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Abstract

With the increasing global problems concerning energy security and cli-

mate change, new challenges in social progress and human survival have come

to the fore. Requiring no fuel, and being renewable and non-polluting, re-

newable energy (RE) resources, typically from photovoltaic and wind sources,

have attracted extensive attention worldwide. However, due to their stochas-

ticity, uncertainty, and intermittency, RE resources could pose considerable

challenges to the optimal operation of the energy systems despite their non-

polluting and widely available nature. This changing environment necessitates

the accurate and efficient operation of the RE-integrated energy system. On

the other hand, the rapidly growing applications of artificial intelligence and

machine learning techniques can contribute to reducing energy costs, main-

taining the balance between generation and demand, and satisfying consumers’

needs.

The existing literature on the scheduling and operation of active distribu-

tion systems falls short in several aspects, such as RE prediction performance,

cost-effective operation, and realistic scheduling. This research aims to 1) de-

velop a new deep learning-based model integrating the discrete wavelet packet

transform (DWPT) and bidirectional long short-term memory (BLSTM) to

capture deep temporal features of wind speed time series precisely, 2) inves-

tigate a light detection and ranging (LiDAR)-aided deep learning model to

learn the powerful spatial-temporal characteristics from the input wind fields,
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3) propose a novel model-free deep reinforcement learning (DRL) approach to

optimize the compressed air energy storage (CAES) energy arbitrage in the

presence of a solar irradiance forecasting model, 4) utilize a deep determin-

istic policy gradient (DDPG) framework to develop an intelligent controller

to schedule the energy hub optimally, and 5) analyze the optimal operation

of the biogas-integrated multi-source multi-product facility in the presence of

the supervised federated neural architecture search (SFNAS) technique.

The first study in this thesis applies the DWPT to extract the features

of the wind time series. It then uses the BLSTM network as a combination

of LSTM networks and bidirectional RNNs to capture deep temporal features

with high abstraction. The second study extends the network of the first

work by combining it with 2-D convolutional neural networks (CNNs) for

capturing high levels of abstractions in the wind fields provided by LiDAR.

In the third study, the CNN-BLSTM model presented in the second work is

used to train a DRL agent that optimizes the self-scheduling of the CAES-PV

system. The fourth study upgrades the DRL framework of the third work

by introducing the DDPG for more smooth control actions. Finally, the fifth

study investigates the dynamic scheduling framework for an energy hub with

a biomass-solar hybrid renewable system. Furthermore, an SFNAS technique

has been presented to eliminate the need for manual engineering of deep neural

network models and the unnecessary computational burden associated with

them. The comparative results based on realistic case studies demonstrate

the effectiveness and applicability of the proposed frameworks compared to

the state-of-the-art methods in the recent literature.
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Chapter 1

Introduction

1.1 Background

In recent decades, the research and development of renewable energies have

gradually increased worldwide as an appealing solution to the high greenhouse

gas emissions of fossil fuel-based energy resources, which raised worldwide con-

cerns [108]. Compared to other renewable energy sources, wind and PV energy

resources have attracted extensive attention due to their cleanness and abun-

dance. The total installed capacity of wind power in Canada has increased

by an annual rate of 20% in the past few years, from 2,349MW in 2008 to

12,816MW in 2018 [25]. In particular, the government of Alberta, Canada,

has set a firm target for the Alberta Electric System Operator (AESO) to

move towards having 30% of Alberta’s electricity coming from renewable en-

ergy sources (RESs) by the year 2030, with an estimated additional RESs

integration of 5,000 MW to the grid. Accordingly, we can anticipate an in-

crease in the contribution of wind and solar energy to our energy mix over

the next several years. Although these RESs can be controlled to some ex-

tent, integrating them into the power system is a challenging task due to their

variable and partially predictable nature. In the big data era, with the boom-

ing advancement of machine learning techniques as well as the development

of graphics processing units (GPUs), deep learning-based methodologies as

the new branch of artificial intelligence (AI) algorithms have been gradually

developed and applied to many real-world applications [82]. Therefore, the
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design and implementation of an accurate and comprehensive energy manage-

ment framework can improve the operation of RES-based energy systems [30].

Moreover, wind- and PV-generated power forecasting plays a crucial role in en-

ergy management problems [124]. Therefore, it is considered an essential step

in finding the most economical solution for the operation of power and energy

systems with high RES penetration. Thus, investigating deep learning-based

algorithms to address RES forecasting and, consequently, energy management

problems is becoming an increasingly hot topic in the area of power and en-

ergy systems [49,62,73].

1.2 Research Motivations

The available literature on RES-based power and energy systems falls short

in the following aspects:

1. The most significant challenge for the large-scale penetration of wind

energy into power and energy systems is its uncertain and intermittent

nature. The wind power generation mainly depends on the wind speed,

which can dramatically fluctuate in few seconds and directly affect the

stability, resilience, and robustness of the power system. For this reason,

accurate wind speed prediction facilitates wind power facilities’ integra-

tion into modern power systems. As of yet, there has been insufficient

research on the application of deep learning techniques in the area of

wind speed forecasting for improvement to be achieved from both the

preprocessing and model aspects.

2. In the technical literature, wind turbine response forecasting is generally

made using a wind speed time series measured at the hub height of

the turbine, which ignores the chaotic and stochastic characteristics of

wind turbulent flow over a rotor area. Thus, there is a pressing need to

consider more extensive feature measurements of inflowing wind toward
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the turbine, such as speed, direction, and turbulence.

3. In spite of being regarded as an advanced grid-scale storage technology,

few studies have been conducted on the self-scheduling and energy trad-

ing of compressed air energy storage (CAES) facilities in the electricity

markets. Aside from this, these works use piecewise linear character-

istic curves and linearized thermodynamic constraints to formulate the

scheduling problem in mixed-integer linear programming (MILP) form

and solve it using conventional solvers. Ignoring the nonlinear thermody-

namic constraints and practical limitations can prevent realistic analysis

of the CAES technology; hence, making the results less robust.

4. To operate an energy hub in the most cost-effective way while deal-

ing with operational constraints of interacted energy infrastructures,

three main challenges have to be addressed. (i) Most studies related

to energy hub systems adopt conventional optimization methods, such

as stochastic programming (SP) or robust optimization (RO). Generally,

these techniques require detailed and perfect knowledge of the system’s

parameters and operational model, resulting in high dependencies of

decision-making in the accuracy of the employed system model and ex-

pert knowledge, which is very costly and challenging. (ii) Till now, in

the energy hub operation area, most scheduling methods employ piece-

wise linearization modeling for the system units, such as combined heat

and power (CHP), distributed generation (DG), and fuel cell (FC). How-

ever, this assumption creates some errors in the scheduling results and

consequently, the obtained solution cannot be optimal for the practical

operations of the energy hub. (iii) There is rarely any consideration

of a comprehensive forecasting framework for the integration of renew-

ables during the energy hub decision-making process, which could cause

considerable challenges to the stability and security of the energy hub

system.

3



5. With biomass energy resources being widely distributed and its poten-

tial to support multiple forms of energy demands, such as electricity

and thermal, the integrated operation of other RESs and biomass can

offer a cost-effective alternative compared to utility grid operations. Lit-

erature has not yet addressed the physical characteristics and thermo-

dynamic effects of temperature-sensitive biogas production at the oper-

ational stage. In the meantime, deep neural networks (DNN) models

have made promising progress on several tasks, including prediction.

However, their performance is still heavily influenced by the parameters

and architecture of the neural network (the number of layers and the

number of nodes, as well as the connectivity between layers). In most

cases, it is challenging to evaluate how parameter settings influence the

performance of the available models, even when they have a thorough

understanding of both machine learning (ML) and deep learning (DL).

Furthermore, recent studies in the field emphasize the use of higher-level

models in order to obtain more accurate predictions, increasing the num-

ber of parameters included in the model. This has made exploring such

large parameter spaces a more challenging undertaking. Neither expert

knowledge nor empirical trial and error are always useful in this regard.

1.3 Research Objectives

Motivated by the significant role of RESs in future power and energy sys-

tems, this research aims to address the following points:

1. Design a novel deep learning-based model integrating the discrete wavelet

packet transform (DWPT) and bidirectional long short-term memory

(BLSTM) to precisely capture deep temporal features and learn the

time-varying relationship of wind speed time series.

2. Propose a novel light detection and ranging (LiDAR)-assisted convolu-

tional neural networks (CNN)-BLSTM model for the ultra-short-term
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prediction of future wind turbine responses using upcoming sequences

of full wind field components and hub-height wind speed time series.

3. Address the energy arbitrage problem of a CAES-PV facility by devel-

oping a model-free deep reinforcement learning (DRL) framework in the

presence of a sky images-based short-term solar irradiance forecasting

methodology.

4. Utilize the DDPG framework as a fully model-free and data-driven DRL

method to develop an intelligent controller that can exploit information

to optimally schedule the energy hub to minimize energy costs and emis-

sions.

5. Develop a dynamic scheduling framework for a multi-source multi-product

facility with a biomass-solar hybrid renewable system, taking into ac-

count the nonlinear characteristics of the biogas production facility, and

propose a novel neural architecture search (NAS) technique to learn the

architecture and model parameters of the DNNs.

1.4 Research Methodology

First, by applying the DWPT, both approximations and details parts are

decomposed by passing through the filters to choose the frequency band re-

lated to the features of the original signal more adaptively. The BLSTM

networks are incorporated to deal with the uncertainties more effectively as

they have bidirectional memory capability (feedforward and feedback loops)

to investigate both previous and future hidden layers data. To simultaneously

improve the forecasting performance and decrease the learning complexity,

the reconstructed state space of historical wind data is employed to reflect

the evolution laws of wind speed. Second, the network is extended by com-

bining the 2-D CNN and BLSTM for concurrently capturing high levels of

abstractions in wind fields, thus forecasting wind output power and fatigue
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load as two representatives of wind turbine responses. The LiDAR wind pre-

view information is used as the 2-D-images of wind fields for the CNN. The

proposed model employs 2D-CNN and BLSTM networks to better handle

complex spatial- temporal features from the highly variable wind data com-

pared to conventional forecasting methods, which simply use historical time

series data. Third, by conducting comprehensive economic assessment stud-

ies, a DRL framework for a CAES-PV facility participating in the energy

market is developed. Due to the nonconvex nature and highly intermittent

parameters involved in the scheduling problem, the deep Q-network (DQN)

agent is introduced to perform the optimal self-scheduling of the CAES-PV

system incorporating the thermodynamic characteristics of the system. To

address the uncertainties of electricity price and PV power output, especially

during cloudy days, a novel hybrid 2D CNN- BLSTM model is adopted to

predict the price and solar irradiance more accurately. Fourth, by upgrading

the DRL agent of the third work, the optimal energy management problem

of a PV integrated energy hub is assessed. A novel DDPG+2D-CNN-BLSTM

approach as a fully model-free and data-driven DRL framework is proposed

to provide an intelligent control strategy. The method can lead to a more effi-

cient operation by considering nonlinear physical characteristics of the energy

hub components like nonconvex feasible operating regions of combined heat

and power (CHP) units, valve-point effects of power-only units, and fuel cell

dynamic efficiency. Finally, by focusing on the ever-increasing role of biomass

energy resources worldwide, the impact of several underlying factors on the

cost-benefit analysis of a biomass-based energy hub is investigated using a

entirely data-driven and model-free actor-critic DRL-based decision-making

framework. The SFNAS approach is incorporated and employed to form a

novel model-free and self-adaptable energy management algorithm for a RES-

based multi-carrier energy supply infrastructure.
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1.5 Research Contributions

The contributions of this thesis to the research field can be summarized as

follows:

1. A hybrid deep learning-based model for wind speed forecasting based on

DWPT and bidirectional LSTM network [25],

2. A deep spatial-temporal 2-D CNN-BLSTM model for ultra-short-term

LiDAR-assisted wind turbine’s power and fatigue load forecasting [26],

3. A deep reinforcement learning-based self-scheduling strategy for a CAES-

PV system using accurate sky images-based forecasting [28],

4. A novel model-free deep reinforcement learning framework for energy

management of a PV-integrated energy hub [27], and

5. An optimal model-free scheduling model incorporating a thermodynamic/economic

analysis of a biogas-based energy hub.

1.6 Thesis Organization

This thesis is organized as shown in Figure 1.1. A brief literature survey

related to deep learning-based forecasting and energy management algorithms

for smart grid applications is presented in Chapter 2. Chapter 3 describes the

wind speed forecasting approach based on DWPT and Bidirectional LSTM

network. In Chapter 4, deep spatial-temporal 2-D CNN-BLSTM model for

ultra-short-term LiDAR-assisted wind turbine’s power and fatigue load fore-

casting is presented. Chapter 5 provides deep reinforcement learning-based

self-scheduling strategy for a CAES-PV system using accurate sky images-

based forecasting model. In Chapter 6, a fully model-free and data-driven DRL

framework is proposed to develop an intelligent controller that can exploit in-

formation to optimally schedule the energy hub with the aim of minimizing
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Chapter 2

Literature Survey

In this chapter, a brief review of previously proposed models and approaches

in the areas of RE forecasting and smart grid energy management is provided.

2.1 Deep Learning-based Forecasting Approaches

In recent decades, the research and development of renewable energies have

gradually increased worldwide as an appealing solution to the high green-

house gas emissions of fossil fuel-based energy resources, which raised world-

wide concerns [109]. Due to its cleanness and abundance, wind energy has

attracted extensive attention compared to others in the realm of renewable

energy sources. The total installed capacity of wind power in Canada has

increased from 2,349 MW in 2008 to 12,816 MW in 2018 at an annual rate of

20% within ten years [25]. In particular, the government of Alberta, Canada,

has set a firm target for the AESO to move towards having 30% of Alberta’s

electricity coming from RESs by 2030, with an estimated additional RESs in-

tegration of 5,000 MW to the grid. It is anticipated that a significant portion

of the 5,000 MW of renewable energy capacity will come from wind power [26].

Nonetheless, the most significant challenge for the large-scale penetration of

wind energy in the power and energy systems is its uncertain and intermittent

nature [31]. Wind power generation mainly depends on wind speed, which

can dramatically fluctuate in a few seconds and directly affect the stability,
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resilience, and robustness of the power system. For this reason, accurate wind

speed prediction facilitates wind power facilities integration into modern power

systems.

2.1.1 Wind Speed Time Series Prediction

Over the past few years, different wind speed time series prediction models

have been developed in the literature [8, 74, 76, 77]. Based on the forecast

time horizons, these models can be mainly classified into three categories [74]:

1) Short-term wind forecasting refers to the prediction of wind data in a

period starting from several minutes to hours ahead. Economic dispatch,

grid regulations, and real-time electricity market clearing depend on this type

[77]. 2) Medium-term prediction is mainly for time horizons ranging from

several hours to a week. This type of prediction benefits reserve markets and

unit commitment [76]. 3) Long-term prediction is for a period starting from

one week to years ahead. Long-term studies of wind power plants, such as

maintenance issues or expansion planning, utilize this forecasting type [8].

Generally, wind speed and wind power prediction methodologies are di-

vided into two groups: physical and statistical methods [130]. The physical

forecasting methods use boundary conditions and physical parameters such

as ambient temperature, atmospheric pressure, obstacles, and surface rough-

ness [47]. These models often have excellent forecasting performance in the

long-term period and large-scale areas due to the high computational burden.

The computational fluid dynamics (CFD) and numerical weather prediction

(NWP) are the most critical technologies in the physical models. The re-

search work presented in [5] proposes a boundary layer scaling (BLS) tech-

nique based on the NWP model for long-term wind speed forecasting. The

statistical forecasting models mainly use the wind time series data and try

to find the mathematical relationships between the spatial-temporal samples

or historical data, which yields accurate estimation results in the short-term

prediction tasks. The Autoregressive (AR) model, autoregressive moving aver-
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age (ARMA) model, and autoregressive integrated moving average (ARIMA)

model are the most popular linear statistical approaches. In [20], an ARIMA

model is introduced to represent the upper and lower bounds of wind power

generation. However, the linear nature of these methods limits their ability

to deal with challenging wind data prediction problems and handle nonlin-

ear patterns. Recently, by developing artificial intelligence (AI) algorithms,

different new methods for wind data forecasting have been quickly proposed.

Compared with the linear statistical prediction methods, these models could

provide a complicated nonlinear relationship for prediction tasks. An artificial

neural network (ANN) is a promising AI tool for accurate time series forecast-

ing [145]. Most ANN architectures introduced in the literature have only one

single hidden layer and are shallow. For example, three types of typical shallow

neural networks (SNNs), including adaptive linear element (ALE), backprop-

agation neural network (BPNN), and radial basis neural network (RBFNN)

for one-hour-ahead wind speed prediction are employed and evaluated in [87].

It was observed that the performance is highly dependent on the hyperparam-

eters of the networks, and none of the models can outperform others in terms

of all criteria.

To compensate for the shortcomings of the above forward structures, recur-

rent neural networks (RNNs) have been proposed [130]. Unlike feedforward

NNs, RNNs acquire the predicted value from the current inputs and the ex-

perience that leads to the better capturing of various patterns and temporal

sequences. For example, to predict wind power time series, the authors of [130]

use two RNN-based models: the nonlinear autoregressive with exogenous in-

puts (NARX) and Elman. Reference [97] presented a non-parametric proba-

bilistic wind power forecasting method based on empirical dynamic modeling

(EDM) and Takens’ theorem. Difficulties in finding optimal structures in the

search space of ANNs with several layers might be the main reason for using

SNNs. However, SNNs are not capable of efficiently learning sophisticated

features from the wind data; thus, they have the drawbacks of getting into
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local minimum and over-fitting. Recently, with the booming advancement of

machine learning techniques as well as the development of graphics processing

units (GPUs), neural network-based deep-learning methodologies as the new

branch of ANNs have been gradually developed [82]. In contrast to SNNs,

such models can effectively extract inherent abstract features of the highly

varying time series data. In [141], a novel deep belief network (DBN) model is

employed for both deterministic and probabilistic wind speed forecasting. A

combination of secondary decomposition (SD) and bidirectional gated recur-

rent unit (BiGRU) is presented in [156]. The presented model in [77] extracts

unsupervised temporal features from wind speed data by restricted Boltzmann

machines (RBM) and rough set theory. The long short-term memory (LSTM)

architecture, which is a particular type of RNN with rich dynamics, was ini-

tially proposed by Hochreiter and Schmidhuber [55]. These networks overcome

the vanishing gradient problem, causing losses of valuable information by in-

troducing a gating mechanism and memory cells into RNNs [80]. Reference [6]

evaluated the effect of performing deep-stacked LSTM and BLSTM in elec-

tricity load forecasting. Compared with abundant SNN forecasting research,

only a few studies are related to deep learning-based forecasting for wind

speed [129,151]. In [19], the authors proposed a two-layer structure based on

extreme learning machine (ELM), Elman NN, and LSTM network to predict

wind speed in 10-min and 1-hour ahead time intervals. As another example,

in [63], a short-term wind speed forecasting model based on the combination of

clustering and bidirectional LSTM (BLSTM) is proposed. All of these studies

illustrated the effect of using deep networks on increasing prediction accuracy.

Besides, signal processing techniques can also considerably enhance the fore-

casting models’ accuracy through data transformation, de-noising, and feature

extraction. For example, a short-term wind speed prediction model based on

wavelet packet transform (WPT) and SNN was proposed in [99]. In very

recent literature, the authors of [155] combined improved empirical wavelet

transform (IEWT) and least square support vector machine (LSSVM) to fore-
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cast short-term wind speed. Although different signal processing methods

have been widely used as a preprocessing approach in wind prediction models,

minimal studies are made on integrating WPT and deep neural networks.

Another challenge in wind profile forecasting is the chaotic and stochastic

characteristics of wind turbulent flow over a rotor area.

2.1.2 Wind Turbine’s Power and Fatigue Load Fore-
casting

In the technical literature, wind turbine response forecasting is generally made

using a wind speed time series measured at the hub height of the turbine. Nev-

ertheless, the previously proposed approaches focus on the wind speed time

series measured at the hub heights of the turbine, which ignore the chaotic

and stochastic characteristics of wind turbulent flow over a rotor area [25].

Thus, there is a pressing need to consider more extensive feature measure-

ments of inflowing wind towards the turbine, such as the speed, direction,

and turbulence. Recently, as an advanced remote sensing wind measurement

technology, light detection and ranging (LiDAR) has been proposed and at-

tracted extensive attention to improve inaccurate and unstable measurements

of nacelle vane [53]. Moreover, besides higher accuracy, other advantages of

LiDAR over the conventional mechanical wind vanes and anemometers used in

wind turbines are measuring diverse and longer distances and flexible installa-

tion. For example, in [165], the annual energy production increased by 1.83%

through a LiDAR-based method for yaw error alignment. Results from [125]

showed that LiDAR-aided wind speed measurement yielded fatigue or extreme

load reduction on the wind turbine tower by 10%, thus improving the oper-

ation life of the wind turbine. Comprehensive analyses and discussions on

the LiDAR-based wind turbine performance can be found in [23]. Although

different efforts have been made to improve LiDAR-assisted control of wind

turbines, minimal studies have been made on integrating such extensive wind

field data and machine learning approaches to find wind turbine responses.

In [105], a feedforward NN was employed for the extrapolation of the higher
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heights wind speed using lower heights values.

It can be very beneficial to integrate accurate forecasting of renewable en-

ergy with deep reinforcement learning for energy management. As will be

discussed next, this may have a wide range of applications.

2.2 Deep Reinforcement Learning-based En-

ergy Management Algorithms

With the increasing global problems concerning energy security and climate

change, new challenges in social progress and human survival have come to the

fore. Requiring no fuel, and being renewable and non-polluting, RE resources,

typically from PV and wind sources, have attracted extensive attention around

the world. However, due to the uncertain and intermittent nature of these re-

sources, it is generally very challenging for them to participate in energy mar-

kets and equally compete with conventional non-renewable energy producers.

Consequently, to tackle these challenges, multi-carrier energy systems in the

presence of energy storage systems (ESSs) are expected to play an influential

role in improving the technical characteristics and economic sustainability of

REs.

Three different energy systems will be investigated in this thesis. These

systems witness serious energy management challenges, including renewable

power forecasting and nonlinear system modeling.

