L R

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
< 1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full cr in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontario)

Yowsr ble Volre ifeorence

Our e Notees tfforence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec I'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

UNIVERSITY OF ALBERTA
SIMULATION-BASED PLANNING FOR CONSTRUCTION

BY

@ ANIL SAWHNEY

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree DOCTOR OF PHILOSOPHY IN CIVIL

ENGINEERING.

DEPARTMENT OF CIVIL ENGINEERING

EDMONTON, ALBERTA

FALL 1994

National Libral
l*I ofaég?lade; ran

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

doivent étre

Youp e Vphie rolerence

Cue Bl Notre rdference

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la theése ni des extraits
substantiels de celle-ci ne
imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-95259-8

Canada

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Anil Sawhney
TITLE OF THESIS: Simulation-based Planning for Construction
DEGREE: Doctor of Philosophy in Civil Engineerig

YEAR THIS DEGREE GRANTED: 1994

Permission is hereby granted to the University of Alberta Library to reproduce single

copics of this thesis and to lend or sell such copies for private, ~cholarly or scientific

rescarch purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before rovided neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form without the

author's prior written permission.

Al &mg

Anil Sawhney

#1501, 8515, 112" Street,
Edmonten, Alberta

T6G 1K7

DATE: Aug IS, 1494

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled SIMULATION-BASED
PLANNING FOR CONSTRUCTION submitted by ANIL SAWHNEY in part'a

fuifillment for the degree DOCTOR OF PHILOSOPHY

ENGINEERING.

DATE: _JuNéE 30, (994

P e) /
ey ":// ///// r / / //(/
’ 7

Dr. S.M. AbouRizk

IN CIVIL

77
Prof. S.P. Dorﬁ

A

Dr. D. W. Halpin

/,././ / [//zgk/

Prof. W. A. Weir

oy 2

Dr. M. Zuo

ABSTRACT

Construction projects are characterized by the random nature of the conditions
under which they are implemented and by the dynamic utilization of resources. Since site
conditions vary randomly and resources are dynamically atilized on various work tasks,
planning of construction projects using trad:*ional tools like critical path method (CPM)
becomes limited and induces deficiency in the resulting plan. This research demonstrates
that a simulation based methodolngy is appropriate to mode! h o scenario. Hierarchical
Simulation Modeling (1'SM; method, a - mulation hase method, for planning of
construction projects is developed in this © k. HSM util'zes concept of “hierarchy”
of work involved on a construction project. Under this - oucep' project is divided into
operations, processes and work tasks. A resource library fo- project is created after
the creation of the work breakdown structure (WBS). The.. based - ‘he construction
logic various operations are sequenced using serial, parallel, cyclic i Foamoct "k,
Process models are then developed using the CYCLONE method. Enhancements have
been made to the CYCLONE elements to accomplish simultaneous simulation of
processes using common resource pools. This includes addition of resource manipulation
elements and process inter-linkage. The final step in HSM analysis is to extend all the
models to a common level where simulation takes place. Planning of a bridge project
(Pcace River bridge) was performed using HSM to iilustrat HSM concepts and its
advantages. It was demonstrated that HSM will prove to be an efficient tool for project
planning. The key factors for this efficiency originate from the fact that the method allows
demarcation of project information into logical and manageable packages, is driven by
allocation and utilization of resources, and allows advanced facilities such as cycling of

operations and reusable modular model components.

Acknowledgment

The author wishes to thank his “guru” Dr. Simaan M. AbouRizk tor his support,
encouragement and guidance throughout the preparation of this rescarch. Thanks to
Professor Peter Dozzi and Professor Bill Weir for their encouragement, support and
feedback throughout the research work. Appreciation is extended to Dr. WL, Sproule,
Dr. M. Zuo and Dr. D.W. Halpin for serving on the author’s advisory committee.

The author wishes to recognize his parents for their continuous support and

encouragement throughout all phases ol his life.

Table of Contents

CHAPTER 1: SIMULATION OF CONSTRUCTION PROJECTS ..covcisaseussssenns w1
1.1 INTRODUCTION ..ottt e siessae s s satssn it s essnssnssssssnnss 1
1.2 PROBLEM DEFINITIONcooiirnieiiiinimniannisnsns s s sssens 3
1.3 RESEARCH OBJECTIVESooiiiiiiiiriinnnsnissiisiesnsse st 3
1.4 STATE OF THE ARToeoovviieereiisinrinneeineisnnnsnessscsninssis s ssnsssnss s 4
1.5 HIERARCHICAL SIMULATION MODELING METHOD..........ccccoviee. 5
1.6 PROTOTYPE SYSTEM FOR HSM.....ccooiiiiininniiinininins e 11
1.7 THESIS ORGANIZATIONcoveiiiiiiiiiinniine e s iissnsisssncssssnsnie 13
1.8 CONCLUDING REMARKScoooiiiiiiiiiininenne i ssssssssniee 13

CHAPTER 2: HSM MODELING CONCEPTS....... .14
2.1 INTRODUCGTIONoivviirivirreenieiesiesnsesssessiesiestensssasssssssssssntsssesanens 14
2 2 SPECIFICATIONS FOR PROJECT SCOPING........ccoocviiiiiinniiannicninns 15

2.2.1 Work breakdown StIUCIULEcviermieinimiinineiitiineiiininnse e 15
2.2.2 MOdUlarity CONCEPLScvverueererersisessirisiiriimsnsssnsessenis s sasnsasens 19
2.2.3 Resource Definitioncccveecrveiinniinionuninne i nnnessesens 22
2.3 OPERATION SEQUENCING........cocevivmmrinenensiiniinie st 22
2.3.1 Types of links in HSM ..couiiiiiiiiiiiiii e 25
2.3.2 Rules governing the use of HSM relationshipsccooeereeuciiene. 27
2.4 PROCESS MODELS.......coiteriteniiiiesieiiennissie st sbssiisssnsssnassssssssassnissns 28
2.4.1 Modeling resources at the process levelcoovniinniniiiiin 29
2.4.2 Modeling process interdenendenciesocovviminminniesniecieenen. 31
2.4.3 Precedence rules for process modeling elements............coeeeenne 36
2.5 CONCLUDING REMARKSccoooniiiiinirnninieeneeniiieie s s 37

CHAPTER 3: COMPUTER IMPLEMENTATION OF HSM e 38
3.1 INTRODUCTIONovtieirreerrierieesessntesnnesssesisessasasssessessaissssasnnessasasssossus 38
3.2 BACKGROUNDoooviitriieieeirrestestesieesresrenseesissss st ssnssssensanssssssssssasssans 38
3.3 OVERVIEW OF HSM......ooiiitiiiieieeiitinnesiie s nssiesssiesssstississn s ssasssssesans 40
3.4 IMPLEMENTATION OF HSM......ccoiiniiiniiiiinnicniiiininsnnsssnssenes 41

3.4.1 Implementation of HSM modeling elements.........c.ccoeeeervenninenen. 42
3.4.2 Creation of Objects in Ca ...cveeieniinicrneniniiiiiie i 45
3.4.3 Programming in Visual Basic with imported objects..........c..cc..... 48
3.4.4 Description of the translation module........ccoooiiiiiiiiinnnnccnens 51

3.5 SAMPLE SESSIONoooiiiiiiiniiniennisenscentesisitssnt s ss s sssssasssnts e 52

3.6 LIMITATIONS OF THE PROTOTYPE SYSTEM ..o 89

3.7 CONCLUDING REMARKScooiiiiiiiiiiiininiiiinis s ol
CHAPTER 4: PLANNING A BRIDGE PROJECT USING HSM ..cccccinscsnensniacnns 61
4.1 INTRODUCGTION ...ccovviriiiieisiiiienieirine e s st 61
4.2 GENERAL DESCRIPTION OF THE PEACE RIVER BRIDGE................ 61
4.3 SCOPING THE BRIDGE PROJECTcccociviriiiiincnne 66
4.4 OPERATION SEQUENCING FOR THE BRIDGE PROJECT 72
4.5 PROCESS MODELS FOR THE BRIDGE PROJECTcccccevvvniininnn 76
4.6 SIMULATION OF THE BRIDGE PROJECT ..o 83
4.7 EFFECT OF CHANGING THE RESOURCE ALLOCATIONS................ 85
4.8 EFFECT OF CHANGING THE OPERATION SEQUENCING 86
4.9 SIGNIFICANT RESULTS ...cocoiiiiiiiiiiinieiii e 88
4.10 CONCLUDING REMARKS.........ocooviiiiiiiii i 89
CHAPTER 5: FINAL DISCUSSION ...ccoveersiensanssansenssssesssssnsssessnssacsssssssssaessnasessesse 920
5.1 SUMMARY OF THE RESEARCHc.cccoociiiiinininiis 90
5.2 RFSEARCH CONTRIBUTIONSccooiiiiiniinniiin i 91
5.3 CONCLUDING REMARKSccooviiiiiiininniie 92
5.4 RECOMMENDATIONSoooiiiiiiniiiiiin et 94
BIBLIOGRAPHY veesreerstesatssarsassisastesanerantsatenanasnestiesassstssesaseatsanas 9
APPENDIX A: IMPLEMENTATION DETAILS OF HSM PROTOTYPE 101
APPENDIX B: DETAILS OF TRANSLATION MODULEccccesimeninnncncansassacne 142

APPENDIX C: RESULTS OF THE CASE STUDY ccocviciinieninenscsssnsnesasassnsnssesassecas 164

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figurc 2-9:

Figure 2-10:
Figure 2-11:
Figure 2-12:
Figure 2-13:
Figure 2-14:
Figure 2-15:

Figurc 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:

Figure 3-10:
Figure 3-11:
Figure 3-12:
Figure 3-13:
Figure 3-14:
Figure 3-15:
Figure 3-16:
Figure 3-17:

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:

List of Figures

Nustraticn of WBS and resource library in HSM ... 7
Hlustration of Operation SEQUENCINE ...oeeniiiriiiiii s 8
lustration of process models in HSM ... 11
Internal working Of HSMu.c..oioiiii s 12
Hierarchy of work on a conStruction ProjeCt.......ouie s 16
Work breakdown structure of a bridge project......ceveiniiiin.. 18
WBS with different levels of defail.......c.coviiiinineninnnci. 19
Modularity in Project WBS.......coiiiniiiiiiie 20
Modular processes in project WBS ..coooooviiiiiie 21
Hlustration of resource HBIAry........cocciiemieieienniimmi e 22
Operations With COMMON PATENLcovviririmmnmimerensisserisssss s 24
Operation sequencing d:agramsooieseeniiies verreare 24
Cyelic relationShIPoviieivineiecs e e 26
CYCLONE modeling elements (svurce Halpin, 1990).c.uvieeeiiieieiiiiiinins 28
HSM rESOUICE NOUES «.vvirvrerivieirrersirirrerrresrsssssnsssriesss s saiassessesaessanes 30
Ilustration of resource nodes in a process Modclcccoivviiniininnnenn 31
General form of Class IV control StruCture ..o, 33
HSM process interdependency Clements ..o 33
Ijustration of process inter-dependency ... 35
Internal structure of HSM Prototype.......cceceeneiniiiiiiinnmininesinne. 40
Implementation strategy for the model definition moduleocoeeiiiininnns 42
Schematic representation of the modeling Object......cocouvriveieneciinisinenns 45
C++ code for object model of the QUE element........cooveinicniiiiienens 46
Object procedure for the QUE elementc.oivveciiiecininimnsisnenne 47
Message processing in Visual BasiCcoovomimiiiininn. 49
Visual Basic procedure for creating instar.ces of modeling objects........... 49
Subroutine for “move” event for the operation ObJECtccoeveurveiiiiiiinnns 50
Internal working of the translation module.........cooiviiiiiiniiii 52
ACIUAL WBS SCIEEI 1 vveiiereesereeceeesinrreessanssises st st st esb s s benes 53
Input form for an operation element.........ccovvvvieiiiiiniies e 54
Input form for process ElEMmENtooviiimiiiecnnii e 54
RESOUICE MANAZET SCTEEIuveveiirenieestesstsratst et s sttt st e 55
Input form for adding & FESOUICE........ciurmimimimiiesierssiircinssis s 56
Operation SEQUENCING SCTEEM.cuvuerermiertrniersisssissiersisissi sttt 57
Process MOdeling SCIEEMc.cvveririiriemnesienreniiiinrei e 58
Input form for COMBI €lementc.ccoivmmmninisinincicniisiinne 59
Schematic representation of Peace River bridgeooiiveiiiiinncnens 63
Schematic representation of a typical PIETcvvvvvevininiiiiennnnnicieins 64
WBS for substructure of the bridge project.........cooeevvveivnviinininninnnnn, 67
Modular operation for Pier-1 ... e 68
Modular operation for Pier 2, 3, 4, 5 ANA B oo ieeereeeeeereeere e aeneesaens 70
Operation sequencing using the Prototype.......cevvreersvisisiiiinissnnnnees 73
Operation sequencing at Ievel-1...c...cooiiinnne 74

Figure 4-8:
Figure 4-9:

Figure 4-10:
Figure 4-11:
Figure 4-12:
Figure 4-13:
Figure 4-14:
Figure 4-15:
Figure 4-16:
Figure 4-17:
Figure 4-18:
Figure 4-19:

Figure A-1:
Figure A-2:
Figure A-3:
Figure A-4:
Figure A-5:

Operation sequencing for Pier-1 atlevel-2 74

Operation sequencing for Piers 2, 3, 4, S & 6t level -2 75
Operation sequencing for Piers 2 to 6 atlevel-3 . 76
Process model for the berm process...... o, 77
Process model for the eXcavation Process ..., 78
Process model for the piling process ...t 78
Process model for the cofferdam processoooovvvvevviniiiniiiieiinens 79
Process model for the blinding layer processccovviiiiiiinnieniiincnnnn 80
Process model for the formwork processccovvvviviiviniiniininncnnn 81
Process model for the rebar process......ocviviiiiiiiiie i 82
Process model for the CONCIEting PrOCESS......ovvvvrviiiiiriniriiienrrnieniinens 83
Revised operation SEQUENCINE........cvviiiieiinreiieieecii e 87
Visual Basic FOrm ObJectcceciiiniiniiiiiienie s 105
Control Objects in Visual Basic ..o 106
Events associated with the Form Object...........cooconnnn 107
Properties associated with a Control Object ... 108
Visual Basic toolbar with HSM modeling elements ... 109

Table 1-1:
Table 1-2:
Table 1-3:
Table 3-1:
Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:
Table A-I:
Table A-2:
Table A-3:
Table A-4:
Table C-1:
Table C-2:
Table C-3:
Table C-4:
Table C-5:

List of Tables

Operation and process modeling elements iNHSM...oooiiiiieiiiecnene 7
Operation sequencing lNKSc..cvvi e 9
Process modeling elements in HSM esservereessatssaeerrrasastessranesanaannt 10
HSM modeling €lemEnts........cccvivierieieimiiiniiesis e 43
Quantity estimate for Peace River Bridge (ATU, 1989) ...cccoveniiiniinnns 62
Quantities for the typical bridge pier (ATU, 1989) c..ccooiiiniimiiiiiiiniinns 64
Resources allocated to the bridge Project.. ..o, 71
Summary of the results for different resource allocationsc.ccovevviirenenne 85
Summary of results for revised operation SEQUENCING ...oovvveriaenresenneesis 88
Custom contro’ files for HSM modeling elementsccociiiivineen 102
Custorn control source code flles ... 104
List of the tables in the project database..........cocoveiiniiniinniiines 112
Modular operation and modular process databasecveevecisininienn: 113
Processes for the Peace River bridge project........cvveevviniiiiiiniinn. 164
Simulation results for the deterministic CaSe........covvivinviniiiiniiiineneen 168
Simulation results for the stochastic case (mea~ of 30 runs) 171
Simuiation results for the resource scenario-1 ... 174

Simulation results for the revised operation sequening Case.................. 177

Chapter 1: Simulation cf Construction Projects

1.1 INTRODUCTION

Implementation of large and complex construction projects requires resources such as,
labour, heavy and sophisticated equipment, and materials. In order to succeed m such
endeavors it is essential to deploy effective techniques to plan for resources (in this thesis
the word “plan” is used in generic sense to mean a construction schedule that provides
information regarding duration and sequence of work tasks and resource requirements). It
is important that proper planning and control of the involved activities and resources be
performed. In addition to detailed and accurate design, a detailed and accurate plan is
required to achieve the project objectives. To coordinate the efforts required on the
project, it is desirable to use some form of representation of the designed facility before it
is actually constructed. Many techniques have been developed to assist a construction
engineer in performing the functions of planning and control.

A graphical representation of the project on a time scale is considered to be practical
planning tool. Initiaily, there was no generally accepted formal procedure for project
planning. It was more of an art than a science. As the complexity of projects increased
managers started using simple tools like bar charts and velocity diagrams. Then network
techniques became popular in the construction industry. Network techniques such as
Critical Path Method (CPM), Program Evaluation and Review Technique (PERT) and
Precedence Diagramming Method (PDM) show the project activities, duration, and logical

constraints as well as the start and finish times of the activitics and the critical path.

Network technigues are widely used in the construction industry. Over the years it has
been found that these techniques provide limited modeling versatility. The shortcomings
of these methods are numerous and have been documented in many publications (e.g.
McCrimmon and Rayvec, 1964 and Pritsker et. al. 1989). The deterministic and static
nature of representation of these techniques is the main reason for ineffectiveness in
modeling a dynamic and stochastic system such as a construction project. The following
modeling assumptions make the network techniques ineffective in poriraying an actual
project (Pritsker et. al. 1989):

I. Branching is done on a deterministic basis.

2. No cycling or feedback is allowed in the network.

3. Projects or portions of projects are always completed successfully as
the concept of failure is non-existent (CPM simply adds time at which
nodes of the network are realized).

4. No explicit storage or queuing concepts are available.

5. Resource handling does not model dynamic utilization and allocation.

Computer simulation is a tool that can be used to model random phenomenon and to
integrate variability into project management techniques. Van Slyke (1963) and Pritsker
(1979) discussed the development of Graphical Evaluation and Review Technique
(GERT) for extending the modeling capabilities of CPM and PERT. These experiments
led to the use of simulation in project planning and control. Pritsker et. al. (1989) provide

numerous illustrations of the application of simulation for project planning.

9

1.2 PROBLEM DEFINITION

Planning of construction projects using simulation overcomes the deficiencies of
traditional network based techniques. Simulation allows modeling of random conditions
under which projects are implemented and allows incorporation of the dynamic behavior
of the involved resources. Construction simulation, especially process modeling, has
matured over the years with numerous examples given in Halpin (1390), and Halpin and
Riggs (1992).

The current simulation modeling methods are not geared towards combined simulation
of the processes using a common resource pool, a situation that is normally encountered
on a project. To simulate a construction project using the current modeling method it is
essential to develop a single model that captures the details of all the underlying processes
in the project. The complexity of such a model would increase as the size of the
construction project increases. It is easy to envision the difficulties involved with
developing a single project level simulation model. This clearly indicates that there is a
need to develop a modeling framework that allows a systematic division of a construction

project into a number of processes that can then be simulated simultancously.

1.3 RESEARCH OBJECTIVES

The focus of this research was towards the development of a modcling method for the
simulation of construction projects. The main objectives were:
1. Development of a hierarchical and modular modeling framework that
assists in defining project level simulation models.

2. Testing of the proposed modeling method using an actual case study.

A secondary objective was the automation of the developed modeling method in a form

that will allow testing and validation of the modeling framework.

1.4 STATE OF THE ART
Past studies in the area of project planning were mainly directed towards analyzing

deficiencies of the existing planning techniques like CPM and PERT. Most of the
previous simulation-based project planning models were hybrid in nature and generally
involved a Monte-Carlo simulation of a project depicted by a network technique. A
representative summary of these models is provided in the following paragraphs.

Ang et. al. (1975) developed a technique called Probabilistic Network Evaluation
Technique (PNET). This technique applies probability theory to reduce the number of
possible critical paths. PNET evaluates the expected project duration based on
representative paths in the network. Crandall (1976) used the Monte Carlo simulation
technique to carry out probabilistic scheduling. He developed a tree structure for network
representation to perform the Monte Carlo experiments. Riggs (1989) summarized the
attempts made to use simulation modeling for the planning of construction projects.
Woolery and Crandall (1983) provided a stochastic network model for scheduling. Ahuja
and Nandakumar (1984) presented a detailed approach based on simulating a project
network by first specifying possible uncertainty factors and then simulating various
scenarios to obtain a statistical distribution of the activity duration based on the
incorporated effects.

Dabbas (1981), and Dabbas and Halpin (1982) described the development of a

simulation technique that provides a planning tool for construction projects coupled with a

process level analysis. This technique provided a basic step towards applying simulation
to complex and large construction projects. A project is scheduled by developing a CPM
network in which some of the activities have individual CYCLONE models attached to
them. The limitation of this technique is that resource allocation is done individually for
each cyclic activity. In actual practice this is not the case and resources can be best
modeled by common resource pools at various levels and stages of the project.

CIPROS, an object-oriented, interactive system for developing discrete-cvent
simulation networks and simulating construction plans, was recently developed by Odeh et
al. (1992). CIPROS provides a method by which modelers (in this thesis the word
“modeler” has been used in generic sense to mean a construction scheduler or planner) can
divide their work into various steps, but limited hierarchical modcling is achieved. In
CIPROS process interactions and process interdependencies are not modeled because
process models are attached to the CPM activities that are externally connected to cach

other.

1.5 HIERARCHICAL SIMULATION MODELING METHOD

In this research a modeling framework called Hierarchical Simulation Modecling (HSM)
method was developed. This method provides a structured technique for soliciting project
information to develop simulation models at a project level. This allows simulation-based
planning of the project.

The plan development for a project using HSM is performed in five simple steps:

1. Develop the work breakdown structure by identifying operations and

processes.

2. Develop the project resource library by defining the resources allocated
to the project.

3. Sequence the identified operations using serial, cyclic, parallel and
hammock links.

4. Develop process models to define the project work tasks using
CYCLONE (Halpin, 1977).

5. Simulate the project, apalyze the results and produce output.

The first step pertains to the division of the project into a hierarchical structure, often
referred to as the work breakdown structnre (WBS). In HSM the hierarchical structure of
the project has to be defined such that there are at least two levels, one is the project level
and the other is the process level. Therefore, for a simple project the WBS would have a
project level and a process level. On the other hand a complex project can have a project
level, a process level, and multiple operation levels. This feature of HSM allows the
modeler to logically divide large amounts of project information into manageable
components. Figure 1-1 illustrates a partial WBS for a high-rise building project. The
project is first divided into “Zone-A” and “Zone-B” operations (for simplicity a partial
division of only “Zone-A” is shown). Three processes, namely: “formwork”, “rebar” and
“concrete”, are identified for the “Concreting operation” at the lowest level. Figure 1-1
also illustrates the modularity feature of HSM. Because the structural design of floors 2,
3.4 and 5 are similar, the modeler defines a modular model for floor-2 and then refers this
to the remaining floors. This feature reduces the complexity of the input required for the

plan. A project WBS is developed using two modeling elements that include “operation-

element” and “process-element.”

Table 1-1 shows these two modeling clements, their

interpretation and usage.

é i Y
High-rise
building
[-
R B .
Zone-A ——I Zone-B]
o 4
? l | I B R
Foundation| {Main Floor| Floor-2 Floor-3,4 & § { leshmp, ‘
A _ /‘/ _________ ‘ ___________ v A+
| : (modu|.lr modcl)
* | Shear walls lSteelcolum;‘ Concreting I
: Ve __‘_ o ‘
'. - @ (,onc,rt,l
: placemen
L /Ii/ Details not shown)

Figure 1-1 Illustration of WBS and resource library in HSM

Table 1-1: Operation and process modeling elements in HSM

Modeling Interpretation Usage

Element

Operation | Focus on construction | It can only have one parent and multiple

methods. children in the hierarchy. The parent clement

can only be another operation while child
elements can be either an operation or a
process.

Process Focus on accomplishment | It can only have one parent and no children.

-

The process element defines the lowest level
of the WBS.

of work tasks and flow of
resources.

In the second step a resource library for the project is created. All resources required
on the project arc initialized in this library. Details like resource name, quantity allocated
to the project, variable cost and fixed cost of the resource are provided. The resources
can be defined at the project level or at any level of the WBS, which makes resource
definition an integral part of the development of the project WBS.

In the third step the identified operations are sequenced. The modeler schedules
various operations based on the construction logic and sequence. For this purpose HSM
provides serial, parallel and cyclic links. An operation can also be designated as a
hammock operation by simply specifying a start time. The definition of links is
synonymous with PDM network logic constraints except that they could be at any level of
the WBS and advanced relations such as cycling of work components can be used. This
provides versatility to HSM and makes it equally applicable on building projects or linear
projects like pipeline construction. Figure 1-2 illustrates the operation sequencing of the

hypothetical building project. Table 1-2 defines these links and their interpretation.

(" M
Operation sequencing
[Concreting |
\, __/
___Cyclic link 404_____

Serial link

Figure 1-2: Illustration of operation sequencing

Table 1-2: Operation sequencing links

Link

Interpretation

Usage

Serial

Construction logic dictates
that operations can be
implemented in series one
following the previous.

A predecessor operation is linked to a
successor using a serial link. A lead or lag (in
days) can be assigned for any serial link.

Parallel

Construction logic allows
the operations to be
performed simultaneously.

Two operations that can be implemented in
parallel are linked using a parallel link. One
operation is termed as the predecessor and the
other is the successor. A lag in days can be
attached to the parallel link.

Cyclic

Construction logic
requires that one operation
or a group of operations
are performed a given
number of times.

One operation or a group of scrially linked
operations can be repeated by linking the last
operation to the first operation using a cyclic
link. A counter is attached to the cyclic link to
determine the number of repetitions.

Hammock

Construction logic is such
that the operation is not
constrained by any other
operation in the project.

A single operation is isolated from other
operations by defining a hammock link. The
hammock link is defined in terms of days
relative to the start time. Once an operation is
defined as hammock no other links can be
assigned.

The fourth step involves development of process models for the defined processes in

the WBS.

The process models are developed using the CYCLONE modeling

methodology (Halpin, 1977) with enhancements and additional modeling clements to

allow project simulation. The enhancements to the CYCLONE method include addition

of resource manipulation elements, process inter-linkage and inter-process constraining

relations. The additional nodes developed as part of the HSM modcling framework are

shown in Table 1-3.

Table 1-3: Process modeling elements in HSM

Modeling element Description

Allocate Resource Node Resources defined in the resource pool at the project

Z level are attached to the process models using the
Allocate Resource Nodes. A single resource or a
resource ccmbination can be allocated at this node. The
node captures the required quantity of resources from the
resource pool before a work task can be started.

Free Resource Node This node works in conjunction with the Allocate
Resource Node. A single resource or a resource
@ combination can be released back to the resource pool

using this node. It is essential to have a corresponding
Allocate Resource Node for every Free Resource Node.
In the absence of the Free Resource Node the resources
captured at an Allocote Resource Node are not released
back to the resource pool.

Predecessor node This node in conjunction with the successor node is used
to define process interdependencies. A predecessor node
Pre releases an entity to a succeeding process on the
completion of a defined number of cycles of the current
process.

Successor node The successor node works in conjunction with the

predecessor to define process inter-dependencies. It

@ receives the entity released by the predecessor node in the

preceding process. After receiving the entity the

successor node allows the start of the succeeding
process.

In HSM the modeler can allocate resources either at the operation or process levels.
For modeling a resource that is assigned to an operation without a detailed identification
of the work tasks for which the resource is required, the modeler allocates the resource to
that operation. In this case the resource is automatically allocated to all descendent
nperations and processes below this operation in the hierarchy. The modeler can also
attach the resources defined in the resource pool to the process models. In both cases it is

feasible to allocate the same resource to more than one operation or process. Figure 1-3

illustrates process models for two processes that share common resources and are linked

to each other.

Process-1 Process-2

Allocate Free resource
resource A J’@ Successor -

process node » Y
Queue Q ﬂ - @ A/ 1 »
node i (Q

L @

Predecessor
node
K od

Figure 1-3: Illustration of process models in HSM
The final step in the HSM analysis is to extend all models to a common level where
simulation will take place. Computer implementation of the method automatically
accomplishes this as demonstrated in Figure 1-4. Currently the models are translated into

a general purpose simulation language to facilitate experimentation.

1.6 PROTOTYPE SYSTEM FOR HSM

An essential ingredient of HSM is its rich graphical user interface that allows a simple
method for development of the project plan. A prototype has been developed by the
author which illustrates the potential benefits of the proposed mclhold- and also allows
testing of the modeling concepts. Internally, HSM is implemented in four modules which
include a graphical model building module, translation module, simulation module and

report generation module.

Project Resource
Library

Project Information

e/

vy

(" was
- Define operations
_ - Define Processes .- Modeling objects (macro level)
- Operation, Process
JI - Modular operations
4 - Sequence Links
Operation sequencing B S
-
‘ll Modeling objects (micro level)
Process Modeling - COMBI, QUE, NOR

- Resource functions
- Interdependencies Link

- Define work tasks
at lowest level

¢ Simulation model
translation

Simulation

Dumut_
— _J

Figure 1-4: Internal working of HSM

The graphical model building module has been implemented in an object-oriented
environment. The graphical elements (operation object, process object and process
modeling objects) were developed as “control classes” in Visual C++ (Microseft, 1993b).
These *“‘control classes™ are then loaded in Visual Basic (Microsoft, 1993a). The graphical
model building module is developed in Visual Basic using these objects. The translation
module for the prototype system was developed using Visual Basic and is internally linked

to the graphical model building module. The function of the translation is to automatically

combine the information provided in the WBS, operation sequencing and process models
to formulate one discrete event model. Currently the system translates and forms the basic
model in SLAMSYSTEM simulation language. In the prototype system SLAMSYSTEM

is being utilized externally as the simulation module.

1.7 THESIS ORGANIZATION

The following chapters describe the various parts of the HSM framework developed in
this research. Chapter 2 describes the modeling concepts of the method. It provides the
modeling framework for developing a project WBS, defining resources, linking operations
and developing process models. Chapter 3 describes the implementation details and
internal structure of the computerized tool developed to support the proposed method.
Chapter 4 illustrates the concepts and benefits of the proposed method by using an actual
project example. Chapter 5 summarizes the simulation based method, addresses the
significance of the work, and outlines future research directions in the area of simulation-

based planning of construction projects.

1.8 CONCLUDING REMARKS

This chapter provided a brief introduction to the arca of planning of construction
projects. A statement of the research problem and research objectives was provided after
the initial introduction. A brief overview of different project simulation modeling methods
was described in order to illustrate the state of the art in this arca. An overview of the
Hierarchical Simulation Modeling method developed by the author illustrated the

modeling framework required for project level simulation.

Chapter 2: HSM Modeling Concepts

2.1 INTRODUCTION
Planning of construction projects using the Hierarchical Simulation Modeling (HSM)

method requires the accomplishment of the following steps:

1. Developing the project breakdown by identifying the operations and
processes.

2. Defining the resources allocated to the project.

3. Defining the logical relations between the various project components.

4. Developing the process models using the CYCLONE simulation
method.

5. Analyzing the simulation models and generation of the results.

The HSM framework developed by the author provides a guideline for performing
these tasks. In this chapter a description of the modeling concepts of HSM, that guide the
plan development, is provided. The specifications to be followed for the preparation of
the project plan are discussed under three different sections. The first section covers
project scoping using the hierarchical and modular breakdown structure and resource
definition. In the second section the rules for sequencing the identified operations are
described. Specifications for developing the process models are described in the third
section.

HSM uses a symbolic graphical format for the development of a project plan.

Modeling elements for the development of WBS, process models and links for operation

14

sequencing are available to the modeler.

2.2 SPECIFICATIONS FOR PROJECT SCOPING

The scoping of a project in HSM uses the following concepts:
e Hierarchical work breakdown structure.
e Definition of modular project components, and
e Resource definition.

The objective behind project scoping is to divide and streamline the project information
into manageable units. This essentially involves identification of the work to be performed
on the project, identification of repetitive work components (it any) and resource
requirements for the project. Description of these concepts is provided in the next three

sub-sections.

2.2.1 Work breakdown structure
HSM utilizes the concept of “hierarchy” of work involved on a construction project

that was formulated by Halpin and Woodhead (1976). Under this scheme, the work on a
project is divided into the following categorics:

I. Project level is the highest level and the focus at this level is on “gross
project attributes” like project cost, schedule, resources, material
requirement and other management issucs.

2. Operation level is the next level in the hierarchy where the focus is on
construction methods and implementation strategy.

3. Process level is the third level with focus on the basic technological

sequence of work.

15

4. Activities or work tasks form the fourth level of the hierarchy with

focus on the physical work required for the project.

Figure 2-1 provides a graphical illustration of the above described hierarchy.

e — N

(.)4 - -
Pro.!fct Lljocus is on gross project attributes.

[Operatioﬂ"**’ Focus on construction method.

-

Process _»| Focus on recognizable portions
of construction operations.

Task _»| Focus fundamental field action and work
] unit.

* Adapted from Halpin and Woodhead (1976).
- _J

Figure 2-1: Hierarchy of work on a construction project
The above breakdown of a project is commonly referred to as the work breakdown
structure of the project (WBS). WBS has been studied by various researchers and
practitioners in the past. For a detailed discussion of this topic refer to research by Elmore
1976, Murphy 1981, Halpin et. al. 1987 and Halpin and Riggs 1992.

The first step in the HSM modeling process involves development of the project work

” &

breakdown structure. HSM uses three constructs namely: “project, operation” and

“process” elements for performing this task. Each project contains a root element called
project-element. All other elements originate from this element and are its descendants.
Operations in the WBS descend from the project or other operations (terms used to

describe the relationships in the WBS include parent, child and descendent and have their

16

usual familial meanings). An operation element can have more than one child element
attached to it. Children of an operation element can either be other operations or process
elements provided that they are of the same category (i.c. all operations or all Processes).
Process elements form the lowest level of project breakdown. These elements cannot
have any descendants. They have one operation element as their parent. A project must
have process elements in its work breakdown.

A large project or operation could be divided into various levels of detail in a top-down
fashion. Figure 2-2 shows the WBS of a sample bridge project. In the illustration the
bridge project is divided into five different levels. Level 0 corresponds to the project level.
The element named “bridge project” is the “project-element” or the “root-clement” for this
WBS. Level 4 is the lowest level of the project WBS. This level models the various
processes that are involved in the project. In Figure 2-2 “formwork”, “rebar” and
“concreting” are process-clements. Level 1, 2 and 3 in Figure 2-2, model various
operations that are involved in the project. Each of these levels is composed of

“operation-elements”.

17

/ Bridge Project Level m
(Project level)

Level 1
@pirat_ign_ level)

U)ulmem-l [Pier -1 J[Pier- 2) (butment-)
Level 2

‘ Excavation ’ ' Sheet pllmg ’ Reinforced Con.
Level 3

Lev

K (Processley

Figure 2-2: Work breakdown structure of a bridge project

A project can be broken down into different levels depending on its complexity. In the
illustration, the bridge project has been broken down into five different levels. A project
must have at least two levels in its breakdown, one being the project itself and the other
being the process level. If the project being modeled is not complex then it need only have
level O and level 1 where level 0 will be project level and level 1 will be process level as
shown in Figure 2-3(a). On the other hand, for a complex project it may be necessary to
have intermediate levels that break the project into operations. Hence, a work breakdown
structure may consist of a project level, one or more intermediate operation levels and one
process level as shown in Figure 2-3(b).

The best approach on a construction project is to divide the project into operations and

processes based on the physical sub-divisions of the project (e.g., floors of a building,

18

spans of a bridge, etc.). Within each operation further sub-division can be achicved by
physical or responsibility groups.

A project may be divided into operations such that different operations have different
levels of detail. In Figure 2-3(b) operation “Opr A™ can be divided into level 2 while the

operation “Opr C” to n+1 levels. Therefore, HSM allows division of operations into

different levels of detail.

(a) 7

' Project l Level 0
B I _ L
Corooss D o Qe L,

(b) Project] Level 0

r i I .
Opr A Opr B .. OprC
o) Level 1
i i
! e - ! Level 2
| |
Opr D OprE - OprF
&
¢ Level n-1
[| " J>
T @f‘iﬁs 3 Level n

Figure 2-3: WBS with different levels of detail

2.2.2 Modularity concepts
HSM enhances the modeling process of a construction project using modular concepts.

19

Many repetitive technological components can be found in construction projects. These
recurring units of work (operations as well as processes) can be combined in modules and
referenced in the WBS as needed. This is referred to as modular components in HSM.
The concept of modularity for simulation models was introduced by Zeigler (1987) and
Luna(1990).

Modularity is especially useful for projects that involve repeated modules of work.

Figure 2-4 illustrates modularity concepts for planning a high-rise building.

4 N

High-rise
building

Zone-A Zone-B

T

I | | | T i
Foundation| |Main Floo;l Floor-2 Floor-3,4&5 F]oor—6J Finishing
A

A A ; L

Structure 1 I Structure-1 |

Modular operation

Structure-1

o [|
Shear walls Steel column | Concreting
- A |
F l

~~ Details not shown

Figure 2-4: Modularity in Project WBS

Figure 2-4 shows the WBS in which a modular operation is defined and referenced by

20

the “floor operation”. The modular operation (“Structure-17) has its own WBS definition.
Since the construction method for the Floor 2, 3, 4 and 5 is assumed to be the same, they
all reference this modular operation, thus greatly sumplifying the WBS.

Figure 2-5 shows a partial WBS for another hypothetical project. This figure illustrates

the use of modular processes.

Project-A
| L
Footing-1 l Footing-2

|

- @@ <xuval/|_()>‘ ((nncruu)
Q Modular process

Figure 2-5: Modular processes in project WBS

The project iivolves construction of two types of footings, footing-1 and footing-2. In
footing-1 after excavation, a piling process is required before the concrete can be placed,
whereas the footing-2 requires only excavation and concrete processes. It is assumed that
the construction method for both excavation processes is the same, a modular process was
defined and was referenced by both footing operations in the project WBS. The modular
process is depicted in the figure by an ellipse with two dots. The benefit of the deiinition
of the modular process apart frorn reducing the complexity of the WBS is that the modeler
is required to define the process model (further discussed in the section 2.4) only once.

This is especially useful because processes often remain unchanged depending on the

technology.

21

2.2.3 Resource Definition
HSM provides detailed resource modeling capabilities for a given project. Following

the natural approach to resource assignment on a project, HSM defines resources at the
project level. These resources are then allocated to various tasks as needed during the
simulation experiment. Tasks compete for resources which are dynamically updated
throughout the analysis.

Resource attributes are defined for each individual resource to facilitate its logical
allocation to the required tasks, resolve conflicts through priorities and to determine costs.
As with modularity, for a given project type (e.g. heavy or highway construction)
resources can be defined once by the contractor and may be used for planning new
projects. Resource libraries such as the one shown in Figure 2-6 are portable from project
to project. They may be defined in a master library on an as needed basis.

