
Learning Admissible Heuristics with Neural Networks

by

Tianhua Li

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Tianhua Li, 2022

Abstract

Machine learning has been used to solve single-agent search problems. One of

its applications is to guide search algorithms by learning heuristics. However,

it is di�cult to provide guarantees on the quality of learning from a neu-

ral network, since the resulting heuristics can be inadmissible, leading paths

to be suboptimal when the heuristic is used as part of a search algorithm.

This thesis introduces empirical methods to guarantee the admissibility (non-

overestimation) of the heuristics learned by neural networks and discusses their

application as a compression technique. As supervised learning alone is hard

to guarantee admissibility, admissibility is achieved through the combination

of three ideas: learning a classifier, adjusting the classifier quantile, and tak-

ing the minimum value of an ensemble of neural networks. The quantile and

ensemble methods are able to learn admissible heuristics either on their own

or together. These methods are able to compress a pattern database (PDB)

heuristic by several orders of magnitude with a lower loss than DIV compres-

sion. Although the average heuristic value from neural networks can be no

greater than that of the original PDB, it is significantly higher than a compa-

rable size PDB compressed from the original PDB by DIV compression.

ii

Acknowledgements

I give my sincere gratitude towards my supervisor Professor Nathan R. Sturte-

vant for his years of support. I very much appreciate that he gave me the

opportunity to study computer science and explore the new frontiers in AI.

He cares about not only my studies, but also my life. He o↵ers the best he

can to help me achieve my goals at school and in my career. To me, he is not

only my supervisor, but also a friend and mentor.

I am also grateful to Amii for providing years of funding for our research.

I thank Professor Ariel Felner and his students for giving feedback to our

research. I thank Karim Ali for maitaining Bluesky Server and solving all my

connection issues. Finally, I would like to thank all my colleagues at Moving

AI Lab for being supportive to one another.

iii

Contents

1 Introduction 1

2 Background & Related Work 6
2.1 Sample Domains . 7

2.1.1 The Sliding-Tile Puzzle 7
2.1.2 The TopSpin Puzzle 7

2.2 Pattern Databases . 7
2.3 PDB Compression . 8
2.4 Neural Networks . 10

3 Compressing PDBs with Neural Networks 13
3.1 Admissible Regression Heuristics 14
3.2 Admissible Classification Heuristics 15

3.2.1 Using Classifier Quantiles 15
3.2.2 Ensemble of Neural Networks 17

3.3 Training Improvements . 19
3.3.1 Training with Underestimated Entries 19
3.3.2 Quantile Tuning and Ensemble Combined 19

3.4 Training on Hard Data . 19

4 Learning Results 21
4.1 Regression Accuracy . 22
4.2 Classification vs. Regression 22
4.3 The 4x4 STP . 24
4.4 The 5x5 STP . 24
4.5 Topspin . 24
4.6 Distribution by ANN Models 25
4.7 Other Experiments . 26

4.7.1 Quantile . 26
4.7.2 Ensembles . 27
4.7.3 Ensembles and Quantiles 27
4.7.4 Node Expansions . 27

4.8 Summary . 28

5 Conclusion 29

References 31

A Training 33
A.1 State Representation . 33
A.2 Regression Models . 35

A.2.1 The 4x4 STP . 35
A.2.2 The 5x5 STP . 36

iv

A.2.3 The TopSpin . 37
A.3 Classification Models . 38

A.3.1 The 4x4 STP . 38
A.3.2 The 5x5 STP . 40
A.3.3 The TopSpin . 41

B Heuristic Distributions by ANN Models 43

v

List of Tables

1.1 PDB example . 3

2.1 Example PDB . 8
2.2 DIV Compression . 9
2.3 Activation Function . 10

3.1 Probability Vectors . 17

4.1 Regression Accuracy . 21
4.2 Summary results comparing all techniques (regression) 23
4.3 Summary results comparing all techniques (classification) . . . 23
4.4 Di↵erent quantiles for CNN 1-7 and 8-15 26
4.5 Min of ensembles . 27

vi

List of Figures

1.1 Search example . 2

2.1 3x3 STP Example . 6
2.2 Activation Function Graphs 10
2.3 ANN Example . 11

3.1 Hypothetical output data from a classifier 16
3.2 Cumulative distribution of hypothetical output data from a

classifier . 16
3.3 Left and right 4x4 Sliding Tile Puzzle (STP) states 18

4.1 Prediction Distribution for 1-7 PDB in 4x4 STP 25

A.1 3x3 STP Representation . 33
A.2 4x4 STP Representation . 34
A.3 Topspin Representation . 34

B.1 Prediction Distribution for 8-15 PDB in 4x4 STP 44
B.2 Prediction Distribution for the 1st PDB in 5x5 STP 44
B.3 Prediction Distribution for the 2nd PDB in 5x5 STP 45
B.4 Prediction Distribution for the 3rd PDB in 5x5 STP 45
B.5 Prediction Distribution for the 4th PDB in 5x5 STP 46
B.6 Prediction Distribution for the 0-7 PDB in TopSpin 46
B.7 Prediction Distribution for the 0-7 PDB in TopSpin 47

vii

Chapter 1

Introduction

As a traditional research area in artificial intelligence, search is a process of

finding solutions to unsolved problems. A search algorithm finds a path from

a start state to a goal state. In the modern society we are living in, we are

using search algorithms everyday without even noticing. Imagine that you are

driving from Edmonton to Regina. Edmonton is your start state and Regina is

your goal state. You would probably plan a path before you depart by running

a search algorithm on Google Maps. Once the path is planned, you are ready

to go. Obviously, e�cient search algorithms, which immediately inform you

and instantly plan a new route for you when you accidentally make a wrong

turn, make our lives more convenient. Search is a research field where we

solve path-finding problems, and, more often than not, we are interested in

searching for the shortest or optimal path in a timely manner.

Some problems are too di�cult to solve e�ciently as the search spaces

are exponentially large. To overcome this, researchers have developed several

enhancements, one of which is to use a heuristic. Heuristic search is the method

of solving pathfinding problems with the help of heuristic functions. Single-

agent search is a sub-area of heuristic search. Single-agent search algorithms

such as A* [12] and IDA* [17] are guided by heuristic functions to find the

optimal path from a start state to a goal state. A heuristic function points

the search algorithm in the right direction by estimating the distance from a

state to a goal state. Figure 1.1 shows four cities and the distances between

any two adjacent cities. Suppose we are in Edmonton and would like to go to

1

Figure 1.1: Search example

Regina. The shortest path is to go to Saskatoon first, and then go to Regina

from Saskatoon. A heuristic function is a mapping from a given state to a

number, a distance estimate from a given state to the goal state. A valid

heuristic function in this example is

h(s) =

8
>>><

>>>:

730 if s = Edmonton

750 if s = Calgary

230 if s = Saskatoon

0 if s = Regina

In addition to the shortest path from Edmonton to Saskatoon to Regina

in this example, another path is Edmonton-Calgary-Regina. An important

question in search is how to find optimal solutions, i.e., find the shortest path

and avoid all other suboptimal paths. An admissible heuristic can guarantee

an optimal solution will be found. A heuristic function is said to be admissible

if it never overestimate the cost from a given state to a goal state. The heuristic

function above is admissible while the below is not

h(s) =

8
>>><

>>>:

10000 if s = Edmonton

750 if s = Calgary

3000 if s = Saskatoon

0 if s = Regina

With this heuristic function, a search algorithm using the heuristic as a

guidance will return the suboptimal path Edmonton-Calgary-Saskatoon as the

2

0 (Edmonton-Regina) 782
1 (Saskatoon-Regina) 258
2 (Calgary-Regina) 757
3 (Regina-Regina) 0

Table 1.1: PDB example

estimated cost is too high from Saskatoon to Regina. After a search Edmonton

is expanded, the search algorithm is faced with choosing between Saskatoon

and Calgary to expand. Since the estimated cost, or heuristic, from Calgary to

Regina is much lower than that from Saskatoon to Regina, Calgary seems more

promising to the algorithm. As a result, the search algorithm expands Calgary,

finds the destination Regina, and returns a suboptimal solution Edmonton-

Calgary-Saskatoon.

A perfect heuristic function gives the shortest distance from a given state

to a goal state. The perfect heuristic function for this example is

h(s) =

8
>>><

>>>:

782 if s = Edmonton

757 if s = Calgary

258 if s = Saskatoon

0 if s = Regina

With a perfect heuristic function on hand, we can find shortest path by moving

to states with the lowest costs because the lowest cost corresponds to the

shortest distance as the cost estimation is accurate. It is highly e�cient as

a search algorithm never waste e↵orts expanding a state not in the optimal

solution.

There are various kinds of heuristics. Some heuristics, such as Manhattan

Distance, can be computed at runtime, while some are precomputed and loaded

into memory when the algorithms are running. An example of precomputed

table-based heuristics are pattern databases (PDBs) [5]. In the simplest form,

a PDB is a table of numbers. The indices of the table entries corresponds to

states in a problem of interest, and the numbers are cost or distance estimates

from the current state to the goal state. Table 1.1 is a PDB for the search

example.

