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Abstract

Alarm floods present substantial challenges to industrial process safety,

given their diverse causes and potential for severe consequences. Modern

process industries involve sophisticated networks of devices that are inter-

connected in both upstream and downstream directions. The interconnected

nature of these units and devices is a result of complex industrial production

processes and the necessity to effectively manage numerous variables. There-

fore, when a fault or abnormal condition occurs in an upstream or downstream

component, it can lead to fault propagation due to the interconnected nature

of the units and the feedback mechanisms that exist to control and regulate the

overall system. Thus, this phenomenon leads to an increased number of alarms

being generated across the system, causing an alarm flood. As industrial pro-

cesses become more complex, plant operators often find it increasingly difficult

to respond effectively, particularly during an alarm flood. The increased rate

of alarms during an alarm flood overwhelms plant operators, resulting in de-

layed response times and further deterioration of the situation. Consequently,

decision supports in alarm flood situations are in great demand to assist plant

operators in assessing the root causes and taking corrective actions in time.

Therefore, this thesis focuses on developing data-driven methods to efficiently

manage alarm flood situations and minimize their impacts.

Three research topics are considered. Firstly, early prediction of an in-

coming alarm flood sequence can provide valuable information to industrial
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operators, facilitating them to take corrective actions in time. A real-time

pattern matching and ranking approach is proposed in this work to conduct

similarity analysis under an online alarm flood situation and to export the

results as a ranking list of historical alarm flood sequences. Unit and set-

based pre-matching mechanisms are proposed to remove irrelevant sequences,

and a set-based indexing and extension strategy is applied to further avoid

unnecessary computation. Real-time decision supports in the form of rank-

ing of similar historical alarm flood sequences are presented to the industrial

operators.

Secondly, a novel association rule mining approach is proposed for real-time

prediction of alarm events during an alarm flood situation. This approach in-

tegrates a modified compact prediction tree model with new features, namely,

the timetable and co-occurrence matrix, and is constructed based on histor-

ical alarm sequences. An alarm relevancy detection strategy is designed to

identify and eliminate irrelevant alarms from the ongoing alarm flood. Fur-

thermore, the proposed approach provides confidence intervals of the time dif-

ferences between the subsequent predicted alarm events for time prediction.

Such real-time assistance during alarm flood situations can greatly simplify

the decision-making process for industrial operators.

Finally, a reinforcement learning (RL) approach is proposed for early pre-

diction of industrial alarm floods and to provide real-time guidance to plant

operators in prompt mitigation of such situations. Based on various asso-

ciation rule metrics, irrelevant alarms are identified and eliminated to avoid

inaccurate recommendations. A sequence reconstruction strategy is adopted

to generate potential online scenarios by exploiting the alarm relations that

exist in the historical sequences. Additionally, several criteria are introduced

and implemented in the existing historical sequences to reformulate the train-
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ing set for improved learning. To ensure accuracy and early recommendations,

a double deep Q-network (DDQN) algorithm is incorporated into the proposed

method.

The effectiveness of these proposed methods is demonstrated by indus-

trial case studies based on real industrial data from an oil refinery plant.

By adopting these proposed approaches, plant operators could handle alarm

floods proactively, resulting in an improvement in operational efficiency and

safety.
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Chapter 1

Introduction

This section presents an overview of the research background related to

alarm flood monitoring and provides a literature review that summarizes the

recent advancements in alarm management, alarm flood monitoring, and anal-

ysis. Furthermore, the contributions of the thesis are outlined, followed by an

overview of the thesis structure.

1.1 Research Background

Alarm systems play a critical role in ensuring the safety and efficiency of

modern industrial plants, including oil refineries, petrochemical facilities, and

power plants [63]. An alarm system [30] can be defined as a set of intercon-

nected devices and components designed to detect and signal the occurrence of

specific events or conditions. These events or conditions can include potential

hazards, equipment failures, security breaches, or any other situations that

require immediate attention or action. In the context of the process industry,

alarms are triggered to notify plant operators of potential deviations of process

variables from normal operating conditions or predetermined thresholds [30].

However, most industrial alarm systems exhibit inadequate performance, pri-

marily due to the overwhelming number of alarms that exceed the operators’

capacity to manage efficiently in control rooms. Such issues can arise from

nuisance alarms, consequential alarms, incorrect alarm configurations, etc.

Furthermore, in process industries where upstream and downstream devices
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are physically interconnected, abnormal situations can propagate, leading to

alarm overloading, known as alarm flood [63].

Alarm floods are among the most difficult issues in industrial alarm man-

agement, as the causes of alarm floods are various and the consequences could

be enormous. According to [30] an alarm flood is present when more than

10 alarms occur within a 10-minute time period per operator. Alarm floods

could be caused by many factors, e.g., fault propagation, improper alarm sys-

tem design, and operating state conditions. In practice, alarm floods should be

limited to less than 1% of the total time period that an industrial alarm system

is in operation [14]. In a practical scenario, alarm floods are too common in

industrial alarm systems, where the industrial operators become overwhelmed

with too many alarms and lose focus from the critical alarms that lead to

major process shutdowns, equipment mulfunctions, etc. In such situations,

industrial operators often need contextual guidance to proactively resolve the

alarm flood situations in order to prevent major process upsets, equipment

mulfunctions, etc.

1.2 Alarm Systems and Alarm Management

Alarm systems [44] serve as instruments to identify near misses, which are

characterized as deviations from standard operational ranges for process vari-

ables followed by their subsequent return. A well-functioning alarm system

helps the operator to address potentially dangerous situations proactively be-

fore the Emergency Shutdown (ESD) system is forced to intervene [14]. This

improves plant availability and increases plant safety.

The primary function of an alarm system is to notify operators about

abnormal process conditions or equipment malfunctions and facilitate their

response [6, 50]. An alarm is triggered when a process measurement [14] vi-

olates a predefined threshold, indicating an undesirable or potentially unsafe

situation. Fig. 1.1 illustrates how alarm and response data flow through the

alarm system. Various types of sensors are deployed to monitor the industrial
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Figure 1.1: Alarm system dataflow [30].

process and collect data, which serves as input to the alarm system. Within

an alarm system, the safety instrumented system (SIS), basic process control

system (BPCS), and packaged systems play critical roles. The SIS ensures

process safety by triggering emergency shutdowns during critical situations

and typically generates safety-related alarms. The BPCS monitors process

variables such as temperature and pressure and generates alarms when such

variables deviate from normal operating conditions. In addition, package sys-

tems include specific stand-alone subsystems such as pumps and compressors

and generate alarms if specific faults occur within the subsystems.

Human-Machine Interface (HMI) facilitates operator access to detailed

alarm information and allows them to take corrective actions by interacting
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Table 1.1: Alarm system performance survey [50]

Performance Measurement EEMUA Oil & Gas Petrochemical Power
Average alarms per hour 6 36 54 48
Average standing alarms 9 50 100 65
Peak alarms per hour 60 1320 1080 2100

Priority distribution % (low/med/high) 80/15/5 25/40/35 25/40/35 25/40/35

with the control system. HMI also offers comprehensive process visualization

and the options to efficiently manage an alarm management system across

the entire process. In contrast, a panel within the alarm system is a localized

version of HMI, enabling operators to view and access information for a spe-

cific area. Real-time alarm events, including annunciation time, alarm tags,

areas, and descriptions, are recorded in the alarm log. The alarm system also

includes an alarm historian to store historical alarm data for future operator

reference. Furthermore, an alarm system also includes advanced alarm ap-

plications and external systems to improve the overall efficiency of the alarm

system.

Table 1.1 provides an overview of alarm system performance across diverse

industries, using various performance metrics. This performance analysis is

based on an investigation that involved 39 industrial plants ranging from oil

and gas to petrochemical, power, and other industries. In Table 1.1, perfor-

mance of different industries in various metrics is compared with the corre-

sponding benchmarks in the guideline EEMUA-191 [14]. This statistic clearly

shows notable differences between the performance of various industries and

the industry benchmark. This indicates a substantial need for improvements

in alarm systems across different industries to comply with industry bench-

marks.

Many industries are subject to regulatory standards and guidelines that

define criteria for effective alarm management. Understanding the alarm man-

agement lifecycle [30], as shown in Fig. 1.2, enables organizations to comply

with these standards, avoiding legal issues. The alarm management lifecycle

refers to the process of designing, maintaining, and continuously improving the
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alarm system within an industrial process facility. This lifecycle involves vari-

ous stages and activities to ensure that alarms effectively serve their intended

purpose of notifying operators about abnormal situations and facilitating ap-

propriate responses.

Initially, the alarm philoshopy stage includes providing clear guidelines and

principles for the design, implementation, and ongoing management of alarm

systems in industrial processes. In the identification stage, all alarms are cat-

egorized, and relevant information, such as alarm set points and objectives, is

documented for the use of subsequent stages. The alarm rationalization stage

includes evaluating and prioritizing alarms based on the consequences, allow-

able response time, and the guidlines set in the alarm philosophy. This stage

also ensures that only the essential alarms remain to reduce operator overload.

Furthermore, the detailed design and implementation stage involves creating

precise technical specifications [14] for alarms and accurately integrating them

into the control system in accordance with the alarm philosophy. The core

functions of the operation and maintenance phases are to guarantee the effec-

tiveness and dependability of the alarm system and to confirm that it operates

according to its design through regular maintenance activities. Finally, the

management of change and audit stages propose changes in alignment with

prior stages, assess the effectiveness of the alarm management process, and

uphold the integrity of the alarm system.

A well-designed alarm system helps operators promptly identify and re-

solve process deviations, thereby reducing downtime and production setbacks.

However, inadequate performance in industrial alarm systems, characterized

by excessive alarms causing alarm overload [63], is attributed to issues like nui-

sance alarms, misconfigured variables, and abnormality propagation. Chat-

tering alarms are the most commonly encountered nuisance alarms and may

account for 10% - 60% of alarm occurrences [22]. According to the industrial

standard ANSI/ISA-18.2 [30], a chattering alarm refers to a specific type of

alarm that rapidly switches between active and inactive states within a short
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Figure 1.2: Alarm management lifecycle [30].

period of time, typically more than three times in a one-minute interval.

Additional types of nuisance alarms include stale alarms, repeating alarms,

and fleeting alarms, all of which contribute to the deterioration of alarm sys-

tem performance. Many of the stale alarms are nuisance alarms and remain

in the alarm state for an extended period of time, such as more than 24

hours. [30]. Stale alarms that are not nuisance alarms need to be analyzed

properly by operators to be aware of the ongoing situation [59]. Fleeting

alarms are similar to chattering alarms but do not repetitively appear within

a short timeframe [14]. Repeating alarms, on the other hand, cycle between

annunciating and returning to the normal state over time [50].

Nuisance alarms often appear due to improper alarm trip points, sensor

malfunctioning, control loop oscillations, and transient process conditions. In

addition, correlated alarms and consequential alarms, if not logically designed,

can lead to false alarms and alarm overload situations. Implementing measures
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such as appropriately justifying correlation logic and consolidating alarms can

mitigate alarm overload and improve the operational efficiency of the opera-

tors.

In addition, alarm flood is a critical challenge for the modern industrial

alarm system. According to [30] and [14], an alarm flood is known as a con-

dition where the alarm rate is higher than what the operator can effectively

manage, and the benchmark threshold is 10 alarms per 10 minutes for each op-

erator. In an alarm flood situation, the plant operator is usually overwhelmed

by a high number of alarms and may fail to identify the critical alarms and

take the correct responses in time. The consequences include deterioration

of the ongoing situation, equipment breakdowns, process malfunctions, and

major plant shutdowns [27]. To address this, data-driven methods can be

exploited to improve the alarm system’s performance and provide real-time

decision support to industrial operators during alarm floods.

1.3 Literature Survey

The thesis focuses on developing data-driven methods to provide real-time

assistance in the form of predicting the incoming alarm flood sequence or

the upcoming alarm events in alarm flood situations. Such assistance is in-

tended to ease off the decision-making process for the plant operators during

an ongoing alarm flood. Furthermore, data mining techniques are exploited

to eliminate nuisance alarms, correlated alarms, and consequential alarms,

thereby improving the accuracy of such real-time recommendations. In this

section, a comprehensive literature survey on the recent developments of such

methods is presented.
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1.3.1 Recent Advances in the Methods to Reduce Nui-
sance Alarms, Correlated Alarms, and Consequen-
tial Alarms

Nuisance alarms present significant challenges to the optimal performance

of alarm systems. Furthermore, the improper configuration of correlated and

consequential alarms can negatively impact the effectiveness of an alarm sys-

tem. Also, long-standing and mode-based alarms contribute to operator over-

load, affecting their ability to handle critical alarms on time. Thus, various

approaches have been recently proposed to effectively suppress such alarms,

ensure alarm rationalization, and improve the overall performance of the alarm

system.

Typically, strategies such as delay timers and dead-bands were frequently

employed to address nuisance alarms [63]. Chattering alarms primarily cause a

significant nuisance to the operators. A framework of generalized delay timers

was introduced in [1] to handle false or nuisance alarms with specific crite-

ria for raising and clearing alarms based on consecutive samples. Analytical

expressions for performance matrices, including the false alarm rate (FAR),

the missed alarm rate (MAR), and the expected detection delay (EDD), were

provided to evaluate the performance of the framework. Design techniques of

delay timers based on historical alarm data were investigated [32] and demon-

strated that the combined use of off and on-delay timers performs better than

the pure delay timers of the same length and the alarm latches. [41] studied

the relation between alarm deadbands and optimal alarm limits and estimated

the optimal threshold by analyzing the deadband and the characteristics of

process variables.

In the alarm management life cycle, periodic assessment of alarm system

performance is crucial, and one key aspect of this evaluation is the quantifi-

cation of alarm chatter. [33] proposed an index to quantify the alarm chatter

based on run-length distributions derived from the historical alarm data. [40]

estimated the alarm chattering based on the distribution properties of both
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process variables and alarm parameters. [57] revised the index calculation for

alarm chatter by considering the number of available data samples.

Advanced methods have been proposed to ensure alarm rationalization and

prevent alarm overloading. [57, 58] introduced online techniques to eliminate

chattering alarms by alarm shelving, adjusting alam thresholds, or implement-

ing m-sample delay timers. [2] studied the time-deadband configurations for

univariate alarm systems that introduce a specific time interval before trigger-

ing or deactivating alarms. A modified concept of generalized delay timer was

introduced in [31] where additional alarm set points were introduced for pro-

cess variables to activate or deactivate alarms alongside consecutive samples.

[65] devolped a metric to assess the applicability of using either a delay timer

or an alarm deadband to address nuisance alarms. In addition, a methodology

for determining the optimal width of the deadband is introduced. Design of

delay timers based on probabiltiy distributions of alarm durations [62], design

of serially-connected alarm deadbands and delay timers [20], and design of

deadbands based on maximum amplitude deviations and Bayesian estimation

approach [61] are some of the recent approaches adopted to eliminate false

alarms. [21] proposed some extensions to the work conducted in [62] where

the design of both alarm trippoints and delay timers were considered to ad-

dress false and missed alarms. In addition, cummulative probabilities of alarm

durations was considered in this work.

Besides exploiting strategies involving delay timers and deadbands, there

have been alternative approaches proposed to alleviate the issue of alarm over-

loading. A machine Learning-based approach was used in [55] to predict and

quantify chattering alarms in chemical plants. This approach used three differ-

ent models (Linear, Deep, Wide&Deep) which were trained using the results

generated from the formulation of the dynamic chattering index based on

historical data. Some of the long-standing alarms are nuisance alarms and

significantly contribute to the overall high alarm rate. The main causes of

long-standing alarms were discussed in [59] and a dynamic state-based strat-
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egy was adopted to suppress such alarms. State-based alarming has gained

much attention for its efficiency in reducing nuisance alarms and prevent-

ing alarm floods. To simplify the implementation of state-based alarming, a

data-driven approach was introduced in [25] for detecting association rules of

mode-dependent alarms using A&E logs. Additionally, the design of ranking

order filters and median filters are some of the techniques exploited to reduce

false alarms and missed alarms.

Consequential or correlated alarms may also cause increased alarm rates.

In [26], detection of correlated alarms based on the distribution of random oc-

currence delays and quantification of alarm correlation by converting binary

alarm signals into continuous-valued pseudo-signals were demonstrated. The

block matching similarity method was proposed in [70] to estimate the corre-

lation coefficient from the time node sequences of alarms. Correlated alarms

were grouped in [7] using a word embedding technique coupled with a novel

clustering scheme and a multidimensional scaling method. A combination of

alarm log, process data, and connectivity analysis was used in [48] to isolate

consequential alarms originating from the same abnormality and to provide a

causal alarm suggestion. Also, a weighted fuzzy association rule mining [60]

approach to identify consequential alarms and data-driven trend analysis [36]

are some of the effective methods to ensure alarm rationalization.

1.3.2 Recent Advances in Alarm Flood Analysis Meth-
ods

Industrial processes are significantly endangered by alarm floods. There

are many causes of alarm floods. Nuisance alarms often co-exist with the

true alarm pattern [22, 67] in alarm flood sequences and distract the plant

operators. Through alarm rationalization or effective alarm system design,

alarm floods consisting of nuisance or false alarms can be effectively averted.

The industrial standard ANSI/ISA-18.2 [14] says that an alarm flood is present

when more than 10 alarms occur within a 10-minute time period for each

operator. However, alarm floods are often falsely detected due to the influence
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of chattering alarms and long-standing alarms. An algorithm based on a new

criterion was proposed in [64] to accurately detect alarm floods by eliminating

the influence of chattering and long-standing alarms in both online and offline

scenarios.

In recent years, research on effectively managing alarm floods has gained

much interest, leading to the exploitation of various data-driven and machine-

learning approaches. Frequent pattern mining methods, in particular, have

gained much attention. Such methods are used to discover interesting alarm

patterns that can be exploited in real-time for conducting root cause analy-

sis [3], implementing dynamic suppression of alarms, and facilitating decision-

making. For instance, a frequent pattern mining algorithm was implemented

in [56] to identify patterns of causally dependent notifications and remove

redundant information in decision-making. An itemset mining method was

proposed in [25] to detect frequent alarm patterns as candidates for dynamic

alarm suppression. [11] introduced an algorithm to discover closed frequent

temporal alarm patterns for the suppression of alarm floods. A sequential

pattern mining algorithm was proposed in [43] to facilitate root cause analysis

by identifying alarm sequential patterns. In [72], a modified CloFAST algo-

rithm was developed to extract closed sequential patterns from alarm flood

sequences.

Similarity-based approaches are commonly employed to recognize patterns,

extract contextual details, and predict alarm floods in advance. A modified

Smith-Waterman algorithm was developed in [10] to find local alignments

between alarm flood sequences. To improve the computational efficiency, ac-

celerated sequence alignment for alarm floods with set-based pre-matching,

priority-based scoring, and a seeding and extending strategy was proposed

in [27]. An accelerated sequence alignment method based on alarm match

analysis was proposed to assess the similarity of industrial alarm flood se-

quences [19]. [35] extended the pairwise sequence alignment algorithm to the

comparison of multiple alarm flood sequences. To compare alarm floods in
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cross-analogous processes, [71] invented a generalized pattern-matching ap-

proach based on word processing. Fault templates based on the presence of

fault-specific alarms [8] and based on weighted similarity measures [9] were

formed by pattern matching to provide fault-specific information to indus-

trial operators. Classification methods, such as the Bayesian classifier [38],

decision trees [12], deep recurrent neural networks (RNN) [13], and exponen-

tially attenuated component analysis (EACA) [51] were applied to conduct

classification of alarm floods and fault diagnosis.

Additionally, analyzing the root causes of the abnormal situations pro-

vides valuable insights, ultimately leading to improved operational efficiency

for plant operators. Bayesian networks were exploited in [16] to model the

underlying plant for capturing the root cause of faults. [28] introduced the

ideas of normalized TE (NTE) and normalized DTE (NDTE) to help infer

causal relationships from binary alarm data. [49] identified root causes using

a causal Bayesian network, where faults were considered interventions (ma-

nipulation of variables by an external agent). [29] introduced a novel method

for identifying the root causes of alarm floods by adopting a few-shot learning

framework, an adaptive weighting strategy, and a similarity analysis approach.

Most of the above techniques are more suitable for offline analysis of alarm

floods. In practice, assisting operators during an ongoing alarm flood situation

(where alarms appear one by one in a sequential order) is a critical task and

also a challenging issue. The online analysis of alarm floods mainly aims at

providing decision support for plant operators to judge the root cause, predict

incoming alarms, and make correct responses. Providing real-time assistance

to operators with context-specific guidance to manage alarm floods is a chal-

lenging task and requires a systematic approach. To address this, an online

pattern-matching algorithm with an incremental dynamic programming strat-

egy was utilized in [34] to extract similar alarm patterns from the historical

database as the incoming alarm flood sequence. Another approach presented

in [37] was the classification of an incoming alarm flood based on alarm co-
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activations. [69] exploited similar historical sequences to predict upcoming

alarms based on the Bayesian estimator. Classification based on a unique

representation of alarm floods was proposed in [51] where higher weights are

assigned to earlier alarms. [68] proposed a novel approach based on maximum

entropy to predict upcoming alarms during alarm floods. A semi-supervised

approach based on the Gaussian mixture model was proposed in [4] for early

classification of alarm floods. An operator assistance system based on the early

classification of alarm floods and a strategy for ranking alarms was proposed

in [5].

During alarm floods, it is difficult to respond efficiently without essential

information on the current and upcoming alarms, especially when the alarm

rate is significantly high. Moreover, the presence of nuisance alarms may

hide the true alarm pattern of an underlying abnormality. Additionally, some

alarms associated with an alarm pattern may not appear in some scenarios.

Accordingly, the alarm floods caused by the same underlying abnormality may

have discrepancies in their sequences of alarms. Such misleading information

may suggest wrong corrective actions during an ongoing alarm flood. Further,

the ongoing situation may deviate from the existing historical sequences that

were initially deemed similar by including a different set of alarms. In such

cases, the plant operators may not have the necessary information to efficiently

respond, leading to a significant deterioration of the current situation. Also,

accuracy and earliness in corrective actions are important for the operational

efficiency of the plant operators in such situations. Therefore, real-time deci-

sion support in alarm flood situations is in great demand, as it assists plant

operators in judging the root causes and taking corrective actions. However,

considering these challenges, the current state of research on online alarm

flood analysis is still limited, with several aspects yet to be explored. This

motivated us to pursue further research in this area.
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1.4 Thesis Contributions

To address the challenges associated with online alarm flood analysis, this

thesis focuses on developing data-driven approaches to provide real-time as-

sistance to industrial operators during alarm floods. The contributions of this

thesis are outlined as follows:

� In Chapter 2, we propose an online similarity analysis of alarm flood

sequences based on the Smith-Waterman and Needleman-Wunsch algo-

rithms. To address the ambiguity in alarm orders caused by small time

gaps, the order ambiguity tolerance strategy from [10] is integrated into

both methods. An online similarity with an incremental strategy is de-

veloped. The differences between the two methods are provided, and the

application conditions for the two basic sequence alignment methods in

the context of alarm system management are summarized.

� In Chapter 3, we propose a real-time similarity analysis method to com-

pare an incoming alarm flood with historical sequences in an incremen-

tal manner. To avoid unnecessary computation for irrelevant alarms,

an online set-based indexing and extension strategy is proposed. On-

line pre-matching mechanisms based on plant units and alarm sets are

proposed to exclude irrelevant alarm flood sequences. Additionally, a

ranking strategy is proposed to export and update the list of similar

alarm flood sequences from historical database.

� In Chapter 4, we propose an online alarm prediction algorithm to pre-

dict upcoming alarms at the early stage of the ongoing alarm flood. A

Compact Prediction Tree (CPT) model is modified with new features,

namely, the timetable and co-occurrence matrix, and constructed based

on historical alarm sequences. An alarm relevancy detection strategy

is designed to identify and eliminate irrelevant alarms from the ongoing

alarm flood. The confidence intervals of the time differences between the

subsequent predicted alarm events are determined for time prediction.
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� In Chapter 5, we propose a reinforcement learning approach for the early

prediction of industrial alarm floods. The early prediction of industrial

alarm floods is framed as a partially observable Markov decision pro-

cess (POMDP). To optimize the accuracy and effectiveness, the double

deep-Q network (DDQN) algorithm is adopted with a modified learning

process. Furthermore, we propose a sequence reconstruction strategy

based on association rule mining to eliminate irrelevant alarms and gen-

erate potential online scenarios based on the existing alarm relations

present in the historical sequences. The training set is formulated based

on several novel criteria for effective learning of the algorithm.

1.5 Thesis Outline

The remainder of the thesis is organized as follows: Chapter 2 presents

an online similarity analysis of alarm floods using the Smith-Waterman and

Needleman-Wunsch algorithms, highlighting their distinctions and application

conditions. In Chapter 3, a real-time pattern-matching approach is introduced

for the early prediction of alarm floods by searching for similar alarm flood

sequences and generating a ranking list based on similarity scores. Chapter 4

introduces a novel association rule mining approach for real-time prediction of

alarm events and their corresponding annunciation times during alarm flood

situations. Chapter 5 proposes a reinforcement learning (RL) approach to pre-

dict incoming alarm floods and provide real-time assistance to plant operators

in the early stages of an ongoing alarm flood. Finally, Chapter 6 concludes

the thesis and presents potential future research directions.
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Chapter 2

Comparison of the
Smith-Waterman and
Needleman-Wunsch Algorithms
for Online Similarity Analysis of
Industrial Alarm Floods

In this chapter, we propose an online similarity analysis of industrial alarm

floods based on sequence alignment algorithms: the Smith-Waterman and

Needleman-Wunsch algorithms. During an alarm flood situation, industrial

operators often get confused by too many alarms and thus have difficulties in

observing and handling critical alarms. In recent years, sequence alignment

based similarity analysis has emerged as an effective way to handle alarm

floods. Alarm floods caused by the same fault are very likely to consist of

the same group of alarms in a certain sequential order. Conducting real-time

sequence alignment of industrial alarm floods can help operators quickly recall

the root cause and take prompt corrective actions. This chapter presents the

online similarity analysis of alarm floods based on the Smith-Waterman and

Needleman-Wunsch algorithms and compares their differences and application

conditions. Case studies are provided to illustrate the proposed online similar-

ity analysis methods and the differences between the two sequence alignment

algorithms.
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2.1 Similarity Analysis of Alarm Floods

This section introduces the problem of similarity analysis of alarm floods,

provides basics on the Smith-Waterman algorithm and the Needleman-Wunsch

algorithm, presents the online implementation of the sequence alignment of

alarm floods, and summarizes the differences and application conditions of the

two methods.

2.1.1 Problem Description

An alarm flood consists of an influx of sequentially ordered alarms; each one

is described by a unique tag name, alarm identifier, priority, and time stamp.

A pair of alarm flood sequences can be represented by A = [a1, a2, ..., aM ] and

B = [b1, b2, ..., bN ], where M and N indicate the numbers of alarms appeared

in sequences A and B, respectively. Each element in A or B can be represented

by its unique alarm tag, timestamp, and priority. For example, ai indicates

the ith alarm of the alarm flood A, and can be represented by its attributes as

ai = [ei, ti] where ei and ti are the alarm tag and time stamp of ai, respectively.

In the context of alarm management, similarity analysis is a process of

quantifying the similarity between alarm flood sequences by locating the sim-

ilar segments or aligning the common alarm tags from both sequences. Basic

sequence alignment methods, such as the Smith-Waterman algorithm and the

Needleman-Wunsch algorithm, provide optimal local and global alignments

along with the similarity scores between alarm flood sequences. A high sim-

ilarity score indicates the presence of a large number of common alarm tags

in both alarm flood sequences in the same chronological order. In practice,

the reoccurrence of a fault usually leads to similar alarm floods consisting of

almost the same group of alarms in a certain sequential order. By perform-

ing online similarity analysis, similar alarm floods can be extracted from the

historical database and grouped to assist industrial operators in root cause

analysis and early fault diagnosis.

