A Simpler Model of Software Readability

Daryl Posnett Abram Hindle Prem Devanbu
University of California, Davis University of California, Davis University of California, Davis
Davis, CA Davis, CA Davis, CA

dpposnett@ucdavis.edu

ABSTRACT

Software readability is a property that influences how eas-
ily a given piece of code can be read and understood. Since
readability can affect maintainability, quality, etc., program-
mers are very concerned about the readability of code. If
automatic readability checkers could be built, they could
be integrated into development tool-chains, and thus con-
tinually inform developers about the readability level of the
code. Unfortunately, readability is a subjective code prop-
erty, and not amenable to direct automated measurement.
In a recently published study, Buse et al. asked 100 partici-
pants to rate code snippets by readability, yielding arguably
reliable mean readability scores of each snippet; they then
built a fairly complex predictive model for these mean scores
using a large, diverse set of directly measurable source code
properties. We build on this work: we present a simple, in-
tuitive theory of readability, based on size and code entropy,
and show how this theory leads to a much sparser, yet sta-
tistically significant, model of the mean readability scores
produced in Buse’s studies. Our model uses well-known size
metrics and Halstead metrics, which are easily extracted us-
ing a variety of tools. We argue that this approach pro-
vides a more theoretically well-founded, practically usable,
approach to readability measurement.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, performance measures

General Terms

Human Factors, Theory, Measurement

Keywords
Readability, Halstead, Entropy, Replication

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MSR ’11, 21-MAY-2011, Waikiki, Honolulu , USA

Copyright 2011 ACM 978-1-4503-0574-7/11/05 ...$10.00.

ah@softwareprocess.es

devanbu@ucdavis.edu

1. INTRODUCTION

Readability of code is of central concern for developers [1,
18, 19, 23]. Code that is readable is often considered more
maintainable; code that is more readable today is presumed
to remain easier to read, comprehend, and maintain at a
later date.

We conceive of readability as a subjective impression that
programmers have of the difficulty of code, as they try to
understand it. The relationship between readability and un-
derstanding is analogous to syntactic and semantic analysis,
readability is the syntactic aspect while understandability is
the semantic aspect. In essence, readability is a perceived
barrier to understanding that the programmer feels the need
to overcome before working with a body of code: the more
readable it is, the lower the barrier.

There is much previous work about readability [7, 15,
33, 34, 13, 3]. One major issue with studies of readabil-
ity is the difficulty of experimentally reifying what is essen-
tially a subjective perception. Measures of subjective per-
ception are both difficult to obtain, requiring human stud-
ies, and also are inherently variable; large-scale surveys, in-
volving multiple human raters, and careful statistical anal-
ysis of inter-rater agreement are required to obtain usable
measures. Buse et al.’s work was a major contribution in
this area: they conducted a fairly large-scale study, asking
human subjects to provide subjective rating scores of the
readability of code snippets. These scores were validated
and aggregated to yield mean-opinion-scores [6]. The re-
sult of this extensive and time-consuming study was a set of
code-snippets, S, accompanied by mean subjective readabil-
ity scores: O(s), s € S. Buse et al. then gathered direct,
automatically-derived, token-level measures, M(s), of the
code snippets. They then built a logistic regression model
to predict the subjective, laboriously gathered scores, O(s),
using the collection of automatically gathered direct metrics,
M(s). The M(s) were essentially token-level measures, but
even so, were able to predict O(s) to some degree. This
was an important contribution since it opens up the possi-
bility of automatic tools that can provide readability scores
as feedback to developers for every commit they make; this
continuous feedback might potentially improve readability,
and thus maintainability, of code over time.

In this paper we improve upon Buse et al.’s model, yield-
ing a model that is simpler, better performing and theoreti-
cally well-founded in both classical software engineering and
basic information theory. In particular we argue that funda-
mental aspects of readability have been measured since the
1970s by Halstead’s software science metrics [21]. We show
that the Halstead metrics can be used to improve upon the

Avg. | Max. | Feature

° identifier length

indentation

line length in characters

blank lines

spaces

comments

numbers

identifiers

° # keywords

assignments

branches

7 loops

arithmetic operators

comparison operators

parentheses

7 periods

° # occurrences of any single character
occurrences of any single identifier

Table 1: Token features captured by Buse et al. and
reported in [6].

Buse et al. model of mean-opinion scores of snippet read-
ability. In addition, we introduce some simple, intuitive
measures of entropy into our models, and show that these
measures further improve the performance of our model. In
the ensuing discussion, we use Buse’s model to refer to the
Buse et al. model, and the improved Halstead model for the
model introduced in this paper.

Like Buse’s model, the improved Halstead model is based
on lexical properties, and can be gathered quickly and easily
with widely-available tools. Furthermore, it can be gathered
from inchoate code that is not yet compilable.

Below, we begin with motivation, theoretical foundations,
and our research questions; we then present our methodol-
ogy. After the results are presented, we conclude with warn-
ings and speculations concerning the further implications of
this work.

2. CONCEPTUAL FOUNDATIONS AND RE-
SEARCH QUESTIONS

We build on the Buse Model, aiming to make it more
robust, theoretically well-founded and usable. Specifically,
we were animated by 3 goals:

1. Simplify the model, and improve its performance.

2. Clarify and strengthen its theoretical bases in the clas-
sical software engineering ideas of size and complexity.

3. Further improve the model by using simple information-
theoretic notions of entropy.

Our approach to these goals is described below.

2.1 Statistical modeling

At the core of the Buse et al. work is a statistical pre-
diction model, which regresses the subject O(s) measures
against the direct lexical M(s) measures. There are vari-
ous recommended guidelines to ensure the robustness and
validity of estimated models.

One rule of thumb when building prediction models that
one should have 10 to 20 times the number of samples as

predictor variables [32]. Models built with insufficient cases
relative to the number of predictors can be unstable and
often, due to feature overlap, tell us very little about what
features have genuine and significant impact on the result.

