hydrogen atom interacting with an
electromegnetic field. We shall 1limit ourselves to
processes involving a single charged particle with the

emission or absorption of one photon.

After a description of the model (Section 1.),
which is similar to the well-known Lee model, and the
discussion of the processes of the interaction, we arrive at
the Hamiltonian that will be used throughout this chapter.
Our main interest is in the decay behaviour of a prepared
state (Section 2.) which leads to the level shift and the
line breadth of the emitted photon (Section 3.). We show that
the prepared state is physically acceptable (Section 4.).
In Section 5, we obtain a complete set of states and give an
alternative form for the Hamiltonian, since the results of

previous sections are also obtainable by expanding the
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prepared state in such a complete set. We conclude this
chapter by considering a simple form of spin-dependent

interaction in the Hamiltonian.

1. The Hamiltonian

The complete Hamiltonian for a nonrelativistic
bound charged particle of zero spin interacting with an elec-

tromagnetic field is?s(ﬁ =c=1)

Hoom = S[(l/Zm)W*(;,t)°VW(?,t)+V(?)¢*(?,t)mp(?,t)JdF

+ (1/8m) ([Ez(ﬁ,t)+(VxK(§,t))2]dF
+ (ie/zm)(li(i",t)-[w*('r’,t)vw(%’,t)-vw*(?,t)w(%,t)]dia’

+ (e2/2m){xz(;,t)w*(;,t)w(}*,t)d; +
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PHE )0 L) WE LB WEE) e

+ (e?/2) N

(4.1)

The first term describes the charged particle with mass m
bound in a nuclear potential V. The nucleus can be
considered fixed (infinitely massive). The second term,
where we have used Gaussian units, is the radlation

energy of the electromagnetic field. Both E and 2 are
transverse fields. The third and fourth terms give

rise to the intéraction between the charged particle

and the electromagnetic field. However, the fourth term is
much smaller than the third and can produce two-photon
processes. The last term is the electrostatic interaction
between charges -which does not contribute in one-electron
processes. Hence, we shall omit the last two terms 1ln the
Hamiltonian for-our discussion.36 We shall come back to

consider the fourth term in the next chapter.
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Let us expand. Y and ¥ * in a complete orthonormal
set of elgenfunctions for a single electron in a nuclear
potential. The vector field K can also be.expanded in
plane waves with periodic boundary conditions in a box of

unit normalization wolume. We then have

W(F,8) = b (8)u (F)
n. -

VEE,E) = ] bl (6)ud(F)
n

i—ﬁl-i” + -i'ﬁx-F
R(z,t) = § 8,/21/k, (a,(t)e +a, (t)e )
ik, T _ik, «7
B(#,6) = -ak/3t = J18, /27K, (a,(t)e »altwe M,
X
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where uérﬁ form a complete orthonormal set of

eigenfunctions which satisfy the Schrodinger equation

(-v2/2m + VE)u () = Eu, () (4:3)

The photon energy 1is kh. = [ﬁAJ and gx is the unit
polarization vector orthogonal to .EA_ . The sum over A
includes momentum eigenstates and polarization, different
direction of polarization is denoted by different A .

The expansion coefficient bL (b, ) is the creation
(annihilation) operator for an electron in the electron
elgenstate n. . Similarly, a}_ (aA_ ) creates (annihilates)
a photon of momentum Ek , polarization 8X . The b's and a's

satisfy the usual commutation relations,
b (8), bl (6)1, = b_(&)bT, &)+ T(E)b (£) = &
n > “n! + n n' n' n nn!

[a,(£), al, (8)] = ay(t)a),(t)-a) . (8)ay(6) = &),

- T t =
o, (£, by, (£)1, = [bF(8), bya(E)], =0
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[a, (6) 85, (8)] = [aj(t),ak (£)] = 0
[a, (6),b_(8)] = [a,(6),05(6)1 = [al(t),b,(8)] =[af(6),07(E)1 = 0.
(4.4)

We further assume that there are only two energy levels in
(4.3), or only two eigenstates contribute significantly to
the interaction, the higher level E, and the lower level
E, , e.g. we can take two bound states in the hydrogen atom,
If we are resbricted to processes of the following type:
One electron in level 2<>one electron in level 1 + one photon
(4.5)
as indicated at the beginning of this chapter, we will
obtain a simple Hamiltonian by substituting (4.2) into (4.1),

(ignoring last two terms in (4.1) )

H = Ho + H:
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where

Hy = Epb}(6)ba(t) + Eyb](£)ba(t) + ;kkai(t)ak(t)

and
Hy = e§(1//—zkk)<slb’£(t>bl(t)a,\(t)+e§b’{(t>a’{(t>bz<t>> . (4.6)

The infinite zero-point energy of the radiation fileld, EikA_/é,

has been subtracted. The quantities 5h are glven by

iKe7

B, = (i/EF7m{§;!(;)e él-yul(?)dg , (4.7)

which are essentially the one-photon interaction matrix

elements (p.143, Heitler)ll.

The Hamiltonlan, as given in (4;6), is in Helsenberg
representation since the a's and b's are time-dependent
operators. We can transform (4.6) into Schrodinger
representation which coincides with Heisenberg
representation at a particular time t = 0. The transforma-

tion of operators 1s achieved by
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o(t) = e o(t=0) e~1HE (4.8)

Hence, the Hamiltonian in SchrSdingér representation has
the same form as (4.6) but with the a's and b's specified
at t = 0 which we shall simple rewrite omitting .the time
parameter. In the following sections the Hamiltonian in
Schrodinger representation will be used, since we shall

try to solée the time-dependent Schrodinger equation for a
prepared state of our physical system. The Hamiltonian
(4.6) is very similar to that of the Lee node1’ 0237
except that we do not have to introduce a "eutoff" for the

interaction energy, since By , as defined in Eq. (4.7) will

provide a natural cutoff for all integrals involved.