Given an incoming alarm flood, the problem is how to compare it with
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historical sequences and find the most similar one, so as to predict alarms in

the alarm flood and also to help with the root cause analysis. Different from

offline applications, the sequence of an alarm flood increases with time. There-

fore, the online similarity analysis is not a one-time comparison; instead, the

comparison needs to be conducted iteratively with the increments of alarms.

Therefore, this chapter proposes the online similarity analysis of alarm flood

sequences based on the Smith-Waterman and Needleman-Wunsch algorithms.

The ambiguity tolerance strategy in [10] is integrated with the two methods to

tolerate the ambiguity of alarm orders caused by small time gaps. An online

similarity with an increment strategy is developed. The differences between

the two methods are provided, and the application conditions for the two basic

sequence alignment methods in the context of alarm system management are

summarized.

2.1.2 Sequence Alignment Algorithms

This subsection introduces the basics of the Smith-Waterman algorithm

(SWA) and the Needleman-Wunsch algorithm (NWA), as well as the time

ambiguity tolerance strategy.

Smith-Waterman Algorithm

The Smith-Waterman algorithm is a dynamic programming method that

provides optimal local alignment. It was first proposed in [53] and modified

in [10] by integrating a time ambiguity tolerance strategy for offline alarm

flood pattern matching. As the original Smith-Waterman algorithm does not

require time stamps, alarm floods can be represented as sequences of alarm

tags, namely, A = [a1, a2, ..., aM ] and B = [b1, b2, ..., bN ], where ap and bq are

alarm tags with p = 1, 2, · · · ,M , q = 1, 2, · · · , N ; M and N are the lengths

of sequences A and B. Symbols Ai:m and Bi:n denote the segments of A and

B, respectively. The algorithm identifies the optimal segment pair which has
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the highest similarity score, i.e., S(A,B) defined as

S(A,B) = max
1⩽i⩽m⩽M,1⩽j⩽n⩽N

(W (Ai:m, Bj:n), 0) (2.1)

where W (Ai:m : Bj:n) indicates the similarity index of the pair of segments

(Ai:m, Bj:n). The SWA generates an index matrixH with each elementHp+1,q+1

for a pair of alarms ap and bq calculated by

Hp+1,q+1 = max{Hp,q + S(ap, bq), Hp,q+1 + δ,Hp+1,q + δ, 0}, (2.2)

where p = 1, 2, · · · ,M , q = 1, 2, · · · , N , and δ is the gap penalty score. The

initial values in the first row and the first column of H are set as H1,1 =

0, Hp+1,1 = 0, H1,q+1 = 0. The highest value of H is regarded as the similarity

index between A and B. The optimal local alignment is found through a

trace-back procedure that starts from the position with the highest value in

H and ends with the position with zero in H.

Needleman-Wunsch Algorithm

The Needleman-Wunsch algorithm (NWA) was originally proposed in [42].

Unlike the SWA, it provides optimal global alignment, namely, end-to-end

alignment between two sequences. The algorithm generates an index matrix

H with each element Hp+1,q+1 for a pair of alarms ap and bq calculated by

Hp+1,q+1 = max{Hp,q + S(ap, bq), Hp,q+1 + δ,Hp+1,q + δ}, (2.3)

where p = 1, 2, · · · ,M and q = 1, 2, · · · , N . The initial values in the first row

and the first column of H are set as H1,1 = 0, Hp+1,1 = pδ and H1,q+1 = qδ.

Following the calculation of H, the trace-back procedure starts from the lower

rightmost corner of H, which might not necessarily be the highest value in H.

It switches to the upper diagonal, left, or upper vertical element depending on

which of the elements has the highest value. In this way, the trace-back pro-

cedure continues until reaching the upper leftmost element. Moving forward

through the identified elements from the trace-back procedure, the optimal

global alignment is found.
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Time Ambiguity Tolerance Strategy

Due to random detection delays, the orders of the physically connected

alarms might be different in alarm flood sequences. To remove the discrepancy

of orders, a time ambiguity tolerance strategy was proposed in [10]. In this

strategy, a time distance vector for the nth alarm an in the alarm flood sequence

A is dn = [dn1dn2....dnK ]
T with each element given by

dkn =

{
min

1⩽j⩽m
{|tn − tj| : eaj = k} if the set is not empty

∞, otherwise
(2.4)

where k = 1, 2, · · · , K represents the index of a unique alarm type and K

denotes the total number of unique alarm types. In the time distance vector, dkn

denotes the time gap between the nth alarm and the nearest alarm with alarm

type k. The time weight vector for the nth alarm is wn = [w1
nw

2
n....w

k
n]

T , where

wk
n = f(dkn). In the comparison of two sequences, the weighting functions to

calculate the time weight vectors are different. For one sequence, the weighting

function f(·) can be selected as a scaled Gaussian function f(dkn) = e
dk

2
n

2σ2 ,

where σ denotes the kernel bandwidth in terms of the time difference. For

the other sequence, the weighting function f(·) is f(dkn) = 1 if dkn = 0 and

f(dkn) = 0 if dkn = 1. The similarity score S(am, bn) for an alarm pair am and

bn can be redefined by incorporating the time weights of corresponding alarms

in both sequences [10]:

S((em, tm), (en, tn)) = max
1⩽k⩽K

[wk
m × wk

n](1− µ) + µ, (2.5)

where wk
m and wk

n are the time weight vectors of alarm tags em and en; µ is the

mismatch score. Replacing the original similarity score in eqs (2.2) and (2.3)

with the redefined similarity score of eq (2.5), both the SWA and NWA are

capable of tolerating the ambiguity of orders caused by short time differences.

2.1.3 Online Similarity Analysis of Alarm Floods

This subsection presents a systematic online similarity analysis method,

which exploits the sequence alignment algorithms to compare an incoming
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alarm flood sequence with each historical alarm flood sequence. Different from

the offline comparison, the length of online alarm flood sequence is increasing.

The comparison starts with the triggering of an alarm flood. The detection

of an alarm flood is based on the counting of annunciated alarms in a sliding

window of 10 min. The alarm rate over a 10 min time window can be denoted

as ε. Then, an alarm flood is said to be present if ε ≥ εth, where εth denotes the

threshold to identify alarm floods. According to the ANSI/ISA-18.2 standard

[30], εth can be set as 10 alarms over a 10 min time window for each operator,

i.e., εth = 10.

With the triggering of an alarm flood, the initial online alarm flood se-

quence Af is obtained by including all alarms in the past 10 min time window

before the triggering time point. To compare Af of length M̃ with a historical

alarm flood sequence B of length N , the sequence alignment algorithms can

be applied. Given the initial sequence Af , the initial index matrix Hf of size

M̃ × N is obtained based on eqs (2.2) and (2.3). Then, once a new alarm ã

is annunciated, it will be added to Af , i.e., Af = [Af , ã]. Using the SWA to

update the matrix H, an initial value HM̃+1,1 = 0 is firstly set. Then, each

element in the M̃ + 1 row of H is calculated by

HM̃+1,q+1 = max{HM̃,q + S(ã, bq), HM̃,q+1 + δ,HM̃+1,q + δ, 0}, (2.6)

where q = 1, 2, · · · , N . Analogously, using the NWA to update the matrix H,

an initial value HM̃+1,1 = M̃δ is firstly set. Then, each element in the M̃ + 1

row of H is calculated by

HM̃+1,q+1 = max{HM̃,q + S(ã, bq), HM̃,q+1 + δ,HM̃+1,q + δ}, (2.7)

The calculation proceeds to the next iteration when another new alarm ap-

pears. The length of the online alarm flood sequence Af is updated by

M̃ = M̃ + 1.

The above iterative calculation is based on the assumption that the new

alarms are annunciated and added to the sequence one by one. However, it is

not uncommon to see that several alarms may appear almost simultaneously.
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Or, it is also possible that the next new alarm appears before the calculation

of HM̃+1,q+1 for the current alarm ã is completed. In such cases, denote the

group of new alarms as [ã1, ã2, · · · , ãL]. Then, they will be added to Af , i.e.,

Af = [Af , ã1, ã2, · · · , ãL]. To update the matrix H, the new added part is

calculated for [ã1, ã2, · · · , ãL] and B. The values of HM̃,1, HM̃,2, · · · , HM̃,N are

known in H. The initial values of HM̃+1:M̃+L,1 are set as HM̃+1,1 = 0, HM̃+2,1 =

0, · · · , HM̃+L,1 = 0 for the SWA, and set as HM̃+1,1 = M̃δ,HM̃+2,1 = (M̃ +

1)δ, · · · , HM̃+L,1 = (M̃ +L− 1)δ for the NWA. Using the SWA, the matrix H

is then updated by adding L rows with each element calculated by

HM̃+p,q+1 =max{HM̃+p−1,q + S(ãp, bq), HM̃+p−1,q+1 + δ,

HM̃+p,q + δ, 0},
(2.8)

where q = 1, 2, · · · , L and q = 1, 2, · · · , N . Analogously, using the NWA, the

matrix H is updated by

HM̃+p,q+1 =max{HM̃+p−1,q + S(ãp, bq), HM̃+p−1,q+1 + δ,

HM̃+p,q + δ},
(2.9)

Then, the calculation proceeds to the next iteration when new alarms appear,

and the length of the online alarm flood sequence Af is updated by M̃ = M̃+L.

It can be seen that the updating strategies in eqs. (2.6) and (2.7) are special

cases of those in eqs. (2.8) and (2.9), respectively. The iterative calculation

continues until the alarm rate drops to a low value, i.e., less than or equal to 5

alarms in a 10-minute time period according to the ANSI/ISA-18.2 standard

[30].

2.1.4 Comparisons of Methods

The major differences between the two sequence alignment algorithms

(namely, the SWA and the NWA) for similarity analysis of alarm flood se-

quences lie in the following aspects:

1. Way of optimal alignment : The SWA performs local alignment, i.e.,

finding the optimal local sub-sequence pair between two alarm flood
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Figure 2.1: Analysis on sequence alignment by comparing one alarm flood
sequence with other five sequences of different lengths.

sequences. The NWA, on the other hand, provides the optimal global

alignment, i.e., end-to-end alignment.

2. Initialization: The SWA initializes the scoring matrix by assigning zero

values to its first row and first column. The NWA, on the other hand,

adds a gap for each shift to the right in the first row and each shift

downward in the first column.

3. Similarity score: In the NWA, the similarity score between the alarm

tags can be either positive or negative. For the SWA, the negative

similarity score is set to zero.

4. Length of optimal alignment : For a pair of alarm flood sequences, the

length of the optimal local alignment using the SWA will always be

smaller than that of the optimal global alignment using the NWA. It

should be noted that there could be more gaps in the alignment results

using the NWA.

5. Trace back procedure: To find the optimal local alignment using the

SWA, the trace-back starts from the maximum value and ends with an

element equal to zero in the score index matrix. To find the optimal

global alignment using the NWA, the trace-back starts from the lower

rightmost element and ends at the upper leftmost element of the score

index matrix.
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6. Application: The NWA is more useful for alarm flood sequences of ap-

proximately similar lengths. The SWA can locally align any pair of alarm

flood sequences, but comparatively, more suitable for distantly related

alarm flood sequences. Recent applications to alarm system manage-

ment using the SWA and the NWA are briefly discussed in [27], [10], [34],

and [9].

Based on the above comparisons of the two basic sequence alignment algo-

rithms, each one has its merits and limitations. In real applications, one must

be careful in choosing the suitable method, especially for online similarity

analysis of alarm floods. The following aspects can be considered:

1) The sequence size may have a significant influence on the final alignment

results. In Fig. 2.1, an alarm flood sequence of length 26 was selected from

the historical database. Similarity analysis was performed with alarm flood

sequences of lengths 10, 11, 24, 35, and 45, respectively. It can be seen that

in the five cases, the numbers of aligned alarms using the NWA were larger

than those using the SWA. Meanwhile, the numbers of gaps in the aligned

sequence pair using the NWA were also much greater than those using the

SWA. In other words, the NWA performed much better than the SWA with

respect to the number of aligned alarms, but performed much worse than

the SWA with respect to the number of gaps. In fact, the SWA provides

good local alignments with significantly fewer gaps, and it will be easier to

locate similar alarm tags from optimal local alignment between alarm flood

sequences of extreme lengths. Given two alarm flood sequences with very

different lengths, the SWA usually performs better in locating the common

subsequence if the short alarm flood sequence is actually a portion of another

alarm flood sequence caused by multiple faults or involving a larger area.

Given that two alarm flood sequences do not have very different lengths, the

NWA could be more suitable if the purpose is to find a maximum number of

common alarms in a certain sequential order regardless of gaps.

2) The number of repeating alarms in the alarm flood may influence the
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quality of sequence alignment. Repeating alarms may exist in the alarm flood

sequences due to the effect of random noises or disturbances in the process

signals. Due to the presence of repeating alarms, it becomes difficult for

the SWA to find a good local alignment between the sequences because the

repeating alarms may lead to a large number of gaps, which makes the score

in the index matrix H quickly drops to zero. Therefore, the SWA may only

find a short segment of aligned subsequence pair between two alarm floods.

By contrast, the NWA can output an end-to-end sequence alignment result.

Even if there are many gaps caused by the presence of repeating alarms, the

NWA can find all aligned alarms in the final alignment result. Therefore, the

influence of the repeating alarms in the sequence alignment using the NWA is

minor, making the NWA more suitable in the application of such cases.

Table 2.1: Alarm Flood Sequence

2.2 Case Studies

This section provides case studies to illustrate the online similarity analysis

of alarm floods and the differences between the two sequence alignment algo-

rithms in applications. The well-known Tennessee Eastman Process (TEP)

was used to produce the alarm flood data for simulations. Table 2.1 shows an
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example of an alarm flood sequence consisting of alarm tags and their time

stamps. For the ease of computation, the alarm tags in the alarm flood se-

quence are encoded into numeric symbols. The two numbers before and after

the decimal point represent the process tag and the alarm identifier, respec-

tively.

For the online simulation, alarms in the online alarm flood sequence were

raised in a chronological order; the scoring matrices, along with the time

distance and time weighting matrices, were updated simultaneously for both

algorithms. To avoid mismatches in the alignment results, set |δ| < 0.5|µ|,

such that gaps are included to replace mismatches. In the following case

studies, the optimal and global alignments between various types of alarm

flood sequences using SWA and NWA are presented.

2.2.1 Case I: Online Similarity Analysis between Alarm
Flood Sequences of Different Lengths

Fig 2.2 shows the optimal local and global alignment between the alarm

flood sequences of different lengths. In the optimal global alignment using the

NWA, it can be observed that the end-to-end alignment between the alarm

flood sequences found more matched alarm tags, compared to that of the opti-

mal local alignment using the SWA. However, NWA introduced a large number

of gaps to provide the end-to-end alignment, which significantly reduced the

similarity score and increased the length of the optimal global alignment. On

the contrary, the SWA provides a good local alignment with significantly fewer

gaps. Thus, if the preference is to find a good local pattern with alarms ap-

pearing in a tight sequential order, the SWA is more suitable. If preference is

to extract maximum number of matched alarms regardless of gaps, the NWA

performs much better in view of a much larger number of matched alarms.
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2.2.2 Case II: Online Similarity Analysis between Alarm
Flood Sequences with Repeating Alarms

Optimal local and global alignments between alarm flood sequences with

repeating alarms using online similarity analysis are illustrated in Fig 2.3. In

both alarm flood sequences, alarm tag 19.1 has multiple appearances. It can

be observed that, compared to the optimal local alignment, more matched

alarm tags were found in the optimal global alignment using the NWA. Both

the SWA and the NWA, with the time ambiguity tolerance strategy, include

alarm tags 19.1 and 19.4 in the optimal alignment results even though the

orders of appearance were different in each sequence. If the preference is given

to a type of alignment which shows the end-to-end alignment along with the

pattern of repeating alarms between the alarm flood sequences, then finding

an optimal global alignment using NWA is more suitable in such a case.

2.3 Summary

This chapter addressed the problem of selecting the suitable sequence align-

ment algorithm for the comparison of alarm floods in practice, especially for

online implementation. Motivated by this question, an online similarity anal-

ysis of alarm floods based on the Smith-Waterman and Needleman-Wunsch

algorithms is presented in this chapter. Initially, the chapter introduced the

challenges of similarity analysis for alarm floods and provided the basics on

the Smith-Waterman and the Needleman-Wunsch algorithms. Subsequently,

a systematic method for online similarity analysis is presented, which is based

on these sequence alignment algorithms to compare an incoming alarm flood

sequence with each historical alarm flood sequence. Furthermore, the chap-

ter briefly discusses the key differences between the Smith-Waterman and the

Needleman-Wunsch algorithms, along with their respective suitability for sim-

ilarity analysis of alarm flood sequences under different conditions. The effec-

tiveness of each method in online similarity analysis is demonstrated through

case studies, considering various criteria for alarm flood sequences.
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Figure 2.2: Alarm flood sequence alignment results for two alarm flood se-
quences of different lengths.
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Figure 2.3: Alarm flood sequence alignment results for two alarm flood se-
quences with repeating alarms.
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Chapter 3

Real-time Pattern Matching
and Ranking for Early
Prediction of Industrial Alarm
Floods

In this chapter, we propose a real-time pattern matching approach for the

early prediction of alarm floods by searching for similar alarm flood sequences

and exporting a ranking list based on the similarity score. An alarm flood is

known as a condition in which the number of alarms is more than the operator

can manage effectively. As a result, an operator has difficulties in identifying

and responding to critical alarms. If corrective actions are not taken timely,

especially at the early stage of an alarm flood, the situation may get worse and

cause more serious consequences. Therefore, how to assist operators during

the ongoing alarm flood situation is a critical problem to solve. Accordingly,

this chapter presents a new method to search for similar alarm floods and

export a ranking list, so as to provide decision supports for plant operators to

judge the root cause and make corrective responses based on the knowledge

about the most similar historical alarm floods. Initially, online pre-matching

mechanisms based on plant units and alarm sets are proposed to exclude irrel-

evant alarm flood sequences. Then, a real-time similarity analysis method is

developed to compare an incoming alarm flood with historical sequences in an

incremental manner. To avoid unnecessary computation for irrelevant alarms,
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an online set-based indexing and extension strategy is proposed. Finally, a

ranking strategy is proposed to export and update the list of similar alarm

flood sequences from historical database. The effectiveness of the proposed

method is demonstrated by an industrial case study based on real alarm &

event logs from a refinery plant.

3.1 Problem Description

This section introduces the alarm flood problem and the framework of

real-time pattern matching to provide decision supports, and also presents

the detection and representation of alarm flood sequences.

3.1.1 Industrial Alarm Floods

In an alarm system, each alarm is typically described by several attributes,

such as the tag name, alarm identifier, and plant unit, which are usually all

known and well configured in the system. Whenever an abnormality occurs,

the associated alarms are annunciated and presented to the operators, and

meanwhile are historized as time-stamped events in an Alarm & Event (A&E)

log. In this work, each alarm event ami is described by three attributes as:

ami = (emi , t
m
i , u

m
i ), (3.1)

where emi ∈ A, tmi , and umi ∈ U indicate the alarm tag, time stamp, and plant

unit of ami , respectively. Here, A represents the set of all unique configured

alarm tags in an alarm system; U denotes the set of associated plant units for

all alarms in A, and each unique alarm tag e in A must be configured with a

certain unit u in U to indicate where it is from.

Alarm floods can be identified from the historical A&E log by comparing

the alarm rate with the benchmark thresholds in [30]. Then, the periods of

alarm floods are found, and the corresponding sequences are extracted [25].

Specifically, the alarm rate η(t) at any time instant t is calculated as the count

of alarm occurrences within a time window [t− β+1, t], where β is 600 s. An
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alarm flood is detected to start at t if the alarm system is not under an alarm

flood situation at t−1, and η(t) ≥ η1, where η1 denotes the threshold to mark

the beginning of an alarm flood, namely, η1 = 10 alarms in a period of 10 min

[14, 30]. The alarm flood situation exists until η(t) < η2, where η2 = 5 alarms

over a time window of 10 min. Here, an alarm flood sequence is obtained and

denoted by

Am =< am1 , a
m
2 , ....., a

m
|Am| >, (3.2)

where m stands for the numeric identifier of the alarm flood, and ami denotes

the ith (i = 1, 2, · · · , |Am|) alarm event in Am. The symbol | · | represents

the size of a sequence or set; here, |Am| is the number of alarm events in Am.

Meanwhile, related information such as the start time τ sm, the time length τ dm,

and the set Um of involved plant units, can also be extracted and historized.

It should be noted that the plant unit can be defined in different ways

depending on the context and functionality. This study assumes that the

plant unit is a piece of known information, which usually holds as plant units

are generally defined in system configuration and can be retrieved from the

historical data set. Meanwhile, each alarm in an alarm system is usually

assigned with the unit information as a key attribute. Then, the plant units

for an alarm flood is obtained as a set of plant units for all included alarms in

this flood sequence. Therefore, the involved unit set Um for alarm flood m is

a set of plant units given by

Um =

|Am|⋃
i=1

{umi }. (3.3)

The database of all historical alarm flood sequences is then represented by

H = {Am : m = 1, 2, · · · ,M}, where M is the number of alarm floods. For

each alarm flood sequence Am, other related data attributes, such as the start

time τ sm, the time length τ dm, and the set of involved plant units Um, are also

historized and used for real-time pattern matching of alarm floods.

It is noteworthy that chattering alarms must be reduced first prior to de-

tecting alarm floods because chattering alarms can lead to a high alarm rate
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and thus cause false detection of alarm floods. There exist many ways to re-

duce chattering alarms, such as using delay timers, which are well-established

techniques [25, 34]. Thus, this work is not going to discuss how to reduce chat-

tering alarms, and in the rest of this work, it is assumed that all chattering

alarms are reduced.

3.1.2 Problem Formulation of Real-time Pattern Match-
ing

In the presence of an ongoing alarm flood, the plant operators could be

distracted and stressed, because they have to face a large number of alarm

messages but have difficulty in identifying critical alarms from non-important

or irrelevant ones. If critical alarms are not correctly responded, the situation

may get worse. Thus, it is in great demand to provide real-time assistance for

plant operators to make corrective decisions in identifying and responding to

critical alarms on time. This work presents a real-time pattern matching and

ranking approach to find similar alarm floods from historical database and

export a ranking list based on the similarity score. As a result, the operator

can handle the ongoing alarm flood situation and mitigate its influence in

the early stage, by referring to the experience and key information in similar

historical alarm floods.

An ongoing alarm flood is formed at time instant t0 when the alarm rate

η(t0) reaches 10 alarms over a time window of 10 min. Denote the initial

ongoing alarm flood sequence as

B =< b1, b2, ....., bL >, (3.4)

where bi = (ebi , t
b
i , u

b
i), i = 1, 2, · · · , L; L denotes the number of alarm occur-

rences in [t0−599s, t0] of the ongoing alarm flood. As more alarms are coming

on, the ongoing alarm flood sequence is increasing. Given a sequence of newly

appeared alarms till time instant t1 after t0 as B̃ =< b′1, b
′
2, · · · , b′l >, the
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ongoing alarm flood sequence B is updated by

B = B ⊕ B̃

= < b1, b2, ....., bL, b
′
1, b

′
2, · · · , b′l >, (3.5)

where ⊕ denotes the extension of a sequence and l represents the number of

newly appeared alarms.

Then, the problem is how to find which alarm flood sequences from the

historical database H are similar to the ongoing alarm flood B. Hereby, the

similarity score S(B,Am) between B and each historical alarm flood sequence

Am must be calculated. According to many existing studies for offline alarm

flood similarity analysis in [9, 10, 27, 35, 71], such a similarity score can be

computed via sequence alignment approaches. To ensure the efficiency and

reliability of the real-time pattern matching of alarm floods, the following

issues must be handled:

Issue 1 The analysis is conducted online and thus is very time-sensitive. To

perform early prediction of alarm floods, the real-time pattern matching

must be executed efficiently.

Issue 2 The pattern matching is applied to an ongoing alarm flood sequence

that is increasing with more new alarms emerging over time. Thus, the

pattern matching must be conducted in an incremental manner.

Issue 3 Considering that alarm floods may assemble each other locally based

on different common subsequences, identifying only one historical alarm

flood holding the highest similarity score sometimes might be unauthen-

tic.

In view of the above problems, this work proposes a systematic method

to export reliable results as decision supports for operators under an ongoing

alarm flood situation. The framework of the proposed method is as follows:

Step 1 Plant unit based screening is applied to exclude irrelevant alarm floods

that originated from plant units different from the ongoing alarm flood

B.
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Step 2 Alarm set based pre-matching is applied to quickly judge which his-

torical alarm floods are similar to B, based on the principle that two

alarm flood sequences cannot be similar to each other given that their

alarm sets are not similar. This pre-matching step can further screen

out a significant number of dissimilar alarm floods.

Step 3 Incremental sequence alignment is devised to compare the ongoing

alarm flood sequence with screened historical sequences in an incremen-

tal manner without needing to compare the complete sequences over

again whenever new alarms appear. To accelerate the computation by

avoiding unnecessary alignment, an online set based indexing and exten-

sion strategy is proposed to exclude irrelevant segments of alarms from

the pattern matching.

Step 4 Dynamic ranking of similar alarm floods is proposed to update and

export the ranking list of similar historical alarm floods based on their

calculated similarity scores.

The first two steps solve the first issue, the 3rd step copes with issue 2, and

the 4th step addresses issue 3. The proposed method is executed whenever

η(t) ≥ η1. A ranking list of similar historical alarm floods is exported as the

final result and is updated whenever new alarms are annunciated along with

time. Such results are presented to plant operators to provide decision sup-

ports for them to recall the root causes and make corrective responses. The

iterative computation is completed once η(t) < η2 or the alarm flood problem

is solved. Detailed methods of each step are presented in the next section.

3.2 The Proposed Method

This section presents the proposed method, including the plant unit based

screening, alarm set based pre-matching, incremental sequence alignment, on-

line set based indexing and extension, as well as dynamic ranking of similar
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alarm floods.

3.2.1 Plant Unit Based Screening

In an industrial plant, a fault is usually originated from a specific place,

and causes an alarm flood consisting of consequential alarms from a few related

plant units rather than from the whole plant. Therefore, every alarm flood has

its own associated plant units. To measure whether alarm floods are similar

or not, one can firstly compare the associated units between two alarm floods,

as the set of unique units is much smaller than the set of unique alarms.

If the units are different, it is unnecessary to conduct sequence alignment,

which is more computationally expensive. Thus, in this study, the purpose

for exploiting the “plant unit” information is to screen out irrelevant alarm

floods as a pre-matching step, so as to avoid unnecessary sequence alignment

computation in later steps. Accordingly, given an online alarm flood sequence

B, it is unnecessary to directly compare it with all alarm floods in the historical

database H. Plant unit-based screening finds and excludes irrelevant historical

alarm flood sequences, by comparing the unit set UB of B with those of floods

in H.

At time instant t0 when an online alarm flood B is firstly triggered, the

associated unit set Ub of B is obtained as

Ub =

|B|⋃
i=1

{ubi}, (3.6)

where ubi denotes the plant unit of each alarm bi in B. Given a sequence of

newly appeared alarms B̃ =< b′1, b
′
2, · · · , b′l > added to B at t1, the associated

unit set Ub of B is updated by

Ub = Ub ∪
l⋃

i=1

{ũbi}, (3.7)

where ũbi is the plant unit of b′i in B̃.