One problem of using table-based heuristics is that they can be too large to

3

fit into memory, and thus cannot be e↵ectively used at runtime. The standard

way to overcome this di�culty is to compress heuristics to fit into memory.

A variety of techniques have been suggested. For instance, DIV and MOD [9]

approaches are used to compress PDBs. These compressing techniques strive

to maintain admissibility. That is, they try not to overestimate the heuris-

tics as overestimation would lead to suboptimal solutions. Recently, neural

networks have been used to learn from PDBs and represented heuristics. Al-

though neural networks as compression methods have shown promising results

[23], they either are not be able to maintain admissibility or require additional

techniques including using hash tables to maintain admissibility.

This thesis introduces two compression methods to learn admissible heuris-

tics with neural networks for use in finding optimal solutions to single-agent

heuristic search problems. The two methods can be applied independently or

together to preserve admissibility. The first method is to use a classifier instead

of regression to learn a mapping from states to heuristics. With a classifier, we

can always find at least one quantile level for which admissible heuristics can

be produced. The second method is to use an ensemble of neural networks.

By taking the minimum value from multiple (usually two) neural networks,

we can guarantee the property that the resulting heuristics are admissible.

Our methods have higher average heuristic values than existing compression

approaches.

According to Korf’s finding [18] [4], the larger the size of a PDB, the more

e�cient it is for IDA* to solve a problem. With the methods in this thesis, we

are able to generate fewer nodes and improve the e�ciency of search algorithms

while keeping the sizes of PDBs unchanged.

Overall, we make several contributions in this thesis. First, we present a

novel quantile tuning and ensemble methods to guarantee admissible heuris-

tic. Second, we treat the learning problem as a classification rather than a

regression problem. This significantly improves heuristic values. As we will

show later, the heuristic learned with a regression method is very weak by

both quantile tuning and ensemble approaches. Finally, we introduce a novel

training method, with which PDBs can be further compressed and less mem-

4

ory is required. We first extract “hard data”, which is a fraction of the original

PDB, and then train neural networks specifically on those data.

5

Chapter 2

Background & Related Work

A heuristic search problem is defined by {G = {V,E}, s, g, c, h}, where G is

a graph with vertices V and edges E, s and g are vertices that corresponds

to a start state and a goal state, c is a cost function which gives the cost of

an edge, and h is a heuristic function which estimates the cost from a given

state to the goal state. The problem is to find a shortest path from s to

g. Let h
⇤(v) be the shortest distance from v 2 V to g, then h is admissible

if 8v 2 V , h(v)  h
⇤(v) and consistent if 8a, b 2 V , h(a)  c(a, b) + h(b).

For problems such as the sliding tile puzzle and Rubik’s cube, whose state

spaces are too large to fit in memory, the state spaces are given implicitly,

i.e., a successor operator is used to transition a current state to the next state

instead of storing G. A* [12] and IDA* [17] are both admissible algorithms

that will find optimal paths if the heuristic is admissible. A* might re-expand

some nodes when the heuristic is not admissible, but will not re-expand any

nodes when the heuristic is consistent .

Figure 2.1: 3x3 STP Example

6

2.1 Sample Domains

2.1.1 The Sliding-Tile Puzzle

The Sliding-Tile puzzle (STP) is a classic problem domain in AI research. The

common versions of STP are 4x4 and 5x5 STP. The STP consists of a square

frame containing a set of numbered tiles. The legal actions are to swap the 0

numbered tile horizontally or vertically with an adjacent tile within the frame.

The goal is to put all those numbered tiles in order.

2.1.2 The TopSpin Puzzle

The (n, r) Topspin puzzle has n tokens arranged in a ring. The start state is

a state where n tokens are arranged randomly. A valid action is to reverse the

order of any r consecutive tokens. The goal state is a state where all tokens

are in ascending order.

2.2 Pattern Databases

Some heuristics are computed at runtime, while some are stored using addi-

tional memory. An example of the heuristic computed at runtime is Manhant-

tan distance. In the STP, the Manhanttan distance is the sum of the least

number of actions for each tile in a given state to move to the correct position

in the goal state. An example of a heuristic that requires memory is a Pattern

Database [5], a table-based heuristic commonly used in exponential domains.

A PDB is a lookup table that stores a cost estimate from a state to a goal

state. A pattern is a subproblem of the original state representation. During

search, a state is abstracted, and then a ranking function [21] is used to convert

the abstract state into a unique integer, which indexes the state in a lookup

table storing the distance from the abstract state to the abstract goal. In 3x3

sliding tile puzzle, a state is a sequence of numbers. For instance, state (2 0

5 3 8 7 4 1 6) is the left configuration in Figure 2.1. Its corresponding 4-tile

pattern that abstracts away tiles 4-8 is (2 0 - 3 - - - 1 -) as can be seen in the

right configuration in Figure 2.1.

7

Rank 0 1 2 3 ... 998 999
Heuristics 12 8 10 150 ... 41 55

Table 2.1: Example PDB

When the original problem is solved, the abstract problem must have been

solved as well. As the number of moves to solve the abstract problem is no

greater than that to solve the original problem, we can use the number of moves

required to solve the abstract problem as a heuristic function that provides us

with the lower bound to solve the original problem. An example of a PDB is

shown in Table 2.1. The first row is the rank of a state and the second row is

the corresponding heuristic. A rank is a single integer number that represents

a state. This is achieved by applying a ranking function to a state.

Numerous PDB enhancements have been developed. Two notable enhance-

ments are additive PDBs [8], which have smaller values in each PDB, but

multiple PDBs can be added together while still guaranteeing an admissible

heuristic. Another common approach with PDBs is to only store the delta

between the computed PDB value and an inexpensive base heuristic. At run-

time the original value can be restored by adding the stored delta to the base

heuristic [8], [24]. This reduces the total number of unique values in the PDB,

which is important in our approach below.

2.3 PDB Compression

One problem of using table-based heuristics such as PDBs is that PDBs can be

too large to fit into memory [7] [15], even though the state spaces abstracted by

PDBs are much smaller. The problem can be overcome by compressing PDBs.

Compression has been widely studied for memory-based heuristics [9] [1] [2] [11]

and PDB compression approaches have been developed. DIV compression [9]

merges k adjacent entries in a PDB by taking the minimum of those k entries.

Similarly, MOD compression [9] merges every n

k
entry in a PDB by taking the

minimum of those k entries, where n is the total number of entries. DIV and

MOD compression [9] are able to compress a PDB to be k times smaller. The

8

Rank 0 1 ... 449
Heuristics 8 10 ... 41

Table 2.2: DIV Compression

e↵ectiveness of these approaches depends on action dependencies in the state

space [13] and help determine the e↵ectiveness of compressing large PDBs. An

example of DIV compression when k = 2 is shown in Table 2.2. The heuristic

of the state with rank 3 is 150 in the original PDB. After it is compressed with

DIV by a factor of 2, the state with rank 3 is merged with the state with rank 2

by taking the minimum of their heuristics. When referring to the compressed

PDB, we look for the heuristic for rank 1 (3 divided by 2), which is 10. The

e↵ectiveness of these approaches depends on action dependencies in the state

space; compressing a significantly larger PDB may be no more e↵ective than

building a smaller PDB directly since the loss can be huge, as can be seen from

the example (the heuristic decreases from 150 to 10). Moreover, the heuristics

in a compressed PDB are no greater than those in the original PDB.

Relatively little work has been done on using artificial neural networks

(ANNs) to learn admissible heuristics, with one exception of work by as the

primary past approach. This approach is called ADP [23] for ANNs, decision

trees, and partitioning. This approach requires significant engineering e↵orts

to produce admissible heuristics. This includes a specialized loss function

to penalize overestimates, using a decision tree and smaller PDBs to classify

subsets of states, followed by using an ANN at the leaves of the decision tree

to train on a small subsets of problems. Finally, any states that still return

inadmissible heuristics are placed in a hash table. Overall, ADP is complex,

requiring multiple di↵erent approaches to achieve admissibility. The work also

predates the current advances in ANNs. Thus, there is significant room for

improvement.

9

Activation Function f(x)
ReLU max(0, x)

Logistic 1
1+e�x

TanH e
x�e

�x

ex+e�x

Table 2.3: Activation Function

2.4 Neural Networks

ANNs are inspired by biological neurons. In the simplest case a fully-connected

neuron is a composition of a linear function followed by a nonlinearity e.g.

tanh or ReLU [22], logistic, or softmax. The ReLU activation function is a

piecewise function that will output the input value directly when the input

is positive, while 0 when the input is non-positive. The logistic (or sigmoid)

activation function and tanh are similar. They are both S-shaped real function.

