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Abstract

The aim of my thesis consists of characterizing explicitly the optimal con-

sumption and investment strategy for an investor, when her habit level process

is incorporated in the utility formulation. For a continuous-time market model,

I maximize the expected utility from terminal wealth and/or consumption. For

this optimization problem, the thesis presents three novel contributions.

Using the Kalman-Bucy filter theorem, I transform the optimization prob-

lem under the partial information into an equivalent optimization problem

within a full information context. Using the stochastic control techniques,

this latter problem is reduced to solve an associated Hamilton-Jacobi-Bellman

equation (HJB hereafter). For the exponential utility, the solution to the

HJB is explicitly described, while the optimal policies/controls as well as

the optimal wealth process are described by a stochastic differential equa-

tion. Furthermore, I discuss qualitative analysis on the optimal policies for

the exponential utility. These achievements constitute my first contribution in

this thesis. The second contribution lies in considering a stochastic volatility

model and addressing the same optimization problem using again the tech-

niques of stochastic control. The third contribution of my thesis resides in

combining the filtering techniques with the martingale approach to solve the

optimization problem when the investor is endowed with the logarithm, power

or exponential utility.
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Chapter 1

Introduction

Mathematical finance is a multidisciplinary field, which draws on and extends

classical applied mathematics, stochastic and probabilistic methods, and nu-

merical techniques to enable models of financial systems to be constructed,

analysed and interpreted. This methodology underpins applications to deriva-

tives pricing, portfolio structuring, risk management, insurance analysis and

many more.

Portfolio-Consumption Optimization and Asset pricing are two most pop-

ular topics in mathematical finance. Under optimization theory, the aim of the

investors is to minimize the risk while seeking for the highest return. Or, they

maximize their return for their acceptable level of risk. The pioneer of this

field is Harry Markowitz, who stated in 1952 that it is possible for different

portfolios to have varying levels of risk and return. Each investor must decide

how much risk he or she can tolerate, and allocate their portfolio according

to the efficient frontier which shows a set of optimal portfolios that offers the

highest expected return for a defined level of risk.
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The other popular topic is Asset Pricing Theory, which is built on mathe-

matical models of bond and stock prices and has two important directions. The

first direction is Black-Scholes arbitrage pricing of options and other derivative

securities, while the second direction lies in the Capital Asset Pricing Model.

All this topics in mathematical finance have an enormous impact on the way

modern financial markets operate. In this thesis, I mainly focus on the optimal

consumption-portfolio choice with the effect of habit formation. I study the

corresponding utility optimization problem for an investor within the finite

time horizon, for both cases of full information and partial information.

1.1 Habit Formulation Utilities

Over the past decades, habit formation has become a popular topic and

draws attention from many researchers. The time seperable von Neumann-

Morgenstern preference on consumption has been observed to be conflict with

some empirical experiments such as the Premium Puzzle (see [17]), the Joneses

effect (see [1]) and the Exchange Economy with Habit Formation (see [9]).

Therefore, both the empirical and theoretical literatures have confirmed

that the past consumption pattern plays a role in determing on individual’s

current consumption decisions. Based on this, a vast literature recommends

this time non-separable preference as the new economic paradigm. In 1930,

I. Fisher examined the measurability of the utility function, and emphasized

the importance of nonseparable utility formation in [10]. Sundaresan, in [19],

constructed a model in which consumer’s utility depends on the consump-

tion history. By applying the Hamilton-Jacobi-Bellman equation, he gave a
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feedback form consumption in a simple example. With simulation method,

the consumption paths generated from this model is formed to be less fluc-

tuating compared with the case of separable utility function. Detemple and

Zapatero, in [8], proved the existence of optimal consumption-portfolio policies

for utility function involving a general dependence on past consumption or the

standard of living. Using the martingale approach, they calculated the optimal

consumption rate and the feedback form of optimal portfolios under different

utility functions. When the asset market is incomplete, the convex duality

approach becomes an important method to deal with the utility maximization

problems. (see [23] and [14]).

1.2 Information and Financial markets

Partial Information means investors can not observe the drift process and

Brownian motion appearing in the stochastic differential equation for the se-

curity prices. Why it is important to study the partial information? Because

partial information is more consistent with reality. We can easily attain the

information about the stock price and interest rate but we can not know the

pattern of drift process and the paths of Brownian motions.

Optimal investment problems under incomplete information was discussed

already by Lakner in [16] where a formula was presented for the optimal level

of terminal wealth, and the existence of a corresponding trading strategy has

been shown. Lakner studies this problem using the martingale approach. In

this way, the problem can be reduced to the calculation of a certain expected

value. The main objective of the present paper is to work out explicit formula
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for the optimal trading strategy. Brennan and Xia, in [4], assume that the

drift process is constant, but cannot be observed by the investor. They show

that the Bellman equation can be reduced to a system of ordinary differential

equations, which is solved numerically. Yu (see [22]) assume the drift process is

unknown and satisfies the Ornstein Uhlenbeck stochastic differential equation.

By using the dynamic programming arguments, he solved the optimal prob-

lems under partial information with power preference. Ibrahim and Abergel,

in [12], studied the question of filtering and maximizing terminal wealth from

expected utility in a stochastic volatility models by both martingale approach

and partial differential equation method. This problem becomes more compli-

cated, as it is a non linear filtering problem when transforming the volatility

models under partial information into complete information.

1.3 Summary of the Thesis

In this thesis, we study the utility maximization problem of an investor with

habit formation and incomplete information. The aim of the investor is to

maximize the expected utility from her consumption and/or terminal wealth

in a simple financial market with finite investment horizon T .

This thesis contains five chapters including the current chapter of the in-

troduction. In the next chapter (Chapter 2), we introduce the mathematical

tools as well as the fundamental financial market concepts that will be used

throughout the thesis. In Chapter 3, we specify our market model with partial

information. After transforming this model into an equivalent complete infor-

mation model by filtering techniques, the optimal problem can be reduced to
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solve a partial differential equation (PDE). Then, we solve it explicitly for the

exponential preference.

In Chapter 4, we focus on the stochastic volatility model. This case falls

into the context of complete information even we can just observe the stock

price and interest rate. So we can get the optimal consumption and portfolio

by solving a PDE.

Chapter 5 develops the martingale approach for both cases of complete

information and incomplete information. For the case of complete information,

we extend the model of Detemple and Zapatero by relaxing some boundedness

assumption and focusing on the case of exponential utility. In contrast to

the case of complete information up to our knowledge, the case of incomplete

information was not addressed using this martingale approach. Using this

approach, we analyse the three cases of utilities (namely the logarithmic, power

and exponential) and discuss many particular situations.
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Chapter 2

Mathematical Preliminaries and

Financial Market

In this chapter, we introduce some financial concepts, stochastic basis and

other mathematical techniques used throughout the rest of the thesis.

2.1 Stochastic Basis and Calculus

The Financial modelling of system starts with a given filtered probability space

(Ω,F , (Ft)t≥0, P ),

which is called in the probabilistic literature as stochastic basis. Here, P is a

probability measure and F is a σ-algebra that contains all negligible sets. The

family F := (Ft)t≥0 is called filtration, where Ft is a σ-fields and

F0 ⊆ Fs ⊆ Ft ⊆ F for all t ≥ s ≥ 0.
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Financially speaking, Ft represents the aggregate information about the mar-

ket/ agent/ financial products up to time t.

2.1.1 Brownian Motion and Martingales

Definition 2.1: 1) A stochastic process X = (Xt)t≥0 is a family of random

variable indexed by time.

2) A process X is said to be F = (Ft)t≥0 adapted if for all t ≥ 0, Xt is

Ft-measurable.

As an important example of adapted stochastic process is the Brownian mo-

tion.

Definition 2.2: A process W = (Wt)t≥0 is said to be a Brownian motion if

1) W0 = 0 P − a.s.,

2) t → Wt(w) is continuous for almost all w ∈ Ω,

3) Wt −Ws ∼ N (0, t− s) for all 0 ≤ s < t,

4) Wt −Ws independent of Wu −Wr for all 0 ≤ r ≤ u ≤ s < t.

By an n-dimensional Brownian motion we mean a process with values in

Rn

W (t) = (W1(t),W2(t), ...,Wn(t)),

where the components Wi are independent one-dimensional Brownian motions.

In the literature, the requirement 3) of Definition 2.2 with respect to a given

filtration {Ft}t≥0 is typically stated as
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3)∗ Wt −Ws independent of Fs, for 0 ≤ s ≤ t.

When we consider a Brownian motion {Wt,Ft}t≥0 with arbitrary filtration

{Ft}t≥0 we implicitly assume requirement 3)∗ to be fulfilled.

For technical reasons in the theory of stochastic integration a filtration

σ(∪s>tFs) is usually required to be right-continuous. Thus the Brownian fil-

tration satisfies the usual condition in the sense of following.

Definition 2.3: A filtration {Ft}t≥0 satisfies the usual conditions if it is right-

continuous (i.e. Ft = ∨s>tFs for all t ≥ 0) and F0 contains all P -null sets

of F .

Throughout the thesis, {Ft}t≥0 will be assumed to satisfy the usual condi-

tions. Now we introduce a class of stochastic processes which will be funda-

mental for our analysis in this thesis.

Definition 2.4: A real-valued process X = (Xt)t≥0, which is F-adapted and

satisfies E |Xt| < ∞ for all t ≥ 0, is called

1) a super-martingale, if we have

E(Xt | Fs) ≤ Xs P − a.s., 0 ≤ s ≤ t.

1) a sub-martingale, if we have

E(Xt | Fs) ≥ Xs P − a.s., 0 ≤ s ≤ t.
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1) a martingale, if we have

E(Xt | Fs) = Xs P − a.s., 0 ≤ s ≤ t.

The following theorem is Doob’s inequality.

Theorem 2.1: Let (Xt) be an non-negative continuous sub-martingale and

X∗ = sup
t≥0

Xt. Then

E[X∗] ≤ e

e− 1

(
1 + sup

t≤0
E[Xt log

+ Xt]
)
,

||X∗||p ≤ q sup
t≥0

||Xt||q,

where p > 1 and q > 1 are a couple of conjugate indices.

Corollary 2.1.1: A process X = (Xt)t≥0 is a martingale if and only if is a

super-martingale and a sub-martingale.

Theorem 2.2: A one-dimensional Brownian motion W = (Wt)t≥0 is a mar-

tingale.

Remark 2.1: The Brownian motion with drift μ and volatility σ

Xt := μt+ σWt

is a martingale if μ = 0, a super-martingale if μ ≤ 0 and a sub-martingale

if μ ≥ 0.

Now we introduce the famous theorem demonstrating the way a Q-Brownian
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motion WQ(t) can be constructed from a P -Brownian motion W (t) via a

change of measure from P to Q.

Theorem 2.3: (Girsanov’s theorem) Define the process

Z(t,X) := exp
(
−

m∑
i=1

∫ t

0

Xi(s)dWi(s)− 1

2

∫ t

0

‖X(s)‖2 ds
)
, t ∈ [0, T ],

(2.1)

and Z(t,X) is a martingale and define the process {(WQ(t),Ft)}t≥0 by

WQ
t (t) := Wi(t) +

∫ t

0

Xi(s)ds, 1 ≤ i ≤ m, t ≥ 0.

Then, for each fixed T ∈ [0,∞] the process {(WQ(t),Ft)}t ∈ [0, T ] is an m-

dimensional Brownian motion on (Ω,FT , Q) where the probability measure

Q is defined as

Q(A) := E(1A · Z(T,X)) forA ∈ FT .

2.1.2 Stochastic Integral and Itô’s Formula

Before introducing the Itô’s Formula, we need to define the stochastic integral.

We shall start by constructing it for so-called simple process Xt.

Definition 2.5: A stochastic process {Xt}t∈[0,T ] is called a simple process if

there exist real number 0 = t0 < t1 < ... < tp = T, p ∈ N, and bounded

random variables Φi : Ω → R with

Φ0 F0 -measurable, Φi Fti−1
-measurable, for all i = 1, ..., p.
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such that Xt(w) has the following representation

Xt(w) = X(t, w) = Φ0(w)1{0}(t) +
p∑

i=1

Φi(w)1(ti−1,ti](t)

for each w ∈ Ω.

Definition 2.6: For a simple process {Xt}t∈[0,T ] the stochastic integral It(X)

for t ∈ (tk, tk+1] is defined according to

It(X) :=

∫ t

0

XsdWs :=
∑
1≤i≤k

Φi(Wti −Wti−1) + Φk+1(Wt −Wtk),

or more generally for t ∈ [0, T ]:

It(X) :=

∫ t

0

XsdWs :=
∑
1≤i≤p

Φi(Wti∧t −Wti−1∧t).

Hence, on each interval where X is constant, the increments of the Brown-

ian motion on that interval are multiplied with the corresponding value of Xt·

namely Φi·.

In most of cases, simple process is a strict condition. So we need to define

the stochastic process in a more general level. We have to take a closer look

at measurability assumptions for the stochastic process X to be able to define

the stochastic integral for more general integrands in a reasonable way.

Definition 2.7: Let {(Xt,Gt)}t∈[0,∞) be a stochastic process. This stochastic

process will be called measurable if the mapping

[0,∞)× Ω → Rn : (s, w) �→ Xs(w)
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is B([0,∞))⊗F − B(Rn) measurable.

Remark 2.2: Measurability of the process X in particular implies that for

a fixed w ∈ Ω, X(·, w) is B([0,∞)) − B(Rn)-measurable. Thus, for all

t ∈ [0,∞), i = 1, ..., n the integral
∫ t

0

X2
t (s)ds is defined.

Definition 2.8: Let {(Xt,Gt)}t∈[0,∞] be a stochastic process. This stochastic

process will be called progressively measurable if for all t ≥ 0 the mapping

[0, t)× Ω → Rn : (s, w) �→ Xs(w)

is B([0, t))⊗Ft − B(Rn) measurable.

According to the above discussion we require integrands to be progressively

measurable when we want to extend the stochastic integral for a larger class

of integrands than simple processes. Further to be able to define a norm for

stochastic integrals, we consider the following vector space:

L2[0, T ] : = L2
(
[0, T ],Ω,F, P

)
: =
{
{(Xt,Ft)}t∈[0,T ] real-valued stochastic process |

{Xt}t∈[0,T ] progressively measurable, E
(∫ T

0

X2
t dt
)
< ∞

}

Theorem 2.4: (Construction of the Iô integral for process in L2[0, T ]) There

exist a unique linear mapping J from L2[0, T ] into the space of continuous

martingales on [0, T ] with respect to {Ft}t∈[0,T ] satisfying
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1) For any simple process, X = {Xt}t∈[0,T ],

Jt(X) = It(X), for all t ∈ [0, T ], P − a.s.

2) For any X ∈ L2[0, T ], we have

E
(
Jt(X)2

)
= E
(∫ t

0

X2
sds
)

Definition 2.9: For X ∈ L2[0, T ] and J as Theorem 2.4 we denote

∫ t

0

XsdWs := Jt(X), t ≥ 0

and J(x) is called the stochastic integral or the Iô integral of X with respect

to W .

Now, we introduce Itô’s Formula for n-dimensional Itô process having the

form of

Xi(t) = Xi(0) +

∫ t

0

Ki(s)ds+
m∑
j=1

∫ t

0

Hij(s)dWj(s), i = 1, ..., n.

Theorem 2.5: (Itô’s Formula) Let f : [0,∞) × Rn �→ R be a C1,2-function.

That is, f is continuous, continuously differentiable with respect to the first

variable (time), and twice continuously differentiable with respect to the

other n variables (space).
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Then, for every t ≥ 0,

f(t,X1(t), ..., Xn(t))

=f(0, X1(0), ..., Xn(0))

+

∫ t

0

ft(s,X1(s), ..., Xn(s))ds+
n∑

i=1

∫ t

0

fxi
(s,X1(s), ..., Xn(s))dXi(s)

+
1

2

n∑
i=1

n∑
j=1

∫ t

0

fxixj
(s,X1(s), ..., Xn(s))d〈Xi, Xj〉s.

2.2 Market Structure

With all knowledge of the stochastic calculus, we can describe and introduce

the financial market. A financial market is a market in which people can

trade financial derivatives, commodities, and other financial products. In the

market, everything for trade has a corresponding price. Price is the expense for

different goods or services. The law of the markets determines that a suitable

price is the one which can keep a balance between supply and demand. Usually,

there exists low transaction costs when trading activities happen in real life.

However, to make the research concise, we need to simplify the market

structure in this thesis. Therefore, I will focus on the single-investor economy.

In other words, I will consider the case where transaction fees or costs have no

significant influence on the market equilibrium. Hence, throughout this thesis,

transaction fees can be neglected.