Resource library

ID | Resource Name | Quantity | Fixed Cost (8/hour) | Var Cost ($/hour)
1 Crane 1 102.00 59.00
2 | Backhoe 2 50.00 25.00
n Diesel Hammer 1 100.00 65.00

Figure 2-6: Illustration of resource library

2.3 OPERATION SEQUENCING

Operation sequencing allows the modeler to specify the implementation strategy for the
project being planned. This information is important to determine the implementation

sequence of the underlying processes. On the basis of the construction logic, technology,

22

strategy and resource availability various operations can be sequenced in different ways.
To illustrate the concept of operation sequencing a simplified WBS for a project is
shown in Figure 2-7. There are three operations defined at level-1 and four operations at
level-2. Operations Opr-12 and Opr-11 are children of Opr-1, while operation Opr-22 and
Opr-23 are children of Opr-2. The remaining deiails arc not shown in the figure for
brevity. The sequencing of these operations is illustrated in Figure 2-8. Figure 2-8(a)
provides sequencing for operations at level-1 and Figure 2-8(b) provides sequencing for
operations at level-2. Since operations at level-1 have a common parent, a combined
sequencing is provided. On the other hand for level-2 there arc two different sequencing
diagrams, one for the operations with Opr-1 as their parent and onc for operations with
Opr-2 as their parent. From this example it can be seen that sequencing of operations has
to be provided for each level of the WBS and operations at a particular level have to be
grouped Lo, -ther based on their parent operation. The first step in sequencing a group of
operations is to provide one or more start operations. The remaining operations in the

group are then linked to the starting operations to provide a complete sequencing.

23

Level-0

Project

Opr-le Opr-ll | (Opr-ZZ J (Opr-23 J

Level-2
d; Detail not shown
Figure 2-7: Operations with common parent
o
r a
(a) Sequencing for Level 1 of WBS
Opr-1 _L—’
Opr-2
=
Opr-3 J
- J
b) ~ ~
Sequencing for Level 2 of WBS
Opr-21 ¥ Opr-22
| ©
l
__p| Opr-12 || Opr-12
L _
.

Figure 2-8: Operation sequencing diagrams

24

2.3.1 Types of links in HSM
HSM provides the following four types of relationships:

Serial relationship: This relationship models situations where an operation can only
start after the completion of another operation. A serial relationship between operations is
equivalent to a finish to start relationship between activities in PDM. This relationship can
have a value of finish to start lead or lag.

Parallel relationship: A parallel relationship between operations basically denotes that
the two operations may proceed simultaneously. This is equivalent to a start to start
relationship in PDM.

Cyclic relationship: Cycling of operations is a key feature of HSM that makes it
versatile and allows efficient planning of linear and repetitive construction projects. This
enhancement provides a tool that is not available in network based planning methods. The
cyclic relationship is explained with the help of a sample linear construction project.
Figure 2-9 shows the WBS and operation sequencing for a pipeline project which is 100
km in length. It is assumed that the pipeline project can be broken down into three
operations. The traditional scheduling methods could require the identification of a unit of
construction, which in this case would be I km, and then scheduling the three basic
operations in 100 such units. In the proposed planning method this can be simplified by
using the cyclic relationship between operations as illustrated in Figure 2-9.

There are two possible scenarios which can be applied to sequence operations. In the
first scenario (A) the three operations are first linked serially using the serial relationship
and then a cyclic relationship is used between the “backfilling operation” and the

“earthwork operation”. In the cyclic relationship a “cyclic counter” is attached. This node

25

determines the number of time: the operation or a group of operations have to be
repeated.

In the second scenario (B) the three operations are first serially linked and the cyclic
relationship is used to perform the repetition of the individual operations based on the
information provided in the cyclic counter. In option B the excavation operation is started
in the first section of the pipeline. Once the excavation operation is completed the piping
operation begins in the first section while the excavation process repeats itself in the
second section. The same logic is followed for the backfilling operation for the entire

length of the project.

4 N
WBS Pipline project
[|
Excavation Piping Backfilling
g Operation sequencing)

<
|~f>| Excavation }‘—’[Piping |———>r Backfilling +—

*Scenario A
rv_@«—-- e e
.{ Excavation I’J__q Piping J_Lﬂﬁackmﬁngj_
*Scenario B @ Cyclic Covrnter
N\ _J
~ J

Figure 2-9: Cyclic relationship

26

Hammock operations: Some operations are independent of all other operations and
as such they neither have a serial nor a parallel relationship with other operations. Any
operation that does not have a serial or parallel operation is termed as a hammock
operation. A hammock operation is defined by its start point only. On a construction
project a hammock operation can be considered as a sub-project with no constraints {rom

the remaining project operations.

2.3.2 Rules governing the use of HSM relationships
The four links described here provide the modeler with the flexibility to model different

scenarios normally experienced on construction projects. However, in HSM certain rules
govern the use of these links to avoid conflicts and reduce redundancics. The governing
rules are as follows:

1. Operations with common parents are sequenced as onc group. For
example, operations at level-2 in Figure 2-7 arc divided into three
groups for operation sequencing. The modeler is not allowed to link
Opr-12 with Opr-22 or Opr-23 because they belong to different parent
groups.

2. Once an operation has been defined as hammock, no other links can be
provided for that operation.

3. For connecting more than one operations by a cyclic link the modeler
has to first connect them serially. For example in Figure 2-9 for
scenario “A”. serial link between the “excavation”, “piping” and

“backfilling” operations is defined along with the cyclic link.

27

2.4 PROCESS MODELS

Process models are used to model the tasks in a project at the lowest level. The
process models are developed using CYCLONE modeling elemeats. Three enhancements
have been made to the CYCLONE methad to allow project level simulation. These
enhancements are as follows:

1. modeling of resources which are defined at the project level.
2. modeling of process interdependencies.
3. resource identification.

The modeling philosophy adopted is the CYCLONE methodology. For a detailed
discussion of CYCLONE and its applications, refer to Halpin (1973), Halpin and
Woodhead (1976), and Halpin and Riggs (1992).

The CYCLONE modeling elements are shown in Figure 2-10 with a brief description in

Table 2-1.

r ™

NORMAL
4
COMBI1 O COUNTER

FUNCTION
\ J

Figure 2-10: CYCLONE modeling elements (source Halpin, 1990)

28

Table 2-1: Rules for developing CY CLONE models (source Halpin, 1990

Element Rule
NORMAL This node represents a non-constraint work
task similar to a work bay with an infinite
number of servers.
COMBI This node represents a work task constrained

by the availability of more than one type of
resource. A COMBI is processed when all
required resources are available.

QUEue A node where idle resources wait. A resource
arriving at a QUEue node will stay in the node
until a COMBI is ready to process it.

FUNction New elements can be created at this node.

COUnter A node that keeps track of the number of times
a unit passes it. It does not alter any of the
resources or their properties.

2.4.1 Modeling resources at the process level

The resources that are defined at the project level are used to perform the tasks that are
identified in the process models. Resources can either be linked to one process or to a
number of processes. When the resource is assigned to more than onc process a priority is
provided to each process which determines the allocation of the resource during
simulation.

Traditionally, modeling of resources in CYCLONE is done by initializing resources at
appropriate QUE nodes in the process model. Though this strategy provides a simple
method of modeling resources for the individual process, it does not facilitate modeling of
shared resources across processes. In order to overcome this modeling difficulty two
modeling elements are defined. The first element is called an Allocate Resource Node and

is an extension of the QUE node. In a process model, a COMBI that requires a resource

29

defined in the resource library is preceded by the Allocate Resource Node. This node acts
as a special QUE, that checks the availability of the specified resource. The Free
Resource Node belongs to the FUNCTION base class. The Allocate Resource Node and
Free Resource Node normally work in conjunction. A Frec Resource Node is used for
every Allocate Resource Node if the resource has to be released back to the resource
library. However, it is feasible to provide an Allocate Resource Node without a
corresponding Free Resource Node. In this case the resource will be allocated and will
not be released back to the resource library. As the name suggests the Allocate Resource
Node captures the required resource from the project level resource library and allocates it
to the process for completion of the work tasks. Similarly the Free Resource Node frees
the resource captured at the Allocate Resource Node back to the common library. The

graphical representation and internal structure of both nodes is provided in Figure 2-11.

©

Allocate Resource Node Free Resources Node

Node ID | Process ID | Follower | Resource ID | Quantity | Priority

Figure 2-11: HSM resource nodes
Figure 2-12 shows an illustration of the use of the Allocate Resource Node and of the
Free Resource Node for a process model. In this Figure it can be seen that before the
entity arrives at the COMBI node, the Allocate Resource Node tries to allocate the
designated resource. If the resource is available then the entity is processed otherwise the
entity waits in the Allocate Resource Node in a fashion similar to a QUE node. It should

be noted that the Allocate Resource Node (which is a special type of QUE) replaces the

30

QUE node before the COMBI in this particular scenario.

ARG
Allocate COMBI NORMAL Free
resources resources

Partial Process Model

AN e oS

Figure 2-12: Illustration of resource nodes in a process model

The resource nodes can be used to allocate and free multiple resources. For example if
a work task requires 1 crane, 2 trucks and 3 operators, then the same Allocate Resource
Node can be used to capture these resources from the resource library. Once an Allocate
Resource Node is used to capture multiple resources a corresponding Free Resource Node
can be used for freeing all the resources that were captured. This feature greatly reduces
the complexity of the model.

Another important enhancement for modeling of resources is that the Allocate
Resource Node can be used to assign alternate resources for the process. This scenario is
common on a construction site. For example a hauling operation can be performed by
trucks of 10 m3 capacity (type A) or trucks of 5 m3 capacity (type B) depending on the
availability. This scenario is modeled by first defining truck A and truck B as scparate
resources in the resource library and then using the Allocate Resource Node to select the
truck that is available at the time of scheduling the work task in the process. The Free

Resource Node will automatically free the appropriate resource.

2.4.2 Modeling process interdependencies
Two or more processes that have a common parent operation in a project can be linked

31

together using the process interdependency links. In traditional planning methods, since
the work tasks are defined at a common level these relationships are implicitly modeled by
activity relationships. In HSM the modeler defines separate process models and links
them explicitly. The process interdependency links work in conjunction with the operation
sequencing defined at the operation level and ultimately provide the linkage between all
the processes.

HSM utilizes the concept of class IV control structure as defined in Halpin and
Woodhead, 1976 “the control of one section of the system depends on the completion of
work tasks in another section, it is essential in such instances that a message indicating
that certain events have occurred must be sent”. Figure 2-13(a) shows a general form of
class IV control structure as depicted by Halpin and Woodhead, 1977 and its adaptation in
the proposed method.

In Figure 2-13(a) it is shown that process-2 can only start when a release entity is
available at the control QUE that links it with process-1. In the proposed planning
method a similar approach is required to link the processes. The link is achieved using

two elements as shown in Figure 2-13(b).

32

_ o ey

Predecessor process Successor process
Process-1 Process-2
A A
i 7“—1

_»/ I

_.b ___.‘.__
Release ’
available

* Adapted from Halpin and Woodhead, 1976

Predecessor process Successor process
Process-1 Process-2
——-—pp{ Pre +

—» : @ﬂ./

—>)

Equivalent model using the proposed method

Figure 2-13: General form of Class IV control structure
Two elements explicitly model the inter-process dependencies namely: predecessor and

successor elements. Figure 2-14 shows a graphical representation of both elements.

&9

Predecessor Successor
function function
Predecessor ID | Successor ID | Quantity/Cycle Number of entities per release

Figure 2-14: HSM process interdependency elements
These elements are internally represented by defining the predecessor process,
successor process, quantity and number per release. This representation is a table in a

relational database as illustrated in Figure 2-14. The predecessor element belongs to the

33

FUNCTION base class and is used in the predecessor process. It can be placed after a
COMBI, NORMAL, CONSOLIDATE, FREE RESOURCE or a FUNCTION
COUNTER (precedence rules for the HSM modeling elements are described in section
2.4.3). Multiple processes can be linked from the same predecessor function. The
predecessor function can release entities to one Or More SUCCESSOr Processes.

The successor element belongs to the QUE node class and replaces a simple QUE that
initializes control units, consumable materials or construction components in the successor
process. A process ¢an have one or more successor elements, but these could be linked to
different processes. Control to the successor element is only released when the required
quantity or cycles of the predecessor process have been completed. On the basis of this
feature a modeler can specify two types of relationships between processes namely:

I. A successor process starts after completion of predecessor process.
2. A successor process starts after partial completion of predecessor
process.

Consider the Pier-1 operation of the bridge example explained earlier. It has three
underlying processes namely: “earthwork”, “piling” and “pier-shaft”. From the operation
sequencing defined by the modeler, HSM automatically determines that the earthwork
process starts first, followed by the piling process, and then the pier-shaft process. This
scenario is illustrated in Figure 2-135.

The excavation process requires one backhoe and five trucks that have been modeled
by two sets of the Allocate Resource Node and Free Resource Node. The process

requires excavation of 100 units of earth that was modeled as a QUE with initialization.

34

The function counter in the earthwork process model is followed by the predecessor
function. The specification provided by the modeler is such that 6 entitics (piles) are
released after 100 units of soil have been excavated and moved. These entities released in
the successor element are used in the piling process. For illustration a dotted line has been

shown between the predecessor and successor element.

-~ N
Schematic representation w
6 piles - 100 units earthwork
@)
Earthwork process
e FR) Free Backhue
Backhoe ’
*100 soil units l I Haul, dump & return

S ’@

S

) Excavate and load {\
Trucks & 5 ’

Piling process _ |

wy

Free Truck

Free Diesel hammer

™
;

R Free crane

Crane p

Figure 2-15: Illustration of process inter-dependency

35

2.4.3 Precedence rules for process modeling elements
The HSM process modeling elements including the CYCLONE modeling elements are

allowed to be used in a flexible manner for the development of process models. The
modeler develops process models by assembling these modeling elements in different
arrangements. In the development of process models, however, certain precedence rules
have to be followed. These rules are summarized in Table 2-2. The letter in each field of
the row in the table indicates feasibility of an element “A” (indicated to the left of cach
row) preceding an element “B” (indicated at the top of each column). The letter “M” in a
row indicates that it is mandatory to provide the element “B” as a successor to the element
«aA” “P" indicates that the predecessor and successor relationship between the elements
“A” and “8” is allowed and “N” means that the element “B” is not allowed to follow the
element “A”. For example, a COMBI element cannot be followed by another COMBI
element. This is denoted in the Table 2-2 by the letter N in the first row and first column.
Similarly, it is mandatory to have COMBI as a follower of a QUE element. From the table
it can be deduced that a “Successor” element cannot have any predecessors and a

“Predecessor’” element cannot have any successor.

36

Table 2-2: Precedence table for HSM process modeling elements

Work tasks QUE Elements FUNCTION Elements
B
N4 10|16 | ®|®
d N I I I N I R 1L S . S
N I I I N LS SR 1 S 1 SO
M N N N N N N N N
M N N N N N N N N
M N N N N N N N N
N I I I N N R . AN 0L SO
N I I | N 1 N | |
N I 1 I N I ! LA .S
N N N N N N N N N

M = Mandatory or required, I = Immaterial, N = Not allowed
Using the above described constraints on the arrangement of elements the modeler can

develop the process models for the processes identified in the project WBS.

2.5 CONCLUDING REMARKS
This chapter provided the description of the modeling concepts of HSM. The rules and

specifications required while developing the project WBS, defining resources, sequencing
operations and developing process models were described. Further explanation of these
modeling concepts is provided in Chapter 4 with the help of an example project. The

implementation details and use of the prototype system is provided in Chapter 3.

37

Chapter 3: Computer Implementation of HSM

3.1 INTRODUCTION
The Hierarchical Simulation Modeling (HSM) method provides the modeling

framework for simulation based planning of construction projects. A prototype
computerized modeling environment was developed to allow modeling under the HSM
framework. Various issues were considered before the implementation of HSM. Those
included the following (AbouRizk and Sawhney 1994):

e The tool should be flexible to model project information for different
types of construction and should allow quick and efficient project
scoping.

e It should model all the aspects of the project including shared resources
and process inter-dependencies and should provide support for
modularity and reusability of its components.

e It should perform simulation in the background so as not to intimidate
the modeler.

This chapter addresses the implementation of HSM.

3.2 BACKGROUND

In recent years various researchers and simulation practitioners have highlighted the use
of object oriented concepts in simulation. Roberts and Heim (1988) state that “there is
little doubt that future simulation languages will incorporate more ideas from otject
oriented perspective, especially as a means of extending the language to a wider variety

of applications”. Rothenberg (1926) states that “object-oriented simulation provides a

38

rich and lucid paradigm for building computerized models of real world phenomena™. In
recent literature, researchers have focused on various features of object oriented
programming that can be beneficially adopted in simulation. Liu and loannou (1992)
demonstrated the graphical modeling strategy that can be achieved using object oriented
implementation through the development of COOPS. Using an object oricnted design
they created simulation modeling elements similar to CYCLONE modeling elements.
More recently, Oloufa (1993) performed initia! c~:periments on the use of object-oriented
simulation for construction operations.

The hierarchical and modular modeling approach that is effective in simulating complex
systems can be closely associated with object-oriented programming. The works of
Zeigler (1984) and Luna (1992) provide some insight in the area of hicrarchy and
modularity of simulation models.

Event driven programming is a relatively new technique of programming in which a
program is developed by responding to actions taken by the user or system driven events
(Microsoft, 1993a). In traditional or “procedural” programming the application itself
controls the execution of different portions of the code. In event driven programs, a
user’s action or system event executes an event procedure. This is the essence of
graphical user interfaces and event-driven programming. By using object oriented
concepts and event driven programming in conjunction a graphical user interface can be

created in which the objects respond to events created by the user.

39

3.3 OVERVIEW OF HSM
The internal design of HSM is such that there are four distinct modules developed to

accomplish different tasks as illustrated in Figure 3-1. The four modules are “model
definition”, “t:anslation”, “simulation” and “report generation”. The model definition
module provides a graphical environment for the development of a project WBS,
definition of resources, sequencing of operations and the development of process models.
The function of the translation module is to compile and translate the plan information
provided by the user and convert it into a combined simulation model. This model is then
processed by the simulation module and reports are generated through the report

generation module.

%

Resource ?i Operation Process
definition | sequencing models

Model definition
module

'

Translation
module

v

Simulation
module

:

Report generation
module

Figure 3-1: Internal structure of HSM prototype

40

3.4 IMPLEMENTATION OF HSM

An interactive graphical environment that solicits the project information in a natural
and logical manner was deemed to be a major factor in the success of HSM as a planning
tool. This goal was achieved through the use of object oriented concepts and event driven
programming in the implementation process. A project plan is developed by instantiating
(creation of an instance of a pre-defined object) the modeling elements provided in HSM.
Internally these modeling elements have been implemented as “objects™. These objects
have two groups of properties namely: “graphic” and “simulation™ propertics. The
graphic properties of these¢ objects assist in the working of the graphical user interface
while the simulation properties assist in the development of simulation models. The
objects were first developed in an object oriented programming environment and were
then imported to an event driven programming environment where the graphical user
interface was programmed. With this strategy, properties of the modeling objects were
programmed to produce the desired behavior. Figure 3-2 illustrates this concept
graphically. For the development of the HSM prototype, Visual C++ (Microsoft, 1993b)
was used as the object oriented programming environment and Visual Basic
(Microsoft, 1993a) was used as the event driven programming environment. Visual Basic
provides a more intuitive development environment that allows “non-programmers’ (o
contribute to the system with less training than required with C++. This stratcgy was
found to be suitable for the prototype where the construction modeling aspects were more

important than the program efficiency itself.

41

(‘/ - S r \
Object oriented w Event driven)
development environment programming environment
Response to use
Modeling 1 and
~ objects Import | _system events
Graphics | Simulation E
properties | properties !
— Geaphias | Simulanon —
. - / L _J
N _

Figure 3-2: implementation strategy for the model definition module
As such the implementation of HSM involved accomplishment of two tasks. First, the
modeling objects were implemented in Visual C++. This task required identification of
the graphic and simulation requirements for each object. Second, a graphical user
interface was developed by using these modeling objects in Visual Basic. In the following
sub-sections an outline of these two tasks is provided. A description of the internal

structure of the translation module is described in the last sub-section.

3.4.1 Implementation of HSM modeling elements
Table 3-1 provides a list of the HSM modeling elements, a brief description and a

graphical representation.

42

Table 3-1: HSM modeling elements

Element Graphical Description

format

OPERATION I::I Used in the project WBS to define operations.

PROCESS > | Usedin the project WBS to define processes.

ALLOCATE 3 Used in the process models to allocate resources. This

RESOURCE X element is a special type of QUE.

FREE Used in the process models to free the allocated

RESOURCE resources. This element is a special type of
FUNCTION.

PREDECESSOR Used in the process models to define process
interdependency with one or More SUCCESSOr ProCesses.
This element is a special type of FUNCTION.

SUCCESSOR @ Used in the process models to define a dependency on a
predecessor process. This element is a special type of
QUE.

NORMAL Used in the process models to define a non-constraint
work task.

COMBI 4 Used in the process models to define a work task
constrained by the availability of more than one type of
resource.

QUE Q Used in the process models to define a node where idle
resources wait.

FUNCTION Q Used in the process models to define new entitics.

COUNTER (5 Used in the process models to keep track of the number
of times a unit passes it.

The elements described in Table 3-1 were implemented as “classes” in C++. A class in
C++ is a user defined type that defines “data members” and “member functions” for the
class. An instance of a class is called an “object”. Each object inherits the structure

defined for the class through a property called “inheritance” (Microsoft, 1993b).

43

Normally, a program can be built in C++ (or any other object oriented programming
environment) by first defining classes and then utilizing these classes in the program. In
the implementation of HSM, however, a «fferent approach was followed as previously
illustrated in Figure 3-2, The HSM elements were programmed as classes (in this chapter
the word “object” is used to refer to a C-++ class and the word instance to refer to a C++
“object”) in C++ such that the “data members” and “member functions” could
communicate with the program written in Visual Basic.

Under this strategy each object is composed of two main components: an object model
and an object procedure. The object model is a C-language structure that determines
some fundamental attributes of the object with respect to its graphical behavior and
simulation properties. Two of the most important fields within the object model are
pointers to the following tables:

e The property information table, which lists all properties of the object
along with its attributes.

e The event information table, which lists all the events applicable to the
object along with information about arguments.

The object procedure is analogous to a window procedure in a Windows application.
Its main function is to receive messages and respond to them. One of the most important
things an object procedure can do is to determine when an event is recognized. Figure 3-3
shows a schematic representation of the internal structure of the modeling object. The
modeling objects have various graphics and simulation properties along with message

handling procedures as illustrated in Figure 3-3.

OBJECT MODEL

Property information table
Graphics properties Simulation properties
Shape,Width, { Code, Name,
Height, Left, Top | Parent Code, Object
| type

Event information table

Move, Drag, Reshape, click, double-click,
change, activate

OBJECT PROCEDURE

Windows messages to interact with the
Visual Basic environment

Figure 3-3: Schematic representation of the modeling object

3.4.2 Creation of Objects in C++
The above described generic structure of the objects was implemented in Visual C++.

Apart from the requirements of developing objects, the code included some specific
features to interact with Visual Basic. Figure 3-4 shows the C++ code for the QUE
element. The code included in the Figure pertains to the property definition table, event
definition table and object model for this object. As shown in the Figure the properties
and events listed include both “graphic” and “simulation” properties. For example, the
“top” and “left” properties, which are “graphic” properties, are utilized in positioning the

object on the screen during a session of HSM. Similarly the “ProcessID” property, which

45

is a “simulation” property assists in determining the process model to which the element

belongs.

/I Property list

PPROPINFO QUE_Properties|] =
{
PPROPINFO_STD_LEFT,
PPROPINFO_STD_TOP,
PPROPINFO_STD_WIDTH,
PPROPINFO_STD_HEIGHT,
PPROPINFO_STD_VISIBLE,
PPROPINFO_STD_TAG,
&Property_Queld,
&Property_Processld,
&Property_Follower,
NULL

I

/!
// Event list
PEVENTINFO QUE_Events[| =

{
PEVENTINFO_STD_CLICK,

PEVENTINFO_STD_KEYUP,
NULL
1

/!

PEVENTINFO_STD_DRAGDROP,
PEVENTINFO_STD_GOTFOCUS,
PEVENTINFO_STD_KEYPRESS,

// Model struct
MODEL medelQUE =
{
VB_VERSION,
0.
(PCTLPROC)QueCtlProc,

sizeof(QUE),
IDBMP_QUE,

CS_VREDRAW | CS_HREDRAW,

// VB version being used
// MODEL flags
// Control procedure

// Class style
/I Size of QUELE structure

// Palette bitmap 1D

Figure 3-4: C++ code for object model of the QUE element

Figure 3-5 provides a partial listing of the object procedure developed to provide

graphics capabilities to the object. Most of the object procedure is related to interaction

between the object and the Visual Basic program. The control procedure shown is for the

46

QUE element and includes the listing of the “paint” procedure that creates the graphical

representation of the QUE as shown earlier in Table 3-1.

1
// QUE Control Procedure
{

switch (msg)

{

case WM_NCCREATE:

{

LPQUE lpque = LpqueDEREF(hctl);
Ipcirc->QueName(] = "Queuel";
Ipcirc->Queld = 1;

Ipcirc->Follower = 1;

break;

}
case WM_PAINT:
if (wp)
PaintQ(hctl, hwnd, (HDC)wp);

else

{
PAINTSTRUCT ps;
BeginPaint(hwnd, &ps);
PaintQ(hctl, hwnd, ps.hdc);
EndPaint(hwnd, &ps);

}

break;

// Paint routine for displaying the queue
VOID NEAR PaintQ(HCTL hetl, HWND hwnd,HDC hdc)
{
RECT rect;
LPSTR lpstr;
LPQUE lpque = LpqueD)EREF(hctl);
HFONT hfontOld = Ni‘LL;
GetClientRect(hwnd, &:rect);
Ellipse(hdc, rect.left, 1cct.top, rect.right, rect.bottom);
MoveTo(hdc, (rect.leftvect.right)/2, (rect.top+rect.bottom)/2);
LineTo(hdc, rect.right, rect.bottom);
Ipstr = VBDerefHsz(Ipque->hszCaption);
DrawText(hdc, Ipstr, -1, &rect, DT_VCENTER | DT_CENTER | DT_SINGLELINE);

}

Figure 3-5: Object procedure for the QUE element
The programming of all the elements follows the algorithm described above. The

remaining details of the C++ implementation are provided in Appendix A. Appendix A

47

also provides the Visual Basic program listing and data structure for the storage of project
information.

3.4.3 Programming in Visual Basic with imported cbjects
The objects developed in Visual C++ were compiled into special files called “custom

control” files. Custom controls are a special types of objects that can be imported and
used in the Visual Basic programming environment. Once these objects are imported in
Visual Basic as custom controls they can be utilized by an application developer in any
programming implementation.

The behavior of imported objects is controlled in Visual Basic by a special type of
message processing as illustrated in Figure 3-6. When a “custom control” is loaded and
used in Visual Basic, Windows sends the control a message as illustrated in Figure 3-6.
Visual Basic intercepts messages intended for the control and forwards the message to the
control. The message is then handled and processed by the default control procedure.
Visual Basic appends a “control handle” to this message before sending it to the custom
control. The control handle is basically a mechanism that allows access to the object
model and object procedure of the custom control. For example, a user loads an instance
of the QUE object while using HSM and provides the “QUE ID” (a property defined in
the property table of the QUE object). This initiates a message that is sent to the custom
control with a control handle appended to it. This message then accesses the object model
of the custom control and updates the specified property. This is the general procedure
through which the properties of the custom control are manipulated and forms the basis of
program development using custom controls in Visual basic. The programming effort

required development of procedures that could perform the following tasks:

48

1. instantiation of the modeling object for a project.
2. solicitation of the information pertaining to the instantiated objects.

3. provision of interactive features for the instantiated objects.

4 Visual Basic -)
Windows | _p Visual Ba _message | QUE object
environment | Windows | environment
message Object model
..................... Control Object procedure
Default window Default control Handle |
procedure procedure € - -
- J

Figure 3-6: Message processing in Visual Basic
The first task in the Visual Basic part of the implementation was to write a code that
would allow the user to instantiate the modeling objects for a project during a session of
HSM. For example during the definition of the WBS the user should be allowed to
graphically attach operations and process to the project hierarchy. This was achieved by
allowing the user to create multiple instances of these modeling objects. Figure 3-7 shows

a portion of the code written in Visual Basic for such task.

Sub Form_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)

If AddOpr% <> 1 And AddProcess% <> | Then Exit Sub

' instantiating an operation
Load Opr1(NOpr%)
Opri(NOpr%).Top=Y
Opr1(NOpr%).Left = X
Opr}(NOpr%).Visible = True
Opr1(NOpr%).Caption = OprEdit.Text!.Text
Opr1(NOpr%).Tag = Str$(OprEdit.Option3D1.Value)
Opr1(NOpr%).Oprld = Val(OprEdit.MaskedEditl.Text)
Call ConnectOpr

Figure 3-7: Visual Basic procedure for creating instances of modeling objects

49

Figure 3-7 shows the subroutine that instantiates the ‘“‘operation object”. This
subroutine is invoked when the user presses the left mouse button.

The second task in the programming required development of subroutines that would
allow the user to provide information related to the properties of the modeling object. For
cxample after instantiating the operation object the user is provided with simple input
forms to solicit information like operation name, parent and code. This part of the
program was greatly enhanced by the graphical features of Visual Basic and did not
require special programming effort.

The third part of the programiming process pertains to the interactive features provided
in HSM. The objects that are instantiated by the user either in the project WBS or the
process models are displayed on the screen. In order to enhance the user interface,
procedures were written in Visual Basic that would provide the user with “drag-drop”,
“move” and “edit” features. This required manipulating the object procedures for the
modeling object from within Visual Basic. Figure 3-8 illustrates the “move” procedure of

the operation and process object.

[Sub Form_DragDrop (Source As Control, X As Single, Y As Single)

If MoveWhat = 1 Then
Move operation object
Opr1(Oprindex%).Move X, Y
Call DrawLine
Call DrawLines

Elseif MoveWhat = 2 Then
Move process object
Process](Processlndex%).Move X, Y
Call DrawLine
Call DrawLines

Elseif MoveWhat = 3 then

Figure 3-8: Subroutine for “move” event for the operation object

50

Apart from the above three tasks the implementation required programming of other

procedures for file handling, error trapping and for translating the simulation models.

3.4.4 Description of the translation module
The function of the translation module is to translate the information provided in the

model definition module into a single simulation model. The information provided in the
project WBS, resource library, operation sequencing and process models is compiled by
this module. In the current form HSM utilizes SLAMSYSTEM (Pritsker, 1992) as the
general purpose simulation language. As such the translation is geared towards
development of a single simulation model using the SLAMSYSTEM modeling concepts.
The enhancements made to CYCLONE required use of a simulation enginc that would
support the new modeling elements. Keeping in mind the objective of this research it was
decided not to enhance the MicroCYCLONE code or develop a new simulation engine as
both are taxing approaches. This basically reduced the problem to selection of a general
purpose simulation language. Choice of SLAMSYSTEM was influenced by the author’s
experience with the language and its proven performance.
Figure 3-9 illustrates the working of the translation module. The translation algorithm
adopted for HSM is as follows:
¢ Compile the information from the WBS, operation sequencing and
process interdependency to link all the processes in the project.
e Utilize the information in the resource library to initialize the resources
in “resource blocks” (a SLAMSYSTEM node). Based on the
information provided for resource allocation formulate a priority list for

the common resources.

51

o Translate individual process models into equivalent SLAMSYSTEM

models. This task includes duplication of the modular processes.

N

Resource Operation Process
library sequencing models
v
L
v

Translation of

Linkage of
process models

process models

Resource ¥ A 4
T handler
SLAMSYSTEM
model for the project

Figure 3-9: Internal working of the translation module

Appendix B provides the implementation details of the translation module.

3.5 SAMPLE SESSION

The operation of HSM is centered around four major sessions which are:
o Work breakdown structuring.
¢ Resource management.
e Operation sequencing.
e Process modeling.
WBS session: This session provides all features for the development of the project
WBS. Figure 3-10 shows the WBS screen which consists of a “pull-down” menu bar and

a drawing area. A resource manager icon and project element are automatically generated

for each new project.

52

fw 1 Flle: 2 Edit:/:Modular Models '~ Operation Sequen Pool - Process Modei Window - Help .~ = -

BLDG

| Subsm_] |Supersm I inishing

L | l |
[ﬁwatel [Foundatnl éradeﬂean: @; ﬁieamsJ [Slnbs | [Misc]

Figure 3-10: Actual WBS screen

The WBS screen acts as the template upon which the user is allowed to add, delete or -

edit operation and process elements using the input forms shown in Figure 3-11 and

Figure 3-12.

53

Add/E dit Operation

Figure 3-12: Input form for process element

54

Resource_management: The resource manager acts as a tool that coordinates
initialization of resources and other issues related to their management. Figure 3-13
shows the resource manager screen. The user invokes this screen by clicking on the
resource manager icon on the WBS screen. HSM allows the user to add, edit and delete
resources for a project. Simple input forms are provided to solicit information fron the

user. One such screen in which the user adds a resource to the project is shown in Figure

List of resources defined for the project

R R Quantity Fixed Variable
Name 1D Cost $/ht Cost $/tw
CRANE 1 1 102 59
BACKHOE 2 1 50 25
LOADER 3 1 25 17
MIXER 4 5 15 10
TRUCK 5 10 45 40

Figure 3-13: Resource manager screen

55

Resource Pool

Figure 3-14: Input form for adding a resource

Operation sequencing: The operation sequencing session can be invoked by the user

after definition of the project WBS. This session allows the user to define links between
operations that exist in the project WBS. These links are graphically displayed in the
drawing area of the screen. The user is provided simple features that include adding,

editing and deleting links. Figure 3-15 shows an operation sequencing screen.

56

3;' O v
im | Operation List::Add Relstions - Edit Relations Windaw 5 Help - 0o e oo 3 g o o

T Jelele

Floor-1

Floor-2

Floot-4

Floor-6

Flooi-5

Figure 3-15: Operation sequencing screen

Process modeling: The process modeling session acts as a template upon which the

user is allowed to graphically develop the process models. In addition to the features
provided on the other screens this screen includes a tool bar on which the modeling
objects are displayed. For developing a process model the user can usc¢ the “drag-drop™
feature to paste any modeling object on the drawing area. Figure 3-16 shows the process
modeling screen with modeling objects pasted by the user on the drawing arca. Once the
modeling object is pasted on the drawing area the user is provided with an input form on
which the information for that modeling object (element) is provided. Figure 3-17 shows

the input screen for a COMBI element.

57

o N
o
3
=

Pre

¥ -OOOOOU

Figure 3-16: Process modeling screen

58

COMBI Object

Figure 3-17: Input form: for COMBI element

3.6 LIMITATIONS OF THE PROTOTYPE SYSTEM

The HSM prototype was developed to demonstrate the benefits of simulation based
planning and to test and validate the HSM modeling concepts. In the current form the
prototype has some limitations. The program utilizes a general purposc simulation system
as its simuiator and as such it does not provide a seamless interface between the four
modules. The program is not “intelligent” to detect mistakes in the simulation models that
the user develops and as such does not detect redundant information. In future versions of

the program it is suggested that an internal simulation engine should be developed. This

59

will make the program operations automated so that the user will only be required to

interact with the model definition module and the report generation module.

3.7 CONCLUDING REMARKS

This chapter demonstrated the use of object oriented concepts {0 enhance simulation
modeling by improving visual modeling and by allowing hierarchical and modular
constructs. The use of modeling objects that have both “graphic” and “simulation”
properties benefit simulation modeling in general and construction simulation in particular.
Object oriented simulation can be effectively applied in construction to reduce the
cognitive gap between the simulation models and the real world problems. This could lead
to increased popularity of simulation and simulation based tools in the construction

industry.

60

Chapter 4: Planning a Bridge Project using HSM

4.1 INTRODUCTION

The completed Peace River bridge project was used as a case study in this rescarch.
This chapter describes planning of the sub-stiucture of this project using HSM. The
objectives were:

1. To test and validate the HSM modcling concepts.

2. To demonstrate the feasibility of project level simulation.

3. To illustrate the potential benefits of suiulation-based plunning for
construction projects.

A general description of the bridge project and its pertinent construction details are
provided. A step by step description of the plan development and subscquent

experimentation with the developed simulation models is also discussed.

4.2 GENERAL DESCRIPTION OF THE PEACE RIVER BRIDGE

The bridge across the i*cace River 18 km northeast of Weberville in the province of
Alberta, was contracted by the Alberta Tranportation and Utilities (ATU), using the
following contracting methods:

1. Contract 1: The construction of the sub-structure of the bridge.

2. Contract 2: Off-site fabrication of the steel girders, delivery, ercction
and final positioning of the girders constituted the second contract.

3. Contract 3: Construction of the reinforced concrete deck, approaches

and other miscellancous work.

61

The construction of the bridge started in 1989 and was completed in 1991. Table 4-1

provides an approximate quantity estimate for the bridge (ATU, 1989).

Table 4-1: Quantity estimate for Peace River Bridge (ATU, 1989)
Item Unit Sub-structure | Super-structure

Compacted fill and grading west end | Lump - -
sum

Excavation and backfill east end Lump |- -
sum

Excavation - structurai Lump |-
sum

Backfill - compacted granular Lump |- -
sum

Steel H piling (HP 310 x 94)

- Set-up m 152 -

- Splice splice 256 -

- Drive pile 3,358 -
Pre-drill hole for H-piling -|Lump |- -
abutments sum
Concrete - Class A (Pier-1) m’ 792 -
Concrete - Class C (Abutments) m’ 751 -
Concrete - Class C (Pier shafts) m’ 5,888 -
Concrete - Class C (Deck) m’ - 2,740
Reinforcing Steel - Plain kg 700,509 159,955
Reinforcing Steel - Epoxy coated kg 22,066 340,137
Structural steel t - 4,376
Bridge rail m - 1,537
Miscellaneous iron Lump |- -

sum
Polymer waterproofing membrane m’ 311 8,166
Asphaltic Concrete Wearing Surface m’ 425 8,166

The bridge has seven spans, 5 spans of 112 m, 1 span of 82 m and 1 span of 92 m, with
a total length of 734 m. The bridge has a grade of 0.7% sloping down from the west bank
towards the east bank of the river. Figure 4-1 shows a schematic representation of the
bridge.

The specifications for the contract provided two options for the construction of the
substructure. The first option involved for each pier a spread footing foundation while the
second option used concrete caissons fo. the pier foundations. The bridge was

constructed using the first option.

Dircction of Launching]]

— e
i~
1> Jus——
1L 11 11
T

2 & Uy ¥ Mot 1iM Wikets 1
¥ ¥ < 4 < i

m2ml 12m Vizm l12m lizm 18
<Y
|
|
{

\chn TQ'l

Span 3

(=]
a |

[s
« i o
-8 Q.
v [[

L}
0.7 % Grade
[Sy

West
ABUTMENT 2
PIER 6
PIER S
PIER 4

PIER3
PIER 2
PIER 1
East
ABUTMENT 1

Figure 4-1: Schematic representation of Peace River hridgéﬂ
Figure 4-2 shows a schematic representation of a typical bridge picr. The dimeimon of
the piers varies based on their location. Table 4-2 lists the approximate quantity cstimate

for a typical pier (ATU, 1989).

03

_Cap
Shaft
21.876 m S(tream flow
— == Diaphragm
May vary - Pedestal Blinding layer

from4.5t0o 85m |
3m Footing /

150 mm

|

24 m

]

Figure 4-2: Schematic representation of a typical pier

Table 4-2: Quantities for the typical bridge pier (ATU, 1989)
ITEM UNIT ESTIMATE
Class ‘S’ concrete blinding layer m’ 43
Class ‘A’ concrete footing m’ 90
Class ‘A’ concrete pedestal m’ 1,400
Class ‘A’ concrete shaft and cap m 1,098
Reinforcing steel (footing and | kg 97,667
pedestal)
Reinforcing stecl (shaft and cap) | kg 109,298

Pier-1 of the bridge was constructed on the east shore and constituted of the

installation of steel piles, blinding layer, pier footing, pier shaft and diaphragm, and pier

cap. Since Pier-1 was constructed on the shore hence no pedestal was required. All of
the remaining piers had pedestals of varying heights. The excavation process used a
hydraulic excavator. Upon completion of the excavation, steel piles were driven and the
blinding layer was placed. Footing formwork, rebar and concreting processes were then
performed sequentially. The pier shaft was constructed in two lifts and then the cap was
constructed.