However, the logistic function is bounded between 0 and 1, whereas tanh ranges

from -1 to 1. The logistic activation function is typically used for binary

classification problems. The function expressions of the ReLU, the logistic,

and TanH are shown in Table 2.3 and their graphs are shown in Figure 2.2.

The softmax activation function, transforming a vector of numbers to a vector

of probabilities, is typically used for multi-classifiction problems. In a vector

v with length j, the probability of the ith class is P (vi) =
e
viPj
1 e

vj
.

Typically, deep ANNs have multiple hidden layers which increases repre-

sentation power. ANNs typically use fully connected layers, which are general

(a) ReLU (b) Logistic (Sigmoid) (c) TanH

Figure 2.2: Activation Function Graphs

10

Figure 2.3: ANN Example

and do not assume any specific structure of data. Figure 2.31 shows a 3-layer

ANN. The input layer has three neurons, the first layer and second layer has

five and four neurons, respectively. The output layer has two neurons. By

contrast, convolutional layers use a specialized type of architecture that tries

to exploit the structure of 2D data such as images or game boards. Convo-

lutional layers consist of multiple 2D filters called kernels. Each kernel learns

a translation invariant feature by applying the kernel simultaneously to every

k⇥ k subset of the original image. In general, Convolutional Neural Networks

(CNNs) consist of multiple convolutional layers followed by fully connected lay-

ers [19]. In each layer, an activation function is applied. Activation functions

such as ReLU and logistic are widely used in many settings. ANNs have strong

representational power. Theoretically, ANNs can approximate any Lebesgue

integrable function defined on a compact set [20]. Furthermore, Chollet [3]

draws a parallel connection between ANN and locality-sensitive hash tables.

However, increasing the approximating power of an ANN requires exponential

growth of the number of neurons [6]. In practice, the size of ANN is bounded

by GPU memory. A more practical approach to improve the approximating

power of an ANN is to combine predictions of multiple ANNs, i.e. ensembling.

In particular, boosting [10] is a well-known approach that creates ensembles by

1
https://trailhead.salesforce.com/en/content/learn/modules/deep-learning-and-

natural-language-processing/understand-dl

11

training each new model on the data points that were misclassified by previous

ANNs.

12

Chapter 3

Compressing PDBs with Neural
Networks

While the larger context of the work in this thesis is to solve heuristic search

problems e�ciently, the purpose of this thesis is to build admissible heuristic

with ANNs. There are three tasks in this problem. The main problem is

to build a h such that 8v, h(v)  h
⇤(v). We do this by training ANNs on

PDBs and ensuring the inequality holds for the learned ANNs with respect

to the PDBs. Since PDBs are admissible, h is admissible. We treat the

problem as a supervised learning problem where the input and output are

patterns and corresponding heuristics of PDBs. Unlike typical supervised

learning problems, overfitting is not an issue in the problem, because the

goal is not to generalize well beyond training data, but to learn heuristics as

accurate as possible from PDBs [16]. The admissible h is one or more ANNs

trained on PDBs.

The second task of this problem is to make the sizes of the ANNs that

produce admissible heuristic smaller than those of the original PDBs. There-

fore, the ANN approach works as a compression technique. This is useful

when table-based PDBs are too large to fit into memory and thus extremely

ine�cient for search algorithms to use. We compare the ANN compression

approach with DIV compression and report in the experiment chapter the ef-

fectiveness of these two approaches measured by the average heuristic value.

The average heuristic value might not be a good measurement for the quality

of heuristic in some cases such as when comparing very di↵erent heuristics

13

or inconsistent heuristics [14]. However, in our problem setting, we use the

same PDBs consistently throughout our experiments. Therefore, the average

heuristic value should be indicative of the quality of heuristic.

The third task is to use ANN as a guide to search and find optimal solutions

e�ciently. In this thesis, we address the first two tasks. Our colleagues are

working on the third task. They have developed a batch A* algorithm which

can use an ANN more e�ciently during search.

In this chapter we focus on our approaches which maintain admissibility.

We will give full architecture details in the experiment results section.

3.1 Admissible Regression Heuristics

When using regression to learn a PDB heuristic, the input is a multi-channel

binary image, while the output is a real number. The range of the output de-

pends on the activation function of the last layer in a neural network. For in-

stance, the range of the output is [0,1) when using RELU activation function,

while (0, 1) when using the logistic activation function. In our experiments,

we use the RELU activation function. When using regression, some portion

of the learned heuristic is likely to be inadmissible, especially with a mean

squared error loss function. We tackle this by applying an a�ne transform

to build a new heuristic to guarantee admissibility. Let the PDB heuristic be

h, heuristic learned through regression hR̂, and the heuristic after applying

a�ne transformation hR. Note that the heuristic of the goal state must be

0. This can be ensured by subtracting hR̂(g) from the heuristic of each state.

Next, to maintain admissibility for a single state, first, we compute the value

↵v = argmax
!
(hR̂(v)� hR̂(g))!  h(v) for each state v. Second, for all v 2 V

we choose ↵ = minv2V ↵v and let hR(v) = (hR̂(v)� hR̂(g))↵. hR is admissible

since hR(v)  h(v) for any v 2 V .

Although admissibility can be guaranteed by applying this a�ne transform,

we found that hR is still a very weak heuristic. We obtained a much stronger

heuristic by treating the task as a classification problem instead of a regression

problem. When using classification, the input is a multi-channel binary image,

14

while the output is a vector of probabilities on classes that corresponds to

heuristic values.

3.2 Admissible Classification Heuristics

We now introduce quantile tuning and ensemble of neural networks to preserve

admissibility of classifier based heuristics.

3.2.1 Using Classifier Quantiles

When learning a classifier, the ANN produces one output for each class that

is learned. After being passed through a soft-max function, this gives a prob-

ability distribution on each class. Typically, the final classification returned is

the class with the largest probability. This is illustrated in Figure 3.1, which

shows hypothetical classifier output when classifying a single state. After ap-

plying softmax activation function in the last layer, a classifier output a vector

of probabilities. The class with the highest probability is class 3, which would

normally be returned as the classification value for this input. However, when

the actual heuristic is less than 3, the classifier overestimates the heuristic and

causes inadmissibility. This problem can be overcome by tuning a quantile.

As the cumulative probability distribution across heuristic values, shown in

Figure 3.2, is non-decreasing for higher class, the quantile can make the clas-

sifier output any class by letting the classifier returns the highest class whose

corresponding probability is no greater than the quantile. For instance, sup-

pose the quantile is 0.5; then the classifier will return class 2. Thus given a

classifier, we can tune the prediction to be more or less aggressive by tuning

the quantile used for the final prediction value. Using a smaller quantile will

return a smaller heuristic, at the cost of loss of heuristic accuracy, as some

states that originally had correct heuristic values will then produce underesti-

mates. Importantly, using a quantile of 0 will return the zero heuristic, which

is always admissible.

More precisely, assume that a classifier hĈ has been learned through train-

ing on the input heuristic h that has maximum value hmax. Let PhĈ
(v, i) be

15

Figure 3.1: Hypothetical output data from a classifier

Figure 3.2: Cumulative distribution of hypothetical output data from a classifier

the classifier probability of the ith class on state v. Then, let ChĈ
(v, q) return

the class (heuristic) that cumulatively, from small to large classes, has at least

probability q. That is ChĈ
(v, q) = argmin

i
(
P

i

j=0 PhĈ
(v, j)) � q.

We can use ChĈ
(v, q) to build a new heuristic hQNT(v) which is guaranteed

to be admissible. This is done in two steps. First, we compute the maximum

quantile qv which guarantees an admissible heuristic for state v. For each

v 2 V let qv = argmax
q20...1 ChĈ

(v, q)  h(v). Then, we let q⇤ be the quantile

that guarantees an admissible heuristic for all states; q⇤ = minv2V qv. Putting

this together, hQNT(v) = ChĈ
(v, q⇤). This is the largest heuristic that can be

returned, using this approach, that is guaranteed to be admissible on every

state.

One might fear that q
⇤ would be too small to be useful in practice, but

16

heurisitics 0 1 2 3 4 5 6 7 8 9
Pleft 0 0 0 0 5.56e-43 1.09e-32 3.98e-24 2.07e-18 1.03e-04 0.99
Pright 3.86e-33 1.63e-18 0.99 1.30e-03 5.50e-11 2.94e-21 3.24e-42 0 0 0

Table 3.1: Probability Vectors

even small values of q⇤ can be e↵ective. Consider an actual example using

the sliding-tile puzzle (STP) states in Figure 3.3. The PDB values of the left

and right states are 9 and 1 respectively after subtracting Manhattan Distance

(MD). The ANN probability output for each class is given in Table 3.1. Using

q = 0.5, h(Pleft) = 9 because C(Pleft, 8) ⇡ 0.01 < 0.5 and C(Pleft, 9) =

0.99 � 0.5. h(Pright) = 2 for q = 0.5. But, using q
⇤ = 1.63e�18 results in

h(Pright = 1) which is admissible. v(Pleft, 1.63e�18) is then 7 instead of 9,

causing a small loss, but the heuristic is admissible. Although the quantile

margins are small, the computations are deterministic, so there is no danger

of losing admissibility.

