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Abstract 

This thesis presents the analysis of 10 Gigabit Ethernet Network Interface Card and simulating & 
testing of virtual NIC, which is defined as the device in our PCI Multi-Bus Simulator. Network 
interface processing requires support for the following characteristics: a large volume of frame 
data, frequently accessed frame metadata, and high frame rate processing. So we also discuss how 
to improve network interface efficiency. By using Gnuplot tools, we can plot some diagrams 
which are helpful to my data analysis. Since the virtual NIC in our PCI Multi-Bus Simulator is just 
a simple simulation, a NIC Memory Control model’s algorithm was developed. 
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1. Specification of PCI Bus
1.1 Introduction to PCI Bus 

The PCI (Peripheral Component Interconnect) local bus is a high speed bus. The PCI Bus was 
proposed at an Intel Technical Forum in December 1991, and the first version of the specification 
was released in June 1992. The current specification of the PCI bus is revision 3.0, which was 
released on February3, 2004. Since its introduction, the PCI bus has gained wide support from all 
the computer industry. Almost all PC systems today contain PCI slots, as well as the Apple and 
IBM Power-PC based machines, and the Digital Alpha based machines. The PCI standard has 
become very popular. The PCI Bus is designed to overcome many of the limitations in previous 
buses. The major benefits of using PCI are: (1) High speed (2) Expandability (3) Low Power (4) 
Automatic Configuration (5) Future expansion (6) Portability (7) Complex memory hierarchy 
support (8) Interoperability with existing standards. 

PCI is also called an intermediate local bus, to distinguish it from the CPU bus. The concept of the 
local bus solves the downward compatibility problem in an elegant way. The system may 
incorporate an ISA, EISA, or Micro Channel bus, and adapters compatible with these buses. On 
the other hand, high-performance adapters, such as graphics or network cards, may plug directly 
into PCI. PCI also provides a standard and stable interface for peripheral chips. By interfacing to 
the PCI, rather than to the CPU bus, peripheral chips remain useful as new microprocessors are 
introduced. The PCI bus itself is linked to the CPU bus through a PCI to Host Bridge. 

1.2 Architecture of PCI Bus 

Figure1. PCI System Architecture 

Figure1 shows a typical PCI Local Bus system architecture. This example is not intended to imply 
any specific architectural limits. In this example, the processor/cache/memory subsystem is 
connected to PCI through a PCI bridge. This bridge provides a low latency path through which the 
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processor may directly access PCI devices mapped anywhere in the memory or I/O address spaces. 
It also provides a high bandwidth path allowing PCI masters direct access to main memory. The 
bridge may include optional functions such as arbitration and hot plugging. The amount of data 
buffering a bridge includes is implementation specific. 

The basic PCI transfer is a burst. This means that all memory space and I/O space accesses occur 
in burst mode; a single transfer is considered a “burst” terminated after a single data phase. 
Addresses and data use the same 32-bit, multiplexed, address/data bus. The first clock is used to 
transfer the address and bus command code. The next clock begins one or more data transfers, 
during which either the master, or the target, may insert wait cycles. 

PCI supports posting. A posted transaction completes on the originating bus before it completes 
on the target bus. For example, the CPU may write data at high speed into a buffer in a 
CPU-to-PCI bridge. In this case the CPU bus is the originating bus and PCI is the target bus. The 
bridge transfers data to the target (PCI bus) as long as the buffer is not empty, and asserts a not 
ready signal when the buffer becomes empty. In the other direction, a device may post data on the 
PCI bus, to be buffered in the bridge, and transferred from there to the CPU via the CPU bus. If 
the buffer becomes temporarily full, the bridge de-asserts the target ready signal. 

In a read transaction, a turnaround cycle is required to avoid contention when the master stops 
driving the address and the target to begin driving the data on the multiplexed address/data bus. 
This is not necessary in a write transaction, when the master drives both the address and data lines. 
A turnaround cycle is required, however, for all signals that may be driven by more than one PCI 
unit. Also, an idle clock cycle is normally required between two transactions, but there are two 
kinds of back-to-back transactions in which this idle cycle may be eliminated. In both cases the 
first transaction must be a write, so that no turnaround cycle is needed, the master drives the data 
at the end of the first transaction, and the address at the beginning of the second transaction. The 
first kind of back-to-back occurs when the second transaction has the same target as the first one. 
Every PCI target device must support this kind of back-to-back transaction. The second kind of 
back-to-back occurs when the target of the second transaction is different than the target of the 
first one, and the second target has the Fast Back-to-Back Capable bit in the status register set to 
one, indicating that it supports this kind of back-to-back. 

For arbitration, PCI provides a pair of request and grant signals for each PCI unit, and defines a 
central arbiter whose task is to receive and grant requests, but leaves to the designer the choice of 
a specific arbitration algorithm. PCI also supports bus parking, allowing a master to remain bus 
owner as long as no other device requests the bus. The default master becomes bus owner when 
the bus is idle. The arbiter can select any master to be the default owner. 

PCI provides a set of configuration registers collectively referred to as “configuration space.” By 
using configuration registers, software may install and configure devices without manual switches 
and without user intervention. Unlike the ISA architecture, devices are re-locatable - not 
constrained to a specific PCI slot. Regardless of the PCI slot in which the device is located, 
software may bind a device to the interrupt required by the PC architecture. Each device must 
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implement a set of three registers that uniquely identify the device: Vendor ID (allocated by the 
PCI SIG), Device ID (allocated by the vendor), and Revision ID. The Class Code register 
identifies a programming interface (SCSI controller interface, for example), or a register-level 
interface (ISA DMA controller, for example). As a final example, the Device Control field 
specifies whether the device responds to I/O space accesses, or memory space accesses, or both, 
and whether the device can act as a PCI bus master. At power-up, device independent software 
determines what devices are present, and how much address space each device requires. The boot 
software then relocates PCI devices in the address space using a set of base address registers 

2. Analysis of NIC
NIC is a device on PCI Bus. This high-performance adapter can plug directly into PCI Bus. In the 
Multi-Bus Simulator developed by us, all of the devices on PCI Bus were defined as virtual NICs. 
So we need to analyze the architecture and behavior of NIC. 