2.2.1 Self-Scheduling Strategy for a CAES-PV System

There are different grid-scale ESSs at various levels of maturity. However,

only pumped hydro energy storage (PHES) and compressed air energy storage

(CAES) are technically and economically feasible alternatives for large-scale

applications [22]. Environmental concerns and site constraints limit the fur-

ther development of PHES. CAES is another promising bulk energy storage

technology nowadays. It is advantageous in terms of fast response capability,

large capacity, and long service time. It is free of geographical restriction,
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and there are several available site options to host underground caverns for

air storage, especially in North America with its abundant geological forma-

tions [37].

Despite being known as a developed grid-scale storage technology, not many

works on self-scheduling and energy trading of CAES facilities in electricity

markets are reported. An information gap decision theory (IGDT)-based self-

scheduling formulation of CAES for participation in energy markets consider-

ing price forecasting errors is proposed in [127], while [71] suggests the appli-

cation of CAES for the purpose of congestion relief in transmission systems

as an ancillary service. In [110], a robust optimization approach is employed

to investigate the optimal market participation of a merchant CAES in the

presence of electricity market price uncertainty. Despite taking into consider-

ation the presence of uncertainties in [71,110,127], the CAES thermodynamic

characteristics are ignored.

The thermodynamic limitations may result in unprofitable and costly schedul-

ing for the CAES facility, leading to overestimating the system’s revenues.

In [126], a self-scheduling model for a CAES facility’s participation in elec-

tricity markets is proposed. The approach in [126] is extended by providing

a look-ahead scheduling model in [72]. The authors conclude that the pro-

posed approach provides optimal market participation decisions and enables

achieving higher profits for a CAES system. Reference [24] assesses robust

optimization (RO) and affine arithmetic (AA) models in self-scheduling of a

CAES facility participating in electricity markets in the presence of the ther-

modynamic limitations of the facility. However, these works use the piecewise

linear characteristic curves and linearized thermodynamic constraints to for-

mulate the scheduling problem in mixed-integer linear programming (MILP)

form solved by conventional solvers. Ignoring the nonlinear thermodynamic

constraints and practical limitations can prevent realistic analysis of the CAES

technology, hence, making the results less robust.

On the other hand, optimal scheduling and real-time balancing of modern
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ESSs highly depend on the knowledge of different operation parameters, espe-

cially the production of REs. However, a few studies concentrate on pairing

CAES with REs to reduce reliability concerns and obtain higher benefits. For

instance, the authors of [59] propose a risk-constrained two-stage stochastic

programming model for the self-scheduling problem of a CAES paired with a

smart residential energy hub (SREH). The Monte Carlo simulation method is

used to model the inaccuracies of electricity market prices, energy demands,

and solar radiation. In [7], a RO model for self-scheduling of CAES paired with

wind energy is presented. Both [7, 59] model the uncertainties of scheduling

problems by probability density functions (pdfs), which despite being reliable,

show non-linear behavior and need large amounts of scenarios for achieving

high accuracy. Reference [46] provides a coordinated strategy for a hybrid

power plant (HPP) consisting of a CAES aggregator and a wind power aggre-

gator (WPA). The scheduling is formulated as a three-stage stochastic opti-

mization problem to maximize the expected profit and mitigate wind power

uncertainties. Nevertheless, RE-based CAES scheduling frameworks intro-

duced in the literature do not contain a comprehensive forecasting framework

for an accurate and stable prediction of REs.

Although the aforementioned approaches obtained acceptable results and

achieved some success in the self-scheduling of CAES facilities, they may be

unsuitable for real-time scenarios where the variations in the demand of CAES

charging/discharging and the energy market situation are much more com-

plex. In addition, these techniques are heavily dependent on expert knowl-

edge; therefore, optimal scheduling for complex scenarios needs high calibra-

tion efforts frequently to tune and select the appropriate control parameters.

Recent research indicates that model-free strategies that do not require any

knowledge from the system model could achieve great success in complex

decision-making problems [100]. This success makes up an attractive means

for developing and implementing model-free techniques in many power and

energy system applications, such as energy management and control of active
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distribution systems [3, 17, 49, 94, 139]. Deep Reinforcement Learning (DRL)

has been introduced in the literature by training deep neural networks (DNNs),

as a universal function approximator, with reinforcement learning (RL) tech-

niques [100]. Besides being model-free and self-adaptable, an advantage of the

DRL model over model-based methods is the ability to learn a good control

policy for a very complex environment from historical data. After the learning

process of the controller, which is called the offline step, DRL can take the

optimum actions with no expert tuning or external intervention. This feature

provides a dynamic scheduling framework with superior robust performance.

2.2.2 Energy Management of a PV Integrated Energy
Hub

Traditional independent operation of energy sectors cannot take advantage of

the penetration of renewable energy resources and the synergies between mul-

tiple energy carriers. Co-ordinated operation of interacted energy systems is

therefore required to boost an efficient transition to a cost-effective and low-

carbon energy future. In this context, the energy hub has gained recognition

for improving the reliability, resilience, and profitability of multi-carrier energy

systems at the local level by redistributing supply and load across different en-

ergy divisions [111]. Energy hub offers innovative opportunities to enhance the

energy system’s flexibility for addressing renewable-based generation with the

use of fast response cogeneration units (e.g., combined heat and power (CHP).

While being economical and environmentally friendly, renewable-based energy

hubs could also cause considerable challenges to the economic and reliability

of the energy system’s operation due to both internal nonlinearities (e.g., CHP

units) and external uncertainties (e.g., renewable energy). Thus, in this chang-

ing environment, accurate and stable scheduling of a renewable-based energy

hub is a pressing issue for reshaping today’s energy infrastructure toward a

clean and sustainable energy system.

A large body of prior research on energy hub systems focuses on schedul-

ing and operation [31, 173] or design and expansion planning areas [21, 32].
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Reference [98] assesses a cooperative trading framework for the energy man-

agement problem of an energy hub. In [90], a monotone generalized nash game

(MON-GNG) is proposed for the scheduling problem of a cluster of residential

energy hubs. A robust chance-constrained framework for optimal decision-

making of an energy hub is provided in [65], where diverse electrical, heating,

and cooling demands and renewable power generation are taken into account.

The intermittent nature of renewable energy generation poses a significant

obstacle to the optimal day-ahead scheduling plans of an energy hub. Refer-

ence [169] develops a two-stage distributionally robust optimization technique

in the presence of multimodal forecast errors for photovoltaic (PV) generation.

The scheduling is formulated as a two-stage model to mitigate the cost in the

first stage, and, as part of the second stage, a real-time dispatch is provided

with forecasts of PV power output.

In the technical literature, significant efforts have been expended in develop-

ing model-based scheduling frameworks for optimal operation of multi-carrier

energy systems, where optimal scheduling solutions for energy hub systems

with a variety of generation units, demands, and storage devices are derived

by solving operational cost minimization problems. In general, these optimiza-

tion problems require highly depend on the knowledge of different operational

parameters and models, and the optimal energy management schedule is de-

veloped using estimated exogenous parameters, such as the weather-dependent

renewable generation, price patterns, and energy loads. As a consequence, the

quality of the resulting scheduling policies is heavily subjected to the accu-

racy of the underlying system model. Nevertheless, it can be very challenging

and costly to obtain an accurate model of the operational dynamics of the

system. Although these optimization frameworks do not fully incorporate

the inherent volatility associated with such parameters, robust optimization

(RO) [159,169], information gap decision theory (IGDT) [31,60], and stochas-

tic programming (SP) [65,102,112] methods have been developed to cope with

these uncertainties. RO and IGDT model uncertainties as uncertainty sets,

18



whilst SP employs a set of possible scenarios.

While the aforementioned approaches obtained acceptable results and achieved

some success in the scheduling of multi-carrier energy systems, they may not

be suitable to efficiently manage multiple highly nonlinear units in a com-

petitive energy market. These techniques are significantly dependent on ex-

pert knowledge; thus, optimal scheduling for complex scenarios needs high

calibration efforts frequently to tune and select the appropriate control pa-

rameters. For example, RO has lower computational costs than SP; however,

the resulting decision can be too conservative due to RO’s inherent charac-

teristic of hedging against the worst-case scenario of unknown parameters.

Meanwhile, SP can suffer from a dramatic increase in optimization scale as

the number of scenarios increases. This issue restricts the capability of SP

framework to deal with multiple uncertain resources simultaneously. More-

over, these techniques usually use piecewise linear characteristic curves and

linearized constraints to formulate the scheduling problem in a mixed-integer

linear programming (MILP) form solved by conventional solvers. Ignoring the

nonlinear constraints and practical limitations can prevent realistic analysis

of the energy hub concept, making the results less robust and reliable.

In contrast, a recent study indicates that, when dealing with complex

decision-making problems, model-free approaches which do not rely on any

knowledge from the system model could achieve great success [100]. Deep Re-

inforcement Learning (DRL) has been developed as a model-free approach by

applying reinforcement learning (RL) techniques to train deep neural networks

(DNNs). DRL combines deep learning and RL to exploit more sophisticated

control policies, which are more complex than those represented by shallow

regression models or look-up tables. In the era of big data, by performing a

successive interpretation of data, DRL can take advantage of the rising amount

of data captured by numerous sensors to learn optimal decision-making solu-

tions, thus, coping with the encapsulated uncertainties of data. Furthermore,

besides being model-free and self-adaptable, DRL does not require any con-
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straint sets of uncertainties or explicit modeling of probability distributions.

These desirable properties provide an attractive means of developing and im-

plementing DRL methods in various decision-making and control problems in

energy systems, such as system control [34, 57], electric vehicles (EV) [148],

and the emergency and voltage control of power system [35,58].

Focusing on active energy system scheduling and control area, deep Q net-

work (DQN) framework has been applied to various high-dimensional state

and action spaces optimization environments, e.g., building energy manage-

ment [104], industrial Internet of Things (IIoT) [143], battery energy storage

system [14], and cyber uncertainties [36].Although DQN, by employing a DNN

for the Q-value function approximation, is considered a significant improve-

ment compared to conventional Q-learning, it can suffer from poor perfor-

mance when dealing with continuous action spaces. For instance, the authors

of [18] discretize the charging/discharging power of Lithium-ion batteries into

five levels, or the control action of the EV provides seven levels in [140].

Consequently, batteries or EVs are significantly less flexible in the scheduling

problem due to the multi-dimensionality and continuity of energy manage-

ment decisions. Thus, there is a pressing need for the adoption of continuous

action spaces. The deep policy gradient (DPG) approach is first developed by

using DNN to estimate the probability of taking action in a given state [104].

However, DPG generally has a high variance in its gradient estimates and low

sampling efficiency, which causes slow convergence. In very recent literature,

to overcome this shortcoming, a deep deterministic policy gradient (DDPG)

framework has been developed and applied to a few power systems’ decision-

making problems, such as state of charge (SOC) control [123], volt-var control

(VVC) in distribution networks [134], and electricity market participation [89].

An actor-critic architecture featured in DDPG offers the advantages of both

Monte Carlo policy gradient and value-based methods. In DDPG, the learn-

ing of action space selection is carried out using fewer samples, resulting in

fewer computational resources when compared to the Monte Carlo policy gra-
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dient approach. On the other hand, compared with the value-based method,

it can solve continuous action-based RL problems by learning stochastic poli-

cies. These features can provide a flexible scheduling framework with superior

robust performance for the energy hub energy management problem. How-

ever, most DRL-based energy management studies focus only on one category,

such as energy storage or EVs, ignoring the coordinated decision-making for

diverse and complicated systems. It does not reflect operational reality.

2.2.3 Dynamic Scheduling of a Biogas-Based Energy
Hub in the presence of neural architecture search
(NAS)

Several recent representative studies have been reported on the optimization

of energy hub systems from different perspectives, including optimal design

and expansion planning [21,32], optimal power dispatch [31,173], energy trad-

ing scheme planning [27, 29], voltage-frequency optimization [168], etc. The

literature on integrating biomass energy resources into the energy hub con-

cept is somewhat limited and scattered. Using climate-independent biomass

energy, an energy hub can balance the stochastic output of weather-driven re-

newable RESs. In both [85], [160], the planning problem for a biomass-based

energy facility was studied and formulated as a two-stage mixed-integer linear

programming (MILP) model. While the authors in [85] focused on the opti-

mal planning of solar and biogas energy for reducing the dependency of the

energy hub system on battery storage systems in remote regions, the model

proposed in [160] centered on the expansion planning of integrated electric

power and biogas delivery networks. In terms of the scheduling and operation

of biomass-based multi-carrier energy systems, the existing literature studies

the use of biomass energy resources as a solution to the increasing demand

for diversified and affordable energy services. In [147], a stochastic optimal

operation strategy for an integrated solar and biomass system is proposed

by considering the uncertainties in market prices and solar irradiation. Ref-

erence [173] assesses an optimal operation strategy for an energy hub with a
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biogas-solar-wind hybrid renewable system. The approach in [173] is extended

by providing a distributed stochastic scheduling framework for the coordinated

operation of interconnected biogas-solar-wind systems in [157]. Both [69, 70]

propose trading schemes for the biomass-concentrated solar system. Stochas-

tic optimization and information gap decision theory (IGDT) approaches are

leveraged to address uncertain factors.

Even though some advances were made, the aforementioned works also had

three limitations. Firstly, they need to understand the dynamics of compo-

nents. Developing a dynamic model that can accurately simulate components’

behavior is challenging due to the many factors that influence it. Further,

model-based approaches may differ in premises or performance in relation to

particular components, so their generalizability may be limited. Secondly,

algorithms require explicit knowledge of how uncertainty is represented (for

example, RES production’s probability distributions). Finally, a third limita-

tion is the lack of support for an online control mechanism, particularly for

large-scale solutions. Specifically, these methods need to perform the opti-

mization by selecting the most optimal solution among a set of possible ones,

regardless of the problem size.

Alternatively, the disadvantages described above can be overcome through

the use of model-free learning-based techniques. Recently, some research has

been conducted on applying reinforcement learning (RL) to the energy man-

agement problem of multi-carrier energy systems, such as Q-learning (QL) [78],

QL-linear programming (LP) [45], and fuzzy QL [174]. The combination of RL

and deep neural networks (DNN), as a powerful function approximator, has led

to the development of deep reinforcement learning (DRL). Through multiple

interpretations, DRL can leverage the growing data collected from a variety

of sources, revealing optimum control policies and dealing with uncertainty

related to the data. Additionally, DRL is a model-free, self-adaptive method

that requires no explicit modeling of probability distributions or constraints

on uncertainties. The application of deep Q network (DQN) concepts to en-
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ergy systems’ control and scheduling has been developed for different scenarios

involving the optimization of state and action spaces in high dimensions, e.g.,

energy storage system [14], industrial Internet of Things (IIoT) [143], electric

vehicles (EV) [148], cyber uncertainties [36], and building energy manage-

ment [104]. Although DQN has been regarded as a considerable improvement

over conventional QL in approximating Q-value functions, its performance

is suboptimal if the action spaces of the environment are continuous. DQN

offers considerable advantages over QL, but its performance can be subopti-

mal regarding continuous action spaces. There are, for example, only five and

seven levels of discrete control actions for lithium-ion batteries and EVs in [18]

and [140], respectively. The adoption of a continuous action space is therefore

of the utmost importance. This being the case, the deep deterministic pol-

icy gradient (DDPG) methodology was introduced and implemented on a few

decision-making tasks involved in scheduling and controlling microgrids, in-

cluding electricity market participation [89], distribution networks [134], volt-

var control (VVC), and state of charge (SoC) control [123]. Through using

both actor and critic networks, it provides both the benefits of value-based

and Monte Carlo policy gradient approaches. Comparatively to the Monte

Carlo policy gradient, DDPG uses fewer samples to learn action space se-

lection, resulting in lower computational demands. Furthermore, in contrast

to the value-based technique, stochastic policies can be used to address RL

problems that involve continuous actions.

In the meantime, DNN algorithms have made promising progress in several

tasks, including prediction. However, their performance is still heavily influ-

enced by the parameters and architecture of the neural network (the number

of layers and the number of nodes, as well as the connectivity between layers).

In most cases, it is challenging to evaluate how parameter settings influence

the performance of the available models, even when they have a thorough

understanding of both machine learning (ML) and deep learning (DL). Fur-

thermore, recent studies in the field emphasize the use of higher-level models
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in order to obtain more accurate predictions, increasing the number of param-

eters included in the model. This has made exploring such large parameter

spaces a more challenging undertaking. Neither expert knowledge nor empir-

ical trial and error are always helpful in this regard. A neural architecture

search (NAS) method finds the optimal network architecture for a given sit-

uation by defining a search space, a search strategy, and a performance esti-

mation strategy [39,150]. NAS-developed network structures are proven to be

superior to those constructed by hand in a variety of fields.

Over the past few years, the field of NAS has become an active area of re-

search and experienced remarkable success [39,96,120]. A Bayesian optimization-

based NAS has been used to optimize the structure of DNNs. For example, a

new kernel captures the relevant parameters in [135] and a joint optimization

of the architecture and hyperparameters is performed using Bayesian opti-

mization in [164]. Recent proposals have attempted to turn NAS problems

into RL problems. The NAS problem is addressed using Q-learning in [9,172].

To improve the search procedure described in [9], [10] uses a predictor. With

shared DNN parameters, [114] increases the speed of search procedures. By

developing a differentiable representation of the NAS model, gradient-based

NAS techniques seek to optimize the parameters of the NAS. The perfor-

mance of other neural networks is predicted by a neural network in [12, 13].

An approach aimed at reducing training time and memory consumption for

NAS is described in [15]. A generalization problem in DARTS models [93] is

addressed in [86] by breaking the problem into sub-problems. Recent years

have seen significant interest in evolutionary computation approaches to opti-

mize DNN parameters. DNNs are employed as genotypes and phenotypes in

a mutation-only Genetic algorithm (GA) in [118, 149]. By evolving the cas-

cades of convolutional filters, a GA for classification is presented in [115]. It

is noteworthy that evolutionary-based NAS approaches result in neural net-

works of superior performance, but moderate in size, as shown in [39,96,120].

Additionally, privacy concerns are becoming more prevalent, which has led to
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a growing interest in machine learning approaches that preserve the privacy

of users. As a machine learning paradigm, federated learning (FL) deals with

concerns about data privacy, particularly when working with distributed and

heterogeneous information [79]. Thus, FL combined with NAS is capable of

effectively addressing privacy concerns associated with NAS.
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Chapter 3

Deep Learning-Based Model for
Wind Speed Forecasting Based
on DWPT and Bidirectional
LSTM Network

In this chapter, a novel deep learning-based model integrating DWPT and

BLSTM is developed to precisely capture deep temporal features and learn

the time-varying relationship of wind speed time series. First, by applying the

DWPT, both approximations and details parts are decomposed by passing

through the filters to choose the frequency band related to the features of the

original signal more adaptively. Then, the BLSTM networks are incorporated

to deal with the uncertainties more effectively as they have bidirectional mem-

ory capability (feedforward and feedback loops) to investigate both previous

and future hidden layers’ data. To simultaneously improve the forecasting

performance and decrease the learning complexity, the reconstructed state

space of historical wind data is employed to reflect the evolution laws of wind

speed. Two case studies using real-world wind speed datasets gathered from

the Flatirons campus (M2) of the National Renewable Energy Laboratory

(NREL) located in Colorado, USA, and the weather station of Edmonton,

Canada, are implemented to demonstrate the effectiveness and superiority of

the proposed hybrid method compared to the shallow architectures and state-

of-the-art deep learning models in the recent literature.
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This Chapter is structured as follows. Section 3.1 motivates and explains

the delay embedding methodology, the WPT approach, and the BLSTM net-

work. Then, it describes how they are employed to develop the proposed

wind prediction model. The details of real-world wind speed datasets, param-

eter settings, and the well-known error criteria for evaluating the forecasting

method are introduced in Section 3.2. Section 3.3 conducts two 1-hour and

10-minute real-world wind speed datasets to demonstrate the efficiency and

applicability of the proposed algorithm, and Section 3.4 draws the conclusion.

3.1 Methodology

In this Section, first, the notation and concept of Takens’ embedding theorem

are explained, which are used in this work as an effective tool to form the

reconstructed state space. Then, the proposed DWPT-BLSTM framework is

introduced to capture deep temporal features from the reconstructed wind

speed time series.

3.1.1 Delay Embedding and Dynamic Reconstruction
Theory

In a chaotic system, the initially unobservable dynamics of interest can be

reconstructed by employing Takens’embedding and dynamic reconstruction

theories [97]. According to Takens’ theorem, a new state space can be con-

structed such that its evolution of observations is equivalent to that of the

original one. Building a delay embedding comes down to defining two param-

eters: normalized embedding delay λ, which determines each delay vector’s

optimal autocorrelation value, and embedding dimension d, which means the

size of the set of most recent observations.

In a dynamical system and discrete-time environment, the observable output

yt is described as follows:

yt = f (xt) (3.1)
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where f (.) and xt represent the dynamics of the system and nonlinear scalar-

valued function, respectively. Based on the delay embedding theorem, recon-

structed dynamics with embedding dimension d and normalized embedding

delay λ, {yrect } , can be formulated as follows:

yrect =
[
yt, yt−λ, ..., yt−(d−1)λ

]
(3.2)

The normalized embedding delay λ is determined heuristically based on the

average mutual information (AMI) method [42]. By this method, the first

minimum of the mutual information between yt and yt−λ is the optimal value

of λ. Besides, the false nearest neighbors (FNN) technique is applied to find

the proper value of embedding dimension d. Furthermore, the first minimum

of the FNN determines the acceptable minimum value of d under changes

in the embedding dimension from d → d + 1, which satisfies the sufficient

condition d ≥ 2D+ 1 (D represents the state space dimension of the unknown

dynamics) [51]. Based on the discussion mentioned above, both evolutions

yrect → yrect+1 and xt → xt+1 are similar.

Therefore, to handle the forecasting problem of time series {xt}, it is better

to forecast the time series {yrect }. The following mapping can represent this:

ypredictedt+1 = F (yrect ) (3.3)

where ypredictedt+1 is the forecasted value of the time series {yt} for the next time-

step. It is worth noting that with different F , equation (3.4) can be extended

to a multi-step prediction form.

ypredictedt+τ = F ′ (yrect ) (3.4)

Since the wind data time series shows chaotic behavior from a dynamic system

point of view, the reconstructed state-space model is employed to transform

it into a suitable form of machine learning methods.