Theorem 1. There must exist some q
⇤ such that hQNT is admissible.

Proof. q
⇤ = 0 results in a heuristic of 0 for every state, which is admissible.

Thus, it follows that some q
⇤ � 0 will result in hQNT being admissible.

In general, to use the quantile tunning method, we first train a classifier,

then for each state, we compute the largest quantile that makes the heuristic

admissible. Lastly, we take the minimum of all these quantiles, and use that

quantile level for all the states.

3.2.2 Ensemble of Neural Networks

Our second method that preserves admissibility is to use an ensemble of ANNs,

where the returned heuristic is the minimum of the heuristic returned by each

ANN in the ensemble. Formally, we build a set H = {h0, h1, . . . , hk} of heuris-

tics which are combined for the ensemble heuristic:

hENS(H)(s) = mini20...|H| hi(s)

While the set H could be composed of any set of heuristics, we will build

them by training successive ANNs on states that are inadmissible in the current

17

8

12 9 15 11

13 10 14

12 13 14 15

8 9 10 11

Figure 3.3: Left and right 4x4 Sliding Tile Puzzle (STP) states

heuristic. In particular, givenHt after t training steps, Ht+1 is built by training

hi+1 on the states S = {s | hENS(Ht)(s) > hPDB(s)}. The overall procedure is

started by training h0 on hPDB.

Lemma 1. Adding hi+1 to a set of heuristics Hi (creating set Hi+1) cannot

increase the number of states with inadmissible heuristics in hENS(Hi).

Proof. The heuristic of any state s computed by hENS(Hi)) is the minimum of

the heuristics h 2 Hi. Thus, adding an additional heuristic can only decrease

the heuristic value for any state s, not increase it.

Given this, it is easy to show that this process can learn an admissible

heuristic.

Theorem 2. Assuming that (1) ANN heuristics are deterministic and (2) that

an ANN can also be trained to learn at least one state in the input set, then

there exists some value k for which hENS(Hk) will be admissible.

Proof. Since each new ANN heuristic added to the ensemble makes at least

one new state admissible and no new states inadmissible, the set H will only

require a finite number of heuristics before hENS(H) is admissible.

As with the quantile method, the ensemble method is guaranteed to pro-

duce an admissible heuristic. In our experiments two ANNs were su�cient

in an ensemble to achieve admissibility, even on a heuristic with 500 million

unique states.

18

3.3 Training Improvements

3.3.1 Training with Underestimated Entries

The two approaches described above are su�cient to preserve admissibility of

heuristics and can be generally applied to learn almost any PDBs. This section

discusses ways to improve the quality of heuristics and further compress PDBs

based on the two approaches.

The approach of taking the minimum of multiple actively trained ANNs

focuses on dealing with overestimated entries to achieve 100% admissible rate.

Underestimated entries do not a↵ect admissibility, nonetheless, they do a↵ect

the quality of heuristics. One way to improve the quality of heuristics is to

include part or all of the underestimated entries in the dataset that a suc-

ceeding ANN will be trained on. The underestimated entries can be added as

a new class or grouped into the highest class in the original training set. If

the succeeding ANNs together with preceding ones are su�cient to preserve

admissibility, adding underestimated entries will improve the average heuristic

value predicted by ANNs.

3.3.2 Quantile Tuning and Ensemble Combined

Another way to improve the heuristic from the ANN is to combine the quantile

and ensemble methods together. Using some q > q
⇤ increases the average

heuristic value in an ANN while still reducing the number of overestimated

entries. This then reduces the training set required for the next ANN in the

ensemble.

3.4 Training on Hard Data

Training on hard data is a slightly di↵erent way to train neural networks

that will be later ensembled for use. Hard data is defined as a subset of

data that an ANN, after having been trained on the whole dataset, tends to

overestimate. An ANN overestimates some heuristics to minimize the overall

mean square error. Such data points are problematic, as they cause ANNs

19

to produce inadmissible heuristics. Training an ANN on the hard data is one

way to resolve the issue. Since the number of hard data points are much

fewer than the whole dataset, it is much easier for an ANN to preserve the

admissibility on the hard data. In our tests, the heuristic values for hard data

are relatively small because entries usually overestimated by ANNs tend to

have small heuristic values. Therefore, once an ANN has been trained on the

hard data, it already achieves relatively high admissible rate (the number of

admissible entries over the total number of entries) for the whole dataset. Then

we may apply the ensemble method to preserve admissibility for the whole

dataset. Training specifically on hard data not only achieves our primary goal

of preserving admissible heuristics, but also requires much less training time.

But, we must find the hard data first.

The process of finding hard data is similar to the process of training mul-

tiple models in an ensemble. First, we train an ANN on all data. Then,

we train a second ANN on entries overestimated by the first ANN. The first

group of hard data is the entries overestimated by the second ANN on the

entire dataset. Instead of training the third ANN on the entries overestimated

by both the first and second ANN, we train it on the first group of hard data

to obtain the second group of hard data by gathering the overestimated entries

by the third ANN on the entire dataset. The process repeats until a learn-

ing ANN outputs no inadmissible heuristic. As the learning process goes, the

number of hard data points gets fewer and fewer, and thus the learning task

becomes easier and easier. However, when only two models are trained and

enough to ensemble an admissible heuristic, the hard data training is the same

as the normal ensemble training.

20

Chapter 4

Learning Results

The aim of this thesis is to build admissible heuristic from PDBs with ANNs

and show that this method can achieve better compression than standard

approaches. In this chapter, we describe the training process. We train all the

ANN models sequentially with Pytorch on CUDA 10.1 using one 2080ti GPU.

Experiments are conducted on the 4x4 Sliding Tile Puzzle (STP), the 5x5

STP, and 16-tile TopSpin puzzle. Each of these domains can be represented as

a permutation of numbers. The STP is a grid of numbers that must be sorted

while the TopSpin puzzle is a continuous loop of numbers that must be sorted

by rotating 4 adjacent tiles. PDBs were built using publicly available open-

source software 1. Domain abstractions we use for the experiments include

tiles 1-7 and tiles 8-15 in additive PDBs taken as a delta over Manhattan

distance (MD) in 4x4 STP, 4 6-tile additive PDBs delta over MD in 5x5 STP,

and a 0-7 tile non-additive PDB in TopSpin. In a PDB, we use one byte to

store a heuristic value. Therefore, the number of entries in a PDB is the size

of the PDB in byte. The sizes of the PDBs in our experiments are shown in

Table 4.2 and 4.3.
1
https://github.com/nathansttt/hog2/tree/PDB-refactor

Domain PDB Pattern Accuracy (%) Accu. after applying a floor func. (%) No. of Overestimated Entries

4x4 STP
1-7 54.4713 99.9999 5,851
8-15 61.2074 99.9861 72,115

5x5 STP

1, 5-6, 10-12 12.1656 99.9997 39
2-4, 7-9 9.2832 99.9995 670
13-14, 18-19, 23-24 96.9799 99.9998 195
15-17, 20-22 2.6401 99.9998 285

TS 0-7 50.6427 95.9072 21,238,078

Table 4.1: Regression Accuracy

21

We use mean squared error (MSE) loss function for all regression models

whereas cross-entropy loss function for all classification models. We use ReLU

activation function for all the layers in all the models except the last layer

of classification models, where we use softmax activation function instead. In

addition, we use Adam optimizer with a learning rate of 0.01 as well as 3⇥ 3

kernels and a stride of 1 for all the convolutional layers in our models. When

linear layers follow convolutional layers, reshaping is needed to ensure the di-

mensions agree. Patterns with heuristics i are labeled as the i-th class in

TopSpin and the i

2 -th class in STP since there are no odd heuristics in ad-

ditive STP heuristics after taking the delta over MD. Quantile and ensemble

combined models use the same structure as ensemble models. The quantile

level for the combined quantile and ensemble models are set to 0.02. It is im-

portant to note that we do not tune the parameters, though parameter tuning

might improve the heuristic results. The input representation, structures of

our models, and the details of training can be found in Appendix A.

4.1 Regression Accuracy

We define accuracy as accurary = 1 � the number of overestimated entries

the number of total entries
. From

Table 4.1 we find that applying a floor function to the prediction can im-

prove the accuracy to a great extent. This means that for approaches such as

ADP using a hash table to store overestimated entries, the required amount

of memory can be significantly reduced by merely applying a floor function.

A small amount of memory is needed to store overestimated entries in the 5x5

STP problem domain since there are only 39, 670, 195, and 285 overestimated

entries, respectively. However, it requires a large amount of memory to store

overestimated entries with a hash table in Topspin puzzle.

