
Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

1

Analysis of NIC and Test of PCI Multi-Bus Simulator

Student Name: Ligang Wang

Advisor Name: Dr. Mike MacGregor

September 2007

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

2

Acknowledgments

I would like to thank my supervisor, Dr. Mike MacGregor, for his continuous support and help
with patience. Special thanks for a lot of helpful discussions to Kevin Ye and our team, Liao and
Sun. Last but not least, I would like to thank my wife, Rong and my new born baby, Kelly for all
their support and love during this time.

Ligang Wang
September 2007

Abstract

This thesis presents the analysis of 10 Gigabit Ethernet Network Interface Card and simulating &
testing of virtual NIC, which is defined as the device in our PCI Multi-Bus Simulator. Network
interface processing requires support for the following characteristics: a large volume of frame
data, frequently accessed frame metadata, and high frame rate processing. So we also discuss how
to improve network interface efficiency. By using Gnuplot tools, we can plot some diagrams
which are helpful to my data analysis. Since the virtual NIC in our PCI Multi-Bus Simulator is just
a simple simulation, a NIC Memory Control model’s algorithm was developed.

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

3

Table of Contents
1. Specification of PCI Bus…………………………………………………………5

1.1 Introduction to PCI Bus……………………………………………………….5

1.2 Architecture of PCI Bus……………………………………………………….5

2. Analysis of NIC…………………………………………………………………...7

2.1 Introduction to NIC……………………………………………………………7

2.2 Architecture of NIC……………………………………………………………7
2.2.1 Basic NIC Architecture………………………………………………………………...7
2.2.2 10 Gigabit NIC Architecture…………………………………………………………...8
2.2.3 10 Gigabit NIC Memory System………………………………………………………9

2.2.3.1 Multiple processing cores………………………………………………………...10
2.2.3.2 Data Memory……………………………………………………………………...11

2.2.4 Send and receive of NIC ………………………………………………………………12
2.2.5 Hardware Parallelism of NIC………………………………………………………….14

2.2.5.1 Previous Hardware Parallelism …………………………………………………...15
2.2.5.2 Modern Hardware Parallelism…………………………………………………….16

2.3 Simulating and testing data of virtual NIC…………………………………….17
2.3.1 Testing data and plotting……………………………………………………………….17

2.3.1.1 Single bus simulator……………………………………………………………….17
2.3.1.2 Two bus simulator…………………………………………………………………21
2.3.1.3 Data collection of Multi-Bus Simulator…………………………………………...24

2.3.2 NIC Memory Control (MC) model's algorithm………………………………………..27

References…………………………………………………………………………...29

Appendix……………………………………………………………….....................30

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

4

List of Figures and Plots
Figure1. PCI System Architecture……………………………………………………5

Figure2. Basic NIC Architecture……………………………………………………..8

Figure3. 10 Gigabit NIC Architecture………………………………………………..8

Figure4. Steps involved in sending a packet…………………………………………12

Figure5. Steps involved in receiving a packet……………………………………….13

Figure6. Previous hardware parallelism (with an event register)……………………15

Figure7. Modern hardware parallelism (with a distributed event queue)……………16

Plot1.Data rate (single bus)…………………………………………………………..18

Plot2. Throughput plot (single bus)………………………………………………….19

Plot3. Transfer time histogram (single bus)…………………………………………20

Plot4. Data rate (two buses)…………………………………………………………22

Plot5. Throughput plot (two buses)………………………………………………….23

Plot6. Transfer time histogram (two buses)………………………………………….24

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

5

1. Specification of PCI Bus
1.1 Introduction to PCI Bus

The PCI (Peripheral Component Interconnect) local bus is a high speed bus. The PCI Bus was
proposed at an Intel Technical Forum in December 1991, and the first version of the specification
was released in June 1992. The current specification of the PCI bus is revision 3.0, which was
released on February3, 2004. Since its introduction, the PCI bus has gained wide support from all
the computer industry. Almost all PC systems today contain PCI slots, as well as the Apple and
IBM Power-PC based machines, and the Digital Alpha based machines. The PCI standard has
become very popular. The PCI Bus is designed to overcome many of the limitations in previous
buses. The major benefits of using PCI are: (1) High speed (2) Expandability (3) Low Power (4)
Automatic Configuration (5) Future expansion (6) Portability (7) Complex memory hierarchy
support (8) Interoperability with existing standards.

PCI is also called an intermediate local bus, to distinguish it from the CPU bus. The concept of the
local bus solves the downward compatibility problem in an elegant way. The system may
incorporate an ISA, EISA, or Micro Channel bus, and adapters compatible with these buses. On
the other hand, high-performance adapters, such as graphics or network cards, may plug directly
into PCI. PCI also provides a standard and stable interface for peripheral chips. By interfacing to
the PCI, rather than to the CPU bus, peripheral chips remain useful as new microprocessors are
introduced. The PCI bus itself is linked to the CPU bus through a PCI to Host Bridge.

1.2 Architecture of PCI Bus

Figure1. PCI System Architecture

Figure1 shows a typical PCI Local Bus system architecture. This example is not intended to imply
any specific architectural limits. In this example, the processor/cache/memory subsystem is
connected to PCI through a PCI bridge. This bridge provides a low latency path through which the

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

6

processor may directly access PCI devices mapped anywhere in the memory or I/O address spaces.
It also provides a high bandwidth path allowing PCI masters direct access to main memory. The
bridge may include optional functions such as arbitration and hot plugging. The amount of data
buffering a bridge includes is implementation specific.

The basic PCI transfer is a burst. This means that all memory space and I/O space accesses occur
in burst mode; a single transfer is considered a “burst” terminated after a single data phase.
Addresses and data use the same 32-bit, multiplexed, address/data bus. The first clock is used to
transfer the address and bus command code. The next clock begins one or more data transfers,
during which either the master, or the target, may insert wait cycles.

