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Abstract

As a potential approach to interpret Mode of Action (MoA), the shape

of cellular response profiles associated with chemicals has been a key consid-

eration. In this thesis, statistical pattern recognition methods using multi-

concentration time-dependent cellular response profiles (TCRPs) are explored.

Cell Index (CI) values are used to reflect changes in cell population, morphol-

ogy and the degree of cell attachment and are recorded dynamically as multiple

time series data via the xCELLigence real-time cell analysis high-throughput

(RTCA HT) system. Data processing techniques such as denoising and TCRP

selection are applied to generate appropriate data for further analysis. These

techniques also screen out the TCRPs which are not responsive enough and

retain only those TCRPs which are the representative of action of the chemical

compound based on the given cell population. Therefore, all the designed ap-

proaches are aimed at pattern recognition of TCRPs and classifying chemicals

represented by different numbers of TCRPs. The results of these data-driven

classification approaches show reasonable discrimination of chemicals based on

profile shape similarity, which provides a potential guideline to determine Mode

of Action of chemicals.
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Chapter 1

Introduction

1.1 Motivation and objective

With the expansion of industrialization, problems related to the environment

and human health are drawing more attention. Chemicals which can lead to

adverse effects on the human body are gradually detected and studied. Many

chemicals may introduce diverse changes in cellular morphology and growth

rate under sufficient doses or concentration levels. Some cause toxicity effects

such as apoptosis and necrosis, while others can lead to uncontrolled cellular

proliferation such as the case of cancer [1]. It is a challenge to effectively assess

the toxicity of chemicals in pharmaceutical and biotechnological industries.

Experts in biology and medical science are studying several methods to

assess and estimate the toxicity and infer effective solutions according to the

biological phenomena of chemicals. Several analytical techniques have been

used to characterize the toxicity of chemicals in toxicity testing of environment

[2]. In vivo assays investigate the toxic effects of chemicals on living organisms

and explain detailed mechanistic understanding of the molecular targets [3].

However, performing in vivo assays is time consuming and expensive, usually

requiring a large number of samples to be observed. Furthermore, biological

contamination and the ethics of causing distress and pain on living bodies are
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potential concerns [4].

To effectively assess the toxicity of chemicals, cell-based in vitro assays play

an integral role in today’s drug discovery [5]. They have become a key com-

ponent of some research fields such as disease modelling, chemical screening,

and safety assessment [6] and are now adopted for automated high-throughput

screening (HTS) of large chemical libraries, providing in situ analysis for a

variety of biological targets [7, 8]. Quantitative high-throughput assays have

become a crucial and effective tool in drug discovery and development because

they can expand the coverage of existing and new chemicals that need to be

evaluated for human health risk assessment [9]. The main advantages of bio-

activity profiling using high-throughput assays are the reduced cost and less

time required for toxicological screening of environmental chemicals and also

reduced the need for animal testing [10].

Mode of Action (MoA) is described as a set of key events and processes

starting with the interaction of an agent with a cell, through physiological and

tissue or organ changes [11]. The interaction decides if there is an adverse

effect occurring between the organism and the chemicals. Therefore, MoA is

a means of analysis based on physical, chemical, and biological information

that is helpful in explaining key events in a chemical’s influence on organism

[12]. As a necessary and crucial element in MoA analysis, a “key event” is

an empirically observable precursor step that is itself a necessary element in

MoA or a biological marker for the element [12]. In our study, we focus our

attention on the cellular behaviors in the key events. Studying MoA is crucial in

ecotoxicology not only to improve our understanding on the effects of pollutants

on ecosystems, but also to build relevant and effective tools which can be

applied in environmental risk assessment of chemicals and of polluted sites

[13].

The main objective of this thesis is to design and develop three different

pattern recognition strategies to classify chemicals based on time-dependent
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cellular responses profiles (TCRPs), which record the cellular response contin-

uously and dynamically, and hence assist biologists and experts in analyzing

and discovering new drugs. These proposed methods are mainly based on pro-

file shape similarity evaluated from a statistical machine learning and data

mining perspective. Chemicals with similar response profiles are typically clas-

sified into one group. However, after data processing including denosing and

eligible TCRPs selection, each chemical compound is represented by multiple

time series; wherein, each time series represents a cellular response correspond-

ing to a single dose of chemical compound. For some dose of the chemical

compound, the cellular response is not significant and is screened out so that

the subsequent analysis is not affected by non responsive curves. However,

this data preprocessing adds to the challenge in pattern recognition that each

chemical may be represented by different number of time series data. Thus,

classifying chemicals with multiple doses is equivalent to classifying data points

represented by different batches of time series. All the algorithms designed in

this thesis are aimed at solving this problem.

The significance of this research lies in investigating various ways of handling

huge data sets conveniently, increasing efficiency and saving human labor by

means of bioinformatics. A major activity in bioinformatics is to develop soft-

ware tools to generate useful biological knowledge. Bioinformatics techniques

have also been applied in many important areas such as finding homologues,

rational drug design, large-scale censuses as well as in medical sciences [14].

By establishing a human machine interface (HMI), people can easily imple-

ment pattern recognition of different data sets (in our study, they are TCRPs

of chemicals) effectively.

1.2 Main contribution

The main contributions of the thesis lie in the following aspects:
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1. Propose three exploratory approaches to realize pattern recognition of

multi-concentration TCRPs.

2. Formulate nonuniform data dimension reduction under the framework

of majority-voting as well as Principal Component Analysis (PCA) &

Functional Data Analysis (FDA) and extract valid feature vectors for

clustering.

3. Test the strategies of classification successfully and implement them on

chemicals based on dynamic information in TCRPs.

4. Design a user friendly GUI module and supply basic guidelines on the

use of GUI module.

1.3 Outline

The thesis is organized as follows: Chapter 2 presents how chemicals and the

target cell line are selected and how the experiments are carried out. Data pro-

cessing methods including denoising and eligible TCRP & chemical selection are

also introduced. Eligible TCRPs and chemicals are retained for further analy-

sis. To realize the goal of discriminating chemicals, all the proposed approaches

are aimed at pattern recognition of TCRPs with flexible numbers of profiles. In

Chapter 3, a majority-voting and K-means clustering integrated classification

method is elaborated. The proposed approach can effectively classify chemi-

cals represented by different numbers of TCRPs into several groups according

to the similarity of profiles. In Chapter 4, a hierarchical correlation-based

classification method including categorization and curve by curve correlation-

based clustering is proposed. In this approach, similarity between the TCRPs

is measured using correlation coefficients and with this similarity metric, the

chemicals are classified into different groups. In Chapter 5, a method incor-

porating Principal Component Analysis (PCA) and Functional Data Analysis

4



(FDA) as statistical feature extracting techniques, and a model-based hierar-

chical clustering approach to cluster the extracted features, is presented. All of

these methods can effectively discriminate chemicals according to the similarity

among shapes of TCRPs. In Chapter 6, conclusions based on the comparison

about the advantages and disadvantages of three methods are reported. The

recommendations for future work are also included.

5



Chapter 2

Experiments, data collection

and processing

2.1 Experimental design

2.1.1 Cell line and Chemicals

All the experiments were conducted in human hepatocellular carcinoma cells

(HepG2) (Order # HB-8065, Cat.# 30-2003) which were obtained from ATCC

(Manassas, VA, USA), and described in this section. HepG2 cells were routinely

maintained in EMEM (Eagle’s minimum essential medium) with 10% (v/v)

fetal bovine serum (FBS). Cells were sub-cultured twice per week up to passage

20, and grown in an incubator with a set temperature at 37 ◦C, with 95%

relative humidity and a CO2 level of 5%. They were examined on workdays

under a phase contrast microscope. Any changes to cell morphology or their

adhesive properties were recorded.

Stock solutions of 65 chemicals obtained from Sigma-Aldrich (St. Louis,

MO, USA) were prepared using water (H2O), dimethyl sulfoxide (DMSO) and

ethanol (EtOH) separately and stored in amber vials at -80 ◦C. Solutions were

diluted into 11 working concentrations in a serial ratio 1:3. The chemicals and

6



their solutions and concentration ranges are provided in Table 2.1.

Table 2.1: Summary of the Chemical Compounds

SN Chemicals Solvent Concentration (1:3)

1 5-fluorouracil (5-FU) DMSO 200µM− 3.39nM

2 Etoposide phosphate DMSO 200µM− 3.39nM

3 Cordycepin DMSO 200µM− 3.39nM

4 Cytochalasin D DMSO 20µM− 0.339nM

5 Cytochalasin B DMSO 20µM− 0.339nM

6 Latrunculin B DMSO 20µM− 0.339nM

7 Emetine H2O 50µM− 0.847nM

8 Paclitaxel DMSO 20µM− 0.339nM

9 Actinomycin D DMSO 2µM− 0.0339nM

10 Puromycin H2O 1000µM− 17nM

11 Anisomycin H2O 10µM− 0.17nM

12 Clofarabine (CLOF) H2O 25µM− 0.42nM

13 Hydroxyurea (HU) H2O 10mM− 169nM

14 Valproic Acid H2O 50mM− 847nM

15 Vincristine Sulfate H2O 250µM− 4.23nM

16 Doxorubicin (DOX) H2O 100µM− 1.69nM

17 Brefeldin A (BEF) DMSO 40µM− 0.68nM

18 Leptomycin B (LMB) EtOH 20nM− 0.000339nM

19 Exo 1 DMSO 300µM− 5.08nM

10 Monensin DMSO 4µM− 0.068nM

21 Concanamycin A (CMA) DMSO 0.2µM− 0.003nM

22 Oligomycin DMSO 20µM− 0.339nM

23 Antimycin A EtOH 200µM− 3.387nM

24 Rotenone DMSO 200µM− 3.387nM

25 Thapsigargin DMSO 2µM− 0.0339nM

26 BHQ DMSO 400µM− 7nM

27 Ochratoxin A DMSO 10µM− 0.17nM

28 Cyclosporin A DMSO 100µM− 1.69nM

29 FK-506 (tacrolimus) DMSO 50µM− 1nM

30 BAPTA-am DMSO 60µM− 1nM

31 Latrunculin A EtOH 2µM− 0.03nM

32 CCCP DMSO 100µM− 1.69nM

33 SAHA DMSO 151µM− 2.56nM

34 (S)-HDAC-42 DMSO 128µM− 2.17nM

35 Mitoxantrone Dihydrochloride DMSO 150µM− 2.54nM

36 Mitomycin C DMSO 200µM− 3.39nM

37 NU7026 DMSO 20µM− 0.34nM

38 CRT0044876 DMSO 194µM− 3.29nM

39 Topotecan DMSO 95µM− 1.61nM

Continued on next page ...
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... continued from previous page

SN Chemicals Solvent Concentration (1:3)

40 Gemcitabine HCl H2O 1650µM− 27.94nM

41 Cisplatin H2O 150µM− 2.54nM

42 Merbarone DMSO 200µM− 3.39nM

43 Irinotecan (CPT-11) DMSO 160µM− 2.71nM

44 Cytosine H2O 8950µM− 151.57nM

45 ABT-888 (veliparib) DMSO 308µM− 5.22nM

46 Benzo[a]pyrene DMSO 100µM− 1.69nM

47 Gemicitabine H2O 2µM− 0.03nM

48 Monastrol DMSO 100µM− 1.69nM

49 S-trityl-Cysteine DMSO 100µM− 1.69nM

50 Dimethylenastron DMSO 40µM− 0.68nM

51 W7 HCl DMSO 200µM− 3.39nM

52 Y-27632 DMSO 188µM− 3.18nM

53 Ro32-3555 DMSO 200µM− 3.39nM

54 Batimastat DMSO 200µM− 3.39nM

55 FAKInhibitor14 H2O 2500µM− 42.34nM

56 MLCKInhibPep18 H2O 94.5µM− 1.6nM

57 PF573228 DMSO 40µM− 0.68nM

58 Blebbistatin DMSO 100µM− 1.69nM

59 Docetaxel DMSO 1µM− 0.02nM

60 SN-38 DMSO 200µM− 3.39nM

61 Vinblastine Sulfate H2O 40µM− 0.68nM

62 Bafilomycin A1 DMSO 0.3212µM− 0.01nM

63 ML7 hydrochloride DMSO 100µM− 1.69nM

64 HA1100 hydrochloride H2O 1000µM− 16.94nM

65 PF431396 DMSO 5µM− 0.08nM

2.1.2 xCELLigence RTCA HT system

The experiments of chemical assays were performed using the xCELLigence

real-time cell analysis high-throughput (RTCA HT) system with HepG2 cell

line exposed to 65 chemicals. The RTCA HT system is developed by ACEA

Biosciences Inc. (San Diego, USA) in the 96x or 384x well plate format. The

system runs automatically and is equipped with the Biomek R⃝ FXP Dual Arm

System with Multichannel Pipettor and Span-8 Pipettors. It can pinpoint the

optimal time points for conducting endpoints assays and be used to monitor the
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dynamics of cell viability continuously by measuring the electronic impedance

of sensor electrodes integrated on the bottom of microtiter plates [1, 15]. The

principles behind RTCA HT system are described by Abassi et al. [16], Slan-

ina et al. [17], and Xing et al. [18]. Briefly, the system uses microelectronic

plates (E-plates) integrated with gold micro-electrode arrays on glass substrate

in the bottom of the wells to measure cellular status in real time. Cells are

cultivated onto the surfaces of the microelectronic sensors. Under the con-

trol of RTCA software, the sensor analyzer automatically selects wells to be

measured and continuously conducts measurements on wells. The electronic

impedance is then transferred to a computer and recorded [19]. The extent

of impedance change is related to the number of cells inside the wells and the

inherent morphological and adhesive characteristics of the cells [16]. Cell index,

often abbreviated as CI, is derived to provide quantitative information about

the biological status of the cells such as cell number [18]. CI is calculated as

CI = max
k=1,...,K

[
Rcell(fk)

Rb(fk)
− 1

]
(2.1)

where k is the number of the frequency points at which the impedance is mea-

sured andRb(fk) andRcell(fk) are the frequency-dependent electrode impedance

(resistance) without and with cells present in the wells, respectively.

2.1.3 Experiment test procedures

The layout of the plate is schematically represented in Figure 2.1. The experi-

mental test procedures are as follows.

Before cell plating, the background cell index of each well was examined.

20 µL of media was then added into each well of the 384x well E-plate using

the VIAFLO 300 µL multichannel pipet. The plate was spun for one minute in

approximate 1,000 rpms to bring the media down to the bottom of the wells and

loaded onto the stacker in the Cytomat 2C incubator. After the background cell
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indexes were recorded, the plate was removed from the incubator and stored

inside the TC hood.

After the mixed cell suspension was transferred from the T75 flask into 50

mL tube and mixed three times in the tube, the 500 µL of cell suspension

was transferred into microcentrifuge tube. 10 µL of the cell suspension aliquot

was transferred into fresh microcentrifuge tube with a 20 µL Rainin Pipet

and 10 µL of Cedex Trypan Blue solution was added into the same tube (1:2

dilution) to mix well. The Cedex automated cell counter was used for HepG2

cell line. The entire volume of the diluted sample was transferred into the

Cedex counting slide and the cell density per mL was determined using the

automated cell counter. 40 µL of media with cells was added into each well of

the E-plated to make 60 µL per well. The E-plates were incubated with cells

at room temperature for 30 minutes and then added into the Cyto2 incubator.

The cells were seeded (4,000 cells per well) and incubated for 20 ∼ 24 hours.