Pier-2 was accessible from the west bank and as such did not require the construction
of a berm. Similarly Pier-6 was accessible from the east bank and did not require the
construction of a berm. The construction details for Pier-2 to 6 were exactly the same.
For Pier-3 a berm was created from the west bank whereas for Pier-5 and Picr-4 the berm
was constructed from the east bank.

Piers 2 to 6 are typical piers and were constructed by excavating in the river to the top
of the shale surface, placing the blinding layer, pouring the concrete footing, pedestal
(with varying height depending on the depth of the river), pier shaft and diaphragm, and
pier cap.

For the typical piers, a steel frame was utilized for constructing a cofferdam. The
construction of the cofferdam was started after the construction of the respective berm
was completed. The steel frame was floated in place, positioned and anchored. This was
followed by driving of spuds and steel sheet piles. During the cofferdam piling activity for
the cofferdam process continuous dewatering was essential. Upon completion of the

cofferdam, excavation was performed using a clamshell. This was followed by the

65

placement of the blinding layer, and the remaining operations as described for Pier-1. The
’ construction of Pier-2, 3, 4, 5 and 6 required casting of pedestals of varying heights.

The two abutments and wing walls were cast on steel piles. The bridge deck is
supported by four 4.545 m deep steel girders with diaphragms and lateral bracing. The
girders were shop-fabricated, shipped to the site and erected by launching from the west
bank. The bridge was launched using a launching nose and roller arrangement. The
launched height of the girders was 800 mm higher than the final elevation. The girders
were than jacked down to their final position. The reinforced concrete bridge deck had a

polymer waterproofing membrane and an asphalt concrete wearing surface.

4.3 SCOPING THE BRIDGE PROJECT
The prototype program was used in scoping the plan for the Peace River Bridge

Project. The focus of this research was on the first contract: the sub-structure part of the
project. The first step was to develop the project WBS. Various operations and
processes of the project were identified in a top-down fashion.

The graphical user interface of HSM greatly facilitated the development of the project

WBS. The WBS for the sub-structure part is shown in Figure 4-3.

66

ooty

L it

;*- ‘Eile > Edit - Modulsr Models - Qperation Sequencing - Resource Pool ~Process Model Window Help - 5

3

BRIDGE1

N

Hesouee Pool

Abut-1

Coting

Pier-1

Pier-2

:Coﬂctdam:

{ PM2

Pier-3

|
m laﬁevdanj { PM2 b E;]

Corms

l Pier-5 l

Abut:2

<P

chrm-S | l(gletdam: (PM2 I-

brm-5

I Berm-4 I

'E:oﬁerdam:

e}

Pler-6
PM2

Figure 4-3: WBS for substructure of the bridge project

In the development of the WBS, the modularity feature of HSM was extensively

utilized. At “level-17, construction of the two abutments and six picrs were identificd as

operations. In the substructure phase of the bridge construction, the abutments were built

to the lower level of the wing walls so as to allow launching of the girders. Therefore only

the installation of steel piles and bridge seats was completed during the substructure-phase

of the project. As such the Abutment-1 and Abutment-2 operations weic broken down

into the “piling” process. This is illustrated in the WBS by the piling processes attached to

the two abutment operations. The piling process is a modular process that is referenced

by both abutments (a modular process is denoted in Figure 4-3 by ellipse with two dots).

67

A generic piling process model was defined and was then used for Abutment-1 with 32
steel piles and for Abutment-2 with 30 steel piles. In order to simplify the WBS, two
modular operations were defined for the project. The construction details of Pier-1 were
defined in a modular operation “PM1” which is shown in Figure 4-4. This modular
operation had ‘“excavation”, “piling”, “blinding layer”, “footing”, “shaft” and “cap”
operations were defined as level-1 operations. Corresponding processes were defined for
the “excavation”, “piling”, “blinding layer”, “footing” and “cap” operations. The “shaft”

operation was further divided into “formwork”, “rebar” and “concreting” operations

which in turn had the corresponding processes attached to them.

HSM Ver 1.1 1993 - |[Modular Operation]
Edit:; Proceas Madel . Window: - Help

=

Shaft

L1

shaft-Form [Sh'l'cbarJ |Sh-Conc|

CriomD Qe Gran

%1 Modulsr Operetion

Excavatn BlindLy

>

blinding

Plling

Ceting

Figure 4-4: Modular operation for Pier-1

68

In the breakdown of the “Shaft” operation two options were available. Duc to the
height of the shaft it was necessary to construct it in two lifts, The first option available to
model this situation required definition of six processes namely: “formwork first-lift",
“rebar first-lift”, “concreting first-lift”, “formwork second-lift”, “rebar second-hft” and
“concreting second-lift”. In the second option the same situation could be modeled by
dividing the “Shaft” operation to another level of operations and then linking them in a
cyclic fashion. The author used the second option for this study. The “Shaft™ operation
was first divided into three operations namely: “Shaft-formwork”, “Shaft-rebar” and
“Shaft-concreting”. Then “formwork” process was attached to the “Shaft-formwork™
operation, “rebar” process was attached to the “Shaft-rebar” operation and “concreting”
process was attached to the “Shaft-concreting” operation. By using the cyclic link
between the “Shaft-formwork”, “Shaft-rebar” and “Shaft-concreting”™ operations the
construction of the shaft in two lifts was modeled.

As the same construction method was adopted for Piers 2, 3, 4, 5 and 6 a modular
operation called “PM2” was designed and was referenced by these piers. Figure 4-3
shows the “PM?2” modular operation which has its own WBS. The modular operation
“PM2” consists of level-1 operations that include “blinding-layer”, “footing”, “pedestal”,
“¢ »f” and “cap” operations. These operations were then divided into the respective
, rocesses. HSM, provides modularity at both the operation and process level. These
modular operations are internally stored in a “library” and can be used in the planning of

future projects. The shaft and pedestal of these piers were also constructed in two lifts.

69

This was again modeled by first introducing an extra level of operations that were then

combined by cyclic links.

BlindLay Pedestal ‘

| Cap

@ IFormPJ:dJ Rebwped, [concped]

| [HEI?JI_JT

G CTY R CEY

Figure 4-5: Modular eperation for Pier 2,3,4,5and 6

Resource Definition

Resources required for the project were identified in the second step. Table 4-3
provides a list of resources that were allocated to the project. The table provides the
quantity of each type of resource and the process numbers to which the resource is
allocated in a decreasing order of priority. The priority for various processes is internally
utilized by HSM during the simulation experiment in scheduling various work tasks that

require common resources.

70

Table 4-3: Resources allocated %o the bridge project

ID | Resource Quantity | Processes
1 Crane 40t 1 1.4
2 Diesel hammer 1 1.4.41,83,85.87
3 Piling crew 1 1.4.41,83,85.87
4 Excavator west 1 32
5 Truck west 5 3.19
6 Concrete pump west 1 6,10,14,18,23,27.31,35,29.43.47.51.55,5Y
7 Transit mixer west 2 5,9,13,17,22.26.30,34,38.42,40,50,54.58
8 Concrete crew west | 6.10,14,18.23.27,31,35,39,43.47,51,55.59
9 Footing form west 1 7.24,44
10 | Crane 20t west 1 7,11,15,24,28.32,36,44,48,52,56
11 Form crew west 1 7.11,15,24,28.32,36,44,48,52,56
12 | Crane 100t west | 8.12,16,25,29,33,37,40,45,49,53,57.82
13 | Rebar crew west 1 8,12,16,25.29,33,37,45,49,53.57
14 | Shaft form west 1 11,32,52 B
15 | Cap form west 1 15,36,56
16 | Dozer west 1 20
17 | Cofferdam steel cage 4 40,82,84,86
18 | Pedestal form west 1 28,48
19 | Truck east 5 78,80
20 | Concrete pump east 1 61,65,69,73,77,89,93,97,101,105,107,1 11,115,1 19,123
21 Transit mixer east 2 60,64,68,72,76,88,92,96,100,104,106,1 1.1 14,115,122
22 | Concrete crew east 1 61.65.69.73.77.89.93,.97,101,105,107,: 11,7 15,119,123
23 | Footing form east 1 62,90,108) -
24 | Crane 20t east 1 62,66,70,74,90,94,98,102,108,1 12,116,121
25 Form crew east 1 62,66,70,74,90,94,98,102,108,1 12,116,120
26 | Crane 100t east 1 63,67,71,75,84,86,91,99,103,109,113,1 17,121
27 | Rebar crew east] 63,67,71,75,91,95,99,103,109,113,117,121]
28 | Shaft form east 1 70,98,116]
29 | Cap form east 1 74,102,120
30 | Dozer east 1 79,81
r31 Pedestal form east 1 66,94,112

The process numbers shown in i table are not provided by the uscr, these are

internally obtained by the program after the modeler has completed the resource

allocation. The list of processes defined for the Peace River bridge arc provided in Table

C-1in Appendix C.

71

In Table 4-3, the defined resources can be divided as follows:
1. The first group of resources are located on the cast bank of the river.
These resources are utilized in the construction of Abutment-2, Pier 4,
5,and 6.
2. The second group of resources are located on the west bank of the
river. These resources are utilized in the construction of Abutment-1,
Pier 1, 2 and 3.
3. The third group of resources are assumed to be mobile such tha. they
can perform work either on the east or the west bank.
The above division of resources was optional and was defined keeping in mind the

requirements of the construction site.

4.4 OPERATION SEQUENCING FOR ‘HE £RIDGE PROJECT

The next step in the plan devclopment involved 2 description of the implementation
strategy for the example project. Figure 4-6 iliustraics the procedure adopted in the

prototype for performing this function by showing the sequencing of level-1 operations.

{ae

l: Operation List-“Add:Relsttons . Edit Relations © Window -Halp -

1%
23Ky
e
Pies-1 o
Pier-2 ‘.::
Pier-3
Pier-4
Pier-5
Pier-6
Abut-1
Abut-2

Figure 4-6: Operation sequencing using the prototype

The program allows the user to add links between the operations that are defined for
the project. Using this facility the operation sequencing at all levels of the example project
were defined. Figure 4-7, 4-8, 4-9 and 4-10 show the operation sequencing for level 1, 2,
and 3 respectively. In Figure 4-7 the operation sequencing at level-1 of the project is
shown. The operations are separated into two groups "ne being the piers cuastructed from
the west bank and the other being the piers constructed from e east bank. Or the west
bank work was started at Abutment-1 and Pier-3 simultaneously. This is represented by a
parallel link between these two operations. After the completion of Abuun.ut-1,
construction of Pier-1 was started which was then followed by Pier-2 and Abutment-2 in

parallel. Pier-1 operation is therefore serially linked 10 Pier-2 and Abutment-2 operations.

73

The construction on the east ban'" was started at Pier-5 which was followed by Pier-4 and

6. Therefore Picr-5 is serially linked to Pier-4 and Pier-6. The Abutment-2 operation

began after the completion of Pier-1 operation.

» Abutment-1 | -~ »_Pier-1 _ |:‘-:*1“"”[-f’ier-2]
—p| Abutment-2 |

i "l Pier-4 _I

Figure 4-7: Operation sequencing at level-1
Figure 4-8 shows the sequencing of level-2 for Pier-1. All level-2 operations in this
case are link2d in a serial fashion as skown. The construction on Pier-1 started with the

excavation operation and was completed when the concreting operation in the pier cap

was completed.

-)

[Excavation) |
' »{Piling_}
l"'.B_'indi_ng laxeﬂ
»{ Footing W
Ca

- -/

Figure 4-8: Operation sequencing for Pier-1 at level-2

74

Similarly Figure 4-9 shows the opcration sequencing for the tevel-2 operations for Piers
2,3, 4,5 and 6. There is a serial link between level-2 operations. The construction of
these piers was started by the blinding layer operation while the concreting of the cap
marks the completion of eusch pier. During the actual plan development, the modeler was

required to provide this sequencing individually for all five picrs.

Blinding layer

ooting /-

|,> Pedesggl__ |

. e

Figure 4-9: Operation sequencing for Piers 2,3,4,5 & 6 at level -2

Figure 4-10 shows the operation sequencing of the operations at level-3. Sequencing
at this level wa: provided for all the piers separately, only one figure is shown due to the
similarity in sequencing. The shaft and the pedestal vere both constructed in two vertical
lifts. This situation was modeled in HSM by using the cyclic link between the
“formwork”, “rebar” and “concrete” for the shaft operations with a cyclic counter of two.
The “formwork”, “rebar” and “concrete” operations are first linked serially to denote the
first lift and are cycled again to denote the work done during the second lifi. The same
sequencing was adopted for all the shafts and pedestals of the piers except Pier-1 which

does not have a pedestal.

75

®Fo . waft__] »_RebarShaft]~ ConcShaft |-——¥

N @ 1

» FormPedestal | - »{RebarPedestal |--»{_ConcPedestal —p

~ . _ _/

Level-3 (Sequencing using cycling ‘0 model two lifts)

Figure 4-10: Operation sequencing for Piers 2 to 6 at level-3

4.5 PROCESS MODELS FOR THE BRIDGE PROJECT

The next step in the plan development involved defining all of the process models
identified for the example project. This exercise was also performed using the prototype.
Presently the graphical user interface for the deveinpment of process models in the
prototype is a “middle of the road” tool. It provides a very simple interface with limited
on-screen display featui:s. All the process models were developed using the HSM
prototype. Due to the above mentioned limitation of the prototype actual screens are not
uscd here.

Process models were developed for all the processes that were identified in the project
WBS. Some of these process models were modular and were referenced by the
corresponding processes. Figures 4-11 through 4-18 show the typical process models
developed for the bridge project.

In Figure 4-11 the process model for the “berm” process is shown. Two resources are

required to perform this process which include a dozer and five trucks. The trucks are

76

allocated to the berm process at an Allocate Resource Node and are modeled to arrive at
the site every 15 minutes. The use of five trucks and 15 minute arrival rate was based on
the productivity factors the contractor had from previous similar projects. The trucks
dump their dirt load directly into the river and exit the site. Four truck loads are allowed

to accumulate before the dozer starts pushing the dirt and shaping the berm.

Allocate dozer w

Truck arrival CON 4

QB &

800 units of dirt | Ready Push dirt ’ ’QR>

l Free dozer

Allocate Trucks Free trucks

i
!
i
} .

Figure 4-11: Process model for the berm process
Figure 4-12 shows the process model for the excavation process for Pier-1. In this
process one excavator and ten dump trucks are utilized. Since the excavation process had
to be completed before work on Pier-1 could proceed further, the Allocate Resource
Nodes for both the trucks and excavator were arranged in such a manner that they are
released after the excavation was complete¢ This was achieved by placing the Allocate
Resource Node before two dummy COMBUI’s and placing the Free Resource Nodes after

the CONSOLIDATE function.

7

Free Trucks

Allocate 10) / . .
trucks "0 h Q ‘
/ ‘
Load :

Excavitc CONR Ready

bafce

VR — — »()CON 58

.) Dump & return '
464 units of dirt
AR <
Allocate ,/ 0 Excavator Free Excavator
excavator
L Dummy-2
_/

Figure 4-12: Process mod¢: “or the excavation process
Figure 4-13 shows the process model for the piling process. This is a modular process

that is referenced by Abutment-1, Abutment-2 and Pier-1.

e

Piling
Crew g

i Position Ready Drive Splice Drive

Free
Q O e
Piles (Allocate [

30,3290 Alocue
Free
Hammer
Allocate /772
Crane \ 3 _)

. el

Figure 4-13: Process medel for the piling process
In this process a crane, a diesel hammer and a piling crew are required. These
resources are allocated to the piling process using the Allocate Resource Node and are
freed after the completion of one cycle. The QUE node “Pile” shown in the figure is
updated for the three different locations where the piling process is performed. Therefore,

the modeler first references the piling process and then depending upon the iocation

78

(Abutment-1, Abutment-2 and Pier-1) initializes the appropriate number of sheet piles (30
piles for Abutment-1, 32 pilés for Abutment-2 and 90 piles for Pier-1).

Figure 4-14 shows the process model for the cofferdam process. This process is also a
modular process and is used by Pier 2, 3, 4 and 5. The work tasks in this process require
a steel frame, a crane and a diesel hammer along with a piling crew. These resources are

allocated by using three Allocate Resource Nodes.

e
Allocate Dummy-2
hammer & .Y 0
Float Position Ready crew 1
arnron l
Steel Frame | u l
?] Spud Piles "™ Hammer &

, | Tl piling idle
4 - (' ‘A
__ Crar:hll Q \Q ‘
idle] T
Allocate ~ Dummy-1 ‘ 100 Sheet | ! | : ZLrLLLr:vl:mnu.r
crane piles |
LT O
—prive (,()N o | ,('R)
Sheet piles
L o l}ru. cranc)

Figure 4-14: Process model tor the cofferdam process
The steel frame for the cofferdam is allocated o the process at the first Allocate
Resource Node. As the cofferdam process is pur. - =d ne she river, tie resources
required for the process are freed only after the process is cepw’ wode This scenasio i
modeled by placing two dummy COMBI nodes after the Alloune Hesourcee Node for the
crane and diesel hammer. These resources are released after uhe completion of the process

at the Free Resource Node that are placed after the CONSOLILATE function.

79

Figure 4-15 shows the process model for the “blinding layer” process. In this process
three resources are required. The coucrete is delivered to the site by transit mixer trucks
and is then placed using a concrete pump and concreting crew. The concrete cre' - and
concrete pump resources are again modeled as “slave” resources and are released only

after the completion of the specific concreting process at each pier.

8 ™\
Allocate

Congcrete crew Dummy-2 Yree Concrete
/ N crew

0 iConcrete Crew

! Ready Place concrete
|
Q=)= C}-::——-wé

A CON 5
5 units of
concrete < Free Concrete
Concrete pump

Allocate
Transit mixer

pump
()
0 Free Transit
mixer
Allocate Dummy-1
concrete pump
\ W,

Figure 4-15: Process model for the blinding layer process
Figure 4-16 shows the process model for the footing formwork process. This process

is a simple process in which the details of various work tasks are riot modeled.

80

Allocate Start Footing
footing formwork Rebar process
: exo

Free formwork

formwork crew

—— ' >Q9
Allocate
formwork crew -
,, ()

Free 20t
Allocate 20t crane

crane

Figure 4-16: Process model for the formwork process

This process model was developed based on the assumption that the modeler was not
directly responsible for the details of the formwork process. In this process modecl the
three resources namely: one set of formwork, one formwork crew and one cranc, are cach
allocated to the process for two days. These resources are assumed to be freed only after
the completion of the formwork process. Such a process model allows the modeler to
focus on the processes that are important without neglecting the cffect of the processes
that are not as important. Figure 4-17 shows the process model for the footing rebar
process. This is also a simple process model and uses the same philosophy- as the

formwork process.

81

e . : — w
Receive entity
from formwork process

; Start Footing
Concrete i rocess

50t rebar (¢

Allocate Free rebar
rebar crew crew
100t Crane C
Free 100t
L crane)

Figure 4-17: Process model for the rebar process
Figure 4-18 shows the process model for the concreting process for the pier footing.
This process model can only be started after the completion of the rebar process. This
situations is modeled by including a successor node that references the predecessor node in

the rebar process. The remaining details of the process are similar to the concreting in the

blinding layer.

- e e e e - - SN

Allocate
oncrele cre .2 roo Conerele
Allocate Concrete Tth/)ummy - Free Conerete
Sit mixe . g crew
Traml"t ixer 0 Conerete Crew
AR)€ , r@
. p i [: P
80 uaits of | i e
concrete | 3‘ I'r.cc footing
| Ready i Place concrete | formwork

lCON RO st Set

|

|

| < e

‘ 2. Concrete FR) Free Conerete
|
|
|

pump pump

()

Dummy-1 Free Transit
mixer

Receive entity
from rebar process

Allocate
concrete pump

Figure 4-18: Process model for the concreting process

This section outlined the various process models that were used in the example project.
The process models that are repeated and are similar to the ones explained here arc not
described. These models were duplicated in the background by the prototype when the

simulation was performed.

4.6 SIMULATION OF THE BRIDGE PROJECT

The information provided in Section 4.3, 4.4 and 4.5 constitutes the project level
simulation models for the sub-structure of the Peace River Bridge project. These models
were translated using the HSM prototype system. In its current form the prototype does

not provide a completely automated translation of the simulation models.

It is normal practice in simulation experimentation to use deterministic duration for the

initial experiment. This is commonly called the “pilot run™. The author performed the

83

pilot run for the bridge project using deterministic duration estimates for all the -k
tasks. A project completion time of 36.91 weeks based on a seven work day week and
one eight hour shift per day was obtained from this simulation run. The detailed resuits of
the pilot run are tabulated in Table C-2 in Appendix C. In this table the processes are
grouped by abutments and piers and the process start and finish times and durations are
provided. In order to validate the results obtained from the pilot run a CPM schedule for
the project was developed using Primavera Project Planner (Primavera, 1990). In this
schedule each process was treated as an activity and the construction logic similar to the
one defined by the operation sequencing was use: -~ "zct completion obtained from
this analysis was 36 weeks. The project cc i tme from the pilot run was
approximately the same as the project completion time obtained from the CPM analysis.
This validated the simulation models for the Peace River bridge project developed by the
author. In the simplest form HSM provides results that can be normally obtained by CPM
or PERT. However, HSM provides features that not only makes planning realistic but
also allows the modeler to perform simple tasks like optimal resource allocations, selection

ofan’ - mentation strategy and selection of construction methods.

b .alidation of the deferministic case the simulation models were embellished to
include stocnastic duration es..-w'2s. For the purpose of this experiment triangular
duration estimates were used and thirty simulation runs were performed. This experiment
resulted in a mean project completion time of 40.6 weeks with a standard deviation of

0.949. Table C-3 in Appendix C provides the summary of process times for this

experiment. This experiment is termed as the “base case™ experiment and the

experimentation explained in the following sections were based on this model.

4.7 EFFECT OF CHANGING THE RESOURCE ALLOCATIONS

In order to demonstrate some of the potential benefits o -~ ! a sensitivity study was
performed by varying the quantity of a selected resource. In this experiment the resource
“CRANE 100t WEST” was selected. To study the effect of changing the resource
allocations the following scenarios were developed:

1. Scenario-1: one “CRANE 100t WEST" was allocated to the project.
2. Scenario-2: two “CRANE 100t WEST” were allocated to the project.
3. Scenario-3: three “CRANE 100t WEST” were allocated to the project.

Using these allocations the simulation experiment was repeated while the other
information was the same as for the base case. It was assumed that the objective of this
study was to determine the effect of these allocations on the project completion time. The
experiment did ! include the study of the associated cost of thes allocations. The

summary of the results of this si:dy is provided in Table 4-4.

Table 4-4: Summary of the results for different resource allocations

Scenario | Resource Capacity | Project Duration | 95% confidence interval
1 1 42.1 weeks (41.98, 42.21)
2 2 40.6 weeks (40.26, 40.94)
3 3 40.5 weeks (40.18, 40.82)

The above results were obtained by simulating each scenario for 30 independent runs.

Using the sample standard deviation a 95% confidence interval was caleulated for the

85

three scenarios. On the basis of the confidence intervals it was inferred that the
experimentation was sensitive to the change in the number of resources allocated to the
project.

It can be seen from the results that by using two cranes on the project instead of one
the project completion time decreases by 3.6 %. Considering the cost of an extra crane
and the resulting savings the modeler can select an optimal resource allocation for the
project. The increase in capacity of the resource to 3 changes the project completion time
to 40.5 weeks. It can be observed that use of three cranes on the project does not
produce significant reduction in the project completion time. Based on the project
objectives such an experimentation can provide the modeler with useful insights for the
allocation of resources and their effect on the project. The detailed results of this

experiment are attached in Appendix C.

4.8 EFFECT OF CHANGING THE OPERATION SEQUENCING

On a construction project the implementation strategy adopted can result in different
project completion times and total cost. HSM provides the modeler with features that
allow experimentation with different implementation strategy. Such an cxperimentation is
performed by simply revising the operation sequencing. To study the cffect of operation
sequencing the following scenarios were used:

1. Scenario-4: this scenario is the same as the base case scenario.
2. Scenario-5: this scenario is similar to the base case scenario except that

it has a revised operation sequencing as shown in Figure 4-19.

86

As shown in Figure 4-19 the revised sequencing allowed the construction to start on
the two abutments and six piers simultancously. In essence all the processes compete for
the common resources. Such an experimentation is easily possible in HSM because it is
driven by simulation. Traditional tools like CPM would require substantial work for such
a comparison and would actually involve development of a new CPM diagram for the

revised implementation strategy. Table 4-5 summarizes the results from the two

scenarios.

—*{ Abutment-1]
[Pier-1]
P:;ali(llsel ___
—
—_Pier-6 |
-

N\ _/

Figure 4-19: Revised operation sequencing

87

Table 4-5: Summary of results for revised operation sequencing
(a) Project completion time statistics

Project Mean 95% Confidence | Minimum Value Maximum
Completion Value Interval Value
Time

Scenario-4 40.6 weeks | (40.26, 40.94) 38.8 weeks 42.4 weeks

Scenario-5 38.8 weeks | (38.47, 39.13) 37.3 weeks 40.7 weeks
(b)Utilization of key resources
Resource Average utilization for Average utilization for
scenario-4 scenario-5

Diesel Hammer 0.61 0.64
Pile Crew 0.61 0.64
Truck West 0.22 0.23
Formwork Crew West 0.26 0.28
Rebar Crew East 0.43 0.45
Pedestal Form East 0.30 0.31

It can be seen from the summary of results that by revising the operation sequencing
the mean project completion time is reduced to 38.8 weeks. This reduction in project
completion time is achieved by an increase in the average utilization of the key resources
as shown in Table 4-5(b). For example the average utilization of the diesel hammer

increased from 61 % to 64 % (3 % increase). The average utilization shown in the table is

a theoretical value that is based on the total project completion time.

4.9 SIGNIFICANT RESULTS

From the experimentation conducted for the Peace River bridge project, it was found

that:

1. The graphical user interface of HSM was satisfactory and greatly

improved the solicitation of the project information from the user.

88

2. The modeling framework of HSM was found to be adequate for
modeling a real construction project. The study demonstrated that
project level simulation is feasible.

3. The experimentation discussed in this chapter demonstrated some

potential benefits of a simulation-based project planning method.

4.10 CONCLUDING REMARKS

This chapter described the case study used in this research was provided. Various
experiments performed using HSM were explained. An explanation of the key modeling
concepts of HSM, a validation of these modeling concepts and some potential benefits of

using a simulation based system was provided.

89

Chapter 5: Final Discussion

5.1 SUMMARY OF THE RESEARCH

Traditional planning tools like CPM and PERT induce inherent deficiencies in the
project plan due to their underlying assumptions and limitations. They are founded on the
premise that planning a project requires identifying the tasks, assizning deterministic
durations to these tasks, linking them in a predecessor-successor relationship and
superficially superimposing resource allocation. On the contrary a construction project is
characterized by the random nature of the conditions under which it is implemented and by
the dynamic nature of the resource utilization. Therefore, to realistically plan construction
projects and produce accurate schedules it is essential to model these important aspects.
This research has culminated into the development of a simulation-based method for
planning of construction projecis that incorporates the above mentioned aspects into the
project plan. The method developed by the author is called Hierarchical Simulation
Modeling (HSM) method. It utilizes hierarchical and modular constructs in the
development of project level simulation models.

Under HSM methodology, a project is first divided into managcuablc components by
identifying the operations, processes and work tasks involved in it. All the resources are
then defined in a common resource library. The operations arc knked to cach other to
define project fmplcmentation strategy and process models are developed using

CYCLONE methodology. These steps have been automated in the prototype program

90

developed for HSM. HSM provides a rich graphical user interface that makes model
definition for the project simple and cfficient.

The method developed in this research 1. generic in nature and could be applied to the
simulation of and large and complex systcni. The method lends itself to different types of

“what-if”” experiments the modeler wishes to t-

5.2 RESEARCH CONTRIT TIONS

This research has res:ite o the followir mar contributions:

I. Development of « frame k for project level information
rej.resentation that will faci' . computer simulation analysis.

2. Simplification of simulation modeli- .arc :h graical user interface.

3. Development of a hybrid programming method that w . facilitatc
programming of any proposed simulation modeling framework.

4. Demonstration of the feasibility of project level simulation using HSM.

The method developed in this research has utilized the popular concepts of WBS and
process modeling to arrive at a simple and effective technique. The evolution of HSM has
resulted in enhancements to both these techniques.

Enhancements to the work breakdown structure has been achieved to better model the
project scope. Through the use of modularity this enhancement has greatly simplified the
task of planning.

Through enhancement to CYCLONE process modeling method an efficient and simple

environment for simulating all the processes on a project has been achieved. The

91

CYCLONE method has been enhanced to provide feaiures like multiple process
interaction and resource identification.

The research conducted in this work has also lead to the development of an effective
and structured method of modeling project information. The implementation of the
method has provided insight into the development of a simulation environment using

object oriented concepts and event driven programming.

5.3 CONCLUDING REMARKS

HSM provides an efficient and realistic approach to planning of construction projects.
The need of such a modeling method was demonstrated carlier by AbouRizk and Dozzi
(1993). AbouRizk and Dozzi stated that “for simulation modeling technique to be useful
at the project level the hierarchical development should be implemented as part of the
modeling methodology and the programming implementations.”

HSM uses hierarchical concepts to structure the project information in an cfficient
manner. It allows the modeler to break individual operations to different levels of detail,
hence providing increased modeling versatility. At the top level it provides a higher level
of abstraction and a complete plan without a great deal of detail. At the lowest level it
provides a high degree of modeling detail in the form of process models. This feature also
allows different personnel to attain appropriatc information from the same project plan.

Reusability and assembly of modular operations and processes is a feature that makes
HSM attractive for construction practitioners. A construction company can develop
modular models describing the general construction methods adopted and then reuse these

models on similar projects. These generic modular models could also be assembled with

92

each other to produce more complex and detailed models based con the requirements of
various projects.

HSM, unlike methods developed by Dabbas (1981) and Odeh et. al. (1993), does not
horrow any concepts from traditional planning tools like CPM. It is a system that is
driven by simulation. This allows it to inherit many of the benefits attainable through
simulation, including dynamic portrayal of the project plan, utilization of stochastic
durations, incorporation of external factors like weather and equipment breakdown. It
also allows the modeler to perform sensitivity studies involving resource usage. In HSM
the modeler depicts the implementation strategy for the project in the form of operation
sequencing. The operation sequencing feature in HSM allows the moaeler to experiment
with various implementation strategies by altering the sequencing in a very simple fashion.

Another major enhancement afforded by HSM is the availability of cyclic links between
one or more operations. This feature makes HSM versatile and applicable on a wide
range of construction projects. For a linear project, like a pipeline project, the modeler
can identify the basic operation required in performing the work for a unit length and then
cycle these operations using the cyclic link.

As illustrated in the discussion on the example project, HSM allows the modeler to
experiment with the project plan move readily as compared to the existing tools. To
model external factors like weather, learning effect or effects of management decisions,

the modeler would be required to run different scenarios and come up with the optimum

solution.

93

Through the development of HSM the author has demonstrated that a realistic solution
to the project planning problem may be attained by the use of simulation and that the
current process modeling orientation of construction simulation needs to be enhanced to
perform this task. The author envisions that the proposed method will prove to be an
efficient tool for project planning. The key factors for this efficiency are as follows:

1. the method allows demarcation of the project information into logical
and manageable packages

2. the method is driven by the dynamic allocation and utilization of
resources

3. the method allows advanced facilities not afforded by traditional tools
like CPM and PERT. For example HSM unlike the traditional tools

allows cycling of operations and reusable modular model components.

5.4 RECOMMENDATIONS
The development of the HSM modeling concepts and HSM prototype was directed

towards demonstration of the feasibility of a simulation based planning tool for
construction. In the current form HSM has the following limitations:

1. HSM currently does not utilize calendar day scheduling. In order to overcome
this limitation calendar day scheduling algorithms available in literature can be
utilized.

2. The concept of work shifts is not included in the current version of HSM. This
limitation can be overcome by the use of a GATE (SLAMSYSTEM, 1990)

node.

94

3. Currently HSM assumes that all the resources that are initialized in the
resource library at the start of the project are retained at the site till the
completion of the project. It is therefore cssential to include a release
mechanism that will allow the modeler to release a resource from the project
before the project completion.

4. The raajor limitation of HSM is that it does not include an internal simulation
module. Use of SLAMSYSTEM as the simulation engine reduces the
seamless operation of the prototype tool. In order to achieve efficient results it
is essential to develop an internal simulation module that is geared towards the
HSM modeling concepts.

5. HSM prototype is not “intelligent” to trap modeling errors that are induced by
the modeler in a project plan. The object oriented concepts described in this
work can be enhanced to produce a tool that can guide the modeler in the plan
development. In the future it would be rossible to include “intelligent”
features in the internal structure of the modeling elements. For example, the
process modeling elements in HSM could have a feature that detects the type
of follower defined for that element. Using this feature it would be very simple
to check the precedence rules defined for process modeling.

6. The reporting module of HSM does not produce reports that are commonly
utilized in the industry. Currently the modeler is required to infer this
information from the output produced by SLAMSYSTEM. An advanced
reporting module compatible with the internal simulation engine of HSM will

climinate this limitation.

95

Bibliography

AbouRizk S. M. and Dozzi S.P. (1993). “Applications of Simulation in Resolving
Construction Disputes” Journal of Construction Engincering and Management,
ASCE, 119(2), 355-373.

AbouRizk, S. M. (1993). Teckaical discussion on: “Modeling Operational Activities in
Object-oriented Simulation”, by A. A. Oloufa. Journal of Computing in Civil
Engineering, ASCE, in press.

AbouRizk S. and Sawhney A. (1994) “An information modeling methodology for
simulation based project planning”, Annual Conference of the Canadian Society of
Civil Engineering, C.S.C.E., Winnipeg, Manitoba, June 1994, (in press).

Ahuja, N.H., and Nandakumar, V., (1985). “Simulation model to forecast project

completion time.” Journal of Construction Engincering and Management, ASCE,
111(4), 325-342.

Ang, A H.S., Abdelnom, J. and Chaker, A.A. (1975) “Analysis of Activity Networks
under Uncertainty”, Journal of Engineering Mechanics Division, ASCE Vol. 101,
No. EM4, pp 373-387.

ATU (1989). “Alberta Transportation and Utilities (Bridge Engineering Branch) - Peace
River bridge plans and specifications”, Edmonton, Alberta.

Carr R.1. (1979), “Simulation of construction project duration™, Journal of Construction
Engineering and Management, American Society of Civil Enginecrs, Vol. 105 No.
CO2,pp 117- 128

Chang, D. Y. and Carr, R. L. (1987). “RESQUE: A Resource Oricnted Simulation
System for Multiple Resource Constrained Processes” Proceedings of the PMI
Seminar/Symposium, Milwaukee, Wisconsin, 4-19.

Cox B.J. (1987) “Object-oriented Programming - An Evolutionary Approach”, Sccond
Edition, Addison-Wesley Publishing Company, MA.

Crandall K.C. (1976), “Probabilistic time scheduling”, Journal of Construction Division,
American Society of Civil Engineers, Vol. 102 No. CO3, pp 415- 423.

Crandall, K.C., (1977). “Analysis of schedule simulations.” Journal of Construction
Engineering and Management, ASCE, 103(C03), 387-394.

Dabbas M. (1981) “Computerized Decision making in Construction”, Ph.D. thesis
presented to the Georgia Institute of Technology, Atlanta, Georgia, in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.

Dabbas M. and Halpin D. W. (1982). “Integrated Project and Process Management”
Journal of the Construction Division, ASCE Vol. 109 No. CO1:361-373.

96

Douglass, D.E., (1978). “PERT and simulation.” Winter Simulation Conference
proceedings, IEEE, vol. 1, pp 88-98.

Eardley, V.T., and Murphee, Jr., ELL. (1969) “Production of multi-level critical path
networks.” Construction series, No.13. Urbana: Department of Civil Engineering,
University of Illinois, August, 1969.

Elmore R.L. and Sullivan D.C. (1976) “Project control through work packaging
concepts”, Transactions of the American Association of Cost Engineers. 20th
Annual Mecting, Boston, Massachusetts, July 18-21, 1976, pp 50-56.

Halpin D., AbouRizk S., and Hijazi A. (1989). Sensitivity Analysis of Construction
Opcrations. Proceedings of the 7th National Conference on Microcomputers in Civil
Engineering, Orlando Florida. 181-185

Halpin D.W., Escalano A.L. and Szmurlo P.M. (1987) “Work packaging for project
control”, Source Document, The Construction Industry Institute, The University of
Texas at Austin, Austin, Texas.

Halpin, D. W. (1973). “An Investigation of the Use of Simulation Networks for
Modeling Construction Operations” Ph.D. thesis presented to the University of
Illinois, at Urbana-Champaign, Illinois, in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

Halpin, D. W. (1976). “CONSTRUCTO-An Interactive Gaming Environment” Journal
of the Construction Division, ASCE, 102 No. CO1:145-156.

Halpin, D. W. (1977). “CYCLONE: Method for Modeling of Job Site Processes”
Journal of the Construction Division, ASCE, 103(3):489-499

Halpin, D. W. (1990). “MicroCYCLONE User's Manual” Division of Construction
Engineering and Management, Purdue University. West Lafayette, Indiana.

Halpin, D. W. and Riggs L.S. (1992) “Planning and Analysis of Construction
Operations” Wiley Interscience. New York, N.Y.

Halpin, D. W. and Woodhead, R (1976) “Planning and Analysis of Construction
Operations” Wiley Interscience. New York, N.Y.

Heathington, K.W., and Chatterley, J.L. (1971) “Computer simulation in design and
construction.” Professional Engineer, April 1971.

Johnston, R.E. (1980) “Discrete Event Simulation as a Management Tool for Planning
and Scheduling of Overhauls of U.S. Navy Ships”, unpublished master's project,
Purdue University.

Kim, T.G. and Zeigler B.P. (1987) “The DEVS Formalism: Hierarchical, Modular
Systems Specification in an Object-Oriented Framework. In Proceedings of 1987
Winter Simulation Conference.

Knapp K.E. (1987) “The Smalltalk Simulation Environment, Part II”’, Proceedings of the
1987 Winter Simulation Conference, 146- 151.

97

Kostetsky, O. (1986). “A simulation approach for managing engincering projects.”
Proceedings 1986 Internaticnal Conference on Robotics and Automation, TEEL,
318-324.

Law, A.M. and Kelton W.D. (1991) “Simulation Modeling and Analysis™, McGraw-Hill,
NewYork.

Lee, S.M., Moeller G.L. and Digman, L.A., (1982) “Network Analysis for Managenent
Decisions: A Stochastic Approach™, Kluwer- Nijhoft Publishing, Boston, MA.

Liang,Y. Liu, and loannou, P.G. (1992) “Graphical object-oriented discrete-event
simulation system.” Proceedings of the 1992 Wirer Simulation Conference 1285-
1291.