PCI supports posting. A posted transaction completes on the originating bus before it completes
on the target bus. For example, the CPU may write data at high speed into a buffer in a
CPU-to-PCI bridge. In this case the CPU bus is the originating bus and PCI is the target bus. The
bridge transfers data to the target (PCI bus) as long as the buffer is not empty, and asserts a not
ready signal when the buffer becomes empty. In the other direction, a device may post data on the
PCI bus, to be buffered in the bridge, and transferred from there to the CPU via the CPU bus. If
the buffer becomes temporarily full, the bridge de-asserts the target ready signal.

In a read transaction, a turnaround cycle is required to avoid contention when the master stops
driving the address and the target to begin driving the data on the multiplexed address/data bus.
This is not necessary in a write transaction, when the master drives both the address and data lines.
A turnaround cycle is required, however, for all signals that may be driven by more than one PCI
unit. Also, an idle clock cycle is normally required between two transactions, but there are two
kinds of back-to-back transactions in which this idle cycle may be eliminated. In both cases the
first transaction must be a write, so that no turnaround cycle is needed, the master drives the data
at the end of the first transaction, and the address at the beginning of the second transaction. The
first kind of back-to-back occurs when the second transaction has the same target as the first one.
Every PCI target device must support this kind of back-to-back transaction. The second kind of
back-to-back occurs when the target of the second transaction is different than the target of the
first one, and the second target has the Fast Back-to-Back Capable bit in the status register set to
one, indicating that it supports this kind of back-to-back.

For arbitration, PCI provides a pair of request and grant signals for each PCI unit, and defines a
central arbiter whose task is to receive and grant requests, but leaves to the designer the choice of
a specific arbitration algorithm. PCI also supports bus parking, allowing a master to remain bus
owner as long as no other device requests the bus. The default master becomes bus owner when
the bus is idle. The arbiter can select any master to be the default owner.

PCI provides a set of configuration registers collectively referred to as “configuration space.” By
using configuration registers, software may install and configure devices without manual switches
and without user intervention. Unlike the ISA architecture, devices are re-locatable - not
constrained to a specific PCI slot. Regardless of the PCI slot in which the device is located,
software may bind a device to the interrupt required by the PC architecture. Each device must

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

7

implement a set of three registers that uniquely identify the device: Vendor ID (allocated by the
PCI SIG), Device ID (allocated by the vendor), and Revision ID. The Class Code register
identifies a programming interface (SCSI controller interface, for example), or a register-level
interface (ISA DMA controller, for example). As a final example, the Device Control field
specifies whether the device responds to I/O space accesses, or memory space accesses, or both,
and whether the device can act as a PCI bus master. At power-up, device independent software
determines what devices are present, and how much address space each device requires. The boot
software then relocates PCI devices in the address space using a set of base address registers

2. Analysis of NIC
NIC is a device on PCI Bus. This high-performance adapter can plug directly into PCI Bus. In the
Multi-Bus Simulator developed by us, all of the devices on PCI Bus were defined as virtual NICs.
So we need to analyze the architecture and behavior of NIC.

2.1 Introduction to NIC

A NIC (network interface card) is a piece of computer hardware designed to allow computers to
communicate over a computer network. It is both an OSI layer 1 (physical layer) and layer 2 (data
link layer) device, as it provides physical access to a networking medium and provides a low-level
addressing system through the use of MAC addresses. It allows users to connect to each other
either by using cables or wireless.

Every Ethernet network card has a unique 48-bit serial number called a MAC address, which is
stored in ROM carried on the card. Every computer on an Ethernet network must have a card with
a unique MAC address. No two cards ever manufactured share the same address. Whereas
network cards used to be expansion cards that plug into a computer bus, the low cost and ubiquity
of the Ethernet standard means that most new computers have a network interface built into the
motherboard. These motherboards either have Ethernet capabilities integrated into the
motherboard chipset, or implemented via a low cost dedicated Ethernet chip, connected through
the PCI (or the newer PCI express bus). A separate network card is not required unless multiple
interfaces are needed or some other type of network is used. Newer motherboards may even have
dual network (Ethernet) interfaces built-in.

2.2 Architecture of NIC

2.2.1 Basic NIC Architecture

As shown in Figure2 below, most NICs have a DMA interface unit, a medium access control
(MAC) unit, memory, and control logic. In the case of a programmable NIC, the control logic is
one or more programmable processors that run compiled-code hardware. The DMA unit is
directed by the onboard control logic to read and write data between the local NIC memory and
the host's memory. The medium access unit interacts with the control logic to receive frames into
local buffer storage and to send frames from local buffer storage out onto the network. The

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

8

memory is used for temporary storage of frames, buffer descriptors, and other control data.

Figure2. Basic NIC Architecture

2.2.2 10 Gigabit NIC Architecture

Figure3. 10 Gigabit NIC Architecture

Figure3 shows the 10 Gigabit NIC’s computation and memory architecture. The controller
architecture includes parallel processing cores, a partitioned memory system, and hardware assist
units for performing DMA transfers across the host interconnect bus and for performing Ethernet
data sends and receives according to the MAC policy. In addition to being responsible for all
frame data transfers, the assist units are also involved with some control data accesses when they
share information with the processors about which frame contents are to be or have been
transferred. To allow stores to proceed without stalling the processor, a single store may be
buffered in the MEM stage; loads requiring more than one cycle force the processor to stall. To
control status flags for the event queue mechanism, each processor also implements two atomic
read-modify-write operations, set and update. Set takes an index into a bit array in memory.
Update examines the bit array and looks for continuous bits that have been set since the last
update. Update clears the continuous set bits and returns a pointer indicating the offset where the

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

9

last cleared bit was found. Hardware running on these processors can use these instructions to
communicate “done” status information between computation phases and eliminate the
synchronization, looping, and flag-update overheads. Instructions are stored in a single 128 KB
instruction memory which feeds per-processor instruction caches. Hardware and assist control
data is stored in the on-chip scratchpad, which has a capacity of 256 KB and is separated into S
independent banks. The scratchpad is visible to all processors and hardware assist units. This
provides the necessary communication between the processors and the assists as the assists read
and update descriptors about the packets they process. The scratchpad also enables low-latency
data sharing between processors. The processors and each of the four hardware assists connect to
the scratchpads through a crossbar. There is also a crossbar connection to allow the processors to
connect to the external memory interface; the assists access the external memory interface directly.
The crossbar is 32 bits wide and allows one transaction to each scratchpad bank and to the
external memory bus interface per cycle with round-robin arbitration for each resource. Accessing
any scratchpad bank requires a latency of 2 cycles: one to request and cross the crossbar, another
to access the memory and return requested data. So the processors must always stall at least one
cycle for loads. If each core had its own private scratchpad, the access latency could be reduced to
a single cycle by eliminating the crossbar. But, if we do that, each core may be limited to only
accessing its local scratchpad or may require a much higher latency to access a remote location.