14



2.2.1 Modelling the Security Prices

We also consider this single-investor economy with frictionless markets and no

taxes in time interval [0, T ]. It is only stocks and bonds that are tradeable in

our model. Bond is a riskless asset, and its rate of return is a positive number

r(t). r(t) is also called risk-free interest rate at time t. The price process of

the bond is denoted by S0(t), and follows

dS0(t) = r(t)S0(t)dt, t ∈ [0, T ]. (2.2)

Equivalently, given the initial bond price S0(0) = s∗0,

S0(t) = s∗0 exp
(∫ t

0

r(s)ds
)
, t ∈ [0, T ]. (2.3)

Different from bonds, usually many kinds of stocks exist in the financial

market. We assume that the market consists of m stocks. We denote by Si(t)

the price of the ith stock at time t (i = 1, 2...,m). The dynamic of the stock

price process is given by:

dSi(t) = μi(t)Si(t)dt+ Si(t)
d∑

j=1

σij(s)dW
j
t . (2.4)

Equivalently, given the initial stock price Si(0) = si, we have

Si(t) = si exp

{∫ t

0

[
μi(s)− 1

2

d∑
j=1

σ2
ij(s)

]
ds+

d∑
j=1

∫ t

0

σij(s)dW
j
s

}
, t ∈ [0, T ].

(2.5)

In the equations above, the interest rate r(t), the stock return rate μ(t) �
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(μ1(t), ..., μm(t)), the volatility matrix σ(t) = {σij(t)}1≤i≤m,1≤j≤d are the volatil-

ities of stocks. Precisely, r(t) : [0, T ] × Ω → R and μi(t) : [0, T ] × Ω → R

are positive scalars, while the volatility of ith stock σi(t) : [0, T ] × Ω → Rm

describes the price dispersion rate. All these processes are assumed to be

(Ft)t≥0-adapted.

The process Wt �
(
W 1

t ,W
2
t , ...,W

d
t

)
is a d-dimensional standard Brownian

motion. It is assumed that m ≤ d. If m = d and the volatility matrix is

non-singular, those stocks create what is called a complete market. A financial

market is said to be complete where every payoff can be replicated. Otherwise,

the market is incomplete such as the case m < d, where an infinite number of

risk neutral probability measures exist.

2.2.2 Trading Strategy and Wealth Process

We further assume that the investors can buy stocks and bonds with their capi-

tal. The investment activity is characterized by portfolio π(t) � (π0(t), π1(t), ..., πm(t)),

where πi(t) � Ni(t)Si(t). N0(t) represents the amount of bond, and Ni(t)

represents the amount of ith stock at time t, i = 1, ...,m. In our model,

short-selling is allowed, which means that Ni can be any real number for

i = 0, ...,m. Moreover, it is assumed that the investor have to make a contin-

uous living expense at the note c(t) to cover his or her expense, c(t) represents

the consumption rate of the investor at time t.

In our economy, the investor starts with an initial capital x0, and no en-

dowment will be added at any time t ∈ [0, T ]. We use X(t) to represent the

wealth of the agent at time t. At any time t, the consumer must decide his
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consumption rate c(t) and investment strategy π(t). Then, the wealth process

is given by the following stochastic differential equation

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dX(t) =

[
r(t)X(t) +

m∑
i=1

(μi(t)− r(t)) πi(t)− c(t)

]
dt+

d∑
j=1

m∑
i=1

πi(t)σij(t)dW
j
t ,

X(0) = x0, t ∈ [0, T ].

(2.6)

Equivalently,

X(t) = exp

⎡⎣ t∫
0

r(s)ds

⎤⎦⎧⎨⎩x0 +

∫ t

0

exp

⎡⎣− s∫
0

r(u)du

⎤⎦ [π(s)(μ(s)− r(s) · 1)�

− cs] ds+
d∑

j=1

t∫
0

exp

[
−
∫ s

0

r(u)du

]
π(s)σ·j(s)dW j

s

⎫⎬⎭ , t ∈ [0, T ].

(2.7)

Definition 2.10: A pair (π, c) consisting of a portfolio process π and a con-

sumption rate c will be called admissible for the initial wealth x0 > 0, if

1) (πt, ct) are (Ft)t∈[0,T ]- progressively measurable and satisfies the integra-

bility conditions

∫ T

0

(π2
t + c2t )dt < +∞, P − a.s..

2) the corresponding wealth process satisfies

X(t) ≥ 0 P − a.s., for all t ∈ [0, T ]
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The set of admissible pairs (π, c) will denote by A(x0).

This condition is to make the wealth process well defined and to avoid bankruptcy.

2.3 Habit Utility Formation

In this section, we define some mathematical variables that describe the state

of agent. When investors consume some money they will gain happiness from

their consumption, and we call this effect as utility. In economics, utility is a

description of preferences over some set of goods and services. In mathematics,

utility is a function U : [0,∞) → R that is increasing and concave. Usually,

it is a single variable function with respect to consumption rate or wealth. In

macroeconomics, the utility function must satisfy the Inada’s condition.

Assumption 1: Let U : [0,∞) → R be a strictly concave and continuously

differentiable function satisfying

U ′(0) := lim
x↓0

U ′(x) = +∞, U ′(∞) := lim
x↑∞

U ′(x) = 0. (2.8)

Then U is called a utility function.

From a financial view, the marginal utility is strictly decreasing, and it

goes to zero as consumption rate or wealth approaches positive infinity.

In our model, we study the problem of optimal consumption and investment

rules for an agent with habit formation. Therefore, we expand the utility U

to a dual-variable function U(c, z) with respect to consumption rate c(t) and

consumption habit level z(t).
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Similarly, the habit-related utility function has to satisfy the following con-

dition.

Assumption 2: U(c, z) is continuously differentiable and satisfies:

1.
∂U(c, z)

∂c
> 0. For fixed historical consumption rate, an increase in

current consumption will increase utility.

2.
∂U(c, z)

∂z
< 0. For fixed current consumption, an increase in historical

consumption rate will decrease utility.

3.
∂2U(c, z)

∂c2
< 0. Marginal utility will decreases as current consumption

increases. It indicates that utility function U(c, z) is concave down for c.

4. lim
c→+∞

∂U(c, z)

∂c
= 0. Marginal utility approaches 0 as consumption rate

goes to infinity.

One simple example of the habit index process z(t) is given by

dz(t) = β(c(t)− z(t))dt, z(0) = z0, t ∈ [0, T ]. (2.9)

Equivalently, given the initial consumption habit z0,

z(t) = z0e
−βt +

∫ t

0

βeβ(s−t)c(s)ds, t ∈ [0, T ]. (2.10)

In this formulation, z0 is the initial consumption preference level. β is the

habit formulation factor, and it represents the weight of nearby consumption

in the formulation of habit. As time passes, the preference places less weight on

historical consumption at a given past date. From the differential form, we can

see that the consumption habit will increase if the momentary consumption

rate exceeds the consumption habit. The higher β is, the fast z(t) is adjusted
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to current consumption rate. If β = 0, the preference index is a constant and

stays at z0.

A more general example of z is given by

dz(t) = (δ(t)c(t)− α(t)z(t))dt, z(0) = z0, t ∈ [0, T ]. (2.11)

That is,

z(t) = z0e
− ∫ t

0 α(u)du +

∫ t

0

δ(u)e−
∫ t
u α(v)dvc(u)du, t ∈ [0, T ]. (2.12)

Here, α(t) is the persistence of the past level, and δ(t) is the intensity (weight)

of consumption history.

The most common utility functions can be specialized as follows: (just

examples, not limited to those cases)

1. Exponential utility function: u(c, z) = − 1

Φ1

e−Φ1c+Φ2z, where Φ1 >

0,Φ2 � 0. The parameter Φ2 describes the strength of intertemporal depen-

dence.

2. Power utility function: u(c, z) =
{c− z}A

A
, A < 1. This utility for-

mation has the property that as c approaches z, the marginal utility goes to

infinity. Therefore, the agent would never allow his consumption level to be

lower than his consumption habit.

3. Logarithmic utility function: u(c, z) = log{c − z}. Same as power

utility function, as c → z, the marginal utility goes to infinity. Therefore, the

consumption habit determines the lower limit of consumption rate.
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2.4 Filtering Techniques

In section 2.2, we establish a model under full information. Actually, it is

more realistic to assume that investors have only partial information since

stock prices and interest rates are published and available to the public, but

drifts and paths of Brownian motions are just mathematical tools for model

description and not observable. Moreover, investors have only partial infor-

mation, so the consumption rate and portfolio of investors are adapted to the

filtration generated by the stock prices, which is smaller than the one we talked

at section 2.2.

Filtering problems concern estimating something about an unobserved stochas-

tic process Y given observations of a related process Λ. It is an important tool

to transfer a partial information problem into a complete information problem.

The setting is a probability space (Ω,F, P ) equipped with a filtration F =

(Ft)t∈[0,T ]. All processes are assumed to be F-adapted. Note that F is not the

observation filtration. Let us call F the background filtration. We consider

two processes, both taken to be one-dimensional:

• a signal process Y := (Yt)t∈[0,T ] which is not directly observable;

• an observation process Λ = (Λt)t∈[0,T ] which is observable and somehow

correlated with Y , so that by observing Λ we can say something about

the distribution of Y .

Let FΛ := (FΛ
t )t∈[0,T ] denote the observation filtration generated by Λ and

FΛ
t := σ(Λs; 0 ≤ s ≤ T ).
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The filtering problem is to compute the conditional distribution of the signal

Yt, t ∈ [0, T ], given observations up to that time.

To proceed further, we need to specify some particular model for the ob-

servation process.

2.4.1 Observation process

Let W = (Wt)t∈[0,T ] be an F-Brownian motion, let G = (Gt)t∈[0,T ] be an F-

adapted process satisfying

E

∫ T

0

G2
tdt < ∞,

and we shall assume the observation process Λ is of the linear form

dΛt = G(t)Ytdt+ dWt, t ∈ [0, T ]. (linear observation model)

2.4.2 Innovation process

We introduce the filter estimate process Ŷ , for any F-adapted process Y , as

the optional projection of Y onto the FΛ filtration, i.e.

Ŷt = E[Yt | FΛ
t ], t ∈ [0, T ]. (2.13)

Define the FΛ-adapted innovation process

Nt := Λt −
∫ t

0

(Ĝ(t)Yt)ds, t ∈ [0, T ]. (2.14)
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Proposition 2.1: The innovation process N is an FΛ-Brownian motion.

The proof of above proposition can be found in [18].

2.4.3 Kalman-Bucy filter

Theorem 2.6: (One-dimensional Kalman-Bucy filter) On a filtered probability

space (Ω,F, P ), with background filtration F = (Ft)t∈[0,T ] , let Y = (Yt)t∈[0,T ]

be an F-adapted signal process satisfying

dYt = A(t)Ytdt+ C(t)dBt,

and let Λ = (Λt)t∈[0,T ] be an F-adapted observation process satisfying

dΛt = G(t)Ytdt+ dWt.

Here W and B are F-Brownian motions with correlation ρ, and the coeffi-

cients A(·), C(·) and G(·) are deterministic functions satisfying

∫ T

0

(|A(t)|+ C2(t) +G2(t))dt < ∞.

Define the observation filtration FΛ = (FΛ
t )t∈[0,T ] by

FΛ
t = σ(Λs : 0 ≤ s ≤ t).

Suppose Y0 is an F0-measurable random variable, and that the distribution

of Y0 is Gaussian with mean μ0 and variance η0, independent of W and B.
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Then, the conditional expectation Ŷt := E[Yt | FΛ
t ], for t ∈ [0, T ] satisfies

dŶt = A(t)Ŷtdt+ [G(t)Vt + ρC(t)]dNt, Ŷt = η0,

where N = (Nt)t∈[0,T ] is the innovations process, which is an FΛ-Brownian

motion satisfying

dNt = dΛt −G(t)Ŷtdt.

Furthermore, Vt = var[Yt|FΛ
t ] = E[(Yt−Ŷt)

2 | FΛ
t ], for t ∈ [0, T ], is the con-

ditional variance, which is independent of FΛ
t and satisfies the deterministic

Riccati equation

dVt

dt
= (1− ρ2)C2(t) + 2[A(t)− ρC(t)G(t)]Vt −G2(t)V 2

t , V0 = θ0.
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Chapter 3

Exponential Utility with

Incomplete Information

In this chapter, we consider a model of optimal investment and consumption

with both habit formation and partial information. The investor chooses her

consumption rate and portfolio using the information from the stock price

only. Herein, we assume that the investor has exponential utility towards

consumption and terminal wealth.

At first, we mathematically describe the financial market structure. We

consider a continuous-time economy on a finite time horizon [0, T ]. Given a

filtered probability space (Ω,F, P ) where the filtration F = (Ft)t∈[0,T ] satisfies

the usual conditions. The investors in this market are assumed to be "small

investors", and as a consequence their actions have no influence on the market

prices. In addition, the transaction is smooth, which indicates all transaction

costs are ignored. This market consists of a riskless bond and one stock. The

stock price is driven by a one-dimensional Brownian motion W (m = d = 1),
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which indicates the completeness of the market. Without loss of generality,

we assume that the bond process S0
t ≡ 1 for all t ∈ [0, T ], or equivalently

the interest rate r(t) ≡ 0, t ∈ [0, T ]. The stock price process St follows the

following dynamic

dSt = μtStdt + σSStdWt, t ∈ [0, T ], S0 = s0 > 0. (3.1)

Similar to [22], we assume that the drift process μt satisfies the Ornstein-

Uhlenbeck stochastic differential equation

dμt = −λ(μt − μ)dt+ σμdBt, t ∈ [0, T ]. (3.2)

Here, W and B are two F-adapted Brownian motions with correlation coeffi-

cient ρ ∈ [−1, 1]. The initial value of the drift process μ0 is assume to be an

F0-measurable Gaussian random variable and μ0 ∼ N(η0, θ0), which is inde-

pendent of Brownian motions W and B. We also assume that other coefficients

σS, σμ, λ, μ are non-negative constants.

If we denote by x0 the investor’s initial wealth, then at time t, the investor’s

wealth Xt equals to this initial wealth plus the gain or loss from investment

activities and less the accumulated consumption. We denote by ct the con-

sumption rate at time t and by πt the amount of wealth invested in the stock.

The investor’s total wealth at time t is given by

X(t) = x0 +

∫ t

0

πs

Ss

dSs −
∫ t

0

csds, t ∈ [0, T ].
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Or equivalently

dXt = (πtμt − ct)dt+ σSπtdWt, t ∈ [0, T ], X0 = x0. (3.3)

3.1 Model for Habit formation

Now, we study the problem of optimal consumption and investment rules for

an investor with Habit formation. We expand the original utility U(x) to a

bivariate function U(c, z) with respect to consumption rate ct and consumption

habit level zt. The process zt satisfies

dzt = (δ(t)ct − α(t)zt)dt, t ∈ [0, T ], (3.4)

or equivalently

zt = z0e
− ∫ t

0 α(u)du +

∫ t

0

δ(u)e−
∫ t
u α(v)dvcudu, t ∈ [0, T ].

According to Section 2.3, α(t) represents the persistence of the past level, while

δ(t) models the intensity (weight) of consumption history.

3.2 Model for Partial observations

We assume that investors can only observe the stock price process St, while

μt,Wt and Bt are unknown for investors. Thus, our goal is to find the optimal

investment strategy πt and consumption policy ct under partial observation
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filtration FS = (FS
t )t∈[0,T ]. This pair (πt, ct) is adapted to FS

t = σ(Su, u ∈ [0, t])

only. The key ideal here is to transform the partial information problem to

an equivalent problem with complete observations. To this end, we need to

project the unknown process μ and Brownian motions W and B onto the

observable filtration FS = (FS
t )t∈[0,T ]. In other words, we need to estimate

μ,B and W using FS.

We use the filtering techniques in Section 3.2. According to (2.14), we define

the innovation process Ŵ associate to W as follows

dŴt :=
1

σS

[(μt − μ̂t)dt+ σSdWt] =
1

σS

(
dSt

St

− μ̂tdt), t ∈ [0, T ]. (3.5)

Here μ̂t := E[μt | FS
t ]. Thanks to Proposition 2.1, Ŵ := (Ŵt)t∈[0,T ] is a Brown-

ian Motion under FS, and due to Theorem 2.6 (One-dimensional Kalman-Bucy

filter), the process μ̂t satisfies

dμ̂t = −λ(μ̂t − μ)dt+ (
Ω̂t + σSσμρ

σS

)dŴt, (3.6)

μ̂0 = E[μ0 | FS
0 ] = η0.

In addition, the conditional variance Ω̂t = E[(μt − μ̂t)
2 | FS

t ] satisfies the

following Riccati ordinary differential equation (ODE):

dΩ̂t =
[
− 1

σ2
S

Ω̂2
t + (−2σμρ

σS

− 2λ)Ω̂t + (1− ρ2)σ2
μ

]
dt, (3.7)

Ω̂0 = E[(μ0 − μ̂0)
2 | FS

0 ] = θ0.
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The solution to the above Riccati ODE is already derived in [22] and is

Ω̂t = Ω̂(t; θ0) =
√
kσs

k1e
2
√
kt

σS + k2

k1e
2
√
kt

σS − k2

− (λ+
σμρ

σS

)σ2
S, t ∈ [0, T ], (3.8)

where

k = λ2σ2
SS + 2σSσμλρ+ σ2

μ,

k1 =
√
kσS + (λσ2

S + σSσμρ) + θ0,

k2 = −
√
kσS + (λσ2

S + σSσμρ) + θ0.