3.1.2 Time-Series Decomposition

The wavelet transform (WT) represents an excellent tool to capture the wind

speed dynamics and temporal patterns since wind speed has a time-varying
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nature and spreading frequency spectrum. By using WT, an initial wind data

signal is decomposed into a set of wavelets, which in turn represent a better

behavior than the original wind data series.

Compared to other signal decomposition methods, wavelet analysis can

better reveal temporal features of the wind speed sequential data, such as

discontinuities in higher derivatives, breakdown points, self-similarity, and

trends [162]. Additionally, signal de-noising or compressing without any re-

markable degradation are the other essential features of the WT. The WT is

categorized into two groups: continuous wavelet transform (CWT) and dis-

crete wavelet transform (DWT) [42]. A CWT of the signal f (t) is described

as follows [138]:

CWTf (α, β) =

⟨f (t) , ψα,β (t)⟩ =
+∞∫
−∞

f (t)ψ∗
α,β (t) dt

(3.5)

Ψα,β (t) =
1√
|α|

ψ

(
t− β
α

)
(3.6)

where ψ (t) and Ψ denote the mother wavelet and set of wavelets, respectively.

α as a scaling coefficient determines the spread of the wavelet, and β as a

translation coefficient controls the central position. Compared to the Fourier

transform (FT), which represents the signal as a combination of sines and

cosines, by using the CWT, a set of wavelets is generated associated with a

mother wavelet, ψ, and predefined values of the scale and translation coeffi-

cients respect to the original non-stationary signal [33]. However, the CWT

method is not easily applicable to the desired tasks due to substantial re-

dundant information and a very high computational burden. According to

(3.5) and (3.6), CWT is continuously achieved by continuously scaling and

translating the mother wavelet and shifting it over the signal to obtain the

correlation between them. Furthermore, there is not any analytical solution for

most cases, which leads to numerical calculation methods and, consequently,

higher computational complexity. DWT, as a digital counterpart of CWT, is
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introduced to address these issues. Therefore, instead of following the pro-

posed procedure, the signal is analyzed at different resolutions with various

frequency bands. This type of WT applies a binary system to subsample

the CWT, decreasing the redundant information while retaining the principal

characteristics. It dramatically improves efficiency and keeps accuracy just

as same as the CWT [119]. The DWT is expressed as (3.7), where υ and

k denote integers. β 0 and α 0 are a fixed dilation steps and the transla-

tion factor, respectively. There are two different sets of functions in DWT,

wavelet, and scaling functions, which are related to high-pass and low-pass

filters, respectively, as presented in (3.8) and (3.9).

ψυ,k (t) = 1√
αυ
0

ψ
(

t−kβ0αυ
0

αυ
0

)
(3.7)

ψ (2υt) =
K∑
k=1

gυ+1 (k)φ
(
2υ+1t− k

)
(3.8)

φ (2υt) =
K∑
k=1

hυ+1 (k)φ
(
2υ+1t− k

)
(3.9)

where g (k) and h (k) denote the wavelet and scaling filters, respectively. ψ

and φ are the wavelet and scaling functions, respectively. Subsequently, a

signal f (t) is written as follows:

f(t) =
K∑
k=1

ξυ−1 (k)ψ (2υ−1t− k)

+
K∑
k=1

ζυ−1 (k)φ (2υ−1t− k)

(3.10)

ξυ−1 (k) and ζυ−1 (k) are the coefficients calculated using the inner products

of wavelet and scaling functions with the signal as follows:

ξυ−1 (k) = ⟨f (t) , ψυ,k (t)⟩ (3.11)

ζυ−1 (k) = ⟨f (t) , φυ,k (t)⟩ (3.12)
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LSTM architecture is employed here as an alternative network to tackle

them efficiently. The first issue is that LSTM networks are more complex and

improved RNNs with an internal state capable of propagating data through

multiple time steps and temporal processing characteristics of time series data.

Let l ∈ [1, L] be the layer of LSTM, which contains cyclically connected

special blocks known as memory blocks. Figure 3.2(a) illustrates the general

structure of the LSTM block architecture, where each block has one or more

memory cells, and three multiplicative units called an input, an output, and

forget gates, representing operators for respectively continuous writing, read-

ing, and resetting of data in the cell. Also, Figure 3.2(b) shows the information

connection procedure during the subsequent time steps in an un-rolled LSTM

network. The past state or the explanatory variables are the candidates of the

new information memorized by the input gate. The output gate controls the

impact of memory content on the node output, whereas the forget gate can

discard irrelevant information. Succinctly, the forward pass associated with

the LSTM architecture is formulated as follows [80]:

ft = σ
(
W f

x xt +W f
h ht−1 + bf

)
(3.13)

it = σ
(
W i

xxt +W i
hht−1 + bi

)
(3.14)

gt = tanh (W g
xxt +W g

hht−1 + bg) (3.15)

ot = σ (W o
xxt +W o

hht−1 + bo) (3.16)

Ct = gt ⊙ it + Ct−1 ⊙ ft (3.17)

ht = tanh (Ct)⊙ ot (3.18)

where σ and tanh represent the logistic sigmoid and the hyperbolic tangent

activation functions, respectively, whereas f, i, o are the activation vectors re-

lated to the forget, input, and output gates, respectively. The weight matrices

W and bias vector b to be optimized during the training procedure.
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To solve the second problem of RNNs, the bidirectional concept is incorpo-

rated into the proposed LSTM model to capture the whole temporal horizon’s

information. Based on Figure 3.2(c), a structure including two different recur-

rent networks with the same output is capable of both forward and backward

training processes [121]. The proposed topology has been widely applied in the

speech recognition domain due to its capability to efficiently recognize a word

by using not only the previous words but also the whole sentence [166]. Moti-

vated by the proposed principle, here, the necessary information is completely

exploited by the explanatory variables during each time step. This process

leads to better prediction performance. Moreover, besides better training

time, an advantage of the proposed bidirectional networks over unidirectional

RNNs is robustness to the biased inputs and model uncertainties [138].

Bidirectional LSTM (BLSTM) models, as a combination of LSTM networks

and bidirectional RNNs, can simultaneously memorize long-term dependen-

cies and process the information bidirectionally. More specifically, when deep

structures are built, one can achieve much higher data representation capabil-

ity compared to traditional RNNs or LSTMs.

3.2 Realistic Wind Speed Forecasting Case Study

Definition

In this Section, the details of real-world wind speed datasets, parameter set-

tings, and the well-known error criteria for evaluating the forecasting method

are introduced.

3.2.1 Datasets

The historical wind speed time series used in this work are measured from two

different sites: 1) the Flatirons campus (M2) wind site of the National Renew-

able Energy Laboratory (NREL) located in Colorado, USA, obtainable from

the NREL National Wind Technology Center (NWTC) website [61]. The data

were obtained by applying a next-generation mesoscale NWP system called
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Table 3.1: Forcasting results of the proposed model (DWPT+BLSTM) with
different training data size.

Dataset Range (%) MAPE (%)
Training

time

NREL 1-hour 1 Jan 2017 to 31 Dec 2018 6.16 00:09:11

NREL 1-hour 1 Jan 2016 to 31 Dec 2018 6.04 00:16:48

NREL 10-min 1 Jan 2000 to 31 Mar 2000 3.29 00:08:11

NREL 10-min 1 Oct 1999 to 31 Mar 2000 3.24 00:17:05

Weather Research and Forecasting (WRF), developed for operational forecast-

ing needs and atmospheric research tasks. 2) Edmonton, Canada historical

wind speed data [25]. The historical weather data are courtesy of Environ-

ment and Climate Change Canada and combined from multiple Environment

and Climate Change Canada data sources to be accurate.

The chosen NREL datasets include wind speed data in 1-hour and 10-minute

intervals from 1 January 2017 to 31 December 2018 and 1 January 2000 to

31 March 2000, respectively. The time period of the Edmonton dataset is

from 1 January 2017 to 31 December 2018 with the hour unit. Table 3.1

shows the impacts of choosing bigger datasets on forecasting accuracy and

computational time. As seen from this Table, using bigger training datasets

increases the time up to double while having a negligible impact on the learning

capability. Whole datasets are further split into three subsets for different

purposes, namely the training set for building up the model, the validation

set for an unbiased assessment during tuning the parameters of the model,

and the testing set for the last evaluation of the model built. In this study,

the training and validation sets account for 70% and 20% of the dataset,

respectively, and the remaining data are allocated for testing the forecasting

performance of the proposed method. In other words, the data partitioning is

0.7/0.2/0.1.
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3.2.2 Parameter Details

It is worth noting that based on the state space reconstruction methodology,

the input size of the network is determined by the dimension of delay vectors.

From a dynamic systems point of view, the prediction task is considered the

prediction of system states since a series of observations about the system

is seen as a time series. In other words, the observations in the time series

are a nonlinear projection of the system’s state variables onto the observation

variables. To this end, a small set of the most recent previous observations is

used as state variables to construct an equivalent version of the original state

space [97]. In this way, two parameters of the space need to be calculated:

embedding delay λ, which optimally determines the level of autocorrelation

corresponding to each delay vector, and embedding dimension d, which are

mathematically equivalent to the size of the proposed observations’ set. The

utility functions of the TISEAN toolbox called mutual, and falsenearest are

employed in this work to find the proper values of λ and d, respectively. Figs.

3.3(a) and 3.3(b) show the variations of the average mutual information and

the percentage of false nearest neighbors, respectively. As shown in Figure

3.3(a), the average mutual information between wind speed at times t and

t − λ reaches its first local minimum at 18, which is chosen as the optimal

value of λ. Moreover, as depicted in Figure 3.3(b) and based on the first

minimum of the false nearest neighbors percentage, seven can be selected as

the minimum acceptable value of d. Note that this value is not in contrast

to the seasonality of time series data. λ means that the value time series at

time t and at a time t − λ can participate in the reconstructed space as two

consecutive members due to the essential independence. On the other hand,

the independence level is not so much as to can say there is not any correlation

between them. It is noteworthy that choosing two seasonal data points may

lead to high redundant information, which is not desirable. Furthermore, wind

speed data at time t−1 to t−6 (based on mutual information) are also added

to the input vector to highlight the correlation of time series.
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the network and minimize the loss function. Adam is an adaptive learning

rate optimization method that shows slightly better performance in practical

applications compared to other popular optimization algorithms such as RM-

SProp, stochastic gradient descent (SGD), Adadelta, and Adagrad. In this

study, all the experiments are implemented in MATLAB 2019 software. The

workstation used is configured with an Intel Core TM i7-8700 3.2 GHz CPU

and 32 GB of RAM.

3.2.3 Evaluation Criteria

The root means square error (RMSE), mean absolute error (MAE), and mean

absolute percentage error (MAPE) are employed as three evaluation metrics

to evaluate the prediction results as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(d(i)− y(i))2 (3.19)

MAE =
1

N

N∑
i=1

|d(i)− y(i)| (3.20)

MAPE =
1

N

N∑
i=1

∣∣∣∣d(i)− y(i)

d(i)

∣∣∣∣× 100% (3.21)

where d(i), y(i) and N represents the desired output, the actual output, and

the number of samples, respectively.

3.3 Experimental Results and Discussion

In this Section, two practical case studies of wind speed prediction in Col-

orado, USA, and Edmonton, Canada, are carried out. The simulation results

and comparison with benchmark methods are presented to validate the per-

formance of the proposed model.
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Figure 3.4: Forecasting result of the proposed model for the NREL 1-hour
test data.

3.3.1 NREL M2 Wind Speed Dataset

After tuning the parameters and specifying the optimal structure, the model

is trained by using the training set. The average time required to train the

network is entirely dependent on the structure complexity, and for the pro-

posed model, it is about 10 minutes, which makes it applicable for real-time

wind speed forecasting purposes. In the testing step, only the feed-forward

process is used to find the output of the network; thus, it has negligible time

complexity and is, therefore so faster. Figure 3.4 shows the forecasting results

of the proposed model over the test data. In order to provide better visual-

ization, the results for the last week are also shown in Figure 3.5. As can be

seen, the forecasted results (the orange line) follow the trend of the real mea-

surements (the blue line) and are very close to them, which implies that the

dynamic characteristics of the wind speed data are effectively captured by the

model. Tables 3.2 and 3.3 compare the results of the proposed hybrid method
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Figure 3.5: Forecasting result of the proposed model for the last week of NREL
1-hour test data.

with some benchmark models recently employed in the literature, including

different combinations of DWT and DWPT with BPNN, RNN, DBN, LSTM,

MLSTM, and BLSTM for 1-hour and 10-minute, respectively. The procedure

of designing an optimal structure for the other models is similar to that of the

proposed hybrid model. The optimal number of layers and hidden nodes are

determined to be 3 and 30 for the BPNN and RNN, respectively. The DBN

network has three hidden layers with 30 hidden nodes in each layer. The struc-

tures of the typical LSTM and MLSTM models are considered to be the same

as the BLSTM network to provide a better comparison. According to the re-

sults, the RNN network outperforms BPNN due to its dynamic behavior. The

DBN has generally higher forecasting accuracy compared to shallow architec-

tures, i.e., BPNN and RNN. It has 9.15% and 8.74% MAPE improvements for

the RMSE and MAPE over RNN in the 1-hour case. LSTM-based models,

LSTM, MLSTM, and BLSTM, show promising prediction results by achieving

significantly lower error metrics compared to BPNN RNN, and DBN.
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Table 3.2: Comparison of forecasting performance for the NREL 1-hour
dataset.

Forecasting

method

RMSE

(m/s)

MAE

(m/s)

MAPE

(%)

Training

time

DWT+BPNN [145] 0.684 0.472 16.23 00:02:05

DWPT+ BPNN 0.513 0.363 10.60 00:03:11

DWT+RNN [130] 0.541 0.392 13.87 00:04:16

DWPT+ RNN 0.415 0.305 8.92 00:05:13

DWT+DBN [141] 0.539 0.387 13.34 00:04:18

DWPT+DBN 0.377 0.266 8.14 00:05:22

DWT+LSTM [151] 0.534 0.384 12.09 00:04:45

DWPT+LSTM 0.351 0.253 7.35 00:05:03

DWT+MLSTM [158] 0.501 0.354 10.08 00:10:37

DWPT+MLSTM 0.348 0.251 7.07 00:11:50

DWT+BLSTM [63] 0.507 0.365 10.21 00:07:26

Proposed (DWPT+BLSTM) 0.339 0.249 6.16 00:09:11

Table 3.3: Comparison of forecasting performance for the NREL 10-minute
dataset.

Forecasting

method

RMSE

(m/s)

MAE

(m/s)

MAPE

(%)

Training

time

DWT+BPNN [145] 0.455 0.281 9.74 00:01:58

DWPT+ BPNN 0.311 0.199 5.83 00:02:58

DWT+RNN [130] 0.439 0.277 9.31 00:02:39

DWPT+ RNN 0.297 0.194 5.07 00:03:15

DWT+DBN [141] 0.392 0.275 8.34 00:02:57

DWPT+DBN 0.283 0.186 4.52 00:04:03

DWT+LSTM [151] 0.354 0.267 7.66 00:04:11

DWPT+LSTM 0.267 0.177 4.40 00:04:45

DWT+MLSTM [158] 0.244 0.159 3.91 00:09:07

DWPT+MLSTM 0.164 0.106 3.77 00:10:24

DWT+BLSTM [63] 0.247 0.165 4.16 00:06:55

Proposed (DWPT+BLSTM) 0.157 0.093 3.29 00:08:11
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As shown in Tables 3.2 and 3.3, the proposed method achieves the lowest

RMSE, MAPE, and MAE values and procures the best prediction performance

compared to the other benchmark models. It can also be observed that models

with DWPT have better performance than those with DWT. For example,

DWPT+ BPNN improves RMSE and MAE by 31% and 29%, respectively,

compared to DWT+ BPNN. These improvements result from the fact that

applying the DWPT transformation yields more detail and approximation

coefficients and, consequently, better forecasting.

Moreover, using BLSTM leads to considerable improvement, especially in

the 10-minute case, compared to LSTM. BLSTM provides advantages mainly

by reducing the forecast errors while increasing the training time and com-

plexity of the model. Note that the training time for the models with BLSTM

is still much less than the prediction time scale of one hour. To better show

how different models predict the highly volatile wind speed time series, the

forecasting results of different networks for the 10-minute and 1-hour datasets

are visualized in Figure 3.6 and Figure 3.7, respectively. As shown, the perfor-

mance of the proposed hybrid model is much better than other shallow or deep

learning-based models, especially when wind speed time series has an abrupt

change due to using more meaningful information and better generalization

capability.

To verify the performance of the reconstructed state-space model, the 1-

hour case study is repeated for different input structures. Table 3.4 shows the

results of some typical input structures for different values of d and λ. As

shown in this table, both the increase and the decrease in the input vector

parameters reduce the performance according to the forecasting indices.

On the other hand, Table 3.5 shows the MAE of different models for 1-

hour up to 3-hour ahead wind speed prediction task. The proposed architec-

ture, DWPT+BLSTM, procures remarkably better results than other deep

and shallow architectures for larger prediction time steps. DWPT+BLSTM

improves MAE by 6.7% and 3% for 2-hour ahead prediction compared to
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Figure 3.6: Forecasting results for the last day of NREL 10-minute test
data. (a) DWT+LSTM. (b) DWPT+LSTM. (c) DWT+MLSTM. (d)
DWT+BLSTM. (e) DWPT+MLSTM. (f) DWPT+BLSTM.
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Figure 3.7: Comparison of forecasting results for the last week of NREL 1-
hour test data.

Table 3.4: Comparison of forecasting performance for different input struc-
tures. (NREL 1-hour dataset)

Input vector structure (d, λ) RMSE (m/s) MAE (m/s) MAPE (%)

(3, 14) 0.512 0.456 12.84

(5, 16) 0.384 0.274 8.95

(7, 18) 0.339 0.249 6.16

(9, 20) 0.367 0.267 6.35

(11, 22) 0.486 0.397 10.08

44



Table 3.5: MAE for different time steps. (NREL 1-hour dataset)

Forecasting 1-hour 2-hour 3-hour

DWT+BPNN [146] 0.472 0.691 1.162

DWPT+ BPNN 0.363 0.438 0.642

DWT+RNN [131] 0.392 0.513 0.778

DWPT+ RNN 0.305 0.357 0.511

DWT+DBN [142] 0.387 0.510 0.756

DWPT+DBN 0.266 0.341 0.494

DWT+LSTM [152] 0.384 0.506 0.748

DWPT+LSTM 0.253 0.332 0.487

DWT+MLSTM [81] 0.354 0.499 0.715

DWPT+MLSTM 0.251 0.328 0.473

DWT+BLSTM [64] 0.365 0.492 0.711

Proposed (DWPT+BLSTM) 0.249 0.318 0.441

DWPT+DBN and DWPT+MLSTM, respectively. Such improvement in-

creases to about 10.7% and 6.8% for 3-hour ahead prediction. This shows

the deep feature extraction ability of the proposed deep network. It is worth

noting that, although the training time increases as the time horizon is ex-

tended, it is still negligible compared to the forecasting time step.

3.3.2 Edmonton Wind Speed Dataset

In this study, historical hourly wind speed data from Edmonton, Canada is

used as the second dataset to show the applicability and effectiveness of the

proposed model in dealing with different locations which have various wind

speed characteristics. To perform a fair comparison, the time period is con-

sidered to be from 1 January 2017 to 31 December 2018. Similar prediction

comparison results are obtained for Edmonton dataset, as shown in Table 3.6.

The proposed DWPT+BLSTM model can still forecast future wind speed with

the highest accuracy, which demonstrates the consistency and stability of the

method. It is still the best forecasting model according to the error metrics
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Table 3.6: Comparison of forecasting performance for the Edmonton dataset.

Forecasting

method

RMSE

(m/s)

MAE

(m/s)

MAPE

(%)

Training

time

DWT+BPNN [146] 0.758 0.602 15.79 00:02:36

DWPT+ BPNN 0.507 0.383 8.97 00:03:04

DWT+RNN [131] 0.615 0.481 12.22 00:03:19

DWPT+ RNN 0.439 0.338 8.27 00:04:22

DWT+DBN [142] 0.582 0.449 11.61 00:03:27

DWPT+DBN 0.385 0.273 7.88 00:04:41

DWT+LSTM [152] 0.577 0.437 10.19 00:03:05

DWPT+LSTM 0.296 0.231 6.51 00:04:11

DWT+MLSTM [81] 0.526 0.392 9.21 00:09:02

DWPT+MLSTM 0.277 0.221 6.44 00:09:56

DWT+BLSTM [64] 0.490 0.371 8.64 00:06:41

Proposed (DWPT+BLSTM) 0.253 0.197 4.82 00:07:24

value followed by the DWPT+MLSTM method. Furthermore, forecasting per-

formance of different models with their corresponding errors for the last week

of the Edmonton test data are shown in Figure 3.8. From this figure, it can

be seen that the errors of DWPT-based models range from -1 to 1 m/s while

for those with DWT can even approach to 5 m/s. Both DWPT+MLSTM

and DWPT+BLSTM models have high potential to forecast the overall be-

havior of the wwind speed time-series and they can follow the sharp spikes

accurately. However, DWPT+MLSTM needs around 22% more training time

compared to DWPT+BLSTM, while DWPT+BLSTM has 33.6% less MAPE.

In summary, as the forecasting results illustrate, we can find that the pro-

posed DWPT+BLSTM framework can predict Edmonton hourly wind data

effectively better than the benchmark methods.
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Figure 3.8: Forecasting results for the last week of Edmonton 1-hour
test data. (a) DWT+LSTM. (b) DWPT+LSTM. (c) DWT+MLSTM. (d)
DWT+BLSTM. (e) DWPT+MLSTM. (f) DWPT+BLSTM.
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finding can verify the superiority of the proposed DWPT+BLSTM framework.

