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Abstract 

Five-year overall survival for gastric cancer in Canada is only 25%. Standard of care 

treatment using neoadjuvant chemotherapy and surgery achieves partial or complete 

treatment response in only 40% of patients. Additional strategies and methods to discover 

novel therapies and optimize existing treatment regimens are required. In this work we use 

a combination of immunohistochemistry-based biomarkers, 3-dimensional organoid models 

and omics based molecular classification to investigate and enhance personalized medicine 

strategies in gastric cancer.  

Forty-three patients with gastric adenocarcinoma, of which 18 underwent neoadjuvant 

chemotherapy, were included in a prospective clinical cohort. Differences in expression of 

Galectin-3, E-cadherin, CD4+ and CD8+ molecules between tumours with and without 

treatment response to neoadjuvant chemotherapy were assessed with 

immunohistochemistry. To enhance procurement of fresh tissue for organoid culture we 

assessed the feasibility of shipping mouse stomach on ice for 24- or 48-hours using Hank’s 

Balanced Salts Solution (HBSS), Histidine-tryptophan-ketoglutarate (HTK) or University of 

Wisconsin solutions as transport media. The effect of transport time and transport media on 

organoid viability, growth rate and stem cell gene expression of LGR5 and TROY were 

assessed using cell counting with Trypan Blue and quantitative real-time PCR, respectively. 

Multivariable generalized additive models (GAM) were used to assess these outcomes over 

12 organoid passages. Using publicly available whole-transcriptome data we developed 

supervised machine learning models to assign molecular subtypes from The Cancer Genome 

Atlas (TCGA), Asian Cancer Research Group (ACRG) and Tumour Microenvironment score 

(TME) classification systems to 2,202 patients. Overall survival was assessed using a 

multivariable Cox proportional hazards model. Using genes informed by these models we 

developed a custom Nanostring codeset to assign molecular subtypes to our 43-patient 

cohort and 10 tumour and tumour-organoid pairs. The accuracy of molecular subtype 
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models and our Nanostring test were assessed relative to gold-standard Epstein-Barr 

encoded early RNAs in-situ hybridization and pentaplex polymerase chain reaction for 

Epstein-Barr Virus (EBV) and Microsatellite instability (MSI) tumours, respectively.  

The ratio between CD4 and CD8 lymphocytes was significantly greater in treatment 

responsive tumours (Wilcoxon, p=0.03). In univariate models CD4/CD8 ratio was the only 

biomarker that provided significant predictive value (Accuracy 86%, p<0.001). Mock-

shipment of mouse stomach tissue for 24- or 48-hours significantly decreased growth rate 

relative to freshly prepared organoids but did not affect viability (GAM, p<0.001). Transport 

media did not affect growth rate or viability. Gene expression of LGR5 and TROY was not 

affected by transport time or media but significantly decreased upon tissue dissociation and 

subsequently increased in successive passages to regain endogenous expression levels by 

passage 6 (Kruskal-Wallis, p<0.001 with post-hoc Dunn’s Test). Two human gastric cancer 

organoids were developed following 24- or 48-hour transport in HBSS solution. Classification 

models for TCGA (57 genes), TME (50 genes) and ACRG (39 genes) had a mean accuracy ± 

standard deviation of 89.5% ± 0.04, 89.4% ± 0.01 and 84.66% ± 0.04, respectively. 

Improved prognosis was observed for TME High tumours (Hazard Ratio 0.61, [95% 

Confidence Interval 0.46, 0.79]) and the TME score was the only statistically significant 

prognostic classification system in a multivariable Cox survival model (Global Wald Test, 

p<0.001). In a public cohort of 2,202 patients our models demonstrated a 98.7% and 

99.3% accuracy for EBV and MSI subtypes with respect to gold-standard tests. In 10 

patient and patient-derived organoid samples the Nanostring test was 100% accurate for 

EBV and MSI subtypes.  

In this study, a multimodal approach is applied to investigate personalized medicine 

strategies for gastric cancer. These results demonstrate that CD4+/CD8+ Ratio is a 

promising IHC-based biomarker with therapeutic implications for response to neoadjuvant 

chemotherapy in locally advanced gastric cancer. From a translational perspective we found 
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that cold shipment of fresh gastric tissue for 24- or 48-hours from mouse and human is a 

feasible and reliable method to increase procurement of primary organoid tissue. To our 

knowledge, at the time of publication, this study is the largest integrated analysis of TCGA, 

ACRG and TME molecular classification systems in gastric cancer. Using a custom 

Nanostring codeset we successfully translate these machine learning models to our own 

population and organoid samples. Together, these findings form a foundation to enhance 

future investigation of personalized medicine in gastric cancer.  
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Preface 

This thesis is an original work by Daniel Skubleny. All human clinical participants consented 

according to the approved ethics protocol granted by the Health Research Ethics Board of 

Alberta, under the project title “Expression of Biomarkers in Gastric Cancer and the Effect of 

Neoadjuvant Chemotherapy” and study identification HREBA.CC-17-0228.  

Ethics approval of mouse experiments conducted in Chapter 4 was granted by the University 

of Alberta Research Ethics Office under Category A Exemptions for review by the Animal 
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In Chapters 4 and 5, we used a custom gene panel manufactured by Nanostring®. All genes 
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Whole-transcriptome data in this thesis is publicly accessible on Gene Expression Omnibus 

and available for Unrestricted-Use as stated by the National Center for Biotechnology 
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transcriptome data accessible from cBioPortal is available under an open source license via 

Github.  
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publicly accessible according to the “Broad Institute’s commitment to Open Science,” in 

which the “data made available were generated for research purposes and are not intended 

for clinical use.”  
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hosted by the Wellcome Sanger Institute are available for non-exclusive, non-transferable 

right to use for internal proprietary research and educational purposes including target, 

biomarker and drug discovery.   
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Chapter 1: Introduction 

1.1 Overview 

Personalized medicine strives to achieve “the right treatment, for the right patient at the 

right time”.  The experiments conducted in this thesis centre around the concept of 

personalized medicine, which is born from a vision of providing superior medical care based 

off the unique characteristics of a patient and their tumour. Although the concept of 

personalized medicine is frequently stated in clear terms, significant questions remain on 

the utility and feasibility of a personalized approach. Within each null hypothesis tested in 

this work, is a signal pertaining to the advance or detriment of the vision of personalized 

medicine.  

Over the previous three decades, gastric cancer diagnosis, treatment, and surgical 

management has significantly improved (see: Epidemiology, Presentation and Diagnosis,  

Management). Coinciding with these advances has been a decline in incidence related to 

environmental factors. Yet gastric cancer remains a deadly disease. This is especially true in 

Canada, where most gastric cancer patients present with advanced disease. 

Outcomes in Asia have improved due to the high incidence of gastric cancer, which provides 

increased societal awareness and allows affordable implementation of population-based 

screening programs (see: Screening). In North America, the debate regarding the cost-

utility benefit of screening programs has spanned decades. No screening program currently 

exists in Canada, even among first-generation Asian immigrants.  

Neoadjuvant chemotherapy exists as a viable treatment strategy to combat advanced 

disease in Canadian populations (see: Chemotherapy and chemoradiotherapy). The MAGIC 

trial, published in 2006, established epirubicin, cisplatin and 5-fluorouracil as an effective 

therapy that downstages bulky tumours to facilitate adequate surgical resection and 

improves survival. In 2019 a new treatment called FLOT4, which added docetaxel to 

oxaliplatin, 5-fluorouracil and leucovorin, was found to improve overall survival compared to 

MAGIC. In light of this success, the clinical trial also found that FLOT4 is relatively toxic and 

complete pathologic response only occurs in approximately 15% of tumours. There is no 

method or biomarker capable of determining which patient receives a favourable treatment 

response. FLOT4 is the current standard of care and our institution's neoadjuvant therapy of 
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choice.  Thus, this therapy is a centrepiece in clinical and in-vitro investigations in this 

thesis.  

In addition to improving cytotoxic chemotherapy regimens, immune checkpoint inhibitor 

therapy in microsatellite instability cancers emerged in 2017 (see: Targeted molecular 

therapy and immunotherapy). For the first time, the FDA approved a cancer treatment 

based on a tumour biomarker as opposed to approval on a cancer-by-cancer basis. The 

Keynote-059 and Keynote-062 trials demonstrated immune checkpoint inhibitor safety and 

efficacy in Stage IV gastric adenocarcinoma. In this population, first-line Pembrolizumab 

(anti-PD-L1) monotherapy or combination with chemotherapy provides non-inferior 

outcomes and a more favourable side-effect profile compared to chemotherapy alone. 

Investigation into the utility of Pembrolizumab (anti-PD-L1) in the neoadjuvant setting is 

ongoing with the Keynote-585 and NCT-3257163 trials.1,2 

Despite these advancements, there remains a significant opportunity to enhance outcomes 

in gastric cancer patients. Some themes outside of the direct scope of his thesis include the 

need for improved methods of early detection and treatment strategies for dealing with 

peritoneal disease or cancer with a high risk of peritoneal disease.3–6 This thesis does, 

however, contribute insight into (1) biological and therapeutic considerations of 

microsatellite instability (MSI) and other molecular subtypes in gastric cancer, (2) 

investigation of potential tumour biomarkers to predict neoadjuvant treatment response and 

(3) strategies to investigate and communicate personalized medicine in both the wet lab 

and the clinic (see: Methods to Advance Personalized Medicine in Gastric Cancer).  

Recently, a debate has centred on tumour MSI status and survival outcomes following 

neoadjuvant chemotherapy. Post-hoc analysis of clinical trial data has strongly suggested 

that neoadjuvant chemotherapy may harm patients with MSI-High tumours.7 According to 

these data, patients with MSI-High tumours should proceed straight to surgical treatment 

without chemotherapy. However, statistical evidence supporting this conclusion is limited by 

small sample sizes and conflicting evidence within other gastric cancer studies and similar 

gastrointestinal cancers such as colon cancer.4,8–10 This thesis provides additional insight 

into MSI-related tumour biology by highlighting the relationship between MSI-High tumours 

and their propensity to interact effectively with the patient’s immune system.  

Survival outcomes in gastric cancer would likely be improved by discovering efficacious 

targeted therapy regimens. Clinical trials for targeted therapy in gastric cancer have found 
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limited success compared to those in other malignancies, such as melanoma, colon or 

breast (see: Targeted molecular therapy and immunotherapy). Several molecular 

classification systems for gastric cancer have been established to inform foundational 

biology and guide therapeutic hypotheses (see: Molecular classification of gastric cancer). 

However, there is limited clinical translation of these classification systems. Improvement in 

technological applications and cost reduction related to molecular classification would aid in 

the advancement of personalized medicine in gastric cancer. In this work, I actively explore 

strategies to translate multi-omics molecular classification systems to the clinic. This 

includes preliminary validation of a molecular test that effectively measures molecular 

subtypes in gastric cancer. I establish methods that provide insight into similarities and 

differences between molecular subtypes from distinct classification systems. Finally, I 

investigate the prognostic and therapeutic effects of multiple established gastric cancer 

classification frameworks.  

The following introduction will provide appropriate context for the problems we will 

investigate. This thesis contains a heavy mixture of biology and mathematics; however, it is 

my intent to communicate this work towards a biological science audience. Citations within 

the methods sections will be available to examine the evidence supporting these 

approaches. 

1.2 Epidemiology 

Gastric cancer is the fifth most common cancer and the third most common cause of cancer 

death worldwide.11–13 In the mid-1990s gastric cancer was the most common cause of 

cancer death.14 Since the first global cancer epidemiology estimates from the 1970s15 

gastric cancer incidence and mortality has decreased, particularly within western and 

developed countries.12,13 Despite these decreasing trends, gastric cancer still has poor 

survival with a mortality-to-incidence ratio ranging from 0.65 to 0.83 in developed and 

undeveloped countries respectively. Recent analyses reinforce the global trend of decreasing 

gastric cancer mortality, however in western women aged 30-49 years mortality has 

remained stable.14 This suggests that traditional environmental factors contributing to 

improved gastric cancer mortality such as diet, smoking cessation, oncologic and 

Helicobacter pylori (H. pylori) treatment13 have maximized their effect within this population 

and additional advances are now required.   

The term gastric cancer generally refers to the most common gastric neoplasm, gastric 

adenocarcinoma, which is the focus of this study. Other less common forms of gastric 
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neoplasm includes gastric lymphoma, mucosa associated lymphoid tissue lymphoma, 

gastrointestinal stromal tumor and neuroendocrine tumors.16 In contrast to gastric 

adenocarcinoma, these rarer gastric neoplasms are not declining.14 

Nearly one million new cases of gastric cancer are diagnosed each year. Men are twice as 

likely to be diagnosed with gastric cancer compared to women.11–13 The incidence of gastric 

cancer is highest in East Asia (35.4 per 100,000) and Eastern and Central Europe (20.3 per 

100,000) with relatively a low incidence in North America (5.5 per 100,000) and Western 

Europe (8.8 per 100,000).11 In absolute terms, gastric cancer is estimated to account for 

26,240 new cases and 10,800 deaths in the United States in 2018.17 According to the 

Canadian Cancer Statistics 2017, the age-standardized incidence risk for stomach cancer 

was estimated at 8.6 cases per 100,000 or 3,500 cases, making it the 14th most common 

cancer.18  

Distinct epidemiological patterns of gastric cancer exist depending on the anatomical 

location of the tumor. Cancer occurring in the gastric fundus, corpus and pylorus represent 

the majority of stomach cancer worldwide. The incidence of fundus and pylorus cancers is 

characterized by significant geographic variation with the majority of these cancers 

occurring in Asia and Eastern Europe.14 Gastric cardia cancer represents an anomaly in the 

recent history of stomach cancer. Cardia adenocarcinoma has been shown to be stable or 

increasing worldwide and has less geographic variation compared to other gastric cancer 

locations.13,14  The increase in cardia cancer is specifically noted in Europe and North 

America and is thought to be due to gastroesophageal reflux disease related to rising rates 

of obesity.19–22 

1.3 Pathogenesis of gastric cancer 

The development of gastric cancer is complex and incompletely understood. In addition to 

the multifactorial nature of neoplastic disease, gastric cancer is exceptionally 

heterogenous.23 Multiple classification schemes have been proposed to understand the 

histology, morphology and molecular intricacies of gastric cancer.24 

Traditionally gastric adenocarcinoma histology has been characterized by the Lauren 

Classification.25 Formulated in 1965 by Scandinavian pathologist Dr. Pekka Laurén, the 

classification system has also served as a framework to help explain the molecular and 

genetic basis of gastric cancer.23,26–28 The Lauren Classification has clinically relevant 
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clinicopathologic correlations and has been demonstrated to be an independent prognostic 

factor.29–31  

The Lauren Classification defines gastric cancer as intestinal-type or diffuse type. Intestinal-

type adenocarcinoma is well differentiated with a preserved architecture of gastric glands. 

Intestinal-type cancers are known to have a more favorable prognosis, increasing incidence 

with age and undergoes hematogenous spread. Diffuse-type adenocarcinoma is 

undifferentiated by appearing disorganized with no glandular architecture on histology. 

These cancers are known to lack CDH-1 (ie. Epithelial Cadherin or E-Cadherin), occur at 

younger age, have higher rate of recurrence and are more aggressive leading to an 

increased mortality.16,30  

Intestinal-type gastric adenocarcinoma has been theorized to develop through a series of 

precancerous lesions. The ‘Correa Cascade’ was developed through histologic observation of 

the progression of gastritis to intestinal metaplasia to gastric cancer (Figure 1-1).32,33 The 

cascade proposes that chronic gastritis leads to the development of chronic atrophic 

gastritis due to the bacteria H. pylori or other environmental factors such as diet. Less 

commonly, chronic atrophic gastritis is caused by the T cell mediated disease Autoimmune 

Metaplastic Atrophic Gastritis (AMAG).34 Atrophic gastritis is characterized by a loss of 

normal gastric glands. Stomach pH rises due to the decreasing population of acid producing 

parietal cells. A decrease in ascorbic acid (Vitamin C) levels is also observed. In response to 

these changes, chief cells increase the secretion of gastrin resulting in mucosal 

proliferation.32,33 Hypochloridria and atrophic gastritis is also associated with a change in the 

gastric microbiome.35,36 Anaerobic bacteria populations proliferate, which results in the 

production of carcinogenic nitrosamines.13 Interestingly, acid lowering medications such as 

proton pump inhibitors (PPIs) have not been shown to increase gastric cancer risk even in 

H. pylori affected patients.37,38 Chronic atrophic gastritis eventually leads to the 

development of intestinal metaplasia.  

Intestinal metaplasia is a preneoplastic lesion identified by the presence of intestinal cells 

within the gastric mucosa such as mucus-secreting goblet cells.39 Immunohistochemistry 

(IHC) also identifies small intestine digestive enzymes such as sucrase.32 Intestinal 

metaplasia exists within a spectrum of disease ranging from complete type (Type I) 

characterized by small intestine epithelial cells to the higher risk incomplete type (Type II 

and Type III) characterized by colonic epithelial cells.34 Metaplasia is associated with 

approximately 80% of intestinal-type gastric cancer and even up to 60% of diffuse-type 
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cancer, though the association with diffuse-type cancer is variable and incompletely 

understood.40,41  

 

 

Figure 1-1 The ‘Correa Cascade’ demonstrating the pathogenesis of gastric cancer. (From Busuttil RA, 
Boussioutas A. Intestinal metaplasia: A premalignant lesion involved in gastric carcinogenesis. J 

Gastroenterol Hepatol. 2009;24(2):193-201.) 

Intestinal metaplasia may represent a “point of no return” in the cascade as demonstrated 

by the discovery that H. pylori eradication does not prevent the progression to cancer in 

some patients with metaplasia.42 Unfortunately gastric intestinal metaplasia is 

asymptomatic and can only be diagnosed via endoscopic biopsy at this time. A number of 

biomarkers including p53 and markers of microsatellite instability have been investigated 

and thus far they have failed to reliably identify intestinal metaplasia and which lesions may 

progress to cancer.39  

Dysplasia is the final non-malignant lesion identified in the Correa Cascade. It is 

characterized by neoplastic type cell structure and architecture that is still confined by the 

basement membrane.32 The degree of dysplasia may be specified as G1 (mild), G2 

(moderate) or G3 (severe). In a multicenter prospective study containing one hundred 

twelve patients, the progression of mild, moderate and severe dysplasia to cancer was 21%, 

33% and 57% respectively.43  
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1.4 Etiology 

1.4.1 Genetic causes 

The majority of gastric cancer is sporadic with 1-3% of gastric cancers arising from 

hereditary conditions. Genetics still play an appreciable role as 10% of gastric cancer can be 

attributed to familial aggregation. Gastric cancer risk is three-fold in individuals with a first-

degree relative affected by gastric cancer. Genomic study has implicated single nucleotide 

polymorphisms (SNPs) and other genetic mutations to the familial and population based risk 

of gastric cancer.13 Genetic variation of the Prostate Stem Cell Antigen (PSCA)44 and Mucin 1 

(MUC1)45 genes increases susceptibility to gastric cancer. Among the high risk Japanese 

population these genotypes occur simultaneously in 56% of the population and as a single 

mutation in approximately 95% of the population.46  

The majority of familial gastric cancer results from three syndromes: hereditary diffuse 

gastric cancer (HDGC), gastric adenocarcinoma and proximal polyposis of the stomach 

(GAPPS) and familial intestinal gastric cancer (FIGC). The specific genetic causes for GAPPS 

and FIGC are not yet explained. Gastric adenocarcinoma and proximal polyposis of the 

stomach is inherited in an autosomal dominant pattern and exhibits incomplete 

penetrance.47 Autosomal dominant inheritance also likely explains FIGC transmission.48  

Other notable inherited conditions that are known to cause gastric cancer, albeit less 

frequently, include Li-Fraumeni syndrome, Lynch syndrome/hereditary nonpolyposis 

colorectal cancer (HNPCC), Peutz-Jeghers syndrome (PJS) Cowden syndrome and familial 

adenomatous polyposis (FAP).13,49 Germline mutations accounting for these diseases occur 

in well-known tumor suppressor genes and microsatellite instability markers including tumor 

protein p53 (p53), MutL homolog 1 (MLH1), serine/threonine kinase 11 (STK11), 

phosphatase and tensin homolog (PTEN) and adenomatous polyposis coli (APC). 

Hereditary diffuse gastric cancer is a well characterized cause of stomach cancer. Central to 

the formation of HDGC is impaired cellular adhesion due to the loss of E-cadherin (CDH1 

gene). The disease is inherited in an autosomal dominant fashion and exhibits high 

penetrance. The risk of gastric cancer by age 80 in patients with HDGC is greater than 80% 

and the average age of diagnosis is age 38.50,51 HDGC is associated with an increased risk of 

lobular breast cancer, which is also characterized by the loss of E-cadherin.  

E-cadherin is a homodimeric transmembrane cellular adhesion protein which interacts with 

catenins to form cellular adhesion complexes.52 Carriers of the CDH1 mutation responsible 
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for HDGC lack one allele for the CDH1 gene. The second allele may become inactivated via 

mutation or loss of heterozygosity but is most commonly inactivated by promoter 

methylation.53,54 HDGC progresses from non-neoplastic tissue to an in situ signet ring cell 

carcinoma with ‘pagetoid’ spread prior to forming an invasive signet-ring cell carcinoma.55 

Although the cytotoxin associated gene (CagA) positive H. pylori may affect the function of 

E-cadherin, H. pylori does not lead to HDGC.56 Similarly, the majority of diffuse gastric 

cancer is not due to HDGC, but is associated with a sporadic loss in E-cadherin.57 

A signet ring cell is identified on histology by the absence of cytoplasmic and nuclear 

contents (Figure 1-2). This is the result of the increased production of intracellular mucin, 

which pushes the intracellular contents to the periphery of the cell. Signet ring cell 

carcinoma has long been associated with a worse prognosis and a higher propensity for 

peritoneal carcinomatosis.58 This progression makes the early diagnosis and screening of 

these individuals difficult and thus prophylactic gastrectomy is a reasonable treatment 

option.16  

 

Figure 1-2 Representative images of signet ring cells. A. In situ signet ring cell carcinoma. B. Signet ring 
cells demonstrate ‘pagetoid spread’ along the basement membrane. Note the large vacuole of mucin 

displacing the nucleus to the periphery of the cell (arrows). C. Invasive signet ring cell carcinoma with 
signet ring cells present beyond the basement membrane in the lamina propria. (From Fitzgerald RC, 
Hardwick R, Huntsman D, et al. Hereditary diffuse gastric cancer: updated consensus guidelines for 

clinical management and directions for future research. J Med Genet. 2010;47(7):436-444.) 

1.4.2 Environmental 

Modifications of environmental factors for gastric cancer have contributed significantly to the 

worldwide decline in gastric cancer incidence. The World Health Organization (WHO) 

A B C 
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identifies environmental factors to be essential in the primary prevention strategy for gastric 

cancer.  

Foods preserved by salting or pickling and all meats increase the risk of gastric cancer.13 

Conversely, the consumption of fresh fruits and vegetables as well as the Mediterranean 

diet composed of legumes, seeds and olive oil is protective against cancer. Decreased 

incidence in gastric cancer is thus intimately related to the introduction of refrigeration in 

developed nations.13,59 The carcinogenic effects of tobacco smoke also applies to gastric 

cancer. Specifically, the molecular carcinogenesis related to CagA H. pylori is potentiated by 

smoking. Obesity has been shown to be a risk for all gastric cancer types60 and the 

International Agency for Cancer Research identified obesity as a cause of gastric cardia 

cancer only.61 Gastric cancer is influenced by both low and high socioeconomic status. 

Increased gastric cancer has been attributed to lower socioeconomic status16 and increased 

cardia cancer is identified specifically in those with higher socioeconomic class.22  

1.4.3 Helicobacter pylori 

Helicobacter pylori is a spiral shaped gram-negative bacterium that has been recognized on 

human gastric mucosa for over 100 years. It was first designated as Campylobacter pylori 

but was subsequently renamed Helicobacter pylori in 1989.62 By the early 1990s significant 

evidence implicated H. pylori as a cause for gastric adenocarcinoma.63  

The International Agency for Research on Cancer has designated H. pylori as a Group 1 

carcinogen64 as nearly all non-cardia cancer development may stem from H. pylori 

infection.62 H. pylori has a global prevalence of approximately 50% making it the most 

common chronic infection worldwide.65 The acquisition of infection often occurs in early 

childhood and persists until eradication.13 Given the prevalence and implications for gastric 

cancer, H. pylori represents an intriguing target of research, screening programs and 

treatment for gastric cancer.  

H. pylori has adapted to live in the low acidic environment present on gastric mucus-

secreting cells and mobilize within the mucous layer using their distinct unipolar flagella. 

The bacteria are also able to enhance their micro-environment with the enzyme urease, 

which hydrolyzes urea with a concurrent release of ammonia that neutralizes stomach 

pH.62,66 Clinically relevant pathogenesis of H. pylori and gastric cancer resides primarily 

within the genes CagA and vacuolating cytotoxin (VacA).67 Specifically, the VacA s1/m1 

strain and CagA genes are associated with the Correa cascade and the progression of 
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atrophic gastritis to gastric cancer.25,60 VacA is contained in all H. pylori, however, it is not 

expressed unless the CagA pathogenicity island is co-expressed. VacA and CagA result in 

increased tissue inflammation and cytokine release in the gastric mucosa.69 An important 

discrepancy among VacA strains then influences the underlying pathophysiology of gastric 

disease. In patients infected with CagA-positive VacA s1m1 H. pylori the resultant 

inflammation results in the development of preneoplastic lesions and progression to gastric 

cancer in keeping with the Correa cascade. Alternatively, CagA-negative VacA s2m2 

expression results in gastric inflammation leading to non-atrophic corpus sparing gastritis 

and a higher risk of forming duodenal ulcers. This development of duodenal ulcers has 

actually been shown to have a decreased risk of gastric cancer.70,71 

The effect of H. pylori eradication and the resulting decrease in gastric cancer has yielded 

mixed results. Meta-analyses have demonstrated that H. pylori treatment reduces gastric 

cancer incidence72 while other data demonstrate that the incidence of metachronous gastric 

cancer is unchanged.73,74 In a robust systematic review and meta-analysis published in 

2016, Lee et al. demonstrated that H. pylori eradication reduced the incidence of gastric 

cancer across all levels of risk, however maximal benefit was in patients with asymptomatic 

infection and those treated after endoscopic resection of gastric cancer.75 Evidently, the 

timing of eradication is important as H. pylori eradication does not prevent the progression 

to cancer in some patients who have already established metaplasia.42  

The effect of H. pylori on causing gastric cancer at the population level is incompletely 

understood. Various epidemiological studies have demonstrated discrepancy between 

gastric cancer incidence and H. pylori infection.65 Only a small number of individuals 

infected with H. pylori develop gastric cancer and despite regional variability in gastric 

cancer incidence, the incidence of H. pylori is relatively uniform70,76,77 Modern classification 

systems have failed to designate a unifying molecular and genomic classification of H. pylori 

related cancer. On the genomic scale of gastric cancer other driver mutations and Epstein-

Barr virus (EBV) infection have thus far been determined to represent significant sub-types 

of gastric cancer.26,57  This effect is likely multifactorial in nature and is related to host, 

bacterial and environmental factors. Ongoing evaluation of H. pylori in epidemiological, 

clinical and basic science research is still required to fully understand the relationship of this 

bacteria to human disease. 
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1.4.4 Epstein-Barr Virus 

Epstein-Barr virus is a relevant contributor to gastric cancer pathogenesis. Approximately  

10% of gastric cancer specimens are infected with EBV.78  Association of EBV infection with 

clinicopathologic indices and prognosis is well documented.79 Despite the growing 

understanding of the molecular associations between EBV infection and gastric cancer a 

precise mechanism of pathogenesis is currently lacking.80,81  

The molecular classification for gastric cancer has reinforced this notion. In The Cancer 

Genome Atlas (TCGA) project, EBV associated gastric cancer stratified into one of four 

notable subtypes of gastric cancer. They found that EBV related tumors occur most 

frequently in the fundus and body of the stomach and that the major mutational driver was 

related to DNA hypermethylation via CpG island methylator phenotypes.82 When assessed at 

a genomic level, the TCGA classification of EBV-type gastric cancer was also found to have 

the best recurrence free survival and overall survival.83 The Asian Cancer Research Group 

(ACRG) also demonstrated the significance of EBV-positive gastric cancer and associated 

mutations. However, ACRG did not discover an EBV-type gastric cancer group but instead 

found EBV related tumors to exist within the microsatellite stable Tumor Protein 53 positive 

(MSS TP53+) subtype.26 

Improvement in survival is not fully understood but high prevalence of immune cells in 

proximity to the growth of EBV related cancer likely plays a role. The ACRG characterized 

EBV related tumors to have an increased cytokine signature.26 The side-by-side growth of 

cancer with immune cells influenced by EBV may enhance the ability of native CD8 T 

lymphocytes to eradicate EBV related gastric cancer.79 The molecular analysis of EBV related 

gastric cancer also suggests that EBV infection may relate to more favourable molecular 

mutations. For example, EBV positive gastric cancer has been shown to have higher 

expression of Phosphatidylinositonol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha 

(PIK3CA), programmed cell death-ligand 1 (PD-L1) and programmed cell death-ligand 2 

(PD-L2) expression.84,85 The immunogenic profile of EBV related cancer makes it an 

intriguing target for immunotherapy with medications such pembrolizumab, which inhibits 

the interaction of PD-1 receptor to its ligand PD-L1/L2.  
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1.5 Presentation and Diagnosis 

1.5.1 Clinical presentation 

Gastric cancer is difficult to diagnose, especially in lower incidence regions. Early symptoms 

are often attributed to more common diseases such as peptic ulcer disease or GERD. Most 

common symptoms on presentation include abdominal pain, weight loss, nausea, anorexia 

and early satiety.16,86 Due to the difficulty in diagnosis, gastric cancer is often diagnosed at 

an advanced stage.87 Advanced disease may present with gastric outlet obstruction, 

dysphagia, bleeding or ascites. Anemia may develop from acute or chronic bleeding. 

Systemically advanced disease is also associated with cachexia, malaise and weakness.88  

Focused physical exam and history is required. Approximately 25% of patients have 

previous history of gastric ulcer.76 Family history may reveal hereditary gastric cancer 

syndromes or other genetic risks for gastric cancer. Metastatic disease may present on 

physical exam in one of five anatomic locations. Lymph node basins include the left 

supraclavicular node (Virchow’s node) and left axillary node (Irish’s node). Palpable 

metastases may present as a peri-umbilical bulge (Sister Mary Joseph nodule), via pelvic 

examination as ovarian deposits (Krukenberg tumour) or by digital rectal exam as anterior 

peritoneal metastasis (Blumer shelf).16 Peri-gastric lymph nodes are not palpable.  

 
1.5.2 Diagnostic investigation and staging 

Investigation is warranted when appropriate suspicion is achieved to suspect the potential 

diagnosis of gastric cancer. Laboratory investigation includes basic complete blood count, 

electrolyte evaluation, coagulation tests and liver enzyme and function tests. The primary 

diagnostic modality of choice is flexible upper endoscopy.16,87 This method is both 

diagnostic, and in cases of early gastric cancer and dysplastic lesions, therapeutic. 

Endoscopic appearance of masses, ulcerations, or suspicious lesions warrant biopsy. 

Endoscopic biopsies are then examined by a pathologist to determine the presence of 

gastric cancer. Other modalities of diagnosis include computed tomography (CT), positron 

emission tomography CT (PET CT), barium enhanced abdominal radiography or magnetic 

resonance imaging (MRI). Often these preliminary investigations result in the patient being 

referred for endoscopy to confirm and characterize the presence of disease.  

Ideally, appropriate staging investigations are required prior to treatment. Systemic staging 

assesses for lung and abdominal metastasis. Chest and abdominal imaging is achieved with 
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a venous contrast enhanced CT.16 Another approach is to use PET CT, however it is only 

indicated in individuals with PET avid tumours, which comprises only about 50% of gastric 

cancer tumours. Gastric cancer has a propensity for peritoneal metastasis. Peritoneal 

metastasis, also known as carcinomatosis, is difficult to identify on CT (sensitivity = 51%).16 

Approximately 30% of gastric cancer patients with negative cross-sectional imaging 

presents with peritoneal carcinomatosis.89,90 Thus, in this population a staging laparoscopic 

evaluation of the abdominal cavity, biopsy of suspicious lesions and peritoneal washing 

cytology is warranted. Locoregional staging of depth of tumor invasion and perigastric 

lymph node involvement may be assessed via endoscopic ultrasound (EUS). Studies have 

demonstrated that EUS accuracy of diagnosis ranges from 46.2 – 80% for T stage and 66.7 

– 85% for N stage.16,87,91 T and N stages are discussed below (Pathologic staging of gastric 

cancer).  

1.5.3 Screening 

The effectiveness and affordability of gastric cancer screening programs is currently 

dependent on the regional incidence of disease. Since the introduction of Japanese gastric 

cancer screening programs in the 1970s, the mortality of gastric cancer has declined 50%.16 

In appropriate patient populations and high incidence regions both endoscopic and  

Table 1-1 Gastric cancer TNM stage definitions per AJCC/UICC eight edition 
Primary tumor (T)  
T category T criteria 
TX Primary tumor cannot be assessed 
T0 No evidence of primary tumor 
Tis Carcinoma in situ: Intraepithelial tumor without invasion of the 

lamina propria, high-grade dysplasia 
T1 Tumor invades the lamina propria, muscularis mucosae, or 

submucosa 
     T1a Tumor invades the lamina propria or muscularis mucosae 
     T1b Tumor invades the submucosa 
T2 Tumor invades the muscularis propria 
T3 Tumor penetrates the subserosal connective tissue without invasion 

of the visceral peritoneum or adjacent structures 
T4 Tumor invades the serosa (visceral peritoneum) or adjacent 

structures 
     T4a Tumor invades the serosa (visceral peritoneum) 
     T4b Tumor invades adjacent structures/organs 
Regional lymph 
nodes (N) 

 

N category  N criteria 
NX Regional lymph node(s) cannot be assessed 
N0 No regional lymph node metastasis 
N1 Metastasis in one or two regional lymph nodes 
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N2 Metastasis in three to six regional lymph nodes 
N3 Metastasis in seven or more regional lymph nodes 
     N3a Metastasis in 7 to 15 regional lymph nodes 
     N3b Metastasis in 16 or more regional lymph nodes 
Distant metastasis 
(M) 

 

M category M criteria 
M0 No distant metastasis 
M1 Distant metastasis  

biomarker screening with serum pepsinogen have been demonstrated to be cost 

effective.92,93 Recently, recommendations advocating the utility of gastric cancer screening 

programs in high-risk American Korean patients were proposed.94 In this high-risk 

population, patients of Korean descent with atrophic gastritis, intestinal metaplasia or a 

family history of gastric cancer may benefit from early screening programs, however, 

whether this would improve overall survival is currently unknown.  

1.6 Pathologic staging of gastric cancer 

Formal clinical and pathologic gastric cancer classification systems have become essential to 

the prognosis and treatment of cancer. The American Joint Committee on Cancer (AJCC) 

and Union for International Cancer Control (UICC) is the most relevant staging system for 

gastric cancer worldwide.16,95,96  Other staging systems include the WHO Classification of 

Tumours of the Digestive System97, which stratifies stomach adenocarcinoma into papillary, 

tubular, mucinous, mixed carcinoma, and signet ring cell/poorly cohesive.24 The utility of the 

WHO classification system is clinically limited16 and thus the AJCC/UICC system and 

complimentary systems will be outlined. 