So far we have not really Specified the two levels
of the bound electron (4.3).. . If those two levels are two
discrete states of an electron in an atom, then Hamiltonlan
(4.6) describes radiative transitions between two discrete
states by emission or absorption of one photon. Generali-
zationvto transitions of an atom, or nucleus, from any
state of higher to one of lower energy can be easily carried

out, We can choose the appropriate wave functions
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for those two states, either or both of which may be in the
discrete or in the continuous energy speétrum. Hence, for
atoms, the photoeffect, the radiative capture, (discrete «»
continuous transitions) and Bremsstrahlung (continuous <
continuous transitions) can be studled along the same
lines. Similarly for nuclear photoeffect and 7Y-decay

of nuclear levels, but the wave functions for the charged
particle in a nuclear fleld (not necessarily Coulomb
potential) will be very complicated or simply unobtalnable
since the behaviour of nuclear forces for very short ranges

is not known.

2. The Development of a Prepared State

We will be using Hamiltonian (4.6) in Schrodinger
representation. Let us first define a vacuum state lO)
for our system, i.e. a state with no electron and photon

present,
b2 |0> = by]|0> = a,]0> =0, (4.9)
which is also an eigenstate of (4.6) with eigenvalue zero.

This vacuum state is, therefore, time-independent and we

can build up the states we want for our system by applying
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a's and b's to it.

Suppose that we prepare our system at t = 0
to be at the higher level 2 with no photon, i.e. in the

initial state

¥(0) = bilO> , (4.10)

and we‘shall study its subsequent development due to the
Hamiltonian (4.6). At a later time t > O, our system
will be in the state Y (t) which is governed by the time-

dependent Schrddinger equation,

i3¥(t)/9t = HY(t) , (4.11)

where H is the Hamiltonian operator (4;6). The formal
solution of the time-dependent wave function V¥ (t) has the

explicit form

y(t) = e tHby(0y , (4.12)
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which satisfies the specified boundary condition (4.10)
at t=0. For t > O, we can rewrite (4.12) as

400

-iEt
¥(e) = (-1/2n1)| T ¥(0), (4.13)

~00

where €— 0(+) and E is a real variable.

Oiir main problem now is %o find the quantity

1 - 1 t
E+ie-H ¥(0) = E+ie-H by 0> . (4.14)

Using the identity, valid for operators as well as c-numbers,

(4.15)

o=
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and putting a= E + 1€ - H, b= -H, , we can write
(4.14) as

*

B
b3 |0> = Frre LS

1 +
Te-E, (b2 ]0> + e§ 2k} EFie-H

E+ie-H

bIaI|0>) .
(4.16)

Using a formila in Schweber p. 359 43,

T 1

1t b1 1
(H1,2)) mie-x, °

Efie-H 2A - 2\ E¥le-H-k, * Evie—H

(4.17)
we obtain
. eB ’
E+ie-H E+ie-E1—kA ¢2kl E+ie-H
(4.18)
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Substituting (4.18) into (4.16), we finally ge®

2
18, | 1 -1,
2kA kA+E1—E—ie

1 ¥
E¥ic-H P2

|0> = (E+ie-Ep+e? §

B,

(b3 |0>-e] 1 bial,l0>) .

At V2K, K, +E1-E-ie

(4.19)

Eq. (4.13) together with the above expression determines
the complete behaviour of our system which was prepared in

the state ¥(0) at t = O.

We are mostly interested in the brobability of
finding the system in its initilal state after time t. The
probability amplitude for the system remaining in ¥ (0)
at a later tiﬁe t 1is given by
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o
( -iEt
<¥(0) |¥(t)> = =% dt e — .
2wi i8,1°%
A 1
E+is-E2+e22 =
L 2k, k,+E1-E-ie

o0

(4.20)

In the denominator, the sum over A (including sum over two

directions of polarization) can be written as an integral

when the normalization volume tends to infinity.

o2
2 2
£(E-E;+ig) = — |8 (k) | 2kdk
‘ . 272 | k+E,-E-ie
(o]
oo

e? o | 1800) |%kdk | ;e* yg(E-E,)|2(E-E1) >

o2

k+E,;-E

2%

(4.21)
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which is defined for real E., We have assumed that By does
not depend on the direction of the momentum vector ﬁl but
only on its magnitude lﬁhl . The symbol P stands for .
" the principal value of the'integral. Let us wrlte down the

denominator in (4.20) as

h(E-E,-1i€) = E+ie-E,+f(E-E,+ie) , (4.22)

which is also defined for real E, and can be analytically

continued for a general complex E provided that the same can

2'39
be done for |B(k)]| .

Let us define a complex varlable

E-E, = x + 1y , (4.23)

N
]

where E 1s now compléx, and E, 1s real, the lower energy

level. On the first Riemann sheet, for O < arg (z)< 27T .

ni(z) = z + E; - E2 + £(2) , (4.24)
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which has a cut along the positive real axis as can be easily
seen from (4.21) and (4.22). Integral (4.20) may be obtained

by the following contour integration on the first Riemann sheet:

Zz plane

A 4

—

=
Y

Fig. 1. Contour for Integral (4.20) Closed on the First Sheet.
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Wet therefore, must find the roots of h! (z) in the lower
half plane, excluding the cut. A simple substitution of
z = x4+ iy into hl (z) = 0 will require

y=0

and

24

-

X = Ez-El-(e2/21rz)flB(k)Izkdk/(k—x) (4.25)

for x < O. Eq. (4.25) has no solution below x =0, if

o0

E,-E; > (e2/2w2{[’|8(k)|2dk s (4.26)

which we shall assume E, and E, satisfy. We expect that
the behaviour of (4.20) is some kind of damped exponential
which arises from a complex ropt of the denominator with
negative imaginary part. Hence, we search further onto the

second Riemann sheet.