2.1 Introduction to NIC 

A NIC (network interface card) is a piece of computer hardware designed to allow computers to 
communicate over a computer network. It is both an OSI layer 1 (physical layer) and layer 2 (data 
link layer) device, as it provides physical access to a networking medium and provides a low-level 
addressing system through the use of MAC addresses. It allows users to connect to each other 
either by using cables or wireless. 

Every Ethernet network card has a unique 48-bit serial number called a MAC address, which is 
stored in ROM carried on the card. Every computer on an Ethernet network must have a card with 
a unique MAC address. No two cards ever manufactured share the same address. Whereas 
network cards used to be expansion cards that plug into a computer bus, the low cost and ubiquity 
of the Ethernet standard means that most new computers have a network interface built into the 
motherboard. These motherboards either have Ethernet capabilities integrated into the 
motherboard chipset, or implemented via a low cost dedicated Ethernet chip, connected through 
the PCI (or the newer PCI express bus). A separate network card is not required unless multiple 
interfaces are needed or some other type of network is used. Newer motherboards may even have 
dual network (Ethernet) interfaces built-in. 

2.2 Architecture of NIC 

2.2.1 Basic NIC Architecture 

As shown in Figure2 below, most NICs have a DMA interface unit, a medium access control 
(MAC) unit, memory, and control logic. In the case of a programmable NIC, the control logic is 
one or more programmable processors that run compiled-code hardware. The DMA unit is 
directed by the onboard control logic to read and write data between the local NIC memory and 
the host's memory. The medium access unit interacts with the control logic to receive frames into 
local buffer storage and to send frames from local buffer storage out onto the network. The 
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memory is used for temporary storage of frames, buffer descriptors, and other control data. 

Figure2. Basic NIC Architecture 

2.2.2 10 Gigabit NIC Architecture 

Figure3. 10 Gigabit NIC Architecture 

Figure3 shows the 10 Gigabit NIC’s computation and memory architecture. The controller 
architecture includes parallel processing cores, a partitioned memory system, and hardware assist 
units for performing DMA transfers across the host interconnect bus and for performing Ethernet 
data sends and receives according to the MAC policy. In addition to being responsible for all 
frame data transfers, the assist units are also involved with some control data accesses when they 
share information with the processors about which frame contents are to be or have been 
transferred. To allow stores to proceed without stalling the processor, a single store may be 
buffered in the MEM stage; loads requiring more than one cycle force the processor to stall. To 
control status flags for the event queue mechanism, each processor also implements two atomic 
read-modify-write operations, set and update. Set takes an index into a bit array in memory. 
Update examines the bit array and looks for continuous bits that have been set since the last 
update. Update clears the continuous set bits and returns a pointer indicating the offset where the 



Analysis of NIC and Test of PCI Multi-Bus Simulator 
Ligang Wang

9 

last cleared bit was found. Hardware running on these processors can use these instructions to 
communicate “done” status information between computation phases and eliminate the 
synchronization, looping, and flag-update overheads. Instructions are stored in a single 128 KB 
instruction memory which feeds per-processor instruction caches. Hardware and assist control 
data is stored in the on-chip scratchpad, which has a capacity of 256 KB and is separated into S 
independent banks. The scratchpad is visible to all processors and hardware assist units. This 
provides the necessary communication between the processors and the assists as the assists read 
and update descriptors about the packets they process. The scratchpad also enables low-latency 
data sharing between processors. The processors and each of the four hardware assists connect to 
the scratchpads through a crossbar. There is also a crossbar connection to allow the processors to 
connect to the external memory interface; the assists access the external memory interface directly. 
The crossbar is 32 bits wide and allows one transaction to each scratchpad bank and to the 
external memory bus interface per cycle with round-robin arbitration for each resource. Accessing 
any scratchpad bank requires a latency of 2 cycles: one to request and cross the crossbar, another 
to access the memory and return requested data. So the processors must always stall at least one 
cycle for loads. If each core had its own private scratchpad, the access latency could be reduced to 
a single cycle by eliminating the crossbar. But, if we do that, each core may be limited to only 
accessing its local scratchpad or may require a much higher latency to access a remote location.  

The processor cores and scratchpad banks operate at the CPU clock frequency, which could be 
166 MHz in an embedded system. At this frequency, if the cores operate at 100% efficiency, cores 
and scratchpad banks could meet the computation and control data bandwidth. To provide enough 
bandwidth for bidirectional 10 GB/s data streams, the external memory bus is separated from the 
rest of the system because it must operate faster than the CPU cores. It is not good to force the 
cores to operate faster because that will waste more power. So the external memory can provide 
enough bandwidth for frame data. The PCI interface and MAC unit share a 128-bit bus to access 
the 64-bit wide external DDR SDRAM. At the same operating frequency, both the bus and the 
DDR SDRAM have the same peak transfer rate, since the SDRAM can transfer two 64-bit values 
in a single cycle. If the bus and SDRAM are able to operate at 100% efficiency, then they can 
achieve 40 GB/s of bandwidth. But transmit traffic cannot meet that, because it requires two 
transfers per frame (header and data). A 64-bit wide GDDR SDRAM provides a peak bandwidth 
of 64 GB/s, and is able to support 40 GB/s of bandwidth for network traffic. Since the PCI bus, the 
MAC interface, and the external DDR SDRAM all operate at different clock frequencies, there 
must be four clock areas on the chip. 

2.2.3 10 Gigabit NIC Memory System 

The memory system for a 10 GB/s NIC must support low-latency access to control data and 

high-bandwidth, high-capacity storage for frame data. Control data refers to buffer descriptors, 

which the processors must read and modify, and I/O descriptors that the DMA and MAC units use. 