When CI reached to 10% or 20% of the maximum value of CI, solutions of

each chemical with 11 concentration levels were applied onto the wells with

automatic pipetting. Then, the cells were incubated for 89 hours including

initial attachment/growth to ensure that the cells were in exponential growth

state and the toxicity results were directly affected by the tested chemicals.

The instrument recorded the time-dependent values of CI continuously. The

readings of the CI were once per minute within the first 8 minutes, once every

15 minutes in the following 7 hours, and once every 2 hours afterwards until

the experiment was completed. Both short-term and long-term responses were

monitored. Short-term response referred to cellular reaction within the phase

of the first 12 hours after treatment and long-term response referred to the

phase from the 12th hour to the 89th hour.
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Figure 2.1: Layout of the experiment plate (384x). In order to achieve robust
and reliable results, the experiment for each chemical was repeated in quadru-
plicates. The concentrations were in a descending order from the 1st column to
the 11th column in the left hand side and from the 24th column to the 14th col-
umn in the right hand side. The serial dilution ratio was 1:3. Negative control
and DMSO (high: 0.2%, low: 0.067% or 0.04%) control panels were placed in
the 12th and 13th columns in order to minimize the effect of chemicals under
different concentrations.

2.2 Data preprocessing

2.2.1 Calculation of normalized cell index (NCI )

All TCRPs are normalized by dividing CI at each time instant by CI at a

reference time instant CI(0) as in Eq. (2.2). Therefore, normalized cell index

(NCI) is 1 at the reference time point. Since the assays of chemicals come

from different batches of experiments, only the initial 72 hours are considered.

NCI(k) =
CI(k − 1)

CI(0)
, k = 1, 2, . . . , K (2.2)

2.2.2 Denoising

The proposed classification approach employed a denoising algorithm intro-

duced by Pan and Huang [20]. The denoising algorithm overcomes the lim-
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itation of various sensors and the disturbance, and increases the accuracy of

measurement, feature extraction and classification analysis. The main princi-

ple behind the denoising algorithm is to detect and interpolate the abnormal

difference in CI, ∆NCI(k):

∆NCI(k) = NCI(k + 1)−NCI(k), k = 1, . . . , K − 1 (2.3)

The detection is similar to the empirical 3σ rule. A magnitude coefficient α

is used to control the possibility of the abnormal cell deviation. According to

Pan and Huang, α = 2, which means a 95% confidence interval is used to screen

out outliers [20]. If ∆NCI(k) is located outside of the confidence interval, we

are approximately 95% confident that the difference in CI is abnormal. Then

a linear interpolation is used within the nearest two points of the abnormal

index k to substitute the original NCI(k).

In order to distinguish the TCRP patterns of the tested chemicals from the

control patterns and to make a uniform comparison, the relative NCI (RNCI)

is calculated by dividing NCI of each chemical (NCId(k)) by the NCI of

the negative control or vehicle control (NCIc(k)) at the kth time instant, as

in Eq. (2.4). Specifically, the average representative of negative control was

used to normalize CI for water soluble substances at 11 concentrations and

non water soluble substances for the 3rd − 11th concentrations. The average

representative of 0.2% DMSO was used to normalize CI for non-water soluble

substances at the 1st highest concentration; 0.067% and 0.04% for non water

soluble substances at the 2nd high concentration.

RNCI(k) =
NCId(k)

NCIc(k)
k = 1, 2, . . . , K (2.4)

The raw TCRPs of two chemicals collected from the experiments are illus-

trated in Figure 2.2.
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(a) TCRPs of 5-FU depict cellular reaction af-

ter cells HepG2 are exposed to different concen-

trations: Ce = 0 (control line & DMSO), Ce = 0.2

mM, Ce = 66.67 µM, Ce = 22.22 µM, Ce = 7.41

µM, Ce = 2.47 µM, Ce = 0.82 µM, Ce = 0.27 µM,

Ce = 91.45 nM, Ce = 30.48 nM, Ce = 10.16 nM,

Ce = 3.39 nM. Cell indexes of all TCRPs increase

consistently within the initial 20 hours while some

show decreasing values after the 20th hour.
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20 µM, Ce = 6.67 µM, Ce = 2.22 µM, Ce = 0.74
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crease in the initial 20 hours, recover to increase

gradually after the 20th hour and decrease after

the 60th hour.

Figure 2.2: TCRPs of 5-FU and Paclitaxel

According to the above mentioned standards, TCRPs of chemicals are trans-

ferred into relative TCRPs for further analysis. Examples of relative TCRPs

are shown in Figure 2.3.
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Figure 2.3: TCRPs of 5-FU and Paclitaxel (relative)

13



2.2.3 Eligible TCRP selection

An eligible TCRP is a cellular response to a toxicant at a specific concentration

level that indicates distinguishable toxicity effect with a clearly different shape

from the TCRP of the control line which is a toxic-free cellular response. An

ineligible TCRP is then defined as a cellular response which is close to the

TCRP of the control line. In our study, we use “Feature Extraction Step 1:

Identification of Eligible TCRPs” introduced by Pan and Huang [20] to exclude

ineligible TCRPs and retain eligible TCRPs. A screening index Ξ is defined as


Ξm =

K∑
k=1

ξm(k)

ξm(k) =

0 1− δ ≤ RNCIm(k) ≤ 1 + δ

1 otherwise

(2.5)

where m = 1, 2, . . . ,M denotes the mth concentration in M TCRPs (here,

M = 11), k = 1, 2, . . . , K is the sampling instant in a TCRP (here, K = 36,

sampling interval of 2 hours), and δ is an adjustable empirical threshold to

screen eligible TCRPs. The δ value in Eq. (2.5) determines the number of

TCRPs for the classification algorithm. The larger δ is, the smaller number

of TCRPs is retained. To guarantee an adequate number of TCRPs for pat-

tern recognition and reasonable features, the variation of negative control is

suggested as reference. Coefficient of variation (CV%) is used to measure the

inter/intra-plate reproducibility of the experiments. As calculated, the CV%s

of all intra-Plates are less than 17.9%; the δ value should be greater than the

maximum CV% of negative control. Therefore, δ = 0.2 is suggested. The

mth TCRP with Ξm > ϵ (here, ϵ = 10) is eligible and included for further

consideration.

The selection of eligible TCRPs also indicates the selection of specific con-

centration levels in the experiments. Meanwhile, the method can be used to

screen chemicals with inconspicuous patterns. A chemical will be excluded

14



from being used in our proposed classification methods if at most two TCRPs

are selected as eligible TCRPs. In this case, we consider the chemical illegible

and without meaningful patterns, possibly because of experimental disturbance

or design. For this reason, the inclusion of such chemicals may be misleading.

By using the screening index Ξ, we successfully screen out ineligible TCRPs as

well as ineligible chemicals. Ineligible TCRPs of chemicals will be deleted and

ineligible chemicals will be categorized into “Unclassified group”.

According to the Eq. (2.5), relative TCRPs are selected and preserved. The

process how TCRPs are selected is illustrated in Fig 2.4.
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Figure 2.4: Relative TCRPs and selected relative TCRPs of 5-FU and Pacli-
taxel. Note that each chemical is now represented using TCRPs with different
numbers of concentrations (profiles) retained after eligible profile selection.
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2.3 Nonuniform dimensionality problem

The key problem after data processing lies in the existence of nonuniform di-

mensionality associated with each chemical data object. As indicated in 2.4,

5-FU has 5 eligible TCRPs while Paclitaxel has 6 eligible TCRPs. Therefore,

5-FU is denoted by a 36-by-5 matrix while Paclitaxel is denoted by a 36-by-6.

Although both of them share the same time length which is 36 time intervals,

the difference in column numbers makes the comparison and classification of

chemicals challenging. In order to unify the classified chemicals for feasible

comparison, feature extraction strategies are proposed and used to filter the

data associated with chemicals and generate new data for manipulation.

2.4 Conclusion

This chapter introduced how the experiments were designed and carried out.

In order to filter irrelevant information out, a data processing strategy includ-

ing denoising and selection of eligible TCRP and chemicals was presented to

smooth and screen TCRPs. Although the TCRPs associated with each chem-

ical were denoised and cleaned, the nonuniform dimensionality which resulted

from the data processing procedure made the comparison among chemical data

difficult. Therefore, extracting valid features from such data becomes necessary

and crucial. In the following chapters, three different approaches are proposed

to handle this problem and then cluster data into proper groups.
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Chapter 3

Majority-voting and K-means

integrated classification

In this chapter, a classification method including majority-voting slope feature

extraction and K-means clustering algorithm based on TCRPs is explored.

First, the majority-voting based feature extraction is elaborated in detail. K-

means clustering algorithm is then introduced and implemented on the ex-

tracted feature vectors. The proposed classification approach addresses the

problem of clustering chemicals into similar groups where TCRPs show similar

tendency with a good performance.

3.1 Introduction

In order to classify chemicals which are denoted by different numbers of eligible

TCRPs, the first problem to be solved is how to unify the dimension of data

matrices. Data matrix associated with each chemical is composed of different

numbers of TCRPs. Although the RNCI’s in the TCRPs are recorded at the

same time instants, the number of eligible TCRPs varies from one chemical to

another. A feasible method to unify the data matrices is to tag each chemical

with a feature vector. To achieve this goal, all the TCRPs of a chemical are
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represented using a feature vector. Some basic statistical indices can be used,

e.g. mean and median of TCRPs. However, important information about

multiple TCRPs is lost inevitably as mean or median can merely reflect the

average tendency of all the profiles of each chemical. The diversity among the

tendencies of TCRPs is not taken into consideration. To address this problem,

the majority-voting based feature extraction is utilized as a way to capture as

much information about the major tendency of TCRPs as possible.

This chapter is organized as follows. First, the majority-voting based fea-

ture extraction is elaborated in Section 3.2. The proposed feature extraction

scheme is illustrated using several examples. In Section 3.3, K-means clustering

algorithm is considered. With its application on the extracted feature vectors,

the classification of chemicals is addressed. In Section 3.4, classification results

are summarized in a table and analysis of results is also presented. Section 3.5

concludes this chapter.

3.2 Majority-voting based feature extraction

3.2.1 Slope quantization

As ineligible TCRPs as well as the corresponding concentrations are screened

out, feature extraction will be imposed on each chemical data represented by

different numbers of TCRPs. All chemicals are then denoted as a cubic matrix

of diverse dimensionality.

X = {RNCIkj (T )} (3.1)

where T is sampling instant, T = 1, . . . , 36. There are M concentration levels

{cp}Mp=1. {cp}Mp=1 denotes the concentration serial number after selection. k is

the index vector for eligible chemicals.

The main challenge lies in the unification of data with non-uniform di-
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mensionality. Due to the non-uniform dimensionality, a majority-voting based

feature extraction is applied in order to fuse multiple curves into one represen-

tative profile based on the assumption that the shape displayed from TCRPs

of a chemical is decided by the major tendency of profiles.

Due to uniform sampling, the slope of each profile can be denoted as

∆X(k) = {∆RNCIkj (t)}, where t is the sampling interval, t = 1, . . . , T − 1.

Given some thresholds, a quantization for slope is as follows:

∆X(k) = {∆RNCIkj (t)} → {Bk
j (t)}

cM
j=c1

=



1 ∆RNCIkj (t) ≥ δ1

0 − δ1 ≤ ∆RNCIkj (t) < δ1

−1 − δ2 ≤ ∆RNCIkj (t) < −δ1

−2 ∆RNCIkj (t) < −δ2

(3.2)

where δ1, δ2 are tuning parameters (here, δ1 = 0.001, δ2 = 0.1) designed specif-

ically for HepG2 cell line. Ω = {1, 0,−1,−2} denote an increasing, constant,

decreasing and quickly decreasing tendency in profiles accordingly. After all

slopes of profiles in time intervals are quantified, a majority voting is carried

out.

3.2.2 Majority voting

The representative profile is able to reflect the dominant profile tendency and

variation from one time interval to another. The majority voting of the {Bj(t)}

at individual sample interval t is carried out for all selected TCRPs. The

represented feature vector B̄(t) of chemical k is obtained using Eq. (3.3).

B̄(t) = arg max
ωi∈Ω

cM∑
m=c1

I(Bm(t) = ωi) (3.3)
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where I(·) is an indicator function with ωi ∈ Ω in Eq. (3.4).

I =

1 Bm(t) = ωi

0 otherwise

(3.4)

If Bm(t) = ωi, then I = 1, otherwise I = 0 . M is the number of TCRPs of

each chemical included.

3.2.3 Slope representatives

All the logical values of ∆RNCIj(t) which are equal to the dominant one are

selected out. The corresponding concentration levels compose a new set c(t),

which is indicated in Eq. (3.5).

c(t) = {j|Bj(t) = B̄(t)}, j = c1, . . . , cM (3.5)

where {cp}Mp=1 are selected M concentration levels.

In each sampling interval, the median value of all ∆RNCIj(t) in correspon-

dence with the selected concentrations then forms the feature vectors. The

feature vectors describe the major tendency in each sampling interval. Con-

centrations are involved and contribute diversely in different sampling interval.

F̄ (t) = median
j∈c(t)

{∆RNCIj(t)} (3.6)

where ¯F (t) denotes the feature vectors.

3.2.4 Example

A detailed example follows. TCRPs of 5-Fu, Cytochalasin D, Paclitaxel are

taken as examples together to illustrate the feature extraction procedure.
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After eligible profile selection, 5, 8 and 6 TCRPs are retained accordingly.

Figures 3.1(a), 3.1(b) and 3.1(c) show all the eligible TCRPs after selection.

The highest level of concentration in each chemical considered is chosen as an

example to show the corresponding slope tendency. Figures 3.2(a), 3.2(b) and

3.2(c) show the changing trend of ∆RNCI with respect to cumulative time.

From the figure, we observe that ∆RNCI’s of Cytochalasin D in the first

three sampling intervals is far smaller than a predefined threshold −δ2 (here,

δ2 is 0.1). It discriminates itself from Figure 3.2(a) and Figure 3.2(c) where

∆RNCI’s vary within the yellow range. Figures 3.3(a), 3.3(b), 3.3(c) show

the logical representation of slopes after quantization. As the slopes are quite

small, the logical values within the first three sampling intervals in TCRPs of

Cytochalasin D are set as -2. Figures 3.4(a), 3.4(b) and 3.4(c) show the results

of majority voting on logical variables accordingly.
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(b) Eligible TCRPs of Cytochalasin D
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Figure 3.1: Eligible TCRPs of 5-FU, Cytochalasin D and Paclitaxel
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(b) Slopes of Cytochalasin D at 20 µM
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Figure 3.2: Slopes of 5-FU, Cytochalasin D and Paclitaxel at the highest con-
centration level
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(a) Logical representation of 5-FU
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(b) Logical representation of Cytochalasin D
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(c) Logical representation of Paclitaxel

Figure 3.3: Logical representation
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(a) Majority-voting logical representation of 5-FU
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(b) Majority-voting logical representation of Cytochalasin D
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(c) Majority-voting logical representation of Paclitaxel

Figure 3.4: Majority-voting logical representation
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It should be noted that sometimes conflicts are observed in this majority-

voting. Table 3.1 shows the distribution of logical values. Conflicts occur at

the 1st and 26th entry where the amount of negative logical values (3) is equal

to the amount of quick negative logical values (3) and the amount of constant

logical values (4) is equal to the amount of negative logical values (4).