It is easy to see that Ω̂(t) converges monotonically to the value

θ∗ = σS

√
λ2σ2

S + 2σSσμλρ+ σ2
μ − (λσ2

S + σSσμρ) > 0, (3.9)

as time t → ∞. The convergence property of Ω̂(t) tells us the precision of the

drift estimate goes from an initial condition to a steady state in the long time

run. By the evolution of Riccati ODE, we obtain that the monotone solution

Ω̂(t) on (0,∞) has the bounds

min(θ0, θ
∗) ≤ Ω̂(t) ≤ max(θ0, θ

∗), ∀t ∈ [0, T ], (3.10)

notice that θ0, θ
∗ are independent of t.

Under the observation filtration FS, the stock price process can be derived

using the innovation process of (3.5) as follows

dSt = μ̂tStdt+ σSStdŴt, t ∈ [0, T ]. (3.11)

29



The habit formation process zt still satisfies (3.4). However, the pair (π, c) is

now FS-progressively measurable.

By the same procedure, as in the full information case, the dynamic of the

wealth process under FS
t are given by

dXt = (πtμ̂t − ct)dt+ σSπtdŴt, X0 = x0, t ∈ [0, T ]. (3.12)

And no bankruptcy is allowed, that means the investor’s wealth remains non-

negative: Xt ≥ 0, t ∈ [0, T ].

3.3 Utility Maximization and HJB Equation

Our goal is to maximize the consumption with habit formation and the ter-

minal wealth, for investors endowed with exponential utility preference, under

the partial observation filtration FS. Mathematically, this objective can be

stated as follows

v(x0, z0, η0, θ0) = sup
(π,c)∈A(x0)

E[

∫ T

0

−e−(cs−zs)ds− e−XT ], (3.13)

where A(x0) is the set of admissible pairs defined in Definition 2.10. This

optimization problem is a stochastic control problem which can be reduced to

solve a Hamilton-Jacobi-Bellman (HJB hereafter) equation.
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3.3.1 The form of HJB Equation

We look for a smooth function defined as

ṽ(t, x, z, η, θ) = sup
(π,c)∈A(x0)

E
(∫ T

t

−e−(cs−zs)ds−e−XT

∣∣∣Xt = x, zt = z, μ̂t = η, Ω̂t = θ
)
,

(3.14)

and notice that

ṽ(0, x, z, η, θ) = v(x0, z0, η0, θ0).

By Definition 2.4, on an appropriate domain the following process

Ỹ (π,c)(t) :=

∫ t

0

−e−(cs−zs)ds+ ṽ(t,Xt, zt, μ̂t, Ω̂t), t ∈ [0, T ],

is a local super-martingale for each admissible control (πt, ct) ∈ A(x0).

Because for each (πt, ct) ∈ A(x0) and ∀t ∈ [0, T ] we have

E[Ỹ (π,c)(t) | F0] ≤ Ỹ (π,c)(0) = v(x0, z0, η0, θ0),

For the optimal control pair (π∗
t , c

∗
t ) ∈ A(x0):

Ỹ (π∗,c∗)(t) :=

∫ t

0

−e−(c∗s−z∗s )ds+ ṽ(t,X∗
t , z

∗
t , μ̂t, Ω̂t), t ∈ [0, T ],

is a local martingale,because for (π∗, c∗) ∈ A(x0) and ∀t ∈ [0, T ] we have

E[Ỹ (π∗,c∗)(t) | F0] = Ỹ (π∗,c∗)(0) = v(x0, z0, η0, θ0).
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From Section 3.2 , we know that the conditional variance process Ω̂t = Ω̂(t, θ0)

is a deterministic function of time. Therefore, the variable θ in the definition

of ṽ can be set as a deterministic function of t, and θ = θ(t, θ0) depending on

the parameter θ0. So the dimension of the function ṽ can be reduced. Hence,

we can define a new function V (t, x, z, η; θ0) as

V (t, x, z, η; θ0) := ṽ(t, x, z, η, θ(t, θ0)), (3.15)

and our goal can be simplified into finding a smooth enough function V (t, x, z, η; θ0)

on some appropriate domain, denoted by V (t, x, z, η), such that for each fixed

initial value Ω̂(0) = θ0

Y (π,c)(t) =

∫ t

0

−e−(cs−zs)ds + V (t,Xt, zt, μ̂t), ∀t ∈ [0, T ], (3.16)

is a super-martingale for each (πt, ct) ∈ A(x0), and is a martingale for the

optimal control (π∗
t , c

∗
t ) ∈ A(x0).

Therefore, the control problem (3.13) can be reduced to an HJB equation.

Theorem 3.1: The optimal value function V (t, x, z, η) defined in (3.15), is

the solution for the following HJB equation

Vt − α(t)zVz − λ(η − μ)Vη +
(Ω̂(t) + σSσμρ)

2

2σ2
S

Vηη +max
c

[
−cVx + cδ(t)Vz

−e−(c−z)
]
+max

π

[
πηVx +

1

2
σ2
Sπ

2Vxx + Vxη

(
Ω̂(t) + σSσμρ

)
π
]
= 0,

(3.17)

with the terminal condition V (T, x, z, η) = −e−x.
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Proof. By applying Itô’s formula to V (t,Xt, zt, μ̂t), we get

dV (t,Xt, zt, μ̂t) = Vtdt+ VxdXt + Vzdzt + Vηdμ̂t

+
1

2
Vxxd < Xt, Xt > +

1

2
Vzzd < zt, zt > +

1

2
Vηηd < μ̂t, μ̂t >

+Vxzd < Xt, zt > +Vxηd < Xt, μ̂t > +Vzηd < zt, μ̂t >

= Vtdt+ Vx

(
(πtμ̂t − ct)dt+ σSπtdŴt

)
+ Vz

(
(δ(t)ct − α(t)zt)dt

)
+Vη

(
−λ(μ̂t − μ)dt+ (

Ω̂t + σSσμρ

σS

)dŴt

)
+

1

2
σ2
Sπ

2Vxxdt

+
(Ω̂(t) + σSσμρ)

2

2σ2
S

Vηηdt+ Vxηπt

(
Ω̂t + σSσμρ

)
dt

=
[
Vt + Vx

(
πtμ̂t − ct

)
+ Vz

(
δ(t)ct − α(t)zt

)
− Vη(λ(μ̂t − μ))

+
1

2
σ2
Sπ

2
t Vxx +

(Ω̂(t) + σSσμρ)
2

2σ2
S

Vηη + Vxηπt

(
Ω̂t + σSσμρ

)]
dt

+
(
Vx(σSπt) + Vη(

Ω̂t + σSσμρ

σS

)
)
dŴt.

As a result, for each (πt, ct) ∈ A(x0),

Y (π,c)(t) =

∫ t

0

−e−(cs−zs)ds + V (t,Xt, zt, μ̂t), ∀t ∈ [0, T ],

is a local super-martingale if and only if V satisfies

Vt − α(t)zVz − λ(η − μ)Vη +
(Ω̂(t) + σSσμρ)

2

2σ2
S

Vηη +
[
−cVx + cδ(t)Vz

−e−(c−z)
]
+
[
πηVx +

1

2
σ2
Sπ

2Vxx + Vxη

(
Ω̂(t) + σSσμρ

)
π
]
≤ 0,

(3.18)

for all (πt, ct) ∈ A(x0). And for optimal control pair (π∗
t , c

∗
t ) ∈ A(x0),

Y (π∗,c∗)(t) =

∫ t

0

−e−(c∗s−z∗s )ds + V (t,X∗
t , z

∗
t , μ̂t), ∀t ∈ [0, T ],
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is a local martingale if and only if V satisfies

Vt − α(t)zVz − λ(η − μ)Vη +
(Ω̂(t) + σSσμρ)

2

2σ2
S

Vηη +
[
−c∗Vx + c∗δ(t)Vz

−e−(c∗−z)
]
+
[
π∗ηVx +

1

2
σ2
S(π

∗)2Vxx + Vxη

(
Ω̂(t) + σSσμρ

)
π∗
]
= 0.

(3.19)

Then, by combining (3.18) and (3.19), we conclude that (3.17) holds.

From (3.14) and (3.15), we get

V (T, x, z, η; θ) = ṽ(T, x, z, η, θ(T, θ0)) = sup
π,c∈A

E
[
−e−XT | XT = x, zT = z, μ̂T = η, Ω̂T = θ

]
= −e−x.

This ends the proof of this theorem.

3.3.2 Explicit Solution of the HJB Equation

We use the first order condition to find feedback form for the optimal control

pair (π∗, c∗) ∈ A(x0). If V (t, x, z, η) is smooth enough, we get

−Vx + δ(t)Vz + e−(c−z) = 0,

ηVx + πσ2
SVxx + Vxη(Ω̂(t) + σSσμρ) = 0.

Therefore, the optimal control pair is given by

c∗(t, x, z, η) = z − ln(Vx − δ(t)Vz),

π∗(t, x, z, η) =
−ηVx − (Ω̂(t) + σSσμρ)Vxη

σ2
SVxx

.
(3.20)
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By inserting (3.20) into (3.17), we get the following PDE

0 ≡ Vt − α(t)zVz − λ(η − μ)Vη +
(
δVz − Vx

)(
z + 1− ln(Vx − δVz)

)
+

(Ω̂(t) + σSσμρ)
2

2σ2
S

Vηη − 1

2

(ηVx + (Ω̂(t) + σSσμρ)Vxη)
2

σ2
SVxx

. (3.21)

In order to solve this PDE explicitly, we propose the following candidate func-

tion of V (t, x, z, η)

V (t, x, z, η) = −M(t, η) exp
(
−φ(t, η)x+m(t, η)z

)
. (3.22)

Here, φ(t, η),m(t, η) and M(t, η) are functions to be determined.

Thanks to the terminal condition V (T, x, z, η) = −e−x, we get the following

φ(T, η) = 1, m(T, η) = 0 and M(T, η) = 1.

We calculate the derivatives of (3.22)

Vt =
Mt

M
V + (mtz − φtx)V,

Vz = mV,

Vη =
Mη

M
V + (mηz − φηx)V,

Vηη =
Mηη

M
V + 2(mηz − φηx)

Mη

M
V + (mηηz − φηηx)V + (mηz − φηx)

2V,

Vx = −φV,

Vxx = φ2V,

Vxη = −φηV − φ
Mη

M
V − φ(mηz − φηx)V,
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and substitute them in (3.21). Then, after dividing the resulting equation by

V , we get

Mt

M
+ (mtz − φtx)− αzm+ β1

Mη

M
+ β1(mηz − φηx)

+
β2
2

2σ2
S

Mηη

M
+

β2
2

σ2
S

(mηz − φηx)
Mη

M
+

β2
2

2σ2
S

(mηηz − φηηx) +
β2
2

2σ2
S

(mηz − φηx)
2

+z(1−m)(φ+ δm) + φx(φ+ δm)− (ln(φ+ δm) + ln(M)− 1)(φ+ δm)

− 1

2σ2
S

(η + β2
φη

φ
+ β2

Mη

M
− β2φηx+ β2mηz)

2 = 0,

where ⎧⎪⎨⎪⎩β1(η) = −λ(η − μ),

β2(t) = Ω̂t + σSσμρ.

After arranging terms in the previous PDE, we get

z
[
mt − αm+ β1mη +

β2
2

σ2
s

mη
Mη

M
+

β2
2

2σ2
S

mηη − β2mη

σ2
S

(η + β2
φη

φ
+ β2

Mη

M
)+

(1−m)(φ+ δm)
]
+ x
[
−φt − β1φη − β2

2

σ2
s

φη
Mη

M
− β2

2

2σ2
S

φηη +
β2φη

σ2
S

(η+

β2
φη

φ
+ β2

Mη

M
) + φ(φ+ δm)

]
+

Mt

M
+ β1

Mη

M
+

β2
2

2σ2
S

Mηη

M
−

(ln(φ+ δm) + ln(M)− 1)(φ+ δm)− η2

2σ2
s

− β2
2

2σ2
S

φ2
η

φ2
− β2

2

2σ2
S

M2
η

M2
− β2

2

σ2
S

φηMη

φM

−β2η

σ2
S

φη

φ
− β2η

σ2
S

Mη

M
= 0.

Since this equation holds for all x ≥ 0 and z ≥ 0, then the following hold

mt − αm+ β1mη +
β2
2

σ2
S

mη
Mη

M
+

β2
2

2σ2
S

mηη − β2mη

σ2
S

(η + β2
φη

φ
+ β2

Mη

M
)

+(1−m)(φ+ δm) = 0,

(3.23)
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−φt − β1φη − β2
2

σ2
S

φη
Mη

M
− β2

2

2σ2
S

φηη +
β2φη

σ2
S

(η + β2
φη

φ
+ β2

Mη

M
)

+φ(φ+ δm) = 0,

(3.24)

and

Mt

M
+ β1

Mη

M
+

β2
2

2σ2
S

Mηη

M
− (ln(φ+ δm) + ln(M)− 1)(φ+ δm)

− η2

2σ2
S

− β2
2

2σ2
S

φ2
η

φ2
− β2

2

2σ2
S

M2
η

M2
− β2

2

σ2
s

φηMη

φM
− β2η

σ2
S

φη

φ
− β2η

σ2
S

Mη

M
= 0.

(3.25)

In order to simplify the problem, we propose to set the unknown functions

φ(t, η) = φ(t) and m(t, η) = m(t) as functions of time t only with the terminal

condition φ(T ) = 1 and m(T ) = 0. Throughout the rest of this section, we

have the following assumption.

Assumption 3: We assume that α(t) = α and δ(t) = δ are constant numbers.

Then, (3.23) and (3.24) take the following forms

mt − αm+ (1−m)(φ+ δm) = 0, φt − φ(φ+ δm) = 0, m(T ) = 0, and φ(T ) = 1.

(3.26)

Lemma 3.1: The pair (φ,m) solution to (3.26) is given by

φ(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

1 + (T − t) + 1
2
α(T − t)2

, if α = δ,

(δ − α)2

(δ − α)2 − δ − α(δ − α)(T − t) + δe(δ−α)(T−t)
, if α �= δ,

(3.27)
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and

m(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T − t

1 + (T − t) + 1
2
α(T − t)2

, if α = δ,

(δ − α)(eα(T−t) − e−α(T−t) + e(δ−α)(T−t) − 1)

(δ − α)2 − δ − α(δ − α)(T − t) + δe(δ−α)(T−t)
, if α �= δ.

(3.28)

Proof. We rewrite equation (3.26) as

mt − αm

m− 1
=

φt

φ
= φ+ δm = Γ(t), (3.29)

and derive
φ(t) = e−

∫ T
t Γ(u)du

m(t) =

∫ T

t

Γ(s)e
∫ t
s Γ(u)du+α(t−s)ds.

(3.30)

Now, we insert these in

φ+ δm = Γ(t)

and multiply both side by e−
∫ t
0 Γ(u)du−αt afterwards, and get

e−
∫ T
0 Γ(u)du−αt+δ

∫ T

0

Γ(s)e−
∫ s
0 Γ(u)du−αsds−δ

∫ t

0

Γ(s)e−
∫ s
0 Γ(u)du−αsds = Γ(t)e−

∫ t
0 Γ(u)du−αt.

(3.31)

Put

g(t) := Γ(t)e−
∫ t
0 Γ(u)du−αt. (3.32)

Then (3.31) becomes

g(t) = A1e
−αt + δA2 − δ

∫ t

0

g(s)ds,
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where A1 = e−
∫ T
0 Γ(u)du and A2 =

∫ T

0

Γ(s)e−
∫ s
0 Γ(u)du−αsds are constant num-

bers.

By differentiating the above equality, we get

g′(t) = −δg(t)− αA1e
−αt. (3.33)

1) For α �= δ, the solution to above ODE is given by

g(t) = A1e
(δ−α)T e−δt + αA1(e

−δt)

∫ T

t

e(δ−α)sds. (3.34)

(3.34) and (3.32) leads to

Γ(t)e
∫ T
t Γ(u)du = e(δ−α)(T−t) +

α

δ − α
(e(δ−α)(T−t) − 1). (3.35)

By integrating the above equation on [t, T ], we get

e
∫ T
t Γ(u)du = 1− δ

(δ − α)2
− α

δ − α
(T − t) +

δ

(δ − α)2
e(δ−α)(T−t). (3.36)

Then, by combining (3.35) and (3.36), Γ(t) is given by

Γ(t) =
δ(δ − α)e(δ−α)(T−t) − α(δ − α)

(δ − α)2 − δ − α(δ − α)(T − t) + δe(δ−α)(T−t)
.

.
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(2) For α = δ, the solution to (3.33) is given by

g(t) = A1e
−αt(1 + α(T − t)). (3.37)

(3.37) and (3.32) leads to

Γ(t)e
∫ T
t Γ(u)du = 1 + α(T − t). (3.38)

By integrating the above equation on [t, T ], we get

e
∫ T
t Γ(u)du = 1 + (T − t) +

1

2
α(T − t)2. (3.39)

Then, by combining (3.38) and (3.39), Γ(t) is given by

Γ(t) =
α(T − t) + 1

1 + (T − t) +
1

2
α(T − t)2

.

.

Combining the above two scenarios, Γ(t) is given by

Γ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α(T − t) + 1

1 + (T − t) +
1

2
α(T − t)2

, α = δ

δ(δ − α)e(δ−α)(T−t) − α(δ − α)

(δ − α)2 − δ − α(δ − α)(T − t) + δe(δ−α)(T−t)
, α �= δ.