For a programmable NIC, the processors create I/O descriptors which the DMA and MAC units 

read and process; the MAC receive unit is the exception, which creates descriptors that the 

processors read. To maintain high frame rates, the I/O units can't stall waiting for access to control 
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data. Simultaneously, a 10 GB/s programmable NIC must support high-capacity storage for frame 

data to support offload mechanisms. Frame storage must also support at least 40 GB/s of 

throughput, since there are 4 simultaneous access streams (DMA read and MAC transmit for the 

send path, MAC receive and DMA write for the receive path) that must each maintain throughput 

of 10 GB/s. But no single memory structure is low-latency, has high bandwidth, and provides a 

large capacity.  

2.2.3.1 Multiple processing cores 

We can improve the performance of processor by using the parallelism of multiple processing 
cores. There are several factors that can limit the obtainable instructions per cycle (IPC) of a 
particular processor running network interface hardware. The major factors considered here are 
whether the processor issues instructions in-order or out-of-order, the number of instructions that 
can be issued per cycle, whether or not branch prediction is used, and the structure of the pipeline. 

In the perfect pipeline, all instructions complete in a single cycle, so the only limit on IPC is that 
instructions that depend on each other cannot issue during the same cycle. For a typical five stage 
pipeline with all forwarding paths is configured, loads sequences would cause a pipeline stall and 
only one memory operation can issue per cycle. In addition to pipeline configurations, two branch 
prediction methods are configured. For the perfect branch prediction, any number of branches up 
to the issue width can be correctly predicted on every cycle. For no branch prediction, a branch 
stops any further instructions from issuing until the next cycle. For an in-order processor, it is 
more important to eliminate pipeline hazards than to predict branches. Conversely, for an 
out-of-order processor, it is more important to accurately predict branches than to eliminate 
pipeline hazards.  

To improve the processor’s performance, the complexity may not be worth the cost for an 
embedded system. For example, an out-of-order processor with an issue width of two and perfect 
branch prediction of one branch per cycle could only achieve twice IPC performance than an 
in-order processor with no branch prediction and including pipeline stalls. But it has higher 
complexity. It would need a wide issue window that must keep track of instruction dependencies 
and select two instructions per cycle. It would also need a register renaming mechanism and a 
reorder buffer to allow instructions to execute out-of-order. And it would require a complex 
branch predictor to approach the performance of a perfect branch predictor. All of this complexity 
adds area, delay, and power dissipation to the out-of-order core. 

For an area- and power-constrained embedded system, it is likely to be more efficient to use 
parallelism through the use of multiple processing cores, rather than by more complex cores. If the 
out-of-order core costs twice as much as the in-order core, it is better to use two simple in-order 
cores. Increasing the IPC by using the two-wide out-of-order core would require additional cost, 
such as predicting multiple branches per cycle or issuing four instructions per cycle. This would 
increase the area, delay, and power dissipation of the core. Because of that, multiple simple cores 
become more attractive. The use of multiple processing cores will motivate the use of simple, 
single-issue, in-order processing cores as the base processing element for a network interface. This 
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will minimize the complexity, and the area, delay, and power dissipation of the system. 

2.2.3.2 Data Memory 

The combination of parallel cores and hardware assists requires a multiprocessor memory system 

that allows the simple processor cores to access their data and instructions with low latency to 

avoid pipeline stalls while also allowing frame data to be transferred at line rate. Since the frame 

data is not accessed by the processing engines of the network interface, it can be stored in a 

high-bandwidth off-chip memory. However, the instructions and frame metadata accessed by the 

processor must be stored in a low-latency, random access memory. Because instructions are 

read-only, accessed only by the processors and have a small working set, per-processor instruction 

caches are a natural solution for low-latency instruction access. The frame metadata also has a 

small working set, fitting entirely in 100 KB. However, the metadata must be read and written by 

both the processors and the assists. Per-processor coherent caches are a well-known method for 

providing low-latency data access in multiprocessor systems. Caches are also transparent to could 

have its own private cache for frame metadata, with frame data set to bypass the caches in order to 

avoid pollution. 

But these structures also have several disadvantages. Caches waste space by requiring tag arrays 

in addition to the data arrays that hold the actual content. Caching also wastes space by replicating 

the same widely-read data across the private caches of several processors. All coherence schemes 

add complexity and resource occupancy at the controller. A major problem with a hierarchy 

design such as this stems from the requirement that control data must be coherent. That is, data 

written by the processors (such as buffer descriptors, I/O descriptors, and so forth) must be 

observed by the I/O units, and vice versa. A write back policy would maintain coherence but 

would overwhelm the main memory with a random pattern of write backs such that the DRAM 

could not satisfy the streaming frame data. Conversely, memory trace analysis shows that in a 

cache-coherent scheme, coherence messages overwhelm the main memory bus so that, again, the 

DRAM cannot satisfy the streaming frame data. 

A possible solution used in embedded systems is the use of a program-controlled scratchpad 

memory. This is a small region of on-chip memory dedicated for low-latency accesses, but all 

contents must be explicitly managed by the program. Such a scratchpad memory would provide 

enough control data bandwidth. But simultaneous accesses from multiple processors would incur 

queuing delays. These delays can be avoided by splitting the scratchpad into multiple banks, 

providing excess bandwidth to reduce latency. A banked scratchpad requires an interconnection 

network between the processors and assists on one side and the scratchpads on the other. Such 

networks yield a tradeoff between area and latency, with a crossbar requiring at least an extra 

cycle of latency. On the other hand, the scratchpad avoids the waste, complexity, and replication 

of caches and coherence. Since the processors do not need to access frame data, frame data does 

not need to be stored in a low-latency memory structure. Furthermore, frame data is always 

accessed as four 10 GB/s sequential streams with each stream coming from one assist unit. 