3.4 Conclusion

Accurate knowledge of the variability and availability of wind speed is a very

crucial issue for the operation and scheduling of the smart grid. In this work,

a new hybrid deep learning-based approach is proposed for short-term wind

speed prediction. First, the DWPT is applied to effectively extract the fea-

tures of the signal by decomposing the raw wind speed time series into several

sub-layers. The input vector is built by using the theory of dynamic recon-

struction, which not only increases the accuracy of the results but also de-

creases the learning complexity by determining the optimal structure of inputs.

Moreover, the BLSTM network, as a combination of LSTM networks and bidi-

rectional RNNs is incorporated to capture deep temporal features with high

abstractions. The proposed model is evaluated on a publicly available real-

world dataset, of which the forecasting accuracy is comprehensively compared

to multiple benchmarks in the literature. The proposed BLSTM+DWPT

framework shows the smallest metrics and generally achieves the best forecast-

ing performance in the dataset. For example, BLSTM+DWPT has demon-

strated 34% and 32% improvement in RMSE and MAE when compared with

BLSTM+DWT.
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Chapter 4

Deep Spatial-Temporal 2-D
CNN-BLSTM Model for
Ultra-Short-Term
LiDAR-Assisted Wind
Turbine’s Power and Fatigue
Load Forecasting

In this chapter a LiDAR-aided deep learning model is presented to learn the

powerful spatial-temporal characteristics of the input wind fields. The combi-

nation of 2-D CNNs and BLSTM units is used to concurrently capture high

levels of abstractions in wind fields, thus forecasting wind output power and

fatigue load as two representatives of wind turbine responses. The LiDAR

wind preview information is used as the 2-D-images of wind fields for the

CNN. Moreover, the BLSTM is incorporated with the proposed CNN to im-

prove the forecasting accuracy further and learn deep temporal features. The

aero-elastic 5-MW reference wind turbine of NREL is used to evaluate the

performance of the proposed model compared to the state-of-the-art deep-

learning-based architectures in the recent literature.

This Chapter is organized as follows. Section 4.1 introduces the LiDAR

and wind turbine modeling methodologies. In Section 4.2, the overall body of

the proposed framework, which consists of 2-D CNN and BLSTM networks, is

50



presented. Then, the numerical results are presented and discussed in Section

4.3. Finally, the conclusion is drawn in Section 4.4.

4.1 Principle of LiDAR Measurements

Generally, there are two types of LiDAR installations: 1) Nacelle-mounted

LiDAR, which is similar to the nacelle vane required to be deployed on the

nacelle rooftop and can measure freestream wind at 50 to 200 meters distance

in front of the turbine blades as shown in Figure 4.1(a). 2) Ground-based

LiDAR, which demands to be located on the ground and can vertically emit a

laser beam to measure freestream wind as shown in Figure 4.1(b). A LiDAR

sensor mounted on the nacelle can overcome the above-stated disadvantages,

as it can provide a sufficiently early preview measurement of the undisturbed

inflow over the entire rotor area at a far distance. Moreover, it is worth

noting that a nacelle-mounted LiDAR can reliably determine the speed and

direction of the wind regardless of the rotor turbulence, which is possible by

manipulating the location of the beam in front of the rotor. The wind speed

measurement along the direction of i -th LiDAR laser beam can be modeled

by equations (4.1) and (4.2) [113].

υlosi =

∫ +∞

−∞
(lxi u (a) + lyi v (a) + lziw (a))fL (a) da (4.1)

fL (a) =
e−4 ln 2(a/W )2∫ +∞

−∞ e−4 ln 2(a/W )2da
(4.2)

where fL (a) is the weighting function at the distance a. The simplified version

of equation (4.1) can be expressed by equation (4.3).

υlosi = lxi ui + lyi vi + lziwi (4.3)

where υlosi is wind vector [ui vi wi]
T projection in the i -th focus point in the

direction of normalized laser beam vector with the length fi: lxi
lyi
lzi

 =
1

fi

 xi
yi
zi

 (4.4)
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The wind speed at height py and distance px from the hub center of the

turbine is υpx, py (ai), which is measured by LiDAR at distance ai in front of

the turbine. On the other hand, the wind field at a distance ai will reach the

turbine after time ti = ai
υavg

, where υavg denotes the average wind speed. By

assuming uniform average wind speed for the proposed measurement grid:

υpx, py (ai) = υpx, py (υavg. ti) ≃ υpx, py (t+ ti) (4.5)

px ∈ [−φ, φ] and py ∈ [−γ, γ] ( 2φ
∆px

= Rpx and 2γ
∆py

= Rpy are the resolutions

in the vertical and horizontal directions). The effective uniform speed that

will have the same effect as the wind speed grid at time ti can be defined as

follows:

υ (t) = θ
(
υpx, py (t)

)
∀ px ∈ [−φ, φ] and py ∈ [−γ, γ] (4.6)

The wind turbine output power can be described by the following equation:

Pwt
o (s) =

ηwtPwt
i (s)

(τms+1)(τes+1)
≃ ηwtPwt

i (s)

τms+1

= G (s)Pwt
i (s)

(4.7)

Pwt
i is the input power of the turbine and can be calculated as follows.

Pwt
i =

1

2
ρARυ

3Cp (λ, β) (4.8)

υ is the magnitude of the wind velocity component which is perpendicular to

the rotor plane. From equation (4.8), it can be seen that the wind turbine

extracted power increases with the cube of the υ. Apart from affecting the

generated power, inaccurate estimations of wind speed and wind direction will

also have a significant effect on the turbine’s structural loads. From the wind

farms operator’s point of view, a premature fatigue failure problem can be

problematic as the drivetrain of a wind turbine needs much more maintenance

cost and downtime than the other subassemblies of the wind turbine.

Under this background, the most significant issue is calculating the wind

turbine’s fatigue load. In this work, we consider the tower bending moment
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as a measure of fatigue load [161]. The thrust force, which is the main cause

of the tower bending moment, is described by the following equation:

Fwind
thrust =

1

2
ρARυ

2Ct (λ, β) (4.9)

The details of the Ct and Cp are stated in [52] as 2-D lookup tables.

By using the convolution operation, the wind turbine output power is ex-

pressed as:

Pwt
o (t+ ti) =

t+ti∫
0

g (t)Pwt
i (t+ ti − τ) dτ

= g (t) ∗ Pwt
i (τ + ti)

(4.10)

Finally, it is worth noting that all the above-mentioned procedure can be

used for wind turbine fatigue load by replacing Eq. (4.8) with Eq. (4.9).

The structure of the proposed deep spatial-temporal feature learning model,

namely 2-D CNN-BLSTM, is visualized in Figure 4.2. As presented in the

figure, 2-D wind field images and 1-D wind time series data are fed to the 2D-

CNN and BLSTM deep learning architecture to extract spatial and temporal

features from each wind data, respectively. These branches operate indepen-

dently of each other until they are concatenated.

4.2.2 Convolutional Neural Network (CNN)

Due to the superior ability of conventional algorithms in solving complex tasks,

CNNs have been successfully used in many areas. CNNs have powerful self-

tuning & learning capability; thus, they can efficiently capture complex spa-

tial features from highly varying wind flows. The convolutional layers provide

translation invariance ability by using a set of learnable kernels and inductive

bias of local connectivity, decreasing the number of learning parameters and,

consequently, increasing generalization capability. Such a convolution oper-

ator is equivalent to moving kernels over spatial positions, which for the qth

feature map of the lth layer is defined as given in equation (4.11) [122].

xql = f

(∑
p∈Nq

(
xpl−1 ⊗ k

pq
l

)
+ bql

)
(4.11)
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features can be effectively extracted. It is worth noting that this benefit

emerged due to the shared weights, local connectivity, and receptive fields

features of CNNs.

4.2.3 Bidirectional Long Short-TermMemory (BLSTM)
Network

The details of the deep BLSTM network can be found in Section 3.1, including

the mathematical representation of the blocks used for the proposed hybrid

framework.

4.3 Case Study and Numerical Results

In this Section, the simulation environment applied in this research and the

details of datasets are explained first, and a comprehensive prediction eval-

uation and comparison with well-known benchmark models are performed

subsequently.

4.3.1 Wind Turbine Simulation Environment

In this work, the 5-MW reference horizontal axis wind turbine of the National

Renewable Energy Laboratory (NREL) is used as a full nonlinear aero-elastic

model to perform a broad range of wind speeds simulations [67]. Table 4.1

shows the detailed characteristics of the proposed NREL wind turbine.

4.3.2 TurbSim Wind Field Simulator

TurbSim is a full-field, stochastic, turbulent-wind simulator developed by the

NREL. It uses statistical models to generate realistic time series of longitudi-

nal, crosswise, and vertical components of the wind field [66]. Taylor’s frozen

wind hypothesis is utilized to simulate wind signals; that is, the wind field is

modeled as a turbulence box marching toward the turbine. Thus, the wind

fields do not evolve with time and are assumed to be frozen from the LIDAR

focal point until the turbine. The height and width of the wind field grid are
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Table 4.1: Characteristics of NREL 5-MW Wind Turbine

Symbol Parameter Value

Prated Rated power 5 MW

Mrated Rated generator torque 43.1 kNm

Vin Cut-in wind speed 3 m/s

Vrated Rated wind speed 11.4 m/s

Vout Cut-out wind speed 25 m/s

hhub Hub height 90 m

Rrotor Rotor radius 63 m

chosen to be 145 m large enough to encompass the entire rotor disk of the

proposed wind turbine. Moreover, the hub is horizontally centered in the grid,

so the top of the grid can be determined by the turbine hub height plus the

rotor radius.

4.3.3 FAST Wind Turbine Simulator:

The fatigue, aerodynamics, structures, and turbulence (FAST) code devel-

oped by the NREL is used to simulate the response of the proposed turbine

by providing a full nonlinear and high-fidelity turbine response simulation [68].

The wind field vectors created by the TurbSim are applied to the FAST tur-

bine simulator to compute the turbine’s output signal and state vector. In

this study, electrical generator power (GenPwr) and low-speed shaft torque

(LSShftTq) are considered as the wind turbine responses’ representatives. It

should be noted that we enabled the degrees of freedom (DOFs) associated

with first and second blade flap-wise modes (2 × 3 DOFs), first and second

tower side-to-side modes (2 DOFs), first and second tower fore-aft modes (2

DOFs), first and second blade edgewise mode (2 × 3 DOFs), drive-train mode

(1 DOF), and generator mode (1 DOF).
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(a) (b) (c)

Figure 4.3: Different wind field components generated by TurbSim. (a)
streamwise (longitudinal) component u. (b) transverse (crosswise) component
v. (c) vertical component w.

4.3.4 Data Description

The proposed approach aims to perform the ultra-short-term forecasting of

wind turbine responses by taking the 2-D-images of wind fields and hub-height

wind speed time series as inputs for the CNN and BLSTM networks, respec-

tively. This means that besides hub height wind speed time series, upcoming

wind fields are also utilized to increase the capability of the proposed model

on capturing complex wind data abstractions.

As mentioned earlier, the NREL TurbSim package generates turbulent wind

fields, and the NREL FAST turbine simulator is used to model high-order

aeroelastic nonlinear wind turbines. As depicted in Figure 4.3, each Turbsim

simulation generates 3×3-D wind field components vectors uph×pv×pt, vph×pv×pt

and wph×pv×pt in x, y, and z directions, respectively, where ph and pv denote

the number of horizontal and vertical points in the spatial grid, respectively,

and pt represents the temporal dimension of the vector. A broad range of the

wind fields is generated according to various mean longitudinal wind speeds

from 6 to 24 m/s with 2 m/s resolution steps to ensure that the forecasting

model could be trained with different wind field characteristics. The complete

data set contains 3000 wind fields and the corresponding electrical generator

power and low-speed shaft torque. In this work, the training, validation and
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Table 4.2: Cross-Validation results of proposed model with some typical
BLSTM structures for 1-step ahead power forecasting.

BLSTM structure
RMSE

(kW)

MAE

(kW)

MAPE

(%)

Online execution time

(ms)

[100 100] 63.48 29.14 2.26 0.31

[250 250] 63.01 28.78 2.21 0.38

[100 100 50] 58.13 25.64 1.93 0.46

[250 250 50] 56.27 23.77 1.92 0.61

[250 250 100] 61.22 26.94 2.02 0.73

[250 250 250] 61.38 27.18 2.11 0.81

testing sets account for 75%, 15%, and 10% of the dataset, respectively [63].

4.3.5 Evaluation Criteria For Wind Turbine Response
Forecasting

The details of evaluation metrics to evaluate the forecasting performance can

be found in Subsection 3.2, including the mathematical models of the metrics.

4.3.6 Results and Comparisons

To verify the efficiency and validity of the proposed framework, several single

and hybrid forecasting approaches that have been proposed in the literature

are chosen as the benchmarks. ARIMA, MLP, DBN, IPDL, GRU, LSTM, and

BLSTM models use 1D-wind speed time series, 2D-CNN use 2D-wind fields

images, and 2D-CNN-MLP, 2D-CNN-GRU, and 2D-CNN-LSTM use both of

them similar to the proposed 2D-CNN-BLSTM model. As these machine

learning models are completely data-dependent, all hyperparameters, such as

the number of neurons in each layer and the number of layers in each model,

are optimally tuned using the training data according to common practice

recommended by the deep learning community [48]. The optimal number of
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hidden layers for MLP model is determined to be 2, with 50 hidden nodes in

each layer. The DBN is established by using three hidden layers with 100, 125,

and 125 units, respectively. The overall structure of the GRU, LSTM and B-

LSTM networks are composed of three main hidden layers with 250, 250, and

50 units, respectively. The IPDL model consists of three stacked layers with

a linear regression model at the top. The CNN structure comprises six layers,

including three convolution layers, three pooling layers, and a flattening layer.

To verify the performance of the validation, the 1-step ahead power forecasting

case study is repeated for different network structures. Table 4.2 shows the

cross-validation results of some typical BLSTM structures with a different

number of layers and blocks. As shown in this table, both the increase and

decrease in the network parameters reduce the performance according to the

forecasting indices. The online computation time of the proposed method for

different network parameters is calculated in Table 4.2. Considering that the

sampling time scale of the forecasting is 10 s or longer, the computational time

of around 0.6 ms is relatively fast enough to guarantee reliable and safe wind

turbine real-time operation. Moreover, all models are implemented in Python

with the Keras library and TensorFlow as the backend [1]. The workstation

used is configured with an Intel Core TM i7-8700 3.2 GHz CPU, NVIDIA

GPU GeForce GTX 1070 GPU, and 32 GB of RAM.

Table 4.3 compares the forecasting results and provides the average test

RMSE, MAE, and MAPE for ultra-short-term generated power and load pre-

dictions with 1-step (10 sec) and 2-step (20 sec) ahead tasks, respectively. This

table clearly shows that the proposed method (2D-CNN-BLSTM) outperforms

the other benchmarking models and has the best performance in both 1-step

and 2-step ahead forecasting tasks. The results show that machine learning

models perform better than ARIMA as a linear statistical model. DBN has

the largest error range and randomness, which is due to the pretraining and

supervised training process. The IPDL model yields more accurate predic-

tions when compared to the classic DBN. According to the results, GRU and
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LSTM approaches outperform shallow architecture, MLP, since these deep re-

current networks can better model the highly nonlinear temporal features of

wind time series. As the variant of LSTM, the forecasting metrics of GRU are

closer to those of LSTM, but in 2-step ahead scenarios LSTM has a remark-

able improvement in all criteria. BLSTM is the best single-time series-based

architecture compared to the LSTMS and MLP models. Moreover, using

wind fields has a significant effect on the prediction accuracy, which can be

understood by comparing the first three models, MLP, LSTM, BLSTM, with

other 2D-CNN-based ones. For example, the RMSE of 2D-CNN-MLP for 1-

step and 2-step ahead wind power predictions are 176 kW and 190.57 kW,

respectively, which are increased to 325.68 kW and 424.78 kW for the single

MLP model. MAPE result of 2D-CNN-BLSTM for 1-step predictions is 1.98

which reaches 2.74 in the 2-step compared to the best time series-based ap-

proach, single BLSTM, which has MAPE of 15.29 and 21.01 in 1-step and

2-step, respectively. Therefore, applying single-time series-based models for

longer-term predictions cannot yield reliable performance. 2D-CNN-MLP has

24.69% power RMSE and 22.05% load RMSE improvements over a single 2D-

CNN. These improvements are further increased to 36.61% and 56.42% for

the power RMSE and load RMSE results, respectively, when the MLP is re-

placed by the deep LSTM network. The more precise forecast shows the better

generalization capability of the deep recurrent models.

The proposed 2D-CNN-BLSTM obtains better results compared to 2D-

CNN-LSTM. 2D-CNN BLSTM outperforms 2D-CNN-LSTM with 51.86% and

13.46% MAE improvements in power and load 1-step ahead forecasts. Fur-

thermore, this model decreases MAE by 36.67% and 5.36% for power and

load 2-step ahead prediction tasks, respectively. The higher accuracy of 2D-

CNN-BLSTM indicates the superiority of the bidirectional learning method

to effectively capture the previous and future hidden features of the proposed

wind data.

To provide better visualization, Figure 4.4 demonstrates the wind power 1-
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Figure 4.4: Wind power forecasting comparison of four 2D-CNN-based models
for the first 60 steps (600 sec) of test data. (a) 2D-CNN. (b) 2D-CNN-MLP.
(c) 2D-CNN-LSTM. (d) 2D-CNN-BLSTM.
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Figure 4.6: Regression plots of the proposed method (2D-CNN-BLSTM): (a)
Wind power (kW); (b) fatigue load (kN.m).
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blue line and show slightly higher error in wind powers above 4500 kW and

higher than 4000 kN.m fatigue loads. The fatigue load case has faced some

higher errors compared to the wind power case, which seems to be reason-

able in that the fatigue load is highly influenced by the dynamic interactions

between the turbine structure and the wind flow. Overall, as it is clear, our

proposed method shows acceptable performance in both tasks and can help

us to make more accurate results.

To investigate the effect of wind fields snapshots on the performance of

our proposed model in another way, another extension of 2D-CNN-BLSTM

is designed as our baseline. This baseline methodology only uses a longitudi-

nal component of the wind field, u, instead of entire wind field components.

Figure 4.7 compares the 1-step ahead load prediction results of proposed and

baseline models. As it is clear, our proposed method, by considering all wind

fields components, shows slightly better performance and generalization capa-

bility than the baseline model, which considers only streamwise component,

especially when the load time series has an abrupt change. It should be noted

that the main limitation of this work lies in the fact that these improvements

are conditioned to have an adequate preview of wind data provided by the

LiDAR sensor, which is still a high-cost solution. In case the LiDAR system

is failed due to an unknown reason and consequently, 2D wind field images

are not available, the proposed framework can still be used to forecast as it

is a kind of ensemble learning and combined CNN and BLSTM networks in a

parallel manner. Figure 4.8 compares the wind power 1-step ahead prediction

results of the three models, which previously used both 1D-wind speed time

series and 2D-wind fields as inputs. As shown in this figure, all of the meth-

ods have relatively higher prediction error than the normal situation (Figure

4.4). The figure shows that the predicted values of 2D-CNN-BLSTM generally

conform well with the target values with low average error levels.

Figure 4.9 compares the ultra-short-term generated power and load 1-step

forecasting performance of the proposed model with spatiotemporal prediction
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Figure 4.7: Fatigue load forecasting results comparison of proposed 2D-CNN-
BLSTM and baseline model for the first 60 steps (600 sec) of test data. (a)
baseline model. (b) proposed 2D-CNN-BLSTM model.
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(a)

(b)

(c)

Figure 4.8: Wind power forecasting comparison of three Image-based models
for the first 60 steps (600 sec) of test data in case of LiDAR failure. (a) 2D-
CNN-MLP. (b) 2D-CNN-LSTM. (c) 2D-CNN-BLSTM.
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4.4 Conclusion

This work develops a novel LiDAR-assisted deep 2-D CNN-BLSTM model

for the ultra-short-term prediction of future wind turbine responses using up-

coming sequences of full wind field components and hub-height wind speed

time series before reaching the turbine blades as inputs. As a data-driven

framework, the performance of the proposed model is determined solely by

the potential interactions hidden in the wind field and time series data rather

than the physical equations or predetermined distribution types. Thus, it can

avoid the dual risks of model incorrectness or distribution type misspecifica-

tion. The NREL 5-MW reference horizontal axis wind turbine with FAST

are utilized for simulations. Realistic 3-D wind field components vectors are

generated by NREL TurbSim. The proposed 2-D CNN-BLSTM model is de-

signed for ultra-short-term forecasting of wind turbine response and shows the

high-quality outputs with the smallest metrics. For example, it has demon-

strated 78% and 75% improvement in RMSE compared to single BLSTM and

2-D CNN models, respectively.

The proposed model employs 2D-CNN and BLSTM networks to better han-

dle complex spatial- temporal features from the highly variable wind data

compared to conventional forecasting methods, which simply use historical

time series data. The main advantage of the proposed model over other deep

learning-based forecasting methods is that it uses wind preview information

provided by LIDAR as an advanced remote sensing wind measurement tech-

nology. Thus, it can be helpful for wind farm operators as an efficient tool in

yaw misalignment and de-loading control strategies.
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Chapter 5

Deep Reinforcement
Learning-Based Self-scheduling
Strategy for a CAES-PV
System Using Accurate Sky
Images-Based Forecasting

In this chapter, a model-free DRL method is presented to optimize the CAES

energy arbitrage in the presence of a sky images-based short-term solar ir-

radiance forecasting model. In this study, the following challenges have to

be addressed. (i) Most data-driven solar irradiance prediction models have

employed networks (1-D and 2-D) in a serial manner. In doing so, the first

network’s extracted features have a significant influence on the next network’s

training. (ii) The one-directional LSTM structure solely obeys the recursive

procedure, which feeds back the previous information in an iterative man-

ner that could introduce some error in the prediction of spike points. (iii)

Most CNN-based approaches, instead of using 2-D images, have just used

time series-based matrices by converting 1-D time series data to a matrix

form and then applying it to the CNN. Considering the limitations of pre-

vious studies, we propose a DRL-based real-time self-scheduling framework

for a CAES-PV facility participating in the energy market incorporating the

thermodynamic characteristics of the CAES technology. Incorporating a com-
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prehensive nonlinear mathematical model of the CAES system in the presence

of the highly random and fluctuant solar irradiance on cloudy days, makes the

self-scheduling problem’s environment very complex for the DRL agent. The

proposed model properly learns the optimized control actions for CAES-PV

facility under such a complicated environment. DRL can optimize scheduling

policy directly based on the historical data compared to pdf-dependent models

such as stochastic programming. From the DRL agent’s point of view, its phe-

nomenal adaptivity and ability to output decent scheduling results are highly

attributed to the function approximation of DNN. In this context, a novel

deep-learning-based 2-D CNNs and BLSTM model for high-precision short-

term solar irradiance forecasting is incorporated with DRL framework. Sky

images and numerical measurements are used to capture high levels of abstrac-

tions in solar irradiance. It should be mentioned that the studied CAES-PV

is a privately-owned price-taker facility that has a very small capacity com-

pared to the supply-side size of the market; thus, its operation cannot alter

the market price.