Liu L.Y., and TIoannou P.G., (1992). “Graphical Object-Oricnted Simulation System for
Construction Process Modeling” Proceedings of the Eighth Conference on
Computing i Civii Engineering, ASCE, Dallas, Texas. 1139-1146.

Lluch J. F., and Halpin D.W. (1981). Analysis of Construction Operations Using
Microcomputers. Journal of the Construction Division, ASCE Vol. 108 No.
CO1:129-145.

Luna, J. (1990). “Object-Oriented Multi-Simulation Environment.” In Proceedings of the
1990 Winter Siinulation Conference.

Luna, J. (1991). Object Framework for Application of Multiple Analysis Methods.
Object-Oriented Simulation 1991, Simulation Series Volume 23, Number 3, 81-86.

Luna, J. (1992) “Hierarchical, modular concepts applied to an objcct-oricnted simulation
model development environment.” Proceedings of the 1992 Winter Simulation
Conference 694-696.

Lutz J.D., (1990). Planning of Linear Construction Using Simulation and Linc of
Balance. Ph.D. Dissertation, School of Civil Engincering, Purdue University, W.
Lafayette, IN.

MacCrimmon, K.R. and Ryavec, C.A. (1964) “An Analytical Study of the PERT
Assumptions”, Operations Research, Vol. 12, pp 16-38.

McKenney, J.L. (1967) “A clinical study of the use of simulation model.” The Journal of
Industrial Engineering. Vol.XVIII, No 1, Jan 1967.

Microsoft (1993c). Microsoft Access - Programmer’s Guide. Version 2.0, Microsoft
Corporation, Redmond, WA.

Microsoft (1993a). Microsoft Visual Basic - Programmer’s Guide. Version 3.0,
Microsoft Corporation, Redmond, WA.

Microsoft (1993b). Microsoft Visual C++ - User's Guide. Version 1.0, Microsoft
Corporation, Redmond, WA.

Moder, J., Phillips, C.R. and Davis E.-W. (1970) “Project Management with CPM, PERT
and Precedence Diagramming, Third edition, Van Nostrand Reinhold, New York.

98

Murphy R.H., (1981) “Developing work packages for project control”, Proceedings of
Specialty Conference on Effective Management of Engineering Design, ASCE,
Engincering Management Division, ASCE publications, New York, N.Y.

Odch A.M., Tommelein 1.D., and Carr R. I. (1992). “Knowledge-Based Simulation of
Construction Plans” Proceedings of the Eighth Conference on Computing in Civil
Engineering, ASCE, Dallas, Texas. 1042-1049.

Oloufa A.A. (1993) “Modeling Operational Activities in Object-oriented Simulation”,
Journal of Computing in Civil Engineering., ASCE, Vol. 7 No 1, pp 94-106.

Papageorgiou, J.C. (1985) “An Application of GERT to Air Force Development
Planning” Project Management: Methods and Studies, ed. by

Paulson, Boyd C., Jr. (1987). Interactive Graphics for Simulating Construction
Operations. Journal of the Construction Division, ASCE, 104(1):69-76.

Pidd, M. (1992) “Object oriented & three phase simulation.” Proceedings of the 1992
Winter Simulation Conference 689-693.

Primavera (1990). Primavera Project Planner - Reference Version 5.0, Primavera
Systems Inc., BalaCynwyd, PA.

Pritsker A.A.B., Sigal, C.E. and Hammesfahr R.D.J. (1989) “ SLAM II - Network
Models for Decision Support”, Prentice-Hall, Inc., NJ.

Pritsker, A. A. B. (1985), Introduction to Simulation and SLAM-II. John Wiley and
Sons, Inc., New York, N.Y.

Pritsker, A.A.B. (1979), “Modeling and Analysis using Q-GERT Networks” Second
edition, Wiley and Pritsker Associates, New York and West Lafayette, IN.

Pritsker, A.A.B. (1986), “Introduction to simulation and SLAM II” Second edition,
Wiley and Pritsker Associates, New York and West Lafayette, IN.

Riggs, L.S. (1980). Simulation of Construction Operations. Joumal of the Construction
Division, ASCE Vol. 106 No. CO1:145-163.

Riggs, L.S. (1989). “Risk Management in CPM Network”, Microcomputers in Civil
Engineering, Elsevier Applied Science, Vol. 3, No 3 pp 229-235.

Roberts, S.D. and Heim J. (1988) “A Perspective on Object-oriented Simulation”,
Proceedings cf the 1988 Winter Simulation Conference 277-281.

Rothenberg J. (1986) “Object-oriented Simulation: Where do we go from here?”,
Proceedings of the 1986 Winter Simulation Conference.

Sanderson D.P., Sharma R., Rozin R. and S. Treu, (1991), “The hierarchical Simulation
Language HSL: A versatile Tool for Process-Oriented Simulation”, ACM
Transactions on Modeling and Computer Simulation, 113-153.

Teicholz, P. (1963). A Simulation Approach to the selection of Construction
Equipment. Technical Report No. 26, The Construction Institute, Stanford

University.

99

Touran, A. (1981). Construction Operations Data Acquisition and Processing Via Time-
Lapse Photography Interfaced to a Microcomputer. Ph.D. Dissertation, School of
Civil Engineering, Stanford University, Stanford Ca.

Ulgen, O.M., Thomasma, and Y. Mao, (1989), “Object-Oriented Toolkits for Simulation
Program Generators.,” Proceedings of the 1989 Winter Simulation Conference.

van Slyke, R.M. (1963) “Monte Carlo Methods and the PERT problem”, Operations
Research, Vol. 11, pp. 839-860.

Woolwry J.C. and Crandall K.C. (1983), “Stochastic network model for planning
scheduling”, Journal of Construction Engine.ring and Management, American
Society of Civil Engineers, Vol. 109, No. 3 pp 342 - 354.

Wortman, D.B. and Sigal C.E. (1978) “Project Planning and Control using GERT",
Pritsker and Associates, West Lafayette, IN.

Yancey, D.P. and Musselman K.J. (1980), “Critical Stutistics in General Project Planning
Networks”, Pritsker and Associates, West Lafayette, IN.

Zeigler, B.P.(1984) “Multifacetted Modeling and Discrete Event Simulation.” Academic
Press Inc., Orlando, Fl.

Zeigler, B.P.(1986) “Hierarchical Modular Modeling/Knowledge Representation™,
Proceedings of the 1986 Winter Simulation Conference, 129-137.

Zeigler, B.P. (1987). “Hierarchical, Modular Discrete-Event Modeling in an Object-
Oriented Environment”, Simulation, November 1987, 219-230.

100

Appendix A: Implementation details of HSM prototype

INTRODUCTION
HSM prototype provides a graphical user interface for solicitation of project

information from the user. After the project information has been provided HSM
translates this information into a project level simulation model which is then simulated
using SLAMSYSTEM. The HSM modeling framework was described in Chapter 2 and
the description of the HSM prototype was provided in Chapter 3. In this appendix details
of the computer implementation of HSM prototype are provided. In the first section a
description of the development of the modeling elements as C++ objects is provided. The
second section is devoted to the description of the use of these modeling elements in
Visual Basic for the development of the graphical user interface. Third section provides

the data structure utilized in HSM prototype for storage of the project information.

C++ IMPLEMENTATION OF HSM MODELING ELEMENTS
HSM prototype utilizes eleven modeling elements that are shown in Table A-1. The

table lists the modeling elements along with their graphical representation and name of the
“custom control” files. Custom controls are special types of C++ classes that can be used
to extend the Visual Basic programming environment. A custom control file is similar to a
Windows dynamic link library that is designed to interact with Visual Basic. Though it is
possibie to include more than one custom control in a *.vbx file (**” is a wildcard
character that is a place holder for a user given name), the author has developed individual
VBX files for each modeling element for simplicity. These *.vbx files are required during

design of the program as well as at run time.

101

Table A-1: Custom control files for HSM modeling elements

Element Graphical Custom Control File
SJormat

OPERATION opr.vbx
PROCESS mypro.vbx
ALLOCATE arn.vbx
RESOURCE
FREE frn.vbx
RESOURCE '
PREDECESSOR

pred.vbx
SUCCESSOR

sucd.vbx
NORMAL norm.vbx
COMBI L/ comb.vbx
QUE Q que.vbx
FUNCTION Q consd.vbx
COUNTER (5 count.vbx

102

The program code to be written for a custom control takes care of the following issues:
1. appearance of the control on the screen.
2. propertics of the control including graphical properties or any special
properties.
3. events and methods associated with the custom control.
4. behavior of the control within the Visual Basic environment both
during design time and run time.

For HSM the eleven modeling objects described in Table A-1 were programmed in
Visual C++. The program code for each modeling element has been broken down into
separate files. These files are then compiled and linked together to develop the *.vbx files
for each control. Table A-2 lists the files that are associated with each control and

provides a description of each file.

103

Table A-2: Custom control source code files

Name of the file Description

<name>.c This file contains all control procedures for initialization and
messaging of the control.

<name>.h This file contains model, property and event declarations for the
control.

<name>.def This is a module definition file for the custom control.

<name>.rc This file identifies the bitmap files used for the control and
assigns ID numbers.

<name>cu.bmp Icon to display the control in an unselccted position for VGA
monitors.

<name>cd.bmp Icon to display the control when it is sclected by the user for
VGA monitors.

<name>mu.bmp Icon to display the control in an unselccted position for
monochrome monitors.

<name>eu.bmp Icon to display the control in an unselected position for EGA
monitors.

makefile Required by the C++ environment for compilation and linking of

the above files.

PROGRAMMING THE GRAPHICAL USER INTERFACE
The graphical user interface of HSM prototype has been developed in Visual Basic. In

the development process Visual Dasic was extended by importing the modeling clements
developed in Visual C++.

Visual Basic is a programming environment for the Microsoft Windows and OS/2
Presentation Manager systems. The Visual Basic language uses the simplified syntax of
BASICA and GW-BASIC, and supports nearly all of their capabilitics. Programming in

Visual Basic is centered around the objects called VB Objects which include:

104

Forms: These are windows that act as templates for the entire program as well as
other VB objects. Forms have a sct of pre defined properties, events and methods. A
program developer can use these to customize the graphical user interface.

Figure A-1 illustrates a typical form object in Visual Basic program.

Figure A-1: Visual Basic Form Object
Control Objects: These are the graphical objects which can be drawn on a form

object to produce the graphical user interface.

105

Figure A-2: Control Objects in Visual Basic
Figure A-2 illustrates the various control objects that arc available to a program
developer in the Professional edition of Visual Basic. For each type of object, Visual
Basic pre-defines a set of events that can be used to respond to by writing code. It is casy
to respond to events since form objects and control objects have the built-in ability to
recognize user actions and invoke the code associated with them.

Figure A-3 shows the pre-defined events that the form object can recognize.

106

Form1.frm

Dblecl' [Form 14} Ptoc:

Sub Form_Load () E

LostFocus
MouseDown
End Sub MouseMove
MouseUp
Paint
QueryUnload
Resize

Figure A-3: Events associated with the Form Object

Similarly a control object in Visual Basic e.g. a textbox has a set of pre-defined
properties which the program developer can use to create a graphical user interface.

Figure A-4 illustrates some of these pre-defined properties.

107

ITexn TextBox Lﬂ
X4 3
ForeColor &H80000008% ki
Height 360
IHelpContaxtiD 0
HideSelecton True
e .
L'eftm“"“ o :1890
|linkitem
inkMode '0-None
TRme ‘_"e""?il'l w0
Maergh 0
MousePointer 0 - Default
MvuitiLihe False
Name _ Textl
PasswordChar ' ‘
SbrollBars_ 0-None :
Tal_'avlrridex .'U :]
lrabsiop " ETrue
|
1Top 600 R
R ————

Figure A-4: Properties associated with a Control Object
In the development of HSM the above shown control objects were extensively utilized.
But the key feature of the implementation was the use of imported custom controls
specifically designed for the graphical user interface of HSM. Figure A-5 shows the tool

bar of Visual Basic after the HSM modeling elements were imported into Visual Basic.

108

Figure A-5: Visual Basic toolbar with HSM modeling elements
The graphical user interface of HSM can be divided into four main sessions that are as
follows:
1. Work breakdown structuring.
2. Resource management.
3. Operation sequencing.
4. Process modeling.

The structure of the Visual Basic program developed is as such centered around these
sessions. The design of the program is such that there is a main template that is associated
for each of the sessions. The user performs all the functions related to the particular

session upon this template. The templates are supported by forms that are basically input

109

forms. This programming style has modularized the HSM prototype such that the user
finds a natural flow of the various functions that are required to be performed during an
HSM session.

To illustrate this style of programming, the programming required for the first session
is used. A Visual Basic form named “ProjForm™ acts as the template for the work
breakdown structuring. This template provides the user with a pull down menu and
drawing area upon which the operations and processes for the project can be defined. The
Visual Basic code pertaining to this part of the HSM program is as such attached to this
form. The “ProjForm™ which is a template for the work breakdown structuring is
supported by other forms and procedures. For example to solicit the information
regarding an operation the “OprEdit” form is used. Subroutines specifically designed for
the operation definition are attached to the “OprEdit” form and arc used to work in
conjunction with the “ProjForm”. Similarly the form “ProcessForm™ and its Visual Basic
code is utilized to handle the definition of processes in the project WBS. This part of the
code is attached in the attachment titled “Visual Basic code for the work breakdown
structuring” at the end of this appendix. The remaining sessions are also programmed
using a similar philosophy.

DATA STRUCTURE FOR STORAGE OF PROJECT INFORMATION

HSM allows the user to store a project plan for future use. In order to allow this, it

was essential to design a data storage scheme for the project information. HSM prototype

currently stores all the project information in a database that has been developed using

110

Microsoft Access (Microsoft, 1993c). The information stored in the project database is
utilized for the following two tasks:

e to perform the translation and simulation of the project.

e to allow the user to open an existing project plan for latter use.

A blank file containing the empty structure of the project database is stored in the HSM
dircctory. When a new project is started a copy of the blank database is provided for the
project. The project information provided by the user during a session of HSM is
automatically stored in this database. The database contains fifteen tables that store
information pertaining to different aspects of the project plan. Table A-3 lists these tables
and provides a brief description of the information stored in each table. A detailed
description of the individual tables is provided in attachment titled “Structure of the
project database”.

Apart from the project database, HSM utilizes two other databases. The first database
is utilized to store the information pertaining to “modular operations”. The second
database is utilized to store the information pertaining to “modular processes”. Both these
databases are stored in separate files that are saved in the same directory as the HSM
executable files. Since both these databases store information that is similar to the project
information, the structure is as such similar. The modular operation database contains the
tables that store information pertaining to the operations and process while the modular
process database contains tables that sture the information pertaining to the processes.

Table A-4 lists the tables that exist in the two databases.

111

Table A-3: List of the tables in the project database

Name of the table

Description

Allocate’Table

This table stores information pertaining to
resource allocations made at the process
level.

AmFmTable

This table stores information pertaining to
resource utilization at the process level. 1t
stores details of the “allocate™ and “free”
nodes.

ConnectionTable

This table stores the information pertaining
to the connections between nodes in a
various process models.

CrewTable

This table stores information pertaining to
crew cembinations.

FinalRelation

This table stores the information derived
after the translation of the project. 1t
coriains operation and process relations at
the fowest level.

FinishTable

This table stores information regarding the
finish of each operation in the project WBS.

FollowTable

This table stores information regarding the
predecessor and successor nodes in various
process models.

NodeTable

This table stores information related to
various nodes in process models.

OprTable

This iable stores the information pertaining
to the operations in the project WBS.

Position

This table stores information pertaining to
the graphical location of the operations on
the WBS screen.

Position1

This table stores information pertaining to
the graphical location of the processes on
the WBS screen.

ProTable

This table stores information pertaining to
the process in the WBS.

RelationTable

This table stores information pertaining to
the operation sequencing.

ResourceTable

This table stores the information pertaining
to the resources initialized for the project.

StartTable

This table stores the information derived
from translation of the projcct regarding the
start of various operations and processes at
the lowest level.

112

Table A-4: Modular operation and modular process database

Modular operation database

Modular process database

OprTable ProTable
Position NodeTable
Position| ConnectionTable
ProTable

NodeTable

ConnectionTable

113

Visual Basic code for the work breakdown structuring

114

Source code in the file projform.frm pertaining to the work
breakdown structuring

Dim AddProcess%, AddPro%
Dim DeleteProcess As Integer
Dim DeleteOperation As Integers
Dim xoff As Integer

Dim yoff As Integer

Dim oldxop(100)

Dim oldyop(100)

Dim oldxpr(100)

Dim oldypr(100)

Dim ModOprProcessindex(56)

Sub ConnectOpr ()

3 3 s e e 3 ke ok e ke ok s b ok ol e ke ol e e e o s o e o o e o o e e e oe e e ke ok ke ke ke oke ok

‘Subroutine to connect operations
ok sk ok ke e ok o sk sk 3 e e o o ke e S s ke ok s e ok 3k s ok o ok e e s sk ke e ok e 3k sk ke e ke Sk e %k
If AddOpr% = 1 Then
MyLine.AddNew
ChildX = Opr1(NOpr%).Left
ChildY = Oprl(NOpr%).Top
MyLire("x1") = ChildX
MyLine("y1") = ChildY
MyLine("Child") = Opr1(NOpr%).Oprld
MyLine("ChildType") = 2
Parentindex = OprEdit.Combol.ListIndex
If Parentindex = 0 Then
ParentX =330
ParentY = 38
MyLine("x2") = ParentX
MyLine("y2") = ParentY
MyLine("Parent”) = 0

Else
MyOpr.Index = "OprldIx"
MyOpr.Seek "=", ParentOperation(OprEdit.Combol.ListIndex)
CodeOfParent = MyOpr("Code")
MyLine("x2") = MyOpr("0X")
MyLine("y2") = MyOpr("OY")
MyLine("Parent") = ParentOperation(OprEdit!Combol.ListIndex)
End If
End If
MyLine.Update
Call drawlines
End Sub

Sub ConnectProcess ()

115

#3k 3k ok 3k ok 3k ok ofe 3k 3 2 2k A ok e ok ke de sk 2k sk Sk ok S o ok ke ok ke e ko Sk ke ok sk ke ok 3k K K

‘Subroutine to connect Processes
#3k ok sfe ol - e 3k sfe ofe 3de 3k ok 3k 3k 3k 3k o ke dfe sk e sk sk s ok sk 3k ke ok dfe ke 3k ok ok e e ke ke e sk Sk sk dle ok
MyLinel.AddNew
ChildX = Process | (NProcess%).Left
ChildY = Process1(NProcess%).Top
MyLinel("x1") = ChildXe
MyLinel("y1") = ChildY
MyLinel("Child") = Process li NProcess%).Processld
ParentIndex = ProcessForm.Combol.ListIndex
MyTemp = ProcessParent{ParentIndex)
If ProcessForm.Combol.Listlncex = 0 Then
ParentX = 330
ParentY = 38
MyLinel("x2") = ParentX
MyLinel("y2") = ParentY
MyLinel("Parent") =0
Else
If MyOpr.RecordCount > 0 Then MyOpr.MoveFirst
MyOpr index = "OprldIx"
MyOpr.Seek "=", MyTemp
MyLinel("x2") = MyOpr("0X")
MyLinel("y2") = MyOpr("OY")
MyL.inel("Parent") = ProcessParent(ParentIndex)
End If
MyLinel.Update
Call drawlinesl
Call drawlines
End Sub

Sub CopyLibProcess ()
MyProcess.Index = "IdIx"
MyProcess.Seek "=", ProcessIndex
IReferTo = MyProcess("ProcessRefer")

If MyNaodes.RecordCount <> 0 Then
' delete if any existing nodes
If MyNodes.RecordCount > 0 Then MyNodes.MoveFirst
Do Until MyNodes.EOF
If MyNodes("Processld") = ProcessIndex Then
MyNodes.Delete
End If
If MyNodes.EOF Then Exit Do
MyNodes.MoveNext
Loop
End If

If MyCon.RecordCount <> 0 Then
' delete if any connections
MyCon.MoveFirst
Do Until MyCon.EOF
If MyCon("Processld") = ProcessIndex Then
MyCon.Delete
End If

116

If MyCon.EQF Then Exit Do
MyCon.MoveNext
Loop
End If

LibNodes.Index = "ProcessldIx"
If LibNodes.RecordCount > 0 Then If LibNodes.RecordCount > 0 Then LibNodes.MoveFirst
LibNodes.Seek "=", IReferTo
If Not LibNodes.NoMatch Then
If LibNodes.RecordCount > 0 Then If LibNodes.RecordCount > 0 Then
LibNodes.MoveFirst
Do Until LibNodes.EOF
If LibNodes("ProcessId") = IReferTo Then
TempNodeNum = LibNodes("Nodeld")
TempNodeType = LibNodes{"NodeType")
TempNodeDesc = LibNodes("NodeName")
TempNodeDur = LibNodes("Duration")
TempNodeX = LibNodes("NodeX")
TempNodeY = LibModes("NodeY")
TempNodeCon = LibNodes("ConGen")
TempNodeGen = LibNodes("GenQue")
TempNodelnit = LibNodes("InitQue")
MyNodes. AddNew
MyNodes("Processld") = ProcessIndex
MyNodes("Nodeld") = TempNodeNum
MyNodes("NodeType") = TempNodeType
MyNodes("NodeName") = TempNodeDesc
MyNodes("Duration") = TempNodeDur
MyNodes("NodeX") = TempNod.X
MyNodes("NodeY") = TempNodeY
MyNodes("ConGen") = TempNodeCon
MyNodes("GenQue") = TempNodeGen
MyNodes("InitQue") = TempNodelnit
MyNodes.Update
End If
If LibNodes.EOF Then Exit Do
LibNodes.MoveNext
Loop
End If

If LibCon.RecordCount > 0 Then
LibCon.Index = "ProcessIdIx"
If LibCon.RecordCount > 0 Then LibCon.MoveFirst
LibCon.Seek "=", IReferTo
If Not LibCon.NoMatch Then
Do Until LibCon.EOF
If LibCon("Processld") = IReferTo Then
TempConnectNum = LibCon("Connectionld™)
TempPredNode = LibCon("Predecessor™)
TempSucNode = LibCon("Successor")
TempConType = LibCon("ConnectionType")
MyCon.AddNew
MyCon("Connectionld") = LibCon("Connectionld")
MyCon("Processld") = ProcessIndex

117

MyCon("Predecessor”) = TempPredNode
MyCon("Successor”) = TempSucNode
MyCon("ConnectionType") = TempConType
MyCon.Update
End If
If LibCon.EOF Then Exit Do
LibCon.MoveNext
Loop
End If
End If
End Sub

Sub DefMod_Click ()
ModularOperation = 1
NewForm.Show

Eud Sub

Sub DeleteProcess|1 ()
' if the user wants to delete the process
' delete process
If MyProcess.RecordCount > 0 Then If MyProcess.RecordCount > () Then
MyProcess.MoveFirst
MyProcess.Index = "IdIx"
MyProcess.Seek "=", Processladex
MyProcess.Delete
' delete its location information
If MyLinel.RecordCount > 0 Then MyLinel.MoveFirst
MyLinel.Index = "ChildIx"
MyLinel.Seek "=", ProcessIndex
If Not MyLinel.NoMatch Then MyLinel.Delete
' del2te nodes if existing
If MyNodes.RecordCount > 0 Then
MyNodes.MoveFirst
Do Until MyNodes.EOF
If MyNodes("Processld") = ProcessIndex Then
MyNodes.Delete
End If
MyNodes.MoveiNext
Loop
End If
‘delete connection between nodes for that table
If MyCon.RecordCount > 0 Then
MyCon.MoveFirst
Do Until MyCon.EOF
If MyCon("Processld") = ProcessIndex Then
MyCon.Delete
End If
MyCon.MoveNext
Loop
End If
' delete process inter-dependency
If MyProlnter.RecordCount > 0 Then
MyProlnter.MoveFirst
Do Until MyProlnter.EOF

118

If MyProlnter("PreProcess”) = Processindex Then
If MyNodes.RecordCount > 0 Then MyNodes.MoveFirst
Do Until MyNodes.EOF
If MyNodes("Processld") = MyProlnter("SucProcess") And
MyNodes("Nodeld") = MyProlnter("SucNodeld") Then
MyNodes.Delete
End If
MyNodes.MoveNext
Loop
MyProlnter.Delete
End If
MyProlnter.MoveNext
Loop
End If
if MyProlnter.RecordCount > 0 Then
MyProlnter.MoveFirst
Do Until MyProlnter. EOF
If MyProlnter("SucProcess") = ProcessIndex Then
MyNodes.MoveFirst
Do Until MyNodes.EOF
If MyNodes("Processld") = MyProlnter("PreProcess”) And
MyNodes("Nodeld") = MyProlnter("PreNodeld") Then
MyNodes.Delete
End If
MyNodes.MoveNext
Loop
MyProlnter.Delete
End If
MyProlnter.MoveNext
Loop
End If
' remove all ArnFrnTable entries ¥¥*¥#%kkk ki
If MyArn.RecordCount > 0 Then
MyArn.MoveFirst
Do Until MyArm.EOF
If MyArn("Processld") = ProcessIndex Then
MyAm.Delete
End If
MyAm.MoveNext
Loop
End If

' remove all process objects and reload
ProjForm.MousePointer =0
For i = 1 To NProcess%

Unload Process1(i)
Next
ProjForm.Cls
NProcess% =0
If MyProcess.RecordCount = 0 Then Exit Sub
If MyProcess.RecordCount > 0 Then MyProcess.MoveFirst
Do Until MyProcess.EOF

If MyProcess("ProcessType") <> 111 Then

NProcess% = NProcess% + |

119

Load Process | (NProcess %)
Process | (NProcess%). Top = MyProcess("OY")
Processl(NProcess%).Left = MyProcess("OX™)
Process1(NProcess%).Visible = True
Process1(NProcess%).Caption = Left$(MyProcess("ProcessName™), 6)
Process | (NProcess%).Processid = MyProcess("Processld™)

End If

If MyProcess.EOF Then Exit Do

MyProcess.MoveNext

Loop
End Sub

Sub DelOpr_Click ()

If MyOpr.RecordCount = 0 Then
MsgBox "No Operations defined for the project.”, 48
Exit Sub

End If
MsgBox "Double-Click on the operation to delete”, 48
ProjForm.MousePointer = 2
DeleteOperation = -1

End Sub

Sub DelPro_Click ()
If MyProcess.RecordCount = 0 Then
MsgBox "No processes defined for the project.”, 48
Exit Sub
End If
ProjForm.MousePointer = 2
DeleteProcess = -1
MDIForm].Panel3D1.Caption = "Click on a process object.”
End Sub

Sub drawlines ()
Cls
If MyLine.RecordCount > 0 Then MyLine.MoveFirst
Do Until MyLine.EOF
ChildX = MyLine("x1")
ChildY = MyLine("y1")
ParentX = MyLine("X2")
ParentY = MyLine("Y2")
If ChildY < ParentY Then
ChildY = ChildY +23
ChildX = ChildX + 46
ParentX = ParentX + 46
ParentY = ParentY
ProjForm.Line (ChildX, ChildY)-(ChildX, ChildY + 20)
ProjForm.Line (ChildX, ChildY + 20)-(ParentX, ChildY + 20)
ProjForm.Line (ParentX, ChildY + 20)-(ParentX, ParentY)
Else
ChildY = ChildY
ChildX = ChildX + 46
PzrentX = ParentX + 46
ParentY = ParentY + 23

120

ProjForm.Line (ParentX, ParentY)-(ParentX, ParentY + 20)
ProjForm.Line (ParentX, ParentY + 20)-(ChildX, ParentY + 20)
ProjForm.Line (ChildX, ParentY + 20)-(ChildX, ChildY)
End If
MyLine.MoveNext
Loop

End Sub
Sub drawlinesl! ()

If MyLine1.RecordCount > 0 Then MyLinel.MoveFirst
Do Until MyLinel EOF
ChildX = MyLinel("x1")
ChildY = MyLinel("y1")
ParentX = MyLinel ("X2")
ParentY = MyLinel("Y2")
If ChildY < ParentY Then
ChildY = ChildY + 23
ChildX = ChildX + 46
ParentX == ParentX + 46
Parent = ParentY
ProjForm.Line (ChildX, ChildY)-(ChildX, ChildY + 20)
Projirorm.Line (ChildX, ChildY + 20)-(ParentX, ChildY + 20)
ProjForm.Line (ParentX, ChildY + 20)-(ParentX, ParentY)
Else
ChildY = ChildY
ChildX = ChildX + 46
ParentX = ParentX + 46
ParentY = ParentY + 23
ProjForm.Line (ParentX, ParentY)-(ParentX, ParentY + 20)
ProjForm.Line (ParentX, ParentY + 20)-(ChildX, ParentY + 20)
ProjForm.Line (ChildX, ParentY + 20)-(ChildX, ChildY)
End If
MyLinel.MoveNext
Loop
End Sub

Sub EditOpr_Click ()
MsgBox "Not implemented in Version 1.0", 48
End Sub

Sub EditPro_Click ()
MsgBox "Not implemented in Version 1.0", 48
End Sub

Sub EditProcessmenu_Click ()
If MyProcess.RecordCount = 0 Then
MsgBox ("No processes defined for this project”)
Exit Sub
End If
EditProcess = 1
MsgBox ("doub:: click on the process to edit")

End Sub

Sub ExitMenu_Click ()
End
End Sub

Sub FileNew_Click ()
ProjEdit.Show 1
If ProjEdit. Textl.Text = " " Then Exit Sub
Temp$ = Left$(ProjEdit. Text].Text, 15)
ProjForm.Shapel.Visible = True
ProjForm.Label {.Caption = Temp$
ProjForm.Labell.Visible = True
OprMenu.Enabled = True
ProNet.Enabled = Truee
PrAdd.Enabled = True
OprSeq.Enabled = True
ResPool.Enabled = True
FileNew.Enabled = False
EditMenu.Enabled = True
Imagel.Visible = True
Label2.Visible = True
EditMenu.Enabled = True
DelOpr.Enabled = True
DelPro.Enabled = True
DefMod.Enabled = True
RefPro.Enabled = True
TransMenu.Enabled = True
Unload ProjEdit
ProjectNotStarted = -1

End Sub

Sub fitbar ()

If WindowState = 2 Then
Vscrolll.Left = Abs(scaleleft + scalewidth - 20)
Vscroll1.Top = scaletop + 5
Vscrolll.Height = Abs(scaleHeight - 30)

hscroll1.Top = Abs(scaletop + scaleHeight - 25)
hscroll1.Left = scaleleft + 5
hscrolll.Width = Abs(scalewidth - 25)

Else
Vscrolll.Left = Abs(scaleleft + scalewidth - 20)
Vscroll1.Top = scaletop + 5
Vscroll1.Height = Abs(scaleHeight - 30)

hscroll1.Top = Abs(scaletop + scaleHeight - 25)
hscrolll.Left = scaleleft + 5
hscroll1.Width = Abs(scalewidth - 25)

End If

End Sub

122

Sub Form_Activate ()
If ProjectNotStarted <> -1 Then Exit Sub
If ScreenSwitch = 1 Then
If MyOpr.RecordCount > 0 Then
Call drawlines
End If
If MyProcess.RecordCount > () Then
Call drawlinesl
End If
ScreenSwitch =0
End If

End Sub

Sub Form_DragDrop (Source As Control, x As Single, y As Single)
If MoveWhat = 1 Then
Oprl(Oprindex%).Move x, y
If MyLine.RecordCount > 0 Then MyLine. MoveFirst
MyLine.Index = "ChildIx"
Do Until MyLine. EOF
MyLine.Seek "=", ActualOprindex%
If Not MyLine.NoMatch Then
MyLine.Edite
MyLine("x1") = x
MyLine("yl")=y
MyLine.Update
Eait Do
End If
MyLine.MoveNext
Loop
If MyLine.RecordCount > 0 Then MyLine.MoveFirst
MyLine.Index = "ParentIx"
Do Until MyLine.EOF
If MyLine.EOF Then Exit Do
If MyLine("Parent”) = ActualOprindex% Then
MyLine.Edit
MyLine("x2") = x
MyLine("y2") =y
MyLine.Updatee
End If
MyLine.MoveNext
L.oop
If MyLinel.RecordCount = 0 Then GoTo Skipl
MyLinel.MoveFirst
MyLinel.Index = "Parentlx”
Do Until MyLinel.EOF
It MyLine1.EOF Then Exit Do
If MyLinel("Parent") = ActualOprindex% Then
MyLinel.Edit
MyLinel("x2") =x
MyLinel("y2") =y
MyLinel.Update
End If
MyLinel.MoveNext

Loop
If MyLine.RecordCount > 0 Then MyLine.MoveFirst
Skipl:
If MyOpr.RecordCount > 0 Then MyOpr.MoveFirst
MyOpr.Index = "OpridIx"
MyOpr.Seek "=", ActualOprlndex%
If Not MyOpr.NoMatch Then
MyOpr.Edit
MyOpr("0X") = x
MyOpr("0Y") =y
MyOpr.Update
End If
MoveWhat =0
Cls
'If MyOpr.RecordCount > 0 Then MyOpr.MoveFirst
‘Do Until MyOpr.EOF
" If MyOpr("OprType") = | Then
' LeftY = MyOpr("OY") + (29/ 2)
' LeftX = MyOpr("OX") - 2
! RightY = LeftY
) RightX = LeftX + 4 + 67
' FillColor=0
' FillStyle =0
! Circle (LeftX, LeftY), 2, RGB(255, 0, 0)
' Circle (RightX, RightY), 2. RGB(255, 0, 0)
' EndIf
' MyOpr.MoveNext
'‘Loop
'If MyProcess.RecordCount = 0 Then Exit Sub
‘MyProcess.MoveFirst
‘Do Until MyProcess.EOF
" If MyProcess("Refer") = -1 Then
! LeftY = MyProcess("OY") + (33 /2)
! LeftX = MyProcess("0X") - 2
' RightY = LeftY
' RightX = LeftX +4 + 79
) FillColor=0
' FillStyle =0
' Circle (LeftX, LeftY), 2, RGB(255, 0, 0)
' Circle (RightX, RightY), 2, RGB(255, 0, 0)
" EndIf
' MyProcess.MoveNext
"‘Loop
Elself MoveWhat = 2 Then
Process1(MyProcessIndex).Move x, y
If MyLinel.RecordCount > 0 Then MyLinel.MoveFirst
MyLinel.Index = "ChildIx"
Do Until MyLinel. EOF
MyLinel.Seek "=", ProcessIndex
If Not MyLinel.NoMatch Then
MyLinel .Edit
MyLinel("x1")=x
MyLinel("y1") =y
MyLinel.Update

124

Exit Do
End Ife
MylL.incl . MoveNext
Loop
If MyProcess.RecordCount > 0 Then If MyProcess.RecordCount > 0 Then
MyProcess.MoveFirst
MyProcess.Index = "l1dIx"
MyProcess.Seek "=", Processindex
If Not MyProcess.NoMatch Then
MyProcess.Edit
MyProcess("OX") = x
MyProcess("OY") =y
MyProcess.Update
End If
MoveWhat = ()
Cls

If MyProcess.RecordCount > 0 Then If MyProcess.RecordCount > 0 Then
MyProcess.MoveFirst
‘Do Until MyProcess.EOF
" If MyProcess("Refer") = -1 Then
' LeftY = MyProcess("OY") + (33 /2)
! LeftX = MyProcess("OX") - 2
' RightY = LeftY
' RightX = LeftX +4+ 79
' FillColor =0
! FiliStyle =0
' Circle (LeftX, LeftY), 2, RGB(255, 0, 0)
' Circle (RightX, RightY), 2, RGB(255, 0, 0)
" EndIf
' MyProcess.MoveNext
‘Loop
‘If MyOpr.RecordCount > 0 Then MyOpr.MoveFirst
‘Do Until MyOpr.EOF
" If MyOpr("OprType") = | Then
' LeftY = MyOpr("OY™) + (29/ 2)
' LeftX = MyOpr("OX") - 2
' RightY = LeftY
' RightX = LeftX + 4 + 67
' FillColor =0
! FillStyle = 0
' Circle (LeftX, LeftY), 2, RGB(255, 0, 0)
' Circle (RightX, RightY), 2, RGB(255, 0, 0)
" EndIf
MyOpr.MoveNext
'Loop
End If
Call drawlines
Call drawlines|
End Sub

Sub Form_GotFocus ()
If ProjectNotStarted <> -1 Then Exit Sub
If ScreenSwitch = 1 Then

If MyOpr.RecordCount > 0 Then
Call drawlines
End If
If MyProcess.RecordCount > 0 Then
Call drawlines|
End If
ScreenSwitch = 0
End If
End Sub

Sub Form_Load ()
fitbar
Call SetDatabasel
End Sub

Sub Form_MouseDown (Button As Integer, Shift As Integer, x As Single. y As Single)

If AddOpr% <> 1 And AddProcess% <> | And EditProcess <> | Then Exit Sub
"adding an operation
If AddOpr% = 1 Then
NOpr% = NOpr% + |
MDIForm|.Panel3D!.Caption = DefaultCaption$
OprEdit.Show 1
If CancelAdd = -1 Then
CancelAdd =0
AddOpr% = 0
NOpr% = NOpr% - |
Exit Sub
End If
Load Opr1(NOpr%)
Opr1(NOpr%).Top = y
Opr{NOpr%).Left = x
Opr(NOpr%).Visible = True
Opr1(NOpr%).Caption = LeftS(OprEdit. Textl. Text, 10)
Opr1(NOpr%).Tag = Str$(OprEdit.Option3D1 . Value)
Opr(NOpr%).0prld = Val(OprEdit.MaskedEdit 1. Text)
If MyOpr.RecordCount > 0 Then MyOpr.MoveFirst
MyOpr.Index = "OpridIx”
MyOpr.Seek "=", Opr1(NOpr%).Oprld
If Not MyOpr.NoMatch Then
MyOpr.Edit
MyOpr("OX") = x
MyOpr("OY") =y
MyOpr.Update
End If
Call ConnectOpr
'If OprEdit!Option3D3.Value = True Then
" LeftY = Oprl{NOpr%).Top + (Oprl(NOpr%).Height / 2)
" LeftX = Oprl(NOpr%).Left - 2
" RightY = LeftY
" RightX = LeftX + 4 + Oprl{NOpr%).Width
" FillColor=0

FillStyle = 0

" Circle (LefiX, LeftY), 2, RGB(255, 0, 0)
Circle (RightX, RightY), 2, RGB(255, 0, 0)

‘End If

AddOpr% =0

Unload OprEdit

End Ii
"adding a process

If AddProcess% = 1 Then
If MyOpr.RecordCount = O Then
MsgBox ("At least one Operation must exit to add a process”)
AddProcess =0
Exit Sub
End If
NProcess% = NProcess% + 1
MDIForm.Panel3D1.Caption = DefaultCaption$
ProcessForm.Show |
If CancelAdd = -1 Then
CancelAdd =0
NProcess% = NProcess% - 1
AddProcess% =0
Exit Sub
End If
Load Process 1 {(NProcess%)
Process1(NProcess%). Top =y
Process 1 (NProcess%).Left = x
Process 1 (NProcess%).Visible = True
Process1(NProcess%).Caption = Left$(ProcessForm.Text!.Text, 10)
Process | (NProcess%).Processld = Val(ProcessForm.MaskedEditl.Text)
Process | (NProcess%).ProcessName = ProcessForm.Textl. Text
‘If ProcessForm!Option3D1.Value = -1 Then
Process 1 {NProcess%).Caption = "Mod_" + ProcessForm.Textl . Text
' Call CopyLibProcess
'End If
If MyProcess.RecordCount > 0 Then MyProcess.MoveFirst
MyProcess.Index = "IdIx"
MyProcess.Seek "=", Process1(NProcess%).Processld
If Not MyProcess.NoMatch Then
MyProcess.Edit
MyProcess("OX") = x
MyProcess("OY") =y
MyProcess.Update
End If
Call ConnectProcess
AddProcess% =0
Unload ProcessForm
End If
MousePointer = 0
End Sub