(3.40)
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Denote f(t) as the denominator of Γ(t)

f(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 + (T − t) +

1

2
α(T − t)2, α = δ

(δ − α)2 − δ − α(δ − α)(T − t) + δe(δ−α)(T−t), α �= δ, .

(3.41)

Then, from (3.40), we deduce that

Γ(t) = −f ′(t)
f(t)

.

By inserting the above equation into (3.30) and solving afterwards, we get

⎧⎪⎪⎨⎪⎪⎩
φ(t) =

f(T )

f(t)
,

m(t) = − eαt

f(t)

∫ T

t

f ′(s)e−αsds.
(3.42)

Thus, by integration by parts, the proof of the lemma follows immediately.

Now, we focus on solving the remaining PDE (3.25). By substituting mη =

0 and φη = 0 into (3.25), we get

Mt

M
−(λ(η−μ)+

β2(t)η

σ2
s

)
Mη

M
+

β2
2

2σ2
s

Mηη

M
−(ln(Γ(t))−1)Γ(t)−ln(M)Γ(t)− η2

2σ2
s

= 0

(3.43)

The solution of this PDE is given by the following.

Lemma 3.2: The function

M(t, η) = exp
(
A(t)η2 + B(t)η + C(t)

)
, (3.44)
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is the solution of equation (3.43).

Here, A(t) satisfies the following ODE equation,

At − (
2β2

σ2
S

+ 2λ+ Γ)A+
2β2

2

σ2
S

A2 − 1

2σ2
S

= 0, (3.45)

and B and C are given by

B(t) = 2μλ

∫ T

t

A(s) exp
(∫ t

s

[λ+
β2(u)

σ2
S

+ Γ(u)− 2β(u)22
σ2
S

A(u)]du
)
ds,

C(t) =

∫ T

t

Γ(s) exp
(∫ t

s

[λμB(u) +
β(u)22
2σ2

S

B(u)2 +
β(u)22
σ2
S

A(u)

−Γ(u) ln(Γ(u)) + Γ(u)]du
)
ds.

(3.46)

Proof. We assume M(t, η) takes the following form

M(t, η) = exp
(
A(t)η2 + B(t)η + C(t)

)
.

By calculating the derivatives of M and inserting them in (3.43), we get

η2
[
At − (

2β2

σ2
S

+ 2λ+ Γ)A+
2β2

2

σ2
S

A2 − 1

2σ2
S

]
+ η
[
Bt − (λ+

β2

σ2
S

+ Γ)B

+
2β2

2

σ2
S

AB + 2μλA
]
+ Ct − ΓC + λμB +

β2
2

2σ2
S

B2 +
β2
2

σ2
S

A− (ln(Γ)− 1)Γ = 0.

(3.47)

Since η is arbitrary, (3.43) holds if and only if the following equations hold

At − (
2β2

σ2
S

+ 2λ+ Γ)A+
2β2

2

σ2
S

A2 − 1

2σ2
S

= 0,

Bt − (λ+
β2

σ2
S

+ Γ)B +
2β2

2

σ2
S

AB + 2μλA = 0,

Ct − ΓC + λμB +
β2
2

2σ2
S

B2 +
β2
2

σ2
S

A− (ln(Γ)− 1)Γ = 0.

(3.48)
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As a result, we finish the proof of this lemma.

Theorem 3.2: The function

V (t, x, z, η) = − exp
{
−φ(t)x+m(t)z + A(t)η2 + B(t)η + C(t)

}
(3.49)

is the solution of the HJB equation (3.17), where φ(t) and m(t) are given by

(3.27) and (3.28) respectively, while A(t), B(t) and C(t) are given by (3.45)

and (3.46).

3.3.3 The Optimal Control Policies

The solution (3.49) to the HJB equation (3.17) coincides with the optimal

value function defined in (3.13):

V (0, x0, z0, η0; θ0) = v(x0, z0, η0, θ0). (3.50)

Theorem 3.3: The optimal investment policy π∗
t , optimal consumption rate

c∗t and the optimal habit level are given by

π∗
t =

μ̂t + (Ω̂t + σSσμρ)(2μ̂tA(t) +B(t))

σ2
Sφ(t)

, (3.51)

c∗t =
(
1−m(t)

)
z∗t + φ(t)X∗

t + Y (t, μ̂t), (3.52)

and

z∗t = z0e

∫ t
0

(
δ(1−m(s))−α

)
ds
+

∫ t

0

δ
(
φsX

∗
s + Y (s, μ̂s)

)
e

∫ t
s

(
δ(1−m(u))−α

)
du
ds.

(3.53)
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Here, X∗ is the optimal wealth process and is the solution of following SDE

dX∗
t = dKt − φ(t)X∗

t dt+
(
(m(t)− 1)

∫ t

0

δφsX
∗
sds
)
dt, X∗

0 = x0, (3.54)

where

dKt =
π∗
t

St

dSt − Y (t, μ̂t)dt+
(
(m(t)− 1)z0e

∫ t
0

(
δ(1−m(s))−α

)
ds
)
dt

+
(
(m(t)− 1)

∫ t

0

δY (s, μ̂s)e

∫ t
s

(
δ(1−m(u))−α

)
du
ds
)
dt,

and for any η ∈ R

Y (t, η) = −
(
A(t)η2 + B(t)η(t) + C(t)

)
− ln(φ(t) + δm).

Proof. Apply the first order condition to the HJB equation, we can easily get

the feedback forms of c∗ and π∗. Now we need to find out the optimal wealth

process and the optimal habit formation process. First, we define

Y (t, η) = −
(
A(t)η2 + B(t)η + C(t)

)
− ln(φ(t) + δm).

Since

c∗(t, x, z, η) = (1−m)z + φ(t)x+ Y (t, η).

Then, we have

c∗t = c∗(t,X∗
t , z

∗
t , μ̂t) =

(
1−m(t)

)
z∗t + φ(t)X∗

t + Y (t, μ̂t). (3.55)

44



The optimal habit formation process satisfies

dz∗t = (δc∗t − αz∗t )dt.

By substituting the (3.55) into the above equation , we get

dz∗t =
(
δ
(
(1−m(t))z∗t + φ(t)X∗

t + Y (t, μ̂t)
)
− αz∗t

)
dt

=
(
δ(1−m(t))− α

)
z∗t dt+ δ

(
φ(t)X∗

t + Y (t, μ̂t)
)
dt,

(3.56)

which is equivalent to (3.53). Moreover, we also know that the optimal wealth

process satisfies

dX∗
t =

π∗
t

St

dSt − c∗tdt,

By inserting (3.55) into above equation, we get the SDE for the optimal wealth

process

dX∗
t =

π∗
t

St

dSt −
(
(1−m(t))z∗t + φ(t)X∗

t + Y (t, μ̂t)
)
dt

=
π∗
t

St

dSt −
(
φ(t)X∗

t + Y (t, μ̂t)
)
dt+ (m(t)− 1)×[

z0e

∫ t
0

(
δ(1−m(s))−α

)
ds
+

∫ t

0

δ
(
φsX

∗
s + Y (s, μ̂s)

)
e

∫ t
s

(
δ(1−m(u))−α

)
du
ds
]
dt.

This proves (3.54), and the proof of this theorem is completed.

Based on the explicit structures, we can easily provide some qualitative anal-

ysis on the optimal policies and optimal value function.

Corollary 3.3.1: The following properties hold:

1) The optimal value function V (t, x, z, η) is strictly increasing and concave
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in x, while is decreasing and concave in z, just like the utility function

for consumption and terminal wealth U(c, z).

2) The feedback form π∗(t, x, z, η) dose not depend on x nor on z. As a

result, the optimal portfolio dose not change when wealth process/stan-

dard living process is increasing or decreasing.

3) The feedback form c∗(t, x, z, η) is increasing in x and increasing in z. As

a result, the optimal consumption rate becomes higher when investor’s

wealth/ standard living is increasing.

Proof. 1) The function f(t) defined in (3.41) is a decreasing function on

[0, T ] and notice that

f(T ) =

⎧⎪⎨⎪⎩ 1, α = δ

(δ − α)2, α �= δ
,

is always positive. Thus, f(t) is positive for all t ∈ [0, T ]. Moreover,

from (3.27), (3.28) and (3.44), we conclude that φ(t) and M(t, η) are

positive, and m(t) is non-negative on [0, T ].

By calculating the derivatives of V , we get

Vx =
∂V

∂x
= φMe−φx+mz > 0,

Vxx =
∂V 2

∂2x
= −φ2Me−φx+mz < 0,

Vz =
∂V

∂z
= −mMe−φx+mz ≤ 0,
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and

Vzz =
∂V 2

∂2z
= −m2Me−φx+mz ≤ 0.

Therefore, V (t, x, z, η) is strictly increasing and concave in x, while is

decreasing and concave in z.

2) From (3.51), we conclude that π∗(t, x, z, η) = π∗(t, η) does not depend

on x nor on z.

3) On the one hand, according to (3.52), we know that:

c∗ is increasing in z, if 1−m > 0;

c∗ does not depend on z, if m = 1;

c∗ is decreasing in z, if 1−m < 0.

On the other hand, from (3.42), we have

m(t)− 1 =
−eαt

∫ T
t
f ′(s)e−αsds− f(t)

f(t)
.

Put

y(t) := −eαt
∫ T

t

f ′(s)e−αsds− f(t),

which is the numerator of m(t)− 1. Then, the derivative of y is given by

y′(t) = −αeαt
∫ T

t

f ′(s)e−αsds.

Since f ′(t) < 0, we know that y′(t) > 0. The maximum value of y

on [0, T ] is y(T ) = −f(T ) < 0. Thus, y is negative for all t ∈ [0, T ].
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Moreover, f(t) is positive for all t ∈ [0, T ]. Then, 1 − m > 0 for all

t ∈ [0, T ]. That means c∗ is always increasing in z.
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Chapter 4

Stochastic Volatility Model

In this chapter, we address the problem of optimal investment and consump-

tion under the volatility model. To this end, we start by introducing the

stochastic volatility model.

4.1 The Volatility Model

In this chapter, we introduce the stochastic volatility model with constant drift

μ in time horizon [0, T ]. We still consider (Ω,F, P ) as a complete probability

space equipped with a filtration F = (Ft)t∈[0,T ] satisfying the usual conditions.

And the filtration FS = (FS
t )t∈[0,T ] is the aggregate information about the

stock price. Since the volatility of the stock price can be estimated from

the quadratic variation of ln(St), we actually know everything just from the

information of stock price. Thus, in this model, filtration F = FS.
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The price of the stock satisfies the following SDE

dSt

St

= μdt+ σtdWt, S(0) = s0 ≥ 0, t ∈ [0, T ],

and the volatility is given by

dσt = −λ(σt − σ)dt+ θσtdBt, σ(0) = σ0, t ∈ [0, T ].

Here, W and B are two F-adapted Brownian motion with correlation coefficient

ρ ∈ [−1, 1]. And σ0 is a positive constant. Other parameters μ, λ, θ and σ are

non-negative constants.

Assume ct is the consumption rate of investor at time t and πt is the

portfolio or trading strategy at time t. Then, the wealth process is given by

dXt = (πtμ− ct)dt+ πtσtdWt, X(0) = x0 ≥ 0, t ∈ [0, T ].

And the habit level still satisfies the following dynamic

dzt = (δ(t)ct − α(t)zt)dt, t ∈ [0, T ].

Throughout the rest of this chapter, we consider investors with either power

preference or exponential preference.
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4.2 The Case of Power Preference

In this section, we assume that investors are endowed with power utility pref-

erence. Mathematically, our objective can be formulated as follows

v(x0, z0, σ0) = sup
(π,c)∈A(x0)

E
(∫ T

0

(cs − zs)
p

p
ds+

(XT )
p

p

)
, (4.1)

here, p �= 0 and p < 1 represents the risk aversion coefficient. To solve this

optimal problem, we define a smooth function

V (t, x, z, σ) = sup
(π,c)∈A(x0)

E
(∫ T

t

(cs − zs)
p

p
ds+

(XT )
p

p

∣∣∣Xt = x, zt = z, σt = σ
)
,

(4.2)

with the terminal condition V (T, x, z, σ) =
xp

p
.

Theorem 4.1: The optimal value function V (t, x, z, σ) defined in (4.2) is the

solution for the following HJB equation

Vt − α(t)zVz − λ(σ − σ)Vσ +
θ2σ2

2
Vσσ +max

c
[−cVx + cδ(t)Vz +

(c− z)p

p
]

+ max
π

[πμVx +
1

2
π2σ2Vxx + πρθσ2Vxσ] = 0.

(4.3)

Moreover, the optimal control pair has the following feedback forms

c∗(t, x, z, η) = z + (Vx − δ(t)Vz)
1

p−1 ,

π∗(t, x, z, η) =
−μVx − σ2θρVxσ

σ2Vxx

.
(4.4)

Proof. Following the same procedure as in Theorem 3.1, we can easily get the

above HJB equation by using the properties of martingale and Itô’s formula.

Applying first order condition to this HJB equation, we derive the feedback
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forms of the optimal consumption and optimal portfolio.

By inserting the optimal control pair (4.4) in (4.3), the HJB equation

becomes the following PDE

Vt − α(t)zVz − λ(σ − σ)Vσ +
θ2σ2

2
Vσσ + (Vx − δVz)(

1− p

p
(Vx − δVz)

1
p−1 − z)

− (μVx + σ2θρVxσ)
2

2σ2Vxx

= 0.

(4.5)

Assumption 4: For the rest of this section, we assume the above PDE, (4.5),

has a unique classical (twice continuously differentiable) solution.

Lemma 4.1: V (t, x, z, σ) defined in (4.2) is homogeneous in (x, z).

Proof. Due to the homogeneity property of the power utility function and the

linearity of dynamics for Xt and zt, for any x ≥ 0, z ≥ 0 and the positive

constant k, we have

V (t, kx, kz, σ) = sup
π,c

[

∫ T

t

(kcs − kzs)
p

p
ds+

(kXT )
p

p
] = kpV (t, x, z, σ).

Since V (t, x, z, σ) is homogeneous in (x, z) with degree p, it makes sense

for us to guess that V takes the following form

V (t, x, z, σ) =
[x−m(t, σ)z]p

p
M(t, σ), (4.6)

here, m(t, σ) and M(t, σ) are functions to be determined. Thanks to the
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terminal condition V (T, x, z, σ) =
xp

p
, we have

m(T, σ) = 0 and M(T, σ) = 1.

We calculate the derivatives of (4.6)

Vt = −mtz[x−mz]p−1M +Mt
V

M
,

Vz = −m[x−mz]p−1M,

Vσ = −mσz[x−mz]p−1M +Mσ
V

M
,

Vσσ = −mσσz[x−mz]p−1M +m2
σz

2[x−mz]p−2(p− 1)M − 2mσz[x−mz]p−1Mσ +Mσσ
V

M
,

Vx = [x−mz]p−1M,

Vxx = (p− 1)[x−mz]p−2M,

Vxσ = −mσz[x−mz]p−2(p− 1)M + [x−mz]p−1Mσ,

and substitute them in (4.5). After dividing the resulting equation by [x−mz]p,

we get

[
−mt + α(t)m+ λ(σt − σ)mσ − θ2σ2

t

2
mσσ +

θ2σ2
tm

2
σz

2[x−mz]
(p− 1)(1− ρ2)

−(1 + δ(t)m) + μθρmσ + σ2
t θ

2(ρ2 − 1)
Mσ

M
mσ

] zM

x−mz

+
Mt

p
− λ(σt − σ)

Mσ

p
+

θ2σ2
t

2p
Mσσ +M

p
p−1 (1 + δ(t)m)

p
p−1

1− p

p

+
σ2
t θ

2ρ2

2(1− p)

M2
σ

M
+

μ2

2σ2
t (1− p)

M +
μθρ

1− p
Mσ = 0.

Since for every x ≥ 0 and z ≥ 0, above equation holds. Thus, we have

−mt + α(t)m+ λ(σt − σ)mσ − θ2σ2
t

2
mσσ

−(1 + δ(t)m) + μθρmσ + σ2
t θ

2(ρ2 − 1)
Mσ

M
mσ = 0,

(4.7)
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Mt

p
− λ(σ − σ)

Mσ

p
+

θ2σ2

2p
Mσσ +M

p
p−1 (1 + δ(t)m)

p
p−1

1− p

p

+
σ2θ2ρ2

2(1− p)

M2
σ

M
+

μ2

2σ2(1− p)
M +

μθρ

1− p
Mσ = 0.

(4.8)

and
θ2σ2m2

σ

2
(p− 1)(1− ρ2) = 0. (4.9)

From (4.9), we know mσ = 0 for ρ �= ±1. Therefore, we conclude m is just a

function of t. Then (4.7) is reduced to the following ODE

−mt + α(t)m− (1 + δ(t)m) = 0, m(T ) = 0.

The solution to above equation is

m(t) =

∫ T

t

exp
(∫ s

t

(δ(u)− α(u))du
)
ds, t ∈ [0, T ]. (4.10)

We set the following power transform

M(t, σ) = N(t, σ)1−p.