Table 3.1: Distribution of logical values (Cytochalasin D)

Sampling interval t1 t2 t3 t4 . . . t25 t26 . . . t32 t33 t34 t35
Positive 1 0 0 0 . . . 1 0 . . . 0 0 0 0
Constant 1 0 0 0 . . . 3 4 . . . 1 0 0 0
Negative 3 3 3 8 . . . 4 4 . . . 7 8 8 8

Quick Negative 3 5 5 0 . . . 0 0 . . . 0 0 0 0

To solve the conflict situations, rules of identifying logical vectors with

conflicts are designed as follows:

• If the conflict does not appear in the first interval, the majority-voting

result at an interval follows the result in its previous interval provided the

curve tendency within two neighbouring intervals does not vary rapidly

(lt = lt−1);

• If the conflict is observed in the 1st interval, the constant logical variables

are not taken into consideration because they are close to the horizontal

line and do not show obvious tendency. Instead, arg max
ωi∈Ω\{0}

cM∑
m=c1

I(Bm(t) =

ωi) is calculated and becomes the logical feature if the conflict is solved.

However, if the conflict is not solved, two situations are considered sepa-

rately:

1. if there is still conflict on logical variables, and

{−2} ⊂ arg max
ωi∈Ω\{0}

cM∑
m=c1

I(Bm(t) = ωi) (3.7)

then l1 = −2;
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2. if there is still conflict on logical variables, and

{−2} ̸⊂ arg max
ωi∈Ω\{0}

cM∑
m=c1

I(Bm(t) = ωi) (3.8)

then l1 = 0.

Tables 3.2 and 3.3 display the change of logical variables. Figures 3.5(a)

and 3.5(b) are illustrated to compare the change of the logical feature of Cy-

tochalasin D. The improved entries are marked with red in Figure 3.5(b).

Table 3.2: Logical representation with conflict (Cytochalasin D)

Sampling interval t1 t2 t3 t4 . . . t25 t26 . . . t32 t33 t34 t35
Logical feature ? -2 -2 -1 . . . -1 ? . . . -1 -1 -1 -1

Table 3.3: Improved logical representation (Cytochalasin D)

Sampling interval t1 t2 t3 t4 . . . t25 t26 . . . t32 t33 t34 t35
Logical feature -2 -2 -2 -1 . . . -1 -1 . . . -1 -1 -1 -1
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(a) Original majority-voting logical representation of

Cytochalasin D

0 5 10 15 20 25 30 35
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Lo
gi

ca
l v

al
ue

s

Cumulative Time

Improved majority voting of CytochalasinD

(b) Improved majority-voting logical representation
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Figure 3.5: Improvement of majority-voting logical representation

27



0 5 10 15 20 25 30 35
−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

S
lo

pe

Cumulative Time

Slope feature of 5−FU

 

 

Synthesized conc.

(a) Slope features of 5-FU
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(b) Slope features of Cytochalasin

D
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(c) Slope features of Paclitaxel

Figure 3.6: Slope features

The median of slopes whose logical representations are dominant in each

sampling interval is taken as the slope feature for the corresponding entry.

Figures 3.6(a), 3.6(b), 3.6(c) display the slope features of TCRPs of three

chemicals. If there is a conflict in logical variables in an interval, the median of

slopes whose logical representations are equal to lt−1 is taken as representatives.

If

c(t) = {j|Bj(t) = B̄(t− 1), j = c1, . . . , cM}

is an empty set, the median value of all slopes in the interval is taken as the

slope feature for the entry. Thus, a chemical with diverse TCRP volumes is

consistently represented by a 1-by-35 slope feature vector.

3.3 K-means clustering

K-means clustering is one of the unsupervised clustering algorithms and com-

monly used in many areas such as signal processing, market segmentation,

computer vision etc. In cluster analysis, K-means method is aimed to parti-

tion the input data points into K clusters.

In this section, K-means clustering is elaborated with mathematical equa-

tions from [21]. Suppose a data set {x1, . . . ,xN} is composed of N observations

with D dimensions. A cluster is formulated as a group of data points whose

inter-point distances are smaller than the distances to points outside the clus-
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ter. D-dimensional vectors µk (k = 1, . . . , K) are introduced to denote the

prototype of each cluster. In K-means method, the prototypes are the centers

of the clusters. Given a number K, the problem is formulated as assigning

all data points to clusters such that the sum of distances of data points to its

closest vector µk is minimized.

As an optimization problem, an objective function is defined as

J =
N∑

n=1

K∑
k=1

rnk∥xn − µk∥2 (3.9)

where {xn}Nn=1 are data points. rnk is a binary indicator variable for xn, n =

1, . . . , N , k = 1, . . . , K. It is used to identify which cluster xn belongs to:rnk = 1 if xn is assigned to the kth cluster

rnj = 0 if j ̸= k.

(3.10)

Each data point is then coded into a 1-by-K vector. To find values of rnk and

{µk} to optimize the objective function J , an iterative method including two

successive steps is involved to realize a successive optimization. Some values

for µk are initialized first. The objective function, J , is minimized with respect

to rnk with µk fixed. Then J is minimized with respect to µk with rnk fixed.

The new µk is then used as an input for optimization in successive iterations

until µk and rnk are convergent.

The binary indicator variable is determined in the following way. J in E

3.9 is a linear function of rnk. Terms involving n are independent. Therefore,

choosing rnk to be 1 for the value of k that gives the minimum value of ∥xn −

µk∥2 can optimize the objective function, which is indicated in Eq. (3.11).

rnk =


1 if k = arg min

j
∥xn − µj∥2

0 otherwise

(3.11)
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Once the rnk is identified, the optimization is imposed on µk. Setting the

derivative of J with respect to µk to zero, we get

2
N∑

n=1

rnk(xn − µk) = 0 (3.12)

Therefore, µk is given as

µk =

∑
n rnkxn∑
n rnk

(3.13)

where the denominator is equal to the number of all of the data points assigned

to cluster k. Eq. (3.13) is interpreted in a way that the prototype of each

cluster, i.e. µk, is set as the mean value of the data points xn assigned in

cluster k.

The iteration of assigning data points continues until the maximum num-

ber of iterations is reached or the estimation of parameters including binary

indicator rnk and cluster mean µk converges. However, some drawbacks of

this algorithm should be mentioned. First, a local minimum value of J may

be reached during the two-step iteration. Convergence properties of K-means

method can be referred to [22]. Second, K-means algorithm performs a hard

assignment of data points to clusters in which each data point belongs to one

cluster uniquely. Data points which lie in the boundaries are sometimes mis-

classified. Third, the number of clusters is supposed to be specified in advance.

For more details about the application of K-means algorithm and its connec-

tion to the mixture model, the readers are referred to Bishop and Nasrabadi

[21].
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3.4 Results and discussion

3.4.1 Results

Results of classification on all eligible chemicals are shown in this section. Eli-

gible TCRPs of chemicals are extracted using majority voting and then input

into K-means clustering elaborated above. Figure 3.7 displays all of the feature

vectors of eligible chemicals using majority voting method.

Function kmeans in MATLAB R⃝ R2011b (version 7.13) is used to generate

the results. The distance parameter set in the parameter list is cityblock dis-

tance. It is the sum of absolute differences, known as L1 distance between two

feature vectors. Because initial values to start K -means are chosen differently

each time and K -means algorithm is an algorithm converging quickly to a local

optimum, the replicates of clustering is set to 500 so as to obtain robust results.

According to the prior knowledge about cluster number, 6 ∼ 10 is proper.

6 is chosen as the cluster number input to generate the results listed in Table

3.4.
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Feature vectors of eligible chemicals using majority voting

Figure 3.7: Extracted feature vectors of eligible chemicals using majority voting
methods
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Table 3.4: Results of Majority-voting and K-means integrated classification
(cell line: HepG2. 47 of 65 chemicals are eligible.)

Cluster SN Chemical Solution Concentration (1:3) TCRP

1 1 5-fluorouracil (5-FU) DMSO 200µM− 3.39nM
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2 Etoposide phosphate DMSO 200µM− 3.39nM
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12 Clofarabine (CLOF) H2O 25µM− 0.42nM
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13 Hydroxyurea (HU) H2O 10mM− 169nM
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35 Mitoxantrone DMSO 150µM− 2.54nM
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40 2’-Deoxy-2’ H2O 1650µM− 27.94nM
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continued from previous page

Cluster SN Chemical Solution Concentration (1:3) TCRP

43 Irinotecan (CPT-11) DMSO 160µM− 2.71nM
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44 Cytosine H2O 8950µM− 151.57nM
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46 Benzo[a]pyrene DMSO 100µM− 1.69nM
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47 Gemicitabine H2O 2µM− 0.03nM
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60 SN-38 DMSO 200µM− 3.39nM
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2 7 Emetine H2O 50µM− 0.847nM
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9 Actinomycin D DMSO 2µM− 0.0339nM
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10 Puromycin H2O 1000µM− 17nM
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11 Anisomycin H2O 10µM− 0.17nM
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Cluster SN Chemical Solution Concentration (1:3) TCRP

16 Doxorubicin (DOX) H2O 100µM− 1.69nM
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17 Brefeldin A (BEF) DMSO 40µM− 0.68nM
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22 Oligomycin DMSO 20µM− 0.339nM
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23 Antimycin A EtOH 200µM− 3.387nM
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24 Rotenone DMSO 200µM− 3.387nM
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25 Thapsigargin DMSO 2µM− 0.0339nM
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26 BHQ DMSO 400µM− 7nM
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28 Cyclosporin A DMSO 100µM− 1.69nM
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34 (S)-HDAC-42 DMSO 128µM− 2.17nM
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42 Merbarone DMSO 200µM− 3.39nM
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61 Vinblastine Sulfate H2O 40µM− 0.68nM
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4 14 Valproic acid H2O 50mM− 847nM
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18 Leptomycin B (LMB) EtOH 20nM− 0.000339nM
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5 5 Cytochalasin B DMSO 20µM− 0.339nM
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64 HA1100 hydrochloride H2O 1000µM− 16.94nM
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6 4 Cytochalasin D DMSO 20µM− 0.339nM
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31 Latrunculin A EtOH 2µM− 0.03nM
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3.4.2 Discussion

The majority-voting feature extraction strategy is able to transfer multiple time

series with different concentrations into one time series in order that TCRPs

with various dimensionality can be integrated and the data points with different

representations are therefore comparable with each other. Along the whole

time intervals, different segments of TCRPs are involved in the calculation of

the logical entry for each sampling interval. However, there is some inevitable

loss of curve information during the fusion of multiple curves. For example,

as the results of cluster 3 indicate, TCRPs of Vincristine Sulfate (#15) and

Vinblastine Sulfate (#61) are mutually similar while TCRPs of Paclitaxel (#8),

S-tritytl-Cysteine (#49), Dimethylenastron (#50) and Docetaxel (#59) are

similar to each other. We check the feature vectors of chemicals in cluster 3.

Figure 3.8 shows the extracted feature vectors of chemicals.

According to Figure 3.8, those feature vectors are close to each other. The

pairwise distances are small enough so that K-means algorithm clusters them

together. This is a limitation of the proposed majority-voting feature extrac-

tion to represent the several TCRPs into one logical vector. For each sampling

interval, some TCRPs with low concentration levels are not involved in the
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Figure 3.8: Extracted feature vectors of chemicals in cluster 3 using majority
voting methods

calculation of feature slopes because the amount of the corresponding logical

variable is subordinate. However, sometimes the majority is not absolutely

dominant, indicating that the amount of subordinate TCRPs is close to that

of dominant ones during slope quantization. For example, the TCRPs of Vin-

cristine Sulfate (#15) and some excerpted logical entries are shown in Figure

3.9(a) and Table 3.5 accordingly. Values marked in red are considered as con-

flicting situations which can be improved using the methods introduced above.

The underlined logical values in those columns are close to each other. By using

majority-voting feature extraction, information about minor logical variables

and their corresponding TCRPs has to be ignored.

Table 3.5: Excerpted Logical representation (Vincristine Sulfate)

Sampling interval t1 t2 t3 t4 t5 t6 . . . t17 t18 t19 t20 . . .
Positive 4 0 0 0 0 0 . . . 5 5 4 4 . . .
Constant 0 0 0 0 0 0 . . . 0 0 0 0 . . .
Negative 6 10 9 8 6 6 . . . 5 5 6 6 . . .

Quick Negative 0 0 1 2 4 4 . . . 0 0 0 0 . . .

Another possible reason for “misclassification” is that the values of RNCI

are not fully utilized in feature extraction. As indicated in the TCRPs of
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Vincristine Sulfate (#15) and Paclitaxel (#8) (Figure 3.9), after about 48 hours

of the addition of chemicals, the majority of the TCRPs of both chemicals show

a decreasing tendency. According to the calculation of slopes, the values for

both #15 and #8 are rather close. However, the TCRPs of #15 disperse while

those of #8 assemble. Slope values just consider the variability of cells by

calculating ∆RNCI from one sampling interval to another. Although slopes

can indicate the tendency for each TCRP, the spread of TCRPs cannot be

reflected in slope values, which leads to the difference in shape between #15

and #8 to some extent.
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(a) TCRPs of Vincristine Sulfate (#15)
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(b) TCRPs of Paclitaxel (#8)

Figure 3.9: TCRPs of Vincristine Sulfate and Paclitaxel

Although there is some deficiency in the majority-voting feature extraction

method, the overall clustering results show good discrimination from a curve

shape similarity point of view. To avoid unnecessary loss of information, a curve

by curve correlation-based clustering approach is proposed and introduced in

next chapter.

3.5 Conclusion

After data processing, each chemical is depicted by multiple TCRPs with un-

even dimensionality. To realize the goal of classifying chemicals using their
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TCRPs, standardization about uneven data is imperative and crucial. A

majority-voting based feature extraction strategy is proposed to fuse multiple

TCRPs into consistent feature vectors with equal dimensionality to compare

using slopes. The slope feature vectors represent the chemicals with different

segments of TCRPs under diverse concentration levels involved in each sam-

pling interval. All the feature vectors of eligible chemicals consist of a feature

matrix. Then K-means clustering algorithm is briefly introduced and utilized

as a key tool to classify the feature matrix. With the help of prior knowl-

edge about the cardinality of clusters, chemicals are classified into six groups.

The results indicate good differentiation on profile shapes and can be used for

further analysis.
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Chapter 4

A hierarchical correlation based

classification

In this chapter, a classification approach based on correlation coefficients is pro-

posed. In order to classify chemicals associated with Mode of Action, Pan and

Huang implemented correlation analysis on logical representations of chemicals

to cluster them. If the correlation coefficient between logical feature vectors of

any two chemicals was larger than τ , a predefined tuning parameter, the two

chemicals were grouped together [20].

The proposed curve by curve correlation-based clustering method deals with

all the eligible TCRPs in order to keep valid information in each TCRP of a

given chemical. Since each chemical is represented by multiple TCRPs, com-

pressed data may not reveal all the information about the response patterns.

Also, a challenge to compare the similarity between chemicals is that each

chemical is represented by different numbers of eligible TCRPs. Some chemicals

may have 3 eligible TCRPs while some others may have all 11 eligible TCRPs.

The difference in dimensions makes the comparison of similarity among chem-

icals difficult. The proposed clustering method avoids data compression and

the comparison of dimension and facilitates in quantifying the shape similarity

among TCRPs of chemicals and classifying similar chemicals into one group.
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4.1 Introduction

The proposed classification approach consists of two steps. The first step,

termed as categorization, classifies chemicals according to apparent shapes of

TCRPs. The main purpose of this step is to separate chemicals roughly using

discernible curve features, which provides the foundation for the next step.

The second step, termed as curve by curve correlation-based clustering, further

improves classification results by grouping similar chemicals in each category.