Buse et al. had a sample of 100 mean subjective ratings.
The above rule of thumb suggests that about 5-10 predictors
could be used with this sample size to avoid instability due to
over-fitting. However, they used (in aggregated or extremal
summary) 19 different lexical metrics to yield 25 different
features. Buse et al. also reported that principal components
analysis (PCA) revealed significant overlap in their feature
set and that 95% of the total variance could be explained by
only 6 principal components. This suggests not only that
some features do not help, but also that a simpler model
may lead to a more general theory of readability. We begin
with a simple, yet general research question:

Research Question 1: Is there a simpler explanation
for the mean readability scores gathered by Buse et al.
that does not depend on a large number of features?

2.2 Size and Readability

It is a reasonable assumption to believe that size should
not affect a measure of readability; viz. if two functions are
equally readable then why should their concatenation be less
readable? However, if taken too far, this argument might
lead to the absurd conclusion that a single class, method,
statement, or even token, of a program should have the
same measure of readability as the entire program. In Buse’s
study, the snippets presented to the raters vary in size; so it
is quite possible that variation in size has some effect on the
readability ratings. If the experimental design does not con-
trol for the effect of size explicitly, and we wish to develop
hypotheses that relate code attributes to readability, then it
is necessary to include such control in the model [14, 5].

Buse et al. argue that they avoid the issue by choosing fea-
tures believed to be “independent of of the size of the code
block” ([6], §4.1, para 1; by “code block” here they mean
the snippets handed out to raters for evaluation). Their
expectation is that this approach would yield a model in-
dependent of size. We argue, however, one must explicitly
include size in a model in order to discern size dependency
from the effect of non-size factors.

In support of this position, we display the Spearman cor-
relation that several of the features used by Buse et al. have
with size measures (lines, words and characters, as measured
with UNIX wc command) in Table 1. The features clearly
are not independent of size.

Metrics lines words characters

avg math 0.45 0.66 0.51

avg comment 0.57 0.63 0.49

max idents 0.30 0.66 0.65

max word 0.34 0.49 0.54

max line length 0.11 0.44 0.62

max occurrences char 0.47 0.62 0.84

The feature max occurrences of a single character, for ex-
ample, is sufficiently correlated with the number of char-
acters that it could potentially be viewed as a proxy for
absolute size of the snippet. This leads to our next research
question:

Lines Characters N n \Y D E Token Unique Byte Voter

Entropy Tokens Entropy Mean

Lines 1.00 0.69 0.18 024 0.21 0.16 0.15 -0.19 0.28 -0.04 0.23
Characters 0.69 1.00 057 051 0.57 0.18 0.30 -0.56 0.51 0.06 -0.20

N 0.18 0.57 1.00 0.89 099 056 0.75 -0.94 0.87 -0.01 -0.64

n 024 0.51 0.89 1.00 093 062 0.74 -0.81 0.99 -0.04 -0.61

vV 021 0.57 099 093 1.00 0.59 0.77 -0.92 0.91 -0.02 -0.64

D 0.16 0.18 0.56 0.62 0.59 1.00 0.95 -0.50 0.64 0.00 -0.40

E 015 0.30 0.75 074 077 095 1.00 -0.69 0.75 -0.01 -0.50

Token Entropy -0.19 -0.56 -0.94 -0.81 -0.92 -0.50 -0.69 1.00 -0.79 0.01 0.62
Unique Tokens 0.28 0.51 0.87 099 091 064 0.75 -0.79 1.00 -0.05 -0.57
Byte Entropy -0.04 0.06 -0.01 -0.04 -0.02 0.00 -0.01 0.01 -0.05 1.00 -0.10
Voter Mean 0.23 -0.20 -0.64 -0.61 -0.64 -0.40 -0.50 0.62 -0.57 -0.10 1.00

Table 2: Spearman correlation of Halstead metrics, Size, Entropy measures, and mean voter opinion score.

Research Question 2: Can the mean readability
scores be explained simply by the size of the snippets?

The most commonly used metric for size of code, LOC !,
however, does not correlate with readability scores, as much
as the number of words and characters. Further, our intu-
ition about readability suggests that there is more to read-
ability than just how much code that we must read, but
that it also depends on the content. The Buse et al. metrics
measure content by measuring the mean and max of various
syntactical attributes of the code.

We observe that many of these metrics are, in essence,
token class counts, e.g. #parenthesis, #commas, #loops;
this raises the question, whether these features could be
subsumed by a measure that incorporates token class diver-
sity. This approach is additionally motivated by observing
that several of Buse’s top performing individual metrics, in
terms of correlation with the readability scores, are counts
of identifiers and keywords. This reasoning led us back to
Halstead’s work.

2.3 Halstead’s Metrics

Maurice Howard Halstead introduced statically computed
source code complexity metrics in 1977 [21]. These purely
lexical measures are calculated from counts of the number of
total operators, unique operators, total operands and unique
operands. Operators include methods, while operands are
the participants in the operation, such as method arguments.
Then these four measures of operators and operands are
combined together into various Halstead metrics such as:

Program Length is sum of the total number of operators (N7)
and operands (N2). N = N1 + No.

Program Vocabulary is the sum of the number of unique op-
erators (n1) and unique operands (n2). n = ni + n2

Volume is the program length (IN) times the logs of the
program vocabulary (n). V = Nlogon. This measure is
similar to entropy, but represents the minimum number of
bits needed to naively represent the program.

Difficulty is half of the unique operators multiplied by the
total number of operands, divided by the number of distinct

N.
operators. D = %L =2
ny

'Here we are using snippet lines which is not precisely lines
of code as some snippets contain comments

Effort is the difficulty multiplied by the volume. E = DV.
Effort was intended as a suggestion for how long code review
might take.

