
University of Alberta

Multiple Kernel Learning with Many Kernels

by

Arash Afkanpour

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

c©Arash Afkanpour
Spring 2013

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.

Abstract

Multiple kernel learning (MKL) addresses the problem of learning the kernel function

from data. Since a kernel function is associated with an underlying feature space,

MKL can be considered as a systematic approach to feature selection. Many of the

existing MKL algorithms perform kernel learning by combining a given set of base

kernels. While efficient MKL algorithms are capable of handling large training sets,

their computational complexity depends linearly on the number of base kernels.

Hence, these algorithms are not scalable to problems with many kernels.

In this thesis, we investigate MKL when the number of kernels is very large. We

aim to exploit the structure of kernel space to design efficient MKL algorithms. Such

a structure exists for some of the important families of kernels, such as polynomial

kernels and Gaussian kernels. We propose efficient gradient-based algorithms, with

convergence guarantees, for the two prominent problem formulations of MKL, i.e.

one-stage and two-stage MKL. We show that stochastic gradient descent and greedy

coordinate descent are suitable algorithms to deal with very large kernel sets.

We propose an efficient stochastic gradient descent method for one-stage MKL.

We show that sampling a coordinate with a probability proportional to the mag-

nitude of gradient results in a low-variance estimate of gradient. For the case of

learning polynomial kernels we show that the computational complexity of our al-

gorithm has only a logarithmic dependence on the number of kernels. We show how

greedy coordinate descent can be applied to one-stage and two-stage MKL. Greedy

coordinate descent is in particular useful when the goal is to combine continuously-

parameterized kernels, such as Gaussian kernels.

We perform thorough empirical study on synthetic and real data to compare the

new gradient-based algorithms against several MKL algorithms. Our experiments

demonstrate that our new methods are competitive in terms of generalization per-

formance, while their computational cost is significantly less than other methods

that enjoy similarly good generalization performance.

Acknowledgements

Completing the PhD program is probably the most challenging task in my life so
far. There are many people who helped me during this journey and I am grateful
to all of them.

I would like to thank my supervisors, Csaba Szepesvári and Michael Bowling for
their help and support.

I learned a great deal from Csaba during these years. He taught me how math-
ematics can be properly used to formulate, analyze and solve machine learning
problems. I learned from him how to write clearly and accurately. Csaba has al-
ways been accessible and willing to help even at times that he was swamped with
deadlines, courses, and meetings and I am grateful for that. Thanks Csaba!

Mike Bowling has always been a sharp and talented supervisor who shows a great
deal of passion in doing research. I am deeply thankful to him for his guidance and
support from the very beginning of my PhD studies.

I would like to thank my co-author and friend András György for his collabo-
ration. We have had many insightful discussions together and I learned a lot from
him.

I would like to thank Dale Schuurmans, Ivan Mizera, Nilanjan Ray, and Mas-
similiano Pontil for being on my thesis committee and for their valuable questions
and constructive feedback on my research.

I would like to thank my friends at the University of Alberta. In particular I
would like to thank Amir-massoud Farahmand and Saman Vaisipour. I remember
countless number of times that Amir-massoud and I were discussing interesting
topics and problems, whether related to our research or not, and how much I learned
from these discussions. Saman has been my best friend since we started B.Sc. in
2000. He is the kind of friend who is always there for you when you need one.

I would like to thank my parents, Ali and Mahnaz, for their unconditional love
and support throughout my life. They always provided me with an environment in
which I could pursue my dreams and achieve my goals. Thank you both.

Most of all, I would like to thank my wonderful wife, Fariba Mahdavifard, for
her support, patience, and encouragement. This path was not an easy one and there
were many times that I felt hopeless and frustrated. She has always listened to my
complaints and helped me overcome obstacles. I am very thankful to her.

This work was supported financially by the Alberta Innovates Technology Fu-
tures.

Table of Contents

1 Introduction 1
1.1 Contributions . 5

2 Background and Related Work 9
2.1 Kernel Methods . 10

2.2 Problem Formulation of Multiple Kernel Learning 12
2.2.1 One-stage multiple kernel learning 13

2.2.2 Two-stage multiple kernel learning 16
2.3 Related Work . 20

2.3.1 One-stage MKL methods . 20

2.3.2 Two-stage MKL methods . 26
2.4 Summary . 28

3 When Finite Multiple Kernel Learning Fails 30
3.1 Importance of Combining the Right Set of Kernels 31
3.2 Summary . 34

4 Stochastic Gradient Methods for Multiple Kernel Learning 35
4.1 Stochastic Gradient Descent . 35

4.1.1 A stochastic mirror descent algorithm 36
4.2 Stochastic Gradient Descent for One-Stage MKL 38

4.2.1 Example: Learning polynomial kernels 43

4.2.2 Example: Learning Gaussian kernels 47
4.3 Stochastic Gradient Descent for Two-Stage MKL 49

4.4 Summary . 50

5 Greedy Coordinate Descent Methods for Multiple Kernel Learning 52

5.1 Greedy Coordinate Descent . 52
5.2 Greedy Coordinate Descent for One-Stage MKL 54
5.3 Greedy Coordinate Descent for Two-Stage MKL 55

5.3.1 Alignment maximization . 56
5.3.2 Euclidean distance minimization 59

5.4 Summary . 61

6 Experimental Results 62
6.1 Stochastic Gradient Descent for One-Stage MKL 63

6.1.1 Effect of sampling method . 64
6.1.2 Polynomial kernels – convergence test 65

6.1.3 Polynomial kernels – synthetic data 67
6.1.4 Polynomial kernels – real data 69

6.1.5 Gaussian kernels – real data 70
6.2 Greedy Coordinate Descent for MKL 72

6.2.1 Gaussian kernels – synthetic data 73

6.2.2 Gaussian kernels – real data 77
6.2.3 Non-convexity issue . 83

6.3 Stochastic Gradient Descent vs. Greedy Coordinate Descent for MKL 83
6.4 Summary . 85

7 Conclusion and Future Work 87
7.1 Future Work . 89

A Proofs 91

B Derivations 98

Bibliography 101

Chapter 1

Introduction

In machine learning it is well-known that the choice of features heavily influences

the performance of learning methods. Flexible algorithms that can perform feature

selection automatically while learning a predictor would be highly desirable. Sim-

ilarly, the performance of a learning method that uses a kernel function is highly

dependent on the choice of kernel. In this context, feature selection translates into

using multiple kernels and allowing the learning algorithm to choose the best kernel

(combination).

Multiple kernel learning (MKL) provides a systematic approach to using data

to learn the most suitable kernel function for a learning task. These methods are

usually designed to combine kernels from a given set. Since a kernel function corre-

sponds to a notion of similarity between data instances, combining multiple kernels

can be interpreted as combining different notions of similarity. The similarity de-

rived from a kernel is the inner product in some underlying feature space. Hence,

multiple kernel learning corresponds to feature selection. Prior to work in multi-

ple kernel learning, choosing the best kernel (and tuning the corresponding kernel

parameters) was performed by cross validation. Multiple kernel learning, however,

has been proposed as an alternative for learning the best kernel combination and

predictor at the same time.

The reason that multiple kernel learning is popular is because often it is hard

to decide a priori which of a number of features-maps (or kernels) is the most

appropriate for a given task. In fact, in many learning problems one has very little

a priori information that helps this choice. Hence, letting the learning algorithm

find the best combination of a set of kernels is an attractive idea. For some of

the important kernel families, such as polynomial kernels or Gaussian kernels, the

1

number of base kernels could be very large. While there are heuristic methods to

decrease the number of base kernels, it is desirable to directly feed a large set of

kernels to an algorithm and let it find the best combination.

There exists a large body of work in the literature of MKL. The main challenge

that has been addressed by many of the “efficient” MKL algorithms is learning with

large datasets. Much less attention, however, has been paid to the other dimension

of scalability, i.e. handling large number of kernels. The computational complexity

of most of the MKL algorithms depends linearly on the number of base kernels.

Hence, these algorithms are not scalable to problems with many kernels.

In this thesis, we investigate the computational challenge of multiple kernel learn-

ing when the number of kernels is very large. In particular, we are interested in

exponentially or infinitely large kernel sets. Examples include sets of base kernels

that come from a space with combinatorial structure and thus their number could

be exponentially large, such as polynomial kernels; and uncountable sets of parame-

terized base kernels whose parameters belong to a continuous set, such as Gaussian

kernels.

There are two well-known problem formulations of MKL, i.e. one-stage and

two-stage MKL. In one-stage MKL, following the structural risk minimization frame-

work, the optimization problem is formulated to learn the kernel weights and the

prediction function in one stage. In two-stage MKL, on the other hand, the learning

problem is divided into two separate stages. In the first stage the kernel combina-

tion is learned using a surrogate loss function that measures the quality of a kernel

function. The learned kernel function is then used in the second stage to learn a

predictor using standard kernel algorithms such as support vector machines (SVM)

or kernel ridge regression. For both approaches, we propose efficient algorithms

based on stochastic gradient descent and greedy coordinate descent.

For one-stage MKL, like some previous work (e.g. Rakotomamonjy et al., 2008;

Xu et al., 2008; Kloft et al., 2011) we start with the approach that views the MKL

problem as a two-step iterative procedure where the first step optimizes the weights

of the kernels to be combined, and the second step computes the predictor weights.

More specifically, we aim to minimize the group p-norm penalized empirical risk.

However, as opposed to these algorithms whose per iteration complexity depends

linearly on the number of kernels, following (Nesterov, 2010, 2012; Shalev-Shwartz

and Tewari, 2011; Richtárik and Takáĉ, 2011) we use a randomized coordinate de-

2

scent method that improves per iteration complexity. In particular, we show that

in the case of learning polynomial kernels, the computational complexity of our al-

gorithm has a logarithmic dependence on the number of kernels. In our method,

randomization is used to build an unbiased estimate of the gradient at the most re-

cent iteration. The issue then is how the variance (and so the number of iterations

required) scales with the number of kernels. To address this issue, we propose to

make the distribution over the updated coordinate dependent on the history. We

will argue that sampling from a distribution that is proportional to the magnitude

of the gradient vector is desirable to keep the variance low and in fact we will show

that there are interesting cases of MKL (in particular, learning polynomial kernels)

when efficient sampling (i.e., sampling at a logarithmic cost) is feasible from this

distribution. Then, the variance is controlled by the a priori weights put on the

kernels, making it potentially independent of the number of kernels. We show that

under these favorable conditions (and in particular, for the polynomial kernel set

with some specific prior weights), the complexity of the method depends logarith-

mically on the number of kernels, which makes our MKL algorithm efficient even for

an exponential number of kernels. This is to be contrasted to the approach of Nes-

terov (2010, 2012) where a fixed distribution is used and where the a priori bounds

on the method’s convergence rate, and hence, its computational cost to achieve a

prescribed precision, will depend linearly on the number of kernels.1 Our algorithm

is based on the mirror descent algorithm (similar to the work of Richtárik and Takáĉ

(2011) who uses uniform distributions).

For two-stage MKL, we propose a greedy coordinate descent algorithm to opti-

mize the centered kernel alignment metric of Cortes et al. (2010), which was orig-

inated from the uncentered alignment metric of Cristianini et al. (2002). We show

that our algorithm also fits in the framework of Forward Stagewise Additive Mod-

eling (FSAM), which is related to boosting (see, e.g. Hastie et al., 2001, Chapter

10). Our new greedy coordinate descent algorithm for MKL is particularly suited

to learning a combination of base kernels from a parameterized family of kernels,

(κσ)σ∈Σ, where Σ is a “continuous” parameter space, i.e., some subset of a Eu-

clidean space. A prime example and popular choice is when κσ is a Gaussian kernel,

where σ can be a single common bandwidth or a vector of bandwidths, one per co-

ordinate. One approach to apply MKL with such continuously-parameterized base

1Note that we are comparing upper bounds here, so the actual complexity could be smaller.

3

kernels, which is adopted by many practitioners, is to discretize the parameter space

Σ into r values and then find an appropriate combination of the resulting set of base

kernels, S = {κσ1 , . . . , κσr}. The advantage of this approach is that once the set

S is fixed, any of the standard MKL methods available in the literature can be

used to find the coefficients for combining the base kernels in S (see the papers by

Lanckriet et al. 2004; Sonnenburg et al. 2006; Rakotomamonjy et al. 2008; Cortes

et al. 2009a; Kloft et al. 2011 and the references therein). One potential drawback

of this approach, however, is that it requires an appropriate, a priori choice of S.

This might be problematic, e.g., if Σ is contained in a Euclidean space of moderate,

or large dimension (e.g., dimension over 20) since the size of S grows exponentially

with dimensionality. Furthermore, independent of the dimensionality of the pa-

rameter space, the need to choose the set S independently of the data is at best

inconvenient and selecting an appropriate resolution might be far from trivial. We,

therefore, propose an alternative method which avoids the need for discretizing the

space Σ.

We are not the first to realize that discretizing a continuous parameter space

might be troublesome: The method of Argyriou et al. (2005), and later Argyriou

et al. (2006), can also work with continuously parameterized spaces of kernels. We

shall see in Chapter 5 that the algorithm of Argyriou et al. (2005) is indeed an

instance of greedy coordinate descent. While our algorithm and the method of

Argyriou et al. (2005) are both greedy coordinate descent algorithms, we aim to

solve the two-stage MKL problem, while their algorithm solves one-stage MKL.

The greedy selection of coordinates in the context of MKL translates into solving

an optimization problem over σ ∈ Σ with an objective function that is a linear

function of the kernel matrix associated with the kernel function κσ. Because of the

non-linear and non-convex dependence of this matrix on σ, this step must resort to

local optimization. However, as we shall demonstrate empirically, even if we use local

solvers to solve this optimization step, the algorithm still shows an overall excellent

performance. Similar results were also obtained by Argyriou et al. (2005). This is

not completely unexpected considering the connection between greedy coordinate

descent and boosting, and that one of the key ideas underlying boosting is that it

is designed to be robust even when the individual “greedy” steps are imperfect (cf.,

Chapter 12, Bühlmann and van de Geer 2011).

4

1.1 Contributions

In this thesis, we propose a novel approach to MKL based on gradient descent that

is able to select and combine kernels from very large sets. The approach is shown to

be applicable to both one-stage and two-stage MKL. In particular, it is shown that

in both cases the risk functions can be chosen to be convex without compromising

the algorithm’s ability to deal with many kernels. We show that stochastic gradient

descent and greedy coordinate descent are suitable algorithms to deal with very

large kernel sets. The following list provides an overview of contributions of this

thesis:

• We propose a new stochastic gradient descent algorithm for high-dimensional

optimization. We show that by letting the sampling distribution, and hence,

the gradient estimate be dependent on history in some high-dimensional prob-

lems an exponential boost of the rate of convergence of the algorithm is pos-

sible. Finite-time convergence bounds are given that make the dependence on

the chosen distribution explicit. As the bounds do not directly depend on the

number of dimensions of the decision variable, if an appropriate sampling pro-

cedure can be designed, the algorithm can be very efficient for high-dimensional

optimization.

• We show how our new stochastic gradient descent algorithm can be applied

to the problem of one-stage MKL. We investigate the conditions required that

guarantee the convergence of the algorithms in the context of MKL. We in-

vestigate the important problem of learning polynomial kernels and show how

the variance of the gradient estimate can be controlled in this problem. This

leads to an efficient and scalable MKL algorithm for learning polynomial ker-

nels whose computational complexity is only polynomial in the number of

base kernels, as opposed to previous methods that all scale exponentially as a

function of this number.

• We show how greedy coordinate descent can be applied to one-stage and two-

stage MKL. Greedy coordinate descent is in particular useful when the goal is

to select and combine kernels from a parameterized set with infinitely-many

kernels. While the algorithm of Argyriou et al. (2005) is an instance of greedy

coordinate descent for one-stage MKL, we show how this method can be ap-

5

plied to two-stage MKL too. We show that the existing convergence results for

greedy coordinate descent guarantees that for two-stage MKL this algorithm

converges even if it is applied to kernel sets with infinitely-many kernels.

• We perform thorough experiments on synthetic and real data to compare the

new gradient-based algorithms against several MKL algorithms. Our experi-

ments serve multiple purposes.

We show that sampling from a distribution that is proportional to the magni-

tude of the gradient is beneficial. We, therefore, use this sampling procedure

in our stochastic gradient descent algorithm to learn polynomial kernels. Our

experiments also demonstrate that our new methods are competitive in terms

of generalization performance, while their computational cost is significantly

less than that of the other methods that enjoy similarly good generalization

performance.

We then show how this algorithm can be applied to combine kernels from a

set with infinitely-many kernels. In particular, we show the application of our

method to learn a combination of Gaussian kernels.

Next, we experiment with our greedy coordinate descent algorithm in one-

stage and two-stage MKL. We explore the potential advantages, as well as

limitations of the proposed technique. While the greedy kernel selection pro-

cedure needs to solve a non-convex problem for a wide range of kernel families,

including Gaussian kernels, we show that the algorithm is indeed reliable. We

show that this method can be successfully applied even when Σ is a subset of

a multi-dimensional space.

Our experiments demonstrate a clear advantage of greedy coordinate descent

algorithms that avoid discretization of the kernel parameter space. This con-

clusion is strengthened by the fact that in the experiments the algorithm of

Argyriou et al. (2005), which can be considered as greedy coordinate descent

for one-stage MKL and our greedy coordinate descent algorithm for two-stage

MKL perform better than methods that require discretization of kernel pa-

rameter space. While using finer discretizations of the parameter space and

providing more base kernels may improve performance of finite MKL methods,

the additional computational complexity makes this approach impractical for

high dimensional parameterizations. A greedy coordinate descent MKL al-

6

gorithm, however, can still produce meaningful kernel combinations in this

case.

Apart from the main contributions stated above, we also present several other re-

sults:

• We show that for two-stage MKL, maximizing alignment can be equivalently

solved by minimizing the Euclidean distance between the kernel combination

and the ideal kernel. While Cortes et al. (2010) had previously shown that

alignment maximization can be done by means of a quadratic programming

problem, to the best of our knowledge the relation between alignment and

Euclidean distance has not been reported in the literature.

• We show empirically that combining multiple kernels achieves better general-

ization error compared to picking one kernel from a set.

• Finally, our experiments reveal an interesting novel insight into the behavior

of two-stage methods: we noticed that two-stage methods can “overfit” the

performance metric of the first stage. In some problems we observed that our

method could find kernels that gave rise to better (test-set) performance on

the first-stage metric, while the method’s overall performance degrades when

compared to using kernel combinations whose performance on the first metric

is worse. The metric of the first stage is only a surrogate performance measure

and thus better performance according to this surrogate metric does not nec-

essarily result in better performance in the primary metric. Furthermore, we

actually see this effect in practice. However, we show that with proper capac-

ity control, the problem of overfitting the surrogate metric can be overcome.

To the best of our knowledge, this phenomenon has not been reported in the

past for two-stage algorithms.

The thesis is organized as follows: In Chapter 2, we review background material,

including the problem formulation of multiple kernel learning. In this chapter we

also review some of the previous MKL algorithms related to our work. Chapter 3

provides examples to demonstrate the importance of MKL as opposed to using a

single kernel. In this chapter we also discuss the importance of designing algorithms

that go beyond current approaches in MKL. We then propose new stochastic gradi-

ent descent (Chapter 4) and greedy coordinate descent (Chapter 5) algorithms for

7

MKL with many kernels. Experimental results are presented in Chapter 6. Finally,

in Chapter 7 we give some final remarks and propose further directions to extend

this work.

8

Chapter 2

Background and Related Work

The goal of machine learning is to develop algorithms that can find patterns in data.

In this thesis, we focus on supervised learning. In supervised learning, we are given

a set of training examples

{(x1, y1), . . . , (xn, yn)} ,

where (xi, yi) ∈ X × Y. The input space usually has a vector form, i.e. X ⊆ Rd,

however, non-vector types can be considered too. Problems in which the output val-

ues come from a finite set are called classification problems. In binary classification

output values belong to the set Y = {−1, 1}. One example of a classification prob-

lem is handwritten digit recognition in which the training data consists of images

of handwritten digits along with a label for each image that specifies what digit the

image represents. A supervised learning algorithm in this example can be used to

build a predictor that assigns a digit label to any input image. On the other hand,

regression problems are problems in which the output values are real numbers. For

example, the problem of predicting the amount of rainfall is a regression problem.

In general, given the training data, the goal is to build a prediction function f that

maps the input space X to the output space Y. Learning a predictor from training

data is based on the assumption that data are generated, usually in an independent

and identically distributed (i.i.d.) manner, from a common underlying distribution

P (X,Y). Note that this assumption is necessary to build a predictor with high gen-

eralization performance. Prediction function f is the minimizer of a loss function

` : Y × Y → [0,∞), over the input-output space:

min
f∈F

∫
X×Y

`(y, f(x)) dP (x, y),

9

where P is the distribution of data, and F is a class of functions. The distribution

of data P is usually not known. One approach is to minimize an empirical estimate

of the actual loss function which is obtained over training data,

min
f∈F

n∑
i=1

`(yi, f(xi)) + λΩ(f).

Since the class of functions F is typically very large and the size of training data

is (relatively) small, one needs to control the complexity of f to avoid overfitting.

This is done by adding a regularization term Ω(f) to the minimization problem

that gives a large penalty to complex functions. Here, λ > 0 is the regularization

coefficient that controls the tradeoff between empirical accuracy and the complexity

of f . Without the regularization term, it is very likely that the predictor will overfit

the training data and would not generalize well to unseen data.

2.1 Kernel Methods

Kernel methods are a family of algorithms for building linear models in a high-

dimensional feature space (Cortes and Vapnik, 1995). The predictor built by a

kernel method has the following form:

f(x) = 〈w, φ(x)〉,

where w ∈ W is the corresponding weight vector and φ : X → W maps each instance

onto feature space W. Feature space W could be high- or even infinite-dimensional.

An important property of kernel methods, which makes it possible to deal with a

high-dimensional feature space, is that it is not necessary to explicitly compute φ(x).

The only information that a kernel algorithm needs is the inner product of pair of

instances in feature space. This inner product is defined through a kernel function:

κ(x, x′) =
〈
φ(x), φ(x′)

〉
.

A kernel function, κ : X × X → R, is a positive semidefinite function. That is, κ is

a symmetric function and the resulting matrix of applying κ to any finite subset of

X is positive semidefinite.

For a given kernel function κ, consider the following function space

H0 =

{
n∑
i=1

αiκ(xi, ·) : n ∈ N, xi ∈ X , αi ∈ R, i = 1, . . . , n

}
.

10

For any two functions f, g ∈ H0 given by

f =

n∑
i=1

αiκ(xi, ·), and

g =

m∑
j=1

βjκ(xj , ·),

the inner product of f and g is defined as

〈f, g〉 =
n∑
i=1

m∑
j=1

αiβjκ(xi, xj). (2.1)

The Reproducing Kernel Hilbert Space (RKHS) underlying κ is defined as the closure

of H0 with respect to the norm induced by this so-defined inner product. This will

be denoted by H. Note that if f =
∑n

i=1 αiκ(xi, ·) ∈ H then

‖f‖2H = 〈f, f〉 =

n∑
i,j=1

αiαjκ(xi, xj) ≥ 0, (2.2)

in which ‖f‖H is the norm of f induced by the inner product underlying κ. This

property holds since the kernel function, κ, is positive semidefinite. From (2.1) and

(2.2) it is clear that 〈f, g〉 is a real number. Furthermore, 〈·, ·〉 is symmetric and

bilinear. Therefore, it satisfies the properties of an inner product.

Assuming that f has the above mentioned expansion, it also follows from (2.1)

that

〈f, κ(x, ·)〉 =
n∑
i=1

αiκ(xi, x) = f(x),

and for any x, x′ ∈ X 〈
κ(x, ·), κ(x′, ·)

〉
= κ(x, x′).

This is called the reproducing property of kernel k.

The representer theorem (Kimeldorf and Wahba, 1971), which is the heart of

kernel methods, states that the solution of a large class of problems can be expressed

as a kernel expansion over training data points. Let ` : R × R → [0,∞) be an

arbitrary loss function. Any function f ∈ H that minimizes

n∑
i=1

`(yi, f(xi)) + λ‖f‖2H, (2.3)

has the following representation:

f =
n∑
i=1

αiκ(xi, ·).

11

This key property enables learning f through learning α = (αi)
n
i=1. In other words,

the computational complexity of learning f depends only on the number of data

points and is independent of the number of dimensions of the feature space underly-

ing κ. It is usually assumed that the loss function ` is convex in its second argument

in order to guarantee the convexity of the functional (2.3). Many of the loss func-

tions currently used in machine learning such as the squared-loss, `(y, z) = 1
2(y−z)2,

and the hinge-loss, `(y, z) = max(1 − yz, 0), satisfy this condition. For regression

problems, using the squared-loss gives the kernel ridge regression algorithm. For

classification problems, using the hinge-loss results in the well-known soft margin

support vector machine (SVM) algorithm.