It is carried out by analyzing the correlation coefficients between TCRPs of

chemicals within the same category. Using the correlation coefficients in a

discerning way is a good measure of similarity in shape among TCRPs. It can

group chemicals with similar shape patterns within one category. This two-step

approach provides good classification results as demonstrated in the following

sections.

curve by curve correlation-based clustering

clustering results

Initial response: 

decrease or not?

positive 

pattern

negative 

pattern

TCRPs of chemicals

No Yes

Figure 4.1: Hierarchical correlation based classification schematic structure

Figure 4.1 shows the schematic structure of the hierarchical correlation-

based classification method. As seen from Figure 4.1, categorization is aimed

at the initial 6 hours after the addition of chemicals. It discriminates chemicals

with sharply decreasing responses from those that do not display such a ten-
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dency. All chemicals are therefore divided into two categories: chemicals with

sharply decreasing responses, termed as negative pattern group, and without

sharply decreasing responses, termed as positive pattern group. The two cat-

egories are then subject to curve by curve correlation-based clustering under

the hierarchical correlation-based classification framework.

This approach avoids the feature extraction procedure by fully utilizing all

of the TCRPs of chemicals and can generate better results as well.

This chapter is organized as follows. First, Section 4.2 introduces how curve

tendency is used as a means to discriminate chemicals. A correlation-based

clustering method to classify the chemicals using correlation coefficient as a

metric to measure similarity is introduced in Section 4.3. Examples about

how correlation coefficients are formulated as well as the improvement are

elaborated. Section 4.4 displays the results and lists some deficiency of this

approach.

4.2 Step 1: Categorization

The first-order differences of TCRPs are a good indicator of decreasing and

increasing tendencies of curves. A predefined threshold on the first-order dif-

ferences can distinguish chemicals exhibiting negative pattern from positive

pattern. In Figures 4.2 and 4.3, chemicals inducing negative pattern as well as

positive pattern are shown respectively.
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(a) Negative pattern: TCRPs
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(b) Negative pattern: first-order differ-
ences of TCRPs

Figure 4.2: Negative pattern
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(a) Positive pattern: TCRPs
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(b) Positive pattern: first-order difference
of TCRPs

Figure 4.3: Positive pattern

The categorization is aimed at screening out chemicals with a sharply de-

creasing tendency in the initial 6 hours of cellular response. Some chemicals

can kill cells in a very short time period. In order to separate those chemicals,

we calculate the first-order differences of RNCI, ∆RNCI, in Eq. (4.1).

∆RNCI(k) = RNCI(k + 1)−RNCI(k), k = 1, . . . , K − 1 (4.1)

We notice that the initial pattern of Figure 4.2 is different from Figure 4.3.
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The corresponding ∆RNCI’s in Figure 4.2 are evidently smaller than an ad-

justable empirical threshold -0.1 with some even falling down to -0.4. However,

the first-order differences of the TCRPs in Figure 4.3 lie within the empirical

thresholds as opposed to those in Figure 4.2. Figure 4.2 shows that in the initial

phase, cells are killed rapidly by some chemicals under particular concentra-

tions. Therefore, a chemical holds negative pattern if there are more than or

equal to S TCRPs whose first-order differences are all less than an adjustably

empirical threshold µ.

i th chemical

∈ negative pattern if
∑M

k=1 I(∆RNCI(k) ≤ µ) ≥ S

∈ positive pattern otherwise

(4.2)

where µ = −0.1, S = 2 by default. I is an indicator function as defined in the

following equation:

I(F ) =

1 if F occurs

0 otherwise

(4.3)

Chemicals with evidently small first-order differences are screened out via

the rules and form the negative pattern group. All chemicals are then separated

into two groups, i.e. negative pattern group and positive pattern group.

4.3 Step 2: Curve by curve correlation-based

clustering

In order to achieve the goal of exploring a pattern recognition strategy in which

TCRPs can be grouped according to their similarity, the correlation coefficient

is used as a similarity metric between TCRPs of chemicals.

The Pearson correlation coefficient is given in Eq. (4.4).
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R(x,y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(4.4)

where x = [x1, x2, . . . , xn] and y = [y1, y2, . . . , yn] are time series vectors, and

x̄ and ȳ represent means of time series x and y, respectively.

4.3.1 Correlation analysis between TCRPs

The curve by curve correlation-based clustering is now explained in detail. Let

chemical p and chemical q be classified in the same category based on previ-

ous categorization. An arbitrary TCRP u in chemical p is compared with all

TCRPs in chemical q using the correlation coefficient. If one of the correla-

tion coefficients is larger than the threshold set a priori, there exists a similar

counterpart of TCRP u, denoted as v, in chemical q. The search for similar

counterpart in chemical q for each TCRP in chemical p is carried out. Subse-

quently, starting from chemical q, the similar counterpart TCRPs in chemical

p are found. The need to repeat the exercise of finding similar counterpart

TCRPs for chemical q in chemical p is important for chemical p, as all TCRPs

can find similar counterpart TCRPs in chemical q but the converse may not be

true.

Notation 1 Let C1
p→q(u, v) denote the correlation coefficient between TCRP u

in chemical p and TCRP v in chemical q. Let u1, u2, . . . , um and v1, v2, . . . , vn be

eligible TCRPs in chemicals p and q respectively. Then the matrix of correlation

coefficients is constructed as follows:

C1
p→q = [C1

p→q(ui, vj)]i=1,...,m; j=1,...,n (4.5)

Here the size of C1
p→q is m×n. Similarly, one can construct C1

q→p of size n×m.
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The correlation analysis described above cannot by itself guarantee that the

TCRPs in both the chemicals are similar in shape and therefore the chemicals

show the same pattern. This is because correlation coefficient between TCRPs

alone cannot completely capture the similarity in shape of curves. Correlation

is a measure to describe the linear relationship between two random variables.

A high degree similarity can have a large correlation coefficient, but a large

correlation coefficient cannot guarantee a high degree similarity in shape. This

is illustrated in the following example.

Example 1 In this example we illustrate the inadequacy of correlation coef-

ficient to distinguish between different TCRPs. TCRPs of Etoposide and Mi-

toxantrone at concentrations levels 0.2mM and 5.56µM are presented in Figure

4.4(a). Further, TCRPs of the same chemicals at concentration levels 0.2mM

and 68.59nM respectively are presented in Figure 4.4(b). For ease of notation,
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(b) TCRPs: 0.2mM in Etoposide and
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Figure 4.4: High correlation coefficient indicating similar trend

let p denote chemical Etoposide and q denote chemical Mitoxantrone. Let u1

and v1 denote TCRPs for chemicals p and q at concentration levels 0.2mM and

5.56µM, respectively. Let u2 and v2 denote TCRPs for chemicals p and q at

concentration levels 0.2mM and 68.59nM, respectively. It can then be noted

that C1
p→q(u1, v1) = 0.9920 and C1

p→q(u2, v2) = 0.8689 which indicates a high
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correlation coefficient. However, the shapes of the TCRPs in Figure 4.4(b)

are different because the peak times are different. The illustrative examples

underline the need for supportive metric to correlation coefficient to measure

similarity between TCRP shapes.

4.3.2 Correlation analysis between first-order differences

of TCRPs

In order to circumvent the shortcoming of using correlation coefficient alone to

measure similarity, a concept of correlation coefficient between the first-order

differences of TCRPs is introduced (as defined in Eq. (4.1)). This analysis

includes the information about the rate of change in TCRPs in addition to

the trend information provided by correlation analysis of TCRPs. In other

words, the correlation on TCRPs is not sensitive to time shift (see Figure 4.4)

whereas the correlation between the first-order differences of TCRPs captures

this phenomenon.

Notation 2 For TCRPs u and v in chemicals p and q, respectively, define the

first-order differences of TCRPs, denoted as ∆u and ∆v, respectively, according

to Eq. (4.1). Let C2
p→q(u, v) denote the correlation coefficient between ∆u and

∆v. Let u1, u2, . . . , um and v1, v2, . . . , vn be eligible TCRPs in chemicals p and

q, respectively. The matrix of correlation coefficients among the first-order

difference of TCRPs is then constructed as follows:

C2
p→q = [C2

p→q(ui, vj)]i=1,...,m; j=1,...,n (4.6)

Here the size of C2
p→q is m×n. Similarly, one can construct C2

q→p of size n×m.

Example 2 This example is a continuation of Example 1. Figure 4.5 presents

the first-order differences of TCRPs of the TCRPs presented in Figure 4.4. In

the same notation as in Example 1, C2
p→q(u1, v1) = 0.8943 and C2

p→q(u2, v2) =
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Figure 4.5: High correlation in TCRP but not in the first-order differences of
TCRPs

0.2819. A high correlation in the case of Figure 4.5(a) (C2
p→q(u1, v1)) is an indi-

cation of the similarity not only in trend but also in time shifts. On the other

hand, a low correlation in the case of Figure 4.5(b) (C2
p→q(u2, v2)) indicates

that though the trend in the TCRPs is similar, the trend in time shifts does

not match. These examples show that using correlation coefficient in TCRPs

as well as first-order differences of TCRPs serves as a more reasonable metric

for similarity in shapes.

4.3.3 Clustering algorithm based on curve by curve cor-

relation analysis

After finalizing the similarity metric (correlation coefficient in TCRPs and first-

order differences of TCRPs) to identify chemicals with the same pattern, the

clustering algorithm based on this similarity metric is now discussed.

1. Start with two chemicals p and q with eligible TCRPs u1, . . . , um and

v1, . . . , vn, respectively.

2. Construct the correlation matrix among TCRPs C1
p→q and the correlation
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matrix among the first-order differences of TCRPs C2
p→q as introduced in

Notation 1 and 2.

3. Compare correlation coefficients of TCRPs and first-order differences of

TCRPs in two correlation matrices with predefined thresholds τ1 and τ2

respectively. If the values of two matrices at the same entry are larger

than τ1 and τ2 respectively, a parameter called score for that entry is set

to 1; otherwise, the score for that entry is 0.

4. Repeat steps 2 and 3 in the reverse direction. That is, compute C1
q→p and

C2
q→p, compare the entries of two matrices with predefined thresholds and

record the score.

5. Decide whether the two chemicals p and q exhibit similarity according to

the score.

Before giving the detailed description of the algorithm, the importance of Step

4 is emphasised in the following example.

Example 3 Consider two chemicals: 5-FU and Etoposide. For ease of nota-

tion, let p denote 5-FU and q denote Etoposide. Both p and q have 5 eligible

TCRPs. The TCRPs are shown in Figure 4.6.
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Figure 4.6: TCRPs of 5-FU and Etoposide
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According to the clustering algorithm above, we calculate C1
p→q and C2

p→q

as well as C1
q→p and C2

q→p.

C1
p→q =



0.993 0.984 0.984 0.936 0.785

0.975 0.984 0.986 0.969 0.857

0.948 0.972 0.975 0.986 0.907

0.884 0.930 0.933 0.984 0.962

0.681 0.758 0.763 0.885 0.983


C2

p→q =



0.886 0.806 0.822 0.610 0.167

0.740 0.829 0.849 0.811 0.499

0.526 0.718 0.754 0.933 0.759

0.139 0.459 0.499 0.843 0.883

−0.367 −0.036 −0.007 0.518 0.839


(4.7)

C1
q→p =



0.993 0.975 0.948 0.884 0.681

0.984 0.984 0.972 0.930 0.758

0.984 0.986 0.975 0.933 0.763

0.936 0.969 0.986 0.984 0.885

0.785 0.857 0.907 0.962 0.983


C2

q→p =



0.886 0.740 0.526 0.139 −0.367

0.806 0.829 0.718 0.459 −0.036

0.822 0.849 0.754 0.499 −0.007

0.610 0.811 0.933 0.843 0.518

0.167 0.499 0.759 0.883 0.839


(4.8)

From Figure 4.6, we notice that the TCRPs of both 5-FU and Etoposide

are similar. In each row of C1
p→q and C2

p→q, there exist at least one entry

whose values are larger than thresholds τ1, τ2 (Here, τ1 = 0.7, τ2 = 0.4). It

means that for each TCRP in 5-FU, there is at least one similar TCRP in

Etoposide. The situation is the same in reverse. Therefore, these two chemicals

are grouped because they are mutually similar. Each TCRP in chemical p has

its counterpart in chemical q and vice versa.

Example 4 Another example is as follows. Two chemicals considered are

Monesin and CCCP from HepG2 cell line. For ease of notation, let p denote

Monesin and q denote CCCP. There are 3 eligible TCRPs in Monesin and 4

eligible TCRPs in CCCP respectively. The TCRPs are shown in Figure 4.7.

According to the clustering algorithm discussed, we calculate C1
p→q and

C2
p→q as well as C1

q→p and C2
q→p.

C1
p→q =


0.953 0.999 0.992 0.838

0.896 0.983 0.963 0.790

0.564 0.781 0.712 0.323

 C2
p→q =


0.768 0.957 0.883 0.744

0.266 0.633 0.462 0.289

−0.809 −0.503 −0.647 −0.593

 (4.9)
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Figure 4.7: TCRPs of Monesin and CCCP

C1
q→p =


0.953 0.896 0.564

0.999 0.983 0.781

0.992 0.963 0.712

0.838 0.790 0.323

 C2
q→p =


0.768 0.266 −0.809

0.957 0.633 −0.503

0.883 0.462 −0.647

0.744 0.289 −0.593

 (4.10)

From Figure 4.7, we notice that except for the TCRP marked with triangles

(down) in Monesin, the others can find their matching counterpart TCRPs

in CCCP while all the TCRPs in CCCP have their counterpart TCRPs in

Monesin. This phenomenon can be reflected from the correlation matrices.

We can see that the first two rows of C1
p→q and C2

p→q are larger than the

default thresholds τ1 = 0.7, τ2 = 0.4, respectively while the highlighted entries

in the third row do not satisfy the conditions. Specifically, the third row of

C2
p→q are all negative. So, for the TCRP with the third highest concentration

in Monesin, there is no counterpart TCRP in CCCP, which is denoted as a

mismatch. Conversely, in each row of C1
q→p and C2

q→p, there exist at least one

pair of elements which are larger than the thresholds defined. Therefore, CCCP

is similar to Monesin while Monesin is not so similar to CCCP. In order to

cluster chemicals in an acceptable scope, a tuning parameter M is set to control

the number of mismatch. In this study, at most 1 mismatch is tolerated. If the

number of mismatch is larger than 1, the two compared chemicals will not be
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clustered.

The detailed algorithm is presented in Algorithm 1.

Algorithm 1 Curve by curve correlation-based clustering

Initialization:
Set Index ̸= Ø, k2 = 1; t1, t2, M , τ1, τ2 (Default values: τ1 = 0.7, τ2 = 0.4)

Iteration:
1: while Index ̸= Ø do
2: p← Index(1); Ck ← Index(1); removing pth chemical’s label;
3: for each l ∈ [2, . . . , length(Index)] do
4: q ← Index(l);
5: Calculating the correlation matrix C1

p→q = [C1
p→q(ui, vj)]i=1,...,m; j=1,...,n

for RNCI and the correlation matrix C2
p→q =

[C2
p→q(∆ui,∆vj)]i=1,...,m; j=1,...,n for the deviation of RNCI from

pth to qth chemical between t1 and t2 separately. Similarly, C1
q→p and

C2
p→q are generated from qth to pth chemical. (m, n: # of selected

curves in pth and qth chemical); m× 1 vector flag1 = 0, n× 1 vector
flag2 = 0.