4.2 Classification vs. Regression

When we compare the classification with regression, it is clear (Table 4.3 and

Table 4.2) that our novel approaches (quantile, ensemble, and quantile and en-

semble combines) with classification outperforms those (a�ne transform and

22

Heuristic Size (MB) Avg. Heuristic Value
Domain PDB Pattern hPDB hDIV hAFF hENS hPDB hDIV hAFF hENS

5x5 STP

1, 5-6, 10-12

127.51 1.27 1.27 1.27

2.0773 1.7219 0.0079 0.5389
2-4, 7-9 0.9639 0.3050 0.0006 0.0293
13-14, 18-19, 23-24 0.9639 0.2673 0.0079 0.0108
15-17, 20-22 0.9639 0.3361 0.0519 0.0608

4x4 STP
1-7 57.66 0.58 0.57 0.54 3.9122 2.0825 0.3011 1.4802
8-15 518.92 5.19 5.12 5.12 3.9728 1.6521 0.3363 1.0549

TS 0-7 518.92 5.18 5.18 5.18 9.1350 6.9862 5.5465 4.2460

Table 4.2: Summary results comparing all techniques (regression)

Heuristic Size (MB) Avg. Heuristic Value
Domain PDB Pattern hPDB hDIV hQNT hENS hQ+E hPDB hDIV hQNT hENS hQ+E

5x5 STP

1, 5-6, 10-12

127.51 1.27 1.27 1.27 1.27

2.0773 1.7219 1.9154 1.5600 1.0772
2-4, 7-9 0.9639 0.3050 0.7353 0.4075 0.3767
13-14, 18-19, 23-24 0.9639 0.2673 0.7856 0.4379 0.3751
15-17, 20-22 0.9639 0.3361 0.7972 0.4237 0.3275

4x4 STP
1-7 57.66 0.58 0.57 0.54 0.62 3.9122 2.0825 1.7868 2.8422 2.4562
8-15 518.92 5.19 5.12 5.12 6.33 3.9728 1.6521 2.3362 1.8535 2.5094

TS 0-7 518.92 5.18 5.18 5.18 5.18 9.1350 6.9862 6.8593 6.0478 5.8854
TS 0-7 518.92 0.52 0.52 0.52 0.52 9.1350 5.6442 4.6089 5.7716 5.5841

Table 4.3: Summary results comparing all techniques (classification)

ensembled) with regression. In the 5x5 STP with classification, the quantile

plus ensemble performs the worst. The average heuristic values are 1.0772,

0.3767, 0.3751, and 0.3275, respectively. However, quantile plus ensemble

with classification still delivers much better average heuristic value than a�ne

transform or ensemble with regression. The average heuristic values for a�ne

transform with regression are 0.0079, 0.0006, 0.0079, and 0.0519, respectively,

while those for ensemble with regression are 0.5389, 0.0293, 0.0108, and 0.0608,

respectively. In the 4x4 STP, with classification quantile method performs

the worst on 1-7 PDB and ensemble performs the worst on 8-15 PDB, but

any of these outperforms a�ne transform or ensemble method with regres-

sion. In the TopSpin puzzle, with classification the quantile and ensemble

combined method performs the worst, delivering an average of heuristic of

5.8854. Nonetheless, the quantile and ensemble combined with classification

still generate greater average heuristic than a�ne transform or ensemble with

regression. In general, quantile, ensemble, or quantile plus ensemble with clas-

sification outperforms a�ne transform or ensemble with regression. In the

following we discuss the learning results with classification in detail.

23

4.3 The 4x4 STP

For the 1-7 PDB, the average of uncompressed heuristic is 3.911. With an

average heuristic of 2.8422, ensemble methods performs the best, while DIV

compression gives an average heuristic of 2.0825. For the 8-15 PDB, the av-

erage uncompressed heuristic is 3.9728. With an average heuristic of 2.5094,

the quantile and ensemble combined method performs the best in this domain,

while DIV compression performs the worst. Overall, the quantile and ensem-

ble combined method achieves the best average heuristic of 4.9656, while DIV

compression performs the worst.

4.4 The 5x5 STP

For all the 5x5 STP PDBs, quantile tuning method performs the best. Quan-

tile tunning method gives an average heuristic of 1.9154, 0.7353, 0.7856, and

0.7972, respectively. A 100 times smaller CNN can learn a PDB really well

compared with the learning results in other problem domains as the loss from

compression in heuristics are the smallest in the 5x5 STP. For the second to

the fourth PDBs, the ensemble method performs the second best, whereas DIV

compression method performs the worst. The quantile plus ensemble method

does not perform very well in 5x5 STP problem domain. This is because

the 5x5 STP problem domain is relatively easy. One 100 times smaller CNN

model can learn the heuristic quite well with a small portion of entries over-

estimated. With only a few overestimated entries, the second model cannot

learn the overall heuristic of those PDBs.

4.5 Topspin

In Topspin, DIV compression has relatively strong performance given a com-

pression factor of 100, and is able to outperform the quantile and ensemble

methods. However, we discover that as we further compressed the heuristics,

the performance of the ANNs grew relative to the DIV compressed method,

and the ensemble ANN is able to outperform the DIV compression by a small

24

(a) Quantile with Classification (b) Ensemble with Classification

(c) A�ne Transform with Regression (d) Ensemble with Regression

Figure 4.1: Prediction Distribution for 1-7 PDB in 4x4 STP

margin. Given a compression factor of 1000, the ensemble method delivers an

average heuristic of 5.7716, higher than DIV compression by 0.1274.

4.6 Distribution by ANN Models

We now look at the distribution learned by the ANN models in our tests.

Since all distributions are very similar, we are going to discuss distributions

for 1-7 PDB in the 4x4 STP in detail. All other distributions can be found

on Appendix B. As shown in 4.1a and 4.1c, the prediction with quantile and

the prediction with a�ne transform distributions can be obtained by shifting

original prediction values towards small ones. Likewise, the prediction dis-

tribution by taking the minimum of two models can be obtained by shifting

the prediction values by the first model towards small ones. It shows that

our methods guarantee admissibility of heuristics by changing overestimated

heuristic values to small ones. In Figure 4.1a, there are more states with a

heuristic of 0 and 2, but fewer with a heuristic greater than 2. In Figure 4.1b,

there are fewer states with a heuristic of 12. In Figure 4.1c, there are more

25

states with a heuristic of 0, but fewer with all other heuristics. In Figure 4.1d,

there are states with a heuristic of 0, but fewer with heuristic values greater

than 0.

When we compare the real distribution with the model distribution in

quantile or a�ne transform, or the first model in ensemble as shown in Figure

4.1, we find that they are very similar. When we compare the original dis-

tribution by those ANN models with the distribution after setting a quantile

level, applying a�ne transform, or ensembling, we find that those methods

shift the distribution towards small values.

4.7 Other Experiments

There are additional experiments through which we gain more understanding

about the properties of our approaches. The sizes of the models in those

experiments are not necessarily 100 times smaller than the original PDBs.

4.7.1 Quantile

We can now look in more detail on the performance of the quantile approach.

We show the result of learning a single 4x4 STP heuristic with di↵erent quan-

tile values in Table 4.4. With q = 0.1 over 99% of the heuristic values are

learned, although given that the 8–15 PDB has 519 million entries, there is

still a larger number of overestimated entries. These values give a sense of the

loss incurred using di↵erent quantiles during learning. We observe a trade-o↵

between the admissibility rate and the quality of heuristics measured by the

average heuristic value.

1-7 8-15

q % Adm. hq % Adm. hq
0.30 97.4656 3.7663 96.7981 3.8425

0.20 98.4687 3.6889 98.0109 3.7568

0.15 98.9197 3.6396 98.5742 3.7019

0.10 99.3402 3.5746 99.1101 3.6294

(hPDB) 100.0000 3.9122 100.0000 3.9728

Table 4.4: Di↵erent quantiles for CNN 1-7 and 8-15

26

4.7.2 Ensembles

In the 4x4 STP 8-15 tile PDB, ensemble method achieve an average heuristic

of 2.9118 with 3.21 MB and 2.13 MB CNNs, while the same PDB compressed

to 5.41 MB with DIV compression has an average heuristic of only 1.6686. A

DIV compressed PDB with an average heuristic of 2.8417 is 74.13 MB in size.

The size of two CNNs combined is more than 14 times smaller than the DIV

compressed PDB with the same average heuristic value. In addition, ensemble

methods can compress the 518.92 MB TS PDB by a factor of more than 1,800

with slightly better average heuristics than a comparable size PDB with DIV

compression.

4.7.3 Ensembles and Quantiles

We now look specifically at the 1-7 tile PDB in the 4x4 STP, which was di�cult

to learn with both ensemble and quantile approaches individually. Using q =

0.1 for the first CNN, the training set is reduced to approximately 2.5 million

data points, which makes learning task much easier. By taking the minimum

of a 0.42 MB CNN with q = 0.1 and a 0.81 MB CNN without using quantile,

an average heuristic of 2.6501 is obtained. A comparably sized (1.31 MB) PDB

compressed with DIV from the 1-7 PDB has an average heuristic of 2.3483,

and a DIV compressed PDB with an average heuristic of 2.5882 requires 2.62

MB of storage.