The processor cores and scratchpad banks operate at the CPU clock frequency, which could be
166 MHz in an embedded system. At this frequency, if the cores operate at 100% efficiency, cores
and scratchpad banks could meet the computation and control data bandwidth. To provide enough
bandwidth for bidirectional 10 GB/s data streams, the external memory bus is separated from the
rest of the system because it must operate faster than the CPU cores. It is not good to force the
cores to operate faster because that will waste more power. So the external memory can provide
enough bandwidth for frame data. The PCI interface and MAC unit share a 128-bit bus to access
the 64-bit wide external DDR SDRAM. At the same operating frequency, both the bus and the
DDR SDRAM have the same peak transfer rate, since the SDRAM can transfer two 64-bit values
in a single cycle. If the bus and SDRAM are able to operate at 100% efficiency, then they can
achieve 40 GB/s of bandwidth. But transmit traffic cannot meet that, because it requires two
transfers per frame (header and data). A 64-bit wide GDDR SDRAM provides a peak bandwidth
of 64 GB/s, and is able to support 40 GB/s of bandwidth for network traffic. Since the PCI bus, the
MAC interface, and the external DDR SDRAM all operate at different clock frequencies, there
must be four clock areas on the chip.

2.2.3 10 Gigabit NIC Memory System

The memory system for a 10 GB/s NIC must support low-latency access to control data and

high-bandwidth, high-capacity storage for frame data. Control data refers to buffer descriptors,

which the processors must read and modify, and I/O descriptors that the DMA and MAC units use.

For a programmable NIC, the processors create I/O descriptors which the DMA and MAC units

read and process; the MAC receive unit is the exception, which creates descriptors that the

processors read. To maintain high frame rates, the I/O units can't stall waiting for access to control

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

10

data. Simultaneously, a 10 GB/s programmable NIC must support high-capacity storage for frame

data to support offload mechanisms. Frame storage must also support at least 40 GB/s of

throughput, since there are 4 simultaneous access streams (DMA read and MAC transmit for the

send path, MAC receive and DMA write for the receive path) that must each maintain throughput

of 10 GB/s. But no single memory structure is low-latency, has high bandwidth, and provides a

large capacity.

2.2.3.1 Multiple processing cores

We can improve the performance of processor by using the parallelism of multiple processing
cores. There are several factors that can limit the obtainable instructions per cycle (IPC) of a
particular processor running network interface hardware. The major factors considered here are
whether the processor issues instructions in-order or out-of-order, the number of instructions that
can be issued per cycle, whether or not branch prediction is used, and the structure of the pipeline.

In the perfect pipeline, all instructions complete in a single cycle, so the only limit on IPC is that
instructions that depend on each other cannot issue during the same cycle. For a typical five stage
pipeline with all forwarding paths is configured, loads sequences would cause a pipeline stall and
only one memory operation can issue per cycle. In addition to pipeline configurations, two branch
prediction methods are configured. For the perfect branch prediction, any number of branches up
to the issue width can be correctly predicted on every cycle. For no branch prediction, a branch
stops any further instructions from issuing until the next cycle. For an in-order processor, it is
more important to eliminate pipeline hazards than to predict branches. Conversely, for an
out-of-order processor, it is more important to accurately predict branches than to eliminate
pipeline hazards.

To improve the processor’s performance, the complexity may not be worth the cost for an
embedded system. For example, an out-of-order processor with an issue width of two and perfect
branch prediction of one branch per cycle could only achieve twice IPC performance than an
in-order processor with no branch prediction and including pipeline stalls. But it has higher
complexity. It would need a wide issue window that must keep track of instruction dependencies
and select two instructions per cycle. It would also need a register renaming mechanism and a
reorder buffer to allow instructions to execute out-of-order. And it would require a complex
branch predictor to approach the performance of a perfect branch predictor. All of this complexity
adds area, delay, and power dissipation to the out-of-order core.

For an area- and power-constrained embedded system, it is likely to be more efficient to use
parallelism through the use of multiple processing cores, rather than by more complex cores. If the
out-of-order core costs twice as much as the in-order core, it is better to use two simple in-order
cores. Increasing the IPC by using the two-wide out-of-order core would require additional cost,
such as predicting multiple branches per cycle or issuing four instructions per cycle. This would
increase the area, delay, and power dissipation of the core. Because of that, multiple simple cores
become more attractive. The use of multiple processing cores will motivate the use of simple,
single-issue, in-order processing cores as the base processing element for a network interface. This

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

11

will minimize the complexity, and the area, delay, and power dissipation of the system.

2.2.3.2 Data Memory

The combination of parallel cores and hardware assists requires a multiprocessor memory system

that allows the simple processor cores to access their data and instructions with low latency to

avoid pipeline stalls while also allowing frame data to be transferred at line rate. Since the frame

data is not accessed by the processing engines of the network interface, it can be stored in a

high-bandwidth off-chip memory. However, the instructions and frame metadata accessed by the

processor must be stored in a low-latency, random access memory. Because instructions are

read-only, accessed only by the processors and have a small working set, per-processor instruction

caches are a natural solution for low-latency instruction access. The frame metadata also has a

small working set, fitting entirely in 100 KB. However, the metadata must be read and written by

both the processors and the assists. Per-processor coherent caches are a well-known method for

providing low-latency data access in multiprocessor systems. Caches are also transparent to could

have its own private cache for frame metadata, with frame data set to bypass the caches in order to

avoid pollution.