The AJCC/UICC system stages cancer according to depth of tumor invasion (T stage), 

burden of lymph node disease (N stage) and the presence or absence of metastasis (M 

stage) (Table 1-1). Depending on the composition of TNM findings, cancer stage is then 

defined as Stage I-IV disease in which stage IV represents the most advanced stage of 

cancer (Table 1-2). The current eighth edition of the classification system was released in 

2017. The formulation of newest edition was based off the International Gastric Cancer 

Association staging project in which the majority of cases were Japanese and Korean 

(84.8%) as opposed to western (8.8%). Additional studies validating the system in patients 

from the United States demonstrated 5 year overall survival rates ranging from 74.2% in 

Stage I disease to 6.7% in Stage IV disease.95,96 
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Table 1-2 Gastric cancer prognostic stage group allocation per AJCC/UICC eighth edition 
When T is… And N is… And M is… Then the stage group is… 
Tis N0 M0 0 
T1 N0 M0 I 
T2 N0 M0 I 
T1 N1, N2, or N3 M0 IIA 
T2 N1, N2, or N3 M0 IIA 
T3 N0   M0 IIB 
T4a N0 M0 IIB 
T3 N1, N2, or N3 M0 III 
T4a N1, N2, or N3 M0 III 
T4b Any N M0 IVA 
Any T Any N M1 IVB 

 

1.7 Management 

Approaches to the treatment of gastric cancer worldwide is heterogenous. Regardless, the 

mainstay of therapy typically consists of a combination of surgery, chemotherapy, 

radiotherapy and molecular therapy. Over the last two decades gastric cancer treatment has 

generally become more uniform internationally. Discrepancy between regional treatment 

can be summarized by the more frequent use of neoadjuvant chemotherapy in the west 

versus primary gastric resection followed by S-1 chemotherapy in the east.16  

1.7.1 Surgery 

Surgical treatment of gastric adenocarcinoma is largely dependent on cancer stage. For 

example, early gastric cancer may be treated with local endoscopic resection while 

advanced tumors may not be surgical candidates.  

Early gastric cancer defined as T1a tumors which invade no deeper than the submucosa 

may be treated with endoscopic submucosal dissection (ESD) or endoscopic mucosal 

resection (EMR). Prior to endoscopic therapy, endoscopic ultrasound is performed to ensure 

appropriate patient selection.98 Additional high-risk criteria have been developed for 

endoscopic therapy to ensure adequate treatment and low disease recurrence. Endoscopic 

therapy is contraindicated if tumor extends beyond mucosa, lymphovascular invasion is 

present, tumour is larger than 2 cm, ulceration is present or histopathology demonstrates 

undifferentiated cancer.99 Using these criteria, retrospective data from Asia demonstrated 

no disease-specific mortality, 77% complete resection (R0) and 6% recurrence rate with 39 

month-median follow up.100 If R0 resection is achieved then generally no additional 
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chemotherapy or radiation is required. Recently, criteria for endoscopic therapy has been 

expanded101 with similar recurrence rates between absolute and expanded criteria.102    

Tumours invading the gastric submucosa (T1b) must be treated with abdominal surgery and 

either total or sub-total gastrectomy depending on tumor location. These tumours may 

proceed directly to surgery without prior neoadjuvant therapy.103 Once tumour invasion 

reaches the muscularis propria (T2) neoadjuvant chemotherapy and subsequent surgery is 

recommended if possible. Locally advanced gastric cancer represents a therapeutic 

challenge, requiring multidisciplinary treatment consideration. In appropriately selected 

patients, surgery may be beneficial. In particular, neoadjuvant chemotherapy may be used 

to decrease tumour burden to allow a R0 resection.16  The presence of metastasis including 

peritoneal carcinomatosis is almost universally not treated with curative intent surgery. 

Surgery can play a role however in palliation for symptom control.  

Figure 1-3 Lymph node stations of the stomach according to the Japanese Gastric Cancer Association. 
(Adapted from Sano T, Kodera Y. Japanese classification of gastric carcinoma: 3rd English edition. 

Gastric Cancer.) 

Significant debate regarding the required extent of lymph node resection has resulted in 

multiple large randomized control studies.104–106 Lymphadenectomy for gastric cancer can be 

classified broadly into D1 and D2 resections. A formal D1 resection includes the perigastric 
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nodes, which correspond to the Japanese lymph node stations 1 to 7 (Figure 1-3).107  A D2 

resection includes the perigastric nodes as well as nodes along the hepatic, left gastric, 

splenic and celiac arteries and the splenic hilum. The culmination of these studies resulted 

in preference given to the more extensive D2 resection over D1 resection.16 In an 

experienced surgeon’s hands, D2 resection with splenic preservation results in lower 

recurrence, increased disease-free survival but no difference in overall survival and does not 

significantly contribute to additional morbidity and mortality. Furthermore, accurate nodal 

staging has prognostic implications and thus 15 nodes are recommended in resected 

specimens so appropriate cancer staging can occur.96  

1.7.2 Chemotherapy and chemoradiotherapy 

The development of clinically beneficial chemotherapy regimens for gastric cancer has been 

challenging. However, data now demonstrate a variety of efficacious treatment regimens. 

Chemotherapy may be delivered after surgery (adjuvant chemotherapy) or before 

(neoadjuvant chemotherapy) and after.  

The combination of chemotherapy and radiation therapy has demonstrated improved 

outcomes for gastric cancer. External beam radiotherapy and 5-fluorouracil was investigated 

in the Southwest Oncology Group (9008/INT-0116) randomized control trial (RCT).108 This 

combination therapy was shown to improve three-year overall survival (41% versus 50%) 

and recurrence free survival (41% versus 64%). However, inadequate lymph node resection 

and inability to complete treatment due to toxicity confound this approach. 

Chemoradiotherapy treatment is primarily performed in oncology centers from the United 

States.   

Various approaches to chemotherapy treatment have been investigated. Relevant 

combinations with clinical benefit include capecitabine plus oxaliplatin. In Asia, S-1 

chemotherapy, consisting of tegafur (prodrug of 5-fluorouracil), 5-chloro-2, 4-

dihydropyridine, and oxonic acid is a common treatment protocol.109 The concept of 

neoadjuvant chemotherapy was developed in an attempt to improve patient tolerance and 

the need to down-stage locally advanced gastric tumors to achieve a R0 resection.16,87 The 

MAGIC protocol consisting of epirubicin, cisplatin and 5-fluorouracil (ECF) delivered in three, 

three-week cycles preoperatively and postoperatively was a prominent neoadjuvant 

protocol. In a clinical trial, the MAGIC protocol resulted in improved preoperative treatment 

tolerance and decreased rate of recurrence, decreased metastasis and an improved 5-year 

overall survival compared to surgery alone.110  
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The most recent advancement in neoadjuvant chemotherapy is the FLOT protocol developed 

from the Arbeitsgemeinschaft Internistische Onkologie group. This protocol consists of 5-

fluorouracil, leucovorin, oxaliplatin and docetaxel delivered in three, three week 

preoperative and postoperative cycles.111 In a Phase II/III randomized control trial FLOT 

was compared to ECF (MAGIC) and epirubicin, cisplatin, and capecitabine (ECX). This trial 

demonstrated that FLOT results in higher rates of complete pathologic regression with a 

reasonable side-effect profile compared to ECF/ECX. In 2019, results of the Phase III trial 

established that FLOT significantly improved median overall survival (50 versus 35 months) 

and estimated five-year overall survival (45 versus 36%).112,113 As a result of these findings, 

FLOT chemotherapy is now the primary treatment regimen used by our center, the Cross 

Cancer Institute at the University of Alberta.  

1.7.3 Targeted molecular therapy and immunotherapy 

Molecular therapy is a relatively new oncologic treatment modality. Advancements in 

molecular and genetic biology have resulted in the characterization and understanding of 

numerous driver mutations, genes, proteins and immune factors related to cancer 

pathogenesis.114,115  New targeted therapy against specific molecules and immunotherapy 

designed to enhance or activate the host immune response to cancer has shown remarkable 

efficacy in a variety of cancers. As a result of these discoveries, the hope for personalized 

cancer treatment is expanding to gastric cancer therapy.  

Numerous clinical trials investigating novel molecular therapy and immunotherapy 

approaches for gastric cancer are underway or completed. Thus far the investigation of 

these novel treatments has been mostly restricted to advanced gastric cancer.116 The 

application of effective molecular therapy has proven difficult and even less evidence exists 

for first-line molecular therapy. A 2016 Cochrane review found that first-line molecular 

therapy for gastric cancer may have a small effect on survival, likely increases the risk of 

adverse events and that quality of evidence is low or very low.117   

In the Avastin in Gastric Cancer (AVAGAST) study, bevacizumab, a vascular endothelial 

growth factor-A (VEGF-A) inhibitor, was used in conjunction with capecitabine and cisplatin. 

This phase III RCT failed to improve median overall survival. Interestingly, a sub-group 

analysis demonstrated that bevacizumab therapy revealed improved overall survival in non-

Asian patients.118 The Erbitux in Combination With Xeloda and cisplatin in Advanced 

Esophagogastric Cancer (EXPAND) trial failed to improve progression free survival in 

metastatic gastric cancer patients treated with cisplatin, capecitabine and the epidermal 
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growth factor receptor (EGFR) inhibitor cetuximab.119 Inhibition of the mammalian target of 

rapamycin (mTOR) protein kinase via everolimus also failed to improve overall survival in 

the Gastric Anti-Tumor Trial with everolimus (GRANITE-1) phase III trial.120 Gastric cancer 

requires additional biomarker research as many trials have demonstrated limited or no 

improvement in outcomes despite targeted treatment of these important molecular drivers 

of cancer. 

Effective molecular therapy for gastric cancer does exist. Targeted therapy inhibiting human 

epidermal growth factor receptor 2 (HER2) and vascular endothelial growth factor receptor-

2 (VEGFR-2) has yielded promising results in clinical trials. The evaluation of anti-HER2 

treatment as a first-line therapy for gastric cancer is represented by two trials: Trastuzumab 

for Gastric Cancer (TOGA)121 and Lapatinib Optimization Study in the HER2-positive Gastric 

Cancer (LOGiC).122 Labatinib (small molecule inhibitor of epidermal growth factor type 1 and 

HER2) monotherapy and labatinib plus capecitabine and oxaliplatin failed to show 

improvement in overall survival and treatment response.122 However, the TOGA trial 

demonstrated a statistically significant improvement in gastric cancer median overall 

survival when trastuzumab (anti-HER2 monoclonal antibody) was administered in 

combination with chemotherapy.121 Treatment targeting VEGFR-2 was evaluated in 

the RAINBOW123 trial and the REGARD trial.124 The RAINBOW trial established that the 

VEGFR-2 antagonist ramucirumab in combination with paclitaxel versus paclitaxel plus 

placebo resulted in statistically significant increases in overall survival (median 9.6 months 

vs 7.4 months) for progressive advanced gastric or gastroesophageal junction (GEJ) 

cancer.123 Ramucirumab was the first targeted therapy to be effective as a single agent as 

demonstrated in the REGARD trial.124 Patients with progressive gastric or GEJ cancer 

following first-line chemotherapy were treated with ramucirumab or placebo. Treatment 

with ramucirumab yielded a median overall survival of 5.2 months versus 3.8 months in the 

placebo arm. Besides increased hypertension with anti-VEGFR-2 treatment, adverse events 

were similar between both groups. 

Immunotherapy enhances the host immune response to eradicate cancer cells. The immune 

response may be augmented by activating tumor specific cytotoxic T cells, preventing 

immune cell exhaustion and inhibiting the ability of cancer cells to evade or diminish the 

immune response. In gastric cancer, the majority of immunotherapy evidence exists for 

checkpoint inhibition via blockade of programmed cell death-1 (PD-1) and cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4). Cancer cells that present programmed cell death 

ligand 1 (PD-L1) bind to PD-1 expressed on host immune T cells, which then causes a 
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downregulation in the host immune response. Similarly, CTLA-4 is expressed on our own 

immune cells and functions as a “brake” by downregulating T cell activation.125  

In the phase Ib Keynote-012 and phase II Keynote-059 trial, pembrolizumab (anti-PD-1 

monoclonal antibody) was used as a third-line medication in progressive advanced gastric 

cancer.126,127 Keynote-059 found that the anti-PD-1 monotherapy response rate was 11.6% 

and median response duration was 8.4 months with a reasonable side-effect profile.127 The 

combination of PD-1 and CTLA-4 inhibition was evaluated in the CheckMate-032 trial.128 In 

this trial, third line esophagogastric therapy of nivolumab (anti-PD-1 monoclonal antibody) 

and nivolumab plus ipilimumab (anti-CTLA-4 antibody) was found to have an objective 

response rate of 12% for nivolumab only and 8-24% for combined therapy groups. The 12-

month progression-free survival rates were 8% for nivolumab only and 10-17% for 

combined therapy.  Furthermore, both trials demonstrated that therapy was effective in 

both PD-L1 positive and negative tumours.127,128 In a Phase III trial, first-line 

pembrolizumab as monotherapy or in combination with chemotherapy was found to be non-

inferior to chemotherapy alone in advanced gastric cancer patients.129 Although 

immunotherapy did not provide significant improvement in overall survival or progression-

free survival, patients treated with pembrolizumab experienced fewer adverse events. 

The three clinically relevant targeted treatment modalities in 2018 are trastuzumab (anti-

HER2), ramucirumab (anti-VEGFR2) and pembrolizumab (anti-PD-1). In 2017 the FDA 

approved the use of pembrolizumab for gastric cancer due to results of the Keynote-059 

trial and the discovery that solid tumours with mutations resulting in mismatch repair 

deficiency (dMMR) were more susceptible to anti-PD-1 therapy.127,130,131 The National 

Comprehensive Cancer Network (NCCN) guidelines for the systemic treatment of 

unresectable locally advanced, recurrent or metastatic disease list trastuzumab as a first-

line treatment in combination with capecitabine/fluorouracil and cisplatin in tumours that 

overexpress HER2.103 Ramucirumab may also be used as a second-line or subsequent 

therapy in combination with paclitaxel or as monotherapy. Progress in molecular therapy of 

gastric cancer is possible and has introduced modifications to how gastric cancer is now 

treated. 
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1.8 Methods to Advance Personalized Medicine in Gastric Cancer 

1.8.1 Predictive, diagnostic, therapeutic and prognostic biomarkers in cancer 

With the rapid proliferation of molecular and genetic analyses of cancer, increasing numbers 

of potential biomarkers are being discovered. An adherence to nomenclature is important in 

order to effectively characterize novel biomarkers. The Biomarkers Definition Working 

Group, composed of leaders in the National Institutes of Health, the Food and Drug 

Administration and subject experts, define a biomarker as a characteristic that is objectively 

measured and evaluated as an indicator of normal biological processes, pathogenic 

processes, or pharmacologic responses to a therapeutic intervention.132,133 

Biomarkers may be further classified as predictive, prognostic, diagnostic and/or 

therapeutic.116,134,135 A predictive biomarker is able to determine which patients may 

respond to a particular therapy. Prognostic markers may provide suggestions for further 

treatment as well as provide information regarding survival and particular therapy 

outcomes. A therapeutic biomarker is a potential molecular or immunologic target for 

treatment. Finally, a diagnostic biomarker may provide information regarding the presence 

of cancer or lesions with a risk of forming cancer.  

1.8.2 Immunohistochemistry based biomarkers 

Using immunohistochemistry (IHC) to identify the expression and localization of proteins in 

tumours is a proven method to discover biomarkers. In some cases, a handful of IHC 

markers can reasonably recapitulate complex molecular subtypes as demonstrated by the 

relationship between the Predication Analysis of Microarray 50 (PAM50) subtypes in breast 

cancer and the expression of estrogen, progesterone and HER2 proteins.136 This technique 

also provides predictive and therapeutic guidance given that IHC spatially localizes protein 

expression within the tumour or cancer cell. For example, the allocation of HER2 therapy is 

contingent on the presence of adequate HER2 expression that must be present on the cell 

membrane.137   

On April 18, 2022, the PubMed search “immunohistochemistry and biomarker and gastric 

cancer” provided over 5000 results. Despite the extensive investigation into IHC biomarkers 

in gastric cancer, clinically relevant use is limited mainly to HER2 and Mismatch Repair 

Protein expression.137,138 Recent utility of IHC has been demonstrated in characterizing 

tumour infiltrating lymphocytes (TILs).139–141 Lymphocytes are comprised of adaptive and 

innate immune cells including T-lymphocytes, B-lymphocytes, monocytes, eosinophils, 
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basophils and neutrophils, respectively. These cells significantly contribute to tumour 

immune response via direct killing or immune response coordination.142,143 

Research of TILs has demonstrated that the story is more complex than the mere presence 

or absence of immune cells. Instead, the populations or mixture of different immune cell 

types and their location is proving to be more important.143 This is highlighted by the 

characterization of “Hot” and “Cold” tumours. A “Hot” tumour contains TILs that are 

functionally active against the tumour. A “Cold” tumour lacks TILs. Cancer is also able to 

prevent access to the immune system as observed in “Excluded” TILs. In this case, immune 

cells are unable to penetrate the tumour despite appropriate recruitment of immune cells by 

the host immune system to the tumour location. Lastly, “Immunosuppressed” TILs may be 

present within a tumour but are unable to exert a meaningful effect. This phenomenon is 

related to the concept of immune exhaustion and immune checkpoint blockade.144 Tumours 

with “Immunosuppressed” TILs are potential candidates for immune checkpoint blockade 

inhibitor therapy, which acts to remove the break of checkpoint inhibition and unleash the 

cytotoxic potential of the immune cells already present in the tumour. The Immunoscore in 

colon cancer uses IHC to identify CD3+ and CD8+ TILs.141 Quantification of the presence of 

CD3+ and CD8+ T cells in combination with their spatial location provides a robust 

prognostic indicator. To date, the Immunoscore is limited to colon and rectal cancer and 

research on TILs within gastric cancer is comparatively limited.  

The following sections describe the molecules we investigate using IHC and their relevance 

to gastric cancer pathology.  

1.8.2.1 Epithelial Cadherin  

Epithelial cadherin, also known as E-cadherin is encoded by the CDH1 gene located on 

chromosome 16q22.1. This transmembrane homodimeric protein is an integral calcium-

dependent adhesion molecule.52 It is arguably one of the most investigated molecules and is 

related to the development of a variety of cancers including gastric and breast cancer.  

In hereditary diffuse gastric cancer, autosomal dominant inheritance of a single CDH1 allele 

allows E-cadherin to function as a tumor suppressor protein. Individuals are then exposed to 

a high risk of cancer after subsequent knockout of the single inherited gene allele.54,55,145 

The single CDH1 allele is most commonly inactivated via promoter hypermethylation and 

results in approximately 80% chance of gastric cancer by age 80.50,51    
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Sporadic mutation of E-cadherin is more common. At least 50 percent of diffuse and 26 

percent of intestinal-type cancers contain a mutation in CDH1.145–147 The loss of cellular 

adhesion regulation allows diffuse gastric cancer to spread under the gastric mucosa as a 

non-invasive neoplasm prior to becoming clinically recognizable as an invasive cancer. In 

some cases diffuse gastric cancer encompasses the entirety of gastric stroma with the 

absence of mucosal alteration resulting in the clinical presentation of linitis plastica.148 

Dysregulation of cellular adhesion in diffuse gastric cancer is thus associated with a worse 

disease prognosis and increased metastasis.30  

Molecular classification has allocated loss of E-cadherin primarily with the Genomically 

Stable (GS) or microsatellite stable/epithelial-mesenchymal transition (MSS/EMT) variant of 

gastric cancer.26,82 Both the TCGA and ACRG found that these subtypes of gastric cancer 

possess a poor prognosis. The use of E-cadherin as both a prognostic and predictive target 

is intriguing given the importance of this molecule in the pathogenesis of gastric cancer.  

1.8.2.2 Galectin-3 

Galectin-3 is a 30 kDa protein encoded by the LGALS3 gene located on chromosome 14q21-

22.149 Galectin-3 belongs to a large family of lectin proteins, which all contain a 

carbohydrate recognition domain that binds β-galactoside. Molecular studies show that 

Galectin-3 specifically binds with IgE and that IgE binding is inhibited by galactose or 

lactose.150 The role of Galectin-3 in cancer is heterogenous and is dependent on cancer type 

and subcellular localization.151 For example, the function of Galectin-3 is known to vary 

depending on whether it expressed in the nuclei, cytoplasm, cell surface or secreted as an 

extracellular protein.152–154 This molecule has been implicated in a wide range of cellular 

processes including cell adhesion, apoptosis in immune cells, angiogenesis, tumorigenesis 

and inhibition of apoptosis in tumor cells.155–157 As a targetable protein, anti-Galectin-3 

drugs already exist in pre-clinical or clinical trials.158,159 

Galectin-3 is an intriguing biomarker due to its surface expression on macrophages and its 

association with M2 macrophage function and migration.160–162 Briefly, one mechanism of 

the innate immune response involves the migration of monocytes to a tumour. These 

monocytes undergo transformation to form tumour-associated macrophages (TAMs) that 

function as antigen presenting cells and provide regulation of the immune system via 

secretion of cytokines.163 Two principle TAM subpopulations have been characterized. The 

M1 macrophage exerts anti-tumour effects via tumour phagocytosis, antigen presentation 

and secretion of pro-inflammatory cytokines such as Tumour Necrosis Factor and 
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interleukin-6. The M2 macrophage promotes an immunosuppressed tumour 

microenvironment, but also facilitates tumour angiogenesis and invasion.164 In mouse 

models, increased Galectin-3 has been associated with the presence of M2 macrophages 

and subsequent tumour growth and angiogenesis.161,162 

The significance of Galectin-3 in gastric cancer is currently under debate. Galectin-3 has 

been suggested to contribute to the carcinogenic effect of H. pylori infection by prolonging 

cell survival and affecting intracellular signalling. A meta-analysis published in 2018 

consisting of eight studies involving 2093 patients with gastric cancer found that low 

expression of Galectin-3 was associated with a poor prognosis.165 Furthermore, low levels of 

Galectin-3 were associated with lymphatic invasion, greater tumour depth, poorer tumour 

grade and TNM stage. Of the eight included studies only 2 occurred in populations outside of 

Asia (United States and Brazil). Due to the variety of mechanisms and unknown predictive 

value, Galectin-3 remains a molecule of interest that requires additional characterization in 

gastric cancer.  

1.8.2.3 CD4 and CD8 

The two main populations of T lymphocytes are identified by their respective T-cell co-

receptor complexes CD4 or CD8. A CD4+ T cell generally functions to modulate and 

coordinate the immune response. CD4+ cells interact with peptide antigens presented on 

Major Histocompatibility Complex Class II receptors (MHC-II) by the antigen presenting cells 

(APCs). Depending on the peptide presented and the current cytokine milieu, CD4+ cells 

modulate their function into distinct subpopulations such as T-regulatory (Treg), Type 1 

Helper (Th1) and Type 2 Helper T cells (Th2). The primary effect of CD4+ cells is exerted by 

the secretion of numerous cytokines which may facilitate the recruitment of immune cells or 

regulate the activation or suppression of effector cells such as Natural Killer cells or CD8+ 

cells.  

Cytotoxic T cells are identified by the presence of the CD8 membrane receptor. CD8+ cells 

facilitate direct cell death via the introduction of cytotoxins into cells that express foreign 

peptide on MHC Class I (MHC-I). In a meta-analysis, increasing CD8+ TILs was found to be 

associated with improved overall survival and an improved anti-tumour response in the 

setting of immune checkpoint inhibitor therapy.166  

Avoiding immune destruction is a Hallmark of Cancer.167 Cancer evade cytotoxic T 

lymphocytes decreasing antigen presentation via downregulation of MHC-I.168 This 
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adaptation prevents cytotoxic T cell engagement with tumour cells due to their obligate 

requirement of antigen presentation on MHC-I. Evasion of growth suppression via p53 

mutations may also decrease CD8+ T cell infiltration.169,170 Cancer expression of immune co-

inhibitory molecules such as PD-L1 and CTLA-4 promote T cell exhaustion and encourage 

immunosuppressive responses from Treg cells.168,171 

Given the complexity of tumour immune response, IHC may not be well suited to 

characterize the milieu of immune subpopulations. However, at a simple level, we can 

leverage an accurate quantification of modulatory CD4+ cells and cytotoxic CD8+ cells. The 

success of the Immunoscore in colon cancer suggests that the characterization of TILs in 

gastric cancer is a useful endeavour. To date, the utility of TILs in predicting tumour 

response to neoadjuvant chemotherapy in gastric cancer has not been investigated.  

1.8.3 Three-dimensional cell culture (Organoid culture) 

1.8.3.1 Organoid culture - a valuable translational tool 

Traditional cell culture technique involves the growth of immortalized cancer cell lines on a 

2-dimensional (2D) petri dish. This technique provides a streamlined and reproducible 

method for in-vitro interrogation of cancer biology. Criticism of 2D cell culture mainly 

centres around its limited fidelity in recapitulating in-vivo tumour characteristics and drug 

response.172–174 Alternatives to 2D cell culture include xenograft models or patient-derived 

xenograft models, in which human cancer cells from cell lines or primary tumours are grown 

within a mammalian model such as a mouse.175 The development of xenograft models is 

costly and similar issues can arise in accurately extrapolating drug responses in animal 

models to the human patient.176 

Three-dimensional (3D) tissue culture of primary tumour cells into “mini-organs” termed, 

organoids, is a promising technology to augment current pre-clinical models.177 A variety of 

methods for organoid development exists, but most commonly involves the extraction of 

tumour cells via surgical resection, biopsy or needle biopsy.174,178 The tissue is subsequently 

dissociated in enzymes to smaller groups of cells that are then placed within a basement 

membrane matrix gel. The basement membrane matrix provides a scaffold in which tumour 

cells are able to migrate, propagate and eventually form organized units of differentiated 

cells reflective of the in-vivo tissue lineages.179  

Molecular analysis of tumour organoids demonstrates that gene expression more closely 

resembles in-vivo tissue compared to 2D cell culture.180 Furthermore, organoids provide a 
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reliable method of successfully generating and propagating primary tumour cells compared 

to 2D techniques.181 Organoids can be cryopreserved in biobanks and successfully re-

established to facilitate ongoing scientific inquiry to a given population of organoids.182–184 

Organoid culture utilizes endogenous stem cell populations which reside in differentiated 

tissues. For example, in gastric tissue, intestinal organoids can be developed from a single 

LGR5+ gastric stem cell retrieved from the crypt of gastric epithelium.185 The essential 

components of organoid culture media include R-spondin, Wnt and noggin.186 These 

molecules facilitate the stimulation and growth of stem cell populations, including TROY, 

LGR5, and AXIN2, among others.179,187 All gastric cell lineages including chief, parietal, 

enteroendocrine, gland mucous and pit mucous cells can be established in organoid 

culture.179,188  

Beyond providing greater epithelial cell diversity compared to 2D cell culture, tumour 

organoids also provide recapitulation and propagation of stromal tissue and the immune 

microenvironment.189 In their landmark paper, The Hallmarks of Cancer: The Next 

Generation, Hanahan and Weinberg illustrate the importance of the tumour 

microenvironment as a micro-organ that collectively works to augment cancer growth.167 

Signaling between Cancer-Associated Fibroblasts (CAFs), cancer stem cells, endothelial cells 

and pericytes facilitates the development of malignant disease. In particular, CAFs have 

been demonstrated to contribute to chronic inflammation, immunosuppressive 

microenvironments, angiogenesis, and tumour invasion and metastasis.164,190,191  

1.8.3.2 Future perspectives for organoid culture 

Significant work involving gastric cancer organoids has preceded this thesis. These studies 

have provided established protocols for growth, propagation and research of gastric 

organoids.178–180,182,184,192,193 Given the infancy and relative complexity of organoid culture, 

significant questions remain to be answered. Although clustering has identified similarity in 

gene-expression between parent tumours and organoids, the extent to which an organoid 

recapitulates the parent tumour’s defined molecular subtype is unknown. We also do not 

fully understand the proportion of organoids that adequately recapitulate their parent 

tumour. In Yan et al. over half of the parent-organoid pairs were removed from subsequent 

analyses due to failure to cluster with parent tumours.182 This limitation was attributed to 

organoids grown from samples with poor tumour purity. Confirmation of cancer growth is 

often challenging with current methods. Establishing whether an organoid culture contains 

cancer growth or has been overgrown with normal organoids relies on microscopic 
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morphology, histology and immunofluorescence techniques.194 Finally, organoid media and 

growth protocols may also facilitate the growth of some molecular subtypes over others. 

Thus, the documented difficulty in growing some diffuse-type gastric cancer organoids could 

be attributed to molecular subtypes or tumour purity issues.182  

Given the high fidelity of patient-derived tumour organoids, researchers have evaluated 

their role as a method to assign personalized cancer treatment. Several studies have 

documented a correlation between in-vitro patient-derived organoid dose-response assays 

and clinical tumour response.182,183,195,196 In 2019, Ganesh et al. demonstrated a significant 

correlation between in-vitro dose-response and progression-free survival from 7 rectal 

cancer organoids treated with 5-fluorouracil or FOLFOX (5-fluorouracil, leucovorin, 

oxaliplatin). These early studies suggested that organoids are a valuable tool to inform 

personalized medicine. However, in 2021, the first prospective tumour organoid feasibility 

trial called the Selecting Cancer Patients for Treatment Using Tumour Organoids (SENSOR) 

failed to provide evidence of feasibility and utility in allocating cancer therapy.174 Ongoing 

studies including the TUMOROID trial (NL49002.031.14) and the STRONG trial 

(NCT03307538) will provide additional prospective insight into the role of organoid culture 

in translational clinical models.181,197 

1.8.4 Molecular classification of gastric cancer 

Next-generation sequencing (NGS) and high throughput molecular analysis of various 

cancers have provided insight into foundational biological mechanisms of cancer. The 

premier example is the PanCancer Atlas project, which contains open source multi-omic and 

clinical data from over 11,000 tumours among 33 cancer types. From a pan-cancer 

perspective, these data have improved our understanding of molecular relationships 

between unique cancer types, cancer stemness, candidate driver genes, tumour immune 

response and the role of various oncogenic signalling pathways.198–202 Alternative 

perspectives of cancer from the organ and system level, such as gastrointestinal carcinoma, 

has also revealed essential knowledge that guides analysis in this thesis.203 In addition to 

facilitating advancement in sequencing technology and data science, these projects 

ultimately serve to guide medical science to more effective anti-cancer therapy or 

diagnosis.198  

The immense therapeutic and prognostic potential of molecular classification frameworks 

derived from multi-omics data is juxtaposed by several significant limitations. Next 

generation sequencing or genome microarray technology is immensely expensive. Colloquial 



28 
 

discussion in medical research suggests NGS costs only $1000 per patient. These estimates 

do not reflect the reality of direct or indirect costs. A microcosting study from the United 

Kingdom evaluated the cost of implementing genome sequencing in 399 patients with 

cancer or rare disease per year.201 For cancer-related NGS work, the cost of genome 

sequencing of germline and tumour samples was approximately £6,840 ($8,413.20 USD) or 

£3,420 ($4,206.60 USD) per sample. The direct cost of sequencing was only 76% of the 

total cost with an additional ~17% or $1,189.56 USD related to bioinformatics, reporting 

and data archiving alone.  

Current pipelines for routine cancer omics data acquisition, analysis and communication do 

not exist outside of highly specialized centres such as Memorial Sloan Kettering. 

Implementation of molecular classification to mainstream clinical use is hindered by 

technological and computational complexity. Ideally, the process from the measurement of 

molecular data to usable clinical information should be streamlined through the use of user-

friendly and accessible software.  

In addition to limitations related to cost and logistics, the tangible clinical utility of molecular 

classification in cancer is unclear. For example, there has been limited comparative analysis 

between different classification schemes. It is entirely possible that slightly different 

approaches to molecular classification have yielded biologically similar subtypes between 

separate frameworks. Furthermore, attempts to simplify genome-wide classifications to a 

more manageable scale are ongoing.204,205 Here I describe an overview of current molecular 

classifications systems in gastric cancer. Later in this work we will attempt to mitigate some 

of the previously stated issues affecting the clinical implementation of molecular 

classification. 

1.8.4.1 The Cancer Genome Atlas 

In 2014, The Cancer Genome Atlas, a multidisciplinary National Institutes of Health-funded 

molecular classification project, was the first to provide a robust and novel classification for 

gastric adenocarcinoma. In this landmark study, four main subtypes of gastric cancer were 

identified: EBV-type (EBV), chromosomal instability (CIN), microsatellite instability (MSI) 

and genomically stable (GS).82 Subsequent work has revealed the prognostic utility of this 

novel classification system.83 In particular, MSI and EBV cancer is associated with superior 

survival compared to CIN. Genomically stable cancer, which is enriched in diffuse type 

gastric cancer, carries the worst prognosis.  



29 
 

TCGA classification first isolated EBV and MSI tumours by their respective gold-standard 

molecular tests. EBV tumours were identified by Epstein-Barr encoding region in-situ 

hybridization. MSI tumours were defined by the Bethesda criteria following capillary 

electrophoresis measurement of established microsatellite regions of genomic DNA. Tumour 

aneuploidy or somatic chromosomal copy number aberration (SCNA) subsequently allocated 

tumours to CIN (High SCNA) or GS (Low SCNA) tumours. Chromosomal instability was the 

most prevalent (50%) subtype among the 295 tumours, followed by MSI (22%), GS (20%) 

and EBV (9%). 

TCGA class tumours arguably carry the most evidence for clinical utility. In a Phase II trial 

61 metastatic gastric cancer patients were treated with pembrolizumab immune checkpoint 

inhibitor therapy.206 Tumours were sequenced and TCGA subtypes were assigned. EBV and 

MSI tumours were found to have an overall response rate of 100% and 85.7%, respectively. 

1.8.4.2 The Asian Cancer Research Group Classification 

The Asian Cancer Research Group characterized 300 Asian gastric cancer tumours into 4 

distinct groups: microsatellite instable (MSI), microsatellite stable with TP53 overexpression 

(MSS TP53+), microsatellite stable with TP53 under expression (MSS TP53-) and 

microsatellite stable with epithelial to mesenchymal transition (MSS EMT).26 The ACRG 

group used whole transcriptome microarray as the foundation for their classification system 

as opposed to the multi-omics approach used by TCGA. Using mRNA expression data, they 

associated the major trends of variance via Principle Component Analysis to known gene-

signature profiles. This technique identified EMT and MSI-type tumours. The allocation of 

MSS TP53+ and MSS TP53- tumours was subsequently divided using a TP53 activation 

signature.   

The ACRG classification carries prognostic value. Similar to TCGA, the MSI subtype was 

associated with the most favourable prognosis followed by MSS TP53+ and MSS TP53-. EMT 

tumours not only carried the worst prognosis but were also associated with greater 

recurrence and rates of peritoneal carcinomatosis.  

1.8.4.3 The Tumour Microenvironment Score 

The ACRG and TCGA classification systems attempted to classify gastric cancer from a bulk 

tumour perspective. That is, they evaluated the molecular and genomic data as is without 

the specific intent of isolating separate tumour components. The Tumour Microenvironment 
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Score (TMEscore) was a concrete effort to isolate tumour immune signatures related to the 

tumour microenvironment in gastric cancer.207  

Using ACRG mRNA expression data, researchers isolated distinct immune signatures 

through a variety of statistical techniques. These immune signatures were subsequently 

applied to a number of publicly available gastric cancer transcriptome datasets including 

TCGA. Tumours with an activated, anti-tumour immune response enriched in interferon-

gamma were defined as TME High subtype. TME Low tumours exhibited an 

immunosuppressive microenvironment and enriched signatures in epithelial to mesenchymal 

transition and transforming growth factor beta (TGF-beta). In multivariable Cox regression, 

TMEscore was an independent prognostic factor and TME High was associated with 

significantly greater survival in gastric cancer.  