Current SDRAM can provide sufficient bandwidth for all of these streams. By providing enough 

buffering for frames in each assist, data can be transferred between the assists and the SDRAM up 
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to 1518 bytes at a time. These transfers are to consecutive memory locations, so using an 

arbitration scheme that allows the assists to sustain such bursts will incur very few row activations 

in the SDRAM and allow peak bandwidth to be achieved during these bursts. 

2.2.4 Send and receive of NIC 

NICs send and receive frames between the networks and host operating system. Sending and 
receiving frames happens in a series of steps completed by the host and NIC.  

The host operating system of a network server uses the network interface to send and receive 
packets. The operating system stores and retrieves data directly to or from the main memory, and 
the NIC transfers this data to or from its own local transmit and receive buffers. Sending and 
receiving data is handled cooperatively by the NIC and the device driver in the operating system, 
which notify each other when data is ready to be sent or has just been received. 

The host OS maintains a series of buffers used for frame headers and contents. The OS also 
maintains a queue or ring of buffer descriptors. Each buffer descriptor indicates where in host 
memory the buffer resides and how big the buffer is. Buffer descriptors are the unit of transaction 
between the OS and NIC - when the OS needs to indicate that frames are ready to be sent, the NIC 
must fetch and process the buffer descriptors that describe those pending frames. Likewise, the OS 
indicates that free buffers are available to write received frames into by making buffer descriptors 
available to the NIC that point to free space in host memory. After received frames arrive, the NIC 
sends back completed buffer descriptors that indicate the size of the received frames.  

Figure4. Steps involved in sending a packet 

Sending a packet requires the steps shown in Figure4. 

Step1, the device driver first creates a buffer descriptor, which contains the starting memory 
address and length of the packet that is to be sent, along with additional flags to specify options or 
commands. If a packet consists of multiple non-contiguous regions of memory, the device driver 
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creates multiple buffer descriptors. 

Step2, the device driver then writes to a memory-mapped register on the NIC with information 
about the new buffer descriptors.  

Step3, the NIC initiates one or more direct memory access (DMA) transfers to retrieve the 
descriptors.  

Step4, the NIC initiates one or more DMA transfers to move the actual packet data from the main 
memory into it’s transmit buffer using the address and length information in the buffer descriptors. 

Step5, after the packet is transferred, the NIC sends the packet out onto the network through its 
medium access control (MAC) unit. The MAC unit is responsible for implementing the link-level 
protocol for the underlying network such as Ethernet.  

Step6, the NIC informs the device driver that the descriptor has been processed, possibly by 
interrupting the CPU. 

Figure5. Steps involved in receiving a packet 

Receiving packets is analogous to sending them, but the device driver must also pre-allocate a 
pool of main-memory buffers for arriving packets. Because the system cannot anticipate when 
packets will arrive or what their size will be, the device driver continually allocates free buffers 
and notifies the NIC of buffer availability using buffer descriptors. The notification and 
buffer-descriptor retrieval processes happen just as in the send case, following steps 1 through 3 of 
Figure4.  

Figure5 depicts the steps for receiving a packet from the network into pre-allocated receive 
buffers.  

Step1, a packet arriving over the network is received by the MAC unit and stored in the NIC’s 
local receive buffer.  
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Step2, the NIC initiates a DMA transfer of the packet into a pre-allocated main memory buffer. 

Step3, the NIC produces a buffer descriptor with the resulting address and length of the received 
packet and initiates a DMA transfer of the descriptor to the main memory, where it can be 
accessed by the device driver.  

Step4, the NIC notifies the device driver about the new packet and descriptor, typically through an 
interrupt. The device driver may then check the numbers of unused receive buffers in the main 
memory and refill the pool for future packets.  

In the sending and receiving cases, NIC processing breaks up into several steps, some of which 
have very long latencies (e.g., waiting for DMAs to complete, waiting for frames to arrive, and so 
on). To tolerate these latencies, NIC hardware uses an event model of computation. Events are 
typically associated with the completion of one of the NIC processing steps that require further 
processing. In the event model, the processors wait for events to arrive and then let specific event 
handlers to process the newly-arrived events. These handlers may en-queue new long-latency I/O 
operations which will trigger more events. After each event handling functions return, the 
processors resume waiting for other events. Hence, the processors can overlap processing of 
intermediate steps of a frame with latencies associated with another frame. 

To send and receive frames, a programmable Ethernet controller would need one or more 
processing cores and several specialized hardware assist units that efficiently transfer data to and 
from the local interconnect and the network. The Fetch Send BD and Fetch Receive BD tasks 
fetch buffer descriptors from the main memory that specify the location of frames to be sent or of 
pre-allocated receive buffers (step 3 of Figure4 and Figure5). Send Frame and Receive Frame 
implement steps 4-6 of Figure4 and 1-4 of Figure5, respectively. Fetch Send BD and Fetch 
Receive BD transfer multiple buffer descriptors through a single DMA. And each sent frame 
typically requires two buffer descriptors because the frame consists of two discontinuous memory 
regions, one for the frame headers and one for the payload.  

A full-duplex 10 GB/s link can deliver maximum-sized 1518-byte frames at the rate of 812,744 
frames per second in each direction. Each sent or received frame must be first stored into the local 
memory of the NIC and then read from the memory. For example, to send a frame, the NIC first 
transfers the frame from the main memory into the local memory, and then the MAC unit reads the 
frame from the local memory. Thus, sending and receiving maximum-sized frames at 10 GB/s 
require 39.5 GB/s of data bandwidth. This is slightly less than the overall link bandwidth (2 * 
2*10 GB/s) because data cannot be sent during the Ethernet inter-frame gap. 