6: for i ∈ [1, . . . ,m] do
7: for j ∈ [1, . . . , n] do
8: if C1

p→q(ui, vj) > τ1, C
2
p→q(∆ui,∆vj) > τ2 then

9: flag1(i) = 1 (TCRP vj is matched with TCRP ui.)
10: end if
11: end for
12: end for
13: for j ∈ [1, . . . , n] do
14: for i ∈ [1, . . . ,m] do
15: if C1

q→p(vj, ui) > τ1, C
2
q→p(∆vj,∆ui) > τ2 then

16: flag2(j) = 1 (TCRP ui is matched with TCRP vj.)
17: end if
18: end for
19: end for
20: if m−

∑m
i=1 flag1(i) ≤M ,n−

∑n
j=1 flag2(j) ≤M then

21: Ck ← Ck ∪ Index(l);
22: end if
23: end for
24: Cluster #k2 ← Ck; k2 ← k2 + 1;
25: end while
Output:

clusters and cluster #;
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4.4 Results and discussions

4.4.1 Results

The proposed algorithm is demonstrated using HepG2 cell line with seven

batches of experiments. All chemicals whose TCRPs are similar to the nega-

tive control lines are screened out, which is introduced in Data Preprocessing.

Those chemicals are categorized into “Unclassified Group” because they do not

show apparent patterns. All eligible chemicals are then fed into the proposed

categorization step. Following the categorization, chemicals in each category

are analyzed via curve by curve correlation analysis in order to specify the sim-

ilarity within each category. The curve by curve correlation analysis considers

the cell reactions within the whole time range (all 72 hours from the time when

chemicals are added).

The classification results on HepG2 cell line are displayed in Table 5.1.

Specifically, the classification results are illustrated in both table and the el-

igible relative TCRP figures. Chemicals with similar shapes of TCRPs are

clustered together into one group based on the results. Some empirical param-

eters, e.g. correlation coefficient thresholds τ1, τ2, can be fine tuned because τ1

and τ2 determine the number of clusters in each category. Larger τ1, τ2 will

result in a larger cluster number.
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Table 4.1: Results of Hierarchical correlation based classification (cell line:
HepG2. 47 of 65 chemicals are eligible.)

Cluster SN Chemical Solution Concentration (1:3) TCRP

1 4 Cytochalasin D DMSO 20µM− 0.339nM
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31 Latrunculin A EtOH 2µM− 0.03nM
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55 FAKInhibitor14 H2O 2500µM− 42.34nM
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64 HA1100 hydrochloride H2O 1000µM− 16.94nM
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2 6 Latrunculin B DMSO 20µM− 0.339nM
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51 W7 HCl DMSO 200µM− 3.39nM
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continued from previous page

Cluster SN Chemical Solution Concentration (1:3) TCRP

3 8 Paclitaxel DMSO 20µM− 0.339nM
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59 Docetaxel DMSO 1µM− 0.02nM
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4 15 Vincristine Sulfate H2O 250µM− 4.23nM
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61 Vinblastine Sulfate H2O 40µM− 0.68nM
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5 1 5-fluorouracil (5-FU) DMSO 200µM− 3.39nM
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2 Etoposide phosphate DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −
 Etoposide (2) in HepG2
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11 Anisomycin H2O 10µM− 0.17nM
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Time−Dependent Concentration Response −
 Anisomycin (11) in HepG2
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12 Clofarabine (CLOF) H2O 25µM− 0.42nM
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Time−Dependent Concentration Response −
 Clofarabine (12) in HepG2
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13 Hydroxyurea (HU) H2O 10mM− 169nM
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Time−Dependent Concentration Response −
 Hydroxyurea (13) in HepG2
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19 Exo 1 DMSO 300µM− 5.08nM
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Time−Dependent Concentration Response −
 exo1 (19) in HepG2
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20 Monensin DMSO 4µM− 0.068nM

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (h)

R
el

at
iv

e 
N

or
m

al
iz

ed
 C

I

Time−Dependent Concentration Response −
 monesin (20) in HepG2
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25 Thapsigargin DMSO 2µM− 0.0339nM
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Time−Dependent Concentration Response −
 thapsigargin (25) in HepG2
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28 Cyclosporin A DMSO 100µM− 1.69nM
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Time−Dependent Concentration Response −
 cyclosporinA (28) in HepG2
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33 SAHA DMSO 151µM− 2.56nM
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Time−Dependent Concentration Response −
 SAHA (33) in HepG2
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34 (S)-HDAC-42 DMSO 128µM− 2.17nM
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Time−Dependent Concentration Response −
 (S)−HDAC−42 (34) in HepG2
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36 Mitomycin C DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −
 MitomycinC (36) in HepG2
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39 Topotecan DMSO 95µM− 1.61nM
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Time−Dependent Concentration Response −
 Topotecanhydrochloride (39) in HepG2
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40 2’-Deoxy-2’ H2O 1650µM− 27.94nM
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Time−Dependent Concentration Response −
 gemcitabine HCl (40) in HepG2
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42 Merbarone DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −
 merbarone (42) in HepG2
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43 Irinotecan (CPT-11) DMSO 160µM− 2.71nM
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Time−Dependent Concentration Response −
 irinotecan(CPT−11) (43) in HepG2
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44 Cytosine H2O 8950µM− 151.57nM
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Time−Dependent Concentration Response −
 cytosine b−D−arabinofuranoside (44) in HepG2
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46 Benzo[a]pyrene DMSO 100µM− 1.69nM
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Time−Dependent Concentration Response −
 benzo[a]pyrene (46) in HepG2
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47 Gemicitabine H2O 2µM− 0.03nM
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Time−Dependent Concentration Response −
 gemicitabine (47) in HepG2
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60 SN-38 DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −
 SN38 (60) in HepG2
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6 7 Emetine H2O 50µM− 0.847nM
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Time−Dependent Concentration Response −
 Emetine (7) in HepG2
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10 Puromycin H2O 1000µM− 17nM

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (h)

R
el

at
iv

e 
N

or
m

al
iz

ed
 C

I

Time−Dependent Concentration Response −
 Puromycin (10) in HepG2
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16 Doxorubicin (DOX) H2O 100µM− 1.69nM
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Time−Dependent Concentration Response −
 Doxorubicin (16) in HepG2
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17 Brefeldin A (BEF) DMSO 40µM− 0.68nM
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Time−Dependent Concentration Response −
 brefeldinA (17) in HepG2

 

 
control
40uM
13.33uM
4.44uM
1.48uM
0.49uM
0.16uM
54.87nM

22 Oligomycin DMSO 20µM− 0.339nM
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Time−Dependent Concentration Response −
 oligomycin (22) in HepG2
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23 Antimycin A EtOH 200µM− 3.387nM
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Time−Dependent Concentration Response −
 antimycinA (23) in HepG2
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24 Rotenone DMSO 200µM− 3.387nM
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Time−Dependent Concentration Response −
 Rotenone (24) in HepG2
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26 BHQ DMSO 400µM− 7nM
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Time−Dependent Concentration Response −
 BHQ (26) in HepG2
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32 CCCP DMSO 100µM− 1.69nM
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Time−Dependent Concentration Response −
 CCCP (32) in HepG2
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35 Mitoxantrone DMSO 150µM− 2.54nM
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Time−Dependent Concentration Response −
 Mitoxantronedihydrochloride (35) in HepG2
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7 9 Actinomycin D DMSO 2µM− 0.0339nM
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Time−Dependent Concentration Response −
 actinomycinD (9) in HepG2
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14 Valproic acid H2O 50mM− 847nM
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Time−Dependent Concentration Response −
 Valproicacid (14) in HepG2
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18 Leptomycin B (LMB) EtOH 20nM− 0.000339nM

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (h)

R
el

at
iv

e 
N

or
m

al
iz

ed
 C

I

Time−Dependent Concentration Response −
 leptomycinb (18) in HepG2
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4.4.2 Discussion

The proposed approach can distinguish the TCRPs of chemicals and give a

separation of chemicals within each category, but there are additional improve-

ments that need to be done.

An example is used here to indicate why the transitivity is not applicable to

correlation coefficients as a measure of similarity. Specifically, three chemicals

A, B and C are compared among each other. Because the correlation test is

pairwise, based on a particular chemical A, (A,B) and (A,C) pairs are subject to

the proposed method to decide if B and C can be absorbed into the same cluster

as A. However, all the pairwise tests are carried out with A involved. The

high similarity between A and B, A and C cannot guarantee a high similarity

between B and C.

Also, this correlation-based clustering method does not update the centers

iteratively. Each cluster is constructed based on the particular element in each

round of correlation test. When a new data object associated with its chemical

is updated, the non-uniform dimensionality of data makes the calculation of

centers infeasible and difficult. Centers can be updated if a “distance” measure

between chemicals is defined properly. So even though the correlation based

60



approach has shown promising results, further improvement through additional

approaches can be considered as none single approach can be perfect.

4.5 Conclusion

In this chapter, a hierarchical correlation based classification approach includ-

ing categorization and curve by curve correlation-based clustering was devel-

oped and implemented on TCRPs of chemicals. The method uses the kinetic

information, e.g. growth and killing rate, in the profiles to distinguish chemicals.

By setting proper parameter values and thresholds, the designed classification

method was able to distinguish chemicals based on the similarity of TCRPs via

correlation coefficient. However, empirical tuning on parameters is inevitable

in this approach. In order to solve this problem and make the classification

more objective, a new approach using PCA & FDA will be established in the

next chapter.
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Chapter 5

PCA & FDA based hierarchical

classification

In this chapter, a systematic model-based hierarchical clustering approach us-

ing principal component analysis (PCA) and functional data analysis (FDA)

is proposed and elaborated in order to reduce the number of tuning param-

eters. First, we present two statistical techniques, PCA and FDA, including

their theories and application in feature extraction and large data dimension

reduction. A model-based hierarchical clustering algorithm is then introduced.

Our classification problem is finally addressed by the proposed approach and

the results are presented in tables.

5.1 Introduction

As introduced in previous chapters, the data we encounter are of different

dimensions after irrelevant and uninformative response profiles of chemicals

are deleted. Chemicals represented by different numbers of TCRPs make the

comparison of shape similarity difficult. The strategy of majority-voting within

each time interval indicated in Chapter 3 can fuse the information of eligible

TCRPs into one synthesized representative. However, the key deficiency of this
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approach lies in that the number of profiles for some chemicals is largely reduced

to 3 after the selection of TCRPs. The voting results are not precise for such a

small sample number, which leads to a conflict in the identification of feature

vectors. Therefore, to address this issue, PCA is utilized as a more reliable

tool to extract valid feature vectors for further analysis. The experiments

using different levels of concentration are considered as a realization of multiple

observations. The advantage of PCA lies in its capability of transforming data

with nonuniform dimensionality into uniform volumes. In other words, the

problem of identifying the profile similarity of chemicals which are denoted

with flexibly dimensionalities is then solved with principal component (PC)

scores in the principal component space, while a set of observations of possibly

correlated variables are converted into a set of values of linearly uncorrelated

variables simultaneously.

This chapter is organized as follows. First, the principles of how PCA works

in feature extraction and dimension reduction is introduced in Section 5.2. In

Section 5.3, the principles of FDA are exhibited in order to show its advantage

in smoothing, denoising and compression. In Section 5.4, an agglomerative

model-based hierarchical clustering algorithm is explained in detail. By apply-

ing it to the CI data in Section 5.5, this proposed classification approach shows

a good discrimination based on profile similarity.

5.2 Principal component analysis (PCA)

5.2.1 Overview

As an effective means of compressing data with high dimension, principal com-

ponent analysis (PCA) is a mathematical procedure that converts a set of ob-

servations of possibly correlated variables into a set of values of linearly uncor-

related variables using an orthogonal transformation [21]. Those uncorrelated

variables are called principal components. The main advantage of PCA lies in
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the fact that it can retain most of the variation in the principal component

space. This technique is widely used for applications such as dimensionality

reduction, feature extraction, prediction for incomplete data and overview of

any data table etc. [23]

x2

x1

xn

x̃n

u1

Figure 5.1: Orthogonal projection of data in the original space onto the prin-
cipal space

The significance of PCA is to project the data orthogonally onto a lower

dimensional linear space, termed as the principal subspace, such that the vari-

ance of the projected data is maximized. In Figure 5.1, we can observe the

process of projection from data (red dots) onto the principal component space

with a lower dimension (green dots in line marked in magenta). The orthogonal

projection of the red dots maximizes the variance of the green dots.

5.2.2 Problem formulation

In this subsection, PCA is elaborated with mathematical equations from [21].

Consider a data set of observations {xi}, where xi is a vector whose dimension

is d and i = 1, . . . , N . The goal is to project all xi’s onto a smaller dimensional

space m (m < d) so as to maximize the variance of the projected data.

To simplify this problem, we first consider the projection onto a one-dimensional

space (m = 1). The direction of the space is then defined using a d-dimensional

vector u1 which is chosen to be a unit vector (uT
1 u1 = 1). Each data point xi
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is projected to a scalar value using a linear transformation uT
1 xi. The mean of

the projected data is uT
1 x̄ where x̄ is the sample mean of the data.

x̄ =
1

N

N∑
i=1

xi (5.1)

The variance of the projected data is

1

N

N∑
i=1

{uT
1 xi − uT

1 x̄} = uT
1 Su1 (5.2)

where S is the data covariance matrix.

S =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T (5.3)

To maximize the projected variance uT
1 Su1 with respect to u1, we introduce

the Lagrange multiplier which is denoted by λ. As a meaningful optimization

problem, the constrained optimization problem is then transferred into an un-

constrained problem.

uT
1 Su1 + λ(1− uT

1 u1) (5.4)

To maximize the objective function, we set the derivative with respect to

u1 equal to zero. A stationary point exists when

Su1 = λu1 (5.5)

Eq. (5.5) indicates that u1 is an eigenvector of S. By left multiplying uT
1

and using uT
1 u1 = 1, the variance of the projected data is

uT
1 Su1 = λ (5.6)

Therefore, the variance of the projected data will be maximized when u1 is

equal to the eigenvector with the largest eigenvalue λ. The eigenvector u1 is
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the first principal component.

Similarly, for an m dimensional space, the projection for which the variance

of the projected data is maximized can now be defined via a matrix U whose

rows are the transposed m eigenvectors of the data covariance matrix S. The

m eigenvectors are associated with the m largest eigenvalues, i.e. λ1, . . ., λm.

x̃i = Uxi =


uT
1

uT
2

. . .

uT
m

xi (5.7)

where x̃i is an m dimensional projected variable. The data dimension is com-

pressed while most of the variance in the projected data is retained.

PCA includes evaluating the mean, x̄ and the data covariance matrix, S and

subsequently finding the m eigenvectors of S corresponding to the m largest

eigenvalues that become the key component in PCA. There are different algo-

rithms that can find the eigenvalues of the data covariance matrix as well as

the corresponding eigenvectors. Details about the efficiency of the eigenvalue

algorithm can be found in Golub and Van Loan [24]. Details about how PCA

is formulated in minimum-error scenario and its applications can be accessed

via Bishop and Nasrabadi [21].

5.3 Functional data analysis (FDA)

Functional data analysis (FDA) is a statistical tool to analyze data from a

curve perspective. It assumes the functionality behind time series data. Even

though each measurement is a finite set of numbers, their values can reflect a

smooth variation that can be assessed. Besides, this data analysis technique

can also be used for data sets which are not functional [25]. It is proved that

functional data analysis has been applied in many areas such as modeling of

66



gene expression data [26], life course data in criminology [27] etc.

To build functions, two steps are required. First, a set of basis functions

are specified. Second, a vector, or array of coefficients are generated to de-

fine the functions as a linear combination of these basis functions. As a way

to compress data dimensionality, FDA can describe a curve successfully with

fewer parameters and coefficients while retaining as much information about

the profile shapes as possible.

Instead of treating observed numbers or values in each sampling interval as

the units of data in traditional statistical methods [26], functions defined on

some interval are considered as the data units in FDA.