This Chapter is organized as follows: Section 5.1 provides the problem for-

mulation of the proposed environment model for the DRL framework, CAES

facility model, including its thermodynamic characteristics, and deep 2-D

CNN-BLSTM forecasting model with sky images. Then, Section 5.2 describes

the proposed DRL-based controller for the CAES-PV system. The case stud-

ies used to assess the effectiveness of the proposed controller are presented in

Section 5.3. Lastly, Section 5.4 gives a conclusion.

5.1 Environment Model and The Hybrid Fore-

casting Framework

In this Section, the comprehensive mathematical model of the CAES facility is

formulated, where its thermodynamic characteristics are taken into account.

The deep-learning-based hybrid 2-D CNN-BLSTM model for solar irradiance

prediction using sky images is presented next. All variables and parameters
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in the equations are also summarized at the beginning of the paper as nomen-

clature for quick reference.

5.1.1 CAES Modeling

The cavern pressure, air flow rate (AFR), and the efficiency of the compres-

sor/turbine are the most essential thermodynamic conditions that can limit

the energy capacity of the CAES. The goal of the CAES-PV system is to

maximize its profit through participation in the energy market. In this study,

a comprehensive nonlinear mathematical model of CAES system based on the

thermodynamic characteristics to describe the CAES behavior more realisti-

cally is formulated as follows:

OCt = CNG
t + P dch

t .µe + P ch
t .µc ∀t ∈ T (5.1)

SoCt+1 = SoCt + ζ
(
SoCt, P

ch
t

)
− ψ

(
P dch
t

)
∀t ∈ T (5.2)

SoCf ≤ SoCt+1 ∀t = T (5.3)

SoC1 = SoCi ∀t ∈ T (5.4)

P ch
min.I

ch
t ≤ P ch

t ≤ P ch
max.I

ch
t ∀t ∈ T (5.5)

P dch
min.I

dch
t ≤ P dch

t ≤ P dch
max.I

dch
t ∀t ∈ T (5.6)

Icht + Idcht ≤ 1 ∀t ∈ T (5.7)

The operating cost (5.1) consists of three terms. The first term represents

the cost of burning natural gas during discharge; the second and third terms

denote the operational and maintenance costs of the expander and compres-

sor, respectively. In (5.2), the state of charge of the air storage cavern is

defined for the next hour. The initial and minimum SoC levels of the cavern
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are calculated in (5.3) and (5.4), respectively. Equations (5.5) and (5.6) con-

strain the charging and discharging capacities of the CAES, respectively. The

operational mode constraint of the CAES facility is specified by (5.7), where

the CAES facility can not charge and discharge simultaneously.

In [54, 126, 167], the thermodynamic-based relationships during charging/

discharging are investigated. It is shown that the pressure of the cavern plays

a critical role in AFR during charging/discharging. During the charging of

the cavern by the compressor, the cavern pressure starts to increase, and

consequently, the compressor AFR decreases. Therefore, AFR during the

charging process can be defined as a function of the cavern SoC. During the

discharge process, based on the data in [167], as the operating point of the

high pressure (HP) turbine goes below the nominal value, so decreases the

turbine’s efficiency, making AFR per MW greater, thus increasing natural gas

consumption and HR.

Based on the above discussion, discharging, charging, and the cost of natural

gas consumption functions can be represented as follows:

ζ
(
SoCt, P

ch
t

)
=
AFRch (SoCt)× 3600× P ch

t

AMCmax
(5.8)

ψ
(
P dch
t

)
=
AFRdch

(
P dch
t

)
× 3600× P dch

t

AMCmax
(5.9)

CNG
t = HR

(
P dch
t

)
× P dch

t × λNG (5.10)

The aforementioned equations for considering the thermodynamic condi-

tions are modeled as linear interpolations or step functions in [54, 126, 167],

which have two main drawbacks: 1) They increase the number of auxiliary

and binary variables; thus, their high computational complexity limits the

usefulness of such models for online energy management tasks. 2) step func-

tions’ discontinuities and the approximate nature of the linear interpolations

could cause costly operational decisions, and consequently unprofitable energy

management for the facility.

74







5.2.1 Modeling PV-CAES Real-Time Energy Manage-
ment Problem as a Markov Decision Process

The energy management problem of PV-CAES can be formulated as Markov

Decision Process (MDP) with discrete time step T . The decision-making

process of situations with partly random outcomes that are partly under the

control of a decision maker can be mathematically modeled by MDP, which

can be solved by the DRL algorithm. A finite horizon discounted MDP is a

five-tuple (S ,A,P (., .) ,R (., .) , γ), where S is the system states vector, A is

the a is the action vector, P (., .) is the function of state transition, R (., .)

is the immediate reward function set, and γ ∈ [0, 1] is a discount factor.

The essential details about the MDP framework corresponding to the energy

management problem of CAES-PV are provided as follows.

1. State space: The system state space vector at a time step t is represented

as st =
{
SoCt, λ

e
t , λ̂

e
t+1, P

PV
t , P̂ PV

t+1

}
. This vector encapsulates five types

of information: (1) SoCt represents the state of charge of CAES at t;

(2) λet and λ̂et+1 indicate the current and forecasted electricity price for

time t and t+ 1, respectively; (3) P PV
t and P̂ PV

t+1 denote the current and

forecasted available PV power for time t and t + 1, respectively. Based

on the predicted price and PV power, additional information signals

are provided in the state vector to make the best control action by

the DRL agent. Moreover, it is worth noting that, according to the

Markov property of MDP, the conditional probability distribution of a

state solely depends upon the previous one step, not on any memory.

2. Action space: Given the CAES-PV system state at time step t, the

decision action is represented by at which corresponds to the charg-

ing/discharging power decisions. The action vector at is limited by the

set of all feasible actions determined by the CAES-PV system framework

at time step t defined in (5.1)-(5.10). Let at ∈ At be positive during the

charging mode of the CAES and negative when it is discharging. Due

to the limit of the allowed maximum charging/discharging power of the
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CAES, action at is constrained as below [126]:

−P dch
max ≤ at ≤ P ch

max (5.11)

3. State transition: The mapping T s : st × at → P s
t is the transition from

the state of the system at time t to the state at t+ 1 by choosing action

at, where P s
t = p (s′ = st+1 |s = st, a = at ).

4. Reward: The agent receives the immediate reward Ra (s, s′) at time step

t after transition from the state s to the new state s′. From a CAES-PV

system scheduling standpoint, such a function is equivalent to the net

profit of the CAES-PV operation cost at time step t, which is defined

as given in equation (5.12). The first term in the reward function shows

the energy arbitrage revenue and the second term is the operation cost

of the CAES facility.

(
P PV
t + P dch

t − P ch
t

)
× λe −OCt (5.12)

The cumulative rewards for the proposed energy management problem

are denoted as [17]:

Rcumulative =
T∑
t=1

(
P PV
t + P dch

t − P ch
t

)
× λe −OCt (5.13)

5.2.2 Deep Reinforcement Learning

The action-value function determines the quality of the action under a given

system state for the charging/discharging decision of the CAES-PV system,

which is defined as [49]:

Qπ (s, a) = Eπ

[
n=N∑
n=0

(Rt+n| s = st, a = at) .γn

]
(5.14)

The discount factor γ makes a balance between the importance of the imme-

diate reward and future rewards. The CAES-PV system charging/discharging

policy π maps from the system states to the charging/discharging schedule.

78



This energy management problem seeks to maximize the action-value function

by choosing the optimal policyπ∗ as [3]:

Q∗ (s, a) = max
π

Qπ (s, a) (5.15)

The intermittent and stochastic nature of PV power and uncertainties of

the energy market’s prices make it challenging to find the optimal policy an-

alytically. A RL-based solution tries to iteratively explore the environment

and update the action-value function, Qπ (s, a), using the following Bellman

equation [17]:

Q (st, at)← Q (st, at) +

α
[(
Rt + max

a
Q (st+1, a) .γ

)
−Q (st, at)

]
(5.16)

As the iterations continue, the action-value function, Q (s, a) converges to

the Q∗ (s, a) . Then, the ε-greedy policy is used to determine the optimal

schedule.

a∗ = arg max
a∈A

Q∗ (s, a) (5.17)

To explore the environment for a better reward, the agent can randomly

select a schedule with probability ε; otherwise, choose the greedy action with

probability 1 − ε. In general, in Q-learning, a look-up table is used to ap-

proximate Q∗ (s, a). However, Q-learning has confronted an extremely large

table in the CAES-PV scheduling problem due to the continuous and high-

dimensional state spaces; thus, it makes it intractable to update such a large

table. DRL is a model-free RL algorithm to approximate Q∗ (s, a) using a

deep neural network (DNN) with weights θ as a Q-network [100].

Qπ (s, a) ≈ Q (s, a; θ) (5.18)

The Q-network is trained by minimizing the mean-squared error loss func-

tion between Q (s, a) and the temporal difference (TD) target.

L (θ) = E
[(
Rt + max

a
Q
(
st+1, at+1; θ̄

)
.γ −Q (st, at; θ)

)2]
(5.19)
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It is worth noting that the targets in DRL are based on the network’s

weights and biases compared to supervised learning, which considers fixed

targets. Therefore, by differentiating (5.19) with respect to θ, Q-learning

gradient can be written as follows.

∆θL (θ) = E
[(
Rt + max

a
Q (st+1, at+1; θ) .γ−

Q (st, at; θ)) ∆θQ (st, at; θ)]
(5.20)

Usually, to reduce the computational cost of the loss function optimization,

it is expedient to use stochastic gradient descent (SGD) algorithms instead of

using the full expectations of the gradient. However, deep Q-learning meth-

ods suffer from the oscillation or divergence problem because of updating the

parameters based on highly correlated consecutive transitions. In this study,

the experience replay mechanism is used to break the temporally correlated

transitions and alleviate this limitation [103, 139]. Furthermore, this process

can provide a more stable training process for minibatch optimization algo-

rithms [91]. More specifically, when the transitions are stored in the experience

replay, one can achieve much higher data efficiency by reusing the samples.

5.3 Case Study and Numerical Results

The intention of the proposed methodology is to schedule and operate a PV

farm and CAES facility together to work as a hybrid power plant to participate

in the energy market. For numerical simulation and comparison purposes, the

offered framework is applied to a PV farm with a maximum power of 50 MW.

The CAES facility with 100/60 MW of discharging/charging power and 9.48

Mkg air mass of cavern capacity. CAES facility characteristics such as energy

ratio, heat rate, and VOM of compressor and expander are taken from [126].

The natural gas price is considered to be 3.5$/GJ. In this case study, the

charging/discharging AFR and the heat rate curves provided in Section II are

employed to obtain a more realistic view of the thermodynamic characteristics

of the facility.

The Solar Radiation Research Laboratory (SRRL) dataset of the National
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Renewable Energy Laboratory (NREL), as the largest publicly available dataset,

located in Colorado (latitude = 39.74◦ North, longitude = 105.18◦ West, eleva-

tion = 1,828.8m) is used in the case study [132]. To avoid the obstacle presence

and hazy sky, the original images are circularly cropped by a 256×256 binary

mask. Both the numerical data and sky images are normalized using the

maximum values before being used by the proposed hybrid framework. The

dataset of the training process includes six years of images and numerical data

(from 2015-01-01 to 2020-12-31 with 1-hour intervals) to reduce the overfit-

ting risk and ensure a stable training process. The first four years’ datasets

are applied as the training set, while the last two years’ datasets are used for

validation and testing. It is worth noting that all the meaningless zero and

negative GHIs in the dataset, which occurred in the early morning and late

night are discarded. The overall structure of the CNN is composed of six lay-

ers, including three convolution layers, three pooling layers, and a flattening

layer. The BLSTM network consists of three main hidden layers with 350,

350, and 150 units. The CNN-BLSTM framework acts as a representation

network; thus, its output is concatenated with the CAES SoC and fed into

the Q network. To verify the validation performance of the CNN-BLSTM

network, the solar irradiance forecasting task is repeated with various struc-

tures. The cross-validation results of some typical CNN-BLSTM structures

with a different number of layers and blocks are given in Table 5.1. From

the forecast results, the impacts of different structure combinations can be

obtained. Increasing or decreasing the number of layers in both CNN and

BLSTM networks significantly reduces the forecasting performance according

to the indices.

The Q network is a fully connected neural network with two layers of hidden

neurons and rectifier linear units (ReLU) as the activation functions to a

uniformly approximate continuous function. The optimal number of neurons

for Q networks is 75 and 150 in each hidden layer, respectively. Algorithm

1 shows how to train a DQN agent based on the proposed framework. The
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Algorithm 1: Deep Q-Learning for the proposed CAES-PV systems
scheduling problem.

Input: CAES SoC, current & forecasted electricity prices, current &
forecasted PV power.
Output: DQN for Pt decision making.
Initialize hyper-parameters.
Initialize DNN with random parameters θ.
Initialize the experience replay buffer M .
for i ∈ {number of episodes} do

Obtain the initial state space st.
Forecast the PV power generation and electricity price by
CNN-BLSTM framework
for t ∈ {number of time slots} do

Select schedule at for CAES-PV based on ε-greedy search.
Execute schedule action at in emulator and observe immediate
reward Rt.

Process to the new state st+1.
Store the transition (st, at, Rt, st+1) into M .
k ←− k + 1;
if |M | ≥ batch size then

Sample random minibatch of transitions from M :

F = {(sj, aj, Rj, sj+1)} ̸=F
j=1.

Estimate the target:

yj = Rj + γQ

(
sj+1, arg max

a′
Q (sj+1, a

′; θ) ; θ̄

)
.

Perform a gradient descent with loss:
L (θ) =

∑ ̸=F
j=1 [yj −Q (st, at; θ)]

2.

Update parameters: θt+1 = θt − η∇θtL (θt).
ε← ε× εdecay

end if
end for

end for
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Table 5.1: Cross-Validation results of the proposed solar irradiance forecasting
model with some typical BLSTM-CNN structures.

Network Structure RMSE (W/m2) MAPE (%) MAE (W/m2)

[150 100]+2*Conv. 116.27 13.33 80.54

[250 250]+3*Conv. 88.16 9.64 59.62

[250 250 50]+2*Conv. 97.42 11.83 66.65

[350 350 150]+3*Conv. 80.02 7.64 51.95

[350 350 150]+4*Conv. 82.49 8.24 53.11

[400 400 150]+4*Conv. 84.06 8.27 54.25

network is trained using the Adam optimizer with a learning rate of 0.001. The

action selection procedure is determined by the ε-greedy policy for allowing

the DRL agent to jump out of locally optimal situations. The replay memory

breaks undesired temporal correlation and speeds up the learning process by

enabling learning from earlier memories. The charging/discharging action

spaces are designed as suggested in [17] with the a step size of 0.2. The

discount rate and mini-batch size are chosen to be 0.9 and 64, respectively.

The policy is trained over 200 episodes. The training process takes about three

hours on a workstation with a Core i7 processor running at 3.2 GHz, 32 GB

of RAM, and GeForce GTX 1070 NVIDIA GPU. The code is implemented on

the Keras library and TensorFlow as the backend. After the training process,

it takes about 3 ms for the proposed strategy to output the control actions

for the CAES-PV self-scheduling problem.

5.3.1 Performance Evaluation of Solar Irradiance Fore-
casting Model

In this study, the root-mean-square error (RMSE), mean absolute percentage

error (MAPE), and mean absolute error (MAE) are adopted as three error

indices to measure the prediction accuracy [25].

The proposed image-based CNN-BLSTM approach is compared with re-
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Table 5.2: Comparison of GHI Forecasting Results.

Forecasting Method
RMSE

(W/m2)

MAPE

(%)

MAE

(W/m2)

SARFIMA [117] 202.49 41.57 169.88

UC-M3 [40] 172.73 24.58 124.28

MTS-ESN [154] 156.96 21.62 112.09

LSTM- Choquet [2] 144.64 19.61 102.31

PCA-KNN [144] 125.83 17.89 82.04

RSAM [128] 121.85 16.22 81.96

K-means-CNN [171] 107.33 13.72 73.46

Proposed (CNN+BLSTM) 80.02 7.64 51.95

cently proposed models for solar irradiance forecasting, including SARFIMA

[117], UC-M3 [40], MTS-ESN [154], LSTM- Choquet [2], PCA-KNN [144],

RSAM [128], and K-means-CNN [171]. The procedure of choosing the hyper-

parameters for the benchmark models is similar to that of the proposed 2D-

CNN-BLSTM approach [30]. Table 6.1 demonstrates the average test RMSE,

MAPE, and MAE for GHI forecasting. This table clearly shows that the

proposed hybrid 2D-CNN-BLSTM model has the lowest error range and the

best performance. According to the results, the 2D-CNN-BLSTM has 25.45%

RMSE and 29.28% MAE improvements over the benchmark with the best

performance, K-means-CNN. These improvements are further increased to

53.67% and 58.2% for the RMSE and MAE results, respectively, when K-

means-CNN is replaced by UC-M3 model. The more precise prediction per-

formance shows the better generalization capability of the proposed model.

Figure 5.3 compares the GHI forecasting performance of the proposed model

with other benchmark frameworks for a typical day with clear sky, partially

cloudy, and cloudy conditions. By comparing 2D-CNN-BLSTM with others

in different hours, one can see that the proposed approach outperforms all of

the benchmark methods. For such a challenging day, the proposed deep 2D-
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CNN-BLSTM approach significantly shows better generalization capability

and can follow the sharp spikes accurately. Moreover, the higher accuracy

of the proposed model indicates the capability of the image-based model to

capture complex data abstractions.

5.3.2 Effects of Weather Parameters in Solar Irradiance
Forecasting

In this subsection, the impacts of the key weather factors on the solar forecast-

ing task are evaluated. The forecast performance test is conducted by elim-

inating each of the key weather factors and quantifying their contributions.

Figure5.4 shows the forecast errors for four different cases with different input

vectors as follows:

1. Input vector I: considering all of the numerical meteorological features.

2. Input vector II: input vector I without ambient temperature.

3. Input vector III: input vector I without wind speed

4. Input vector IV: input vector I without relative humidity.

As shown in this figure, after eliminating each key weather factor, the fore-

casting error indices are increased. As one can observe, the ambient temper-

ature components greatly influence the forecasting results and ignoring them

increases RMSE by 27.38%, MAPE by 50.91%, and MAE by 29.02%. More-

over, wind speed and relative humidity are two other significant factors that

can improve the forecast performance. For example, by eliminating wind speed

and relative humidity the RMSE of 80.02 W/m2 reaches to 95.77 W/m2 and

86.41 W/m2, respectively. The results verify that the input weather features

have significant contributions and impacts on the forecasting performance and

cannot be ignored.
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5.3.3 CAES-PV Self-Scheduling Problem

The performance of the proposed model is evaluated using the following sce-

narios:

1. Scheduling of the CAES-PV system with model-based step function ap-

proach proposed in [126].

2. Scheduling of the CAES-PV system with model-based linear AA method

presented in [24].

3. Scheduling of the CAES-PV system with DRL model.

4. Scheduling of the CAES-PV system with the proposed DRL+2D-CNN-

BLSTM framework.

After the training procedure and obtaining the optimal network parameters,

the DQN agent is employed to make optimal scheduling decisions for the

CAES-PV facility using the information provided by the proposed 2D-CNN-

BLSTM model over the test period.

Figure 5.5 shows the comparison results over the first five days of June 2019,

with a challenging solar irradiance profile. The charging/discharging actions

are illustrated with magenta bars, the SoC, the electricity prices, and the PV

output are illustrated with the blue, red, and yellow lines, respectively. As

clearly evidenced by Figure5.5, though the proposed DRL+2D-CNN-BLSTM

approach keeps the SoC inside the min/max range, it can achieve the opti-

mized charging/discharging strategy, even during cloudy hours with a highly

uneven PV output profile. The model-based techniques, step function and lin-

ear AA, cannot efficiently signal the system to utilize both price variations and

storage-renewable cooperation by optimizing the charging/discharging strat-

egy and absorbing PV power during peak hours. As shown in Figure 5.5,

both model-free methods can control the system appropriately according to

price variations. However, DRL without a forecasting engine can not efficiently

learn the optimized strategy. The proposed method (DRL+2D-CNN-BLSTM)
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(a)

(b)

(c)

(d)

(e)

Figure 5.5: The comparison of self-scheduling results for a typical period 2019-
06-01 to 2019-06-05 (a) PV and price profiles, (b) model-based step function
[126], (c) model-based linear AA [24], (d) DRL, (e) DRL+2D-CNN-BLSTM.
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outperforms the DRL and can make more accurate decisions regarding PV out-

put. Moreover, it has more energy interactions with the grid, which bringing

a broader SoC control range compared to the model-based ones. It should be

noted that the main reason for the proposed model’s better performance and

generalization capability lies in the fact that these are conditioned to provide

an accurate preview of uncertain parameters for DQN agent by the forecast-

ing engine. Overall, this finding can verify the superiority of the proposed

mode-free DRL method in controlling the CAES-PV facility.