4.7.4 Node Expansions

Now we use the 1-7 NN models described in section 5.7.3 and 8-15 models

described in 5.7.2 to solve the 100 4x4 STP problems in Richard E. Korf’s

paper [17]. We use the quantile and ensemble combined method for the 1-7

CNN Size

Domain PDB 1st 2nd hCNN

4x4 STP 8-15 3.21MB 2.13MB 2.9118

TS 0-7 0.20MB 0.06MB 5.7716

Table 4.5: Min of ensembles

27

NN models with a quantile level of 0.1 for the first model, and the ensemble

method for the 8-15 NN models. We compare the average and the median

number of node expansions by IDA* using those ANN models with using

comparable size (6.57 MB in total) PDBs compressed with DIV. The average

number of node expansions is 2,190,237 for using NN models and 6,728,043

for using comparable size PDBs. The median number of node expansions is

709,062 for using NN models and 1,245,480 for using comparable size PDBs.

Using the NN heuristics during IDA* search expands fewer nodes than using

the comparable size PDBs. The results are consistent with our findings that

the average heuristic values of the NN heuristics are higher than those of the

comparable size PDBs.

4.8 Summary

Our experimental results show that our approaches are able to guarantee ad-

missible heuristic values by learning from PDBs, either with regression or clas-

sification. Nonetheless, the average heuristic value with classification is much

greater than that with regression method. Used as a compression method, our

approaches have achieved better average heuristic values than DIV compres-

sion in most of PDBs in 4x4 STP, 5x5 STP, and Topspin problem domains.

The only exception is the 100 times smaller model to learn 0-7 Topspin PDB.

In addition, fewer nodes are expanded using NNs heuristics than using compa-

rable size PDBs during IDA* search. We also found that the hard data training

method can reduce the number of CNN models needed to maintain the admis-

sibility of heuristics. For all the PDBs in our experiments, merely two CNN

models are finally used to ensemble admissible heuristics. As we have shown

in distribution figures, the quantile, a�ne transform, and ensemble method

change the distribution of the initial model by changing large heuristic values

to small ones. Overall, the resulting distribution is similar to the initial one,

but the resulting distribution is more right skewed.

28

Chapter 5

Conclusion

In this thesis, we have shown how convolutional neural networks can be used

in heuristic search. We introduced two approaches, i.e., the quantile and the

ensemble, to maintain the admissibility of heuristic. We have conducted vari-

ous experiments in three problem domains (the 4x4 STP, the 5x5 STP, and the

TopSpin Puzzle) to show that those approaches are able to preserve admissibil-

ity with both classification and regression. Having examined the distributions

generated by the CNN models, we found that the quantile and the ensemble

method change their original prediction distributions by changing the high

values to small ones. Although we su↵er some losses, the results in the experi-

ments indicate that, given a certain size, our approaches deliver greater average

heuristic values in most problems compared to DIV compression techniques.

Experimental results show that our approaches with classification performs

significantly better than with regression in any problem domain. The follow-

ing findings are based on our approaches with classification. Based on our

experiments, we found that the quantile method performs the best in the 5x5

STP. A 1.27 MB CNN model can learn any one of the 4 6-tile PDBs really well.

The ensemble method performs the best in 1-7 PDB in the 4x4 STP, while the

quantile and the ensemble combined method performs the best in 8-15 PDB,

the largest PDB in the experiment, in the 4x4 STP. In the TopSpin, when the

size limit is set to be 5.18 MB (around 100 times smaller than the 0-7 PDB

in the TopSpin), DIV compression does the best. When the size limit is to

be 0.52MB (around 1000 times smaller than the 0-7 PDB in the TopSpin),

29

the quantile method does the best. In addition, we found that IDA* expands

much fewer nodes using our ANN models than using comparable size PDBs

with DIV compression in the 4x4 STP. Besides the quantile and the ensemble

methods, this thesis introduces the hard data training approach, which can

simplify the training process. With the hard data approach, only two models

are needed to ensemble an admissible CNN model for all the PDBs in our

experiments.

For training with regression, we found that applying a floor function to a

model significantly reduce the number of overestimated entries. Therefore, in

method such as ADP [23], applying a floor function can significantly reduce

the memory required to store overestimated entries with a hash table.

As for the training time, we found that the time needed to train a 100 times

smaller CNN model 100 epochs is linearly correlated with the size of PDBs. In

the 4x4 STP, it takes around 4 minutes to train a 0.57 MB (100 times smaller

than the 1-7 PDB) CNN model one epoch on 1-7 the PDB, while 39 minutes

to train a 5.8 MB (100 times smaller than the 8-15 PDB) CNN model on the

8-15 PDB. According to our rough estimates, it would take over 3000 hours to

train a 30 GB CNN model one epoch on a 3 TB PDB. Unfortunately, we were

not able to complete the scaling tasks due to the limited resources, but we

have provided a foundation for it to be done in the future. In addition to the

scaling task, another challenge is to develop high-performing search algorithms

based on e�cient parallel GPU heuristic lookups.

30

References

[1] M. Ball and R. C. Holte, “The compression power of symbolic pattern
databases.,” in ICAPS, 2008, pp. 2–11. 8

[2] T. M. Breyer and R. Korf, “1.6-bit pattern databases,” in Twenty-Fourth
AAAI Conference on Artificial Intelligence, 2010. 8

[3] F. Chollet, “The measure of intelligence,” arXiv preprint arXiv:1911.01547,
2019. 11

[4] R. K. Clausecker and F. Schintke, “A measure of quality for IDA* heuris-
tics,” in Proceedings of the International Symposium on Combinatorial
Search, vol. 12, 2021, pp. 55–63. 4

[5] J. C. Culberson and J. Schae↵er, “Pattern databases,” Computational
Intelligence, vol. 14, no. 3, pp. 318–334, 1998. 3, 7

[6] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314,
1989. 11

[7] R. Döbbelin, T. Schütt, and A. Reinefeld, “Building large compressed
pdbs for the sliding tile puzzle,” in IJCAI Workshop on Computer Games,
2013, pp. 16–27. 8

[8] A. Felner, R. E. Korf, and S. Hanan, “Additive pattern database heuris-
tics,” Journal of Artificial Intelligence Research, vol. 22, pp. 279–318,
2004. 8

[9] A. Felner, R. E. Korf, R. Meshulam, and R. C. Holte, “Compressed
pattern databases,” Journal of Artificial Intelligence Research, vol. 30,
pp. 213–247, 2007. 4, 8

[10] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119–139, 1997. 11

[11] M. Goldenberg, N. R. Sturtevant, A. Felner, and J. Schae↵er, “The com-
pressed di↵erential heuristic,” in AAAI Conference on Artificial Intelli-
gence, 2011, pp. 24–29. 8

[12] P. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, pp. 100–107, 2 1968. 1, 6

31

[13] M. Helmert, N. R. Sturtevant, and A. Felner, “On variable dependen-
cies and compressed pattern databases,” Symposium on Combinatorial
Search (SoCS), 2017. 9

[14] R. C. Holte, J. Newton, A. Felner, R. Meshulam, and D. Furcy, “Multiple
pattern databases.,” in ICAPS, 2004, pp. 122–131. 14

[15] S. Hu and N. R. Sturtevant, “Direction-optimizing breadth-first search
with external memory storage,” International Joint Conference on Ar-
tificial Intelligence (IJCAI), 2019. 8

[16] S. Judd, “On the complexity of loading shallow neural networks,” Jour-
nal of Complexity, vol. 4, no. 3, pp. 177–192, 1988. 13

[17] R. E. Korf, “Depth-first iterative-deepening: An optimal admissible tree
search,” Artificial Intelligence, vol. 27, no. 1, pp. 97–109, 1985. 1, 6, 27

[18] R. E. Korf, M. Reid, and S. Edelkamp, “Time complexity of iterative-
deepening-A*,” Artificial Intelligence, vol. 129, no. 1–2, pp. 199–218,
2001. 4

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105. 11

[20] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, “The expressive power of
neural networks: A view from the width,” in Advances in neural infor-
mation processing systems, 2017, pp. 6231–6239. 11

[21] W. Myrvold and F. Ruskey, “Ranking and unranking permutations in
linear time,” Information Processing Letters, vol. 79, pp. 281–284, 2001. 7

[22] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th international conference
on machine learning (ICML-10), 2010, pp. 807–814. 10

[23] M. Samadi, M. Siabani, A. Felner, and R. Holte, “Compressing pattern
databases with learning.,” in ECAI, 2008, pp. 495–499. 4, 9, 30

[24] N. R. Sturtevant, A. Felner, and M. Helmert, “Value compression of
pattern databases,” in AAAI Conference on Artificial Intelligence, 2017. 8

32

Appendix A

Training

A.1 State Representation

In an ANN, patterns containing m numbers are represented as a sequence of

m-channel binary images. Elements corresponding to the position of the i-th

element in the pattern are ones and all other elements are zeros. For example,

Figure A.1 shows how a 3x3 sliding-tile puzzle pattern containing two numbers

(1 and 2) is represented. In Figure A.1a, a pattern with 1 on the bottom-left

corner and 2 on the upper-right corner is represented as a two-channel image.