We first build basis functions. The main reason to build basis functions is

to make the description of curves flexible. We cannot specify the characteristics

of curves certainly. Meanwhile, by building up basis functions we can save the

burden of computation.

5.3.1 Basis function selection

A set of functional building blocks ϕk, k = 1, . . . , K which can be combined

linearly are called basis functions. Therefore, a function x(t) can be defined as

a linear combination of basis functions written as

x(t) =
K∑
k=1

ckϕk(t) = c′ϕ(t) (5.8)

Eq. (5.8) is called basis function expansion. Parameters c1, c2, . . . , cK are

coefficients of the expansion. c is used to denote the vector of all coefficients

ck and ϕ denotes the vector of all basis functions ϕk(t).

To choose proper basis functions, some prior knowledge about the profile

tendency is required. Since the Cell Index data considered are non-periodic,

B-spline basis functions are chosen. Spline basis functions are piecewise poly-

nomial and constructed over subintervals divided by boundary points called
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break points. Degree and order define the power and the argument number of

the polynomials within the subinterval. The degree of the spline functions is

fixed within any subinterval while the order can be different from one interval

to another. In our study, we assume the order of polynomials is the same for

each subinterval. Every knot has the same value as a break point, but multiple

knots can be located at certain break points.

Therefore, spline systems are defined by three main elements:

1. The break points which define the subintervals,

2. The degree or order of the polynomials,

3. The sequence of knots.

The number of basis functions K is determined by

nbasis = norder + ninterior knots (5.9)

where norder denotes the order and ninterior knots denotes the number of interior

knots except for the beginning and the end boundary points.

In MATLAB R⃝, the equation can be expressed as

nbasis = norder + length(params)− 2 (5.10)

where length(params) indicates the number of breaks. Order 4 (norder = 4) is

frequently chosen, which implies piece-wise cubic polynomials. So the equation

is written as

nbasis = length(params) + 2 (5.11)

5.3.2 Computing coefficients

In this section, we discuss the method to compute the coefficients with the

basis functions to obtain an optimal fit to data.
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Two strategies can be used to compute the coefficients. The simpler one

uses regression analysis to estimate the coefficients. Another one introduces

the penalization on the “roughness” of functions.

Regression analysis

Regression analysis can effectively estimate the coefficients given the basis func-

tions. It fits the data by minimizing the sum of squared errors (SSE):

SSE =
n∑
j

[yj − x(tj)]
2 (5.12)

where yj’s are the real measurements, and x(tj)’s are values of the fitted func-

tion at tj. According to the basis function expansion in Eq. (5.8), Eq. (5.12)

can be written as

SSE(y, c) =
n∑
j

[yj − ϕ(tj)
′c]2 (5.13)

where y = [y1, . . . , yn]
T . The model is then formulated with the error:

yj = x(tj) + ϵj = ϕ(tj)
′c+ ϵj (5.14)

where the errors ϵj are statistically independent and have a Gaussian distribu-

tion with mean 0 and a constant variance. Eq. (5.14) is a standard regression

model. If n values are fit and ϵ is the residual vector, Φ is an n− by−k matrix

of regressors and the model is written in a vector form as

y = Φc+ ϵ (5.15)

The least square estimate of the coefficients is

ĉ = (Φ′Φ)−1Φ′y (5.16)
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To make regression analysis work in the smoothed data, the number of basis

functions K is smaller than the number of sampling points n in order to avoid

overfitting.

Penalization of roughness

This method defines a measure of the roughness of the fitted curve. The way

to further smooth the function by attaching an additional term that controls

the roughness of some derivative is called regularization.

PENSSE = SSE(y, c) + λPEN(x) (5.17)

where PENSSE denotes the penalized SSE; SSE(y, c) is sum of squared er-

rors. The second term on the right hand side λPEN(x) penalizes the roughness

of fitted function x(t).

PEN(x) =

∫
[D2x(t)]2dt (5.18)

The penalization term uses the second derivative D2(x) of the square of x’s.

This second derivative is called the total curvature and is used to smooth the

curve. The term will be smaller if x is close to a linear function structure. The

smoothing parameter λ controls the smoothness of curves.

Example: smoothing TCRPs

The effect of λ on the smoothness of curves is illustrated in this part. Figure

5.2 shows four situations with different λ values in an ascending manner. It

can be observed that the value of λ determines the smoothness of curves. The

larger λ is, the less complex the fitted function is. In other words, a larger

λ constrains the order of the fitted function because of the integration in Eq.

(5.18). If the λ approaches infinity, the functional form x(t) will approximately

approach a linear function structure. On the contrary, as λ tends to zero, the
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(b) λ = 10
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(c) λ = 100
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(d) λ = 1000

Figure 5.2: Curve smoothness are determined by the penalized parameter λ

functional complexity is not constrained because the second term approaches

zero. x(t) can be as rough as y and it will pass the data points exactly.

The advantage of FDA lies in its application on the smoothness of curves so

as to remove noise from the measurements. Further, as long as basis functions

are given, data can be expressed with fewer coefficients in coefficient space.

Besides, as a technique to treat all the measurements as a functional entity,

this statistical method can deal with missing values, and nonuniform sampling

problems to some extent [28]. Specific details about FDA can be accessed via

Ramsay et al. [25].

71



5.4 Model-based hierarchical clustering method

After feature extraction via PCA and FDA, all the processed PC score vectors

will be input to a model-based hierarchical clustering algorithm developed via

Gaussian finite mixture models and the MCLUST algorithm by Fraley and

Raftery. For more details about the algorithm, the readers are referred to

Fraley and Raftery [29].

Agglomerative model-based clustering is a separate function in Model-based

Clustering Toolbox in MATLABR⃝ developed by A. Martinez and W. Martinez

[30]. Different from traditional hierarchical clustering which merges two clos-

est clusters in terms of some distance metric (e.g. Euclidean distance, City

Block distance, Mahalanobis distance), the model-based hierarchical clustering

algorithm merges clusters such that a likelihood function is maximized given

a model structure. The model-based clustering algorithm is presented briefly

using the equations introduced by Fraley [31].

5.4.1 Model-based clustering

For model based clustering, each observation is generated by

L(θ1, . . . , θG; γ|x) =
n∏

i=1

fγi(xi|θγi) (5.19)

where x = (x1, . . . ,xn) is the observation vector, γ = (γ1, . . . , γn)
T is the label

vector and θ1, . . . , θG are the parameters.

When fk(x|θk) follows a multivariate normal distribution, the likelihood

from Eq. (5.19) is

L(µ1, . . . , µG; Σ1, . . . ,ΣG; γ|x)

=
G∏

k=1

∏
i∈Ik

(2π)−
p
2 |Σk|−

1
2 exp{−1

2
(xi − µk)

TΣ−1
k (xi − µk)} (5.20)
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where Ik = {i : γi = k} is the set of indices corresponding to observations

belonging to the kth group. The estimation of µk, µ̂k is x̄k = sk/nk where sk

and nk are the sum and number of observations in the kth group, respectively.

The likelihood of Σ = (Σ1, . . . ,ΣG) is

l(Σ1, . . . ,ΣG; γ|x; µ̂1, . . . , µ̂G)

= −pn log(2π)

2
− 1

2

G∑
k=1

{tr(WkΣ
−1
k ) + nk log |Σk|} (5.21)

where Wk =
∑

i∈Ik(xi − x̄k)(xi − x̄k)
T is the sample cross product matrix for

the kth group.

According to four different structures of Σk, there are four criteria to maxi-

mize the likelihood. If Σk = σ2I, maximizing the log-likelihood is equivalent to

minimizing Tr(
∑G

k=1 Wk); if each group has a different variance, i.e. Σk = σ2
kI,

γ is chosen to minimize
∑G

k=1 nk log Tr(
Wk

nk
); if Σk is the same for all groups with-

out structural constraints, then the γ which minimizes |
∑G

k=1Wk| maximizes

the log-likelihood; if Σk varies substantially between groups, then γ minimizes∑G
k=1 nk log |Wk

nk
|. The toolbox implements the general fourth situation.

5.4.2 Hierarchical clustering

Agglomerative hierarchical clustering is a bottom-up clustering method. Ini-

tialized in their own clusters, pairs of objects are successively connected and

merged moving up the hierarchy to form clusters until finally only one cluster

remains.

Merging cost update

Classical agglomerative methods merge a pair of clusters according to a metric

or “cost” which measures how much the sum of squares will increase when we

merge them. We consider Ward’s method as an example. The cost of merging
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clusters A and B is

∆(A,B) =
∑

i∈A∪B

∥xi − cA∪B∥2 −
∑
i∈A

∥xi − cA∥2 −
∑
i∈B

∥xi − cB∥2 (5.22)

=
nAnB

nA + nB

∥cA − cB∥2 (5.23)

where xi is an observation vector in its cluster, c is the center of a cluster and

n is the number of observations in a cluster. The center of the merged cluster

is

cA∪B =
nAcA + nBcB

nA∪B
=

nAcA + nBcB
nA + nB

(5.24)

If there is a group C which will be merged into A ∪B, the cost will be

∆(⟨A,B⟩, C) =
(nA + nC)∆(A,C) + (nB + nC)∆(B,C)− nC∆(A,B)

nA + nB + nC

(5.25)

As long as neither of the clusters in that pair is involved in a merge, the

cost will remain fixed [31].

5.4.3 Model-based hierarchical clustering

The relationship between successive stages exists in terms of sample cross-

product matrix. It is expressed as

W⟨i,j⟩ = Wi +Wj + wi,jw
T
i,j (5.26)

where W is the sample cross-product matrix and

wij = ηjisi − ηijsj (5.27)

ηij =

√
ni

nj(ni + nj)
(5.28)

The derivation of the relationship is described in more detail in [31]. When each

group has an unconstrained covariance structure Σk, the objective function
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∑G
k=1 nk log |Wk

nk
| is to be minimized and can be updated as

G∑
k=1

nk log

[∣∣∣∣Wk

nk

∣∣∣∣+ β

{
Tr(Wk) + αTr(W)

np

nk

}]
(5.29)

If L denotes the Cholesky factor of W , Eq. (5.26) becomes

L⟨i,j⟩L
T
⟨i,j⟩ = LiL

T
i + LjL

T
j + wijw

T
ij = (Li Lj wij)(Li Lj wij)

T (5.30)

By applying Given’s rotation [32] on a composite matrix


LT

i

LT
j

wT
ij

, another

composite matrix


LT
⟨i,j⟩

0

0

 can be generated. Hence, L⟨i,j⟩ is calculated effi-

ciently. The pair of clusters will be chosen to merge if the updated objective

function is minimized. Specific details about the time efficacy can be accessed

via [31].

In model-based hierarchical clustering strategy, the pair of clusters are

merged at each stage with the maximum likelihood. The advantage of this

strategy is that model-based clustering can be associated with Bayesian crite-

rion which can determine the best partition according to the model defined in

the hierarchy automatically.

5.5 Application

By synthesizing the methods above, including feature extraction based on PCA

& FDA and hierarchical clustering approaches, this section will illustrate the

pattern recognition application on TCRP data denoted with nonuniform di-

mensionality and show its efficiency. PCA is used here to unify and format

the dimensionality of data by extracting the first three principle component
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scores (PC scores) consistently. FDA is then used to indicate the PC scores

with fewer coefficients and remove the noise at the same time. Agglomerative

model-based hierarchical clustering will cluster the extracted coefficient vectors

by merging the pairs with the maximum likelihood.

5.5.1 Feature extraction

Gemcitabine HCl is taken as an example to illustrate how features are ex-

tracted.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Gemcitabine HCl (cell line: HepG2)

 

 
1.65mM
0.55mM
0.18mM
61.11uM
20.37uM
6.79uM
2.26uM
0.75uM
0.25uM
83.83nM
27.94nM

(a) TCRPs of Gemcitabine HCl

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

2
Gemcitabine HCl (cell line: HepG2, normalized)

 

 
1.65mM
0.55mM
0.18mM
61.11uM
20.37uM
6.79uM
2.26uM
0.75uM
0.25uM
83.83nM
27.94nM

(b) Normalized TCRPs of Gemcitabine HCl

Figure 5.3: TCRPs of Gemcitabine HCl are normalized with mean 0 and stan-
dard deviation 1.

Figure 5.3(a) shows the selected TCRPs. To perform PCA with standard-

ized variables based on correlations, a normalization is applied to the data

matrix. The eligible RNCI data matrix is denoted as X. Each element of X

is transformed so that columns of X are normalized with mean 0 and standard

deviation 1. The normalized data is denoted as XN . Figure 5.3(b) shows all

the normalized TCRPs of Gemcitabine HCl. PCA is then used to transform

XN into the representation, termed as PC scores, in the principal component

space. The first three PC scores are retained regardless of how much variation

exists in the projected data. Figure 5.5(a) shows the first three PC scores of

X. The first PC score (red, solid) shares the similar shapes with the TCRPs
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before PCA while the second and third PC scores are close to zero.

FDA uses coefficients of basis functions to denote the PC scores. Fifteen

cubic spline functions construct the basis functions. Figure 5.4 illustrates the

structures and shapes of basis functions. In that figure, the red dot vertical lines

indicate horizontal coordinates of interior knots. The basis spline functions in

the center reach the peak point at knots. The first basis function rises to the

peak value of one at the left boundary point and decreases to a value of zero

when reaching the first interior knot from the left. The last basis function on

the right hand side is similar.
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Figure 5.4: Basis functions: 15 cubic spline functions

FDA is applied to the PC scores using the basis function defined above.

Figure 5.5(b) shows the extracted coefficients with λ = 10. From the figure,

we see that the shapes and dynamics are retained while the x-axis is effectively

compressed. Also, the noise in PC scores level is removed in coefficient level to

some extent.
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(b) Coefficients of PC scores

Figure 5.5: First three PC scores and the coefficients after FDA

All chemicals with data matrices denoted by non-uniform dimensionality

are formulated in the same way, which generates the input feature matrix for

model-based hierarchical clustering.

5.5.2 Model-based hierarchical clustering analysis

This subsection is aimed at clustering the feature representation matrix under a

model-based hierarchical clustering scenario. The feature representation matrix

is input into the algorithm and a dendrogram is generated as an output for users

to analyze. One challenging problem here is the determination of the number

of clusters using dendrogram. The use of hierarchical clustering can avoid this

problem. However, the results of this connectivity based clustering are not

easy to use, because it cannot produce a unique partitioning of the data set.

Therefore, no general conclusion can be made about comparison among groups.

We adopt two strategies to determine the numbers of clusters. First, we

rely on users’ interpretation as well as background knowledge and use it as a

guideline in dendrogram cutting. It is relatively subjective; however, it can be

smoothly interpreted by experts such as biological scientists according to their

satisfaction and requirement. Second, to let the data decide how many clusters

are supposed to be, we use Bayesian information criterion (BIC) to estimate
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the proper number. It is justified and operates as an efficient way in statistical

model selection considering likelihood [33].

5.5.3 One-level clustering

One-level clustering means cutting the dendrogram in one time. Under the

one-level clustering framework, to ensure more information is involved in clas-

sification, the first two coefficient vectors of the PC score is chosen. These

vectors are concatenated as the feature representation. Figure 5.6 shows the

dendrogram of chemicals whose features are the first two coefficient vectors.
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Figure 5.6: Dendrogram of chemicals

Prior knowledge about the number of clusters indicates that 6 to 12 is

appropriate and accepted according to the mechanisms of action. However, it

is not fully applicable because we intend to classify chemicals based on profile

shape similarity so as to classify them into mode of action categories. Although
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mechanism of action is associated with mode of action, they are essentially

different concepts in discriminating and evaluating chemicals from different

levels and non-proportionality between them weakens the identical distribution

of chemicals [13, 34].