Sub Form_MouseMove (Button As Integer, Shift As Integer, x As Single, y As Single)

Label3.Caption = "
Label3.Visible = False

127

End Sub

Sub Form_Resize ()
fitbar
End Sub

Sub HelpMeu_Click ()
AboutBox.Show |
End Sub

Sub HScroll1_Change ()
Call StoreOld
Cls
scaleleft = hscrolll.Value * Oprl(0).Width

Shapel.Top = 28
Shapel.Left =317
Labell.Top = 42
Labell.Left = 360
If NOpr% = 0 Then Exit Sub
Fori=1To NOpr%
Oprl(i).Top = oldyop(i)
Oprl(i).Left = oldxop(i)
Next i
For i =1 To NProcess%
Process1(1).Top = oldypr(i)
Process1(i).Left = oldxpr(i)
Next i
Call drawlines
Call drawlines1
End Sub

Sub Image!_Click ()
ResForm.Show
End Sub

Sub Label2_Click ()
'resource.Show 1
End Sub

Sub List1_DblClick ()

ProcessIndex = ModOprProcessIndex(List].ListIndex)
AddPro% =0

Listl.Visible = False

ProjForm.WindowState = |

Load Cyclone

End Sub

Sub LoadProject ()
Cls
Fori=1 To NOpr%

Unload Oprl(i)
Next i

128

Fori =1 To NProcess%
Unload Process(i)
Next i

NOpt%. =0
NProcess% =0

Call SetDatabase

Temp$ = FilePathName$
Do While InStr(1, Temp$, "\")
Position% = InStr(1, Temp$, "\")
Temp$ = Right$(Temp$, Len(Temp$) - Position%)
Loop
Temp$ = Left$(Temp$, Len(Temp$) - 4)
If IndexO = 0 Then
ProjForm.Shapel.Visible = True
ProjForm.Labell.Caption = Temp$
ProjForm.Labell.Visible = True
OprMenu.Enabled = True
ProNet.Enabled = True
If MyOpr.RecordCount > 0 Then MyOpr.MoveFirst
Do Until MyOpr.EOF
If MyOpr("OprType") <> 111 Then
NOpr% = NOpr% + |
Load Opr1(NOpr%)
Opr1(NOpr%).Top = MyOpr("OY")
Opr1(NOpr%).Left = MyOpr("0X")
Opr1(NOpr%).Visible = True
Opr1(NOpr%).Caption = Left$(MyOpr("OpName"), 10)*
Opri(NOpr%).Tag = MyOpr("Lowest")
Opr1(NOpr%).Oprld = MyOpr("Oprld")
‘If MyOpr("OprType") = 1 Then
Oprl(NOpr%).Caption = "Mod_" + MyOpr("OpName")
'End If
End If
1f MyOpr.EOF Then Exit Do
MyOpr.MoveNext
Loop
If MyLine.RecordCount <> 0 Then Call drawlines
'If MyProcess.RecordCount = 0 Then Exit Sub
If MyProcess.RecordCount > 0 Then MyProcess.MoveFirst
Do Until MyProcess.EOF
If MyProcess("ProcessType") <> 111 Then
NProcess% = NProcess% + |
Load Process 1 (NProcess%)
Process1(NProcess%).Top = MyProcess("OY")
Process! (NProcess%).Left = MyProcess("OX")
Process1(NProcess%).Visible = True
Process | (NProcess%).Caption = Left$(MyProcess("ProcessName"), 10)
Process1(NProcess%).Processld = MyProcess("Processld”)
Process(NProcess%).ProcessName = MyProcess("ProcessName")
If MyProcess("Refer”) = -1 Then
Process1(NProcess%).Tag = "R"

129

' ProcessI(NProcess%).Caption = "Mod_" + MyProcess("ProcessName")
End If
End If
MyProcess.MoveNext
If MyProcess.EOF Then Exit Do
Loop
If MyL.inel.RecordCount <> 0 Then Call drawlines|
Else
MsgBox "Project already open...", 48
Exit Sub
End If
IndexO = 1

End Sub

Sub ModToWBS_Click ()
MyGroup = 0: ModNOpr% = 0: ModNProcess% = 0: ModularOperation = ()
Unload NewForm
ScreenSwitch =1

End Sub

Sub OpenFileMenu_Click ()
CMbDialog.Filter = "Project files (*.sim)*.sim"
CMDialogl.FilterIndex = 1
CMDialogl.DefaultExt = "SIM"
CMDialogl.Action =1
FilePathName$ = CMDialog| .Filename
OpenProject = -1
If FilePathName$ = "" Then

OpenProject = Oe

Exit Sub
End If
OprMenu.Enabled = True
ProNet.Enabled = True
PrAdd.Enabled = True
FileNew.Enabled = False
OprSeq.Enabled = True
ResPool.Enabled = True
Imagel.Visible = True
Label2.Visible = True
RefWin.Enabled = True
EditMenu.Enabled = True
EditMenu.Enabled = True
DelOpr.Enabled = True
DelPro.Enabled = True
DefMod.Enabled = True
RefPro.Enabled = True
TransMenu.Enabled = True
EditProcessMenu.Enabled = True
EditProcess = 0
ProjForm.MousePointer = 11
ProjectNotStarted = -1
Call LcadProject

130

ProjForm.MousePointer =0
End Sub

Sub Opr1_DblClick (Index As Integer)

If Index <> () And DeleteOperation <> -1 And AddPro% = 1 Then
If MyOpr.RecordCount > () Then MyOpr.MoveFirst
MyOpr.index = "OprldIx"

MyOpr.Seck "=", ActualOprindex%
k=0
If MyOpr("OprType") = 1 Then
If MyProcess.RecordCount > 0 Then MyProcess.MoveFirst
Listl.Clear
Do Unti! MyProcess.EOF
If MyProcess{"Group") = ActualOprlndex% Then
Listl.AddItem MyProcess("ProcessName")
ModOprProcessIndex(k) = MyProcess("Processld")
k=k+1
End If
MyProcess.MoveNext
Loop
Listl.Listindex =0
List].Left = Oprl(Index).Left + Oprl(Index). Widthe
Listl.Top = Oprl(Index).Top + Op:1(Index).Height
List]. Width = 150
Listl.Height = 100
Listl.Visible = True
End If
End if

If Index <> 0 And DeleteOperation = -1 Then

DeleteOperation = 0
Msgs =" The selected Operation object will be deleted.” & Chr$(10) + Chr$(13)

Msg$ = Msg$ + " This can effect WBS, operation sequencing, process model"” & Chr$(10) +

Chr$(13)
Msg$ = Msg$ + " and resource allocation.” & Chr$(10) + Chr$(13)
Msg$ = Msg$ + " Do you want to continue?"
Response = MsgBox(Msg$, 36)
If Response =7 Then
ProjForm.MousePointer = 0
Exit Sub
End If
DeleteOperation = 0
' if the user wants to delete the operation
" delete operation from oprtable
If MyOpr.RecordCount > (0 Then MyOpr.MoveFirst
MyOpr.Index = "OpcldIx”
MyOpr.Seek "=", ActualOprindex%-
MyOpr.Delete
' delete the Operation Sequencing
If MyRel.RecordCount = 0 Then GoTo Jump3
MyRel.MoveFirst
Do Until MyRel.EOF
If MyRel("Parent”) = ActualOprindex% Then

131

Loop

MyRel.Delete

End If
If MyRel.EOF Then Exit Do
MyRel.MoveNext

If MyRel.RecordCount = 0 Then GoTo Jump3
MyRel . MoveFirst
Do Until MyRel. EOF

Then

Loop

Jump3:

If MyRel("Predecessor") = ActualOprindex% Or MyRel("Successor”) = ActualOprindex %

MyRel.Delete

End If
If MyRel. EOF Then Exit Do
MyRel.MoveNext

" delete its location information

If MyLine.RecordCount > 0 Then MyLine.MoveFirst
MyLine.Index = "ChildIx"

MyLine.Seek "=", ActualOprindex%

MyLine.Delete

" all children below the operation have to be deleted
If MyOpr.RecordCount = 0 Then GoTo Jumpl
MyOpr.MoveFirst

MyOpr.Index = "Oprldix"

Do Until MyOpr.EOF

TestLine = MyOpr("Oprld")
TestParent = MyOpr("Parentld")

If TestParent = 0 Then GoTo Jump4
MyOpr.Seek "=", TestParent

If MyOpr.NoMatch Then

MyOpr.Seek "=", TestLine
MyOpr.Delete
' delete its location information
If MyLine.RecordCount > 0 Then MyLine.MoveFirst
MyLine.Index = "ChildIx"
MyLine.Seek "=", TestLine
If Not MyLine.NoMatch Then MyLine.Delete
If MyRel.RecordCount <> 0 Then
MyRel.MoveFirst
Do Until MyRel. EOF
If MyKel("Parent”) = TestLine Then
MyRel.Delete
End If
If MyRel. EOF Then Exit Do
MyRe! MoveNext
Loop
End If
If MyRel.RecordCount <> 0 Then
MyRel.MoveFirst
Do Until MyRel. EOF
If MyRel("Predecessor") = TestLine Or MyRel("Successor”) = TestLine Then
MyRel.Delete

132

End If
If MyRel.EOF Then Exit Do
MyRel.MoveNext

L.oop
End If
Else
MyOpr.Seek "=", TestLine
End If
Jump4:
If MyOpr.EOQF Then Exit Do
MyOpr.MoveNext
Loop
" delete any connected process
Jumpl:

it MyProcess.RecordCount = O Then GoTo Jump2
If MyProcess.RecordCount >~ 0 Then MyProcess.MoveFirst
Do Until MyProcess.EOF
TestProcessParent = MyProcess("Parentld")
If MyOpr.RecordCount > 0 Then MyOpr.MoveFirst
MyOpr.Index = "OprldIx"
MyOpr.Seek "=", TestProcessParent
If MyOpr.NoMatch Then
ProcessIndex = MyProcess("ProcessId")
Call DeleteProcess!
If MyProcess.RecordCount = 0 Then Exit Do
MyProcess.MoveFirst
Else
If MyProcess.EOF Then Exit Do
MyProcess.MoveNext
End If
Loop
Jump2:
' remove all process objects and reload
ProjForm.MousePointer = 0
Fori=1To NOpr%
Unload Oprl(i)
Next
ProjForm.Cls
NOpr% =0
1f MyOpr.RecordCount = 0 Then Exit Sub
MyOpr.MoveFirst
Do Until MyOpr.EOF
If MyOpr("OprType") <> 111 Then
NOpr% = NOpr% + |
Load Opr1(NOpr%)
Oprl(NOpr%).Top = MyOpr("OY")
Oprl(NOpr%).Left = MyOpr("OX")
Opr1(NOpr%).Visible = True
Opr1(NOpr%).Caption = Left$(MyOpr("OpName"), 10)
Opr1(NOpr%).Oprld = MyOpr("Oprld")
End If
If MyOpr.EOF Then Exit Do
MyOpr.MoveNexts
Loop

133

If MyLine.RecordCount <> 0 Then Call drawlines
If MyLinel.RecordCount <> 0 Then Call drawlines!
End If
End Sub

Sub Oprl_MouseMove (Index As Integer, Button As Integer, Shift As Integer, X As Single, y As
Single)

Oprindex% = Index

ActualOprindex% = Oprl(Index).Oprld

MoveWhat = |

‘Label3.Caption = Oprl(Index).Caption

'Label3.Visible = True

"Label3.AutoSize = True

‘Label3.Top = Oprl(Index).Top + Oprl(Index).Height

‘Label3.Left = Oprl(Index).Left + Oprl(Index).Width / 2
End Sub

Sub OprMenu_Click ()

ProjForm.MousePointer = 2
MDIFormi.Panel3D1.Caption = "Click on the form to place the operation object.”
AddOpr% = 1
AddProcess% =0
EditProcess = 0
RefWin.Enabled = True
End Sub

Sub OprSeq_Click ()
OSM =1
Oprindex% =0
ProcessIndex = 0
oprseqf.Show

End Sub

Sub PrAdd_Click ()
ProjForm.MousePointer = 2
MDIForm1.Panel3D1.Caption = "Click on the form to place the process object.”
AddProcess% = 1
AddOpr% = 0
EditProcess = 0
RefWin.Enabled = True
End Sub

Sub Prnt_Click ()
Call PrintData
End Sub

Sub Process1_DbIClick (Index As Integer)

If Index <> 0 And AddPro% = 1 Then
AddPro% =0
ProjForm.WindowState = |
Load Cyclone

End If

134

If Index <> () And DeleteProcess = -1 Then
DeleteProcess =0
Msg$ =" Theselected PROCESS object will be deleted.” & Chr$(10) + Chr$(13)
Msg$ = Msg$ + " This can effect process model, process inter-dependency” & Chr$(10)
+ Chr$(13)
Msg$ = Msgh + " and resource allocation." & Chr$(10) + Chr$(13)
Msg$ = Msg$ + Do you want to continue?"
Response = MsgBox(Msg$, 36)
If Response = 7 Then
ProjForm.MousePointer = 0
MDIForm1.Pane!3D1.Caption = DefaultCaption$
Exit Sub
End If
Call DeleteProcess|
If MyLine.RecordCount <> 0 Then Call drawlines
if MyLinel.RecordCount <> 0 Then Call drawlines]
End If
If Index <> 0 And EditProcess = 1 Then
ProcessForm.MaskedEdit1.Enabled = False
ProcessForm.Combol.Enabled = True
ProcessForm.Combo2.Enabled = False
ProcessForm.Combo2.Visible = False
ProcessForm.Frame3D1.Visible = False
ProcessForm.Label5. Visible = False
ProcessForm.Label6.Visible = False
ProcessForm.Option3D1.Visible = False
ProcessForm.Option3D2.Visible = False
ProcessForm.Show 1|
Call drawlines
Call drawlines|
End If
End Sub

Sub Process!_MouseMove (Index As Integer, Button As Integer, Shift As Integer, x As Single, y
As Single)

ProcessIndex = Process1(Index) Processld

MyProcessIndex = Index

MoveWhat = 2

"Label3.Caption = Process1(Index).ProcessName

'Label3.Visible = True

‘Label3.AutoSize = True

"Label3.Top = Process1(Index).Top + Process{Index).Height

'Label3.Left = Process| (Index).Left + Process1(Index). Width / 2

End Sub

Sub ProNet_Tlick ()
If MyProcess.RecordCount = 0 Then
MsgBox "No Processes defined for the project.”, 48
Exit Sub
End If
MsgBox "Double click on a Process for which process model is required.”, 48
MousePointer = 2
AddPro% =1
RefWin.Enabled = True

135

End Sub

Sub RefPro_Click)
ModularProcess = 1
Cyclone.Show

End Sub

Sub RefWin_Click ()
If MyLine.RecordCount <> 0 Then Call drawlines
If MyLinel.RecordCount <> 0 Then Call drawlines|
End Sub

Sub ResPool_Click ()
ResForm.Show
End Sub

Sub StoreOld ()

Fori =1 To NOpr%
oldyop(i) = Oprl(i).Top
oldxop(i) = Oprl(i).Left
Nexti
Fori=1 To NProcess%
oldypr(i) = Process1(i). Top
oldxpr(i) = Process1(i).Left
Nexti

End Sub
Sub TransMenu_Click ()

Msg$ = "Tranlation should be performed after completion of the” & Chr$(10) + Chr$1i3)
Msg$ = Msg$ + " model definition for the project.” & Chr$(10) + Chr$(13)
Msg$ = Msg$ + " Do you want to continue?”
Response = MsgBox(Msg$, 36)
If Response = 7 Then
Exit Sub
End If
ProjForm.WindowState = |
TranForm.Show
End Sub

Sub VScrolll_Change ()
Call StoreOld
Cls
scaletop = Vscrolll.Value * Oprl(0).Height

Shapel.Top = 28
Shapel.Left =317
Labell.Top =42
Labell.Left = 360

If NOpr% = 0 Then Exit Sub

136

Fori=1ToNOpr%
Oprl(i).Top = oldyop(i)
Oprl(i).Left = oldxop(i)
Nexti
For i =1 To NProcess%
Process1(i). Top = oldypr(i)
Process1(i).Left = oldxpr(i)
Next i

Call drawlines
Call drawlines!
End Sub

Sub WBS_Fit_Click ()
1f NOpr% = () Then Exit Sub
WBSFitWindow.Show

End Sub

Structure of the project database

AllocateTable

Field Name Field Type Remarks

Oprld Integer Operation ID

Resourceld Integer Resource 1D

Quantity Single Quantity of the resource allocated.

Priority Integer Priority attached to the operation
ArnFrnTable

Field Name Field Type Remarks

Processld Integer Operation ID

Resourceld Integer Resource ID

Nodeld Integer Node ID

NodeType Integer 1 for Allocate and 2 for Free Node

Quantity Single Quantity of the resource allocated.

Priority Integer Priority attached to the operation
ConnectionTable

Field Name Field Type Remarks

Processld Integer Process ID

Connectionld Integer Connection ID

Predecessor Integer Id of the predecessor node

Successor Integer Id of the successor node
CrewTable

Field Name Field Type Remarks

Crewld Integer Crew combination id

CrewName Text * 20 Crew combination name

R1 Text * 20 Resource |

R2 Text * 20 Resource 2

Text * 20
R11 Text * 20 Resource 11

138

FinalRelation

Field Name Field Type Remarks
Predecessor Integer Predecessor operation ID
Successor Integer Successor operation ID
Parent Integer ID of the parent operation
Type Integer Type of link 1-serial, 2-paralici, 3-
cyclic and 4-hammock
ID Integer Relation ID
FinishTable
Field Name Field Type Remarks
Opri? Integer ID of the Operation
Finish Integer Finish operation in terms of the lowest
level.
FollowTable
Field Name Field Type Remarks
PreProcess Integer ID of the predecessor process
SucProcess Integer ID of the successor process
PreNodelD Integer ID of the predecessor node
SucNodelD Integer ID of the successor node
Quantity Single Release quantity
NodeTable
Field Name Field Type Remarks
Prc-essld Integer Process ID
NodelD Integer Node ID
NodeName Text * 20 Name of the node
NodeType Integer 1-QUE, 2-COMBI, 3-NORM, 4-
CONSOLIDATE, 5-PREDECESSOR,
6-SUCCESSOR, 7-ALLOCATE, 8-
FREE
DurationD Integer Relation ID
NodeX Single Location of the node along the X axis
NodeY Single Location of the node along the Y axis
ConGen Integer Consolidate quantity
GenQue Integer Generate quantity
InitQue Integer Initialization quantity for a QUE
Prob Text * 40 Probability associated with COMBI or

NORM

139

OprTable

Field Name Field Type Remarks

Oprld Integer Operation ID

Code Integer Internal code

OpName Text * 20 Name of the operation

Parentld Integer ID of the parent operation

Lowest Boolean True or False

0X Single Location along the X axis

004 Single Location along the Y axis

ParentName Text * 20 Name of the parent operation

OprType Integer 1- modular, 111-child of a modular, 2-
simple

Group Integer Only for modular

Level Integer Level in the hierarchy

Position

Field Name Field Type Remarks

X1 Single Location of the child operation along
the X axis

X2 Single Location of the parent operation along
the X axis

Yl Single Location of the child operation along
the Y axis

Y2 Single Location of the parent operation along
the Y axis

Parent Integer ID of the parent operation

Child Integer ID of the Child opcration

Positionl

Field Name Field Type Remarks

X1 Single Location of the child process along the
X axis

X2 Single Location of the parent operation along
the X axis

Y1 Single Location of the child process along the
Y axis

Y2 Single Location of the parent operation along
the Y axis

Parent Integer ID of the parent operation

Child Integer ID of the Child process

140

ProcessTable

Field Name Field Type Remarks

Processld Integer Process ID

Code Integer Internal code

ProcessName Text * 20 Name of the Process

Parentld Integer ID of the parent operation

0X Single Location along the X axis

oY Single Location along the Y axis

Refer Integer 1- if refers to modular process, 2- - no

reference

ProcessRefer Integer ID of the modular process referred

Group Integer Only for modular processes
RelationTable

Field Name Field Type Remarks

RelationID Integer Relation ID

Predecessor Integer ID of the predecessor process

Successor Integer ID of the successor process

Type Integer l1-serial, 2-parallel, 3-cyclic, 4-

hammock

Lead Single Lead in days

Counter Integer For cyclic links

Parent Integer ID of the parent operation
ResourceTable

Field Name Field Type Remarks

ResourcelD Integer Resource ID

ResourceName Text * 20 Name of the resource

Quantity Single Available quantity for the project

Fcost Currency Fixed cost per hour

Vcost Currency Variable cost per hour
StartTable

Field Name Field Type Remarks

Oprld Integer ID of the Operation

Start Integer Start operation ID in terms of the

lowest level.

141

Appendix B: Details of translation module

In this appendix the Visual Basic progr~in written for the automatic translation of the
HSM models into SLAMSYSTEM format is attached.

142

Program code for translation module

VERSION 2.00
Begin Form TranForm
Caption = "Translation Module"

ClientHeight = 5820

ClientLeft = 780
ClientTop = 1710
CiientWidth = 7365
Height = 6510
Left = 720
LinkTopic = "Forml"
MDIChild = -1 True
ScaleHeight = 5820
ScaleWidth = 7365
Top = 1080
Width = 7485
WindowState = 2 'Maximized
Begin TextBox Textl

Height = 6030

Left = 1335

MultiLine = -1 'True
ScrollBars = 3 '‘Both
Tablndex = 2

Top = 780

Visible = 0 'False

Width = 9390
End
Begin SSFrame Frame3D1

Alignment = 2 'Center
Caption = "Project Translation Progress”e
Font3D = 2 'Raised w/heavy shading
FontBold = -1 'True
Fontltalic = 0 ‘False
FontName = "Times New Roman"
FontSize = 12

FontStrikethru = 0 'False
FontUnderline = 0 'False
ForeColor = &HOOFF0000&
Height = 2040

Left = 3165

ShadowColor = 1 'Black
Tablndex =0

Top = 2535

Visible = 0 ‘False

Width = 5250

Begin SSPanel Panel3D1

BackColor = &HO00COCOC0&

Bevellnner = 1 'Inset

BevelOuter = 1 'Inset

BevelWidth = 2

FloodType = 1 'Left To Right
Font3D = 0 'None

143

ForeColor = &H00000000&

Height = 465
Left = 930
Tablndex = 1
Top = 810
Width = 3570
End
End
Begin Label Labell
AutoSize = -] 'True
Caption = "Labell"
FontBold = -1 'True
Fontltalic = 0 'False
FontName = "Times New Roman"
FontSize = 12

FontStrikethrt = 0 ‘False
FontUnderline = 0 ‘False

Height = 285
Left = 3645
Tabindex =3
Top = 3780
Visible = 0 'False
Width = 690
End
Begin Menu StartTran
Caption = "Translate"
End
Begin Menu DispMenu
Caption = "Display"
Begin Menu DisOprLink
Caption = "Operation Links"
End
Begin Menu DisProLink
Caption = "Process!.inks"
End
Begin Menu ResList
Caption = "Resourcc List"
End
Begin Menu ProTranMod
Caption = "Process Models"
End
End
Begin Menu WinTrans
Caption = "Window"
Begin Menu WBSTran
Caption = "WBS"
End
End
End

Sub DisOprLink_Click ()
TranForm!Labell.Caption =
TranForm!Labell.Visible = False
Call DisOprRel

e

End Sub

Sub DisProLink_Click ()
TranForm!Label 1 .Caption =
TranForm!Labell.Visible = False
Call DisOprRel

End Sub

Sub ProTranMod_Click ()
TranForm!Label I.Caption =
TranForm!Labell.Visible = False

Msg$ = "Individual processes will be translated into SLAM models.” & Chr$(10) + Chr$(13)
Msg$ =Msg$ & " Run SLAMSYSTEM to simulate the project.”
MsgBox Msg$, 48

End Sub

Sub ResLisi_Click ()
TranForm!Labell.Caption =
TranForm!Labeil.Visible = False
Call ResourceL.ist

End Sub

"

Sub StartTran_Click ()
Call BackupFile
End Sub

Sub WBSTran_Click ()
Unload TranForm
ScreenSwitch = 1
ProjForm.WindowState = 2
ProjForm.Show

End Sub

Dim WorkDb As database
Dim WorkRes As Table
Dim WorkRel As Table
Dim WorkProcess As Table
Dim WorkLine As Table
Dim WorkLinel As Table
Dim WorkOpr As Table
Dim WorkNodes As Table
Dim WorkCon As Table
Dim WorkProlnter As Table
Dim WorkCrew As Table
Dim WorkAllocate As Table
Dim WorkArn As Table
Dim WorkFinal As Table
Dim WorkStart As Table
Dim WorkFinish As Table

Dim ChildOpr(50)
Dim StatusOfChild As Integer

145

Dim TempOprid As Integer
Dim CheckStart As Integer
Dim CheckFinish As Integer

Sub AnalyzeChild (ChildOpr(), ChildOprCount, StatusOfChild)

For i = 1 To ChildOprCount
MyOpr.MoveFirst
Do Until MyOpr.EOF
If MyOpr("Oprld") = ChildOpr(i) Then
If MyOpr("Lowest") = True And MyOpr("OprType") <> 1 Then
Exit Do
Else
StatusOfChild = -1 ' not all the children are lowest
Exit Sub
End If
End If
MyOpr.MoveNext
Loop
StatusOfChild = 1
Next
End Sub

Sub AnalyzeNotLow (ChildOpr(), ChildOprCount)

' first clear the working database
If WorkStart.RecordCount > 0 Then WorkStart.MoveFirst
Do Until WorkStart.EOF
WorkStart.Delete
WorkStart.MoveNext
Loop
If WorkFinish.RecordCount > 0 Then WorkFinish.MoveFirst
Do Until WorkFinish.EOF
WorkFinish.Delete
WorkFinish.MoveNext
Loop

If ChildOprCount = 1 Then
' check if the child is lowest
MyOpr.MoveFirst
Do Until MyOpr.EOF
If MyOpr("Oprld") = ChildOpr(i) Then
"if the only child operation is lowest
If MyOpr("Lowest") = True And MyOpr("OprType") <> | Then
MyStart. AddNew
MyStart("Oprld") = TempOprld
MyStart("Start”) = ChildOpr(1)
MyStart.Update
MyFinish. AddNew
MyPFinish("Oprld") = TempOprld
MyFinish("Finish") = ChildOpr(1)
MyFinish.Update
Exit Do
Else

146

*if the child is not lowest then determine the start and finish
If MyStart.RecordCount > 0 Then MyStart. MoveFirst
Do Until MyStart. EOF
If MyStart("Oprld") = ChildOpr(1) Then
WorkStart. AddNew
WorkStart("Oprld") = MyStart("Oprld")
WorkStart("Start") = MyStart("Start")
WorkStart.Update
End If
MyStart.MoveNext
Loop
If WorkStart.RecordCount > 0 Then WorkStart. MoveFirst
Do Until WorkStart. EOF
MyStart. AddNew
MyStart("Oprld") = TempOprld
MyStart("Start") = WorkStart("Start")
MyStart.Update
WorkStart.MoveNext
Loop

If MyFinish.RecordCount > 0 Then MyFinish.MoveFirst
Do Until MyFinish.EOF
If MyFinish("Oprld") = ChildOpr(1) Then
WorkFinish.AddNew
WorkFinish("Oprld") = MyFinish("Oprld")
WorkFinish("Finish") = MyFinish("Finish")
WorkFinish.Update
End If
MyFinish.MoveNext
Loop
If WorkFinish.RecordCount > 0 Then WorkFinish.MoveFirst
Do Until WorkFinish. EOF
MyFinish.AddNew
MyFinish("Oprld") = TempOpride
MyFinish("Finish") = WorkFinish("Finish")
MyFinish.Update
WorkFinish.MoveNext
Loop
End If
End If
MyOpr.MoveNext
Loop
Else ' more than one children
' clear the working database
1f WorkFinal.RecordCount > 0 Then WorkFinal.MoveFirst
Do Until WorkFinal EOF
WorkFinal.Delete
WorkFinal.MoveNext
Loop

' collect all the sequencing for the current parent
For i = 1 To ChildOprCount

MyRel.MoveFirst

Do Until MyRel. EOF

147

If MyRel("Predecessor") = ChildOpr(i) Then
WorkFinal. AddNew
WorkFinal("Predecessor") = MyRel("Predecessor")
WorkFinal("Successor") = MyRel("Successor™)
WorkFinal("Type") = MyRel("Type")
WorkFinal("Parent") = MyRel("Parent")
WorkFinal("ID") = MyRel("Relationld")
WorkFinal.Update

End Ife

MyRel.MoveNext

Loop
MyRel.MoveFirst
Do Until MyRel. EOF

If MyRel("Successor") = ChildOpr(i) Then
WorkFinal. AddNew
WorkFinal("Predecessor") = MyRel("Predecessor")
WorkFinal("Successor") = MyRel("Successor")
WorkFinal("Type") = MyRel("Type")
WorkFinal("Parent") = MyRel("Parent")
WorkFinal("ID") = MyRel("Relationld")
WorkFinal.Update

End If

MyRel.MoveNext

Loop
Next

' clear all duplicate relations
If WorkFinal.RecordCount < 2 Then GoTo Tryl2l
WorkFinal.Index = "IDIX"
WorkFinal. MoveFirst
Do Unti! ‘NorkFinal EOF
Temp! = WorkFinal("ID")
Trylll:
If WorkFinal.RecordCount >= 2 Then
WorkFinal.MoveNext
Else
Exit Do
End If
If WorkFinal("ID") = Temp!1 Then
WorkFinal.Delete
WorkFinal. MoveNext
If WorkFinal.EOF Then
Exit Do
Else
WorkFinal.MovePrevious
End If
GoTo Try11:
Else
WorkFinal.Seek "=", Templ
WorkFinal. MoveNext
End If
Loop

Tryl2l:

148

" check if there is only one relation
WorkFinal. MoveFirst
If WorkFinal.RecordCount = 1 Then
If WorkFinal("Type") = | Then
CheckStart = WorkFinal("Predecessor”)
Call DeriveStart
CheckFinish = WorkFinal("Successor™)
Call DerivcFinish
Elself WorkFinal("Type") = 2 Or WorkFinal("Type") =4 Then
CheckStart = WorkFinal("Predecessor”)
Call DeriveStart
CheckStart = WorkFinal("Successor”)
Call DeriveStart
CheckFinish = WorkFinal("Predecessor”)
Call DeriveFinish
CheckFinish = WorkFinal("Successor")
Call DeriveFinish
Elself WorkFinal("Type") = 3 Then
"there is a user mistake in the operation sequencing
End If
Else ' case when more than one relation
" first check all the hammock operations
WorkFinal.MoveFirst
Do Until WorkFinal. EOF
If WorkFinal("Type") =4 Then
CheckStart = WorkFinal("Predecessor")
Call DeriveStart
CheckFinish = WorkFinal("Successor")
Call DeriveFinish
End If
WorkFinal.MoveNext
Loop

" check if there are operations that are not successors to get the start
Fori = 1 To ChildOprCount
StartOpr =0
StartCount = 0
WorkFinal.MoveFirst
Do Until WorkFinal. EOF
1f ChildOpr(i) = WorkFinal("Successor") Then
StartOpr = -1
StartCount = StartCount + |
End If
WorkFinal.MoveNext
Loop
If StartOpr <> -1 Then
CheckStart = ChildOpr(i)
Call DeriveStart
Elself StartOpr = -1 Then ' is a successor but is cyclic
If StartCount = | Then
WorkFinal.MoveFirst
Do Until WorkFinal. EOF
If ChildOpr(i) = WorkFinal("Successor”) Then
If WorkFinal("Type") = 3 Then

149

CheckStart = ChildOpr(i)
Call DeriveStart
Exit Do
End If
End If
WorkFinal.MoveNext
Loop
End If
End If
Next

" check if there are operations that are not predecessor
Fori = 1 To ChildOprCount
FinishOpr = 0
FinishCount = 0
WorkFinal. MoveFirst
Do Until WorkFinal. EOF
If ChildOpr(i) = WorkFinal("Predecessor”) Then
FinishOpr = -1
FinishCount = FinishCount + |
End If
WorkFinal. MoveNext
Loop
If FinishOpr <> -1 Then
CheckFinish = ChildOpr(i)
Call DeriveFinish
Elself FinishOpr = -1 Then
If FinishCount = 1 Then 'is a predecessor but is cyclic
WerkFinal.MoveFirst
Do Until WorkFinal. EOF
If ChildOpr(i) = WorkFinal("Predecessor”) Then
If WorkFinal("Type") = 3 Then
CheckFinish = ChildOpr(i)
Call DeriveFinish
Exit Do
End If
End If
WorkFinal. MoveNext
Loop
End If
End If
Next

End If
End If
End Sub

Sub AnalyzeRelations (ChildOpr(), ChildOprCount, StatusOfChild)

' only one child operation case
If ChildOprCount = 1 Then
MyStart. AddNew
MyStart("Oprld") = TempOprld
MyStart("Start") = ChildOpr(1)
MyStart.Update

150

MyFinish.AddNew
MyFinish("Oprld") = TempOprld
MyFinish("Finish") = ChildOpr(1)
MyFinish.Update
Else
' clear the working database
If WorkFinal.RecordCount > 0 Then WorkFinal.MoveFirst
Do Until WorkFinal. EOF
WorkFinal.Delete
WorkFinal. MoveNext
Loop

' collect all the operation sequencing for the current parent
For i =1 To ChildOprCount
MyRel.MoveFirst
Do Until MyRel. EOF
If MyRel("Predecessor”) = ChildOpr(i) Then
WorkFinal. AddNew
WorkFinal("Predecessor”) = MyRel("Predecessor")
WorkFinal("Successor") = MyRel("Successor")
WorkFin:!("Type") = MyRel("Type")
WorkFinal("Parent") = MyRel("Parent")
WorkFinal("ID") = MyRel("Relationld")
WorkFinal. Update
End If
MyRel.MoveNext
Loop
MyRel.MoveFirst
Do Until MyRel.EOF
If MyRel("Successor") = ChildOpr(i) Then
WorkFinal. AddNew
WorkFinal("Predecessor") = MyRel("Predecessor")
WorkFinal("Successor") = MyRel("Successor™)
WorkFinal("Type") = MyRel("Type")
WorkFinal("Parent") = MyRel("Parent")
WorkFinal("ID") = MyRel("Relationld")
WorkFinal.Update
End Ife
MyRel.MoveNext
Loop
Next

‘WorkFinal. MoveFirst

'Printer.Print

‘Printer.Print

‘Do Until WorkFinal EOF

' Printer.Print WorkFinal("ID"), WorkFinal("Predecessor"), WorkFinal("Successor")
' WorkFinal. MoveNext

'‘Loop

‘Printer.EndDoc

" clear all duplicate relations

If WorkFinal.RecordCount < 2 Then GoTo Try12
WorkFinal.Index = "IDIX"

151

WorkFinal.MoveFirst
Do Until WorkFinal. EOF
Temp!l = WorkFinal("ID")
Tryll:
If WorkFinal.RecordCount >= 2 Then
WorkFinal. MoveNext
Else
Exit Do
End If
If WorkFinal("ID") = Templ Then
WorkFinal.Delete
WorkFinal.MoveNext
If WorkFinal. EOF Then
Exit Do
Else
WorkFinal. MovePrevious
End If
GoTo Tryl I:
Else
WorkFinal.Seek "=", Temp|
WorkFinal. MoveNext
End If
Loop

Tryl2:

' check if there is only one relation

WorkFinal MoveFirst

If WorkFinal.RecordCount = | Then

If WorkFinal("Type") = | Then
MyStart. AddNew
MyStart("CprID") = TempOprld
MyStart("Start") = WorkFinal("Predecessor")
MyStart.Update
MyFinish.AddNew
MyFinish("Oprld") = TempOprld
MyFinish("Finish") = WorkFinal("Successor")
MyFinish.Update
Elself WorkFinal("Type") = 2 Or WorkFinal("Type") =4 Then

MyStart. AddNew
MyStart("Oprld") = TempOprld
MyStart("Start") = WorkFinal("Predecessor")
MyStart.Update
MyStart. AddNew
MyStart("Oprld") = TempOprld
MyStart("Start") = WorkFinal("Successor")
MyStart.Update
MyFinish. AddNew
MyFinish("Oprld") = TempOprld
MyFinish("Finish") = WorkFinal("Predecessor")
MyFinish.Update
MyFinish.AddNew
MyFinish("Oprld") = TempOprld
MyFinish("Finish") = WorkFinal("Successor")
MyFinish.Update

152

Elsetf WorkFinal("Type") = 3 Then
"there is a user mistake in the operation sequencing
End If
Else ' case when more than one relation
" first check all the hammock operations
WorkFinal.MoveFirst
Do Until WorkFinal. EOF
If WorkFinal("Type") =4 Then
MyStart. AddNew
MyStart("Oprld") = TempOprld
MyStart("Start") = WorkFinal("Predecessor”)
MyStart.Update
MyFinish.AddNew
MyFinish("Oprld") = TempOprld
MyFinish("Finish") = WorkFinal("Successor")
MyFinish.Update
WorkFinal.Delete
End If
WorkFinal. MoveNext
Loop

' check if there are operations that are not successors to get the start
For i =1 To ChildOprCount
StartOpr =0
StartCount = 0
WorkFinal. MoveFirst
Do Until WorkFinal EOF
1f ChildOpr(i) = WorkFinal("Successor") Then
StartOpr = -1
StartCount = StartCount + |
End If
WorkFinal. MoveNext
Loop
If StartOpr <> -1 Then
MyStart. AddNew
MyStart("Oprld") = TempOprid
MyStart("Start") = ChildOpr(i)
MyStart.Update
Elself StartOpr = -1 Then ' is a successor but is cyclic
If StartCount = 1 Then
WorkFinal.MoveFirst
Do Until WorkFinal. EOF
It ChildOpr(i) = WorkFinal("Successor") Then
If WorkFinal("Type") = 3 Then
MyStart. AddNew
MyStart("Oprld") = TempOprld
MyStart("Start") = ChildOpr(i)
MyStart.Update
Exit Do
End If
End If
WorkFinal.MoveNext
Loop
End If

End If
Next

" check if there are operations that are not predecessor
Fori=1 To ChildOprCount
FinishOpr =0
FinishCount =0
WorkFinal. MoveFirste
Do Until WorkFinal. EOF
If ChildOpr(i) = WorkFinal("Predecessor”) Then
FinishOpr = -1
FinishCount = FinishCount + |
End If
WorkFinal. MoveNext
Loop
If FinishOpr <> -1 Then
MyFinish.AddNew
MyFinish("Oprld") = TempOprld
MyFinish("Finish") = ChildOpr(i)
MyFinish.Update
Elself FinishOpr = -1 Then
If FinishCount = 1 Then 'is a predecessor but is cyclic
WorkFinal.MoveFirst
Do Until WorkFinal. EOF
If ChildOpr(i) = WorkFinal("Predecessor”) Then
If WorkFinal("Type") = 3 Then
MyFinish.AddNew
MyFinish("Oprld") = TempOprld
MyFinish("Finish") = ChildOpr(i)
MyFinish.Update®
Exit Do
End If
End If
WorkFinal.MoveNext
Loop
End If
End If
Next
End If
End If
End Sub