2.2.5 Hardware Parallelism of NIC 

As discussed in the previous section, an efficient programmable 10 GB/s network interface must 
use parallel computation cores, per-processor instruction caches, scratchpad memories for control 
data, and high-bandwidth SDRAM for frame contents. In order to successfully utilize such 
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architecture, however, the Ethernet hardware running on the interface must be parallelized 
appropriately. As depicted in Figures 4 and 5, network interfaces experience significant latencies 
when carrying out the steps necessary to send and receive frames. Most of these latencies stem 
from requests to access host memory via DMA. To tolerate the long latencies of interactions with 
the host, previous NIC hardware uses an event-based processing model in which the steps outlined 
in Figures 4 and 5 are mapped to separate events. For the triggering of an event, the hardware runs 
a specific event handler function for that type of event. Events may be triggered by hardware 
completion notifications (e.g., packet arrival, DMA completion) or by other event handler 
functions that wish to trigger a software event. 

2.2.5.1 Previous Hardware Parallelism 

Figure6. Previous hardware parallelism (with an event register) 

Event notification mechanism runs different event handlers concurrently. The Ethernet controller 
uses a hardware-controlled event register to indicate which types of events are pending. An event 
register is a bit vector in which each bit corresponds to a type of event. A set bit indicates that 
there is one or more events of that type that need processing. Figure 6 shows how the parallel 
hardware uses an event register to detect a DMA read event and dispatch the appropriate event 
handler.  

Step1, the DMA hardware indicates that some DMAs have completed by setting the global DMA 
read event bit in every processors’ event register.  

Step2, processor 0 detects this bit becoming set and dispatches the Process DMAs event handler. 

Step3, when DMAs 5-9 complete at the DMA read hardware, the hardware again attempts to set 
the DMA read event bit. 

Step4, processor 0 marks its completed progress as it finishes processing DMAs 0-4. Since DMAs 
5-9 are still outstanding, the DMA read event bit is still set. At this time, either processor 0 or
processor 1 could begin executing the Process DMAs handler.
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Step5, since no more DMAs are outstanding, processor 0 again marks its progress and clears the 
DMA read event bit. Even though DMAs become ready for processing at step 3 and processor 1 is 
idle, no processor can begin working on DMAs 5-9 until processor 0 finishes working on DMAs 
0-4.

This weak point is the result of an event register mechanism. The event register only indicates that 
DMAs are ready, but it does not indicate which DMAs are ready. So, if a processor is engaged in 
handling a specific type of event, no other processor can handle that same type of event without 
significant overhead. If we divide events into work units, and the processors and hardware assists 
would have to cooperate in some manner to decide when to turn event bits on and off. This 
method will improve the idle time between steps 3 and 4 so long as the handlers are well-balanced 
across the processors. However, the event handlers cannot be balanced across many processors. 

2.2.5.2 Modern Hardware Parallelism 

Figure7. Modern hardware parallelism (with a distributed event queue) 

In Figure 6, the processing of DMAs 5-9 does not depend on the processing of DMAs 0-4. Rather 
than dividing work according to type and executing different types in parallel, modern parallel 
method divides work into bundles of work units that need a certain type of processing. Once 
divided, these work units (described by an event data structure) can be executed in parallel, 
regardless of the type of processing required. This modern parallel organization enables higher 
levels of concurrency but requires some additional overhead to build event data structures and 
maintain frame ordering. 

Figure 7 illustrates how a modern parallel hardware processes the same sequence of DMAs 
previously illustrated in Figure 6. As DMAs complete, the DMA hardware updates a pointer that 
marks its progress.  

Step1, processor 0 inspects this pointer, builds an event structure for DMAs 0 through 4, and 
executes the Process DMAs handler.  
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Step2, processor 1 notices the progress that indicates DMAs 5 through 9 have completed, builds 
an event structure for DMAs 5 through 9, and executes the Process DMAs handler.  

Unlike the previous parallel hardware in Figure 6, two instances of the Process DMAs handler can 
run concurrently. As a result, idle time only occurs when there is no other work to be done. As 
indicated by Figure 7, a modern parallel hardware must inspect several different 
hardware-maintained pointers to detect events. Such hardware must maintain a queue of event 
structures to facilitate software-raised events and retries. Software-raised events signal the need 
for more processing in another NIC-processing step, while retries are necessary if an event handler 
temporarily exits local NIC resources.  

Frames may complete their processing out-of-order with respect to their arrival order. In-order 
frame delivery must be ensured to avoid the performance degradation associated with out-of-order 
TCP packet delivery. To facilitate this, the hardware maintains several status buffers where the 
intermediate results of network interface processing may be written. The hardware inspects the 
final-stage results for a “done” status and submits all subsequent, consecutive frames. The task of 
submitting a frame may not be run concurrently, but submitting a frame only requires a pointer 
update. As frames progress from one step of processing to the next, status flags become set that 
indicate one stage of processing has completed and another is ready to begin. However, hardware 
pointer updates require that a consecutive range of frames is ready. To determine if a range is 
ready and update the pointer, the hardware processors must synchronize, check for consecutive set 
flags, clear the flags, update pointers and then finally release synchronization. These synchronized, 
looping memory accesses represent an important source of overhead. 

2.3 Simulating and testing data of virtual NIC 

Our simulator is developed by C/C++/G++ and top-down method. It works or executes under 
Redhat Linux platform. As for the software architecture, It is consists of three sections: head file 
which mainly focuses on the definition of parameters and declaration of functions, main program 
which shows us the definition of relative functions and main function, and plot program which call 
relative Gnuplot commands to draw corresponding diagrams according to users’ requirements. 

In our simulator, virtual NICs were defined as the devices on PCI Bus. We can get a lot of data 
information after running our simulator. For the analysis of data, 3 plotting programs of Gnuplot 
were developed. They are data rate plotting program, throughput plotting program and transfer 
time histogram plotting program. (For codes of the 3 plotting programs, see Appendix). 