Then, the unit-based similarity score, i.e., Sunit(Am, B) between Ub of B
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and Um of Am ∈ H is formulated as

Sunit(Am, B) =
|Ub ∩ Um|
|Ub ∪ Um|

. (3.8)

However, this equation ignores the frequency of alarm occurrences, i.e., each

plant unit is only counted once even if there are multiple alarms originated

from it. In view of this problem, an improved formulation of Sunit between Ub

of B and Um of Am ∈ H is formulated as

Sunit(Am, B) = 0, if Ub ∩ Um = ∅, (3.9)

else if Ub ∩ Um ̸= ∅,

Sunit(Am, B) =

√∑|B|
i=1 I

b
i ·

∑|Am|
j=1 I

m
j

|B| · |Am|
, (3.10)

where

Ibi =

{
1 if ubi ∈ Ub ∩ Um,
0 o.w.,

Imj =

{
1 if umj ∈ Ub ∩ Um,
0 o.w.

The unit-based similarity score Sunit(Am, B) ranges from 0 to 1. A larger

value of Sunit(Am, B) indicates a higher similarity in terms of plant units

between Am and B. In other words, the historical alarm flood sequence Am is

said to be similar to B in terms of plant units if Sunit(Am, B) > Γunit, where

Γunit is a user-defined threshold. A default value Γunit = 0 can be used as the

simplest case, implying that the comparison will proceed to the next step only

if there is at least one least one alarm in B coming from the same plant unit

of alarms in Am. The collection of historical alarm flood sequences from units

with B is obtained as

Hunit = {Am ∈ H, s.t., Sunit(Am, B) > Γunit} . (3.11)

With the addition of incoming alarms to the online alarm flood sequence B,

the unit-based similarity score Sunit(Am, B) will be recalculated and Hunit will

be updated.
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3.2.2 Alarm Set Based Pre-matching

The plant unit-based screening narrowed the comparison down to a smaller

set of historical alarm flood sequences that have alarms coming from the same

plant units as those in the online alarm flood B. Then, an alarm set based pre-

matching strategy is used to further find and exclude historical alarm flood

sequences that bear little similarity in terms of alarm tags with B. Given

Am ∈ Hunit and B, their corresponding alarm sets are Vm and Vb. Then, two

binary indexes Jm
j and J b

i are given as

J b
i =

{
1 if ebi ∈ Vb ∩ Vm,
0 o.w.,

Jm
j =

{
1 if emj ∈ Vb ∩ Vm,
0 o.w.

where ebi (emj ) is the alarm tag of the ith (jth) alarm event in B (Am); i =

1, 2, · · · , |B| and j = 1, 2, · · · , |Am|. Then, the alarm set-based similarity score

Sset between Vb of B and Vm of Am ∈ Hunit is formulated as

Sset(Am, B) = 0, if Vb ∩ Vm = ∅, (3.12)

else if Vb ∩ Vm ̸= ∅,

Sset(Am, B) =

√∑|B|
i=1 J

b
i ·

∑|Am|
j=1 J

m
j

|B| · |Am|
. (3.13)

The alarm set-based similarity score Sset(Am, B) ranges from 0 to 1. A

larger value of Sset(Am, B) indicates a higher similarity in terms of alarm sets

between Am and B. In other words, Am is said to be similar to B in terms

of alarm sets if Sset(Am, B) > Γset, where Γset is a user-defined threshold. A

default value Γset = 0 can be used as the simplest case, implying that the

comparison will proceed to the next step if B shares at least one common

unique alarm with Am. The collection of historical alarm flood sequences

sharing common alarms with B is obtained as

Hset = {Am ∈ Hunit, s.t., Sset(Am, B) > Γset} . (3.14)

With the addition of incoming alarms to the online alarm flood sequence B,

the alarm set-based similarity score Sset(Am, B) will be recalculated and Hset

will be updated.
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3.2.3 Incremental Sequence Alignment

To query B in Hset and measure the similarities, the sequence alignment

needs to be conducted online. The Smith-Waterman (SW) algorithm [52] and

Needleman-Wunsch (NW) algorithm [42] are the two basic sequence align-

ment approaches. Both of them can be used to measure the similarities

between alarm flood sequences. The former one performs local alignment,

while the latter provides optimal global alignment. In most existing stud-

ies [9, 10, 27, 35, 71], alarm flood sequences are complete and the sequence

alignment is conducted offline. In online applications, such methods cannot

be directly applied since the online alarm flood sequence B is increasing with

time. Thereby, this subsection proposes an incremental dynamic program-

ming strategy for sequence alignment of industrial alarm floods based on the

SW and NW algorithms.

The sequence alignment starts with the triggering of the online alarm flood

B at time instant t0 when it is detected η(t0) ≥ η1. Following the alarm

set-based pre-matching, B is compared with every historical sequence Am in

Am ∈ Hset. Then, an index matrix H of dimension (|B| + 1) × (|Am| + 1) is

initialized. Based on the SW algorithm, each element in H, namely, Hp+1,q+1

is calculated as

Hp+1,q+1 = max{Hp,q + s(bp, a
m
q ), Hp,q+1 + δ,Hp+1,q + δ, 0}, (3.15)

where p = 1, 2, ..., |B| and q = 1, 2, ..., |Am|. The initial values of H are

H1,1 = 0, Hp+1,1 = 0 (p = 1, 2, ..., |B|), and H1,q+1 = 0 (q = 1, 2, ..., |Am|).

s(bp, a
m
q ) is a basic similarity score between the pth alarm in B and qth alarm

in Am; s(bp, a
m
q ) = ϕ if ebp = emq , and s(bp, a

m
q ) = µ if ebp ̸= emq , where ϕ and

µ are the match and mismatch scores, respectively. The symbol δ is the gap

penalty score. Typically, ϕ > 0, µ < 0, δ < 0, and ϕ > max{|µ|, |δ|}. To

prefer gapped alignment instead of mismatches, it should set µ < 2δ < 0.

Analogously, based on the NW algorithm, Hp+1,q+1 is calculated as

Hp+1,q+1 = max{Hp,q + s(bp, a
m
q ), Hp,q+1 + δ,Hp+1,q + δ}. (3.16)
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where p = 1, 2, ..., |B| and q = 1, 2, ..., |Am|. The initial values of H are H1,1 =

0, Hp+1,1 = pδ (p = 1, 2, ..., |B|), and H1,q+1 = qδ (q = 1, 2, ..., |Am|). After

the sequence alignment is completed, the best alignment result is obtained by

a backtracking step [42, 52]. A sequence-based similarity score Sseq(Am, B) is

obtained as

Sseq(Am, B) =
Hmax

min{|B|ϕ, |Am|ϕ}
, (3.17)

where Hmax represents the highest value in H of size (|B| + 1) × (|Am| + 1).

The sequence-based similarity score Sseq(Am, B) ranges from 0 to 1; a larger

value of Sseq(Am, B) indicates higher similarity between Am and B in terms

of alarm sequences.

Then, given B̃ =< b′1, b
′
2, · · · , b′l >, namely, a sequence of newly appeared

alarms at t1 after t0, the sequence alignment is conducted in an incremental

way, i.e., the index matrix H of size (|B|+1)× (|Am|+1) will be updated by

index matrix H of of size (|B| + |B̃| + 1) × (|Am| + 1), where the additional

part is calculated by the SW algorithm as

H|B|+1+p,q+1 = max{H|B|+p,q + s(b′p, a
m
q ), H|B|+p,q+1 + δ,

H|B|+1+p,q + δ, 0}, (3.18)

where p = 1, 2, ..., |B̃| and q = 1, 2, ..., |Am|. The initial values in the first

column of H are H|B|+1+p,1 = 0, p = 1, 2, ..., B̃. Analogously, using the NW

algorithm to update the matrix H, the additional part is calculated as

H|B|+1+p,q+1 = max{H|B|+p,q + s(b′p, a
m
q ), H|B|+p,q+1 + δ,

H|B|+1+p,q + δ}, (3.19)

where the initial values in the first column of H areH|B|+1+p,1 = (|B|+p)δ, p =

1, 2, ..., B̃. The sequence based similarity score Sseq is updated by substituting

the highest value Hmax in the updated H of size (|B|+|B̃|+1)×(|Am|+1) into

eqn. (3.17). The calculation proceeds to the next iteration when another series

of new alarms appear. Real-time sequence alignment will continue to updateH

incrementally for the incoming group of alarms until the alarm flood situation

terminates, i.e., when the alarm rate drops below 5 alarms in 10 minutes time

period. It is noteworthy that the above incremental computation of H is
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conducted based on alignment results between B̃ and Am other than between

B ⊕ B̃ and Am; it avoids comparing the whole online sequence B = B ⊕ B̃

with Am in the iteration, and thus saves computational time.

In an alarm system, it is possible that alarms arise almost simultaneously

but have different orders in alarm floods. To address the discrepancy of orders,

a time ambiguity tolerance strategy in [10] is adopted and modified here. The

basic similarity score s(bp, a
m
q ) in eqns. (3.15) and (3.16) is reformulated as

s(bp, aq) = max
1≤k≤K

[wk
q ](ϕ− µ) + µ (3.20)

where wk
q is the time weight and K represents the number of unique alarm

tags in Am, namely, K = |Vm|. The time weight wk
q is calculated as follows: A

time distance vector for the qth alarm aq in Am is obtained as [d1q, d
2
q, · · · , dKq ]T

with each element given by dkq = min1≤k≤K{|tq − tj| : eaj = V k
m}, where V k

m

represents the kth unique alarm tag in Vm. Then, a time weighting vector

for aq in Am is obtained as [w1
q , w

2
q , · · · , wK

q ]T with each element given by

wk
q = f(dkq), where f(·) is a weighting function; a suitable option is the scaled

Gaussian function f(x) = e−
x2

2σ2 [10], where σ represents the kernel bandwidth

in terms of the time difference. It should be noticed that the time distance

vector is only calculated for alarms in Am rather than B, i.e., it only considers

the time information in Am in the time ambiguity tolerance. This is reasonable

since the online sequence B is increasing, and the time distance vector needs

to be recalculated again with the addition of new alarms, thus increasing the

computational burden. Therefore, this work proposes to calculate only the

time distance vector for Am and obtain a time weighting matrix W as

W =


w1

1 w1
2 · · · w1

|Am|
w2

1 w2
2 · · · w2

|Am|
...

...
. . .

...
wK

1 wK
2 · · · wK

|Am|

 , (3.21)

which is calculated offline and historized with the alarm flood database H.

Accordingly, the calculation of eqn. (3.20) becomes straightforward and is

much reduced.
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3.2.4 Set Based Indexing and Extension

The incremental sequence alignment in Section 3.2.3 measures the sequence

based similarity between the online flood and each historical sequence Am ∈

Hset. However, it is noteworthy that even though Am ∈ Hset shares some

common alarm tags with B, it may still be possible that most alarms between

the two could be distinct, which leads to unnecessary computation in sequence

alignment, especially in cases where the lengths of historical sequences are

significantly larger than B. To overcome this problem, a set based indexing

and extension strategy is proposed to exclude irrelevant subsequences from

each historical alarm flood sequence Am ∈ Hset in sequence alignment.

As presented in Section 3.2.2, a binary index Jm
j is obtained to indicate

whether the jth alarm in Am is a common tag also present in B, where j =

1, 2, · · · , |Am|. Then, sequence alignment is conducted to compare B with a

subsequence A′
m of Am rather than the complete Am. Such a subsequence A′

m

is represented by

A′
m =< am1 , a

m
2 , · · · , amΨ >, (3.22)

where Ψ is an integer ranging between 1 and |Am|; it represents the last

position of common alarms in Am, i.e.,

Jm
Ψ = 1 and Jm

j = 0, ∀j > Ψ. (3.23)

Therefore, at the triggering time instant t0 of the online flood B, the initial

index matrix H of dimension (|B|+1)× (Ψ+ 1) is obtained using eqn. (3.15)

or (3.16). Then, with the increasing of B at t1, the binary index Jm
j for alarms

in Am is updated by checking whether emj belongs to V ′
b ∩ Vm, where V ′

b de-

notes the set of the newly appeared sequence of alarms B̃ =< b′1, b
′
2, · · · , b′l >.

Accordingly, Ψ is then recalculated as Ψ′ based on Jm
j , j = 1, 2, · · · , |Am|, and

the subsequence A′
m is extended by including more alarms, i.e.,

A′
m =< am1 , a

m
2 , · · · , amΨ , amΨ+1, a

m
Ψ+2, · · · , amΨ′ > . (3.24)

Accordingly, the index matrix H is extended in two directions and will be
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updated by H of size (|B| + |B̃| + 1) × (Ψ′ + 1). To illustrate the online

set-based indexing and extension strategy, an example is presented here.

Example 1. Denote a time stamped historical alarm sequence as Am =<

(5, 2), (6, 3), (2, 7), (5, 7.8), (4, 10), (6, 13), (2, 15.5), (8, 17) > and an incoming

alarm sequence as B =< (7, 2), (5, 5) >. Here, the first and second num-

bers in each bracket denotes the alarm tag and the time stamp, respec-

tively. For simplicity, the unit information is not used here and thus is

omitted. The match score, mismatch score, and gap penalty are set as 1,

-0.5, and -0.2, respectively. Initially, Am and B share one common alarm

tag 5. At the current time instant t0, the last position of the common alarm

tag 5 in Am is 4, namely, Ψ = 4. Thus, a sub-sequence A′
m is formed as

A′m =< (5, 2), (6, 3), (2, 7), (5, 7.8) > from Am. As shown in Fig 3.1-a, se-

quence alignment is performed between Am
s and B where only block 1 is com-

puted. At time instant t1 when a new alarm B̃ =< (6, 8) > appears, it is

obtained that Ψ′ = 6 and A′m =< (5, 2), (6, 3), (2, 7), (5, 7.8), (4, 10), (6, 13) >.

Then, as shown in Fig 3.1-b the sequence alignment updates the index matrix

H by computing both block 2 and block 3 in two directions. Such a block-

wise computation is effective in reducing unnecessary computation in sequence

alignment.

3.2.5 Dynamic Ranking of Similar Alarm Floods

After obtaining the three similarity scores, namely, the plant unit-based

similarity Sunit, the alarm set-based similarity Sset, and the sequence based

similarity Sseq, all alarm floods in the historical database H are ranked, such

that historical alarm floods most similar to the online flood B can be easily

observed from the top of the ranking. Here, the ranking is achieved based on

Sunit, Sset, and Sseq, according to the following criteria:

� The sequences are ranked in a descending order of the sequence based

similarity Sseq.

� If two historical sequences hold the same Sseq, their ranking will be based
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Figure 3.1: An example of set-based indexing and extension strategy: (a) the
initial index matrix H at t0; (b) the updated index matrix H at t1 with an
additional alarm included in the incoming sequence B.

on the alarm set-based similarity Sset.

� If two historical sequences hold the same Sseq and the same Sset, their

ranking will be based on the plant unit-based similarity Sunit.

It should be noticed that two pre-matching steps are implemented first to

screen out alarm floods prior to conducting sequence based similarity analysis;

thus, the following conclusion is observed:{
Sset(Am, B) = 0, Sseq(Am, B) = 0, ∀Am /∈ Hunit,
Sseq(Am, B) = 0, ∀Am ∈ Hunit, Am /∈ Hset.

(3.25)

A ranking list R of reordered historical alarm flood sequences is then gen-

erated as

R = [A′
1, A

′
2, · · · , A′

M ]T , (3.26)

44



Algorithm 1 Real-time pattern matching and dynamic ranking algorithm.

1: Input Arguments: H, W
2: Output Argument: R
3: Calculate η(t) at t after reducing chattering alarms
4: if η(t) ≥ η1 and ψ(t− 1) = 0 then
5: t0 = t
6: ψ(t) = 1
7: Obtain B in [t0 − 599, t0]
8: S = h(H,W,B)
9: Obtain R based on Sunit, Sset, and Sseq in S
10: Υ(t0) = t− t0
11: else if ψ(t) = 1 then
12: ψ(t) = ψ(t− 1)
13: t1 = t
14: if t1 = t0 +max{T,Υ(t0)} then
15: t0 = t1
16: if Υ(t) ≤ T then
17: Obtain B̃ in (t1 − T, t1]
18: else
19: Obtain B̃ in (t1 −Υ(t0), t1]
20: end if
21: B = B ⊕ B̃
22: S = h(H,W,B)
23: Update R based on Sunit, Sset, and Sseq in S
24: Υ(t0) = t− t0
25: end if
26: else if η(t) < η2 and ψ(t− 1) = 1 then
27: ψ(t) = 0
28: end if

where A′
m ∈ H ranks at the mth place, i.e., A′

m is the mth most similar alarm

flood of B in the historical database H. To present comprehensive information

to the plant operator, an alternative form of the ranking list R is

R = [R1, R2, · · · , RM ]T , (3.27)

where Rm is a tuple containing all related information of A′
m, such as the start

time τ sm, the time length τ dm, the set Um of involved plant units, as well as the

similarity scores (Sunit(Am, B), Sset(Am, B), and Sseq(Am, B)). The produced

ranking list can provide an important insight to facilitate prompt corrective
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Algorithm 2 S = h(H,W,B): Similarity calculation.

1: Input Arguments: H, W , B
2: Output Argument: S
3: S = [0]M×3

4: for ∀Am ∈ H do
5: Calculate Sunit(Am, B) using eqn. (3.10)
6: S(m, 1) = Sunit(Am, B)
7: end for
8: Get Hunit using eqn. (3.11)
9: for ∀Am ∈ H do
10: if Am ∈ Hunit then
11: Calculate Sset(Am, B) using eqn. (4.12)
12: else
13: Sset(Am, B) = 0
14: end if
15: S(m, 2) = Sset(Am, B)
16: end for
17: Get Hset using eqn. (3.14)
18: for ∀Am ∈ H do
19: if Am ∈ Hset then
20: Obtain A′

m by set based indexing and extension
21: Compute H by comparing A′

m and B
22: Calculate Sseq(Am, B) based on H using eqn. (3.17)
23: else
24: Sseq(Am, B) = 0
25: end if
26: S(m, 3) = Sseq(Am, B)
27: end for

actions by referencing the information of similar alarm floods in the historical

database.

It should be noticed that at the triggering time instant t0, the online alarm

flood B is short and incomplete. Thus, there may exist many historical alarm

floods similar to the online one, making it difficult for plant operators to recog-

nize similar situations. Thus, this work proposes to recalculate the similarity

scores based on the incoming new alarms in the online alarm flood, and ac-

cordingly update the ranking list R. With more alarms included, the pattern

matching results become more reliable, making the ranking list more trust-

worthy compared to the initial one obtained at the triggering time instant.
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Figure 3.2: Schematic of a typical delayed coking plant.

Then, the operators can focus more on those top ranked alarm floods. Thus,

updating the ranking list based on the growing of the online flood is necessary

and also helpful for the operators to identify the truly matched situation.

Further, a time window T is used in the online calculation to prevent

updating the ranking too frequently; the strategy is presented as follows: The

initial list R is firstly obtained for B at time instant t0 when it is detected

η(t0) ≥ η1, i.e., an alarm flood is found to arise. Theoretically, R is supposed

to be updated at t1 whenever a new alarm is added to B after t0. However,

it is possible that a series of new alarms may appear within a short period,

making the real-time pattern matching hardly to respond to each new alarm.

Accordingly, the updating of the ranking list R is presented as follows: Assume

that the execution time of real-time pattern matching between B = B ⊕ B̃

and ∀Am ∈ H is Υ(t). Then, given R for B obtained at t,

� R is updated at time instant t + T based on B̃ =< b′1, b
′
2, · · · , b′l >,

namely, a sequence of alarms that appears within (t, t+ T ] if Υ(t) ≤ T ;

� otherwise, R is updated at time instant t+Υ(t) based on B̃ =< b′1, b
′
2, · · · , b′l >

that appears within (t, t+Υ(t)] if Υ(t) > T .

The above iteration will continue until η(t) < η2, i.e., the alarm flood is

detected to be over. Here, T is a user-defined time window that decides how

frequent to update the ranking list. Generally, one does not need to update
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the list in each second; instead, it should wait for a period T before the next

round of real-time pattern matching is executed for new alarms to update the

ranking list. It should be noticed that a large T may make the ranking list not

updated timely and thus delay the operator’s action to handle the alarm flood,

while a small T can lead to the execution of the algorithm often incomplete

within T . Thus, the value of T can be set based on how fast the algorithm

is executed on the given alarm flood database, as well as the requirements

from plant operators, namely, how frequent they want to get the ranking list

updated.

The real-time pattern matching and dynamic ranking method is summa-

rized in Algorithms 1 and 2. The required inputs of the algorithm are the

historical database H and the weighting matrix W for all alarm floods in H,

which are prepared offline. For online analysis, whenever it detects η(t) ≥ η1,

the real-time pattern matching is conducted by comparing the initial alarm

flood sequence B with all historical sequences in H. Plant unit and alarm

set based pre-matching steps calculate Sunit and Sset, and exclude irrelevant

historical sequences. Then, sequence alignment measures Sseq. Given the

calculated similarity scores from S = h(H,W,B) in line 8 of Algorithm 1, a

ranking list R is obtained and presented to the user. While the online se-

quence B is increasing with the addition of a series of new alarms as B̃, the

pattern matching obtains the similarity scores in line 22 of Algorithm 1 and

the ranking list R is updated accordingly. The pattern matching in line 22

recalculates Sunit and Sset, and adjusts the two sets Hunit and Hset; then, incre-

mental sequence alignment is applied to compare B̃ rather than the complete

sequence B with all historical sequences in Hset. The ranking of similar his-

torical sequences will be updated with the increasing of the online sequence

B until η(t) < η2, as indicated in line 27 of Algorithm 1.

Remark 1: This proposed method is different from the existing literature

on alarm flood analysis in the following aspects: 1) This work provides a dif-
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ferent perspective to handle alarm floods by real-time pattern matching and

ranking of alarm floods, while the methods in [25, 43, 56, 72] aimed at mining

interesting alarm patterns, and the methods in [12, 13, 38, 51] mainly ad-

dressed the problems on classification of alarm floods and fault diagnosis; the

studied problems and objectives are different. 2) This work solves online simi-

larity analysis by incremental sequence alignment and dynamic ranking, while

the methods in [10, 27, 35, 71] belong to offline analysis. 3) The set-based in-

dexing & extension strategy and the dynamic ranking of alarm floods in this

chapter are new ideas that have not yet been studied in any other publica-

tions (to the best knowledge of the authors), making them unique compared

to other online alarm flood analysis methods in [34, 37, 69].

3.3 Case Study

This section provides a case study to illustrate the proposed method. A

historical data set was collected from a coking plant of an oil refinery. In this

plant, heavy petroleum residues are transformed into lighter gaseous liquid

products and solid coke through a thermal cracking process. As illustrated in

Fig. 3.2, the coking plant consists of several units, including coke drums, coking

furnace, fractionator unit, pumps, and controllers. These units were already

defined and configured in the system based on their processing functionalities.

There were 2609 unique alarm tags from 9 units reported in the historical

alarm data over the time period from November 1, 2019, to April 30, 2020.

Off-delay timers of 300 seconds were implemented to remove the chattering

alarms. Following the definition in [30], 103 alarm floods were extracted to

form the database H of historical alarm flood sequences. The average length of

alarm floods was 29.75. The longest and shortest alarm floods contained 609

and 10 alarms, respectively. Table 3.1 shows an example of an extracted alarm

flood sequence, which is taken as the online sequence B in this case study. It

included 24 alarms from 3 different plant units. The proposed method was

applied to identify similar historical sequences from H by conducting real-time

49



Table 3.1: An example of the alarm flood sequence, which was taken as the
online sequence B.

Alarm Tag Time Stamp Unit
Tag 141.OFFNRM 2020/02/02 02:51:39 AM Unit 3

Tag 105.ALM 2020/02/02 02:59:22 AM Unit 6
Tag 78.ALM 2020/02/02 03:00:17 AM Unit 6
Tag 77.ALM 2020/02/02 03:00:17 AM Unit 6
Tag 76.ALM 2020/02/02 03:00:22 AM Unit 6
Tag 75.ALM 2020/02/02 03:00:31 AM Unit 6
Tag 74.ALM 2020/02/02 03:00:33 AM Unit 6
Tag 58.ALM 2020/02/02 03:01:28 AM Unit 6
Tag 52.ALM 2020/02/02 03:01:31 AM Unit 6
Tag 51.ALM 2020/02/02 03:01:35 AM Unit 6
Tag 33.ALM 2020/02/02 03:01:35 AM Unit 6

Tag 141.OFFNRM 2020/02/02 03:05:26 AM Unit 3
Tag 6A.PVHI 2020/02/02 03:07:19 AM Unit 5
Tag 9A.PVLO 2020/02/02 03:08:22 AM Unit 6
Tag 78.ALM 2020/02/02 03:10:08 AM Unit 6
Tag 77.ALM 2020/02/02 03:10:09 AM Unit 6
Tag 76.ALM 2020/02/02 03:10:11 AM Unit 6
Tag 75.ALM 2020/02/02 03:10:25 AM Unit 6
Tag 74.ALM 2020/02/02 03:10:26 AM Unit 6
Tag 58.ALM 2020/02/02 03:11:03 AM Unit 6
Tag 52.ALM 2020/02/02 03:11:07 AM Unit 6
Tag 51.ALM 2020/02/02 03:11:11 AM Unit 6
Tag 33.ALM 2020/02/02 03:11:15 AM Unit 6
Tag 7B.PVLO 2020/02/02 03:16:28 AM Unit 5

pattern matching between B and all sequences inH. The results were exported

as a ranking list that was updating with the presence of more incoming alarms

in B.

At the triggering time instant “03:01:35” of B, the unit based screening and

set based pre-matching were applied first to exclude irrelevant sequences from

H. Then, a refined database Hset containing 11 historical sequences nominated

from H was obtained. Following pre-matching steps, set-based indexing and

extension removed the sub-sequences from the 11 nominated sequences; these

sub-sequences did not bear any similarity with the online sequence. Then,

sequence alignment was implemented between B and each of the 11 sequences

in Hset. At the triggering time instant, ranking of 11 nominated sequences was

presented according to the extent of similarity with the online flood sequence.

Several attributes, such as the start time, units of annunciations, and three

similarity scores were provided to facilitate industrial operators in decision

making.

Table 3.2 shows that the ranking list R at the triggering time instant of

50



Figure 3.3: Sequence alignment result between the historical sequence # 69
and B at the triggering time instant “03:01:35”

.

the online alarm flood B. The historical alarm flood sequences were ranked

by using Sseq as the first criterion, Sset as the second criterion, and Sunit as

the third criterion. It can be observed that all historical sequences in Hset

held significant sequence based similarity scores with B; among them, the

historical sequence # 69 was found to be the most similar one in terms of

Sseq. It is reasonable to see many alarm floods were similar to B at the early

stage of B, since B was short and incomplete, and thus could be included in

many historical sequences, causing difficulties in differentiating among these

historical alarm floods. Fig. 3.3 shows the alignment between the online alarm

flood sequence B and the historical sequence # 69 at the triggering time

instant t0. There were 9 pairs of matched alarms, Tag 78.ALM, Tag 77.ALM,

· · · , Tag 33.ALM from plant unit U6, annunciated sequentially in almost the

same order.

Later, the online sequence B was increasing with more alarms coming. In

the next 9 minutes (which was set as the updating period), there were 8 more

alarms annunciated, including Tag 141.OFFNRM, Tag 6A.PVHI, Tag 9A.PVLO,

Tag 78.ALM, Tag 77.ALM, Tag 76.ALM, Tag 75.ALM, and Tag 74.ALM. Given

the new alarms added to B, the three similarity scores were calculated to up-

date the ranking list. Table 3.3 shows the updated ranking of top 20 most
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Table 3.2: Ranking of similar historical alarm flood sequences at the triggering
instant “03:01:35” of the online alarm flood. There were 11 sequences nomi-
nated from H using unit based screening and alarm set-based pre-matching.
For the remaining historical sequences from H, their sequence based similarity
scores were 0’s.