Sub BackupFile ()

Msg$ = "This step would delete information from last translation.” & Chr$(10) + Chr$(13)
Msg$ = Msg$ + Do you want to continue?"
Response = MsgBox(Msg$, 36)
If Response = 7 Then
Exit Sub
End If

TranForm!Frame3D1.Visible = True

TranForm!Panel3D1.Visible = True
TranForm!Panel3D1.FloodPercent = 1

154

" first make a copy of the project database

FileCopy "blank.mdb", "temp007.mdb"

" dutabase for the project

Set WorkDb = OpenDa.abase("temp007.mdb", True, False)

Set WorkOpr = WorkDb.OpenTable("OprTable”) ' operation table

Set WorkRel = WorkDb.OpenTable("RelationTable") * operation sequencing table

Set WorkProcess = WorkDb.OpenTable("ProTable”) ' Process table

Set WorkLine = Work Db.OpenTable("Position") ' Position of the Operations

Set WorkLinel = WerkDb.OpenTable("Position!") ' Position of the Process

Set WorkRes = WorkDb.OpenTable("ResourceTable") ' Resource for the project
TranForm!Panel3D | .FloodPercent = 2

Set WorkNodes = WorkDb.OpenTable("NodeTable") * Nodes for the process

Set WorkCon = WorkDb.OpenTable("ConnectionTable") ' connection for process nodes
Set WorkProlnter = WorkDb.OpenTable("FollowTable") * Process inter-dependency table
Set WorkCrew = WorkDb.OpenTable("CrewTable") ' crew combination table

Set WorkAllocate = WorkDb.OpenTable("AllocateTable") ' Allocation of the resoucres to
operation

“cet WorkAm = WorkDb.OpenTable("AmFrnTable") * allocate and free resource nodes
Set WorkFinal = WorkDb.OpenTable("FinalRelation") * final relations for the project
Set WorkStart = WorkDb.OpenTable("StartTable") * determined starts

Set WorkFinish = WorkDb.OpenTakic("FinishTable") 'determined finish
TranForm!Panel3D | FloodPercent = 3

' convert the operation sequencing information

Call LowestOprLink

End Sub
Sub DeriveFinish ()

My’ -t ~JoveFirst
Do Until MyOpr.EOF
If MyOpr("Oprld"; = CheckFinish T: >n
*if the only child operation is lowest
If MyOpr("Lowest”) = True And MyOpr("OprTvpe") <> 1 Then
MyFinish.AddNew
MyFinish("Oprld") = TempOprld
MyFinish("Finish") = CheckFinish
MyFinish.Update
Exit Do
Else
"if the child is not lowest then determine the start and finish
If MyFinish.RecordCount > 0 Then MyFinish.MoveFirst
Do Until MyFinish. EOF
It MyFinish("Oprld") = CheckFinish Then
WorkFinish.AddNew
WorkFinish("Oprld") = MyFinish("Oprld")
WorkFinish(“Finish") = MyFinish("Finish")
WorkFinish.Update
End If
MyFinish.MoveNext
Loop
If WorkFinish.RecordCount > 0 Then WorkFinish.MoveFirst
Do Until WorkFinish.EOF

155

MyFinish.AddNew
MyFinish("Oprld") = TempOprld
MyFinish("Finish") = WorkFinish("Finish")
MyFinish.Update
WorkFinish.MoveNext
Loop
End If
End If
MyOpr.MoveNext
Loop

End Sub
Sub DeriveStart ()

MyOpr.MoveFirst
Do Until MyOpr.EOF
If MyOpr("Oprld") = CheckStart Then
' if the only child operation is lowest
If MyOpr("Lowest") = True And MyOpr("OprType") <> | Then
MyStart. AddNew
MyStart("Oprld") = TempOprld
MyStart("Start") = CheckStart
MyStart.Update
Exit Do
Else
' if the child is not lowest then determine the start and finish
If MyStart.RecordCount > 0 Then MyStart.MoveFirst
Do Until MyStart. EOF
If MyStart("Oprld") = Chec..Start Then
WorkStart. AddNew
WorkStart("Oprld") = MyStart("Cprld")
WorkStart{"Start") = MyStart("Start")
WorkStart.Update
End If
MyStart.MoveNext
Loop
If WorkStart.RecordCount > 0 Then WorkStart. MoveFirst
Do Until WorkSta:t. EOF
MyStart. AddNew
MyStart("Oprld") = TempOprld
MyStart("Start") = WorkStart("Start")
MyStart.Update
WorkStart. MoveNext
Loope
End If
End If
MyOpr.MoveNext
Loop
End Sub

Sub DisOprRel ()

If MyFinal.RecrtdCount > 0 Thn MyFinal MoveFirst

156

Do Until MyFinal EOF

If MyFinal("Type”) = 1 Then
A% = "Serial”

Elself MyFinal("Type") = 2 Then
A$% = "Parallel”

Elself MyFinal("Type") = 3 Then
A$ = "Cyclic”

Elself MyFinal("Type") = 4 Then
A% = "Hammock"

End If
TempText$ = TempText$ + "Predecessor Operation: " + Str$(MyFinal("Predecessor)) + "

Successor Operation: " + Str$(MyFinal("Successor”)) + " Parent ID: " + Str$(MyFinal("Parent")) +
" Relation Type: " + A$ + Chr$(13) + Chr$(10)
MyFinal.MoveNext
Loop
TranForm!Textl.Text = TempText$
TranForm!Textl.Visible = True
End Sub

Sub LowestOprLink ()

" clear all old translation if any from project
If MyFinal.RecordCount > 0 Then MyFinal. MoveFirst
Do Until MyFinal. EOF
MyFinal.Delete
MyFinal.MoveNext
Loop
If MyFinish.RecordCount > 0 Then MyFinish.MoveFirst
Do Until MyFinish.EOF
MyFinish.Delete
MyFinish.MoveNext
Loop
If MyStart.RecordCount > 0 Then MyStart.MoveFirst
Do Until MyStart. EOF
MyStart.Delete
MyStart.MoveNext
Loop

" copy all operations to the work database
MyOpr.MoveFirst
Do Until MyOpr.EOF
MyOpr.Edit
MyOpr("Level”) = |
MyOpr.Update
MyOpr.MoveNext
Loep

TranForm!Panel3D1.FloodPercent = 3

MyOpr.MoveFirst
Do Until MyOpr.EOF
If MyOpr("Parentld") <> 0 Then
WorkOpr.AddNew
WorkOpr("OpName") = MyOpr("OpName")

157

WorkOpr("Oprld") = MyOpr("Oprid")
WorkOpr("Code") = MyOpr("Code")
WorkOpr("Parentld") = MyOpr("Parentld™)
WorkOpr("Lowest") = MyOpr("Lowest")
WorkOpr("OX") = MyOpr("OX")
WorkOpr("OY") = MyOpr("OY")
WorkOpr("OprType") = MyOpr("OprType")
WorkOpr("ParentName") = MyOpr("ParentName")
WorkOpr("Level") = 1
WorkOpr.Update

End If

MyOpr.MoveNext

Loop

" assign levels to all the project operations
MyOpr.MoveFirst
Do Until MyOpr.EOF
If MyOpr("Parentld") = 0 Then
MyOpr.Edit
MyOpr("Level") = 1
MyOpr.Update
End If
MyOpr.MoveNext
Loop

TranForm!Panel3D1.FloodPercent = 4
WorkOpr.Index = "ParentldIx"
MyOpr.Index = "OprldIx"

WorkOpr.MoveFirst

Do Until WorkOpr.EOF
MyOpr.Seek "=", WorkOpr{"Parentld")
WorkOpr Edit
WorkOpr("Level”; .- MyOpr("Level") + 1
WorkOpr.Update
MyOpr.Seek "=", WorkOpr("Oprld")
MyOpr.Edit
MyOpr("Level") = WorkOpr("Level")
MyOpr.Update
WorkOpr.MoveNext

Loop

TranForm!Panel3D1.FloodPercent = 5

' collect all the lowest level operations
ReDim LowLevelOpr(50)
ReDim LowLevelParent(50)

LowOprCount = 0
MyOpr.Index = "ParentldIx"
If MyOpr.RecordCount > 0 Then MyOpr.MoveFirst
Do Until MyOpr.EOF
If MyOpr("Lowest") = True Arnd MOpr("OprType") <> 1 Then
LowOprCount = LowOprCuL ¢ 1
LowLevelOpr(LowQorCiint) = MyOpr("Oprld”)

158

LowLevelParent(LowOprCount) = MyOpr("Parentld"”)
End If
MyOpr.MoveNext
Loop

“ copy each lowest level relation from the relation table to the final table
Fori=1To L..wOprCount
TranForm!Panel3D | .FloodPercent = i * 10 / LowOprCount
MyRel.MoveFirst
Do \Until MyRel.EOF
If MyRel("Predecessor”) = LowLevelOpr(i) Then
TempSuc = MyRel("Successor”)
For n =1 To LowOprCount
If TempSuc = LowLevelOpr(n) Then
WorkFinal. AddNew
WorkFinal("Predecessor”) = MyRel("Predecessor")
WorkFinal("Successor") = MyRel("Successor")
WorkFinal("Type") = MyRel("Type")
WorkFinal("Parent") = MyRel("Parent")
WorkFinal("ID") = MyRel("Relationld")
WorkFinal.Update
Exit For
End If
Next
End If
MyRel.MoveNext
Loop
MyRel. MoveFirst
Do Until MyRel.EOF
If MyRel("Successor") = LowLevelOpr(i) Then
TempPre = MyRel("Predecessor”)
For n =1 To LowOprCount
If TempPre = LowLevelOpr(n) Then
WorkFinal. AddNew
WorkFinal("Predecessor") = MyRel("Predecessor™)
WorkFinal("Successor") = MyRel("Successor")
WorkFinal("Type") = MyRel("Type")
WorkFinal("Parent”) = MyRel("Parent")
WorkFinal("ID") = MyRel("Relationld")
WorkFinal.Update
Exit For
End If
Next
End If
MyRel.MoveNext
Loop
Next

' remove duplicates
TranForm!Panel3D 1.FloodPercent = 11
WorkFinal.Index = "IDIX"
WorkFinal.MoveFirst

Do Until WorkFinal. EOF

159

MyFinal. AddNew
MyFinal("Predecessor”) = WorkFinal("Predecessor")
MyFinal("Successor") = WorkFinal("Successor")
MyFinal("Type") = WorkFinal("Type")
MyFinal("Parent") = WorkFinal("Parent")
MyFinal("ID") = WorkFinal("ID")
Templd = WorkFinal("ID")
MyFinal.Update
WorkFinal.Delete
If WorkFinal.RecordCount > 0 Then WorkFinal.MoveFirst
Do Until WorkFinal. EOF

If WorkFinal("1D") = Templd Then

WorkFinal.Delete

End If

WorkFinal.MoveNext
Loop
If WorkFinal.RecordCount > 0 Then WorkFinal.MoveFirst

Loop

TranForm!Panel3D1.FloodPercent = 12
tl =12
' based on the levels of the operation start analysis (not lowest)
MyOpr.Index = "LevelldIx"
MyOpr.MoveFirst
Do Until MyOpr.EOF
ChildOprCount = 0
If MyOpr("Lowest") = False Or MyOpr("OprType"} = | Then
TempOprld = MyOpr("Oprld™)
MyOpr.MoveFirst
Do Until MyOpr.EOF
If MyOpr("Parentld") = TempOprld Then
ChildOprCount = ChildOprCount + 1
ChildOpr(ChildOprCount) = MyOpr("Oprld™)
End If
MyOpr.MoveNext
Loop
' subroutine to analyze the children
Call AnalyzeChild(ChildOpr(), ChildOprCount, StatusOfChild)
If StatusOfChild = 1 Then ' all are lowest level
Cail AnalyzeRelations(ChildOpr(), ChildOprCount, StatusOfChild)
Else ' not lowest case ****k*
Call AnalyzeNotLow(ChildOpr(), ChildOprCount)
End If
tl=tl+1
Ift] <= 50 Then
TranForm!Panei3D ! .FloodPercent = tl
End If
MyOpr.MoveFirst
Do Until MyOpr.EOF
If MyOpr("Oprld") = TempOprld Then
Exit Do
End If
MyOpr.MoveNext
Loop

160

End If
MyOpr.MoveNext
Loop

TranForm!Panel3D1.FloodPercent = 51
" after determining the start & finish of the operations at all
'levels in terms of the lowest level operations derive the links
If WorkFinal.RecordCount > 0 Then WorkFinal.MoveFirst
Do Until WorkFinal. EOF

WorkFinal.Delete

WorkFinal.MoveNext
Loop

TranForm!Panel3D1.FloodPercent = 52
If MyRel.RecordCount > 0 Then MyRel.MoveFirst
Do Until MyRel. EOF
MyFinal.Index = "IDIX"
MyFinal.Seek "=", MyRel("RelationID")
If MyFinal.NoMatch Then
WorkFinal. AddNew
WorkFinal("Predecessor") = MyRel("Predecessor")
WorkFinal("Successor") = MyRel("Successor")
WorkFinal("Type") = MyRel("Type")
WorkFinal("Parent”) = MyRel("Parent")
WorkFinai("ID") = MyRel("Relationld")
WorkFinal.Update
End If
MyRel.MoveNext
Loop

TrunForm!Panel3D1.FloodPercent = 60
ReDim DerivedPre(50), DerivedSuc(50)
If WorkFinal.RecordCount > 0 Then WorkFinal. MoveFirst
Do Until WorkFinal EOF
PreCount =0
SucCount = 0
If WorkFinal("Type") = I Then
MyFinish.MoveFirst
Do Until MyFinish.EOF
If MyFinish("OprID") = WorkFinal("Predecessor”) Then
PreCount = PreCount + |
DerivedPre(PreCount) = MyFinish("Finish")
End If
MyFinish.MoveNext
Loope
If MyStart.RecordCount > 0 Then MyStart.MoveFirst
Do Until MyStart. EOF
If MyStart("OprID") = WorkFinal("Successor") Then
SucCount = SucCount + |
DerivedSuc(SucCount) = MyStart("Start")
End If
MyStart. MoveNext
Loop
Fori = 1 To PreCount

161

For j = 1 To SucCount
MyFinal. AddNew
MyFinal("Predecessor") = DerivedPre(i)
MyFinal("Successor") = DerivedSuc(j)
MyFinal("Type") = |
MyFinal("Parent”) = WorkFinal("Parent")
MyFinal("ID") = WorkFinal("ID")
MyFinal . Update
Next
Next
Elself WorkFinal("Type") = 2 Thene
MypFinish.MoveFirst
Do Until MyFinish. EOF
If MyFinish("OprID") = WorkFinal("Predecessor") Then
PreCount = PreCount + 1
DerivedPre(PreCount) = MyFinish("Finish")
End If
MyFinish.MoveNext
Loop
MyStart.MoveFirst
Do Until MyStart. EOF
If MyStart("OprID") = WorkFinal("Successor") Then
SucCount = SucCount + 1
DerivedSuc(SucCount) = MyStart("Start")
End If
MyFinish.MoveNext
Loop
Fori =1 To PreCount
For j = 1 To SucCount
MyFinal. AddNew
MyFinal("Predecessor") = DerivedPre(i)
MyFinal("Successor") = DerivedSuc(j)
MyFinal("Type") =2
MyFinal("Parent") = WorkFinal("Parent")
MyFinal("ID") = WorkFinal("ID")
MyFinal.Update
Next
Next
Elself WorkFinal("Type") = 3 Then
MyFinish.MoveFirst
Do Until MyFinish.EOF
If MyFinish("OprID") = WorkFinal("Predecessor") Thene
PreCount = PreCount + 1
DerivedPre(PreCount) = MyFinish("Finish")
End If
MyFinish.MoveNext
Loop
MyStart.MoveFirst
Do Until MyStart. EOF
If MyStart("OprID") = WorkFinal("Successor") Then
SucCount = SucCount + 1
DerivedSuc(SucCount) = MyStart("Start")
End If
MyFinish.MoveNext

162

Loop
Fori = | To PreCount
For j =1 To SucCount
MyFinal.AddNew
MyFinal("Predecessor") = DerivedPre(i)
MyFinal("Successor") = DerivedSuc(j)
MyFinal("Type") =3
MyFinal("Parent") = WorkFinal("Parent")
MyFinal("ID") = WorkFinal("ID")
MyFinal.Update
Next
Next
Elself WorkFinal("Type") = 4 Then
MyFinish.MoveFirst
Do Until MyFinish.EOF
If MyFinish("OprID") = WorkFinal("Predecessor") Then
PreCount = PreCount + |
DerivedPre(PreCount) = MyFinish("Finish")
End If
MyFinish.MoveNext
Loop
MyStart.MoveFirst
Do Until MyStart.EOF
If MyStart("OprID") = WorkFinal("Predecessor") Then
SucCount = SucCount + 1
DerivedSuc(SucCount) = MyStart("Start")
End If
MyFinish.MoveNext
Loop
For i = 1 To PreCount
For j = 1 To SucCount
MyFinal. AddNew
MyFinal("Predecessor") = DerivedPre(i)
MyFinal("Successor") = DerivedSuc(j)
MyFinal("Type") =4
MyFinal("Parent") = WorkFinal("Parent")
MyFinal("ID") = WorkFinal("ID")
MyFinal.Update
Next
Next
End If
WorkFinal.MoveNext
Loop

' after completing the operation sequening start resource listing
TranForm!Panel3D1.FloodPercent = 100

TranForm!Panel3D1.Visible = False

TranForm!Frame3D|.Visible = False

TranForm!Label I.Caption = "Translation Complete. Choose DISPLAY to see results.”
TranForm!Labell.Visible = True

End Sub

Sub ResourceList ()

163

If MyRes.RecordCount > 0 Then MyRes. MoveLast
NumRes = MyRes.RecordCount
ReDim ResText(NumRes) As String

MyRes.Index = "ResIDIx"

If MyRes.RecordCount > 0 Then MyRes.MoveFirst

CountRes = 1

Do Until MyRes.EOF
ResText(CountRes) = MyRes("ResourceName™) & "(" & Str$(MyRes("ResourcelD")) & "y "
CountRes = CountRes + 1
MyRes.MoveNext

Loop

Fori=1To NumRes
MyArn.Index = "Prld"
If MyArn.RecordCount > 0 Then MyAm.MoveFirst
Do Until MyAm.EOF
If MyAm("Resourceld") =i Then
ResText(i) = ResText(i) & Str$(MyAm("Processld")) & ","
End If
MyArn.MoveNext
Loop
MyArn.MoveFirst
Next

TranForm!Text1.Visible = True
Fori=1To NumRes
TempText$ = TempText$ + ResText(i) + Chr$(13) + Chr$(10)
Next
TranForm!Textl . Text = TempText$
End Sub

Appendix C: Results of the case study

Table C-1: Processes for the Peace River bridge project

Process Number Process

1 EXCAVTION PIER-1

2 PILLING ABT-1

3 PILING PIER-1

4 BLINDING LY PIER-1

5 FOOTNG FORM PIER-1

6 . FOOTNG REBAR PIER-1
7 FOOTNG CONC PIER-1

8 SHAFT FORM PIER-1

9 ___ |SHAFT REBAR PIER-1

) SHAFT CONC PIER-1
11 SHAFT FORM PIER-12

12 SHAFT REBAR PIER-12
13 SHAFT CONC PIER-12
14 CAP FORM PIER-1

15 CAP REBAR PIER-1

16 CAP CONC PIER-1

17 COFFERDAM PIER-2

18 BLINDING PIER-2

19 FOOTING FORM PIER-2
20 FOOTING REBAR PIER-2
21 FOOTING CONC PIER-2
22 PEDESTAL FORM PIER-2
23 PEDESTAL REBAR PIER-2
24 PILING ABT-2

25 PEDESTAL CONC PIER-2
26 PEDESTAL FORM PIER-22
27 PEDESTAL REE AR PIER-22
28 PEDESTAL CONC PIER-22
29 SHAFT FORM PIER-2

30 SHAFT REBAR PIER-2

31 SHAFT CONC PIER -2

32 SHAFT FORM PIER-22

33 SHAFT REBAR PIER-22
34 SHAFT CONC PIER-22

35 CAP FORM PIER-2

36 CAP REBAR PIER-2

37 CAP CONC PIER-2

38 BERM PIER-3

39 COFFER DAM PIER-3

40 BLINDING LY PIER-3

165

41 FOOTNG FORM PIER-3
42 FOOTNG REBAR PIER-3
43 FOOTNG CONC PIER-3

44 PEDESTAL FORM PIER-3
45 PEDESTAL REBAR PIER-3
46 PEDESTAL CONC PIER-3
47 PEDESTAL FORM PIER-32
48 PEDESTAL REBAR PIER-32
49 PEDESTAL CONC PIER-32
50 SHAFT FORM PIER-3

51 SHAFT REBAR PIER-3

52 SHAFT CONC PIER-3

53 SHAFT FORM PIER-32

54 SHAFT REBAR PIER-32

55 SHAFT CONC PIER-32

56 CAP FORM PIER-3

57 CAP REBAR PIER-3

58 CAP CONC PIER-3

59 BERM PIER-4

60 COFFERDAM PIER-4

61 BLINDNG LY PIER-4

62 FOOTNG FORM PIER-4

63 FOOTING REBAR PIER-4
64 FOOTNG CONC PIER-4

65 PEDESTAL FORM PIER-4
66 PEDESTAL REBAR PIER-4
67 PEDESTAL CONC.. PIER-4
68 PEDESTAL FORM PIER-42
69 PEDESTAL REBAR PIER-42
70 PEDESTAL CONC PIER-42
71 SHAFT FORM PIER-4

72 SHAFT REBAR PIER-4

73 SHAFT CONC PIER-4

74 SHAFT FORM PIER-42

75 SHAFT REBAR PIER-42

76 SHAFT CONC PIER-42

78 CAP FORM PIER-4

79 CAP REBAR PIER-4

80 CAP CONC PIER4

81 BERM PIER-5

82 COFFERDAM PIER-5

83 BLINDING LY PIER-5

84 FOOTNG FORM PIER-5

85 FOOTNG REBAR PIER-5
86 FOOTING CONC PIER-$

87

PEDESTAL FORM PIER-5

166

89

PEDESTAL REBAR PIER-5

90 PEDESTAL CONC PIER-5
91 PEDESTAL FORM PIER-52
92 PEDESTAL REBAR PIER-52
93 PEDESTAL CONC PIER-52
94 SHAFT FORM PIER-5

95 SHAFT REBAR PIER-

96 SHAFT CONC PIER-5

97 SHAFT FORM PIER-52

98 SHAFT REBAR PIER-52

99 SHAFT CONC PIER-52

100 CAP FORM PIER-5

101 CAP REBAR PIER-5

102 CAP CONC PIER-5

103 BLINDING LY PIER-6

104 FOOTNG FORM PIER-6
105 FOOTNG REBAR PIER-6
106 FOOTNG CONC PIER-6
107 PEDESTAL FORM PIER-6
108 PEDESTAL REBAR PIER-6
109 PEDEST AL CONC PIER-6
110 SHAFT FORM PIER-6

111 SHAFT REBAR PIER-6

112 SHAFT CONC PIER-6

113 SHAFT FORM PIER-62

114 SHAFT REBAR PIER-62

115

SHAFT CONC PIER-62

116

CAP FORM PIER-6

117

CAP REBAR PIER-6

118

CAP CONC PIER-6

167

Table C-2: Simulation results for the deterministic case

Process Start (in days) Finish (in days) Duration (in days)
EXCAVTION PIER-1 0.00 15.35 15.35
PILLING ABT-1 0.00 6.00 6.00
PILING PIER-1 15.35 32.23 16.88
BLINDING LY PIER-1 32.23 32.36 0.14
FOOTNG FORM PIER-1 32.36 35.36 3.00
FOOTNG REBAR PIER-| 35.36 41.36 6.00
FOOTNG CONC PIER-! 41.36 44.20 2.84
SHAFT FORM PIER-1 43.20 46.20 3.00
SHAFT REBAR PIER-1 46.20 52.20 6.00
SHAFT CONC PIER-1 52.20 53.07 0.86
SHAFT FORM PIER-12 54.07 57.07 3.00
SHAFT REBAR PIER-12 57.07 63.07 6.00
SHAFT CONC PIER-12 63.07 63.93 0.86
CAP FORM PIER-1 63.93 65.93 2.00
CAP REBAR PIER-1 65.93 70.93 5.00
CAP CONC PIER-1 70.93 72.21 1.28
COFFERDAM PIER-2 72.21 131.29 59.07
BLINDING PIER-2 131.29 131.42 e
FOOTING FORM PIER-2 139.51 142.51 Y
FOOTING REBAR PIER-2 148.51 154.51 6.00
FOOTING CONC PIER-2 154.51 157.52 3.01
PEDESTAL FORM PIER-2 157.83 162.83 500
PEDESTAL REBAR PIER-2 164.83 171.83 7.00
PILING ABT-2 167.66 167.85 0.19
PEDESTAL CONC PIER-2 171.83 173.21 1.39
PEDESTAL FORM PIER-22 174.92 179.92 5.00
PEDESTAL REBAR PIER-22 181.92 188.92 7.00
PEDESTAL CONC PIER-22 188.92 190.31 1.39
SHAFT FORM PIER-2 190.31 194.31 4.00
SHAFT REBAR PIER-2 194.92 201.92 7.00
SHAFT CONC PIER -2 20192 203.02 1.09
SHAFT FORM PIER-22 : 204.02 208.02 4.00
SHAFT REBAR PIER-22 T 208.02 215.02 7.00
SHAFT CONC PIER 22 215.02 216.11 1.09
CAP FORM PIER-2 216.11 219.11 3.00
CAP REBAR PIER-2 219.11 225.11 6.00
CAP CONC PIER-2 225.11 226.54 1.43
BERM PIER-3 15.35 48.75 33.40
COFFER DAM PIER-3 48.75 99.04 50.29
BLINDING LY PIER-3 99.04 99.17 0.14
FOOTNG FORM PIER-3 99.17 102.17 3.00
FOOTNG REBAR PIER-3 102.17 108.17 6.00
FOOTNG CONC PIER-3 108.17 111.18 3.01
PEDESTAL FORM PIER-3 110.18 119.18 9.00

168

PEDESTAL REBAR PIER-3 119.18 128.18 9.00
PEDESTAL CONC PIER-3 128.18 129.51 1.32
PEDESTAL FORM PIER-32 130.51 139.51 9.00
PEDESTAL REBAR PIER-32 139.51 148.51 9.00
PEDESTAL CONC PIER-32 148.51 149.83 1.32
SHAFT FORM PIER-3 149.83 157.83 8.00
SHAFT REBAR PIER-3 157.83 164.83 7.00
SHAFT CONC PIER-3 164.83 165.92 1.09
SHAFT FORM PIER-32 166.92 174.92 8.00
SHAFT REBAR PIER-32 174.92 181.92 7.00
SHAFT CONC PIER-32 181.92 183.02 1.09
CAP FORM PIER-3 183.02 186.02 3.00
CAP REBAR PIER-3 188.92 194.92 6.0
CAP CONC PIER-3 194.92 196.35 143
BERM PIER-4 33.40 66.79 32 40
COFFERDAM PIER-4 66.79 163.54 96.75
BLINDNG LY PIER-4 163.54 163.67 0.14
FOOTNG FORM PIER-4 163.67 166.67 3.00
FOOTINS REBAR PIER-4 166.67 172.67 6.00
FOOT:-: CONC PIER-4 172.67 175.52 2.84
PEDES'| AL FORM PIER-4 174.52 183.52 9.00
PEDESTAL REBAR PIER-4 183.52 192.52 9.00
PEDESTAL CONC.. PIER-4 192.52 193.99 147
PEDESTALFORMPIER-42 | 1948 203.99 9.00
PEDESTAL REBAR PIER-42 203.99 212.99 9.00
PEDESTAL CONC PIER-12 212.99 214.45 1.47
SHAFT FORM PIER-4 214.45 22: 45 8.00
SHAFT REBAR PIER-4 222.45 229.45 7.00
SHAFT CONC PIER-4 229.45 230.55 1.09
SHAFT FORM PIER-42 231.55 239.55 8.00
SHAFT REBAR PiER-42 239.55 246.55 7.00
SHAFT CONC PIER-42 246.55 247.64 1.09
CAP FORM PIER-4 247.64 250.64 3.00
CAP REBAR PIER-4 250.64 256.64 6.00
CAP CONC PIER4 256.64 257.80 1.15
BERM PIER-5 0.00 33.40 33.40
COFFERDAM PIER-5 33.54 66.79 33.%5
BLINDING LY PIER-5 €6.79 66.92 0.14
FOOTNG FORM PIER-5 66.92 69.92 3.00
FOOTNG REBAR PIER-5 69.92 75.92 6.00
FOOTING CONC PIER-5 75.92 78.77 2.84
PEDESTAL FORM PIER-5 7177 80.77 3.00
PEDESTAL REBAR PIER-5 80.77 86.77 6.00
PEDESTAL CONC PIER-5 86.77 88.24 1.47
PEDESTAL FORM PIER-52 89.24 92.24 3.00
PEDESTAL REBAR PIER =2 92.24 98.24 6.00

169

PEDESTAL CONcC PIER-52 98.24 99.70 1.47
SHAFT FORM PIER-5 99.70 105.70 6.00
SHAFT REBAR PIER-5 105.70 112.70 7.00
SHAFT CONC PIER-5 112.70 113.80 1.09
SHAFT FORM PIER-52 114.80 120.80 6.00
SHAFT REBAR PIER-52 120.80 127.80 7.00
SHAFT CONC PIER-52 127.80 128.89 1.09
CAP FORM PIER-5 128.89 131.89 3.00
CAP REBAK PIER-5 131.89 137.89 6.00
CAP CONC PIER-5 137.89 139.32 1.43
BLINDING LY PIER-6 0.00 0.14 0.14
FOOTNG FORM PIER-6 0.14 314 3.00
FOOTNG REBAR PIER-6 3.14 9.14 6.00
FOOTNG CONC PIER-6 9.14 11.98 2.84
PEDESTAL FORM PIER-6 10.98 15.98 5.00
PEDESTAL REBAR PIER-6 15.98 22.98 7.00
PEDESTAL CONC PIER-6 22.98 25.32 2.34
SHAFT FORM PIER-6 24.32 31.32 7.00
SHAFT REBAP. PIER-6 31.32 38.32 7.00
SHAFT CONC PIER-6 38.32 39.35 1.03
SHAFT FORM PIER-62 40.35 47.35 7.00
SHAFT REBAR PIER-62 47.35 54.35 7.00
SHAFT CONC PIER-62 54.35 55.39 1.03
CAP FORM PIER-6 55.39 58.3¢ 3.00
CAP REBAR PIER-6 58.39 64.39 6.00
CAP CONC PIER-6 64.39 65.77 1.39

170

Table C-3: Simulation results for the stochastic case (mean of 30 runs)

Process Start (in days) End (in days) Duration (days)
EXCAVTION PIER-] 0.00 24.63 24.63
PILLING ABT-1 0.00 6.38 6.38
PILING PIER-] 24.63 42.51 17.88
BLINDING LY PIER-] 42.51 42.66 0.15
FOOTNG FORM PIER-1 42.66 45.66 3.00
FOOTNG REBAR PIER-1 45.66 51.56 5.90
FOOTNG CONC PIER-] 51.56 54.44 2.88
SHAFT FORM PIER-1 53.44 56.50 3.06
1SHAFT REBAR PIER-1 56.50 62.48 5.98
SHAFT CONC PIER-1 62.48 63.39 0.91
SHAFT FORM PIER-12 64.39 67.36 2.97
SHAFT REBAR PIER-12 117.27 123.13 5.86
SHAFT CONC PIER-12 123.13 124.02 0.89
CAP FORM PIER-1 124.02 126.03 2.01
CAP REBAR PIER-] 129.16 134,22 5.07
CAP CONC PIER-1] 134.22 135.53 1.31
COFFERDAM PIER-2 135.53 184.71 49.18
BLINDING PIER-2 184.71 184.87 0.16
FOOTING FORM PIER-2 184.87 187.91 3.04
FOOTING REBAR PIER-2 193.72 199.73 6.01
PILING ABT-2 195.07 195.29 0.22
FFOOTING CONC PIER-2 | 19973 202.82 3.09
PEDESTAL FORM PIER-2 223.38 228.41 5.03
PEDESTAL REBAR PIER-2 230.35 237.34 7.00
PEDESTAL CONC PIER-Z 237.34 238.79 1.45
PEDESTAL FORM PIER-22 240.56 245.57 5.01
PEDESTAL REBAR PIER-22 247.55 254.58 7.04
PEDESTAL CONC PIER-22 254.58 256.00 142
SHAFT FORM T1ER-2 256.00 260.10 4.10
SHAFT REB ‘. PIER-2 260.57 267.59 7.02
SHAFT CONC PIER -2 267.59 268.72 113
SHAFT FORM PIER-22 269.72 273.71 9
. 3HAFT REBAR PIER-22 273.71 280.70 6.99
SHAFT CONC PIER-22 280.70 281.81 1.11
CAP FORM PIER-2 281.81 284.79 2.97
CAP REBAR PIER-2 284.75 290.76 5.98
CAP CONC PIER-2 290.76 292.19 143
BERM PIER-3 24.63 58.31 33.67
COFFER DAM PIER-3 62.48 117.27 54.79
BLINDING LY PIER-3 117.27 11741 0.14
FOOTNG FORM PIER-3 117.41 120.46 3.05
FOOTNG REBAR PIER-3 123.13 129.16 6.03
FOOTNG CONC PIER-3 129.16 132.21 3.05
PEDESTAL FORM PIER-3 131.21 140.20 8.99
PEDESTAL REBAR PIER-3 184.71 192.72 9.01

171

PEDESTAL CONC PIER-3 193.72 195.06 1.35
PEDESTAL FORM PIER-32 196.06 205.06 8.99
PEDESTAL REBAR PIER-32 205.06 214.05 8.99
PEDESTAL CONC PIER-32 214.05 215.42 1.38
SHAFT FORM PIER-3 215.42 223.38 7.96
SHAFT REBAR PIER-3 223.38 230.35 6.97
SHAFT CONC PIER-3 230.35 231.49 .15
SHAFT FORM PIZR-32 232.49 240.56 8.06
SHAFT REBAR PIER-32 240.56 247.55 6.99
SHAFT CONC PIER-32 247.55 248.68 113
CAP FORM PIER-3 248.68 251.70 3.03
CAP REBAR PIER-3 254.58 260.57 5.98
CAP CONC PIER-3 260.57 262.01 1.4
BERM PIER-4 30.29 60.49 30.19
COFFERDAM PIER-4 87.60 147.47 59.87
BLINDNG LY PIER-4 147.47 147.62 0.14
FOOTNG FORM PIER-4 167.38 170.37 2.99
FOOTING REBAR PIER-4 175.65 182.73 7.08
FOOTNG CONC PIER-4 182.73 185.61 2.88
PEDESTAL FORM PIER-4 198.39 208.51 10.13
PEDESTAL REBAR PIER4 208.51 216.56 8.05
PEDESTAL CONC.. PIER-4 216.56 218.09 1.53
PEDESTAL FORM PIER-42 219.09 229.69 10.60
PEDESTAL REBAR PIER-42 229.69 232.92 3.23
PEDESTAL CONC PIER42 232.92 234.43 .51
SHAFT FORM PIER-4 234.43 242.23 7.80
SHA-. REBAR PIER4 242.23 250.31 8.09
SHA: T CONC PIER-4 250.31 251.44 112
SHAFT FORM PIER-42 252.44 262.70 10.27
SHAFT REBAR PIER-42 262.70 272.32 9.62
SHAFT CONC PIER-42 272.32 273.44 .12
CAP FORM PIER-4 273.44 277.46 4.02
CAP REBAR PIER4 277.46 282.18 472
CAP CONC PIER4 282.18 283.61 1.43
BERM PIER-5 0.00 30.29 30.29
COFFERDAM PIER-5 30.29 80.22 49.92
BLINDING LY PIER-5 80.22 8037 0.i5
FOOTNG FORM PIER-5 80.37 §3.42 3.06
FOOTNG REBAR PIER-5 155.19 161.31 6.12
FOOTING CONC PIER-5 161.31 164.26 2.94
PEDESTAL FORM PIER-5 163.26 167.3¢8 4.12
PEDESTAL REBAR PIER-5 167.38 175.65 %28
PEDESTAL CONC PIER-5 175365~ 177.16 151
PEDESTAL FORM PIER-52 178.16 182.27 4.11
PEDESTAL REBAR PIER-52 182.73 189.27 6.54
PEDESTAL CONC PIER-52 189.27 190.82 1.54
SHAFT FORM Pii:R-5 190.82 198.39 7.57

172

[SHAFT REBAR PIER-5 198.39 207.74 9.36
SHAFT CONC PIER-5 207.74 208.86 1.12
SHA'™ ¥ORM PIER-52 209.86 215.44 5.58
SHAFT REBAR PIER-52 216.56 22598 9.41
SHAFT CONC PIER-52 225.98 227.11 1.14
CAP FORM PIER-5 229.69 232.70 3.02
CAP REBAR PIER-5 232.92 239.44 6.53
CAP CONC PIER-5 239.44 240.90 1.46
BLINDING LY PIER-6 0.00 0.14 0.14
FOOTNG FORM PIER-6 0.14 3.15 3.01
FOOTNG REBAR PIER-6 3.15 9.17 6.02
FOOTNG CONC PIER-6 9.17 12.08 2.91
PEDESTAL FORM PIER-6 11.08 16.08 4.99
PEDESTAL REBAR PIER-6 16.08 23.00 6.92
PEDESTAL CONC PIER-6 23.00 2541 2.42
SHAFT FORM PIER-6 2441 31.43 7.01
SHAFT REBAR PIER-6 80.22 87.60 7.38
SHAFT CONC PIER-6 87.60 88.68 1.08
SHAFT FORM PIER-62 89.68 96.67 6.98
SHAFT REBAR PIER-62 14747 155.19 7.72
SHAFT CONC PIER-62 155.19 156.25 1.05
CAP FORM PIER-6 156.25 159.20 2.95
CAP REBAR PIER-6 161.31 167.27 5.56
CAP CONC PIER-6 167.27 168.67 1.40