Another appealing characteristic of kernel methods is that, unlike many other

learning algorithms, these methods are independent of input type. That is they

are applicable to non-vector input types such as graphs, strings, etc. Once we have

a valid kernel function that is applicable to the instances of the problem at hand,

any standard kernel algorithm can be used to learn a predictor. Further details of

kernel methods can be found in, e.g., Schölkopf and Smola (2002); Shawe-Taylor

and Cristianini (2004); Steinwart and Christmann (2008).

The kernel function determines the underlying RKHS. Hence, given a limited

amount of training data, choosing the right kernel function for an application is an

important part of learning a predictor with high accuracy. The traditional approach

to choosing the kernel function is to select the best kernel function among a set

of candidates, {κ1, . . . , κr}, according to their prediction accuracy on a validation

set. More recently, multiple kernel learning (MKL) provides a flexible approach by

learning a kernel function that is a combination of this kernel set.

2.2 Problem Formulation of Multiple Kernel Learning

In this section we present the problem formulation of multiple kernel learning. In

Section 2.2.1 we show how multiple kernel learning can be formulated as a regularized

risk minimization problem. This approach is widely known as one-stage multiple

kernel learning in the literature. Thereafter, in Section 2.2.2, we present a different

problem formulation for multiple kernel learning that is known as two-stage multiple

kernel learning. For simplicity of notation, we assume that the set of base kernels

is finite. However, it is not hard to define similar formulations for continuously-

parameterized kernel sets. In methods based on one-stage MKL, kernel coefficients

12

and a kernel-based predictor are learned simultaneously. In methods based on two-

stage MKL, the kernel learning phase is separate from the predictor learning phase.

This provides the flexibility of using different objective functions in each phase.

However, as we will see later, this might introduce overfitting in some problems.

2.2.1 One-stage multiple kernel learning

In this section, we give the formal definition of multiple kernel learning known in

the literature as one-stage multiple kernel learning. We assume that a finite set of

positive semidefinite kernels is provided. Let I denote a finite index set, indexing

the kernels or alternatively the corresponding feature maps to be combined. Let

κi : X × X → R, i ∈ I denote the ith kernel function. The goal is to learn a

non-negative linear combination of these kernels,

κθ =
∑
i∈I

θiκi,

and use the resulting kernel to learn a predictor. Note that κθ is a positive semidefi-

nite kernel since the base kernels are combined with non-negative weights. When the

base kernels are linearly combined, the underlying feature maps are concatenated

scaled by the square root of θi weights (see, e.g., Shawe-Taylor and Cristianini,

2004). This means that the set of predictors considered over the input space X has

the form{
fu,θ : X → R : fu,θ(x) =

∑
i∈I

〈
ui,
√
θiφi(x)

〉
, x ∈ X , ui ∈ Ui, ∀i

}
.

Here, Ui is a Hilbert space corresponding to kernel κi, φi : X → Ui is the feature-map

underlying kernel κi, and 〈x, y〉 is the inner product over the Hilbert space that x

and y belong to. The problem we consider is to solve the kernel-based optimization

problem when base kernels κi are to be combined too:

min
u∈U ,θ

Lossn(fu,θ) +
λ

2

∑
i∈I
‖ui‖22,

s.t. θ ≥ 0, ‖θ‖p ≤ C, (2.4)

where

u = (ui)i∈I ∈ U def
= ×i∈IUi,

θ ∈ RI ,

13

λ,C > 0 are regularization parameters, and Lossn(fu,θ) is the empirical loss function

defined by

Lossn(fu,θ) =
1

n

n∑
t=1

`t(fu,θ),

where `t : R→ R (t ∈ {1, . . . , n}) are convex loss functions. In supervised learning

problems `t(y) = `(yt, y) for some loss function ` : R × R → R, e.g., the squared-

loss, `(yt, y) = 1
2(y− yt)2, or the hinge-loss, `t(yt, y) = max(1− yyt, 0), where in the

former case yt ∈ R, and in the latter case yt ∈ {−1,+1}. To ensure convexity of

`t(·) we assume that the loss function `(·, ·) is convex in its second argument.

Problem (2.4) is not jointly convex in u and θ. However, one can convert it to a

convex problem by letting wi =
√
θiui. With this change the problem formulation

becomes

min
w,θ

1

n

n∑
t=1

`t

(∑
i∈I
〈wi, φi(xt)〉

)
+
λ

2

∑
i∈I

‖wi‖22
θi

,

s.t. θ ≥ 0, ‖θ‖p ≤ C. (2.5)

We use the convention that

a

0
=

{
0 if a = 0,
∞ otherwise.

This implies that wi = 0 if θi = 0. Problem (2.5) is a convex problem. Note that

there are two tuning parameters: λ and C. Kloft et al. (2011, Theorem 1) showed

that one can equivalently solve the multiple kernel learning optimization problem

with a single tuning parameter:

min
w,θ

1

n

n∑
t=1

`t

(∑
i∈I
〈wi, φi(xt)〉

)
+
λ

2

∑
i∈I

‖wi‖22
θi

,

s.t. θ ≥ 0, ‖θ‖p ≤ 1. (2.6)

Problem (2.6) represents the optimization problem of one-stage multiple kernel

learning. It is not hard to see that solving the optimization problem (2.6) with

a single tuning parameter gives the same predictor as that of the optimization prob-

lem (2.5). Let (w∗, θ∗) be the optimal solution to problem (2.5) corresponding

to (λ,C). In this case, (w∗, θ̃ = θ∗/C) is the optimal solution to problem (2.6)

for λ̃ = λ/C. Since the prediction function solely depends on w∗, the prediction

function obtained by solving problem (2.5) for (λ,C) can be achieved by solving

problem (2.6) for λ/C.

14

One-stage MKL can also be viewed as a group p-norm penalized minimization

problem. To show this, let us define the set of predictors considered over the input

space X as{
fw : X → R : fw(x) =

∑
i∈I
〈wi, φi(x)〉 , x ∈ X , wi ∈ Wi, ∀i

}

Here, Wi is a Hilbert space over the reals, φi : X → Wi is a feature-map, and

w = (wi)i∈I ∈ W def
= ×i∈IWi (as an example, Wi may just be a finite dimensional

Euclidean space). We consider the optimization problem

min
w∈W

Lossn(fw) + Pen(fw), (2.7)

where Pen(fw) is a penalty term that will be specified later, and Lossn(fw) is the

empirical risk of predictor fw. We note in passing that for the sake of simplicity, we

shall sometimes abuse notation and write `n(w) for `n(fw) and even drop the index

n when the sample-size is unimportant.

We consider the special case of (2.7) when the penalty is a so-called group p-

norm penalty with 1 ≤ p ≤ 2, a case considered earlier, e.g., by Kloft et al. (2011).

Thus the goal is to solve

min
w∈W

Lossn(w) +
1

2

(∑
i∈I

ρpi ‖wi‖
p
2

) 2
p

, (2.8)

where the scaling factors ρi > 0, i ∈ I, are assumed to be given.

The rationale of using the squared weighted p-norm is that for 1 ≤ p < 2 it is

expected to encourage sparsity at the group level which should allow one to handle

cases when I is very large. The actual form, however, is also chosen for reasons of

computational convenience. In fact, the reason to use the 2-norm of the weights is

to allow the algorithm to work even with infinite-dimensional feature vectors (and

thus weights) by resorting to the kernel trick. To see how this works, just notice

that the penalty in (2.8) can also be written as(∑
i∈I

ρpi ‖wi‖
p
2

) 2
p

= inf

{∑
i∈I

ρ2
i ‖wi‖22
θi

: θ ∈ ∆ p
2−p

}
,

where for ν ≥ 1,

∆ν =
{
θ ∈ [0, 1]|I| : ‖θ‖ν ≤ 1

}

15

is the positive quadrant of the |I|-dimensional `ν-ball (See, e.g., Micchelli and Pontil,

2005, Lemma 26). Hence, an equivalent1 form of problem (2.8) is

min
w∈W,θ∈∆ν

J(w, θ) = Loss(w) +
1

2

∑
i∈I

ρ2
i ‖wi‖22
θi

, (2.9)

where

ν =
p

2− p ∈ [1,∞).

Let κi : X × X → R be the reproducing kernel underlying φi:

κi(x, x
′) =

〈
φi(x), φi(x

′)
〉
, x, x′ ∈ X ,

and let Hi = Hκi be the corresponding RKHS. Then, for any given fixed value of θ,

the above problem becomes an instance of a standard penalized learning problem

in the RKHS Hθ underlying the kernel

κθ =
∑
i∈I

θi
ρ2
i

κi .

In particular, by the theorem on page 353 in Aronszajn (1950), the problem of

finding w ∈ W for fixed θ is equivalent to

min
f∈Hθ

Loss(f) +
1

2
‖f‖2Hθ ,

and thus (2.8) is equivalent to

min
f∈Hθ,θ∈∆ν

Loss(f) +
1

2
‖f‖2Hθ .

Thus, we see that the method can be thought of as finding the weights of a kernel κθ

and a predictor minimizing the Hθ-norm penalized empirical risk. This shows that

the group p-norm optimization problem presented above is an instance of multiple

kernel learning. In the next section, we present a two-stage problem formulation for

multiple kernel learning.

2.2.2 Two-stage multiple kernel learning

In one-stage multiple kernel learning the kernel function and the predictor are

learned simultaneously in a single optimization problem. The two-stage problem

formulation, on the other hand, consists of two steps. In the first step the kernel

1Here and in what follows by equivalence we mean that the set of optimums in terms of w (the
primary optimization variable) is the same in the two problems.

16

function is learned, usually by solving an optimization problem. Then, in the sec-

ond step, the resulting kernel from the first step is used with a kernel-based method

(e.g. SVM or ridge regression) to learn a predictor. The key component to the

methods in this family is the surrogate objective function used to learn the kernel

function. The objective function in the first step should be a measure of the quality

or “goodness”of a given kernel function.

In this section, we describe a well-known objective function for the two-stage

problem formulation: centered alignment between the learned kernel and the “ideal”

kernel. The ideal kernel underlying the common distribution of the data is

κ∗(x, x′) = E
[
Y Y ′ |X = x,X ′ = x′

]
.

In two-stage methods the goal is to learn a kernel combination that is maximally

“aligned” to the ideal kernel. The objective function that we consider here is the

centered alignment metric proposed by Cortes et al. (2010), which originated from

the definition of alignment proposed by Cristianini et al. (2002).2 Centered align-

ment as a metric to measure the similarity of two kernel functions, κ, and κ̃ is

defined by:

Ac(κ, κ̃)
def
=
〈κc, κ̃c〉
‖κc‖‖κ̃c‖

,

where κc is the kernel underlying κ centered in the feature space (similarly for κ̃c),

〈κ, κ̃〉 = E [κ(X,X ′)κ̃(X,X ′)] and ‖κ‖2 = 〈κ, κ〉. A kernel κ centered in the feature

space, by definition, is the unique kernel κc, such that for any x, x′,

κc(x, x
′) =

〈
φ(x)− E [φ(X)] , φ(x′)− E [φ(X)]

〉
,

where φ is a feature map underlying κ. By considering centered kernels κc, κ̃c in

the alignment metric, one implicitly matches the mean responses E[κ(X,X ′)], and

E[κ̃(X,X ′)] before considering the alignment between the kernels (thus, centering

depends on the distribution of x). An alternative way of stating this is that centering

cancels mismatches of the mean responses between the two kernels. When one of the

kernels is the ideal kernel, centered alignment effectively standardizes the alignment

by cancelling the effect of imbalanced class distributions. For further discussion of

the virtues of centered alignment, see Cortes et al. (2010).

Since the common distribution underlying the data is unknown, given a dataset

{(xi, yi)}ni=1 one resorts to empirical approximations to alignment and centering,

2Note that the word metric is used in its everyday sense and not in its mathematical sense.

17

resulting in the empirical alignment metric,

Âc(K, K̃) =

〈
Kc, K̃c

〉
F

‖Kc‖F ‖K̃c‖F
,

where,

K = (κ(xi, xj))1≤i,j≤n, and

K̃ = (κ̃(xi, xj))1≤i,j≤n

are the kernel matrices underlying κ and κ̃, and for a kernel matrix, K,

Kc = CnKCn,

where Cn is the so-called centering matrix defined by

Cn = In×n −
1

n
11>,

In×n being the n × n identity matrix and 1 = (1, . . . , 1)> ∈ Rn. The empirical

counterpart of maximizing Ac(κ, κ
∗) is to maximize Âc(K, K̂∗), where K̂∗

def
= yy>,

where y = (y1, . . . , yn)> collects the responses into an n-dimensional vector. Here,

K is the kernel matrix derived from a kernel κ. To make this connection clear, we

will write K = K(κ) and Ki = K(κi). Define f : K → R by f(κ) = Âc(K(κ), K̂∗),

where K is the space of positive semidefinite kernels. When K is restricted to the

non-negative linear combination of a given set of base kernels, indexed by I, the

problem of centered alignment maximization is given by

max
θ≥0

〈∑
i∈I θiKi, K̂

∗
〉
F

‖∑i∈I θiKi‖F
. (2.10)

Problem (2.10) is not convex since centered alignment is not a convex function. In

the next section we show that there exists a convex optimization problem that is

equivalent to alignment maximization.

Alignment maximization by using a convex objective function

Instead of using alignment as the objective function of a two-stage problem one

can resort to minimizing the L2 distance between the kernel combination and the

ideal kernel. Note that the objective function in (2.10) is scale invariant, i.e. if

θ∗ is a solution, then any θ̃ = νθ∗, ν > 0 is also a solution. Therefore, one can

18

solve (2.10) by just maximizing the numerator (or minimizing the negated numer-

ator), while a constraint is imposed on its denominator. Let bi = 〈Ki, K̂
∗〉F , and

Mij = 〈Ki,Kj〉F , i, j ∈ I. While problem (2.10) is not convex, one can equivalently

solve the following convex problem:

min
θ≥0

−b>θ

s.t. θ>Mθ ≤ 1. (2.11)

We will show that the solution to problem

min
µ≥0

fC(µ) = −b>µ+ Cµ>Mµ, (2.12)

for every C > 0 is a solution to problem (2.11) once scaled properly.

Proof. Let µ∗ be the optimal solution to problem (2.12). We show, by contradiction,

that θ∗ = 1√
∆
µ∗ is the optimal solution to problem (2.11), where ∆ = µ∗>Mµ∗.

Suppose θ∗ is not the optimal solution to problem (2.11), i.e. there exists u ≥ 0

such that u>Mu = 1, and −b>u < −b>θ∗. Let w =
√

∆u. We have w>Mw =

µ∗Mµ∗, and −b>w < −b>µ∗. This implies that µ∗ is not the optimal solution to

problem (2.12), which contradicts the initial assumption. Therefore θ∗ is the optimal

solution to problem (2.11). �

Effect of parameter C on the rate of convergence of alignment

We explore the effect of parameter C in problem (2.12) on the rate of convergence of

alignment for gradient-type algorithms since we are interested in such algorithms in

this thesis. We will show that different values of C > 0 result in the same trajectory

of alignment values. Assume that a projected gradient descent algorithm is applied

to solve problem (2.12) for two different values: C, C̃ > 0. Let

{µ0, µ1, . . . , µt, . . .} and {µ̃0 =
C

C̃
µ0, µ̃1, . . . , µ̃t, . . .}

be the trajectories obtained by the projected gradient descent for C and C̃ re-

spectively. Note that we assume that µ̃0 = C
C̃
µ0. This is not a very restrictive

assumption. In fact this assumption holds if the standard initialization of µ0 = 0 is

used. For simplicity we aim to optimize 1
2C fC(µ). The update rule yields

µt+1 = Π
(
µt −

ηt
2C
∇fC(µt)

)
= Π

(
Ztµt +

ηt
2C

b
)
, and

µ̃t+1 = Π

(
Ztµ̃t +

ηt

2C̃
b

)
,

19

where ∇fC(µt) = −b+ 2CMµt , Zt = I− ηtM, I is the identity matrix of suitable

size, ηt is the learning rate at iteration t, and Π is the orthogonal projection operator

onto the region µ ≥ 0. For a vector v, the projection is obtained by Π(v) = Svv,

where

[Sv]ij =

{
1 i = j, and vi ≥ 0,
0 otherwise.

Recall that µ̃0 = C
C̃
µ0. Assume µ̃t = C

C̃
µt. We show that µ̃t+1 = C

C̃
µt+1.

µ̃t+1 = Π

(
Ztµ̃t +

ηt

2C̃
b

)
= Π

(
C

C̃
Ztµt +

ηt

2C̃
b

)
= Π

(
C

C̃

(
Ztµt +

ηt
2C

b
))

=
C

C̃
Π
(
Ztµt +

ηt
2C

b
)

=
C

C̃
µt+1.

Note that by the definition of Π, we have Π(C
C̃
v) = C

C̃
Π(v). We showed that the

trajectory obtained by the projected gradient method for C̃ is the same as the

trajectory obtained for C, scaled by C
C̃

. Since the alignment objective function is

invariant to scaling, we conclude that the two trajectories yield the same alignment

values.

2.3 Related Work

In this section, we review some of the previous approaches to MKL that are most

related to the topic of this thesis. In particular, we focus on algorithms that were

designed to handle large sets of kernels. We divide the relevant work in MKL into

two main categories of one-stage and two-stage MKL algorithms that we will review

in Sections 2.3.1 and 2.3.2 respectively.

2.3.1 One-stage MKL methods

A large body of the MKL literature has been dedicated to address the problem of

one-stage MKL. We divide these methods into three main categories:

• Methods for learning to combine moderate-size kernel sets

• Methods for learning to combine large kernel sets

20

• Methods for learning to combine infinitely-many kernels

In the next sections we review some of the well-known algorithms in each category.

Methods for learning to combine moderate-size kernel sets

In one of the pioneering papers in MKL, Lanckriet et al. (2004) present a semidefinite

programming (SDP) problem formulation for learning a positive semidefinite kernel

matrix over training and test data in a transductive setting, where it is assumed

that test data (for which we are to determine the labels) are available. Then, they

proposed a quadratically constrained quadratic programming (QCQP) optimization

problem when the goal is to learn a non-negative linear combination of a finite set

of base kernels. For soft-margin SVM the QCQP problem formulation is

max
α∈Rn,τ

2α>1− εα>α− τ

s.t. τ ≥ 1

zi
(α ◦ y)>Ki(α ◦ y), i = 1, . . . , r

α>y = 0,

0 ≤ α ≤ C,

where ε > 0, r = |I|, zi = tr(Ki) and ◦ denotes element-wise product.

The solvers that use interior-point methods yield a worst-case complexity of

(roughly) O((|I| + n)2n2.5) for SDP and O(|I|n3) for QCQP problems for MKL

(Lanckriet et al., 2004). These algorithms become intractable when the number of

training examples or the size of the kernel set increase. In the experiments, Lanckriet

et al. (2004) considered combining only a few kernels over small datasets. Hence,

most of the subsequent work in MKL has focused on designing faster and more

scalable algorithms. For instance, Sonnenburg et al. (2006) proposed an iterative

algorithm for MKL in which, in each iteration, kernel weights are updated through

a semi-infinite linear program of the following structure:

max
τ∈R,θ

τ

s.t. θ ≥ 0, ‖θ‖1 = 1,∑
i∈I

θiSi(α) ≥ τ, for all α ∈ A,

where Si(α) and A depend on the loss function used. For instance, for the hinge

loss

Si(α) = (α ◦ y)>Ki(α ◦ y)− α>1,

21

and

A =
{
α : α>y = 0, 0 ≤ α ≤ C

}
.

Once the kernel weights are obtained, a standard SVM algorithm is used to up-

date the predictor weights using the linear combination of kernel matrices. This

procedure is repeated until convergence is achieved. Rakotomamonjy et al. (2008)

proposed a similar iterative algorithm, SimpleMKL, in which gradient descent re-

places linear programming to update kernel weights. Chapelle and Rakotomamonjy

(2008) proposed HessianMKL, a second order optimization approach to further

improve the computational efficiency of SimpleMKL. The above algorithms gen-

eralize the problem formulation to convex loss functions, hence they are applicable

to a wider range of problems including regression and one-class classification prob-

lems. Another common theme between these methods is that they focus on learning

a sparse combination of kernels through penalizing 1-norm of the kernel weights.

Orabona et al. (2010) proposed a two-stage stochastic gradient descent algorithm

to solve the general p-norm MKL problem. Their algorithm is an extension of the

Pegasos algorithm, one of the fastest solvers for linear SVM (Shalev-Shwartz et al.,

2007), to MKL. In the first stage, a fast online algorithm is used to determine the

region of space where the optimal solution lies. This solution is passed to the second

stage in which a stochastic proximal projected subgradient descent algorithm due

to Do et al. (2009) is performed to obtain the final solution. In each iteration, their

algorithm uses a random sample of training data to calculate the subgradient of the

objective function. Hence, this algorithm, similar to Pegasos, is scalable to large

datasets. The computational complexity of each iteration, however, scales linearly

in the number of base kernels, which makes the algorithm unattractive for very large

kernel sets.

One of the fastest MKL algorithms was proposed by Kloft et al. (2011). It

addresses MKL problem with a general convex loss function and p-norm regular-

ization on kernel coefficients for p > 1. Like previous approaches they proposed a

two-step iterative algorithm. In each iteration, the kernel coefficients are updated

by a closed-form update rule, and then a standard kernel method is used to learn

a predictor on top of the fixed kernel coefficients. They show that given ‖wi‖22, the

22

kernel coefficients in each iteration can be updated by3

θi =
‖wi‖

2
p+1

2(∑
j∈I ‖wj‖

2p
p+1

2

) 1
p

, ∀i ∈ I.

They show experimentally that their method is faster than previous MKL algo-

rithms. For instance, they showed that their algorithm achieves a speed-up of one

and two orders of magnitude over HessianMKL and SimpleMKL respectively

(Kloft et al., 2011).

The tradeoff between sparsity and accuracy has been studied by Tomioka and

Suzuki (2010) in the context of MKL by using a regularization term similar to

that of the elastic net (Zou and Hastie, 2005). More recently, Orabona and Jie

(2011) proposed a fast MKL method based on a similar problem formulation. Their

algorithm, UFO–MKL, uses a regularizer that consists of two terms. The first term

is a squared (2, 2 log r/(2 log r − 1)) group norm where r is the number of kernels.

The second term, however, is a (2, 1) group norm to induce sparsity. A parameter

controls the tradeoff between these terms. Orabona and Jie (2011) showed that

the rate of convergence of UFO–MKL depends logarithmically on the number of

kernels. Each iteration of the algorithm, however, scales linearly in the number of

kernels as the algorithm updates all coordinates at each iteration. They proposed

a stochastic gradient descent algorithm to solve an optimization problem with the

above strongly convex regularization term.

Methods for learning to combine large kernel sets

Many of the above methods, though efficient in handling large datasets, fail to scale

for large kernel sets. These algorithms update the entire kernel weight vector at

every iteration (see, e.g., Sonnenburg et al., 2006; Rakotomamonjy et al., 2008; Kloft

et al., 2011; Orabona and Jie, 2011). Hence, their computational complexity depends

linearly on the number of kernels. The highest number of base kernels considered

in an experiment was reported in Kloft et al. (2011) in which they perform MKL to

combine 104 kernels. These methods do not scale well when one considers very large

kernel sets. As we will discuss later in Chapter 6, having an exponential number

of base kernels is not an unrealistic scenario. There are, however, a few algorithms

3The analytical optimization method proposed in Kloft et al. (2011) was independently proposed
by Xu et al. (2010) too.

23

designed specifically to handle very large kernel sets by exploiting the structure of

kernel space.

Bach (2008) introduces hierarchical MKL in which the base kernels are arranged

as nodes in a directed acyclic graph. The primary focus of this method is on kernels

that can be expressed as “product of sums”. One prominent example of such kernels

is polynomial kernels expressed as

κ(x, z) =
r∏
i=1

(1 + xizi)
D .

In this example the nodes are tuples of length r, and each node (j1, . . . , jr) is con-

nected to (j1 + 1, j2, . . . , jr), . . . , (j1, . . . , jr−1, jr + 1). The objective of hierarchical

MKL is to select and add a product of kernels to the combination only after all

of the subproducts are selected. Let G = (V,E) be the graph of kernels in which

V is the set of nodes (kernels) and E ⊂ V × V be the set of edges. For a node

v ∈ V , let A(v) denote the ancestors of v. By convention v ∈ A(v). For a subset

of nodes I ⊂ V , the hull of I is defined as the union of all ancestors of v ∈ I:

hull(I) =
⋃
v∈I A(v). Note that the hull of a set I is also the complement of the set

of nodes that are descendants of Ic, where Ic denotes the complement of I. The

kernel selection property mentioned above implies that if a node is selected then its

hull must be in the set of selected nodes too, since to include a node the entire set

of ancestors must be selected. To estimate hull(I) one must look for vertices v ∈ V
such that D(v) ⊂ Ic, where D(v) is the set of descendants of v. Bach (2008) thus

considered the following 1-norm penalty term

∑
v∈V

dv‖wD(v)‖ =
∑
v∈V

dv

 ∑
u∈D(v)

‖wu‖2
1/2

, (2.13)

where (dv)v∈V are some positive user-defined weights. Penalizing by (2.13) will

impose that some of the vectors wD(v) are zero. Hence, the optimization problem

considered by Bach (2008) is

min
w

1

n

n∑
t=1

`t

(∑
v∈V
〈wv, φv(xt)〉

)
+
λ

2

(∑
v∈V

dv‖wD(v)‖
)2

. (2.14)

The reformulation of (2.14) is done as follows: Let η = (ηv)v∈V be a vector of |V |
elements such that η ≥ 0 and

∑
v∈V d

2
vηv ≤ 1. Let

ζv(η) =

 ∑
v′∈A(v)

η−1
v′

−1

.