Analytic continuation onto the second Riemann sheet,
for 0 > arg (z) » - 27 , is effected by defining for

real z (= x),

hII(x-ie) = hI(x+ie) . (B.27)
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Then, for 2z = X + 1y, we have39

nIT(z) = n¥(z) + 1(e?2/m)|8(2)|%2 . (4.28)

Now we can evaluate integral (4.20) by closing the

39
contour on the second Rlemann sheet as shown in Fig. 2.

z plane
CZ/ Z C 1
— \ Ty
——— === 7
U Er-El-iy/Z |

Fig. 2. Contour for Integral (4.20) Closed on the Second Sheet.
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The solid portion_of the contour 1ls on the first Riemann
sheet white the dotted portion is on the second. The
integral of the closed contour Gi' can be obtained from
Cauchy's integral formula, SO we-hust find the zeros in

h™ (z). Assuming for simplicity that h* (z) has only one
solution, i.e. the integrand in (4.20) has a simple pole, at
z =(Ep -E; ) -1 y/2, then from (4.28), (4.24), and

. ' 3
(4.21) we obtain the determining equations for E, and Y,

2 2 2
e |8(k)|2kdk (k+E1-Eg) - %—-n =0
22 (k'*']i'-l-'E‘.‘:.)2'*‘Y2/ll

(o]

'Er—Ez-i

Y148 |8(k) |2kdk y _ €2, ¥ (4.29)
2 2 2,2 ™ >
2m (k+E1-Er) +y2/4

6
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where

g +in = IB(Er—El—iY/2)|2(Er-E1—iY/2) . (4.30)

Integral (%4.20) can be written as contour integrals

: -1E,t - -iz%v
<¥(0) [¥(6)> = S (f +/ ) Loy (4.31)

where Cy and 02 are shown in Fig. 2. The denominator
h (z) will be gither h' (z) or h'! (z) depending on
whether the contour is on the first or on the second

Riemann sheet. .The integrals over C; and C, are then,

| e—iElt dze-izt _ e-iErt—Yt/2

21 | pT(z)  (anti(2)/a2) 5 g _iy/0
Ca
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and

o -
iEt [ g, omlub  -1Eit [ o 13t [ ax e-ixt)
omi h(z) omi nil(x) ni(x)

C2
- 00 Py

_ ze? [ gpe-ixt |80

e-iEit
2r? hI(x)hII(x)

] x R

(4.32)

where we have used (4.28) with z = x (real) for the

integral over C, . On comparing the above two integrals,

we see that for weak coupling and not too large t the first
one dominates while the second one will only become
appreciable after a sufficlently long time. However, by

this time (4.31) may have already become extremely

small indeed. As &t tends to infinity the behaviour of the

second integral in (4.32) is determined by the "eritical
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b4 , which means that most contribution'

point" at x= 0
comes from the end poilnt x = 0. We can obtain the
asymptotic expansion for the second integral by expanding

the square bracket about x =0,

2
IB(x)_I ]'r:r/[oaoo..]xr-o-{- x%[oooo] + eeee

bt (x)ntt(x) x=0

(4.33)

and by inserting the aboVe expansion into the integral

which gan then be evaluated at x= 0 %o yield -

g —e? __ |B(O)|2 7MY s
<, ..II — + 0t 7).
C2 22 h~(0)h~7(0) ¢

’ (4.34)
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The manner in which (4.34) is obtained tells
us that the asymptotic behaviour 6fvthe probalility
amplitude depends on the dynamic structure of the system
and on how one prepares the initial state 40. For example,

if we start with the system in the initial state

¥(0) =.§ ¢,bial 0> , ©(4.35)

which describes an electron in level 1 plus a packet
of photons of arbitrary shape-¢k_ . A similar calculation
will give the exponential form for small t, and for large t

an integral over G2 ,which is dominated by the contribution

from x= 0,

_ ¢, B -iE;t
- ATA e N
1 dze iztlz e |2 L
2mi A2k, k,-z h(z)
C A A
2
[
a2 _ ¢, B 2 _
- =€® [axe~1%Fp|7—= A" 2 - |s§§)| 1xe~ 1Bt
2m? A/2kx k,-X h-(x)h™ (%)
- 00

(4.36)
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Again, we expand the square bracket about x = 0, like

(4.33)

' 20N 1B(x)]% 1 ~ d
[ € 2 ] [ooo] = + X [ooo] -
lg\/é_k; k-x TRt x=0 © Taxt Tx=0

4 oo s

(4.37)

where ¢L is the arbitrary shape of the wave packet that we
prepare our system at t = 0. This means that we can plck
the leading term in t for the asymptotic expansion of
(4.36) by choosing suitable ¢, ; e.g. if the first term

in (4.37) vanishes for a particular choice of ¢L s

then

Eq. (4.36) X2 constant (e 1E1%673) + ot™y , (4.38)

3

-which has a leading term t” instead of 1:‘2 as was in

(4.34).
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Let us come back to the time evolution of our
system., The probability of finding the system in the
initial state at time ¢ is represented by |(1]f{o)|‘\][(t))|2 .
We can, therefore, conclude from (4.31). (4.32). and
(4.34) that this probability decreases exponentially with
lifetime 1/Y for small t (=~ 1/Y ), and ultimately

decays as t™ . However, one must note that the preparation
of the initial state affects greatly the asymptotic behaviour

of the above mentioned probability.