As referential information, we first use 6 to generate the classification re-

sults.
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Figure 5.7: Colored dendrogram of chemicals with the first two coefficient
vectors aligned as features. 6 reasonable clusters are generated.

Figure 5.7 indicates the distribution of chemicals in each cluster when the

dendrogram is cut into 6 separate clusters. The TCRPs are then illustrated to

give specification on the results.

80



Table 5.1: Results of PCA & FDA based hierarchical classification with one-
level dendrogram cutting (cell line: HepG2. 47 of 65 chemicals are eligible.)

Cluster SN Chemical Solution Concentration (1:3) TCRP

1 15 Vincristine Sulfate H2O 250µM− 4.23nM
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61 Vinblastine sulfate H2O 40µM− 0.68nM
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2 4 Cytochalasin D DMSO 20µM− 0.339nM
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5 Cytochalasin B DMSO 20µM− 0.339nM
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6 Latrunculin B DMSO 20µM− 0.339nM
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17 Brefeldin A (BEF) DMSO 40µM− 0.68nM
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Time−Dependent Concentration Response −
 brefeldinA (17) in HepG2

 

 
control
40uM
13.33uM
4.44uM
1.48uM
0.49uM
0.16uM
54.87nM

26 BHQ DMSO 400µM− 7nM
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Time−Dependent Concentration Response −
 BHQ (26) in HepG2

 

 
control
0.4mM
0.13333mM
44.44uM

31 Latrunculin A EtOH 2µM− 0.03nM
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Time−Dependent Concentration Response −
 LatrunculinA (31) in HepG2

 

 
control
2uM
0.67uM
0.22uM
74.07nM
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32 CCCP DMSO 100µM− 1.69nM
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Time−Dependent Concentration Response −
 CCCP (32) in HepG2

 

 
control
100uM
33.33uM
11.11uM
3.7uM

51 W7 HCl DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −
 W7 HCl (51) in HepG2

 

 
control
0.2mM
66.67uM
22.22uM

52 Y-27632 DMSO 188µM− 3.18nM
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Time−Dependent Concentration Response −
 Y−27632 (52) in HepG2

 

 
control
0.188mM
62.67uM
20.89uM
6.96uM

55 FAKInhibitor14 H2O 2500µM− 42.34nM
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Time−Dependent Concentration Response −
 FAKInhibitor14 (55) in HepG2

 

 
control
2.5mM
0.83mM
0.28mM
92.59uM
30.86uM
10.29uM

64 HA1100 hydrochloride H2O 1000µM− 16.94nM
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Time−Dependent Concentration Response −
 HA1100 hydrochloride (64) in HepG2

 

 
control
1mM
0.33mM
0.11mM
37.04uM
12.35uM

3 7 Emetine H2O 50µM− 0.847nM

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (h)

R
el

at
iv

e 
N

or
m

al
iz

ed
 C

I

Time−Dependent Concentration Response −
 Emetine (7) in HepG2
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22.86nM

10 Puromycin H2O 1000µM− 17nM
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Time−Dependent Concentration Response −
 Puromycin (10) in HepG2
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1mM
0.33mM
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0.46uM

16 Doxorubicin (DOX) H2O 100µM− 1.69nM
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Time−Dependent Concentration Response −
 Doxorubicin (16) in HepG2

 

 
control
100uM
33.33uM
11.11uM
3.7uM
1.23uM
0.41uM

23 Antimycin A EtOH 200µM− 3.387nM
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Time−Dependent Concentration Response −
 antimycinA (23) in HepG2

 

 
control
0.2mM
66.67uM
22.22uM
7.41uM
2.47uM
0.82uM
0.27uM
91.45nM
30.48nM
10.16nM
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24 Rotenone DMSO 200µM− 3.387nM
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Time−Dependent Concentration Response −
 Rotenone (24) in HepG2

 

 
control
0.2mM
66.67uM
22.22uM
7.41uM
2.47uM
0.82uM
0.27uM
91.45nM
30.48nM

35 Mitoxantrone DMSO 150µM− 2.54nM
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Time−Dependent Concentration Response −
 Mitoxantronedihydrochloride (35) in HepG2

 

 
control
0.15mM
50uM
16.67uM
5.56uM
1.85uM
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68.59nM
22.86nM

4 33 SAHA DMSO 151µM− 2.56nM
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Time−Dependent Concentration Response −
 SAHA (33) in HepG2
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0.151mM
50.33uM
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23.01nM
7.67nM

34 (S)-HDAC-42 DMSO 128µM− 2.17nM
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Time−Dependent Concentration Response −
 (S)−HDAC−42 (34) in HepG2

 

 
control
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6.5nM

39 Topotecan DMSO 95µM− 1.61nM
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Time−Dependent Concentration Response −
 Topotecanhydrochloride (39) in HepG2

 

 
control
95uM
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1.17uM
0.39uM
0.13uM
43.44nM
14.48nM

40 Gemcitabine HCl H2O 1650µM− 27.94nM
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Time−Dependent Concentration Response −
 gemcitabine HCl (40) in HepG2
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1.65mM
0.55mM
0.18mM
61.11uM
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27.94nM

44 Cytosine H2O 8950µM− 151.57nM
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Time−Dependent Concentration Response −
 cytosine b−D−arabinofuranoside (44) in HepG2

 

 
control
8.95mM
2.98mM
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0.11mM
36.83uM
12.28uM
4.09uM
1.36uM

47 Gemicitabine H2O 2µM− 0.03nM
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Time−Dependent Concentration Response −
 gemicitabine (47) in HepG2

 

 
control
2uM
0.67uM
0.22uM
74.07nM
24.69nM
8.23nM
2.74nM
0.91nM

60 SN-38 DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −
 SN38 (60) in HepG2

 

 
control
0.2mM
66.67uM
22.22uM
7.41uM
2.47uM
0.82uM
0.27uM
91.45nM
30.48nM
10.16nM
3.39nM
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5 8 Paclitaxel DMSO 20µM− 0.339nM
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Time−Dependent Concentration Response −
 Paclitaxel (8) in HepG2

 

 
control
20uM
6.67uM
2.22uM
0.74uM
0.25uM
82.3nM

49 S-tritytl-Cysteine DMSO 100µM− 1.69nM
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Time−Dependent Concentration Response −
 stritytl−cysteine (49) in HepG2

 

 
control
100uM
33.33uM
11.11uM
3.7uM

50 Dimethylenastron DMSO 40µM− 0.68nM

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (h)

R
el

at
iv

e 
N

or
m

al
iz

ed
 C

I

Time−Dependent Concentration Response −
 dimethylenenastrone (50) in HepG2

 

 
control
40uM
13.33uM
4.44uM
1.48uM

59 Docetaxel DMSO 1µM− 0.02nM
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Time−Dependent Concentration Response −
 Docetaxel (59) in HepG2

 

 
control
1uM
0.33uM
0.11uM
37.04nM
12.35nM

6 1 5-fluorouracil (5-FU) DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −
 5−FU (1) in HepG2
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0.2mM
66.67uM
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7.41uM
2.47uM

2 Etoposide phosphate DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −

 Etoposide (2) in HepG2

 

 
control
0.2mM
66.67uM
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2.47uM

9 Actinomycin D DMSO 2µM− 0.0339nM
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Time−Dependent Concentration Response −
 actinomycinD (9) in HepG2

 

 
control
2uM
0.67uM
0.22uM
74.07nM
24.69nM
8.23nM

11 Anisomycin H2O 10µM− 0.17nM
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Time−Dependent Concentration Response −
 Anisomycin (11) in HepG2

 

 
control
10uM
3.33uM
1.11uM
0.37uM
0.12uM

12 Clofarabine (CLOF) H2O 25µM− 0.42nM
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Time−Dependent Concentration Response −
 Clofarabine (12) in HepG2

 

 
control
25uM
8.33uM
2.78uM
0.93uM
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13 Hydroxyurea (HU) H2O 10mM− 169nM
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Time−Dependent Concentration Response −
 Hydroxyurea (13) in HepG2

 

 
control
10mM
3.33mM
1.11mM

14 Valproic acid H2O 50mM− 847nM
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Time−Dependent Concentration Response −
 Valproicacid (14) in HepG2

 

 
control
50mM
16.67mM
5.56mM

18 Leptomycin B (LMB) EtOH 20nM− 0.000339nM
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Time−Dependent Concentration Response −
 leptomycinb (18) in HepG2

 

 
control
20nM
6.67nM
2.22nM

19 Exo 1 DMSO 300µM− 5.08nM
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Time−Dependent Concentration Response −
 exo1 (19) in HepG2

 

 
control
0.3mM
100uM
3.7uM

20 Monensin DMSO 4µM− 0.068nM
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Time−Dependent Concentration Response −
 monesin (20) in HepG2

 

 
control
4uM
1.33uM
0.44uM

22 Oligomycin DMSO 20µM− 0.339nM
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Time−Dependent Concentration Response −
 oligomycin (22) in HepG2

 

 
control
20uM
6.67uM
2.22uM
0.74uM
0.25uM

25 Thapsigargin DMSO 2µM− 0.0339nM
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Time−Dependent Concentration Response −
 thapsigargin (25) in HepG2

 

 
control
2uM
0.67uM
0.22uM
74.07nM
24.69nM

28 Cyclosporin A DMSO 100µM− 1.69nM
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Time−Dependent Concentration Response −
 cyclosporinA (28) in HepG2

 

 
control
100uM
33.33uM
11.11uM

36 Mitomycin C DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −
 MitomycinC (36) in HepG2

 

 
control
0.2mM
66.67uM
22.22uM
7.41uM
2.47uM
0.82uM
0.27uM
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42 Merbarone DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −
 merbarone (42) in HepG2

 

 
control
0.2mM
66.67uM
22.22uM
7.41uM

43 Irinotecan (CPT-11) DMSO 160µM− 2.71nM
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Time−Dependent Concentration Response −
 irinotecan(CPT−11) (43) in HepG2

 

 
control
0.16mM
53.33uM
17.78uM
5.93uM
1.98uM
0.66uM

46 Benzo[a]pyrene DMSO 100µM− 1.69nM
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Time−Dependent Concentration Response −
 benzo[a]pyrene (46) in HepG2

 

 
control
100uM
33.33uM
11.11uM
3.7uM

Table 5.1 indicates that except for some chemicals, most of the chemicals are

classified properly according to shapes. The overall classification quality is

acceptable. However, the main deficiency of one-level clustering lies in the

fact that it may generate a singleton cluster. Because the dendrogram is cut

consistently, if a singleton is connected with other chemicals at a large height,

the singleton may be possibly separated. Since in the application we expect

to avoid many singleton clusters, based on this idea, a two-level hierarchical

clustering scenario is designed by cutting the dendrogram of each level at a

reasonable height. Therefore, the structures of dendrogram are not destroyed

by an improper choice of referential clustering number. Dendrograms are cut

at a height where mistakes occur with a small probability.

5.5.4 Two-level clustering

As a hierarchical clustering scenario, this method is designed to use partial

information of the feature representation at different level so as to classify

chemicals. In the first level, the coefficients of the first PC scores with respect

to the slopes of TCRPs are used, while in the second level, the coefficients of

the first PC scores with respect to the TCRPs are used. The first coefficients
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denote the main tendency of TCRPs.

80 100120140160180200

(50) Dimethylenastron
(59) Docetaxel
(49) S−trityl−cysteine
(8) Paclitaxel
(17) Brefeldin A
(9) Actinomycin D
(16) Doxorubicin
(32) CCCP
(26) BHQ
(15) Vincristine Sulfate
(61) Vinblastine Sulfate
(7) Emetine
(11) Anisomycin
(28) Cyclosporin A
(25) Thapsigargin
(42) Merbarone
(10) Puromycin
(22) Oligomycin
(23) Antimycin A
(24) Rotenone
(4) Cytochalasin D
(55) FAKInhibitor14
(5) Cytochalasin B
(6) Latrunculin B
(51) W7 HCl
(52) Y−27632
(64) HA1100 hydrochloride
(14) Valproic acid
(31) Latrunculin A
(18) Leptomycin B
(20) Monesin
(1) 5−FU
(2) Etoposide
(12) Clofarabine
(13) Hydroxyurea
(19) Exo1
(33) SAHA
(34) (S)−HDAC−42
(35) Mitoxantrone dihydrochloride
(43) Irinotecan(CPT−11)
(36) Mitomycin C
(39) Topotecan hydrochloride
(46) Benzo[a]pyrene
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(44) Cytosine b−D−arabinofuranoside
(47) Gemicitabine
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Figure 5.8: Dendrogram of the chemicals in the 1st level classification

Figure 5.8 shows the dendrogram generated via model-based hierarchical

clustering based on coefficients of the first PC scores with respect to the slopes

of TCRPs. Slope is an important indicator to reflect the degree of incline in

TCRPs. It measures the variation of RNCI within each time interval. The

coefficients of the first PC scores on slopes of TCRPs then reflect the main

variation of curve trends among all eligible TCRPs and can effectively dis-

criminate chemicals with apparent changes in slopes. Figure 5.9 shows the

dendrogram cut at a proper height with three reasonable subtrees generated.

They are marked with different colors.

Each subtree generated from 1st level is then input into the model-based

hierarchical clustering algorithm again by using the coefficients of the first PC

scores from the TCRPs. The information about the values of RNCI is used in

this level to discriminate chemicals further. Figure 5.10 shows the dendrogram
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Figure 5.9: Dendrogram with three reasonable subtrees marked with colors
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Figure 5.10: Dendrogram of chemicals in subtree 1
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Figure 5.11: Dendrogram of chemicals in subtree 1 with three reasonable clus-
ters marked in colors

of chemicals in subtree 1. Figure 5.11 shows the cutting results in Figure 5.10

marked with different colors. Other dendrograms in the 2nd level are cut at

proper heights similarly. Figures 5.12, 5.13 and 5.14 show the dendrograms

and the marked dendrograms for other subtrees in 2nd level.

Clustering results of eligible chemicals are listed in Table 5.2.
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Figure 5.12: Dendrogram of chemicals in subtree 2
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Figure 5.13: Dendrogram of chemicals in subtree 2 with four reasonable clusters
marked in colors
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Figure 5.14: Dendrogram of chemicals in subtree 3
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Figure 5.15: Dendrogram of chemicals in subtree 3 with one reasonable cluster
marked in blue
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Table 5.2: Results of PCA & FDA based hierarchical classification with two-
level dendrogram cutting (cell line: HepG2. 47 of 65 chemicals are eligible.)