But these structures also have several disadvantages. Caches waste space by requiring tag arrays

in addition to the data arrays that hold the actual content. Caching also wastes space by replicating

the same widely-read data across the private caches of several processors. All coherence schemes

add complexity and resource occupancy at the controller. A major problem with a hierarchy

design such as this stems from the requirement that control data must be coherent. That is, data

written by the processors (such as buffer descriptors, I/O descriptors, and so forth) must be

observed by the I/O units, and vice versa. A write back policy would maintain coherence but

would overwhelm the main memory with a random pattern of write backs such that the DRAM

could not satisfy the streaming frame data. Conversely, memory trace analysis shows that in a

cache-coherent scheme, coherence messages overwhelm the main memory bus so that, again, the

DRAM cannot satisfy the streaming frame data.

A possible solution used in embedded systems is the use of a program-controlled scratchpad

memory. This is a small region of on-chip memory dedicated for low-latency accesses, but all

contents must be explicitly managed by the program. Such a scratchpad memory would provide

enough control data bandwidth. But simultaneous accesses from multiple processors would incur

queuing delays. These delays can be avoided by splitting the scratchpad into multiple banks,

providing excess bandwidth to reduce latency. A banked scratchpad requires an interconnection

network between the processors and assists on one side and the scratchpads on the other. Such

networks yield a tradeoff between area and latency, with a crossbar requiring at least an extra

cycle of latency. On the other hand, the scratchpad avoids the waste, complexity, and replication

of caches and coherence. Since the processors do not need to access frame data, frame data does

not need to be stored in a low-latency memory structure. Furthermore, frame data is always

accessed as four 10 GB/s sequential streams with each stream coming from one assist unit.

Current SDRAM can provide sufficient bandwidth for all of these streams. By providing enough

buffering for frames in each assist, data can be transferred between the assists and the SDRAM up

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

12

to 1518 bytes at a time. These transfers are to consecutive memory locations, so using an

arbitration scheme that allows the assists to sustain such bursts will incur very few row activations

in the SDRAM and allow peak bandwidth to be achieved during these bursts.

2.2.4 Send and receive of NIC

NICs send and receive frames between the networks and host operating system. Sending and
receiving frames happens in a series of steps completed by the host and NIC.

The host operating system of a network server uses the network interface to send and receive
packets. The operating system stores and retrieves data directly to or from the main memory, and
the NIC transfers this data to or from its own local transmit and receive buffers. Sending and
receiving data is handled cooperatively by the NIC and the device driver in the operating system,
which notify each other when data is ready to be sent or has just been received.

The host OS maintains a series of buffers used for frame headers and contents. The OS also
maintains a queue or ring of buffer descriptors. Each buffer descriptor indicates where in host
memory the buffer resides and how big the buffer is. Buffer descriptors are the unit of transaction
between the OS and NIC - when the OS needs to indicate that frames are ready to be sent, the NIC
must fetch and process the buffer descriptors that describe those pending frames. Likewise, the OS
indicates that free buffers are available to write received frames into by making buffer descriptors
available to the NIC that point to free space in host memory. After received frames arrive, the NIC
sends back completed buffer descriptors that indicate the size of the received frames.

Figure4. Steps involved in sending a packet

Sending a packet requires the steps shown in Figure4.

Step1, the device driver first creates a buffer descriptor, which contains the starting memory
address and length of the packet that is to be sent, along with additional flags to specify options or
commands. If a packet consists of multiple non-contiguous regions of memory, the device driver

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

13

creates multiple buffer descriptors.

Step2, the device driver then writes to a memory-mapped register on the NIC with information
about the new buffer descriptors.

Step3, the NIC initiates one or more direct memory access (DMA) transfers to retrieve the
descriptors.

Step4, the NIC initiates one or more DMA transfers to move the actual packet data from the main
memory into it’s transmit buffer using the address and length information in the buffer descriptors.

Step5, after the packet is transferred, the NIC sends the packet out onto the network through its
medium access control (MAC) unit. The MAC unit is responsible for implementing the link-level
protocol for the underlying network such as Ethernet.

Step6, the NIC informs the device driver that the descriptor has been processed, possibly by
interrupting the CPU.

Figure5. Steps involved in receiving a packet

Receiving packets is analogous to sending them, but the device driver must also pre-allocate a
pool of main-memory buffers for arriving packets. Because the system cannot anticipate when
packets will arrive or what their size will be, the device driver continually allocates free buffers
and notifies the NIC of buffer availability using buffer descriptors. The notification and
buffer-descriptor retrieval processes happen just as in the send case, following steps 1 through 3 of
Figure4.

Figure5 depicts the steps for receiving a packet from the network into pre-allocated receive
buffers.

Step1, a packet arriving over the network is received by the MAC unit and stored in the NIC’s
local receive buffer.

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

14

Step2, the NIC initiates a DMA transfer of the packet into a pre-allocated main memory buffer.

Step3, the NIC produces a buffer descriptor with the resulting address and length of the received
packet and initiates a DMA transfer of the descriptor to the main memory, where it can be
accessed by the device driver.

Step4, the NIC notifies the device driver about the new packet and descriptor, typically through an
interrupt. The device driver may then check the numbers of unused receive buffers in the main
memory and refill the pool for future packets.

In the sending and receiving cases, NIC processing breaks up into several steps, some of which
have very long latencies (e.g., waiting for DMAs to complete, waiting for frames to arrive, and so
on). To tolerate these latencies, NIC hardware uses an event model of computation. Events are
typically associated with the completion of one of the NIC processing steps that require further
processing. In the event model, the processors wait for events to arrive and then let specific event
handlers to process the newly-arrived events. These handlers may en-queue new long-latency I/O
operations which will trigger more events. After each event handling functions return, the
processors resume waiting for other events. Hence, the processors can overlap processing of
intermediate steps of a frame with latencies associated with another frame.

To send and receive frames, a programmable Ethernet controller would need one or more
processing cores and several specialized hardware assist units that efficiently transfer data to and
from the local interconnect and the network. The Fetch Send BD and Fetch Receive BD tasks
fetch buffer descriptors from the main memory that specify the location of frames to be sent or of
pre-allocated receive buffers (step 3 of Figure4 and Figure5). Send Frame and Receive Frame
implement steps 4-6 of Figure4 and 1-4 of Figure5, respectively. Fetch Send BD and Fetch
Receive BD transfer multiple buffer descriptors through a single DMA. And each sent frame
typically requires two buffer descriptors because the frame consists of two discontinuous memory
regions, one for the frame headers and one for the payload.