24

Define the kernel combination by

κη(x, z) =
∑
v∈V

ζv(η)κv(x, z) .

Bach (2008) shows that with some change of variables problem (2.14) is equivalent

to the MKL problem

min
w,η

1

n

n∑
t=1

`t

(∑
v∈V
〈wv, φv(xt)〉

)
+
λ

2

∑
v∈V

‖wv‖2
ζv(η)

s.t. η ≥ 0,
∑
v∈V

d2
vηv ≤ 1 . (2.15)

Bach (2008) then proposes an efficient algorithm to solve (2.15). The computational

complexity of his algorithm is polynomial in the number of selected kernels, and is

independent of the total number of kernels. This provides a tractable method to

learn polynomial kernels when the kernel set has exponentially many kernels. The

experiments conducted in Bach (2008) show that this algorithm performs well in

accuracy and computational efficiency, especially when the number of kernels is

very large.

A quite different approach was taken by Cortes et al. (2009b) for the problem of

learning polynomial kernels by simplifying the form of the resulting kernels. They

proposed a restricted form of polynomial kernels that results in a dramatic reduc-

tion in the number of parameters to be learned. For a given set of base kernels,

{κ1, . . . , κr} the resulting kernel is of the form,

κθ(x, z) =
r∑

i1,...,iD=1

θi1 . . . θiDκi1(x, z) . . . κiD(x, z)

=

(
r∑
i=1

θiκi(x, z)

)D
, (2.16)

where θ ∈ Rr is a non-negative parameter vector, and D > 0 is a user-defined integer

that determines the degree of the resulting polynomial kernel. They proposed a

projected gradient descent algorithm to solve the optimization problem for kernel

ridge regression:

min
θ

y>(Kθ + λI)−1y,

s.t. θ ≥ 0, ‖θ − θ0‖2 ≤ Λ , (2.17)

where θ0 (offset) and Λ > 0 are user-defined parameters. Note that problem (2.17)

with the parameterization given in (2.16) is not convex .

25

Methods for learning to combine infinitely-many kernels

All of the above algorithms are designed to combine a finite set of kernels. If contin-

uously parameterized kernels, such as Gaussian kernels, are of interest, the standard

approach is to select a predetermined number of base kernels from a bounded inter-

val by discretizing the interval (see, e.g., Rakotomamonjy et al. (2008); Kloft et al.

(2011)). There are inherent flaws with the discretization of such kernel spaces. One

problem is that many kernels will be left out from the kernel set, and if some of these

kernels are required to obtain high accuracy the resulting predictor might perform

poorly. We will study this problem in Chapter 3. Another flaw of this approach

is that while it may be computationally feasible for one-dimensional parameteriza-

tions, discretizing a space of multi-dimensional parameters results in a large number

of base kernels that is exponential in the number of parameters.

A computationally feasible approach for continuously parameterized kernels was

first introduced by Argyriou et al. (2005). They proposed a coordinate descent ap-

proach that greedily selects a kernel parameter at each iteration. They empirically

demonstrated that combining kernels chosen from a continuous parameter space

results in better performance than discretization. We will study this algorithm as

greedy coordinate descent for one-stage MKL in Chapter 5. One of the challenges

of this method is that it solves a non-convex subproblem to find the best kernel

(parameter) at each iteration. Argyriou et al. (2006) proposed a DC-programming

algorithm for MKL to address the local minima issue in learning Gaussian kernels.

The new approach is, to some extent, faster in one-dimensional kernel parame-

ter search, however, it does not scale well when the number of kernel parameters

increases. Gehler and Nowozin (2008) proposed a similar algorithm for learning

to combine kernels from continuously parameterized sets. Their proposed method

was very similar to that of Argyriou et al. (2005), except that it performs a totally-

corrective scheme at the end of each iteration, i.e., all kernel weights are recomputed

once a new kernel is added to the combination. They did not give any convergence

guarantees for their method.

2.3.2 Two-stage MKL methods

The approach taken by the one-stage MKL methods is to define a joint optimization

problem to learn a kernel combination and predictor simultaneously. A second

approach to MKL, which is called two-stage MKL, separates kernel learning from

26

predictor learning. In the first stage, the kernel function is learned through the use

of a surrogate objective function, such as alignment (Cristianini et al., 2002) or a

modified version of it, i.e., centered alignment (Cortes et al., 2010), that measures

the similarity of two kernel functions over the training data. For the purpose of

MKL, alignment is usually measured between the kernel combination and the so-

called target label kernel or the ideal kernel over the training data, K∗ = yy>, where

y = (y1, . . . , yn)> is the vector of training labels. The learned kernel combination

is then used in the second stage, using standard kernel methods, such as SVM or

kernel ridge regression to learn a predictor. While this approach is modular and

simple, unless we use a mechanism to control the complexity of kernel, there is a

chance of overfitting to the objective function of the first stage. We investigate this

phenomenon in Chapter 6.

Learning a kernel function by optimizing the alignment measure has been the

main theme of two-stage MKL. For instance, Kandola et al. (2002) proposed a

method for optimizing alignment over a combination of kernels in both transductive

and inductive settings based on the incomplete Cholesky matrix factorization of

the kernel matrix. Igel et al. (2007) proposed a gradient-based optimization of

alignment. He et al. (2008) proposed to minimize the Euclidean distance between a

non-negative linear combination of base kernels and the ideal kernel. They proposed

a quadratic programming (QP) optimization problem to learn the kernel weights.

While they did not mention any connection between their problem formulation and

alignment maximization, as we demonstrated in Section 2.2 the two problems are

indeed equivalent.

Alignment has been used widely as a measure of similarity between kernels in

two-stage MKL methods. However, it is not the only measure. For example, Nguyen

and Ho (2008) introduced a new measure that uses data distributions in the feature

space. The new measure, called feature space-based kernel matrix evaluation measure

(FSM) is defined as the ratio of the total within-class standard deviation in the

direction between the class centers to the distance between the class centers. For

a two-class classification problem let n+ and n− denote the number of training

examples in the two classes. Let φ+ and φ− denote the center of the positive and

27

negative classes respectively:

φ+ =
1

n+

∑
i:yi=1

φ(xi),

φ− =
1

n−

∑
i:yi=−1

φ(xi).

Then the FSM measure is defined by

FSM(K,y)
def
=

std

‖φ− − φ+‖
,

where

std =

√
1

n+ − 1

∑
i:yi=1

〈φ(xi)− φ+, u〉2 +

√
1

n− − 1

∑
i:yi=−1

〈φ(xi)− φ−, u〉2,

where

u =
φ− − φ+

‖φ− − φ+‖
is the unit vector in the direction of between-class centers. Nguyen and Ho (2008)

compared alignment and FSM in a series of experiments and concluded that while

alignment has some fundamental limitations, FSM reflects better the error rates of

SVMs. Later, Tanabe et al. (2008) proposed to optimize kernel coefficients on a

simplex using the FSM similarity measure. Among other works, Ying et al. (2009)

proposed to learn kernel coefficients by optimizing an information-theoretic measure

based on KL divergence between the combined kernel matrix and the ideal kernel.

They proposed to apply gradient descent to solve the kernel coefficients over a

simplex with the following optimization problem:

min
θ∈∆1

tr

K∗

(∑
i∈I

θiKi + εI

)−1
+ log

∣∣∣∣∣∑
i∈I

θiKi + εI

∣∣∣∣∣ ,
where ε > 0 is a small constant.

2.4 Summary

In this chapter we reviewed kernel methods and two popular variants of the MKL

problem formulation, i.e. one-stage and two-stage MKL. In one-stage MKL, the

kernel function and predictor are learned simultaneously. Two-stage MKL, on the

other hand, consists of two separate stages for learning the kernel function and

learning the predictor. We showed that while alignment maximization is not a

28

convex optimization problem it can equivalently be solved by means of an equivalent

convex problem. We also reviewed some of the well-known methods for one-stage and

two-stage MKL. Most of these methods do not scale well when the number of base

kernels increases. In Chapters 4 and 5 we will present algorithmic approaches to solve

one-stage and two-stage MKL problems when one considers combining exponentially

or infinitely many kernels.

29

Chapter 3

When Finite Multiple Kernel
Learning Fails

It is not difficult to come up with examples in which current state-of-the-art MKL

algorithms that are based on combining a finite set of kernels fail. One simple

scenario is when each base kernel is associated with one of the input variables.

In this case, the resulting predictor of these MKL algorithms is simply a linear

predictor. If the true function is sufficiently non-linear, one will not be able to

achieve good performance using such a kernel. One may argue that the solution is

to consider non-linear features and to provide kernels associated with higher-order

monomials to such MKL algorithms. While this may solve the issue in the above

example, the resulting number of non-linear features, and consequently the size of

kernel set, is exponential in the degree of monomials. The complexity of finite MKL

algorithms, as we will demonstrate in Chapter 6, is linear in the number of base

kernels, which renders these algorithms inefficient at combining exponentially many

kernels. This shows the importance of choosing the right set of kernels for an MKL

algorithm.

Another shortcoming of finite MKL algorithms occurs when a practitioner dis-

cretizes a continuous kernel parameter space in order to make a finite set of kernels.

One prominent example is the family of Gaussian kernels parameterized by a band-

width. If the chosen discretization is not fine enough, it is possible to miss some

of the important kernels. One easy fix to this problem is to use a finer level of

discretization. However, when one considers multi-dimensional kernel parameters,

this results in an exponential growth in the number of kernels as a function of the

number of parameters. In this chapter we will use a simple example to show the

importance of having the key kernels in the kernel set.

30

−10 −8 −6 −4 −2 0 2 4 6 8 10
−3

−2

−1

0

1

2

3

Figure 3.1: The function f(x) = sin(
√

2x) + sin(
√

12x) + sin(
√

60x) used for gener-
ating synthetic data, along with sign(f).

3.1 Importance of Combining the Right Set of Kernels

In this section we show that it is important to combine the right dictionary of kernels

to achieve good predictive accuracy. The purpose of this experiment is mainly to

provide empirical proof for the following hypotheses:

• (H1) The combination of multiple kernels can lead to improved performance

as compared to what can be achieved with a single kernel.

• (H2) In some cases, providing a finite set of base kernels to an MKL algorithm

may fail to achieve good performance. However, methods that select kernels

from continuously parameterized families are able to find the “key” kernels

and their combination.

To illustrate (H1) and (H2) we have designed the following one-dimensional

problem: the inputs are generated from the uniform distribution over the inter-

val [−10, 10]. The label of each data point is determined by the function y(x) =

sign(f(x)), where

f(x) = sin(
√

2x) + sin(
√

12x) + sin(
√

60x).

Figure 3.1 shows functions f (blue curve) and y (red dots). Training and validation

sets include 500 data points each, while the test set includes 1000 instances. In

this experiment, all classifiers were trained using the soft margin SVM method,

where the regularization coefficient of SVM was tuned, using the validation set,

from 10{−5,−4.5,...,4.5,5}. For this experiment we use Dirichlet kernels of degree one,

parameterized with a frequency parameter σ:

κσ(x, x′) = 1 + 2 cos(σ‖x− x′‖).

31

In order to investigate (H1), we searched through the kernel frequencies in the

range [0, 20]. We measure misclassification error of each predictor associated with a

kernel frequency. We plot error values as a function of the kernel frequency for 1000

frequencies in the above range. Figure 3.2 shows the results. We noticed that the

kernel frequencies used to generate data, i.e. {
√

2,
√

12,
√

60}, marked with dashed

lines in the figure, give the lowest errors. Note that each of these three kernels, if used

0 2 4 6 8 10 12 14 16 18 20
20

25

30

35

40

45

50

55

Dirichlet kernel frequency (σ)

m
is

cl
as

si
fic

at
io

n
er

ro
r

(%
)

√
60

√
12

√
2

Figure 3.2: Misclassification error as a function of the kernel frequency. Dashed
lines specify the three frequencies, viz. {

√
2,
√

12,
√

60}, used to generate data.

singly, cannot achieve an error rate less than 24%. Next, we measure error for pair

of kernels. Classifiers trained with a pair of frequencies, i.e. {
√

2,
√

12}, {
√

2,
√

60},
and {

√
12,
√

60} achieved error rates of 16.4%, 20.0%, and 21.3%, respectively (the

kernels were combined using uniform weights). Finally, we combined all three of

these kernels with uniform weights. The resulting classifier achieved an error rate

of 2.3%, which is a dramatic improvement over the previous kernels alone or in

combination.

Let us now turn to (H2). To verify this hypothesis we compare finite MKL

algorithms against two methods that are able to combine kernels from a continuous

parameter set. Finite MKL methods include AMKL (Cortes et al., 2010), LpMKL

32

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

kernel frequency

ke
rn

el
 w

ei
gh

t

0

10

20

30

40

50

m
is

cl
as

si
fic

at
io

n
pe

rc
en

ta
ge

GCD−2s
CKL
AMKL
LpMKL (p=1)
LpMKL (p=2)
UNIFORM

Figure 3.3: Misclassification percentages obtained by each algorithm (left), and the
kernel frequencies found by the GCD–2s method (right).

(with p = 1, and p = 2) (Kloft et al., 2011), and Uniform, which is uniform

combination of base kernels. The base kernels for these methods are generated by

discretization of the parameter space. We choose 10 Dirichlet kernels with σ ∈
{0, 1, . . . , 9}, covering the range of frequencies defining f . Methods that select and

combine kernels from a continuous parameter set include CKL (Argyriou et al.,

2005), and a new method, denoted by GCD–2s, that will be explained later in

Chapter 5. As shown in Figure 3.3, GCD–2s and CKL achieved a misclassification

error close to what was seen when the three best frequencies were used, showing that

they are indeed capable of finding effective kernel combinations. Furthermore, the

right plot in Figure 3.3 shows that the frequencies discovered by GCD–2s are close

to the frequencies used to generate the data.1 Let us turn to the finite MKL methods.

As can be seen from the misclassification error results in Figure 3.3, in this example,

the chosen discretization accuracy is insufficient. Although it would be easy to

increase the discretization accuracy to improve the results of finite MKL methods,2

the point is that if a high resolution is needed in a one-dimensional problem, then

these methods are likely to face serious difficulties in problems when the space

of kernels is more complex, e.g., when the parameterization is multi-dimensional.

Note that we are not suggesting that the methods which require discretization are

universally inferior, but merely wish to point out that an “appropriate discrete kernel

set” might not always be available, nor simply obtained by discretization.

1A similar plot for CKL showed that this method also was able to find the key frequencies.
2Further experimentation found that a discretization below 0.1 is necessary in this example.

33

3.2 Summary

In this chapter, we showed, by means of an example, that finite MKL methods

might fail when the key kernels are not in the base kernel set. If, for example, base

kernels are parameterized from a continuous space, one may have to discretize the

space into very fine grids to achieve good performance. This leads to an exponential

growth in the number of kernels as a function of the kernel space dimensionality.

We will address this problem in Chapters 4 and 5.

34

Chapter 4

Stochastic Gradient Methods
for Multiple Kernel Learning

Stochastic gradient methods are a family of stochastic optimization algorithms that

have been used to solve large scale optimization problems. We will show that these

algorithms are specifically useful for multiple kernel learning when the goal is to

combine many kernels. In this chapter we propose new algorithms for one-stage

and two-stage MKL that are based on the stochastic gradient method. Section 4.1

briefly reviews the stochastic gradient method. In Section 4.2, we propose a new

algorithm for one-stage MKL. Finally, in Section 4.3 we discuss the applicability of

the stochastic gradient algorithm for two-stage MKL.

4.1 Stochastic Gradient Descent

Consider the general problem of minimizing a convex function J(θ). The stochastic

gradient descent (SGD) algorithm is a variant of gradient descent that can be used

to find the minimizer of J(θ). This algorithm uses an unbiased estimate of the

gradient instead of the full gradient vector:

θ(k) ← θ(k−1) − ηkĝk,

where ηk > 0 is a learning rate parameter, and ĝk is an unbiased estimate of the

gradient of J at θ(k−1). When the amount of training data is large, the gradient

estimate can be constructed by evaluating the gradient of the loss function over a

subset of data, and in the extreme case, on a single example. This often results in

a drastic improvement in the per-step performance of the algorithm. Furthermore,

it has been shown that the overall runtime of stochastic gradient descent does not

depend on the size of training set and sometimes even decreases as the number of

35

training data increases (Bottou and Bousquet, 2008; Shalev-Shwartz and Srebro,

2008). Another way to construct the gradient estimate vector, which is our focus in

this chapter, is to have a small subset of non-zero coordinates. While it introduces

some variance in the gradient estimate, the approach results in an efficient algorithm

for high dimensional optimization problems. In the next section, we introduce a

stochastic version of the mirror descent algorithm, which is a more general variant

of stochastic gradient descent.

4.1.1 A stochastic mirror descent algorithm

Before presenting the algorithm, we begin with a few definitions. Let d = |I|, and

A ⊂ Rd be nonempty with a convex interior A◦. We call the function Ψ : A → R

a Legendre (or barrier) potential if it is strictly convex, its partial derivatives exist

and are continuous, and for every sequence {xk} ⊂ A approaching the boundary of

A,

lim
k→∞

‖∇Ψ(xk)‖ =∞.

Here ∇ is the gradient operator: ∇Ψ(x) = (∂
∂xΨ(x))> is the gradient of Ψ. When ∇

is applied to a non-smooth convex function J(θ) (J may be such without additional

assumptions) then ∇J(θ) is defined as any subgradient of J at θ. The corresponding

Bregman-divergence DΨ : A×A◦ → R is defined as

DΨ(θ, θ′) = Ψ(θ)−Ψ(θ′)− 〈∇Ψ(θ′), θ − θ′〉.

The Bregman projection ΠΨ,K : A◦ → K corresponding to the Legendre potential

Ψ and a closed convex set K ⊂ Rd such that K ∩A 6= ∅ is defined, for all θ ∈ A◦ as

ΠΨ,K(θ) = arg min
θ′∈K∩A

DΨ(θ′, θ).

Algorithm 1 shows the stochastic version of the mirror descent algorithm (Ne-

mirovski and Yudin, 1998)1, with an unbiased gradient estimate. By assumption,

ηk > 0 is deterministic. Note that step 13 of the algorithm is well-defined since

θ̃(k) ∈ A◦ by the assumption that ‖∇Ψ(x)‖ tends to infinity as x approaches the

boundary of A. Using the standard proof technique of analyzing the mirror descent

algorithm (see, e.g., (Beck and Teboulle, 2003)), the performance of Algorithm 1

can be bounded as follows (the proof is included in Appendix A):

1The mirror descent algorithm is a special case of the proximal point algorithm (Rockafellar,
1976).

36

Algorithm 1 Stochastic mirror descent algorithm

1: Input:
2: A,K ⊂ Rd, where K is closed and convex with K ∩A 6= ∅,
3: Ψ : A→ R Legendre,
4: Step sizes: {ηk},
5: A subroutine, GradSampler, to sample the gradient of J at an arbitrary vector
θ ≥ 0

6: Initialization:
7: θ(0) = arg minθ∈K∩A Ψ(θ)
8: k = 0
9: repeat

10: k = k + 1
11: Obtain ĝk = GradSampler(θ(k−1))
12: θ̃(k) = arg minθ∈A

{
ηk−1〈ĝk, θ〉+DΨ(θ, θ(k−1))

}
13: θ(k) = ΠΨ,K(θ̃(k))
14: until convergence

Theorem 4.1. Assume that Ψ is α-strongly convex with respect to some norm ‖ · ‖
(with dual norm ‖ · ‖∗) for some α > 0, that is, for any θ ∈ A◦, θ′ ∈ A

Ψ(θ′)−Ψ(θ) ≥
〈
∇Ψ(θ), θ′ − θ

〉
+ α

2 ‖θ′ − θ‖2. (4.1)

Suppose, furthermore, that Algorithm 1 is run for T time steps. For 0 ≤ k ≤ T − 1

let Fk denote the σ-algebra generated by θ1, . . . , θk. Assume that, for all 1 ≤ k ≤ T ,

ĝk ∈ Rd is an unbiased estimate of ∇J(θ(k−1)) given Fk−1, that is,

E [ĝk| Fk−1] = ∇J(θ(k−1)). (4.2)

Further, assume that there exists a deterministic constant B ≥ 0 such that for all

1 ≤ k ≤ T ,

E
[
‖ĝk‖2∗

∣∣Fk−1

]
≤ B a.s. (4.3)

Finally, assume that δ = supθ′∈K∩A Ψ(θ′)−Ψ(θ(0)) is finite. Then, if ηk−1 =
√

2αδ
BT

for all k ≥ 1, it holds that

E

[
J

(
1

T

T∑
k=1

θ(k−1)

)]
− inf
θ∈K∩A

J(θ) ≤
√

2Bδ

αT
. (4.4)

Furthermore, if

‖ĝk‖2∗ ≤ B′ a.s. (4.5)

for some deterministic constant B′ and ηk−1 =
√

2αδ
B′T for all k ≥ 1 then, for any

0 < ε < 1, it holds with probability at least 1− ε that

J

(
1

T

T∑
k=1

θ(k−1)

)
− inf
θ∈K∩A

J(θ) ≤
√

2B′δ

αT
+ 4

√
B′δ log 1

ε

αT
. (4.6)

37

The convergence rate in the above theorem can be improved if stronger assump-

tions are made on J , for example if J is assumed to be strongly convex, see, for

example, Hazan et al. (2007); Hazan and Kale (2011).

Efficient implementation of Algorithm 1 depends on efficient implementations of

steps 11-13, namely, computing an estimate of the gradient, solving the minimization

for θ̃(k), and projecting it onto K. The first problem is related to the choice of the

gradient estimate we use, which, in turn, depends on the structure of the feature

space, while the last two problems depend on the choice of the Legendre function.

In the next sections, we examine how these choices can be made to get a practical

variant of the algorithm for the MKL problem.

4.2 Stochastic Gradient Descent for One-Stage MKL

We aim to solve the optimization problem 2.9 of one-stage MKL using the stochastic

gradient approach. When I, the kernel index set, is small, or moderate in size, the

joint-convexity of J allows one to use off-the-shelf solvers to find the joint minimum

of J . However, when I is large, off-the-shelf solvers might be slow or they may

run out of memory. Targeting this situation we propose the following approach:

Exploiting again that J(w, θ) is jointly convex in (w, θ), find the optimal weights by

finding the minimizer of

J(θ)
def
= inf

w
J(w, θ), (4.7)

or, alternatively,

J(θ) = J(w∗(θ), θ),

where

w∗(θ)
def
= arg min

w
J(w, θ).

Here we have slightly abused notation by reusing the symbol J . Note that J(θ) is

convex by the joint convexity of J(w, θ) (see, e.g., Boyd and Vandenberghe, 2004,

Section 3.2.5). Also, note that w∗(θ) exists and is well-defined since the minimizer of

J(·, θ) is unique for any θ ∈ ∆ν (see also Proposition 4.2 below). Again, exploiting

the joint convexity of J(w, θ), we find that if θ∗ is the minimizer of J(θ), then w∗(θ∗)

will be an optimal solution to the original problem (2.8). To optimize J(θ) we pro-

pose to use stochastic gradient descent with artificially injected randomness to avoid

the need to fully evaluate the gradient of J . More precisely, our proposed algorithm

38

is an instance of the stochastic mirror descent algorithm shown in Algorithm 1 where

in each time step only one coordinate of the gradient is sampled.

In order to apply Algorithm 1 to the one-stage MKL problem we must specify

the gradient estimates ĝk. We start by considering importance sampling based

estimates. First, however, let us verify whether the gradient exists. Along the way,

we will also derive some explicit expressions which will help us later.

Closed-form expressions for the gradient

Let us first consider how w∗(θ) can be calculated for a fixed value of θ. As it will

turn out, this calculation will be useful not only when the procedure is stopped

(to construct the predictor fw∗(θ)), but also during the iterations when we will

need to calculate the derivative of J with respect to θi. The following proposition

summarizes how w∗(θ) can be obtained. Note that this type of result is standard

(see, e.g., Shawe-Taylor and Cristianini, 2004; Schölkopf and Smola, 2002), thus we

include it only for the sake of completeness (the proof is included in Appendix A).

Proposition 4.2. For t ∈ {1, . . . , n}, let `∗t : R → R denote the convex conju-

gate of `t: `∗t (v) = supτ∈R {vτ − `t(τ)}, v ∈ R. For i ∈ I, recall that κi(x, x
′) =

〈φi(x), φi(x
′)〉, and let Ki = (κi(xt, xs))t,s∈{1,...,n} be the n× n kernel matrix under-

lying κi and let Kθ =
∑

i∈I
θi
ρ2i

Ki be the kernel matrix underlying κθ =
∑

i∈I
θi
ρ2i
κi.