The volume Halstead measure arguably aims to measure
the information content of the source code, by combining
total counts with unique counts. One can picture a reader
poring through the code, encountering new operators and
operands and being surprised by and trying to decipher each:
at each one, they pause and look up the operator or operand
in their mental “symbol table”. Thus a close relationship to
readability can be hypothesized:

Research Question 3: Do the Halstead metrics add
additional explanatory power to the size readability
model?

This discussion suggests an even simpler view: is read-
ability simply related to the information theoretic notion of
entropy, or surprise.

2.4 Entropy

Entropy is often viewed as the complexity, the degree of
disorder, or the amount of information in a signal or data
set.

Entropy is calculated from the counts of terms (tokens
or bytes) as well as the number of unique terms and bytes.
Where X is a document and z; is a term in X. Count(z;)
is the number of occurrences of z; in the document X and
(i) count(z;) Entropy H(X) is defined as follows:

= Z;Lzl count(zj) "

H(X) == p(x:)logap(x:)
i=1

The terms here can be bytes or tokens, and we use both
in this paper.

While Halstead’s volume looks superficially similar to en-
tropy, the calculation is quite different. Entropy calculations
depend on the relative distribution of the tokens/characters
in the code body under consideration, with uniform distri-
butions giving the highest entropy, and highly skewed distri-
butions yielding lower entropy; whereas volume attempts to
determine the number of bits needed to represent all opera-
tors and operands multiplied by the total number of tokens.

Our next two research questions relate to the notion of
entropy. First, we consider the effect of adding byte level
entropy to our model.

Research Question 4: Does byte entropy contribute
to the readability model?

Despite the conceptual and mathematical differences be-
tween token entropy and Halstead’s V' we cannot ignore their
very strong inverse correlation. Consequently, we also want
to know if token-level entropy measures are equivalent to
Halstead’s V' in our prediction model.

Research Question 5: Can Halstead’s V' be replaced
with token entropy in our readability models?

Finally, we recognize that any model of readability is of
limited usefulness if it does not scale up in a reasonable way
to larger fragments. We consider how a model of readabil-
ity, learned on a small sample of snippets, can be used to
capture readability of larger source code elements. Unfortu-
nately, we do not have additional human-scored large code
elements. We therefore try a simple test: does the model
score some larger elements as readable, and others as not?
Or does it rate all large elements one way or the other. An
a priori belief that all large code elements are equally read-
able (or not) seems unjustifiable; so we must be doubtful
of a model that rates all large code elements the same way.
While this test does not prove that a model that discrimi-
nates is discriminating correctly, one can conclude from the
test that a model that classifies all large files as readable (or
not) lacks credibility.

Research Question 6: Does our simplified model
generate varying readability scores for larger code frag-
ments?

In the following sections we describe our data gathering
process and model building methodology, our evaluation of
our readability metric, related work, and some threats to
the validity of our study.

3. DATA & STATISTICAL MODELING
3.1 Readability Data

The Buse readability survey is a publicly available trove of
data containing 12,000 human judgements by 120 annota-
tors on 100 snippets of code [6].> The annotators were com-
puter science students in various stages of study, from 1°¢
year university to graduate student. Each annotator rated
code snippets on a scale from 1 (low readability) to 5 (high
readability). The average of these scores across all 120 an-
notators are computed for each snippet. Using these mean
opinion scores for the 100 snippets, we label each snippet as
more or less readable using the same score threshold of 3.14
used by Buse et al. We also compute size metrics, Halstead
metrics, and token and byte level entropy, for each of the
snippets and use this data to train classifiers using the Weka
toolkit[20]. Using publicly available source code 2 provided
by the author, we replicate the models reported in [6]. We
use 10-fold cross validation to avoid over fitting our model
to the training data and repeat this 10 times with different

Zhttp://www.arrestedcomputing.com /readability /

seeds to help correct for bias introduced by each classifica-
tion method. Since the number of instances in each class
is unbalanced we use stratified sampling and compute the
weighted mean of each performance measure to reflect this
imbalance.

3.2 Model Building

When building a model with many predictors, there is a
challenge of choosing the right set of predictors to include in
the model so that the model is statistically significant, par-
simonious, and provides a good fit for the data. Backwards
stepwise refinement is a model building technique whereby
a classifier is allowed to choose from many features. It is
a, typically mechanized, feature selection process to remove
those that do not improve the model. The practice is com-
monly used and is sometimes acceptable in the context of a
prediction model. This approach, however, can fail to find
the best model for any number of reasons. There may be
more than one set of features that explains the data, or,
interaction between groups of variables may cause the pro-
cedure to eliminate variables that should be in the model.
Buse et al. use an automated feature selection approach; so
while model performance is satisfactory, it is difficult to draw
any conclusions about the impact of the variables used in the
model.

Forward stepwise refinement is the process of starting with
minimal models and manually adding variables, and gauging
their impact on the quality of the model. While this process
has its critics (as its success depends on the order of adding
variables), it is usually preferred when building a model;
specially when building a model to test hypotheses [9]. We
use this approach to shed light on the research questions
outlined above.

3.3 Model Evaluation

We draw from a set of performance measures to evaluate
models. It should be noted that all models use direct lexical-
based automated measures to predict readability classifica-
tion (more or less readable); we then compare the predicted
classification with the human-based classification from the
Buse data.

F Measure The F-Measure is the commonly-used harmonic
mean of precision and recall. Classifiers output a probability
that must then be thresholded to yield a classification deci-
sion. Lessmann et al. argue that the requirement of defining
a threshold is reason enough not to use such simple static
measures in a prediction context; however, we include it as
it is well understood by the community [27].

Percentage Correct The percentage correct is a well un-
derstood measure which, although intuitive, is also depen-
dent on choosing a cutoff value.