Ranking
Alarm flood

ID
Start time

Unit of
Annunciations

Sunit Sset Sseq

1 69 2020/02/02 05:41 U4, U6 0.9045 0.8581 0.9
2 68 2020/02/02 03:49 U3, U4, U6 0.9607 0.8770 0.8909
3 74 2020/02/02 10:22 U3, U5, U6 0.9534 0.8182 0.8182
4 75 2020/02/03 10:44 U5, U6 0.8624 0.8182 0.8182
5 76 2020/02/04 12:34 U5, U6 0.8624 0.8182 0.8182
6 72 2020/02/03 06:37 U6 0.9534 0.7833 0.8182
7 71 2020/02/03 04:33 U4, U6 0.8257 0.7833 0.8182
8 73 2020/02/03 09:53 U3, U4, U6 0.9636 0.7252 0.8182
9 70 2020/02/03 03:04 U3, U5, U6 0.8864 0.7252 0.8182
10 77 2020/02/04 04:07 U4, U6 0.8451 0.7252 0.8182
11 78 2020/02/03 06:37 U4, U6 0.8594 0.6784 0.8182
... ... ... ... ... ... ...

Table 3.3: Updated ranking of top 20 most similar historical alarm flood
sequences following 8 new alarms added to the online sequence at “03:10:35”.

Ranking
Alarm flood

ID
Start time

Unit of
Annunciations

Sunit Sset Sseq

1 69 2020/02/02 05:41 U4, U6 0.8429 0.8143 0.9
2 76 2020/02/04 12:34 U5, U6 0.9459 0.8471 0.8727
3 68 2020/02/02 03:49 U3, U4, U6 0.9087 0.8441 0.8307
4 74 2020/02/02 10:22 U3, U5, U6 1 0.8471 0.8181
5 75 2020/02/03 10:44 U5, U6 0.9459 0.7764 0.8181
6 72 2020/02/03 06:37 U6 0.8885 0.7433 0.75
7 71 2020/02/03 04:33 U4, U6 0.7694 0.7433 0.75
8 70 2020/02/03 03:04 U3, U5, U6 1 0.6882 0.6428
9 73 2020/02/03 09:53 U3, U4, U6 0.9114 0.6882 0.6428
10 77 2020/02/03 04:07 U4, U5 0.7875 0.6882 0.6428
11 78 2020/02/02 03:49 U4, U6 0.8009 0.6437 0.5625
12 89 2020/03/17 06:07 U3, U5 0.4588 0.1324 0.0833
13 4 2019/11/07 01:57 U4, U5, U6 0.9056 0.0936 0.0833
14 87 2020/03/06 07:10 U4, U5, U6 0.7870 0.0636 0.0769
15 2 2019/11/04 06:07 U4, U5 0.3003 0.0867 0.0714
16 10 2019/11/17 01:04 U3, U5, U6 1 0.0573 0.0625
17 48 2019/12/28 12:29 U3, U4, U5, U6 0.9607 0.1102 0.0526
18 47 2019/11/17 01:04 U3, U5 0.4588 0.0691 0.0526
19 28 2019/12/23 02:58 U3, U4, U5, U6 0.9888 0.0683 0.0526
20 9 2019/11/16 10:30 U4, U5, U6 0.8820 0.0676 0.0526
... ... ... ... ... ... ...

similar historical alarm flood sequences at “03:10:35” when 8 new alarms were

added to B. It can be seen that the number of similar alarm floods holding

non-zero sequence based similarity scores increased, but there were still only

11 historical alarm floods having significant similarity scores with the online

sequence B. The most similar flood was still # 69.
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Table 3.4: Updated ranking of top 20 most similar historical alarm flood
sequences at the termination of the online alarm flood.

Ranking
Alarm flood

ID
Start time

Unit of
Annunciations

Sunit Sset Sseq

1 74 2020/02/02 10:22 U3, U5, U6 1 0.8483 0.9090
2 69 2020/02/02 05:41 U4, U6 0.8440 0.8215 0.9
3 75 2020/02/03 10:44 U5, U6 0.9574 0.8483 0.8909
4 76 2020/02/04 12:34 U5, U6 0.9574 0.8483 0.8727
5 68 2020/02/02 03:49 U3, U4, U6 0.8987 0.8397 0.8307
6 72 2020/02/03 06:37 U6 0.8897 0.75 0.75
7 71 2020/02/03 04:33 U4, U6 0.7705 0.75 0.75
8 70 2020/02/03 03:04 U3, U5, U6 1 0.6943 0.6428
9 73 2020/02/03 09:53 U3, U4, U6 0.9013 0.6943 0.6428
10 77 2020/02/03 04:07 U4, U5 0.7886 0.6943 0.6428
11 78 2020/02/02 03:49 U4, U6 0.8020 0.6495 0.5625
12 19 2019/11/21 08:18 U4, U5 0.3162 0.0645 0.1
13 101 2020/04/28 04:33 U4, U5, U6 0.8660 0.0615 0.0909
14 89 2020/03/17 06:07 U3, U5 0.4564 0.1178 0.0833
15 4 2019/11/07 01:57 U4, U5, U6 0.9166 0.0833 0.0833
16 87 2020/03/06 07:10 U4, U5, U6 0.7966 0.1132 0.0769
17 2 2019/11/04 06:07 U4, U5 0.3273 0.1336 0.0714
18 10 2019/11/17 01:04 U3, U5, U6 1 0.0510 0.0625
19 49 2019/12/28 02:56 U3, U5, U6 1 0.0468 0.0526
20 86 2020/02/25 12:29 U3, U5, U6 1 0.0445 0.0476
... ... ... ... ... ... ...

Table 3.4 shows the updated ranking of the top 20 most similar historical

alarm flood sequences at the termination of the online alarm flood. Historical

alarm flood # 74 was found to be most similar to the online sequence B and

thus replaced historical sequence # 69 at the top of the ranking list. Fig. 3.4

shows the alignment result between the complete online alarm flood sequence

B and the historical sequence # 74; there were 10 pairs of matched alarms. It

can be observed in Fig. 3.4 that a pattern of alarms, starting from Tag 78.ALM

to Tag 33.ALM was repeated in the online sequence B and also existed in

historical sequence # 74. Compared to the sequence # 69 in Fig. 3.3, historical

sequence # 74 held one more common alarm (Tag 9A.PVLO), leading to a

higher sequence based similarity score.

In addition, it can also be observed that a few historical alarm floods

ranking at the top of Table 3.4 held significant similarity scores with B. To

explain this phenomenon, offline similarity analysis was conducted among the

nominated sequences from |Hset| and results were presented in the similarity

color map shown in Fig. 3.5. In Fig. 3.5, X and Y-axis represent the alarm

flood IDs, and the color bar represents the extent of similarity. Flood sequence
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Figure 3.4: Sequence alignment result between the historical sequence # 74
and B at the termination of online alarm flood.

# 67 was the online alarm flood sequence. It can be seen that there was a

cluster of historical alarm floods holding high similarities with each other.

According to the process knowledge, these alarm floods happened in the same

plant units and had similar root causes. Thus, it is validated from Fig. 3.5

that the final ranking in Table 3.4 was reasonable given a few historical alarm

floods ranking at the top. Accordingly, the operator would be more confident

to judge the root cause and respond to the online alarm flood based on the

information related to all top floods in this ranking list.

In Section 3.2, there are three key strategies used to reduce unnecessary

computation, including I) the plant unit based screening, II) the alarm set

based pre-matching, and III) the set based indexing and extension. To demon-

strate the effectiveness of these strategies in computation reduction, Table 3.5

presents the computational times by the proposed method with full steps and

those excluding some of the above three strategies. In the simulation, the

computational times were recorded at three time instants of the online alarm
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Figure 3.5: Validation based on similarity color map obtained for the complete
online alarm flood and the historical alarm flood sequences ranking at the top.

Table 3.5: Comparison of computational times by the proposed method with
full steps and those excluding some computation reduction strategies. These
strategies include I) the plant unit based screening, II) the alarm set based
pre-matching, and III) the set based indexing and extension. The computa-
tional times at three time instants of the online alarm flood were recorded,
corresponding to when the ranking list was produced or updated as shown in
Tables 3.2, 3.3, and 3.4.

Time Proposed method Excluding Excluding Excluding
instant with full steps III II & III I, II, & III
03:01:35 1.35 s 3.52 s 25.83 27.44
03:10:35 7.54 s 15.63 s 23.17 24.85
End 5.09 s 7.68 s 13.91 14.87

flood, including “03:01:35”, “03:10:35”, and the end of the online alarm flood,

which were corresponding to when the ranking list (shown in Tables 3.2, 3.3,

and 3.4) was produced or updated. According to the result in Table 3.5, the

computational times by the proposed method with full steps were much shorter

compared to those excluding all the three computation reduction strategies.

Specifically, comparing the last two columns, the computational times reduced
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by strategy I (namely, the plant unit based screening) were 1.61 s, 1.68 s, and

0.96 s at the three time instants, respectively. Comparing the 3rd and 4th

columns, strategy II (namely, the alarm set based pre-matching) led to a large

reduction of computational time with a reduction rate ranging from 32.5% to

86.3%. Comparing the 2nd and 3rd columns, the computational time reduced

by strategy III (namely, the set based indexing and extension) was also con-

siderable. Thus, it can be concluded that the reduction of computational time

using the three strategies is significant. Such computation reduction strategies

in the proposed method will be very helpful in applications, especially when

the database of historical alarm floods is large.

3.4 Summary

In this chapter, we addressed the problem of predicting the incoming alarm

flood sequence and providing decision support to plant operators during an

ongoing alarm flood situation. Initially, we introduced the alarm flood prob-

lem and presented the concept of real-time pattern matching framework as a

means to provide decision support. Furthermore, we discussed the detection

criteria and representation of alarm flood sequences. To effectively manage

alarm floods, we proposed a comprehensive method comprising several key

steps. These steps included plant unit-based screening, alarm set-based pre-

matching, incremental sequence alignment, online set-based indexing and ex-

tension, and dynamic ranking of similar alarm floods. By integrating these

steps, we aimed to provide a robust solution to the alarm flood problem and

assist plant operators to make informed decisions. Finally, we presented the

case study to demonstrate the effectiveness of the proposed method, where we

used the real alarm & event log from a coking plant of an oil refinery.
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Chapter 4

An Association Rule Mining
Approach to Predict Alarm
Events in Industrial Alarm
Floods

This chapter studies the problem of upcoming alarm events prediction in

an alarm flood situation. Industrial operators often experience overwhelming

situations during ongoing alarm floods due to high alarm rates. In such situa-

tions, real-time assistance in the form of prediction of upcoming alarm events

can ease off the decision-making for industrial operators. The main contribu-

tion of this work lies in a novel association rule mining approach for real-time

prediction of alarm events and their corresponding times of annunciation dur-

ing an ongoing alarm flood. The proposed method is capable of performing

predictions at the triggering instant and modifying the predictions with the

increasing of the ongoing alarm flood. The proposed method is implemented

mainly in the following steps: 1) A Compact Prediction Tree (CPT) model is

modified with new features, namely, the time table and co-occurrence matrix,

and constructed based on historical alarm sequences; 2) An alarm relevancy

detection strategy is designed to detect and eliminate irrelevant alarms in

alarm floods; 3) An online alarm prediction algorithm is designed to predict

upcoming alarms at the early stage of the ongoing alarm flood; 4) The confi-

dence intervals of the time differences between the annunciations of subsequent
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predicted alarm events are calculated for time prediction. To demonstrate the

effectiveness of the proposed method, an industrial case study based on real

alarm & event logs from an oil refinery is provided.

4.1 Problem Description

A historical alarm flood sequence Am is a unique representation of an un-

derlying abnormality which causes a specific set of alarms {amk }
|Am|
k=1 to appear

chronologically in the sequence, which is denoted as

Am =< am1 , a
m
2 , a

m
3 , · · · , am|Am| >, (4.1)

where m = 1, 2, · · · , |T|; | · | means the length of a sequence or the cardinality

of a set; |T| represents the set of all the historical alarm flood sequences and

is denoted by T = {Am : m = 1, 2, · · · , |T|}. In Eq. (4.1), ami = (ea
m

i , ta
m

i ),

i = 1, 2, 3, · · · , |Am|. ea
m

i and ta
m

i are the alarm tag and annunciation time of

ami . e
m
i ∈ A; A indicates the set of all unique alarms configured in the plant.

The binary signal presenting the alarm annunciation of ea
m

i is given by

xmi (t) =

{
1 if χami

(t) /∈ τs,
0 o.w.,

(4.2)

where χami
indicates the corresponding process variable of ami and τs indicates

the steady state operating condition for χami
.

Alarm floods can be triggered from fault propagation, change of operating

modes, or switching of system conditions. The benchmark thresholds for alarm

flood detection are ζ1 = 10 and ζ2 = 5 alarms per 10 minutes for each operator

as the start and termination, respectively. An online alarm flood sequence at

the triggering instant t is denoted as

B =< b1, b2, · · · , bk >, (4.3)

where bi = (ebi , t
b
i) and ebi ∈ A, i = 1, 2, · · · , k. When an alarm flood is

detected, i.e., ζ(t) ≥ ζ1, the online sequence should have 10 or more alarms

appearing within [t − β + 1, t], where β = 600s and ζ(t) denotes the current
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alarm rate. Such early captured alarms form an integral part of a pattern

associated with a certain root cause and can be exploited to identify similar

sequences from T for meaningful information on upcoming abnormalities. At

any instant of B, a set of historical alarm flood sequences that are closely

similar to B is denoted as S = {An|s = 1, 2, · · · , |S|, An ∈ T}. Thus, the

prediction problem is formulated as: Given the existing online sequence B|:t−1|

with alarms annunciated until time instant t−1 and the set of similar sequences

S ⊆ T, the objective is to obtain B̃t = {b|B|+1, b|B|+2, · · · , b|B̃t|}, namely, the

set of predicted alarms at time instant t.

While predicting the upcoming alarm events in an ongoing alarm flood,

the difficulties and corresponding solutions in this study are as follows:

1) Online prediction is sensitive to computational time. Here, a Compact

Prediction Tree model is integrated to address the spatial complexity

and modified with new features to conduct most of the computation

offline.

2) In an ongoing alarm flood, some alarms might be irrelevant to a true pat-

tern, such as nuisance alarms caused by disturbances. Thus, this work

designs an alarm relevancy detection strategy to detect and eliminate

irrelevant alarms based on co-occurrence frequency and confidence.

3) With more alarms occurring in the ongoing alarm flood, the prediction

needs to update along with time so as to ensure the prediction accu-

racy. Motivated by this, an online alarm prediction method is proposed

to predict upcoming alarms at the triggering instant and update the

predictions at subsequent instants of an ongoing flood.

4) Predicting the time of annunciation for a new alarm would be helpful to

the decision-making to handle an ongoing alarm flood. Therefore, this

work calculates the time intervals for subsequent predicted upcoming

alarms.
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4.2 Methodology

This section presents the systematic alarm prediction method, including

the offline training of a compact prediction tree, real-time exclusion of irrel-

evant alarms from the online sequence, evaluation criteria of the candidate

alarms, and prediction of time for the upcoming alarm events.

4.2.1 Training of Compact Prediction Tree

The Compact Prediction Tree (CPT) provides a lossless compression of the

training set in data mining [18]. Frequent subsequence compression (FSC) and

Simple branches compression (SBC) strategies in [17] are included to improve

the computational efficiency. CPT generates three distinct features in the

training, including a Prediction Tree, an Inverted Index, and a Lookup Table

[18]. This subsection designs a new feature named Time Table, which con-

sists of unique alarms and their corresponding time stamps of annunciations

in different historical sequences. To illustrate the training of the CPT, the

following set of time-stamped alarm sequences is used:

S1 = < (Tag A, 02: 21: 31), (Tag B, 02: 21: 38), (Tag D, 02: 24: 26), (Tag A, 02: 37: 11) >

S2 = < (Tag A, 04: 00: 37), (Tag B, 04: 00: 58), (Tag C, 04: 02: 51), (Tag E, 04: 15: 05) >

S3 = < (Tag E, 05: 02: 42), (Tag C, 05: 03: 21), (Tag D, 05: 19: 26), (Tag E, 05: 19: 57) >

Here, the set of unique alarms makes up an alphabet
∑

= { Tag A, Tag B,

Tag C,Tag D,Tag E}, and each element in a sequence is denoted as (e, t),

where e and t indicate the alarm tag and the corresponding time of annunci-

ation, respectively. In the training, sequences are inserted chronologically to

build a prediction tree [18]. Fig. 4.1 shows the initial prediction tree, Inverted

Index, and Lookup Table following the insertion of sequences S1, S2, and S3.

The training consists of the following steps:

1) The first element of a training sequence is connected to the root node of

the prediction tree if the root node has no child nodes [18]. Then, the

remaining elements from the sequence are connected to the immediately
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preceding elements to form a path representing the whole sequence. If

any other training sequence has a prefix common to the first sequence,

the following elements of this training sequence form a path starting

from the last element of the prefix that already exists in the first training

sequence and is connected to the root node. For instance, in Fig. 4.1,

sequences S2 and S1 have a common prefix < Tag A,Tag B >. Then,

the following elements of S2, namely, < Tag C,Tag E > are connected

to the prefix < Tag A,Tag B > of S1 that is already connected to the

root node. Analogously, each training sequence from T is inserted one

by one to construct the CPT.

2) The Inverted Index includes each unique element as a key that exists in

a training sequence [18]. Following the training process, the sequences

containing an unique element can be identified using the bitset from the

Inverted Index, which is a combination of 1 and 0. For instance, in

Fig. 4.1, the bitset for Tag A with respect to sequences S1, S2, and S3 is

110, indicating that Tag A only exists in S1 and S2.

3) A Lookup Table is introduced to locate a sequence within the prediction

tree using the sequence identifications (IDs) [18]. As shown in Fig. 4.1,

the Lookup Table is pointed to the last node of each training sequence.

Table 4.1: Time Table (TT).

Alarm Time stamps of occurrences
Tag A [02:21:31] [02:37:11] [04:00:37]
Tag B [02:21:38] [04:00:58]
Tag C [04:02:51] [05:03:21]
Tag D [02:24:26] [05:19:26]
Tag E [04:15:05] [05:19:57]

As shown in Fig. 4.1, the prediction tree results in a compressed version

after integrating FSC and SBC strategies. Table 4.1 shows the Time Table,

where the time stamps of alarm occurrences are inserted in the training and

assigned with a unique key, namely, an alarm tag. Based on the Time Table,
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Figure 4.1: Example of constructing a Compact Prediction Tree.

a co-occurrence matrix CM is obtained as

c1 c2 c3 c4 c5


r1 0 2 1 0 0
r2 2 0 1 1 0
r3 1 1 0 0 1
r4 0 1 0 0 1
r5 0 0 1 1 0

, (4.4)

where each element in CM is given by

CM =

|T|∑
k=1

l∑
i=1

l∑
j=1

{
fij + 1 if |∆tkij| ≤ σ,
fij o.w.

(4.5)

Here, σ is 600 seconds and l denotes the number of unique alarms in the

training set T. According to Eq. (4.5), ci and ri denote the the column and

row indexes, respectively. In CM , fij indicates the co-occurrence frequency of

ci and rj within 600 seconds in the training sequences, and ∆tkij indicates the

time difference between the annunciations of ci and rj in the training sequence

k. The dimension of the co-occurrence matrix is l × l and all the elements

are initialized as 0’s. The co-occurrence matrix is computed offline during

the construction of the CPT. In an ongoing alarm flood, the co-occurrence

frequency of any two alarms can be known from the co-occurrence matrix, and

coupled with the information from the Time Table, where different association

rule parameters can be easily obtained.
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In this work, the modified CPT has two new features, namely, the Time

Table and co-occurrence matrix, to conduct most of the computation offline,

making it different from that in [18] and [17]. In the construction of CPT,

the Time Table stores the time of annunciations for each unique alarm in the

training sequences, and the co-occurrence matrix gives the frequency of co-

occurrences between all possible pairs of unique alarms with reference to the

training sequences. Such information is directly exploited at different steps

of the proposed method without the need to compute in real time during an

ongoing alarm flood.

4.2.2 Eliminating Irrelevant Alarms

In an ongoing alarm flood, some alarms might be caused by disturbances

or noises in the process and thus are irrelevant. An online sequence with

such alarms may not represent the true alarm pattern of the underlying root

cause and thus confuse the operator. In such scenarios, those less relevant

alarms can be identified by incorporating the co-occurrence frequency and the

confidence between two alarms.

Table 4.2: An online alarm flood sequence at the triggering time instant.

Alarm Tag Time Stamp

Tag A 06:23:01 AM
Tag B 06:23:44 AM
Tag C 06:24:12 AM
Tag D 06:25:37 AM
Tag E 06:26:12 AM
Tag F 06:27:25 AM
Tag G 06:27:51 AM
Tag H 06:28:47 AM
Tag I 06:29:32 AM
Tag J 06:30:44 AM

Table 4.2 shows an online alarm flood sequence at the triggering time

instant, i.e., when ζ ≥ ζ1. The set of alarms in this online alarm flood sequence

is given by

B = {bi| ebi ∈ A, ∃ xbi(l) = 1 s.t. l ∈ [t− β + 1, t]}|B|i=1 (4.6)

63



where t indicates the triggering time instant. Each alarm bi ∈ B is paired

with each remaining alarm in B and the set of pairs with respect to bi ∈ B is

represented as ωbi = {(bi, bj)|bi ̸= bj, {bi, bj} ⊆ B, j = 1, 2, · · · , |B|}. Table 4.3

shows that Tag F is paired with each remaining alarm from B, represented

as co-occurring alarms. Analogously, for each alarm bi ∈ B, ωbi is formulated

with (|B| − 1) pairs at the triggering instant.

Table 4.3: Co-occurrences frequency and confidence.

Alarm Tag
Co-occurring

Alarm
Frequency of

Co-occurrence, Fi
Confidence, Ci

Tag F

Tag A 8 0.36
Tag B 4 0.18
Tag C 7 0.32
Tag D 9 0.41
Tag E 2 0.11
Tag G 7 0.32
Tag H 8 0.36
Tag I 6 0.27
Tag J 6 0.27

Figure 4.2: Co-occurrence network at the triggering time instant of the online
alarm flood sequence.
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For each pair in ωbi , the co-occurrence frequency is computed in the co-

occurrence matrix CM and given by

Fi = {fij|i ̸= j, ci = bi(bj) & rj = bj(bi)}|B|j=1 (4.7)

The confidence is also calculated for each alarm pair in ωbi based on the co-

occurrence matrix CM and the Time Table. In Table 4.3, Ci denotes the set

of confidence between the elements of each pair in ωbi . In the Time Table, the

number of time instants implies the total number of occurrences for an alarm in

the training set. For instance, Table 4.1 shows that alarm Tag A occurs 3 times

in S1, S2, and S3 as it includes only 3 time stamps. The set of time instants of

alarm Tag A is considered as tA = {(02 : 21 : 31), (02 : 37 : 11), (04 : 00 : 37)}.

Then, the confidence Cij for the alarm pair (bi, bj) is

Cij = Supp(bi, bj)/Supp(bi) =
fij
|ti|

. (4.8)

where Supp indicates the support of an item, i.e., the probability of an item

occurring in the training sequences; fij indicates the co-occurrence frequency

of alarms bi and bj; |ti| denotes the frequency that alarm bi occurs in the

training sequences. The purpose is to identify the pairs (bi, bj) from ωbi with

either fij = max(Fi) or Cij = max(Ci) for i, j ∈ [1, |B].

Table 4.3 shows Fi and Ci, namely, the co-occurrence frequency and the

confidence for each pair of alarms formulated with alarm Tag F from B, re-

spectively. The alarm pair (Tag F,Tag D) shows the maximum co-occurrence

frequency and confidence among all the pairs. Analogously, alarm pairs corre-

sponding to each alarm in B with the maximum co-occurrence frequency and

confidence are identified and shown in Table 4.4. Further, Fig. 4.2 displays a

co-occurrence network formulated with the existing alarms in B at the trigger-

ing instant. Each node represents an alarm in B; each edge connecting each

pair of alarms in ωbi , i = 1, 2, · · · , |B|, represents the co-occurrence frequency.

In Fig. 4.2, the relationship between alarm Tag F and all the co-occurring

alarms is highlighted in red in Table 4.3.

The user-defined thresholds on the frequency of co-occurrence and the con-

fidence, denoted by γf and γp, are set to 10 and 0.5, respectively. Such values
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Table 4.4: Co-occurrence frequency and confidence at the triggering instant.

Target Alarm
Co-occurring

Alarm
Frequency of
Co-occurrence

Confidence

Tag A Tag H 14 0.32
Tag B Tag C 14 0.58
Tag C Tag A 14 0.48
Tag D Tag A 14 0.35
Tag E Tag C 14 0.47
Tag F Tag D 9 0.41
Tag G Tag H 15 0.83
Tag H Tag G 15 0.68
Tag I Tag H 14 0.93
Tag J Tag A 12 0.55

are determined by observing the trend of the irrelevant alarms in the training

sequences. Additionally, the performance of the proposed method is evaluated

in different scenarios by assigning various combinations of values to both γf

and γp within specific ranges. The optimal values for γf and γp can be chosen

based on the accuracy in applications. An investigation of the sensitivity of

both user-defined thresholds on the performance of the proposed method is

provided in Section 4.1. If any of the alarm pairs in Table 4.4 fails to meet the

threshold condition, the corresponding target alarm is identified as irrelevant.

For instance, in Table 4.4, Tag F fails to meet either of the thresholds and

is eliminated from subsequent analysis. Following the triggering instant, the

co-occurrence frequency and confidence are computed between the upcoming

alarm and the existing relevant alarms in the online sequence that appear

within the time interval [t− β + 1, t], where t is the annunciation time of the

upcoming alarm. Fig. 4.3 shows the co-occurrence frequency between the up-

coming alarm Tag K and the existing relevant alarms from the online sequence

annunciated within 600 seconds. It can be observed that the upcoming alarm

Tag K has the highest co-occurrence frequency (greater than γf ) with the ex-

isting alarm Tag A and thus is included in the online sequence. To better

illustrate the idea, a sliding window of β = 600 s is used in Table 4.5, where

the existing alarms Tag A and Tag B appear beyond the time window β since

the annunciation of an upcoming alarm Tag L; thus, they are not considered
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and the remaining alarms in the online sequence will be used to check the

relevancy of the upcoming alarm Tag L.

Figure 4.3: Co-occurrence network with an upcoming alarm following the
triggering instant.

Table 4.5: Online alarm flood sequence at the triggering instant.

Alarm Tag Time Stamp
Tag A 06:23:01 AM
Tag B 06:23:44 AM
Tag C 06:24:12 AM
Tag D 06:25:37 AM
Tag E 06:26:12 AM
Tag F 06:27:25 AM
Tag G 06:27:51 AM
Tag H 06:28:47 AM
Tag I 06:29:32 AM
Tag J 06:30:44 AM
Tag K 06:31:23 AM

↑ ↑
Tag L 06:33:52 AM
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4.2.3 Identifying Similar Sequences

In an ongoing alarm flood, alarms appear one by one and are added to the

online sequence. The upcoming alarms are predicted by analyzing the existing

alarm set in the online sequence B and the closely similar training sequences

from T. To identify similar training sequences, the algorithm executes the

following two steps:

1) It sets the prefix of the online sequence as X = {bxi }
|B|
i=|B|−ℵ = {bx|B|−ℵ,

bx|B|−ℵ+1, · · · , bx|B|}, where ℵ is the prefix length. Using the Inverted In-

dex, a set containing the IDs of the similar training sequences Tx from

CPT is identified based on the presence of at least one element from

the prefix X. The choice of prefix length ℵ is important for the desired

performance of the proposed method. Clearly, if ℵ is set too high, the

method will identify too many training sequences from CPT, which will

increase the computation and response time. Conversely, if ℵ is set too

short, the method may miss truly identical similar training sequences,

leading to reduced accuracy. An ideal value of ℵ achieves optimal accu-

racy for the proposed method while maintaining a satisfactory response

time.