A full-duplex 10 GB/s link can deliver maximum-sized 1518-byte frames at the rate of 812,744
frames per second in each direction. Each sent or received frame must be first stored into the local
memory of the NIC and then read from the memory. For example, to send a frame, the NIC first
transfers the frame from the main memory into the local memory, and then the MAC unit reads the
frame from the local memory. Thus, sending and receiving maximum-sized frames at 10 GB/s
require 39.5 GB/s of data bandwidth. This is slightly less than the overall link bandwidth (2 *
2*10 GB/s) because data cannot be sent during the Ethernet inter-frame gap.

2.2.5 Hardware Parallelism of NIC

As discussed in the previous section, an efficient programmable 10 GB/s network interface must
use parallel computation cores, per-processor instruction caches, scratchpad memories for control
data, and high-bandwidth SDRAM for frame contents. In order to successfully utilize such

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

15

architecture, however, the Ethernet hardware running on the interface must be parallelized
appropriately. As depicted in Figures 4 and 5, network interfaces experience significant latencies
when carrying out the steps necessary to send and receive frames. Most of these latencies stem
from requests to access host memory via DMA. To tolerate the long latencies of interactions with
the host, previous NIC hardware uses an event-based processing model in which the steps outlined
in Figures 4 and 5 are mapped to separate events. For the triggering of an event, the hardware runs
a specific event handler function for that type of event. Events may be triggered by hardware
completion notifications (e.g., packet arrival, DMA completion) or by other event handler
functions that wish to trigger a software event.

2.2.5.1 Previous Hardware Parallelism

Figure6. Previous hardware parallelism (with an event register)

Event notification mechanism runs different event handlers concurrently. The Ethernet controller
uses a hardware-controlled event register to indicate which types of events are pending. An event
register is a bit vector in which each bit corresponds to a type of event. A set bit indicates that
there is one or more events of that type that need processing. Figure 6 shows how the parallel
hardware uses an event register to detect a DMA read event and dispatch the appropriate event
handler.

Step1, the DMA hardware indicates that some DMAs have completed by setting the global DMA
read event bit in every processors’ event register.

Step2, processor 0 detects this bit becoming set and dispatches the Process DMAs event handler.

Step3, when DMAs 5-9 complete at the DMA read hardware, the hardware again attempts to set
the DMA read event bit.

Step4, processor 0 marks its completed progress as it finishes processing DMAs 0-4. Since DMAs
5-9 are still outstanding, the DMA read event bit is still set. At this time, either processor 0 or
processor 1 could begin executing the Process DMAs handler.

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

16

Step5, since no more DMAs are outstanding, processor 0 again marks its progress and clears the
DMA read event bit. Even though DMAs become ready for processing at step 3 and processor 1 is
idle, no processor can begin working on DMAs 5-9 until processor 0 finishes working on DMAs
0-4.

This weak point is the result of an event register mechanism. The event register only indicates that
DMAs are ready, but it does not indicate which DMAs are ready. So, if a processor is engaged in
handling a specific type of event, no other processor can handle that same type of event without
significant overhead. If we divide events into work units, and the processors and hardware assists
would have to cooperate in some manner to decide when to turn event bits on and off. This
method will improve the idle time between steps 3 and 4 so long as the handlers are well-balanced
across the processors. However, the event handlers cannot be balanced across many processors.

2.2.5.2 Modern Hardware Parallelism

Figure7. Modern hardware parallelism (with a distributed event queue)

In Figure 6, the processing of DMAs 5-9 does not depend on the processing of DMAs 0-4. Rather
than dividing work according to type and executing different types in parallel, modern parallel
method divides work into bundles of work units that need a certain type of processing. Once
divided, these work units (described by an event data structure) can be executed in parallel,
regardless of the type of processing required. This modern parallel organization enables higher
levels of concurrency but requires some additional overhead to build event data structures and
maintain frame ordering.

Figure 7 illustrates how a modern parallel hardware processes the same sequence of DMAs
previously illustrated in Figure 6. As DMAs complete, the DMA hardware updates a pointer that
marks its progress.

Step1, processor 0 inspects this pointer, builds an event structure for DMAs 0 through 4, and
executes the Process DMAs handler.

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

17

Step2, processor 1 notices the progress that indicates DMAs 5 through 9 have completed, builds
an event structure for DMAs 5 through 9, and executes the Process DMAs handler.

Unlike the previous parallel hardware in Figure 6, two instances of the Process DMAs handler can
run concurrently. As a result, idle time only occurs when there is no other work to be done. As
indicated by Figure 7, a modern parallel hardware must inspect several different
hardware-maintained pointers to detect events. Such hardware must maintain a queue of event
structures to facilitate software-raised events and retries. Software-raised events signal the need
for more processing in another NIC-processing step, while retries are necessary if an event handler
temporarily exits local NIC resources.

Frames may complete their processing out-of-order with respect to their arrival order. In-order
frame delivery must be ensured to avoid the performance degradation associated with out-of-order
TCP packet delivery. To facilitate this, the hardware maintains several status buffers where the
intermediate results of network interface processing may be written. The hardware inspects the
final-stage results for a “done” status and submits all subsequent, consecutive frames. The task of
submitting a frame may not be run concurrently, but submitting a frame only requires a pointer
update. As frames progress from one step of processing to the next, status flags become set that
indicate one stage of processing has completed and another is ready to begin. However, hardware
pointer updates require that a consecutive range of frames is ready. To determine if a range is
ready and update the pointer, the hardware processors must synchronize, check for consecutive set
flags, clear the flags, update pointers and then finally release synchronization. These synchronized,
looping memory accesses represent an important source of overhead.

2.3 Simulating and testing data of virtual NIC

Our simulator is developed by C/C++/G++ and top-down method. It works or executes under
Redhat Linux platform. As for the software architecture, It is consists of three sections: head file
which mainly focuses on the definition of parameters and declaration of functions, main program
which shows us the definition of relative functions and main function, and plot program which call
relative Gnuplot commands to draw corresponding diagrams according to users’ requirements.