ROC An established method of evaluating classifiers inde-
pendently of any particular threshold is Receiver Operating
Characteristic (ROC) analysis. A ROC curve represents a
family of precision/recall pairs generated from varying the
threshold value between 0 and 1 and plotting the False Pos-

itive Rate F'PR = FPZ% on the z-axis and the True Pos-

itive Rate TPR = % on the y-axis. All such curves
pass through the points (0,0) and (1,1). The point (0, 1)
represents perfect classification and points on the ROC curve
close to (0, 1) represent high quality classifiers. A common
way to evaluate the overall quality of the classifier is to com-
pute the area beneath its ROC curve.

w0
8
— — S
P
9 1
8
S |
|
! o
2
3 g —_
[6] o o |
2 H |
- 2 |
k3 i i K
S o ! ! =
g~ ! ! 2
¢ S o . S
<
i
|
; |
g ‘ [
S ' T
! |
' Q4 —_
. S
Blse Simple Tmproved _ Token/Byte Blse Simple

8
8
‘ - ‘
‘
|
—_ s —_
1 - —_—
3 -
g ‘
i <3 ! 7
f o ' . '
= ‘
' UE —_— '
> —_—
&m,
e
; ; .
‘ ‘
e
e —

Model Halstead Halstead/Entropy Entropy Model Halstead

Imprbved Toke/Byte Buse Sinple Imprbved Toke/Byte

Halstead/Entropy ~ Entropy Model Halstead Halstead/Entropy Entropy

Figure 1: Buse is the model reported by Buse et al. Simple Halstead includes only lines and V. Improved Halstead includes lines,

V, and character entropy. Token/Byte Entropy includes lines, token entropy, and byte entropy. Performance of 10 classifiers

on the Buse et al. token feature models and the simpler Halstead/Entropy models using the means of 10 runs of 10-fold cross

validation. A one sided Wilcox signed rank test shows the Simple Halstead measures greater than Token Count with p-value
= 0.02621 for ROC, p-value = 0.000525 for f Measure, and p-value = 0.0007523 for percent correctly classified. Similarly, the
improved Halstead measures are greater than Buse’s Token Feature with p-value = 0.01440 for ROC, p-value = 0.0002436 for f

Measure, and p-value = 0.0002436 for percent correctly classified. The token/byte entropy model is not statistically better, or

worse, than Buse’s token feature model.

4. EVALUATION

We consider each of the research questions in turn. The
first hypothesis concerns essentially the parsimony of an ef-
fective model. We later present a simple model that includes
many fewer different predictors than the Buse model; so we
reserve that discussion until we have presented the results
leading up to that model.

4.1 Size and Readability

If we believe that size may have influenced the readability
scores, then the trivial hypothesis is that the readability of
a snippet is primarily a function of size. Intuitively we do
not expect that this model will work well but that it should
provide a baseline measure of the size dependence within
the snippets. We build a classification model based simply
on the number of lines in the snippet and then extend this
model to include both the number of words, and the number
of characters. To guide model construction we begin with
the Spearman correlation between mean voter scores and
size metrics.

Metrics| lines words characters
mean voter score | 0.232 —0.002 —0.202

The low correlation between each metric individually and
the mean voter scores clearly indicates that no single size
metric is likely to yield a good prediction model. Positive
correlation between the number of lines and the mean voter
scores suggests that snippets with more lines are more read-
able and, similarly, negative correlation between characters
and lines suggests that snippets with a large number of char-
acters, i.e. larger file size, are less readable. Given the low
correlation between words and mean voter scores we build
two classification models, one with lines and characters, and
the other with all three metrics.

For each of the 10 classifiers we obtain the mean of the 10
runs over the performance metrics described in the previous
section. The reported value is the mean performance of all
classifiers over all runs.

Model % Correct F-Measure ROC

Token Features (Buse) 75 0.74 0.77
Size: Lines,Char 63 0.60 0.64
Size: Lines,Char,Words 65 0.62 0.65

A one-sided Wilcox test on the ROC results verifies that a
model based on the Buse feature set outperforms the simple
size model with p-value = 0.00447. A two-sided Wilcox
test verifies that there is no difference between the two size
models with p-value = 0.796. So, with respect to RQ2:

Result 2: Size alone does not explain the reported mean
readability scores.

We note here that the high correlation between lines and
characters might (see Table 2) lead to multicollinearity. The
low correlation between any of the size measures and the
mean voter score suggests that single parameter models would
not likely perform well. Had this model demonstrated excel-
lent performance, we would have more seriously considered
multicollinearity issues between lines and characters before
adding more variables.

Although size does not fully explain readability, in con-
trast to the approach taken by Buse et al., we can see that
size 1s a significant predictor of readability and should be in-
cluded in any model that seeks to understand what factors
affect readability. Moreover, we observe that lines and char-
acters have opposite effects, but words, e.g. tokens and iden-
tifiers, have a negligible effect when considering only their
counts in a model that includes size.

4.2 Halstead and Readability

It is well known that many of Halstead’s metrics are highly
correlated to themselves; if used together in any multivariate
model they will exhibit significant multicollinearity [24]. It
is, therefore, necessary to consider the correlation among
our potential predictors [9]. Table 2 confirms that N, n,
and V are highly correlated, suggesting tat including more
than one in a classification model is unlikely to significantly
improve the model.

There is also a fairly high degree of correlation between the
Halstead metrics and the mean human rating. While D and
E have reasonably high correlation to the other Halstead
metrics, and also to mean human rating, their interpreta-
tion has been criticized due to Halstead’s misapplication of
results from cognitive psychology [11]. All of the Halstead
metrics are negatively correlated with the mean voter scores.
Also interesting, as in our previous model, the number of
lines in the snippet is positively associated with readability.

We consider first the Halstead metrics alone in a logistic
regression model. We find that multicollinearity is excessive
and that, as expected, we can have, at most, one of N, V|
or n. Any use of these variables alone performs comparably
to the Buse feature set. Proceeding in a forward stepwise
refinement we add both D and E in turn to the model.
We find that neither variable contributes significantly to the
model and consider them no further. Both characters and
lines represent the size of a snippet but are correlated dif-
ferently with the Halstead metrics and with the mean voter
scores. Characters have both a high correlation with lines
and with V| and, like V', are negatively correlated with the
mean voter scores. This suggests that when both charac-
ters and lines are added to a model that includes Halstead
metrics, one or both may lose significance.