2) The size of Tx depends on the criteria of the similarity analysis. A mod-

ified set-based similarity mechanism is implemented to further reduce

the number of sequences and identify the sequences most similar to B.

The Inverted Index includes a set of keys, namely, unique alarm tags, which

are denoted as I = {ei|ei ∈ A, i = 1, 2, · · · , |A|}. In the Inverted Index, each

unique alarm tag contains a bitset of length |T|, namely, the total number

of sequences in the training set T [18]. The indexes corresponding to each

element in the bitset of a unique alarm tag indicate the IDs of the sequences

in T and are denoted as M = {ψ|ψ ∈ N+, ψ = 1, 2, · · · |T|}. For an alarm

of the prefix X, the indexes of the bits, namely, the IDs of the sequences

containing that alarm, are included in Mx
i = {k|k ∈ N+, k ∈ M, bxi ∈ Ak}, i =
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1, 2, · · · , |X|. For instance, the bitset of alarm Tag A in the Inverted Index

is 01011, indicating that the total number of training sequences is 5; the 2nd,

4th, and 5th sequences include alarm Tag A, which also belongs to the prefix

X of the online sequence B. Thus, the set containing the IDs of the training

sequences that include any one of the alarms from the prefix X, is denoted as

Tx = {Mx
i : i = 1, 2, · · · , |X|}. The training sequences corresponding to the

IDs in Tx can be identified using the Lookup Table of the CPT and denoted

as Sx = {Aq|q ∈ N+, q ∈ Tx, ∃i ∈ [1, |X|] s.t. bxi ∈ Aq, q = 1, 2, · · · , |Sx|}. To

implement the modified set-based similarity mechanism, two vectors of binary

indexes are formulated; each element is determined based on the presence of

the adjacent element in Am and B as

Jb
i =

{
1 if ∃j ∈ (1, 2, · · · , |Am|) s.t. ebi = emj , & ebi+1 = emj+1,

0 o.w.,
(4.9)

Jm
j =

{
1 if ∃i ∈ (1, 2, · · · , |B|) s.t. emj = ebi , & emj+1 = ebi+1,

0 o.w.,
(4.10)

where ebi (emj ) is the alarm tag of the ith (jth) alarm event in B (Am); i =

1, 2, · · · , |B| and j = 1, 2, · · · , |Am|. Two criteria should be considered while

formulating J b
i and Jm

j :

1) If multiple alarms are present in both sequences and annunciated simul-

taneously, they can be considered to appear in a similar order in both

sequences.

2) Due to the detection delay or disturbances, the orders of closely an-

nunciated alarms or adjacent alarms may not be identical in different

sequences. Accordingly, a time interval τd is used here, such that if mul-

tiple alarms exist in both sequences, they can be considered adjacent

to each other and appear in identical order. If τd is set too high, it

may lead to false identical sequences from the training set, whereas a

too small value may lead to many similar training sequences being ne-

glected. A reasonable choice can be of any value that can nullify the

effect of detection delay or disturbances in the training sequences.
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Then, the set-based similarity score Sset between B and Am ∈ T is deter-

mined by

Sset(Am, B) = 0, if UB ∩ Um = ∅, (4.11)

else if UB ∩ Um ̸= ∅,

Sset(Am, B) =

√ ∑|B|
i=1 J

b
i ·

∑|Am|
j=1 J

m
j

(|B| − 1) · (|Am| − 1)
, (4.12)

where UB and Um denote the alarm sets in B and Am, respectively. A threshold

µ is introduced on Sset to identify most similar sequences from Sx. These

similar sequences form a new set S. To illustrate the method, an example is

presented below.

Example 1. There are two time-stamped alarm sequences in Table 4.6. The

binary indexing vectors Jx and Jy are given as

Jx = [0 1 1 1 1 0 0]; Jy = [0 1 1 1 1 0]. (4.13)

The set-based similarity is calculated to be Sset(X, Y ) =
√
16/30 = 0.73.

When the algorithm attempts to recalculate, the prefix X changes with new

upcoming alarms from B, which will lead to the change in Tx, and then S is

updated accordingly based on Sset(An, B) ≥ µ.

Table 4.6: Time stamped alarm sequences X and Y.

Sequence X Sequence Y
Alarm Tag Time Stamp Alarm Tag Time Stamp
Tag A 00:00:01 AM Tag K 10:30:00 AM
Tag B 00:01:18 AM Tag C 10:31:21 AM
Tag C 00:01:18 AM Tag B 10:31:21 AM
Tag D 00:01:18 AM Tag D 10:31:21 AM
Tag E 00:02:36 AM Tag E 10:32:36 AM
Tag F 00:02:38 AM Tag G 10:33:12 AM
Tag G 00:02:40 AM

4.2.4 Identifying Pattern Index

At any instant of an ongoing alarm flood, the objective is to identify the

candidate alarms for the prediction of subsequent upcoming alarms. After
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identifying the most similar sequences An from Sx, the consequent An
y from

each similar sequence is identified, where n = 1, 2, · · · , |S|. The consequent is

defined as the subsequence following a specific index, which is denoted as a

pattern index Ψn ∈ N+. Given a similar sequence An =< an1 , a
n
2 , · · · , an|An| >∈

S, the consequent An
y is identified from it. A binary vector An

Ψ is formulated

from An with each element jni ∈ An
Ψ given by

jni =

{
1 if eni ∈ {ank}

|An|
k=1 ∩X and ∄eni ∈ {ank}i−1

k=1,
0 o.w.,

(4.14)

where eni ∈ ani is the ith alarm in An; X is the prefix, namely, X = {bxi }
|B|
i=|B|−ℵ,

ℵ = 1, 2, · · · , |X|; n = 1, 2, · · · , |S|. In An
Ψ, the pattern index Ψn indicates the

position of an element Jn
Ψn

∈ An
Ψ such that

jnΨn
= 1 and ∀i > Ψn, j

n
i = 0. (4.15)

Then, the consequent from each similar sequence is extracted if |An
y | > 0,

and is given by

An
y =< anΨn+1, a

n
Ψn+2, · · · , an|An| > . (4.16)

The set of pattern indexes for each similar sequence An ∈ S is denoted as Ψ =

{Ψn|Ψn ∈ N+, n = 1, 2, · · · , |S|}. Following the triggering instant, whenever

the algorithm attempts to recompute, the prefix X changes as new alarms are

added to B one by one. With a change in prefix X, the algorithm recalculates

the new pattern index Ψ̃n; if Ψ̃n > Ψn, the consequent An
y in the similar

sequence An ∈ S, n = 1, 2, · · · , |S| changes accordingly. Thus, the pattern

index Ψn and the consequent An
y may change based on the new alarms in the

prefix X of the online sequence B. To illustrate the method, an example is

presented below.

Example 2. Fig. 4.4 illustrates the procedures of identifying the pattern in-

dexes and consequents from the training sequences. The prefix length ℵ is set

to 5, i.e., the prefix X is formulated with the last 5 alarms from the online

sequence B. The indexes of each common alarm from the prefix X are identi-

fied in the training sequence. Then, the index of alarm Tag 345 is identified as
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the pattern index Ψn. Following the pattern index, the subsequence consist-

ing of the remaining alarms is represented as the consequent of the training

sequence. Following this procedure, the pattern indexes and consequents are

identified from each similar sequence at any instant of the online alarm flood.

Figure 4.4: Identification of pattern indexes and consequents from a training
sequence.

4.2.5 Evaluation Criteria and Strategy

At the triggering time instant of the online alarm flood B, irrelevant alarms

are removed from B, and then the prefix X is identified from B. The pattern

index Ψn, n = 1, 2, · · · , |S|, is determined based on the existing alarms in

the prefix X. The consequents from each similar sequence An are identified.
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In each consequent An
y , the alarms that appear following the pattern index

Ψn, are the candidate upcoming alarms and will be evaluated. Following the

triggering instant, the proposed algorithm continues to update its prediction

at different instants of the ongoing alarm flood. To evaluate each candidate

alarm, a varying alarm set Bλ is formulated from B. At the time instant t,

the varying alarm set Bλ is denoted as

Bλ = {bλk |bλk ∈ B, & ∃ xλk(l) = 1, s.t. l ∈ [t− β + 1, t]}|Bλ|
k=1 . (4.17)

The criteria to obtain the varying alarm set Bλ is |Bλ| ≤ 10, which indicates

that Bλ can contain no more than 10 alarms at the instant when the computa-

tion begins provided that the alarms are annunciated within [t− β+1]. Each

existing alarm from Bλ is selected as a target alarm, and the relationships

between each target alarm and the candidate alarms from the consequents

An
y , n = 1, 2, · · · , |S|, are analyzed using the following measures to identify the

potential upcoming alarms:

1. Confidence (C): Confidence [66] measures how frequent the candidate

alarm from the consequents occurs given that the target alarm from Bλ

is present in the sequence where both alarms appear within the time

interval β = 600 s. The confidence of an association rule (A → B) is

calculated as

C(A→ B) =
supp(A ∪ B)

supp(A)
, (4.18)

where supp(A ∪ B) and supp(A) indicate the probabilities of cooccur-

rence of two alarms and the occurrence of alarm A in the training set,

respectively.

2. Interest (I): Interest [24] identifies those infrequent association rules

that show high confidences due to the correlation between supp(A ∩B)

and supp(A). The interest of an association rule (A → B) is computed

as

I(A→ B) =
supp(A ∪ B)

supp(A)× supp(B)
. (4.19)
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An interest ratio close to 1 implies that the occurrences of alarms A and

B are independent and there exists no true association. If it is greater

than 1, the association is true, and the occurrences of alarms A and B

are dependent.

3. Mean occurrence delay (τ): Mean occurrence delay is an important

criterion to indicate the strength of the relationship. It indicates, on

average, how closely the target alarm from Bλ and the candidate alarm

from the consequent occur together in the training sequences.

If the confidence and interest are higher than 1, and the mean occurrence

delay is low, it implies that the candidate alarm is a true potential upcoming

alarm. Given the pattern index Ψk of the kth sequence in S, the modification

of Bλ with 10 alarms after confirming a candidate alarm at index Ψk + 1 of

the kth sequence is represented as

B̃λ = {bλq}
|Bλ|
q=2 ∪ akΨk+1. (4.20)

An example is shown in Fig. 4.5. Upon confirming Tag 159 as a potential

upcoming alarm based on the criteria mentioned above, Bλ includes Tag 159

and eliminates Tag 961. An empty set Bt = ∅ is defined at the triggering

instant of B that only includes the potential upcoming alarms nominated by

Bλ. Thus, analogous to Eq. (4.20), the modification of Bt after nominating

the candidate alarm akΨk+1 is represented as

B̃t = Bt ∪ akΨk+1. (4.21)

The objective of this strategic formulation of Bλ is attributed to the causal

relationship between the process variables. During an alarm flood, the annun-

ciation of an alarm would trigger the annunciation of other alarms, and they

co-exist in the training sequences with a low occurrence delay. Due to the

causal relationship, such alarm variables would show strong associations in

terms of the criteria above. Thus, it should pick up those alarms from the

consequents that have strong associations with any alarms in Bλ.
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Figure 4.5: Varying alarm set.

However, the alarms in Bλ will continuously be replaced by the candidate

alarms upon confirming as potential upcoming alarms. In such cases, if the

alarms from a consequent are subsequently evaluated and added to Bλ, the

alarm set Bλ may be completely changed before evaluating the next conse-

quent. The alarms in the next consequent may not hold a strong association

with the new alarm set in Bλ, and as a result, some potential upcoming

alarms could be missed. Thus, it should evaluate and confirm as many can-

didate alarms as possible from the consequents with a specific set of alarms

in Bλ to avoid missing any potential alarms. A strategy for maintaining the

orders for evaluating the candidate alarms from each consequent needs to be

implemented. The algorithm evaluates a batch of candidate alarms formed as

Φw = {akΨk+w|∃An ∈ S, s.t. akΨk+w ∈ An
y , |An

y | ≥ w}|Φw|
k=1 , (4.22)
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where w ∈ N+ and n = {1, 2, · · · , |S|}}. After identifying the pattern indexes

and consequents from each similar sequence in S, the first batch of candidate

alarms is

Φ1 = {a1Ψ1+1, a
2
Ψ2+1, · · · , a

|S|
Ψ|S|+1}, if ∀|A

i
y| > 0, (4.23)

where i = 1, 2, · · · , |S|; Ψ1,Ψ2, · · · ,Ψ|Φ1| are the pattern indexes; Ai
y represents

the consequents of the corresponding ith sequence in S. At any instant of B,

a set of batches consisting of the candidate alarms selected iteratively from

each consequent is

Φ =

|Φ|⋃
w=1

{Φw}, (4.24)

where |Φ| indicates the total number of batches. Each batch may not have

an equal number of candidate alarms due to the unequal lengths of the conse-

quents. The criteria for formulating Φw is denoted as ∃Φw if ∃i ∈ 1, 2, · · · , |S|

s.t. |Ai
y| ≥ w, where w and |Ai

y| indicate the batch number and the total num-

ber of alarms in the consequent Ai
y, respectively. The algorithm will formulate

a sequence of |Φ| batches and evaluate according to < Φ1,Φ2, · · · ,Φ|Φ| >. The

batch-wise evaluation of candidate alarms from the consequents is effective in

identifying the true potential upcoming alarms.

4.2.6 Prediction of Annunciation Time

When an upcoming alarm is predicted, it is more interesting to know the

potential time when it may occur. Predicting the time of annunciations of the

upcoming alarms can provide better real-time assistance. Here, the confidence

interval (CI) around the mean of time differences between the annunciation of

two subsequent predicted alarms is determined. At any instant t, the predic-

tion of upcoming alarms in B is represented as B̃t = {b̃|B|+1, b̃|B|+2, · · · , b̃|B̃t|}.

The time differences between the annunciations of each pair of alarms b̃|B|+i

and b̃|B|+i+1 from B̃t are analyzed to obtain the confidence interval, which is

computed as follows:

Given two alarms A and B , their time stamps in the Time Table are

denoted as tA = {tAi |i = 1, 2, · · · , |tA|} and tB = {tBj |j = 1, 2, · · · , |tB|}.
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Then, a set of tuples is obtained and represented as sd = {sdi = (tAk , t
B
l ), i =

1, 2, · · · |sd|}, where each tuple in sd holds the following properties:

1. For sdi = (tAk , t
B
l ), |tAk − tBl | ≤ β, where k ∈ [1, 2, · · · , |tA|] and l ∈

[1, 2, · · · , |tB|].

2. For sdi = (tAk , t
B
l ), ∀j ̸= i, tAk /∈ sdj and tBl /∈ sdj , i.e, each element only

exists in one tuple.

Each tuple in sd represents one instance of co-occurrence for alarms A and B

in T, where the time difference is within 600 seconds. From the sample data

sd, the set of time differences is td = {tdi = |tAk − tBl |, i = 1, 2, · · · , |td| : ∃k ∈

[1, 2, · · · , |tA|] s.t. tAk ∈ sdi , ∃l ∈ [1, 2, · · · , |tB|] s.t. tBl ∈ sdi }. The mean of the

time differences can be calculated as

t̄d =

∑|tdi |
i=1 t

d
i

|td|
. (4.25)

The 95% confidence interval estimates is determined for t̄d. For a larger

sample size (≥ 30), sample means are considered approximately normally

distributed [47]. The confidence intervals can be computed as

CI = t̄d ± z
s√
|td|

, (4.26)

where t̄d, s and |td| are the sample mean, sample standard deviation, and

number of samples, respectively. For 95% confidence, the z value is 1.96. For

a smaller sample size (< 30, the t distribution can be used [47]. The confidence

interval is computed as

CI = t̄d ± t
s√
|td|

. (4.27)

Analogously, the confidence interval on the time gap between the subsequent

predicted alarms is determined and denoted as

CIB̃t
=

{
CI|B|+1,CI|B|+2, · · · ,CI|B|+|B̃t|

}
, (4.28)

where each element CI|B|+i, i = 1, 2, · · · , |B̃t| has lower and upper endpoints.

In the context of time, it is reasonable to replace the negative endpoints with
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0’s. Then, each element in Eq. (4.28) is denoted as

CI|B|+i =


[
max

{
0, t̄d − z s√

|td|

}
,

{
t̄d + z s√

|td|

}]
, if sample size ≥ 30,[

max

{
0, t̄d − t s√

|td|

}
,

{
t̄d + t s√

|td|

}]
, if sample size < 30.

(4.29)

4.2.7 Online Prediction Algorithm

The online method to predict upcoming alarms during an ongoing alarm

flood is summarized in Algorithm 5. The input arguments include the compact

prediction tree (CPT) and co-occurrence matrix CM ; the output argument is

the set of predicted alarm events B̃t. At the triggering time instant, i.e., when

ζ(t) ≥ ζ1, the set of co-occurrence frequency Fi and the set of confidences Ci

are determined for each existing alarm bi ∈ B, i = 1, 2, · · · , |B|. Using γf and

γp as thresholds of Fi and Ci, respectively, irrelevant alarms are eliminated

from B. Initially, the set of similar training sequences Sx is formulated from

CPT using Tx that contains the IDs of the corresponding similar sequences.

Each sequence in Sx contains at least one alarm from the prefix X. To further

eliminate the irrelevant training sequences, a set of closely similar training se-

quences S is identified from Sx based on Sset. The pattern indexes Ψj and con-

sequents Aj
y are identified from each similar sequence Aj ∈ S, j = 1, 2, · · · , |S|.

Then, the varying alarm set Bλ is formulated from B to evaluate the set of

batches Φ, formed with the candidate alarms iteratively selected from each

consequent Aj
y, j = 1, 2, · · · , |S|. The algorithm determines the confidence C,

interest I, and mean occurrence delay τ between each alarm in Bλ and each

candidate alarm; then, modify the existing alarm set in Bλ and B̃t if strong

association is observed in terms of C, I, and τ . The set of co-occurrence fre-

quency F|B|+1 and confidence C|B|+1 are determined between each upcoming

alarm b̃|B|+1 and the existing alarms from B within [t− β +1, t]. Based on γf

and γp, the upcoming alarm b̃|B|+1 is eliminated or added to B.

The procedures to provide the confidence interval on the time gap between

the subsequent annunciations of the predicted alarm events are summarized

in Algorithm 6. The predicted alarm events in B̃t are analyzed in pairs to
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Algorithm 3 Online prediction of upcoming alarms during an ongoing alarm
flood.
1: Input Arguments: CPT, CM

2: Output Argument: B̃t

3: Define γf , γp, µ,ℵ
4: Eliminate chattering alarms and calculate ζ(t)
5: if ζ(t) ≥ ζ1 then
6: Formulate B and Obtain B by Eq. (4.6)
7: for i ∈ [1, |B|] do
8: Obtain Fi and Ci for bi ∈ B by Eqs. (4.7) and (4.8)
9: Eliminate bi if max(Fi) < γf and max(Pi) < γp
10: end for
11: Identify prefix X and obtain Tx

12: Formulate Sx and Obtain S based on Sset and µ
13: for j ∈ [1, |S|] do
14: Identify Ψj and A

j
y for Aj ∈ S

15: end for
16: Obtain Φ by Eq. (4.24)
17: Formulate Bλ by Eqs. (4.17)
18: for k ∈ [1, |Φ|] do
19: for l ∈ [1, |Φk|] do
20: Calculate C, I and τ between Bλ and alΨl+k ∈ Φk

21: Update Bλ and B̃t by Eqs. (4.20) and (4.21)
22: end for
23: end for
24: if ζ(t) > ζ2 then
25: Obtain F|B+1| and C|B+1| between B in [t− β + 1, t] and b̃|B|+1

26: if max(F|B+1|) < γf and max(P|B+1|) < γp then
27: Go to 24
28: else
29: B ⊕ b̃|B|+1

30: Go to 11
31: end if
32: end if
33: end if

calculate the confidence interval. Initially, the time stamps of annunciations

tb̃|B|+i
and tb̃|B|+i+1

for the predicted alarms b̃|B|+i and b̃|B|+i+1 are obtained

from the Time Table of CPT. Then, sd is obtained from tb̃|B|+i
and tb̃|B|+i+1

.

Based on sd, the time differences for each instance td and the mean of the time

differences t̄d between the predicted alarms are obtained. Then, depending on
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the number of samples, z or t distributions are used to compute the confidence

intervals.

Algorithm 4 Confidence interval on the time gap between the subsequent
annunciations of predicted alarms

1: Input Arguments: CPT, B̃t

2: Output Argument: CIB̃t

3: Define z for a 95% confidence level
4: for i ∈ [1, |B̃t| − 1] do
5: Obtain tb̃|B|+i

and tb̃|B|+i+1
from Time Table

6: Formulate sd and calculate td
7: Calculate t̄d by Eq. (4.25)
8: if |td| ≥ 30 then
9: Obtain CIi by Eq. (4.26)
10: else
11: Obtain CIi by Eq. (4.27)
12: end if
13: end for

It is noteworthy that the proposed method performs most of the compu-

tation offline and thus reduces the online computation. For instance, one of

the criteria used to eliminate the irrelevant alarms in B is the co-occurrence

frequency, which is determined offline during the construction of CPT and

is available in the co-occurrence matrix CM . In Eq. (4.8), the confidence

is obtained using the co-occurrence frequency and the number of annuncia-

tions of the corresponding target alarm, both of which are also available in

the co-occurrence matrix and the Time Table from the offline computation.

Analogously, the evaluation criteria of each candidate alarm, namely, the con-

fidence and interest, can be easily obtained using the information available in

the co-occurrence matrix and the Time Table. Thus, much of the computation

is delegated to offline analysis, reducing the online computational burden and

the response time of the algorithm.

Remark 2: This proposed approach is different from the existing literature

on real-time alarm flood analysis in the following aspects: (1) In this study,

an association rule mining approach is proposed to predict upcoming alarms
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during industrial alarm floods, while the methods in [72], [71], [43], and [25]

addressed alarm floods by pattern matching and identifying interesting ab-

normality patterns, which are mainly used offline; thus, the study objectives

are different. (2) The methods in [71], [35], [27], and [10] are aimed at iden-

tifying similar alarm flood sequences to facilitate early prediction of alarm

floods in real-time applications, while the proposed method targets at pre-

dicting incoming alarms directly during an alarm flood; the prediction objects

are different. (3) This work proposes an online strategy for detecting and

eliminating alarms in real time that is irrelevant to the true alarm pattern of

an alarm flood sequence. Existing methods in [71], [34], [27], and [10] mainly

addressed the removal of chattering alarms as preprocessing steps. However,

alarm flood sequences can still be vulnerable to irrelevant alarms, which can

conceal the true alarm pattern and lead to inaccurate results from similarity

analysis. (4) The proposed approach introduces varying alarm set and batch-

wise evaluation strategies to accurately identify potential upcoming alarms,

while the method in citelai2017online primarily exploit real-time similarity

analysis to identify similar alarm flood sequences. Additionally, the proposed

method predicts the time of annunciation for each predicted alarm, while the

method [34] ignore the time information.

4.3 Industrial Case Study

This section presents industrial case studies to demonstrate the effective-

ness of the proposed method based on a real historical data set collected from

a coking plant of an oil refinery. In this plant, the delayed coking process up-

grades the heavy petroleum residues into lighter products and solid coke. The

coking plant consists of a fractionator unit, controllers, a coking furnace, and

the coke drums. More details of this industrial process can be found in [45]. In

the historical data set, there were 2609 unique alarm tags from 9 different units

over the time period from November 1, 2019, to April 30, 2020. Chattering

alarms were removed using off-delay timers. In total, 103 alarm floods were
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extracted. The average length of historical alarm flood sequences was around

30. The maximum and minimum lengths were 609 and 10, respectively.

4.3.1 Overall Results

To evaluate the efficiency of the proposed method in various scenarios, a

validation set consisting of 10 sequences was selected from the complete set

of 103 sequences. Based on the “leave-one-out“ strategy, the accuracy of the

proposed method was evaluated for each of the sequences in the validation set.

While the proposed method can eliminate irrelevant alarms in real time, the

sequences in the validation set may have numerous irrelevant alarms. In this

scenario, evaluating the accuracy based on the complete validation sequences,

which are prone to irrelevant alarms, may not be ideal. Thus, two performance

criteria were adopted. In the first criterion, the accuracy was calculated as

Figure 4.6: Effect of γp on the accuracy and the avgerage number of predicted
alarms.
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the percentage of alarms that existed in the corresponding validation sequence

following the triggering instant and were matched with the predicted alarms,

without excluding the irrelevant alarms. The second criterion only considered

the relevant alarms of the validation sequence while determining the accuracy.

In this scenario, the relevancy criteria were relaxed compared to Section 3.2.

Specifically, in Section 3.2, an alarm was only considered relevant if it was

associated with any of the alarms annunciated within the prior time interval

β, based on the frequency of co-occurrence and the confidence, where β = 600

seconds. In contrast, for the validation set, an alarm was considered relevant

if it was associated with any of the alarms within the validation sequence,

irrespective of the time of annunciation.

Further, the proposed method used several user-defined thresholds that

needed to be set to optimal values for the desired performance. Thus, the

sensitivity of these user-defined thresholds to the performance of the proposed

method was thoroughly analyzed. First, the user-defined thresholds γf and

γp corresponding to the frequency of co-occurrence and the confidence were

considered. The value of γf was kept constant at 10, while γp was gradually

increased from 0.1 to 1 incrementally. The mean accuracy and the average

number of predicted alarms of the validation set at each increment were ob-

served and shown in Fig. 4.6. The results indicated that as γp increased, both

the mean accuracy and the average number of predicted alarms gradually

increased until γp surpassed 0.5. Beyond γp = 0.5, the mean accuracy be-

gun to decrease, suggesting that setting γp to a high value may exclude some

truly relevant alarms. Furthermore, a small increase in the average number

of predicted alarms led to an improvement in mean accuracy from 71.80% to

79.06%, highlighting the effectiveness of the proposed method in recommend-

ing a limited number of potentially incoming alarms that match the existing

alarms in validation sequences. Additionally, the average number of predicted

alarms remained at a manageable level, providing industrial operators with

the advantage of planning corrective actions without being overwhelmed.
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Figure 4.7: Effect of γp and γf on the accuracy and the avgerage number of
predicted alarms.

However, to explore the possibility of achieving better performance for

the proposed method, an additional investigation was conducted by simul-

taneously increasing both γf and γp incrementally. This approach aimed to

assess the impact of different combinations of γf and γp values on the overall

performance of the method. As shown in Fig. 4.7, the mean accuracy de-

creased significantly at each step of the increment beyond γp > 0.5, compared

to the scenario presented in Fig. 4.6. Simultaneously, the average number of

predicted alarms increased initially but started to decrease beyond γp > 0.5

and γf > 10. Thus, considering the cases discussed above, setting γf and γp

to 10 and 0.5, respectively, is appropriate for the desired performance of the

proposed method.

Additionally, the user-defined threshold τd was considered to eliminate
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Figure 4.8: Effect of τd on the accuracy and the avgerage number of predicted
alarms.

the effect of disturbances and detection delays when determining set-based

similarity scores, Sset. The threshold τd was incrementally adjusted, ranging

from 5s to 30s. The effects on both the mean accuracy and the average

number of identified similar sequences with µ = 0.15 were closely examined

at each increment. The corresponding results are shown in Fig. 4.8. It can

be observed that as τd increases, the mean accuracy gradually improves until

reaching 79.06% at τd = 20s. The mean accuracy remains constant at 79.06%

even when τd exceeds 20s. However, the average number of similar sequences

continues to increase as τd exceeds 20s, which may increase the computation

time for the proposed method. Thus, τd = 20s is a reasonable choice.