In our simulator, virtual NICs were defined as the devices on PCI Bus. We can get a lot of data
information after running our simulator. For the analysis of data, 3 plotting programs of Gnuplot
were developed. They are data rate plotting program, throughput plotting program and transfer
time histogram plotting program. (For codes of the 3 plotting programs, see Appendix).

2.3.1 Testing data and plotting

2.3.1.1 Single bus simulator

Data rate plot
==============

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

18

Sample slot width (clock cycles): 10000
No. of masters: 4
Bus frequency (MHz): 66.0
Size of data objects (bytes): 8
Arbitration scheme: Fixed

BUS0 devices attached as masters:
R/W Prio Block size Data rate Max. WS S/D LT
1 R 1 129 230000.0 2 D 4
2 R 2 256 120000.0 2 D 2
3 W 3 222 330000.0 2 D 3
4 W 4 129 450000.0 2 D 2
Time Load Bus utilization
 10000 0.010000 0.000000
 20000 0.010000 0.000000
 30000 0.010000 0.000000
 40000 0.010000 0.000000
 50000 0.010000 0.000000
 ……. …… …….
 60000 0.010000 0.000000
 70000 0.010000 0.000000
 80000 0.010000 0.000000
 ……. …… …….
 100000 0.010000 0.000000
 110000 0.010000 0.000000

Plot1.Data rate (single bus)

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

19

Throughput plot
===============
No. of masters: 4
Bus frequency (MHz): 66.0
Size of data objects (bytes): 8
Arbitration scheme: Fixed

BUS0 devices attached as masters:
R/W Prio Block size Data rate Max. WS S/D LT
1 R 1 129 230000.0 2 D 4
2 R 2 256 120000.0 2 D 2
3 W 3 222 330000.0 2 D 3
4 W 4 129 450000.0 2 D 2
Generated data Transmitted data

0 0
351 368
480 512
387 280
…… ……
738 512

1345 776
1474 776
1474 768
…… ……

1603 776
1476 512
1954 776
1861 776
2085 512
2470 776

Plot2. Throughput plot (single bus)

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

20

Transfer time histogram
=======================
No. of masters: 4
Bus frequency (MHz): 66.0
Size of data objects (bytes): 8
Arbitration scheme: Fixed

BUS0 devices attached as masters:
R/W Prio Block size Data rate Max. WS S/D LT
1 R 1 129 230000.0 2 D 4
2 R 2 256 120000.0 2 D 2
3 W 3 222 330000.0 2 D 3
4 W 4 129 450000.0 2 D 2
#Transfer time Load Samples
 0.100000 0.010000 0 0 0 0
 0.200000 0.010000 0 0 0 0
 0.300000 0.010000 0 0 0 0
 0.400000 0.010000 0 0 0 0
 0.500000 0.010000 0 0 0 0

………. ……… … …

 1.000000 0.010000 0 0 0 0
 1.100000 0.010000 0 0 0 0
 1.200000 0.010000 0 0 0 0
 1.300000 0.010000 0 0 0 0
 1.400000 0.010000 0 0 0 0

………. ……… … …

Plot3. Transfer time histogram (single bus)

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

21

2.3.1.2 Two bus simulator

Data rate plot
==============
Sample slot width (clock cycles): 10000
No. of masters: 2
Bus frequency (MHz): 33.0
Size of data objects (bytes): 4
Arbitration scheme: Fixed

BUS0 devices attached as masters:
R/W/B Prio Block size Data rate Max. WS S/D LT
1 R 1 239 230000.0 2 D 2
2 W 2 129 440000.0 2 D 2
Time Load Bus utilization

BUS1 devices attached as masters:
R/W/B Prio Block size Data rate Max. WS S/D LT
1 R 3 128 230000.0 2 D 3
2 W 4 128 310000.0 2 D 3

Simulation time (clock cycles): 100000
Time Load Bus utilization

1 0.010000 0.000000
2 0.010000 0.000000
4 0.010000 0.000000

 … ……… ………
 18 0.010000 0.000000

19 0.010000 0.000000
20 0.010000 0.000000
21 0.010000 0.000000
22 0.010000 0.000000
… ……… ………
35 0.010000 0.000000
36 0.010000 0.000000
… ……… ………

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

22

Plot4. Data rate (two buses)

Throughput plot
===============
No. of masters: 2
Bus frequency (MHz): 33.0
Size of data objects (bytes): 4
Arbitration scheme: Fixed

BUS0 devices attached as masters:
R/W/B Prio Block size Data rate Max. WS S/D LT
1 R 1 239 230000.0 2 D 2
2 W 2 129 440000.0 2 D 2
Generated data Transmitted data

BUS1 devices attached as masters:
R/W/B Prio Block size Data rate Max. WS S/D LT
1 R 3 128 230000.0 2 D 3
2 W 4 128 310000.0 2 D 3

Simulation time (clock cycles): 100000
Generated data Transmitted data

0 0
501 368

……. ……
5523 3210
6877 3968
8225 4023
……. ……

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

23

Plot5. Throughput plot (two buses)

Transfer time histogram
=======================
No. of masters: 2
Bus frequency (MHz): 33.0
Size of data objects (bytes): 4
Arbitration scheme: Fixed

BUS0 devices attached as masters:
R/W/B Prio Block size Data rate Max. WS S/D LT
1 R 1 239 230000.0 2 D 2
2 W 2 129 440000.0 2 D 2
#Transfer time Load Samples

BUS1 devices attached as masters:
R/W/B Prio Block size Data rate Max. WS S/D LT
1 R 3 128 230000.0 2 D 3
2 W 4 128 310000.0 2 D 3

Simulation time (clock cycles): 100000
#Transfer time Load Samples
 0.100000 0.010000 0 0
 0.200000 0.010000 0 0
 0.300000 0.010000 0 0
 ……….. ………. … …

1.300000 0.010000 0 0
 1.400000 0.010000 0 0
 1.500000 0.010000 0 0
 ……….. ………. … …