To test the classification system, TMEscore was applied to cohorts of urothelial cancer and 

melanoma patients who received immunotherapy. In both cases, patients with TME High 

tumours experienced improved immunotherapy responses. In a limited analysis of the ACRG 

cohort, improved survival associated with TME High tumours was found to exist regardless 

of adjuvant chemotherapy status. 

1.8.4.4 Other molecular classification schemes 

Other classification systems for gastric cancer exist. In 2018, Oh et al. proposed a binary 

classification system consisting of Mesenchymal and Epithelial subtypes. Once again, these 

subtypes demonstrated prognostic value across multiple public datasets. Furthermore, 

laboratory work provided evidence supporting the potential use of Insulin-like growth factor 

(IGF1)/IGF1 receptor (IGF1R) inhibitors in mesenchymal type cancers.208 In 2021, a 

molecular pathway-based approach using TCGA, ACRG and other public data suggested 

three molecular classes for gastric cancer.209 Finally, molecular classification based on 

single-cell sequencing has also been proposed.210 

 
1.9 Summary of included chapters and hypotheses 

This thesis is comprised of 7 chapters. Chapters 2-5 are written as self-sufficient scientific 

publications. A comprehensive conclusion to the problems presented in Chapter 1 and 

results in Chapters 2-5 are presented in Chapter 6. All supplemental material is compiled in 

the Appendix with appropriate subheadings for navigation to each respective chapter’s 



31 
 

supplement. Of note, readers of electronically distributed versions of this thesis will be able 

to navigate to Figures and Tables via in-text references highlighted by blue font colour.  

In Chapter 2, we performed a prospective pilot study to evaluate the 

immunohistochemistry-based expression of Galectin-3, E-cadherin, CD4 and CD8 in 

Canadian gastric cancer patients. To address the lack of predictive biomarkers informing 

neoadjuvant treatment response we measured biomarker expression in a subset of patients 

treated with FLOT4 chemotherapy. In Chapter 2 we tested the following hypotheses: 

1. The selected biomarkers will be differentially expressed in cancer and normal 

adjacent gastric tissue.  

2. The expression of selected biomarkers will significantly increase or decrease in 

response to neoadjuvant chemotherapy in paired tumour samples 

3. The selected biomarkers will be differentially expressed in pre-treatment tumours 

that achieve complete or near-complete tumour response compared to tumours with 

partial response, poor response or progression to metastasis following neoadjuvant 

chemotherapy.  

Chapter 3 focused on the investigation of pre-clinical translational gastric organoid models. 

Specifically, we worked to address issues associated with adequate and reliable tissue 

procurement. We evaluated the feasibility of shipping fresh mouse stomach tissue at 4 

degrees Celsius over 24 or 48 hours for the purpose of establishing organoid culture. The 

experimental conditions tested the optimal transport media (Hanks Balanced Salt solution 

(HBSS), University of Wisconsin (UW) solution or Histidine-Tryptophan-Ketoglutarate (HTK) 

solution) and transport times (Fresh, 24 hours or 48 hours). The optimal shipping conditions 

were also tested using human gastric cancer tissue. In Chapter 3 we assessed the following 

hypotheses: 

1. The success rate of establishing an organoid culture for 10 passages will differ 

between: 

a. Fresh, 24-hour and 48-hour tissues  

b. HBSS, UW and HTK solutions 

2. The viability of organoid culture over 10 passages will differ between:  

a. Fresh, 24-hour and 48-hour tissues  

b. HBSS, UW and HTK solutions 

3. The growth rate of organoid culture over 10 passages will differ between: 
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a. Fresh, 24-hour and 48-hour tissues  

b. HBSS, UW and HTK solutions  

4. The gene expression of LGR5 and TROY stem cell markers will differ between:  

a. Fresh, 24-hour and 48-hour tissues  

b. HBSS, UW and HTK solutions 

5. The in-vitro organoid dose-response to the anti-cancer drug FOLFOX (folinic acid, 5-

fluorouracil, oxaliplatin) will differ between: 

a. Fresh, 24-hour and 48-hour tissues 

b. HBSS, UW and HTK solutions 

c. Passage number in paired organoid samples 

Chapters 4 and 5 focused on the translation of gastric cancer molecular classification 

systems to the clinic. Chapter 4 mainly concerned the development and retrospective 

analysis of classification systems for personalized medicine in gastric cancer. In Chapter 5 

we expanded the models developed in Chapter 4 to a gene expression-based test. Next, the 

value of our test was assessed in our patient population and a series of patient-derived 

organoid samples.   

In Chapter 4, we established machine-learning models to predict molecular subtypes from 

the TCGA, ACRG and TME classifications using whole-transcriptome data (see: Molecular 

classification of gastric cancer). We used feature selection techniques to decrease the 

number of genes required to classify gastric cancer from over 16000 to approximately 50 

genes. Next, we examined model diagnostics including accuracy, Brier score and calibration. 

Using our models, we applied molecular subtypes to 2,202 publicly available gastric cancer 

patients and retrospectively evaluated the prognostic, therapeutic and predictive utility of 

these classification systems. In contrast to prior research, we tested whether using 

classification systems as discrete categories or continuous scores that approximate the 

probability of molecular subtypes is useful. Using this perspective, we attempted to develop 

a method to assess heterogeneity of molecular subtype classification. In Chapter 4 we 

evaluated the following hypotheses/questions: 

1. Can complex whole-genome/transcriptome molecular classification systems in gastric 

cancer be reproduced in supervised machine-learning models? 

2. Can machine-learning classes be properly assigned to additional patient samples with 

gene expression measurements obtained from a separate platform/technology using 
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Feature Specific Quantile Normalization (ie. Can molecular subtypes be learned 

across multiple gene expression platforms?) 

a. Is the assignment of molecular subtypes across platforms internally valid with 

respect to gold-standard benchmark tests?    

3. How can we assess the effectiveness of binary and multi-class classification models? 

Are current model diagnostic methods sufficient? 

4. How can we assess differences/similarities between multiple classification systems?  

5. Does our novel continuous heterogeneity metric, called Variance Heterogeneity 

provide significant prognostic or diagnostic utility? 

6. In a propensity score matched cohort, does the integration of multiple classification 

systems in gastric cancer identify prognostic, therapeutic or predictive “biomarkers” 

for adjuvant chemotherapy treatment? 

7. Can the integration of multiple classification systems in gastric cancer facilitate the 

development of a meaningful personalized individual survival distribution model? 

Using the genes selected in our models from Chapter 4, we created a custom Nanostring 

codeset to assign TCGA and TME subtypes to our patient population. In Chapter 5 we were 

primarily focused on the feasibility of this test in assigning subtypes in formalin-fixed 

paraffin embedded tissue and whether the test could be applied to translational patient-

derived organoid models. Also, of paramount importance was the preliminary external 

validation of molecular subtypes using gold-standard reference tests. To guide future 

inquiry, we assessed the landscape of molecular subtypes produced by our model in 2-

dimensional immortal gastric cancer cell lines from the Cancer Cell Line Encyclopedia. With 

these data we evaluated how well currently available cell lines approximate subtype 

probability scores in 2,202 clinical gastric cancer samples and performed a drug-sensitivity 

analysis according to molecular subtypes scores. In Chapter 5 we asked the following 

questions: 

1. Can we develop patient-derived gastric cancer organoids from endoscopic biopsy or 

surgical specimens in our population? 

a. Do our organoids recapitulate gastric tissue? 

2. Is our custom Nanostring codeset feasible for future study? 

a. Can we reliably isolate nucleic acid of sufficient quality from formalin-fixed 

paraffin embedded tissue samples for the purpose of a Nanostring gene 

expression test? 
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b. Does our Nanostring test approximate gold-standard classification of matched 

parent tumour and tumour organoid samples? 

c. What is the optimal normalization procedure for allocating subtype scores to 

Nanostring-based gene expression data? 

3. Are patient-derived gastric cancer organoids useful for personalized medicine? 

a. Using gold-standard tests and our Nanostring test, how well do patient-

derived organoids recapitulate molecular subtypes of the parent tumour? 

b. Are patient-derived organoids feasible for translational dose-response assays? 

c. Does in-vitro organoid dose-response associate with molecular subtype 

scores? 

4. What is the preliminary distribution of molecular subtypes in our patient population? 

a. Does the association of molecular subtype scores with basic tumour histology 

in our population approximate associations observed in an external cohort of 

2,202 gastric cancer patients? 

5. Is 2-dimensional in-vitro culture of immortalized cell lines useful for modern 

personalized medicine research? 

a. Do currently available 2-dimensional gastric cancer cell line molecular subtype 

scores approximate an external cohort of 2,202 gastric cancer patients? 

b. Do molecular subtype scores in cancer cell lines associate with dose-response 

in targeted anti-cancer therapy? 
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Chapter 2: Can immunohistochemistry-based 
biomarkers provide predictive value in 
estimating tumour response to neoadjuvant 
FLOT in gastric cancer? A prospective pilot study 

2.1 Introduction 

Immunohistochemistry (IHC) is a proven molecular pathology technique with a record of 

providing prognostic and therapeutic biomarkers in oncology. In gastric cancer, prominent 

IHC-based biomarkers may be prognostic or therapeutic as in the case of E-cadherin and 

HER2, respectively.121,211 However, there is a lack of predictive biomarkers to inform 

treatment response for neoadjuvant therapies.  

In North America, the standard of care for locally advanced gastric cancer is neoadjuvant 

chemotherapy with FLOT4.103 Despite advances in chemotherapy regimens, we currently 

possess limited information on which patient will receive optimal treatment benefit. 

Neoadjuvant chemotherapy is known to cause adverse events, including hospitalization in 

approximately 25% of patients. Prior evidence suggests that, in the absence of treatment 

response, neoadjuvant chemotherapy in gastric cancer contributes to adverse events 

without additional benefit compared to adjuvant treatment or surgery alone.212,213 

Here we investigate a panel of biomarkers that we hypothesize may provide value in 

predicting tumour response. Galectin-3 is a lectin protein that facilitates cancer 

tumorigenesis and prognosis.151,155–157 Pre-clinical models suggest that increased Galectin-3 

expression is associated with chemotherapy resistance.214,215 Recent work has implicated 

cell-surface expression of Galectin-3 with chemoresistance in gastrointestinal cancer stem 

cells.216 E-cadherin is a cell-cell adhesion molecule that plays an important role in gastric 

cancer development, classification and prognosis.26,30,82 In breast cancer, E-cadherin 

expression has been associated with chemotherapy response.217,218 We also assess whether 

CD4+ and CD8+ tumour infiltrating lymphocytes (TILs) and the relative proportion of these 

cells influence neoadjuvant chemotherapy response. CD4+ T cells function to regulate and 

potentiate cell-mediated immunity, while CD8+ T cells perform tumour cell lysis. Increasing 

evidence recognises the association of greater TILs to favourable cancer prognosis and 

chemotherapy response in colon and gastric cancer.139,140,219–222 To date, no studies have 

investigated the role CD4+ or CD8+ TILs in neoadjuvant chemotherapy response.  
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To guide future studies, we performed a prospective pilot study to evaluate if these selected 

biomarkers provide predictive value in evaluating treatment response following neoadjuvant 

FLOT chemotherapy. 

2.2 Methods 

2.2.1 Study design 

We performed this single-center, prospective pilot study at the University of Alberta in 

Edmonton, Alberta, Canada from January 2018 to January 2022. All human clinical 

participants consented according to the approved ethics protocol granted by the Health 

Research Ethics Board of Alberta (Study ID: HREBA.CC-17-0228). Treatment naïve Stage I-IV 

sporadic gastric adenocarcinoma patients aged greater than 18 years were included. A 

subset of patients enrolled was allocated to a second cohort on the basis of receiving 

curative intent neoadjuvant FLOT chemotherapy. Patients with a known inherited oncogenic 

germline mutation or hereditary syndrome (ie. Familial Adenomatous Polyposis) were 

excluded.  

Specimens were retrieved via endoscopic biopsy at the time of diagnosis, screening 

laparoscopy or at the time of surgical resection at the Walter C Mackenzie Health Sciences 

Centre or Royal Alexandra Hospital. The initial study protocol retrieved two tissue biopsies 

for permanent pathology, however, following interim review four biopsies were retrieved 

thereafter. The presence of cancer in specimens was confirmed by a gastrointestinal 

pathologist. In the absence of cancer, clinical formalin-fixed paraffin-embedded pathology 

blocks were retrieved when available. In clinical samples with treatment effect, residual 

cancer cells were detected using anti-pan cytokeratin (Abcam, clone C-11, ab7753) 

immunohistochemistry staining followed by the manual assembly of tissue microarray (TMA) 

blocks with 4mm cores of regions containing residual tumour.   

Our primary outcome for all patients was the difference in expression of selected biomarkers 

between normal and cancer tissue. In the subgroup of patients receiving neoadjuvant 

chemotherapy, our primary outcome was the difference in expression between tumour 

treatment response and incomplete treatment response. We also evaluated the difference in 

expression of biomarkers in paired samples before and after chemotherapy treatment.  

Treatment response was retrieved from clinical pathology reports. The Tumour Regression 

Score was graded according to the College of American Pathologists and National 

Comprehensive Cancer Network protocol on a 4-point scale (0 = Complete response, 1 = 
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near complete response, 2 = partial response, 3 = poor or no response).103 In accordance 

with prior studies, treatment response was expressed as a binary variable consisting of 

response and incomplete response categories.223 Responsive tumours included complete and 

near-complete responses, whereas incomplete responses included partial, and poor no 

response. Patients who progressed to metastasis while receiving neoadjuvant treatment 

were classified as an incomplete response.   

2.2.2 Immunohistochemistry 

Tissue specimens of normal and cancer tissue were fixed in zinc-formalin (Z-Fixx) for 24 

hours, washed three times and stored in 70% ethanol prior to preservation in paraffin. 

Briefly, 4 µm tissue sections were deparaffinized in Histoclear (National Diagnostics) and 

rehydrated. Endogenous peroxidases were quenched using 3% hydrogen peroxide in 

methanol for 5 minutes. Microwave heat induced epitope retrieval was performed using 

Sodium Citrate (pH 6, heated to 94 degrees Celsius in 1-minute intervals followed by 9 

minutes continuous heat) for E-cadherin and Tris-EDTA (pH 9, heated to 94 degrees Celsius 

in 1-minute intervals followed by 8 minutes 30 seconds continuous heat) for CD4 and CD8. 

Non-specific staining was blocked using 20% normal goat serum (Jackson Laboratories) for 

E-cadherin, CD4 and CD8 or 2% Fetal Bovine Serum (Gibco) in 1X phosphate buffered 

saline for Galectin-3 for 20 minutes followed by avidin and biotin blocking (Vector 

Laboratories, SP-2001) per manufacturer’s protocol. Tissue sections were stained with 

primary antibodies anti-E-cadherin (1:25, 1.5 hours room temperature, ThermoFisher 

Scientific, clone 4A2C7, 33-4000), anti-Galectin-3 (1:200, 30 minutes room temperature, 

Cedarlane, clone M3/38, CL8942AP), anti-CD4 (1:200, overnight at 4 degrees Celsius, 

Abcam, clone EPR6855, ab133616) or anti-CD8 alpha (1:200, overnight at 4 degrees 

Celsius, Abcam, ab4055). All biotinylated IgG secondary antibodies were incubated at 1:200 

for 30 minutes at room temperature, including rabbit anti-rat for Galectin-3 (Vector 

Laboratories, BA-4001), goat-anti-rabbit for CD4 (Vector Laboratories, BA-1000) and goat-

anti-mouse for E-cadherin and CD8 (Jackson ImmunoResearch, 115-065-003). Antibody 

detection was performed using avidin-biotin complex/horseradish peroxidase (Vector 

Laboratories) and 3,3-diaminobenzidine tetrahydrochloride (DAB, Abcam, ab64238) per 

manufacturer’s protocol. Stained tissue sections for E-Cadherin, CD4 and CD8 were 

counterstained with Harris’ hematoxylin (Fisher Scientific) and Harris’ hematoxylin and eosin 

(Fisher Scientific) for Galectin-3.  



38 
 

2.2.3 Histology imaging and quantification  

Histology images were captured using a Leica Aperio CS2 digital slide scanner. Digital 

pathology quantification of antibody expression was performed using QuPath version 0.3.1 

(Figure 2-1C).224 Briefly, digital images were uploaded and the tumour and immediate 

tumour-host interface were annotated as a single region of interest. Stain vectors were 

estimated using default settings for each sample. For CD4, CD8 and Galectin-3, positive 

cells were detected using default nucleus DAB optical density settings. The CD4/CD8 ratio 

was calculated as the proportion of positively stained CD4 cells divided by the proportion of 

positively stained CD8 cells. For E-cadherin, both the proportion of positive cells and H-

score was calculated. Annotated cell regions were assessed for accuracy and in the event of 

background or non-specific staining positive cell threshold values were adjusted to reflect 

true positive staining. The H-score provides a consensus scoring method for evaluating 

immunostaining across a gradient of intensity (Equation 2-1). As defined in McClelland et 

al., H, M and L denotes high, medium and low intensity staining. Cells without staining are 

denoted N for negative staining.225  

Equation 2-1 

 

𝐻 − 𝑠𝑐𝑜𝑟𝑒 = 100	 ×
3𝐻	 + 	2𝑀	 + 	𝐿
𝐻 +𝑀 + 𝐿 + 𝑁 

 
2.2.4 Statistical analysis 

Statistical analyses were completed using R version 4.1.2.226 Differences between groups 

were assessed with a Wilcoxon two-sample test for independent samples and two-tailed 

paired Wilcoxon test for paired samples. Statistical significance was defined at alpha = 0.05. 

Multiple comparisons corrections were not made for our main outcomes given our 

prespecified analyses, but the possibility of false positive results is noted. Summary of 

continuous variables is expressed as median with interquartile range (IQR). Categorical 

variables are expressed as absolute number of cases and percent proportions. 

The ability of biomarkers to predict treatment response was assessed using the caret 

package in R.227 Briefly, out-of-sample resampling accuracy was estimated for each 

biomarker as well as the combination of all biomarkers using 1000 bootstraps with 

replacement. Continuous variables were centered and scaled. Logistic regression models 

were used for single biomarker estimates and a regularized ElasticNet model implemented 
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in glmnet was used for estimates containing all biomarkers.228 Model significance was tested 

using a one-sided binomial test comparing the estimated model accuracy to the No 

Information Rate (NIR). The NIR is defined as the largest proportion of observed classes, or 

the maximum accuracy of a classifier if it predicted the majority class every time. 

Sample size calculations were performed using the MKpower package in R. Two-sample 

Wilcoxon distributions were generated using the mean and standard deviation from our pilot 

study sample. The normality of the distribution for each biomarker’s expression levels was 

confirmed with a Shapiro-Wilk test. Random sampling from a truncated normal distribution 

constrained between 0 and 100 was performed for a series of samples sizes ranging from 10 

to 120, in intervals of 10. The empirical power (beta) for each sample size was calculated 

using Monte-Carlo simulations with 1000 iterations for a specified type-I error rate (alpha) 

= 0.05.  

2.3 Results 

2.3.1 Patient demographics 

Fifty-three patients were consented for this pilot study. Ten patients were excluded: one 

patient was diagnosed with Familial Adenomatous Polyposis, one was found to have 

neuroendocrine tumour pathology, one gastroesophageal junction tumour received 

alternative neoadjuvant therapy and seven patients were excluded due to inadequate tissue 

biopsies. Of note, an interim analysis of our protocol after enrolling the first 20 patients 

determined a biopsy accuracy rate of 60% for treatment naïve specimens and 25% for 

biopsy following neoadjuvant treatment. This prompted a change in study protocol to 

retrieve 4-8 tissue biopsies per sample.  

A total of 43 patients were available for analysis, of which 18 (42%) underwent neoadjuvant 

chemotherapy during our study period. Baseline demographics are included in Table 2-1.  

Median age was 65 (60, 75) and the majority of patients were male (70%). Tumour 

pathology was represented by all TNM stages but a preponderance of high grade (72%), 

proximal stomach (60%) and diffuse type (63%) tumours were present. H. pylori status 

was available for 32 patients, of which the majority were negative (69%) and one was 

previously treated. Total gastrectomy was performed in nearly half of all patients and 

comprised 59% of all surgical resections.  

 



40 
 

2.3.1 Expression of biomarkers in normal and cancer tissues  

Representative images of each immunohistochemistry stain within the 75th and 25th 

percentile of expression is presented in Figure 2-1A. Staining for E-cadherin was only 

Table 2-1 Baseline Demographics 
Characteristic N = 431 n/N (Missing %) 
Age (Years) 65 (60, 75) 43 / 43 (0%) 
Sex  43 / 43 (0%) 
Female 13 (30%)  
Male 30 (70%)  
Stage  43 / 43 (0%) 
I 11 (26%)  
II 10 (23%)  
III 8 (19%)  
IV 14 (33%)  
Grade  43 / 43 (0%) 
G1 1 (2.3%)  
G2 10 (23%)  
G3 31 (72%)  
Gx 1 (2.3%)  
Tumour Location  43 / 43 (0%) 
Distal 14 (33%)  
Proximal 26 (60%)  
Whole stomach 3 (7.0%)  
Lauren Classification  41 / 43 (4.7%) 
Diffuse 26 (63%)  
Intestinal 13 (32%)  
Mixed 2 (4.9%)  
Signet Ring Cell (Present) 26 (63%) 41 / 43 (4.7%) 
H. pylori history  32 / 43 (26%) 
Negative 22 (69%)  
Positive 9 (28%)  
Treated 1 (3.1%)  
Smoker  40 / 43 (7.0%) 
Yes 9 (22%)  
No 14 (35%)  
Ex 17 (42%)  
Smoker (Pack Years) 7 (0, 32) 39 / 43 (9.3%) 
Surgery  43 / 43 (0%) 
Total Gastrectomy 20 (47%)  
Distal Gastrectomy 14 (33%)  
No resection 9 (21%)  
Neoadjuvant Chemotherapy  18 (42%) 43 / 43 (0%) 
CD4/CD8 Ratio (% Positive) 1.7 (1.2, 2.8) 42 / 43 (2.3%) 
CD4 (% Positive) 14 (7, 24) 43 / 43 (0%) 
CD8 (% Positive) 8 (5, 11) 42 / 43 (2.3%) 
Galectin-3 (% Positive) 46 (30, 57) 43 / 43 (0%) 
E-cadherin (% Positive) 18 (6, 28) 43 / 43 (0%) 
E-cadherin H-score 22 (7, 40) 43 / 43 (0%) 
1Median (IQR); n (%)   
  



41 
 

identified on cell membranes of gastric epithelium. Galectin-3 exhibited heterogeneous 

staining and was identified in nuclei, cytoplasm, and surrounding tumour stroma. The 

presence of Galectin-3 was often sporadic with distinct regions representing intense positive 

stain followed by fairly abrupt transition to moderate positivity. CD4 and CD8 positive 

staining was identified on the cell membrane of lymphocytes.  

Galectin-3 was the most abundant molecule with a median expression of 46 (30, 57), 

followed by E-cadherin, CD4 and CD8 (Table 2-1). The E-cadherin H-score (median 22 (7, 

40)) closely approximated the proportion of E-cadherin positive cells (median 18 (6, 28)). 

Greater H-score values in the upper quartile reflects the presence of high staining intensity 

in positive cells.  

Significantly increased expression of CD4, Galectin-3 and CD4/CD8 Ratio was identified in 

cancer tissue relative to normal adjacent tissue controls (Wilcoxon, p=0.035, p=0.020 and 

p=0.018 respectively) (Figure 2-1B). The distribution of IHC scores between normal and 

cancer tissue for CD4 and Galectin-3 was relatively uniform, whereas differences in 

CD4/CD8 Ratios were dominated by sample outliers with large cancer IHC scores. In 

agreement with historical study, E-cadherin positivity and H-score was significant decreased 

in cancer tissue relative to normal. (Wilcoxon, p<0.0001 and p<0.001, respectively).  

There were no statistically significant associations between relevant clinicopathologic factors 

and the expression of any biomarker for stage, lymphovascular invasion, perineural 

invasion, carcinomatosis, tumour grade or location (Appendix .B.1). The proportion of E-

cadherin positive cells was significantly different according to Lauren Class, with relatively 

fewer positive cells present in diffuse and mixed type cancers (Kruskal-Wallis, p = 0.043). 

2.3.1 Association of biomarker expression with exposure to neoadjuvant 
chemotherapy 

We compared the expression of biomarkers in 15 paired tumour samples from the same 

patient before and after neoadjuvant FLOT to evaluate the effect of treatment on biomarker 

expression. All pre-treatment specimens were obtained by endoscopic biopsy and thus were 

restricted mainly to the mucosa and lamina propria. The majority of post-treatment samples 

were analyzed as TMA cores from surgical resection specimens (TMA cores = 87% vs. 

biopsy = 13%) in which residual tumour was present in mucosa, submucosa and 

muscularis.  
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Table 2-2 Clinicopathologic factors according to treatment response 
Characteristic Incomplete response,  

N = 141 
Response, N = 41 p-value2 

Age (Years) 60 (57, 63) 60 (52, 67) >0.9 
Sex   0.3 
F 5 (36%) 0 (0%)  
M 9 (64%) 4 (100%)  
Stage   0.6 
I 2 (14%) 2 (50%)  
II 5 (36%) 1 (25%)  
III 6 (43%) 1 (25%)  
IV 1 (7.1%) 0 (0%)  
Grade   0.6 
G1 1 (7.1%) 0 (0%)  
G2 2 (14%) 2 (50%)  
G3 10 (71%) 2 (50%)  
Gx 1 (7.1%) 0 (0%)  
Tumour Location   >0.9 
Distal 3 (21%) 1 (25%)  
Proximal 10 (71%) 3 (75%)  
Whole stomach 1 (7.1%) 0 (0%)  
Lauren Classification   0.5 
Diffuse 10 (71%) 1 (33%)  
Intestinal 4 (29%) 2 (67%)  
Signet Ring Cell (Present) 9 (64%) 1 (33%) 0.5 
H. pylori history   >0.9 
Negative 8 (57%) 2 (50%)  
Positive 3 (21%) 1 (25%)  
Unknown 3 (21%) 1 (25%)  
Smoker   >0.9 
Yes 4 (33%) 2 (50%)  
No 4 (33%) 1 (25%)  
Ex 4 (33%) 1 (25%)  
Smoker (Pack Years) 13 (0, 40) 36 (25, 42) 0.5 
Surgery   >0.9 
Total Gastrectomy 10 (71%) 3 (75%)  
Distal Gastrectomy 3 (21%) 1 (25%)  
No resection 1 (7.1%) 0 (0%)  
1Median (IQR); n (%) 
2Wilcoxon rank sum test; Fisher's exact test 

We found significantly increased association of tumour cells with CD4+ and CD8+ TILs 

following neoadjuvant chemotherapy (Paired Wilcoxon, p=0.002 and p = 0.008, 

respectively) (Figure 2-2A). In contrast, E-cadherin positivity and H-score significantly 

decreased in post-treatment samples (Paired Wilcoxon, p=0.035 and p=0.04, respectively). 

This was likely in part due to differences in tumour cell depth of invasion between pre-

treatment biopsy and post-treatment TMA cores. CD4/CD8 Ratio expression remained 

relatively stable within samples except for one patient (orange line, Figure 2-2A, top left). 
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Figure 2-1 Immunohistochemistry stains and expression of biomarkers in treatment naïve normal and 
cancer tissue. A. Representative IHC images taken at 10X magnification for each respective biomarker 
identified on the y-axis. Images of expression values within the 75th and 25th percentile are presented in 

the left and right columns, respectively. B. Boxplot comparison of expression for each respective 
biomarker in treatment naive normal and cancer tissue. The IHC biomarker is labeled on the heading of 

each graph. The y-axis represents IHC score, which is the percent of positive stained cells for Galectin-3, 
CD4, CD8 and ECAD and the H-score for ECAD H-score plot. The x-axis labels the distribution 

corresponding to normal (blue) and cancer (red) tissue. The raw p-value for Wilcoxon tests is annotated 

in each panel. C. Representative images of QuPath digital pathology annotation using CD4 IHC at 10X 
magnification. Raw images (left) are processed and regions of interest are identified according to our 

methods. The annotated image (right) demonstrates the calculation of positive stained cells (red) and 

negative cells (blue).   
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Figure 2-2 Association between biomarker expression and neoadjuvant FLOT4 chemotherapy. A. Paired 
boxplots for biomarker expression pre- and post-neoadjuvant chemotherapy. Each coloured point and line 

correspond to a single patient. Boxplots in grey represent the distribution of expression for all patients 

before and after chemotherapy. Paired Wilcoxon p-value is present in each plot. B. Boxplot comparison of 
expression for each respective biomarker between treatment response (purple) and incomplete response 

(green). The IHC biomarker is labeled on the heading of each graph. The y-axis represents IHC score, 

which is the percent of positive stained cells for Galectin-3, CD4, CD8 and ECAD and the H-score for 

ECAD H-score plot. C. Forest plot for metrics of 7 predictive models. The plot represents the out-of-
sample accuracy and 95% confidence intervals for models estimated from 1000 bootstraps with 

replacement. The no information rate is shown by the solid and dotted vertical lines for univariable and 

multivariable models, respectively. D. Barplot of model coefficients from multivariable glmnet model. The 
y-axis represents model covariates and the x-axis the coefficient value. Treatment response is related to 
increasing covariate values or decreasing covariate values for positive and negative coefficients, 

respectively. The absolute importance of the coefficient is shown in blue according to the scale legend. E. 
Lineplot illustrating monte-carlo simulations for two-sample Wilcoxon sample size calculations. The y-axis 

is the empirical power and the x-axis is the sample size in each group. Each coloured line corresponds to 

a biomarker labelled according to the legend. 

2.3.2 High CD4/CD8 ratio is associated with treatment response 

Figure 2-2B outlines the relationship of biomarker expression to treatment response 

between pre- and post-treatment cancer specimens. For all analyses, we observed 

incomplete response in 14 patients (Partial = 9, Poor or No = 4, Progression to 

metastasis=1) and response in 4 patients (Complete = 1, Near Complete = 3). Statistically 

greater CD4/CD8 Ratios were observed in pre-treatment cancer biopsies compared to 

incomplete responders (Wilcoxon, p=0.025). Clinicopathologic characteristics were similar 

between treatment response groups (Table 2-2).   

Next, we explored the utility of individual biomarkers (Models 1-6) and the combination of 

all biomarkers (Model 7) in predicting treatment response scores (Figure 2-2C). Given the 

small sample size and events per variable, we used out-of-sample estimates from 1000 

bootstraps to limit bias by favouring pessimistic estimates of model accuracy. In this 

dataset, all biomarkers were effective at predicting incomplete tumour response (Sensitivity 

range 88-98%) but suffered from poor specificity (range 0-44%). CD4/CD8 Ratio was the 

only variable that provided significant model performance (Accuracy > NIR, one-sided 

binomial, p<0.001). The ElasticNet model using CD4/CD8 Ratio, CD4, CD8, Galectin-3 and 
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E-cadherin H-score as independent variables provided a mean accuracy greater than the 

NIR but failed to achieve statistical significance (p=0.26).  

The optimal glmnet model provided coefficients for all variables despite tuning parameters 

allowing for L2 regularization (alpha = 0). To guide future studies, we evaluated the 

contribution of all biomarker variables to the predictive model using the final regularized 

ElasticNet coefficients (Figure 2-2D). The absolute value of coefficients found CD4/CD8 

Ratio and Galectin-3 to provide the greatest influence in predicting favourable tumour 

response. Specifically, tumour response was associated with increasing CD4/CD8 Ratio and 

decreasing Galectin-3, respectively. 

2.3.1 Sample size calculations 

To inform future studies we performed sample size calculations using our pilot study sample 

distributions. In particular, we were interested in identifying the sample sizes required to 

evaluate the utility of biomarkers in explaining tumour response using a two-sample 

Wilcoxon test. In, Figure 2-2E we observe that CD8 and Galectin-3 require similar sample 

sizes of 30 and ~35 in each treatment response group to achieve adequate power. The 

relationship between sample size and empirical power was nearly identical for CD4 and E-

cadherin, which were calculated to require ~70 and 80 samples in each group, respectively. 

2.4 Discussion 

Neoadjuvant chemotherapy is the standard of care for curative-intent treatment in western 

populations. Advantages of neoadjuvant chemotherapy include improved survival compared 

to surgery alone, greater R0 resection and reduction in nodal stage.110,213,229,230 Irrespective 

of efficacy, cytotoxic chemotherapy is also associated with adverse events including 

peripheral neuropathy, neutropenia, infection or death.112 Previous study has demonstrated 

that pathologic complete response (pCR) or treatment response defined as Tumour 

Regression Grade 1-3 is significantly associated with prognosis.223,231 However, pCR occurs 

in only 3-15% of cases and complete or partial response in approximately 40% of 

patients.213,223,232 In the absence of treatment response, neoadjuvant chemotherapy 

provides no additional benefit to surgical resection alone and still exposes the patient to 

adverse events.232 Thus, to improve outcomes it is of paramount importance to identify 

clinicopathologic or molecular biomarkers to identify treatment responders. 



47 
 

Several potentially useful approaches for predicting treatment response have been 

recognized. Clinical or pathologic factors including age, tumour grade, signet cell pathology, 

serum carcinoembryonic antigen, various circulating lymphocyte populations and tumour 

size are significant predictors of tumour response.233–235 The majority of predictive tumour 

biomarker research in gastric cancer has focused on identifying molecules associated with 

adjuvant chemotherapy response. For example, a multivariable model utilizing the 

measurement of several TIL populations in 879 patients provided 3-year survival prediction 

accuracies of 79 and 84% for surgery alone and adjuvant chemotherapy populations, 

respectively.139 In the neoadjuvant setting, a post-hoc analysis of 83 patients in the 

COMPASS trial identified several candidate gene expression based-biomarkers such as 

TIMP1 and DSG2 using qRT-PCR.236 Other studies to identify treatment response have used 

microRNAs, exosomes, inflammatory markers or medical imaging data.237 Although 

predictive and prognostic factors identified in these studies show promise, there is limited 

external validity of these studies and clinical implementation is yet to be achieved. 

In this pilot study, we present the utility of IHC-based expression of Galectin-3, E-cadherin, 

CD4 and CD8 in predicting treatment response to the neoadjuvant chemotherapy regimen 

FLOT4. First, we establish that Galectin-3, CD4, E-cadherin and the CD4/CD8 Ratio 

expression are significantly different between cancer and normal adjacent tissue. These 

findings suggest that these markers are intrinsic to the tumour or tumour microenvironment 

and thus may provide prognostic or predictive yield. Next, we establish that the CD4/CD8 

Ratio is significantly greater in tumours with complete or partial response to neoadjuvant 

chemotherapy. In preliminary univariate and multivariate machine learning models, the 

CD4/CD8 Ratio was the only significant predictive marker of treatment response with an 

accuracy of 86%. Finally, we demonstrate that the tumour-specific expression of CD4, CD8 

and E-cadherin is significantly modified in paired tumour samples before and after 

chemotherapy.  

Previous characterization of the role of Galectin-3 in gastric cancer conflicts with our pilot 

study data. In a meta-analysis comprised of eight retrospective case-control studies, low 

Galectin-3 was associated with poor prognosis.165 Potential reasons for this disparity may be 

due to the evaluation of adjuvant chemotherapy treatment only or the heterogeneous study 

population consisting of Asian, Turkish and South American patients. Our findings are 

consistent with the mechanistic role of Galectin-3 in in-vitro cell lines and mouse models 

which found that increasing Galectin-3 contributes to chemoresistance and M2 dominated 

immunosuppressive tumour microenvironments.214–216 Furthermore, low Galectin-3 
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expression in bladder cancer is also associated with treatment response following 

neoadjuvant platinum based chemotherapy.236 

This is the first study to evaluate the role of tumour-associated CD4/CD8 Ratio in gastric 

cancer neoadjuvant chemotherapy response. Increasing evidence has demonstrated the 

coordinated role of  CD4+ and CD8+ T cells in mediating tumour immune surveillance, 

immunotherapy response and cancer prognosis.165 Increasing CD4/CD8 Ratio of the tumour-

host interface in triple negative breast cancer is associated with improved overall and 

recurrence-free survival.165 In gastric cancer, Liu et al. found that increasing cytotoxic CD8+ 

T cells relative to immunosuppressive FOXP3+ Treg cells is associated with improved 

prognosis.222 In contrast to this study, we focused on CD4+ T cell abundance without sub-

stratification into Th1, Th2 and Treg populations.  