Furthermore, the set-based similarity scores Sset are subjected to a user-

defined threshold µ to eliminate irrelevant sequences. To analyze the effect of

µ on the accuracy, the value of µ was increased from 0.05 to 0.3; the mean
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Figure 4.9: Effect of µ on the accuracy and the avgerage number of predicted
alarms.

accuracy, average number of predicted alarms, and average computation time

were observed, as shown in Figs. 4.9 and 4.10. The results showed that re-

ducing µ below 0.15 significantly increased the number of predicted alarms.

At µ = 0.15, the accuracy was close to the maximum accuracy achieved at

µ = 0.05 and µ = 0.1, but the average number of predicted alarms remained

relatively low. The average computation time was also observed at various

incremental steps of µ, as shown in Fig. 4.10. Initially, when µ is small, the

average computation time was high due to that a high number of historical se-

quences were identified to be similar. As µ increased, the average computation

time gradually decreased. At µ = 0.15, the mean accuracy was slightly below

the maximum accuracy obtained at µ = 0.05 but the average computation

time decreased significantly. This ultimately improves the response time of

the algorithm. Overall, by analyzing both Figs. 4.9 and 4.10, setting µ = 0.15

86



Figure 4.10: Effect of µ on the accuracy and the avgerage computation time.

is appropriate for the optimal performance of the proposed method. Addi-

tionally, the prefix length ℵ is set at 5 and the sensitivity of this user-defined

threshold is explained in Section 3.3.

With such optimal settings for the user-defined thresholds, the accuracy of

the proposed method for the validation set under various performance criteria

is shown in Table 4.7. The first column of Table 4.7 indicates the sequence

number; the second and third columns show the overall accuracies for each se-

quence, including and excluding irrelevant alarms. Taking sequence # 6 from

the validation set as an example, the proposed method correctly predicted

12 out of 15 upcoming alarms. However, two of the three missed alarms,

namely, Tag 800 and Tag 1200, were deemed irrelevant in the sequence based

on the relevancy criteria for the validation set. The accuracy was improved

from 80% to 92.3% considering only the relevant alarms in the sequence. The

mean accuracies of the proposed method, including and excluding irrelevant
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Table 4.7: Accuracy of the proposed method for the validation set, including
and excluding the irrelevant alarms

Seq.#
Accuracy Position

(max. accuracy
obtained)

Including irrelevant
alarms

Excluding irrelevant
alarms

1 66.66% 100%
Triggering
instant

2 75% 100%
Triggering
instant

3 66.66% 66.66%
Triggering
instant

4 83.33% 83.33%
Triggering
instant

5 85.7% 100%
Triggering
instant

6 80% 92.3% 11
7 75% 85.7% 11
8 83.33% 90.9% 11
9 75% 75% 12
10 100% 100% 15

alarms, were 79.06% and 89.3%, respectively. The fourth column of Table 4.7

shows the position of the incoming alarm within the sequence at which the

maximum accuracy is achieved. In sequence # 1 of the validation set, the

accuracy including the irrelevant alarms was 66.66%, which was obtained at

the triggering instant when the alarm flood was detected initially. For the

subsequent instants of incoming alarms, the accuracy remains the same. Ta-

ble 4.7 shows that in most cases, the accuracy improves significantly after

excluding the irrelevant alarms. Additionally, the proposed method predicted

most of the upcoming alarms at the initial stage of each sequence, which is

particularly beneficial for the plant operators to take early alarm responses.

4.3.2 Predictions on Upcoming Alarms

To further demonstrate the effectiveness of the proposed method, an in-

dividual case study is presented with detailed explanation of the results. Ta-

ble 4.8 shows an extracted alarm flood sequence, which was used as the online

sequence in this case study. The 25 alarms in this online sequence were raised

one by one based on their time stamps. At any instant during the online se-
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Table 4.8: Online alarm flood sequence in this case study.

Alarm Tag Time Stamp
Tag 979 2019-12-24 04:51:21 AM
Tag 167 2019-12-24 04:51:28 AM
Tag 175 2019-12-24 04:51:34 AM
Tag 977 2019-12-24 04:51:34 AM
Tag 961 2019-12-24 04:54:00 AM
Tag 159 2019-12-24 04:55:31 AM
Tag 179 2019-12-24 04:58:48 AM
Tag 178 2019-12-24 04:59:01 AM
Tag 177 2019-12-24 04:59:14 AM
Tag 186 2019-12-24 04:59:56 AM
Tag 185 2019-12-24 05:00:09 AM
Tag 184 2019-12-24 05:00:22 AM
Tag 135 2019-12-24 05:00:37 AM
Tag 145 2019-12-24 05:00:56 AM
Tag 192 2019-12-24 05:01:11 AM
Tag 190 2019-12-24 05:01:33 AM
Tag 800 2019-12-24 05:02:04 AM
Tag 189 2019-12-24 05:02:08 AM
Tag 152 2019-12-24 05:02:27 AM
Tag 151 2019-12-24 05:02:42 AM
Tag 198 2019-12-24 05:02:58 AM
Tag 148 2019-12-24 05:03:13 AM
Tag 792 2019-12-24 05:08:26 AM
Tag 961 2019-12-24 05:09:00 AM
Tag 1200 2019-12-24 05:10:51 AM

quence, the proposed method was performed to predict the upcoming alarms

and the confidence intervals of the annunciation time. At the triggering in-

stant, the online sequence B in Table 4.8 has at least 10 alarms, and the

co-occurring alarms with the highest co-occurrence frequency and confidence

for each existing alarm in B are shown in Table 4.9. Tag 159 was eliminated

from B as both the co-occurrence frequency and confidence of the alarm pair

(Tag 159, Tag 979) are below the user-defined thresholds γf and γp. Then,

according to Section 3.3, a prefix X was formulated with the most recent ℵ

alarms from B which are {Tag 961, Tag 179, Tag 178, Tag 177, Tag 186}.

Using prefix X, there were 52 training sequences identified from CPT, where

the set-based similarity scores were determined between each of the identified

training sequences and the online sequence B. Based on user-defined thresh-

olds µ, there were 8 training sequences identified to be closely similar to B.
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Table 4.9: Co-occurrence frequency and confidence at the triggering instant.

Target Alarm
Co-occurring

Alarm
Frequency of
Co-occurrence

Confidence

Tag 979 Tag 178 13 0.35
Tag 167 Tag 175 14 0.58
Tag 175 Tag 167 14 0.56
Tag 977 Tag 979 12 0.4
Tag 961 Tag 175 14 0.5
Tag 159 Tag 979 7 0.47
Tag 179 Tag 178 13 0.87
Tag 178 Tag 979 13 0.81
Tag 177 Tag 979 13 0.93
Tag 186 Tag 979 11 0.61

According to Section 3.4, the pattern indexes identified from each of the

similar sequences were {14, 13, 9, 9, 13, 14, 5, 5}. Using these pattern indexes,

consequents An
y were identified from S, n = 1, 2, · · · , |S|. In these consequents,

each candidate alarm was evaluated by Bλ in terms of the criteria in Section

3.5. At the triggering instant, the varying alarm set Bλ consisted of 9 ex-

isting alarms from B and was used to analyze the first batch of candidate

alarms. Table 4.10 shows the evaluation of the first candidate alarm Tag 185

by Bλ, where the satisfactory association is observed with the alarms Tag 179,

Tag 178, and Tag 177 in terms of all three criteria. Thus, Tag 185 was con-

firmed to be a potential upcoming alarm and included in Bλ.

Table 4.10: Association between the candidate alarm Tag 185 and the varying
alarm set Bλ.

Candidate
Alarm

Varying Alarm
Set Bλ

Confidence Interest
Mean Occurrence

Delay (Sec.)

Tag 185

Tag 979 0.43 1.04 186
Tag 167 0.37 0.93 294
Tag 175 0.48 1.23 355
Tag 977 0.30 0.86 280
Tag 961 0.25 0.69 420
Tag 179 0.80 1.55 75
Tag 178 0.75 1.50 49
Tag 177 0.86 1.61 76
Tag 186 0.50 1.06 71

Table 4.11 shows some potential candidate alarms and their association
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rules with each existing alarm in Bλ with respect to the association rule eval-

uation metrics. For instance, the confidence is high, the interest is higher

than 1, and the mean occurrence delay is low for the association rules be-

tween Tag 184 and each of the alarms #5, #6, #7, #9, and #10 in Bλ; thus,

Tag 184 was confirmed to be a potential upcoming alarm. A significant as-

sociation can also be observed in Table 4.11 between the remaining predicted

alarms and Bλ. Table 4.11 shows that for the first candidate alarm Tag 185,

the varying alarm set Bλ only has 9 alarms; Tag 159 was identified to be an

irrelevant alarm and eliminated at the triggering instant.

Table 4.11: Prediction of upcoming alarm events at the triggering instant.

Predictions #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Confidence

Tag 185 0.43 0.37 0.48 0.30 0.25 0.80 0.75 0.86 0.5 -
Tag 184 0.33 0.28 0.20 0.21 0.67 0.62 0.71 0.50 0.63 0.67
Tag 979 0.48 0.40 0.32 0.80 0.81 0.93 0.61 1.00 0.78 0.77
Tag 145 0.44 0.50 0.33 0.44 0.56 0.38 0.19 0.71 0.80 0.50
Tag 190 0.40 0.31 0.35 0.33 0.31 0.56 0.46 0.14 0.71 0.5
Tag 961 0.80 0.33 0.55 0.71 0.33 0.31 0.36 0.17 0.50 0.42

Interest
Tag 185 1.04 0.93 1.2 0.86 0.69 1.55 1.50 1.61 1.06 -
Tag 184 0.95 0.82 0.66 0.67 1.43 1.39 1.48 1.19 1.39 1.13
Tag 979 0.80 0.72 0.56 1.12 1.16 1.27 0.90 1.43 0.97 1.04
Tag 145 1.13 1.20 0.93 1.14 1.06 0.88 0.89 1.21 1.60 1.00
Tag 190 1.00 0.81 0.86 0.93 0.81 1.06 1.06 0.64 1.21 1.00
Tag 961 1.08 5.12 0.73 0.89 0.55 0.46 0.61 0.34 0.71 0.53

Mean Occurrence Delay (Sec.)
Tag 185 186 294 355 280 420 75 49 76 71 -
Tag 184 230 413 262 474 84 87 80 79 79 55
Tag 979 173 211 269 189 185 219 240 186 142 210
Tag 145 209 177 154 101 219 123 333 72 89 156
Tag 190 131 94 104 68 106 94 149 67 113 150
Tag 961 402 321 329 396 397 258 475 126 411 270

Table 4.12 shows the complete list of alarms predicted by the algorithm at

the triggering instant. In Table 4.8, alarm flood is detected at the annunciation

time of Tag 186 and the objective is to predict the alarms that are annunciated

after alarm Tag 186. Table 4.12 shows that there are 18 alarms predicted at

the triggering instant and 13 out of 18 alarms were matched with the existing

alarms in the online sequence. Following the triggering instant, the online
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sequence has 15 alarms, and the algorithm predicted 11 out of 15 alarms

successfully at the earliest possible time of the ongoing alarm flood.

Table 4.12: Validations at the triggering instant.

Online Sequence
Predicted Alarm

Events
Tag 979 Tag 185
Tag 167 Tag 189
Tag 175 Tag 184
Tag 977 Tag 979
Tag 961 Tag 148
Tag 159 Tag 135
Tag 179 Tag 190
Tag 178 Tag 145
Tag 177 Tag 160
Tag 186 Tag 192
Tag 185 Tag 152
Tag 184 Tag 176
Tag 135 Tag 151
Tag 145 Tag 154
Tag 192 Tag 977
Tag 190 Tag 174
Tag 800 Tag 191
Tag 189 Tag 961
Tag 152
Tag 151
Tag 198
Tag 148
Tag 792
Tag 961
Tag 1200

The algorithm recomputes and attempts to modify its predictions based

on the newly added alarms in B. Table 4.13 shows the predicted potential

alarms when the 16th alarm in B was annunciated. Each predicted alarm

holds strong association with at least one alarm in Bλ. High confidences are

observed between the candidate alarm Tag 167 and each of the alarms #1,

#2, #3, #5, #7, and #10 in Bλ. Only the association rules with #2 and

#5 have interest ratios higher than 1. The mean occurrence delays for the

association rules are much lower than 10 minutes and thus imply that true

association exists between these alarms. Strong association rules are also

observed between multiple alarms in Bλ and the candidate alarms Tag 198
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and Tag 175.

Table 4.13: Predictions of upcoming alarms at the 16th annunciation of the
online sequence.

Predictions #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Confidence

Tag 198 0.33 0.62 0.62 0.50 0.50 0.44 0.60 0.28 0.25 0.56
Tag 167 0.60 0.70 0.67 0.32 0.86 0.39 0.67 0.32 0.29 0.71
Tag 175 0.32 0.57 0.58 0.62 0.20 0.47 0.71 0.33 0.19 0.15

Interest
Tag 198 0.64 1.15 1.04 0.76 0.76 0.65 0.92 0.39 0.62 0.82
Tag 167 0.85 1.09 0.92 0.42 1.11 0.85 0.92 0.56 0.76 0.92
Tag 175 0.80 0.73 1.14 0.82 0.44 0.75 0.91 0.41 0.35 0.23

Mean Occurrence Delay (Sec.)
Tag 198 58 105 116 244 180 33 219 116 475 142
Tag 167 448 392 383 330 193 174 228 285 262 342
Tag 175 173 138 141 68 210 282 338 124 262 229

The efficiency of the algorithm depends on how early and accurately it

can predict the upcoming alarms and provide suggestions to the industrial

operators. Table 4.14 shows the list of predicted alarms when the 16th alarm

in B is annunciated. It can be seen that most of the predicted alarms are the

same as the predictions at the triggering instant, which demonstrates that the

algorithm can predict the potential upcoming alarms at the earliest possible

time. Meanwhile, there are 3 newly predicted alarms Tag 198, Tag 167, and

Tag 175.

The sensitivity of the proposed method to the training set was extensively

investigated, and an illustration is shown in Fig. 10 with reference to the in-

dividual case study presented above. This research proposed an unsupervised

approach to predict upcoming alarms by exploiting the information available

in the training set. Given its unsupervised nature, the primary requirement of

building the training set is to maximize the number of historical sequences in

the training set, thus enabling the identification of highly potential upcoming

alarms owing to the availability of more similar historical sequences. For in-

stance, 103 historical sequences were used to formulate the training set for the

individual case study in the revised manuscript. To examine how the accuracy

of the proposed method is affected by the number of historical sequences in
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Table 4.14: Validations at the 16th annunciation of the online sequence.

Online Sequence
Predicted Alarm

Events
Tag 979 Tag 191
Tag 167 Tag 961
Tag 175 Tag 189
Tag 977 Tag 198
Tag 961 Tag 979
Tag 159 Tag 148
Tag 179 Tag 167
Tag 178 Tag 151
Tag 177 Tag 977
Tag 186 Tag 160
Tag 185 Tag 188
Tag 184 Tag 870
Tag 135 Tag 175
Tag 145 Tag 174
Tag 192 Tag 166
Tag 190 Tag 176
Tag 800
Tag 189
Tag 152
Tag 151
Tag 198
Tag 148
Tag 792
Tag 961
Tag 1200

the training set, the number of sequences was increased from 20 to 100, by

adding 20 sequences each time. Fig. 4.11 shows the complete results, which

indicate that the accuracy is expected to improve as the number of histor-

ical sequences in the training set increases. However, when the number of

historical sequences becomes large, the improvement in accuracy is deemed

insignificant.

4.3.3 Predictions on Time of Annunciations

Further simulations were conducted to test the prediction of annuncia-

tion time using the proposed method. Table 4.15 shows prediction as the

confidence intervals on the time gaps for the annunciations of subsequent pre-

dicted alarm events. The first alarm Tag 186 in Table 4.15 is the alarm that
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Figure 4.11: Effect of increasing the number of historical sequences on the
accuracy of the proposed method.

occurred at the triggering instant of B. The confidence intervals are shown

only for those predicted alarms that also exist in B following the triggering

instant. While calculating the confidence interval, the order of the predicted

alarms was kept similar to the online sequence. For instance, the confidence

interval for Tag 185 is [0, 137], which indicates that the time gap between the

annunciations of Tag 185 and Tag 186 is between 0 and 137 seconds during

the alarm flood. In addition, as shown in Table 4.16, the confidence inter-

vals can also be obtained between the annunciations of the predicted alarm

Tag 185 and each of the remaining predicted alarms. Such information will

ease off the overwhelming situation for the industrial operators and assist in

planning the corrective actions during the online flood.
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Table 4.15: Confidence interval on the time gap between the subsequent pre-
dicted alarms.

Predicted Alarms 95% Confidence Interval (seconds)
Tag 186 —
Tag 185 [0, 137]
Tag 184 [0, 69]
Tag 135 [0, 364]
Tag 145 [25, 153]
Tag 192 [0, 208]
Tag 190 [14, 128]
Tag 189 [0, 131]
Tag 152 [0, 397]
Tag 151 [0, 74]
Tag 148 [19, 166]

Table 4.16: Confidence interval on the time gap between Tag 185 and each
predicted alarm.

Target Alarm Predicted Alarms 95% Confidence Interval (seconds)

Tag 185

Tag 184 [0, 69]
Tag 135 [0, 236]
Tag 145 [28, 200]
Tag 192 [0, 142]
Tag 190 [0, 195]
Tag 189 [23, 90]
Tag 152 [0, 436]
Tag 151 [26, 485]
Tag 148 [72, 255]

4.4 Summary

In this chapter, we addressed the problem of predicting the upcoming alarm

events during an ongoing alarm flood by providing a systematic real-time de-

cision support framework. Initially, we introduced the problem of predicting

an upcoming alarm events, and then, we presented the systematic alarm pre-

diction method. The method involved several key steps, including the offline

training of a compact prediction tree, real-time exclusion of irrelevant alarms

from the online sequence, evaluation criteria for selecting candidate alarms,

and prediction of the time for upcoming alarm events. These steps were de-

signed to provide effective and timely assistance to plant operators in dealing

with alarm floods. Finally, we demonstrated the effectiveness of the proposed
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method based on a real historical data set collected from a coking plant of an

oil refinery. The case study showcased how the method could enable plant op-

erators to proactively identify and address issues associated with alarm floods,

allowing for more efficient problem mitigation.
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Chapter 5

A Reinforcement Learning
Approach for Early Prediction
of Industrial Alarm Floods

In this chapter, our primary focus is on addressing some additional chal-

lenges related to the early prediction of industrial alarm floods. Industrial

alarm floods signify the occurrence of a major problem that demands im-

mediate and effective measures to mitigate the situation. Without crucial

information about current and upcoming alarms, responding efficiently be-

comes challenging, especially when the alarm rate is high. Therefore, the

early prediction of alarm floods is of utmost importance as it provides real-

time guidance to plant operators, enabling them to promptly take necessary

actions to mitigate such situations. However, predicting alarm floods comes

with its own set of challenges. One major challenge is the presence of irrele-

vant alarms, which can obscure the true alarm pattern caused by an underlying

fault. Moreover, the ongoing situation may deviate from previously observed

historical sequences that are considered similar, incorporating a different set of

alarms. This lack of similarity can leave plant operators without the necessary

information to respond effectively, leading to a significant deterioration of the

situation. Additionally, the accuracy and timeliness of corrective actions play

a vital role in ensuring operational efficiency for plant operators during alarm

floods.
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To tackle these challenges, we propose an approach based on reinforce-

ment learning (RL). We formulate the early prediction problem as a partially

observable Markov decision process (POMDP) and employ the DDQN (Dou-

ble Deep Q-Network) algorithm with improved learning processes to optimize

accuracy and effectiveness. Additionally, we introduce a sequence reconstruc-

tion strategy that leverages association rule mining. This strategy helps elim-

inate irrelevant alarms and generates potential online scenarios by utilizing

the alarm relations found in historical sequences. Furthermore, the training

set is reformulated based on several novel criteria for effective learning of the

algorithm. To demonstrate the effectiveness of the algorithm, an industrial

case study based on the real alarm & event log is presented.

5.1 Background

5.1.1 Industrial Alarm Floods

An alarm flood refers to an abnormal situation where alarm rate gradually

increases within a short time interval, exceeding the ability of an industrial

operator to efficiently handle the situation. According to the industrial stan-

dard [30], the threshold for detecting an alarm flood is 10 alarms in 10 minutes,

denoted as λ1. An alarm flood situation continues to develop until the current

alarm rate λt falls below 5 alarms in 10 minutes, denoted by λ2. In such situ-

ations, it can be challenging for industrial operators to efficiently respond to

all the critical alarms. To assist them, recommending similar scenarios from

the historical database can be an effective real-time aid, particularly at the

early stages of the ongoing alarm flood. A historical alarm flood sequence is

denoted as

Xm = [xm1 , x
m
2 , · · · , xm|Xm|] (5.1)

where |.| indicates the cardinality of a set; xmi = (emi , t
m
i ) where emi ∈

∑
;∑

=
⋃|

∑
|

k=1{ek}, is the set of all the unique alarm tags set up in a plant;

tmi is the corresponding time stamp; i = 1, 2, · · · , |Xm|; m = 1, 2, · · · , |Z|; Z

indicates the set of all the historical alarm flood sequences Xm associated with
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the corresponding alarm flood identification (ID) Im and is denoted as

Z =

|Z|⋃
m=1

{(Xm, Im)} (5.2)

where m = Im ∈ N+. RL problems are widely represented as Markov decision

processes (MDP) [54] which are characterized by the tuple (S,A, T,R), where

S represents the state space, A represents the action space, T represents the

transition model, and R represents the reward function. A state s ∈ S can

be defined as (Xm, Im) ∈ Z where Xm indicates the complete alarm flood

sequence, which is only available when the alarm flood terminates, i.e., when

λt < λ2.

At the triggering instant t, an online alarm flood is denoted as

Y = [y1, y2, · · · , yk] (5.3)

Following the triggering instant, if an alarm yk+1 or a group of n alarms

{yk+i}ni=1 annunciate simultaneously, the alarm set in Y is modified as {yl}kl=1∪

yk+1 ∨ {yl}kl=1 ∪ {yk+i}ni=1 given that λt < λ2. At any instant of an ongoing

alarm flood, complete information of the state, i.e., the entire sequence is

not available. Thus, the RL problem can be framed as a partially observ-

able Markov decision process (POMDP) which we can represent by the tuple

{S,A, T,Ω, R, γ} where Ω indicates the set of observations and γ denotes the

discount factor. In POMDP, instead of the complete information, the RL

agent will receive an observation of the state, which is a partial view of the

entire online alarm flood sequence. Based on the current and past observa-

tions of the online alarm flood sequence, the RL agent will attempt to infer

the complete information of the entire sequence and identify the most similar

scenario from the set of historical sequences. Thus, an observation Φ ∈ Ω of

an online sequence Y is a partial alarm flood sequence and is denoted as

Φ = [y1, y2, · · · , y|φ|] (5.4)

Action space A consists of the set of actions that the agent can choose

in each observation. The agent can perform either an action of prediction
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ap ∈ Ap or an action of deferral ad in each observation, where Ap is the set of

action of predictions denoted as Ap = {api = Ii|i = 1, 2, · · · , |Z|}.

5.1.2 Reinforcement Learning

Reinforcement Learning is the science of solving a decision-making task,

depicted by an agent that learns to act optimally in an interactive environ-

ment. In RL, an environment is framed as Markov Decision Processes (MDPs),

where an agent performs an action a ∈ A in each state s ∈ S, receives reward

or punishment as feedback, and makes a transition to the next possible state.

Agent’s actions and transitions through states are guided by a reward func-

tion R and transition model T which determine the best course of action for

the agent. By experimenting and observing the results, the agent learns the

optimal policy that maximizes the state values and leads to the highest overall

reward.

The value of a state Vπ(s) indicates how rewarding for an agent in terms

of expected return [54] to start from state s at time step t and then following

policy π:

Vπ(s) = Eπ[
∞∑
k=0

γkrt+k|St = s] (5.5)

where γ is the discounting factor that encourages immediate reward and rt+k

is the reward obtained at time step t + k. The action value (Q-value) [54]

depends on the action performed and indicates how rewarding for an agent to

choose such an action in state s and then following policy π:

Qπ(s, a) = Eπ[
∞∑
k=0

γkrt+k|St = s, At = a] (5.6)

where Qπ(s, a) represents the action value of state s with a particular action a.

The objective is to solve a decision making problem by setting up an optimal

policy, denoted as π∗, that yields maximum accumulated reward from the

MDP. The optimal state value V ∗(s) for all s ∈ S and action value Q∗(s) for

all s ∈ S and a ∈ A are denoted as [54]:

V ∗(s) = max
π

Vπ(s) (5.7)
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Q∗(s, a) = max
π

Qπ(s, a) (5.8)

Eqn 5.7 and Eqn 5.8 indicate that the state value V ∗(s) and the action

value Q∗(s) corresponding to the optimal policy yield the maximum expected

return over the finite MDPs. Optimal policy maps the states to the best

actions by searching greedily using the action value function such that π∗(s) =

argmaxaQ
∗(s, a). To find the optimal policy, the Bellman equation [54] can be

used, which iteratively updates the action value of each state-action pair until

it converges to the optimal solution. As shown in Eqn 5.9, Bellman equation

decomposes the action value of a particular state into two components: the

immediate reward gained from the current state, and the expected cumulative

reward of following the optimal policy, π∗, thereafter:

Qπ(s, a) = Eπ[rt + γQπ(st+1,at+1)|st = s, at = a] (5.9)

To ensure stable learning and approximate the optimal action value func-

tion Q(s, a, θt) with optimal parameters θt, a Deep Q-network (DQN) algo-

rithm [39] can be exploited, which uses multiple neural networks with identical

configurations: target network and prediction network. With a single network,

the predicted and target Q-values are the same. This may lead to instability as

the Q-value for a particular action may get nominated repeatedly, leading to

overshooting and bias towards that action. Therefore, other viable actions will

not be explored, resulting in suboptimal learning. In the DQN algorithm, the

prediction network aims to approximate the action Q values estimated by the

target network, which guide the learning process. For optimal learning, the

target network’s parameters θt are periodically updated from the prediction

network, which updates its parameters θp in each training episode.

For the training process, all possible interactions between the agent and

the environment in the form of (s, a, r, s′) are used to form a replay buffer. The

purpose of using the replay buffer and randomly sampling the past interactions

from it in the form of mini batches during each training epoch is to ensure

learning from diverse set of experiences. Without the replay buffer, the RL

agent may learn too well from recent experiences and may get biased toward
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certain actions in specific situations. This may lead to poor performance for

the agent in diverse situations. The DQN algorithm uses the Bellman equation

and applies stochastic gradient descent on a minibatch of past experiences to

minimize the loss function in the following equation:

L(θ) = (r + γ argmax
at+1

Q(s′, at+1, θt)−Q(s, a, θp))
2 (5.10)

In DQN, the reward from the current state is combined with the maximum

action Q-value of the next state in the target network. However, a problem

arises when the Q-value for a state becomes overestimated each time due to

the biasedness for a specific action. In such cases, the scope for exploring other

viable actions is reduced, and thus, the learning process becomes biased. To

resolve such issues, a DDQN algorithm is implemented, where the prediction

network chooses the best action for the next state, and the corresponding ac-

tion Q-value of the target network is used in the Bellman equation. Therefore,

the loss function in eqn 5.10 is modified as:

L(θ) = (r + γQ(s′, argmax
at+1

Q(s′, at+1, θp), θt)−Q(s, a, θp))
2 (5.11)

A reward function, denoted as R(s, a), maps a state s and an action a

performed in that state to a scalar reward value. The reward function is used

to evaluate the quality of the agent’s actions and guide its learning process [54].