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

24

Plot6. Transfer time histogram (two buses)

2.3.1.3 Data collection of Multi-Bus Simulator

Throughput plot
===============
No. of masters: 5
Bus frequency (MHz): 33.0
Size of data objects (bytes): 4
Arbitration scheme: Fixed

BUS0 devices attached as masters:
R/W/B Prio Block size Data rate Max. WS S/D LT
1 R 1 128 230000.0 2 D 3
2 R 2 128 210000.0 2 D 3
3 W 3 243 250000.0 1 D 2
4 W 4 432 230000.0 4 D 3
5 R 5 239 340000.0 2 D 3
Generated data Transmitted data

BUS1 devices attached as masters:
R/W/B Prio Block size Data rate Max. WS S/D LT
1 R 6 129 2.0 0 D 2
2 W 7 128 120000.0 2 D 4
Simulation time (clock cycles): 1000000
Generated data Transmitted data

BUS2 devices attached as masters:
R/W/B Prio Block size Data rate Max. WS S/D LT
1 R 8 145 350000.0 1 D 2
2 R 9 120000 2.0 2 D 2

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

25

Simulation time (clock cycles): 1000000
Generated data Transmitted data

BUS3 devices attached as masters:
………………….
Simulation time (clock cycles): 1000000
Generated data Transmitted data

BUS4 devices attached as masters:
R/W/B Prio Block size Data rate Max. WS S/D LT
1 R 10 240000 230000.0 2 D 3
2 R 13 230 230000.0 2 D 2

Simulation time (clock cycles): 1000000
Generated data Transmitted data

0 0
0 0

…… ….

Transfer time histogram
=======================
No. of masters: 5
Bus frequency (MHz): 33.0
Size of data objects (bytes): 4
Arbitration scheme: Fixed

BUS0 devices attached as masters:
R/W/B Prio Block size Data rate Max. WS S/D LT
1 R 1 128 230000.0 2 D 3
2 R 2 128 210000.0 2 D 3
3 W 3 243 250000.0 1 D 2
4 W 4 432 230000.0 4 D 3
5 R 5 239 340000.0 2 D 3
#Transfer time Load Samples

BUS1 devices attached as masters:
R/W/B Prio Block size Data rate Max. WS S/D LT
1 R 6 129 2.0 0 D 2
2 W 7 128 120000.0 2 D 4

Simulation time (clock cycles): 1000000
#Transfer time Load Samples
Simulation time (clock cycles): 1000000

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

26

#Transfer time Load Samples

BUS2 devices attached as masters:
R/W/B Prio Block size Data rate Max. WS S/D LT
1 R 8 145 350000.0 1 D 2
2 R 9 120000 2.0 2 D 2

Simulation time (clock cycles): 1000000
#Transfer time Load Samples

BUS3 devices attached as masters:
R/W/B Prio Block size Data rate Max. WS S/D LT

Simulation time (clock cycles): 1000000
#Transfer time Load Samples

BUS4 devices attached as masters:
R/W/B Prio Block size Data rate Max. WS S/D LT
1 R 10 240000 230000.0 2 D 3
2 R 13 230 230000.0 2 D 2

Simulation time (clock cycles): 1000000
#Transfer time Load Samples
 0.100000 0.010000 0 0
 0.200000 0.010000 0 0
 0.300000 0.010000 0 0
 0.400000 0.010000 0 0
 0.500000 0.010000 0 0
 0.600000 0.010000 0 0
 0.700000 0.010000 0 0
 0.800000 0.010000 0 0
 0.900000 0.010000 0 0
 1.000000 0.010000 0 0
 ……….. ………… …. ….

For Multi-bus simulator, we can not plot with relative data generated, because there are some bugs
existing in the source code. Some simple analysis of plots shows below:

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

27

Type of
bus

Throughput plot Data rate plot Histogram

Single

Theoretically, the
generated data and the
transmitted data should
be the same, but there
are some deviations in
the actual plotting
results. In most cases,
both near 2:1 ratio.

This 3D plot is a relationship
description of time, utilization
and applied load. We can find
that the basic bus utilization
sometimes is zero, sometimes is
not aero. When the volume of
data increases, there will be
obvious changes. The utilization
of PCI bus is increased.

When the volume of
data increases, the
sampling results
become ladderlike.
And the PCI bus
becomes busier.

Multi
The volume of data
becomes greater, and
the plot becomes
complex slightly.

The volume of data becomes
greater, and the plot becomes
complex slightly.

The volume of data
becomes greater, and
the plot becomes
complex slightly.

2.3.2 NIC Memory Control (MC) model's algorithm

In our PCI Multi-Bus Simulator, the virtual NIC is just a simple simulation which doesn’t include
the algorithm of Memory Control. So I developed my own algorithm to control the memory
system of virtual NIC.

//Simple introduction to the NIC Memory Control (MC) model's algorithm
//This description refers to initial (size, rate), get_request (), grant (), grant_end ()
//In this algorithm:
// (1) suppose that PCI Bus access priority is always higher than extranet access priority.
// (2) define extra simple control valuable such as mn/st except the NIC device's initial parameters.
// (3) mn or st may use value: 00/01/10/11 separately to make NIC do corresponding operation
according to these values.
// (4) the NIC's operation will do R, W, or R/W (B) according to the original interactive input.