2.3.1 Testing data and plotting 

2.3.1.1 Single bus simulator 

# Data rate plot 
# ============== 
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# Sample slot width (clock cycles): 10000 
# No. of masters:       4 
# Bus frequency (MHz):      66.0 
# Size of data objects (bytes):     8 
# Arbitration scheme: Fixed 
# 
# BUS0 devices attached as masters: 
#    R/W  Prio   Block size     Data rate   Max. WS  S/D   LT 
#  1  R     1        129         230000.0      2     D      4 
#  2  R     2        256         120000.0      2     D      2 
#  3  W     3        222  330000.0       2     D      3 
#  4  W     4        129  450000.0       2     D      2 
#    Time Load     Bus utilization 
     10000      0.010000     0.000000 
     20000      0.010000     0.000000 
     30000      0.010000     0.000000 
     40000      0.010000     0.000000 
     50000      0.010000     0.000000 
     …….       ……        ……. 
     60000      0.010000     0.000000 
     70000      0.010000     0.000000 
     80000      0.010000     0.000000 
     …….       ……        ……. 
    100000      0.010000     0.000000 
    110000      0.010000     0.000000 

Plot1.Data rate (single bus) 
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# Throughput plot 
# =============== 
# No. of masters:       4 
# Bus frequency (MHz):      66.0 
# Size of data objects (bytes):     8 
# Arbitration scheme: Fixed 
# 
# BUS0 devices attached as masters: 
#    R/W  Prio   Block size     Data rate   Max. WS  S/D   LT 
#  1  R     1        129         230000.0      2     D      4 
#  2  R     2        256         120000.0      2     D      2 
#  3  W     3        222  330000.0       2     D      3 
#  4  W     4        129  450000.0       2     D      2 
# Generated data      Transmitted data 

0         0 
351       368 
480       512 
387       280 
……      …… 
738       512 

1345       776 
1474       776 
1474       768 
……      …… 

1603       776 
1476       512 
1954       776 
1861       776 
2085       512 
2470       776 

Plot2. Throughput plot (single bus) 
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# Transfer time histogram 
# ======================= 
# No. of masters:       4 
# Bus frequency (MHz):      66.0 
# Size of data objects (bytes):     8 
# Arbitration scheme: Fixed 
# 
# BUS0 devices attached as masters: 
#    R/W  Prio   Block size     Data rate   Max. WS  S/D   LT 
#  1  R     1        129         230000.0      2     D      4 
#  2  R     2        256         120000.0      2     D      2 
#  3  W     3        222  330000.0       2     D      3 
#  4  W     4        129  450000.0       2     D      2 
#Transfer time    Load     Samples 
  0.100000      0.010000        0        0    0        0 
  0.200000      0.010000        0        0    0        0 
  0.300000      0.010000        0        0    0        0 
  0.400000      0.010000        0        0    0        0 
  0.500000      0.010000        0        0    0        0 

……….       ………         …       …       .. .. 

  1.000000      0.010000        0        0    0        0 
  1.100000      0.010000        0        0    0        0 
  1.200000      0.010000        0        0    0        0 
  1.300000      0.010000        0        0    0        0 
  1.400000      0.010000        0        0    0        0 

……….       ………         …       …       .. .. 

Plot3. Transfer time histogram (single bus) 
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2.3.1.2 Two bus simulator 

# Data rate plot 
# ============== 
# Sample slot width (clock cycles): 10000 
# No. of masters:       2 
# Bus frequency (MHz):      33.0 
# Size of data objects (bytes):     4 
# Arbitration scheme: Fixed 
# 
# BUS0 devices attached as masters: 
#   R/W/B  Prio   Block size     Data rate   Max. WS  S/D    LT 
#  1  R     1        239         230000.0      2     D      2 
#  2  W     2        129  440000.0       2     D      2 
#    Time Load     Bus utilization 
# 
# BUS1 devices attached as masters: 
#   R/W/B  Prio   Block size     Data rate   Max. WS  S/D   LT 
#  1  R     3        128         230000.0      2     D      3 
#  2  W     4        128  310000.0       2     D      3 
# 
# Simulation time (clock cycles):   100000 
#    Time Load     Bus utilization 

1      0.010000     0.000000 
2      0.010000     0.000000 
4      0.010000     0.000000 

 …      ………       ……… 
  18      0.010000     0.000000 

19      0.010000     0.000000 
20      0.010000     0.000000 
21      0.010000     0.000000 
22      0.010000     0.000000 
…      ………       ……… 
35      0.010000     0.000000 
36      0.010000     0.000000 
…      ………       ……… 
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Plot4. Data rate (two buses) 

# Throughput plot 
# =============== 
# No. of masters:       2 
# Bus frequency (MHz):      33.0 
# Size of data objects (bytes):     4 
# Arbitration scheme: Fixed 
# 
# BUS0 devices attached as masters: 
#   R/W/B  Prio   Block size     Data rate   Max. WS  S/D    LT 
#  1  R     1        239         230000.0      2     D      2 
#  2  W     2        129  440000.0       2     D      2 
# Generated data Transmitted data 
# 
# BUS1 devices attached as masters: 
#   R/W/B  Prio   Block size     Data rate   Max. WS  S/D   LT 
#  1  R     3        128         230000.0      2     D      3 
#  2  W     4        128  310000.0       2     D      3 
# 
# Simulation time (clock cycles): 100000 
# Generated data      Transmitted data 

0         0 
501       368 

…….      …… 
5523              3210 
6877      3968 
8225      4023 
…….             …… 
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Plot5. Throughput plot (two buses) 

# Transfer time histogram 
# ======================= 
# No. of masters:       2 
# Bus frequency (MHz):      33.0 
# Size of data objects (bytes):     4 
# Arbitration scheme: Fixed 
# 
# BUS0 devices attached as masters: 
#   R/W/B  Prio   Block size     Data rate   Max. WS  S/D    LT 
#  1  R     1        239         230000.0      2     D      2 
#  2  W     2        129  440000.0       2     D      2 
#Transfer time    Load     Samples 
# 
# BUS1 devices attached as masters: 
#   R/W/B  Prio   Block size     Data rate   Max. WS  S/D   LT 
#  1  R     3        128         230000.0      2     D      3 
#  2  W     4        128  310000.0       2     D      3 
# 
# Simulation time (clock cycles): 100000 
#Transfer time    Load     Samples 
  0.100000      0.010000        0        0 
  0.200000      0.010000        0        0 
  0.300000      0.010000        0        0 
  ………..       ……….        …       … 