Adding the number of lines in the snippet to the model
improves the fit of the model. As with the correlation, the
coefficient for V' is negatively associated and the number of
lines is positively associated with mean readability and the
two variables alone explain approximately one half of the
variance in mean readability. This result suggests the fol-
lowing: First, as either the number of tokens, or, the number
of unique tokens increases, readability decreases as the size
remains constant. Second, if we increase the size of the snip-
pet, i.e. we provide a greater area for the existing tokens to
spread out, readability increases. Adding characters to the
model does increase the fit somewhat, but with dramati-
cally lower significance and, therefore, we remove it from the
model. The performance of this model as compared to the
Buse model is presented in Figure 1. The simple, parsimo-
nious model with two predictors, size and V', outperforms the
much richer Buse model across all performance measures.

A snippet that contains many distinct elements, both op-
erators and operands, will have greater volume than a snip-
pet with a similar number of total elements but fewer dis-
tinct elements. Our results indicate that element identity is
less important than element cardinality and diversity. Simi-
larly, the number of lines in a snippet is positively associated
with readability. When a programmer views a snippet of
code, the dimensions of the snippet have some importance.
It is possible that two snippets with identical Halstead V'
could have considerably different character counts due to a
difference in identifier or keyword lengths. The number of
lines captures this dimension of readability.

Result 3: Halstead’s V' adds considerable explanatory
power to the models and, when combined with a simple
size measure, outperforms the Buse model.

4.3 Entropy Measures

As discussed in Section 2.4, we studied whether the pure
information content of the snippet, i.e. its byte level en-
tropy, might affect readability. The raw correlation between
entropy and readability is low and negative, suggesting that
an increase in raw information content will actually reduce
readability somewhat. Adding the byte level entropy to the
“simple Halstead model”, which just includes size and V/,
gives the “improved Halstead model”, which shows some-
what improved performance. The performance of this model
as compared to the Buse model is also presented in Figure 1.
The improved Halstead model (with byte entropy) outper-
forms the Buse model across all performance measures, and
somewhat improves the performance of the simple Halstead
model.

Result 4: Although byte entropy improves the predic-
tion model its impact on performance is small compared
to the other predictors.

As discussed previously, Halstead’s V' relies on token counts
and frequencies. Therefore it is reasonable to consider the
effect of token-level entropy measures. We computed the en-
tropy of Java tokens in the snippets and compared models
using this metric to metrics using Halstead’s V. Using to-
ken entropy in place of V' yields models whose performance
is comparable to the Buse model; except that the token en-
tropy measures have a positive coefficient. The larger pos-
itive (rather than negative, as with V') correlation between
token entropy and mean human rating is simply a conse-
quence of the inverse relationship between the Halstead’s V
and token entropy. Token entropy uses a relative frequency
calculation, with the total token count in the denominator,
whereas V' has this figure in the numerator. As can be seen
in table 2 token entropy and V' are negatively correlated.

Result 5: Token level entropy explains the data as
well as the Buse token feature models but not as well as
Halstead.

4.4 Snippet Size, Methods and Classes

The Buse human ratings were done entirely with small
code snippets. All of the annotated snippets range from 4
to 11 lines, including comments, and do not span function
boundaries. There are no class definitions and not even an
entire function included within these snippets. The ques-
tion naturally arises, does the Buse et al. readability model
scale up to large code fragments? What happens when we
attempt to use this model for entire functions, classes, etc.?

To begin to address this question, we extracted functions
from Lucene 2.4.We compute the readability scores using
our model and the Logistic model reported by Buse et al.
The scatter plots of classifier probability against lines of
code are shown in Figure 2. Buse’s Logistic model ranks
all functions longer than about 200 lines as less readable.
The improved Halstead model presented above continues, as

number of lines increases above 200 lines, to classify some
functions as readable, and others as not. We argue that it
is not reasonable to classify all functions longer than 200
lines as uniformly less readable; thus we also argue the be-
haviour of the improved Halstead model is more reasonable,
a priori, than the Buse et al. model. However, we cannot
make strong claims to greater validity here. The improved
Halstead model was trained on the same data and may very
well fail to classify correctly at a larger size. Readable func-
tions may be classified unreadable and vice versa. However,
it is quite unlikely that all large functions in Lucene are un-
readable and so that it is even less likely that Buse’s token
feature models are valid at that size.

We can see also an interesting bifurcation (see the second,
and also the fourth figures from the top in Fig 2) in the
improved Halstead model: beyond a certain size, both class
and functions are either very readable, or very unreadable.
If we are using these models correctly, i.e. as a classifier,
however, so long as the direction is correct, this is less prob-
lematic, and our model continues to discriminate between
readable and unreadable functions.

When we apply these metrics to entire classes we observe
a similar loss of discriminatory power beyond a certain size.
Buse’s models classify only two classes as readable beyond
about 50 lines and the improved Halstead model classifies
only a single class as readable beyond about 250 lines. Above
250 lines, the improved Halstead model classifies only In-
dexModifier in package org.apache.lucene.index as read-
able; above 50 lines, Buse’s model classifies SynExpand in
package org.apache.lucene.wordnet as well as BitUtil in
package org.apache.lucene.util as readable. We conclude
that both models have limited size validity but that the Hal-
stead model has discriminatory power over a larger range.

Result 6: The improved Halstead model shows discrim-
inatory power over a larger size range; however, lacking
human ratings, we cannot validate the readability classi-
fications produced by these models over larger sized en-
tities, including entire functions and classes.

4.5 A Simpler Model of Readability

We return now to the first research question. How com-
plex does a readability model have to be, in order to be useful?
The predictive metrics included in all the models discussed
are easy to extract. However, a more parsimonious model
is easier to understand and interpret from a theoretical per-
spective. Also, simpler models are more actionable: pro-
grammers can more easily respond to simple instructions on
how to improve readability.