173

Table C-4: Simulation results for the resource scenario-1

Process Start (in days) End (in days) Duration (days)
EXCAVTION PIER-] 0.00 24.63 24.63
PILLING ABT-! 0.00 6.28 6.38
PILING PIER-1 24.63 4251 17.88
BLINDING LY PIER-1 42.51 42,66 0.15
FOOTNG FORM PIER-] 42.66 45.66 3.00
FOOTNG REBAR PIER-] 45.66 51.56 5.90
FOOTNG CONC PIER-1 51.56 54.44 2.88
SHAFT FORM PIER-1 53.44 56.50 3.06
SHAFT REBAR PIER-1 56.50 62.48 5.98
SHAFT CONC PIER-1 62.48 63.39 0.91
SHAFT FORM PIER-12 64.39 67.36 2.97
SHAFT REBAR PIER-12 117.27 123.13 5.80
SHAFT CONC PIER-12 123.13 124.02 0.89
CAP FORM PIER-1 124.02 126.03 2.01
CAP REBAR PIER-] 129.16 134.22 5.07
CAP CONC PIER-1 134.22 135.53 1.31
COFFERDAM PIER-2 135.53 184.71 49.18
BLINDING PIER-2 184.71 184.87 0.16
FOOTING FORM PIER-2 184.87 187.91 3.04
FOOTING REBAR PIER-2 193.72 199.73 6.01
PILING ABT-2 195.07 195.29 0.22
FOOTING CONC PiER-2 199.73 202.82 3.09
PEDESTAL FORM PIER-2 223.38 22841 5.03
PEDESTAL REBAR PIER-2 230.35 237.34 7.00
PEDESTAL CONC PIER-2 237.34 238.79 1.45
PEDESTAL FORM PIER-22 24(.56 245.57 5.01
PEDESTAL REBAR PIER-22 247.55 254.58 7.04
PEDESTAL CONC PIER-22 254.58 256.00 1.42
SHAFT FORM PIER-2 256.00 260.10 4.10
SHAFT REBAR PIER-2 260.57 267.59 7.02
SHAFT CONC PIER -2 747 59 268.72 1.13
SHAFT FORM PIER-22 w12 27371 3.99
SHAFT REBAR PIER-22 273.71 280.70 6.99
SHAFT CONC PIER-22 280.70 281.81 111
CAP FORM PIER-2 281.81 284.79 297
CAP REBAR PIER-2 284.79 290.76 5.98
CAP CONC PIER-2 290.76 294.70 3.94
BERM PIER-3 24.63 58.31 33.67
COFFER DAM PIER-3 62.48 117.27 54.79
BLINDING LY PIER-3 117.27 117.4] 0.14
FOOTNG FORM PIER-3 117.41 120.46 3.05
FOOTNG REBAR PIER-3 123.13 129.16 6.03
FOOTNG CONC PIER-3 129.16 132.2] 3.05

174

PEDESTAL FORM PIER-3 131.21 140.20 8.99
PEDESTAL REBAR PIER-3 184.71 193.72 9.01
PEDESTAL CONC FER-3 193.72 195.06 1.35
PEDESTAL FORM PIER-32 196.06 205.06 8.99
PEDESTAL REBAR PIER-32 205.06 214.05 8.99
PEDESTAL CONC PIER-32 214.05 215.42 1.38
SHAFT FORM PIER-3 215.42 223.38 7.96
SHAFT REBAR PIER-3 223.38 230.35 6.97
SHAFT CONC PIER-3 230.35 23149 1.15
SHAFT FORM PIER-32 232.49 240.56 8.06
SHAFT REBAR PIER-32 240.56 247.55 6.99
SHAFT CONC PIER-32 2417.55 248.68 1.13
CAP FORM PIER-3 4%,68 251.70 3.03
CAP REBAR PIER-3 254.58 260.57 5.98
CAP CONC PIER-3 260.57 262.01 1.44
BERM PIER-4 30.29 60.49 30.19
COFFERDAM PIER-4 87.60 14747 59.87
BLINDNG LY PIER-4 147.47 147.62 0.14
FOOTNG FORM PIER-4 167.38 170.37 2.99
FOOTING REBAR PIER-4 175.65 182.73 7.08
FOOTNG CONC PIER-4 182.73 185.61 2.88
PEDESTAL FORM PIER-4 198.39 208.51 10.13
PEDESTAL REBAR PIER-4 208.51 216.56 8.05
PEDESTAL CONC.. PIER-4 216.56 218.09 1.53
PEDESTAL FORM PIER-42 219.09 229.69 10.60
PEDESTAL REBAR PIER-42 229.69 232.92 3.23
PEDESTAL CONC PIER-42 232.92 234.43 1.51
SHAFT FORM PIER-4 234.43 242.23 7.80
SHAFT REBAR PIER-4 242.23 250.31 8.09
SHAFT CONC PIER-4 250.31 251.44 1.12
SHAFT FORM PIER-42 252.44 262.70 10.27
SHAFT REBAR PIER-42 262.70 272.32 9.62
SHAFT CONC PIER-42 272.32 273.44 1.12
CAP FORM PIER4 273.44 277.46 4.02
CAP REBAR PIER4 277.46 282.18 4.72
CAP CONC PIER-4 282.18 283.61 1.43
BERM PIER-5 0.00 30.29 30.29
COFFERDAM PIER-5 30.29 80.22 49.92
BLINDING LY PIER-5 80.22 80.37 0.15
FOOTNG FORM PIER-5 80.37 83.42 3.06
FOOTNG REBAR PIER-5 155.19 161.31 6.12
FOOTING CONC PIER-5 161.31 164.26 2.94
PEDESTAL FORM PIER-5 163.26 167.38 4.12
PEDESTAL REBAR PIER-5 167.38 175.65 8.28
PEDESTAL CONC PIER-5 175.65 177.1¢ 1.51
PEDESTAL FORM. ¥, R-52 178.16 182.27 4.11
PEDESTAL REBAR PIER-52 182.73 189.27 6.54

175

PEDESTAL CONC PIER-52 189.27 190.82 1.54
SHAFT FORM PIER-5 190.82 198.39 7.57
SHAFT REBAR PIER-5 198.39 207.74 9.36
SHAFT CONC PIER-5 207.74 208.86 112
SHAFT FORM PIER-52 209.86 215.44 5.58
SHAFT REBAR PIER-52 216.56 225.98 9.41
SHAFT CONC PIER-52 225.98 227.11 1.14
CAP FORM PIER-5 229.69 232.70 3.02
CAP REBAR PIER-5 232.92 239.4 6.53
CAP CONC PIER-5 239.44 240.90 1.46
BLINDING LY PIER-6 0.00 0.14 0.14
FOOTNG FORM PIER-6 0.14 3.15 3.01
FOOTNG REBAR PIER-6 3.15 9.17 6.02
FOOTNG CONC PIER-6 9.17 12,08 2.91
PEDESTAL FORM PIER-6 11.08 16.08 4.99
PEDESTAL REBAR PIER-6 16.08 23.00 6.92
PEDESTAL CONC PIER-6 23.00 2541 2.42
SHAFT FORM PIER-6 2441 31.43 7.01
SHAFT REBAR PIER-6 80.22 87.60 7.38
SHAFT CONC PIER-6 87.60 88.68 1.08
SHAFT FORM PIER-62 89.68 96.67 6.98
SHAFT REBAR PIER-62 147.47 155.19 7.72
SHAFT CONC PIER-62 155.19 156.25 1.05
CAP FORM PIER-6 156.25 159.20 2.95
CAP REBAR PIER-6 161.31 167.27 5.96
CAP CONC PIER-6 167.27 168.67 1.40

176

Table C-5: Simulation results for the revised operation sequening case

PROCESS NAME Start (in days) |Finish (in days)|Duration (in days’
BLINDIN?; LY PIER-6 0.00 0.15 0.15
FOOTNG FORM PIER-6 0.15 3.17 3.02
PILLING ABT-| 0.00 6.41 6.41
FOOTNG REBAR PIER-6 3.17 9.15 5.98
FOOTNG CONC PIER-6 9.15 12.07 2.93
EXCAVTION PIER-1 0.00 15.00 15.00
PEDESTAL FORM PIER-6 11.07 16.05 b 498
PEDESTAL REBAR PIER-6 16.05 23.03 6.98
PEDESTAIL CONC PIER-6 23.03 2541 2.38
BERM PIER-5 0.00 30.63 30.63
SHAFT FORM PIER-6 2441 31.40 6.99
BERM PIER-3 0.00 33.99 33.99
SHAFT REBAR PIER-6 31.40 38.78 7.38
SHAFT CONC PIER-6 38.78 39.81 1.03
COFFERDAM PIER-2 0.00 43.49 43.49
BLINDING PIER-2 43.49 43.64 0.16
FOOTING FORM PIER-2 43.64 46.64 3.00
SHAFT FORM PIER-62 40.81 47.76 6.95
FOOTING REBAR PIER-2 46.64 52.60 5.96
SHAFT REBAR PIER-62 47.76 54.75 6.99
FOOTING CONC PIER-2 52.60 P 55.66 3.05
SHAFT CONC PIER-62 54.75 55.79 1.03
CAP FORM PIER-6 55.79 58.75 2.96
PEDESTAL FORM PIER-2 54.66 59.66 5.01
BERM PIER-4 30.63 60.78 30.15
PILING PIER-1 15.00 61.60 46.59
BLINDING LY PIER-1 61.60 61.75 0.15
CAP REBAR PIER-§ 58.75 64.72 5.97
FOOTNG FORM MER-1 61.75 64.72 2.97
CAP CONC PIER-6 64.72 66.12 1.41
PEDESTAL REBAR PIER- 2 59.66 66.66 7.00
PEDESTAL CONC P{ER-2 66.66 68 10 1.44
[FOOTNG REBAR PII'R-1 66.66 72.69 6.02 .
PEDESTAL FORM PIER-22 69.10 74.18 5.08 !
FOOTNG CONC PIFR -} 72.69 75.60 2.91 '
SHAFT FORM PIER-1 74.60 77.70 3.10
PEDESTAL REBAR PIER- 74.18 81.18 7.00
22

PEDESTAL CONC PIER-22 81.18 82.60 1.42
SHAFT REBAR PIER-1 81.18 87.17 6.00
SHAFT CONC PIER-1 87.17 88.04 0.87
SHAFT FORM PIER-12 89.04 92.10 3.06
SHAFT REBAR I'ER-12 92.10 97.97 5.87
COFFER DAM PIER-3 33.99 98.31 64.32

177

SHAFT CONC PIER-12 97.97 98.8% 0.91
BLINDING LY PIER-3 98.31 98.99 0.69
CAP FORM PIER-1 93.88 100.90 2.01
SHAFT FORM PIER-2 100.90 104.87 397
CAP REBAR PIER-1 100.90 105.41 4.51
CAP CONC PIER-1 105.41 106.69 1.28
FOOTNG FORM PIER-3 104.87 107.91 3.04
SHAFT REBAR PIER-2 105.41 112.42 701
SHAFT CONC PIER -2 11242 113.55 1.13
FOOTNG REBAR PIER-3 112.42 118.34 5.92
SHAFT FORM PIER-22 114.55 118.50 3.95
FOOTNG CONC PIER-3 118.34 121.40 3.06
SHAFT REBAR PIER-22 118.50 125.45 6.95
SHAFT CONC PIER-22 125.45 126.58 113
PEDESTAL FORM PIER-3 120.40 129.41 9.02
CAP FORM PIER-2 129.41 132.38 297
COFFERDAM PIER-5 30.63 136.16 105.52
BLINDING LY PIER-5 136.16 136.30 0.15
PEDESTAL REBAR PIER-3 129.41 138.41 9.00
FOOTNG FORM PIER-5 136.30 139.42 3.12
PEDESTAL CONC PIER-3 138.41 139.79 1.38
CAP REBAR PIER-2 138.41 144.38 5.97
FOOTNG REBAR PIER-5 139.42 145.44 6.01
CAP CONC PIER-2 144.38 145.84 1.46
FOOTING CONC PIER-5 145.44 148.34 2.90
PEDESTAL FORM PIER-32 140.79 149.79 9.00
PEDESTAL FORM PIER-5 147.34 151.26 3.92
PEDESTAL REBAR PIER- 149.79 158.77 8.97
32

PEDESTAL CONC PIER-32 158.77 160.15 1.38
PEDESTAL REBAR PIER-5 151.26 161.08 9.83
PEDESTAL CONC PIER-5 161.08 162.64 1.56
COFFERDAM PIER-4 64.72 166.15 101.43
BLINDNG LY PIER-4 166.15 166.31 0.16
PEDESTAL FORM PIER-52 163.64 167.64 3.99
SHAFT FORM PIER-3 160.15 168.16 8.01
FOOTNG FORM PIER-4 167.64 170.57 2.93
PILING ABT-2 171.93 172.11 0.18
SHAFT REBAR PIER-3 168.16 175.19 7.03
PEDESTAL REBAR PIER- 167.64 175.84 8.2
52

SHAFT CONC PIER-3 175.19 176.35 1.16
PEDESTAL CONC PIER-52 175.84 7736 1.51
FOOTING REBAR PIER-4 175.84 R 5.64
FOOTNG CONC FIER-4 181.49 487 2.88
SHAFT FORM PIER-32 177.35 28 7.93

178

SHAFT FORM PIER-5 177.36 185.34 7.99
SHAFT REBAR PIER-5 185.34 191.23 5.89

SHAFT REBAR PIER-32 185.28 192.30 7.02

SHAFT CONC PIER-5 191,23 192.35 111

SHAFT CONC PIER-32 192.30 193.43 1.13

PEDESTAL FORM PIER-4 185.34 194.72 9.38

CAP FORM PIER-3 193.43 196.41 2.99

SHAFT FORM PIER-52 194.72 202.01 7.29

CAP REBAR PIER-3 196.41 202.42 6.00

CAP CONC PIER-3 202.42 203.84 1.42

PEDESTAL REBAR PIER-4 194.72 206.04 11.32
PEDESTAL CONC.. PIER-4 206.04 207.55 1.51

SHAFT REBAR PIER-52 206.04 212.05 6.01

SHAFT CONC PIER-52 212,05 213.18 1.13

PEDESTAL FORM PIER-42 208.55 216.43 7.88

CAP FORM PIER-5 216.43 219.25 2.82
PEDESTAL REBAR PIER- 216.43 220.81 4.37

42

PEDESTAL CONC PIER-42 220,81 222.33 1.53

CAP REBAR PIER-5 220.81 226.94 6.13

CAP CONC PIER-5 226.94 228.38 1.45

SHAFT FORM PIER-4 22233 233.15 10.82
SHAFT REBAR PIER-4 233.15 239.79 6.64
SHAFT CONC PIER-4 239.79 240.94 115

SHAFT FORM PIER-42 24194 247.01 5.06
SHAFT REBAR PIER-42 247.01 255.88 8.87
SHAFT CONC PIER-42 255.88 257.01 1.14
CAP FORM PIER-4 257.01 262.55 5.54
CAP REBAR PIER-4 262.55 267.87 | 5.28

CAP CONC PIER-4 267.83 271 8 3.77

179

SLAMSYSTEM Input file for the basecase scenario

180

GEN,ANIL SAWHNEY ,PEACE RIVER BRIDGE,4/22/1994,1,Y,Y,Y/Y,Y ,Y/1,72;
LIMITS, 123,10,2000;
INITIALIZE,,)Y:

NETWORK;
;FILE BERMWST.NET, NODE LABEL SEED LAAA

;FILE BLINDPI.NET, NODE LABEL SEED WAAA
:FILE BLINDP2.NET, NODE LABEL SEED JAAA
;FILE CAPCONPI.NET, NODE LABEL SEED MAAA
;FILE CAPFORPI.NET, NODE LABEL SEED OAAA
;FILE CAPREBP|.NET, NODE LABEL SEED NAAA
;FILE COFERP3.NET, NODE LABEL SEED KAAA
;FILE EXCP1.NET, NODE LABEL SEED YAAA
;FILE FTCONPI.NET, NODE LABEL SEED © A
;FILE FTFP1.NET, NODE LABEL SEED V
;FILE PIFOTF.NET, NODE LABEL SEED
;FILE P2CAPC.NET, NODE LABEL SEELC -1\ 2
;FILE P2CAPF.NET, NODE LABEL SEED /o i *
;FILE P2CAPR.NET, NODE LABEL SEED ACAA
;FILE P2COFD.NET, NODE LABEL SEED TTAA
;FILE P2FOTC.NET, NODE LABEL SEED ZAAA
;FILE P2FOTR.NET, NODE LABEL SEED HAAA
:FILE P2PEDC.NET, NODE LABEL SEED DAAA
;FILE P2PEDF.NET, NODE LABEL SEED FAAA
;FILE P2PEDR.NET, NODE LABEL SEED EAAA
25 ;FILE P2SHC.NET, NODE LABEL SELD AAAA
26 ;FILE P2SHF.NET, NODE LABEL SEED CAAA
27 FILE P2SHR.NET, NODE LABEL SEED BAAA
28 FILE P3BLIND.NET, NODE LABEL SEED ADAA
29 ;FILE P3CAPC.NET, NODE LABEL SEED AOAA
‘FILE P3CAPF.NET, NODE LABEL SEED AMAA
'LE P3CAPR.NET, NODE LABEL SEED ANAA
¥ PAFOTC.NET, NODE LABEL SEED AGAA
..E P3FOTE.NET, NODE LABEL SEED AEAA
% P3FOTR.NET, N E LABEL SEED AFAA
3 .E P3PEDC.NET, V.. DE LABEL SEED AlIAA
36 ;FILE P3PEDF.NET, NGon. LABEL SEED AHAA
37 FILE P3PEDR NET, NGDE LABEL SEED AIAA
38 ;FILE P3SHC.NET, NODE. LABEL SEED ALLAA
39 ;FILE P3SHF.NET, NODE LABEL SEED AJAA
40 ;FILE P3SHR.NET, NODE LABEL SEED AKAA
41 ;FILE PABERM.NET. NODE LABEL SEED LPAA
42 ;FILE PABLIND.NET, NODE LABEL SEED TLAA
43 ;FILE PACAPC.NET, NODE LABEL SEED TRUA
44 ;FILE PACAPF.NET, NODE LABEL SEED XUAA
45 VILE PACAPR.NET, NODE LABEL SEED LMAA
46 FILE PACOFD.NET, NODE LABEL SEED MKAA
47 ;FILE PAFOTC.NET, NODE LABEL SEED NNNA
48 ;FILE PAFOTF.NET, NODE LABEL SEED UUAA
49 ;FILE PAFOTR.NET, NODE LABEL SEED MMMA
50 :FILE PAPEDC.NET, NODE LABEL SEF-" TPAA
51 ;FILE PAPEDF.NET, NODE LABEL 8T 'JAA
52 .FILE PAPEDR.NET, NODE LABEL S.. .. . YAA
53 FILE P4SHC.NET, NODE LABEL SEED BXAA

S XN UMb WN—

PO B R D) B m— o o e e e e e -
PBWRN =S oW hH WN —

181

54 ;FILE P4SHF.NET, NODE LABEL SEED LLBAA

55 ;FILE P4SHR.NET, NODE LABEL SEED LUAA

56 ;FILE PSBERM.NET, NODE LABEL SEED LLAA

57 ;FILE PSBLIND.NET, NODE LABEL SEED ZZZA

58 FILE PSCAPC.NET, NODE LABEL SEED NYAA

59 ;FILE PSCAPF.NET, NODE LABEL SEED MOAA

60 ;FILE PSCAPR.NET, NODE LABEL SEED OMAA

61 ;FILE PSCOFD.NET, NODE LABEL SEED KXYA

62 ;FILE PSFOTC.NET, NODE LABEL SEED MMMA

63 ;FILE PSFOTF.NET, NODE LABEL SEED KKKA

64 ;FILE PSFOTR.NET, NODE LABEL SEED LLLA

65 ;FILE PSPEDC.NET, NODE LABEL SEED NTAA

66 ;FILE PSPEDF.NET, NODE LABEL SEED IIAA

67 ;FILE PSPEDR.NET, NODE LABEL SEED LTAA

68 ;FILE PSSHC.NET, NODE LABEL SEED ITAA

69 ;FILE PSSHF.NET, NODE LABEL SEED TIAA

70 ;FILE P5SHR.NET, NODE LABEL SEED MEAA

71 ;FILE PGBLIND.NET, NODE LABEL SEED ZZZZ

72 ;FILE PUCAPC.NET, NODE LABEL SEED KNAA

73 ;FILE P6CAPF.NET, NODE LABEL SEED KMAA

74 ;FILE P6CAPR.NET, NODE LABEL SEED LKAA

75 ;FILE P6FOTC.NET, NODE LABEL SEED ZXAA

76 ;FILE P6FOTF.NET, NODE LABEL SEED ZZZB

77 ;FILE P6FOTR.NET, NODE LABEL SEED ZZAA

78 ;FILE PGPEDC.NET, NODE LABEL SEED XXAA

79 ;FILE P6PEDF.NET, NOC'F LABEL SEED ZYAA

80 ;FILE i"6PEDR.NET, NODE LABEL SEED ZTAA

81 ;FILE r3SHC.NET, NODE LABEL SEED KKAA

82 ;FILE ¢6SHFE.NET, NODE LABEL SEED XYAA

83 ;FILE P6SHR.NET, N>DE LABEL SEED XZAA

84 ;FILE PILABI.NET, NODE LABEL SEED ZAAA

85 ;FILE FILPR1.NET, NODE LABEL SEED ZAAA

86 ;FILE REBFTPi.NET, NODE LABEL SEED TAAA

87 ;FILE REBSHP1.NET, NODE LABEL SEED QAAA

88 ;FILE SHCONPIL.NET, NODE LABEL SEED PAAA

89 ;FILE SHFORPI1.NET, NODE LABEL SEED RAAA

90 ;FILLE START.NET, NODE LABEL SEED ACAA

91 RESOURCE/1,CRANEA40T, 1,4,

92 RESOURCE/2,DISELHAM,1,4,41,83,85,87;

93 RESOURCE/3,PILCREW,1,4,41,83,85,87;

94 RESOURCE/4,EXCVATOR,3,2;

95 RESOURCE/5, TRUCKWST(5),3,19;

96 RESOURCE/6,CONPMPWT,6,10,14,18,23,27,31,35,39,43,47,51,55,59;
97 RESOURCE/7, TRMIXRWT(2),5,9,13,17,22.26,30,34,38,42,46,50,54,58;
98 RESOURCE/8,CONCRWST,6,10,14,18,23,27,31,35,39,43,47,51,55,59;
99 RESOURCE/9,FOTFORWT,7,24,44;

100 RESOURCE/10,CRANEFWT,7,11,15,24,28,32,36,44,48,57 50,
101 RESOUR(CE/11,FORCRWST,7,11,15,24,28,32,36,44,48,52,5¢,
102 RESOURCE/12,CRANERB,8,12,16,25,29,33,37,40.15,49,53,57,82;
103 RESOURCE/13,RBCRWST.8,12,16,25,24,33,37,45,49,53,57,
104 RESOURCE/14,SHFTFRWT, 11,32,52;

105 RESOURCE/15,CAPFRMWT,15,36,56;

106 RESGURCE/16,DOZERWST,20;

107 RESOURCE/17,COFSTC(4),40,82,84,86;

182

108
109
110
11
113
114
115
116
117
118
119
120
121
122
123

RESOURCE/I8,PEDFRMWT.28 48

RESOURCE/19. TRUCKEST(5),78.8();
RESOURCE/20,CONPMPET.61.65.69.73,77.89.93.97, 101,105, 107 11 L1 15.119,123;
RESOURCE/21, TRMIXRET(2).60,64,68,72,76,88,92,96,100,104,106,1 10,114, 1 18,11
RESOURCE/22,CONCREST,61,65,69.73,77,89,93.97, 101, 105. 107,11 1,115,119,123;

RESOURCE/23,FOTFORET,62,90,108;

RESOURCE/24,CRANEFET.62,66,70,74,90,94,98,102,108,112.116.120;
RESOURCE/25,FORCREST,62,66,70,74,90,94,98,102,108,1 12,116,120,
RESOURCE/26,CRANERBE,63,67,71,75,84,86,91,99,103,109,1 13,117.121;
RESOURCE/27,RBCREST,63,67,71,75,91,95.99,103,109.113,117.121;

RESOURCE/28,SHFTFRET,70,98,116;

RESOURCE/29,CAPFRMET,74,102,120;

RESOURCE/30,DOZEREST,79,81;

RESOURCE/31,PEDFRMET,66,94,112;

;FILE BERMWST.NET, NODE LABEL SEED LAAA

124 ;

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

BRWT EVENT.,1;
ACTIVITY;

BWA AWAIT(19),TRUCKWST.,.;
ACTIVITY/29,30,,;,DELIVDIRTW;
FREE,TRUCKWST,I;
ACTIVITY;

BWB AWAIT(20),DOZERWST,,I;
ACTIVITY/30,20,,;DOZBRWT;
FREE,DOZERWST;
ACTIVITY;
ACCUMULATE,800,800,,2;
ACTIVITY;
ACTIVITY,,,COP3;
TERMINATE;

;FILE BLINDP1.NET, NODE LABEL SEED WAAA
140 ;

BLP! EVENT,?2,1;
ACTIVITY;

ACON AWAIT(5),TRMIXRWT,,I;
ACTIVITY/12,15,,;DELIVER CONC;
FREE, TRMIXRWT,I;

ACTIVITY;

CRED AWAIT(6),ALLOC(4),,1;
ACTIVITY/13,10,,;PLACE CONC;
FREE,CONPMPWT, I;
ACTIVITY;

FREE.CONCRWST, 1;
ACTIVITY;
ACCUMULATES,S,.2;
ACTIVITY,, FFP1;

;FILE BLINDP2.NET, NODE LABEL SEED JAAA

BLP2 EVENT,7,1;
ACTIVITY;

P2B1 AWAIT(22),TRMIXRWT,,I;
ACTIVITY/35,15,,;DELV CONC BP
FREE,TRMIXRWT,1;

ACTIVITY;

183

el

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

215
216

AWAIT(23),ALLOC(16),,1;
ACTIVITY/36,10,,;PL.LACE CON BP
FREE,CONPMPWT,I;

ACTIVITY;

FREE,CONCRWST,I;

ACTIVITY;

ACCUMULATES.S,.1;
ACTIVITY,,FFP2;

:FILE CAPCONPI1.NET, NODE LABEL SEED MAAA

CAPC EVENTJS, I,

ACTIVITY;

CAPA AWAIT(17),TRMIXRWT,,1;

ACTIVITY/26,15,,;DELCON CAP P1;
FREE,TRMIXRWT,1;
ACTIVITY;

CAPB AWAIT(18),ALLOC(13),,1;

ACTIVITY/27,10,;PLACECONCAPPI;
FREE,CONPMPWT,I;

ACTIVITY;

FREE,CONCRWST,I;

ACTIVITY;

ACCUMULATE 40,40,,2;
ACTIVITY/28,480,,,REL CAPFORM;
FREE,CAPFRMWT;
ACTIVITY,,.CDP2;

;FILE CAPFORPI1.NET, NODE LABEL SEED OAAA

CAPF AWAIT(15),ALLOC(11),,1;

ACTIVITY/24,1440,,;FORMCAPPI;
GOON,3;

ACTIVITY,,,CAPR;

ACTIVITY;

ACTIVITY,,,OAAB;
FREE,FORCRWST,1;
TERMINATE;

OAAB FREE,CRANEFWT,I;

TERMINATE;

:FILE CAPREBPI.NET, NODE LABEL SEED NAAA

CAPR AWAIT(16),ALLOC(12),,1;

ACTIVITY/25,2880,;REBCAPPI;
GOON,3;

ACTIVITY,,,CAPC;

ACTIVITY;

ACTIVITY,..NAAB;
FREE,CRANERB,1;
TERMINATE;

NAAB FREE,RBCRWST.I;

TERMINATE,;

:FILE COFERP3.NET, NODE LABEL SEED KAAA
214
COP3 AWAIT(40),ALLOC(14),,1;

ACTIVITY/56,240,,;FLOATCAGEP3;

184

217 GOON.1;

218 ACTIVITY/57,240.,;POS& ANCHP3;
219 COFB AWAIT(41),ALLOC(15).,1:

220 ACTIVITY/58,480,,;DRIVE SPUDPILES:
221 KAAB GOON,1;

222 ACTIVITY/59,360,,;DRIVE SHEET COF;
223 ASSIGN,ATRIB(3)=ATRIB(3) + I,1;
224 ACTIVITY,, ATRIB(3).GE.100;

225 ACTIVITY,,ATRIB(3).LT.100.KAAB;
226 FREE,CRANERB,I;

227 ACTIVITY;

228 FREE,DISELHAM,I;

229 ACTIVITY;

230 FREE,PILCREW,

231 ACTIVITY,, BLP3;

232 ;FILE EXCP1.NET, NODE LABEL SEED YAAA
233 ;

234 CEXC CREATE,0,,.464,1;

235 ACTIVITY;

236 AWEX AWAIT(2),EXCVATOR,,1;

237 ACTIVITY/S5,3,,;EXCAVATE;

238 FREE.EXCVATOR,I;

239 ACTIVITY;

240 TRKA ACCUMULATES8,8,,1;

241 ACTIVITY;

242 LOAD AWAIT(3).ALLOC(2),.1;

243 ACTIVITY/6,3,,;LOAD TRUCK;

244 FEXC FREE,EXCVATOR,I;

245 ACTIVITY/7,60,,;TRAVEL&DUMP;
246 FTRK FREE,TRUCKWST,I;

247 ACTIVITY;

248 TOT ACCUMULATE,S8,58,,2;

249 ACTIVITY,, PLPI;

250 ACTIVITY,,.BRWT;

251 ;FILE FTCONPI1.NET, NODE LABEL SEED SAAA
252 ;

253 CFP1 EVENT,3,1;

254 ACTIVITY;

255 ACFP AWAIT(9),TRMIXRWT,,1;

256 ACTIVITY/16,15,,;DEL CON FT Pl;
257 FREE, TRMIXRWT,I;

258 ACTIVITY;

259 CFAP AWAIT(10),ALLOC(7),,1;

260 ACTIVITY/17,10,,,PLACECONCFTPI;
261 FREE,CONPMPWT,I;

262 ACTIVITY;

263 FREE,CONCRWST,1;

264 ACTIVITY;

265 ACCUMULATE,80,80,,2;

266 ACTIVITY/18,480,,;REL FOTFORM;
267 ACTIVITY,,,SHPI;

268 FREE,FOTFORWT;

269 TERMINATE;

270 ;FILE FTFP1.NET, NODE LABEL SEED VAAA

185

271

272 FFP1 AWAIT(7),ALLOC5),,1:

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
28K
289
290
291
292
293
294
295
290
297
208
299
300
301
302
303
304
305
306
307
308
309
310
31t
32
313
314
315
316
317
318
319
320
321
R
323
324

ACTIVITY/14,1440.,.FORMFTPI,
GOONM. 3,

ACTIVITY;

ACTIVITY,,VAAB;
ACTIVITY,,,RFPI,;
FREE,FORCRWST,I;
ITERMINATE;

VAAB FREE.CRANEFWT,I;

TERMINATE;

;FILE PIFOTF.NET, NODE LABEL SEED IAAA

FFP2 AWAIT(24), ALLOC(17),.1;

ACTIVITY/37.1-'40,,;FORMFTP2;
GOON,3;

ACTIVITY, ,RF'PZ;

ACTIVITY,

~CTIVITY, IAAB,;
FREE,FORCRWST, 1,
ACTIVITY;,

TERMINATE;

IAAB FREE,CRANEFWT,I;

ACTIVITY;
TERMINATE;

:F1LE P2CAPC.NET, NODE LABEL SEED ADAA

CCP2 EVENT,I1,1;

ACTIVITY:

CCPA AWAIT(38),TRMIXRWT,,I;

ACTIVITY/53,15,;DELCON CAP P2;
FREE.TRMIXRWT,I;
ACTIVITY;

CP2B AWAIT(39),ALLOC(28),.1;

ACTIVITY/54,10..;PLACECONCAPP2;
FREE.CONPMPWT.,I;

ACTIVITY;

FREE,CONCRWST.I:

ACTIVITY;

ACCUMULATE 40,40,,2:
ACTIVITY/55,480,,;REL. CAPFORM P2;
FREE.CAPFRMWT:

TERMINATE;

:FILE P2CAPI".NET. NODE LABEL SEED ABAA

CAP2 AWAIT(36),ALLOC(26),,1;

ACTIVITY/51,1440..,FORMCAPP2;
GOON.3;

ACTIVITY;

ACTIVITY.,.CRP2:
ACTIVITY...ABAB;
FREE.FORCRWST.I;

ACTIVITY:

TERMINATE:

186

325 ABAB FREE,CRANEFWT.I;

326 ACTIVITY,

327 TERMINATE;

328 FILE P2CAPR.NET NODE LABEL SEED ACAA
329 ;

330 CRP2 AWAIT(37),ALLCC(27),.1;

331 ACTIVITY/52,2880,,;REBCAPP2,
332 GOON,3;

333 ACTIVITY,, CCP2;

334 ACTIVITY;

335 ACTIVITY,,,ACAB;

336 FREE,CRANERB,I;

337 TERMINATE;

338 ACAB FREE,RBCRWST,I;

339 TERMINATE;

340 :FILE P2COFD.NET, NODE LABEL SEED TTAA
341 ;

342 CDP2 AWAIT(82),ALLOC{56)..1:

343 ACTIVITY/108,240,,,;FLOATCAGEP2;
344 GOON,I;

345 ACTIVITY/109,240,,;POS&ANCHP2;
346 CP21 AWAIT(83),ALLOC(57).,1;

347 ACTIVITY ,480,.;DRVSPDPILP2;
348 TTAD GOON,I;

349 ACTIVITY/110,360,,;DRIVSHTCOFP2,
350 ASSIGN,ATRIB(6)=ATRIB(6) + 1,1,
351 ACTIVITY,,ATRIB(6).GE. 100;

352 ACTIVITY,,ATRIB(6).LT.100,TTAD;
353 FREF,CRANERB,I;

354 ACTIVITY;

355 FREE,DISELHAM, I,

356 ACTIVITY;

357 FREE,PILCREW;

358 ACTIVITY,,,BLP2;

359 ;FILE P2FOTC.NET, NODE LABEL SEED ZAAA
360 ;

361 CFP2 EVENT,S,1;

362 ACTIVITY;

363 P2A AWAIT(26),TRMIXRWT,,I;

364 ACTIVITY/39,15,,;DELCON FTP2;
365 FREE, TRMIXRWT,I;

366 ACTIVITY,;

367 P2B AWAIT(27),ALLOC(19),,1;

368 ACTIVITY,10:

369 FREE,CONPMPWT,I;

370 ACTIVITY;

371 FREE,CONCRWST,I;

372 ACTIVITY;

373 ACCUMULATE,80,80,,2;

374 ACTIVITY/40,480,,;REL FOTFORM,;
375 ACTIVITY,,,PDP2;

376 FREE,FOTFORWT;

377 ACTIVITY:

378 TERMINATE;

187

379

381

342
383
384
385
346
387
38K
149
390
391
392

393 ¢
394
P2CH EVENT 9.1

395
396
397
3y
399
400
401
402
403
404
405
4006
407
408
409
410
411
412
413

+15
416
417
418
419
420
421
422
423
124
425
426
427
428
429
430
431
432

JFILE P2FOTR.NET, NODLE LABEL SEED HAAA

K1 {0
RFP2 AWAIT(25),A'.1.OC(18),,1;

ACTHIVITY/38,24 20, REBFTP2;
GOON,3;

ACTIVITY;

ACTIVITY,,,CFP2;

ACTIVITY, HAAB;
FREE,CRANERB.I;
ACTIVITY:

TERMINATE;

HAAB FREE,RBCRWS

Av IVITY;
- MINATE
DUPEDCNET, ™ ODE - (Bisl. SEED DAAA

ACTIVITY;

AI'P2 AWAIT(30), TRMI" i

ACTIVITY/43.15,;D" ONP+DP
FREE.TRMIXRWT.I
ACTIVITY:

CFP2 AWAIT(31),ALLOC(22),.1.

ACTIVITY/44,10.;PLACCO:. n=DP2
FREE,CONPMPWT,I;

ACTIVITY;

FREE,CONCRWST. I

ACTIVITY;
ACCUMULATE,80,80,,2;
ACTIVITY/45,480,..REL PEDFORM;
ACTIVITY,.,P2SH,;
FREE,PEDFRMWT,;

ACTIVITY;

TERMINATE;

:FILE P2PEDF.NET, NODE LABEL SEED FAAA
414 ;
PDP2 AWAIT(28),ALLOC(20)..1;

ACTIVITY/41,1440,..FRMPEDP2;
GOON,3;

ACTIVITY,,.RPED;

ACTIVITY:

ACTIVITY,.FAAB;
FREE,FORCRWST, 1.