Then, the non-linear PDE for M(t, σ) is transferred to a PDE for N(t, σ)

Nt +
(μθρp
1− p

− λ(σ − σ)
)
Nσ +

θ2σ2

2
Nσσ +

θ2σ2p

2
(ρ2 − 1)

N2
σ

N

+
μ2p

2σ2(1− p)2
N + (1 + δ(t)m)

p
p−1 = 0.

(4.11)

with N(T, σ) = 1.
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Theorem 4.2: If the Assumption 4 holds, then the function

V (t, x, z, σ) =
[x−m(t, σ)z]p

p
N(t, σ)1−p, (4.12)

is the solution to the HJB equation (4.3), where m(t) is given by (4.10) and

N(t, σ) is the solution to (4.11).

The solution (4.12) to the HJB equation coincides with the optimal value

function defined in (4.1):

V (0, x0, z0, σ0) = v(x0, z0, σ0).

Theorem 4.3: The optimal consumption rate c∗t , optimal investment policy

π∗
t , the optimal habit level z∗t and the optimal wealth process X∗

t are given

by

c∗t = z∗t +
Y ∗
t

N(t, σt)
(1 + δ(t)m(t))

1
p−1 , (4.13)

π∗
t =
(
θρ

Nσ(t, σt)

N(t, σt)
+

μ

σ2
t (1− p)

)
Y ∗
t , (4.14)

z∗t = z0e

∫ t
0

(
δ(u)−α(u)

)
du

+

∫ t

0

(
δ(s)

Y ∗
s

N(s, σs)
(1 + δ(s)m(s))

1
p−1

)
e

∫ t
s

(
δ(u)−α(u)

)
du
ds

:= F (t, Y ∗
t ),

(4.15)

and

X∗
t = Y ∗

t +m(t)z∗t . (4.16)

55



Here, Y ∗
t is the solution of following stochastic differential equation

dY ∗
t =
(
θμρ

Nσ(t, σt)

N(t, σt)
+

μ2

σ2
t (1− p)

− 1

N(t, σt)
(1 + δ(t)m(t))

p
p−1

)
Y ∗
t dt

−
(
1 +m(t)

(
δ(t)− α(t)

))
F (t, Y ∗

t )dt+
(
θρσt

Nσ(t, σt)

N(t, σt)
+

μ

σt(1− p)

)
Y ∗
t dWt.

(4.17)

Proof. Apply the first order condition to HJB equation, we can easily get the

feedback form of c∗ and π∗. Define Y ∗
t := X∗

t −m(t)z∗t . Then, we have

dY ∗
t = d(X∗

t −m(t)z∗t ) =
(
(π∗

tμ− c∗t )dt+ σtπ
∗
t dWt

)
−m(t)

(
δ(t)c∗t − α(t)z∗t

)
dt.

(4.18)

Put (4.13) and (4.14) into above equation, we derive (4.17). Moreover, the

optimal habit formation process satisfies

dz∗t = (δ(t)c∗t − α(t)z∗t )dt.

By substituting the (4.14) into above equation, we get

dz∗t =
(
δ(t)
(
z∗t + Y ∗

t

1

N(t, σt)
(1 + δ(t)m(t))

1
p−1

)
− α(t)z∗t

)
dt

=
(
δ(t)− α(t)

)
z∗t dt+ δ(t)Y ∗

t

1

N(t, σt)
(1 + δ(t)m(t))

1
p−1dt,

which is equivalent to (4.15). This ends the proof of this theorem
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4.3 The Case of Exponential Preference

Now, we take the utility function under exponential preference. In this section,

our objective can be formulated as follows

v(x0, z0, σ0) = sup
π,c∈A

E[

∫ T

0

−e−(cs−zs)ds− e−XT ]. (4.19)

To solve this optimization problem, we define a smooth function

V (t, x, z, σ) = sup
(π,c)∈A(x0)

E
(∫ T

t

−e−(cs−zs)ds− e−XT

∣∣∣Xt = x, zt = z, σt = σ
)
,

(4.20)

with terminal condition V (T, x, z, σ) = −e−x.

Theorem 4.4: The optimal value function V (t, x, z, σ) defined in (4.20) is the

solution for the following HJB equation

Vt − α(t)zVz − λ(σ − σ)Vσ +
θ2σ2

2
Vσσ +max

c
[−cVx + cδ(t)Vz − e−(c−z)]

+ max
π

[πμVx +
1

2
π2σ2Vxx + πρθσ2Vxσ] = 0.

(4.21)

And the optimal control pair takes the following form

c∗(t, x, z, η) = z − ln(Vx − δ(t)Vz),

π∗(t, x, z, η) =
−μVx − σ2θρVxσ

σ2Vxx

.
(4.22)
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By inserting (4.22) in (4.21), the HJB equation becomes the following PDE

Vt − α(t)zVz − λ(σ − σ)Vσ +
θ2σ2

2
Vσσ +

(
δVz − Vx

)(
z + 1− ln(Vx − δVz)

)
− (μVx + σ2θρVxσ)

2

2σ2Vxx

= 0.

(4.23)

Assumption 5: For the rest of this section, we assume the above PDE, (4.23),

has a unique classical (twice continuously differentiable) solution.

We propose the following candidate function of V (t, x, z, σ)

V (t, x, z, σ) = −M(t, σ) exp
(
−φ(t, σ)x+m(t, σ)z

)
, (4.24)

here, φ(t, σ),m(t, σ) and M(t, σ) are functions to be determined. We calculate

the derivatives of (4.24)

Vt =
Mt

M
V + (mtz − φtx)V,

Vz = mV,

Vσ =
Mσ

M
V + (mσz − φσx)V,

Vσσ =
Mσσ

M
V + 2(mσz − φσx)

Mσ

M
V + (mσσz − φσσx)V + (mσz − φσx)

2V,

Vx = −φV,

Vxx = φ2V,

Vxσ = −φσV − φ
Mσ

M
V − φ(mσz − φσx)V.

(4.25)

By substituting them in (4.23) and dividing V on the resulting equation, we
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get

Mt

M
+ (mtz − φtx)− αzm− λ(σ − σ)

Mσ

M
− λ(σ − σ)(mσz − φσx)

+
θ2σ2

2
(
Mσσ

M
+ 2(mσz − φσx)

Mσ

M
+ (mσσz − φσσx) + (mσz − φσx)

2)

+(z + 1 + ln(φV + δmV ))(δm+ φ)− μ2

2σ2
− σ2θ2ρ2

2φ2
(φσ + φ

Mσ

M
+ φ(mσz

−φσx))
2 − μθρ(

φσ

φ
+

Mσ

M
+ (mσz − φσx)) = 0.

To simplify our calculation, we assume that m = m(t) and φ = φ(t) are just

functions of t. Then, above equation can be reduced to the following

Mt

M
+ (mtz − φtx)− αzm− λ(σ − σ)

Mσ

M
+

θ2σ2

2

Mσσ

M

+(z + 1 + ln(φ+ δm) + φx−mz + lnM)(δm+ φ)− μ2

2σ2
− σ2θ2ρ2

2

M2
σ

M2
− μθρ

Mσ

M
= 0.

(4.26)

Since for any x ≥ 0 and z ≥ 0, this equation is satisfied. Thus, we get the

following equations

mt − αm+ (1−m)(δm+ φ) = 0, (4.27)

φt − φ(δm+ φ) = 0, (4.28)

and

Mt

M
−
(
λ(σ − σ) + μθρ

)Mσ

M
− σ2θ2ρ2

2

M2
σ

M2
+

θ2σ2

2

Mσσ

M

+(1 + ln(φ+ δm) + lnM)(φ+ δm)− μ2

2σ2
= 0.

(4.29)
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For (4.29), we set the following exponential transform

M(t, σ) = eN(t,σ).

Then the above PDE for M(t, σ) is transferred to a PDE for N(t, σ)

Nt −
(
λ(σ − σ) + μθρ

)
Nσ +

σ2θ2

2
(1− ρ2)N2

σ +
θ2σ2

2
Nσσ

+(φ+ δm)N +
(
1 + ln(φ+ δm)

)
(φ+ δm)− μ2

2σ2
= 0.

(4.30)

Theorem 4.5: If the Assumption 5 holds, then the function

V (t, x, z, σ) = − exp
(
−φ(t)x+m(t)z +N(t, σ)

)
, (4.31)

is the solution of the HJB equation (4.21), here, (4.27) and (4.28) are al-

ready solved in Chapter 3 Lemma 3.1. And N(t, σ) is the solution of (4.30).

The solution (4.31) of the HJB equation coincides with the optimal value

function defined in (4.20):

V (0, x0, z0, σ0) = v(x0, z0, σ0). (4.32)

Theorem 4.6: The optimal investment policy π∗
t , optimal consumption rate

c∗t and the optimal habit level are given by

π∗
t =

μ

σ2
t φ(t)

+
θρ

φ(t)
Nσ(t, σt), (4.33)

c∗t = (1−m(t))z∗t + φ(t)X∗
t −N(t, σt)− ln(φ(t) + δ(t)m(t)), (4.34)
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z∗t = z0 exp
(∫ t

0

(
δ(u)− δ(u)m(u)− α(u)

)
du
)

+

∫ t

0

[(
δ(s)
(
φ(s)X∗

s −N(s, σs)− ln(φ(s) + δ(s)m(s))
))

× exp
(∫ t

s

(
δ(u)− δ(u)m(u)− α(u)

)
du
)]

du := F (t,X∗
t ).

(4.35)

Here, X∗
t is the optimal wealth process and is the solution of following SDE

dX∗
t =
( μ2

σ2
t φ(t)

+
θρμ

φ(t)
Nσ(t, σt)

)
dt+ (m(t)− 1)F (t,X∗

t )dt− φX∗
t dt

+
(
N(t, σt) + ln(φ(t) + δ(t)m(t))

)
dt+ (

μ

σtφ(t)
+

θρσt

φ(t)
Nσ(t, σt))dWt,

X∗
0 = x0.

(4.36)

Proof. Apply the first order condition to the HJB equation (4.21), we can

easily get the feedback forms of c∗ and π∗. The optimal habit level z∗t satisfies

dz∗t = (δ(t)c∗t − α(t)z∗t )dt.

By substituting (4.34) into above equation , we get

dz∗t =
(
δ(t)
(
(1−m(t))z∗t + φ(t)X∗

t −N(t, σ)− ln(φ(t) + δ(t)m(t)
)
− α(t)z∗t

)
dt

=
(
δ(t)−m(t)δ(t)− α(t)

)
z∗t dt+ δ(t)

(
φ(t)X∗

t −N(t, σt)− ln(φ(t) + δ(t)m(t))
)
dt,

(4.37)

which is equivalent to (4.35). Moreover, by inserting (4.34) and (4.33) in

dX∗
t = (π∗

tμ− c∗t )dt+ σtπ
∗
t dWt,

we derive (4.36). This ends the proof of this theorem.
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Chapter 5

The Martingale Approach

In the previous two chapters, we use the stochastic control techniques to reduce

the optimization problem into solving an associated HJB equation. In this

chapter, we introduce the martingale approach. This method is based on the

completeness of the market and the optimization problem can be reduced to

the calculation of expected values.

5.1 The Case of Complete Information

5.1.1 The Economy and the Optimal Problem

We still assume risk-free interest rate r ≡ 0, and the process of risky asset

price St satisfies the following stochastic differential equation

dSt

St

= μtdt+ σSdWt, S0 = s0, t ∈ [0, T ], (5.1)
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and the drift process μt is given by the following dynamic

dμt = −λ(μt − μ)dt+ σμdBt, t ∈ [0, T ]. (5.2)

The two processes W and B are standard Brownian Motion with correlation

coefficient ρ ∈ [−1, 1]. The standard of living is given by

zt = z0 exp
(
−
∫ t

0

αudu
)
+

∫ t

0

δs exp
(
−
∫ t

s

αudu
)
csds, (5.3)

which equivalent to

dzt = (δtct − αtzt)dt, z0 ≥ 0; t ∈ [0, T ].

The wealth process X satisfies the no-bankruptcy condition Xt ≥ 0 for all

t ∈ [0, T ], and Xt solves the SDE below

dXt = (πtμt − ct)dt+ πtσSdWt, X0 = x0 > 0; t ∈ [0, T ]. (5.4)

In this chapter, preferences are defined over consumption plans and can

be represented by the non-separable von Neumann-Morgenstern index U(c) =

E[

∫ T

0

u(ct, zt)]. Our goal now is to find the optimal consumption c∗ to maxi-

mize U(c):

V (x0; π, c) = sup
(π,c)∈A(x0)

U(c) = sup
(π,c)∈A(x0)

E[

∫ T

0

u(ct, zt)dt], (5.5)

here, A(x0) is the set of admissible pairs defined in Definition 2.10.
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5.1.2 Useful Intermediate Results

In this subsection, we derive new results that will play important roles in the

rest of the thesis.

Remark 5.1: The market price of risk process θ = {θt}t∈[0,T ] under complete

information model is given by

θt =
μt

σS

, t ∈ [0, T ]. (5.6)

Since
∫ T

0

θ2t dt ≤ sup
0≤t≤T

|μt|2 T
σ2
S

< ∞. Hence, θ is integrable with respect to

W .

Lemma 5.1: The market price of risk θ can be written as

θt = h(t) +
σμ

σS

G(t), t ∈ [0, T ], (5.7)

Here, ⎧⎪⎪⎨⎪⎪⎩
h(t) =

μ0

σS

e−λt +
μ

σS

(eλt − 1),

G(t) =

∫ t

0

eλsdBs.
(5.8)

To proof Lemma 5.1, we need to introduce the following lemma.

Lemma 5.2: The unique solution of the following stochastic differential equa-

tion:

dPt = −λPtdt+ dZt, t ∈ [0, T ],

is

Pt = e−λt(P0 +

∫ t

0

eλsdZs), t ∈ [0, T ],
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where, Zt is a Itô process.

Proof of Lemma 5.1. Applying the above Lemma 5.2 to (5.2), the drift process

can be calculated as follows

μt = μ0e
−λt + μ(eλt − 1) + σμ

∫ t

0

eλsdBs, t ∈ [0, T ].

According to (5.6), the proof of (5.7) follows immediately. �

Throughout the rest of the thesis, we consider a process η = (ηt)t∈[0,T ]

defined as follows

ηt := exp
[
−
∫ t

0

θsdWs − 1

2

∫ t

0

θ2sds
]
, t ∈ [0, T ]. (5.9)

From Remark 5.1, we know θ is integrable with respect to W , so η is well-

defined on [0, T ].

Proposition 5.1: The following assertions hold:

1) The process ηt defined in (5.9) is a martingale. And the probability measure

Q defined as

Q(A) = E[ηT1A], A ∈ FT , (5.10)

is a risk-neutral probability. This measure is equivalent to P and unique due

to the completeness of the market.

2) The following processes:

W̃t := Wt +

∫ t

0

θsds, t ∈ [0, T ], (5.11)
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and

B̃t := Bt +

∫ t

0

ρθsds, t ∈ [0, T ], (5.12)

are both standard Q-Brownian motions.

The proof of Proposition 5.1 segments a technical but interesting lemma which

is a version of Gronwall’s lemma (see [7]).

Lemma 5.3: Suppose β is a positive number, f and g are two differentiable

functions. If f satisfies

∫ T

0

m(s)df(s) ≤
∫ T

0

m(s)dg(s) + β

∫ T

0

m(s)f(s)ds, (5.13)

for any non-negative and bounded Borel function m, then we have

f(t) ≤ eβt
∫ t

0

e−βsg′(s)ds.

Proof. For ε > 0, put m(s) :=
1

ε
1]t,t+ε]. Then, (5.13) becomes

f(t+ ε)− f(t)

ε
≤ g(t+ ε)− g(t)

ε
+ β

∫ t+ε

t

f(s)ds.

By letting ε go to zero, we get

f ′(t) ≤ g′(t) + βf(t), t ≥ 0.

Obviously there exists an non-negative function k such that

f ′(t) = βf(t) + g′(t)− k(t), t ≥ 0.
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The solution to above differential equation is given by

f(t) = eβt
∫ t

0

e−βs(g′(s)− k(s))ds ≤ eβt
∫ t

0

e−βsg′(s)ds, t ≥ 0.

Since k(t) ≥ 0, the proof of the lemma follows immediately.

Proof of Proposition 5.1.

1) By applying Itô formula to (5.9), we get

dηt = −θtηtdWt, η0 = 1, t ∈ [0, T ].

Since ηt is continuous and
∫ T

0

θ2t dt < ∞. We derive

∫ T

0

θ2t η
2
t dt ≤ sup

0≤t≤T
(ηt)

2

∫ T

0

θ2t dt < ∞.

This leads to conclude that is η a positive local martingale and is locally

bounded as it is continuous. Let (Tn)n≥1 be a sequence of stopping times

that increasing to infinity and

sup
t≤Tn

ηt ≤ c,

where c is a constant. Put

fn(t) = E[ηt∧Tn ln(ηt∧Tn)− ηt∧Tn + 1]. (5.14)

Since ηt∧n is bounded and x ln(x) − x + 1 ≥ 0, the function fn(t) is

non-negative and is well defined. Furthermore, by applying Itô formula
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to η ln(η)− η + 1, we get

fn(t) = E[ηt∧Tn ln(ηt∧Tn)− ηt∧Tn + 1] =
1

2
E

∫ t∧Tn

0

(ηs∧Tnθ
2
s)ds

=
1

2
E

∫ t

0

1{s≤Tn}ηsθ
2
sds =

1

2

∫ t

0

E(1{s≤Tn}ηsθ
2
s)ds.