The dynamic increase in TIL expression following neoadjuvant chemotherapy in our pilot 

study also replicates previous findings. Significant work in breast cancer has implicated the 

pattern of TIL changes following chemotherapy to treatment response. In particular, greater 

CD4+ T cell expression is associated with pathologic complete response.238 Also, decreased 

immune infiltration is a notable characteristic of residual tumours following neoadjuvant 

chemotherapy relative to pre-treatment biopsy.238 Continued evaluation of the relationship 

of dynamic changes in CD4 and CD8 populations in gastric cancer are required to fully 

leverage these biomarkers.  

Our study design is intended to provide a reproducible and externally valid method of 

biomarker analysis. Using IHC allows for easier clinical implementation given that common 

pathology workflows already include IHC analysis. Our use of open-source digital pathology 

software such as QuPath also provides a standardized basis to internally and externally 

validate our method in future studies. Digital pathology allows measurement of annotated 

regions of interest within the software thus eliminating the need for complex physical 

microdissection utilized in other biomarker studies.  

The main limitation of this study is the low enrollment of curative intent patients. This is 

likely due to low disease incidence in our population but also may be related to the COVID-

19 pandemic. Given our rate of patient enrollment, future study should prioritize increasing 

sample size by using a retrospective design in order to provide more accurate estimates for 

future multi-centre prospective study. Our sample size calculation suggests that a limited 
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retrospective study with approximately eighty-five patients in each group will provide 

adequate power to assess these relationships.  

2.5 Conclusion 

The CD4/CD8 Ratio is a promising IHC-based biomarker with therapeutic implications for 

response to neoadjuvant chemotherapy in locally advanced gastric cancer. Future inquiry 

should focus on evaluating the prognostic value of these markers and the generation of a 

sufficient sample size to establish a predictive model for potential future clinical use.  
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Chapter 3: Murine gastric tissue establishes and 
maintains organoid viability after 48 hours of 
cold ischemia time in a mock-shipment 
simulation 

3.1 Introduction 

Organoid culture is an intriguing tool to advance translational medicine. Patient-derived 

organoids have been demonstrated to recapitulate parent tumour histology and molecular 

characteristics with higher fidelity compared to traditional 2-dimensional cell culture.176 

Organoids may be utilized longitudinally by creating biobanks and can be perpetuated in-

vitro or in-vivo as xenografts in immunodeficient mice.193 In oncology, in-vitro patient-

derived organoid dose-response to anti-cancer therapy has been shown to correlate with 

clinical recurrence-free survival.239 

Organoid culture is a specialized technique and resource-intensive.240 Organoid development 

requires the procurement of fresh tissue, often from rare diseases, via biopsy, needle biopsy 

or surgical specimens.174,178 Even with modern protocols, the successful establishment of 

tumour organoid culture ranges from 16% to 100% depending on tissue origin.241,242 In 

contrast to biologically homogenous immortal cell lines, organoid research requires larger 

sample sizes to demonstrate a meaningful biological signal due to increased heterogeneity 

from patient-derived samples. Thus, tissue resources for organoid culture must be 

optimized for efficient and reliable testing to advance our understanding of organoid models 

and their applicability to the clinic.   

We propose that tissue procurement for organoid culture could be increased by developing a 

shipment protocol for fresh surgical tissues or biopsies. In this scenario, increased organoid 

sample sizes could be achieved and more elaborate or controlled experimentation could 

occur if tissue for organoid growth was routed to fewer specialized labs. In our study, we 

investigate the feasibility of shipping fresh gastric tissue on ice over 24 or 48 hours for the 

purpose of establishing organoid culture. We assess the effects of various shipping media 

(Hank’s Balanced Salts, University of Wisconsin solution and HTK solution) and dissociation 

times (Fresh, 24 hours and 48 hours) on organoid viability, growth rate, LGR5+ and TROY+ 

stem cell populations and anti-cancer drug response.  
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3.2 Methods 

3.2.1 Study design 

The study design is illustrated in Figure 1. Briefly, we performed gastrectomy in sixty 

C57BL/6J mice divided across 5 experimental cohorts. Twelve mice were included in each 

cohort. Three mouse stomachs were used for in-vivo controls and immediately processed for 

molecular and histology analysis. The nine remaining stomachs were cleaned and one each 

was placed in HBSS, UW or HTK solution and dissociated immediately as fresh tissue or 

mock shipped on ice in Styrofoam coolers and dissociated after 24 or 48 hours. Organoids 

were maintained for a total of 10 passages. Specimens for gene expression and histology 

were collected from control, initial dissociation, Passage 1 and 5 samples. A dose-response 

assay was conducted on all nine gastric organoids in cohort 4 from passage 2 and 6. Two 

human gastric cancer biopsies were mock-shipped for 24 and 48 hours respectively and 

established as human organoid culture (53C = 24 hours, 54C = 48 hours). 

 

 Figure 3-1 Study design. 

3.2.2 Mice  

Jackson C57BL/6J mice were retrieved from breeding colonies maintained by Health 

Sciences Laboratory Animal Services at the University of Alberta. Prior to gastrectomy, 

these mice were cared for according to guidelines established by the Canadian Council on 
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Animal Care. Ethics approval was granted by the University of Alberta Research Ethics Office 

under a Category A Exemption based on the principle of Reduction. 

3.2.3 Organoid culture  

Our organoid protocol closely approximates previously characterized intestinal organoid 

protocols from Bartfeld et al and Mowat et al.179,243 Specific reagent information and 

catalogue numbers can be found in Appendix .C.1. Briefly, stomachs were resected from 

mice, washed in 1X sterile PBS and placed in 50mL conical tubes containing HBSS with 2X 

penicillin/streptomycin, UW or HTK solution (Figure 3-1). Tissues were minced with sterile 

scissors and washed three times in sterile 1XPBS. Minced tissues were enzymatically and 

mechanically digested in 20 mL digestion buffer (Advanced DMEM/F12, 1X 

penicillin/streptomycin, 2.5 ug/mL amphotericin B, 2.5% FBS, 75 units/ml Collagenase XI 

and 125 ug/ml Dispase II) and placed a mechanical water bath at 37 degrees Celsius for 1 

hour. Next, tissue was pipetted aggressively up and down 10 times with a 10 mL pipette to 

dissociate cells and subsequently filtered through a 70µm strainer coated in 10%FBS/PBS. 

Cells were washed and suspended in DMEM. A 15 µL aliquot was mixed 1:1 with Trypan 

Blue (Gibco, 15250061) and counted on a hemocytometer. Cells were resuspended in ice-

cold 70% Matrigel (Corning, 356253) in Advanced DMEM/F12 at a concentration of 1000 

cells/µL and 35 µL Matrigel domes were placed in a prewarmed 24 well tissue culture 

treated plate. Organoids were cultured in 500 µL organoid culture medium at 37 degrees 

Celsius and 5% CO2 until mature for splitting or downstream analysis. Organoid growth and 

media were assessed daily with media changes occurring every other day unless significant 

cellular debris or colorimetric change was present.  

Organoid culture media contained 1:1 basal culture medium and conditioned L-WRN cell 

supernatant enriched in R-spondin, noggin and Wnt (ATCC, CRL-3276). Conditioned L-cell 

supernatant was prepared according to Miyoshi and Stappenbeck.244 Organoid culture media 

contained Advanced DMEM/F12, 2mM L-Glut, 10mM HEPES, 1X penicillin/streptomycin, 2.5 

ug/mL amphotericin B, 1X N2, 1X B27, 1 mM N-acetylcysteine, 1nM gastrin, 10 mM 

nicotinamide, 500 nM A83-01, 10 µM SB202190 and 50 ng/mL mouse EGF. Human organoid 

culture used human EGF and, for the first plating only, 10 µM Y-27632.  

Mature organoids were passage approximately every 5 days depending on the abundance of 

cystic organoids and cell sloughing (Figure 3-1). Briefly, ice-cold Advanced DMEM/F12 was 

added to Matrigel domes and organoids were mechanically lifted using a pipette tip. 

Organoids were dissociated using TrypLE Express (Gibco, 12604013) and washed three 
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times and counted with a hemocytometer as above. Organoid cells were then cultured or 

allocated for downstream analysis. Organoid viability and relative growth rate were 

measured using a hemocytometer with Trypan Blue for each passage. The relative growth 

rate was calculated assuming exponential growth.  

3.2.4 Annexin V-Cy3 Apoptosis Assay 

We used an Annexin V-Cy3 immunocytochemistry detection kit (Sigma-Aldrich, APOAC) to 

assess the proportion of live, dead or apoptotic cells for different tissue dissociation 

conditions. Briefly, 50,000 cells were retrieved following the organoid culture filtration step 

above and placed on Poly-L-Lysine coated slides. The Annexin assay was performed per 

manufacturers protocol and imaged with an AxioCam HRc camera. Cells were counted using 

ImageJ.245  

3.2.5 Immunofluorescence and immunohistochemistry 

Tissue specimens for hematoxylin and eosin (H+E) staining and immunofluorescence (IFC) 

of whole mouse stomach or organoid containing Matrigel domes were fixed in zinc-formalin 

(Z-Fixx) for 24 hours, washed three times and stored in 70% ethanol prior to preservation 

in paraffin. Fixed organoids were suspended in agar prior to paraffin embedding. Specific 

antibody combinations, dilutions, incubation times and antigen retrieval buffers are listed in 

Appendix .C.2. Briefly, 5 µm tissue sections were deparaffinized in Histoclear (National 

Diagnostics) and rehydrated. Microwave heat-induced epitope retrieval was performed using 

Sodium Citrate (pH 6, heated to 94 degrees Celsius in 1-minute intervals followed by 9 

minutes continuous heat). Permeabilization was performed with 0.5% Triton X-100. Non-

specific epitopes were blocked using 10% normal goat serum. Tissue sections were stained 

with primary antibodies (rabbit anti-pan cytokeratin/mouse anti-MUC5AC, rabbit anti-pan 

cytokeratin/mouse anti-TROY, and rabbit anti-pan cytokeratin/mouse anti-LGR5) and 

secondary antibodies (anti-rabbit IgG Alexa Fluor 488 (green) and anti-mouse IgG Alexa 

Fluor 568 (red)). Autofluorescence was diminished using a TrueView Quenching kit per 

manufacturer’s protocol (Vector, SP-8400-15). Nuclear counterstaining was performed with 

DAPI (blue) followed by cover slipping with Vectashield Vibrance Antifade mounting media 

(Vector, H-1700). Images were captured on an AxioCam HRc camera and processed using 

ImageJ.245  

Immunohistochemistry was performed on human gastric organoids. Tissues were 

rehydrated and antigen retrieval was performed as above. Endogenous peroxidases were 
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blocked with 3% hydrogen peroxide in methanol. Non-specific binding was mediated by 

blocking with 20% normal goat serum and avidin/biotin blocker per manufacturers protocol 

(Vector Laboratories-2001). MUC5AC primary antibody was diluted 1:250 and incubated at 

4 degrees Celsius overnight. Biotinylated IgG secondary antibody was incubated at 1:200 

dilution for 30 minutes. Antibody detection was performed using avidin-biotin 

complex/horseradish peroxidase (Vector Laboratories) and 3,3-diaminobenzidine 

tetrahydrochloride (DAB, Abcam, ab64238) per manufacturer’s protocol. Tissues were 

counterstained with hematoxylin.  

3.2.6 qRT-PCR 

RNA was extracted from organoids or whole mouse stomach using TRIzol Reagent according 

to the manufacturer’s protocol (Invitrogen, 15596026). Whole mouse stomach was 

disrupted using a bead mill homogenizer. RNA concentration and purity were assessed using 

a NanoDrop 1000 (Thermo Scientific). Only samples with an A260/280 greater than 1.8 

were included for analysis. Isolated RNA was stored at minus 80 degrees Celsius with 0.2 

Units/µL SUPERASE-In RNase inhibitor (Invitrogen, AM2694). Total RNA was reverse 

transcribed into cDNA using 100 ng RNA with the High-Capacity RNA-to-cDNA Kit (Applied 

Biosystems, 4387406). Quantitative real-time PCR was performed in a 96 well CFX Connect 

Bio-Rad RT-PCR Detection System using 10 ng input cDNA, TaqMan Fast Advanced Master 

Mix (Applied Biosystems, 4444964) and stock TaqMan PCR primers from ThermoFisher 

Scientific [Tnfrsf19/TROY (Mm00443506_m1), LGR5 (Mm00438890_m1), and beta-

actin/ACTB (Mm01205647_g1)].  

PCR Amplification efficiency was assessed to establish optimal input cDNA concentration and 

to validate the assay for our selected transcripts (Appendix .C.3; Appendix Figure C3-2). We 

conducted a validation experiment to confirm equal efficiency of the target and 

housekeeping genes (Appendix .C.3; Appendix Figure C3-1).246 Relative gene expression 

levels were calculated using the Comparative CT Method (delta delta/ΔΔCT) using pooled 

passage 8 mouse organoids as reference. Gene expression values were subsequently scaled 

to the mean of whole stomach controls prior to downstream analysis.  

3.2.7 in-vitro dose-response assay 

Our combination FOLFOX (5-fluorouracil, oxaliplatin and leucovorin) dose-response assay 

was validated using the human gastric cancer cell line AGS (ATCC CRL-1739). AGS cells 

were cultured in Ham’s F-12K (Gibco), 10% FBS (Gibco) and 1X penicillin and streptomycin 
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(Gibco). Briefly, 5000 cells were plated in 96 well plates and grown for 24 hours. Anti-

cancer drugs 5-fluorouracil (Tocris, 3257) and oxaliplatin (Tocris, 2623) were added in 

triplicate over 8 half-log dilutions with 800 µM and 2400 µM initial concentrations, 

respectively. A single 500 µM dose of leucovorin (Toronto Research, L330400) was added to 

each treatment well. Cells were treated for 48 hours followed by a CCK-8 viability assay 

(Abcam, ab228554), which was performed according to the manufacturer’s protocol. We 

replicated our assay in three independent trials to assess reproducibility.  

For organoid dose-response assays, organoids were passaged and dissociated according to 

our protocol. As above, 5000 cells were plated in 96 well plates and grown in organoid 

media for 24 hours followed by 48 hours of FOLFOX treatment and viability assessment 

using a CCK-8 assay.  

3.2.8 Statistical analysis 

Statistical analyses were completed using R version 4.1.2 and Prism 9.3.1.226 Differences 

between three or more groups were assessed using Kruskal-Wallis test with post-hoc Dunn’s 

test for multiple comparisons when applicable. Multiple comparison corrections were 

performed using the Bonferroni method. A paired Wilcoxon test was used to assess paired 

dose-response data. We used Pearson’s correlation to assess the relationship between gene 

expression and dose-response data. A one-way analysis of variance (ANOVA) was used to 

compare viability and growth rate. Multivariable generalized additive models (GAMs) of 

growth rate, viability and stem cell gene expression were created to determine the 

independent effects of media, dissociation time, cohort and passage number.247 A series of 

models were analyzed and compared using likelihood ratio tests of nested models. We used 

Variable Inflation Factor to assess for collinearity. GAM fits were tested relative to multiple 

linear regression and linear regression with relevant spline terms for continuous variables. 

Predictions from these models were used to create adjusted response plots using ggplot2. 

Dose response data was processed and analyzed in GraphPad. First, baseline media control 

absorbance was subtracted from all experimental wells. Absorbance values were then 

normalized between 0 and 100% given that adequate minimum and maximum treatment 

effect controls were present. Mean drug concentrations from 5-fluorouracil, oxaliplatin and 

leucovorin were log10 transformed. Next, outliers were removed using Q = 1% and least 

squares variable slope non-linear regression estimated dose-response curves and half-

maximal inhibitory concentration (IC50).   
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3.3 Results  

3.3.1 Organoids recapitulate murine gastric tissue and morphology  

We successfully established gastric organoids from 45 mice (34 male, 26 female) with a 

median age of 129 days (IQR 119-140). The median number of days between passages was 

5 (3,6) and the median total time spent in culture was 54 (41,56) days. We assessed the 

morphology of gastric organoids from each media condition and dissociation time relative to 

whole mouse stomach using hematoxylin and eosin staining. Figure 3-2A shows 

representative images that demonstrate the recapitulation of tissue morphology. 

Irrespective of media or dissociation time, organoids from passages 1 and 6 formed circular 

hollow structures with cells bound by a basement membrane reminiscent of gastric epithelial 

tissue. We confirmed that our organoids were of gastric origin by assessing the presence of 

MUC5AC, which is exclusively present in normal gastric tissue (Figure 3-2B).248 Once again, 

structures reminiscent of gastric glandular tissue were observed with MUC5AC expression 

localized to the interior of hollow structures bound by epithelial cells identified by pan 

cytokeratin.  

3.3.1 Dissociation time is associated with decreased viable cells when 
accounting for early apoptosis  

We used an Annexin V-Cy3 apoptosis assay to assess the effect of shipment media and 

dissociation times on isolated stomach cells prior to organoid culture. A significant difference 

in healthy viable cells was demonstrated between dissociation times (Kruskal-Wallis, 

p=0.049). Increasing shipment times were associated with decreasing live cells. Minimal 

difference was observed in the proportion of necrotic/dead cells between dissociation times 

but slight increases in cells undergoing early apoptosis occurred with increasing shipment 

time. There was no significant differences or appreciable trends regarding cell status 

between shipment media conditions.  
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Figure 3-2 Gastric organoid histology and dissociation viability. A. Representative hematoxylin and eosin 
images of whole mouse stomach and gastric organoids. The passage number, media conditions and 

dissociation times are noted in the image headings. Scale bar represents 50 µm. B. Immunofluorescent 
images of whole mouse stomach and gastric organoids recapitulating epithelial pan cytokeratin (green) 
and gastric MUC5AC (red). Nuclei is stained with DAPI (blue). Scale bar represents 20 µm. C and D. 
Barplots of Annexin V-Cy3 apoptosis assay for dissociation time (C) and media conditions (D). 

Experimental conditions are represented by colours identified in the plot legend. Statistical analysis was 

conducted with Kruskal-Wallis test (*p<0.05). Error bars represent standard deviation. E, F and G. 
Boxplots representing dissociation viability (percent of living cells) measured by trypan blue dye for media 

(E), dissociation time (F) and cohort (G) conditions. The significance of a Kruskal-Wallis test is annotated 

in each respective plot. H and I. Marginal effect plots for dissociation viability as measured by trypan blue 
for media temperature and age of mouse given the multivariable model (J). The effects are stratified by 
shipment media and coloured according to the legend plot. Individual data points are coloured according 

to dissociation time as specified in the legend plot. J. Regression table of linear regression model for 
dissociation viability. Covariates are listed with accompanying beta coefficient values, 95% confidence 

intervals and p-values. Hyphens denote reference category for discrete variables. Significant p values are 

bold.  

3.3.2 Dissociation viability is affected by shipment media and is cohort 
dependent 

Initial cell viability following dissociation was also assessed using trypan blue dye and a 

hemocytometer. In this assay, live cells comprise viable cells and cells undergoing apoptosis 

with an intact cell membrane. Univariable analysis of dissociation viability is demonstrated 

in Figure 3-2E, F and G with respect to media, storage time and each dissociation 

procedure/cohort. Cell viability was significantly decreased in tissues shipped in HTK 

solution relative to HBSS and UW solutions (Dunn’s Test, HBSS-HTK adjusted p=0.03, UW-

HTK adjusted p=0.01). Significant variability in dissociation viability was identified between 

cohorts (Kruskal-Wallis, p<0.01).  

We constructed a multivariable linear regression model to evaluate the effect of measured 

confounders and our experimental groups on dissociation viability following shipment for 24 

and 48 hours (Figure 3-2J). Of note, no difference in cell viability was found between cells 

dissociated after 24 or 48 hours. HTK solution and cohorts 3 and 5 were significantly 

associated with decreased cell viability relative to HBSS and cohort 1, respectively. Mouse 

age and the temperature of the media measured at the time of dissociation were not 

significantly associated with dissociation time. In Figure 3-2H, we observe that each one-

degree Celsius increase in the temperature of shipment media corresponds to a 3% 
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decrease in dissociation viability. A small decrease in viability was also associated with 

increasing mouse age (Figure 3-2I).  

3.3.1 Long-term organoid viability is not affected by shipment media and 
dissociation time 

Organoid cell viability was measured during each passage to assess the overall health of 

organoids following mock-shipment. Of note, we established viable organoid cultures in 

100% of experimental conditions and all organoids were propagated for a total of 10 

passages. Univariable analysis found no significant difference in pooled viability with respect 

to shipment media and dissociation time (Figure 3-3A Left and Right, respectively).  

Next, we assessed the relationship of cell viability over the course of 10 organoid passages. 

Given the significant cohort-dependent effects related to dissociation viability we examined 

the trend of viability for each cohort (Appendix Figure C5-4). We observed heterogenous 

nonlinear variation in viability between cohorts, however, there were no obvious effects 

related to shipment media or dissociation time (Appendix Figure C5-5).  

Using likelihood ratio tests, we developed a GAM to best approximate the relationship of 

viability with our experimental conditions and relevant confounding variables (Figure 3-3D). 

Penalized cubic regression splines were fit using generalized cross validation for passage 

number, days in culture and the relative growth rate. We visually present the adjusted 

effects of shipment media and dissociation time on viability in Figure 3-3C. Of note, despite 

differences in shipment media and dissociation time, organoid viability exists within a fairly 

narrow range between ~65 and 85% with tight 95% confidence intervals of the loess 

smooth functions. We found no significant relationship in viability between UW or HTK 

solutions relative to HBSS solution. We identified a small, yet statistically significant 

increase in cell viability for organoids dissociated after 24 and 48 hours of mock-shipment 

relative to fresh organoids. In Figure 3-3C Bottom, we observe that 24- and 48-hour 

organoids have a relatively linear relationship with viability over successive passages 

whereas fresh organoids exhibit a sinusoidal pattern.   
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Figure 3-3 Gastric organoid viability and growth rate over 10 in-vitro passages. A. Boxplot-scatter-violin 
plots of percent viability versus media (Left) and dissociation time (Right). B. Boxplot-scatter-violin plots of 
relative growth rate versus media (Left) and dissociation time (Right). For (A) and (B), the significance of 

a one-way ANOVA test is annotated in each plot. Colours in plot legend indicate experimental conditions. 
Boxplot notches approximate the 95% confidence interval of the median. Each data point represents a 

single measurement. The distribution of data is represented by superimposed violin plots. C and E. 
Adjusted response plot for viability (C) and growth rate (D) versus passage number stratified by media 

and dissociation time. Adjusted viability estimates were predicted from the multivariable models (D and 

F). Each data point represents a single measurement. The trend in data is estimated using a loess 

smooth bound by semi-transparent 95% confidence intervals. D and F. Regression table of generalized 
additive models for viability (D) and growth rate (F). Covariates are listed with accompanying beta 

coefficient values, 95% confidence intervals and p-values. Covariates listed with s() were fit using 
penalized cubic regression splines optimized by generalized cross validation. Hyphens denote reference 

category for discrete variables. Significant p values are bold. 

Once again, we found that specific cohorts exerted significant batch effects on cell viability 

Figure 3-3D). The graphical representation of nonlinear covariates presented in Appendix 

Figure C5-6 provides insight into the relationship of the significant variables passage 

number, days in culture and growth rate on cell viability. For example, passage number 

exerts a complex nonlinear effect on viability, whereas days in culture and growth rate exert 

relatively near-monotonic effects on viability.  

3.3.2 Mock-shipment for 24 or 48 hours decreases organoid growth rate 

Univariate analysis of shipment media found no significant effect on pooled growth rate 

(Figure 3-3A Right). However, organoids derived from fresh tissues were associated with 

significantly greater relative growth rate (Figure 3-3B Right) compared to organoids 

generated after 24-hour and 48-hour mock-shipment (Dunn’s Test, Fresh-24 Hours 

adjusted p < 0.001, Fresh-48 Hours adjusted p= <0.001).  

Compared to viability, growth rates over successive passages were similar between cohorts 

(Appendix Figure C6-7). We fit a GAM to model growth rate in keeping with the procedure 

outlined in the previous section. After adjusting for confounders, dissociation after 24 or 48 

hours remained significantly related to decreased growth rate (Figure 3-3F; Appendix Figure 

C6-8). In Figure 3E Bottom, we observed this consistent effect across all 10 passages. Once 

again, shipment media did not exert significant effects on growth rate (Figure 3-3E Top and 

Figure 3-3F).  
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Variability in growth rate was significantly related to cohort 4 and 5, viability, passage 

number and the number of days in culture. In our model, viability was best interpreted as a 

linear relationship with growth rate in which increasing viability was associated with 

increasing growth rate. The complex nonlinear relationships for passage number and the 

number of days in culture are observed in Appendix Figure C6-9. 
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Figure 3-4 Expression of LGR5 and TROY stem cell markers in gastric organoids. A. Boxplots of Log2 
relative LGR5 gene expression (Left) and Log2 relative TROY gene expression (Right) versus 

dissociation time. Whole stomach indicates control endogenous gene expression levels. B. Boxplots of 
Log2 relative LGR5 gene expression (Left) and Log2 relative TROY gene expression (Right) versus 
media. C. Boxplot of Log2 LGR5 gene expression versus passage number. The significance of a Kruskal-
Wallis and Dunn’s post-hoc test is annotated in the plot. (****p<0.0001, ***p<0.001, **p<0.01, *p<0.05, ns 

= not significant) D. Immunofluorescence expression of LGR5 (red) and pan cytokeratin (green) in whole 
mouse stomach and gastric organoids. Nuclei is stained with DAPI (blue). E. Boxplots of Log2 TROY 
gene expression versus passage number. The significance of a Kruskal-Wallis and Dunn’s post-hoc test 

is annotated in the plot. F. Immunofluorescence expression of TROY (red) and pan cytokeratin (green) in 
whole mouse stomach and gastric organoids. Nuclei is stained with DAPI (blue). For C and E, gene 

expression from control endogenous tissue and cells isolated from the initial dissociation are denoted by 
Whole Stomach and Passage 0, respectively. Gene expression for Passage 1 and 6 is measured from 

established organoids. For D and F, scale bar represents 20 µm. 

3.3.3 in-vitro gene expression of gastric stem cell markers LGR5 and TROY re-
establishes baseline endogenous levels after 6 passages and is 
unaffected by mock-shipment conditions 

We assessed the gene expression of essential gastric stem cell molecules LGR5 and TROY in 

whole stomach tissue, upon dissociation (passage 0) and after passages 1 and 6. No 

significant relationship was identified in LGR5 and TROY gene expression between organoid 

dissociation time or shipment media (Figure 3-4A and B). In Figure 3-4C and E, we 

identified significant differences between LGR5 and TROY gene expression between whole 

stomach tissue, dissociated tissues and subsequent organoid passages. We examined the 

significance of differences between each condition with Dunn’s test. In both cases, LGR5 

and TROY gene expression significantly decreased upon dissociation of tissues relative to 

endogenous whole stomach levels. Stem cell gene expression significantly increased in 

successive passages and was statistically similar to endogenous levels following passage 1 

and 6 (Figure 3-4C and E).  

To confirm the translation of LGR5 and TROY, we assessed protein expression using 

immunofluorescence. In Figure 3-4D, LGR5 expression is noted in representative images of 

whole stomach tissue (Left) and gastric organoid (Right). LGR5 was predominately co-

localized with pan cytokeratin expressed on cell membranes, which is consistent with prior 

studies.249,250 TROY expression was also identified in whole stomach tissue and gastric 

organoids (Figure 3-4F Left and Right, respectively). In both tissues, TROY is expressed 
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mainly in the cytoplasm and cell membrane, although some expression is present in 

nuclei.250  

Figure 3-5 Multivariable analysis of LGR5 and TROY gene expression in gastric organoid culture. A. 
Partial effects plot demonstrating the significant nonlinear effect of passage on LGR5 (green) and TROY 

(blue) gene expression. The y-axis represents the change in gene expression for a given passage 

number as identified by the smoothed function. The solid coloured lines are penalized cubic regression 

splines for passage number derived from multivariable models in B and C. Semi-transparent ribbons 

represent 95% confidence intervals. The dotted vertical lines represent times at which gene expression 

was measured. B and C. Regression tables of generalized additive models for LGR5 (C) and TROY (D) 
gene expression. Covariates are listed with accompanying beta coefficient values, 95% confidence 
intervals and p-values where applicable. Covariates listed with s() were fit using penalized cubic 

regression splines optimized by generalized cross validation. Hyphens denote reference category for 

discrete variables. Significant p values are bold. 
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Multivariable GAMs were established to assess TROY and LGR5 gene expression using mock-

shipment covariates, cohort and passage number. We modelled passage number as a 

continuous variable to evaluate the nature of the relationship between organoid culture and 

gene expression. In Figure 3-5A, we observed a linear increase in TROY and LGR5 

expression among dissociated tissues and organoids after passage 1. However, the rate of 

increase in stem cell gene expression subsides and appears to reach a steady-state by 

passage 4. Overall, passage number contributed significantly (p<0.001) to stem cell gene 

expression and the relationship between LGR5 and TROY was nearly identical. Again, 

significant cohort batch effects were identified for LGR5 and TROY expression (Figure 3-5B 

and C). Mock shipment conditions related to media and dissociation time remained 

insignificant. 

3.3.4 in-vitro organoid dose-response to cytotoxic therapy is significantly 
associated with passage number and stem cell gene expression 

Ideally, the shipment of tissues would increase organoid procurement and not affect 

downstream analyses such as dose-response assays. We performed a dose-response assay 

using FOLFOX cytotoxic therapy to assess possible effects related to mock-shipment. Using 

the AGS cell line, we validated the reproducibility of our drug assay. In three independent 

drug assays our dose-response curves were statistically similar (Appendix Figure C4-3).  

Dose-response curves for a single cohort of organoids at passage 1 and 6 are shown in 

Figure 3-6A. We achieved reliable nonlinear estimates of all drug assays with adjusted 

goodness of fits (R2) ranging from 0.82 to 0.99. Greater efficacy of cytotoxic therapy was 

observed in paired organoid lineages from passage 1 relative to passage 6 (Figure 3-6B, 

paired Wilcoxon, p <0.01). No significant difference in dose-response IC50 was identified 

between dissociation times or shipment media variables (Figure 3-6C and D).  

Next, we assessed the Pearson’s correlation of dose-response IC50 values with LGR5 and 

TROY gene expression measured from the same organoid lineages. Both LGR5 and TROY 

gene expression was strongly correlated with IC50 (Pearson’s R=0.7, p<0.01). In Figure 

3-6E and F we observe that this association also corresponds to clear differences in 

expression between organoid passages.  
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Figure 3-6 Effect of mock-shipment on dose-response to FOLFOX therapy and growth of human gastric 
cancer organoids. A. Dose-response curves for 9 organoid lineages in passage 1 (blue) and passage 6 
(red). Cell viability measured by a CCK8 assay is presented on the y-axis and Log10 FOLFOX 

concentration on the x-axis. Least squares nonlinear models with variable slope were fit for each half-log 

8 dilution series. Half-maximal inhibitory concentration (IC50) was estimated from these models. B. 
Paired boxplots for Log10 IC50 values versus passage number. Each coloured point and line correspond 

to a single organoid lineage. Organoids were derived from each experimental condition (n=9).  Boxplots 

represent the distribution of Log10 IC50 for all organoid lineages. Paired Wilcoxon p-value is annotated in 
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the plot. C and D. Barplots of Log10 IC50 values versus dissociation time (C) and media conditions (D). 
Experimental conditions are represented by colours identified in the plot legend. Kruskal-Wallis p values 

are annotated in the plot. Error bars represent standard deviation. E and F. Pearson’s correlation 
between Log10 IC50 values and Log2 relative gene expression for LGR5 (E) and TROY (F). Pearson’s R 
and p value is annotated in each plot. Points represent one organoid lineage and are coloured according 

to passage as indicated in plot legend below. The dotted black line represents the fit of a simple linear 

regression. G. Representative brightfield images of human gastric cancer tumours and patient-derived 
organoids following 24- (Top) and 48-hours (Bottom) of mock-shipment in HBSS solution. The image 

identification is presented in the plot heading. The first two columns show hematoxylin and eosin images. 

The third and fourth columns demonstrates the recapitulation of MUC5AC (brown) expression in tumour 

organoids. Scale bar represents 50 µm. 

3.3.5 Human tumour organoids can be established following 24- and 48-hour 
mock-shipment in HBSS solution 

Endoscopic biopsies were retrieved from gastric cancer in 2 patients and mock-shipped in 

HBSS solution for 24 and 48 hours, respectively. All patients underwent informed consent 

according to our approved ethics protocol from the Health Research Ethics Board of Alberta. 

Organoids were successfully established and propagated following mock-shipment. Tumour-

derived organoids recapitulated the morphology of parent tumour tissue in hematoxylin and 

eosin stained sections (Figure 3-6G). Furthermore, MUC5AC was expressed in organoid 

tissues, which confirmed the growth of gastric epithelium. Of note, organoids from 24-hour 

shipped tissue recapitulated diffuse type histology with signet ring cells noted in the parent 

tumour.  

3.4 Discussion 

Using a mouse gastric organoid model, we demonstrated that gastric organoids are capable 

of growth following cold shipment for 24 or 48 hours. Although HTK solution was associated 

with decreased viability following dissociation, no significant difference in viability or growth 

rate was found across 10 passages between HBSS, UW and HTK solutions. Decreased 

growth rate was identified in organoids established after 24- and 48-hours of mock-

shipment, however, this did not affect cell viability, LGR5 and TROY stem cell gene 

expression or dose-response assays. These data support the concept that cold shipment of 

fresh tissue on ice is a feasible approach to improve organoid tissue procurement.  

Intestinal organoid models are thought to provide a high-fidelity model that will likely form 

the cornerstone of future translational oncology research.193,251 Several pre-clinical organoid 
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studies have identified a correlation between in-vitro organoid dose-response and clinical 

tumour response.182,183,195,196 Despite the optimism and promising preliminary findings, 

prospective evidence supporting the use of organoids as a translational model for 

personalized medicine is lacking. The first clinical trial assessing whether colon cancer 

organoids could allocate clinical therapy failed to establish feasibility.174 To improve organoid 

models additional research is required. Thus, enhancing tissue procurement eliminates a 

practical bottleneck preventing the expansion of organoid research.  

Previous research has attempted to improve tissue procurement and preservation. Walsh et 

al. compared the effectiveness of flash freezing fresh tissue in liquid nitrogen to 

cryopreservation in dimethyl sulfoxide (DMSO) at -80 degrees Celsius prior to organoid 

development.252 In comparison to organoids derived from fresh unfrozen tissue, organoids 

developed from cryopreserved tissues in DMSO most accurately recapitulated dose-response 

to various anticancer drugs. Another option to distribute organoid tissue involves shipping 

established organoid cultures from patient-derived tissue or induced pluripotent stem cells. 

Using live retinal organoid cultures, shipment protocols at room temperature or 37 degrees 

Celsius have proven to maintain organoid viability.253,254 We argue that both of these 

methods are not feasible for the widespread collection and distribution of organoid tissues. 