3. Level Shift and Line Breadth

The complex root z = E, -E; - iY/2 for h'! (z)
as determined by (4.29) has simple physical interpretation.
Let us first look at the weak coupling 1limit in which e?
is very small, E.~ E, , and E;p - E;>> Y/2 ~ Ole*).
In this limit we can solve for Er and ¥ without knowing

the exact form of O (k). From (4.29) and (%4.30) then,

¢ ~ |B(E2-E;) |2(E2-E1)
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and therefore,

o0
E - E, = AE ~ =&= p | 1B(K)[*kdk
r 211'2 k+E1—E2
y 2 (e2/m) |B(E2-E1) | 2(E2-E1) . (4.39)

The results for A4E and 7Y agree with that by first order
time-dependent perturbation calculation for the level shift
and the line breadth respectively.ll(gls) When the electron
at level 2 decays. spontaneously to level 1 with the
emission of a photon, the spectral line of the emitted

photon will have a maximum at frequency = E, - E; zwith a
half width ¥, instead of a perfectly sharp line wiéh
fr'equency=E2 - E; . Or one may say that when the

electron at level 2 interacts with an electromagnetic field
according to (4.6), its original level E, will shift to E,
with a breadth ¥ , l.e. it has lifetime of 1/v due to the

radiative transition to the lower level 1. Eq. (4.39) also
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gives the correct behaviour of our system when there .
is no interaction (e? = 0), such that AE =Y = 0. In
this case the electron will remain at level 2 indefinitely,

since it is an eilgenstate of the Hamlltonian when e2'== 0.

Suppose we can lncrease the coupling strength
ea between the bound electron and the electromagnetic
field without affecting the other part of our system,
i.e. E, , E; , and B (k) will not change if e? changes.
A look at the second equation of (4.29) will show us that
there 1s another solution for Y =0 with e%* # O.
If such a solution exlsts for a certain e® = eg
then we would have an emitted photon with a perfectly sharp
spectral line. This solution willl require C = 0 which
implies E, = E,; . When this condition is applied to
the first equation of (4.29), we find that El énd E2

must satisfy

o

E,-E, = (-e;/2ﬂ2) |8(k)|%dk , ) (4.40)

]
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which is the equation that determines eg . However, in

order to obtain (4.29) such that the electron at levei 2

can decay spontaneously, we had alread& assumed that E1 and
E, must fulfil the inequality (4.26) which holds for all
valuesof e® . Eq. (4.40) is, therefore, invalid, and

there is no emitted photon with perfectly sharp'line. Let

us suppose for the moment that e? — eg without the above
contradliction, can e?2 be increased further still? If
E, and Y are both continuous functions of e? , when e?
increases from O to eg , E, decreases from E, to E,
and Y from O back to 0. So if e® > es , Ep=E - J E
where §E is a small positive energy. Substitution of

E, = E; - §E into the second equation of (%.29) will

yield a negative Y which means < Vig)|Yit)y grows indeflnite-

ly, and hence not acceptable,

We conclude this section by remarking that we
cannot increase the coupling parameber - e? infinitely even
if it does not affect the other structure of the system.
The exact form of ﬁS(k) must be specified if we want to

find the exact solutions for Eg and Y .
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. | The Mean Energy and the Rate of Energy Dissipation for

the Initial State

We have preparéd our system at ‘t = 0 1n the
initial state (4.10) which evolves according to the time-
dependent Schrddinger equation (4.11). We have also
studied the decay behaviour of the system in Section 2.

In this section, we want to show that the initial state (4.10)

for our system 1s physically acceptable.

The mean energy and the rate of energy dissipation
for an acceptable state should be expected to be finite.
Otherwise we cannot simply prepare at t= 0 such a state
of infinite energy or a state of finite enefgy but with
infinite time derivative. In the latter case the initial’
state jumps discontinuously into another state and thus : .
ﬂ? (t) is no longer a continuous function of t as described
by (4.11). The mean energy of the initial state Y (0) is
determined by ('ﬂfl0)|}{|QY(O)7 where J(0) and H are
given by (4.10) and (4.6) respectively. A simple calculation

will yield the result

<¥(0) |H|¥(0)> = E» , (b4.41)
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which is just the bound state energy of the electron at level
o and has a finite value. The rate of energy dissipation for
ﬁy (0) at t =0 1is proportional to the expectation value

of H? 1in the initial state,

<¥(0) |[H?|¥(0)> = (E,)? + e?}[8,]%/(2k,) , (4.42)
A

by a similar calculation as (4.41). The first term in (4.42)
is again_finite. The second term is also finite wilth f3k
given by (4.7) which will provide the necessary converging
factor in the sum. We have demonstrated that ¥(0) for our
system is physically acceptable and its subsequent decay is
exponential for small &, and for large © asympbotically

in inverse powers of ©.

We should mention here that all results obtained
so far, (%.20) in particular, can also be derlved by
expanding the initial state in terms of a certain complete
set of eigenstates of the Hamiltonian (4.6), providing
E; and E, satisfy condition (4.26). In the next section

we shall obtain this complete set of elgenstates.
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5. A Complete Orthonormal Set of Eigenstates of the

Hamiltonian and An Alternative Form for the Hamiltonlan

We construct here a certain complete orthonormal

set of eigenstates of the Hamiltonian (4.6) in the subspace

37

spanned by b;|0> and bI aRlO} . These eigenstétes

are solutiornsof the Schrodinger equation

H|1,A> = (E1tky) [1,0> , (4.43)

where [1,A\) ére the eigenstateé which are states describing
the scattering of a photon by the electron in level 1. we
can write |1,A) as the electron wave function in level 1
plus an incoming plane wave of a photon,i bi a}lO) , and an

outgoing scattered wave |)(_) , then

|1,A> = bTaI|0> + x> . (b.4h)

Substitution of (4.6) and (L4.44) into (4.43) yields the

solution for the outgoing scattered wave

ep
x> = —2 1 ollo> . (4.45)
X

V2k, Ei+k,-Htie
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: : -1
The operation of (E; + k, - H+ i€ ) on b:l0>

is given by (4.19), so we obtain finally,

eB 184,12
|1,2> = bTaI|o>»+ A (E1+kl+ie—E2+e22 M}i‘ — )'14x
2k, A2k, ky ki
’ : T 1
B§n blal|||0> ]
(b1]0> - e ) .
AHVZKA"kA"-kA—iE
(h.46)

The proof that H,l) form a complete orthonormal set in the

subspace mentioned at the beginning, namely

§|1,A><x,1| - %bTaI|O><0]aAb1 + b3 |0><0|b>

<AL, > = 8,0 (4.47)
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g

: “ 37
is the same as given by Glaser and Kallén -, Where we

have the occasion to evoke the inequality (4.26).