Our results show that with only 3 variables our model
outperforms the Buse model as a classifier of readability in
small code snippets. Using the logit function H% we ob-
tain a simple model using the following expression for z:

z =8.87—0.033 V + 0.40 Lines — 1.5 Entropy

We do not assert that this simple model captures the
essence of readability nor that it can be applied blindly to
any piece of code. Rather, we observe that this model fits
the gathered data reasonably well, and, with significantly
fewer variables, is a more parsimonious model of readability
within the limited context studied.

We test the performance of our choice of features using
ten of the classifiers available in Weka and also supported in
the RWeka package.® Figure 1 shows that models built from
our smaller feature set compare favourably in performance
to the models built from features presented by Buse et al.

Result 1: The Buse mean readability data can be ex-
plained with a much simpler model that includes only
three features.

Lucene 2.4 Methods - Buse Token Features Model

0.8
[
ame

Classifier Probabilities
0.4

0.0

~

Lines of Code

Lucene 2.4 Methods - Improved Halstead Model

Classifier Probabilities

Lines of Code

Lucene 2.4 Classes - Buse Token Feautres Model

o

0.8

Classifier Probabilities
0.4

0.0

1 5 10 50 100 500 1000 5000

Lines of Code

Lucene 2.4 Classes - Improved Halstead Model

B ' ’ a0 o
2 o ° g
o

Classifier Probabilities

1 5 10 50 100 500 1000 5000

Lines of Code

Figure 2: Size versus classifier probability scatter-plots of

all functions and classes in Lucene 2.4.

S. DISCUSSION

While readability is subjective (and thus a matter of some
debate), and probably also contextual (depending on the in-
dividual reading, and the operative task), there is no short-
age of assertions that it is beneficial [1, 18, 19, 23]. It should

Shttp://cran.r-project.org/web/packages/RWeka/index.html

be noted that the Buse readability scores that we used were
not gathered from developers embarked on a specific task,
but from students with no investment in the code. In par-
ticular, they were not being assessed on either their ability
to read to recall or read to do.

While this, per se, may not necessarily have affected the
validity of Buse’s scores, it’s quite possible that “readability”
means something else to a developer who is invested in the
code. With that caveat, our models indicate that readability
of code strongly depends on the information content in the
source code as determined by V' and entropy.

5.1 Indentation

A sharp-eyed reader might wonder, does indentation not
contribute to readability? Why then does it not figure into
these models? Buse’s model does incorporate a measure of
indentation that will have some correlation with the block
structure of code. In fact, indentation variance has been
shown to have a high degree of correlation with McCabe’s
Cyclomatic complexity [22]. We considered several measures
of indentation including Buse’s measure of maximum inden-
tation, mean of indentation, variance of indentation, and
mean and variance of line length. The results of including
these measures were mixed. They had a negligible effect
on the classification models presented in Figure 1, however,
in some cases they did improve the amount of variance ex-
plained in ordinary least squares (OLS) regression models
of the mean opinion scores. Further, when including inden-
tation in a classification model the range of discriminatory
power of the model increased, viz., the bifurcation effect in
Figure 2 extended somewhat further. All in all, we found
that the additional beneficial effect of including indentation
measures in our models to be modest.

5.2 Outliers

We could typically explain about 55% of the variance (R?)
in the mean readability scores when building an OLS re-
gression model with either our features or the token count
features. We found, however, a few of the snippets were
potential outliers.

When we removed the top 5% of these outliers the models
improved dramatically and we were able to explain about
70% of the variance. The goal, of course, is not to eliminate
the pesky data, but to understand the data. In other words,
about 5% of the data was not reasonably explained by either
our features, or the token count features. Consequently,
it may be possible to significantly improve the model by
identifying what makes these snippets special. One of the
shortest snippets, number 6, is shown below. For our models
this snippet appears to be an outlier with respect to V' for
its size, which is quite low compared to other snippets with
a similar readability score and size.

XSp = jj_scanpos;

if (jj_scan_token(100)) {
jj_scanpos = xsp;

if (jj_scan_token(101)) return true;

Of course, observing the attributes that make it an outlier
is not the same as determining why it is an outlier, wviz.
why its readability is low given its low V? It is likely that
for some unknown reason, neither the features presented by

4No datapoints were ignored, or otherwise harmed, while
training our models.

Buse et al., or those presented here, capture the notion of
unreadability present in this snippet. It’s also possible that
such snippets are an artifact of the experimental set up; e.g.,
perhaps there was systematic experimental issue that caused
such snippets to be shown early or late to the subjects, thus
influencing the human rating.

6. RELATED WORK

Software readability, maintainability, understandability and
complexity are related, and consequently the terms are often
conflated in the literature. Beyond Buse et al. [6], much of
the relevant previous work measured artifacts at different
granularities with different definitions of readability.

Early work often linked readability with comprehension.
Baecker et al. hypothesized that the appearance of code af-
fects comprehension and conducted two experiments on C
source code presented in two typographic formats and found
that the relationship between comprehension and readability
is partially dependent on the task in question [3]. Détienne
et al. present a review of further work in this area, and in
particular, discuss the difference between the reading to re-
call and reading to do; viz. the purpose of reading is either to
summarize what was read or to later work with the material
being read [13].

Studies that focus upon readability explicitly, beyond Buse
et al., range in methods from comment counting, to English-
based readability scores, to identifier readability. In a study
on software maintainability [6], Aggarwal et al. used the ra-
tio of comments to lines of code as a proxy for readability [2].
This simple proxy is also often used when building software
quality models [12, 25]. Borstler proposed a readability met-
ric similar to the Flesch [17] reading score for the English
language called SRES [4]. The authors related their score to
both Halstead’s difficulty and Cyclomatic complexity. But-
ler et al. studied the nature of identifier quality, whether or
not an identifier adheres to style guidelines, and their rela-
tion to code quality and readability [7, 8].