(5.15)

Consider a non-negative and bounded Borel function m. Then, using

above inequality, we get

∫ T

0

m(s)dfn(s) =
1

2

∫ T

0

m(s)E(1{s≤Tn}ηsθ
2
s)ds =

1

2

∫ T

0

E(m(s)1{s≤Tn}ηsθ
2
s)ds

=
1

2
E

∫ T∧Tn

0

m(s)ηs∧Tnθ
2
sds.

Since ηt > 0 for all t ∈ [0, T ], by applying the Young’s inequality (ab ≤
ea + b ln b− b, for b > 0), for any α > 0 we have

∫ T

0

m(s)dfn(s) =
1

2
E

∫ T∧Tn

0

m(s)ηs∧Tnθ
2
sds

≤ E

∫ T∧Tn

0

m(s)
[
e

α
2
θ2s +
(ηs∧Tn

α
ln(

ηs∧Tn

α
)− ηs∧Tn

α

)]
ds

≤ E

∫ T

0

m(s)e
α
2
θ2sds+

∫ T

0

m(s)E
(ηs∧Tn

α
ln(

ηs∧Tn

α
)− ηs∧Tn

α

)
ds.

(5.16)

Thanks to

E
(ηs∧Tn

α
ln(

ηs∧Tn

α
)− ηs∧Tn

α

)
=

1

α
E
(
ηs∧Tn ln(ηs∧Tn)− ηs∧Tn + 1

)
− 1

α
− 1

α
E
(
ηs∧Tn ln(α)

)
=

1

α
fn(s)− 1

α
− lnα

α
,

the inequality (5.16) becomes

∫ T

0

m(s)dfn(s) ≤
∫ T

0

m(s)E(e
α
2
θ2s − 1 + lnα

α
)ds+

1

α

∫ T

0

m(s)fn(s)ds.
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A direct application of Lemma 5.3, we conclude that

fn(T ) ≤ e
T
α

∫ T

0

e−
s
αE(e

α
2
θ2s − 1 + lnα

α
)ds ≤ e

T
α

∫ T

0

e−
s
αE(e

α
2
θ2s − lnα

α
)ds.

(5.17)

Now, we just need to prove E(e
α
2
θ2t ) is finite. To this end, we remark

that

θ2t ≤ 2h2(t) + 2
σ2
μ

σ2
S

G2(t),

where h(t) and G(t) are given by (5.8). Then we obtain

E exp
(α
2
θ2t

)
≤ exp

(
αh2(t)

)
E exp

(
α
σ2
μ

σ2
S

G2(t)
)
. (5.18)

Since
σμ

σS

G(t) =
σμ

σS

∫ t

0

eλsdBs ∼ N(0, r2t ), r
2
t =

σ2
μ

σ2
S

∫ t

0

e2λudu and using

the distribution density function, we derive

E[exp
(
α
σ2
μ

σ2
S

G2(t)
)
] =

∫ +∞

−∞
exp
(
αy2
)
exp
(
− y2

2r2t

) dy√
2πrt

=

∫ +∞

−∞
exp
(
−1− 2r2tα

2r2t
y2
) dy√

2πrt

=
1√

1− 2r2tα
.

Since α is arbitrary positive number, we set

α =
1

4r2T
<

1

2r2t
,

Therefore, for any t ∈ [0, T ], we conclude that

E exp
(α
2
θ2t

)
≤ eαh

2(t)√
1− 2r2tα

<
eαh

2(t)

2
≤ C1, (5.19)
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where C1 =
1

2
exp
(
(
μ0 + μ

σS

)2e2λT
)

is a positive constant. By inserting

(5.19) into (5.17), we get

fn(t) ≤ e
T
α (C1 +

lnα

α
)T, for all t ≥ 0.

Hence, due to Fatou’s lemma and x ln x− x+ 1 ≥ 0, we get

E(ηT ln(ηT )− ηT + 1) ≤ lim
n→∞

fn(T ) < +∞

According to Doob’s inequality (see Theorem 2.1), we have E(sup
t≤T

ηt) <

+∞. This proves that ηt is an uniformly integrable martingale.

2) Since η is a martingale, it is easy to prove that these two processes defined

in (5.11) and (5.12) are Brownian motions under Q by using Girsanov’s

theorem (see Theorem 2.3 ).

�

5.1.3 Optimal Policies for General Case

We consider a generalization of the "linear" parametric utility. For the class

of "linear" utilities u(c, z) = v(c− z), we have the following assumption.

Assumption 6: The function v(·) : R+ ∪ {0} → R is increasing and strictly

concave and has the following properties:

1) v′(∞) = lim
x→∞

v′(x) = 0,

2) v′(0) = lim
x→0

v′(x) = ∞.
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Remark 5.2: The functions that we studied before like power utility u(c, z) =

(c− z)p

p
and exponential utility u(c, z) = −e−(c−z) satisfy Assumption 6.

For the utilities satisfied the above assumption, we provide the following ex-

plicit solutions for optimal policies.

Theorem 5.1: Consider the economy introduced in Subsection 5.1.1 and sup-

pose that Assumption 6 hold. Define the non-negative, adapted process

γ = {γt}t∈[0,T ] as

γt(y) := yηt

(
1 + δtE

Q
[∫ T

t

exp
(
−
∫ s

t

(αu − δu)du
)
ds | Ft

])
(5.20)

and denote

φt := 1 + δtE
Q
[∫ T

t

exp
(
−
∫ s

t

(αu − δu)du
)
ds | Ft

]
, (5.21)

then we have γt(y) = yηtφt. Let I represents the inverse of the function v′(·)
and let y∗ denote the unique solution of the following equation:

χ(y) ≡ EQ
[∫ T

0

(
z0 exp

(
−
∫ t

0

(αu − δu)du
)
+ I(yηtφt)

+

∫ t

0

δs exp
(
−
∫ t

s

(αu − δu)du
)
I(yηsφs)ds

)
dt
]

= x0

(5.22)
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The optimal control pair (π∗, c∗) is given by

c∗t = z0 exp
(
−
∫ t

0

(αu − δu)du
)
+ I(y∗ηtφt)

+

∫ t

0

δs exp
(
−
∫ t

s

(αu − δu)du
)
I(y∗ηsφs))ds,

π∗
t =

ψ∗
t

σS

.

(5.23)

where ψ∗ = {ψ∗
t }t∈[0,T ] is square-integrable, adapted process that uniquely

represents the martingale EQ[

∫ T

0

c∗sds | Ft]− EQ[

∫ T

0

c∗sds], i.e.

∫ t

0

ψ∗
sdW̃s = EQ[

∫ T

0

c∗sds | Ft]− EQ[

∫ T

0

c∗sds].

The associated optimal standard of living process and optimal wealth process

are given by

z∗t = z0 exp
(
−
∫ t

0

(αu − δu)du
)

+

∫ t

0

δs exp
(
−
∫ t

s

(αu − δu)du
)
I(y∗ηsφs))ds,

X∗
t = x0 −

∫ t

0

c∗sds+
∫ t

0

ψ∗
sdW̃s.

(5.24)

Remark 5.3: The process γt(y) is the state price density ηt adjusted by

δtE
Q
[∫ T

t

exp
(
−
∫ s

t

(αu−δu)du
)
ds | Ft

]
. The factor δtEQ

[∫ T

t

exp
(
−
∫ s

t

(αu−
δu)du

)
ds | Ft

]
represents the cost at time t of the subsistence consumption

policy cs = zs, s > t per unit of time t standard of living.

The above Theorem 5.1 was first introduced in [8]. We cite the proof of this

theorem and develop as follows.
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Proof of Theorem 3.1. The following equation has the recursive linear struc-

ture:

γt = yηt + δtE
[∫ T

t

exp
(
−
∫ s

t

αudu
)
γsds | Ft

]
. (5.25)

This equation can be solved by repeated iteration, letting the number of iter-

ations tend to ∞. Alternatively, it can be verified by substitution that (5.20)

is a solution. Indeed, the process γt(y) = yηtφt of (5.20) solves (5.25) if and

only if

ηt

(
1 + δtE

Q
[∫ T

t

exp
(
−
∫ s

t

(αu − δu)du
)
ds | Ft

])
= ηt

+ δtE
[∫ T

t

exp
(
−
∫ s

t

αudu
)
ηs

(
1 + δsE

Q
[∫ T

s

exp
(
−
∫ l

s

(αu − δu)du
)
dl | Fs

])
ds | Ft

]
.

Simplifying and using the properties of η leads to

EQ
[∫ T

t

exp
(
−
∫ s

t

(αu − δu)du
)
ds | Ft

]
= EQ

[∫ T

t

exp
(
−
∫ s

t

αudu
)ηs
ηt

(
1 + δsE

Q
[∫ T

s

exp
(
−
∫ l

s

(αu − δu)du
)
dl | Fs

])
ds | Ft

]
= EQ

[∫ T

t

exp
(
−
∫ s

t

αudu
)(

1 + δsE
Q
[∫ T

s

exp
(
−
∫ l

s

(αu − δu)du
)
dl | Fs

])
ds | Ft

]
.

(5.26)

Define the following processes

Yt ≡
∫ T

t

exp
(
−
∫ s

t

αudu
)(

1 + δs

∫ T

s

exp
(
−
∫ l

s

(αu − δu)du
)
dl
)
ds,

and

Ht ≡
∫ T

t

exp
(
−
∫ s

t

(αu − δu)du
)
ds.

(5.26) can be expressed as EQ[Ht | Ft] = EQ[Yt | Ft]. To prove the result, we
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show that Yt coincides with Ht (P - a.s). Standard computations yield

Yt =

∫ T

t

exp
(
−
∫ s

t

αudu
)
ds+

∫ T

t

{
exp
(
−
∫ s

t

αudu
)
δs

∫ T

s

exp
(
−
∫ l

s

(αu − δu)du
)
dl
}
ds

=

∫ T

t

exp
(
−
∫ s

t

αudu
)
ds+

∫ T

t

δs

∫ T

t

exp
(
−
∫ l

t

αudu+

∫ l

0

δudu
)
exp
(
−
∫ s

0

δudu
)
dl
)
ds

−
∫ T

t

∫ s

t

δs exp
(
−
∫ l

t

αudu+

∫ l

0

δudu
)
exp
(
−
∫ s

0

δudu
)
dl
)
ds.

(5.27)

The second integral of (5.27) equals:

∫ T

t

δs

∫ T

t

exp
(
−
∫ l

t

αudu+

∫ l

0

δudu
)
exp
(
−
∫ s

0

δudu
)
dl
)
ds

=
(
−
∫ T

t

exp(−
∫ l

t

αudu+

∫ l

0

δudu) exp(−
∫ s

0

δudu)dl
)∣∣∣T

t

=

∫ T

t

exp
(
−
∫ l

t

(αu − δu)du
)(

1− exp(−
∫ T

t

δu)du
)
dl.

By using the integration by parts, the third integral of (5.27) can be written

as

−
∫ T

t

∫ s

t

δs exp
(
−
∫ l

t

αudu+

∫ l

0

δudu
)
exp
(
−
∫ s

0

δudu
)
dl
)
ds

=

∫ T

t

exp(−
∫ s

t

αudu)
(
exp(−

∫ T

s

δu)du− 1
)
ds

Substituting back into (5.27) then we have:

Yt =

∫ T

t

exp
(
−
∫ s

t

(αu − δu)du
)
ds = Ht.

For the standard of living process, zt(y) is the unique solution to dzt =
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(
δt(yηtφt))− αtzt

)
dt. Then, the candidate optimal habit level is given by

zt(y) = z0 exp
(
−
∫ t

0

(αu − δu)du
)
+

∫ t

0

δs exp
(
−
∫ t

s

(αu − δu)du
)
I(yηsφs)ds.

The candidate optimal policy is ct(y) = zt + v′−1(γt(y)), so our candidate

consumption process becomes

ct(y) = z0 exp
(
−
∫ t

0

(αu − δu)du
)
+

∫ t

0

δs exp
(
−
∫ t

s

(αu − δu)du
)
I(yηsφs)ds+ I(yηtφt).

To complete the proof, we show existence of a unique multiplier that satisfies

the static budget constraint. It is straightforward to verify that the function

χ(y) ≡ EQ
[∫ T

0

(
z0 exp

(
−
∫ t

0

(αu − δu)du
)
I(yηtφt)

+

∫ t

0

δs exp
(
−
∫ t

s

(αu − δu)du
)
I(yηsφs)ds

)
dt
]
:

[0,∞] →
[
z0E

Q
(∫ T

0

exp
(
−
∫ t

0

(αu − δu)du
)
dt
)
,∞
]

is continuous and strictly decreasing with limiting values χ(0) = ∞ and

χ(∞) = z0E
Q
(∫ T

0

exp
(
−
∫ t

0

(αu − δu)du
)
dt
)
. Since χ(y) is strictly decreas-

ing, y∗ is unique .

�

5.1.4 The Case of Exponential Preference

Under complete information with habit formation case, Detemple and Zap-

atero have already calculated the optimal policies for logarithmic and power
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utilities in [8]. Therefore, in this subsection, we consider that investors are

endowed with exponential utility preference. To get the the explicit solution

under this case, we need to calculate the following expectations.

Lemma 5.4: We have the following expectations under Q:

EQ[θt] =

∫ t

0

(
λμ

σS

eλs − λμ0

σS

e−λs) exp
(σμρ

σSλ
eλ(s−t)

)
ds+

μ0

σS

exp
(σμρ

σSλ
e1−λt

)
,

(5.28)

EQ[

∫ t

0

eλsdBs] = EQ[G(t)] =

∫ t

0

(
λμ

σμ

eλs − λμ0

σμ

e−λs) exp
(σμρ

σSλ
eλ(s−t)

)
ds

+
μ0

σμ

σμ exp
(σμρ

σSλ
e1−λt

)
− μ0

σμ

e−λt − μ

σμ

(eλt − 1),

(5.29)

and

EQ[G2(t)] =
1

2λ
(e2λt − 1)− 2ρ

∫ t

0

h(s)EQ[G(s)] exp
(2ρ
λ

σμ

σS

(eλs − eλt
))

ds.

(5.30)

Proof. From (5.7), the expectation of θt becomes

EQ[θt] = h(t) +
σμ

σS

EQ[G(t)]. (5.31)

Here, h(t) and G(t) are defined in (5.8). To compute the above expectation,

we need to calculate EQ[G(t)] first. From Proposition 5.1, we know

EQ[G(t)] = EQ[

∫ t

0

eλsdB̃t]− EQ[

∫ t

0

eλsρθsds] = −ρ

∫ t

0

eλsEQ[θs]ds. (5.32)
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Combining above equation with (5.31), we get

EQ[θt] = h(t)− ρ
σμ

σS

∫ t

0

eλsEQ[θs]ds. (5.33)

If we denote f(t) := EQ[θt], and differentiate above equation, we get the

following differential equation

f ′(t) = h′(t)− ρ
σμ

σS

eλtf(t).

The solution to above ODE is

f(t) = EQ[θt] =

∫ t

0

(
λμ

σS

eλs−λμ0

σS

e−λs) exp
(σμρ

σSλ
eλ(s−t)

)
ds+

μ0

σS

exp
(σμρ

σSλ
e1−λt

)
.

Put the above result into (5.32), we can get the (5.29). Now, we focus on

calculating the expectation of G2(t). Applying Itô formula to G2(t), we get

G2(t) = 2

∫ t

0

G(s)(eλsdB̃s − ρθse
λsdt) +

∫ t

0

e2λsds.

Therefore, the expectation of G2(t) becomes

EQ[G2(t)] = −2ρ

∫ t

0

EQ[G(s)θs]e
λsdt+

∫ t

0

e2λsds. (5.34)

Since

EQ[G(t)θt] = h(t)EQ[G(t)] +
σμ

σS

EQ[G2(t)].
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Inserting above expectation into (5.34), we get

EQ[G2(t)] = −2ρ

∫ t

0

(
h(s)EQ[G(s)]+

σμ

σS

EQ[G2(s)]
)
eλsdt+

∫ t

0

e2λsds. (5.35)

Again, by denoting g(t) := EQ[G2(t)] and differentiating above equation, we

get

g′(t) = e2λt − 2ρh(t)EQ[G(t)]− 2ρ
σμ

σS

eλtf(t).

The solution to above ODE is given by

EQ[G2(t)] =

∫ t

0

(
e2λs − 2ρh(s)EQ[G(s)] exp

(2ρ
λ

σμ

σS

(eλs − eλt
))

ds

=
1

2λ
(e2λt − 1)− 2ρ

∫ t

0

h(s)EQ[G(s)] exp
(2ρ
λ

σμ

σS

(eλs − eλt
))

ds.

Suppose the utility function takes the exponential form, we have the fol-

lowing theorem.