Then, for any fixed θ, the minimizer w∗(θ) of J(·, θ) satisfies

w∗i (θ) =
θi
ρ2
i

n∑
t=1

α∗t (θ)φi(xt), i ∈ I , (4.8)

where

α∗(θ) = arg min
α∈Rn

{
1

2
α>Kθα+

1

n

n∑
t=1

`∗t (−nαt)
}
. (4.9)

Based on this proposition, we can compute the predictor fw∗(θ) using the kernels

{κi}i∈I and the dual variables (α∗t (θ))t∈{1,...,n}:

fw∗(θ)(x) =
∑
i∈I
〈w∗i (θ), φi(x)〉 =

n∑
t=1

α∗t (θ)κθ(xt, x) .

Calculating the derivative of J(θ)

In this section we show that under mild conditions the derivative of J exists and we

also give explicit forms. These derivations are quite standard and a similar argument

39

can be found in, e.g., the paper by Rakotomamonjy et al. (2008) specialized to the

case when `t is the hinge loss.

As it is well-known, thanks to the implicit function theorem (e.g., Brown and

Page, 1970, Theorem 7.5.6), provided that J = J(w, θ) is such that ∂2

∂θ∂wJ(w, θ) and

∂
∂wJ(w, θ) are continuous, the gradient of J(θ) can be computed by evaluating the

partial derivative of J(w, θ) with respect to θ at (w∗(θ), θ)), that is,

∂θJ(θ) =
∂

∂θ
J(w, θ)|w=w∗(θ) .

Note that the derivative is well-defined only if θ > 0, that is, when no coordinate of

θ is zero, in which case

∂

∂θ
J(w∗(θ), θ) = −1

2

(
ρ2
i ‖w∗i (θ)‖22

θ2
i

)
i∈I

. (4.10)

If θi = 0 for some i ∈ I, we define the derivative in a continuous manner as

∂

∂θ
J(θ) = lim

θ′→θ
θ′∈∆,θ′>0

∂

∂θ
J(θ′) (4.11)

assuming that the limit exists. From (4.8) we get, for any i ∈ I,

‖w∗i (θ)‖22 =
θ2
i

ρ4
i

α∗(θ)>Kiα
∗(θ).

Combining with (4.10) we obtain

∂

∂θ
J(θ) =

∂

∂θ
J(w∗(θ), θ) = −1

2

(
α∗(θ)>Kiα

∗(θ)

ρ2
i

)
i∈I

. (4.12)

Now, by (4.11) and the implicit function theorem, α∗(θ) is a continuous function of θ

provided that the functions `∗t , t ∈ {1, . . . , n}, are twice continuously differentiable.

This shows that under the conditions listed so far, the limit in (4.11) exists. In the

application we shall be concerned with, these conditions can be readily verified.

Importance sampling based estimates

Let d = |I| and let ei, i ∈ I, denote the ith unit vector of the standard basis of Rd,

that is, the ith coordinate of ei is 1 while the others are 0. Introduce

gk,i =
〈
∇J(θ(k−1)), ei

〉
, i ∈ I (4.13)

to denote the ith component of the gradient of J in iteration k (that is, gk,i can be

computed based on (4.12)). Let sk−1 ∈ [0, 1]I be a distribution over I, computed in

40

some way based on the information available up to the end of iteration k− 1 of the

algorithm (formally, sk−1 is Fk−1-measurable). Define the importance sampling

based gradient estimate to be

ĝk,i =
I{Ik=i}

sk−1,Ik

gk,Ik , i ∈ I, where Ik ∼ sk−1,· . (4.14)

That is, the gradient estimate is obtained by first sampling an index from sk−1,· and

then setting the gradient estimate to be zero at all indices i ∈ I except when i = Ik,

in which case its value is set to be the ratio

gk,Ik
sk−1,Ik

.

It is easy to see that as long as sk−1,i > 0 holds whenever gk,i 6= 0, then it holds

that

E [ĝk| Fk−1] = ∇J(θ(k−1)) a.s.

Let us now derive the conditions under which the second moment of the gradient

estimate stays bounded. Define

Ck−1 =
∥∥∥∇J(θ(k−1))

∥∥∥
1
.

Given the expression for the gradient of J shown in (4.12), we see that

sup
k≥1

Ck−1 <∞

will always hold provided that α∗(θ) is continuous since (θ(k−1))k≥1 is guaranteed to

belong to a compact set (the continuity of α∗ was discussed earlier in this section).

Define the probability distribution qk−1,· as follows:

qk−1,i =
1

Ck−1
|gk,i| , i ∈ I. (4.15)

Then it holds that

‖ĝk‖2∗ =
1

s2
k−1,Ik

g2
k,Ik
‖eIk‖2∗

=
q2
k−1,Ik

s2
k−1,Ik

C2
k−1‖eIk‖2∗.

Therefore, it also holds that

E
[
‖ĝk‖2∗

∣∣Fk−1

]
= C2

k−1

∑
i∈I

q2
k−1,i

sk−1,i
‖ei‖2∗

≤ C2
k−1 max

i∈I

qk−1,i

sk−1,i
‖ei‖2∗.

41

This shows that

sup
k≥1

E
[
‖ĝk‖2∗

∣∣Fk−1

]
<∞

will hold as long as

sup
k≥1

max
i∈I

qk−1,i

sk−1,i
<∞ (4.16)

and

sup
k≥1

Ck−1 <∞. (4.17)

Note that when sk−1 = qk−1, the gradient estimate becomes

ĝk,i = Ck−1I{It=i}.

That is, in this case we see that in order to be able to calculate ĝk,i, we need to be

able to calculate Ck−1 efficiently.

Choosing the potential Ψ

The efficient sampling of the gradient is not the only practical issue, since the choice

of the Legendre function and the convex set K may also cause some complications.

For example, if Ψ(x) =
∑

i∈I xi(lnxi−1), then the resulting algorithm is exponential

weighting, and one needs to store and update |I| weights, which is clearly infeasible

if |I| is very large (or infinite). On the other hand, if Ψ(x) = 1
2‖x‖22 and we project

onto K = ∆2, the positive quadrant of the `2-ball (with A = [0,∞)I), we obtain

a stochastic projected gradient method, shown in Algorithm 2. This is in fact the

algorithm that we use in the experiments. Note that in (2.8) this corresponds to

using p = 4/3. The reason we made this choice is because in this case projection is a

simple scaling operation. We observed in practice that had we chosen K = ∆1, the

`2-projection would very often cancel many of the nonzero components, resulting

in an overall slow progress. Based on the above calculations and Theorem 4.1 we

obtain the following performance bound for our algorithm.

Corollary 4.3. Assume that α∗(θ) is continuous on ∆2. Then there exists a C > 0

such that ‖ ∂∂θJ(θ)‖1 ≤ C for all θ ∈ ∆2. Let B = 1
2C

2 maxi∈I,1≤k≤T
qk−1,i

sk−1,i
. If

Algorithm 2 is run for T steps with ηk−1 = η = 1/
√
BT, k = 1, . . . , T , then, for all

θ ∈ ∆2,

E

[
J

(
1

T

T∑
k=1

θ(k−1)

)]
− J(θ) ≤

√
B

T
.

42

Algorithm 2 Projected stochastic gradient algorithm.

1: Inputs:
2: Step sizes: {ηk}
3: Initialization:
4: Ψ(x) = 1

2‖x‖22,

5: θ(0) = 0,
6: k = 0,
7: repeat
8: k = k + 1
9: Sample a gradient estimate ĝk of g(θ(k−1) randomly according to (4.14)

10: θ(k) = ΠΨ,∆2(θ(k−1) − ηk−1ĝk)
11: until convergence

Note that to implement Algorithm 2 efficiently, one has to be able to sample

from sk−1,· and compute the importance sampling ratio gk,i/sk,i efficiently for any

k and i.

4.2.1 Example: Learning polynomial kernels

In this section we show how our method can be applied in the context of one-stage

multiple kernel learning to an important family of kernels. We provide an example

when the kernels in I are tensor products of a set of base kernels (we call this

learning polynomial kernels).

Assume that we are given a set of base kernels {κ1, . . . , κr}. In this section we

consider the set KD of product kernels of degree at most D: Choose

I = {(r1, . . . , rd) : 0 ≤ d ≤ D, 1 ≤ ri ≤ r}

and the multi-index r1:d = (r1, . . . , rd) ∈ I defines the kernel

κr1:d(x, x
′) =

d∏
i=1

κri(x, x
′).

For d = 0 we define κr1:0(x, x′) = 1. Note that indices that are the permutations

of each other define the same kernel. In the language of statistical modeling, κr1:d

models interactions of order d between the features underlying the base kernels

κ1, . . . , κr. Also note that |I| = Θ(rD), that is, the cardinality of I grows exponen-

tially fast in D.

We assume that ρr1:d depends only on d, the order of interactions in κr1:d . By

abusing notation, we will write ρd in the rest of this section to emphasize this.2 Our

2Using importance sampling, more general weights can also be accommodated too, without
affecting the results as long as the range of weights (ρr1:d) is kept under control for all d.

43

proposed sampling procedure to sample from qk−1,· is shown in Algorithm 3. The

algorithm is written to return a multi-index (z1, . . . , zd) that is drawn from qk−1,·.

The key idea underlying the algorithm is to exploit that r∑
j=1

κj

d

=
∑
r1:d∈I

κr1:d .

Note that in the description of the algorithm � denotes the matrix entrywise product

(a.k.a. Schur, or Hadamard product) and A�s denotes A� . . .�A︸ ︷︷ ︸
s

, and we set the

priority of � to be higher than that of the ordinary matrix product.

Let us now discuss the complexity of Algorithm 3. For this, first note that

computing all the Hadamard products S�d
′
, d′ = 0, . . . , D requires O(Dn2) compu-

tations. Multiplication with Mk−1 can be done in O(n2). Finally, note that each

iteration of the for loop takes O(rn2) steps, which results in the overall worst-case

complexity of O(rn2D) if α∗(θ(k−1)) is readily available. The computational com-

plexity of determining α∗(θ(k−1)) depends on the exact form of `t, and can be done

efficiently in many situations: if, for example, `t is the squared error, then α∗ can

be computed in O(n3) time. An obvious improvement to the approach described

here, however, would be to subsample the empirical loss, Lossn, which can bring

further computational improvements. However, the exploration of this is left for

future work.

Finally, note that despite the exponential cardinality of I, due to the strong

algebraic structure of the space of kernels, Ck−1 can be calculated efficiently. In

fact, it is not hard to see that with the notation of the algorithm,

Ck−1 =
D∑
d′=0

δ(d′).

This also shows that if ρd decays “fast enough”, Ck−1 can be bounded independently

of the cardinality of I. Next, we show the correctness of Algorithm 3.

Correctness of the sampling procedure

In this section we prove the correctness of Algorithm 3. As said earlier, we assume

that ρr1:d depends only on d, the order of interactions in κr1:d and, by abusing

notation, we will write ρd to emphasize this. Let us now consider how one can sample

from qk−1,·. The implementation relies on the fact that (
∑r

j=1 κj)
d =

∑
r1:d∈I κr1:d .

44

Algorithm 3 Polynomial kernel sampling. The symbol � denotes the Hadamard
product/power.

1: Input:
2: α ∈ Rn, the solution to the dual problem;
3: kernel matrices {K1, . . . ,Kr};
4: the degree D of the polynomial kernel,
5: the weights (ρ2

0, . . . , ρ
2
D).

6: S ←∑r
j=1 Kj , M ← αα>

7: δ(d′)← ρ−2
d′

〈
M,S�d

′
〉
, d′ ∈ {0, . . . , D}

8: Sample d from δ(·)/∑D
d′=0 δ(d

′)
9: for i = 1 to d do

10: π(j)← tr(M S�(d−i)�Kj)

tr(M S�(d−i+1))
, j ∈ {1, . . . , r}

11: Sample zi from π(·)
12: M ←M �Kzi

13: end for
14: return (z1, . . . , zd)

Remember that we denoted the kernel matrix underlying some kernel κ by Kκ,

and recall that Kκ is an n×n matrix. For brevity, in the rest of this section for κ =

κr1:d we will write Kr1:d instead of Kκr1:d
. Define Mk−1 = α∗(θ(k−1))α∗(θ(k−1))>.

using (4.12) and the rotation property of trace, we have

gk,r1:d = −ρ−2
d tr(Mk−1 Kr1:d) . (4.18)

The plan to sample from

qk−1,· =
|gk,·|∑

r1:d∈I |gk,r1:d |

is as follows: We first draw the order of interactions, d̂ ∈ {0, . . . , D}. Then, given

d̂ = d, we restrict the draw of the random multi-index R1:d to the set {r1:d ∈ I}. A

multi-index will be sampled in a d̂-step process: in each step we will randomly choose

an index from the indices of base kernels according to the following distributions.

Let S = K1 + . . .+ Kr, and let

P
(
d̂ = d|Fk−1

)
=

ρ−2
d tr(Mk−1S

�d)∑D
d′=0 ρ

−2
d′ tr(Mk−1S�d

′)

and

P
(
R1 = r1|Fk−1, d̂ = d

)
=

tr(Mk−1 Kr1 � S�(d−1))∑r
r′1=1 tr(Mk−1 Kr′1

� S�(d−1))
,

45

P
(
R2 = r2|Fk−1, d̂ = d,R1 = r1

)
=

tr(Mk−1 Kr1 �Kr2 � S�(d−2))∑r
r′2=1 tr(Mk−1 Kr1 �Kr′2

� S�(d−2))
,

...

P
(
Rd = rd|Fk−1, d̂ = d,R1:d−1 = r1:d−1

)
=

tr(Mk−1 Kr1 � . . .�Krd−1
�Krd)∑r

r′d=1 tr(Mk−1 Kr1 � . . .�Krd−1
�Kr′d

)
,

where we used the sequence notation, i.e., r1:p denotes the sequence (r1, . . . , rp). We

have, by the linearity of trace and the definition of S that

r∑
r′1=1

tr(Mk−1 Kr′1
� S�(d−1))

= tr
(
Mk−1

(r∑
r′1=1

Kr′1

)
� S�(d−1)

)
= tr(Mk−1 S � S�(d−1))

= tr(Mk−1 S
�d).

Similarly,

r∑
r′j=1

tr(Mk−1 Kr1 � . . .�Krj−1 �Kr′j
� S�(d−j))

= tr(Mk−1 Kr1 � . . .�Krj−1S
�(d−j+1)) .

Thus, as desired,

P
(
d̂ = d,R1:d = r1:d|Fk−1

)
= P

(
R1:d = r1:d|Fk−1, d̂ = d

)
P
(
d̂ = d|Fk−1

)
=

tr(Mk−1 Kr1 � . . .�Krd−1
�Krd)

tr(Mk−1 S�d)

× ρ−2
d tr(Mk−1S

�d)∑D
d′=0 ρ

−2
d′ tr(Mk−1S�d

′)

=
ρ−2
d tr(Mk−1 Kr1 � . . .�Krd−1

�Krd)∑D
d′=0 ρ

−2
d′ tr(Mk−1S�d

′)
.

An optimized implementation of drawing these random variables is shown as

Algorithm 3. The algorithm is written to return the multi-index R1:d, and the

random kernel matrix M = KR1 � . . .�KRd is also available.

46

4.2.2 Example: Learning Gaussian kernels

In this section we explore the possibility of applying our stochastic gradient method

to another important family of kernels that include uncountably many kernels: pa-

rameterized Gaussian kernels. We consider an index set of the form

I = {σ : σ ∈ Σ} ,

where Σ is the parameter space and is assumed to be bounded. We consider two

categories of Gaussian kernels based on the dimensionality of the kernel parameter.

In the first category each kernel is parameterized by a single positive real number,

σ:

κσ(x, x′) = exp

(
−‖x− x

′‖2
σ2

)
. (4.19)

In the second category kernels are parameterized by a diagonal covariance matrix,

i.e. there is one parameter per input variable:

κσ(x, x′) = exp

(
−

r∑
i=1

(x(i) − x′(i))2

σ2
i

)
. (4.20)

In this section we explain how our stochastic mirror descent algorithm can be applied

to continuously-parameterized Gaussian kernels. Similar to (4.18) the coordinates

of gradient vector are given by

gk,σ = −ρ−2
σ tr(Mk−1 Kσ) ,

where, for simplicity of notation, Kκσ is denoted by Kσ. We aim to sample from

qk−1,· =
1

Sk−1
|gk,·|,

where

Sk−1 =

∫
σ′∈Σ

|gk,σ′ | dσ′

is a normalization factor. For simplicity, we assume that ρσ = 1, σ ∈ Σ.

It is not easy to construct the density function qk−1,· and directly sample from

it. Therefore, in this case, we resort to sampling from an auxiliary distribution. In

particular, we use importance sampling and propose to sample from an auxiliary

density function over Σ. Let σk denote the kernel parameter sampled at iteration

k from an auxiliary distribution defined by a density function denoted by sk−1,·.

Similar to (4.14) an unbiased estimate of gradient in this case is constructed by

ĝk,σ =
δ(σ − σk)
sk−1,σk

tr(Mk−1Kσk), σ ∈ Σ, where σk ∼ sk−1,·, (4.21)

47

where δ(·) is the Dirac delta function. It is straightforward to compute tr(Mk−1Kσk).

It remains to specify sk−1,σk . There are many choices of sk−1,· that result in different

values of variance of the gradient estimate. Next, we propose examples of sk−1,· that

can be used for learning one- and multi-dimensional Gaussian kernels.

Sampling Gaussian kernels with one-dimensional parameter

We propose the following sampling procedure when the Gaussian kernel parameter

is one-dimensional. We begin by solving the following optimization problem:

σ∗ = arg max
σ∈Σ

tr(Mk−1Kσ), (4.22)

where Kσ is the kernel matrix corresponding to kernel function (4.19). This op-

timization problem has been considered by previous approaches that deal with

continuously-parameterized kernels (Argyriou et al., 2005; Gehler and Nowozin,

2008). When kernel parameter, σ, is the bandwidth of a Gaussian kernel, prob-

lem (4.22) is not convex. However, as noted in, e.g., Argyriou et al. (2005) and

Argyriou et al. (2006) there are usually very few local optima (less than 5). Once σ∗

is determined, we use a truncated normal density function as the sampling distribu-

tion, sk−1,·. The truncated normal distribution is limited to Σ. We set its mean to

σ∗ and set an arbitrary variance.3 Note that for a truncated normal distribution,

limited to a bounded Σ, we have

sk−1,σ > 0, k ≥ 1, σ ∈ Σ.

This means that the bounded variance conditions (4.16) and (4.17) are satisfied. Let

σk be the Gaussian kernel parameter sampled from sk−1,·. To construct an unbi-

ased estimate of gradient we need to compute sk−1,σk . This value can be computed

for one-dimensional truncated normal distribution. To see this let Φ(·) denote the

cumulative distribution function of the standard normal distribution.4 The den-

sity function of the truncated normal distribution with mean µ and variance σ2 in

interval [l, u] is given by

f(x;µ, σ2, l, u) =

1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
Φ
(u−µ

σ

)
− Φ

(
l−µ
σ

) .
Next, we present a sampling procedure for multi-dimensional Gaussian kernels.

3In the experiments, as a heuristic choice, we set the variance to σ∗2.
4The value of Φ(x) = 1√

2π

∫ x
−∞ exp(−t2/2) dt can be obtained using math libraries.

48

Algorithm 4 Multi-dimensional Gaussian kernel sampling. The symbol � denotes
the Hadamard product.

1: Input:
2: r: number of dimensions of input variable
3: Initialization:
4: α ∈ Rn, the solution to the dual problem.
5: M ← αα>

6: P ← 1 /* sampling probability */
7: for i = 1 to r do
8: σ∗ = arg maxσ∈Σ tr(MKσ), where Kσ is the kernel matrix of a Gaussian

kernel with one-dimensional parameter σ.
9: Let π(·;σ∗, s,Σ) be the density function of a one-dimensional truncated nor-

mal distribution bounded to interval Σ, with mean σ∗, and arbitrary variance
s2.

10: Sample σi from π(·;σ∗, s,Σ)
11: M ←M �Kσi

12: P ← P · π(σi;σ
∗, s,Σ)

13: end for
14: return (σ1, . . . , σr) and P

Sampling Gaussian kernels with multi-dimensional parameter.

Instead of sampling directly from a multi-dimensional truncated normal distribution,

which could be expensive, we resort to a faster iterative algorithm that samples from

one-dimensional truncated normal distributions iteratively. Note that the multi-

dimensional Gaussian kernels we consider can be expressed as

κσ(x, x′) = Πr
i=1κσi(x, x

′),

where σ = (σi)
r
i=1 is the r-dimensional kernel parameter and κσi ’s are one-dimensional

Gaussian kernels. The goal is to sample one-dimensional kernel parameters σ1, . . . , σr

iteratively. To sample each parameter σ(i) we use a procedure similar to the method

described above for Gaussian kernels with a one-dimensional parameter. Algo-

rithm 4 shows the procedure of multi-dimensional Gaussian kernel sampling. One

concern regarding this sampling procedure is that the variance of the gradient esti-

mate might become intractably large as the number of input dimensions increases.

We leave further investigation of this issue and possible alternatives to future work.

4.3 Stochastic Gradient Descent for Two-Stage MKL

In this section we explore the possibility of applying the stochastic mirror descent

algorithm described in Section 4.1.1 to two-stage MKL. In particular, we focus on

49

Euclidean distance minimization, which we showed in Section 2.2.2 is equivalent

to alignment maximization, as the underlying optimization problem for two-stage

MKL. Recall the objective function of two-stage kernel learning given in (2.12). We

repeat this optimization problem here:

min
θ≥0

J(θ) = −b>θ + Cθ>Mθ,

where bi = 〈Ki, K̂
∗〉, and Mij = 〈Ki,Kj〉, i, j ∈ I. Recall that the value of C plays

no role in the alignment rate of convergence. Therefore, for simplicity, we set C = 1
2 .

The gradient of J in iteration k is given by:

∇J(θ(k−1)) =

〈Ki,
∑
j∈I

θ
(k−1)
j Kj − K̂∗

〉
F


i∈I

. (4.23)

Recall that in order to directly sample from qk−1,·, defined in (4.15), we need an

efficient way of computing Ck−1. For the one-stage MKL objective function, dis-

cussed in Section 4.2, all coordinates of − ∂
∂θJ(θ) are non-negative. By exploiting

this property and that (
∑r

j=1 κj)
d =

∑
r1:d∈I κr1:d we were able to design an efficient

sampling procedure for polynomial kernels in the one-stage MKL framework. In the

case of Euclidean distance minimization (or alignment maximization), however, this

property does not hold. Note that in (4.23) there is no guarantee that all coordinates

have the same sign. We leave further investigation of the application of stochastic

gradient descent to two-stage MKL to future work.

4.4 Summary

In this chapter we introduced a new method for learning a predictor by combining

exponentially or infinitely many linear predictors using a stochastic mirror descent

algorithm. In the one-stage MKL framework we derived finite-time performance

bounds that show that the method efficiently optimizes our proposed criterion. Our

proposed method is a variant of a stochastic gradient descent algorithm, where

the main trick is the careful construction of an unbiased randomized estimate of

the gradient vector that keeps the variance of the method under control, and can

be computed efficiently when the base kernels have a certain special combinatorial

structure. We presented an efficient sampling procedure for the practically impor-

tant problem of learning polynomial kernels. We showed that our method is able

to compute an optimal solution in polynomial time as a function of the logarithm

50

of the number of base kernels. To our knowledge, our algorithm is the first method

for learning kernel combinations that achieve such an exponential reduction in com-

plexity while satisfying strong performance guarantees, thus opening up the option

of applying it to an extremely large number of kernels. Furthermore, we proposed

efficient algorithms to apply this method to the case when infinitely many kernels

are to be combined, such as the case of learning a combination of Gaussian kernels.

We also started to explore the application of our new stochastic gradient algorithm

to two-stage MKL with Euclidean distance minimization. However, in this case, it is

not straightforward to compute an unbiased estimate of the gradient. Further inves-

tigation of this case is left to future work. Later, in Chapter 6, we will empirically

demonstrate the efficiency of our method in one-stage MKL. We will compare our

new algorithm to a representative set of algorithms from the literature on a variety

of synthetic and real datasets.

51

Chapter 5

Greedy Coordinate Descent
Methods for Multiple Kernel
Learning

In this chapter, we explain how greedy coordinate descent (GCD) can be applied to

multiple kernel learning. In particular, GCD is useful when one deals with infinitely-

many kernels. In Section 5.1 we review the greedy coordinate descent algorithm.

In Section 5.2 we explain how GCD can be applied to one-stage multiple kernel

learning. Afterwards, in Section 5.3, we provide the details of applying GCD to

two-stage multiple kernel learning.