Next we shall wrlite an altefnatiQevform'for the
Hamiltonian which 1s quédratic in oprators ahd is very
similar to Henley-'su5 | . We note in the subspace that we
nave considered the Hamiltonian will be operating on b;lo)."
and bIIO) (plus a packet of photon). From the type of
allowed transitions (4.5),'we would 1ike'to have operators f

that change bllq> to 'bIlO) and vice versa.. Let us define

new operators T, and T. = Tt that possess the.desiréd
property,
= wt I

T+ = b;b, , and T_ = bzb; , (4.48)
such that

T los | +

Téb 2|0>) = b1 |0> , T+(b1|0>) =0,
=0 , T (b1]0>) = b1|o> .

T_(bI|0>)

(4.49)



72
The commubtator of T+ and T_ 1is defined as
Ty = [T,, T.] = bib; - bib, , (4.50)

which has the following property
To(0f]05) = -bflo> , Tiilo>) = bio> .y 4

In our particular subspace spanned by b{lo) and b} a;|o> s

the operator (b{ b, + bI b, ) has eigenvalue 1, so we can

write

bibs = (1-Ts)/2 , biby = (1+Ts)/2 .  (4.52)

Substitution of (4.48) and (4.52) into (4.6) yields the

result for the Hamiltonian

H = (Ep+E1)/2 - (B2-E()Ts/2 + Jkyala,
A
+ e%@kl)‘*i (Bya,T_ + B%a]T,) , (4.53)

which is meaningful only in the special subspace concerned.
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6. Spin-Dependent Interaction

The interaction between electron spin and the
radiation field will modify the Hamiltonlan (4.1), and an

additional term,

(==
]

sp (—e/Zm{[;*(F,t)g°ﬁ(§,t)w(?,t)dF

(—e/2m{j;*(§,t)g-(VxK(;,t))w(;,t)dF s (4.54)

should be added to (4.1). In this equation O° 1s the usual
Pauli spin matrix. The spin-drbif interaction 1s neglected
in the nonrelativistic limit. However, the contribution from
HSP is still extremely small in causing transitions when
compared with the third term in (4.1), unless the third term
is highly‘fbrbidden for a certain kind of tbansition. We are
interested in HSP mainly because 1t 1is linear in K and

thus involves processés of one photon which may be combined

with the third term.

A similar expansion for the first three termsin
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(4.1) and HSP can be carried out as before but with 14

now being a two-component rield,

wEe) =3 ™ u (%) , (4.55)

where = u(r) are eigenfunctions of (4.3). Operators by,
and b,_. are annihilation operators for an electron in state
n with spin up and spin down respectively. For simplicity,
the magnetic field ‘ﬁ is assumed to be pdlarized‘in the

7z direction, i.e. the électromagnetic vector potential 'K

is propagated in the "x direction and polarized in the Yy

direction, so we obtain

> -> iﬁ '; —i.lz '+ :
B(E,0) = vh(Z,0) = Ji/ET2(a, (t)e —al(t)e  * B
X

3

(4.56)

where Z 1is a unit vector in the =z direction. Note that
sum over A. here, and what follows in this section, sums over
momentum eigenstates only, since there is only one direction

of polarization, the ¥ direction. Then
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. ik, F . -iker f100
G- (vxk) = J1/2TK, (a,(t)e - a,(t)e )
A 0 -1

(4.57)

If we again consider a two-level system with allowed transi-
tions of the type (4.5), a similar Hamiltonian as (4.6) can

be obtained in Schrodinger representation,

H = By (b}, ba, + bj ba ) + Ea(®i by, + bl 02+ Ekxaiah

b oJ(L/YEE) (8, (bF b1, + bl by _day + 83(d],bay + BT b2 )a))
X

+ eJ(1/YZE}) (0, (b3 b1, - bi_bi_da, + af(d] bs, - bi b2_)al) ,
A

(4.58)
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where () are given by (4.7), and

1k, -7
a, = (-1/7k,/m) [uf(T)e uy (¥)dr . (4.59)
Operators &, and b, oObey the commutation relations (L.4)
with the addition'that operators of different spin commute.
The development of a prepared state like (4.10),¥¥(0)==b;+l0)»,
can be analysed following the same procedures as before and
éimilar results‘obtained. Fbr example; the probability
amplitude at time t of finding the system in the initial

state bL [ 0> is given by

o0
-iEt
<¥(0)|¥(t)> = Eii dEe ’
E+ie-Ep+ 22|Bl+aklz L
ie-E,+e —
X 21{)\ k)\+E1—E ie
0

(4.60)

which can be compared with (4.20) and discussed in the same

way.
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Chapter 5. APPROXIMATION FOR THE 12 TERM IN THE
HAMILTONIAN |

It was mentioned in Section 1 of last chapter
that we shall return to study the A? term in the Hamiltonian
(4.1). We can see from expansion (4.2) for A* that this
term will connect states, initial, final, or intermedilate,
that differ by two or no photons. In Section 1, we make éhb
approximation, valid for small t, which‘is equivalent to R
fixing the number of electrons'at t = O 1in our system.
This approximate H, 1s then tfeated together with Hrad. s
Eq. (5.7), classically by’éanonical transformations to yield
a diagonalized form which, in turn, is quantized (Appendix).
The quanﬁized expression (A.13) contains a new zero-polnt
energy which is difféfent from the original zero-pdint
energy of the.radiation field. Only when the coupling
stréngth e?* vanishes identically, are these two zero-point
enefgies equal; since H, will also vanish identicélly.