Theorem 5.2: If the utility function takes the form of u(c− z) = −e−(c−z) or

v(x) = −e−x. Then, the following assertions hold:

• The optimal consumption rate c∗t is

c∗t = z0e
− ∫ t

0 (αu−δu)du − ln(y∗)(1 +
∫ t

0

δse
− ∫ t

s (αu−δu)duds)

− ln(ηtφt)−
∫ t

0

δs ln(ηsφs)e
− ∫ t

s (αu−δu)duds

(5.36)
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• The optimal standard of living z∗t is

z∗t = z0e
− ∫ t

0 (αu−δu)du − ln(y∗)
∫ t

0

δse
− ∫ t

s (αu−δu)duds

−
∫ t

0

δs ln(ηsφs)e
− ∫ t

s (αu−δu)duds.

(5.37)

• The optimal wealth process X∗
t is

X∗
t = x0 + EQ[

∫ T

t

c∗sds | Ft]− EQ[

∫ T

0

c∗sds]. (5.38)

Here,

y∗ = exp
{[

z0E
Q

∫ T

0

e−
∫ t
0 (αu−δu)dudt− x0

−EQ

∫ T

0

ln(ηtφt)dt− EQ

∫ T

0

(

∫ t

0

δse
− ∫ t

s (αu−δu)du ln(ηsφs)ds)dt
]

×
[
EQ

∫ T

0

(1 +

∫ T

0

δse
− ∫ t

s (αu−δu)duds)dt
]−1}

.

(5.39)

Proof. For exponential utility v(x) = −e−x, we obtain I(yηtφt) = − ln(yηtφt).

Following the construction outlined in the proof of Theorem 5.1 produces the

following candidate of consumption process

ct(y) = z0e
− ∫ t

0 (αu−δu)du − ln(γt(y))−
∫ t

0

δse
− ∫ t

s (αu−δu)du ln(γs(y))ds

= z0e
− ∫ t

0 (αu−δu)du − ln(y)(1 +

∫ t

0

δse
− ∫ t

s (αu−δu)duds)

− ln(ηtφt)−
∫ t

0

δs ln(ηsφs)e
− ∫ t

s (αu−δu)duds.
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Substituting ct(y) in (5.22) and solving the equation χ(y) = x0 leads to

− ln(y∗)
[
EQ

∫ T

0

(1 +

∫ T

0

δse
− ∫ t

s (αu−δu)duds)dt
]

=
[
x0 − z0E

Q

∫ T

0

e−
∫ t
0 (αu−δu)dudt+ EQ

∫ T

0

ln(ηtφt)dt

+EQ

∫ T

0

(∫ t

0

δse
− ∫ t

s (αu−δu)du ln(ηsφs)ds
)
dt
]
.

From above equation, we get

y∗ = exp
{[

z0E
Q

∫ T

0

e−
∫ t
0 (αu−δu)dudt− x0

−EQ

∫ T

0

ln(ηtφt)dt− EQ

∫ T

0

(

∫ t

0

δse
− ∫ t

s (αu−δu)du ln(ηsφs)ds)dt
]

×
[
EQ

∫ T

0

(1 +

∫ t

0

δse
− ∫ t

s (αu−δu)duds)dt
]−1}

.

Therefore, the optimal consumption rate is c∗t = ct(y
∗). And put the optimal

c∗t into (5.24) derive (5.37) immediately.

For the case when the parameters α and δ are deterministic, we get more

simplified results.

Corollary 5.2.1: If parameters αt and δt are deterministic. Then, the follow-

ing assertions hold:

• The optimal consumption rate c∗t is

c∗t = z0e
− ∫ t

0 (αu−δu)du − ln(y∗)
(
1 +

∫ t

0

δte
− ∫ t

s (αu−δu)duds
)

−
(
ln(ηt) + ln(1 + δt

∫ T

t

e−
∫ s
t (αu−δu)duds)

)
−
∫ t

0

δse
− ∫ t

s (αu−δu)du
(
ln(ηs) + ln(1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl)

)
ds.

(5.40)
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• The optimal standard of living z∗t is

z∗t = z0e
− ∫ t

0 (αu−δu)du − ln(y∗)
(∫ t

0

δte
− ∫ t

s (αu−δu)duds
)

−
∫ t

0

δse
− ∫ t

s (αu−δu)du
(
ln(ηs) + ln(1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl)

)
ds.

(5.41)

• The optimal wealth process X∗
t is

X∗
t = x0 + EQ[

∫ T

t

c∗sds | Ft]− EQ[

∫ T

0

c∗sds]. (5.42)

Here,

y∗ = exp
{[

z0

∫ T

0

e−
∫ t
0 (αu−δu)dudt− x0

−
∫ T

0

EQ ln(ηt)dt−
∫ T

0

(
ln(1 + δt

∫ T

t

e−
∫ s
t (αu−δu)duds)

)
dt

−
∫ T

0

(

∫ t

0

δse
− ∫ t

s (αu−δu)du
(
EQ ln(ηs) + ln(1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl)

)
ds)dt

]
×
[∫ T

0

(1 +

∫ t

0

δse
− ∫ t

s (αu−δu)duds)dt
]−1}

.

(5.43)

and we have

EQ ln(ηt) =
1

2

∫ t

0

h(s)2ds+
σ2
μ

2σ2
S

∫ t

0

EQ[G(s)2]ds+
σμ

σS

∫ t

0

h(s)EQ[G(s)]ds,

here h(t) and Gt are defined in (5.8). Moreover, EQ[G2(t)] and EQ[G(t)]

are calculated in (5.30) and (5.29).
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Proof. If α and δ are deterministic, we have

EQ
[∫ T

t

exp
(
−
∫ t

s

(αu − δu)du
)
ds | Ft] =

∫ T

t

exp
(
−
∫ t

s

(αu − δu)du
)
ds.

Thus,

φ(t) = 1 + δt

∫ T

t

exp
(
−
∫ s

t

(αu − δu)du
)
ds) . (5.44)

Substituting (5.44) into (5.40), we get

c∗t = z0e
− ∫ t

0 (αu−δu)du − ln(y∗)
(
1 +

∫ t

0

δte
− ∫ t

s (αu−δu)duds
)

−
(
ln(ηt) + ln(1 + δt

∫ T

t

e−
∫ s
t (αu−δu)duds)

)
−
∫ t

0

δse
− ∫ t

s (αu−δu)du
(
ln(ηs) + ln(1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl)

)
dt,

then substituting (5.44) into equation (5.43)

y∗ = exp
{[

z0

∫ T

0

e−
∫ t
0 (αu−δu)dudt− x0

−
∫ T

0

EQ
(
ln(ηtφt)

)
dt−

∫ T

0

(

∫ t

0

δse
− ∫ t

s (αu−δu)duEQ
(
ln(ηsφs)

)
ds)dt

]
×
[∫ T

0

(1 +

∫ t

0

δse
− ∫ t

s (αu−δu)duds)dt
]−1}

= exp
{[

z0

∫ T

0

e−
∫ t
0 (αu−δu)dudt− x0

−
∫ T

0

EQ ln(ηt)dt−
∫ T

0

(
ln(1 + δt

∫ T

t

e−
∫ s
t (αu−δu)duds)

)
dt

−
∫ T

0

(

∫ t

0

δse
− ∫ t

s (αu−δu)du
(
EQ ln(ηs) + ln(1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl)

)
ds)dt

]
×
[∫ T

0

(1 +

∫ t

0

δse
− ∫ t

s (αu−δu)duds)dt
]−1}

.

(5.45)
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Moreover, from (5.9) and (5.7), we get

EQ ln(ηt) = EQ[−
∫ t

0

θsdWs − 1

2

∫ t

0

θ2sds
]

= EQ[−
∫ t

0

θsdW̃s +
1

2
EQ

∫ t

0

θ2sds] = −EQ[

∫ t

0

θsdW̃s] +
1

2
EQ[

∫ t

0

θ2sds]

=
1

2
EQ[

∫ t

0

h(s)2ds+
σ2
μ

σ2
S

∫ t

0

G(s)2ds+ 2
σμ

σS

∫ t

0

h(s)G(s)ds]

=
1

2

[∫ t

0

h(s)2ds+
σ2
μ

σ2
S

∫ t

0

EQ[G(s)2]ds+ 2
σμ

σS

∫ t

0

h(s)EQ[G(s)]ds
]
.

Here, h(t) and G(t) are defined in (5.8). And EQ[G(t)], EQ[G(t)2] have already

been calculated in Lemma 5.4.

For the case when parameters α and δ are constant, we have the following

corollary.

Corollary 5.2.2: If parameters αt = α and δt = δ are constants, the following

assertions hold:

• The optimal consumption rate c∗t is

c∗t = z0e
−(α−δ)t − ln(y∗)

( α

α− δ
− δ

α− δ
e−(α−δ)t

)
−
(
ln(ηt) + ln(

α

α− δ
− δ

α− δ
e−(α−δ)(T−t))

)
−
∫ t

0

δe−(α−δ)(t−s)
(
ln(ηs) + ln(

α

α− δ
− δ

α− δ
e−(α−δ)(T−S))

)
ds.

• The optimal standard of living z∗t is

z∗t = z0e
−(α−δ)t − ln(y∗)

( δ

α− δ
(1− e−(α−δ)t)

)
−
∫ t

0

δe−(α−δ)(t−s)
(
ln(ηs) + ln(

α

α− δ
− δ

α− δ
e−(α−δ)(T−s))

)
ds.

83



• The optimal wealth process X∗
t is

X∗
t = x0 + EQ[

∫ T

0

c∗sds | Ft]− EQ[

∫ T

0

c∗sds].

Here,

y∗ = exp
{[ z0

α− δ
(1− e−(α−δ)T )− x0

−
∫ T

0

EQ ln(ηt)dt−
∫ T

0

( α

α− δ
− δ

α− δ
e−(α−δ)t

)
−
∫ T

0

(

∫ t

0

δe−(α−δ)(t−s)
(
EQ ln(ηs) + ln(

α

α− δ
− δ

α− δ
e−(α−δ)(T−s))

)
ds)dt

]
×
[ α

α− δ
T +

δ

(α− δ)2
(e−(α−δ)T − 1)

]−1}
.

Proof. If parameters αt = α and δt = δ are constants, we have

EQ
[∫ T

t

exp
(
−
∫ t

s

(αu − δu)du
)
ds | Ft] =

1

α− δ
(1− e−(α−δ)(T−t)).

Thus,

φ(t) = 1 +
δ

α− δ
(1− e−(α−δ)(T−t)). . (5.46)

Inserting above equation into (5.40), (5.43) and (5.42) ends the proof of this

corollary immediately.

5.2 The Case of Partial Information

In this chapter, we study the case under partial observations setting. In Section

3.2, we use the filtering technique to transform our optimization problem from
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partial information context to full information context. For t ∈ [0, T ], the

processes after transforming are given as follows

dSt

St

= μ̂tdt+ σSdŴt, S0 = s0,

dμ̂t = −λ(μ̂t − μ)dt+ (
Ω̂t + σSσμρ

σS

)dŴt, μ̂0 = E[μ0 | FS
0 ],

dΩ̂t =
[
− 1

σ2
S

Ω̂2
t +
(
−2σμρ

σS

− 2λ
)
Ω̂t + (1− ρ2)σ2

μ

]
dt, Ω̂0 = E[(μ0 − μ̂0)

2 | FS
0 ] = θ0,

dz(t) = (δ(t)ĉt − α(t)zt)dt, z0 = z0,

dXt = (π̂tμ̂t − ĉt)dt+ σSπ̂tdŴt, X0 = x0,

where ĉt and π̂t are adapted to FS
t only. From (3.7), we know Ω̂t is a function

of time.

Remark 5.4: The market price of risk process θ̂ = {θ̂t}t∈[0,T ] under partial

observations model is given by

θ̂t =
μ̂t

σS

, t ∈ [0, T ]. (5.47)

Since θ̂ takes the similar form with θ. And from (3.10) in Section 3.2, we

know
(Ω̂t + σSσμρ)

σ2
S

≤ (max(θ0, θ
∗) + σSσμρ)

σ2
S

,

where, constant max(θ0, θ
∗) is the upper bound of Ω̂t. Thus, similar to

Remark 5.1, we conclude that θ̂ is integrable with respect to Ŵ .

Moreover, we have the following lemma towards θ̂.
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Lemma 5.5: The market price of risk θ̂ can be calculated as follows

θ̂t = ĥ(t) +
(Ω̂t + σSσμρ)

σ2
S

Ĝ(t), t ∈ [0, T ], (5.48)

Here, ⎧⎪⎪⎨⎪⎪⎩
ĥ(t) =

μ̂0

σS

e−λt +
μ

σS

(eλt − 1),

Gt =

∫ t

0

eλsdŴt.
(5.49)

Proof. Applying Lemma 5.2 to (5.47), then the proof of this lemma is com-

pleted.

Since θ̂t is integrable with respect to Ŵt, the process

η̂t := exp
(
−
∫ t

0

θ̂udŴu − 1

2

∫ t

0

θ̂2udu
)
,

is well-defined on [0, T ]. And we have the following important proposition.

Proposition 5.2: The following assertions hold:

1) The process η̂ defined above is a martingale. The probability measure Q̂

defined by

Q̂(A) = E[η̂T1A], A ∈ FS
T , (5.50)

is a risk-neutral probability. This measure is equivalent to P and unique due

to the completeness of the market.

2) The following process

W ∗
t := Ŵt +

∫ t

0

θ̂sds, t ∈ [0, T ]. (5.51)
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is a standard Q̂-Brownian motion.

Proof. Follow the same procedure, as in Proposition 5.1, we can prove this

proposition easily by using Lemma 5.3 and Theorem 2.3.

To prepare the next section, we denote

φ̂t := 1 + δtE
Q̂
[∫ T

t

exp
(
−
∫ s

t

(αu − δu)du
)
ds | FS

t

]
. (5.52)

And we introduce the following lemma.

Lemma 5.6: The following expectations under Q̂ can be calculated:

EQ̂[θ̂t] = ĥ(t) =
μ̂0

σS

e−λt +
μ

σS

(eλt − 1), (5.53)

and

EQ̂[

∫ t

0

eλsdŴs] = 0. (5.54)

Proof. From the (5.48), we get

EQ̂[θ̂t] = ĥ(t) +
(Ω̂t + σSσμρ)

σ2
S

EQ̂[Ĝt]. (5.55)

And

EQ̂[Ĝt] = EQ̂[

∫ t

0

eλsdW̃s] = −
∫ t

0

eλsEQ̂[θ̂s]ds. (5.56)

By inserting above equation in (5.55), we get the following differential equation

by denoting f(t) := EQ̂[θ̂t]

f(t) = ĥ(t)− (Ω̂t + σSσμρ)

σ2
S

∫ t

0

eλsf(s)ds.
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To solve above equation, we define F (t) :=

∫ t

0

eλsf(s)ds. Then above equation

becomes

F ′(t) = eλtĥ(t)− (Ω̂t + σSσμρ)

σ2
S

eλtF (t).

The solution to above ODE is given by

F (t) =

∫ t

0

eλsĥ(s) exp
(∫ s

t

(Ω̂u + σSσμρ)

σ2
S

eλudu
)
ds.

Therefore,

f(t) = ĥ(t) exp
(∫ t

t

(Ω̂u + σSσμρ)

σ2
S

eλudu
)
= ĥ(t).

This ends the proof of this lemma.

5.2.1 The Case of Logarithmic Preference

In this subsection, we consider that investors are endowed with the exponential

utility of u(c−z) = ln(c−z) or v = ln(x). Then we have the following theorem.

Theorem 5.3: The following assertions hold:

• The optimal consumption rate ĉ∗(t) is

ĉ∗(t) = z0e
− ∫ t

0 (αu−δu)du + (ŷ∗)−1
[
(η̂tφ̂t)

−1 +

∫ t

0

δse
− ∫ t

s (αu−δu)du(η̂sφ̂s)
−1ds
]
.

(5.57)

• The optimal standard of living ẑ∗(t) is

ẑ∗(t) = z0e
− ∫ t

0 (αu−δu)du + (ŷ∗)−1

∫ t

0

δse
− ∫ t

s (αu−δu)du(η̂sφ̂s)
−1ds. (5.58)

88



• The optimal wealth process X̂∗
t is

X̂∗
t = x0 + EQ̂[

∫ T

t

ĉ∗(s)ds | FS
t ]− EQ̂[

∫ T

0

ĉ∗(s)ds]. (5.59)

Here,

ŷ∗ =
[
x0 − z0E

Q̂

∫ T

0

e−
∫ t
0 (αu−δu)dudt

]−1

×
[
EQ̂

∫ T

0

(
(η̂tφ̂t)

−1 +

∫ t

0

δse
− ∫ t

s (αu−δu)du(η̂sφ̂s)
−1ds
)
dt
]
.

(5.60)

Proof. For power utility v(x) = ln(x), we obtain I(ŷη̂tφ̂t)) = (ŷη̂tφ̂t)
−1. Then

it is easy to prove above theorem by applying Theorem 5.1.

For the case when the parameters α and δ are deterministic, the above theorem

can be simplified as follows.

Corollary 5.3.1: The following hold for α and δ are deterministic :

• The optimal consumption rate ĉ∗(t) is

ĉ∗(t) = z0e
− ∫ t

0 (αu−δu)du + (ŷ∗)−1 ×
[
η̂−1
t

(
1 + δt

∫ T

t

e−
∫ s
t (αu−δu)duds

)−1

+

∫ t

0

δse
− ∫ t

s (αu−δu)duη̂−1
s

(
1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl

)−1

ds
]
.