1.300000      0.010000        0        0 
  1.400000      0.010000        0        0 
  1.500000      0.010000        0        0 
  ………..       ……….        …       … 
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Plot6. Transfer time histogram (two buses) 

2.3.1.3 Data collection of Multi-Bus Simulator 

# Throughput plot 
# =============== 
# No. of masters:       5 
# Bus frequency (MHz):      33.0 
# Size of data objects (bytes):     4 
# Arbitration scheme: Fixed 
# 
# BUS0 devices attached as masters: 
#   R/W/B  Prio   Block size     Data rate   Max. WS  S/D    LT 
#  1  R     1        128         230000.0      2     D      3 
#  2  R     2        128         210000.0      2     D      3 
#  3  W     3        243  250000.0       1     D      2 
#  4  W     4        432  230000.0       4     D      3 
#  5  R     5        239         340000.0      2     D      3 
# Generated data Transmitted data 
# 
# BUS1 devices attached as masters: 
#   R/W/B  Prio   Block size     Data rate   Max. WS  S/D   LT 
#  1  R     6        129      2.0      0     D      2 
#  2  W     7        128  120000.0       2     D      4 
# Simulation time (clock cycles): 1000000 
# Generated data Transmitted data 
# 
# BUS2 devices attached as masters: 
#   R/W/B  Prio   Block size     Data rate   Max. WS  S/D   LT 
#  1  R     8        145         350000.0      1     D      2 
#  2  R     9     120000      2.0      2     D      2 
# 
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# Simulation time (clock cycles): 1000000 
# Generated data Transmitted data 
# 
# BUS3 devices attached as masters: 
…………………. 
# Simulation time (clock cycles): 1000000 
# Generated data Transmitted data 
# 
# BUS4 devices attached as masters: 
#   R/W/B  Prio   Block size     Data rate   Max. WS  S/D   LT 
#  1  R    10     240000         230000.0      2     D      3 
#  2  R    13        230         230000.0      2     D      2 
# 
# Simulation time (clock cycles): 1000000 
# Generated data Transmitted data 

0         0 
0         0 

……              …. 

# Transfer time histogram 
# ======================= 
# No. of masters:       5 
# Bus frequency (MHz):      33.0 
# Size of data objects (bytes):     4 
# Arbitration scheme: Fixed 
# 
# BUS0 devices attached as masters: 
#   R/W/B  Prio   Block size     Data rate   Max. WS  S/D    LT 
#  1  R     1        128         230000.0      2     D      3 
#  2  R     2        128         210000.0      2     D      3 
#  3  W     3        243  250000.0       1     D      2 
#  4  W     4        432  230000.0       4     D      3 
#  5  R     5        239         340000.0      2     D      3 
#Transfer time    Load     Samples 
# 
# BUS1 devices attached as masters: 
#   R/W/B  Prio   Block size     Data rate   Max. WS  S/D   LT 
#  1  R     6        129      2.0      0     D      2 
#  2  W     7        128  120000.0       2     D      4 
# 
# Simulation time (clock cycles):   1000000 
#Transfer time    Load     Samples 
# Simulation time (clock cycles): 1000000 
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#Transfer time    Load     Samples 
# 
# BUS2 devices attached as masters: 
#   R/W/B  Prio   Block size     Data rate   Max. WS  S/D   LT 
#  1  R     8        145         350000.0      1     D      2 
#  2  R     9     120000      2.0      2     D      2 
# 
# Simulation time (clock cycles): 1000000 
#Transfer time    Load     Samples 
# 
# BUS3 devices attached as masters: 
#   R/W/B  Prio   Block size     Data rate   Max. WS  S/D   LT 
# 
# Simulation time (clock cycles): 1000000 
#Transfer time    Load     Samples 
# 
# BUS4 devices attached as masters: 
#   R/W/B  Prio   Block size     Data rate   Max. WS  S/D   LT 
#  1  R    10     240000         230000.0      2     D      3 
#  2  R    13        230         230000.0      2     D      2 
# 
# Simulation time (clock cycles):   1000000 
#Transfer time    Load     Samples 
  0.100000      0.010000        0        0 
  0.200000      0.010000        0        0 
  0.300000      0.010000        0        0 
  0.400000      0.010000        0        0 
  0.500000      0.010000        0        0 
  0.600000      0.010000        0        0 
  0.700000      0.010000        0        0 
  0.800000      0.010000        0        0 
  0.900000      0.010000        0        0 
  1.000000      0.010000        0        0 
  ………..      …………       ….       …. 

For Multi-bus simulator, we can not plot with relative data generated, because there are some bugs 
existing in the source code. Some simple analysis of plots shows below: 
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Type of 
bus 

Throughput plot Data rate plot Histogram 

Single 

Theoretically, the 
generated data and the 
transmitted data should 
be the same, but there 
are some deviations in 
the actual plotting 
results. In most cases, 
both near 2:1 ratio. 

This 3D plot is a relationship 
description of time, utilization 
and applied load. We can find 
that the basic bus utilization 
sometimes is zero, sometimes is 
not aero. When the volume of 
data increases, there will be 
obvious changes. The utilization 
of PCI bus is increased. 

When the volume of 
data increases, the 
sampling results 
become ladderlike. 
And the PCI bus 
becomes busier.  

Multi 
The volume of data 
becomes greater, and 
the plot becomes 
complex slightly. 

The volume of data becomes 
greater, and the plot becomes 
complex slightly. 

The volume of data 
becomes greater, and 
the plot becomes 
complex slightly. 

2.3.2 NIC Memory Control (MC) model's algorithm 

In our PCI Multi-Bus Simulator, the virtual NIC is just a simple simulation which doesn’t include 
the algorithm of Memory Control. So I developed my own algorithm to control the memory 
system of virtual NIC. 