Inside the first channel of the image shown in Figure A.1b, the bottom-left

element corresponding to the position of 1 in the original pattern is one, and

all other elements are zeros. Similarly, inside the second channel of the image

shown in Figure A.1c, the upper-right element corresponding to the position of

2 in the original pattern is one, and all other elements are zeros. In Figure A.2

a 4x4 Sliding-tile puzzle pattern (Figure A.2a) that contains three numbers (2,

5, 7) is represented as a three-channel image (Figure A.2b A.2c A.2d), and the

element corresponding to the i number in the pattern in the i-th channel is

(a) 3x3 STP Pattern

)

(b) 1st Channel (c) 2nd Channel

Figure A.1: 3x3 STP Representation

33

(a) 4x4 STP Pattern

+

(b) 1st Channel (c) 2nd Channel (d) 3rd Channel

Figure A.2: 4x4 STP Representation

(a) TopSpin Pattern

+

(b) 1st Channel

(c) 2nd Channel

(d) 3rd Channel

(e) 4th Channel

(f) 5th Channel

Figure A.3: Topspin Representation

34

one with all else being zeros. For the Topspin problem, we represent the states

and patterns as 1-dimensional images with multiple channels. In Figure A.3,

a Topspin pattern with numbers 1 to 5 (A.3a) is represented as a five channel

image. The corresponding position of the i-th element are ones and all other

elements are zeros.

A.2 Regression Models

A.2.1 The 4x4 STP

There are two delta additive PDBs for the 4x4 STP: 1-7 and 8-15. In the 0.55

MB model, there is 1 convolutional layer and 3 linear layers. The first layer is

a convolutional layer with an input channel size of 7 and output channel size

of 32. Following the convolutional layer are three linear layers. The first linear

layer has an input channel size of 128 and an output channel size of 256, the

second linear layer have an input channel size of 256 and an output channel

size of 400, and the third layer (the last layer) has an input channel size of 400

and an output channel size of 1. It takes around 5 hours to train the model

for 100 epochs. After the training completed, we applied an a�ne transform

to obtain an admissible heuristic from the model. The value that we subtract

to make the goal state prediction 0 is 2, and the fraction we use to scale the

prediction after the subtraction is 1.25.

In the two ensemble models with a total size of 0.56 MB (0.28 MB each),

there is 1 convolutional layer and 3 linear layers as well. The first layer is a

convolutional layer with an input channel size of 7 and output channel size of

32. Following the convolutional layer are three linear layers. The first linear

layer has an input channel size of 128 and an output channel size of 256, the

second linear layer have an input channel size of 256 and an output channel

size of 138, and the third layer (the last layer) has an input channel size of

138 and an output channel size of 1. It takes around 3 hours to train the first

model for 100 epochs and 1 hour to train the second model until the second

model does not overestimate any entries.

In the 5.7 MB model for 8-15 PDB in the 4x4 STP, there are 7 layers in

35

total. The first layer is a convolutional layer with an input channel size of 8

and output channel size of 32. Following the convolutional layer are six linear

layers. The first linear layer has an input channel size of 128 and an output

channel size of 256, the second linear layer has an input channel size of 256

and an output channel size of 512, and the third layer has an input channel

size of 512 and an output channel size of 1024, the fourth layer has an input

channel size of 1024 and an output channel size of 512, the fifth layer has an

input channel size of 512 and an output channel size of 400, and the sixth

(the last) layer has an input channel size of 400 and an output channel size

of 1. It takes around 60 hours to train the model for 100 epochs. After the

training completed, we applied a�ne transform to obtain admissible heuristic

from the model. The value that we subtract to make the goal state prediction

0 is 1.0470, and the fraction we use to scale the prediction after the subtraction

is 1.0094.

In the two ensemble models with a total size of 5.7 MB (2.85 MB each),

there is 1 convolutional layer and 6 linear layers as well. The first layer is a

convolutional layer with an input channel size of 8 and output channel size of

32. Following the convolutional layer are three linear layers. The first linear

layer has an input channel size of 128 and an output channel size of 256, the

second linear layer have an input channel size of 256 and an output channel

size of 512, the third layer has an input channel size of 512 and an output

channel size of 1024, the fourth layer has an input size of 1024 and an output

size of 512, the fifth layer has an input size of 512 and an output size of 400,

the sixth layer (the last layer) has an input size of 400 and an output size of

1. It takes around 50 hours to train the first model for 100 epochs and 1 hour

to train the second model until the second model does not overestimate any

entries.

A.2.2 The 5x5 STP

There are four delta additive PDBs for the 5x5 STP. For the 4 a�ne transform

models, there is 1 convolutional layer, and 3 linear layers. The input size of

the convolutional layer is 6, while the output size is 32. The first linear layer

36

has an input channel size of 288 and an output channel size of 400, the second

linear layer have an input channel size of 400 and an output channel size of

500, and the third layer (the last layer) has an input channel size of 500 and

an output channel size of 1. It takes around 6 hours to train the model for 100

epochs. After the training completed, we applied a�ne transform to obtain

admissible heuristic from the model. The values that we subtract to make the

goal state prediction 0 are 1.0062, 0.0079, -0.0038, and 0.0111, respectively.

The fractions we use to scale the prediction after the subtraction are 1.0031096,

0.5019828, 0.4990518, and 0.5027905, respectively.

In the 2 ensemble models with a total size of 1.27 MB (0.63 MB each),

there is 1 convolutional layer and 3 linear layers as well. The first layer is a

convolutional layer with an input channel size of 6 and output channel size of

32. Following the convolutional layer are three linear layers. The first linear

layer has an input channel size of 288 and an output channel size of 288, the

second linear layer have an input channel size of 288 and an output channel

size of 252, and the third layer (the last layer) has an input channel size of 252

and an output channel size of 1. We use the hard data training approach to

train ensemble models. It takes around 5 hours to train the first model for 100

epochs. We train the second model for 10 hours with entries overestimated by

the first model. Then we check the prediction accuracy of the second model

on the entire PDB. Those entries overestimated by the second model are used

as the training data for the third model. Lastly, we train the third model until

it does not overestimate any of its training data. We use the second and the

third models to ensemble an admissible heuristic.

A.2.3 The TopSpin

In our 5.17 MB a�ne transform model, there are 6 layers. The first layer is

a convolutional layer with an input channel size of 8 and an output channel

size of 32. Following the convolutional layer are five linear layers. The first

linear layer has both input and output channel sizes of 488, the second linear

layer has an input size of 488 and an output size of 512, the third layer has an

input channel size of 512 and an output channel of 836, the fourth layer has

37

an input channel size of 836 and an output channel of 515, and the fifth layer

(the last layer) has an input channel size of 515 and an output channel of 1.

It takes around 50 hours to train the model for 100 epochs. The value that

we subtract to make the goal state prediction 0 is 1.2392, and the fraction we

use to scale the prediction after the subtraction is 0.7731162.

In the two ensemble models with a total size of 5.18 MB (2.59 MB each),

there are 5 layers. The first layer is a convolutional layer with an input channel

size of 8 and output channel size of 32. Following the convolutional layers are

4 linear layers. The first linear layer has an input channel size of 488 and

an output channel size of 488, the second has an input channel size of 488

and an output channel size of 512, the third linear layer has an input channel

size of 512 and an output channel size of 418, and the last layer has an input

channel size of 418 and an output channel size of 1. It takes around 50 hours

to train the first model for 100 epochs. We train the second model for 10 hours

with entries overestimated by the first model. Then we check the prediction

accuracy of the second model on the entire PDB. Those entries overestimated

by the second model are used as the training data for the third model. Lastly,

we train the third model until it does not overestimate any of its training data.

We use the second and the third models to ensemble an admissible heuristic.

A.3 Classification Models

A.3.1 The 4x4 STP

In the 0.57 MB quantile model, there are 4 layers. The first layer is a convolu-

tional layer with an input channel size of 7 and an output channel size of 32.

Following the convolutional layer are three linear layers. The first linear layer

has an input channel size of 128 and an output channel size of 312, the second

linear layer have both input and output sizes of 312, and the third layer (the

last layer) has an input channel size of 312 and an output channel size of 8.

It takes around 5 hours to train the model for 100 epochs. After the training

is finished, we find the largest possible quantile level for each state that can

make the heuristic for that state admissible. Finally we take the minimum

38

from all those quantile levels.