The first method requires the availability of liquid nitrogen, adequate -80-degree Celsius 

freezer capacity and DMSO within surgical facilities. Further, the shipment of these frozen 

tissues would require expensive and elaborate shipping conditions. The second method 

relies on establishing organoid culture prior to transport. Thus, this requires the availability 

of a nearby organoid research lab. Furthermore, any established cultures will be prone to 

greater batch variability between separate organoid labs. Our method only requires the 

availability of affordable HBSS solution and ice packs.   

In this study, we identified a number of significant confounders related to organoid viability, 

growth rate and dose-response. In all multivariable models, cohort batch effects were 

significant. We identified cohort-dependent effects on initial dissociation viability and among 

viability and growth rate over 10 organoid passages. Cohort effects upon tissue dissociation 

could be attributed to variation in reagents, subtle differences in the surgical resection 

procedures or variability in enzymatic dissociation. However, cohort batch effects occurring 

across 10 passages suggests that unknown variability is intrinsic to the establishment of 

each organoid culture. The growth and behaviour of gastric organoids was also found to 

associate with passage number and days in culture. Complex nonlinear relationships were 
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identified for viability and growth rate with respect to passage number. Whether organoid 

growth beyond 10 passages would establish a reliable steady-state is unknown. 

To our knowledge, we are the first to characterize the gene expression of stem cell markers 

LGR5 and TROY in gastric organoids starting from tissue dissociation through to subsequent 

passages. Given that organoid media purposefully drives stem cell growth it is possible that 

organoids could become enriched in stem cells over successive passages. Our findings 

suggest that drug assay response is associated with passage number and/or stem cell gene 

expression. In either case, any effects on dose-response efficacy would need to be 

considered in translational organoid models to better approximate true in-vivo efficacy. 

Indeed, LGR5+ and TROY+ cells may give rise to cancer stem cells.255,256 Increased LGR5 in 

human gastric cancer is associated with worse overall survival and decreased tumour 

response grade following neoadjuvant chemotherapy.257 Inhibition of LGR5 expression in the 

AGS cell line was also associated with enhanced in-vitro dose response. Future 

characterization of the relationship between increasing organoid passages, stem cell gene 

expression and cytotoxic therapy efficacy is required.  

3.5 Conclusions 

In this study, we establish that shipment of fresh gastric tissue from mouse and human is a 

feasible and reliable method to increase procurement of primary organoid tissue. Our 

shipment method uses ice packs, standard shipping coolers and HBSS solution 

supplemented with 2% penicillin/streptomycin. Without the need for liquid nitrogen or 

minus 80-degree Celsius fridges, our method is relatively simple to implement in a clinical 

setting. In addition to feasibility, we show that shipment conditions do not affect the 

reliability of downstream dose-response assays and organoids maintain viability for at least 

10 passages.  
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Chapter 4: Integration of independent 
comprehensive molecular classification 
frameworks provides novel insight into 
personalized medicine in gastric cancer 

4.1 Introduction 

Gastric cancer is the fifth most common cancer and the third most common cause of cancer 

death worldwide.11–13 Over the previous three decades, gastric cancer diagnosis, treatment, 

and surgical management have significantly improved. However gastric cancer remains a 

deadly disease with a mortality-to-incidence ratio of 0.65 in developed countries. 

Comparatively few targeted therapy options are available for gastric cancer.117,258,259 

Questions remain regarding the implication of microsatellite instability on neoadjuvant 

treatment allocation.7,260–263 Ongoing trials intend to extend immunotherapy options to the 

neoadjuvant setting.1,2 One strategy to enhance the application of personalized medicine in 

the setting of increasingly complex therapeutic and clinical challenges is to leverage whole-

transcriptome or multi-omics molecular classification.  

The utility of omics technology in capturing relevant molecular subtypes in a variety of 

cancers has grown. Over the previous decade, multiple molecular classification systems on a 

cancer-specific and pan-cancer basis have been proposed using transcriptome, whole 

genome, epigenome and proteome data.198–202,264,265 In gastric cancer, prominent 

classification systems include those proposed by The Cancer Genome Atlas project (TCGA), 

the Asian Cancer Research Group (ACRG) and the Tumour Microenvironment Score 

(TME).26,82,207 These classification systems have been demonstrated to carry prognostic 

utility and may provide guidance for personalized therapy, especially in the case of 

microsatellite instability (MSI) and Epstein-Barr virus type (EBV) tumours.83,206 

Clinical implementation of these classifiers faces multiple challenges. There has been 

ongoing development of novel classification systems without consideration of comparative 

analysis between them. Evaluating the true clinical relevance of these classification schemes 

is difficult given the small sample sizes due to the immense cost and logistics of 

transcriptome-related research. Translation to more feasible tests or existing cohorts is 

hindered by the curse of dimensionality, cross-platform heterogeneity of genomic 

measurements and fragmented nucleic acids related to clinical formalin-fixed paraffin-

embedded samples.266,267  
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Even if these challenges are overcome we currently struggle to implement truly 

personalized research. To enhance the interpretability of complex cancer biology and 

mathematics, classification schemes often reduce molecular analyses to categorical 

subtypes. However, cancer biology is not simple or discrete. Worse, diminishing continuous 

biological processes to discrete categories is known to limit statistical power and conceal 

nuance.268–270 Current models also fail to interpret estimates of prognosis or treatment 

effects at the individual level. In order to advance communication and discovery in 

personalized medicine novel models designed for personalization are desirable.  

This study provides the largest comprehensive and integrated analysis of TCGA, ACRG and 

TME molecular classification systems for gastric cancer. We explore modelling techniques to 

enhance clinical translation of multi-omics classifiers, investigate methods to evaluate 

heterogeneity between classifiers and provide a translational driven analysis with a focus on 

personalized medicine models in gastric cancer. Principal among our findings is the 

beneficial effects of an active tumour immune microenvironment in prognosis and enhancing 

survival in patients who also receive chemotherapy.  

4.2 Methods 

4.2.1 Dataset descriptions 

We used 11 publicly available gastric cancer datasets that contained RNA-seq or microarray 

whole transcriptome data.26,57,208,271–276 Detailed information pertaining to all datasets 

including specific preprocessing procedures is available on GitHub 

(https://github.com/skubleny/Thesis-Supplemental-Files). Briefly, we identified datasets 

that were previously used in gastric cancer molecular classification studies.26,82,207,208 Gene 

expression data was imported from Gene Expression Omnibus using GEOquery, cBioPortal 

or downloaded from published supplementary data.26,277–279 Phenotype data containing 

clinicopathologic characteristics, including survival data and treatment status were retrieved 

using GEOquery ,TCGAbiolinks , cBioPortal or supplementary data files.280–282 

Whole-transcriptome data was retrieved in a variety of formats. RNA-seq data from TCGA 

was quantified using RNA-Seq by Expectation-Maximization (RSEM) and batch 

normalized.283 Affymetrix microarray data was retrieved after Robust Multi-array Average 

(RMA) normalization or was processed from raw CEL files followed by RMA normalization.283 

Illumina gene expression data was mainly retrieved as Log2 transformed and quantile 

normalized. Where applicable, normal or non-gastric adenocarcinoma samples were 
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excluded from subsequent data analysis and normalization steps. For GSE26899 and 

GSE26901, gene expression values with less than 20% missing data were imputed using k-

nearest neighbours. Gene symbol names were assigned using AnnotationDBI.  

For all datasets, we performed exploratory analysis using Bland-Altman plots, qqplots, 

boxplots and probability density functions to confirm proper normalization was achieved. We 

filtered low expression and low variance genes for the purpose of future translation to a 

Nanostring codeset.284,285 A cut-off of Log2 gene count <1 was used for RNA-seq data. For 

microarray data histograms of gene expression row median values were visualized and low-

intensity probes were filtered.286 Following this procedure we achieved a common set of 

9824 genes across 11 studies.  

 
4.2.2 Supervised machine learning models 

4.2.2.1 Model selection  

We created a series of supervised machine learning classification models for TCGA, ACRG 

and TME subtypes (Figure 4-1). The training data was comprised of 376 TCGA, 300 ACRG 

and 1797 TME patients with molecular subtypes assigned by the primary publication. Models 

were generated using caret or glmnet in R.227,228 We structured our experiment around 

three feature selection algorithms: LASSO, Gradient Boosting Machine (GBM) and Support 

Vector Machine with a linear kernel (SVM). After feature selection we implemented 

ElasticNet, naïve bayes (NB), random forest (RF), GBM, k-nearest neighbours (KNN), SVM 

and single layer neural network (NNET) models in R.227,228,287–292  

Models were constructed in three nested layers. To mitigate estimation bias we used nested 

stratified 10-fold cross-validation (CV) in the outermost folds.293 Given the presence of 

imbalanced classes in our data, stratification ensured that a consistent proportion of classes 

were present in each training and testing fold.294 From the training data in the outermost 

layer, ten LASSO, GBM and SVM models were constructed using all 9824 gene features. 

Model performance was estimated on each respective hold-out dataset. Model selection and 

hyperparameter optimization for these LASSO, GBM and SVM models occurred within the 

second layer of 10-fold CV. We then performed feature selection using each of these models 

to decrease the number of genes required to classify subtypes. The lambda for LASSO 

feature selection was chosen using the minimum mean cross validated error for ACRG and 

TME classifiers and the lambda within one standard error of the minimum error for TCGA. 

For GBM models, the top 50 features were selected as defined by variable importance within 
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caret. For SVM, the top 15 features from each subtype class were selected as defined by 

variable importance in caret. Duplicate selected genes were removed. Next, the innermost 

layer was used to construct models using the reduced number of genes to predict subtypes 

for TCGA, ACRG and TME classes, respectively. This innermost fold used 5-fold CV with 3 

resampling repeats to optimize hyperparameters. Performance of the selected models from 

this innermost layer was then estimated using the outermost hold-out test set.  

Figure 4-1 Study overview for Chapters 4 and 5. Each box illustrates a fundamental step to develop 
integrated molecular classification in gastric cancer with a Nanostring test. Components within Chapter 4 

and 5 are denoted by the orange and blue box, respectively.  

Final model performance was always estimated on unseen hold out data from the outermost 

layer. Allocation of subtype classes was assessed using confusion matrices and accuracy 

was used to select the final model. Given the presence of imbalanced subtype classes we 

used Cohen’s Kappa to ensure model predictions were not due to random chance.295 Brier 

score was also calculated to assess calibration using a proper scoring rule.296  
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4.2.2.2 Cross-platform normalization 

We used Feature Specific Quantile Normalization (FSQN) to account for confounding related 

to differences in gene expression technologies.297 For TME classification, FSQN was used to 

match training data from Illumina and RNA-seq platforms to the Affymetrix distribution in 

the ACRG cohort. FSQN was subsequently used to match gene expression distributions to 

the training distribution of each model (ie. Target distribution). For example, our TCGA 

classifier was trained using only RNA-seq data from the TCGA cohort. Prior to learning TCGA 

subtypes for all other datasets, gene expression values had to first be normalized to the 

TCGA distribution using FSQN.   

4.2.3 Calibration Analysis 

Calibration is a desirable feature for medical decision making. For every patient, each of our 

selected final models for TCGA, ACRG and TME classification produced categorical subtype 

assignments and a score corresponding to each subtype. These model scores may 

approximate calibrated probabilities, in which the frequency of actual events/subtypes 

corresponds to the score given by a model. We visually assessed the uncalibrated model 

scores using calibration plots.298 We then applied post-hoc calibration methods to the model 

scores with the intent to improve calibration. For TCGA and ACRG model scores, we applied 

a novel multiclass calibration method called Dirichlet calibration.299 Dirichlet calibration was 

implemented in R using log transformed model scores as input into L2 multinomial 

regression and penalized multinomial regression in the glmnet and nnet libraries, 

respectively.228,291 For binary TME scores, we applied Platt scaling, which produced model 

singularities.300 To mitigate this problem, we applied a modified version of Platt scaling 

using L2 regularized binomial regression on model scores. We used the same stratified 10-

fold CV folds to asses calibration metrics and optimize hyperparameters.  

To quantitatively assess calibration, we used various calibration metrics. For TME models we 

used Estimated Calibration Error (ECE) and Maximum Calibration Error (MCE), which are 

defined in Guo et al.301 For multiclass models, we used classwise-ECE (cw-ECE), classwise-

MCE (cw-MCE), confidence-ECE (conf-ECE) and confidence-MCE (conf-MCE) as defined by 

Kull et al.299,301  Finally, we calculated a novel metric proposed by Widmann et al. called 

Squared Kernel Calibration Error (SKCE), which provides an unbiased and consistent metric 

to evaluate multiclass and binary calibration.302 Optimally calibrated models were selected 

as final models.  
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4.2.4 Variance Heterogeneity 

We developed a novel measurement of molecular classification heterogeneity called variance 

heterogeneity (varHet). Variance heterogeneity is a continuous variable and may be applied 

to one or more classification systems as single classification variance heterogeneity (sc-

varHet) or integrated variance heterogeneity (int-varHet), respectively.  

For the model scores derived from a single classifier model, j, we define a m x n matrix 

where m rows represent individual patients and n1…ni columns represent score probabilities 

for i subtypes in a given classifier. For example, scores for a single patient, m, assigned by 

a classifier with 4 subtypes is represented by the matrix: 

[0.054 0.098 0.126 0.722]	

For reference, an example of scores derived from our models is given in Appendix .D.1. 

Next, we define rowvar as the variance (s2) for a single row. Then class corrected rowvar 

(ccRowVar) for a single patient, m, is: 

Equation 4-1 

𝑐𝑐𝑅𝑜𝑤𝑉𝑎𝑟 = 𝑟𝑜𝑤𝑣𝑎𝑟	 × 	𝑖	
 

For a single patient, m, single classification variance heterogeneity (sc-varHet) is: 

 

Equation 4-2 

𝑠𝑐 − 𝑣𝑎𝑟𝐻𝑒𝑡 = 	− 𝑙𝑜𝑔(𝑐𝑐𝑅𝑜𝑤𝑉𝑎𝑟)	
 

For a single patient, m, integrated variance heterogeneity sums individual ccRowVar values, 

as defined in Equation 4-1, for j independent classifiers. Thus, integrated variance 

heterogeneity is defined by: 

Equation 4-3 

𝑖𝑛𝑡 − 𝑣𝑎𝑟𝐻𝑒𝑡 = 	− 𝑙𝑜𝑔 H
1
𝑗 J𝑐𝑐𝑅𝑜𝑤𝑉𝑎𝑟!K 
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Given this framework the theoretical minimum of sc-varHet and int-varHet is 0, which is 

given by high variance in assigned subtype scores, and the maximum heterogeneity 

approaches infinity with decreasing variance in subtype scores. Simply, a classifier that 

confidently predicts a subtype in a given tumour with a high score (ie. For a binary setting, 

SubtypeA = 0.99 and SubtypeB = 0.01) has low variance heterogeneity, whereas a tumour 

with nearly equal scores has high variance heterogeneity (ie. For a binary setting, SubtypeA 

= 0.49 and SubtypeB = 0.51) 

4.2.5 Model validation in reference to gold-standard features 

For the purposes of this paper, internal validation of our models was performed using 

publicly available whole-transcriptome data. Within our definition we still assess the ability 

of classifiers to capture gold-standard reference features on seen and unseen data. We 

reserve the term external validation for future development of a targeted stand-alone test 

that does not incorporate whole-transcriptome data.  

Briefly, gold-standard features were available to validate TCGA EBV, TCGA MSI and ACRG 

MSI subtypes. A feature developed by the ACRG for evaluating genomic instability termed 

CNV GI was used to approximate aneuploidy, which should be captured by TCGA 

Chromosomal instability (CIN) and ACRG microsatellite stable TP53 negative (MSS TP53-) 

subtypes. CNV-GI is a binary variable defined as “high” if the number of deleted or amplified 

chromosomes is >2.3 x the population’s median average deviation in each chromosome.18 

Using subtype scores derived from our supervised classifiers we performed logistic 

regression to predict the allocation of gold-standard features. Area under the receiver 

operating characteristic (AUROC) was calculated and receiver operating characteristic (ROC) 

curves were plotted from pROC in R.303  

4.2.6 Propensity score matched analysis 

We performed a propensity score matched analysis to infer the causal treatment effects of 

chemotherapy on overall survival among our selected molecular subtypes. Briefly, we used 

logistic regression to calculate the propensity score of receiving chemotherapy with 

confounding variables including molecular subtypes, age, stage, tumour location, Lauren 

classification and study identification.304 To optimize matching we tested non-linear 

relationships of confounding variables as a function over time using likelihood ratio tests 

(Appendix Table D2-1; Appendix Figure D2-10). Age was fit as a natural cubic spline with 
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two degrees of freedom. Nearest matching at a 4:1 ratio with a caliper was performed using 

the average treatment effect on the controls as the target estimand.  

Marginal treatment effects on overall survival were estimated with the survival package 

using robust standard errors. Sampling weights and cluster identification was appropriately 

included. We performed sensitivity analyses using separate matched cohorts comprised of 

various stages of disease. Furthermore, sensitivity of model effects to unmeasured 

confounding was assessed using the E-Value.305 

4.2.7 Statistical and Survival Analysis 

Statistical analyses were completed using R version 4.1.2.226 Squared Kernel Calibration 

Error estimates and tests were executed in Julia version 1.5.4, but implemented in R using 

the rcalibration package.302 Differences between groups were assessed with a Wilcoxon two-

sample test or Kruskal-Wallis test. When applicable, post-hoc tests were completed using 

Dunn’s test. Multiple comparisons corrections were made using either Benjamini-Hochberg 

or Bonferroni methods as stipulated in the results or figures. Statistical significance was 

defined at alpha = 0.05.  

Overall survival of independent and integrated molecular classification was assessed using 

Cox Proportional Hazards model with the survival package.306 Treatment effects in 

propensity score matched survival analysis were estimated by accounting for cluster 

stratification and robust standard errors. Interaction effects were visualized using the simPH 

package.307 Non-nested Cox models were assessed using corrected Akaike Information 

Criterion (AICc), with a significant improvement defined as a decrease in AICc greater than 

10.  

Individual survival distribution models were implemented as suggested by Haider et al 

(https://github.com/haiderstats/ISDEvaluation).308 Briefly, we tested the performance of 

Cox with Kalbfleisch-Prentice extensions (Cox-KP), ElasticNet Cox (CoxEN-KP), Random 

Survival Forest , Accelerated Failure Time and Multi-task logistic regression (MTLR) models 

for our survival prediction task. Model performance and optimization was assessed using 5-

fold CV. Models were selected in consideration of the Concordance Index (C-Index), 1-

calibration and D-calibration.   
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4.3 Results 

4.3.1 Performance and selection of supervised TCGA, ACRG and TME molecular 
classification models 

Figure 4-2A, C and E show the accuracy of all twenty-four supervised machine learning 

models constructed for TCGA, ACRG and TME classification systems, respectively. Our 

optimal TCGA classifier achieved an accuracy of 89.5% ± 0.04 standard deviation using 57 

gene features selected by LASSO within an ElasticNet model. Classification accuracy of 

ACRG subtypes was maximized at 84.7% ± 0.04 using a GBM model with 39 gene features 

selected from an SVM model. We attained an accuracy of 89.3% ± 0.02 for binary TME 

classification using the top 50 GBM features in a random forest model. Overall, most model 

combinations performed well across the three classification tasks and little variance 

occurred in model performance between folds. In all cases, optimal feature selected models 

achieved near equivalent or superior accuracy, kappa and Brier scores compared to models 

using all 9824 genes. Selected genes and numerical metrics for each model combination are 

provided in the online supplement (https://github.com/skubleny/Thesis-Supplemental-

Files).  

Next, we statistically assessed critical differences in accuracy among model combinations for 

each prediction task (Appendix .D.3). Poor model combinations were dominated by KNN and 

NB models using GBM and SVM features for TCGA and ACRG multiclass predictions. Superior 

model accuracy for TME classification was dominated by feature selection using GBM and 

LASSO in combination with RF, GBM, KNN and NNET models.  

4.3.2 Calibration of molecular classification models  

We applied Dirichlet calibration and Platt scaling to our chosen classification models. In 

Figure 4-2B, D and F we present the model performance and calibration metrics for the 

uncalibrated and calibrated models averaged over 10-fold CV. We also calculated the 

unbiased Square Kernel Calibration Error for each model (Figure 4-2G).  

In keeping with Kull et al., Dirichlet calibration improved class-wise ECE definitions for 

multiclass ACRG and TCGA models (Kruskal-Wallis, p=0.004 and p<0.001, respectively).299 

For ACRG models, calibration methods significantly decreased class-wise MCE but also 

increased ECE of the dominant class (Figure 4-2D). Calibration plots for ACRG models show 

that L2 Dirichlet calibration resulted in less variance in mean calibration error for all classes 

and modified the calibration curves for individual classes (Appendix Figure D4-20).  
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Figure 4-2 Performance and calibration of 
supervised machine learning classifiers. A, C and 
E. Mean accuracy estimated using 10-fold nested 
cross-validation for TCGA (A), ACRG (C) and TME 
(E) models. Bolded bars represent chosen models. 

Colours denoted by the plot legend show Full 

models (9824 genes) and models after feature 

selection using LASSO, GBM and SVM. B, D and 
F. Mean calibration metrics as well as accuracy 
and Cohen’s kappa values of uncalibrated and 

calibrated models for TCGA (B), ACRG (D) and 

TME (F) classification. G. Mean Squared Kernel 
Calibration Error of uncalibrated and calibrated 

models. Calibration methods denoted by colours in 

the plot legend. For A-G, mean accuracy, Cohen’s 

kappa and calibration was calculated using 10-fold 

nested cross validation. Error bars represent 95% 

confidence intervals computed using 1000 

bootstraps. Horizontal bars demonstrate statistical 

significance using a Kruskal-Wallis test 
(***p<0.001, **p<0.01, *p<0.05). H. Calibration 
plots for final selected models including 

uncalibrated base TCGA model (Left), 

uncalibrated base ACRG model (Middle) and 

modified Platt calibrated TME model (Right). 

Calibration was assessed using deciles and 

visualized using a loess smooth with span = 0.75. 
The mean calibration for all subtypes is 

represented in blue with 95% confidence intervals 

in light blue. Where applicable, the figure legends 

describe colour identification for each molecular 

subtype.  

Penalized multinomial regression using nnet 

severely distorted calibration curves. In 

contrast to traditional histogram-based 

metrics such as ECE and MCE, the unbiased SKCE demonstrated that calibration methods 

Table 4-1 Patient demographics 
Variable n/N (Missing %) N = 2,2021 
Age 2,128 / 2,202 (3.4%) 61 (52, 69) 
Stage 1,678 / 2,202 (24%)  
I  258 (15%) 
II  484 (29%) 
III  590 (35%) 
IV  346 (21%) 
Sex 2,132 / 2,202 (3.2%)  
Female  714 (33%) 
Male  1,418 (67%) 
TCGA Subtype 2,202 / 2,202 (0%)  
CIN  1,631 (74%) 
EBV  124 (5.6%) 
GS  189 (8.6%) 
TCGA MSI  258 (12%) 
ACRG Subtype 2,202 / 2,202 (0%)  
EMT  278 (13%) 
MSI  372 (17%) 
MSS TP53-  850 (39%) 
MSS TP53+  702 (32%) 
TME Subtype 2,202 / 2,202 (0%)  
High  731 (33%) 
Low  1,471 (67%) 
Study 2,202 / 2,202 (0%)  
ACRG  300 (14%) 
Kosin  109 (5.0%) 
KUGH  93 (4.2%) 
MDACC  40 (1.8%) 
Samsung  432 (20%) 
Shanghai  70 (3.2%) 
Singapore  248 (11%) 
TCGA  412 (19%) 
Yonsei  433 (20%) 
Yonsei MDACC  65 (3.0%) 
Grade 513 / 2,202 (77%)  
G1  32 (6.2%) 
G2  166 (32%) 
G3  286 (56%) 
Other  29 (5.7%) 
Lauren Class 1,471 / 2,202 (33%)  
Intestinal  760 (52%) 
Diffuse  642 (44%) 
Mixed  69 (4.7%) 
Signet Ring 510 / 2,202 (77%)  
Signet Ring  83 (16%) 
No  381 (75%) 
Other  46 (9.0%) 
Tumour Location 1,389 / 2,202 (37%)  
Proximal  692 (50%) 
Distal  673 (48%) 
Whole  24 (1.7%) 
Chemotherapy 1,371 / 2,202 (38%) 957 (70%) 
Radiation 654 / 2,202 (70%) 152 (23%) 
1Median (IQR); n (%) 
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for multiclass models actually worsens calibration, albeit non-significantly (Figure 4-2G Left 

and Middle). Given these findings we selected the uncalibrated TCGA and ACRG models.  

Regularized Platt scaling of our TME model significantly improved ECE and Brier score 

compared to the uncalibrated model (Wilcox, p=0.011 and p=0.043, respectively) (Figure 

4-2F). The calibrated TME model also resulted in significantly less SKCE (Wilcox, p = 0.007) 

(Figure 4-2G Right). Calibration plots show that modified Platt scaling straightened the 

sigmoidal uncalibrated curve to better approximate perfect calibration, especially for 

underconfident prediction scores greater than 50 (Appendix Figure D4-21). L2 binomial 

calibration also improved model accuracy to 89.4% ± 0.01, and was thus selected as our 

final model. 

Next, we assessed whether our models were actually calibrated using a statistical test. We 

performed an Asymptotic SKCE test under the null hypothesis that our model is perfectly 

calibrated (ie. SCKE = 0). All configurations of model calibration for each classification 

model was statistically significant and thus our models were not calibrated.  

Calibration methods maintained similar accuracy and kappa performance compared to 

uncalibrated TCGA, ACRG and TME models. Calibration plots generated over 10 histogram 

bins for our selected final models are illustrated in Figure 4-2H. The TCGA model achieved 

the lowest SKCE value relative to other models despite greater observed class-wise 

calibration error and mean class calibration error. 

4.3.3 Gastric cancer possesses significant molecular subtype heterogeneity 

Next, we used our selected models to learn molecular subtypes for all 2,202 patients 

included in this study. Feature Specific Quantile Normalization was performed to the target 

distribution of each model. Demographic data for all patients is provided in Table 4-1 and 

detailed demographic data for each molecular subtype is in Appendix Table D5-2, Table 

D5-3 and Table D5-4.  

The median patient age was 60 years (52,69) and 67% were male. Stage had greater than 

20% missing data and grade, Lauren class, signet ring and tumour location contained at 

least 30% missing data. Age and stage were significantly different between subtypes within 

TCGA, ACRG and TME classification systems (Kruskal-Wallis and Chi-squared, p<0.05). We 

found that sex, grade, Lauren class and tumour location was significantly different between 

TCGA and ACRG subtypes but similar between high immune microenvironment scores (TME 
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High) and low immune microenvironment score (TME Low) tumours (Chi-squared and 

Fisher’s Exact Tests). These findings suggest that immune based classification is agnostic to 

traditional clinicopathologic factors, whereas the ACRG and TCGA scores capture a greater 

degree of epithelial derived signal.  

Table 4-2 Contingency table for TCGA and ACRG subtypes stratified by TME status 
TME High (n=731)  
 EMT MSI MSS TP53- MSS TP53+ TCGA Sum 
CIN 12 66 199 199 476 
EBV 5 22 9 46 82 
GS 0 3 3 7 13 
TCGA MSI 0 125 18 17 160 
ACRG Sum 17 216 229 269  
      
      
TME Low (n=1471)  
 EMT MSI MSS TP53- MSS TP53+ TCGA Sum 
CIN 148 72 572 363 1155 
EBV 8 9 6 19 42 
GS 102 10 33 31 176 
TCGA MSI 3 65 10 20 98 
ACRG Sum 261 156 621 433  

 

At a categorical level, CIN was the most prevalent TCGA subtype (1,631 patients, 67%). 

Comparatively, 124 (5.6%) EBV, 189 (8.6%) Genomically stable (GS) and 258 (12%) TCGA 

MSI tumours were present. In decreasing prevalence, 850 (39%) MSS TP53-, 702 (32%) 

Microsatellite Stable TP53 positive (MSS TP53+), 372 (17%) MSI and 278 (13%) Epithelial 

to Mesenchymal Transition (EMT) ACRG subtypes were assigned. TME High and TME Low 

tumours comprised 731 (33%) and 1471 (67%) of patients, respectively. In Figure 4-3C, 

we illustrate the heterogeneity of assigned subtype categories using an alluvial plot. We 

found that all possible combinations of molecular subtypes exist among 2,202 patients. 

Prominent trends include the strong association of CIN tumours with MSS TP53+ and MSS 

TP53- tumours, as well as the paucity of TME High tumours in GS and EMT subtypes. The 

discrete heterogeneity of TCGA and ACRG subtypes stratified by TME High and TME Low is 

demonstrated in Table 4-2.   
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Figure 4-3 Molecular subtype model scores and categorical subtypes possess heterogeneity. A. 
Heatmap of optimal calibration probability scores for each patient. Hierarchical clustering was performed 

using complete linkage on Euclidean distance. Select clinicopathologic characteristics are annotated 

above the heatmap. The legend illustrates categorical representation of each characteristic. Magnitude of 
class probability is denoted by colour scale legend. B. Boxplot-scatter-violin plots for the distribution of 
subtype probability scores for each molecular subtype in TCGA, ACRG and TME classification systems. 

Boxplot notches approximate the 95% confidence interval of the median. Each data point represents a 

single measurement. The distribution of data is represented by superimposed violin plots. C. Alluvial plot 
illustrating flow of discrete molecular classification labels between TCGA, TME and ACRG classification 

schemes for 2,202 patients. Blue and purple identifies TME High and TME Low tumours, respectively. 

Each column contains 2,202 patients. D. Receiver Operating Characteristic Curve of logistic regression 
models predicting biological features external to the transcriptome using class probability scores. 
Dependent and independent variables (ie. Dependent ~ independent) of the model with corresponding 

Area Under the Curve values (Accuracy) are denoted in the plot legend. 

In keeping with our intent to represent biology as a continuous variable we plotted the 

model subtype probability scores in Figure 4-3A and B. The heatmap using complete 

clustering of probability scores on Euclidean distance revealed relationships between 

different classification systems. For example, MSS TP53-, CIN and TME Low tumours formed 

the most prominent cluster. We found that GS and EMT tumours were closely related but 

also clustered with high EBV subtype scores. Considering previously characterized poor 

prognosis of GS and EMT tumours relative to EBV tumours, this was a prominent 

finding.26,83,206 No major patterns of clustering coincided with tumour location, stage or 

Lauren classification. However, a predominance of signet ring cell tumours was appreciated 

to cluster with greater GS and EMT subtype scores. In Figure 4-3B we illustrate that large 

variation exists between subtype scores and that the shape of subtype score distributions is 

heterogenous.  

4.3.4 Molecular subtype scores emulate intended gold-standard molecular 
tests 

Despite accurate model performance that was assessed using cross-validation we wanted to 

ensure our subtype probability scores appropriately captured their target phenotype. We 

extracted available gold-standard data for validation of EBV and MSI subtypes measured by 

Epstein-Barr encoded small RNAs in-situ hybridization (EBV ISH) and multiplex PCR 

according to Bethesda criteria (MSI Status).309–311 We used the CNV GI score established in 

the ACRG study to capture the presence of aneuploidy because data were annotated to both 
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TCGA and ACRG cohorts. Importantly, the selected gold-standard references measured 

molecules external to the transcriptome to prevent any possible data leakage intrinsically 

related to gene expression data.  

We created Logistic regression models for each intended target and our model subtype 

scores (Figure 4-3D). All subtype scores provided statistically significant value to their 

intended targeted phenotype. Subtype scores for EBV type cancer provided almost perfect 

assignment of positive EBV infection as defined by EBER (AUC 0.997 [95% CI 0.994, 1], 

p<0.001). Both TCGA MSI and ACRG MSI scores performed well in recognizing MSI status 

(TCGA MSI AUC 0.955 [95% CI 0.923,0.987], p<0.001; ACRG MSI AUC 0.916 [95% CI 

0.884, 0.948], p<0.001). TCGA CIN scores better approximated CNV GI status compared to 

MSS TP53- scores (CIN AUC 0.860 [95% CI 0.805,0.915], p<0.001; MSS TP53- AUC 0.732 

[95% CI 0.656, 0.808], p<0.001). These findings provide additional evidence that we 

developed effective and biologically consistent classifier models.  

4.3.5 Variance heterogeneity provides a flexible and useful heterogeneity 
metric for probabilistic classifier models 

Given the heterogeneity identified between molecular subtypes with both discrete and 

continuous variables, we developed and applied a novel measurement of molecular 

classification heterogeneity. First, we replicated the Intratumor Heterogeneity (ITH) score 

proposed by Marisa et al. to the TCGA and ACRG scores (Appendix .D.6).312 This metric 

reduces heterogeneity identified in continuous model probability scores to an ordered 

categorical representation of heterogeneity. In a framework comprised of 4 subtype classes, 

the ITH score for a given patient is derived from the number of subtypes with a probability 

score > 0.2.  

We found that ITH failed to provide significant prognostic yield in our patients (Appendix 

Figure D4-21A and C). In contrast to Marisa et al., increasing ITH scores trended towards 

improved overall survival for TCGA and ACRG subtypes. Furthermore, the ITH score was 

designed to be implemented to a single classification system and was based on arbitrary 

cut-off values. This motivated us to develop a continuous metric of heterogeneity based on 

the same principle – that decreasing variance in the scores assigned to a given patient 

reflects the presence of multiple molecular subtype signatures within a single tumour.   
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Figure 4-4 Variance based molecular class heterogeneity is biologically diverse and an independent 

prognostic factor. A.  Boxplot demonstrating that molecular class heterogeneity varies between molecular 
subtypes. Boxplot notches approximate the 95% confidence interval of the median. B. Kaplan-Meier 
survival probability curve from a Cox Proportional Hazards model comparing High and Low Heterogeneity 

tumours. Heterogeneity (int-varHet) was divided at the median heterogeneity score. A Log Rank test was 

performed with p < 0.0001. C. Heterogeneity (int-varHet) versus Intratumoral Heterogeneity (subclonal 
heterogeneity) calculated by ABSOLUTE. D. Heterogeneity (int-varHet) versus Stromal Fraction defined 
as 1 minus tumour purity calculated with ABSOLUTE. E. Heterogeneity (int-varHet) versus percent of 
tumour cells observed on hematoxylin and eosin stained tissue sections. F. Heatmap of Pearson’s 
correlation coefficients of heterogeneity scores versus molecular and immune feature scores of TCGA 

samples established by The Immune Landscape of Cancer. Hierarchical clustering was performed using 

complete linkage. G. Similarity of molecular classes can be evaluated using the ratio of confidence (class 
probability) and heterogeneity (variance heterogeneity). For example, TCGA MSI vs. ACRG MSI (Left) 
and TCGA CIN vs. ACRG EMT (Right). The figure legends below denote the shape and colour 

corresponding to TCGA and ACRG subtypes, respectively. H. Pearson’s Correlation plot of confidence 
heterogeneity ratios for all classes, which demonstrates biological similarity of GS and EMT, MSI and 

MSI, CIN and MSS TP53 negative, CIN and TME low and MSI and TME High. For C, D and G the 

gray/blue line represents the slope of simple linear regression corresponding to Pearson’s correlation 

coefficient (r). R2 describes the proportion of variance in Heterogeneity explained by Intratumoral 

Heterogeneity. P value denotes statistical significance with alpha level = 0.05. For F and H, the 

magnitude and direction of Pearson’s correlation coefficient is denoted by the colour scale legend. 

We calculated the sc-varHet and int-varHet scores. Our sc-varHet scores for TCGA and 

ACRG closely approximated ITH scores (Appendix Figure D4-21B and D). The distribution of 

int-varHet were significantly different between molecular subtypes, but generally 

approximated a median value of 0.5 (Figure 4-4A). Consistent with our findings for ITH 

scores, patients with int-varHet scores greater than the median value of 0.4574 had 

significantly greater overall survival (Figure 4-4B).  