ACTIVITY;

TERMINATE;

FAAB FREE.CRANEFWT.I;

ACTIVITY;
TERMINATE;

:FILE P2PEDR.NET, NODE LABEL SEED EAAA

RPED AWAIT(29).ALLOC1),,1;

ACTIVITY/42,2880.,;REBPEDP2;
GOON_,3:
ACTIVITY;

188

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

ACTIVITY,.EAAB:
ACTIVITY, P2CP:
FREE,CRANERB.I;
ACTIVITY;
TERMINATE;

EAAB FREE,RBCRWST.I;

ACTIVITY,
TERMINATE;

;FILE P2SHC.NET, NODE LABEL SEED AAAA

CSP2 EVENT,I0,1;

ACTIVITY;

ACSH AWAIT(34) TRMIXRWT,I;

ACTIVITY/48,15,;DEL CON SH P
FREE,TRMIXRWT,I;
ACTIVITY;

CSHP AWAIT(35),ALLOC(25)..1;

ACTIVITY/49,10,,;PLACECONCSHP
FREE,CONPMPWT,1;

ACTIVITY;

FREE,CONCRWST,I;

ACTIVITY;
ACCUMULATE,76,76,,2;
ACTIVIT¥/50,480,,;RELSHTFORM P
ACTIVITY,,,AAAB,;
FREE,SHFTFRWT;

ACTIVITY;

TERMINATE;

AAAB ASSIGN,ATRIB(4)=ATRIB@) + 1.1;

ACTIVITY,, ATRIB(4).EQ 1,P2SH;
ACTIVITY,, ATRIB(4).EQ.2,CAP2;

;FILE P2SHF.NET, NODE LABEL SEED CAAA

P2SH AWAIT(32),ALLOC(23),,1;

ACTIVITY/46,1440,,;FRMSHFTP2;
GOON,3;

ACTIVITY;

ACTIVITY,,,CAAB;
ACTIVITY,,,RSP2;
FREE,FORCRWST, 1;

ACTIVITY;

TERMINATE:

CAAB FREE,CRANEFWT,I;

ACTIVITY;
TERMINATE;

;FILE P2SHR.NET, NODE LABEL SEED BAAA

RSP2 AWAIT(33),ALLOC(24),,1;

ACTIVITY/47,2880,,;RERSHP2;
GOON,3;

ACTIVITY;
ACTIVITY,,.BAAB;
ACTIVITY,,.CSP2;
FREE,CRANERB,1;

189

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ACTIVITY,;
TERMINATE;

BAAB FREE,RBCRWST,I;

ACTIVITY;
TERMINATE;

;FILE P3BLIND.NET, NODE LABEL SEED ADAA

BLP3 EVENT,12,];

ACTIVITY;

P3B!I AWAIT(42),TRMIXRWT,.I;

ACTIVITY/60,15,,;DELCONCBP3
FREE, TRMIXRWT,I;
ACTIVITY;
AWAIT(43),ALLOC(29),,1;
ACTIVITY/61,10,,;PLACCONBP3
FREE,CONPMPWT,I;
ACTIVITY;

FREE,CONCRWST, 1,
ACTIVITY;
ACCUMULATE)S,5.,.1;
ACTIVITY,, FFP3;

:FILE P3CAPC.NET, NODE LABEL SEED AOCAA

CCP3 EVENT,I6,1;

ACTIVITY;

P3CA AWAIT(58),TRMIXRWT,,1;

ACTIVITY/79,15,,;DELCONCAPP3;
FREE,TRMIXRWT,1;
ACTIVITY;

P3B AWAIT(59),ALLOC(41),,1;

ACT'VITY/80,10,,;PLCONCAPP3;
FREE,CONPMPWT,1;

ACTIVITY;

FREE,CONCRWST, 1;

ACTIVITY;

ACCUMULATE,40,40,,2;
ACTIVITY/81,480,;RELCAPFORMP3;
FREE,CAPFRMWT;

TERMINATE;

;FILE PM3CAPF.NET, NODE LABEL SEED AMAA

CIP3 AVW/AIT(56),ALLOC(39),,1;

ACTIVITY/77,1440,;FORMCAPP3;
GOON.3;

ACTIVITY;

ACTIVITY,,,CRP3;
ACTIVITY,,,AMAB;
FREE,FORCRWST, 1;

ACTIVITY;

TERMINATE;

AMAB FREE,CRANEFWT,I;

ACTIVITY;
TERMINATE;

540 FILE P3CAPR.NET, NODE LABEL SEED ANAA

190

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

CRP3 AWAIT(57),ALLOC(40).,1;
ACTIVITY/78,2880,,.REBCAPP3;
GOON,3;

ACTIVITY,,,CCP3;
ACTIVITY;
ACTIVITY,,,ANAD;
FREE,CRANERB,1;
TERMINATE;

ANAD FREE,RBCRWST,I;
TERMINATE;

;FILE P3FOTC.NET, NODE LABEL SEED AGAA

CFP3 EVENT,13,1;
ACTIVITY;

P31 AWAIT(46),TRMIXRWT,,1;
ACTIVITY/64,15,,,;DELCONFTP3;
FREE,TRMIXRWT,1;

ACTIVITY;

P32 AWAIT(47),ALLOC(32),.1;
ACTIVITY, 10;
FREE,CONPMPWT,1;

ACTIVITY;

FREE,CONCRWST, 1;

ACTIVITY;
ACCUMULATE,80,80,,2;
ACTIVITY/66,480,,;RELFOTFRMP3;
ACTIVITY,, PFP3;
FREE,FOTFORWT;

ACTIVITY;

TERMINATE;

;FILE P3FOTF.NET, NODE LABEL SEED AEAA

FFP3 AWAIT44),ALLOC(30),,1;
ACTIVITY/62,1440,,;FORMFTP3;
GOON,3;

ACTIVITY,, RFP3;
ACTIVITY;
ACTIVITY,,,AEAB;
FREE,FORCRWST,I;
ACTIVITY;
TERMINATE;

AEAB FREE,CRANEFWT,I;
ACTIVITY;

TERMINATE;

;FILE P3FOTR.NET, NODE LABEL SEED AFAA

R¥P3 AWAIT(45),ALLOC(31),,1;
ACTIVITY/63,2880,,;REBFTP3;
GOON,3;

ACTIVITY;
ACTIVITY,,,CFP3;
ACTIVITY,, AFAB;
FREE,CRANERB,I;

191

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

ACTIVITY;
TERMINATE;

AFAB FREERBCRWST.[;

ACTIVITY;
TERMINATE;

:FILE P3PEDC.NET, NODE LABEL SEED AlAA

PCP3 EVENT,14,1;

ACTIVITY;

APP3 AWAIT(50), TRMIXRWT,1;

ACTIVITY/69,15,,;DELCONPEDP3;
FREE, TRMIXRWT,1;
ACTIVITY:

CPP3 AWAIT(51),ALLOC(35)..1;

ACTIVITY/70,10,,;PLCONPEDP3;
FREE,CONPMPWT, I;

ACTIVITY;

FREE,CONCRWST,I;

ACTIVITY;
ACCUMULATE,80,80,,2;
ACTIVITY/71,480,,,;RLPEDFRMP3;
ACTIVITY,,,SFP3;
FREE,PEDFRMWT;

ACTIVITY;

TERMINATE:

:FILE P3PEDF.NET, NODE LABEL SEED AHAA

PFP3 AWAIT(48),ALLOC(33)..1;

ACTIVITY/67,i440,,;' RMPEDP3;
GOON.3;

ACTIVITY,,,PRP3;

ACTIVITY,;

ACTIVITY,,,AHAB,
FREE,FORCRWST.I;

ACTIVITY,;

TERMINATE,

AHAB FREE.CRANEFWT,I;

ACTIVITY;
TERMINATE;

:FILE P3PEDR.NET, NODE LABEL SEED AIAA

PRP3 AWAIT(49),ALLOC(34),,1;

ACTIVITY/42,2880,,;REBPEDP2;
GOON.,3;

ACTIVITY;

ACTIVITY,,.AIAB;
ACTIVITY,,.PCP3;
FREE,CRANERB,I;

ACTIVITY;

TERMINATE;

AIAB FREE,RBCRWST.I;

ACTIVITY;
TERMINATE;

:FILE P3SHC.NET., NODE LABEL SEED ALAA

192

649 .

650 SCP3 EVENT.IS.1;

651 ACTIVITY;

652 SCPA AWAIT(54), TRMIX{.NT..1;
653 ACTIVITY/74,15,,,DELCONSHP3;
654 FREE, TRMIXRWT.I;

655 ACTIVITY;

656 SCPB AWAIT(55),ALLOC(38),,1;
657 ACTIVITY/75,10,,;,PLCCONSHP3;
658 FREE,CONPMPWT,I;

659 ACTIVITY;

660 FREE,CONCRWST,1;

661 ACTIVITY;

662 ACCUMULATE.76.76.,2;

663 ACTIVITY/76,480,,:RELSHFRMP3;
664 ACTIVITY,,, ALAB;

665 FREE,SHFTFRWT,;

666 ACTIVITY;

667 TERMINATE;

668 ALAB ASSIGN,ATRIB(5)=ATRIB(5) + 1,1;
669 ACTIVITY,,ATRIB(5).EQ.1.SFP3;
670 ACTIVITY,,ATRIB(5).EQ.2,CIP3;
671 ;FILE P3SHF.NET, NODE LABEL SEED AJAA
672 ;

673 SFP3 AWAIT(52),ALLOC(36),,1;

674 ACTIVITY/72,1440,,;FRMSHFTP3;
675 GOON,3;

676 ACTIVITY;

677 ACTIVITY,,.AJAC;

678 ACTIVITY,,,SRP3;

679 FREE,FORCRWST,I;

680 ACTIVITY;

681 TERMINATE;

682 AJAC FREE,CRANEFWT,I;

683 ACTIVITY;

684 TERMINATE;

685 ;FILE P3SHR.NET, NODE LABEL SEED AKAA
686 ;

687 SRP3 AWAIT(53),ALLOC(37),,1;

688 ACTIVITY/73,2880,,;REBSHP3;
689 GOON,3;

690 ACTIVITY;

691 ACTIVITY,,,AKAB;

692 ACTIVITY,,,SCP3;

693 FREE,CRANERB,I;

694 ACTIVITY;

695 TERMINATE;

696 AKAB FREE,RBCRWST,I;

647 ACTIVITY;

698 TERMINATE;

700

699 ,FILE PABERM.NET, NODE LABEL SEED LPAA

701 BRP4 EVENT,23,1;

702

ACTIVITY;

193

703 BP4l AWAIT(80),TRUCKEST,,I.

704 ACTIVITY/106,30,,;DELVDRTP4;
705 FREE, TRUCKEST.,I,

706 ACTIVITY,

707 BP42 AWAIT(81),DOZEREST,,I;

708 ACTIVITY/107,20,,;DOZBP4,

709 FREE,DOZEREST,

710 ACTIVITY,

711 ACCUMULATE,800,800,,2;

712 ACTIVITY;

713 ACTIVITY,,,CDP4,

714 TERMINATE;

715 ;FILE PABLIND.NET, NODE LABEL SEED TLAA
716 ;

717 BL.P4 EVENT,29,1;

718 ACTIVITY,

719 P4B1 AWAIT(106),TRMIXRET,,I;

720 ACTIVITY/138,15,,;DLLCONCBP4;
721 FREE, TRMIXRET,I,;

722 ACTIVITY;

723 AWAIT(107),ALLOC(75),,1;

724 ACTIVITY/139,10,,;PLACCONBP4;
725 FREE,CONPMPET,1;

726 ACTIVITY;

727 FREE,CONCREST,1;

728 ACTIVITY;

729 ACCUMULATES,S,.1;

730 ACTIVITY.,, FFP4;

731 ;FILE P4ACAPC.NET, NODE LABEL SEED TRUA
732 ;

733 CI1P4 EVENT,33,1;

734 ACTIVITY;

735 PACA AWAIT(122),TRMIXRET,,I;

736 ACTIVITY/157,15,,;DELCONCAPP4;
737 FREE, TRMIXRET,1;

738 ACTIVITY,

739 P44 AWAIT(123),ALLOC(87),.1;

740 ACTIVITY/158,10,,;PLCONCAPP4,
741 FREE,CONPMPET,I;

742 ACTIVITY:

743 FREE,CONCREST,I;

744 ACTIVITY;

745 ACCUMULATE 40,40,,2;

746 ACTIVITY/159.480,,:RELCAPFORMP4;
747 FREE.CAPFRMET;

748 TERMINATE;

749 FILE P4ACAPF.NET, NODE LABEL SEED XUAA
750 .

751 FCP4 AWAIT(120),ALLOC(85),.1;

752 ACTIVITY/155,1440,,;FORMCAPP4;
753 GOON,3,

754 ACTIVITY;

755 ACTIVITY...RCP4;

756 ACTIVITY...XUAD;

194

757 FREE,FORCREST.I;

758 ACTIVITY;

759 TERMINATE;

760 XUAD FREE,CRANEFET,I;

761 ACTIVITY;

762 TERMINATE:

763 ;FILE PACAPR.NET, NODE LABEL SEED LMAA
764 ;

765 RCP4 AWAIT(121),ALLOC(86),,1;

766 ACTIVITY/156,2880,;REBCAPP4;
767 GOON.,3;

768 ACTIVITY,,,CI1P4;

769 ACTIVITY;

770 ACTIVITY,,LMAC;

771 FREE,CRANERBE.!;

772 TERMINATE,;

773 LMAC FREE,RBCREST,I;

774 TERMINATE;

775 ;FILE P4COFD.NET, NODE LABEL SEED MKAA
776 ;

777 CDP4 AWAIT(86),ALLOC(60),,1;

778 ACTIVITY/114,240,,;FLOATCAGEP4,
779 GOON.,I;

780 ACTIVITY/115,240,,;POS&ANCHP4;
781 C4PA AWAIT(87),ALLOC(61),,1;

782 ACTIVITY 480,,;DRIVSPUDPILP4;
783 MKAB GOON,1;

784 ACTIVITY/116.360,,;DRIV SHETP4;
785 ASSIGN.ATRIB(8)=ATRIB(8) + 1,1;
786 ACTIVITY,,ATRIB(8).GE.100;

787 ACTIVITY,,ATRIB(8).LT.100,MKAB;
788 FREE,CRANERBE, 1;

789 ACTIVITY;

790 FREE,DISELHAM,1;

791 ACTIVITY;

792 SREE.PILCREW;

793 ACTIVITY,, BLP4;

794 :FILE PAFOTC.NET, NODE LABEL SEED NNNA
795 ;

796 CFP4 EVENT,30,1;

797 ACTIVITY;

798 P41 AWAIT(110),TRMIXRET,,I;

799 ACTIVITY/142,15,,;DELCONFTP4;
800 FREE, TRMIXRET,I;

801 ACTIVITY;

802 P42 AWAIT('11),ALLOC(78),,1;

803 ACTIVITY/143,10,,;PLCCONP4;

804 FREE,CONPMPET,1;

805 ACTIVITY;

806 FREE,CONCREST,!;

807 ACTIVITY;

808 ACCUMULATE,80,80,,2;

809 ACTIVITY/144,480,,;RELFOTFRMP4;
810 ACTIVITY,,PFP4;

195

811 FREE,FOTFORET;,

812 ACTIVITY;

813 TERMINATE;

814 :FILE PAFOTF.NET, NODE LABEL SEED UUAA
8IS ;

816 FFP4 AWAIT(108),ALLOC(76),,1;

817 ACTIVITY/140,1440,,,;FORMFTP4;
818 GOON,3;

819 ACTIVITY,, RFP4;

820 ACTIVITY,

821 ACTIVITY,,,UUAC;

822 FREE,FORCREST,I;

823 ACTIVITY;

824 TERMINATE;

825 UUAC FREE,CRANEFET,I,

826 ACTIVITY,;

827 TERMINATE;

828 FILE P4FOTR.NET. NODE LABEL SEED MMMA
829 .

830 RFP4 AWAIT(109),ALLOC(77),.1;

831 ACTIVITY/141,2880,,;REBFTP4;
832 GOON,3;

833 ACTIVITY,

834 ACTIVITY,,,CFP4;

835 ACTIVITY,,,MMMC(;

836 FREE,CRANERBE, I;

837 ACTIVITY,;

838 TERMINATE;

839 MMMC FREE,RBCREST,I;

840 ACTIVITY,;

841 TERMINATE;

842 :FILE PAPEDC.NET, NODE LABEL SEED TPAA
843 ;

844 PCP4 EVENT,31,1;

845 ACTIVITY,

846 APP4 AWAIT(114). TRMIXRET,,I;

847 ACTIVITY/147,15,,;DELCONPEDP4;
848 FREE,TRMIXRET,I;

849 ACTIVITY;

850 CPP4 AWAIT(115),ALLOC(81),.1;

851 ACTIVITY/148,10,,;PLCONPEDP4;
852 FREE,CONPMPET,I;

853 ACTIVITY;

854 FREE.CONCREST,I;

855 ACTIVITY;

856 ACCUMULATE.80,80,,2;

857 ACTIVITY/149,480,,;RLPEDFRMP4;
858 ACTIVITY,, SFP4,

859 FREE.PEDFRMET;

860 ACTIVITY:

861 TERMINATE:

862 FILE P4PEDF.NET. NODE LABEL SEED TUAA
863 :

864 PFP4 AWAIT(112),ALLOC(79)..1;

196

865 ACTIVITY/145,1440...FRMPEDP4;
866 GOON,3;

867 ACTIVITY,,,PRP4;

868 ACTIVITY;

869 ACTIVITY,, . TUAD,;

870 FREE,FORCREST,I;

871 ACTIVITY;

872 TERMINATE;

873 TUAD FREE,CRANEFET,I;

874 ACTIVITY,

875 TERMINATE;

876 FILE PAPEDR.NET, NODE LABFL SEED TYAA
877 ;

878 PRP4 AWAIT(113),ALLOC(80),.1;

879 ACTIVITY/146,2880,,;REBPEDP4,
880 GOON,3;

881 ACTIVITY;

882 ACTIVITY,.,TYAC;

883 ACTIVITY,, PCP4,

884 FREE,CRANERBE,;

885 ACTIVITY;

886 TERMINATE;

887 TYAC FREE,RBCREST,I;

888 ACTIVITY;

889 TERMINATE;

890 :FILE PASHC.NET, NODE LABEL SEED BXAA
891 ;

892 SCP4 EVENT,32,1;

893 ACTIVITY;

894 SP4A AWAIT(118), TRMIXRET,,I;

895 ACTIVITY/152,15,,;DELCONSHP4,
896 FREE, TRMIXRET,I;

897 ACTIVITY;

898 SP42 AWAIT(119),ALLOC(84),,1;

899 ACTIVITY/153,10,,;,PLCCONSHP4;
900 FREE,CONPMPET,I;

901 ACTIVITY;

902 FREE,CONCREST.,];

903 ACTIVITY;

9204 ACCUMULATE,76,76,,2;

905 ACTIVITY/154,480,,;RELSHFRMP4,
906 ACTIVITY,,.BXAB;

907 FREE,SHFTFRET;

908 ACTIVITY;

909 TERMINATE;

910 BXAB ASSIGN,ATRIB(10)=ATRIB(10) + 1,1;
911 ACTIVITY,,ATRIB(10).EQ.1,SFP4;
912 ACTIVITY,,ATRIB(10).EQ.2,FCP4;
913 ;FILE P4SHF.NET, NODE LABEL SEED LBAA
914 ;

915 SFP4 AWAIT(116),ALLOC(82),,1;

916 ACTIVITY/150,1440,,,;FRMSHFTP4;
917 GOON,3;

918 ACTIVITY;

197

919
920
921

922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

952
953
954
955
956
957
958
959
960
961

962
963
964
965
966
967
968
969
970
971

972

ACTIVITY,, LLBAC;
ACTIVITY,,.SRP4,
FREE,FORCREST,I;
ACTIVITY;
TERMINATE;

ILBAC FREE,CRANEFET,I;

ACTIVITY;
TERMINATE;

:FILE PASHR.NET, NODE LABEL SEED LUAA

SRP4 AWAIT(117),ALLOC(83),,1;

ACTIVITY/151,2880,,;REBSHP4,
GOON,3;

ACTIVITY;

ACTIVITY,,,LUAC;
ACTIVITY,,,.SCP4,
FREE,CRANERBE,I;
ACTIVITY;

TERMINATE;

LLUAC FREE,RBCREST,I;

ACTIVITY;
TERMINATE;

;FILE PSBERM.NET, NODE LABEL SEED LLAA

BRP5 EVENT,22,1;

ACTIVITY;

BP51 AWAIT(78),TRUCKEST,,I;

ACTIVITY/104,30,;DELVDRTPS;
FREE,TRUCKEST,];
ACTIVITY;

BP52 AWAIT(79),DOZEREST,.I;

ACTIVITY/105,20,,;DOZBPS;
FREE,DOZEREST;
ACTIVITY;
ACCUMULATE,800,800,,3;
ACTIVITY;
ACTIVITY,,,CDPS;
ACTIVITY,,.BRP4;
TERMINATE;

:FILE PSBLIND.NET, NODE LABEL SEED ZZZA

BLPS EVENT,24,1;

ACTIVITY;

P5B1 AWAIT(88),TRMIXRET,I;

ACTIVITY/117.15,,:DELCONCBP5;
FREE, TRMIXRET,!;

ACTIVITY;
AWAIT(89),ALLOC(62),,1;
ACTIVITY/118,10,,;PLACCONBPS;
FREE.CONPMPET, I;

ACTIVITY;

FREE.CONCREST.,1;

ACTIVITY;

ACCUMULATE,S,S..1;

198

973
974

976
977
978
979
980
981
982
083
984
985
986
987
988
989
990
991
992

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

ACTIVITY,.FFPS;

:FILE PSCAPC.NET, NODE LABEL SEED NYAA
975 ;
C1P5 EVENT,28,1;

ACTIVITY;

P5CA AWAIT(104),TRMIXRET..!:

ACTIVITY/136,15,,,DELCONCAPP5;
FREE, TRMIXRET,I;
ACTIVITY;

P54 AWAIT(105),ALLOC(74),.1;

ACTIVITY/137,10,,;PLCONCAPPS;
FREE,CONPMPET, 1,

ACTIVITY;

FREE,CONCREST,I;

ACTIVITY;

ACCUMULATE 40,40,,2;
ACTIVITY/138,480,;RELCAPFORMPS;
FREE,CAPFRMET;

TERMINATE;

;FILE PSCAPF.NET, NODE LABEL SEED MOAA
993 ;
FCP5 AWAIT(102),ALLOC(72),.1;

ACTIVITY/134,1440,,;FORMCAPPS;
GOON,3;

ACTIVITY;

ACTIVITY,,,RCPS;
ACTIVITY,,MOAC;
FREE,FORCREST,I;

ACTIVITY;

TERMINATE;

MOAC FREE,CRANEFET,I;

ACTIVITY;
TERMINATE;

:FILE PSCAPR.NET, NODE LABEL SEED OMAA

RCP5S AWAIT(103),ALLOC(73),,1;

ACTIVITY/135.2880,,;REBCAPPS;
GOON,3;

ACTIVITY,, CIPS;

ACTIVITY;

ACTIVITY,,,OMAD;
FREE,CRANERBE,I;
TERMINATE;

OMAD FREE,RBCREST,1;

TERMINATE;

;FILE PSCOFD.NET, NODE LABEL SEED KXYA

CDP5 AWAIT(84),ALLOC(58),,1;

ACTIVITY/111,240,;FLOATCAGEPS;
GOON.,1;
ACTIVITY/112,240,,;,POS&ANCHPS;

CP5A AWAIT(85),ALLOC(59),.1;

ACTIVITY,480,,;DRIVSPUDPILPS;

1026 KXYB GOON,1;

199

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

ACTIVITY/113,360,,;DRIV SHETPS;
ASSIGN,ATRIB(7)=ATRIB(7) + 1,1;
ACTIVITY,, ATRIB(7).GE.100;
ACTIVITY,, ATRIB(7).LT.100,KXYB;
FREE,CRANERBE,];
ACTIVITY,;
FREE,DISELHAM,!;
ACTIVITY;
FREE,PILCREW;
ACTIVITY,,,BLPS;
:FILE PSFOTC.NET, NODE LABEL SEED MMMA
CFP5 EVENT,25,1;
ACTIVITY;

P51 AWAIT(92),TRMIXRET,1;
ACTIVITY/121,15,,;DELCONFTPS;

FREE, TRMIXRET,I;
ACTIVITY;

P52 AWAIT(93),ALLOC(65)..1;
ACTIVITY/122,10,,;PLCCONPS;
FREE,CONPMPET, I;

ACTIVITY;
FREE,CONCREST,I;
ACTIVITY;
ACCUMULATE,80.80,,2;
ACTIVITY/123,480,,;RELFOTFRMP5;
ACTIVITY,, PFPS;
FREE ,FOTFORET;
ACTIVITY;
TERMINATE;
;FILE PSFOTF.NET, NODE LABEL SEED KKKA

FFP5 AWAIT(90),ALLOC(63),,1;
ACTIVITY/119,1440,,;FORMFTPS;
GOON,3;

ACTIVITY,, RFPS;
ACTIVITY;
ACTIVITY,,.KKKC;
FREE,FORCREST,!;
ACTIVITY,;
TERMINATE;

KKKC FREE,CRANEFET,!;
ACTIVITY;

TERMINATE;
:FILE PSFOTR.NET, NODE LABEL SEED LLLA

RFP5 AWAIT(91),ALLOC(64),,1;
ACTIVITY/120,2880,,;REBFTPS;
GOON,3;

ACTIVITY;
ACTIVITY,.,CFPS;
ACTIVITY,.,LLLC;
FREE,CRANERBE,I;
ACTIVITY;

200

1081 TERMINATE;

1082 LLLC FREE,RBCREST.!:

1083 ACTIVITY,;

1084 TERMINATE;

1085 ;FILE PSPEDC.NET, NODE LABEL SEED NTAA
1086 ;

1087 PCPS EVENT,26,1;

1088 ACTIVITY;

1089 APPS AWAIT(96).TRMIXRET,,1;

1090 ACTIVITY/126,15,,;DELCONPEDPS;
1091 FREE, TRMIXRET,1;

1092 ACTIVITY;

1093 CPP5 AWAIT(97),ALLOC(68).,1;

1094 ACTIVITY/127,10,,;PLLCONPEDPS;
1095 FREE,CONPMPET, 1;

1096 ACTIVITY;

1097 FREE,CONCREST,I;

1098 ACTIVITY;

1099 ACCUMULATE,80,80,,2;

1100 ACTIVITY/128,480,,;RLPEDFRMPS;
1101 ACTIVITY,, SFPS;

1102 FREE,PEDFRMET;

1103 ACTIVITY;

1104 TERMINATE;

1105 ;FILE PSPEDF.NET, NODE LABEL SEED I1AA
1106 ;

1107 PFP5 AWAIT(94),ALLOC(66),,1;

1108 ACTIVITY/124,1440,,;FRMPEDPS;
1109 GQON,3;

1110 ACTIVITY,, PRPS;

1111 ACTIVITY;

1112 ACTIVITY,, IIAB;

1113 FREE,FORCREST,I;

1114 ACTIVITY;

1115 TERMINATE;

1116 1iA3 FREE,CRANEFET,I;

1117 ACTIVITY;

1118 TERMINATE;

1119 :FILE PSPEDR.NET, NODE LABEL SEED LTAA
1120 ;

1121 PRP5 AWAIT(95),ALLOC(67),,1;

1122 ACTIVITY/125,2880,,;REBPEDPS;
1123 GOON,3;

1124 ACTIVITY;

1125 ACTIVITY,, LTAC;

1126 ACTIVITY,, PCPS;

1127 FREE,CRANERBE,1;

1128 ACTIVITY;

1129 TERMINATE;

1130 LTAC FREE,RBCREST,I;

1131 ACTIVITY;

1132 TERMINATE;

1133 ;FILE PSSHC.NET, NODE LABEL SEED ITAA
1134 ;

201

1135 SCPS EVENT,27,1;

1136 ACTIVITY;

1137 SPP1 AWAIT(100),TRMIXRET,,1;
1138 ACTIVITY/131,15,,;DELCONSHP;
1139 FREE,TRMIXRET,I;

1140 ACTIVITY;

1141 SPP2 AWAIT(101),ALLOC(71),,1;
1142 ACTIVITY/132,10,,;PLCCONSHPS;
1143 FREE,CONPMPET,I;

1144 ACTIVITY;

1145 FREE,CONCREST,I;

1146 ACTIVITY;

1147 ACCUMULATE,76,76,,2;

1148 ACTIVITY/133,480,,;RELSHFRMPS;
1149 ACTIVITY,,,ITAB;

1150 FREE,SHFTFRET;

1151 ACTIVITY;

1152 TERMINATE,;

1153 ITAB ASSIGN,ATRIB(9)=ATRIB(9) + 1,1;
1154 ACTIVITY,,ATRIB(9).EQ.1,SFP5;
1155 ACTIVITY, ATRIB(9).EQ.2,FCP5;
1156 ;FILE PSSHF.NET, NODE LABEL SEED TIAA
1157

1158 SFP5 AWAIT(98),ALLOC(69),,1;

1159 ACTIVITY/129,1440,,;FRMSHFTPS;
1160 GOON,3;

1161 ACTIVITY;

1162 ACTIVITY,, TIAC;

1163 ACTIVITY,,,SRP5;

1164 FREE,FORCREST,!;

1165 ACTIVITY;

1166 TERMINATE;

1167 TIAC FREE,CRANEFET,1;

1168 ACTIVITY;

1169 TERMINATE;

1170 ;FILE PSSHR.NET, NODE LABEL SEED MEAA
171

1172 SRPS AWAIT(99).ALLOC(70),,1;

1173 ACTIVITY/130,2880,,;REBSHPS;
1174 GOON,3;

1175 ACTIVITY;

1176 ACTIVITY,,,MEAC;

17 ACTIVITY,..SCPS;

1178 FREE,CRANERBE,1;

1179 ACTIVITY;

1180 TERMINATE;

1181 MEAC FREE,RBCREST,I:

1182 ACTIVITY;

1183 TERMINATE;

1184 ;FILE P6BLIND.NET, NODE LABEL SEED ZZZZ
1185 ;

1186 BLP6 EVENT,17,1;

1187 ACTIVITY;

1188 P6B1 AWAIT(60), TRMIXRET,.I;

1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233

ACTIVITY/82.15,;DELCONCBPG;
FREE, TRMIXRET,1;

ACTIVITY;
AWAIT(61),ALLOC(42)..1;
ACTIVITY/83,10,,;PLACCONBPG;
FREE,CONPMPET,1;

ACTIVITY;

FREE,CONCREST, 1;

ACTIVITY;
ACCUMULATE,S,S,.1;
ACTIVITY,, FFP6;

;FILE P6GCAPC.NET, NODE LABEL SEED KNAA

C1P6 EVENT,21,1;

ACTIVITY;

P6CA AWAIT(76),TRMIXRET,,;

ACTIVITY/101,15,,,DELCONCAPP6;
FREE,TRMIXRET,I;
ACTIVITY;

P64 AWAIT(77),ALLOC(55),,1;

ACTIVITY/102,10,,;PLCONCAPPG;
FREE,CONPMPET, |;

ACTIVITY;

FREE,CONCREST,1;

ACTIVITY;

ACCUMULATE 40,40,,2;
ACTIVITY/103,480,,;RELCAPFORMPS;
FREE,CAPFRMET;

TERMINATE;

;FILE P6CAPF.NET, NODE LABEL SEED KMAA

FCP6 AWAIT(74),ALLOC(53),,1;

ACTIVITY/99,1440,,;FORMCAPP6;
GOON,3;

ACTIVITY;

ACTIVITY,,,RCPS;
ACTIVITY,,,KMAB;
FREE,FORCREST,I;

ACTIVITY;

TERMINATE;

KMAB FREE,CRANEFET,I;

ACTIVITY;
TERMINATE;

;FILE P6CAPR.NET, NODE LABEL SEED LKAA

1234 RCP6 AWAIT(75),ALLOC(54),.1;

1235
1236
1237
1238
1239
1240
1241

ACTIVITY/100,2880,,;REBCAPP6;
GOON,3;

ACTIVITY,,,C1P6;

ACTIVITY;

ACTIVITY,, LKAB;
FREE,CRANERBE, 1;
TERMINATE;

1242 LKAB FREE,RBCREST,];

203

1243 TERMINATE;

1244 :FILE P6FOTC.NET, NODE LABEL SEED ZXAA
1245

1246 CFF6 EVENT,I8,1;

1247 ACTIVITY,

1248 P61 AWAIT(64), TRMIXRET,,I;
1249 ACTIVITY/86,15,,;DELCONFTP6;
1250 FREE,TRMIXRET,I;

1251 ACTIVITY;

1252 P62 AWAIT(65),ALLOC(46),,1;
1253 ACTIVITY/87,10;

1254 FREE,CONPMPET,1;

1255 ACTIVITY;

1256 FREE,CONCREST,I;

1257 ACTIVITY;

1258 ACCUMULATE,80,80,,2;

1259 ACTIVITY/88,480,,;RELFOTFRMP6;
1260 ACTIVITY,,,PFP6;

1261 FREE,FOTFORET;

1262 ACTIVITY,;

1263 TERMINATE;

1264 :FILE P6FOTF.NET, NODE LABEL SEED ZZZB
1265 ;

1266 FFP6 AWAIT(62),ALLOC(43),,1;
1267 ACTIVITY/84,1440,,,FORMFTP6;
1268 GOON,3;

1269 ACTIVITY,, RFP6;

1270 ACTIVITY;

1271 ACTIVITY,,,ZZZC;

1272 FREE,FORCREST,I;

1273 ACTIVITY;

1274 TERMINATE;

1275 ZZZC FREE,CRANEFET,I;

1276 ACTIVITY;

1277 TERMINATE;

1278 :FILE P6FOTR.NET, NODE LABEL SEED ZZAA
1279 ;

1280 RFP6 AWAIT(63),ALLOC(44),,1;
1281 ACTIVITY/85,2880,,;REBFTP6;
1282 GOON,3;

1283 ACTIVITY;

1284 ACTIVITY,,,CFP6;

1285 ACTIVITY,,,ZZAC;

1286 FREE,CRANERBE,I;

1287 ACTIVITY,

1288 TERMINATE;

1289 ZZAC FREE.RBCREST,!;

1290 ACTIVITY; -

1291 TERMINATE;

1292 ;FILE P6PEDC.NET, NODE LABEL SEED XXAA
1293 ;

1294 PCP6 EVENT,I19,1;

1295 ACTIVITY;

1296 APP6 AWAIT(68),TRMIXRET,,1;

204

1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350

ACTIVITY/91,15,.DELCONPEDPG;

FREE, TRMIXRET,!;
ACTIVITY;

CPP6 AWAIT(69),ALLOC(49),,1;
ACTIVITY/92,10,,;PLCONPEDPS;
FREE,CONPMPET, 1;

ACTIVITY;

FREE,CONCREST,I;

ACTIVITY;
ACCUMULATE,80,80..2;
ACTIVITY/93,480,,;RLPEDFRMP6;
ACTIVITY,,,SFP6;
FREE,PEDFRMET;

ACTIVITY;

TERMINATE;

;FILE P6PEDF.NET, NODE LABEL SEED ZYAA

PFP6 AWAIT(66),ALLOC(47)..1;
ACTIVITY/89,1440,,;FRMPEDP6;
GOON,3;

ACTIVITY,,,PRP6;
ACTIVITY,;
ACTIVITY,,.ZYAB,;
FREE,FORCREST,1;
AUTIVITY;
TERMINATE;

ZYAB FREE,CRANEFET,I;
ACTIVITY;

TERMINATE;

;FILE P6PEDR.NET, NODE LABEL SEED ZTAA

PRP6 AWAIT(67),ALLOC(48),.1;
ACTIVITY/90,2880,,;REBPEDP6;
GOON,3;

ACTIVITY;
ACTIVITY,,,ZTAB;
ACTIVITY,, PCP6;
FREE,CRANERBE, I;
ACTIVITY;
TERMINATE;

ZTAB FREE,RBCREST,I;
ACTIVITY;

TERMINATE;

;FILE P6SHC.NET, NODE LABEL SEED KKAA

SCP6 EVENT,20,1;
ACTIVITY;

SCP1 AWAIT(72),TRMIXRET,,1;
ACTIVITY/96,15,,;DELCONSHPS6;
FREE, TRMIXRET.,I;

ACTIVITY;

SCP2 AWAIT(73),ALLOC(52),,1;
ACTIVITY/97,10,,;PLCCONSHPG;
FREE,CONPMPET,1;

205

1351

1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381

1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392
1393
1394
1395
1396
1397
1398
1399
1400
1401

1402

ACTIVITY;

FREE,CONCREST,I;

ACTIVITY;
ACCUMULATE,76,76,,2;
ACTIVITY/98,480,,;RELSHFRMPG6;
ACTIVITY,,.KKAB,;
FREE,SHFTFRET;

ACTIVITY;

TERMINATE;

KKAB ASSIGN,ATRIB(6)=ATRIB(6) + 1,1;

ACTIVITY,ATRIB(6).EQ.1,SFP6;
ACTIVITY,,ATRIB(6).EQ.2,FCP6:

;FILE P6SHF.NET, NODE LABEL SEED XYAA

SFP6 AWAIT(70),ALLOC(50),,1;

ACTIVITY/94,1440,,;FRMSHFTP6;
GOON,3;

ACTIVITY;

ACTIVITY,,.XYAB;
ACTIVITY,,,SRP6;
FREE,FORCREST,1;

ACTIVITY;

TERMINATE;

XYAB FREE.CRANEFET,!;

ACTIVITY;
TERMINATE;

:FILE P6SHR.NET, NODE LABEL SEED XZAA

SRP6 AWAIT(71),ALLOC(51),,1;

ACTIVITY/95,2880,,;REBSHP6;
GOON,3;

ACTIVITY,;

ACTIVITY,,. XZAB;
ACTIVITY,,,SCP6;
FREE,CRANERBE,|;
ACTIVITY;

TERMINATE,

XZAB FREE,RBCREST,I;

ACTIVITY;
TERMINATE;

;FILE PILABI.NET, NODE LABEL SEED ZAAA

SHET CREATE,(,,,32,1;

ACTIVITY;

PAB1 AWAIT(1),ALLOC(1),,1;

ACTIVITY/1,10,,;POSITION PIL

AG1 GOON.,I;

ACTIVITY/2,30,,;DRIVE-1;

AG? GOON,I;

ACTIVITY/3,20,,;SPLICE;

AG3 GOON,I;

ACTIVITY/4,30,,;.DRIVE-2;

1403 AG4 GOON,3;

1404

ACTIVITY;

1405 ACTIVITY.,.FCR:

1406 ACTIVITY,,,FHAM;

1407 FCRN FREE,CRANE40T,I;
1408 ACTIVITY;

1409 TERMINATE;

1410 FCR FREE,PILCREW.I;

1411 ACTIVITY;

1412 TERMINATE;

1413 FHAM FREE.DISELHAM,I;
1414 ACTIVITY;

1415 TERMINATE;

1416 ;FILE PILPRI.NET, NODE LABEL SEED ZAAA
1417 ;

1418 PLP1 EVENT,I,1;

1419 ACTIVITY;

1420 PLPR AWAIT@),ALLOC(3)..1;
1421 ACTIVITY/8,10,,;POSITION PIL;
1422 PGl GOON,I;

1423 ACTIVITY/9,30,,;DRIVE-1;
1424 PG2 GOON,I;

1425 ACTIVITY/10,20,,;SPLICE;
1426 PG3 GOON,I;

1427 ACTIVITY/11,30,,;DRIVE-2;
1428 PG4 GOON4;

1429 ACTIVITY;

1430 ACTIVITY,, ZAAC;

1431 ACTIVITY,, XAAB;

1432 ACTIVITY,,,XAAC;

1433 BREL ACCUMULATE,90,90,,1;
1434 ACTIVITY,, BLPI;

1435 ZAAC FREE,CRANEA40T,1;
1436 ACTIVITY;

1437 TERMINATE;

1438 XAAB FREE,PILCREW,1;

1439 ACTIVITY;

1440 TERMINATE;

1441 XAAC FREE,DISELHAM,I;
1442 ACTIVITY;

1443 TERMINATE;

1444 ;FILE REBFTP1.NET, NODE LABEL SEED TAAA
1445 ;

1446 RFP1 AWAIT(8),ALLOC(6),,1;
1447 ACTIVITY/15,2880,,;REBFTPI;
1448 GOON,3;

1449 ACTIVITY;

1450 ACTIVITY,, TAAB,;

1451 ACTIVITY,, CFPI;

1452 FREE,CRANERB,1;

1453 TERMINATE;

1454 TAAB FREE,RBCRWST,!;
1455 TERMINATE;

1456 ;FILE REBSHP1.NET, NODE LABEL SEED QAAA
1457 ;

1458 RFSH AWAIT(12),ALLOC(9),,1;

207

1459 ACTIVITY/20,2880,,;REBSHPL;

1460 GOON,3;

1461 ACTIVITY;

1462 ACTIVITY,,.QAAB;

1463 ACTIVITY,,,COSH;

1464 FREE,CRANERB,1;

1465 TERMINATE;

1466 QAAB FREE,RBCRWST,I,;

1467 TERMINATE;

i468 ;FILE SHCONPI.NET, NODE LABEL SEED PAAA
1469 ;

147() COSH EVENT4,1;

1471 ACTIVITY;

1472 AWAIT(13),TRMIXRWT,,1;

1473 ACTIVITY/21,15,,;DEL CON SH P1;
1474 FREE, TRMIXRWT,I;

1475 ACTIVITY;

1476 AWAIT(14),ALLOC(10),,1;

1477 ACTIVITY/22,10..;PLACECONCSHPI;
1478 FREE,CONPMPWT,I;

1479 ACTIVITY;

1480 FREE,CONCRWST,i;

1481 ACTIVITY;

1482 ACCUMULATE,76,76,.2;

1483 ACTIVITY/23,480,,;REL SHTFORM;
1484 ACTIVITY,,,PAAB;

1485 FREE,SHFTFRWT;

1486 TERMINATE;

1487 PAAB ASSIGN.ATRIB(2)=ATRIB(2) +1,1;
1488 ACTIVITY,, ATRIB(2).EQ.1,SHPI;
1489 ACTIVITY,,ATRIB(2).EQ.2,CAPF;
1490 ;FILE SHFORP1.NET, NODE LABEL SEED RAAA
1491 ;

1492 SHP!1 AWAIT(11),ALLOC(8),,1;

1493 ACTIVITY/19,1440,,;FRMSHFTPI;
1494 GOON,3;

1495 ACTIVITY;

1496 ACTIVITY,,,RAAB;

1497 ACTIVITY,,,RFSH;

1498 FREE,FORCRWST,1;

1499 TERMINATE;

1500 RAAB FREE,CRANEFWT,I;

1501 TERMINATE;

1502 FILE START.NET, NODE LABEL SEED ACAA
1503 ;

1504 CREATE,..,I;

1505 ACTIVITY,,,BLP6;

1506 ACTIVITY,,,BRPS;

1507 END;

1508 FIN;

208