5.1 Greedy Coordinate Descent

Coordinate descent is a variant of the gradient descent algorithm in which only one

coordinate is updated in each iteration. There are different variants of coordinate

descent, such as greedy coordinate descent or cyclic coordinate descent. These algo-

rithms differ in how a coordinate is chosen and updated. In this chapter we consider

greedy coordinate descent. Greedy coordinate descent is an appealing choice, espe-

cially when one considers high-dimensional optimization problems. In this method

a coordinate where the magnitude of gradient is largest is selected. This greedy

choice ensures maximal change in the objective function under the constraint of

updating a single coordinate per iteration. Here we briefly review the greedy coor-

dinate descent algorithm and present convergence guarantees for it. These results

are similar to those previously reported in Clarkson (2008). We assume that the

52

Algorithm 5 Greedy coordinate descent for minimizing convex function J(θ) over
simplex ∆1.

1: Initialization:
2: Choose θ(0) arbitrarily.
3: k ← 0
4: repeat
5: k ← k + 1
6: I = arg maxi∈I

〈
−∇J(θ(k−1)), ei

〉
7: Set the learning rate ηk = 2

k+1 ,

or alternatively choose ηk = arg minη∈[0,1] J((1− η)θ(k−1) + ηeI)

8: θ(k) ← (1− ηk)θ(k−1) + ηkeI
9: until convergence

goal is to minimize a convex function over a simplex:

min
θ

J(θ),

s.t. θ ∈ ∆1. (5.1)

Algorithm 5 shows the GCD algorithm for solving optimization problem (5.1). This

algorithm is also known as the Frank-Wolfe method (Frank and Wolfe, 1956) and the

conditional gradient method. Here, ei is the basis vector in which the ith coordinate

is 1, and the rest are zero. Theorem 5.1 shows that Algorithm 5 achieves an ε-

optimal solution after O(1
ε) iterations. This result, however, is not new and similar

bounds have been reported numerous times in the literature (e.g. in Zhang (2003);

Clarkson (2008); Jaggi (2013)).

Theorem 5.1. For each k ≥ 1, the sequence θ(k) obtained by Algorithm 5 satisfy

J(θ(k))− J(θ∗) ≤ 2CJ
k + 2

, (5.2)

where θ∗ is the minimizer of function J over simplex ∆1, J is assumed to be convex

and differentiable, where for all x, z ∈ ∆1 and η ∈ [0, 1] it satisfies

J((1− η)x+ ηz) ≤ J(x) + η 〈∇J(x), z − x〉+
CJ
2
η2,

where CJ is a measure of curvature of J .

Note that, e.g., for optimization problem (2.12), CJ does not depend on the

number of dimensions of θ. One consideration about the GCD algorithm is deter-

mining the step size (Step 7 in Algorithm 5). While for some objective functions,

such as Euclidean distance, it is easy to find the best step size, it may be difficult or

53

expensive to find the optimal step size in the general case. The proof of the theorem

is given in Appendix A for the easier case of setting the learning rate to ηk = 2
k+1 .

However it is obvious that finding the optimal learning rate through line search only

results in a faster convergence of the algorithm.

Another consideration regarding Algorithm 5 is that obtaining the exact solution

of the sub-problem in line 6 can be too expensive in some domains. Hence, it is

desirable to study the behavior of the algorithm when one only finds an approximate

maximizer of
〈
−∇J(θ(k−1)), ei

〉
. Jaggi (2013) studied the case where an ε-optimal

solution is found in each iteration. In this case the error bound becomes:

J(θ(k))− J(θ∗) ≤ 2CJ
k + 2

+ 2ε.

5.2 Greedy Coordinate Descent for One-Stage MKL

We aim to solve problem (2.9) of one-stage MKL using the greedy coordinate de-

scent algorithm described in Section 5.1. Greedy coordinate descent is an appealing

algorithm to solve MKL problems when one considers large sets of kernels as they

update one coordinate (in this case, kernel coefficient) per iteration. Just like our

approach to solve one-stage MKL with stochastic gradient descent, described in Sec-

tion 4.2, we exploit the joint convexity of J(w, θ) and aim to minimize J(θ) defined

in (4.7). All of the properties of J(θ) that we mentioned in Section 4.2 hold here

too. Therefore, we do not repeat them here. For instance, the gradient of J(θ),

which is required here, is given in (4.12).

Given the dual variables α∗(θ(k−1)), and the form of gradient in (4.12), step 6 in

Algorithm 5 results finding coordinate I that satisfies:

I = arg max
i∈I

1

ρ2
i

〈
Ki, α

∗(θ(k−1))α∗(θ(k−1))>
〉
F
. (5.3)

When the number of dimensions of θ is small or moderate, one can find the best

coordinate by simply iterating over all coordinates. However, if the size of θ is large,

one needs to seek other alternatives. Fortunately, in some cases, choosing the best

kernel index can be transformed into an optimization problem that depends on the

form of the underlying kernel family. For instance, if base kernels are Gaussians

with bandwidth parameter σ, problem (5.3) becomes

σ∗ = arg max
σ∈Σ

1

ρ2
σ

〈
Kσ, α

∗(θ(k−1))α∗(θ(k−1))>
〉
F
, (5.4)

54

Algorithm 6 Greedy coordinate descent for one-stage MKL.

1: Initialization:
2: θ(0) ← 0
3: k ← 0
4: repeat
5: k ← k + 1
6: Compute α∗(θ(k−1)) according to (4.9)
7: I = arg maxi∈I

1
ρ2i

〈
Ki, α

∗(θ(k−1))α∗(θ(k−1))>
〉
F

8: ηk = arg minη∈[0,1] J((1− η)θ(k−1) + ηeI)

9: θ(k) = (1− ηk)θ(k−1) + ηkeI
10: until convergence

where ρσ > 0, σ ∈ Σ are assumed to be given. The next step is to find the best step

size for the new kernel. As we mentioned earlier, one can resort to the predefined

learning rate ηk = 2
k+3 for the general case. However, for many loss functions that

are used in one-stage MKL, it is possible to compute the best learning rate through

line search. Algorithm 6 shows the GCD algorithm for one-stage MKL.

The greedy coordinate descent approach for one-stage MKL has been previously

proposed in Argyriou et al. (2005). In fact their algorithm is the same as Algo-

rithm 6. Another similar work is presented in Gehler and Nowozin (2008). The only

slight difference is that in Gehler and Nowozin (2008) once a kernel is selected, in

addition to learning the coefficient of the last kernel, the coefficients of all previ-

ous kernels are updated too. This can be done by any of the existing finite MKL

algorithms.

5.3 Greedy Coordinate Descent for Two-Stage MKL

In this section, we focus on applying greedy coordinate descent to two-stage MKL. In

particular, we aim to solve the alignment maximization problem. Alignment maxi-

mization was discussed as a prominent approach to two-stake MKL in Section 2.2.2.

In this section, we present a greedy coordinate descent algorithm for the alignment

maximization problem. Our algorithm can be viewed as a steepest ascent approach

to forward stagewise additive modeling (Hastie et al., 2001). As we mentioned in

Section 2.2.2 alignment is not a convex objective function. However, one can solve an

equivalent Euclidean distance minimization problem that gives an alignment max-

imizing solution. We, therefore, present a greedy coordinate descent algorithm in

Section 5.3.2 to solve the Euclidean distance minimization problem. When we aim

55

to solve a maximization problem, we will use the term coordinate ascent. We begin

by presenting a steepest ascent algorithm for the alignment maximization problem.

5.3.1 Alignment maximization

Greedy coordinate ascent for alignment maximization can be viewed as a steepest

ascent approach to forward stagewise additive modeling (FSAM). FSAM (Hastie

et al., 2001) is an iterative method for optimizing an objective function by sequen-

tially adding new basis functions without changing the parameters and coefficients

of the previously added basis functions. Despite this subtle difference, this method

still falls in the category of greedy coordinate descent algorithms.

Since centered alignment is used as the objective function in this section, and it

is important to address centering of kernel matrices, it is preferable to derive and

present the algorithm as updating the kernel combination rather than the kernel

coefficient vector θ used throughout this thesis. We also assume that we aim to

learn a combination of parameterized base kernels, i.e., greedy coordinate descent

is applied in a space where coordinates are parameterized base kernels κσ.

Let f(κ) = Âc(K(κ), K̂∗) denote the centered alignment function, where Âc,K(κ),

and K̂∗ were defined in Section 2.2.2. In the steepest ascent approach, in iteration

k, the algorithm searches for the base kernel in (κσ)σ∈Σ defining the direction in

which the growth rate of f is the largest, locally in a small neighborhood of the

previous candidate κ(k−1):

σ∗k = arg max
σ∈Σ

lim
ε→0

f(κ(k−1) + ε κσ)− f(κ(k−1))

ε
. (5.5)

Once σ∗k is found, the algorithm finds a coefficient 0 ≤ ηt ≤ ηmax
1 such that

f(κ(k−1) + ηkκσ∗k) is maximized and the kernel combination is updated using

κ(k) = κ(k−1) + ηkκσ∗k .

The process stops when the objective function f ceases to increase by an amount

larger than a specified threshold δ > 0, or when the number of iterations becomes

larger then a predetermined limit T , whichever happens earlier.2 Let us define

Fc(K)
def
= Ac(K, K̂∗),

1The value of ηmax acts as a regularizer. In the experiments, we use the arbitrary value ηmax = 1.
2We set T = 50 in experiments. We noticed that in practice the procedure always stops before

the limit T on the number of iterations is reached.

56

and

F (K)
def
=

〈
K, K̂∗c

〉
F

‖K‖F ‖K̂∗c‖F
,

so that Fc(K) = F (Kc).

Proposition 5.2. The value of σ∗k can be obtained by

σ∗k = arg max
σ∈Σ

〈
K(κσ), F ′((K(κ(k−1)))c)

〉
F
, (5.6)

where for a kernel matrix K,

F ′(K) =
K̂∗c − ‖K‖−2

F

〈
K, K̂∗c

〉
F

K

‖K‖F ‖K̂∗c‖F
. (5.7)

Proof. First, notice that the limit in (5.5) is a directional derivative, Dκσf(κ(k−1)).

By the chain rule,

Dκσf(κ(k−1)) =
〈

K(κσ), F ′c(K(κ(k−1)))
〉
F
.

Some calculations give that

F ′(K) =
K̂∗c − ‖K‖−2

F

〈
K, K̂∗c

〉
F

K

‖K‖F ‖K̂∗c‖F
(which is the function defined in (5.7)). We claim that the following holds:

Lemma 5.3. F ′c(K) = CnF
′(Kc)Cn.

Proof. By the definition of derivatives, as H → 0,

F (K +H)− F (K) =
〈
F ′(K), H

〉
F

+ o(‖H‖).

Also,

Fc(K +H)− Fc(K) =
〈
F ′c(K), H

〉
F

+ o(‖H‖).

Now,

Fc(K +H)− Fc(K) = F (CnKCn + CnHCn)− F (CnKCn)

=
〈
F ′(Kc), CnHCn

〉
F

+ o(‖H‖)

=
〈
CnF

′(Kc)Cn, H
〉
F

+ o(‖H‖),

where the last property follows from the cyclic property of trace. Therefore, by the

uniqueness of derivative,

F ′c(K) = CnF
′(Kc)Cn.

�

57

Now, notice that CnF
′(Kc)Cn = F ′(Kc). Thus, we see that the value of σ∗k can

be obtained by

σ∗k = arg max
σ∈Σ

〈
K(κσ), F ′((K(κ(k−1)))c)

〉
F
,

which was the statement to be proved. �

The crux of the proposition is that the directional derivative in (5.5) can be

calculated and gives the expression maximized in (5.6).

In general, the optimization problem (5.6) is not convex and the cost of obtaining

a (good approximate) solution is hard to predict. Evidence that, at least in some

cases, the function to be optimized is not ill-behaved is presented in Section 6.2.3.

In our experiments in Chapter 6, an approximate solution to (5.6) is found using

numerical methods.3 As a final remark to this issue, note that, as is usual in

boosting, finding the global optimizer in (5.6) might not be necessary for achieving

good statistical performance.

The other parameter, ηk, however, is easy to find, since the underlying optimiza-

tion problem has a closed form solution:

Proposition 5.4. The value of ηk is given by

ηk = arg max
η∈{0,η∗,ηmax}

f(κ(k−1) + ηκσ∗k),

where η∗ = max(0, (ad − bc)/(bd − ae)) if bd − ae 6= 0 and η∗ = 0 otherwise,

a =
〈
K, K̂∗c

〉
F

, b =
〈
K′, K̂∗c

〉
F

, c = 〈K,K〉F , d = 〈K,K′〉F , e = 〈K′,K′〉F and

K = (K(κ(k−1)))c, K′ = (K(κσ∗k))c.

Proof. Let g(η) = f(κ(k−1) + ηκσ∗k). Using the definition of f , we find that with

some constant ρ > 0,

g(η) = ρ
a+ bη

(c+ 2dη + eη2)1/2
.

Notice that here the denominator is bounded away from zero (this follows from the

form of the denominator of f). In particular, e > 0. Further,

lim
η→∞

g(η) = − lim
η→−∞

g(η) = ρ
b√
e
. (5.8)

Taking the derivative of g we find that

g′(η) = ρ
bc− ad+ (bd− ae)η
(c+ 2dη + eη2)3/2

.

3 In particular, we use the fmincon function of Matlab

58

Algorithm 7 Forward stagewise additive modeling for alignment maximization
with parametrized set of kernels.

1: Inputs:
2: kernel initialization parameter ε,
3: number of iterations T ,
4: tolerance δ,
5: maximum stepsize ηmax > 0.
6: Initialization:
7: K(0) ← εIn.
8: for k = 1 to T do
9: P ← F ′(K(k−1))

10: P ← Cn P Cn
11: σ∗ = arg maxσ∈Σ 〈P,Kσ〉F
12: K′ ← Cn Kσ∗ Cn
13: η∗ = arg max0≤η≤ηmax

F (K(k−1) + ηK′)

14: K(k) ← K(k−1) + η∗K′

15: if F (Kk) ≤ F (K(k−1)) + δ then terminate
16: end for

Therefore, g′ has at most one root and g has at most one global extremum, from

which the result follows by solving for the root of g′ (if g′ does not have a root, g is

constant). �

The pseudocode of the full algorithm is presented in Algorithm 7. The algorithm

needs the data, the number of iterations (T) and a tolerance (δ) parameter, in

addition to a parameter ε used in the initialization phase and ηmax > 0. The

parameter ε, which should have a very small value, is used in the initialization step

to avoid division by zero, and its value has little effect on the performance. Note that

the cost of computing a kernel-matrix, or the inner product of two such matrices

is O(n2). Therefore, the complexity of the algorithm is quadratic in the number

of samples. The actual cost will be strongly influenced by the computational cost

of (5.6). We include actual running times in the experiments, which give a rough

indication of the computational limits of the procedure.

5.3.2 Euclidean distance minimization

Given the ideal kernel K̂∗c built from data, in this section we aim to minimize the

squared “distance” between K̂∗c and a linear combination of centered base kernels.

We aim to solve

min
θ≥0

J(θ) =
1

2n2

∥∥∥∥∥β∑
i∈I

θiKi − K̂∗c

∥∥∥∥∥
2

F

, (5.9)

59

where β > 0 is a scaling factor. For simplicity of notation we assume that the base

kernels are centered and we drop the subscript c from kernel matrices. We showed in

Section 2.2.2 that the value of β has no effect on finding the alignment maximizing

solution. However, since Algorithm 5 finds the optimal solution subject to the unit

simplex constraint, choosing an appropriate value for β ensures that the optimal

solution lies inside the unit simplex. It can be shown that choosing

β ≥ max
i∈I

〈
Ki, K̂

∗
c

〉
F

〈Ki,Kj〉F
, ∀j ∈ I,

ensures that θ∗ ∈ ∆1. The details of the derivation and specific examples are given

in Appendix B.

It is also easy to show that the curvature parameter CJ of the Euclidean distance

loss function does not depend on the number of dimensions of θ. Hence, the bound

given in Theorem 5.1 guarantees the convergence of Algorithm 5 when applied to

two-stage MKL with very large kernel sets. See Appendix B for details.

The Euclidean distance minimization problem (5.9) is convex and can be solved

by greedy coordinate descent. Let K(k−1) = β
∑

i∈I θ
(k−1)
i Ki be the linear combi-

nation of kernels selected up to iteration k − 1. In iteration k, greedy coordinate

descent chooses a coordinate I(k) ∈ I such that

I(k) = arg min
I∈I

lim
ε→0

J(θ(k−1) + εeI)− J(θ(k−1))

ε

= arg max
I∈I

〈
KI , K̂

∗
c −K(k−1)

〉
F
.

Note that if 〈
KI , K̂

∗
c −K(k−1)

〉
F
≤ 0,

the algorithm must stop since the objective function cannot be further minimized.

Once a coordinate I(k) is chosen, the algorithm computes the best step size through

line search. Due to the nice form of problem (5.9) the optimization problem to find

the optimal step size has a closed form solution. Note that

η∗ = arg min
η

J(θ(k−1) + ηeI(k))

=

〈
KI(k) , K̂

∗
c −K(k−1)

〉
F

β 〈KI(k) ,KI(k)〉F
.

Furthermore, note that η∗ > 0 since 〈KI , K̂
∗
c −K(k−1)〉F > 0. Hence, the best step

size using line search is obtained by

ηk = min (η∗, 1) .

60

Algorithm 8 Greedy coordinate descent for two-stage MKL using Euclidean dis-
tance minimization. For the definition of K̂∗c , β, and Cn see the text.

1: Initialization:
2: θ(0) ← 0
3: k ← 0
4: repeat
5: k ← k + 1
6: K̃← β

∑
i∈I θ

(k−1)
i Ki

7: K(k−1) ← CnK̃Cn // centering
8: I = arg maxi∈I 〈Ki, K̂

∗
c −K(k−1)〉F

9: if 〈KI , K̂
∗
c −K(k−1)〉F ≤ 0 then terminate

10: ηk ← min(1, β−1〈KI , K̂
∗
c −K(k−1)〉F /〈KI ,KI〉F)

11: θ(k) ← (1− ηk)θ(k−1) + ηkeI
12: until convergence

Finally, the kernel weight vector is updated by

θ(k) = (1− ηk)θ(k−1) + ηkeI(k) .

Algorithm 8 shows the greedy coordinate descent algorithm for solving problem (5.9).

5.4 Summary

In this chapter, we discussed greedy coordinate descent for multiple kernel learning.

Greedy coordinate descent is particularly useful when one considers parameterized

kernel families with infinitely many kernels. One prominent and important family of

such kernels is Gaussian kernels. We presented greedy coordinate descent algorithms

for one-stage MKL as well as two-stage MKL based on alignment maximization

and Euclidean distance minimization. We will evaluate the performance of greedy

coordinate descent, in one-stage and two-stage MKL in Chapter 6.

61

Chapter 6

Experimental Results

In this chapter, we present the experimental results of stochastic gradient descent

and greedy coordinate descent for multiple kernel learning. In particular, we are

interested in learning polynomial and Gaussian kernels. These are important fam-

ily of kernels that have been used extensively in kernel methods. For our experi-

ments, polynomial kernels are well suited for the stochastic gradient descent learning

scheme. We presented an efficient learning algorithm for polynomial kernels in Sec-

tion 4.2.1. Parameterized Gaussian kernels, on the other hand, are well suited for

the greedy coordinate descent learning scheme. Choosing the best coordinate simply

translates into solving an optimization problem over the kernel parameters, which

in case of Gaussian kernels, is finding the best kernel bandwidth.

This chapter is organized as follows. In Section 6.1, we present the experimental

results of stochastic gradient descent for one-stage multiple kernel learning. In this

section, we mainly focus on learning polynomial kernels, with the exception of Sec-

tion 6.1.5, in which, we briefly explore the application of stochastic gradient descent

to learning Gaussian kernels. Then, in Section 6.2, we present the experimental

results of greedy coordinate descent for learning Gaussian kernels. In this section

we consider one-stage and two-stage kernel learning settings. Finally, in Section 6.3,

we compare stochastic gradient descent and greedy coordinate descent methods for

multiple kernel learning. In this chapter we compare our algorithms against various

state-of-the-art MKL algorithms. Table 6.1 shows the list of algorithms we examine

in different experiments in this chapter along with their acronyms.

62

Table 6.1: Various MKL algorithms considered in experiments.

Acronym Description

SGD–1s Stochastic gradient descent for one-stage MKL, (cf. Section 4.2)

GCD–1s Greedy coordinate descent for one-stage MKL, (cf. Section 5.2)

GCD–2s Greedy coordinate descent for two-stage MKL, (cf. Section 5.3)

LpMKL p-norm MKL (Kloft et al., 2011)

HMKL Hierarchical MKL (Bach, 2008)

NLMKL Non-linear MKL (Cortes et al., 2009b)

CKL Continuously-parameterized kernel learning (Argyriou et al., 2005)

IKL Infinite kernel learning (Gehler and Nowozin, 2008)

AMKL Alignment-based two-stage MKL (Cortes et al., 2010)

Uniform Linear combination of base kernels with uniform weights

6.1 Stochastic Gradient Descent for One-Stage MKL

In this section, we explore the effectiveness of stochastic gradient descent in one-

stage MKL, proposed in Section 4.1. We perform several experiments to this end.

First, in Section 6.1.1, we compare several methods for sampling, which can be used

as part of the stochastic gradient descent algorithm. We design an experiment in

which we show the effectiveness of gradient-based sampling over other alternatives.

We then repeat a similar experiment, in a multiple kernel learning problem in Sec-

tion 6.1.2. After that, we focus on comparing algorithms in terms of prediction

error, and training time, using synthetic data, in Section 6.1.3, and using real data,

in Section 6.1.4. In the above experiments we aim to learn polynomial kernels (cf.

Section 4.2.1). At the end of this section, we focus on learning Gaussian kernels. We

demonstrate how our algorithm can deal with continuously parametrized, uncount-

able kernel sets, to learn a linear combination of Gaussian kernels. We consider

learning a combination of Gaussian kernels when they are parameterized by a sin-

gle parameter chosen from an interval, as well as when they are parameterized by

a vector of parameters chosen from a rectangle in a multi-dimensional space. We

follow the algorithms proposed in Section 4.2.2 for learning Gaussian kernels.

Unless stated otherwise, throughout this section, we consider the problem of

multiple kernel learning in regression with the squared loss:

`(w) =
1

2

n∑
t=1

(fw(xt)− yt)2,

where {(xt, yt) ∈ Rr × R}nt=1 is the training dataset that consists of input-output

63

Algorithm 9 Nesterov’s RCDM algorithm (Nesterov, 2010)

1: Inputs:
2: Lipschitz constants of gradient of objective function f : Li, i ∈ {1, . . . , r},
3: parameter α.
4: Initialization:
5: Choose x(0) arbitrarily
6: k ← 0
7: repeat
8: k ← k + 1
9: Sample Ik from P (·), where P (i) = Lαi /

∑r
j=1 L

α
j

10: x(k) ← x(k−1) − 1
LIk

〈
∇f(x(k−1)), eIk

〉
eIk

11: until convergence

pairs. Prediction accuracy values are reported as mean squared error over test

sets. A constant feature is added to act as offset, and the inputs and output are

normalized to have zero mean and unit variance. Each experiment was performed

with 10 runs in which we randomly choose training, validation, and test sets. The

results are averaged over these runs.

6.1.1 Effect of sampling method

The sampling procedure for stochastic gradient methods, proposed in Section 4.1,

is not solely applicable to MKL. This sampling procedure uses a distribution that

is proportional to the magnitude of gradient. In this experiment, we further in-

vestigate the virtues of this method of sampling. To do so, we compare Nesterov’s

RCDM algorithm (Nesterov, 2010, Alg. (2.6)) with α = 1, Nesterov’s RACDM

algorithm(Nesterov, 2010, Alg. (6.1)), which dynamically adjusts the Lipschitz con-

stants of gradient1, and our method, which stochastically chooses coordinates based

on the magnitude of gradient coordinates. We denote the latter Grad.Samp. here.

The assumption of Nesterov’s RCDM is that the gradient of the objective function

be Lipschitz continuous. Let Li denote the Lipschitz constant of gradient along the

ith coordinate. Let f be the objective function. The RCDM algorithm is shown in

Algorithm 9. In this experiment, we aim to minimize the objective function given

by

f(x) =
1

2

104∑
i=1

(xi − 0.9i)2 . (6.1)

1This method is useful when Lipschitz constants of gradient are unknown or it is hard to estimate
an upper bound.

64

There are two differences between Nesterov’s RCDM and our algorithm:

1. The learning rate of Nesterov’s method is 1/Li (See Algorithms (2.6) and (6.1)

in Nesterov (2010)). On the other hand, our method uses a constant learning

rate of 1/
√
T , where T is a parameter that specifies the number of iterations.2

This seems to be in favor of Nesterov’s method. For example, in minimizing

the objective function (6.1), once a coordinate is selected randomly, Nesterov’s

method is able to learn the optimal value of that coordinate in one update.

On the other hand, the learning rate used by our method provides a gradual

convergence towards the optimal value.