The ultimate goal of the agent in reinforcement learning is to maximize the

cumulative reward it receives over time. Thus, the reward function plays a

crucial role in defining the objectives of the agent and shaping its behavior.

In RL, the transition model T represents how the environment will evolve

based on the actions taken by the agent [54]. It specifies the probability of

transitioning from one state to another, given an action taken by the agent.

For example, for a discrete state space with states S and a discrete action space

with actions A, T can be defined as a function T : S × A → P (S ′). In this

case, for a given state-action pair (s, a), the function T maps it to a probability

distribution over next states s′, represented by P (S ′). This distribution tells

us the probability of transitioning to each of the possible next states, given the
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current state and action. For an early classification problem, T is deterministic

and defined as T (s, a) = s′ with probability 1, which means that the next state

is deterministically determined by the current state and action.

5.2 Problem Description

During an alarm flood, an industrial operator can be proactive with context-

specific guidance obtained from past experience and industry best practices.

This proactive approach should involve prioritizing and evaluating critical

alarms based on their potential impact on the process at the earliest. Thus, an

operator’s efficiency during an alarm flood greatly relies on promptly identify-

ing accurate corrective actions. A real-time decision support framework is an

effective solution to such kind of problem. The objective of such a framework

is to provide real time assistance in the form of identifying similar scenarios

from the training set at the earliest. To ensure the efficiency and reliability of

such a framework, several criteria need to be considered:

Issue 1: In an alarm flood sequence, it is crucial to identify the true alarm

pattern that represents the underlying fault. This enables accurate recom-

mendations for plant operators. Existing methods only eliminate chattering

alarms prior to perform alarm flood analysis, However, irrelevant alarms that

are rarely associated with the true alarm pattern may also exist and bury the

true alarm pattern. In such a scenario, results from alarm flood analysis will

be inaccurate and may confuse the operators.

Issue 2: The efficiency of such a framework depends on how early the

alarm flood situation can be resolved to prevent major process interruptions.

Thus, early prediction is a priority and needs to fulfill the following conditions:

Ik = argmax
Ik∈Ap

S(XIk , Y ) (5.12)

|Φ| = argmin
|Φ|∈[1,|Y |]

tp (5.13)
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where k ∈ [1, 2, · · · , |Z|], and S(XIk , Y ) represents the similarity index be-

tweenXIk and Y that can be determined using the Smith-Waterman algorithm

(SWA) [45]. Eqn 5.12 states that the historical sequence XIk corresponding

to the alarm flood ID Ik, recommended by the algorithm, should have the

maximum similarity index with the online sequence Y . In that case, maxi-

mum similarity index also indicates the accuracy of the prediction action. In

Eqn 5.13, Φ is considered as the current observation of the online sequence

when the RL agent predicts the incoming sequence and chooses action of pre-

diction over action of deferral; tp represents the time required for the RL agent

to perform such action; |Φ| indicates the length of the observation. Eqn 5.13 is

complementary to Eqn 5.12 and states that the objective is to predict the in-

coming sequence at the earliest possible time while maintaining the optimum

accuracy in terms of similarity index.

Issue 3: During an alarm flood, an online alarm flood sequence may ini-

tially appear similar to a particular historical sequence, but may significantly

deviate later and resemble a different historical sequence. In such situations,

early recommendations provided may not be accurate and mislead the opera-

tors.

Motivated by the issues outlined above, this work proposes a methodology

that includes the following steps:

Step 1: To address the issues 1 and 3, this work proposes a sequence

reconstruction strategy. In this strategy, an association rule approach is used

on the existing historical sequences in Z to remove irrelevant alarms and re-

construct sequences. Such reconstructed sequences are not available in Z but

may occur during an alarm flood. Each of the reconstructed sequences will

be assigned the alarm flood ID of the most similar historical sequence in Z.

The purpose is to train the algorithm on all possible variations of the online

sequence that may occur while repeating a historical alarm pattern during an

alarm flood. By exploiting the information available in Z, a modified training
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set D is formulated with only the existing and reconstructed alarm patterns

for the training of RL agent. To provide more than one recommendation, his-

torical sequences in Z, which are similar to each other will be identified and

grouped using SWA. During an alarm flood, the algorithm will perform the

following action:

C : Y:t → Ik ∈ GIk (5.14)

where Y:t indicates the online sequence with alarms annunciated until time

instant t, Ik is the alarm flood ID where k ∈ [1, 2, · · · , |Z|] and GIk = {Ii|∃j ∈

[1, 2, · · · , |Z|] s.t. S(XIi , XIj) ≥ ρs, Ii ̸= Ij, Ii, Ij ∈ N+}|GIk
|

i=1 . S(XIi , XIj) in-

dicates the similarity index between the historical sequences, and ρs denotes

a user defined threshold. Eqn 5.14 states that the algorithm, denoted as a

mathematical function C, will map an ongoing alarm flood sequence Y:t to

the alarm flood id Ik corresponding to the most similar historical sequence

XIk ∈ Z. The recommended alarm flood ID Ik is associated with a group

of similar historical sequences, denoted as GIk . Therefore, the algorithm will

provide multiple scenarios, all of which have high similarity with each other

and with the online sequence, allowing the plant operators to review and plan

accurate corrective actions.

Step 2: To handle the second issue, the DDQN algorithm is adopted,

where the neural networks are trained over all possible observations from the

historical sequences to approximate the optimal action Q-value function. With

the optimal parameters, the DDQN algorithm learns to predict at the earliest

stage of an ongoing alarm flood while maintaining optimal accuracy. Thus,

the main objective of this method can be described as follows:

argmax
a∈Ap

Q(s(t), a, θt) = Ik ∈ GIk

s.t. S(XIk ,Y:t) = max(SSWA) and |Φ| = argmin
|Φ|∈[1,|Y |]

tp
(5.15)

where SSWA = {S(XIi , Y:t)|S(XIi , Y:t) ≥ ρs, Ii ∈ N+}|SSWA|
i=1 . In Eqn 5.15, per-

forming an action of prediction a ∈ Ap interprets as recommending an alarm

flood ID on an ongoing alarm flood sequence such that the corresponding his-

torical sequence will have maximum similarity provided that the time elapsed
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between the detection of alarm flood and the availability of such recommen-

dation will be minimum. The steps proposed above are intended to allow

industrial operators to plan and execute corrective actions in a prompt and

efficient manner.

5.3 Methodology

This section proposes strategies based on association rule mining to elim-

inate irrelevant alarms from online sequence and reconstruct sequences from

historical sequences. Next, a comprehensive explanation of the DDQN algo-

rithm is presented.

5.3.1 Irrelevant Alarms in Online Sequence

Due to random variations in the process or disturbances, some alarms

may trigger and add to the online sequence, which often obscures the true

alarm pattern that represents the underlying fault. Such irrelevant alarms

may lead to false prediction actions and confuse the plant operators. Thus, it

is necessary to remove such irrelevant alarms from an online sequence. At the

triggering time instant t, i.e., when λt ≥ λ1, an alarm flood sequence consists

of the set of alarms annunciated within [t − Λ + 1, t], which is denoted as

Y:t = {yi|eyi ∈
∑
, ∃ xyi (l) = 1 s.t. l ∈ [t−Λ+ 1, t]}|Y:t|

i=1 where xyi (l) indicates a

binary signal [46] of an alarm eyi and Λ = 600s. The relevance between each

alarm and the remaining alarms in Y:t at triggering instant can be analyzed

based on the following association rule metrics:

1) Confidence, denoted by (ηconf ), is the measure of the likelihood of

the association rule [23] between two alarms (A → B) in the dataset. In this

study, confidence provides the probability of an alarm B occurs given that an

alarm A is present within the time interval 600s and denoted as follows:

ηconf (A→ B) =
supp(A ∪B)

supp(A)
=

|A ∪ B|
|A|
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where (|A ∪ B|) represents the number of times alarms A and B occur to-

gether, while |A| represents the number of occurrences of alarm A separately.

Confidence values range from 0 to 1, with a higher value indicating a stronger

association between the two alarms. The time interval is set at 600s to en-

sure consistency with the alarm flood detection criteria, which is at least 10

alarms [30] in a 10-minute time period. This is based on the assumption that

the alarms that are strongly associated and have an occurrence delay of less

than 600s are highly likely to be present in alarm floods.

2) Interest, denoted by (ηint), quantifies the correlation between two

alarms in relation to what would be expected if the alarms were not related. It

evaluates the extent to which the likelihood of the occurrence of A is affected

by the occurrence of B.

ηint(A→ B) =
ηconf (A→ B)

supp(B)

An interest value greater than 1 signifies that the association between the

alarms is significant. Conversely, an interest value less than 1 suggests that

there is no real association between the alarms A and B, and their occurrences

are independent of each other.

Confidence and interest between each alarm yi ∈ Y:t and the remaining

alarms in Y:t are computed and are included in Cconf
i and Cint

i , which are

the set of confidence and interest for alarm yi ∈ Y:t where i = 1, 2, · · · , |Y:t|.

For example, the set of confidence for alarm yi ∈ Y:t is denoted as Cconf
i =

{ηconfij |{yi, yj} ∈ Y:t, i ̸= j}|C
conf
i |

j=1 . Analogously, Cint
i is defined for each alarm

yi ∈ Y:t as Cint
i = {ηintij |{yi, yj} ∈ Y:t, i ̸= j}|C

int
i |

j=1 . Then, based on user-

defined thresholds ρconf and ρint, irrelevant alarms are eliminated from Y:t at

the triggering instant. Thus, an alarm yi ∈ Y:t is considered a relevant alarm

if it complies with the following criterion:

∃j ∈ [1, 2, · · · , |Y:t|] s.t. ηconfij ∈ Cconf
i ≥ ρconf

and ηintij ∈ Cint
i ≥ ρint

(5.16)

After eliminating the irrelevant alarms, the set of alarms in online sequence
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Y:t at triggering instant is denoted as

Y:t = {yi|eyi ∈
∑

, ∃eyj ∈ Y:t s.t. ηconfij ≥ ρconf ,

ηintij ≥ ρint, i ̸= j}|Y:t|
i=1

(5.17)

Following triggering instant, an incoming alarm will only be added to the

existing alarms in Y:t if the following criterion is satisfied:

Ỹ:t = {yi}|Y:t|
i=1 ∪ y|Ỹ:t|, (5.18)

where ∃j ∈ [1, · · · , |Y:t|] s.t. ηconf(|Ỹ:t|)j ≥ ρconf , ηint(|Ỹ:t|)j
≥ ρint. This step en-

sures that the alarms that exist in the online sequence have strong association

with each other and form a pattern that represents an underlying fault.

5.3.2 Sequence Reconstruction

After the pre-processing phase, the online alarm flood sequence will consist

of only the relevant alarms at the triggering instant, and alarms will annunciate

one by one and only add to the online sequence if it complies with Eqn 5.18,

until λt < λ2. During an alarm flood, the RL agent will experience the same

phenomenon and sequentially make decisions in each observation of the online

sequence. To train the RL agent on early prediction actions while maintaining

optimal accuracy, it is imperative to create an identical environment for the

training process. To create such an environment, a training set D is formulated

with all possible observations that are most likely to repeat online during an

alarm flood. Some of these observations are not available in Z but may appear

during an ongoing alarm flood. Such observations are formulated by using

an association rule approach on the existing historical sequences in Z. In

DDQN algorithm, neural network ought to be trained with the interactions

between the RL agent and the observations in D to approximate the optimal

action Q-value function. To create such observations, following criteria will

be considered:

Criteria 1: Eqn 5.1 shows a historical sequence that includes the time

of annunciation of each alarm. Using the temporal information and the in-

dustrial standard [30], the triggering instant of the corresponding historical
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sequence can be identified. At triggering instant, the set of alarms in a his-

torical sequence Xm is denoted as

X̃m = {xmi |emi ∈
∑

, ∃ xmi (l) = 1,

s.t. l ∈ [tm − Λ + 1, tm]}|X̃m|
i=1

(5.19)

where m = 1, 2, · · · , |Z|, xmi (l) indicates a binary signal [46] of alarm emi and

tm is the triggering instant of Xm. Afterward, alarms were annunciated one by

one and added to X̃m. Similar to online sequences, irrelevant alarms may also

exist in historical sequences that are not consistently associated with the true

alarm pattern and need to be eliminated. Afterward, a set of observations Ωm
1

from the same historical sequence Xm can be formulated for effective training

of the RL agent. Following the criterion in Eqn 5.17, the set of alarms in an

observation Φm,Ω1

1 at the triggering instant tm is denoted as

φm,Ω1

1 = {xmi |emi ∈
∑

, ∃emj ∈ X̃m s.t. ηconfij ≥ ρconf ,

ηintij ≥ ρint}
|φm,Ω1

1 |
i=1

(5.20)

Then, an alarm xmk ∈ Xm will only be added in Φm,Ω1

1 to initialize a new

observation Φm,Ω1

2 if the following criterion is satisfied:

φm,Ω1

2 = φm,Ω1

1 ∪ xmk , (5.21)

where ∃j ∈ [1, · · · , |φm,Ω1

1 |] s.t. ηconfjk ≥ ρconf , ηintjk ≥ ρint, k ∈ [|X̃m| +

1, · · · , |Xm|], and φm,Ω1

2 indicates the set of alarms in observation Φm,Ω1

2 .

Therefore, Ωm
1 is initially formulated as follows:

Ωm
1 = φm,Ω1

1 ∪ {φm,Ω1

i = φm,Ω1

i−1 ∪ xmk |φ
m,Ω1

i ⊆ {xml }
|Xm|
l=1 ,

φm,Ω1

i /∈ {φm,Ω1
n }|i−1|

n=1 , k ∈ [|X̃m|+ 1, · · · , |Xm|]}
|Ωm

1 |
i=2

(5.22)

Criteria 2: An online sequence may show resemblance to multiple histor-

ical sequences at different stages during an alarm flood. The sequential alarm

pattern that exists in a historical sequence may change significantly while

repeating during an alarm flood and may show resemblance to a different

historical sequence at a later stage. Such phenomenon may lead to false cor-

rective actions at the early stage of an alarm flood. An RL agent should also
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be trained to predict accurately in such situations and assist operators with

unwavering decisions. To create such identical situations from Xm, which are

not available in Z but may occur during an alarm flood, the association rule

approach introduced in section 5.3.1 can be systematically exploited. Initially,

φm,Ω1

1 ∈ Ωm
1 , obtained from Xm at the triggering instant tm, is used to iden-

tify most similar historical sequences from Z using Sorensen-Dice similarity

co-efficient, denoted as

Di = 2 ∗ |φm,Ω1

1 ∩ Xi|
|φm,Ω1

1 |+ |Xi|
(5.23)

where Xi represents the set of alarms that exist in the historical sequence Xi

and i = 1, 2, · · · , |Z|. Based on a user-defined threshold ρd on {Di}|Z|i=1, a set

of similar historical sequences is identified and denoted as Sm,Ω1

1 = {Xs|Ds ≥

ρd, Xs ∈ Z}|S
m,Ω1
1 |

s=1 . Then, the relevance between each alarm xsj ∈ Xs and the

alarms in φm,Ω1

1 is evaluated based on confidence ηconf , and interest ηint where

j = 1, · · · , |Xs|. Based on the existing alarms in φm,Ω1

1 , a new set of alarms

can be nominated using the following criteria:

Xp = {xk|xk ∈
∑

, xk /∈ Xm, ∃l ∈ [1, · · · , |Sm,Ω1

1 |]

s.t. xk ∈ Xl and ∃j ∈ [1, · · · , |φm,Ω1

1 |]

s.t. ηconfjk ≥ ρconf , ηintjk ≥ ρint}|Xp|
k=1

(5.24)

A new observation will only be initialized when a single or multiple alarms

in Xp are added to Φm,Ω1

1 . For example, a new observation Φ
m,Ω1

1
1 is formulated

with an alarm xk ∈ Xp based on the following criterion:

φ
m,Ω1

1
1 = φm,Ω1

1 ∪ xk, (5.25)

where k ∈ [1, 2, · · · , |Xp|], φ
m,Ω1

1
1 represents the set of alarms in observation

Φ
m,Ω1

1
1 , φ

m,Ω1
1

1 /∈ Ω1, and Φ
m,Ω1

1
1 /∈ Z. Previously, Ωm

1 only included alarm sets

from a particular historical sequence Xm and thus, all the alarms in each

observation were on the same timeline and maintained a chronological order

based on the time of annunciations, where m = 1, 2, · · · , |Z|. However, the
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alarm set φ
m,Ω1

1
1 formulated based on Eqn 5.25 may include alarms from dif-

ferent historical sequences, and the corresponding times of annunciations may

not match the timeline of the existing alarms. For efficient learning of RL

agent, the time of annunciations of all alarms in each observation ought to

be on the same timeline to maintain a chronological order. To resolve such

an issue, the 95% confidence interval estimates around the mean of the time

differences [46] between the annunciation of the nominated alarm ek and the

strongly associated alarm em,Ω1

j ∈ φm,Ω1

1 can be determined as follows:

CIkj =


[
max

{
0, t̄d − z σ√

|td|

}
,

{
t̄d + z σ√

|td|

}]
, if sample size ≥ 30,[

max

{
0, t̄d − t σ√

|td|

}
,

{
t̄d + t σ√

|td|

}]
, if sample size < 30.

(5.26)

where t̄d, σ and |td| are the sample mean, sample standard deviation, and

number of samples, respectively [46]. The time of annunciation of the nomi-

nated alarm ek, matching the same timeline of the existing alarms in φm,Ω1

1 ,

is determined as (tm,Ω1

j + t̄d + x σ√
|td|

) where tm,Ω1

j is the time of annunciation

of em,Ω1

j ∈ φm,Ω1

1 ; x indicates z or t distributions depending on the sample size

as shown in Eqn 5.26.

Therefore, given φm,Ω1

1 and Xp, all possible new observations can be gen-

erated following the criterion in Eqn 5.25. Such observations are generated

by selecting different combinations of alarms from Xp. Analogously, for each

alarm set in Ωm
1 , a new set of observations will be initialized based on the

following criterion:

Ωm,1
i =

{
φ
m,Ω1

i
j |∃φm,Ω1

n ∈ Ωm
1 s.t. φ

m,Ω1
i

j = φm,Ω1
n ∪ {xl}ql=r ⊆ Xp,

φ
m,Ω1

i
j /∈ Ωm

1 , Φ
m,Ω1

i
j /∈ Z}

}|Ωm,1
i |

j=1

(5.27)

where i = 1, · · · , |Ωm
1 |, n ∈ [1, · · · , |Ωm

1 |], 1 ≤ r ≤ q ≤ |Xp|, and φ
m,Ω1

i
j

represents the corresponding alarm set of the observation Φ
m,Ω1

i
j . Therefore,

following criteria 1 and 2 as outlined above, several new sets of observations
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can be generated from each historical sequence in Z to train the algorithm

on all possible situations that may appear during an alarm flood. For the

learning process, a training set D is formulated as D = {Ωm
1 , {Ω

m,1
i }|Ω

m
1 |

i=1 }|Z|m=1.

Additionally, to minimize the learning time and improve the RL agent’s early

prediction performance, following criteria are considered when formulating the

training set D:

∀i, j ∈ [1, 2, · · · , |D|], i ̸= j =⇒ (φi ̸= φj) and (Φi ̸= Φj:|Φi|
) (5.28)

∀i, j ∈ [1, 2, · · · , |D|], i ̸= j =⇒ φi ̸⊆ φj where Φi:α = Φj:α (5.29)

In Eqn 5.28, Φj:|Φi|
indicates a subsequence of Φj, consists of the initial |Φi|

alarms from Φj. Eqn 5.28 states that all observations corresponding to the

alarm sets in D should be unique, and no observation should exist as a prefix of

any of the remaining observations. Otherwise, training on both observations

would be redundant, and the RL agent may require more time to make predic-

tions if both observations are assigned different alarm flood ids. In Eqn 5.29,

Φi:α(Φj:α) represents the subset containing the initial α alarms from Φi(Φj).

According to Eqn 5.29, no such alarm sets should exist in D such that the ini-

tial α alarms of the corresponding observations are common and none should

be a subset of another. α is a user-defined threshold, and it is recommended

to set it to 10 or lower. According to the benchmark [30], an alarm flood will

have at least 10 alarms at the triggering instant, and thus, if such an alarm

pattern repeats online, the RL agent will be able to predict at the earliest,

i.e., at the triggering instant, if φi ̸⊆ φj and α ≤ 10.

Each historical sequence in Z is consists of an alarm pattern and is labeled

with an alarm flood ID. Also, the alarm sets in {Ωm
1 ,Ω

m,1
i } are either a subset

or different versions of Xm by including new sets of strongly associated alarms

where m = 1, 2, · · · , |Z|. For optimal learning of RL agent, the observations

corresponding to these alarm sets will be associated with the alarm flood IDs

of the most similar historical sequences that exist in Z. During the training

phase, the RL agent learns to recognize the alarm patterns in such observa-
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tions and label them with the corresponding alarm flood IDs through repeated

interactions. The rewards or penalties assigned to the interactions between

the RL agent and these observations are based on the ground truth, and as

the agent learns and improves its performance, it should be able to accurately

map such observations to the appropriate alarm flood IDs. For the accuracy

of early prediction actions, the assignment of alarm flood IDs to such obser-

vations should be done systematically. The observations corresponding to the

alarm sets in {Ωm
1 ,Ω

m,1
i } are generated based on the alarm pattern in Xm,

but are modified to include a broader range of strongly associated alarms and

exclude the irrelevant ones. These modified observations intend to account for

most of the deviations of Xm that may occur when the sequence is repeated

in real-time. Due to modifications, these observations may resemble other

sequences in Z more closely than Xm. To address this issue, the Modified

Smith-Waterman algorithm can be exploited as follows:

Ii = argmax
Ii∈Ap

S(Φ, XIi), (5.30)

where Ii ∈ N+ and S represest the similarity index. Eqn 5.30 states that

the alarm flood ID Ii will be assigned to the observation Φ due to the cor-

responding historical sequence XIi has the maximum similarity index [45]

with Φ. Analogously, each observation corresponding to the alarm sets in

{Ωm
1 ,Ω

m,1
i }|Ω

m
1 |

i=1 will be paired with the appropriate alarm flood ID for optimal

learning in the training process. For the efficient learning of the RL agent, each

alarm set in {Ωm
1 ,Ω

m,1
i }|Ω

m
1 |

i=1 ∈ D is converted to an exponentially attenuated

component (EAC) vector [4]. For instance, the alarm sets {φm,Ω1

i }|Ω
m
1 |

i=1 ∈ Ωm
1

are converted into corresponding EAC vectors as follows:

χm,Ω1

i = ζm,Ω1

i ◦ exp(−Γτm,Ω1

i ) (5.31)

where ζm,Ω1

i and τm,Ω1

i represents the binary and relative time vectors of φm,Ω1

i ,

◦ denotes the Hadamard product, exp(.) represents elementwise exponential

function, and Γ denotes the attenuation coefficient; m = 1, 2, · · · , |Z|; i =

1, 2, · · · , |Ωm
1 |. Then, each EAC vector will be associated with the alarm flood
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ID of the corresponding observation. For instance, the alarm sets in Ωm
1 ∈ D

are modified as follows:

Ωm
1 = {(χm,Ω1

i , Im,Ω1

i )|Im,Ω1

i ∈ N+, i = 1, 2, · · · , |Ωm
1 |} (5.32)

where χm,Ω1

i is the EAC vector of the alarm set φm,Ω1

i ; Im,Ω1

i is the associated

alarm flood ID of the corresponding observation Φm,Ω1

i . Analogously, all new

alarm sets from each historical sequence will be modified according to Eqn 5.32

by converting each alarm set into the corresponding EAC vectors. Therefore,

(χm,Ω1

i , Im,Ω1

i ) ∈ D represents the corresponding observation Φm,Ω1

i during the

training of the RL agent.

The objective of this algorithm is to warn industrial operators about

upcoming abnormalities by extracting similar scenarios from the historical

database Z. Sometimes, several historical sequences are closely similar to

one other, and it may be beneficial for plant operators to take action if such

sequences are grouped and presented as recommendations when the current

situation matches any of them. In such cases, the modified Smith-Waterman

algorithm can be further utilized as follows:

GIm = {Xn|m ̸= n, S(Xm, Xn) ≥ ρs, n = 1, 2, · · · , |GIm |,

m = 1, 2, · · · , |Z|}
(5.33)

Eqn 5.33 states that to identify a group of closely similar historical se-

quences GIm for each historical sequence Xm ∈ Z, similarity index between

Xm and the other sequences in Z can be determined where m = 1, 2, · · · , |Z|.

Then, based on a user-defined threshold ρs, closely similar historical sequences

can be identified and grouped together to form GIm . Therefore, when an on-

going situation is mapped to the alarm flood ID Im i.e., to its associated

historical sequence Xm, the algorithm will also provide a group of closely sim-

ilar scenarios GIm related to Im as recommendation to the industrial operators.

The detailed procedure for formulating D and identifying GIm is outlined in

Algorithm 5.

115



Algorithm 5 Reconstruction of sequences and formulation of D
1: Input Arguments: Z
2: Output Argument: D
3: Define ρconf , ρint, ρd
4: for i ∈ [1, |Z|] do
5: k = 1
6: if λ(ti) ≥ λ1 then
7: Formulate X̃i by Eqn 5.19
8: for j ∈ [|X̃i|, |Xi|] do
9: if j == |X̃i| then
10: Obtain φi,Ω1

k by Eqn 5.20
11: Obtain I i,Ω1

k by Eqn 5.30
12: Go to 16
13: else
14: if xij satisfy Eqn 5.21 then
15: k=k+1
16: Obtain φi,Ω1

k by Eqn 5.21
17: Obtain I i,Ω1

k by Eqn 5.30

18: Calculate {Dr}|Z|r=1 by Eqn 5.23 and obtain
19: Si,Ω1

k based on ρd
20: Obtain Xp by Eqn 5.24
21: l = 1
22: for q ∈ [1, |Xp|] do
23: if xq satisfy Eqn 5.25 then

24: Obtain φ
i,Ωk

1
l by Eqn 5.25

25: Obtain I
i,Ωk

1
l by Eqn 5.30

26: l = l + 1
27: end if
28: end for
29: Obtain Ωi,1

k by Eqn 5.27
30: end if
31: end if
32: end for
33: end if
34: Obtain Ωi

1 by Eqn 5.22
35: Obtain GIi by Eqn 5.33
36: end for
37: Formualte D = {Ωm

1 , {Ω
m,1
i }|Ω

m
1 |

i=1 }|Z|m=1 based on Eqn 5.28 and Eqn 5.29

5.3.3 Double Deep-Q-Network Algorithm

During an alarm flood, alarms are triggered one by one and sequentially

added to the online sequence. Therefore, only a partial sequence is available at
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any instant during an alarm flood. With a new incoming alarm, the objective

is to predict the incoming sequence accurately or wait until more information

becomes available. Allowing the online sequence to grow sequentially may lead

to major disasters such as process shutdowns, etc. Therefore, the problem of

early prediction can be framed as sequentially nominating the best action

based on the information available at any instant of an alarm flood.

The core of our framework is an RL agent that is trained with all possible

observations in D to perform prediction at the earliest order of the online

sequence. To decorrelate the observations in D and improve the stability of

the learning algorithm, a replay buffer is used and initialized with a collection

of experience tuples. An experience tuple, denoted as < Φ, a, r,Φn >, is used

to modify the agent’s policy that guides its actions in various observations.