Our definition of heterogeneity is based on the probabilistic scores derived from supervised 

learning models. We assessed our definition of heterogeneity relative to previously defined 

perspectives which included tumour purity/sub-clonal heterogeneity, stromal tumour 

fraction and the relative of abundance of tumour cells present.313 We observed minimal 

Spearman correlation values relative to int-varHet for all three metrics (Figure 4-4C, D and 

E). Despite statistical significance, the magnitude of effect was small, suggesting that int-

varHet provides a distinct perspective into intratumour heterogeneity.  
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Next, we characterized the association of variance heterogeneity metrics for each molecular 

classification system and integrated heterogeneity (Figure 4-4F). Pearson’s correlation with 

tumour molecular characteristics specific by the PanCancer Atlas and Immune Landscape of 

Cancer projects revealed that individual classification heterogeneity corresponds to unique 

biological phenomenon. For example, increasing TCGA based sc-varHet was associated with 

increasing macrophage regulation and leucocyte fractions, whereas ACRG and TME sc-

varHet corresponded to increased proliferation and wound healing signatures. These 

findings suggested that we cannot assume a unidirectional effect of probabilistic model-

based heterogeneity. Instead, heterogeneity within each classification system must be 

considered independently.  

We continued to assess the utility of variance-based heterogeneity by considering its 

relationship to subtype probability scores between separate subtype classes. In Figure 4-4D, 

we demonstrate that the ratio between the model derived probability score and the int-

varHet score provides insight into the degree of similarity in independent molecular 

subtypes. We tested this hypothesis using TCGA MSI and ACRG MSI subtype scores given 

their close recapitulation of true MSI status. A strong visual and statistical correlation was 

found between these similar molecular subtypes. In contrast, TCGA CIN, which is 

characterized by tumour somatic copy number alterations and ACRG EMT, which closely 

resembles TCGA-GS, had near zero correlation. The strength of similarity between all 

independent molecular subtypes is demonstrated in Figure 4-4H. These findings were 

similar to heatmap-based clustering in Figure 4-3A, however, using correlations between 

Confidence/Heterogeneity ratios provides a common strength of association and statistical 

metric.  

4.3.6 Survival analysis  

We expanded on prior prognostic interpretations of our selected molecular classification 

systems using our cohort of 2197 patients with overall survival data. Our cohort contained 

992 events and 54.8% of patients were censored (Appendix Figure D7-23) We performed 

univariate analysis for each molecular subtype (Table 4-3, Table 4-4 and Table 4-5). 

Consistent with prior studies, EBV and TCGA MSI tumours possessed significantly greater 

overall survival compared to CIN and GS (Figure 4-5A). Compared to the original ACRG 

cohort, we found that MSS TP53+ and MSS TP53- tumours were more closely related in 

terms of prognosis. Indeed, pairwise comparisons with Benjamini-Hochberg corrections 

failed to provide statistically significant prognostic differences (Figure 4-5B). In Figure 4-5C, 
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we found that TME High tumours possessed large favourable prognostic effects relative to 

TME Low.  

Next, we compared the predictive value of using continuous molecular subtype scores 

versus the traditional categorical interpretations (Figure 4-5D). We assessed non-nested 

models for each molecular classification and a multivariable Cox model containing all 

molecular subtypes using corrected Akaike’s Information Criterion. Models using continuous 

interpretations of molecular subtypes achieved significant (defined as AICc > 10) 

improvement in model performance for TCGA, TME and integrated molecular classification 

models. Evaluation of ACRG subtype overall survival favoured continuous values to a lesser 

degree.  

Table 4-3 Cox proportional hazards model for discrete TME subtypes 
Variable HR1 95% CI1 p-value 
TME Subtype    
Low — —  
High 0.47 0.41, 0.55 <0.001 
Global Logrank test = p <0.001, n=2197 
1HR = Hazard Ratio, CI = Confidence Interval 

 

Table 4-4 Cox proportional hazards model for discrete TCGA subtypes 
Variable HR1 95% CI1 p-value 
TCGA Subtype    
CIN — —  
EBV 0.71 0.52, 0.97 0.034 
GS 1.13 0.91, 1.39 0.3 
TCGA MSI 0.59 0.47, 0.74 <0.001 
Global Logrank test = p <0.001, n=2197 
1HR = Hazard Ratio, CI = Confidence Interval 

 

 

Table 4-5 Cox proportional hazards model for discrete ACRG subtypes 
Variable HR1 95% CI1 p-value 
ACRG_subtype    
EMT — —  
MSI 0.50 0.40, 0.63 <0.001 
MSS TP53n- 0.69 0.58, 0.83 <0.001 
MSS TP53+ 0.62 0.52, 0.75 <0.001 
Global Logrank test = p <0.001, n=2197 
1HR = Hazard Ratio, CI = Confidence Interval 
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Figure 4-5 Cox proportional hazards model survival analysis of integrated molecular classification in 
gastric cancer. A, B and C. Kaplan Meier curves for univariate analysis of TCGA (A), ACRG (B) and TME 
(C) subtypes. Log Rank p value or pairwise comparison p values are shown for TME and TCGA and 

ACRG, respectively. D. Barplot for comparison of non-nested Cox models using corrected Akaike’s 
information criterion. A negative value beyond -10 was deemed a significantly improved model. Negative 

values corresponded to continuous subtype scores. E. Forest plot for multivariable Cox model hazard 
ratios and 95% confidence intervals. F and G. Kaplan-Meier curves for TCGA CIN (F) and ACRG MSI (G) 
tumours stratified by TME High (green) and TME low (blue). H. Heatmap of Cox model coefficients for 
each molecular subtype stratified by TME subtype (High vs. Low) using both continuous and categorical 

subtype interpretations. A more negative coefficient (darker green) corresponds to improved survival. I. 
Proportional barplot of TME subtypes for each molecular subtype class. TME subtype is denoted by the 

plot legend.  

Given that molecular subtypes are best interpreted as continuous variables, we constructed 

a comprehensive multivariable Cox model to assess the prognostic utility of molecular 

subtypes relative to prominent clinicopathologic factors (Figure 4-5AE). According to a 

Global Wald’s Test, TME subtype was the only statistically significant independent prognostic 

molecular classification system (Hazard Ratio (HR) 0.61 [95% CI 0.46, 0.79], Benjamini-

Hochberg adjusted p<0.001). The beneficial effect of receiving chemotherapy was nearly 

identical to TME High tumours (HR 0.58 [95% CI 0.47, 0.72], Benjamini-Hochberg adjusted 

p<0.001). Survival was also favoured by younger age, intestinal and mixed Lauren Class 

tumours, and lower stage tumours. Stage III and IV tumours carried the largest effect on 

overall survival.   

After characterizing the survival advantage associated with greater TME High tumour scores 

we conducted a subgroup analysis of TME heterogeneity within each molecular subtype. 

Regardless of prognostic differences between CIN and TCGA MSI tumours, nearly identical 

separation of Kaplan-Meier curves was appreciated after stratification by TME tumour status 

(Figure 4-5F and G). In Figure 4-5H, we present the stratified Cox model coefficients for 

each molecular subtype in relation to TME High tumours interpreted as categorical or 

continuous variables. Regardless of the reference molecular subtype, negative Cox model 

coefficients identified improved overall survival in tumours with greater TME High 

scores/status. When we considered the proportion of TME High tumours within each 

molecular subtype relative to the univariate overall survival estimates we appreciated that 

tumours with a greater degree of TME High tumours generally possessed greater overall 

survival (Figure 4-5I).  
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4.3.7 Propensity score matched analysis  

We applied traditional methods of causal inference using propensity score matched analysis 

to delineate potential treatment effects among molecular subtypes. The improvement in 

absolute standardized mean difference in unmatched and matched covariates and the 

distribution of matched propensity scores is presented in Appendix Figure D2-11 and Figure 

D2-12. The balanced cohort demographics accounting for matching weights is presented in 

Table 4-6. 

The overall marginal effect in our cohort favoured chemotherapy for Stage II-IV gastric 

adenocarcinoma, which is consistent with previous studies (HR 0.66 [95% CI 

0.50,0.87]).314,315 Our model also statistically satisfied proportional hazard assumptions 

(Appendix Figure D2-13). We found significant effects favouring chemotherapy treatment in 

patients with high TME probability scores (HR 0.47 [95% CI 0.29, 0.74, p=0.04). In Figure 

4-6A we illustrate the effects derived from our Cox model. We observed that patients with 

the lowest TME High scores have nearly similar effects if they receive chemotherapy or not. 

As TME High score increases some minimal survival benefit is identified for patients without 

chemotherapy but proportionally greater survival benefit is seen in those who receive 

chemotherapy. We also identified significant differences in the effect of treatment depending 

on the study cohort. Besides TME classification, all other molecular classification subtypes 

possessed nearly identical treatment effects to that of the population marginal effect 

(Appendix Figure D2-14).  

We performed sensitivity analyses for a variety of alternative scenarios to assess the 

strength of our findings (Appendix Figure D2-15 and Figure D2-16). Matched cohorts were 

established for populations containing Stage I-IV and Stage II-III tumours. In all cases, we 

matched cohorts and fit models for categorical and continuous interpretations of TME High 

scores. In general, the direction of our subgroup effect remained similar but statistical 

significance was only achieved in Stage II-IV cancers for continuous and discrete TME 

variables. For our main analysis we calculated an E-value of HR 2.24. With reference to our 

multivariable model we concluded that unmeasured confounding roughly equivalent to the 

difference between Stage II and Stage III cancer would be required to nullify our effect.  
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Table 4-6 Propensity score matched cohort demographics 

Variable Overall,       
N = 3951 

Chemotherapy,  
N = 2371 

No Chemotherapy,  
N = 1581 p-value2 

Age 64 (56, 70) 64 (56, 70) 63 (55, 70) >0.9 
Stage    >0.9 
II 136 (34%) 81 (34%) 55 (35%)  
III 162 (41%) 96 (41%) 66 (42%)  
IV 97 (25%) 60 (25%) 37 (23%)  
Sex    0.7 
Female 137 (35%) 84 (35%) 53 (34%)  
Male 258 (65%) 153 (65%) 105 (66%)  
TME Subtype    0.8 
High 76 (19%) 45 (19%) 31 (20%)  
Low 320 (81%) 193 (81%) 127 (80%)  
TCGA Subtype    >0.9 
CIN 282 (71%) 167 (70%) 115 (73%)  
EBV 22 (5.5%) 14 (5.9%) 8 (5.1%)  
GS 40 (10%) 26 (11%) 14 (8.9%)  
TCGA MSI 52 (13%) 31 (13%) 21 (13%)  
ACRG Subtype    >0.9 
EMT 65 (16%) 39 (16%) 26 (16%)  
MSI 66 (17%) 39 (17%) 27 (17%)  
MSS_TP53neg 147 (37%) 90 (38%) 57 (36%)  
MSS_TP53pos 117 (30%) 69 (29%) 48 (30%)  
Study    0.9 
ACRG 163 (41%) 96 (41%) 67 (42%)  
Kosin 55 (14%) 32 (14%) 23 (15%)  
KUGH 38 (9.7%) 25 (11%) 13 (8.2%)  
TCGA 126 (32%) 76 (32%) 50 (32%)  
Yonsei MDACC 12 (3.1%) 7 (3.1%) 5 (3.2%)  
Tumour Location    0.7 
Distal 209 (53%) 127 (54%) 82 (52%)  
Proximal 186 (47%) 110 (46%) 76 (48%)  
Lauren Class    0.8 
Diffuse 143 (36%) 89 (37%) 54 (34%)  
Intestinal 237 (60%) 139 (59%) 98 (62%)  
Mixed 15 (3.8%) 9 (3.8%) 6 (3.8%)  
1Median (IQR); n (%) 
2Wilcoxon rank-sum test for complex survey samples; chi-squared test with Rao & 
Scott's second-order correction 

 
 

4.3.8 Individual survival distribution  

We constructed Individual Survival Distributions to expand on the utility of our integrated 

molecular classification models using continuous model probability scores. Using 1043 

patients with available clinicopathologic characteristics, we evaluated the performance of 

several ISD models for our prediction task (Online Supplement). Multi-task logistic 

regression provided a superior calibrated model with nearly identical C-Index compared to 

CoxEN-KP (MTLR C-Index = 72.1% ± 3.3 versus CoxKP-EN = 72.2% ± 2.9). The MTLR 
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model was significantly D-calibrated and 1-calibrated for all bins except the 50% percentile 

(Appendix Figure D7-24).  
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Figure 4-6 Propensity score matched survival analysis and individual survival distributions using multi-
task logistic regression. A. Visualization of the subgroup analysis interaction effect between 
chemotherapy and TME High score from a Cox model using simPH in R. The z-score for TME High is on 

the x-axis and the log hazard ratio (Cox beta coefficient) is on the y-axis. A negative log hazard ratio 
favours survival. We performed 1000 simulations by drawing samples from a multivariate normal 

distribution based on parameters and covariances derived from the Cox model. The solid line represents 

the median simulation effect and each additional semi-transparent line is one model simulation. B. 
Individual survival curves for 8 patients using an MTLR model. The x-axis represents time in months and 

the y axis is survival probability. The patient characteristics for each colour is denoted in the plot legend 

below. C. Example of a counterfactual scenario illustrating the effect of chemotherapy for a given patient. 
For B and C, uncensored patients (ie. death event) and censored patients are denoted by a “X” and “O”, 

respectively. D. Mean MTLR weights averaged over all time points for each covariate in our model. The 
point represents the mean and the semi-transparent box represents the 95% confidence interval estimate 

from 1000 bootstraps. Weights less than zero favour survival. A one-sample t-test was performed to 

assess if a covariate was significantly greater than zero and p values were corrected using Benjamini 

Hochberg. The p value significance is denoted in the plot legend. E. Loess smooth curves for the top 5 
most influential covariate MTLR weights generated using 5-fold cross validation. Positive weights (y-axis) 

correspond to worse survival. The semi-transparent line signifies the 95% confidence interval.  

We evaluated the capability of our MTLR model to provide insights into personalized 

medicine for gastric cancer. Three scenarios are presented in Figure 4-6B. Scenario A 

presents the effect of chemotherapy in two Stage II males in their sixties with similar TME 

scores. Here, the patient who receives chemotherapy has a 13.8% and 18.7% greater 

probability of survival at 24 and 48 months, respectively. Scenario B illustrates the 

relationship of TME score and chemotherapy in Stage III CIN tumours. We observed that 

survival curves for a patient who does not receive chemotherapy is nearly identical to one 

who receives chemotherapy with a TME low tumour. Consistent with our subgroup analysis 

in the previous section, MTLR also demonstrated additional survival benefit for TME High 

tumours in combination with chemotherapy. MTLR provided additional insight into individual 

survival effects of other molecular subtypes. In Scenario C we found that high EMT score 

profoundly affects overall survival in comparable Stage IV, chemo naïve and TME low 

tumours (Median survival High EMT = 9.4 months versus Low EMT = 14.5 months). We also 

investigated potential counterfactual applications of ISD models to facilitate communication 

of personalized medicine. In Figure 4-6C, we demonstrated the survival benefit, as 

interpreted by our MTLR model, of administering chemotherapy to a 67-year-old female 

with a Stage IV, high TME score gastric cancer. Although additional research is required, 
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counterfactual scenarios could be presented to patients as a visual interpretation of 

otherwise foreign and abstract statistical estimates of treatment benefits/harms.    

Next, we assessed whether estimates from MTLR models can be translated to reference 

“gold-standard” Cox regression in an effort to enhance familiarity with ISD models. In 

Figure 4-6D, negative weights derived from the MTLR model correspond to improved 

survival. Here, we present the mean weights for all predicted time points with their 

respective 95% confidence intervals. Assuming a null-hypothesis weight of zero provides no 

survival effect, we assessed the significance of each covariate using a one-sample Wilcoxon 

test. In keeping with our Cox multivariable model, Stage III and IV provided the greatest 

effect on survival. Survival was also significantly decreased by age, stage II, and increasing 

EMT and CIN scores. The most beneficial survival effects were observed for chemotherapy 

and increasing TME high scores. Microsatellite instability as defined by our TCGA classifier 

significantly improved survival whereas ACRG MSI was not significant. Given this appealing 

presentation of survival effects we were satisfied that MTLR can provide familiar and 

concordant interpretations of survival relative to traditional Cox models.  

In contrast to Cox, MTLR is not bound by the proportional hazard’s assumption. We 

evaluated whether MTLR could provide unique insight into survival effects by modeling the 

weights derived from 5-fold CV. In Figure 4-6E, loess smooths and their 95% confidence 

intervals illustrate the relationship of the top 5 most influential covariates to survival over 

the entire time course of our model. As opposed to presenting a consistent risk over time, 

this approach suggested that certain covariates present more prominent effects at different 

times from disease presentation. For example, early beneficial effects are observed for 

chemotherapy which taper off after 24 months. Stage IV disease exerted a fairly constant 

negative survival effect over 10 years, but Stage III disease did not provide increased death 

until after one year.  

4.4 Discussion 

In this study we provide a comprehensive framework for developing, validating and applying 

multiple independent molecular classification systems to advance understanding of 

personalized medicine. We demonstrate that the integration of several molecular subtypes 

provides enhanced prognostic understanding and potential therapeutic implications. Our 

individual supervised machine learning classifiers predicted TCGA, ACRG and TME subtypes 

with accuracies ranging from 84.7% to 89.5% using only 39-57 genes per model. Using 

these models, we learned molecular subtypes in 2,202 gastric cancer patients. We 
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confirmed the superiority of interpreting molecular subtypes as continuous variables in Cox 

survival models. Using this perspective, we established that only TME classification provides 

significant prognostic utility in a multivariable Cox model. Furthermore, the prognosis of 

each molecular subtype was tightly related to the proportion of TME High tumours present. 

We characterized the beneficial relationship between greater TME High scores and 

chemotherapy using Cox regression with a propensity score matched cohort and individual 

survival distributions. 

Previous research has demonstrated the benefit of a favourable tumour immune 

microenvironment for cancer prognosis and treatment. Indeed, the TME score provided 

predictive utility in identifying complete and partial responses to immunotherapy in 

melanoma and urothelial bladder cancer cohorts.207 The abundance of TME High tumours in 

MSI and EBV tumours follows previous work which demonstrates the high degree of tumour 

immune infiltration and favourable response to immunotherapy in these tumours.206 EBV 

tumours originate in the presence of viral infection, which may serve to provide increased 

interactions with the immune system.316,317 Microsatellite instability also increases the 

propensity for a tumour to interact with the immune system as hyper-mutable cancers 

create an abundance of neo-antigens.85,318 The problem is that chemotherapy and 

immunotherapy are simply improving survival outcomes for patients who already possess a 

superior prognosis. Thus, future investigation is required to find targeted therapies for other 

molecular subtypes or enhance the TME High signature in immunosuppressed tumours. 

Potential avenues to achieve this worthy goal includes the investigation of chemokine 

therapy or cancer vaccines.125,243,319,320 

Intratumour heterogeneity is a significant barrier to personalized medicine in gastric cancer 

that obscures tumour classification and contributes to therapeutic resistance.321–324 

Probabilistic scores within our classifier models provides a measure of intratumor 

heterogeneity. For any supervised molecular classifier model, a score for each subtype will 

be produced for each patient. The sum of these scores equals one. Thus, for a given binary 

classifier, a patient will be allocated to a subtype if they possess a score of 0.51 or 0.99. To 

evaluate the effect of variability between model scores, prior research has proposed 

representing different combinations of scores as discrete heterogeneity categories.312 

Weighted in-silico pathology (WISP) is another method which interprets ITH using gene 

expression values as opposed to model scores.325 The former strategy reduces biology to 

categorical data and has not been extended to the presence of heterogeneity across 

multiple independent classification systems. The latter approach provides a continuous 
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metric but is independent of the classifier model scores. Our novel approach called Variance 

Heterogeneity is derived directly from model scores and provides a continuous measure of 

ITH within and between molecular classifiers. Although additional work is required we 

demonstrated that varHet carries prognostic implications, is largely independent of sub 

clonal heterogeneity and can be used to quantitatively infer the biological concordance 

between subtypes. 

Fundamental to our findings is the use of unbiased model construction techniques such as 

stratified folds and nested cross-validation for supervised machine learning.293,294 We 

performed cross-platform normalization to account for confounding related to differences in 

gene expression technologies. Care must be taken in evaluating studies utilizing cross-

platform data. As demonstrated by Franks et al., failure to account for cross-platform batch 

effects can result in poor model performance. For example, despite using identical patient 

samples in breast and colon cancer patients, the failure to normalize microarray and RNA-

seq data resulted in subtype concordances of only 17-53% for unnormalized data versus 

91-98% percent for Feature Specific Quantile Normalized data.297 A variety of other 

methods have been proposed to perform cross-platform normalization.326–328 Compared to 

non-paranormal transformation, quantile normalization and training distribution matching, 

FSQN performs well with real-world data and small sample sizes. 

Attention must be delivered to model calibration to optimize the development of 

personalized medicine.329,330 A calibrated model provides estimates that approximate real-

world event rates. For example, in a calibrated model, a 30% probability of rain will 

translate to rain actually occurring 30% of the time. The calibration of binary classification 

models is well-defined and can be optimized with Platt scaling or isotonic regression.300 

However, multiclass calibration is fraught with a lack of standardized calibration metrics and 

methods.302 Unfortunately, poor calibration accompanies the excellent accuracy of modern 

machine learning models such as random forest or neural networks.299,301 In our study, 

none of our molecular classification models were statistically calibrated according to 

Asymptotic SKCE tests but our MTLR survival model passed D-calibration and 4 out of 5 1-

calibration tests. We also found large heterogeneity in calibration metric values and the 

relative change in calibration error following the application of calibration methods. For 

example, Dirichlet calibration improved cw-ECE but worsened SKCE values. Heterogenous 

definitions of calibration further obscure the state of calibration in artificial intelligence, 

especially for multiclass models. Advancements in calibration methods for neural networks 

such as temperature scaling do not provide solutions for other multiclass models.331 We 
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conclude that issues surrounding model calibration are a significant limitation to advancing 

personalized medicine.   

Several limitations of our research exist. These findings are based on observational data and 

thus implications of TME High subtypes derived from propensity score matched analysis 

must be evaluated in prospective studies. The use of multiple public cohorts contributes 

significant heterogeneity to our patient population, especially in regard to regional 

differences in surgical management and chemotherapy regimens. Although public data 

drives additional research, there is a significant degree of missing data for important 

clinicopathologic variables. For example, in this study we were only able to use 

approximately ~50-60% of patients in multivariable analyses due to missing data. In many 

cases, imputation methods are not an option because missing data for a given variable is 

greater than 10-20%. Complete data for patient age, stage, pathology and treatment could 

further enhance the utility of public databases. 

4.5 Conclusion 

To date, this is the largest integrative molecular classification analysis for gastric cancer 

using TCGA, ACRG and TME molecular subtypes. We demonstrate that integration of 

independent molecular classification frameworks is feasible and provides novel biological 

understanding. To enhance understanding of personalized medicine we advocate for use of 

continuous interpretations of molecular subtypes and adoption of personalized survival 

models such as MTLR. Our novel metric called Variance Heterogeneity allows the 

assessment of intratumour molecular class heterogeneity at a single classifier or multi-

classifier level. Principal among our findings is that prognosis and treatment effects using 

current chemo- or chemoradiotherapy regimens is largely driven by the tumour immune 

microenvironment, regardless of TCGA or ACRG subtype. Future applications of our 

approach to integrated molecular classification should be extended to external patient 

cohorts using a cost-effective translational test.  

4.6 Data availability 

Data used to perform all analyses and generate plots is provided in online supplement 

material at https://github.com/skubleny/Thesis-Supplemental-Files. 
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Chapter 5: A 107 gene Nanostring assay 
effectively characterizes complex multi-omics 
gastric cancer molecular classification in a 
translational patient-derived organoid model 

5.1 Introduction 

Patient-derived organoids and molecular classification are two promising methods to 

advance personalized medicine in gastric cancer. Three-dimensional cell culture to create 

“mini-organs” called organoids may be used to evaluate molecular cancer biology, assess 

pre-clinical therapeutic efficacy or potentially guide personalized treatment.182,186,239 Given 

these findings some have suggested that 2-dimensional cell culture models could be 

displaced by organoids.172 Molecular classification frameworks, such as those proposed by 

The Cancer Genome Atlas (TCGA) and Asian Cancer Research Group (ACRG) provide robust 

classification systems that define intertumoral heterogeneity.26,82 Although understanding of 

tumour heterogeneity may help guide therapy it also represents a significant barrier to 

achieving personalized medicine.332  

The utility of organoid models and molecular classification is yet to be fully realized by the 

patient. Logistics and cost inhibit widespread implementation of molecular classification, 

which is mainly predicated on whole-genome measurements consisting of tens of thousands 

of genes.201,333 Furthermore, the first prospective trial evaluating whether patient-derived 

colon cancer organoids could provide relevant therapeutic information to the patient failed 

to show feasibility.174 How should we approach the future of personalized medicine in gastric 

cancer? To maximize the advancement of personalized medicine in gastric cancer we argue 

that there is a need to better understand the advantages and disadvantages of each pre-

clinical model and improve accessibility to molecular classification.  

In previous work (Chapter 4), we developed supervised machine learning classifiers for 

TCGA, ACRG and TME subtypes. These models were shown to accurately reproduce subtype 

assignment through cross-validated estimates and in reference to external gold-standard 

features. In this prospective study, we evaluate the feasibility of using a 107 gene 

Nanostring assay in assigning TCGA and TME molecular subtypes derived from our classifier 

models to clinical formalin-fixed paraffin-embedded (FFPE) specimens and patient-derived 

organoid cultures. We evaluate the validity of subtype classification and scores to gold-
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standard reference features and assess the landscape of molecular subtypes in 2D and 3D 

cell culture models. 

5.2 Methods 

5.2.1 Study Design  

We performed this single-center, prospective study at the University of Alberta in 

Edmonton, Alberta, Canada from June 2019 to January 2022. All human clinical participants 

consented according to the approved ethics protocol granted by the Health Research Ethics 

Board of Alberta (Study ID: HREBA.CC-17-0228). Treatment naïve Stage I-IV sporadic gastric 

adenocarcinoma patients aged greater than 18 years were included. Patients with a known 

inherited oncogenic germline mutation or hereditary syndrome (ie. Familial Adenomatous 

Polyposis) were excluded. The study overview is illustrated in Figure 4-1. 

Specimens were retrieved via endoscopic biopsy at the time of diagnosis, staging 

laparoscopy or at the time of surgical resection at the Walter C Mackenzie Health Sciences 

Centre or Royal Alexandra Hospital. Four biopsies were collected for permanent pathology in 

Z-fixx (Sigma) for cancer and adjacent normal tissue, respectively. For the generation of 

patient-derived organoids four additional fresh cancer and adjacent normal biopsies were 

collected. 

5.2.2 Organoid culture 

Our previously described human organoid protocol resembles methods from Bartfeld et al. 

and Mowat et al.179,243 Specific reagent information and catalogue numbers can be found in 

Appendix .E.2. Briefly, fresh gastric tissue from tumour and normal adjacent stomach were 

collected in Hank’s Balanced Salt solution supplemented with 2X penicillin and streptomycin 

on ice. Tissues were minced with sterile scissors and washed three times in sterile PBS. 

Minced tissues were enzymatically and mechanically digested in 20 mL digestion buffer 

(Advanced DMEM/F12, 1X penicillin/streptomycin, 100 µg/mL Primocin, 2.5% FBS, 75 

units/ml Collagenase XI and 125 µg/ml Dispase II) and placed a mechanical water bath at 

37 degrees Celsius for 1 hour. Dissociated cells were filtered, washed and counted with a 

hemocytometer using 1:1 DMEM and Trypan Blue (Gibco, 15250061). Cells were 

resuspended in ice-cold 70% Matrigel (Corning, 356253) in Advanced DMEM/F12 at a 

concentration of 1000 cells/µL and 35 µL Matrigel domes were placed in a prewarmed 24 

well tissue culture treated plate. Organoids were cultured in 500 µL organoid culture 
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medium at 37 degrees Celsius and 5% CO2 until mature for passaging or downstream 

analysis. 

Organoid culture media contained 1:1 basal culture medium and conditioned L-WRN cell 

supernatant enriched in R-spondin, noggin and Wnt (ATCC, CRL-3276). Conditioned L-cell 

supernatant was prepared according to Miyoshi and Stappenbeck.244 Organoid culture media 

contained Advanced DMEM/F12, 2 mM L-Glut, 10 mM HEPES, 1X penicillin/streptomycin, 

100 µg/mL Primocin, 1X N2, 1X B27, 1 mM N-acetylcysteine, 1 nM gastrin, 10 mM 

nicotinamide, 500 nM A83-01, 10 µM SB202190 and 50 ng/mL human EGF. Rho-associated 

kinase inhibitor (10 µM Y-27632) was added for the first plating and first media change 

after splitting.  

Normal gastric organoids were passage approximately every 7 to 14 days. Cancer organoids 

were passaged every 7 to 21 days due to cancer specific variable growth rates. Briefly, ice-

cold Advanced DMEM/F12 was added to Matrigel domes and organoids were mechanically 

lifted using a pipette tip. Organoids were dissociated using TrypLE Express (Gibco, 

12604013), washed three times and counted with a hemocytometer as above. Dissociated 

organoid cells were either cultured or allocated for histology, molecular analysis or dose-

response assays. 

5.2.3 Nanostring assay 

Organoid cells (500,000 to 1,000,000 cells) were dissociated using TrypLE express and 

washed in PBS three times. Nucleic acids were stored at -80 degrees Celsius after cells were 

lysed in 350 µL Buffer RLT Plus (Qiagen, 1053393) with 10 µL/ml 2-mercaptoethanol and 

homogenized using Qiashredder tubes (Qiagen, 79654). DNA and RNA were isolated from 

four 10 µm FFPE curls using an AllPrep FFPE DNA/RNA kit (Qiagen, 80234). We followed the 

manufacturer’s protocol except we performed proteinase-k digestion for 2 hours. Organoid 

DNA and RNA was separated using an AllPrep DNA/RNA kit (Qiagen, 80204). In both FFPE 

and organoid derived samples, mRNA cleanup was performed using a RNA Clean and 

Concentrator kit. (Zymo, R1015). Quality and concentration of RNA was assessed using 

NanoDrop 1000 (Thermo Scientific). DNA and RNA were stored at -80 degrees Celsius prior 

to downstream analysis.  

A custom Nanostring codeset was designed to allocate TCGA (57 genes) and TME subtypes 

(50 genes) using 107 genes chosen by previously developed supervised machine learning 

classifiers (Online Supplement). Measurement of gene expression using our custom codeset 
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was performed by the Lab Medical Pathology core service at the University of Alberta. 

Overnight hybridization of 100ng of total RNA was performed followed by measurement of 

gene counts using the Nanostring nCounter machine.  

Normalization of Nanostring data was performed according to Molania et al.334 Raw 

Nanostring counts were imported to nSolver software 4.0 and samples with quality control 

flags were excluded. All included samples were subsequently normalized using Removal of 

unwanted variation-III algorithm (RUV-III) with technical replicates spanning different 

Nanostring cartridges.335,336 Following RUV-III normalization, Feature Specific Quantile 

Normalization was used to transform gene expression values to the target distribution of 

TCGA and TME classifiers.297 Molecular subtypes were learned using previously characterized 

models. For technical replicates we used the mean value of subtype scores.  

5.2.4 Immunofluorescence and Immunohistochemistry 

Tissue biopsies and organoids were fixed in zinc-formalin (Z-Fixx, Sigma) for 24 hours, 

washed three times and stored in 70% ethanol prior to preservation in paraffin. Fixed 

organoids were suspended in agar prior to paraffin embedding. All tissue sections for 

microscopy were cut at 5 µm. Specific antibody combinations, dilutions, incubation times 

and antigen retrieval buffers are listed in Appendix .E.1.  

Briefly, tissue sections were deparaffinized in Histoclear (National Diagnostics) and 

rehydrated. Microwave heat-induced epitope retrieval was performed using Sodium Citrate 

(pH 6, heated to 94 degrees Celsius in 1-minute intervals followed by 9 minutes continuous 

heat) or Tris-EDTA (pH 9, heated to 94 degrees Celsius in 1-minute intervals followed by 8 

minutes 30 seconds continuous heat). 

For immunofluorescence, permeabilization was performed with 0.5% Triton X-100. Non-

specific epitopes were blocked using 10% normal goat serum. Tissue sections were stained 

with primary antibodies (mouse anti-pan cytokeratin, rabbit anti-vimentin) and secondary 

antibodies (Goat anti-mouse IgG Alexa Fluor 568, 1:50, Invitrogen, A-11004 and Goat anti-

rabbit IgG Alexa Fluor 488, 1:200, Abcam, ab150077). Autofluorescence was diminished 

using a TrueView Quenching kit per manufacturers protocol (Vector, SP-8400-15). Nuclear 

counterstaining was performed with DAPI followed by cover slipping with Vectashield 

Vibrance Antifade mounting media (Vector, H-1700). Images were captured on an AxioCam 

HRc camera and processed using ImageJ.245  
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For immunohistochemistry, endogenous peroxidases were blocked with 3% hydrogen 

peroxide in methanol. Non-specific binding was mediated by blocking with 20% normal goat 

serum and avidin/biotin blocker per manufacturers protocol (Vector Laboratories-2001). 

Mouse anti-MUC5AC primary antibody or rabbit anti-pepsinogen II/PGC was diluted 1:250 

and 1:100, and incubated at 4 degrees Celsius overnight, respectively. Goat anti-rabbit or 

goat anti-mouse biotinylated IgG secondary antibodies were incubated at 1:200 dilution for 

30 minutes for anti-PGC and anti-MUC5AC, respectively. Antibody detection was performed 

using avidin-biotin complex/horseradish peroxidase (Vector Laboratories) and 3,3-

diaminobenzidine tetrahydrochloride (DAB, Abcam, ab64238) per manufacturer’s protocol. 

Tissues were counterstained with hematoxylin. Brightfield microscopy images were captured 

using a Leica Aperio CS2 digital slide scanner. 

5.2.5 Epstein-Barr encoded early RNAs in-situ hybridization 

To confirm that our Nanostring derived TCGA EBV score captured true EBV positive tumours 

we used gold-standard Epstein-Barr encoded early RNAs in-situ hybridization (EBER ISH) in 

parent tumour and patient-derived organoids.309 Tissue biopsies and organoids were 

preserved in FFPE and prepared for microscopy as above. Detection of EBER ISH was 

performed using biotinylated alkaline phosphatase mediated in-situ hybridization with the 

Rembrandt detection kit according to manufacturer’s protocol (ThermoFisher, A500K.0105). 

Tissue sections were counterstained using nuclear fast red.  