//The relative algorithm description goes as follow:
//===
NIC_initial (size, rate); //when the program start to execute, it will finish this initialization.

grant ();//PCI arbitrator give the PCI bus right to the current NIC, this function will record the
//current system time.

get_request () {
When the NIC get the PCI bus control right {

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

28

(1) Record the current system time
(2) Check current buffer size: how many data packet in the buffer
(3) Get the latest former system time and data packet size in/out the buffer to calculate the

value of packet change--->then figure out the packet rate.
(4) Do relative data transaction operation by call process_request ();
(5) Check if there still exist other requests to the PCI Bus for data transaction and record

the current request status.
 };
};

grant_end () {
 After finishing any request operation
 Record the finish time

Release PCI control right to arbitrator for other device use.
}

process_request () {
//In this section, the NIC will deal with related data transaction
//between PCI Bus and NIC buffer and then between extranet and NIC buffer
//the NIC MC always responds to the PCI bus direction's transaction firstly
//and then extranet (Internet) transaction, because in MC of NIC, there is
//a internal arbitrator for the NIC internal arbitration

 if (NIC_buffer != empty){
(1) MC will let NIC buffer to communicate with PCI bus for data transaction: read

or write or read/write in a limited time_quantum
(2) As for the operation, it has been defined in the program’s initialization which is

implemented in the interactive GUI
(3) The operation will execute by using Swtich () procedure which include 4 phase

ADDRESS/IDEL/WAIT/DATA
(4) After finishing the data transaction between NIC buffer and PCI bus in a fixed

time quantum, the MC will let NIC buffer communicate with extranet for
relative data transactions such as read, write, or Both of them.

(5) After the transaction operations between NIC buffer and Internet, the NIC's MC
will release the bus control right to PCI bus's other NIC or devices.

Notice: all data transaction must be operated in a time_quantum
 };
 if (NIC_buffer == empty){

(1) MC will let NIC buffer to receive data from PCI bus if this NIC has read request
in a time_quantum, or else, MC will check NIC if it want to read data from
Internet to NIC buffer.

(2) If NIC does not want to receive data from Internet to fill the empty NIC buffer,
the MC will transfer its control right to PCI bus's arbitrator for other devices'

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

29

competition/use.
 };
};

//if the NIC wants to do both R/W data transactions, we use small algorithm to implement it:

int timer = 1; //define a timer and the initial value is 1;

while (timer != 0){
 if (time<=time_quantum){

if (timer%2 == 1){
 do Read operation;
 timer++;
 }

else{
 do Write operation;
 timer++;
 };

};
};

References
[1] PCI Local Bus Specification, revision 3.0, August 12, 2002

[2] PCI Local Bus Specification, revision 3.0, February 3, 2004

[3] Can User-Level Protocols Take Advantage of Multi-CPU NICs? By P. Shivam, P. Wyckoff, and D. Panda.

[4] Alteon Networks. Tigon/PCI Ethernet Controller, Aug. 1997. Revision 1.04.

[5] Alteon WebSystems. Gigabit Ethernet/PCI Network Interface Card: Host/NIC Software Interface Definition.

July 1999. Revision 12.4.13.

[6] End-to-End Performance of 10 Gigabit Ethernet on Commodity Systems by J. Hurwitz and W. Feng. IEEE

Micro, Jan. /Feb. 2004.

[7] Parallelization Strategies for Network Interface Firmware by Michael Brogioli, Paul Willmann, Scott Rixner.

[8] Alteon WebSystems, Inc. Gigabit Ethernet/PCI Network Interface Card. Revision 12.4.13

[9] Official documentation of Gnuplot by Thomas Williams & Colin Kelley. Version 4.2

[10] An Efficient Programmable 10 Gigabit Ethernet Network Interface Card by P. Willmann, H. Kim, V. S. Pai,

and S. Rixner.

[11] Intel PCI/PCI-X Family of Gigabit Ethernet Controllers Software Developer’s Manual

[12] http://www.ece.rice.edu/~willmann/teng_nics_hownicswork.html

[13] Design and Implementation of PCI Multi-Bus Simulator by Xiaoyong Liao

[14] Simulation of Cache Memory Systems on Symmetric Multiprocessors with Educational Purposes by M. A.

Vega Rodr ı́guez, J. M. S´anchez P´erez, R. Mart ı́n de la Monta˜na, and F. A. Zarallo Gallardo.

[15] A Liberty-based Simulator for Programmable Network Interface Architectures by P.Willmann, M. Brogioli,

and V. S. Pai. Spinach. July 2004.

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

30

Appendix

Data rate.gnp

set terminal x11
set output
set noclip points
set clip one
set noclip two
set border
set boxwidth
set dummy x,y
……….
set samples 100,100
set isosamples 10,10
set surface
set nocontour
set clabel
set nohidden3d
set cntrparam order 4
set cntrparam linear
set cntrparam levels auto 5
set cntrparam point 5
set size 1,1
set data style lines
set function style lines
set tics out
set ticslevel 0.0
set xtics 0,2500000
set ytics 0.0,0.2
set ztics
set grid
set xzeroaxis
set yzeroaxis
………….
set ylabel "Applied load" 0,0
set zlabel "Bus Using" 0,0
set autoscale r
set autoscale t
set autoscale xy
set yrange [0.0 : 1.0]
set autoscale z
set zrange [0.0 : 1.0]

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

31

set zero 1e-08

Throughput.gnp

set terminal x11
set output
set noclip points
set clip one
set noclip two
set border
set boxwidth
set dummy x,y
……..
set nopolar
set angles radians
set noparametric
…….
set nocontour
set clabel
set nohidden3d
set cntrparam order 4
set cntrparam linear
set cntrparam levels auto 5
set cntrparam points 5
set size 1,1
set data style points
set function style lines
set xzeroaxis
set yzeroaxis
set tics in
set ticslevel 0.5
set xtics
set ytics
set ztics
……..
set autoscale r
set autoscale t
set autoscale xy
set autoscale z
set zero 1e-08

Transfer time histogram.gnp

set terminal x11

Analysis of NIC and Test of PCI Multi-Bus Simulator
Ligang Wang

32

set output
set noclip points
set clip one
set noclip two
set border
set boxwidth
……….
set nologscale
set offsets 0,0,0,0
set nopolar
set angles radians
set parametric
………..
set nohidden3d
set cntrparam order 4
set cntrparam linear
set cntrparam points 5
set size 1,1
set data style impulses
set function style impulses
set tics out
set ticslevel 0.0
set xtics 0,2
set ytics 0.0,0.2
set ztics
set grid
set xzeroaxis
set yzeroaxis
set title "" 0,0
………..
set ylabel "Applied load" 0,0
set zlabel "Number of Samples" 0,0
set autoscale r
set autoscale t
set autoscale xy
set yrange [0.0 : 1.0]
set xrange [0.0 : 10.0]
set autoscale z
set zero 1e-08