//Simple introduction to the NIC Memory Control (MC) model's algorithm 
//This description refers to initial (size, rate), get_request (), grant (), grant_end () 
//In this algorithm:  
// (1) suppose that PCI Bus access priority is always higher than extranet access priority. 
// (2) define extra simple control valuable such as mn/st except the NIC device's initial parameters. 
// (3) mn or st may use value: 00/01/10/11 separately to make NIC do corresponding operation 
according to these values. 
// (4) the NIC's operation will do R, W, or R/W (B) according to the original interactive input. 

//The relative algorithm description goes as follow: 
//===================================================================== 
NIC_initial (size, rate); //when the program start to execute, it will finish this initialization. 

grant ();//PCI arbitrator give the PCI bus right to the current NIC, this function will record the 
//current system time. 

get_request () { 
When the NIC get the PCI bus control right {
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(1) Record the current system time
(2) Check current buffer size: how many data packet in the buffer
(3) Get the latest former system time and data packet size in/out the buffer to calculate the

value of packet change--->then figure out the packet rate.
(4) Do relative data transaction operation by call process_request ();
(5) Check if there still exist other requests to the PCI Bus for data transaction and record

the current request status.
 }; 
}; 

grant_end () { 
    After finishing any request operation 
    Record the finish time 

Release PCI control right to arbitrator for other device use. 
} 

process_request () { 
//In this section, the NIC will deal with related data transaction 
//between PCI Bus and NIC buffer and then between extranet and NIC buffer 
//the NIC MC always responds to the PCI bus direction's transaction firstly  
//and then extranet (Internet) transaction, because in MC of NIC, there is 
//a internal arbitrator for the NIC internal arbitration 

    if (NIC_buffer != empty){ 
(1) MC will let NIC buffer to communicate with PCI bus for data transaction: read

or write or read/write in a limited time_quantum
(2) As for the operation, it has been defined in the program’s initialization which is

implemented in the interactive GUI
(3) The operation will execute by using Swtich () procedure which include 4 phase

ADDRESS/IDEL/WAIT/DATA
(4) After finishing the data transaction between NIC buffer and PCI bus in a fixed

time quantum, the MC will let NIC buffer communicate with extranet for
relative data transactions such as read, write, or Both of them.

(5) After the transaction operations between NIC buffer and Internet, the NIC's MC
will release the bus control right to PCI bus's other NIC or devices.

Notice: all data transaction must be operated in a time_quantum 
      }; 
    if (NIC_buffer == empty){ 

(1) MC will let NIC buffer to receive data from PCI bus if this NIC has read request
in a time_quantum, or else, MC will check NIC if it want to read data from
Internet to NIC buffer.

(2) If NIC does not want to receive data from Internet to fill the empty NIC buffer,
the MC will transfer its control right to PCI bus's arbitrator for other devices'
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competition/use. 
      }; 
}; 

//if the NIC wants to do both R/W data transactions, we use small algorithm to implement it: 

int timer = 1;  //define a timer and the initial value is 1; 

while (timer != 0){ 
       if (time<=time_quantum){ 

if (timer%2 == 1){ 
   do Read operation; 
   timer++; 
  } 

else{ 
   do Write operation; 
   timer++; 
   }; 

}; 
};
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Appendix 

Data rate.gnp 

set terminal x11 
set output 
set noclip points 
set clip one 
set noclip two 
set border 
set boxwidth 
set dummy x,y 
………. 
set samples 100,100 
set isosamples 10,10 
set surface 
set nocontour 
set clabel 
set nohidden3d 
set cntrparam order 4 
set cntrparam linear 
set cntrparam levels auto 5 
set cntrparam point 5 
set size 1,1 
set data style lines 
set function style lines 
set tics out 
set ticslevel 0.0 
set xtics 0,2500000 
set ytics 0.0,0.2 
set ztics 
set grid 
set xzeroaxis 
set yzeroaxis 
…………. 
set ylabel "Applied load" 0,0 
set zlabel "Bus Using" 0,0 
set autoscale r 
set autoscale t 
set autoscale xy 
set yrange [0.0 : 1.0] 
set autoscale z 
set zrange [0.0 : 1.0] 
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set zero 1e-08 

Throughput.gnp 

set terminal x11 
set output 
set noclip points 
set clip one 
set noclip two 
set border 
set boxwidth 
set dummy x,y 
…….. 
set nopolar 
set angles radians 
set noparametric 
……. 
set nocontour 
set clabel 
set nohidden3d 
set cntrparam order 4 
set cntrparam linear 
set cntrparam levels auto 5 
set cntrparam points 5 
set size 1,1 
set data style points 
set function style lines 
set xzeroaxis 
set yzeroaxis 
set tics in 
set ticslevel 0.5 
set xtics 
set ytics 
set ztics 
…….. 
set autoscale r 
set autoscale t 
set autoscale xy 
set autoscale z 
set zero 1e-08 

Transfer time histogram.gnp 

set terminal x11 
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set output 
set noclip points 
set clip one 
set noclip two 
set border 
set boxwidth 
………. 
set nologscale 
set offsets 0,0,0,0 
set nopolar 
set angles radians 
set parametric 
……….. 
set nohidden3d 
set cntrparam order 4 
set cntrparam linear 
set cntrparam points 5 
set size 1,1 
set data style impulses 
set function style impulses 
set tics out 
set ticslevel 0.0 
set xtics 0,2 
set ytics 0.0,0.2 
set ztics 
set grid 
set xzeroaxis 
set yzeroaxis 
set title "" 0,0 
……….. 
set ylabel "Applied load" 0,0 
set zlabel "Number of Samples" 0,0 
set autoscale r 
set autoscale t 
set autoscale xy 
set yrange [0.0 : 1.0] 
set xrange [0.0 : 10.0] 
set autoscale z 
set zero 1e-08