5.2.6 Microsatellite instability  

Pentaplex PCR is the gold-standard method for assessing tumour microsatellite instability 

(MSI).310,311 Briefly, DNA was isolated from FFPE sections and PDOs in paired normal and 

cancer tissue as above. The concentration of mRNA free genomic DNA was quantitatively 

measured using QuBit (ThermoFisher). We tested for MSI status using the MSI Analysis 

System, Version 1.2 (Promega, MD1641), which assesses MSI using five fluorescent labeled 

mononucleotide markers (BAT-25, BAT-26, NR-21, NR-24 and MONO-27). Briefly, 2 ng of 

genomic DNA was amplified using GoTaq MDx Hot Start polymerase (Promega, D6001) on a 

BioRad T100 thermal cycler per manufacturer recommended settings. Capillary 

electrophoresis was performed by The Applied Genomics Core at the University of Alberta on 

an Applied Biosystems 3130XL Genetic Analyzer. Data was processed using Geneious Prime 

version 2021.2.2. Alleles were called using 2nd order least squares. Samples were deemed 

MSI-High, MSI-Low or microsatellite stable if allelic variations were found in > 2, 1 or 0 

microsatellite markers, respectfully.  
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5.2.7 In-vitro dose response assay 

Our combination FLOT (5-fluorouracil, leucovorin, oxaliplatin and docetaxel) dose-response 

assay was validated using the AGS human gastric cancer cell line (ATCC CRL-1739). AGS 

cells were cultured in Ham’s F-12K (Gibco), 10% FBS (Gibco) and 1X penicillin and 

streptomycin (Gibco). Briefly, 5000 cells were plated in 96 well plates and grown for 24 

hours. Anti-cancer drugs 5-fluorouracil (Tocris, 3257), oxaliplatin (Tocris, 2623) and 

docetaxel (Tocris, 4056) were added in triplicate over 8 half-log dilutions (5-fluororacil and 

oxaliplatin) or 10-fold dilutions (docetaxel). Initial concentrations for 5-fluorouracil, 

oxaliplatin and docetaxel were 800 µM, 2400 µM and 2400 nM, respectively. A single 500 

µM dose of leucovorin (Toronto Research, L330400) was added to each treatment well. Cells 

were treated for 48 hours followed by a CCK-8 viability assay (Abcam, ab228554), which 

was performed according to the manufacturer’s protocol. We replicated our assay in three 

independent trials to assess reproducibility.  

For organoid dose-response assays, organoids were passaged and dissociated according to 

our protocol. As above, 5000 cells were plated in 96 well plates and grown in organoid 

media for 24 hours followed by 48 hours of FLOT treatment and viability assessment using a 

CCK-8 assay.  

Nonlinear regression of dose response data was performed using GraphPad Prism version 9. 

First, baseline media control absorbance was subtracted from all experimental wells. 

Absorbance values were then normalized between 0 and 100% given that adequate 

minimum and maximum treatment effect controls were present. Mean drug concentrations 

from 5-fluorouracil, oxaliplatin, docetaxel and leucovorin were log10 transformed. Next, 

outliers were removed using Q = 1% and least squares variable slope non-linear regression 

estimated dose-response curves and half-maximal inhibitory concentration (IC50). Drug 

Sensitivity Score (DSS) was calculated using estimated parameters from nonlinear 

regression using the DSS package.337 

5.2.8 Cancer Cell Line Encyclopedia Analysis  

We retrieved multi-omics data and dose-response data for gastric cancer cell lines present 

in the Cancer Cell Line Encyclopedia.338 Data were downloaded from the Broad DepMap 

Portal (https://depmap.org/portal/download/). A complete list of datasets used for this 

analysis is available in the online supplement (https://github.com/skubleny/Thesis-

Supplemental-Files). 
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RNA-seq data were retrieved as log2 transformed RNA-Seq by Expectation-Maximization 

(RSEM) counts.283 We filtered out gene counts < 1. Data were assessed using qqplots, 

boxplots and probability density functions to ensure adequate normalization was achieved. 

Molecular subtypes for TCGA, ACRG and TME classification were assigned using our 

previously characterized supervised classifiers. Prior to assigning subtypes, gene expression 

values were transformed to target distributions of each classifier using FSQN.  

We compared the association of molecular subtype scores from each classification model to 

dose-response data and validated the intended molecular phenotypes of each scores using 

aneuploidy scores, p53 mutation status and microsatellite instability status .338–340  

Area under the curve drug sensitivity values were retrieved from the Sanger Genomics of 

Drug Sensitivity in Cancer (Sanger GDSC2).341 We filtered out drugs with greater than 25% 

missing data. Pearson’s correlation of subtype score and drug sensitivity was performed. 

Pearson’s correlation values were then pooled according to drug targets as specified by 

GDSC. A Kruskal-Wallis test evaluated drug target categories with respect to the Pearson’s 

correlation of drug efficacy and molecular subtype score.  

5.2.9  Statistical Analysis 

Statistical analyses were completed using R version 4.1.2.226 Differences between groups 

were assessed with a Wilcoxon two-sample test or Kruskal-Wallis test. Differences between 

paired samples was assessed using two-tailed paired Wilcoxon test. When applicable post-

hoc tests were completed using Dunn’s test. Pearson’s correlation or Spearman’s Rho was 

used to assess associations between continuous variables. Multiple comparisons corrections 

were made using Benjamini-Hochberg or Bonferroni method, as specified. Statistical 

significance was defined at alpha = 0.05.  

5.3 Results  

5.3.1 Demographics of prospective cohort, molecular subtypes 

Demographics data for 39 patients in our prospective cohort are found in Table 5-1. The 

median age was 65 (60, 74) with a predominance of male patients (67%). All stages were 

equally present but the majority of tumours were poorly differentiated (G3 = 69%). The 

majority of tumours were also proximal, diffuse and exhibited signet ring cell features. 
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The assigned molecular subtypes of our patient population using Nanostring gene counts 

measured from FFPE specimens are provided in Table 5-2. Following appropriate 

normalization procedures, we used our previously characterized supervised classifiers to 

assign TCGA and TME classes and scores. The proportion of TCGA classes was largely 

concordant to subtypes assigned in a public cohort of 2,202 patients. Chromosomal 

instability was observed in 74.4% of patients (Public cohort = 74.1%), EBV in 5.1% (Public 

cohort = 5.6%), GS in 7.7% (Public cohort = 8.6%) and MSI in 12.8% (Public cohort = 

11.7%). However, the prevalence of TME High tumours was less in our population (12.8% 

vs. 33.2%). Among TME High tumours we observed the expected presence of EBV and MSI 

classes but the prevalence of CIN tumours was lower than the reference population (2.6% 

vs 21.6%).  

Table 5-1 Patient demographics  
Variable n/N (Missing %) N = 391 
Age 39 / 39 (0%) 65 (60, 74) 
Sex 39 / 39 (0%)  
F  13 (33%) 
M  26 (67%) 
Stage 39 / 39 (0%)  
I  11 (28%) 
II  10 (26%) 
III  8 (21%) 
IV  10 (26%) 
Grade 39 / 39 (0%)  
G1  1 (2.6%) 
G2  10 (26%) 
G3  27 (69%) 
Gx  1 (2.6%) 
Tumour Location 39 / 39 (0%)  
Distal  13 (33%) 
Proximal  23 (59%) 
Whole stomach  3 (7.7%) 
Lauren Classification 38 / 39 (2.6%)  
Diffuse  23 (61%) 
Intestinal  13 (34%) 
Mixed  2 (5.3%) 
Signet Ring Cell 
(Positive) 

38 / 39 (2.6%) 23 (61%) 

1Median (IQR); n (%) 
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5.3.2 Organoid model  

We established twelve patient derived gastric cancer organoids derived from endoscopic 

biopsy or from resected surgical specimens. Our success rate of establishing organoid 

culture was 75%, with two samples failing to grow and two others experiencing fungal 

contamination. Histology of parent cancer and tumour-organoid pairs largely revealed 

consistent tissue morphology. In Figure 5-1B representative images demonstrate 

morphological recapitulation of the parent tumour in patient-derived organoids.  

Table 5-2 Categorical assignment of molecular subtypes in bulk-tumour samples 
 CIN EBV GS MSI TME Sum 
TME High 1 2 0 2 5 
TME Low 28 0 3 3 34 
TCGA Sum 29 2 3 5  

 

To ensure recapitulation of gastric epithelium we assessed the expression of PGC and 

MUC5AC in parent tissue and patient derived organoids (Figure 5-1A). Concordance was 

observed between all organoid pairs. The presence of epithelial and stromal tissue was 

confirmed using immunofluorescent staining of pan cytokeratin and vimentin. Minimal 

vimentin expression was observed in diffuse type organoids relative to differentiated 

intestinal-like organoids. 
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Figure 5-1 Representative images of human gastric cancers and patient-derived organoids 
demonstrating recapitulation of stromal microenvironment and gastric tissue. A. Immunofluorescence 
demonstrating recapitulation of stromal cells within organoids. Pan cytokeratin (red) is present on 

epithelial cell membranes, Vimentin (green) is a stromal cell specific marker and DAPI (blue) was used to 

stain nuclei. B. Tumours and patient-derived organoids demonstrated similar morphology on hematoxylin 
and eosin stains. The gastric specific markers MUC5AC and PGC were present in both parent and 

organoid tissues. Scale bar represents 50 µm.  

5.3.3 Normalization technique 

Normalization according to methods proposed by Molania et al. provided reliable elimination 

of sample and batch differences (Figure 5-2A and B). We observed close approximation of 

technical replicates following normalization with the median log differences values 

approaching zero (Figure 5-2C). Feature Specific Quantile Normalization provided excellent 

approximation of normalized Nanostring gene expression data to target distributions to 

learn molecular subtypes from our previously established supervised machine learning 

model (Figure 5-2D).  
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Figure 5-2 Nanostring normalization and Feature Specific Quantile Normalization example. A. Boxplots 
for 39 formalin-fixed paraffin-embedded specimens demonstrating the distribution of unnormalized Log2 

expression for 57 TCGA genes. Boxplot notches approximate the 95% confidence interval of the median. 

B. Boxplots showing the same samples from (A) following RUV-III normalization.  C. Boxplot showing 
comparison of unnormalized and normalized log difference between 7 samples that we used as technical 

replicates for RUV-III normalization of patients in (A) and (B). Optimal technical agreement should 

approach zero and improvement relative to unnormalized samples should be observed. D. Example of 
Feature Specific Quantile Normalization (FSQN) for same patients from (A), (B) and (C). FSQN 

normalizes the RUV-III distribution developed using our Nanostring assay to the target distribution of the 
TCGA RNA-seq data used to train our machine learning classifier.  

5.3.4 Our Nanostring assay is externally valid in reference to gold standard 
features  

We previously established that our supervised molecular classifier produces subtype classes 

and scores that significantly reapproximates the intended phenotype. For example, EBV 

scores derived from our model provides an area under the curve value of 99.7% for 

predicting gold-standard EBV ISH status. In our own samples, we assessed the accuracy of 
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our Nanostring codeset in reproducing the accuracy of our model with reference to gold-

standard tests for EBV and MSI tumours.   
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Figure 5-3 External validation of our Nanostring test in 12 parent and patient-derived organoid pairs. A. 
Contingency table comparing allocation of Epstein-Barr Virus (EBV) subtypes using our test versus the 

gold-standard EBER ISH. The tests were 100% concordant. B. Representative images of EBER ISH in 
two tumour organoid pairs. Parent tumours are shown in the left column and the patient-derived organoid 
is shown in the right. The parent tumour for patient 55 was the only EBV positive sample. C. Contingency 
table comparing allocation of Microsatellite Instability (MSI) subtypes using our test versus the gold-

standard pentaplex pcr. The tests were 100% concordant. D. Electropherogram of pentaplex pcr for one 
patient’s set of normal parent (54N) and normal organoid (54N-O) versus cancer parent (54C) and cancer 

organoid (54C-O). Allelic shift, which signifies MSI, is evident in both cancer tissue and cancer organoids 

relative to normal. E. Boxplot of genomically stable scores in 39 formalin-fixed paraffin-embedded 
samples versus Lauren classification.  F. Boxplot of genomically stable scores in 39 formalin-fixed 
paraffin-embedded samples versus signet ring cell status. Statistical tests and significance is presented in 
the plots. For (E), a post-hoc Dunn’s test with Bonferroni adjusted p values was performed (*P<0.05). 

We performed EBV ISH and pentaplex PCR on 10 paired parent and tumour organoid 

samples. In these samples, our Nanostring test was 100% accurate in assigning EBV and 

MSI classes with reference to these tests (Figure 5-3A and C). In Figure 5-3B, we illustrate 

a positive and negative EBV ISH test in parent tumour samples (top left and bottom left, 

respectively) and their corresponding organoid (top and bottom right). We found that our 

test was able to discern the presence of EBV in the parent tumour and absence of EBV 

within the derived organoid. We identified MSI-High status in one parent tumour and 

organoid pair. In Figure 5-3D, we present the capillary electrophoresis measurements for 

patient 54 in cancer (54C) and cancer organoid (54C-O) tissue with reference to normal 

stomach controls. Three allelic shifts were identified in 54C and 54C-O. Once again, our test 

correctly identified the presence of MSI status in FFPE and fresh tissue.   

Given that we did not perform whole genome sequencing in this preliminary study, we 

assessed the validity of CIN and GS assignments using pathology characteristics. 

Genomically stable tumours have previously been demonstrated to be enriched in diffuse 

type gastric cancer and signet ring cells.26,82 Our test recapitulated this relationship with 

significantly greater GS score in diffuse and mixed-type cancers relative to intestinal-type 

(Figure 5-3E) (Dunn’s Test, Bonferroni adjusted p < 0.05). In Figure 5-3F we also confirmed 

greater GS scores in signet ring cell tumours (Wilcoxon, p<0.01). 
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Figure 5-4 Assessment of concordance of molecular subtype scores between tumour organoid pairs and 
association of subtype scores with FLOT drug sensitivity. A. Paired boxplots comparing 12 parent 
tumours and patient-derived organoid pairs (x-axis). The subtype is designated by the plot title. The y-axis 

represents the corresponding subtype score. P values for a paired Wilcoxon test are presented in each 

plot. Each colour represents a tumour organoid pair with the colour corresponding to those identified in 

(C). B. Dose response curves for 10 patient derived organoids treated with FLOT chemotherapy in-vitro. 
The x-axis represents the log of FLOT concentration in nanomoles. Cell viability was measured using a 



114 
 

CCK-8 assay. C. Bar plot illustrating drug sensitivity scores (DSS) in ascending order (least favourable to 
most favourable response) for corresponding tumour organoids identified on the x-axis. D. Scatterplots 
illustrating the association of molecular subtype probability versus DSS for each molecular subtype as 

designated in the plot title. Pearson’s correlation coefficient and p value are represented in each plot. The 
black line represents the line of best fit using simple linear regression.  

5.3.5 Molecular subtype discordance exists between tumour and tumour 
organoid pairs  

After establishing the validity of our test, we assessed the propensity of patient-derived 

organoids to recapitulate the molecular subtype of their parent tumour sample. Using 

categorical assignment of subtypes, we found 83.3% and 75.0% concordance between 

tumours and tumour organoids for TME and TCGA classes, respectively (Appendix .E.3). 

Paired analysis of continuous molecular subtype scores found that CIN and MSI scores were 

significantly different between tumour and tumour organoids (Paired Wilcoxon, unadjusted 

p=0.03 and p =0.04, respectively) (Figure 5-4A). The effect of organoid culture was 

observed to increase CIN and TME High scores, yet decrease GS scores.  

5.3.6 Organoid drug assay 

Dose-response assays using FLOT chemotherapy were completed for all 12 patient-derived 

organoids. First, we successfully validated the reproducibility of our method using the AGS 

cancer cell line across three independent dose-response assays (Appendix Figure E4-25). 

Least squares nonlinear regression were well fit to our dose-response data with a median 

adjusted goodness of fit value of 0.92 (IQR 0.84, 0.94). The dose response curves and 

corresponding drug sensitivity scores (DSS) are presented in Figure 5-4B and C. There were 

no significant associations found between DSS and molecular subtype scores (Figure 5-4D). 

We observed increasing efficacy of FLOT with increasing EBV score and decreasing efficacy 

with increasing GS scores, although all Spearman Rho effects were less than 0.31.  

5.3.7 2-dimensional cell line remain a valuable tool to infer drug effects on 
certain molecular subtypes 

Given the indiscriminate effects of cytotoxic FLOT on patient derived cancer organoids we 

assessed whether molecular subtype scores provide insight into targeted therapy effects. 

Furthermore, we assessed the potential utility of existing gastric cancer cell lines to 

approximate molecular classification heterogeneity. Using the CCLE we accessed multi-

omics and drug sensitivity data for 37 gastric cancer cell lines.  
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The distribution of subtype probability scores in a cohort of 2,202 gastric cancer patients 

was generally recapitulated among gastric cancer cell lines (Figure 5-5A). The only 

significant difference between bulk tumour sequenced molecular subtype scores and those 

of cancer cell lines were found between TME High and TME Low scores (Wilcoxon, adjusted 

p = 0.01). Next, we assessed the distribution of subtype scores for the 20 cell lines with 

accompanying dose response assay data from the Sanger GDSC cohort. There was no 

significant difference identified in subtype scores between excluded and included cell lines 

and thus the molecular subtype scores for drug assay analysis approximated TCGA and 

ACRG subtypes.  

We investigated the in-vitro effect of various anti-cancer drugs according to each molecular 

subtype score at a univariate level. Using Pearson correlation, 48 drugs were found to be 

statistically associated with improved or decreased efficacy according to subtype score. 

However, after multiple comparisons correction there were no statistically significant 

relationships. Amongst potential false positive comparisons, a variety of therapeutic targets 

were identified including Temozolomide, the survinin inhibitor YM-155 and Dactinomycin 

(Figure 5-5C). Amongst the largest effect sizes, TCGA Genomically Stable subtype was most 

commonly associated with decreased efficacy, whereas TCGA EBV was associated with 

improved efficacy. The results for the complete analysis are available in the online 

supplement.  

Next, the efficacy of drugs against specific targeted pathways was evaluated according to 

molecular subtype scores. We utilized the classification system of targeted pathways 

proposed by GDSC. For each molecular subtype a Kruskal-Wallis test followed by Dunn’s 

post-hoc analysis with multiple comparisons correction was conducted. In Figure 5-5D we 

illustrate the relationship of CIN scores with targeted drugs for various pathways. We 

identified statistically significant efficacy of EGFR signaling targets versus targets against 

DNA replication, Genome integrity, PI3K/MTOR signaling, Mitosis and Other targets including 

RNA helicase A, NAE, IKK-1 and IKK-2. This is consistent with hypotheses generated by the 

TCGA STAD paper that highlighted the presence of receptor tyrosine kinase mutations in 

CIN tumours.57 Importantly, DNA replication targets represent conventional chemotherapy 

agents such as epirubicin, oxaliplatin, irinotecan and gemcitabine, among others. Given that 

CIN represents approximately 70% of gastric cancer cases this analysis suggests that 

improved survival in a large proportion of gastric cancers could be achieved by adopting 

targeted therapy techniques against EGFR signaling.  
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Figure 5-5 Landscape of the role of 2D gastric cancer cell lines in pre-clinical models for personalized 
medicine. A. Boxplot comparing the distributions of subtype scores for each molecular subtype between 
bulk tumour tissue and 2D cell lines. Bulk tumour distributions were determined from 2,202 publicly 

available gastric cancer patients. Cell lines included 37 gastric cancer cell lines used in the CCLE. Bars 
and p values denote statistically significant differences using a Wilcox test. B. Boxplot comparing the 
distributions of subtype scores for cell lines included in GDSC drug screen to those excluded for each 

molecular subtype. C. Volcano plot for univariate Pearson’s correlation of molecular subtype scores and 
area under the curve drug sensitivity for 111 cancer drugs. The dotted line identifies the line of alpha = 

0.05 for a significant unadjusted p value. Annotated drugs are those with the largest effect size. D. 
Boxplot of drug target pathway versus Pearson’s correlation coefficient for CIN subtype probability. A 

post-hoc Dunn’s test was performed. The coloured boxes identify significant favourable (green) and 

unfavourable (red) efficacy of drug targets in the post-hoc test with Bonferroni corrected P values.  E. 
Boxplot of molecular subtype versus Pearson’s correlation coefficient for PI3K/MTOR signaling. 
Favourable efficacy is represented by a negative score. F. Bar plots illustrating results of Dunn’s post-hoc 
test from plot (E). Statistical significance is denoted by the plot legend for subtypes that achieved any 

significant results.  

In Figure 5-5E, we provide an alternative perspective by investigating the effect of a given 

target across all molecular subtypes. The complete analysis for all subtypes and targets is 

available in the online supplement. In this case, Pi3K/MTOR signaling targets are efficacious 

in EMT, EBV, TCGA MSI and MSS TP53- tumours relative to all others (Figure 5-5F). Once 

again, this analysis is consistent with prior studies that found TCGA EBV subtypes are 

enriched in PI3K mutations.57  

 
5.4 Discussion 

In this study we assessed the ability of a custom 107 gene Nanostring assay to learn TCGA 

and TME molecular subtypes in FFPE and patient-derived organoid gastric cancer tissue. 

This test was informed by our previously characterized supervised machine learning 

classifiers which were demonstrated to accurately represent intended molecular 

phenomena. Here we used gold-standard reference tests EBV ISH and pentaplex PCR for 

EBV and MSI type tumours, respectively, to demonstrate that our test is 100% accurate in 

capturing these subtypes in paired tumour and tumour organoid samples. Although we did 

not assess copy number variation or other characteristics associated with whole genome 

sequencing, we were able to approximate assay performance for GS scores. Among 39 FFPE 

gastric cancer specimens our results were concordant with prior research demonstrating 
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that diffuse-type gastric cancer is significantly enriched in GS scores. Furthermore, we 

identified nearly identical proportion of TCGA subtypes within our population compared to a 

cohort of 2,202 gastric cancer patients. Although we found fewer TME High tumours than 

expected, the increased presence of TME High subtypes with MSI and EBV tumours is also 

concordant with other populations. Together, these results demonstrate that our Nanostring 

test is accurate and feasible to perform additional study and validation.  

The advantage of our test is that it provides accurate and concordant measurement of 

molecular subtypes in FFPE and fresh tumour tissue. Thus, our test can serve as a 

translational measurement tool for future gastric cancer research. The Nanostring platform 

does not require reverse transcription of mRNA and therefore is able to provide accurate 

gene counts using fragmented FFPE-derived RNA. Furthermore, we designed our initial 

machine learning models with the intent of developing a downstream translational test. 

Previous literature has demonstrated that concordance in gene counts between fresh and 

FFPE tissue is greatest when assessing high variance and high abundance genes.342,343 Thus, 

we actively filtered troublesome genes prior to generating our models.  

Appropriate normalization and translation of our Nanostring data was essential to achieving 

our results. Failure to adequately normalize data and account for heterogeneity in gene 

measurements across separate technological platforms is a significant problem in 

developing reproducible and reliable tests.344,345 Here we implemented novel approaches to 

Nanostring normalization using the framework proposed by Molania et al.334 This method 

does not rely on spike-in control probes or housekeeping genes. Instead, it assesses 

variation between genes of interest to define negative control genes that are then utilized in 

the RUV-III algorithm.  

The next major challenge was accounting for cross-platform effects in our gene expression 

data. Our machine learning classifiers were constructed using distributions of data unique to 

their respective RNA-seq and microarray platforms. Thus, to effectively use these models 

they needed to be supplied with data that follows the same distribution from that which 

they were developed. To accomplish this task, we used Feature Specific Quantile 

Normalization. A desirable property of FSQN is that it only requires genes that are common 

between distributions to work. Thus, we were able to approximate our 50 and 57 gene 

measurements directly to the target distributions of each model.  
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Given the accuracy of our test we were able to apply it to personalized medicine models 

such as patient-derived organoids. Despite nearly a decade of promising research, the 

potential clinical utility of organoids was recently questioned by the SENSOR trial.174 One 

important question in organoid research is the degree to which an organoid recapitulates 

the molecular characteristics of the parent tumour. Numerous studies have demonstrated 

similarity between gene expression profiles in tumour organoid pairs.180,182 However, in this 

study we assessed whether this approximation of gene expression data actually translated 

to similar molecular subtype assignments. Using our test, we identified that significant 

molecular subtype discordance between paired tumour and tumour organoids can occur. 

This result is troublesome but not surprising given the presence of intratumour 

heterogeneity, issues with biopsy accuracy and selective pressures exerted by tissue 

processing, transport and constituents of organoid media itself. Additional research 

investigating the dynamic nature of molecular subtype classes between parent tumour-

organoid pairs would enhance our understanding of potential confounding in pre-clinical 

experiments. 

In this study we also assessed if more efficient and affordable 2-dimensional cell culture can 

still provide a valuable pre-clinical model. We tested the landscape of TCGA, ACRG and TME 

molecular subtypes, as informed by our models, in 37 gastric cancer cell lines from the 

CCLE.338 With this analysis we demonstrated that representative distributions between a 

large publicly available clinical cohort and cell lines are present for all molecular subtypes 

except for those pertaining to the tumour immune microenvironment. Using a large drug 

screening assay performed by the GDSC, we also demonstrated that the strongest 

association between dose response and molecular subtype scores is typically observed with 

molecularly targeted therapy as opposed to traditional cytotoxic chemotherapy targeting 

DNA replication.341 Thus, 2D cell culture may still provide an important pipeline to identify 

relevant therapeutic targets that can subsequently be validated using more expensive and 

cumbersome 3D cell culture or xenograft models.  

Our study contains multiple limitations. We were not able to include a “gold-standard” 

reference for CIN and GS tumours. Additional validation of these subtype using whole 

genome sequencing is required in the future. Another limitation is that we do not have 

adequate follow-up time to perform a direct comparison of dose-response to progression 

free survival or overall survival. Once adequate follow up time is achieved correlation of in-

vitro dose-response to tangible clinical outcomes should be performed.  
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5.5 Conclusion  

Our 107 gene Nanostring assay informed by previously characterized supervised machine 

learning classifiers allows molecular classification of TCGA and TME subtypes in FFPE or 

fresh gastric cancer tissue. Our analyses suggest that a multimodal approach, which may 

consist of molecularly informed clinical samples, 2D and 3D cell culture models, is required 

to leverage molecular classification towards personalized medicine in gastric cancer. 

Promising results from this initial external validation should be expanded in additional and 

more robust studies.  
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Chapter 6: General Discussion and Future Study 

In this thesis we explored several concepts related to personalized medicine in gastric 

cancer. Through these analyses we either improved our understanding of gastric cancer 

prognosis and treatment, or, provided a foundation for future study. In this section we will 

provide a summary of our findings and their relationship to the literature as well as 

considerations for future study.  

In Chapter 2, we performed a pilot study to investigate the utility of immunohistochemistry-

based biomarkers in predicting neoadjuvant chemotherapy response. In western nations, 

including Canada, neoadjuvant chemotherapy is the standard of care for locally advanced 

gastric cancer given its propensity to downsize bulky tumours and facilitate adequate 

surgical resection. However, treatment response is variable and only approximately 40% of 

patients achieve complete or partial treatment response. Thus, the majority of patients 

given neoadjuvant chemotherapy may experience adverse medical events without sufficient 

benefit. Given this scenario, there is a need to develop methods that allow appropriate 

allocation of patients to neoadjuvant chemotherapy in order to optimize survival outcomes.  

First, we assessed the expression of E-cadherin, Galectin-3, CD4 and CD8 in forty-three 

gastric cancer patients from all stages.  This survey of Canadian gastric cancer patients 

showed that CD4, CD4/CD8 ratio, Galectin-3 and E-cadherin expression is significantly 

different between cancer and normal tissue prior to chemotherapy. Eighteen patients 

underwent neoadjuvant chemotherapy in our cohort. We characterized the relative effect of 

neoadjuvant FLOT on biomarker expression in fifteen pre- and post-chemotherapy tumours. 

Notably, we observed increase infiltration of CD4+ and CD8+ lymphocytes following 

chemotherapy, which suggests that FLOT chemotherapy may facilitate anti-tumour immune 

response. This finding is consistent with more thorough analysis completed in breast cancer 

neoadjuvant chemotherapy. In Park et al., dynamic immune responses following 

neoadjuvant chemotherapy in breast cancer were observed and specifically, increased 

infiltration of TILs and CD8+  lymphocytes were associated with greater pathologic 

response.346 

In this work, we are the first to report that the CD4/CD8 ratio is significantly associated with 

complete or partial pathologic response to neoadjuvant chemotherapy in gastric cancer. In 

preliminary univariate and multivariate machine learning models, increased CD4/CD8 ratio 

provided significant predictive benefit. Central to our analysis was the use of digital 
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pathology using QuPath, which is a useful tool to enhance data acquisition for personalized 

medicine.347–349 Beyond expanding our work based on our sample size calculations, future 

research should focus on establishing reproducible digital pathology protocols and assessing 

inter-rater reliability. 

Organoids are a promising tool to advance personalized medicine. In chapter 3 we explored 

the feasibility of shipping fresh tissues to enhance the procurement of organoid samples. In 

this proof of concept study, we successfully established and propagated normal mouse 

gastric organoids after 24 or 48 hours of mock-shipment on ice. We assessed the effect of 

cold-ischemia time and various transport media on organoid viability and growth. Although 

increased cold-ischemia time was associated with decreased growth rate, organoid viability 

and dose-response to cytotoxic therapy was unaffected. We observed minimal differences in 

the long-term growth of organoids transported in HBSS, UW and HTK solutions. Given these 

findings we chose to use HBSS as transport solution for future experiments due to easier 

accessibility and affordability. Using our mock-shipment model we were also able to 

establish and grow two human gastric cancer organoids after 24 and 48 hours of cold-

ischemia time.  

In our mouse organoid mock-shipment model we assessed the longitudinal expression of 

important gastric stem cell markers TROY and LGR5. Beyond their essential role in organoid 

culture, these stem cell markers also have potential clinical implications related to 

chemoresistance.257 To our knowledge, we are the first to establish that LGR5 and TROY 

expression initially decreases upon dissociation of tissue but subsequently increases over 

successive organoid passage to approximate endogenous levels by passage 6. Furthermore, 

we assessed the effect of passage number and stem cell gene expression on the in-vitro 

dose-response of mock-shipped organoids to FOLFOX therapy. Here, we found that organoid 

dose-response is unaffected by transport time and media. However, decreased cytotoxic 

effects were identified with increasing organoid passage and increasing TROY and LGR5 

gene expression. The causal relationship between passage number, stem cell gene 

expression and dose-response remain unknown and could be a potential area of future 

study. Regardless, both passage number and stem cell gene expression should be 

considered as important confounders in evaluating organoid dose-response assays. These 

findings need to be expanded to cancer organoid models.  

Molecular classification of gastric cancer has significantly shifted the landscape of 

personalized medicine for this deadly disease. Several molecular classification systems exist 
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but prominent classification systems include the TCGA, ACRG and TME score.26,57,207 In this 

thesis, we recognized that the clinical implementation of molecular classification for gastric 

cancer is lacking due to several limitations. The cost and logistical issues behind data 

pipelines and processing suggests that widespread implementation of next-generation 

sequencing for multi-omics molecular classification is imminently distant, especially for 

public health care systems.201 Thus, in chapter 4 and 5 we aimed to develop a translational 

gene expression-based test to assign molecular classification subtypes to clinical samples in 

an efficient and affordable manner.   

Chapter 4 intended to address important challenges facing molecular classification in gastric 

cancer. Although several classification systems exist we do not know which classification 

systems are helpful and which are redundant. Thus, we prioritized integrated analysis of 

TCGA, ACRG and TME molecular subtypes. We also identified issues related to the common 

practice of using discrete molecular classes and models centred on estimating population-

based effects.268,270,308 In our study we actively interpreted molecular subtypes as 

continuous variables and demonstrated their superior statistical properties.   

We designed and tested a series of supervised machine learning classifiers using whole-

transcriptome data to assign TCGA, ACRG and TME subtypes. Central to our analysis was 

the use of unbiased cross-validation methods to ensure there was no data leakage to falsely 

inflate accuracy.293,294 From our selected models we performed an in-depth analysis of 

calibration in the multiclass setting. We identified discrepancies between various calibration 

metrics and the need for additional calibration methods to optimize machine learning for 

personalized medicine.299,301,302,330 The accuracy of our optimally calibrated models were 

89.5 %, 89.4 % and 84.7% for TCGA, TME and ACRG classification, respectively. 

Small sample size is a significant barrier to identifying clinically relevant molecular subtypes. 

For example, initial development datasets for TCGA, ACRG and TME subtypes only consist of 

295-300 patients.26,57,207 Once again this is related to massive costs of multi-omics or whole 

transcriptome technology. To address this problem, we used our machine learning classifier 

models to assign TCGA, ACRG and TME subtypes to 2,202 publicly available gastric cancer 

patients. The fundamental technique to properly assign subtypes across multiple gene 

expression technologies was a method developed by Franks et al. called Feature Specific 

Quantile Normalization (FSQN).297 In the original study, FSQN was demonstrated to assign 

molecular subtypes with high concordance between RNA-seq and microarray data compared 

to controls and other normalization methods.  Even more, FSQN is predicated on 
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normalizing data using only common features/genes. Thus, this method allows 

normalization of gene expression data with smaller number of genes compared to traditional 

normalization techniques such as quantile normalization. Ultimately this provided 

opportunity for downstream application of our machine learning classifiers to cross-platform 

technologies such as Nanostring.   

To our knowledge, our 2,202 patient cohort is the largest integrated assessment of three 

independent molecular classification systems. Using these data, we demonstrated that the 

TME High score is the most significant prognostic and therapeutic molecular subtype 

biomarker. In a propensity score matched cohort consisting of Stage II-IV gastric cancer 

patients we identified that greater TME High score is associated with increasing efficacy of 

chemotherapy with respect to overall survival. Limitations of this analysis include 

heterogeneity in treatment regimens between studies and the potential of unmeasured 

confounding. Additional questions remain as to why certain molecular subtypes have a 

greater propensity to interact with the immune system.  

We identified a distinct relationship between the proportion of TME High tumours and overall 

survival for each molecular subtype. For example, even among molecularly unique tumours 

such as MSI and EMT, stratification of subtypes by TME status demonstrated profound 

survival advantages for TME High tumours. We do not understand why a small proportion of 

MSI tumours remain TME Low. Additional research on the effect of TME status in MSI 

tumours could provide insight into debate surrounding the utility of neoadjuvant 

chemotherapy in MSI gastric cancer.262,263  

Additional survival analysis was performed using individual survival distribution models. We 

compared the utility and interpretation of overall survival using novel MTLR models versus 

traditional Cox proportional hazards model. Using MTLR, we are able to illustrate survival 

curves for each individual patient that provide a probability of survival for any future time 

point. We conclude that individual survival distribution models, such as MTLR, are a 

powerful tool to communicate personalized medicine to patients and clinicians. We advocate 

for the use of individual survival distributions in future research.  

Following our integrated molecular classification analysis in Chapter 5 we aimed to translate 

our machine learning models to our own population. We developed a custom Nanostring 

codeset for TCGA and TME subtypes using the genes selected by our models in Chapter 4. 

Before creating our models in Chapter 4 we recognized that eventual translation to a clinical 
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test could one day provide greater clinical uptake of molecular classification. Thus, we 

purposefully selected high abundance and high variance genes from each public 

database.342,343 We chose FSQN because it provides normalization among public datasets 

with whole transcriptome data and with Nanostring gene expression data.   

Nanostring is a desirable technology to use for development of clinical tests. The utility of 

Nanostring in evaluating FFPE specimens and fragmented RNA has been well 

documented.334 Thus, a test validated with Nanostring is likely applicable to almost all future 

clinical specimens and can even be used for retrospective analysis of prior research. 

Furthermore, novel normalization methods for Nanostring assays, as proposed by Molania et 

al. do not require traditional housekeeping genes.334 Instead variation among genes of 

interest is interpreted and a subset of these genes are used within the RUV-II algorithm to 

achieving superior normalization. This means that the 57 genes we used for TCGA 

classification are essentially isolated in the analysis process. Thus, future gene sets derived 

from other models could be added to or removed from a given Nanostring assay. This plug 

and play approach allow optimally designed genesets to be combined to maximize clinical 

utility.  

We established 12 tumour and tumour organoid pairs to externally validate our Nanostring 

test. We performed gold-standard EBER ISH and multiplex PCR to test for EBV and MSI 

tumours. Next, we allocated molecular subtypes to our samples using our Nanostring test. 