The old creation or annihilation‘operator for the photon will
be transformed into an infinite sum of new creatlon and
annihilation operators. This implies that a "free" photon
correspondst5a5qﬁqmﬂﬁ"7Of "tpransformed” photons (Section 2).
Section 3 deals with the "physical" and the "bare" vacua
for the photon and the possibi;ity of preparing our system

at t= O 1in terms of the bare vacuum. If‘one can switch
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off H, initially, one is led strongly to the idea that an
initial state can be built up from the bare vacuum. Under
very special assumptions, that both (5.15) and (5.19) are fi-
nite, this idea 1s indeed possible. However, we would rather
take the usual notion in quantum field theory that one:should
not and cannot separate out a bare particle from the physical
particles. So a physically acceptable state can’only be

prepared from the physical vacuum.

1. The Approximation

The A? term in (4.1) is given by

<e2/2m)IKZ(?,tw*(F,t)w%’,t)d? , (5.1)

where & 1is the electromagnetic field and ¥ the field for

\the bound electron. Our approximation is to replace

|w(;,t)|2$‘:, |¢(;,0)|2 3: (5-2)

which is no 1onger the dynamical operator but a real form

factor, e.g. the charge distribution for the bound electron
at t = 0. This approximation is valid for small t and we
shall be mainly interested in studying the behaviour of our

system at small t. The charge distribution may be normalized,
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Slw(?,0>lzd? =1, (5.3)

if we assume that at t= O there is one electron in our o

system, at level 2 or 1.

For the time being, we shall treat T as a classical

field and make the following plane-wave expansion:

z,6) = 2ﬁ261(ql(t5cos(_lzx-?) - (1/k)\)p)\(t)sin(-lz)\'-r))) .
A
(5.4)
The amplitudes L7y and ph:.are‘pairs of canonical varlables
which are real. Quantization of field K can be accomplished

by interpreting px and q, as operators in Helsenberg

representation satisfying the usual commutation relation,
[q, ()5 By (8)] = 18,5, - (5.5)

Further, a system of creation and annihilation operators,

a{ and a, , can be introduced (second quantization),

. AT ¥ _ 175 (af

(5.6)
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The above quantization procedures have already been carried
out in the previous plane-wéve expansion for K in (4.2).

We use expansion (5.4) here because we want to treat

H,q + Ho = (1/8n)J(E2(‘r*,t)+(VxK(i»’,t))2)di»’

+ (e2/2m)/(K2(i"’,t)lw(i:,O)Izdi'*

(5.7)

as a classical Hamiltonian expressed in canonical variébles
ph and qy - After Hrad + Hz. has been diagonalized by
canonical transformatidhs, which will then be quantized as
indicated in (5.5) and (5.6), introducing a new set of
creation and annihilation operators. The diagonalization of

(5.7) is shown in the appendix.

2. = The Transformed Hamiltonian

In this "transformed" Hamiltonian, we must put
the previously subtracted infihite zero-point energy of the
radiation field,.i‘kh/é, b?ck to (4.6), since it is included
in Hp,1 , and of course Eé will also be present. The

Hamiltonian becomes
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]
1

T = (H+§kl/2) + H,

(Esbib, + E,biby + H,q *+ Hi) +Hp ,

d

~(5.8)

where H is given by (4.6). Using Egs. (5.6), (A.3), and
{A.8), the o0ld annihilation (or creation) operator a, 1s

transformed into,

a = /.k}‘/z g /1/2Kv(a\')(?vl— 9\&)"'3‘\"1.(?\))\4’ 3\))\)) ?
(5.9)

where

9\))\

%CZDAA'+(i/kA)éSAA')(Til)vx'

and

g"v)\

§;Kv<c;

A)\l*’(i/k}\)a}\)\')T)\'v . (5.10)
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The new set of annihilation and creation operators, a'v and
a’\t, , are defined by relations similar to (5.6). With (5.9)
we can write ‘

H& = HT-gKv/2 = Eszb2+ E,bTb1+§ Kva6+a5

+ e{bIb12/__—1/2Kv(a\"(Fv—Gv)+a\',+(Fv+Gv))

+ % +
+ b1b22/17?K;(a$(F3+Gv)+a¢ (Fs-Gg))} s
(5.11)
where .
Fv = ;,:B)\S‘v)‘ﬂ ?

and

G = ;exélvk/z . (5.12)
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: .In Eq. (5.11) the summation is over the "t ransformed"
elgenstates of'the photon. The new infinite zero-point énergy
may be subtracted from HT . We notice that the first three
terms in H;: are very similar to H, of (4.6) but Hy of
(4.6) has a different dependence on the creation and annihi-
lation operators. The form of H% implies that the electron
in level 1 or 2 can absorb or emlit an arbitrary number
“of "transformed" photons of eigenstates V . With the Hamil-
tonian (4.6), the bound electron could only emit or absorb
one "free" photon of eigenstate A . This means that a "free"
photon corresponds‘h>asquvﬂfbn0f‘"transformed" photons, which
was actually implied by (5.9). We should mention that if
‘we treat (5.1) in another way, 1.e. replacing Ka(F,t)¢:Kz(?;0),
which would have no direct physical meaning like that of (5.2).
The H, term will modify the energy levels of the bound
electron érid the electron operators, bi,z and b1f,2 . Ve
can say, similarly, that a "rree" electron, bound in a

nuclear field but free from HZ , corresponds to a cloud of

"transformed" electrons.

3. Physical and Bare Vacua for the Photon

i We shall call the "transformed" photons physical
and the "free" photoﬂs bare. The new zero-point energy
‘ZBQ/?Q will be subtracted from the Hamiltonian Hp s ;nstead
of subtracting EZKK/E as was done in (4.6). Let us defilne
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the physical vacuum state |§.) as that state with no
physical photon but one electron at level 1 or 2. The
presence of one electron in I@é) i1s to satisfy'thé condition
given by (5.3), so that H, in (5.7) will not vanish identi-
.cally, otherwise we would have the same Hamiltonian as (4.6).
For definiteness we shall put this electron at level 2.