5.3.4 Effects of Uncertainty Resources

In this section, the performance of DRL+2D-CNN-BLSTM is compared with

model-based step function and model-based linear AA in the face of PV power

and energy price uncertainties. Moreover, a DRL-based hypothetical full-

knowledge model is considered the benchmark for better evaluation of other

techniques. In this mode, it is assumed that all information about the uncer-

tain parameters (PV generation and energy price) in future hours is available

for the operator. Table 7.3 compares the average scheduling profit and running

time of the four scheduling models. This table clearly shows that the proposed

framework (DRL+2D-CNN-BLSTM) outperforms the other model-based ap-

proaches and has the best performance in terms of revenue and computa-

tional costs. DRL+2D-CNN-BLSTM has a $38,586 per day average profit

for the year 2019, which shows a 46.17% improvement over the linear AA

model. This improvement is further increased to 56.74% for the step function

approach. Furthermore, the results show a huge difference between model-

free and model-based approaches in terms of running time. The proposed

DRL+2D-CNN-BLSTM model has almost zero running time compared to 4-6

minutes running time of the model-based approaches.
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Table 5.3: CAES-PV Scheduling Results For the Year 2019.

Scheduling Method
Average Profit

($/day)

Profit

Change

Max. Computing

Time

Step function [126] 24,617 -41.43% 5min 48s

Linear AA [24] 26,398 -37.19% 4min 11s

DRL+2D-CNN-BLSTM 38,586 -8.21% 0.003s

Full-knowledge 42,035 0% 0.002s

5.4 Conclusion

This study develops a comprehensive economic assessment model for a CAES-

PV facility participating in the energy market based on the DRL framework.

Due to the nonconvex nature and highly intermittent parameters involved

in the scheduling problem, the DQN agent is introduced to perform the op-

timal self-scheduling of the CAES-PV system incorporating the thermody-

namic characteristics of the system. To address the uncertainties of electricity

price and PV power output, especially during cloudy days, a novel hybrid

2D-CNN-BLSTM model is adopted to predict the price and solar irradiance

more accurately. Case Studies using real-world data have demonstrated that

a well-trained DQN agent can provide high profitability by making optimal

dynamic decisions, making the proposed approach meaningful to the smart

energy system industry.
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Chapter 6

A Novel Model-Free Deep
Reinforcement Learning
Framework for Energy
Management of a
PV-Integrated Energy Hub

In this chapter, a fully model-free and data-driven DRL framework is uti-

lized to develop an intelligent controller that can exploit information to opti-

mally schedule the energy hub with the aim of minimizing energy costs and

emissions. In this study, to operate an energy hub in the most cost-effective

way while dealing with operational constraints of interacted energy infrastruc-

tures, three main challenges have to be addressed. (1) Most studies related

to energy hub systems adopt conventional optimization methods, such as SP

or RO [30, 32, 59]. Generally, these techniques require detailed and perfect

knowledge of the system’s parameters and operational model, resulting in

high dependencies of decision-making on the accuracy of the employed sys-

tem model and expert knowledge, which is very costly and challenging. (2)

Till now, in the energy hub operation area, most scheduling methods employ

piecewise linearization modeling for the system units, such as CHP, distributed

generation (DG), and fuel cell. However, this assumption creates some errors

in the scheduling results, and consequently, the obtained solution cannot be
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optimal for the practical operations of the energy hub. (3) There is rarely any

consideration of a comprehensive forecasting framework for the integration of

renewables during the energy hub decision-making process, which could cause

considerable challenges to the stability and security of the energy hub system.

To bridge this gap, this study proposes a novel model-free DRL framework

for energy management of a PV-integrated energy hub incorporating the non-

linear characteristics of the CHP, DG, and fuel cell units simultaneously. As

a result, the optimal control policy can be gradually learned by the agent of

the DDPG framework with no prior knowledge of the energy hub system. The

agent repeatedly interacts with the environment and acquires experiences to

learn how to decide optimal decisions without modeling the constraint sets of

uncertainties or probability distributions. To obtain decent scheduling results,

a novel DNN-based BLSTM and 2-D CNNs forecasting framework is incor-

porated with DDPG. The time series of different meteorological components

and sky images are employed and handled by the BLSTM and CNN networks,

respectively, to learn complex features.

This Chapter is organized as follows: Section 6.1 describes the proposed

DDPG framework for the energy hub system and deep-learning-based hybrid

2-D CNN-BLSTM forecasting model with sky images. Then, Section 6.2 pro-

vides the nonlinear physical characteristics of the energy hub environment.

The case studies used to assess the effectiveness of the proposed controller are

presented in Section 6.3. Finally, Section 6.4 concludes this study.

6.1 Deep Reinforcement Learning (DRL) and

Forecasting Framework

In this Section, the main concepts of DDPG as an actor-critic DRL model is

presented. The deep-learning-based hybrid 2-D CNN-BLSTM model for solar

irradiance prediction using sky images is presented next.
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6.1.1 Deep Deterministic Policy Gradient (DDPG)

In this study, the DDPG is adopted as an actor-critic DRL algorithm to find

the optimal control strategy of the PV-integrated energy hub. By avoiding the

computationally costly discretization process and providing continuous action

spaces, DDPG can explore the action space more effectively. Consequently, the

optimal solution can be obtained in various problem sets while requiring fewer

iterations than other techniques. Moreover, the generation infrastructures of

the energy hub can be regulated more smoothly as opposed to simply acting

on simple discrete levels.

During making decisions in each system state, DDPG uses Q-value, Q (st, at),

to determine the most beneficial strategy by estimating the value of choosing

a decision over the long-term, at ∈ At. As a result of the Bellman equation,

by using the Q-value of the most beneficial action at state st+1 and the im-

mediate reward, the Q-value of any action, at, at state st can be determined

as follows.

Q (st, at) = γE
[

max
at+1∈At+1

Q (st+1, at+1)

]
+R (st, at) (6.1)

where R is the reward function, and the parameter γ ∈ [0, 1] is the discount

factor for balancing between the immediate reward and future reward. On

the other hand, the energy hub operator has no information regarding both

the most beneficial action at state st+1 and its actual value over the long-term

period. To address this issue, two separate DNNs are designed and employed

in the DDPG method. µ (st |θµ ) is the actor network that estimates the most

beneficial action at state st+1 whereas the Q-value of action at at state st is

estimated by the critic network Q
(
st, at

∣∣θQ ). For each time step during the

training process, the weight vectors of actor network, θµ, and critic network,

θQ, are continuously updated according to the observed reward. Then, the

Q-value can be formulated using the trained networks as below:

Q (st, at) ≈ γE
[
Q
(
st+1, µ (st+1 |θµ )

∣∣θQ )]+R (st, at) (6.2)
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The actor network takes actions based on the sampled states of the system.

Then, based on the observed reward, the two networks can be trained in

parallel. The samples of (st, at), where at = µ (st |θµ ), and Rt are used as the

input and the output for the training of the critic network, respectively, while

the actor network takes st and max
a
Q
(
st, at

∣∣θQ ) as the input and the output,

respectively. To reduce correlation-induced errors, the samples of different

time steps,(st, at,Rt, st+1), form the replay buffer. Thus, the critic and actor

networks can be continuously updated using the past experiences stored in this

circular buffer. To achieve a more stable training procedure, target networks,

which are the copies of the original critic and actor networks, are considered.

The weights of these target networks are gradually updated for stabilizing

Q-value estimation. Furthermore, to improve the exploration process during

the training, a correlated stochastic-based noise signal is added to the actor

network. The Ornstein-Uhlenbeck process is used in this study to model this

noise signal, Ω, as follows [49].

Ωt = Ωt−1 + Ωσn
√
Ts + (Ωmean − Ωt−1)κTs (6.3)

where Ωmean and Ωσ are the mean value and the variance of the noise model,

respectively. n ∈ [0, 1] and κ represent a uniformly generated random number

and the mean attraction constant, respectively. This perturbation increases

the exploration ability of the DDPG agent and, thus, results in faster conver-

gence.

The loss function L
(
θQ
)

is defined as given in equation (7.36) to train the

critic network.

L
(
θQ
)

=
1

N

∑
i∈N

[
Q
(
si, µ (si |θµ )

∣∣θQ )− Yi

]2
(6.4)

where N denotes the mini-batch size, and Yi, which is the measured value

function, is described by (7.37):

Yi = Q
(
st+1, µ

(
st+1

∣∣∣θµ′
) ∣∣∣θQ′

)
+R (st, at) (6.5)
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Then, the parameters of the critic network, θQ, can be updated by mini-

mizing L across the experiences sampled. To train the actor network, on the

other, the following gradient needs to be obtained:

∇θµL (θµ) =
1

N

∑
i∈N

∇aQ
(
si, µ (si |θµ )

∣∣θQ )∇θµµ (si |θµ ) (6.6)

where ai = µ (si |θµ ). Finally, the target networks are gradually updated by

(7.39) and (7.40).

θQ
′

= τθQ + (1− τ) θQ
′

(6.7)

θµ
′

= τθµ + (1− τ) θµ
′

(6.8)

where τ is the smoothing factor.

6.1.2 Deep Hybrid 2-D CNN-BLSTM Forecasting Model

In recent years, solar forecasting has gained increasing attention due to an

aggressive increase in PV generation entering power and energy markets. So-

lar irradiance plays an important role in the forecast of solar power genera-

tion, and meteorological and atmospheric conditions greatly influence it. As

a result, a comprehensive model for solar irradiance prediction based on sky

images can improve the solar irradiance significantly. In this study, as shown

in Figure 6.1 ,a hybrid framework for solar irradiance prediction is proposed.

It utilizes deep CNN and BLSTM networks to analyze high-resolution sky

images with multiple meteorological time series data that are processed by

deep CNN and BLSTM networks, respectively. The proposed framework can

effectively capture complex solar data abstractions by incorporating numeri-

cal meteorological features such as global horizontal irradiance (GHI), wind

speed, relative humidity, temperature, atmospheric pressure, and the calendar

features, i.e., the hour of the day and month of the year into the input vec-

tor. The details of deep CNN and BLSTM networks can be found in [25, 26],

including the mathematical representation of the layers used for the proposed

hybrid framework.
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by (7.10)-(6.13) [4].

P chp
j,t − P

chp
j,A −

P chp
j,A − P

chp
j,B

Hchp
j,A −H

chp
j,B

×
(
Hchp

j,t −H
chp
j,A

)
≤ 0 (6.9)

−
(
1− ICHP

j,t

)
× Γ ≤ P chp

j,t − P
chp
j,B

− P chp
j,B −P chp

j,C

Hchp
j,B −Hchp

j,C

×
(
Hchp

j,t −H
chp
j,B

) (6.10)

−
(
1− ICHP

j,t

)
× Γ ≤ P chp

j,t − P
chp
j,C

− P chp
j,C −P chp

j,D

Hchp
j,C −Hchp

j,D

×
(
Hchp

j,t −H
chp
j,C

) (6.11)

0 ≤ P chp
j,t ≤ P chp

j,A × I
CHP
j,t (6.12)

0 ≤ Hchp
j,t ≤ Hchp

j,B × I
CHP
j,t (6.13)

where P chp
j,t and Hchp

j,t are the generated power and heat of the jth CHP unit

at time t, respectively. The four marginal points of the FOR of type one are

represented by A,B,C, and D. Γ and Ichp denote a sufficiently large number

and commitment status, respectively. As can be seen from Figure 6.2(b), the

non-convex FOR of type two, enclosed by the boundary curve ABCDEFG,

can be represented by two convex subregions I and II as (6.14)-(6.21) [4].

P chp
j,t − P

chp
j,B −

P chp
j,B − P

chp
j,C

Hchp
j,B −H

chp
j,C

×
(
Hchp

j,t −H
chp
j,B

)
≤ 0 (6.14)

P chp
j,t − P

chp
j,C −

P chp
j,C − P

chp
j,D

Hchp
j,C −H

chp
j,D

×
(
Hchp

j,t −H
chp
j,C

)
≥ 0 (6.15)

−
(
1− χ̄CHP

j,t

)
× Γ ≤ P chp

j,t − P
chp
j,E

− P chp
j,E −P chp

j,F

Hchp
j,E −Hchp

j,F

×
(
Hchp

j,t −H
chp
j,E

) (6.16)

−
(

1− χCHP
j,t

)
× Γ ≤ P chp

j,t − P
chp
j,D

− P chp
j,D −P chp

j,E

Hchp
j,D−Hchp

j,E

×
(
Hchp

j,t −H
chp
j,D

) (6.17)
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χ̄CHP
j,t + χCHP

j,t
= ICHP

j,t (6.18)

−
(

1− χCHP

j,t

)
× Γ ≤ Hchp

j,t −H
chp
j,E ≤

(
1− χ̄CHP

j,t

)
× Γ (6.19)

0 ≤ P chp
j,t ≤ P chp

j,A × I
CHP
j,t (6.20)

0 ≤ Hchp
j,t ≤ Hchp

j,A × I
CHP
j,t (6.21)

where χ̄ (χ) states the operating status in the first (second) convex section.

The total operation cost of the jth CHP unit at time t can be expressed by

equation (6.22).

Cchp
j,t

(
P chp
j,t , H

chp
j,t

)
= ᾱchp

j .P chp2

j,t + β̄chp
j .P chp

j,t + γ̄chpj

+αchp
j .Hchp2

j,t + βchp

j
.Hchp

j,t + γchp
j
.Hchp

j,t .P
chp
j,t

(6.22)

where ᾱj/αj, β̄j/βj
, γ̄j/γj represent the cost coefficients of the jth CHP unit.

6.2.2 Power-Only Units Modeling

In most of the literature, convex quadratic cost functions have been employed

to model the costs of power-only generation units [34, 44, 83]. However, these

models ignore the ripple in the production cost caused by the valve admission

effects; thus, they cannot obtain the optimal solution in the practical operation

of the system. In this work, an absolute sinusoidal term is incorporated into

the quadratic cost function to model this effect more accurately. Figure 7.2

illustrates the fuel cost of the power-only unit considering valve-point effects.

The total operation cost

Cc
i,t

(
P c
i,t

)
= αc

i .
(
P c
i,t

)2
+ βc

i .P
c
i,t + γci + V PEc

i,t

(
P c
i,t

)
(6.23)

V PEc
i,t

(
P c
i,t

)
=
∣∣λci sin

(
ρci
(
P c
i,min − P c

i,t

))∣∣ (6.24)

P c
i,min × Ici,t ≤ P c

i,t ≤ P c
i,max × Ici,t (6.25)

where αc
i , β

c
i , γ

c
i , λ

c
i , and ρci are the cost coefficients of the ith power-only unit.

V PEc and Ic denote the valve-point effects and commitment status.
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6.2.3 Heat-Only Units Modeling

The operational cost and the capacity limits of kth heat-only unit at time t

are expressed by (7.7) and (7.8).

Cb
k,t

(
Hb

k,t

)
= αb

k ×
(
Hb

k,t

)2
+ βb

k ×Hb
k,t + γbk (6.26)

Hb
k,min × Ibk,t ≤ Hb

k,t ≤ Hb
k,max × Ibk,t (6.27)

where αb
k, βb

k, and γbk represent the cost coefficients of the kth heat-only unit,

and Ib state the commitment status.

6.2.4 Fuel Cell Modeling

In this study, part of the energy hub demand is supplied by the local fuel cell

(FC) by providing electricity, recovered heat, and hydrogen production. It is

worth noting that hydrogen derived from the reforming of natural gas is the

main fuel resource of the system, and the tank containing hydrogen serves as

a backup. The electric and hydrogen outputs of the lth FC unit determine the

amount of recovered thermal power, Hfc
l,t , as follows:

Hfc
l,t = TERfc

l,t ×
(
P fc,e
l,t + P fc,h

l,t

)
(6.28)

P fc,total
l,t = P fc,e

l,t + P fc,h
l,t (6.29)

where TERfc, P fc,e, and P fc,h are the thermal to electrical power ratio, elec-

trical output power, and equivalent electric power for hydrogen production

of FC unit, respectively. FC unit, similar to the other generation units, has

limitations for producing, which is satisfied by (7.21).

P fc
l,min × I

fc
l,t ≤ P fc,e

l,t + P fc,h
l,t ≤ P fc

l,max × I
fc
l,t (6.30)

The amount of hydrogen stored in the tank could be calculated by (7.22).

H2T fc
l,t = H2T fc

l,t−1 +
(
ηH2T
l,ch ×H2in

l,t

)
−
(
H2out

l,t
/
ηH2T
l,dch

)
(6.31)
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The equivalent charged and discharged hydrogen are formulated in (7.23)

and (7.24), respectively.

H2in
l,t = P fc,h

l,t × ψP2H (6.32)

H2out
l,t = P

fc,h

l,t × ψP2H (6.33)

where ψP2H is the conversion factor (hydrogen (kg)/electric power(kW)). The

amount of hydrogen stored in the tank and the hydrogen charging/discharging

rates are limited through (7.25) and (7.26)/(7.27), respectively, and (7.28)

guarantees that the hydrogen tank cannot be charged and discharged at the

same time.

H2T fc
l,min ≤ H2T fc

l,t ≤ H2T fc
l,max (6.34)

H2in
l,min × I

H2T,ch
l,t ≤ H2in

l,t ≤ H2in
l,max × I

H2T,ch
l,t (6.35)

H2out
l,min × I

H2T,dch
l,t ≤ H2out

l,t ≤ H2out
l,max × I

H2T,dch
l,t (6.36)

IH2T,ch
l,t + IH2T,dch

l,t ≤ 1 (6.37)

A large body of prior research works on FC is considered a constant value for

its efficiency, while this value may vary depending on the amount of electrical

energy generated. As shown in Figure 7.4, FC efficiency, ηfcl , and thermal to

electrical power ratio, TERfc, can be considered as a function of generated

electric power to the maximum electric power output ratio, which is expressed

as part load ratio variable (ϑ) as follows [38]:

ηfcl,t =


0.272 ϑl,t ≤ 0.05

0.9033× ϑ5
l,t − 2.996× ϑ4

l,t ϑl,t ≥ 0.05
+3.6503× ϑ3

l,t − 2.0704× ϑ2
l,t

+0.4623× ϑl,t + 0.3747

(6.38)
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Hbt, and Hsv are the thermal load, buffer tank charging/discharging thermal

power, and the slack variable [16], respectively. The details of electrical and

thermal storages can be found in [31].

6.2.6 Objective Function

The objective function of the energy hub scheduling problem is to minimize

the total operation cost and emission functions as follows:

OFOC =
∑
t∈NT


∑

i∈NC

Cc
i,t +

∑
j∈NCHP

Cchp
j,t + Cgrid

t

+
∑

l∈NFC

Cfc
l,t +

∑
k∈NB

Cb
k,t

 (6.43)

OF emission =
∑
t∈NT


∑

i∈NC

Ec
i,t +

∑
j∈NCHP

Echp
j,t + Egrid

i,t

+
∑

l∈NFC

Efc
l,t +

∑
k∈NB

Eb
k,t

 (6.44)

Ec
i,t = (κcNOx + κcSO2 + κcCO2)× P c

i,t (6.45)

Echp
j,t =

(
κchpNOx + κchpSO2 + κchpCO2

)
× P chp

j,t (6.46)

Egrid
i,t =

(
κgridNOx + κgridSO2 + κgridCO2

)
× P grid

l,t (6.47)

Efc
l,t =

(
κfcNOx + κfcSO2 + κfcCO2

)
× P fc,total

l,t (6.48)

Eb
k,t =

(
κbNOx + κbSO2 + κbCO2

)
×Hb

k,t (6.49)

where κNOx, κSO2, and κCO2 are the emission factors of NOx, SO2, and CO2,

respectively.

6.3 Case Study and Numerical Results

To evaluate the effectiveness of the proposed scheduling approach, the PV-

integrated energy hub shown in Figure 6.5 is used as an example for the case
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105.18◦ West, elevation =1,828.8m) [133]. Using a 256*256 binary mask, the

original images have been circularly cropped to remove the obstacles and hazy

sky. Before being put into use by the proposed hybrid forecasting framework,

both numerical time series data, as well as sky images, are normalized using

maximum values. A one-year period (2017) of meteorological time series and

sky images dataset are adopted in the case study. Due to the strong seasonal

patterns of solar data and to ensure a stable training process and reduce the

overfitting risk, a randomly selected sample of training data is taken from

each month, while the remaining samples are considered testing data (there

is a 3:1 ratio of training:testing). This data partitioning strategy allows for a

better assessment of the model’s generality. It is worth noting that all zeros

and negatives in the dataset observed early in the morning or late at night

have been discarded.

In the proposed approach, since it is entirely data-dependent, all hyperpa-

rameters are optimally tailored using the training data following the recom-

mendations of the deep learning community [48], while on the other hand, the

scheme for setting the parameters presented in [140] is referred to. There are

six layers in the CNN, including three convolution layers, three pooling layers,

and a flattening layer. The BLSTM architecture is composed of three main

hidden layers that have 300, 250, and 125 units, respectively. The proposed

CNN-BLSTM forecasting framework serves as a representation network, hence

its outcome is simply concatenated with the energy hub’s states and then fed

into the actor network. The learning rates of the actor and critic networks are

0.0001 and 0.001, respectively. The discount factor and random experience

mini-batch size are chosen to be 0.95 and 64, respectively. Both actor and

critic networks have two layers of hidden neurons containing 250 and 100 neu-

rons, respectively, that are activated by rectifier linear units (ReLUs). The

target networks are updated using a smoothing factor of 0.001. The noise

model parameters are selected from [123]. The framework of the proposed

DDPG algorithm is shown in Figure 7.5. The DDPG agent’s action vector

105



corresponds to the energy hub units’ decision variables for dynamic dispatch

and can be represented by (7.42).

at =
{
P chp
j,t , P

c
i,t, H

b
k,t, P

fc,e
l,t , P fc,h

l,t , P bes
t , Hbt

t

}
(6.50)

At the beginning of a day, the DDPG agent receives the current and pre-

dicted PV power, energy prices, thermal and electrical storages’ status, and

thermal and electrical demands from the proposed energy hub environment as

follows.

st =
{
P pv
t , P̂ pv

t , πng
t , π

e
t , SoC

bt
t , SoC

bes
t , H l

t , P
l
t

}
(6.51)

Then the agent adjusts the parameters of the DDPG method by calculating

the reward as follows:

R (st, at) = −(OFOC
t +OF emission

t ) (6.52)

Algorithm 2 shows how to train a DDPG agent based on the proposed

framework. The proposed approach is implemented using the Keras library

and TensorFlow as the backend. The training process takes about five hours

on a workstation with a Core i7-8700 processor running at 3.2 GHz, 32 GB of

RAM, and one NVIDIA GeForce GTX 1070 NVIDIA GPU. The evolution of

episodic energy (operation and emission) cost is depicted in Figure 6.6. Since

the DDPG agent is merely exploring the environment without an optimized

control policy, the episodic cost of the energy hub operation is extremely high

during the initial learning phase. As a result, the energy schedule is randomly

selected from the action space with the noise. Although the policy continues

to be refined as it is updated with more experience, the cost keeps dropping

as the learning process continues.