These studies approached readability in different ways but
none of them except Buse et al. relied on human ratings of
readability [6].

Maintainability models based on Halstead’s metrics and other
code complexity metrics have been studied for some time
and are used in commercial metrics tools. Coleman et al.
built several models of maintainability and evaluated their
metrics by noting that an analysis of maintainability of two
commercial subsystems corresponded to human evaluation
of the systems [10].

Understandability is a distinct issue that deals with more se-
mantic issues. Lin and Wu integrated employed fuzzy statis-
tics theory to build a comprehensive model of understand-
ability [28, 29].

Complexity has been studied heavily and is often associ-
ated with readability and understandability. Chhabra et al.
defined a code spatial complexity understandability met-
ric based on the mean distance between use and definition
of a variable, and related this metric to the time to com-
plete a measurable perfective maintenance task [26]. They
found that reductions in distance result in reductions of
maintenance task completion time. Mohan et al. proposed
a metric, COMP, that also used code spatial complexity,
along with simple typographical style metrics, e.g. inden-
tation, blank lines, and concept counts, to assess program
comprehensibility in COBOL II programs [30]. Naeem et al.

presented metrics intended to evaluate the effectiveness of
decompilers and obfuscators based on textual and lexical
complexity [31]. They used complexity metrics, as well as
some token based features similar to Buse et al., and showed
that these metrics vary with the degree of obfuscation.

In terms of work that is close to ours, Etzkorn et al. define
a semantic entropy metric based on keywords and concepts
in source code [16]. The keywords and concepts are derived
from a source base using heuristics based on the linguistic
and structural aspect of object oriented software. A human
study demonstrated correlation between their metric and
perceived complexity of software. Our approach is different
in both desired outcome and complexity. Our metrics are
lightweight and do not rely on a generated knowledge base.

7. THREATS TO VALIDITY

In this section we examine threats to each form of validity
in our study and the methods used to mitigate these threats
where possible.

Construct validity refers to the degree to which measured
properties are correlated with the theoretical concepts they
are believed to represent. The primary threats to construct
validity arise from the limitations present in the study by
Buse et al. [6]. One major threat is that we rely on a sin-
gle source of data, Buse et al.’s ratings. Fortunately Buse
et al’s ratings rely on multiple sources: 120 student raters
producing 12000 ratings of 100 snippets. We assume that
raters judge the snippets on perceived readability alone and
that there is some common notion of readability that can
be captured by a mean score. We also assume that the mo-
tivation of the reader does not affect the readability of the
snippet. Although we know that the raters were computer
science students, without access to the raters we do not know
their level of expertise relative to their education level.

Internal validity relates to the validity of causal inferences
made by the study. Our study is focused on examining a link
between readability and token entropy measures. We believe
that our approach, which combines parsimony with stronger
theoretical bases, reduces internal validity risk.

It should be noted that we compute entropy and V' using
only the tokens in each snippet to identify the number of dif-
ferent unique tokens (token vocabulary). It might be argued
that the entire set of snippets should be considered together
to induce vocabulary. However, each rater only saw a subset
of the snippets, and was indeed presented with each snippet
separately; thus our approach is defensible.

Ezxternal validity refers to how these results generalize.
Our data is limited to the Buse data, consisting of 12000
human judgements. The snippets were small, thus, we can
say little about how these results might generalize to larger
pieces of code or, what variables may be important when
developers consider readability in various contexts. Further
generalization requires more sources of readability ratings of
snippets, source files, and patches.

Reliability refers to how replicable and how consistently
the data was gathered and the study executed. Our study
is easy to replicate but we do not know if the results will
be stable on other datasets. Thus we rely on Buse et al.’s
inter-rater reliability tests.

8. CONCLUSIONS

With the help of the human rankings that Buse et al. has
graciously provided, we managed to demonstrate a very sim-
ple model of automatically rating code snippets as readable
or not. Our model relies on two main measures: size and
entropy. The greater the entropy of the snippet the more
readable the snippet is, modulo the size. For a given entropy
level, an increase in size contributes positively to readability.
This result fundamentally makes sense because of the size
limits of human short-term memory, the complexity derived
from the information content of the underlying snippets, and
the belief that basic typography affects readability.

We demonstrated that these simple, theoretically well-
founded measures, used together, out-performed many of
the models that Buse proposed. Our model of readability
is very easy to measure and very quick to execute, thus it
could be integrated very rapidly into numerous version con-
trol products and source code monitoring tools. Finally, the
simplicity of our models also potentially makes them eas-
ier for developers to use, should they seek to improve the
readability of their code based on our models.

We acknowledge two important issues: first, Buse’s read-
ability ratings, although created via a well-organized human
study, may not necessarily correspond to task-oriented read-
ing in a particular context. Furthermore, these ratings were
based on snippets of limited size, so their validity for large
fragments is unclear. However we do believe that theoret-
ically well-founded, parsimonious approaches to modeling
of readability, as presented in this paper, will remain use-
ful when more human-subject data on readability becomes
available.

9. ACKNOWLEDGEMENTS

We extend our sincere thanks to Buse et al. for provid-
ing the original snippets and his tool for evaluating read-
ability of Java source. All authors gratefully acknowledge
support from the National Science Foundation, grant num-
bers 0964703 and 0613949. Devanbu gratefully acknowl-
edges support from IBM Research and Microsoft Research.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

10. REFERENCES

[1] The Zen of Python.
http://www.python.org/dev/peps/pep-0020/. [Online;
accessed 31-January-2011].

[2] K. Aggarwal, Y. Singh, and J. Chhabra. An integrated
measure of software maintainability. In Reliability and
Maintainability Symposium, 2002. Proceedings.
Annual, pages 235-241. IEEE, 2002.

[3] R. M. Baecker and A. Marcus. Human factors and
typography for more readable programs. ACM, New
York, NY, USA, 1989.