Then the physical vacuum state for the photon 1s defined by
a$|®6> =0 , (5.13)

for all V . Similarly, we can also define a bare vacuum

state |$ ) for the photon as
a,[2> =0 , (5.14)
which is a state with no photon but one electron at level 2.

Leb us assume that initially there is no perturbation
H2 in our system so we can make up our initial state by
applying ag, to |§°> . Recall, from Section L of last
chapter, that the mean energy and the rate of energy dissipa-
tion should be finite for a physically acceptable state. It
is, therefore, sufficient to test that if K@,II—I:I,I@O} and
(@JI{&2|Q;> are finite, our initial state will be physically

acceptable. Rewriting H;‘ from (5.11) and (5.8), and then
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R .
expanding A Dby (4.2) in terms of operators aR and aq >

a straightforward calculation yields

<@g |Hp| 20> = E2+Zkl/2-ZKv/2+(e2n/m)21/kx . (5.15)

The three sums are separately divergent at high frequenciles,
the first two quartically, the last quadratically. We cannot
say offhand that the divergences completely compensate‘each
other at high fr'equenciesll6 , since K,, cannot be solved
simply. However, there is still hope that (5.15) may be
finite due to the difference in signs for the three sums.

o\
For the case of a point charge distribution, W) = 5(¥),

we have

H, = (e22n/m)§x' éx°ék'quX‘ 5 (5.16)

which can be diagonalized with Hrad by Van Kampen's method

Instead of (A.ll), we have a simple equation for the eigen-

values ](%,

(e2ln/m) § 1/(K*-k}) =1 . (5.17)
A |
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Since we want to examine the high-frequency behavioﬁr of
K_v, we can take (& 47/m) << ka;‘_ for large A's. At high
frequencies (5.17) will be dominated by the term K =kj +8
where & is a small positive frequency. With the above

approximations, we obtain

K, = ky, + e22w/(mkx) ) (5.18)

at high frequencies. We can see from (5.18) and (5.15) that
tae divergénces in (5.15) exactly compensate each other at
high frequenciés. Hence, the mean energy for the bare vacuum
is finite if ZKv/Q is subtracted from the Hémiitonién,
instead of subhtracting Zlﬁf@ as is done usually. Let us

proceed to evaluate

<o [HY? | 20> = (<@ |HL|20>)? + elesllzﬂékQ +

| LEAE DE
+ (e*2n2/m?)} (éx'é)\')z/(klkk')lje lw(r)|2ar|?
AAT

(5.19)
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The last term diverges for point charge distribution, while
the second term converges due to lﬁ“jz. We can say that
states built up from the bare vacuum is not physically
acceptable at least for the point charge distribution. If

we assume a spread-out charge distribution concentrated in

a region of radius 1/k, about the origin, then |}~--12 in
(5.19) will provide a cutoff for frequencies > k. to make

the last term finite. However, there is no guarantee that
(5.15) will remain finite for a spread-out charge distribution.
The arguments above lead us to conclude that the concept of
the bare vacuum is not physically acceptable. This is
connected to the well known situatioﬁ in quantum field theory
that one cannot separate out a bare particle from the physical
particles, since a physical particle always assoclates with

a cloud of bare particles. On the other hand, we can show

that, at t = O,

<@5|H&|¢a> = B,

and

<of|HE?|2d> = (E2)* + e?J[F -6, |2/(2K)

(5.20)
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which are both finite. Hence, we should prepare our initial

states from the physical vacuum,
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Chapter 6. SUMMARY AND CONCLUSION

We have studied two examples of quantum mechanical
dissipative systems. They are subsystems of conservative
systems. In the flirst example, the conservative system
conéists of two interacting particles which can make
transitions to. n different final. states (real or virtual).
A single channel in this case will be the (dissipative)
subsystem. Here, assuming a nonlocal separable potential,
we can obtain exact result for the partial-wave amplitude |
which contalins the usual kinematical cuts from the unitarity
condition and dynamical cuts from the interaction. However,
there is no simple way to generalize the one-channel N/D
method to the multichannel problem. JOf course, 1in our
solvable example, there is a matrix A which has all the
properties of the desirable D matrix, but the complete
expression for the partial-wave amplitude cannot be written
as a quotient of two matrices, ND-1 . Bound states and -

resonances are given by zeros of det(A) as expected.

The second example concerns a solvable model in
nonrelativistic electrodynamics. Results of level shift
and line breadth, corresponding to a damped classical
point charge, are obtained. The decay behaviour of a state

has the usual exponential form for small time (== half life
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of the'state). This damped exponential and the line breadth
can be consldered typical characteristics of a quantum

~ mechanical dissipative system.

in the iast chapter, we ha&e cdnsidered modification
of the second example, 4which changes a bare photon to dsuperfﬂﬂ'tio’?
of physical photons as implied by 55.9). We have also argued
“that, for physically acceptable states, the transformed zero-
polint energy ZKv/2 "should be.subtracted rather than\the
radiation field (free) zero-point energy 'XkA/Z. One notices
that ZKv/2 arises from the Heisenberg's equations of

motion for as , 1.e.