In the public cohort of 2,202 and our cohort, we found >98.7% concordance of our EBV and 

MSI subtypes measured by our test in reference to gold-standard results. Next, we 

illustrated that some organoids do not recapitulate molecular subtypes from their parent 

tumour. This was a significant finding. It is likely that the appropriate recapitulation of the 

parent tumour’s molecular subtype is an important confounder in studies aiming to translate 

in-vitro organoid drug response directly to clinical therapy. The true effect of molecular 

subtype discordance between tumour and tumour organoid pairs certainly requires 

additional research.  

Next, we used this accurate test to assign molecular subtypes to 39 patients from our 

prospective clinical cohort in Chapter 1. Here, we found that the proportion of TCGA 

subtypes (CIN, GS, MSI and EBV) in our population was nearly identical to that in the public 

2,202 patient cohort. Furthermore, we identified a decreased proportion of TME High 

tumours relative to the public cohort (12.8% vs. 33.2%). Application of our test to a larger 

sample is required to determine if this discrepancy is legitimate. In this limited sample we 
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could argue that we may have less TME High tumours in our population given that we 

appropriately observed a prominence of TME High tumours in MSI and EBV tumours. 

As a proof of concept, we performed an in-vitro organoid dose-response assay using FLOT 

chemotherapy and compared drug sensitivity to molecular subtype scores. Given the non-

specific cytotoxic effect of chemotherapy we were not surprised to find limited relationship 

between drug sensitivity and subtype scores. We hypothesized that significant association 

between molecular subtype scores and dose-response would be observed in the setting of 

targeted therapy.  

Using The Cancer Cell Line Encyclopedia we were able to assign TCGA, ACRG and TME 

molecular subtypes to 37 gastric cancer cell lines and assess their relationship to dose 

responses in 111 anti-cancer drugs.338,341 First, we established that the distribution of 

molecular subtype scores for TCGA and ACRG subtypes among these 37 gastric cancer cell 

lines approximates the distribution of scores observed in the 2,202 patient public cohort. 

This finding suggests that an appropriate selection of 2D cell lines provides an accurate 

representation of TCGA and ACRG intertumour heterogeneity in gastric cancer patients. 

Within the body of this thesis we provide an example of the utility of this approach. For 

example, we identify that EGFR therapy could be an effective treatment strategy in CIN 

tumours and that therapy targeting mitosis or PI3K/MTOR signaling should be avoided. 

Additional analyses for all drug and subtype combinations can be explored using the online 

supplement.  

We also observed that TME subtype scores are not adequately represented. It is not 

surprising that 2D cell lines, which consist of homogenous epithelial cells, are not 

represented by a classification system designed to identify immune and tumour 

microenvironment factors. Unfortunately, the TME signature is arguably the most important 

molecular subtype for prognosis and treatment in gastric cancer. Thus, 2D cell lines may 

provide a prominent role in the discovery of certain therapies but more comprehensive 

analyses that consider the TME will require organoid, in-vitro immune cell co-culture or 

humanized xenograft models.189,350,351 

Despite a strong theoretical basis, the excitement surrounding personalized medicine does 

not make it empiric reality. In this thesis I attempted to use a multimodal approach to 

enhance personalized medicine in gastric cancer and provide a foundation for future study. 

The development of personalized medicine in gastric cancer is a rapidly evolving field. 
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Ongoing clinical trials aim to establish the efficacy of immunotherapy in the neoadjuvant 

setting.1,2 Particular attention to EBV and MSI high gastric cancer as subpopulations for 

treatment efficacy show promise.206 However, current investigations into targeted therapy 

only benefits approximately 20-30% of gastric cancer patients (considering the prevalence 

of EBV, MSI and/or TME High tumours). Furthermore, EBV and MSI tumours already 

possess excellent outcomes. Thus, immunotherapy is serving to improve outcomes in 

patients who already experience superior outcomes. The efficacy of these treatments in the 

context of TME High scores in EBV and MSI gastric cancer is unknown and could further 

improve treatment assignment. In contrast, subtypes that carry the worst prognosis such as 

CIN, GS or EMT subtypes have no recommended or suggested targeted therapy regimens. 

For example, beyond HER2 therapy, there is limited perspective on how to advance care in 

CIN tumours. Advancement of care in these subtypes is paramount as they represent a 

majority of gastric cancer patients. Even if immunotherapy improves neoadjuvant 

treatment, improved prediction methods using biomarkers or molecular subtypes are 

required to optimize allocation of patients to existing cytotoxic based regimens such as 

FLOT. Given that only approximately 40% of patients achieve complete or partial treatment 

response, the majority of patients may not be receiving appropriate therapy.213,223,232 

Within this current landscape of personalized medicine in gastric cancer our findings provide 

guidance for future research. Additional study of the CD4/CD8 Ratio in larger patient 

cohorts may provide a relatively simple biomarker approach to predict treatment response 

to neoadjuvant chemotherapy. Implementation of our tissue shipment methods could be 

used to increase procurement of organoid tissue for translational research. Further 

characterization of the relationship between organoid passage number and stem cell gene 

expression may enhance our understanding of in-vitro dose-response. Finally, our custom 

Nanostring test provides opportunity for additional integrated analysis of molecular 

classification systems in pre-clinical 2D cell culture, translational 3D organoid culture and/or 

our gastric cancer patient population.  
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Appendices 

 Appendix Material  

Supplemental material for this thesis is presented here by chapter or in the online 

supplement: 

Chapter 2 Appendix 

Chapter 3 Appendix 

Chapter 4 Appendix 

Chapter 5 Appendix 

Online: https://github.com/skubleny/Thesis-Supplemental-Files  

 
 Chapter 2 Appendix 

1. Comparison of IHC biomarkers with clinicopathologic factors 

Stage (n = 43) 
Variable Stage I,  

N = 111 
Stage II,  
N = 101 

Stage III,  
N = 81 

Stage IV,  
N = 141 

p-value2 

CD4/CD8 Ratio 1.8 (1.3, 3.0) 2.4 (1.6, 2.8) 1.5 (1.0, 2.4) 1.4 (1.0, 2.8) 0.8 
Unknown 0 0 0 1  
CD4 14 (11, 31) 16 (12, 21) 6 (4, 11) 15 (8, 23) 0.11 
CD8 8 (4, 19) 7 (4, 11) 7 (3, 9) 8 (5, 12) 0.7 
Unknown 0 0 0 1  
Galectin-3 43 (30, 53) 47 (35, 53) 45 (25, 55) 46 (33, 68) 0.9 
E-cadherin 19 (10, 28) 16 (8, 30) 24 (21, 27) 7 (1, 21) 0.2 
E-cadherin  
H-score 

22 (13, 38) 21 (9, 46) 28 (26, 38) 8 (1, 32) 0.15 

1Median (IQR) 
2Kruskal-Wallis rank sum test 
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Lymphovascular Invasion (n = 35) 
Variable Negative, N = 191 Positive, N = 161 p-value2 
CD4/CD8 Ratio 2.24 (1.46, 2.93) 1.34 (0.87, 2.56) 0.12 
CD4 13 (10, 24) 14 (6, 23) 0.5 
CD8 8 (3, 11) 8 (6, 11) 0.9 
Galectin-3 43 (29, 53) 45 (37, 55) 0.7 
E-cadherin 20 (13, 28) 8 (5, 25) 0.2 
E-cadherin H-score 27 (14, 41) 11 (5, 30) 0.2 
1Median (IQR) 
2Wilcoxon rank sum exact test 

 
 

Carcinomatosis (n = 38) 
Variable Negative, N = 291 Positive, N = 91 p-value2 
CD4/CD8 Ratio 1.7 (1.2, 2.8) 1.7 (1.1, 4.9) >0.9 
Unknown 0 1  
CD4 12 (6, 24) 16 (10, 18) 0.9 
CD8 8 (4, 11) 8 (4, 14) 0.8 
Unknown 0 1  
Galectin-3 43 (30, 55) 47 (44, 70) 0.5 
E-cadherin 20 (7, 27) 9 (2, 25) 0.4 
E-cadherin H-score 25 (7, 38) 15 (3, 37) 0.4 
1Median (IQR) 
2Wilcoxon rank sum exact test 

 

Perineural Invasion (n = 33) 
Variable Negative, N = 201 Positive, N = 111 p-value2 
CD4/CD8 Ratio 2.49 (1.61, 3.09) 1.07 (0.76, 2.37) 0.054 
CD4 15 (11, 24) 7 (5, 24) 0.2 
CD8 8 (3, 10) 8 (5, 11) 0.9 
Galectin-3 43 (30, 49) 53 (44, 63) 0.066 
E-cadherin 20 (6, 30) 18 (6, 24) 0.6 
E-cadherin H-score 25 (7, 44) 23 (7, 28) 0.7 
1Median (IQR) 
2Wilcoxon rank sum exact test 
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Tumour Grade (n = 43) 
Variable G1, N = 11 G2, N = 101 G3, N = 311 Gx, N = 11 p-value2 
CD4/CD8 Ratio 1.4 (1.4, 1.4) 2.1 (1.6, 2.8) 1.9 (1.1, 3.0) 1.6 (1.6, 1.6) 0.9 
Unknown 0 0 1 0  
CD4 6 (6, 6) 13 (8, 22) 14 (7, 24) 14 (14, 14) 0.7 
CD8 4 (4, 4) 7 (3, 10) 8 (5, 12) 8 (8, 8) 0.7 
Unknown 0 0 1 0  
Galectin-3 17 (17, 17) 39 (29, 47) 47 (34, 63) 69 (69, 69) 0.2 
E-cadherin 26 (26, 26) 19 (7, 30) 16 (7, 28) 3 (3, 3) 0.5 
E-cadherin  
H-score 32 (32, 32) 23 (8, 42) 22 (7, 40) 3 (3, 3) 0.5 
1Median (IQR) 
2Kruskal-Wallis rank sum test 
G1 = Well differentiated, G2 = Moderately differentiated, G3 = Poorly differentiated, Gx = 
Undetermined 
 
 

Lauren Classification (n = 41) 
Variable Diffuse, N = 261 Intestinal, N = 131 Mixed, N = 21 p-value2 
CD4/CD8 Ratio 2.1 (1.2, 2.8) 1.6 (1.2, 2.5) 2.6 (2.2, 3.0) 0.7 
Unknown 1 0 0  
CD4 13 (8, 21) 15 (7, 24) 16 (11, 21) >0.9 
CD8 8 (5, 11) 8 (4, 14) 5 (4, 7) 0.7 
Unknown 1 0 0  
Galectin-3 47 (32, 67) 37 (29, 48) 37 (34, 41) 0.4 
E-cadherin 11 (6, 25) 25 (13, 31) 3 (2, 4) 0.043 
E-cadherin H-score 17 (7, 35) 29 (15, 44) 3 (2, 5) 0.057 
1Median (IQR) 
2Kruskal-Wallis rank sum test 

 
 

Tumour Location (n = 43) 
Variable Distal, N = 141 Proximal, N = 261 Whole stomach, N = 31 p-value2 
CD4/CD8 Ratio 2.0 (1.3, 3.1) 1.4 (1.0, 2.8) 2.8 (2.5, 10.3) 0.2 
Unknown 0 1 0  
CD4 21 (11, 24) 12 (6, 21) 16 (12, 17) 0.4 
CD8 8 (4, 14) 8 (5, 11) 6 (3, 7) 0.6 
Unknown 0 1 0  
Galectin-3 45 (38, 53) 46 (30, 61) 20 (20, 45) 0.7 
E-cadherin 18 (7, 29) 16 (6, 27) 26 (17, 34) 0.6 
E-cadherin H-score 22 (8, 41) 20 (7, 37) 46 (28, 54) 0.5 
1Median (IQR) 
2Kruskal-Wallis rank sum test 
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 Chapter 3 Appendix 

1. Mouse organoid reagents 

Reagent Source Catalog Number 
Advanced DMEM/F12 Gibco 12634010 
L-Glut  Sigma G8540 
HEPES Fisher Scientific BP310 
Penicillin Streptomycin Gibco 15140122 
Amphotericin B ThermoFisher 15290026 
N2 Supplement Gibco 17502011 
B27 Supplement Gibco 17504044 
N-acetylcysteine Sigma A9165 
Gastrin Sigma G9145 
Nicotinamide Sigma N0636 
SB202190/p 38 inhibitor Sigma S7067 
A83-01 (ALK4/5/7 inhibitor) Sigma SML0788 
Mouse EGF Life Technologies PMG8041 
Human EGF Gibco PHG0313 
Dispase II Sigma D4693 
Collagenase IX Sigma C9407 
Y-27632 Sigma Y0503 
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2. Immunofluorescence protocols 

 
Protocol Primary Antibody  Secondary antibody  Antigen 

Retrieval 

1 

Rabbit anti-pan cytokeratin, 1:50, 
overnight 4 degrees Celsius, 
Abcam, ab9377 

Goat anti-rabbit IgG Alexa 
Fluor 488, 1:100, 30 
minutes room temperature, 
Abcam, ab150077 Sodium 

Citrate Mouse anti-MUC5AC, 1:100, 
overnight 4 degrees Celsius, 
Invitrogen,  

Goat anti-mouse IgG Alexa 
Fluor 568, 1:50, 30 minutes 
room temperature, 
Invitrogen, A-11004 

2 

Rabbit anti-pan cytokeratin, 1:50, 
overnight 4 degrees Celsius, 
Abcam, ab9377 

Goat anti-rabbit IgG Alexa 
Fluor 488, 1:100, 30 
minutes room temperature, 
Abcam, ab150077 Sodium 

Citrate Mouse anti-TROY, 1:50, overnight 
4 degrees Celsius, Santa Cruz, sc-
398526 

Goat anti-mouse IgG Alexa 
Fluor 568, 1:50, 30 minutes 
room temperature, 
Invitrogen, A-11004 

3 

Rabbit anti-pan cytokeratin, 1:50, 
overnight 4 degrees Celsius, 
Abcam, ab9377 

Goat anti-rabbit IgG Alexa 
Fluor 488, 1:100, 30 
minutes room temperature, 
Abcam, ab150077 Sodium 

Citrate Mouse anti-LGR5, 1:50, overnight 
4 degrees Celsius, Invitrogen, 
MA5-25644 

Goat anti-mouse IgG Alexa 
Fluor 568, 1:50, 30 minutes 
room temperature, 
Invitrogen, A-11004 

 
 
 



155 
 

3. qRT-PCR validation and optimization 

Figure C3-1 qRT-PCR assay primer efficiency. 

 

 

Figure C3-2 Delta-Delta CT validation experiment.  
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4. Drug assay validation  

 

Figure C4-3 FOLFOX in-vitro drug assay validation with AGS cell line. Three independent dose-response 
assays were performed. Cell viability was assessed using a CCK-8 assay. Variable slope least squares 

linear regression was used to calculate dose-response curves. A sum-of-squares F-Test demonstrated 

that the was best characterized by a single dose-response curve.  

5. Viability organoid assessment 

5.1 Unadjusted viability  

We analyzed the viability of mouse gastric organoids to determine the effect of shipment 

media and dissociation time. In Figure S-7-4, we observe the trend of all viability 

measurements over 10 passages in each cohort. Visually, the cohort variable can be 

identified as a source of heterogeneity in viability and no obvious pattern relates passage to 

viability. Thus, despite using consistent protocols and inbred mouse stomachs, the trend of 

viability in gastric organoids is not consistent or reproducible. In Figure S-7-5, we 

demonstrate that viability is relatively unaffected by treatment media or dissociation time. 
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Figure C5-4 Unadjusted organoid viability vs passage number stratified by cohort. The y-axis is the 
viability measured by hemocytometer and trypan blue. The blue loess smooth is bound by the standard 

error in gray.  

 
 
 
 
 

 

Figure C5-5 Unadjusted viability versus passage number by treatment media (left) and dissociation time 
(right). The loess smooth is bound by the standard error for each variable factor level and coloured 

according to the plot legend. Note, the y-axis only spans from 40-100% viability.  

5.2 Multivariable models of viability over time  

To determine the effect of various confounders to estimating viability in organoid culture we 

constructed a series of multivariable models. First, we fit multiple linear regression models 

with treatment media, dissociation time, number of days in culture, passage number and 

cohort number as variables. After examining the data visually, we observed a nonlinear 

relationship between viability our continuous variables. Next, we fit linear models with 
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natural cubic splines for passage number, days in culture and growth rate. Optimal spline 

degrees of freedom were determined using a likelihood ratio test of nested models and a full 

model with the optimal spline terms was fit. The model with spline terms was superior to 

the first model above with an improvement in adjusted R2 from 0.42 to 0.5. Finally, we fit 

generalized additive models (GAM) with penalized cubic regression splines. The GAM model 

was statistically superior to the spline model (Adjusted R2 = 0.5 to 0.56). We also assessed 

collinearity of the cubic spline variables with the variable inflation factor (VIF) (Note: GAM is 

unable to be assessed with variable inflation factor). All VIF values were less than 5, thus 

signifying the absence of collinearity.  

 

Figure C5-6 Covariable plots from the viability generalized additive model. The top three plots show the 
functional effect of passage, days in culture and growth rate on viability. The bottom three images show 

the coefficient estimates for media, dissociation time and cohort in the context of predicting viability.  
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6. Organoid growth rate assessment 

6.1 Unadjusted growth rate 

We assessed growth rate in a similar manner to our assessment of viability above.  

 
 

Figure C6-7 Unadjusted organoid growth rate vs passage number stratified by cohort. The y-axis is the 
growth rate measured by hemocytometer and trypan blue. The blue loess smooth is bound by the 

standard error in gray.  

 

Figure C6-8 Unadjusted growth rate versus passage number by treatment media (left) and dissociation 
time (right). The loess smooth is bound by the standard error for each variable factor level and coloured 

according to the plot legend. 
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6.2 Multivariable models of relative growth rate over time 

Similar to our analysis for viability above we performed a multivariable GAM regression to 

model the relationship of our experimental and confounding variables with growth rate.  

 

Figure C6-9 Covariable plots from the growth rate generalized additive model. The top three plots show 
the functional effect of passage, days in culture and shipment media on growth rate. The bottom three 

images show the coefficient estimates for dissociation time, cohort and viability in the context of predicting 
growth rate.  
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 Chapter 4 Appendix 

1. Example of model probability score from machine learning models 

 TCGA Subtype TME Subtype ACRG Subtype 

ID CIN EBV GS TCGA 
MSI High Low MSS 

TP53- 
MSS 
TP53+ MSI EMT 

1 0.054 0.098 0.126 0.722 0.915 0.085 0.013 0.860 0.126 0.001 
2 0.021 0.034 0.896 0.050 0.036 0.964 0.001 0.002 0.000 0.997 
3 0.988 0.001 0.008 0.002 0.057 0.943 0.115 0.882 0.002 0.001 
4 0.001 0.986 0.005 0.008 0.079 0.921 0.010 0.706 0.282 0.002 
5 0.972 0.010 0.006 0.013 0.048 0.952 0.444 0.383 0.170 0.003 

 

2. Propensity Score Matched Analysis 

This section contains all components related to our propensity score matched analysis 

including model development and sensitivity analyses. Following initial matching, we 

evaluated the nonlinear relationship of continuous variables with overall survival to optimize 

our match. We found that a natural cubic spline with 2 degrees of freedom was the best 

representation for age (Table D2-1; Figure D2-10).  

 
Table D2-1 Likelihood ratio tests for nonlinear relationship of age with overall survival 
Analysis of Deviance Table 

 Cox model: response is Overall Survival 

 Model 1 ~ age 

 Model 2 ~ ns1 (age, df=2) 

 Model 3  ~ ns1 (age, df=3) 

 loglik Chisq Df P(>|Chi|)   
Model 1 -2858.2      
Model 2 -2856.2 3.9986 1 0.04554*   
Model 3 -2855.2 2.1125 1 0.1461   
1Natural Cubic Spline fit with specified degrees of freedom (df) 
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Figure D2-10 Partial residual plots of relative death rate versus age for the propensity score matched 
analysis. A natural cubic splie with 2 degrees of freedom (Left) provided a statistically optimal 

representation compared to a standard linear approach (Right). Dotted lines denote 95% confidence 

interval.  

Figure D2-11 Love plot for propensity score matched cohort. Covariates are labeled on the y-axis and the 
x-axis represents the absolute standardized mean difference. The dotted line represents the optimal 

match value of 0.1 absolute standardized mean difference. The red points show the difference in 

unmatched data and the green points show the differences after matching.  
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Figure D2-12 Distribution of propensity scores for receiving chemotherapy. The propensity score derived 
from a logistic regression model is presented on the x-axis.  
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Figure D2-13 Tests for Cox Proportional Hazards Assumptions for variables included in TME and 
chemotherapy subgroup analysis. A p value > 0.05 means the proportional hazards assumption was 

satisfied.  
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Figure D2-14 Forest plot of subgroup analyses for variables included in propensity score matched cohort. 
The blue box represents the hazards ratio estimate and the error bars represent the 95% confidence 

interval for the effect of chemotherapy. The p value for the interaction term between chemotherapy and 
variable is identified in the last column.  
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Figure D2-15 Overview of sensitivity analysis for propensity score matched cohort survival models using 
continuous interpretations of classification.  
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Figure D2-16 Overview of sensitivity analysis for propensity score matched cohort survival models using 
discrete interpretations of classification. 
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3. Critical Differences Analysis 

We performed a Friedman test following by Nemenyi post-hoc test to calculate the critical 

differences. For TCGA predictions, GBM, NB and KNN models with SVM features and NB and 

KNN models with GBM features performed significantly worse relative to all other models. 

For ACRG predictions, NB, KNN and NNET models (GBM features), KNN and NNET models 

(LASSO features) and KNN and NB models (SVM features) were critically worse than all 

other combinations. Feature selection using GBM and LASSO models in combination with RF, 

GBM, KNN and NNET comprised the majority of best performing models in TME 

classification.  

 
 

 

Figure D3-17 TCGA Models Critical Difference Plot. Models are ranked from most accurate (top, left 
column) to least accurate (bottom, right column). Statistically similar models are connected by a black 

line. The Critical Difference of top ranked models is identified by the line below CD. 
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Figure D3-18 ACRG Models Critical Difference Plot. Models are ranked from most accurate (top, left 
column) to least accurate (bottom, right column). Statistically similar models are connected by a black 

line. The Critical Difference of top ranked models is identified by the line below CD 

 

 

Figure D3-19 TME Models Critical Difference Plot. Models are ranked from most accurate (top, left 
column) to least accurate (bottom, right column). Statistically similar models are connected by a black 

line. The Critical Difference of top ranked models is identified by the line below CD 
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4. Calibration plots  

 

 

Figure D4-20 Calibration plots for ACRG uncalibrated, L2 Dirichlet and Penalized Multinomial models. 
Calibration was assessed using deciles and visualized using a loess smooth with span=0.75. The mean 

calibration for all subtypes is represented in blue with 95% confidence intervals in light blue. 
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Figure D4-21 Calibration plot for TME uncalibrated and L2 Binomial (modified Platt) models. Calibration 
was assessed using deciles and visualized using a loess smooth with span=0.75. The mean calibration 
for all subtypes is represented in blue with 95% confidence intervals in light blue. 
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5. Detailed demographic data for each molecular subtype 

Table D5-2: Demographic data for TCGA subtypes 
 

Variable CIN, N = 
1,6311 

EBV, N = 
1241 

GS, N = 
1891 

TCGA MSI, N 
= 2581 

p-value2 

Age 61 (51, 68) 61 (52, 67) 59 (50, 
68) 

68 (60, 74) <0.001 

Stage     <0.001 
I 188 (15%) 11 (12%) 15 (9.9%) 44 (23%)  
II 361 (29%) 21 (24%) 40 (26%) 62 (33%)  
III 424 (34%) 43 (49%) 62 (41%) 61 (32%)  
IV 276 (22%) 13 (15%) 34 (23%) 23 (12%)  
Sex     <0.001 
Female 495 (31%) 21 (17%) 81 (44%) 117 (47%)  
Male 1,084 (69%) 100 (83%) 103 (56%) 131 (53%)  
Study     <0.001 
ACRG 190 (12%) 18 (15%) 43 (23%) 49 (19%)  
Kosin 97 (5.9%) 5 (4.0%) 2 (1.1%) 5 (1.9%)  
KUGH 70 (4.3%) 8 (6.5%) 5 (2.6%) 10 (3.9%)  
MDACC 32 (2.0%) 3 (2.4%) 3 (1.6%) 2 (0.8%)  
Samsung 395 (24%) 6 (4.8%) 6 (3.2%) 25 (9.7%)  
Shanghai 52 (3.2%) 3 (2.4%) 5 (2.6%) 10 (3.9%)  
Singapore 176 (11%) 12 (9.7%) 39 (21%) 21 (8.1%)  
TCGA 254 (16%) 31 (25%) 49 (26%) 78 (30%)  
Yonsei 319 (20%) 33 (27%) 31 (16%) 50 (19%)  
Yonsei MDACC 46 (2.8%) 5 (4.0%) 6 (3.2%) 8 (3.1%)  
Grade     0.010 
G1 21 (6.4%) 3 (7.7%) 2 (3.5%) 6 (6.8%)  
G2 123 (37%) 4 (10%) 14 (25%) 25 (28%)  
G3 164 (50%) 31 (79%) 39 (68%) 52 (59%)  
Other 21 (6.4%) 1 (2.6%) 2 (3.5%) 5 (5.7%)  
Lauren Class     <0.001 
Intestinal 589 (53%) 35 (49%) 38 (29%) 98 (62%)  
Diffuse 470 (42%) 32 (44%) 88 (67%) 52 (33%)  
Mixed 52 (4.7%) 5 (6.9%) 5 (3.8%) 7 (4.5%)  
Signet Ring     <0.001 
Signet Ring 44 (14%) 2 (5.4%) 27 (39%) 10 (11%)  
No 239 (76%) 31 (84%) 37 (54%) 74 (84%)  
Other 33 (10%) 4 (11%) 5 (7.2%) 4 (4.5%)  
Tumour Location     <0.001 
Proximal 526 (51%) 55 (76%) 51 (47%) 60 (36%)  
Distal 495 (48%) 16 (22%) 55 (50%) 107 (64%)  
Whole 19 (1.8%) 1 (1.4%) 3 (2.8%) 1 (0.6%)  
Chemotherapy 753 (73%) 50 (69%) 61 (60%) 93 (57%) <0.001 
Radiation 97 (23%) 13 (27%) 21 (26%) 21 (19%) 0.6 
1Median (IQR); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test; Fisher's Exact Test 
for Count Data with simulated p-value (based on 2000 replicates) 
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Table D5-3: Demographic data for ACRG Subtypes 
 

 
 
 

Variable EMT, N = 2781 MSI, N = 3721 MSS TP53-, N 
= 8501 

MSS TP53+, N 
= 7021 

p-value2 

Age 58 (49, 66) 64 (55, 72) 62 (53, 70) 60 (50, 68) <0.001 
Stage     0.016 
I 26 (12%) 56 (20%) 108 (17%) 68 (13%)  
II 49 (23%) 88 (32%) 187 (29%) 160 (30%)  
III 88 (41%) 88 (32%) 217 (33%) 197 (37%)  
IV 51 (24%) 45 (16%) 140 (21%) 110 (21%)  
Sex     <0.001 
Female 100 (37%) 150 (42%) 272 (33%) 192 (28%)  
Male 169 (63%) 210 (58%) 547 (67%) 492 (72%)  
Study     <0.001 
ACRG 46 (17%) 68 (18%) 107 (13%) 79 (11%)  
Kosin 18 (6.5%) 12 (3.2%) 40 (4.7%) 39 (5.6%)  
KUGH 13 (4.7%) 13 (3.5%) 38 (4.5%) 29 (4.1%)  
MDACC 5 (1.8%) 8 (2.2%) 15 (1.8%) 12 (1.7%)  
Samsung 21 (7.6%) 52 (14%) 182 (21%) 177 (25%)  
Shanghai 9 (3.2%) 12 (3.2%) 31 (3.6%) 18 (2.6%)  
Singapore 42 (15%) 46 (12%) 86 (10%) 74 (11%)  
TCGA 62 (22%) 77 (21%) 163 (19%) 110 (16%)  
Yonsei 54 (19%) 76 (20%) 162 (19%) 141 (20%)  
Yonsei MDACC 8 (2.9%) 8 (2.2%) 26 (3.1%) 23 (3.3%)  
Grade     <0.001 
G1 6 (8.0%) 4 (4.3%) 7 (3.5%) 15 (10%)  
G2 9 (12%) 23 (25%) 82 (41%) 52 (36%)  
G3 56 (75%) 61 (66%) 100 (50%) 69 (48%)  
Other 4 (5.3%) 5 (5.4%) 13 (6.4%) 7 (4.9%)  
Lauren Class     <0.001 
Intestinal 63 (34%) 138 (58%) 322 (56%) 237 (50%)  
Diffuse 115 (62%) 89 (37%) 228 (40%) 210 (44%)  
Mixed 7 (3.8%) 11 (4.6%) 22 (3.8%) 29 (6.1%)  
Signet Ring     <0.001 
Signet Ring 34 (38%) 10 (11%) 26 (13%) 13 (9.6%)  
No 48 (53%) 74 (84%) 154 (79%) 105 (77%)  
Other 8 (8.9%) 4 (4.5%) 16 (8.2%) 18 (13%)  
Tumour 
Location 

    0.002 

Proximal 79 (48%) 95 (42%) 272 (49%) 246 (55%)  
Distal 77 (47%) 130 (58%) 272 (49%) 194 (43%)  
Whole 7 (4.3%) 1 (0.4%) 6 (1.1%) 10 (2.2%)  
Chemotherapy 99 (60%) 139 (63%) 372 (69%) 347 (78%) <0.001 
Radiation 21 (21%) 27 (20%) 57 (23%) 47 (27%) 0.5 
1Median (IQR); n (%) 
2Kruskal-Wallis rank sum test; Pearson's Chi-squared test; Fisher's Exact Test for Count 
Data with simulated p-value (based on 2000 replicates) 
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Table D5-4: Demographic data for TME Subtypes  

Variable High, N = 7311 Low, N = 1,4711 p-value2 
Age 60 (51, 68) 62 (53, 69) 0.008 
Stage   <0.001 
I 137 (21%) 121 (12%)  
II 214 (33%) 270 (26%)  
III 202 (31%) 388 (38%)  
IV 105 (16%) 241 (24%)  
Sex   0.4 
Female 250 (35%) 464 (33%)  
Male 471 (65%) 947 (67%)  
Study   <0.001 
ACRG 71 (9.7%) 229 (16%)  
Kosin 26 (3.6%) 83 (5.6%)  
KUGH 22 (3.0%) 71 (4.8%)  
MDACC 8 (1.1%) 32 (2.2%)  
Samsung 334 (46%) 98 (6.7%)  
Shanghai 10 (1.4%) 60 (4.1%)  
Singapore 88 (12%) 160 (11%)  
TCGA 99 (14%) 313 (21%)  
Yonsei 60 (8.2%) 373 (25%)  
Yonsei MDACC 13 (1.8%) 52 (3.5%)  
Grade   0.7 
G1 9 (7.5%) 23 (5.9%)  
G2 35 (29%) 131 (33%)  
G3 68 (57%) 218 (55%)  
Other 8 (6.7%) 21 (5.3%)  
Lauren Class   0.8 
Intestinal 322 (53%) 438 (51%)  
Diffuse 261 (43%) 381 (44%)  
Mixed 29 (4.7%) 40 (4.7%)  
Signet Ring   0.007 
Signet Ring 9 (8.0%) 74 (19%)  
No 96 (85%) 285 (72%)  
Other 8 (7.1%) 38 (9.6%)  
Tumour Location   0.3 
Proximal 270 (48%) 422 (51%)  
Distal 274 (49%) 399 (48%)  
Whole 13 (2.3%) 11 (1.3%)  
Chemotherapy 454 (81%) 503 (62%) <0.001 
Radiation 40 (25%) 112 (23%) 0.5 
1Median (IQR); n (%) 
2Wilcoxon rank sum test; Pearson's Chi-squared test; Fisher's Exact 
Test for Count Data with simulated p-value (based on 2000 
replicates) 
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6. Intratumour heterogeneity analysis  

 

 

Figure D6-22 Analysis of intratumour heterogeneity score (ITH Score) from Marisa et al. versus variance 
heterogeneity. A. Kaplan Meier curves for ITH score in TCGA subtypes. B. Boxplots of TCGA sc-varHet 
versus ITH score. C. Kaplan Meier curves for ITH score in ACRG subtypes D. Boxplots of ACRG sc-
varHet versus ITH score. 
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7. Survival Analysis  

 

Figure D7-23 Histogram of survival events in publicly available gastric cancer patients. 

 

Figure D7-24 D-Calibration plot for MTLR model. The proportion of censored and uncensored patients 
approximates 0.1 in each decile of survival probability. The corresponding Chi-square test is annotated in 

plot.    
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 Chapter 5 Appendix 

1. Immunofluorescence and immunohistochemistry protocols 

Protocol Primary Antibody  Secondary antibody  Antigen 
Retrieval 

1 Mouse Anti-pan cytokeratin, 1:25, 
overnight at 4 degrees Celsius, 
Abcam, ab7753 

Goat anti-mouse IgG 
Alexa Fluor 568, 
1:50, 30 minutes 
room temperature, 
Invitrogen, A-11004 

Sodium 
Citrate 

Rabbit Anti-vimentin, 1:300, overnight 
at 4 degrees Celsius, Abcam, ab92547 

Goat anti-rabbit IgG 
Alexa Fluor 488, 
1:200, 30 minutes 
room temperature, 
Abcam, ab150077 

Sodium 
Citrate 

2 Mouse anti-MUC5AC, 1:250, overnight 
at 4 degrees Celsius, Invitrogen, MA5-
12178 

Biotinylated goat 
anti-mouse IgG, 
1:200, 30 minutes 
room temperature, 
Jackson 
ImmunoResearch, 
115-065-003 

Sodium 
Citrate 

3 Rabbit Anti-pepsinogen II/PGC, 1:100, 
overnight at 4 degrees Celsius, 
Abcam, ab255826 

Biotinylated goat 
anti-rabbit IgG, 
1:200, 30 minutes 
room temperature, 
Vector Laboratories, 
BA-1000 

Tris-
EDTA 
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2. Reagents table for human gastric cancer organoids 

Reagent Source Catalog Number 
Advanced DMEM/F12 Gibco 12634010 
L-Glut  Sigma G8540 
HEPES Fisher Scientific BP310 
Penicillin Streptomycin Gibco 15140122 
Primocin InvivoGen Ant-pm-2 
N2 Supplement Gibco 17502011 
B27 Supplement Gibco 17504044 
N-acetylcysteine Sigma A9165 
Gastrin Sigma G9145 
Nicotinamide Sigma N0636 
SB202190/p 38 inhibitor Sigma S7067 
A83-01 (ALK4/5/7 inhibitor) Sigma SML0788 
Human EGF Gibco PHG0313 
Dispase II Sigma D4693 
Collagenase IX Sigma C9407 
Y-27632 Sigma Y0503 

 
3. Concordance of tumour and tumour organoid molecular subtypes 

 
Concordance for TCGA Subtypes 
  Tumour Organoid 
   CIN EBV GS MSI 

Tu
m

ou
r 

CIN 8 0 0 0 

EBV 1 0 0 0 

GS 1 0 0 0 

MSI 1 0 0 1 
 
 
Concordance for TME Subtypes 
  Tumour Organoid 
  High Low 

Tumour 
High 0 1 

Low 1 10 
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4. Dose response assay validation 

 

Figure E4-25 FLOT in-vitro drug assay validation with AGS cell line. Three independent dose-response 
assays were performed. Cell viability was assessed using a CCK-8 assay. Variable slope least squares 

linear regression was used to calculate dose-response curves. A sum-of-squares F-Test demonstrated 

that the was best characterized by a single dose-response curve.  

 

F-Test, p = 0.62 