[4] J. Borstler, M. Caspersen, and M. Nordstrém. Beauty
and the Beast: Toward a Measurement Framework for
Ezample Program Quality. Department of Computing
Science, Umea University, 2008.

[5] L. Briand and J. Wiist. Empirical studies of quality
models in object-oriented systems. Advances in
Computers, 56:97-166, 2002.

[6]

7]

[15]

[16]

[21]

[22]

R. Buse and W. Weimer. Learning a Metric for Code
Readability. Software Engineering, IEEE Transactions
on, 36(4):546-558, 2010.

S. Butler, M. Wermelinger, Y. Yu, and H. Sharp.
Relating Identifier Naming Flaws and Code Quality:
An Empirical Study. In 2009 16th Working Conference
on Reverse Engineering, pages 31-35. IEEE, 2009.

S. Butler, M. Wermelinger, Y. Yu, and H. Sharp.
Exploring the influence of identifier names on code
quality: An empirical study. In 14th European
Conference on Software Maintenance and
Reengineering, March 2010. Pages 159-168.

J. Cohen. Applied multiple regression/correlation
analysis for the behavioral sciences. Lawrence
Erlbaum, 2003.

D. Coleman, D. Ash, B. Lowther, and P. Oman. Using
metrics to evaluate software system maintainability.
Computer, 27(8):44-49, 2002.

N. Coulter. Software science and cognitive psychology.
IEEE Transactions on Software Engineering, pages
166-171, 1983.

S. Dahiya, J. Chhabra, and S. Kumar. Use of genetic
algorithm for software maintainability metrics’
conditioning. In Advanced Computing and
Commumnications, 2007. ADCOM 2007. International
Conference on, pages 87-92. IEEE, 2008.

F. Détienne and F. Bott. Software design—cognitive
aspects. Springer Verlag, 2002.

K. El Emam, S. Benlarbi, N. Goel, and S. Rai. The
confounding effect of class size on the validity of
object-oriented metrics. Software Engineering, IEEE
Transactions on, 27(7):630-650, 2002.

J. Elshoff and M. Marcotty. Improving computer
program readability to aid modification.
Communications of the ACM, 25(8):512-521, 1982.

L. Etzkorn, S. Gholston, and W. Hughes Jr. A
semantic entropy metric. Journal of Software
Maintenance and Evolution: Research and Practice,
14(4):293-310, 2002.

R. Flesch. A new readability yardstick. Journal of
applied psychology, 32(3):221-233, 1948.

R. Forax. Why extension methods are evil.
http://weblogs.java.net /blog/forax/archive/2009/11/-
28 /why-extension-methods-are-evil. [Online; accessed
31-January-2011].

B. Guzel. Top 15 best practices for writing super
readable code. http://net.tutsplus.com/tutorials/html-
css-techniques/top-15-best-practices-for-writing-super-
readable-code/. [Online; accessed

31-January-2011].

M. Hall, E. Frank, G. Holmes, B. Pfahringer,

P. Reutemann, and I. Witten. The WEKA data
mining software: An update. ACM SIGKDD
Ezplorations Newsletter, 11(1):10-18, 2009.

M. Halstead. Elements of software science. Elsevier
New York, 1977.

A. Hindle, M. Godfrey, and R. Holt. Reading beside
the lines: Indentation as a proxy for complexity

23]

24]

(25]

(26]

27]

28]

29]

(30]

(31]

(32]

(33]

(34]

metric. In Program Comprehension, 2008. ICPC 2008.
The 16th IEEE International Conference on, pages
133-142. IEEE, 2008.

M. Kanat-Alexander. Readability and naming things.
http://www.codesimplicity.com/post/readability-and-

naming-things/. [Online; accessed

31-January-2011].

J. Kearney, R. Sedlmeyer, W. Thompson, M. Gray,
and M. Adler. Software complexity measurement.
Communications of the ACM, 29(11):1044-1050, 1986.
D. Kozlov, J. Koskinen, M. Sakkinen, and

J. Markkula. Assessing maintainability change over
multiple software releases. Journal of Software
Maintenance and Evolution: Research and Practice,
20(1):31-58, 2008.

J. Kumar Chhabra, K. Aggarwal, and Y. Singh. Code
and data spatial complexity: two important software
understandability measures. Information and software
Technology, 45(8):539-546, 2003.

S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
IEEE Transactions on Software Engineering,
34(4):485, 2008.

J. Lin and K. Wu. A Model for Measuring Software
Understandability. In Computer and Information
Technology, 2006. CIT’06. The Sizth IEEE
International Conference on, page 192. IEEE, 2006.
J. Lin and K. Wu. Evaluation of software
understandability based on fuzzy matrix. In Fuzzy
Systems, 2008. FUZZ-IEEE 2008.(IEEE World
Congress on Computational Intelligence). IEEE
International Conference on, pages 887-892. IEEE,
2008.

A. Mohan, N. Gold, and P. Layzell. An initial
approach to assessing program comprehensibility using
spatial complexity, number of concepts and
typographical style. In Reverse Engineering, 2004.
Proceedings. 11th Working Conference on, pages
246-255. IEEE, 2005.

N. Naeem, M. Batchelder, and L. Hendren. Metrics for
measuring the effectiveness of decompilers and
obfuscators. In Program Comprehension, 2007.
ICPC’07. 15th IEEE International Conference on,
pages 253-258. IEEE, 2007.

P. Peduzzi, J. Concato, E. Kemper, T. Holford, and
A. Feinstein. A simulation study of the number of
events per variable in logistic regression analysis* 1.
Journal of clinical epidemiology, 49(12):1373-1379,
1996.

D. Raymond. Reading source code. In Proceedings of
the 1991 conference of the Centre for Advanced
Studies on Collaborative research, pages 3—16. IBM
Press, 1991.

P. Relf. Tool assisted identifier naming for improved
software readability: an empirical study. In Empirical
Software Engineering, 2005. 2005 International
Symposium on, page 10. IEEE, 2005.