In our 2 ensemble models and 2 quantile and ensemble combined models

with a total size of 0.57 MB (0.28MB each), there are 4 layers. The first layer

is a convolutional layer with an input channel size of 7 and an output channel

size of 32. Following the convolutional layer are three linear layers. The first

linear layer has an input channel size of 128 and an output channel size of

164, the second linear layer has an input channel size of 164 and an output

sizes of 256, and the second layer (the last layer) has an input channel size of

256 and an output channel of 8. We use the hard data approach to train the

ensemble models. There are three models in total. We train the first model for

10 hours. We train the second model for 5 hours with entries overestimated

by the first model. Then we check its prediction accuracy of the second model

on the whole PDB. Those entries overestimated by the second model are used

as the training data for the third model. Lastly, we train the third model until

it does not overestimate any of its training data. We use the second and the

third models to ensemble an admissible heuristic.

We also use the hard data approach to train our 1-7 models with ensemble

and quantile tuning combined method. We train the first model for 20 hours.

Then we check the prediction accurary of that model with a preset quantile

level. We set all quantiles to 0.02 for all the ensemble and quantile tuning

combined models. The smaller the quantile, the fewer entries overestimated.

Then we train the second model on the entries overestimated by the first model

with the 0.02 quantile level until it does not overestimate any of its training

data.

In our 5.12 MB 8-15 quantile model, there are 6 layers. The first layer is a

convolutional layer with an input channel size of 8 and an output channel size

of 32. Following the convolutional layer are five linear layers. The first linear

layer has an input size of 128 and an output channel size of 256, the second

linear layer has an input size of 256 and an output size of 512, the third layer

has an input channel size of 512 and an output channel of 1024, the fourth

layer has an input channel size of 1024 and an output channel of 568, and

the fifth layer (the last layer) has an input channel size of 568 and an output

39

channel of 10. It takes around 60 hours to train the model for 100 epochs.

After the training is finished, we find the largest possible quantile level for

each state that can make the heuristic for that state admissible. Finally we

take the minimum from all those quantile levels.

In our two 8-15 ensemble models and two 8-15 quantile and ensemble com-

bined models with a total size of 5.12MB (2.06MB each), there are 4 layers.

The first layer is a convolutional layer with an input channel size of 8 and an

output channel size of 32. Following the convolutional layer are three linear

layers. The first linear layer has an input channel size of 128 and an output

channel size of 512, the second linear layer has an input channel size of 512

and an output sizes of 854, and the second layer (the last layer) has an in-

put channel size of 854 and an output channel of 10. We use the hard data

training approach to train our models. We train the first model for 20 hours.

We train the second model for 5 hours with entries overestimated by the first

model. Then we check the prediction accuracy of the second model on the

entire PDB. Those entries overestimated by the second model are used as the

training data for the third model. Lastly, we train the third model until it

does not overestimate any of its training data. We use the second and the

third models to ensemble an admissible heuristic.

For the ensemble and quantile tuning combined method. We train the first

model for 20 hours. Then we check the prediction accurary of that model with

a preset quantile level. We set all quantiles to 0.02 for all the ensemble and

quantile tuning combined models. The smaller the quantile, the fewer entries

overestimated. Then we train the second model on the entries overestimated

by the first model with the 0.02 quantile level until it does not overestimate

any of its training data.

A.3.2 The 5x5 STP

All models for quantile method share the same architecture. Those 1.27MB

models have 4 layers. The first layer is a convolutional layer with an input

channel size of 6 and output channel size of 32. There are 3 linear layers

following the convolutional layer. The first linear layer has an input channel

40

size of 288 and an output channel size of 396, the second has an input channel

size of 396 and an output channel size of 496, and the last linear layer has an

input channel size of 496 and an output channel size of 6. We train the model

for 10 hours and then use the same method as we use for PDBs in the 4x4

STP to find the quantile level.

All models for ensemble method also share the same architecture. They

are 0.63MB in size. Two models are ensembled for each PDB. Each model

have 4 layer. The first layer is a convolutional layer with an input channel

size of 6 and output channel size of 32. There are 3 linear layers following

the convolutional layer. The first linear layer has an input channel size of 288

and an output channel size of 288, the second has an input channel size of

288 and an output channel size of 248, and the last linear layer has an input

channel size of 248 and an output channel size of 6. As can be seen from

Table ??, the architectures for quantile plus ensemble method are exactly the

same as those models for ensemble method. For ensemble and quantile plus

ensemble method, we train the first model for 10 hours, and then we train the

second model with entries overestimated by the first model until it does not

overestimate any.

A.3.3 The TopSpin

In our 5.18 MB quantile model, there are 6 layers. The first layer is a con-

volutional layer with an input channel size of 8 and an output channel size

of 32. Following the convolutional layer are five linear layers. The first linear

layer has both input and output channel sizes of 488, the second linear layer

has an input size of 488 and an output size of 512, the third layer has an

input channel size of 512 and an output channel of 836, the fourth layer has

an input channel size of 836 and an output channel of 512, and the fifth layer

(the last layer) has an input channel size of 512 and an output channel of 13.

It takes around 50 hours to train the model for 100 epochs. After the training

is finished, we use the same method as we use for PDBs in the 4x4 STP to

find the quantile level.

Two 2.55 MB 5-layer model are used to ensemble an admissible heuristic.

41

The first layer is a convolutional layer with an input channel size of 8 and

output channel size of 32. There are 4 linear layers following the convolutional

layer. The first linear layer has an input channel size of 488 and an output

channel size of 488, the second has an input channel size of 488 and an output

channel size of 512, the third linear layer has an input channel size of 512 and

an output channel size of 408, and the last layer has an input channel size

of 408 and an output channel size of 13. In this problem domain, we also

experiment with 1000 times compression. Two 0.26MB models have 5 layers.

The first layer is a convolutional layer with an input channel size of 8 and

output channel size of 32. There are 4 linear layers following the convolutional

layer. The first linear layer has an input channel size of 448 and an output

channel size of 112, the second has an input channel size of 112 and an output

channel size of 64, the third linear layer has an input channel size of 64 and

an output channel size of 64, and the last layer has an input channel size

of 64 and an output channel size of 13. The architectures for quantile plus

ensemble method are exactly the same as those models for ensemble method.

For ensemble method and quantile plus ensemble method, we use hard data

approach to train our model. There is a total of 3 models. The training

procedure is exactly the same as how we train models on the 1-7 4x4 STP

PDB.

42

Appendix B

Heuristic Distributions by ANN
Models

43

(a) Quantile with Classification (b) Ensemble with Classification

(c) A�ne Transform with Regression (d) Ensemble with Regression

Figure B.1: Prediction Distribution for 8-15 PDB in 4x4 STP

(a) Quantile with Classification (b) Ensemble with Classification

(c) A�ne Transform with Regression (d) Ensemble with Regression

Figure B.2: Prediction Distribution for the 1st PDB in 5x5 STP

44

(a) Quantile with Classification (b) Ensemble with Classification

(c) A�ne Transform with Regression (d) Ensemble with Regression

Figure B.3: Prediction Distribution for the 2nd PDB in 5x5 STP

(a) Quantile with Classification (b) Ensemble with Classification

(c) A�ne Transform with Regression (d) Ensemble with Regression

Figure B.4: Prediction Distribution for the 3rd PDB in 5x5 STP

45

(a) Quantile with Classification (b) Ensemble with Classification

(c) A�ne Transform with Regression (d) Ensemble with Regression

Figure B.5: Prediction Distribution for the 4th PDB in 5x5 STP

(a) Quantile with Classification (b) Ensemble with Classification

(c) A�ne Transform with Regression (d) Ensemble with Regression

Figure B.6: Prediction Distribution for the 0-7 PDB in TopSpin

46

(a) Quantile with Classification (b) Ensemble with Classification

(c) A�ne Transform with Regression (d) Ensemble with Regression

Figure B.7: Prediction Distribution for the 0-7 PDB in TopSpin

47

	Introduction
	Background & Related Work
	Sample Domains
	The Sliding-Tile Puzzle
	The TopSpin Puzzle

	Pattern Databases
	PDB Compression
	Neural Networks

	Compressing PDBs with Neural Networks
	Admissible Regression Heuristics
	Admissible Classification Heuristics
	Using Classifier Quantiles
	Ensemble of Neural Networks

	Training Improvements
	Training with Underestimated Entries
	Quantile Tuning and Ensemble Combined

	Training on Hard Data

	Learning Results
	Regression Accuracy
	Classification vs. Regression
	The 4x4 STP
	The 5x5 STP
	Topspin
	Distribution by ANN Models
	Other Experiments
	Quantile
	Ensembles
	Ensembles and Quantiles
	Node Expansions

	Summary

	Conclusion
	References
	Training
	State Representation
	Regression Models
	The 4x4 STP
	The 5x5 STP
	The TopSpin

	Classification Models
	The 4x4 STP
	The 5x5 STP
	The TopSpin

	Heuristic Distributions by ANN Models