(5.61)

• The optimal standard of living ẑ∗(t) is

ẑ∗(t) = z0e
− ∫ t

0 (αu−δu)du + (ŷ∗)−1

∫ t

0

δse
− ∫ t

s (αu−δu)duη̂−1
s

(
1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl

)−1

ds.

(5.62)
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• The optimal wealth process X̂∗
t is

X̂∗
t = x0 + EQ̂[

∫ T

t

ĉ∗(s)ds | FS
t ]− EQ̂[

∫ T

0

ĉ∗(s)ds].

Here,

ŷ∗ =
(
x0 − z0

∫ T

0

e−
∫ t
0 (αu−δu)dudt

)−1

×
(∫ T

0

[(
1 + δt

∫ T

t

e−
∫ s
t (αu−δu)duds

)−1

+

∫ t

0

δse
− ∫ t

s (αu−δu)du
(
1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl

)−1

ds
]
dt
)
.

(5.63)

Proof. For deterministic parameters αt and δt, we have γ̂t(y) = ŷη̂tφ̂t. Here

φ̂t = 1 + δt

∫ T

t

exp
(
−
∫ s

t

(αu − δu)du
)
ds.

Substituting it into equation (5.57) and (5.60), we get

ŷ∗ =
(
x0 − z0

∫ T

0

e−
∫ t
0 (αu−δu)dudt

)−1

×EQ̂
[∫ T

0

(
(η̂tφ̂t)

−1 +

∫ t

0

δse
− ∫ t

s (αu−δu)duφ̂−1
s ds
)
dt
]

=
(
x0 − z0

∫ T

0

e−
∫ t
0 (αu−δu)dudt

)−1

×
(∫ T

0

[
EQ̂[η̂−1

t ]
(
1 + δt

∫ T

t

e−
∫ s
t (αu−δu)duds

)−1

+

∫ t

0

δse
− ∫ t

s (αu−δu)duEQ̂[η̂−1
s ]
(
1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl

)−1

ds
]
dt
)

=
(
x0 − z0

∫ T

0

e−
∫ t
0 (αu−δu)duds

)−1

×
(∫ T

0

[(
1 + δt

∫ T

t

e−
∫ s
t (αu−δu)duds

)−1

+

∫ t

0

δse
− ∫ t

s (αu−δu)du
(
1 + δs

∫ T

s

e−
∫ s
u (αv−δv)dvdu

)−1

ds
]
dt
)
.

(5.64)

and the optimal consumption rate is ĉ∗(t) = ĉt(ŷ
∗). The proof of this corollary

is completed.
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For the case when the parameters α and δ are constants, we have the following

corollary.

Corollary 5.3.2: If αt = α and δt = δ are constant, the following assertions

hold:

• The optimal consumption rate ĉ∗(t) is

ĉ∗(t) = z0e
−(α−δ)t + (ŷ∗)−1 ×

[
η̂−1
t

( α

α− δ
− δ

α− δ
e−(α−δ)T

)−1

+

∫ t

0

δe−(α−δ)(t−s)η̂−1
s

( α

α− δ
− δ

α− δ
e−(α−δ)(T−s)

)−1

ds
]
.

• The optimal standard of living ẑ∗(t) is

ẑ∗(t) = z0e
−(α−δ)t + (ŷ∗)−1

∫ t

0

δe−(α−δ)(t−s)η̂−1
s

( α

α− δ
− δ

α− δ
e−(α−δ)(T−s)

)−1

ds.

• The optimal wealth process X̂∗
t is

X̂∗
t = x0 + EQ̂[

∫ T

t

ĉ∗(s)ds | FS
t ]− EQ̂[

∫ T

0

ĉ∗(s)ds].

Here,

ŷ∗ =
(
x0 − z0

α− δ

(
e−(α−δ)T − 1

))−1

×
(∫ T

0

[( α

α− δ
− δ

α− δ
e−(α−δ)(T−t)

)−1

+

∫ t

0

δe−(α−δ)(t−s)
( α

α− δ
− δ

α− δ
e−(α−δ)(T−s)

)−1

ds
]
dt
)
.

5.2.2 The Case of Power Preference

For this subsection, we consider that investors are endow with the power utility

u(c− z) =
(c− z)p

p
or v(x) =

xp

p
, with the risk aversion coefficient p < 1 and
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p �= 0 .

Theorem 5.4: The following assertions hold:

• The optimal consumption rate ĉ∗(t) is

ĉ∗(t) = z0e
− ∫ t

0 (αu−δu)du + (ŷ∗)
1

p−1

[
(η̂tφ̂t)

1
p−1 +

∫ t

0

δse
− ∫ t

s (αu−δu)du(η̂sφ̂s)
1

p−1ds
]
.

(5.65)

• The optimal standard of living ẑ∗(t) is

ẑ∗(t) = z0e
− ∫ t

0 (αu−δu)du + (ŷ∗)
1

p−1

∫ t

0

δse
− ∫ t

s (αu−δu)du(η̂sφ̂s)
1

p−1ds. (5.66)

• The optimal wealth process X̂∗
t is

X̂∗
t = x0 + EQ̂[

∫ T

t

ĉ∗(s)ds | FS
t ]− EQ̂[

∫ T

0

ĉ∗(s)ds]. (5.67)

Here,

ŷ∗ =
[
x0 − z0E

Q̂

∫ T

0

e−
∫ t
0 (αu−δu)dudt

]p−1

×
[
EQ̂

∫ T

0

(
(η̂sφ̂s)

1
p−1 +

∫ t

0

δse
− ∫ t

s (αu−δu)du(η̂sφ̂s)
1

p−1ds
)
dt
]1−p

.

(5.68)

Proof. For power utility v(x) =
xp

p
, we obtain I(ŷη̂tφ̂t) = (ŷη̂tφ̂t)

1
p−1 .

By (5.22) we get the following equation for y∗

EQ̂
[∫ T

0

(
z0 exp

(
−
∫ t

0

(αu − δu)du
)
+ (ŷ∗η̂tφ̂t)

1
p−1

+

∫ t

0

δs exp
(
−
∫ t

s

(αu − δu)du
)
(ŷ∗η̂sφ̂s)

1
p−1ds

)
dt
]

= x0.
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Solving above equation we get

ŷ∗ =
(
x0 − z0E

Q̂
[∫ T

0

exp
(
−
∫ t

0

(αu − δu)du
)
dt
])p−1

×
(
EQ̂
[∫ T

0

(
(η̂tφ̂t)

1
p−1 +

∫ t

0

δs exp
(
−
∫ t

s

(αu − δu)du
)
(η̂sφ̂s)

1
p−1ds

)
dt
])1−p

.

Put ŷ∗ into equation (5.23), we get the optimal policies.

For the case when the parameters αt and δt are deterministic, we have the

following corollary.

Corollary 5.4.1: If αt and δt are deterministic, the following hold:

• The optimal consumption rate ĉ∗(t) is

ĉ∗(t) = z0e
− ∫ t

0 (αu−δu)du + (ŷ∗)
1

p−1 ×
[
η̂

1
p−1

t

(
1 + δt

∫ T

t

e−
∫ s
t (αu−δu)duds

) 1
p−1

+

∫ t

0

δse
− ∫ t

s (αu−δu)duη̂
1

p−1
s

(
1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl

) 1
p−1

ds
]
.

• The optimal standard of living ẑ∗(t) is

ẑ∗(t) = z0e
− ∫ t

0 (αu−δu)du + (ŷ∗)
1

p−1

∫ t

0

δse
− ∫ t

s (αu−δu)duη̂
1

p−1
s

(
1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl

) 1
p−1

ds.

• The optimal wealth process X̂∗
t is

X̂∗
t = x0 + EQ̂[

∫ T

t

ĉ∗(s)ds | FS
t ]− EQ̂[

∫ T

0

ĉ∗(s)ds].
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Here,

ŷ∗ =
(
x0 − z0

∫ T

0

e−
∫ t
0 (αu−δu)dudt

)p−1

×
(∫ T

0

[
E[η̂

p
p−1

t ]
(
1 + δt

∫ T

t

e−
∫ s
t (αu−δu)duds

) 1
p−1

+

∫ t

0

δse
− ∫ t

s (αu−δu)duE[η̂
p

p−1
s ]
(
1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl

) 1
p−1

ds
]
dt
)1−p

.

Proof. For deterministic coefficients αt and δt, we have γ̂t(y) = ŷη̂tφ̂t, where

φ̂t = 1 + δt

∫ T

t

exp
(
−
∫ s

t

(αu − δu)du
)
ds.

Substituting it into (5.68), then we get

ŷ∗ =
(
x0 − z0

∫ T

0

e−
∫ t
0 (αu−δu)dudt

)p−1

×
(∫ T

0

[
EQ̂[η̂

1
p−1

t ]
(
1 + δt

∫ T

t

e−
∫ s
t (αu−δu)duds

) 1
p−1

+

∫ t

0

δse
− ∫ t

s (αu−δu)duEQ̂[η̂
1

p−1
s ]
(
1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl

) 1
p−1

ds
]
dt
)1−p

=
(
x0 − z0

∫ T

0

e−
∫ t
0 (αu−δu)duds

)p−1

×
(∫ T

0

[
E[η̂

p
p−1

t ]
(
1 + δt

∫ T

t

e−
∫ s
t (αu−δu)duds

) 1
p−1

+

∫ t

0

δse
− ∫ t

s (αu−δu)duE[η̂
p

p−1
s ]
(
1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl

) 1
p−1

ds
]
dt
)1−p

.

and inserting above equation into (5.65), (5.66) and (5.67) we prove the corol-

lary.

For the case when parameters α and δ are constant, the above corollary can

be further simplified.

Corollary 5.4.2: If αt = α and δt = δ are constant, the following assertions

hold:
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• The optimal consumption rate ĉ∗(t) is

ĉ∗(t) = z0e
−(α−δ)t + (ŷ∗)

1
p−1 ×

[
η̂

1
p−1

t

( α

α− δ
− δ

α− δ
e−(α−δ)T

) 1
p−1

+

∫ t

0

δe−(α−δ)(t−s)η̂
1

p−1
s

( α

α− δ
− δ

α− δ
e−(α−δ)(T−s)

) 1
p−1

ds
]
.

• The optimal standard of living ẑ∗(t) is

ẑ∗(t) = z0e
−(α−δ)t + (ŷ∗)

1
p−1

∫ t

0

δe−(α−δ)(t−s)η̂
1

p−1
s

( α

α− δ
− δ

α− δ
e−(α−δ)(T−s)

) 1
p−1

ds.

• The optimal wealth process X̂∗
t is

X̂∗
t = x0 + EQ̂[

∫ T

t

ĉ∗(s)ds | FS
t ]− EQ̂[

∫ T

0

ĉ∗(s)ds].

Here,

ŷ∗ =
(
x0 − z0

α− δ

(
e−(α−δ)T − 1

))p−1

×
(∫ T

0

[
E[η̂

p
p−1

t ]
( α

α− δ
− δ

α− δ
e−(α−δ)(T−t)

) 1
p−1

+

∫ t

0

δe−(α−δ)(t−s)E[η̂
p

p−1
s ]
( α

α− δ
− δ

α− δ
e−(α−δ)(T−s)

) 1
p−1

ds
]
dt
)1−p

.

5.2.3 The Case of Exponential Preference

In this subsection, we take the exponential form of u(c − z) = −e−(c−z) or

v(x) = −e−x.

Theorem 5.5: The following assertions hold:
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• The optimal consumption rate ĉ∗(t) is

ĉ∗(t) = z0e
− ∫ t

0 (αu−δu)du − ln(ŷ∗)(1 +
∫ t

0

δse
− ∫ t

s (αu−δu)duds)

− ln(η̂tφ̂t)−
∫ t

0

δs ln(η̂sφ̂s)e
− ∫ t

s (αu−δu)duds.

• The standard of living ẑ∗(t) is

ẑ∗(t) = z0e
− ∫ t

0 (αu−δu)du − ln(ŷ∗)
∫ t

0

δse
− ∫ t

s (αu−δu)duds

−
∫ t

0

δs ln(η̂sφ̂s)e
− ∫ t

s (αu−δu)duds.

• The optimal wealth process X̂∗
t is

X̂∗
t = x0 + EQ̂[

∫ T

t

ĉ∗(s)ds | FS
t ]− EQ̂[

∫ T

0

ĉ∗(s)ds].

Here,

ŷ∗ = exp
{[

z0E
Q̂

∫ T

0

e−
∫ t
0 (αu−δu)dudt− x0

−EQ̂

∫ T

0

ln(η̂tφ̂t)dt− EQ̂

∫ T

0

(

∫ t

0

δse
− ∫ t

s (αu−δu)du ln(η̂sφ̂s)ds)dt
]

×
[
EQ̂

∫ T

0

(1 +

∫ T

0

δse
− ∫ t

s (αu−δu)duds)dt
]−1}

.

For the case with deterministic parameters αt and δt, we have the following

corollary.

Corollary 5.5.1: If αt and δt are deterministic, the following assertions hold:

96



• The optimal consumption rate ĉ∗(t) is

ĉ∗(t) = z0e
− ∫ t

0 (αu−δu)du − ln(ŷ∗)
(
1 +

∫ t

0

δte
− ∫ t

s (αu−δu)duds
)

−
(
ln(η̂t) + ln(1 + δt

∫ T

t

e−
∫ s
t (αu−δu)duds)

)
−
∫ t

0

δse
− ∫ t

s (αu−δu)du
(
ln(η̂s) + ln(1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl)

)
ds.

• The optimal standard of living ẑ∗(t) is

ẑ∗(t) = z0e
− ∫ t

0 (αu−δu)du − ln(ŷ∗)
(∫ t

0

δte
− ∫ t

s (αu−δu)duds
)

−
∫ t

0

δse
− ∫ t

s (αu−δu)du
(
ln(η̂s) + ln(1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl)

)
ds.

• The optimal wealth process X̂∗
t is

X̂∗
t = x0 + EQ̂[

∫ T

t

ĉ∗(s)ds | FS
t ]− EQ̂[

∫ T

0

ĉ∗(s)ds].

Here,

ŷ∗ = exp
{[

z0

∫ T

0

e−
∫ t
0 (αu−δu)dudt− x0

−
∫ T

0

EQ̂ ln(η̂t)dt−
∫ T

0

(
ln(1 + δt

∫ T

t

e−
∫ s
t (αu−δu)duds)

)
dt

−
∫ T

0

(

∫ t

0

δse
− ∫ t

s (αu−δu)du
(
EQ̂ ln(η̂s) + ln(1 + δs

∫ T

s

e−
∫ l
s (αu−δu)dudl)

)
ds)dt

]
×
[∫ T

0

(1 +

∫ t

0

δse
− ∫ t

s (αu−δu)duds)dt
]−1}

and EQ̂ ln(η̂t) =
1

2

∫ t

0

(
ĥ2
s +

(Ω̂s + σSσμρ)
2

σ4
S

∫ s

0

e2λudu
)
ds.

Further, for the case with constant parameters αt = α and δt = δ, we have the
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following corollary.

Corollary 5.5.2: If αt = α and δt = δ are constant, the following assertions

hold:

• The optimal consumption rate ĉ∗(t) is

ĉ∗(t) = z0e
−(α−δ)t − ln(ŷ∗)

( α

α− δ
− δ

α− δ
e−(α−δ)t

)
−
(
ln(η̂t) + ln(

α

α− δ
− δ

α− δ
e−(α−δ)(T−t))

)
−
∫ t

0

δe−(α−δ)(t−s)
(
ln(η̂s) + ln(

α

α− δ
− δ

α− δ
e−(α−δ)(T−S))

)
ds.

• The optimal standard of living ẑ∗(t) is

ẑ∗(t) = z0e
−(α−δ)t − ln(ŷ∗)

( δ

α− δ
(1− e−(α−δ)t)

)
−
∫ t

0

δe−(α−δ)(t−s)
(
ln(η̂s) + ln(

α

α− δ
− δ

α− δ
e−(α−δ)(T−s))

)
ds.

• The optimal wealth process X̂∗
t is

X̂∗
t = x0 + EQ̂[

∫ T

t

ĉ∗(s)ds | FS
t ]− EQ̂[

∫ T

0

ĉ∗(s)ds].

Here,

ŷ∗ = exp
{[ z0

α− δ
(1− e−(α−δ)T )− x0

−
∫ T

0

EQ̂ ln(η̂t)dt−
∫ T

0

( α

α− δ
− δ

α− δ
e−(α−δ)t

)
−
∫ T

0

(

∫ t

0

δe−(α−δ)(t−s)
(
EQ̂ ln(η̂s) + ln(

α

α− δ
− δ

α− δ
e−(α−δ)(T−s))

)
ds)dt

]
×
[ α

α− δ
T +

δ

(α− δ)2
(e−(α−δ)T − 1)

]−1}
,
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and EQ̂ ln(η̂t) =
1

2

∫ t

0

(
ĥ2
s +

(Ω̂s + σSσμρ)
2

σ4
S

∫ s

0

e2λudu
)
ds, here ĥs =

μ̂0

σS

e−λs +
μ

σS

(eλs − 1).
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