The current observation of the state is Φ which is represented as (χ, I) during

the training process, the action taken by the agent at Φ is represented by

a, the reward received for the action is indicated by r, and Φn, i.e., (χn, In)

represents the consequent observation, which is determined by the transition

model T . The reward function R(s, a) is typically designed to ensure that it

accurately reflects the desired objectives of the RL agent. Thus, to align with

the goal of the RL agent, the reward function is defined as follows:

R((Φ, Ii), a) =


1 if a = Ii ∈ Ap

−Γ if a ̸= Ii ∈ Ap

rd if a = ad

(5.34)

where rd =

{
1− (|Φ|/δ) if |Φ| ≤ δ

−1 if|Φ| > δ
(5.35)

In Eqn 5.34, Γ = max{|Xi| : Xi ∈ Z, i = 1, 2, · · · , |Z|}, and δ is a hyper-

parameter that needs to be adjusted together with other hyperparameters for

optimal performance. The process of identifying the optimal settings for such

hyperparameters is briefly discussed in section 5.4. The RL agent is rewarded

for an action a ∈ Ap if it correctly predicts the alarm flood ID for a given

observation in the training set D. However, a severe penalty is imposed if the

prediction is incorrect. To avoid such high penalty, the RL agent is encouraged

with a much smaller penalty to defer its action of prediction if it is uncertain,
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as shown in Eqn 5.35. The penalty for deferral, however, increases with the

addition of more alarms to the online sequence, which motivates early predic-

tion. With this strategy, the RL agent can avoid incorrect prediction actions

and make a balance between action of deferral and action of prediction to find

the optimal policy resulting in the highest cumulative reward.

In this work, transition model T is deterministic and denoted as follows:

T ((Φ, Ii), a) =

{
(Φ, Ii) if (a ∈ Ap) ∨ (|Φ| = |X|) ∨ (λt < λ2)
(Φn, Ii) if a = ad and |Φ| ̸= |X| (5.36)

Eqn 5.36 states that the RL agent remains in its current state if any of the

following conditions are met:

1. a ∈ Ap.

2. The current observation Φ is the full observation of the state, i.e., the

complete historical sequence X.

3. During an alarm flood, the current alarm rate λt falls below λ2.

However, if the RL agent decides to defer the action of prediction, it will

transition to the next observation Φn. For each observation Φi ∈ D, a set

of experience tuples is formulated as Φe
i = {< Φi, aj, R(Φi, aj), T (Φi, aj) >

|aj ∈ A, j = 1, · · · , |A|} where A = {Ap, ad}, Φi is represented as (χi, Ii) and

i = 1, 2, · · · , |D|. Φe
i is formulated by combining all possible actions a ∈ A

with their corresponding rewards and transitions to the next states. Each

experience tuple captures the essential details of a single interaction between

the agent and a particular observation. The replay buffer stores all such

interactions to allow the agent to learn from these past experiences.

To learn from a diverse set of experiences, the minibatch sampling tech-

nique is exploited to update the agent’s learning algorithm based on a small,

randomly chosen subset of experiences from the replay buffer. The RL agent

uses such experiences to train a deep neural network, which serves as the

function approximator for the expected future rewards for each action in each

state, i.e., the Q-values.
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The RL agent updates its policy by using stochastic gradient descent

(SGD), which works by iteratively updating the weights θp in the direction

that reduces the loss. To ensure optimal learning without any biasedness, the

DDQN algorithm is exploited in this work. Initially, the target Q-values are

determined as follows:

QT = r + γQ(s′, argmax
at+1

Q(s′, at+1, θp), θt) (5.37)

where the Q-value from the target network corresponding to the action nom-

inated by the prediction network is used to compute QT . Then, the loss is

computed by comparing QT with the current Q-values from the prediction

network with weights θp, which is used to update the weights of the prediction

network θp using SGD. After certain iterations, the weights of the predic-

tion network θp are transferred to the target network to stabilize the learning

process and improve convergence.

The replay buffer stores all possible experiences of interactions between

the RL agent and the environment, which is denoted as

β =

|Z|⋃
m=1

{Em} (5.38)

where Em = {Φe,m
i |i = 1, 2, · · · , |Em|}, which indicates the set of experiences

generated from each historical sequence in Z. Em is composed of experi-

ences with prediction and deferral actions, denoted as Em
p and Em

d where

m = 1, 2, · · · , |Z|. Em
p is further divided into two categories: experiences with

correct and incorrect prediction actions, and denoted as Er,m
p and Ew,m

p . Thus,

Em can be expressed as Em = Er,m
p ∪ Ew,m

p ∪ Em
d . All these past experiences

are based on observations from historical sequences with different alarm flood

IDs, and the Minibatch sampling technique decorrelates these experiences from

different categories. However, uniform sampling can overemphasize a certain

category of experiences, which may cause biasedness in the learning algorithm.

Also, if experiences with action of deferrals Em
d are oversampled, the RL agent

will more likely to defer the prediction of the incoming alarm flood sequence.
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Additionally, the performance may degrade if a particular historical sequence

is emphasized and sampled for experiences. To overcome this issue, each mini-

batch should contain an equal number of experiences from each historical se-

quence Em where m = 1, 2, · · · , |Z|. Furthermore, when sampling experiences

from each historical sequence, a ratio of ρ > 1 will be maintained while taking

samples from Em
p and Em

d , respectively. This allocation gives greater weight to

the experiences from Em
p as compared to Em

d . This sampling strategy ensures

diverse learning and emphasizes early prediction of incoming sequences. The

details of the training procedure are outlined in Algorithm 6.

The DDQN algorithm involves tuning several hyperparameters, including

the learning rate ς, discount factor γ, exploration rate ϵ, number of episodes

E, number of iterations n etc., to optimize the convergence of L(θ) and im-

prove its accuracy. For this particular early prediction problem, initially a

range of values is identified for each hyperparameter through a trial and error

process. Subsequently, all possible combinations of these values are evaluated.

The best performing set of values is identified that provides the most accu-

rate approximation of the optimal action Q values with optimal parameters

θt. Therefore, during an alarm flood, the DDQN algorithm uses the learned

parameters θt from the training phase to estimate the Q-values against the

incrementing online alarm flood sequence. The action corresponding to the

highest Q-values will be nominated, determining whether to make a prediction

or wait for more information. If the DDQN algorithm suggests a prediction

action (a ∈ Ap), it will provide the alarm flood ID and the group of scenarios

that are most similar to a historical sequence from Z and resemble the current

online sequence the closest. Conversely, the algorithm will wait for the on-

line sequence to include more incoming alarms until it can predict accurately.

The steps for predicting the incoming alarm flood sequence are outlined in

Algorithm 7.
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Algorithm 6 Training with DDQN algorithm

1: Input Arguments: D
2: Output Argument: Deep neural network with optimal parameters θt
3: for i ∈ [1, |D|] do
4: for j ∈ [1, |Φi|] do
5: Formulate Q = Φi:j

6: Convert Q to EAC vector χQ by Eqn 5.31
7: for a ∈ [1, |A|] do
8: Obtain reward R((χQ, Ii), a) by Eqn 5.34
9: Obtain next observation T ((χQ, Ii), a) by Eqn 5.36
10: Store < (χQ, a, R((χQ, Ii), a)), T ((χQ, Ii), a)) >
11: in β
12: end for
13: end for
14: end for
15: Define γ, ϵ, E, µ and n
16: Initialize Target and Prediction network with random weights θt and θp,

and set θt = θp
17: for k ∈ [1,E] do
18: Sample a mini-batch of past experiences with a ratio of ρ
19: Calculate QT by Eqn 5.37
20: Calculate L(θ) by Eqn 5.11 and update θp using SGD
21: if k == n then
22: Set θt = θp
23: end if
24: end for

5.4 Case Study

An industrial case study is presented in this section to illustrate the pro-

posed method. A historical alarm & log over the time period from November

1, 2019, to April 30, 2020 was obtained from a coking plant[45] of an oil re-

finery. Total 103 alarm floods were extracted after removing the chattering

alarms using off-delay timers. The average length of alarm floods was 29.75.

The alarm floods with the highest and least number of alarms were 609 and

10, respectively.

From each historical alarm flood in Z, all possible observations were gen-

erated according to criteria 1 and 2 as outlined in Section 5.3.2. Table 5.1
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Algorithm 7 Online prediction of incoming alarm flood sequence

1: Input Arguments: Y:t, Deep neural network with optimal parameters θt
2: Output Argument: Ii, GIi

3: Determine λt after eliminating chattering alarms
4: if λt ≥ λ1 then
5: Obtain Y:t by Eqn 5.17
6: Convert Y:t to EAC vector χy by Eqn 5.31
7: if a ∈ Ap then
8: Obtain max(Q(χy, a, R(χy, a), T (χy, a)) = Ii ∈ Ap

9: Identify GIi

10: else
11: if y|Ỹ:t| satisfy Eqn 5.18 then

12: Obtain Ỹ by Eqn 5.18
13: Go to 6
14: end if
15: end if
16: end if

illustrates the observations generated from the historical sequence # 34 in Z.

Table 5.1-A shows the historical sequence # 34 where the triggering instant

was identified at the annunciation of Tag 185. Tag 158 and Tag 694 were

identified as irrelevant alarms according to the criteria shown in Table 5.2.

The user-defined thresholds ρconf and ρint were set to 0.5 and 1, respectively.

In Table 5.2, evaluation of some of the alarms in historical sequence # 34 is

shown where Tag 158 could not satisfy ρconf and thus identified as irrelevant

alarms. After excluding Tag 158, observation # 1 was generated by including

all the alarms that were annunciated up until the triggering instant. Instead of

the time of annunciations, observation # 1 shows the relative time differences

between each alarm and the first alarm. Observation # 2 was formulated by

including the next relevant alarm Tag 184. As Tag 694 was also identified as

an irrelevant alarm, no more observations could be formulated according to

the criteria 1.

As outlined in criteria 2 of Section 5.3.2, new observations were formu-

lated by predicting upcoming alarms based on the existing alarms within each

observation formulated according to criteria 1. Table 5.3 shows some of the
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Table 5.1: Observations from historical sequence using criteria 1: (A) Historical
sequence # 34; (B) Observation # 1; (C) Observation # 2.

(A)

Historical Sequence # 34
Alarm Tag Time (sec)
TAG 836 3:21:21 AM
TAG 166 3:21:28 AM
TAG 174 3:21:28 AM
TAG 834 3:21:28 AM
TAG 828 3:21:28 AM
TAG 158 3:21:28 AM
TAG 178 3:21:28 AM
TAG 177 3:21:28 AM
TAG 176 3:21:28 AM
TAG 185 3:21:28 AM
TAG 184 3:22:45 AM
TAG 694 3:23:13 AM

(B)

Observation # 1
Alarm Tag Time (sec)
TAG 836 0.0
TAG 166 7.0
TAG 174 7.0
TAG 834 7.0
TAG 828 7.0
TAG 178 7.0
TAG 177 7.0
TAG 176 7.0
TAG 185 7.0

(C)

Observation # 2
Alarm Tag Time (sec)
TAG 836 0.0
TAG 166 7.0
TAG 174 7.0
TAG 834 7.0
TAG 828 7.0
TAG 178 7.0
TAG 177 7.0
TAG 176 7.0
TAG 185 7.0
TAG 184 8.2

Table 5.2: Evaluation criteria for eleminating the irrelevant alarms.

Alarm Tag Associated Alarm Confidence Interest
TAG 836 TAG 176 0.87 1.16
TAG 174 TAG 178 0.67 1.08
TAG 158 TAG 834 0.47 1.21
TAG 178 TAG 836 0.78 1.1

...
...

...
...

alarms nominated as potential upcoming alarms based on the existing alarms

in observation # 1 as shown in Table 5.1-B. The predicted alarms show high

confidence and an interest value greater than 1, indicating a strong association

between the predicted alarms and the existing alarm pattern in observation

# 1. These predicted alarms and the existing alarms in observation # 1 were

then used to form a new observation, as shown in Table 5.4. The time in-

formation of Tag 184, Tag 183 and Tag 188 in observation # 3 are shown

as [0, 137], [0, 69] and [23, 90], respectively. These values correspond to the

95% confidence interval estimates that specify the time interval between the

annunciation of Tag 185 and each predicted alarm in observation # 3. As

stated in Section 5.3.2, only the highest endpoints of the confidence intervals

for each nominated alarm were used to convert the alarm set corresponding

to each observation into feature vectors. This process of generating such new

observations from historical sequence # 34 and then, converting them into the
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Table 5.3: Prediction of upcoming alarms for observation # 1.

Predicted Alarms Associated Alarms Confidence Interest
TAG 184 TAG 176 0.8 1.51
TAG 183 TAG 177 0.67 1.41
TAG 188 TAG 185 0.6 1.6

...
...

...
...

Figure 5.1: Loss function with different sets of hyperparameters

corresponding feature vectors was applied to all the historical sequences in Z.

Total 115 observations were generated after complying with the requirements

specified in Eqn 5.28 and Eqn 5.29, and converted into feature vectors that

are used to formulate the training set D.

Table 5.4: Observations from historical sequence: (A) Observation # 1 formulated
using criteria 1; (B) Observation # 3 formulated using criteria 2.

(A)

Observation # 1
Alarm Tag Time (sec)
TAG 836 0.0
TAG 166 7.0
TAG 174 7.0
TAG 834 7.0
TAG 828 7.0
TAG 178 7.0
TAG 177 7.0
TAG 176 7.0
TAG 185 7.0

(B)

Observation # 3
Alarm Tag Time (sec)
TAG 836 0.0
TAG 166 7.0
TAG 174 7.0
TAG 834 7.0
TAG 828 7.0
TAG 178 7.0
TAG 177 7.0
TAG 176 7.0
TAG 185 7.0
TAG 184 [0, 137]
TAG 183 [0, 69]
TAG 188 [23, 90]

The DDQN algorithm was trained until the loss function stopped decreas-
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Figure 5.2: Mean accuracy and mean time of prediction of the validation set

ing. Multiple sets of hyperparameters were employed, and the loss function

was monitored. Fig 5.1 shows the loss function with two sets of hyperpa-

rameters that were selected based on their relative stability in minimizing the

loss function during the training. However, the second set of hyperparameters

exhibited high fluctuations in the loss function, indicating that the training

was less stable with this set of hyperparameters. Such fluctuations may be

caused by various factors, such as inappropriate setting for the learning rate.

On the other hand, the loss function with the first set of hyperparameters

showed a gradual decrease with low fluctuations, suggesting that this set of

hyperparameters was better suited for the given problem. The set of hyper-

parameters includes the learning rate ς, discount factor γ, exploration rate ϵ,

number of episodes E and δ. The values assigned to these hyperparameters

were 0.000025, 0.99, 0.1, 60000 and 20, respectively. Additionally, Fig 5.2 il-

lustrates the training accuracy and mean time of prediction on a validation set

of 10 observations at various numbers of episodes while keeping the remaining

hyperparameters in set 1 constant. Fig 5.2 shows that the DDQN algorithm

converged to optimal policy when the number of episodes was set to 60000,

with the highest training accuracy and lowest mean prediction time. However,

as the number of episodes increased beyond 60000, the training accuracy de-

creased and the mean time of prediction increased, which may be attributed to

overfitting of the algorithm to the training data. The mean time of prediction
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increases due to delaying the action of prediction for certain observations in

the validation set.

A historical sequence was nominated as an online sequence where alarms

were raised one by one and added to the online sequence during simulation.

Each time the online sequence was modified by including new alarms, it was

presented as input to the DDQN network to evaluate the prediction accu-

racy in real-time. Table 5.5 shows an alarm flood sequence at the triggering

instant where Tag 836 was identified as irrelevant alarms according to the

criteria shown in Table 5.2. After excluding Tag 836, the online sequence

with only relevant alarms is shown in Table 5.5-B which was the input to the

DDQN network after converting to the feature vector according to Eqn 5.31.

As shown in Table 5.5-B, with only relevant alarms at triggering instant, the

algorithm prefered action of deferral over action of prediction as it required

more information. With Tag 880 added to the online sequence as shown in

Table 5.5-C, the algorithm nominated historical sequence # 31 as the most

similar to the online sequence. Table 5.6 illustrates the accuracy of the early

prediction action. Table 5.6-A shows the complete online sequence, and Ta-

ble 5.6-B shows the historical sequence # 31 with highlighted alarms that also

exist in the online sequence. As shown in Table 5.6, the proposed method also

provided a group of similar historical sequences to the nominated sequence #

31 as recommendation to the operators. Table 5.6-C and Table 5.6-D shows

some of the closely similar historical sequences with similarity scores 0.9 and

0.81 respectively. With Tag 836 being identified as irrelevant alarm, it is

clearly observed that an alarm pattern exists both in the online and historical

sequence # 31. Also, most of the alarms in the historical sequences # 31, #32,

and #51 are also present in the complete online sequence, which validates the

early prediction action.

To verify the accuracy of the early prediction action, similarity analysis

using modified SWA [45] was conducted between the complete online sequence

and the historical sequences in Z. The outcome of the analysis is shown
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Table 5.5: Early prediction of an online alarm flood sequence: (A) At triggering
instant; (B) Online alarm flood sequence with only relevant alarms; (C) Online
alarm flood sequence after including TAG 880 following triggering instant.

(A)

Online Sequence
(at triggering instant)

Alarm Tag Time (sec)
TAG 880 02:51:39 AM
TAG 836 03:00:22 AM
TAG 417 03:01:17 AM
TAG 416 03:01:17 AM
TAG 415 03:01:17 AM
TAG 414 03:01:17 AM
TAG 413 03:01:17 AM
TAG 412 03:01:17 AM
TAG 410 03:01:17 AM
TAG 409 03:01:17 AM
TAG 407 03:01:17 AM

(B)

Observation # 1
(online Sequence)

Y → ad
Alarm Tag Time (sec)

Tag 880 02:51:39 AM
Tag 417 03:01:17 AM
Tag 416 03:01:17 AM
Tag 415 03:01:17 AM
Tag 414 03:01:17 AM
Tag 413 03:01:17 AM
Tag 412 03:01:17 AM
Tag 410 03:01:17 AM
Tag 409 03:01:17 AM
Tag 407 03:01:17 AM

(C)

Observation # 2
(Online Sequence)
Y → a ∈ Ap = 31

Alarm Tag Time (sec)
TAG 880 02:51:39 AM
TAG 417 03:01:17 AM
TAG 416 03:01:17 AM
TAG 415 03:01:17 AM
TAG 414 03:01:17 AM
TAG 413 03:01:17 AM
TAG 412 03:01:17 AM
TAG 410 03:01:17 AM
TAG 409 03:01:17 AM
TAG 407 03:01:17 AM
TAG 880 03:05:26 AM

in Fig 5.3 using a color map including only the historical sequences from

Z that exhibited significant similarity with the online sequence. During the

simulation, historical sequence # 26 was chosen as the online sequence, and

the color map shows the most similar sequences to the online sequence, which

are marked as C2 in Fig 5.3, with historical sequence # 31 being the most

similar. Furthermore, the historical sequences which demonstrated significant

similarity to historical sequence # 31, marked as C1 in Fig 5.3, were also

identified and can be provided to the plant operators as a recommendation.

Additionally, the average running time of the proposed method was compared

with the methods in [51] and [15], and showed in Table 5.7. As indicated

by the table, the proposed method exhibits significantly lower running time

compared to the methods outlined in [51] and [15].

5.5 Summary

In this chapter, we addressed the problem of early prediction of indus-

trial alarm floods and presented a comprehensive solution to overcome the

associated challenges. Initially, we provided necessary background on indus-

trial alarm floods and reinforcement learning, and introduced the problem.
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Table 5.6: Validation of early prediction action: (A) Online sequence; (B) Historical
sequence # 68; (C) Historical sequence # 71 with similarity score 0.9; (D) Historical
sequence # 76 with similarity score 0.81.

(A)

Online Sequence
Alarm Tag Time (sec)
TAG 880 02:51:39 AM
TAG 836 03:00:22 AM
TAG 417 03:01:17 AM
TAG 416 03:01:17 AM
TAG 415 03:01:17 AM
TAG 414 03:01:17 AM
TAG 413 03:01:17 AM
TAG 412 03:01:17 AM
TAG 410 03:01:17 AM
TAG 409 03:01:17 AM
TAG 407 03:01:17 AM
TAG 880 03:05:26 AM
TAG 819 03:10:19 AM
TAG 839 03:11:22 AM
TAG 417 03:18:38 AM
TAG 416 03:18:38 AM
TAG 415 03:18:38 AM
TAG 414 03:18:38 AM
TAG 413 03:18:38 AM
TAG 412 03:18:38 AM
TAG 410 03:18:38 AM
TAG 409 03:18:38 AM
TAG 407 03:18:38 AM
TAG 1205 03:28:03 AM

(B)

Historical Sequence # 31
Alarm Tag Time (sec)
TAG 880 03:49:19 AM
TAG 417 03:59:00 AM
TAG 416 03:59:00 AM
TAG 415 03:59:00 AM
TAG 414 03:59:00 AM
TAG 413 03:59:00 AM
TAG 412 03:59:00 AM
TAG 410 03:59:00 AM
TAG 409 03:59:00 AM
TAG 407 03:59:00 AM
TAG 880 04:02:18 AM
TAG 1113 04:02:37 AM
TAG 1375 04:05:16 AM

(C)

Historical Sequence # 32
Alarm Tag Time (sec)

Similarity Score : 0.9
TAG 788 05:41:55 AM
TAG 417 05:42:26 AM
TAG 416 05:42:26 AM
TAG 415 05:42:26 AM
TAG 414 05:42:26 AM
TAG 413 05:42:26 AM
TAG 412 05:42:26 AM
TAG 410 05:42:26 AM
TAG 409 05:42:26 AM
TAG 407 05:42:26 AM

(D)

Historical Sequence # 51
Alarm Tag Time (sec)
Similarity Score : 0.81
TAG 417 12:34:40 PM
TAG 416 12:34:40 PM
TAG 415 12:34:40 PM
TAG 414 12:34:40 PM
TAG 413 12:34:40 PM
TAG 412 12:34:40 PM
TAG 410 12:34:40 PM
TAG 409 12:34:40 PM
TAG 407 12:34:40 PM
TAG 1337 12:36:28 PM
TAG 819 12:36:56 PM

Table 5.7: Running times of different methods

Method
Proposed
method

Method in
[51]

Method in
[15]

Avg. run
time (ms)

0.076 0.118 0.141
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Figure 5.3: Validation of early prediction action by demonstrating the simi-
larity between the complete online and the most similar historical sequences
in Z based on the similarity color map.

Then, we proposed strategies based on an association rule mining approach to

eliminate irrelevant alarms from online sequences and reconstruct sequences

from historical sequences. Next, a comprehensive explanation of the DDQN

algorithm is presented. Finally, an industrial case study is presented to illus-

trate the proposed method. Overall, the proposed method provided a com-

prehensive approach to early prediction of industrial alarm floods, combining

association rule mining and reinforcement learning to overcome the challenges

associated with this problem. The presented case study effectively showcased

the capabilities and benefits of our method in real-world industrial scenarios.
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Chapter 6

Conclusions and Future Work

This chapter concludes the thesis by providing concluding remarks and

suggesting potential research directions for future work.

6.1 Conclusions

This thesis focuses on developing data-driven methods aimed at effectively

managing alarm flood situations and minimizing their impacts. The main

conclusions drawn from the studies in this thesis are as follows:

1. We proposed a real-time pattern matching and dynamic ranking ap-

proach to conduct similarity analysis in an online alarm flood situation

and to export a ranking list of historical alarm floods ranked by the

similarity scores. The proposed method can provide real-time decision

support to plant operators by finding and ranking closely similar scenar-

ios for the online alarm flood from the database of historical alarm flood

sequences. Unit-based screening and set-based pre-matching, along with

the online set-based indexing and extension strategy, greatly reduce the

computational burden by excluding unnecessary computation. Incre-

mental sequence alignment was used to measure sequence-based simi-

larity. Ranking of the most similar alarm flood sequences provides the

opportunity to explore all the similar sequences and acquire valuable

information on the incoming alarm flood sequence.
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2. We introduced a new approach for predicting alarm events in real time

during alarm flood situations. The proposed method, based on asso-

ciation rule mining, aimed to assist industrial operators in promptly

responding to alarm floods by providing timely predictions of upcom-

ing alarms. To achieve this, the Compact Prediction Tree (CPT) model

was modified with additional features and constructed using historical

alarm flood sequences. An online strategy was proposed, utilizing co-

occurrence frequency and confidence, to eliminate irrelevant alarms and

maintain prediction accuracy. Furthermore, a real-time algorithm was

developed that effectively predicts upcoming alarms by leveraging true

alarm patterns and updates predictions as the online alarm flood pro-

gresses. The method also provides the annunciation times for subsequent

alarms, thereby supporting industrial operators in effectively managing

alarm flood situations.

3. We proposed a reinforcement learning approach aimed at predicting

alarm floods in real time and providing assistance to address the sit-

uation at the earliest. Various association rule metrics were employed

to assess and identify irrelevant alarms within the online sequence. A

strategy was introduced to reconstruct sequences by exploiting the alarm

relations in the existing set of historical sequences and to modify the

training set for effective learning. By employing this strategy, the pro-

posed method can address potential online scenarios that are not present

in the set of historical sequences, thus enabling it to provide recom-

mendations when similar situations reoccur in real time. The proposed

method adopted the DDQN algorithm with a modified learning process,

leading to improved accuracy and promptness in predicting industrial

alarm floods.

The effectiveness and practicality of the proposed methods are validated

through case studies conducted on alarm data obtained from complex indus-

trial facilities.
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6.2 Future Work

The future research directions on effective management of alarm flood

situations are summarized as follows:

1. Initially, we introduced a real-time pattern matching and dynamic rank-

ing approach to perform similarity analysis during online alarm floods.

An interesting future aspect of this method is identifying novel situa-

tions, which relies on determining a dynamic similarity threshold. This

threshold can vary due to several influencing factors, such as the root

cause type, the presence of nuisance alarms, and other related consid-

erations. Using a constant threshold may lead to misclassifications and

mislead industrial operators. Thus, investigating and dedicating further

efforts to establish a dynamic threshold based on these factors is crucial.

Furthermore, to improve accuracy and relevance, critical contextual in-

formation like operational conditions can be integrated into the dynamic

threshold determination process. This ensures that the threshold aligns

with the current situation and becomes more adaptable. Additionally,

refining the proposed method by incorporating feedback from operators

will be an interesting addition to this method. Operators’ insights can

contribute to a more accurate determination of dynamic threshold, mak-

ing the approach more practical and effective.

2. Secondly, we proposed a new approach for predicting alarm events in

real time during alarm flood situations. One of the limitations of the

proposed method is the inadequacy of similar situations as the ongoing

alarm flood in the training set. To address this, a potential future di-

rection is to explore the application of transfer learning and pre-trained

models with extensive datasets. By leveraging knowledge from related

domains or previous datasets, the model’s ability to handle scenarios

with limited similar training instances can be improved. Moreover, the

training of CPT is currently performed offline, but a new feature can
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be included that enables real-time training only when a new example is

detected. In such scenarios, the current features of CPT can be incre-

mentally updated. Such an issue is not investigated in this thesis and is

considered as a promising future work.

3. Finally, we proposed a reinforcement learning approach to address some

specific issues related to predicting alarm floods in real time and pro-

viding assistance to handle the situation at the earliest. One interesting

future research involves identifying the root cause associated with each

alarm flood in real time and providing immediate recommendations for

corrective actions. While the proposed method effectively suggests sim-

ilar scenarios to the ongoing alarm flood with optimal accuracy, select-

ing appropriate corrective actions based on such recommendations may

require prior experience or context-specific training, which can be time-

consuming and resource-intensive. In addition, the recommendations for

corrective actions should be explainable and interpretable to operators.

This will help operators understand the underlying reasoning behind the

suggested corrective actions, ultimately building trust in the capabilities

of the system.
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