2. Nesterov’s method uses the Lipschitz constants of gradient to define the sam-

pling distribution. In the above example these constants are equal for all

coordinates (Li = 1, i ∈ {1, . . . , 104}), which results in selecting coordinates

from a uniform distribution. On the other hand, our method uses a sampling

distribution which is proportional to the magnitude of gradient coordinates.

This, in examples similar to (6.1), gives higher probabilities to more important

coordinates.

We run all methods for 2 × 104 iterations. Figure 6.1 shows convergence speed

of these algorithms. The vertical axis in these plots indicate the value of objective

function divided by its initial value (when all variables are set to zero). Note the

speed-up achieved due to the new sampling method used in Grad.Samp. compared

to RCDM and RACDM.

6.1.2 Polynomial kernels – convergence test

In this experiment, we examine the speed of convergence of the SGD–1s method and

compare it against one of the fastest standard multiple kernel learning algorithms,

that is, the LpMKL algorithm of Kloft et al. (2011) with p = 2,3 and the uniform

coordinate descent algorithm that updates one coordinate, which is chosen uniformly

at random, per iteration (Nesterov, 2010, 2012; Shalev-Shwartz and Tewari, 2011;

Richtárik and Takáĉ, 2011). We denote the latter by UCD in this experiment. We

aim to learn polynomial kernels of up to degree 3 with all algorithms. SGD–1s

2This learning rate was chosen according to the theoretical bound given for the algorithm in
Section 4.1.

3Note that p = 2 in Kloft et al. (2011) notation corresponds to p = 4/3 or ν = 2 in our notation,
which gives the same objective function that we minimize with Algorithm 2.

65

0 5,000 10,000 15,000 20,000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration

no
rm

al
iz

ed
 o

bj
ec

tiv
e

fu
nc

tio
n

GRAD. SAMP.

RCDM

RACDM

0 2 4 6 8 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

time (sec.)

no
rm

al
iz

ed
 o

bj
ec

tiv
e

fu
nc

tio
n

Figure 6.1: Convergence speed of algorithms.

uses Algorithm 3 for sampling with D = 3. The set of provided base kernels is

the linear kernels built from input variables, that is, κ(i)(x, x
′) = x(i)x

′
(i), where

x(i) denotes the ith input variable. For the other two algorithms the kernel set

consists of kernels from monomial terms for D ∈ {0, 1, 2, 3} built from r base kernels,

where r is the number of input variables. The total number of distinct base kernels

(monomials) is
(
r+D
D

)
. In this experiment, for all algorithms, we use ridge regression

with its regularization parameter set to 10−5. Experiments with other values of the

regularization parameter achieved similar results.

We compare these methods in four datasets from the UCI machine learning

repository (Frank and Asuncion, 2010) and the Delve datasets4. The specifications

of these datasets are given in Table 6.2. We run all algorithms for a fixed amount

of time and measure the value of the objective function (2.7), that is, the sum of

the empirical loss and the regularization term. Figure 6.2 shows the performance

of these algorithms. The results show that SGD–1s consistently outperforms the

other algorithms in convergence speed. Note that our stochastic method updates one

kernel coefficient per iteration, while LpMKL updates
(
r+D
D

)
kernel coefficients per

iteration. The difference between the two methods is analogous to the difference

between stochastic gradient vs. full gradient updates. While UCD also updates

one kernel coefficient per iteration its naive method of sampling coordinates results

in a slower overall convergence compared to our algorithm. In the next section,

we compare our algorithm against several representative methods from the MKL

4See, www.cs.toronto.edu/~delve/data/datasets.html.

66

www.cs.toronto.edu/~delve/data/datasets.html

0 50 100 150
10

−5

10
0

10
5

10
10

german

time (sec.)

ob
je

ct
iv

e
fu

nc
tio

n

0 5 10 15 20
10

−4

10
−2

10
0

10
2

10
4

10
6

ionosphere

time (sec.)

ob
je

ct
iv

e
fu

nc
tio

n

0 100 200 300 400
10

−4

10
−2

10
0

10
2

10
4

10
6

ringnorm

time (sec.)

ob
je

ct
iv

e
fu

nc
tio

n

0 100 200 300
10

−4

10
−2

10
0

10
2

10
4

10
6

waveform

time (sec.)

ob
je

ct
iv

e
fu

nc
tio

n

LpMKL
SGD−1s
UCD

Figure 6.2: Convergence comparison of our method and other algorithms.

literature.

6.1.3 Polynomial kernels – synthetic data

In this experiment, we examine the effect of the size of the kernel space on prediction

accuracy and training time of MKL algorithms. We generated data for a regression

problem. Let r denote the number of dimensions of the input space. The inputs

are chosen uniformly at random from [−1, 1]r. The output of each instance is the

uniform combination of 10 monomial terms of degree 3 or less built from the first

5 variables. These terms are chosen uniformly at random among all possible terms.

The outputs are noise-free. We generated data for r ∈ {5, 10, 20, . . . , 100}, with 500

training and 1000 test points. The regularization parameter of ridge regression was

67

tuned from {10−8, . . . , 102} using a separate validation set with 1000 data points.

We compare our method (SGD–1s) against LpMKL (p = 2), the non-linear

kernel learning method of Cortes et al. (2009b) (NLMKL), the hierarchical kernel

learning algorithm of Bach (2008) (HMKL). Recall that HMKL and NLMKL are

specifically designed to learn polynomial kernels. For comparison purposes, we also

compare these methods against a uniform combination of all non-linear kernels of

degree 3 or less (Uniform). The set of base kernels consists of r linear kernels

built from the input variables. Recall that the method of Cortes et al. (2009b) only

considers kernels of the form κθ = (
∑r

i=1 θiκi)
D, where D is a predetermined integer

that specifies the degree of polynomial kernel. Note that adding a constant feature

results in adding polynomial kernels of degree less than D to the combination too.

We provide all possible polynomial kernels of degree 0 to D to the kernel learning

method of Kloft et al. (2011). For our method and the method of Bach (2008) we

set the maximum kernel degree to D = 3. Recall that our method (and HMKL)

select kernels from a set with (r + 1)D kernels.

The results are shown in Figure 6.3, the mean squared errors are on the left plot,

and the training times are on the right plot. In the training-time plot the numbers

inside brackets indicate the total number of distinct kernels for each value of r. This

is the number of kernels fed to the LpMKL algorithm. Since this method deals with

a large number of base kernels, it was possible to precompute and keep the kernels

in memory (8GB) for r ≤ 25. Therefore, we ran this algorithm for r ≤ 25. For

higher number of variables, we could use on-the-fly implementation of this algo-

rithm, however that further increases the training time. Note that the computation

cost of this method is cubic (D = 3) in the size of the input space (or linearly in the

number of kernels). While the standard MKL algorithms, such as LpMKL, cannot

handle very large kernel spaces, in terms of time and space complexity, the other

three algorithms can efficiently learn kernel combinations. Their predictive accura-

cies, however, are quite different. While NLMKL performs well for small number

of variables, its performance starts to degrade as r increases. This is due to the re-

stricted family of kernels that this method considers. The HMKL method, which is

well-suited to learn sparse combination of polynomial kernels, performs better than

NLMKL for higher input dimensions. Among all methods, however, our method

performs best in predictive accuracy while its computational cost is only slightly

worse than the other two main competitors.

68

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of dimensions of input space

M
S

E

20 40 60 80 100
0

50

100

150

200

250

tr
ai

ni
ng

 ti
m

e
(s

ec
.)

LpMKL
SGD−1s
NLMKL
HMKL
UNIFORM

[176,851][91,881][39,711][12,341][1,771]

Figure 6.3: Comparison of kernel learning methods in terms of test error (left) and
training time (right) on the synthetic dataset.

6.1.4 Polynomial kernels – real data

In this experiment, we consider again the polynomial kernels that are built from

linear kernels corresponding to the input variables. In this case we chose several

datasets from the UCI machine learning repository and Delve datasets. We selected

datasets in which the number of dimensions of the input space is 20 or more. We

aim to compare polynomial kernels against linear kernels. We consider polynomial

kernels of degree 2 and 3 in this experiment. The following list shows the methods

along with the parameters used in this experiment:

• SGD–1s, with D ∈ {2, 3}.

• HMKL, with D ∈ {2, 3}.

• NLMKL, with D ∈ {2, 3}.

• LpMKL, with p ∈ {1, 2}. Base kernels are linear kernels.

• Uniform, uniform combination of all kernels up to degree D, i.e.

κ = (
∑r

i=1 κi)
D, for D ∈ {1, 2, 3}.

The datasets include german, ringnorm, waveform, ionosphere, sonar, and splice.

Figure 6.4 shows the results. The specifications of these datasets are given in Ta-

ble 6.2. The regularization parameter of ridge regression is tuned from the set

{10−4, . . . , 103} for all methods using a validation set.

69

Table 6.2: Specifications of datasets used in the experiments.

Dataset # of variables Train. size Valid. size Test size

banana 2 500 1000 2000

breast cancer 9 105 27 131

diabetes 8 307 77 384

german 20 350 150 500

heart 13 108 27 135

image seg. 18 500 500 1000

ionosphere 34 140 36 175

ringnorm 20 500 1000 2000

sonar 60 83 21 104

splice 60 500 1000 1491

thyroid 5 86 22 107

waveform 21 500 1000 2000

Overall, we observe that methods that consider non-linear variable interactions

(SGD–1s, HMKL, and NLMKL) perform better than linear methods (LpMKL).

Among non-linear methods, NLMKL performs worse than the other two. We be-

lieve that this is due to the restricted kernel space considered by this method. The

performance of SGD–1s and HMKL is similar overall.

We observe that our method overfits when it considers kernels of degree 3 in

this experiment. However, one can easily address this issue by assigning higher ρ

values to higher-degree kernels so that the algorithm selects lower-degree kernels

more often. For this purpose, we ran this experiment for D = 3 with a modified set

of ρ values, where we use ρ2
i = 1 for kernels of degree ≤ 2 and ρ2

i = 4 for kernels of

degree 3. With the new ρ coefficients the algorithm was able to reduce overfitting.

See SGD–1s (D = 3, prior) error values in Figure 6.4.

6.1.5 Gaussian kernels – real data

In this experiment we aim to learn a combination of Gaussian kernels with single-

and multi-dimensional kernel parameters. We compare several algorithms, suitable

for learning kernels from continuous sets, i.e. CKL and IKL, along with our algo-

rithm, SGD–1s. These methods are run with single-dimensional kernel parameter

search (1D), and multi-dimensional kernel parameter search (nD). The method of

Argyriou et al. (2005) has been improved in Argyriou et al. (2006) by applying

DC-programming for parameter search. The DC-programming version, however, is

70

0.68

0.7

0.72

0.74

0.76

0.78
german

M
S

E

0.5

0.6

0.7

ionosphere

0.2

0.4

0.6

0.8

ringnorm

0.6

0.7

0.8

0.9

sonar

0.35

0.4

0.45

0.5

0.55

0.6

splice

0.3

0.35

0.4

0.45

0.5

waveform

SGD−1s (D=2)
SGD−1s (D=3)
SGD−1s (D=3, prior)

HMKL (D=2)
HMKL (D=3)

NLMKL (D=2)
NLMKL (D=3)

LpMKL (p=1)
LpMKL (p=2)

UNIFORM (D=1)
UNIFORM (D=2)
UNIFORM (D=3)

Figure 6.4: Prediction error of different methods in the real data experiment

not scalable to multi-dimensional search. In this experiment we implemented the

original version proposed in Argyriou et al. (2005) in order to be able to run the

method for multi-dimensional parameter search. We restrict the parameter search

to interval Σ = [10−4, 104]. We use Matlab’s fmincon function to solve the param-

eter search sub-problem for these kernel learning methods. We also run LpMKL

(p = 2) with 50 kernels selected by discretization of the above interval in a geometric

fashion, where the bandwidth parameter of the ith kernel is equal to 10−4 · (1.6)i−1.

Finally, we evaluate the performance of a uniform combination of these 50 kernels

(Uniform).

In this experiment, we consider 11 datasets. The specifications of the datasets

are given in Table 6.2. The regularization parameter of ridge regression is tuned

from the set {10−4, . . . , 103} using 5-fold cross validation. The stopping criterion

for all of the methods is that the change in the value of the objective function in

consecutive iterations is less than 1% of its current value. We found that no further

improvement is made by using finer stopping thresholds. The results are shown in

Figure 6.5. The results suggest that in most datasets it is better to search for one-

dimensional kernel parameter. However, there are cases, such as image and thyroid,

in which multi-dimensional kernel parameter search achieves better performance. In

general the performance of SGD–1s (in particular, the (1D) version) is comparable

to that of other infinite kernel learning methods, as well as that of LpMKL. The

median rank of compared algorithms over all datasets, shown in Table 6.3, also

71

0.1

0.15

0.2

0.25

0.3

banana

0.6

0.7

0.8

breast cancer

0.5

0.55

0.6

0.65

0.7
diabetes

0.5

0.6

0.7

0.8
german

0.5

0.6

0.7

heart

0

0.1

0.2

0.3

image

0.2

0.25

0.3

0.35

0.4

ionosphere

0.4

0.6

0.8

sonar

0.2

0.4

0.6

splice

0.1

0.15

0.2

0.25
thyroid

0.1

0.2

0.3

0.4

waveform

SGD−1s (1D)
SGD−1s (nD)

CKL (1D)
CKL (nD)

IKL (1D)
IKL (nD)

LpMKL (p=2)
UNIFORM

Figure 6.5: Prediction error of different methods in the Gaussian kernel experiment

confirms this.

6.2 Greedy Coordinate Descent for MKL

In this section, we compare our greedy coordinate descent MKL against several ker-

nel learning methods on synthetic and real data. In particular, we use Algorithm 6

for one-stage MKL and Algorithm 8 for two-stage MKL. Recall that Algorithm 6

has been previously proposed in Argyriou et al. (2005), which we denoted in pre-

vious experiments by CKL. This makes GCD–1s and CKL algorithms identical.

Table 6.3: Median rank of algorithms in the Gaussian kernel experiment.

S
G
D
–
1
s

(1
D

)

S
G
D
–
1
s

(n
D

)

C
K
L

(1
D

)

C
K
L

(n
D

)

IK
L

(1
D

)

IK
L

(n
D

)

L
p
M
K
L

U
n
if
o
r
m

3 6 3 3.5 3.5 5 3 6.5

72

We, therefore, do not run a separate GCD–1s algorithm. Our method for two-stage

MKL is denoted by GCD–2s in this section. In all of the experiments, we run CKL

and GCD–2s until either (i) the number of iterations reaches 50, or (ii) the change

in the value of objective function is less than 10−3, whichever comes first.

As we mentioned, greedy coordinate descent is an appealing approach for com-

bining kernels when base kernels belong to a continuously-parameterized set. We,

therefore, experiment with parameterized Gaussian kernels. In Section 6.2.1, we use

synthetic data to illustrate the potential advantage of methods that work with a

continuously parameterized set of kernels. We also illustrate in a toy example that

multi-dimensional kernel parameter search can be advantageous in certain problems.

We also investigate scalability of these methods in this section. These are followed

by the evaluation of various MKL methods on real datasets in Section 6.2.2.

6.2.1 Gaussian kernels – synthetic data

In this section, we design a dataset to illustrate that when it comes to continuously

parameterized kernels, in some cases, multi-dimensional parameter search is crucial

for good performance. The dataset is designed as follows: The instances for the pos-

itive (negative) class are generated from a r = 50-dimensional Gaussian distribution

with covariance matrix C = Ir×r and mean µ1 = ρ β
‖β‖ (respectively, µ2 = −µ1 for

the negative class). Here ρ = 1.75. The vector β ∈ [0, 1]r determines the relevance

of each feature in the classification task, e.g. βi = 0 implies that the distributions

of the two classes have zero means in the ith feature, which renders this feature

irrelevant. The value of each component of vector β is calculated as βi = (i/r)γ ,

where γ is a constant that determines the relative importance of the elements of β.

We generate seven datasets with γ ∈ {0, 1, 2, 5, 10, 20, 40}. For each value of γ, the

training set consists of 50 data points (the prior distribution for the two classes is

uniform). The test error values are measured on a test set with 2000 instances. We

repeated each experiment 10 times and report the average misclassification error

and alignment measured over the test set along with the training time.

In this experiment, we use greedy coordinate descent with one-dimensional and

multi-dimensional Gaussian kernels. The form of these kernels are shown in (4.19)

and (4.20) respectively. When the size of training set is small, as in this experiment,

multi-dimensional parameter search may overfit. To address overfitting we modify

the algorithm to shrink the values of the bandwidth parameters to their common

73

average value by modifying (5.6):

σ∗k = arg min
σ∈Σ

−
〈

K(κσ), F ′((K(κ(k−1)))c)
〉
F

+ λ‖σ − σ̄‖22, (6.2)

where, σ̄ = 1
r

∑r
i=1 σi and λ is a regularization parameter. For the sake of complete-

ness we also include the unregularized version of GCD–2s (nD) in which λ = 0. It

is labeled GCD–2s (nD,NoReg) in plots. The CKL algorithm has also been run

with single- and multi-dimensional parameter search procedures, denoted by CKL

(1D) and CKL (nD) respectively. We also include results obtained by finite MKL

methods. For these methods, we generate 50 Gaussian kernels with one-dimensional

bandwidths σ ∈ mg{0,...,49}, where m = 10−3, and g ≈ 1.33. Therefore, the band-

width range constitutes a geometric sequence from 10−3 to 103.

The one-dimensional versions, i.e. CKL (1D) and GCD–2s (1D), employ Mat-

lab’s fmincon function with multiple restarts from the set 10{−3,...,5}, to choose the

kernel parameters. The multi-dimensional versions, CKL (nD) and GCD–2s (nD),

use fmincon only once, since in this particular example the search method runs on a

50-dimensional search space, which is an expensive operation. The starting point of

multi-dimensional search methods is a vector of equal elements where this element

is the weighted average of the kernel parameters found by the corresponding one-

dimensional search method, weighted by the coefficient of the corresponding kernels.

Since this is a classification problem we train the classifier with soft margin SVM.

The regularization parameter of SVM is tuned from the set 10{−5,−4.5,...,4.5,5} using

an independent validation set with 1000 instances. We also tuned the value of the

regularization parameter in problem (6.2) from 10{−5,...,14} using the same validation

set (the best value of λ is the one that achieves the highest value of alignment on

validation set). We decided to use a large validation set, following essentially the

practice of Kloft et al. (2011, Section 6.1), to make sure that in the experiments

reasonably good regularization parameters are used, i.e., to factor out the choice of

the regularization parameters. This might bias our results towards GCD–2s (nD),

compared to GCD–2s (1D), though similar results were achieved with a smaller

validation set of size 200. As a final detail note that LpMKL (p = 1), LpMKL

(p = 2), CKL (1D) and CKL (nD) also use the validation set for choosing the value

of their regularization parameter, and together with the regularizer, the weights

also. Hence, their results might also be positively biased (though we do not think

this is significant, in this case).

74

In all experiments, training time corresponds to a single run of learning kernel

weights and learning a classifier, i.e., the extra time required to tune SVM regular-

ization parameter is not included. However, the time required to tune λ in (6.2) is

considered in training time computation.

Figure 6.6 shows the results. Recall that the larger the value of γ, the larger

is the number of nearly irrelevant features. Since methods that search only a one-

dimensional space cannot differentiate between relevant and irrelevant features, their

misclassification error increases with γ. On the other hand, multi-dimensional search

methods are able to cope with this situation and even improve the performance.

We observe that without regularization, however, for small values of γ, GCD–2s

(nD,NoReg) and CKL (nD) drastically overfit. We also show the training time of

the methods. Note that CKL (1D) is slower than GCD–2s (1D). 5 The same trend

can be observed in their multi-dimensional counterparts, i.e. GCD–2s (nD,NoReg)

and CKL (nD). However the training time of GCD–2s (nD) is comparable (in this

experiment) to that of CKL (nD) since GCD–2s (nD) runs cross-validation to tune

λ too. Although the large training time of multi-dimensional search methods might

be prohibitive, for some problems, these methods might be the only option if good

performance is crucial.

The (centered) alignment values for the learned kernels (on the test data) as a

function of the relevance parameter γ are shown in Figure 6.7. It can be readily seen

that multi-dimensional methods achieve higher alignment values when the number

of irrelevant features is large. Note also that the discretization is fine enough so

that the alignment maximizing finite kernel learning method AMKL can achieve

the same alignment as GCD–2s (1D).

Scalability Test

Next, we compare scalability of these methods with respect to the number of training

examples and the number of kernels. We choose the previous synthetic dataset with

γ = 40 and increase the number of training examples and the number of kernels.

As with the previous experiment we report misclassification error and training time.

Figure 6.8 shows the results.

In the first experiment, we examine the methods when they are provided with

5Obviously, the training times are implementation-dependent and the comparisons should be
taken with a grain of salt.

75

0 1 2 5 10 20 40

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

γ

m
is

cl
as

si
fic

at
io

n
er

ro
r

0 1 2 5 10 20 40
10

0

10
1

10
2

10
3

10
4

tr
ai

ni
ng

 ti
m

e
(s

ec
.)

γ

GCD−2s (1D)
GCD−2s (nD)
GCD−2s (nD,No Reg)
CKL (1D)
CKL (nD)
AMKL
LpMKL (p=1)
LpMKL (p=2)
UNIFORM

Figure 6.6: Misclassification error and training time of various methods in a 50-
dimensional synthetic problem as a function of the relevance parameter γ. Note that
the number of irrelevant features increases with γ. For details of the experiments,
see the text.

different number of training examples. While the accuracy of methods become sim-

ilar as we increase the size of training set, for small training sets GCD–2s (1D)

and AMKL have the lowest misclassification error among methods that consider

one-dimensional kernel parameters. In terms of training time, GCD–2s (1D) is

the fastest method overall. Its training time is almost comparable to that of Uni-

form, which performs no kernel learning. Among multi-dimensional search methods

GCD–2s (nD,NoReg) and GCD–2s (nD) perform better than CKL (nD). In partic-

ular, GCD–2s (nD,NoReg) is almost 10 times faster than its one-stage counterpart,

CKL (nD).

In the second experiment, we again use the 50-dimensional synthetic dataset

with γ = 40. We provide 50 training examples to all methods. One may argue

that increasing the number of kernels provided to finite MKL algorithms will im-

prove performance. Note that discretizing a multi-dimensional search space results

in a combinatorial explosion in the number of kernels. However we can still in-

crease the number of kernels over a one-dimensional space by using a finer grid and

selecting more kernels from a fixed interval. In the second experiment we choose

p Gaussian kernels, in a geometric manner, from the interval [10−3, 103], where

p ∈ {50, 100, 200, 500, 1000, 2000}. We provide these kernels to finite MKL algo-

rithms and measure misclassification error and training time. The results indicate

76

0 1 2 5 10 20 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

γ

al
ig

nm
en

t

GCD−2s (1D)
GCD−2s (nD)
GCD−2s (nD,No Reg)
CKL (1D)
CKL (nD)
AMKL
LpMKL (p=1)
LpMKL (p=2)
UNIFORM

Figure 6.7: Alignment values in the 50-dimensional synthetic dataset experiment.

that increasing the number of base kernels do not improve performance. This is

not unexpected: for γ = 40 many of the features are irrelevant and one-dimensional

Gaussian kernels can not distinguish between relevant and irrelevant features. As a

result, increasing the number of single-parameter kernels cannot help in this learning

problem.

6.2.2 Gaussian kernels – real data

We evaluate several MKL methods on various binary classification tasks from MNIST

and the UCI Letter recognition dataset, along with several other datasets from the

UCI machine learning repository (Frank and Asuncion, 2010) and Delve datasets.

MNIST. In the first experiment, following Argyriou et al. (2005), we choose 8

handwritten digit recognition tasks of various difficulty from the MNIST dataset

(LeCun and Cortes, 2010). This dataset consists of 28×28 images with pixel values

ranging between 0 and 255. In these experiments, we aim to learn a combination

of Gaussian kernels with one-dimensional parameter. Due to the large number

of attributes (784) in the MNIST dataset, we do not evaluate multi-dimensional

versions of GCD–2s and CKL (they are evaluated on a similar dataset, of smaller

scale, see below). For finite MKL algorithms, we choose 20 kernels with the value

77

50 100 200 400 800 1600
0

0.1

0.2

0.3

0.4

0.5

number of training examples

m
is

cl
as

si
fic

at
io

n
er

ro
r

50 100 200 400 800 1600
10

0

10
1

10
2

10
3

10
4

10
5

10
6

tr
ai

ni
ng

 ti
m

e
(s

ec
.)

number of training examples

GCD−2s (1D)
GCD−2s (nD)
GCD−2s (nD,No Reg)
CKL (1D)
CKL (nD)
AMKL
LpMKL (p=1)
LpMKL (p=2)
UNIFORM

50 100 200 500 1000 2000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of kernels

m
is

cl
as

si
fic

at
io

n
er

ro
r

50 100 200 500 1000 2000
10

0

10
1

10
2

10
3

10
4

tr
ai

ni
ng

 ti
m

e
(s

ec
.)

number of kernels

Figure 6.8: Scalability of various methods with respect to the number of training
examples (top) and the number of kernels (bottom). Results for the methods that
search over a continuous range are included for comparison purposes in the bottom
figures. Note that the curves of these methods are flat as they do not need a finite
set of kernels.

of σ picked from an equidistant discretization of interval [500, 50000], following the

methodology presented in Argyriou et al. (2005). In each experiment, the training

and validation sets consist of 500 and 1000 data points, while the test set has 2000

data points. We repeated each experiment 10 times. The test-set error plots for all

of the problems are shown in Figure 6.9. In order to give an overall impression of

the algorithms’ performance, we ranked them based on the results obtained in the

above experiment. Table 6.4 reports median rank of each method for the experiment

just described.