Si(t) = LlHp, ap(®)] , (6.1)

- by the usual commutation relation

A

[al(t), all(6)] = 8,50 - (6.2)

On the other hand, the equationsof motion for the bare pho-
ton operators,

a,(t) = i[Hp, 2, ()1 (6.3)

is obtained by assuming
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o, (£), a ,(t)] = 6,00 - (6.4)
»

An entirely differént zero-point energy ka/z arises.
Tf we demand that (6.3) should also give the physically
acceptable result, namely the zero-point energy XKv/Z R
then the commutation relation (6.4) will no longer hold
and it should be modified. This leads us back to Wigner's
result that from Heisenberg's equations of motion (6.3),
the zero-point energy ZKv/Z can be obtained if one assumes

a different commutation relation.
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APPENDIX DIAGONALIZATION OF Hp.q+ Hp

In this appendix we shall deal with the dlagonaliza-

‘tion of H, 4+H, in some detail. Substitution of (5.4) into

rad
(5.7) yields

- 2,022 2 y
Hrad + Ho (1/2)§(ph+kAqA) + (e /2)§A,(SAA'PXPA'+fAX'qKqA' +

+ hK‘XpAqX'+hXX'qle') s

(A.1)

where
Eyxt = (Hﬂ/mkkkl,)ék-él,fsin(§l°?)sin(ﬁlv';)|w|2d; TSP
£y = (un/m)ék-éx.JEOS(QA'?)COS(EA|';)|¢|2d; = hHinoe
>
hAA‘ = (-Mn/mkx,)éA-éA,Jgos(§A°;)Sin(Ex"F)|¢!2dr

(A.2)
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We shall consider (A.1) as a classical Hamiltonian of finite
degrees of freedom, i.e.A=1,2, ... N. Assume that the final
result can be carried through for N-® if all sums remain

finite.

First let us eliminate the cross terms in pA and qA

by the following transformation:
Py = Zp(azu.?i. + BAA|Q;\v)

q, < ZA!(ClAlpii +D)\l'qi') . (A.3)

The transformation matrices,d, s @ s G s and.D , are deter-
mined by the two requirements:

(a) transformation (A.3) is canonical, viz. the fundamental
Poisson bracket relations are invarianﬁ under canonical
transformations;;»sand

(b) cross terms in (A.l) vanish after the transformation.

Condition (a) leads to
z)\n(l_-) )\)\uaﬁd)‘n - (’M" 6}\1110 = SA}\I

ATAN T @)\ a}\'AH) =0

zl"(ml)\" @ A"

/




o1

Zl"(c A)\"DX')\" - DAA" O)L')\") = 0’ (A-L')

while the second condition demands

Xx(ﬁnlﬁuz + kicml’buz) + ezzn'(gn'mnlﬁx'xz *
u'c’u Qi x'x&n Dy M‘GM 6x'xz)o_ o .
(A.5)

Equations (A.4) and (A.5), in principle, can be solved and

thus determine transformation (A.3). Then (A.1) becomes

= 1
Hrad + H2 %le}\z(aﬁ/)\l)xzpllpiz*.m)-l)\zqi1q;\2) 'y (A.G)

where

= 2 2
”Z’Alxz Xx(anla’uz*kxcnlé'n_z) te Zu'(gu'&nlaﬂ'xz +

+ fu'(’uléx'xz L N (’A'Az + hu'c" a/x'xz) =”</x2x1
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and

2

.= i 2 .
”Lxlxz Zx(ﬁ M16 Ay T kx"Du Dyy,) * e Xu'(gn'@nl@x'h *

2 th ﬁ Dy *,’_,,HA;"’DMI@)\"M) = _m’xle"

Bt @, Para, F B,

©

(A.T)

The sum of Hp, 4+ Hy is positive-definite.and real,
as should be expected from the radiation energy plus a per- ,
turbation energy ( (5.7) and (A.1) ). Then (A.6) consists of
two real positive-definite quadratic forms which can be éia-

gonalized simultaneously.48 ‘The canonical transformation

is
_ - _ -1 .
pi - ngVPV 5 Qi - g(T )VKQV s (A-8)

which satisfies condition (a). In order that (A.8) reduces

(A.6) to a form like H the first sum in (A.l), we require

rad °’

J&AX' )= va' 2

Lo (Tay ATV

and
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-1 -
Xll'(T )vxynﬁl"m 1)v'l' = Kssvv' ? (A.9)

where Ki) are the eigenvalues to be determined. From (A.9),

we find . '

Z}\l(m)\ll - K\z’((ﬁ/_l)k)‘i)(T—l)v}\l = 0 Y (A-lO)

which may be considered as a set of N homogeneous algebraic
equations for thé.trahgformation matrix elements (T-I)\UU s
where ) is fixed. The necessary and sufficlent condition
that these equations have a solution is that the determinant
of their coefficients vanishes, il.e. the elgenvalues Ki)

are the roots of the secular equation

D
2,7 -1 2,2 =1 ... 2, , -1
My kST 1 Mgk KT 50 Wy KLy

2,4 -1 2,4 -1 20 7-1
Moy (L1515 Mopk (L5007 MoK (L Dgy

L]

det

s

2,41 2, p-1. ... 2 /-1
Py, -K (L0 [ Inzo"t " MgyK €8 NN

(A.11)
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As N»®, we have a secular determinant of infinite Aimension
in (A.11). To obtain such a determinant, mathematical_ihduc—
tion is employed to determine a general solution for arbitrary
dimension N and then N is allowed %o approach'.’Lnf:ln.ﬂ:y.l49 ‘
~ Another method to diagonalize (A.6) is given by Van Kampen’47

for the speclal case that "tp\‘:‘gﬁk' and mm’ = M)\‘SL}{““;L'“;('

We obtain finally, from (A.6), (A.8), and (A.9),

| N
H.q + Hz = 5J(P] + KLQ0) » (A.12)

v=1
where Ki, , as determined from (A.11), are positive and real
since we have assumed that Hrad*'Hé is positive and real.
For simplicity, we shall also assume that Ki, are all distinct.
In (A.12) we can let N-was the diagonalized form of HooqtHy -

Quantization can be carried out to yield

%), (A.13)

+ Hy, = 'sz(a\')Tav
AY

Hrad

where agr and ab are the new set of creation and annihi-
lation operators defined similar to (5.6). A new infinite

zero-point energy, E;Kv/z, appears. One should note that

Kg = ki for e%2 =0 , (A.1L)

as one compares (A.12) with (4.1).