6.3.1 Implementing 2-D CNN-BLSTM Model for Solar
Irradiance Forecasting

Three commonly used error metrics are employed in this study to measure

the accuracy of the proposed 2-D CNN-BLSTM prediction model: root-mean-
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Algorithm 2: DDPG for the proposed energy hub scheduling prob-
lem.
Initialize: Randomly initialize actor and critic networks’ weights:
µ (s |θµ ): θµ = θµ0

Q
(
s, a
∣∣θQ ): θQ = θQ0

Initialize the experience replay buffer M .
Initialize a random process Ω for action exploration.
for i ∈ {number of episodes} do

Obtain the initial state space st.
Forecast the PV power generation by the proposed CNN-BLSTM
framework
for t ∈ {number of time slots} do

Select schedule at for energy hub based on at = µ (st |θµ ) + Ωt.
Execute schedule action at and observe immediate reward Rt.
Process to the new state st+1.
Store the transition (st, at, Rt, st+1) into M .
k ←− k + 1;
if |M | ≥ batch size then

Sample random minibatch of transitions from M :

F = {(sj, aj, Rj, sj+1)} ̸=F
j=1.

Update the critic network by minimizing the loss using
equation (7.36):

θQ = θQ + ηQ∇θQL
(
θQ
)

Update the actor network by the sampled policy gradient
using equation (7.38):
θµ = θµ + ηµ∇θµL (θµ)
Update the target network using equations (7.39) and
(7.40):

θQ
′ ← θQ

θµ
′ ← θµ

end if
end for

end for
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square error (RMSE), mean absolute error (MAE), and mean absolute per-

centage error (MAPE) [26].

Table 6.1 provides the average test RMSE, MAE, and MAPE of the pro-

posed 2D CNN-BLSTM framework compared to recently proposed models for

solar irradiance forecasting, including UC-M3 [40], LSTM- Choquet [2], PCA-

KNN [144], and K-means-CNN [171]. This table clearly indicates the highest

level of performance and the lowest error range for the proposed hybrid 2D-

CNN-BLSTM model. According to the results, the average RMSE of 2D

CNN-BLSTM in this period is 69.44 W/m2, while applying LSTM-Choquet

and K-means-CNN leads to 98.83 W/m2 and 109.17 W/m2 average RMSE,

respectively. Compared to the benchmark with the best performance, LSTM-

Choquet, significant improvements of 46.51% MAPE and 28.54% MAE are

observed for the proposed 2-D CNN-BLSTM framework. Moreover, to pro-

vide better visualization, Figs. 6.8 and 6.9 show the hourly forecasting perfor-

mance for clear, partly cloudy, and cloudy conditions on two typical summer

and winter days in the year 2017. For the benchmark models, the process of

selecting hyperparameters follows the same procedure as the proposed model.

During most of the daytime, except for hours 12 through 14, the solar irradi-

ance on a cloudy day is less than 400 W/m2, while it reaches up to 1000 W/m2

during hours 12 through 13 on a clear day. It can be perceived from figures

that on a cloudy day, the maximum solar irradiance is not only lower than half

that on a clear day but is also sharply fluctuating. As shown in Figs. 6.8 and

6.9, 2D CNN-BLSTM follows the actual solar irradiance values with higher

accuracy compared to other methods. Even though both LSTM-Choquet and

K-means-CNN are capable of capturing complex features of nonlinearity with

high abstraction, the 2D CNN-BLSTM significantly outperforms all of them,

especially when it comes to predicting sharp spike points.
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Table 6.2: Energy Hub Average Daily Operating Costs.

Scheduling Method
Optimization

type

Average Cost

($/day)

Cost Change

(%)

RO [159,169] model-based 6,685 +38.66

SP [65,102,112] model-based 6,583 +36.54

Stochastic/IGDT [31] model-based 6,106 +26.55

DQN+2D-CNN-BLSTM model-free 5,538 +14.87

Proposed model-free 4,821 0

5. Scheduling of the PV-integrated energy hub with the proposed DDPG+2D-

CNN-BLSTM framework.

An adequate number of scenarios is generated for modeling the uncertain

parameters in the stochastic method by the Monte Carlo simulation approach.

Furthermore, to reduce the number of scenarios, the fast backward/forward

scenario reduction technique is employed. As a result of offline training, the

proposed DDPG-based network is saved at convergence for energy hub dy-

namic energy management. During every decision-making time interval, the

current electric and thermal demands, energy storages’ SoC, electricity and

natural gas prices, and available PV generation are provided as the inputs for

the online actor network trained based on Algorithm 1. For the DQN+2D-

CNN-BLSTM framework, the action spaces are designed and discretized as

suggested in [17] into five integer values. That is, 57 different choices make

up the action space. The network is trained using the Adam optimizer with

a learning rate of 0.001. The discount rate and mini-batch size are chosen to

be 0.9 and 64, respectively. The Q network consists of two hidden layers with

150 and 200 ReLU neurons in each hidden layer, respectively.

Table 6.2 compares the average daily operating costs using the five schedul-

ing methods over the test days. Due to the worst-case scenario being taken into

consideration, the RO results in a high value of the operating cost compared to

other models. SP has slightly better performance in comparison with RO. On
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the other hand, as SP solves several deterministic scenarios simultaneously, it

takes longer to calculate than RO, which only utilizes one scenario. Among

all model-based benchmarks, Stochastic/IGDT, as a hybrid model, has the

lowest cost. This model obtains 8.66% and 7.24% less average daily operating

cost during the test period, compared to RO and SP, respectively. Although

recently proposed hybrid model-based methods, stochastic/IGDT, are able to

achieve lower operating costs compared to RO and SP techniques, model-free

methods, DQN+2D-CNN-BLSTM and DDPG+2D-CNN-BLSTM, show bet-

ter results. Between model-free frameworks, the proposed DDPG+2D-CNN-

BLSTM generally has the lowest average daily operating cost due to making

continuous decisions that find solutions close to the optimal solution of the

optimization problem. The sub-optimal scheduling policy obtained by DQN

is the result of discarding useful information from the dispatch action domain

structure due to the discretization of the action space.

6.4 Conclusion

In this study, the optimal energy management problem of a PV-integrated

energy hub is studied. A novel DDPG+2D-CNN-BLSTM approach as a fully

model-free and data-driven DRL framework is proposed to provide an intel-

ligent control strategy. Due to the nonconvex nature and highly intermittent

parameters involved in the energy hub scheduling problem like nonconvex fea-

sible operating regions of CHP units, valve-point effects of power-only units,

and fuel cell dynamic efficiency, the proposed hybrid method is introduced to

perform more efficient and cost-effective operations. Moreover, a forecasting

model based on CNN and BLSTM networks is developed to provide great

potential for the proposed DDPG-based agent to learn an optimal policy effi-

ciently, especially during cloudy days with highly intermittent PV power gen-

eration. Case studies on typical summer and winter days demonstrate that,

by using meteorological components and sky images, the proposed approach

is able to follow the sharp spikes accurately even during hours of highly fluc-
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tuating and random solar radiation. The simulation results demonstrate that

the continuous decision-making provided by the proposed DRL-based control

strategy is approximately 15% more cost-effective than that of the DQN-based

method.
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Chapter 7

SFNAS-DDPG: A
Biomass-based Energy Hub
Dynamic Scheduling Approach
via Connecting Supervised
Federated Neural Architecture
Search and Deep Deterministic
Policy Gradient

In this chapter, a dynamic scheduling framework for a multi-source multi-

product facility with a biomass-solar hybrid renewable system is developed

by taking into account the nonlinear characteristics of the biogas production

facility and incorporating a novel neural architecture search (NAS) technique

to learn the architecture and model parameters of the DNNs. The study is

directed toward presenting a dynamic scheduling framework for a biomass-

based energy hub. An improved actor-critic DRL algorithm, DDPG, and the

supervised federated neural architecture search (SFNAS) are incorporated and

employed to form a novel model-free and self-adaptable energy management

algorithm for a RES-based multi-carrier energy supply infrastructure. With

focusing on the ever-increasing role of biomass energy resources worldwide, the

impact of several underlying factors on the cost-benefit analysis of a biomass-
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based energy hub is investigated using a fully data-driven and model-free

actor-critic DRL-based decision making framework taking into consideration

the physical characteristics and thermodynamic effect of temperature-sensitive

biogas production at the operation stage. For a diverse and dynamic RES-

based energy hub system, these characteristics can facilitate flexible scheduling

and coordinated decision-making. The proposed SFNAS tries to investigate

the merits and limitations of various NAS methods for learning the architec-

ture and model parameters for a given task. An innovative method is then

presented for engaging multiple NAS approaches and improving their indi-

vidual performance by utilizing a supervising agent to improve their training

losses. Based on the FL settings, the proposed SFNAS approach can be used

directly to search for the optimal architecture by leveraging training loss re-

shaping by a supervisor. As a result of repeated interaction with the envi-

ronment, the DDPG agent can gain experience to provide optimal dynamic

control signals without the need to model constrained probability distributions

or uncertainty sets. Moreover, a forecasting technique based on convolutional

neural networks (CNNs) and gated recurrent units (GRUs) has been incorpo-

rated into the DDPG decision-making framework to achieve decent scheduling

results.

This Chapter is organized as follows: Section 7.1 presents the proposed

SFNAS algorithm and the hybrid DL-based 2-D CNN-GRU prediction ap-

proach. Then, Section 7.2 describes the highly nonlinear, realistic model of

the system. Following that, Section 7.3 presents the DDPG-based dynamic

scheduling method for the biomass-based multi-carrier energy system. Sec-

tion 7.4 is dedicated to the case studies and simulation results, and finally,

conclusions are provided in Section 7.5.
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Figure 7.1: Schematic diagram of the proposed SFNAS methodology.

7.1 Supervised Federated Neural Architecture

Search And Hybrid 2-D CNN-GRU Fore-

casting Model

In this Section, the mathematical representation of the proposed SFNAS,

which leverages a supervisor to enhance the performance of multiple NAS

agents, is presented. The supervisor (meta learner) and NAS agents (base

learners) are trained using a bi-level optimization strategy. Figure 7.1 illus-

trates the schematic diagram of the proposed SFNAS methodology.

7.1.1 NAS Agents As Base Learners

Objective: by learning the architecture, ωn, and parameters, θn, of the

model, each base learner i optimizes its own model using momentum-regularized

NAS technique. (ωn, θn) is learned by each base-learner n using a momentum-
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based gradient descent algorithm as follows.

vn := (1− λn)vn + λn∇nJn(θn, ωn)

θn ← θn − αθvn,

ωn ← ωn − αωvn (7.1)

where αθ and αω correspond to the learning rates for θ and ω, respectively, and,

vn represents the momentum from past steps. When the hyperparameter λn

is set to a lower value in the updates, longer gradient updates are maintained

(this can be demonstrated by expanding the recursive updates, which are not

shown here due to limited space). According to the NAS algorithm used by

each base-learner, the training loss varies. Hence, for ease of explanation,

the training loss is denoted by Jn(θn, ωn). The following definition of L2-

regularized mean squared error (MSE) will be used when we assume identical

training losses Jn(·, ·) for all agents.

Jn(θn, ωn) := ∥y − ŷn∥2 + L2(θn) (7.2)

where ŷn represents the forecasted value, i.e., the outcome of n-th base-

learner’s model with architecture ωn. Model: the weights λn that are pro-

portional to rn are estimated by training the meta-learner model with the

input states (or the embedding of the inputs). For this purpose, a N -head

classifier structure is employed, corresponding to λn, n ∈ {1, 2, . . . , N}. Un-

like a typical classification problem, rns change epoch by epoch, so the target

values vary. Selection procedure: the proposed SFNAS methodology includes

a model selection procedure that is as follows.

min
A

[ζ1.N + ζ2.T + ζ3.RMSE] (7.3)

where N , T , and RMSE are the number of trainable parameters of deep

learning model, training time, and the RMSE value for agent A, respectively.

A FL application designer can determine the importance of the objectives by

adjusting ζ1, ζ2, and ζ3.
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7.1.2 Hybrid Deep 2-D CNN-GRU Structure

Meteorological and atmospheric variables greatly influence solar irradiance in

solar power generation forecasting. A hybrid SFNAS-based DL model for solar

irradiance prediction is presented to analyze a sequence of sky images and me-

teorological components by employing CNN and GRU structures, respectively.

Several numerical meteorological features are employed in the proposed hy-

brid forecasting framework to enhance its capability to capture complex solar

abstractions, including global horizontal irradiance (GHI), calendar features,

temperature, relative humidity, and atmospheric pressure. The mathematical

details of the hybrid deep CNN-GRU network can be found in [25,26,88].

7.2 Environment Model and Problem Formu-

lation

The purpose of this Section is to discuss the main structure of the proposed

biomass-based energy hub, taking into account nonlinear characteristics of

the facility components such as biogas production thermodynamics, dynamic

efficiency of fuel cells, valve admission behavior of power generation systems,

and CHPs’ non-convex operation regions.

7.2.1 Power-Only Units

Generally, power-only generation units are modeled by convex quadratic cost

functions. Due to valve admission effects, these models do not take into ac-

count ripples in production cost; therefore, they cannot provide a practical

solution for real-life applications. In this regard, the quadratic cost function

is modified to include an absolute sinusoidal term to capture this phenomenon

efficiently. Figure 7.2 shows the valve-point effects on the fuel cost of a power-

only unit. The total operation cost including valve-point effects can be for-

mulated as follows [106]:

Cc
i,t

(
Ec

i,t

)
= αc1

i .
(
Ec

i,t

)2
+ αc2

i .E
c
i,t + αc3

i + V c
i,t

(
Ec

i,t

)
(7.4)
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Figure 7.2: Valve-point effects on the fuel cost of a power-only unit.

V c
i,t

(
Ec

i,t

)
=
∣∣λci sin

(
ρci
(
Ec

i,min − Ec
i,t

))∣∣ (7.5)

Ec
i,min.I

c
i,t ≤ Ec

i,t ≤ Ec
i,max.I

c
i,t (7.6)

where αc1
i , αc2

i , αc3
i , λci , and ρci are the cost coefficients of the ith power-only

unit. Ic and V PEc indicate the commitment status and valve-point effects,

respectively.

7.2.2 Thermal Units

The kth thermal unit’s operating cost and limits at time t are defined by (7.7)

and (7.8).

Cb
k,t

(
T b
k,t

)
= αb1

k .
(
T b
k,t

)2
+ αb2

k .T
b
k,t + αb3

k (7.7)

T b
k,min.I

b
k,t ≤ T b

k,t ≤ T b
k,max.I

b
k,t (7.8)

where αb1
i , αb2

i , αb3
i , and kth represent the cost coefficients and commitment

status of the kth heat-only unit.

7.2.3 CHP Units

Noteworthy is the fact that the electricity and thermal energy produced in

CHP units depend on each other, so they cannot be independently adjusted.

The cost function of jth CHP is provided in (7.9). Convex combinations of
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extreme points represent the power and heat production in CHP units by

(7.10)-(7.13) [4].

Cchp
j,t =

S∑
s=1

Ds
j∑

ds=1

Γds

j,tc
ds

j (7.9)

Echp
j,t =

S∑
s=1

 Ds
j∑

ds=1

Γds

j,tx
ds

j

 (7.10)

T chp
j,t =

S∑
s=1

 Ds
j∑

ds=1

Γds

j,ty
ds

j

 (7.11)

Ds
j∑

ds=1

Γds

j,t =V s
j,t (7.12)

0 ≤ Γds

j,t ≤ 1 (7.13)

where Ds
j denotes the total number of corner points for the jth CHP in sub-

region s and the coefficient Γds

j,t should satisfy constraints (7.12) and (7.13);(
xd

s

chp, y
ds

chp

)
represents the electricity and thermal generations related to the

corner point ds; V s
j,t is a binary variable indicating operation in the sth subre-

gion.

7.2.4 Biomass-based Boiler Units

The mth Biomass-based boiler’s operating cost is modeled in (7.14). Based on

the energy conservation rules, the thermal energy produced by the biomass-

based boiler is calculated by (7.15)-(7.17), while it is restricted within accept-

able limits by constraint (7.18) [85].

Cbm
m, t

(
T bm
m, t

)
= T bm

m, t.α
bm
m (7.14)

T bm
m,t =

ϑbm. ςbm. V OLbm

T bm
HR

(
1− κbm(

T bm
HR . π

bm
)
− 1 + κbm

)
(7.15)

121



Figure 7.3: Nonlinear relationship between biogas production and tempera-
ture.

κbm = αbm
1 eα

bm
2 . IV S + αbm

3 (7.16)

T bm
m, t = ϖbm

m, t.CV
bm.ηbmm (7.17)

T bm
m,min.I

bm
m, t ≤ T bm

m, t ≤ T bm
m,max.I

bm
m, t (7.18)

where αbm
m , ϖbm

m , CV bm, and ηbmm denote the cost coefficient, mass of injected

biomass feedstock, calorific value of biomass feedstock, and efficiency of the

mth biomass-based boiler, respectively; κbm is the sability and process rate

kinetic parameter; πbm is the thermophilic and mesophilic digestion’s micro-

organism growth rate; ϑbm, ςbm, T bm
HR and V OLbm represent biogas biochemical

potential, influent volatile solid concentration, hydraulic retention time and

digester’s volume, respectively. The nonlinear relationship between biogas

production and temperature is illustrated in Figure 7.3.

7.2.5 Fuel Cell unit

Fuel cells (FCs) contribute to the energy hub demand by generating electricity,

recovering heat, and producing hydrogen. In the lth fuel cell unit, the amount
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of recovered thermal power, T fc
l,t , can be determined as follows:

T fc
l,t = TERfc

l,t .
(
Efc,e

l,t + Efc,h
l,t

)
(7.19)

Efc,total
l,t = Efc,e

l,t + Efc,h
l,t (7.20)

Efc
l,min.I

fc
l,t ≤ Efc,e

l,t + Efc,h
l,t ≤ Efc

l,max.I
fc
l,t (7.21)

where Efc,h, Efc,e, and TERfc are equivalent electric power for hydrogen pro-

duction, electrical output power, and the thermal to electrical power ratio,

respectively. The amount of stored hydrogen and charged/discharged hydro-

gen can be formulated as follows:

T2T fc
l,t = T2T fc

l,t−1 +
(
ηT2T
l,ch .T2in

l,t

)
−
(
T2out

l,t
/
ηT2T
l,dch

)
(7.22)

T2in
l,t = Efc,h

l,t .ψE2T (7.23)

T2out
l,t = E

fc,h

l,t .ψE2T (7.24)

T2T fc
l,min ≤ T2T fc

l,t ≤ T2T fc
l,max (7.25)

T2in
l,min.I

T2T,ch
l,t ≤ T2in

l,t ≤ T2in
l,max.I

T2T,ch
l,t (7.26)

T2out
l,min.I

T2T,dch
l,t ≤ T2out

l,t ≤ T2out
l,max.I

T2T,dch
l,t (7.27)

IT2T,ch
l,t + IT2T,dch

l,t ≤ 1 (7.28)

where ψE2T , T2in/out, and T2T indicate the hydrogen (kg) to electric power

(kW) ratio, equivalent charged/discharged hydrogen, and stored hydrogen.

Most existing studies on FC consider its efficiency to be constant, whereas it

can vary according to the amount of electricity produced. Based on Figure

7.4, the thermal to electrical power ratio and the efficiency are functions of the

part load ratio variable [38]. Equation (7.29) gives the total operating cost of

the fuel cell unit.

Cfc
l, t

(
Efc,e

l,t , efc,hl,t

)
=

(
Efc,T

l,t πng
t

ηfcl,t

)
+
(
Cfc,p

l .Efc,h
l,t

)
+
(
Cfc,OM

l .Efc,T
l,t

) (7.29)
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Part load ratio

Figure 7.4: An illustration of the FC unit’s dynamic performance curve.

7.2.6 Power Balance

During each time interval t, the amount of electrical and thermal power pro-

duced and consumed should be equal, as stated in (7.30) and (7.31).∑
i∈NC

Ec
i,t +

∑
j∈NCHP

Echp
j,t +

∑
l∈NFC

(
Efc.e

l,t + Ēfc,h
l,t

)
+Ebes

t + Epv
t + Egrid

t = El
t

(7.30)

∑
k∈NB

T b
k,t +

∑
j∈NCHP

T chp
j,t +

∑
l∈NFC

T fc
l,t

+
∑

m∈NBM

T bm
m,t + T bt

t = T l
t + T sv

t

(7.31)

where Egrid, Ebes, and El indicate the amount of power exchange with the

upstream network, the amount of power charged/discharged, and the electrical

demand, respectively. T l, T bt, and T sv represent the thermal demand, thermal

power charged/discharged, and the slack variable [16], respectively. Detailed

information on electrical and thermal storage systems is available in [31].

124



7.2.7 Objective Function

In the dynamic scheduling problem for biomass-based energy hub, the objec-

tive is to minimize the system operating cost, as stated in (7.32).

OC =
∑
t∈NT


∑

i∈NC

Cc
i,t +

∑
k∈NB

Cb
k,t +

∑
m∈NBM

Cbm
m,t

+
∑

j∈NCHP

Cchp
j,t +

∑
l∈NFC

Cfc
l,t + Cgrid

t

 (7.32)

7.3 Deep Deterministic Policy Gradient Algo-

rithm

This Section discusses the main structure of the proposed optimal control

strategy using the actor-critic DRL algorithm. Since DDPG provides continu-

ous action spaces and does not require discretization, which is computationally

expensive, it allows for more effective exploration of the action space. There-

fore, obtaining an optimum control decision requires fewer iterations than

other techniques regardless of the type of problem encountered. And more im-

portantly, the multi-carrier energy system’s infrastructure is controlled more

smoothly than when they are regulated at a discrete level.