Overall, methods that choose σ from a continuous set outperformed their finite

counterparts. This suggests again that for finite MKL methods the range of σ and

78

0

5

10

odd vs. even

0

0.5

1

1.5

0 vs. 6

0

0.5

1

0 vs. 9

0

0.2

0.4

0.6

0.8

1 vs. 7

0

1

2

3

4

2 vs. 3

0

0.5

1

1.5

2

2 vs. 9

0

1

2

3

4

3 vs. 8

0

0.5

1

1.5

4 vs. 7

GCD−2s
CKL
AMKL
LpMKL (p=1)
LpMKL (p=2)
UNIFORM

Figure 6.9: Misclassification percentages for different tasks from the MNIST dataset.

Table 6.4: Median rank and training time (seconds) of various kernel learning meth-
ods obtained in experiments.

Rank Time

MNIST Letter Other data MNIST Letter

GCD–2s (1D) 1 1 3 12± 1 9± 1

GCD–2s (nD) N/A 5.5 2 N/A 770± 80

CKL (1D) 2 2 3 377± 56 590± 21

CKL (nD) N/A 3 5 N/A 1550± 200

AMKL 4.5 4.5 3 31± 1 11± 1

LpMKL (p = 1) 4.5 8 4 57± 6 21± 1

LpMKL (p = 2) 5 7 7 58± 3 22± 1

Uniform 4 6 7 10± 1 5± 1

the discretization of this range is important to the accuracy of the resulting classifier.

UCI Letter Recognition. In another experiment, we evaluated these methods

on 12 binary classification tasks from the UCI Letter recognition dataset. This

dataset includes 20000 data points of the 26 capital letters in the English alphabet.

For each binary classification task, the training and validation sets include 300 and

200 data points, respectively. The misclassification error is measured over 1000 test

points. In this experiment, we run both the one- and n-dimensional search versions

of GCD–2s and CKL. The rest of the methods learn a single parameter. Finite

MKL methods were provided with 20 kernels with σ’s chosen from the interval

[1, 200] in an equidistant manner. The number of kernels for these methods is

79

0

1

2

3
B vs. E

0

1

2

3

4

B vs. F

0

2

4

6

8

C vs. G

0

1

2

3
C vs. O

0

1

2

3

E vs. F

0

2

4

6

8

I vs. J

0

1

2

3

I vs. L

0

2

4

K vs. X

0

2

4

O vs. Q

0

1

2

3

P vs. R

0

0.5

1

1.5

2

U vs. V

0

1

2

3

4

V vs. Y

GCD−2s (1D)
GCD−2s (nD)
CKL (1D)
CKL (nD)
AMKL
LpMKL (p=1)
LpMKL (p=2)
UNIFORM

Figure 6.10: Misclassification percentages for different tasks from the UCI Letter
recognition dataset.

chosen to make their training time comparable to that of GCD–2s (1D). The plots

of misclassification error are shown in Figure 6.10. We report the median rank

of each method in Table 6.4. While the one-dimensional version of our method

outperforms the rest of the methods, the classifier built on the kernel found by the

multi-dimensional version of our method did not perform well. To further investigate

this discrepancy, we examined the value of alignment between the learned kernel

and the target label kernel (ideal kernel) on the test set. The results are shown

in Figure 6.11. The multi-dimensional version of our method achieved the highest

value of alignment in every task in this experiment. This experiment demonstrates

that high alignment values between the learned kernel and the ideal kernel do not

necessarily translate into a more accurate classifier. Aside from this observation, the

same trend observed in the MNIST data can be seen here. The continuous kernel

learning methods outperform finite MKL methods here too.

Other datasets. In the last experiment we evaluate all methods on 11 datasets

chosen from the UCI machine learning repository and Delve datasets. Most of these

datasets were used previously to evaluate kernel learning algorithms (Lanckriet et al.,

80

0

0.2

0.4

0.6

B vs. E

0

0.2

0.4

0.6

B vs. F

0

0.2

0.4

C vs. G

0

0.2

0.4

0.6

C vs. O

0

0.2

0.4

0.6

E vs. F

0

0.2

0.4

0.6

I vs. J

0

0.2

0.4

0.6

I vs. L

0

0.2

0.4

K vs. X

0

0.1

0.2

0.3

0.4
O vs. Q

0

0.2

0.4

0.6

0.8

P vs. R

0

0.2

0.4

0.6

U vs. V

0

0.1

0.2

0.3

0.4

V vs. Y

GCD−2s (1D)
GCD−2s (nD)
CKL (1D)
CKL (nD)
AMKL
LpMKL (p=1)
LpMKL (p=2)
UNIFORM

Figure 6.11: Alignment values in different tasks of the UCI Letter recognition
dataset.

2004; Cortes et al., 2009a,b, 2010; Rakotomamonjy et al., 2008). The specification

of these datasets are shown in Table 6.2. The performance of each method is shown

in Figure 6.12. The median rank of each method is shown in Table 6.4. Contrary

to the Letter experiment, in this case the multi-dimensional version of our method

outperforms the rest of the methods.

Training Times. We measured the training time required for each run and each

MKL method in the MNIST and the UCI Letter experiments. In each case, we

took the average of training time for each method over all tasks. The average re-

quired time along with the standard error values are shown in Table 6.4. Among

all methods, Uniform is fastest, which is expected, as it requires no additional

time to compute kernel weights. The GCD–2s (1D) algorithm is the fastest among

MKL methods. In these experiments our method converges in less than 10 itera-

tions (kernels). The general trend is that one-stage MKL methods, i.e., LpMKL

and CKL, are slower than two-stage methods, GCD–2s and AMKL. In these ex-

periments CKL is slower than its counterpart, GCD–2s, since it usually requires

more iterations (around 50) to converge.

81

9.5

10

10.5

11

11.5

12
banana

26

28

30

32

breast cancer

22

24

26

28

diabetes

22

24

26

28

30

32
german

16

18

20

22

24

heart

2

4

6

8

image

1

1.5

2

ringnorm

20

25

30

35
sonar

0

5

10

15

splice

2

4

6

thyroid

8

9

10

11

12

13
waveform

GCD−2s (1D)
GCD−2s (nD)
CKL (1D)
CKL (nD)
AMKL
LpMKL (p=1)
LpMKL (p=2)
UNIFORM

Figure 6.12: Misclassification percentages obtained in 11 datasets.

82

6.2.3 Non-convexity issue

In order to apply greedy coordinate descent to learn a combination of kernels that

are continuously-parameterized, such as Gaussian kernels, one needs to solve an

inner optimization problem in each iteration to find the best kernel parameter. This

problem is not convex in general. The non-convexity issue exists for both one-stage

and two-stage kernel learning (cf. problems (5.4) and (5.6) respectively). Here, we

investigate this problem numerically, by plotting the function to be optimized in the

case of a Gaussian kernel with a single bandwidth parameter when we apply GCD–

2s algorithm. In particular, we plotted the objective function of problem (5.6) with

its sign flipped, therefore we are interested in the local minima of function

h(σ) = −
〈

K(κσ), F ′((K(κ(k−1)))c)
〉
F
.

Figure 6.13 shows h(σ) for several classification problems. The function h is shown

for some iterations of some of the tasks from both the MNIST and the UCI Letter

experiments. The number inside parentheses in the caption specifies the correspond-

ing iteration of the algorithm. On these plots, the objective function does not have

more than 2 local minima. Although in some cases the functions have some steep

parts (at the scales shown), their optimization does not seem very difficult. It seems

that non-convexity of inner optimization problem does not have a major influence on

the performance of MKL algorithms, and simple solution, such as multiple restarts

stated above, are sufficient to address this issue.

6.3 Stochastic Gradient Descent vs. Greedy Coordi-
nate Descent for MKL

In this experiment, we compare stochastic gradient descent and greedy coordinate

descent for one-stage and two-stage MKL. We consider learning a combination of

Gaussian kernels.

We run GCD–1s, which is the same as CKL, SGD–1s, and GCD–2s with

single- (1D), and multi-dimensional (nD) Gaussian kernels. Each bandwidth pa-

rameter is selected from the interval [10−4, 104]. The regularization parameter is

tuned from the set {10−4, . . . , 103} using 5-fold cross validation. The stopping cri-

terion for all methods is that the change in the value of the objective function in

consecutive iterations is less than 10−3. We found that no further improvement can

83

0 5000 10000

f(
)

(a) odd vs. even, (1)

0 5000 10000

f(
)

(b) odd vs. even, (2)

5000 10000

f(
)

(c) 0 vs. 6, (1)

0 5000 10000

f(
)

(d) 0 vs. 6, (2)

0 50 100

f(
)

(e) B vs. E, (1)

0 50 100

f(
)

(f) B vs. E, (2)

0 50 100

f(
)

(g) B vs. E, (3)

0 50 100

f(
)

(h) B vs. E, (4)

Figure 6.13: The flipped objective function underlying (5.6) as a function of σ, the
parameter of a Gaussian kernel in selected MNIST and UCI Letter problems. Our
algorithm needs to find the minimum of these functions (and similar ones).

be made by using smaller thresholds. We run each algorithm 10 times, where in

each run the training and test data are chosen randomly. Error values are reported

as mean squared error. The errors obtained from various algorithms are shown in

Figure 6.14. To have an overall comparison, the median rank of these methods ob-

tained over all datasets are also shown in Table 6.5. The general trend observed in

this experiment is that alignment maximization could be beneficial in some cases.

In fact, in this experiment, alignment maximizing two-stage MKL outperformed

stochastic gradient descent and greedy coordinate descent for penalized empirical

risk minimization. Another trend is combining Gaussian kernels with one parame-

ter achieves better accuracy than combining multi-dimensional Gaussians. However,

there are various cases such as diabetes, image, splice, and thyroid datasets, in which

multi-dimensional kernel learning performs better than its one-dimensional counter-

part. Stochastic gradient descent and greedy coordinate descent performed very

similarly in this experiment. While they achieved the same rank in one-dimensional

kernel parameter search, greedy coordinate descent performed slightly better in

multi-dimensional parameter search.

84

0.1

0.2

0.3

banana

M
S

E

0.6

0.7

0.8

breast cancer

0.5

0.6

0.7

diabetes

0.5

0.6

0.7

0.8
german

0.5

0.6

0.7

heart

0

0.1

0.2

0.3

image

0.2

0.3

0.4

ionosphere

0.4

0.6

0.8

sonar

0.2

0.4

0.6

splice

0.1

0.15

0.2

thyroid

0.1

0.2

0.3

0.4

waveform

SGD−1s (1D)
CKL (1D)
GCD−2s (1D)

SGD−1s (nD)
CKL (nD)
GCD−2s (nD)

Figure 6.14: Prediction error of different methods in the Gaussian kernel experiment

6.4 Summary

In this chapter, we compared our stochastic gradient descent and greedy coordinate

descent algorithms against several MKL algorithms. We showed that for stochastic

gradient algorithms, sampling from a distribution that is proportional to the mag-

nitude of gradient can be beneficial. We showed, using synthetic and real data, that

our stochastic gradient descent MKL algorithm is comparable to state-of-the-art

algorithms designed specifically to learn polynomial kernels. We then showed that

the application of this algorithm is not limited to learning polynomial kernels. It

can also be applied to learn a combination of infinitely-many kernels. In particular,

we showed that it can be used to learn a combination of Gaussian kernels. We

then illustrated some examples, in which, greedy coordinate descent was applied to

one-stage and two-stage MKL. We showed that these methods are highly scalable

and are comparable to state-of-the-art MKL algorithms.

An interesting observation from the experiments is that while alignment can be

a good surrogate objective function in many applications, there are some cases in

85

Table 6.5: Median rank of methods in the Gaussian kernel experiment.

S
G
D
–
1
s

(1
D

)

C
K
L

(1
D

)

G
C
D
–
2
s

(1
D

)

S
G
D
–
1
s

(n
D

)

C
K
L

(n
D

)

G
C
D
–
2
s

(n
D

)

3 3 1.5 4.5 3.5 4

which using alignment might lead to overfitting.

Multiple kernel learning algorithms that we proposed in Chapters 4 and 5 are

able to efficiently learn kernel combinations when the set of base kernels consists of

exponentially or infinitely many kernels. This is in particular useful since standard

MKL algorithms that are designed to combine a finite set of kernels are not scalable

in such cases.

86

Chapter 7

Conclusion and Future Work

The problem of feature selection has been the focus of researchers in machine learn-

ing for many years. Multiple kernel learning offers a new approach to this problem

by combining kernels, and hence, underlying feature sets, in the framework of learn-

ing with kernels. In Chapter 2, we examined two variants of problem formulation

of MKL that have been widely used in the literature. In one-stage MKL, the ker-

nel function and predictor are learned simultaneously through a penalized empirical

risk minimization problem. In two-stage MKL, however, learning the kernel function

and learning the predictor happen in two separate stages, and through separate op-

timization problems. We also showed that the solution to the problem of alignment

maximization, which is not convex, can be obtained through solving an equivalent

convex optimization problem.

Early MKL algorithms focus on learning linear combination of a given set of

kernels through designing optimization problems for structural risk minimization.

These works, however, are not scalable to large datasets or large number of kernels.

Since then, most of the work has been devoted on developing faster algorithms that

can deal with large scale data. While there have been some success in handling large

datasets, there has not been much advance in the direction of developing algorithms

that deal with large number of kernels. Examining the existing algorithms reveals

that the computational complexity of most of the algorithms depends linearly on

the number of kernels. Hence, for kernel sets with exponential or infinite number of

kernels, these methods are not efficient.

In this thesis, we examined the shortcomings of current MKL algorithms and

proposed new methods to handle large number of kernels. We showed in Chapter 3

that for continuously parameterized kernels, such as Dirichlet kernels or Gaussian

87

kernels, the common practice of choosing base kernels by discretizing the parameter

space may not achieve good performance if the discretization is not fine enough.

This problem becomes more challenging when one deals with multi-dimensional

kernel parameters as the number of kernels resulting from discretization increases

exponentially. This calls for MKL algorithms that can select and combine kernels

directly from the continuous space, or methods that can efficiently combine exponen-

tially many kernels. Another important example of large kernel sets is polynomial

kernels. Learning polynomial kernels requires a MKL algorithm to combine expo-

nentially many kernels. Most of the current MKL algorithms are not scalable to

handle such large kernel sets. Yet the problem of learning polynomial kernels is

important as it enables one to perform non-linear feature selection.

In Chapter 4, we proposed a stochastic gradient descent algorithm for combin-

ing exponentially or infinitely many kernels. We also derived finite-time convergence

guarantees for this algorithm. The main part of our algorithm, which makes it pos-

sible to handle large kernel sets, is to construct an unbiased randomized estimate

of gradient with a controlled variance. We proposed a provably-correct sampling

procedure for the important problem of learning polynomial kernels. The compu-

tational efficiency of this procedure comes from its logarithmic dependence on the

size of the underlying kernel space. We also proposed efficient sampling procedures

for Gaussian kernels.

Then, in Chapter 5, we developed a greedy coordinate descent algorithm for

MKL. Greedy selection of coordinates is particularly useful when one considers con-

tinuously parameterized kernels since it becomes an optimization problem over ker-

nel parameter. The algorithm of Argyriou et al. (2005) can be considered as a greedy

coordinate descent algorithm for one-stage MKL. We proposed a similar algorithm

for two-stage MKL. We also showed the connection of the new algorithm to the

forward stagewise additive modeling framework.

The experimental results in Chapter 6 showed the efficiency of the new gradient-

based algorithms. We compared these algorithms against several state-of-the-art

MKL algorithms. We demonstrated that sampling from a distribution that is pro-

portional to the magnitude of gradient results in a speed-up compared to other

alternatives. The experiments on synthetic and real data showed that while stan-

dard MKL algorithms are not scalable to large kernel sets, the new algorithms are

able to efficiently combine such kernel sets without any compromise in accuracy.

88

7.1 Future Work

In the following, we highlight several directions to extend this work.

Sampling procedure for Gaussian kernels

One of the key contributions in this thesis is a new kernel sampling procedure when

the base kernels are tensor products of a given set of kernels (Section 4.2.1). While

the number of such kernels is exponential, the complexity of sampling procedure

is logarithmic in the number of base kernels. This results in an efficient stochastic

gradient descent algorithm for learning polynomial kernels. We also showed that

the variance of gradient estimates will remain bounded for the proposed sampling

procedure. In Section 4.2.2, we proposed a sampling procedure for Gaussian kernels

that samples kernels from a set with uncountably many kernels using an auxiliary

distribution. While the proposed sampling procedure results in an efficient MKL

algorithm with high generalization, the theoretical analysis required to guarantee

the boundedness of variance of gradient estimate is left for future work.

Stochastic gradient descent for two-stage MKL

In Section 4.3, we discussed the possibility of applying stochastic gradient descent

to two-stage MKL. However, we noticed that the gradient of the objective func-

tions discussed, i.e. alignment and Euclidean distance, does not necessarily have

all-positive or all-negative coordinates. Lack of this property makes it difficult to

design an efficient sampling procedure for two-stage MKL with the above-mentioned

objective functions. Note that we exploited this property to efficiently compute Ck−1

for learning polynomial kernels in one-stage MKL. Two directions to overcome this

problem are

1. Find suitable objective functions for two-stage MKL for which all coordinates

of gradient vector have the same sign,

2. Design a new sampling procedure that does not require this condition.

Efficient algorithms for large datasets

We developed new MKL algorithms that can efficiently combine large sets of ker-

nels. Yet the overall performance of algorithm depends also on the algorithm used

89

to find the prediction function. This is in particular important for the new stochas-

tic gradient descent algorithm proposed for MKL, since it requires the solution to

optimization problem 4.9 in all iterations. One promising direction to address this

problem is to use stochastic gradient descent to deal with large training data too.

It has been shown that the run time of stochastic gradient descent does not depend

on the number of training data, and in some cases, it even decreases as training set

becomes larger (Bottou and Bousquet, 2008; Shalev-Shwartz and Srebro, 2008). In

fact, using stochastic gradient descent to handle large datasets in MKL is not a new

matter. Orabona et al. (2010) extended the stochastic gradient descent algorithm

of (Shalev-Shwartz et al., 2007) to MKL. While their new algorithm can handle

large number of training data, it is not efficient when it comes to combining large

kernel sets as it updates all kernel coefficients in each iteration. We conjecture that

stochastic gradient descent can be applied to efficiently handle large datasets and

large number of kernels in MKL.

90

Appendix A

Proofs

In this section we present the proofs of Theorem 4.1, Proposition 4.2, and Theo-

rem 5.1. The proof of Theorem 4.1 is based on the standard proof of the convergence

rate of the mirror descent algorithm, see, for example, (Beck and Teboulle, 2003),

or the proof of Proposition 2.2 of Nemirovski et al. (2009), which carry over the

same argument to solve very similar but less general problems. We also provide

some improvements and simplifications at the end. Before giving the actual proof,

we need the following standard lemma:

Lemma A.1 (Lemma 2.1 of Nemirovski et al. 2009). Assume that Ψ is α-strongly

convex with respect to some norm ‖·‖ (i.e., (4.1) holds). Let θ1 ∈ K∩A◦, θ ∈ K∩A,

and g ∈ Rd. Define θ2 = arg minθ′∈K∩A {〈g, θ′〉+DΨ(θ′, θ1)}. Then

〈g, θ1 − θ〉 ≤ DΨ(θ, θ1)−DΨ(θ, θ2) +
‖g‖2∗
2α

.

We provide an alternate proof that is based on the so-called 3-DIV lemma.

The 3-DIV lemma (e.g., Lemma 11.1, Cesa-Bianchi and Lugosi, 2006) allows one

to express the sum of the divergences between the vectors u, v and v, w in terms

of the divergence between u and w and an additional “error term”, where u ∈ A,

v, w ∈ A◦:

DΨ(u, v) +DΨ(v, w) = DΨ(u,w) + 〈∇Ψ(w)−∇Ψ(v), u− v〉 .

Proof. Note that θ2 ∈ A◦ due to behavior of Ψ at the boundary of A. Thus, Ψ is

differentiable at θ2 and

∇1DΨ(θ2, θ1) = ∇Ψ(θ2)−∇Ψ(θ1) , (A.1)

91

where ∇1 denotes differentiation of DΨ w.r.t. its first variable. Let f(θ′) = 〈g, θ′〉+
DΨ(θ′, θ1). By the optimality property of θ2 and since θ ∈ K ∩A, we have

〈∇f(θ2), θ2 − θ〉 ≤ 0 .

Plugging in the definition of f together with the identity (A.1) gives

〈g +∇Ψ(θ2)−∇Ψ(θ1), θ2 − θ〉 ≤ 0 . (A.2)

Now, by the 3-DIV Lemma,

DΨ(θ, θ2) +DΨ(θ2, θ1) = DΨ(θ, θ1) + 〈∇Ψ(θ1)−∇Ψ(θ2), θ − θ2〉

= DΨ(θ, θ1) + 〈g +∇Ψ(θ2)−∇Ψ(θ1), θ2 − θ〉+ 〈g, θ − θ2〉 .

Hence, by reordering and using the inequality (A.2) we get

DΨ(θ, θ2)−DΨ(θ, θ1) ≤ 〈g, θ − θ2〉 −DΨ(θ2, θ1)

= 〈g, θ1 − θ2〉 −DΨ(θ2, θ1) + 〈g, θ − θ1〉

≤ ‖g‖
2
∗

2α
+ 〈g, θ − θ1〉 ,

where in the last line we used Young’s inequality1 and that due to the strong con-

vexity of Ψ, DΨ(θ2, θ1) ≥ α
2 ‖θ2 − θ1‖2. �

Theorem 4.1. Assume that Ψ is α-strongly convex with respect to some norm ‖ · ‖
(with dual norm ‖ · ‖∗) for some α > 0, that is, for any θ ∈ A◦, θ′ ∈ A

Ψ(θ′)−Ψ(θ) ≥
〈
∇Ψ(θ), θ′ − θ

〉
+ α

2 ‖θ′ − θ‖2. (4.1)

Suppose, furthermore, that Algorithm 1 is run for T time steps. For 0 ≤ k ≤ T − 1

let Fk denote the σ-algebra generated by θ1, . . . , θk. Assume that, for all 1 ≤ k ≤ T ,

ĝk ∈ Rd is an unbiased estimate of ∇J(θ(k−1)) given Fk−1, that is,

E [ĝk| Fk−1] = ∇J(θ(k−1)). (4.2)

Further, assume that there exists a deterministic constant B ≥ 0 such that for all

1 ≤ k ≤ T ,

E
[
‖ĝk‖2∗

∣∣Fk−1

]
≤ B a.s. (4.3)

1Young’s inequality states that for any x, y vectors and α > 0, 〈x, y〉 ≤ ‖x‖∗‖y‖ ≤
1
2

(
‖x‖2∗
α

+ α‖y‖2
)

.

92

Finally, assume that δ = supθ′∈K∩A Ψ(θ′)−Ψ(θ(0)) is finite. Then, if ηk−1 =
√

2αδ
BT

for all k ≥ 1, it holds that

E

[
J

(
1

T

T∑
k=1

θ(k−1)

)]
− inf
θ∈K∩A

J(θ) ≤
√

2Bδ

αT
. (4.4)

Furthermore, if

‖ĝk‖2∗ ≤ B′ a.s. (4.5)

for some deterministic constant B′ and ηk−1 =
√

2αδ
B′T for all k ≥ 1 then, for any

0 < ε < 1, it holds with probability at least 1− ε that

J

(
1

T

T∑
k=1

θ(k−1)

)
− inf
θ∈K∩A

J(θ) ≤
√

2B′δ

αT
+ 4

√
B′δ log 1

ε

αT
. (4.6)

Proof. Introduce the average learning rates η
(T)
k−1 = ηk−1/

∑T
k=1 ηk−1, k = 1, . . . , T ,

the averaged parameter estimates

θ̄(T−1) =
T∑
k=1

η
(T)
k−1θ

(k−1)

and choose some θ∗ ∈ K ∩ A. To prove the first part of the theorem, it suffices to

show that the bound holds for J(θ̄(T−1))− J(θ∗). Define gk = ∇J
(
θ(k−1)

)
. By the

convexity of J(θ), we have

J
(
θ̄(T−1)

)
− J(θ∗) ≤

T∑
k=1

η
(T)
k−1

(
J
(
θ(k−1)

)
− J(θ∗)

)
≤

T∑
k=1

η
(T)
k−1

〈
gk, θ

(k−1) − θ∗
〉

=
T∑
k=1

η
(T)
k−1

〈
ĝk, θ

(k−1) − θ∗
〉

+

T∑
k=1

η
(T)
k−1

〈
gk − ĝk, θ(k−1) − θ∗

〉
(A.3)

Notice that the first term on the right hand side above is the sum of linearized

losses appearing in the standard analysis of the mirror descent algorithm with loss

functions ĝk and learning rates η
(T)
k−1, and the second sum contains the term that

depends on how well ĝk estimates the gradient gk. Thus, in this way, it is separated

how the mirror descent algorithm and the gradient estimate effect the convergence

rate of the algorithm. The first sum can be bounded by invoking the standard bound

93

for the mirror descent algorithm (we will give the very short proof for completeness,

based on Lemma A.1), while the second sum can be analyzed by noticing that, by

assumption (4.2), its elements form an {Fk}-adapted martingale-difference sequence.

To bound the first sum, first note that the conditions of Lemma A.1 are satisfied

for θ1 = θ(k−1), θ = θ∗, g = η
(T)
k−1ĝk, since θ1 ∈ K∩A◦ (as mentioned beforehand, this

follows from the behavior of Ψ at the boundary of A). Further, note that due to the

so-called projection lemma (i.e., the DΨ-projection of the unconstrained optimizer is

the same as the optimizer of the constrained optimization problem),we can conclude

that θ(k) = θ2, where θ2 is defined in Lemma A.1. Thus, Lemma A.1 gives

ηk−1

〈
ĝk, θ

(k−1) − θ∗
〉
≤ DΨ(θ∗, θ(k−1))−DΨ(θ∗, θ(k) +

η2
k−1‖ĝk‖2∗

2α
.

Summing the above inequality for k = 1, . . . , T , the divergence terms cancel each

other, yielding

T∑
k=1

η
(T)
k−1

〈
ĝk, θ

(k−1) − θ∗
〉

≤ 1∑T
k=1 ηk−1

(
DΨ(θ∗, θ(0))−DΨ(θ∗, θ(T)) +

1

2α

T∑
k=1

η2
k−1‖ĝk‖2∗

)
. (A.4)

Let us now turn to the second sum. We start with developing a bound on the

expected regret. For any 1 ≤ k ≤ T , by construction η
(T)
k−1 and θ(k−1) are Fk−1-

measurable. This, together with (4.2) gives

E
[
η

(T)
k−1

〈
gk − ĝk, θ∗ − θ(k−1)

〉∣∣∣Fk−1

]
= η

(T)
k−1

〈
gk − E [ĝk| Fk−1] , θ∗ − θ(k−1)

〉
= 0 .

(A.5)

Combining this result with (A.3) and (A.4) yields

E
[
J
(
θ̄(T)

)
− J(θ∗)

]
≤ 1∑T

k=1 ηk−1

(
DΨ(θ∗, θ(0))−DΨ(θ∗, θ(T)) +

1

2α

T∑
k=1

η2
k−1E

[
E
[
‖ĝk‖2∗

∣∣Fk−1

]])

≤ δ + 1
2α

∑T
k=1 η

2
k−1B∑T

k=1 ηk−1

, (A.6)

where we used the tower rule to bring in the bound (4.3), the non-negativity of

Bregman divergences, and DΨ(θ, θ(0)) ≤ Ψ(θ)−Ψ(θ(0)); the latter holds as〈
∇Ψ(θ(0)), θ − θ(0)

〉
≥ 0,

94

since θ(0) minimizes Ψ on K. Substituting ηk−1 = η =
√

2αδ
BT , k = 1, . . . , T finishes

the proof of (4.4).

To prove the high probability result (4.6), notice that thanks to (4.2),{
ηk−1

〈
gk − ĝk, θ∗ − θ(k−1)

〉}
is an {Fk}-adapted martingale-difference sequence (cf. (A.5)). By the strong con-

vexity of Ψ we have

α

2
‖θ(k−1) − θ∗‖2 ≤ Ψ(θ(k−1))−Ψ(θ∗) ≤ δ.

Furthermore, conditions (4.2) and (4.5) imply that ‖gk‖2∗ ≤ B′ a.s., and so by (4.5)

we have ‖gk − ĝk‖∗ ≤ 2
√
B′ a.s. Then by Hölder’s inequality

∣∣∣〈gk − ĝk, θ∗ − θ(k−1)
〉∣∣∣ ≤ ‖gk − ĝk‖∗ ‖θ∗ − θ(k−1)‖ ≤ 2

√
2B′δ

α
.

Thus, by the Hoeffding-Azuma inequality (see, e.g., Lemma A.7, Cesa-Bianchi and

Lugosi, 2006), for any 0 < ε < 1 we have, with probability at least 1− ε,

T∑
k=1

η
(T)
k−1

〈
gk − ĝk, θ∗ − θ(k−1)

〉
≤ 4∑T

k=1 ηk−1

√√√√B′δ

α

(
T∑
k=1

η2
k−1

)
ln

1

ε
. (A.7)

Combining (A.4) with (4.5) implies an almost sure upper bound on the first sum on

the right hand side of (A.3) as in (A.6) with B′ in place of B. This, together with

(A.7) proves the required high probability bound (4.6) when substituting ηk−1 =

η′ =
√

2αδ
B′T .

�

Proposition 4.2. For t ∈ {1, . . . , n}, let `∗t : R → R denote the convex conju-

gate of `t: `∗t (v) = supτ∈R {vτ − `t(τ)}, v ∈ R. For i ∈ I, recall that κi(x, x
′) =

〈φi(x), φi(x
′)〉, and let Ki = (κi(xt, xs))t,s∈{1,...,n} be the n× n kernel matrix under-

lying κi and let Kθ =
∑

i∈I
θi
ρ2i

Ki be the kernel matrix underlying κθ =
∑

i∈I
θi
ρ2i
κi.

Then, for any fixed θ, the minimizer w∗(θ) of J(·, θ) satisfies

w∗i (θ) =
θi
ρ2
i

n∑
t=1

α∗t (θ)φi(xt), i ∈ I , (4.8)

where

α∗(θ) = arg min
α∈Rn

{
1

2
α>Kθα+

1

n

n∑
t=1

`∗t (−nαt)
}
. (4.9)

95

Proof. By introducing the variables τ = (τt)1≤t≤n ∈ Rn and using the definition

of L we can write the optimization problem (2.9) as the constrained optimization

problem

min
w∈W,τ∈Rn

1

n

n∑
t=1

`t(τt) +
1

2

∑
i∈I

ρ2
i ‖wi‖22
θi

s.t. τt =
∑
i∈I
〈wi, φi(xt)〉 , (A.8)

In what follows, we call this problem the primal problem. The Lagrangian of this

problem is

L(w, τ, α)
def
=

1

n

n∑
t=1

`t(τt) +
1

2

∑
i∈I

ρ2
i ‖wi‖22
θi

+

n∑
t=1

αt

{
τt −

∑
i∈I
〈wi, φi(xt)〉

}
,

where α = (αt)1≤t≤n ∈ Rn is the vector of Lagrange multipliers (or dual variables)

associated with the n equality constraints. The Lagrange dual function, g(α)
def
=

infw,τ L(w, τ, α), can be readily seen to satisfy

g(α) = −
(

1

2
α>Kθα+

1

n

n∑
t=1

`∗t (−nαt)
)
.

Now, since the objective function of the primal problem is convex and the primal

problem involves only affine equality constraints and the primal problem is clearly

feasible, by Slater’s condition (p.226, Boyd and Vandenberghe, 2004), if α∗(θ) is the

maximizer of g(α) then

w∗(θ) = arg min
w∈W

inf
τ∈Rn

L(w, τ, α∗(θ))

= arg min
w∈W

∑
i∈I

{
ρ2
i ‖wi‖22
2θi

−
n∑
t=1

αt 〈wi, φi(xt)〉
}
.

The minimum of the last expression is readily seen to be equal to the expression

given in (4.8), thus finishing the proof. �

Theorem 5.1. For each k ≥ 1, the sequence θ(k) obtained by Algorithm 5 satisfy

J(θ(k))− J(θ∗) ≤ 2CJ
k + 2

, (5.2)

where θ∗ is the minimizer of function J over simplex ∆1, J is assumed to be convex

and differentiable, where for all x, z ∈ ∆1 and η ∈ [0, 1] it satisfies

J((1− η)x+ ηz) ≤ J(x) + η 〈∇J(x), z − x〉+
CJ
2
η2,

where CJ is a measure of curvature of J .

96

Proof. We prove Theorem 5.1 for the case that the learning rates are set to ηk = 2
k+1 :

J(θ(k)) = J((1− ηk)θ(k−1) + ηkeI)

(assumption on J) ≤ J(θ(k−1)) + ηk

〈
∇J(θ(k−1)), eI − θ(k−1)

〉
+
CJ
2
η2
k

(line 6 in Algorithm 5) ≤ J(θ(k−1)) + ηk

〈
∇J(θ(k−1)), θ∗ − θ(k−1)

〉
+
CJ
2
η2
k

(convexity of J) ≤ J(θ(k−1)) + ηk(J(θ∗)− J(θ(k−1))) +
CJ
2
η2
k

= (1− ηk)J(θ(k−1)) + ηkJ(θ∗) +
CJ
2
η2
k.

Adding −J(θ∗) to both sides yields

J(θ(k))− J(θ∗) ≤ (1− ηk)(J(θ(k−1))− J(θ∗)) +
CJ
2
η2
k.

Let h(θ(k)) = J(θ(k))− J(θ∗) and C = CJ/2. We have

h(θ(k)) ≤ (1− ηk)h(θ(k−1)) + Cη2
k. (A.9)

We show by induction that

h(θ(k)) ≤ 4C

k + 2
.

For k = 1, it is obvious from (A.9) that h(θ(1)) ≤ C ≤ 4C/3. It remains to show

that

h(θ(k+1)) ≤ 4C

k + 3
.

From (A.9) we have

h(θ(k+1)) ≤ (1− 2

k + 2
)h(θ(k)) +

4C

(k + 2)2

≤ (1− 2

k + 2
)

4C

k + 2
+

4C

(k + 2)2

≤ 4C

k + 3
,

which concludes the proof. Note that optimizing ηk through line search does not

alter the proof and will only improve the speed of convergence of the algorithm. �

97

Appendix B

Derivations

In this section we show how the value of the scaling factor in the problem of Eu-

clidean distance minimization can be calculated to ensure that θ∗ ∈ ∆1. In the

following analysis, we consider the more general case where each kernel κj has

a scaling factor βj . The case of a single scaling factor simply follows by setting

β = maxi∈I βi. In what follows, for simplicity of notation we write K∗ instead of

K̂∗c .

Calculating the scaling factor

To ensure that θ∗ ∈ ∆1, note that the gradient along each direction must be non-

negative on the boundary of the simplex ∆1:

∂

∂θi
J(θ) =

1

n2

〈
βiKi,

∑
j∈I

θjβjKj −K∗

〉
F

≥ 0, if
∑
k∈I

θk = 1.

Divide by βi/n
2 > 0, and rearrange:∑

j∈I
θjβj 〈Ki,Kj〉F ≥ 〈Ki,K

∗〉

Divide by 〈Ki,K
∗〉F : ∑

j∈I
θjβjρij ≥ 1, ∀i ∈ I,

where ρij = 〈Ki,Kj〉F / 〈Ki,K
∗〉F > 0. To ensure that it holds for all i ∈ I, it

suffices to show ∑
j∈I

θjβj min
i∈I

ρij ≥ 1.

98

Since
∑

j∈I θj = 1, it suffices that

min
j∈I

βj min
i∈I

ρij ≥ 1,

⇐⇒ βj min
i∈I

ρij ≥ 1, ∀j ∈ I

⇐⇒ βj ≥
1

mini∈I ρij
, ∀j ∈ I

⇐⇒ βj ≥ max
i∈I

〈Ki,K
∗〉F

〈Ki,Kj〉F
, ∀j ∈ I. (B.1)

As an example, we consider Gaussian kernels of the form

Kσ(xi, xj) = exp(−Dij

σ2
), σ ∈ Σ

where

Dij = ‖xi − xj‖22,

and Σ is a bounded interval. We calculate two different values for β to ensure that

θ∗ ∈ ∆1. For continuously-parameterized Gaussian kernels condition (B.1) becomes

sup
σ∈Σ

∑n
i,j=1 K∗ij exp(−Dij/σ

2)∑n
i,j=1 exp(−Dij/σ2) exp(−Dij/δ2)

, δ ∈ Σ.

The numerator can be upper-bounded by

n∑
i,j=1

K∗ij exp(−Dij/σ
2)︸ ︷︷ ︸

≥0

≤ max
ij

K∗ij
∑
ij

exp(−Dij/σ
2).

The denominator can be lower-bounded by

n∑
i,j=1

exp(−Dij/σ
2) exp(−Dij/δ

2) ≥ exp(∆M/δ
2
m)

n∑
i,j=1

exp(−Dij/σ
2),

where DM = maxij Dij , and δm is the smallest member of Σ. Hence, β can be

chosen to be

β =
maxij K∗ij

exp(DM/δ2
m)
. (B.2)

The expression given for β in (B.2) does not depend on the number of data

points. However, in practice it may be a large value. Another expression for β can

be obtained by noting that the denominator can be written as

n+
∑
i 6=j

exp(−Dij

σ2
) exp(−Dij

δ2
),

99

since Dii = 0, ∀i. Now, to lower-bound the right-hand side we choose δ → 0,

hence the denominator can be lower-bounded by n. Also, the numerator can be

upper-bounded by

n∑
i,j=1

K∗ij exp(−Dij/σ
2)︸ ︷︷ ︸

≥0

≤ max
ij

K∗ij
∑
ij

exp(−Dij/σ
2)︸ ︷︷ ︸

≤1

≤ max
ij

K∗ijn
2

Note that for a centered kernel K∗ we have
∑n

i,j=1 K∗ij = 0. Therefore, the above

upper bound is loose. Nonetheless, the β can be chosen to be

β = nmax
ij

K∗ij . (B.3)

Effect of the number of dimensions of θ on the curvature parameter CJ

It can be shown that for the loss function in (5.9) the curvature parameter CJ does

not depend on the number of dimensions of θ. For this loss function we have

∇2J(θ) =
β

n2
M,

where

Mij = 〈Ki,Kj〉F ≥ 0, i, j ∈ I.

Hence, for the bound to hold, the parameter CJ can be chosen to be

CJ = sup
X,Y ∈∆1

β

n2
(X − Y)>M(X − Y),

where ∆1 is the unit simplex in R|I|. If Ki(X,X
′) ≤ 1, ∀i ∈ I, which holds for

instance for Gaussian kernels, we have

Mij ≤ n2 ∀i, j ∈ I.

Hence,

β

n2
(X − Y)>M(X − Y) ≤ β(X − Y)>11>(X − Y)

≤ β‖X − Y ‖21
≤ 4β,

where the last inequality holds since X,Y ∈ ∆1.

100

Bibliography

Argyriou, A., Hauser, R., Micchelli, C., and Pontil, M. (2006). A DC-programming
algorithm for kernel selection. In Proceedings of the 23rd International Conference
on Machine Learning, pages 41–48.

Argyriou, A., Micchelli, C., and Pontil, M. (2005). Learning convex combinations
of continuously parameterized basic kernels. In Proceedings of the 18th Annual
Conference on Learning Theory, pages 338–352.

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68(3):337–404.

Bach, F. (2008). Exploring large feature spaces with hierarchical multiple kernel
learning. In Advances in Neural Information Processing Systems, volume 21,
pages 105–112.

Beck, A. and Teboulle, M. (2003). Mirror descent and nonlinear projected subgradi-
ent methods for convex optimization. Operations Research Letters, 31(3):167–175.

Bottou, L. and Bousquet, O. (2008). The tradeoffs of large scale learning. In Platt,
J., Koller, D., Singer, Y., and Roweis, S., editors, Advances in Neural Information
Processing Systems 20, pages 161–168. MIT Press, Cambridge, MA.

Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge University
Press.

Brown, A. and Page, A. (1970). Elements of Functional Analysis. Van Nostrand
Reinhold Company, Windsor House, 46 Victoria Street, London S .W.1, England.

Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data:
Methods, Theory and Applications. Springer.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, Learning, and Games. Cam-
bridge University Press, New York, NY, USA.

Chapelle, O. and Rakotomamonjy, A. (2008). Second order optimization of kernel
parameters. In Proc. of the NIPS Workshop on Kernel Learning: Automatic
Selection of Optimal Kernels.

Clarkson, K. L. (2008). Coresets, sparse greedy approximation, and the frank-wolfe
algorithm. In SODA, pages 922–931.

Cortes, C., Mohri, M., and Rostamizadeh, A. (2009a). L2 regularization for learn-
ing kernels. In Proceedings of the 25th Conference on Uncertainty in Artificial
Intelligence, pages 109–116.

Cortes, C., Mohri, M., and Rostamizadeh, A. (2009b). Learning non-linear combi-
nations of kernels. In Advances in Neural Information Processing Systems, vol-
ume 22, pages 396–404.

101

Cortes, C., Mohri, M., and Rostamizadeh, A. (2010). Two-stage learning kernel algo-
rithms. In Proceedings of the 27th International Conference on Machine Learning,
pages 239–246.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20(3):273–297.

Cristianini, N., Kandola, J., Elisseeff, A., and Shawe-Taylor, J. (2002). On kernel-
target alignment. In Advances in Neural Information Processing Systems, vol-
ume 15, pages 367–373.

Do, C., Le, Q., and Foo, C. (2009). Proximal regularization for online and batch
learning. In Proceedings of the 26th Annual International Conference on Machine
Learning, pages 257–264. ACM.

Frank, A. and Asuncion, A. (2010). UCI machine learning repository.

Frank, M. and Wolfe, P. (1956). An algorithm for quadratic programming. Naval
research logistics quarterly, 3:95–110.

Gehler, P. and Nowozin, S. (2008). Infinite kernel learning. Technical Report 178,
Max Planck Institute For Biological Cybernetics.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical
Learning. Springer Series in Statistics. Springer-Verlag New York.

Hazan, E., Agarwal, A., and Kale, S. (2007). Logarithmic regret algorithms for
online convex optimization. Machine Learning Journal, 69(2-3):169–192.

Hazan, E. and Kale, S. (2011). Beyond the regret minimization barrier: an opti-
mal algorithm for stochastic strongly-convex optimization. In Proceedings of the
24th Annual Conference on Learning Theory, volume 19 of JMLR Workshop and
Conference Proceedings, pages 421–436.

He, J., Chang, S., and Xie, L. (2008). Fast kernel learning for spatial pyramid
matching. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1–7. IEEE.

Igel, C., Glasmachers, T., Mersch, B., Pfeifer, N., and Meinicke, P. (2007).
Gradient-based optimization of kernel-target alignment for sequence kernels ap-
plied to bacterial gene start detection. Computational Biology and Bioinformatics,
IEEE/ACM Transactions on, 4(2):216–226.

Jaggi, M. (2013). Revisiting frank-wolfe: Projection-free sparse convex optimization.
ICML.

Kandola, J., Shawe-Taylor, J., and Cristianini, N. (2002). Optimizing kernel align-
ment over combinations of kernel.

Kimeldorf, G. and Wahba, G. (1971). Some results on tchebycheffian spline func-
tions. Journal of Mathematical Analysis and Applications, 33(1):82–95.

Kloft, M., Brefeld, U., Sonnenburg, S., and Zien, A. (2011). lp-norm multiple kernel
learning. Journal of Machine Learning Research, 12:953–997.

Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L., and Jordan, M. (2004).
Learning the kernel matrix with semidefinite programming. Journal of Machine
Learning Research, 5:27–72.

LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit database.

Micchelli, C. and Pontil, M. (2005). Learning the kernel function via regularization.
Journal of Machine Learning Research, 6:1099–1125.

102

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. (2009). Robust stochastic
approximation approach to stochastic programming. SIAM Journal on Optimiza-
tion, 19(4):1574–1609.

Nemirovski, A. and Yudin, D. (1998). Problem Complexity and Method Efficiency
in Optimization. Wiley.

Nesterov, Y. (2010). Efficiency of coordinate descent methods on huge-scale opti-
mization problems. CORE Discussion paper, (2010/2).

Nesterov, Y. (2012). Subgradient methods for huge-scale optimization problems.
CORE Discussion paper, (2012/2).

Nguyen, C. and Ho, T. (2008). An efficient kernel matrix evaluation measure.
Pattern Recognition, 41(11):3366–3372.

Orabona, F. and Jie, L. (2011). Ultra-fast optimization algorithm for sparse multi
kernel learning. In International Conference on Machine Learning (ICML-11),
pages 249–256.

Orabona, F., Jie, L., and Caputo, B. (2010). Online-batch strongly convex multi
kernel learning. In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pages 787–794. IEEE.

Rakotomamonjy, A., Bach, F., Canu, S., and Grandvalet, Y. (2008). SimpleMKL.
Journal of Machine Learning Research, 9:2491–2521.

Richtárik, P. and Takáĉ, M. (2011). Iteration complexity of randomized block-
coordinate descent methods for minimizing a composite function. (revised July
4, 2011) submitted to Mathematical Programming.

Rockafellar, R. (1976). Monotone operators and the proximal point algorithm. SIAM
Journal on Control and Optimization, 14(1):877–898.

Schölkopf, B. and Smola, A. (2002). Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA,
USA.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. (2007). Pegasos: Primal estimated
sub-gradient solver for svm. In Proceedings of the 24th international conference
on Machine learning, pages 807–814. ACM.

Shalev-Shwartz, S. and Srebro, N. (2008). Svm optimization: inverse dependence on
training set size. In Proceedings of the 25th international conference on Machine
learning, pages 928–935. ACM.

Shalev-Shwartz, S. and Tewari, A. (2011). Stochastic methods for l1-regularized loss
minimization. Journal of Machine Learning Research, 12:1865–1892.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis.
Cambridge Univ Press.

Sonnenburg, S., Rätsch, G., Schäfer, C., and Schölkopf, B. (2006). Large scale
multiple kernel learning. The Journal of Machine Learning Research, 7:1531–
1565.

Steinwart, I. and Christmann, A. (2008). Support vector machines. Springer.

Tanabe, H., Ho, T., Nguyen, C., and Kawasaki, S. (2008). Simple but effective
methods for combining kernels in computational biology. In Research, Innovation
and Vision for the Future, 2008. RIVF 2008. IEEE International Conference on,
pages 71–78. IEEE.

103

Tomioka, R. and Suzuki, T. (2010). Sparsity-accuracy trade-off in mkl. arXiv
preprint arXiv:1001.2615.

Xu, Z., Jin, R., King, I., and Lyu, M. (2008). An extended level method for efficient
multiple kernel learning. In Advances in Neural Information Processing Systems,
volume 21, pages 1825–1832.

Xu, Z., Jin, R., Yang, H., King, I., and Lyu, M. (2010). Simple and efficient multiple
kernel learning by group lasso. In Proceedings of the 27th International Conference
on Machine Learning, pages 1175–1182.

Ying, Y., Huang, K., and Campbell, C. (2009). Enhanced protein fold recognition
through a novel data integration approach. BMC bioinformatics, 10(1):267.

Zhang, T. (2003). Sequential greedy approximation for certain convex optimization
problems. Information Theory, IEEE Transactions on, 49(3):682–691.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(2):301–320.

104

	Frontmatter
	Title Page
	Abstract
	Acknowledgements

	Table of Contents
	Introduction
	Contributions

	Background and Related Work
	Kernel Methods
	Problem Formulation of Multiple Kernel Learning
	One-stage multiple kernel learning
	Two-stage multiple kernel learning

	Related Work
	One-stage MKL methods
	Two-stage MKL methods

	Summary

	When Finite Multiple Kernel Learning Fails
	Importance of Combining the Right Set of Kernels
	Summary

	Stochastic Gradient Methods for Multiple Kernel Learning
	Stochastic Gradient Descent
	A stochastic mirror descent algorithm

	Stochastic Gradient Descent for One-Stage MKL
	Example: Learning polynomial kernels
	Example: Learning Gaussian kernels

	Stochastic Gradient Descent for Two-Stage MKL
	Summary

	Greedy Coordinate Descent Methods for Multiple Kernel Learning
	Greedy Coordinate Descent
	Greedy Coordinate Descent for One-Stage MKL
	Greedy Coordinate Descent for Two-Stage MKL
	Alignment maximization
	Euclidean distance minimization

	Summary

	Experimental Results
	Stochastic Gradient Descent for One-Stage MKL
	Effect of sampling method
	Polynomial kernels – convergence test
	Polynomial kernels – synthetic data
	Polynomial kernels – real data
	Gaussian kernels – real data

	Greedy Coordinate Descent for MKL
	Gaussian kernels – synthetic data
	Gaussian kernels – real data
	Non-convexity issue

	Stochastic Gradient Descent vs. Greedy Coordinate Descent for MKL
	Summary

	Conclusion and Future Work
	Future Work

	Proofs
	Derivations
	Bibliography