DDPG assesses the cost-benefit of selecting a control signal over a given

period, at ∈ At, while making decisions in each state of the system using

Q-value, Q (st, at). According to the Bellman equation, the Q-value of any

action, at, at state st can be calculated based on the optimal action’s Q-value

at state st+1 as follows.

Q (st, at) = R (st, at) + γE
[

max
at+1∈At+1

Q (st+1, at+1)

]
(7.33)

where γ ∈ [0, 1] and R represent the discount factor and reward function,

respectively.

The energy hub operator, however, does not have any information about

either the most effective action at state st+1 or what its value would be over

time. The DDPG method addresses this challenge by implementing two sepa-

rate DNNs. The most beneficial action at state st+1 is estimated by the actor
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network, µ (st |θµ ), while the critic network, Q
(
st, at

∣∣θQ ), has the responsi-

bility of estimating the Q-value of action at at state st. The actor and critic

network weight vectors, θµ and θQ, are continuously updated based on the

observed rewards at each time step during the training process. Using the

trained networks, the Q-value can be derived as follows:

Q (st, at) ≈ R (st, at) + γE
[
Q
(
st+1, µ (st+1 |θµ )

∣∣θQ )] (7.34)

Actor networks respond to sampled states of a system by taking action. Then,

the two networks can be simultaneously trained according to the received re-

ward. The st and max
a
Q
(
st, at

∣∣θQ ) serve as the input and the output for the

actor network, while the critic network takes (st, at), where at = µ (st |θµ ),

and Rt as the input and the output, respectively. A replay buffer consisting

of samples from different time steps, (st, at,Rt, st+1), is employed to reduce

correlation-induced errors during updating the networks. Copies of the origi-

nal actor and critic networks, the target networks, are taken and gradually up-

dated to make the training process more stable. Moreover, the actor network

is enhanced with a correlated stochastic noise signal to improve exploration

during the training process. The most commonly used random noises are

Ornstein-Uhlenbeck and Gaussian noises. An Ornstein-Uhlenbeck noise can

be used to simulate time-related noise data. The Ornstein-Uhlenbeck process

is useful for solving physical control problems that are inertia-driven. Through

this perturbation, the DDPG agent is more able to explore and achieve faster

convergence as a result. The signal Ω is modeled by employing the Ornstein-

Uhlenbeck procedure, as stated in (7.35).

Ωt = Ωt−1 +
(
Ωmean − Ωt−1

)
κTs + Ωσn

√
Ts (7.35)

where Ωσ and Ωmean denote the variance of the noise model and the mean

value, respectively. κ and n ∈ [0, 1] represent the mean attraction constant

and a uniformly generated random number, respectively. The critic network

is trained using L
(
θQ
)

as the loss function.

L
(
θQ
)

=
1

N

∑
i∈N

[
Q
(
si, µ (si |θµ )

∣∣θQ )− Yi

]2
(7.36)
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where N is the size of the mini-batch, and Yi represents the measured value

function as follows.

Yi = R (st, at) +Q
(
st+1, µ

(
st+1

∣∣∣θµ′
) ∣∣∣θQ′

)
(7.37)

Meanwhile, the actor network needs to be trained by (7.38).

∇θµL (θµ) =
1

N

∑
i∈N

∇aQ
(
si, µ (si |θµ )

∣∣θQ )∇θµµ (si |θµ ) (7.38)

The final step in the process involves gradually updating the target networks

with the smoothing factor τ , as stated in (7.39) and (7.40).

θµ
′

= (1− τ) θµ
′
+ τθµ (7.39)

θQ
′

= (1− τ) θQ
′
+ τθQ (7.40)

In the dynamic dispatch problem of the multi-carrier energy system, the

state and action vectors can be defined by (7.41) and (7.42), respectively.

st =
{
Epv

t , Ê
pv
t , π

e
t , π

ng
t , SoC

bes
t , SoCbt

t , E
l
t, T

l
t

}
(7.41)

at =
{
Ec

i,t, E
chp
j,t , T

b
k,t, T

bm
m,t, E

fc,e
l,t , Efc,h

l,t , Ebes
t , T bt

t

}
(7.42)

ℑ (st, at, ωt) governs the transition from state st to state st+1. It’s not just the

decision-making signal at that determines transitions, but also environmental

uncertainty, ωt, that influences them. There are several exogenous factors,

including energy consumption habits and solar irradiance, that influence the

alignment of probabilistic models within this context. By learning the tran-

sition implicitly from collected data samples, a DRL approach can overcome

this challenge without the need for statistical models.

A DDPG reward is calculated by the agent by adjusting the parameters as

follows:

R (st, at) = −(OCt + CPenalty
t ) (7.43)
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Training with DNN makes DRL-based techniques non-constrained, ignoring

the physical limitations of dynamic scheduling. Therefore, the physical con-

straints cannot be addressed systemically through this process. Nonetheless,

energy systems scheduling needs to address security and reliability concerns.

For a variable ℵ ∈
[
ℵmin,ℵmax

]
a penalty term is added to the reward function

to address the constraint violation problem, , as stated in (7.44) and (7.45).

CPenalty =
∑

ℵi∈Nℵi

ℑi.P enaltyℵi
(7.44)

Penaltyℵ = ln

(∣∣ℵ − ℵmin
∣∣+ |ℵ − ℵmax|

2. (ℵmax − ℵmin)

)
(7.45)

7.4 Numerical Study

The biomass-based energy hub shown in Figure 7.5 is used as a case study

to evaluate the effectiveness of the proposed SFNAS-DDPG dynamic schedul-

ing approach. The proposed SFNAS-DDPG strategy involves scheduling and

operating a multi-source multi-product facility that participates in the en-

ergy market as a coupled multi-carrier energy supply. The energy loads and

prices are adapted from [116,137], respectively. Based on a test case presented

in [11], the economic data and operational constraints for thegeneration plants

are derived and scaled. The maximum capacities of heat-only, PV, and power-

only units are 2.695 MWth, 0.75 MW, and 1.25 MW, respectively. Moreover,

the data of the 0.6 MWth biomass-based boiler and the 1 MW FC units are

taken from [38,70], respectively. Both the sky images and numerical time se-

ries data are obtained from the Solar Radiation Research Laboratory (SRRL)

dataset of the National Renewable Energy Laboratory (NREL), located in

Colorado [133]. Based on the FL settings, the SFNAS approach is used di-

rectly to search for the optimal architecture of the forecasting network using

supervisory training loss reshaping. As a representation network, the output

of the CNN-GRU model is concatenated with the states of the energy hub
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before being fed into an actor network. For the critic and actor networks,

learning rates of 0.001 and 0.0001 are selected, respectively. The mini-batch

of random experience and the discount factor have been selected as 0.95 and

64, respectively. The parameters of the noise model are taken from [123]. Al-

gorithm 3 demonstrates the training process of making control decisions using

the proposed SFNAS-DDPG methodology. The training process of the pro-

posed technique is performed by Keras library and TensorFlow as the backend

on a workstation with an NVIDIA GeForce GTX 1070 GPU and 32 GB of

RAM.

7.4.1 Design Prediction Model With SFNAS Method

In this subsection, the SFNAS algorithm is employed to identify the most

accurate architectures for the solar irradiance forecasting task. The CNN

and LSTM/BLSTM/GRU networks’ hyperparameters significantly affect the

model’s performance in a complicated manner. However, trying to model the

complex interactions between the hyperparameters or manually examining

a large number of possible architectures is challenging and time-consuming.

To overcome these limitations, the SFNAS algorithm is proposed and imple-

mented to efficiently select the networks’ architectures. Algorithm 4 shows the

procedure of the proposed SFNAS methodology. The goal is to find optimized

models that are capable of better solar irradiance forecasting given the base-

line structure of the model discussed in Subsection 7.1.2. For this purpose,

we seek to optimize the following parameters of the representation network,

shown in Figure 7.5:

• Number of convolutional layers in the CNN network (NC)

• Number of hidden units in the first LSTM/BLSTM/GRU layer (NB1)

• Number of hidden units in the second LSTM/BLSTM/GRU layer (NB2)

• Number of hidden units in the third LSTM/BLSTM/GRU layer (NB3)
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Algorithm 3: Offline training process of the DDPG agent

Initialize: Initialize the weights of the actor and critic networks
randomly:
µ (s |θµ ): θµ = θµ0

Q
(
s, a
∣∣θQ ): θQ = θQ0

Initialize Ω as a random process allowing exploration of actions and
set up the experience replay buffer M .
for i ∈ N episodes do

Observe st as the state space.
Concatenate the output of the CNN-GRU network with the state
space st.
for t ∈ N time intervals do

Choose the dynamic scheduling action at = µ (st |θµ ) + Ωt.
Solve (7.32) by taking energy hub control decision at and
receive Rt as the immediate reward.

Transfer to st+1 as the new state.
Store the transition (st, at, Rt, st+1) into M .
k ←− k + 1;
if batch size ≤ |M | then

Randomly select F = {(sj, aj, Rj, sj+1)}̸=F
j=1 as a mini-batch

from M .
Minimize the loss function (7.36) to update the critic
network.:

θQ ←− ηQ∇θQL
(
θQ
)

+ θQ

Use (7.38) and sampled policy gradient to update the actor
network:
θµ ←− ηµ∇θµL (θµ) + θµ

Use (7.39) and (7.40) to Update the target networks:

θQ ← θQ
′

θµ ← θµ
′

end if
end for

end for
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Based on our previous work [29], we find that NB1 and NB2 with fewer than

100 hidden units are likely to exhibit underfitting, while overfitting occurs

when the number is greater than 400. To reduce the number of genotype

representations from the range 100 to 400, we divide the range by 25 before

exploring the two LSTM/BLSTM/GRU layers. In order to translate genotype

to phenotype, a multiplier, 25, is assigned to the genotype. According to

our previous knowledge, bounds are also set for the other parameters. Our

experiments were conducted using the parameters listed in Table 7.1 as the

lower and upper bounds.

Algorithm 4: SFNAS algorithm.

for epoch ∈ {number of epochs} do
for agent ∈ {number of agents} do

Forming the best architecture Z∗
i via agent’s NAS

Compute training loss architecture Z∗
i :

Ji(θi, ωi) := ∥y − ŷn∥2 + L2(θi)

end for
Compute relative contribution of agent:
ri := Ji(θi, ωi)/

∑
i

Ji(θi, ωi)

Train the classifier using the relative contribution, ri, to estimate
the weights λi

end for
Select the based agent based on:
min
A

[ω1RMSE + ω2T + ω3N ]

From the viewpoint of the EA-based NAS, a genotype then takes the form

Table 7.1: Hyperparameter bounds for SFNAS algorithm

Parameter Lower bound Upper bound

CNN network (NC) 1 4

First LSTM/BLSTM/GRU layer (NB1) 4 16

Second LSTM/BLSTM/GRU layer (NB2) 4 16

Third LSTM/BLSTM/GRU layer (NB3) 4 12
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of a sequence of integers based on the values indicated in Table 7.1 and pheno-

types are the resulting structures. In the proposed stacking model, hierarchical

features can be derived from the feature representation of the previous layer

and the next layer serves as a layer of abstraction. This hierarchical feature

abstraction cannot be achieved when the next layer (i.e., NB2) is greater than

the previous layer (i.e., NB1) and results in overfitting. As a result, to en-

sure that the NB2 is equal to or smaller than NB1 when converting genotypes

to phenotypes, a correction mechanism is applied on NB2 (similar correction

mechanism is also considered for (NB3)) as follows:

NBi =

{
NBi NBi ≤ NBi−1

NBi−1 NBi ≥ NBi−1
(7.46)

The population is initialized by randomly selecting Np−1 individuals. The

so-called super-fit mechanism is employed to initialize the remaining popu-

lation based on the parameters of the structure proposed in [29] to begin

the evolutionary process with a sufficiently effective individual. An individ-

ual’s fitness is determined by evaluating the created phenotype for the given

genotype based on the root means square error (RMSE), mean absolute error

(MAE), and mean absolute percentage error (MAPE) [29] Both crossover and

mutation are used to achieve a reasonable balance between exploration and

exploitation. A probability of P c = Pm = 0.5 is applied to each operator

independently. Based on the one-point crossover methodology, individuals are

firstly ranked according to their fitness, and then the 2nth and (2n+ 1)th ones

are selected for crossover (n ∈
[
0, N

p

2
− 1
]
). The population is then uniformly

mutated, consisting of individuals generated by crossover and offspring who

were not subjected to crossover. Mutation can occur between each architec-

ture parameter (gene) and a value uniformly chosen from its range according

to a probability P gm. As a result of this approach, we can conduct searches

relatively faster while minimizing disruptive mutations in individuals. The

fitness of the parents for each offspring is checked when creating the popula-

tion of the next generation. Then, to monotonically decrease the population’s
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Table 7.2: Forecasting Task Results for the Best Architectures Found by SF-
NAS and Baseline NAS.

Structure
Test RMSE Offline training time

Baseline [101] Proposed Baseline [101] Proposed

CNN-LSTM 66.23 63.37 4h 52min 4h 19min

CNN-BLSTM 62.88 57.28 5h 47min 5h 11min

CNN-GRU 62.35 56.51 4h 43min 4h 16min

Table 7.3: The Average Daily Operating Cost for the Proposed Multi-Carrier
Energy System.

Scheduling Method
Average Profit

($/day)
Profit Change

DDPG + State-of-the-art model [27] 5,416 0%

DDPG + Baseline NAS [101] 5,156 -4.79%

Proposed SFNAS-DDPG 5,020 -7.31%

baseline NAS.

7.4.2 Biomass-based Energy Hub Dynamic Scheduling
Problem based the proposed SFNAS-DDPG

Table 7.3 illustrates the average daily operational cost of the biomass-based

energy hub using DDPG + state-of-the-art forecasting [27], DDPG + baseline

NAS [101], and the proposed SFNAS-DDPG models. As can be seen from this

table, the proposed framework, SFNAS-DDPG, has the lowest average daily

operating cost when compared with other models. The SFNAS-DDPG method

has $5,020 per day average operating costs, which shows a 7.31% improvement

over the baseline model (DDPG + State-of-the-art). This improvement is due

to the fact that the operator has access to more accurate information about

the uncertain parameter (PV generation in future hours), enabling the agent

to take more efficient actions.
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Figure 7.6: The evolution of weight (λi) for the gradient term in the momen-
tum update.

7.5 Conclusion

This study presents SFNAS-DDPG as an improved actor-critic DRL frame-

work for the optimal scheduling and operation of a multi-source multi-product

facility, taking into account nonlinear characteristics of the facility components

such as biogas production thermodynamics, dynamic efficiency of fuel cells,

valve admission behavior of power generation systems, and CHPs’ non-convex

operation regions. To help the DDPG agent choose the most efficient control

policy, especially when PV power is highly intermittent on cloudy days, a

hybrid CNN-GRU forecasting model that captures high levels of abstraction

from sky images and numerical measurements is developed and employed.

The novel SFNAS technique is proposed to learn the architecture and model

parameters of the representation network. By utilizing supervisor-led train-

ing loss reshaping, the proposed SFNAS approach can be used directly to

determine the optimal architecture based on the federated settings. As a re-
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(a) (b)

(c) (d)

(e) (f)

Figure 7.7: The evolution of training and validation losses of the pro-
posed CNN-LSTM/BLSTM/GRU models (a) baseline NAS-based LSTM, (b)
SFNAS-based LSTM, (c) baseline NAS-based BLSTM, (d) SFNAS-based
BLSTM, (e) baseline NAS-based GRU, and (f) SFNAS-based GRU .
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sult of our case studies, the proposed strategy, by selecting different network

structures, is more accurate than the respective baseline forecasting meth-

ods. Consequently, The SFNAS-DDPG method has $4,590 per day average

operating costs, which shows a 4.79% improvement over the baseline model

(DRL+State-of-the-art). While this study was geared toward exploring the

effects of the proposed SFNAS methodology on improving actor-critic DRL

framework’s control strategies, future work could study the effectiveness of

replacing the proposed EA-based NAS with heterogeneous NAS methods.
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Chapter 8

Conclusions and Future Work

This chapter makes some concluding remarks on the studies in this thesis

and, subsequently, offers some potential research directions and interesting

problems for future work.

8.1 Conclusions

This thesis belongs to the field of deep learning-based algorithms for fore-

casting and energy management problems and focuses on smart grid applica-

tions. The outcomes of the work in the thesis are summarized as follows:

1. First, in Chapter 3, a novel deep learning-based approach was pro-

posed for short-term wind speed prediction. The DWPT was applied

to effectively extract the features of the signal by decomposing the raw

wind speed time series into several sub-layers. The input vector was

built by using the theory of dynamic reconstruction, which not only in-

creases the accuracy of the results but also decreases the learning com-

plexity by determining the optimal structure of inputs. Moreover, the

BLSTM network as a combination of LSTM networks and bidirectional

RNNs was incorporated to capture deep temporal features with high

abstractions. The proposed model was evaluated on a publicly available

real-world dataset, of which the forecasting accuracy was comprehen-

sively compared to multiple benchmarks in the literature. The proposed
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BLSTM+DWPT framework demonstrated the smallest metrics and gen-

erally achieves the most accurate forecasting performance in the dataset.

For example, BLSTM+DWPT showed 34% and 32% improvement in

RMSE and MAE when compared with BLSTM+DWT.

2. Second, Chapter 4 developed a novel LiDAR-assisted deep 2-D CNN-

BLSTM model for the ultra-short-term prediction of future wind turbine

responses using upcoming sequences of full wind field components and

hub-height wind speed time series before reaching the turbine blades as

inputs. As a data-driven framework, the performance of the proposed

model was determined solely by the potential interactions hidden in the

wind field and time series data rather than the physical equations or

predetermined distribution types. Thus, it could avoid the dual risks

of model incorrectness or distribution type misspecification. The NREL

5-MW reference horizontal axis wind turbine with FAST were utilized

for simulations. Realistic 3-D wind field components vectors were gen-

erated by NREL TurbSim. The proposed 2-D CNN-BLSTM model was

designed for ultra-short-term forecasting of wind turbine response and

showed the high-quality outputs with the smallest metrics. For example,

it demonstrated 78% and 75% improvement in RMSE when compared

with single BLSTM and 2-D CNN models, respectively. The proposed

model employed 2-D-CNN and BLSTM networks to better handle com-

plex spatial-temporal features from highly variable wind data compared

to conventional forecasting methods which simply used historical time

series data. The main advantage of the proposed model over other deep

learning-based forecasting methods was that it used wind preview infor-

mation provided by LIDAR as an advanced remote sensing wind mea-

surement technology. Thus, it could be helpful for wind farm operators

as an efficient tool in yaw misalignment and deloading control strategies.

3. Third, Chapter 5 developed a comprehensive economic assessment model

for a CAES-PV facility participating in the energy market based on the
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DRL framework. Due to the nonconvex nature and highly intermit-

tent parameters involved in the scheduling problem, the DQN agent

was introduced to perform optimal self-scheduling of the CAES-PV sys-

tem incorporating the thermodynamic characteristics of the system. To

address the uncertainties of electricity price and PV power output, es-

pecially during cloudy days, a novel hybrid 2D CNN BLSTM model was

adopted to predict the price and solar irradiance more accurately. Case

studies using real-world data demonstrated that a well-trained DQN

agent is capable of providing high profitability by making optimal dy-

namic decisions, which makes the proposed approach meaningful to the

smart energy system industry.

4. Fourth, in Chapter 6, the optimal energy management problem of a PV

integrated energy hub was studied. A novel DDPG+2D-CNN-BLSTM

approach as a fully model-free and data-driven DRL framework was pre-

sented to provide an intelligent control strategy. Due to the nonconvex

nature and highly intermittent parameters involved in the energy hub

scheduling problem like nonconvex feasible operating regions of CHP

units, valve-point effects of power-only units, and fuel cell dynamic effi-

ciency, the proposed hybrid method was introduced to perform more effi-

cient and cost-effective operations. Moreover, a forecasting model based

on CNN and BLSTM networks was developed to provide great poten-

tials for the proposed DDPG-based agent to learn an optimal policy in

an efficient way, especially during cloudy days with highly intermittent

PV power generation. Case studies on typical summer and winter days

demonstrated that, by using meteorological components and sky images,

the proposed approach was able to follow sharp spikes accurately even

during hours of highly fluctuating and random solar radiation. The sim-

ulation results demonstrated that the continuous decision-making pro-

vided by the proposed DRL-based control strategy is approximately 15%

more cost effective than that of the DQN-based method.
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5. Finally, Chapter 7 presented SFNAS-DDPG as an improved actor-critic

DRL framework for the optimal scheduling and operation of a multi-

source multi-product facility, taking into account nonlinear character-

istics of the facility components such as biogas production thermody-

namics, dynamic efficiency of fuel cells, valve admission behavior of

power generation systems, and CHPs’ non-convex operation regions.

To help the DDPG agent choose the most efficient control policy, es-

pecially when PV power is highly intermittent on cloudy days, a hybrid

CNN-GRU forecasting model that captures high levels of abstraction

from sky images and numerical measurements was developed and em-

ployed. The novel SFNAS technique was proposed to learn the architec-

ture and model parameters of the representation network. By utilizing

supervisor-led training loss reshaping, the proposed SFNAS approach

could be used directly to determine the optimal architecture based on

the federated settings. As a result of our case studies, the proposed strat-

egy, by selecting different network structures, was more accurate than

the respective baseline forecasting methods. Consequently, the SFNAS-

DDPG method had $4,590 per day average operating costs, which shows

a 4.79% improvement over the baseline model (DRL+State-of-the-art).

8.2 Future Work

The following research studies can be conducted in continuation of the work

presented in this thesis:

1. Improving the time series wind speed forecasting accuracy by taking into

account further feature extraction methodologies such as data clustering

methods.

2. Extending the proposed forecasting methodology to offshore wind pre-

diction and considering the sea current level as an external input.

3. Applying DRL-based methods to a multi-agent setting, targeted to pro-
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vide optimal energy management strategies for a group of energy hubs.

4. Enhancing the generalization performance of DRL-based scheduling meth-

ods so they can adapt to large variations in environmental conditions,

especially extreme weather conditions.

5. Expanding the proposed SFNAS approach by replacing the proposed

EA-based NAS with heterogeneous NAS methods.
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