Cluster SN Chemical Solution Concentration (1:3) TCRP

1 4 Cytochalasin D DMSO 20µM− 0.339nM
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Time−Dependent Concentration Response −
 CytochalasinD (4) in HepG2
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Cluster SN Chemical Solution Concentration (1:3) TCRP

3 14 Valproic acid H2O 50mM− 847nM
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Cluster SN Chemical Solution Concentration (1:3) TCRP
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Cluster SN Chemical Solution Concentration (1:3) TCRP

42 Merbarone DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −
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Time−Dependent Concentration Response −
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8 1 5-fluorouracil (5-FU) DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −

 5−FU (1) in HepG2
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Time−Dependent Concentration Response −
 Etoposide (2) in HepG2

 

 
control
0.2mM
66.67uM
22.22uM
7.41uM
2.47uM

12 Clofarabine (CLOF) H2O 25µM− 0.42nM
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Time−Dependent Concentration Response −
 Clofarabine (12) in HepG2
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13 Hydroxyurea (HU) H2O 10mM− 169nM
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19 Exo 1 DMSO 300µM− 5.08nM
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Time−Dependent Concentration Response −
 exo1 (19) in HepG2
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33 SAHA DMSO 151µM− 2.56nM
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Time−Dependent Concentration Response −
 SAHA (33) in HepG2
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0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (h)

R
el

at
iv

e 
N

or
m

al
iz

ed
 C

I

Time−Dependent Concentration Response −
 (S)−HDAC−42 (34) in HepG2
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Time−Dependent Concentration Response −
 Mitoxantronedihydrochloride (35) in HepG2
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Time−Dependent Concentration Response −
 MitomycinC (36) in HepG2
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Time−Dependent Concentration Response −
 Topotecanhydrochloride (39) in HepG2
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40 Gemcitabine HCl H2O 1650µM− 27.94nM
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Time−Dependent Concentration Response −
 gemcitabine HCl (40) in HepG2
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43 Irinotecan (CPT-11) DMSO 160µM− 2.71nM
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Time−Dependent Concentration Response −
 irinotecan(CPT−11) (43) in HepG2
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Time−Dependent Concentration Response −
 cytosine b−D−arabinofuranoside (44) in HepG2
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46 Benzo[a]pyrene DMSO 100µM− 1.69nM
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Time−Dependent Concentration Response −
 benzo[a]pyrene (46) in HepG2
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47 Gemicitabine H2O 2µM− 0.03nM
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Time−Dependent Concentration Response −
 gemicitabine (47) in HepG2
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60 SN-38 DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −
 SN38 (60) in HepG2
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5.5.5 Automatic determination of cluster number

Cluster number is an important parameter in unsupervised clustering algo-

rithms. The determination of cluster number is considered as a process of

model selection. Most clustering algorithms require parameters that either di-

rectly or indirectly specify the number of clusters. Setting these parameters

requires either the existing knowledge of the data or time-consuming trial and

error. The latter case still requires that the user has sufficient domain knowl-

edge to gauge good clustering results [35].

Except for users’ interpretation and specification on cluster number, an

appropriate number can be obtained via Bayesian Information Criterion (BIC)

which is based on penalized likelihood estimation. BIC is defined as follows.

BIC = 2LM(x, θ̂)−mM log(n) (5.31)

where mM is the number of parameters in model M, LM is the log likelihood,

and n is the number of observations. The selected model will be the one with

the highest BIC value defined in Eq. (5.31).

Model-based Clustering Toolbox in MATLAB R⃝ developed by A. Martinez
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andW. Martinez [30] includes functions which apply Expectation Maximization

(EM) algorithm to obtain the final estimates of model parameters as well as

those which calculate BIC scores. Details about how EM algorithm works can

be accessed via [36]. Different ways of model parametrization are discussed in

varying degrees in [37], [31] and [38]. Specifically, [37] analyzed the assumptions

for [39] and [40] in model structure parametrization and its applicability and

proposed general parametrization criteria based on eigenvalue decomposition

as a proper extension. Since different constrains are imposed on covariance

matrices of models, different model types are involved in the calculation of BIC

scores. To make the application more understandable, the selected scenario is

based on the parametrization introduced above.

Figure 5.16 shows the BIC scores calculated based on the coefficients of first

PC scores on slopes of TCRPs.
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Figure 5.16: Model selection using BIC score

The figure indicates that the third model structure (Σk = λB) gives the

largest BIC score. 7 clusters are optimal in this situation. The clustering

number is reasonably consistent with prior information. The results are listed

in Table 5.3.
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Table 5.3: Results of PCA & FDA based hierarchical classification with the
number of clusters determined using BIC (cell line: HepG2. 47 of 65 chemicals
are eligible.)

Cluster SN Chemical Solution Concentration (1:3) TCRP
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44 Cytosine H2O 8950µM− 151.57nM
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Time−Dependent Concentration Response −
 cytosine b−D−arabinofuranoside (44) in HepG2
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4.09uM
1.36uM

47 Gemicitabine H2O 2µM− 0.03nM
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2 1 5-fluorouracil (5-FU) DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −
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Time−Dependent Concentration Response −
 Etoposide (2) in HepG2
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Time−Dependent Concentration Response −
 Clofarabine (12) in HepG2
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13 Hydroxyurea (HU) H2O 10mM− 169nM
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19 Exo 1 DMSO 300µM− 5.08nM
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Time−Dependent Concentration Response −
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28 Cyclosporin A DMSO 100µM− 1.69nM
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Time−Dependent Concentration Response −
 cyclosporinA (28) in HepG2
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33 SAHA DMSO 151µM− 2.56nM
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Time−Dependent Concentration Response −
 SAHA (33) in HepG2
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Time−Dependent Concentration Response −
 Mitoxantronedihydrochloride (35) in HepG2
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36 Mitomycin C DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −
 MitomycinC (36) in HepG2

 

 
control
0.2mM
66.67uM
22.22uM
7.41uM
2.47uM
0.82uM
0.27uM

39 Topotecan DMSO 95µM− 1.61nM

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (h)

R
el

at
iv

e 
N

or
m

al
iz

ed
 C

I

Time−Dependent Concentration Response −
 Topotecanhydrochloride (39) in HepG2
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43 Irinotecan (CPT-11) DMSO 160µM− 2.71nM
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Time−Dependent Concentration Response −
 irinotecan(CPT−11) (43) in HepG2
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46 Benzo[a]pyrene DMSO 100µM− 1.69nM

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (h)

R
el

at
iv

e 
N

or
m

al
iz

ed
 C

I

Time−Dependent Concentration Response −
 benzo[a]pyrene (46) in HepG2
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60 SN-38 DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −
 SN38 (60) in HepG2
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3 7 Emetine H2O 50µM− 0.847nM
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10 Puromycin H2O 1000µM− 17nM
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Time−Dependent Concentration Response −
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Time−Dependent Concentration Response −
 Anisomycin (11) in HepG2
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24 Rotenone DMSO 200µM− 3.387nM
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Time−Dependent Concentration Response −
 Rotenone (24) in HepG2
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25 Thapsigargin DMSO 2µM− 0.0339nM
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Time−Dependent Concentration Response −
 thapsigargin (25) in HepG2
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26 BHQ DMSO 400µM− 7nM
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Time−Dependent Concentration Response −
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34 (S)-HDAC-42 DMSO 128µM− 2.17nM

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (h)

R
el

at
iv

e 
N

or
m

al
iz

ed
 C

I

Time−Dependent Concentration Response −
 (S)−HDAC−42 (34) in HepG2
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42 Merbarone DMSO 200µM− 3.39nM
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Time−Dependent Concentration Response −
 merbarone (42) in HepG2
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4 22 Oligomycin DMSO 20µM− 0.339nM
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Time−Dependent Concentration Response −
 oligomycin (22) in HepG2
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23 Antimycin A EtOH 200µM− 3.387nM
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Time−Dependent Concentration Response −
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5 9 Actinomycin D DMSO 2µM− 0.0339nM
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Time−Dependent Concentration Response −
 actinomycinD (9) in HepG2
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14 Valproic acid H2O 50mM− 847nM
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16 Doxorubicin (DOX) H2O 100µM− 1.69nM
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Time−Dependent Concentration Response −
 Doxorubicin (16) in HepG2
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17 Brefeldin A (BEF) DMSO 40µM− 0.68nM
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Time−Dependent Concentration Response −
 brefeldinA (17) in HepG2
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18 Leptomycin B (LMB) EtOH 20nM− 0.000339nM
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Time−Dependent Concentration Response −
 leptomycinb (18) in HepG2
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Time−Dependent Concentration Response −
 monesin (20) in HepG2
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32 CCCP DMSO 100µM− 1.69nM
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Time−Dependent Concentration Response −
 CCCP (32) in HepG2
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6 4 Cytochalasin D DMSO 20µM− 0.339nM
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Time−Dependent Concentration Response −
 CytochalasinD (4) in HepG2
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6 Latrunculin B DMSO 20µM− 0.339nM
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Time−Dependent Concentration Response −
 LatrunculinB (6) in HepG2
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31 Latrunculin A EtOH 2µM− 0.03nM
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Time−Dependent Concentration Response −
 LatrunculinA (31) in HepG2
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51 W7 HCl DMSO 200µM− 3.39nM

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (h)

R
el

at
iv

e 
N

or
m

al
iz

ed
 C

I

Time−Dependent Concentration Response −
 W7 HCl (51) in HepG2
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52 Y-27632 DMSO 188µM− 3.18nM
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Time−Dependent Concentration Response −
 Y−27632 (52) in HepG2
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55 FAKInhibitor14 H2O 2500µM− 42.34nM
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Time−Dependent Concentration Response −
 FAKInhibitor14 (55) in HepG2
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64 HA1100 hydrochloride H2O 1000µM− 16.94nM
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Time−Dependent Concentration Response −
 HA1100 hydrochloride (64) in HepG2
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7 8 Paclitaxel DMSO 20µM− 0.339nM
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Time−Dependent Concentration Response −
 Paclitaxel (8) in HepG2
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15 Vincristine Sulfate H2O 250µM− 4.23nM

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (h)

R
el

at
iv

e 
N

or
m

al
iz

ed
 C

I

Time−Dependent Concentration Response −
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50 Dimethylenastron DMSO 40µM− 0.68nM
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Time−Dependent Concentration Response −
 dimethylenenastrone (50) in HepG2

 

 
control
40uM
13.33uM
4.44uM
1.48uM

59 Docetaxel DMSO 1µM− 0.02nM
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Time−Dependent Concentration Response −
 Docetaxel (59) in HepG2
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61 Vinblastine sulfate H2O 40µM− 0.68nM
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Time−Dependent Concentration Response −
 Vinblastine Sulfate (61) in HepG2
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The results shown in Table 5.3 are overall satisfactory, although some chem-

icals are misclassified according to the visualization of shapes. The main ad-

vantage in determining the cluster number using BIC lies in the fact that the

structure of all the clusters including the clustering number is fully determined

by the data. It can save human efforts when datasets are large. However, some

expert knowledge is still required to verify the reliability of classification via

biological interpretation.

5.5.6 Chemical classification GUI module development

A Graphic User Interface (GUI) module is designed according to the cluster-

ing approach proposed above. A user’s guide that introduces the layouts and

functions of the GUI is given in the Appendix.

5.6 Conclusion

This chapter introduced the proposed PCA and FDA based hierarchical clas-

sification. As effective and efficient strategies for feature extraction, PCA pro-

jected the data with uneven dimensionality into a lower-dimensional PC space

104



with the major variation of data retained. FDA used fewer coefficients to repre-

sent the extracted PC scores and removed noise to some extent simultaneously.

The coefficients of PC scores were taken as valid features. A model-based hi-

erarchical clustering algorithm was introduced and applied on the extracted

feature matrices.

The application of the proposed approach on cell index data was elabo-

rated in detail. To divide the dendrogram into some parallel and analyzable

categories, a tree cutting was imposed. Based on users’ interpretation, two

tree cutting strategies, one-level and two-level dendrogram cutting, were intro-

duced separately. One-level dendrogram cutting utilized two coefficient vectors

concatenated together, while two-level dendrogram clustering processed the

first coefficient of PC scores based on the TCRPs and the slopes of TCRPs

in different levels. Although the clustering results indicated the success of dis-

criminating chemicals from shape similarity point of views, the determination

of clusters involved human interactions and was subjective. Also, the interpre-

tation by users required expert knowledge. Hence, to solve this problem, model

selection using Bayesian Information Criterion was introduced and applied to

determine the cluster numbers automatically. The results indicated that the

estimated clustering number is close to that generated via users’ interpretation.

A MATLAB R⃝-based GUI was designed based on the approach proposed.
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Chapter 6

Conclusions and future work

6.1 Conclusion

In this thesis, the aim is to classify chemicals into groups such that each group

represents the same mode of action for all the chemical compounds. The shape

of TCRPs is a good indication of Mode of Action. Several data based clas-

sification techniques were introduced to classify chemicals with similar TCRP

shapes into the same group.

The main contribution of this thesis is to design and implement three differ-

ent strategies to classify chemicals which are denoted by different numbers of

TCRPs. TCRPs of chemicals were visualized and depicted with multiple time

series. Therefore, the classification problem was interpreted by using dynamic

information in profiles.

Majority-voting and K-means clustering integrated classification aimed at

extracting first-order difference (slope) of profiles within each sampling interval

to depict the dynamic tendency and shape of curves. With the help of majority

voting, the feature vector of each chemical represents the major tendency of

the curves. The advantages and disadvantages of this approach are concluded

in Table 6.1:

Hierarchical correlation based classification focuses on measuring similarity

106



Table 6.1: Advantages and disadvantages of Majority-voting and K-means
clustering integrated classification

Advantage Disadvantage
1. evaluated chemicals using major tendency of TCRPs
2. fully utilized slopes of TCRPs (∆RNCI)
3. computationally efficient

1. conflicts in identifying feature vector
2. not fully utilized information about RNCI
3. predefined cluster number

between chemicals with different numbers of TCRPs using correlation coeffi-

cients. All the eligible chemicals are first divided into positive and negative

groups. In order to classify chemicals from a curve shape similarity point of

view, each TCRP is considered as a variable and each chemical is denoted by

a vector of TCRPs. The significance of curve by curve correlation analysis is

aimed to search for the pairs of curves from the compared chemicals with the

maximum value R and thus decide whether two chemicals are combined or not.

Table 6.2: Advantages and disadvantages of Hierarchical correlation based clas-
sification

Advantage Disadvantage
1. avoided unnecessary loss about profile information
2. computationally efficient
3. determined cluster number flexibly and automatically

1. empirical in tuning parameters

PCA & FDA based hierarchical classification aims at classifying chemicals

denoted with different numbers of TCRPs from a relatively objective way. PCA

projects data with nonuniform dimensionality into a lower-dimensional and

unified PC space by selecting the principal components. FDA uses fewer coeffi-

cients to represent the extracted PC scores and remove noise at the same time.

A model-based hierarchical clustering algorithm is applied on the extracted

feature matrices. The number of clusters can be determined either by using

prior knowledge manually or by using BIC criterion automatically.
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Table 6.3: Advantages and disadvantages of PCA & FDA based hierarchical
classification

Advantage Disadvantage
1. synthesized profiles in a reasonable way
2. classified chemicals in a maximum-likelihood framework
3. determined cluster number manually and automatically

1. computationally time-consuming

6.2 Future work

Classification of chemicals denoted by different numbers of TCRPs is a chal-

lenging problem. The problem is considered as a classification of data objects.

Each data object is defined as a matrix with a different number of columns.

Usually, each data object is depicted by a variable or vector in RN . When data

objects become complicated and multi-dimensional, they can be represented

with matrices. However, classification on data objects denoted by matrices it-

self is not easy because the target feature matrix will become cubic. It is even

harder to handle data objects denoted by matrices with nonuniform dimen-

sionality. So, the key component to realize pattern recognition of data with

nonuniform dimensionality is to extract valid and functional feature vectors

with the information in the original data object compressed and integrated as

much as possible.

Some works worthy of further investigation are listed as follows:

1. Improvement on feature extraction

Feature extraction is crucial for classification. This procedure integrates

important information about original data and decreases the calculation

time at the same time. However, fusing the information and rescaling the

data object remains a challenge. Apart from majority-voting and PCA

and FDA methods, some other ways to extract features can be considered

such as adding different weights on profiles with different concentrations.

2. Similarity measurement

Calculating the degree of similarity between time series is also crucial
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for classification especially for curve shape based classification.Although

distance-based similarity is commonly used, it is constrained by vector

dimensionality. Distance functions may lose their usefulness in high di-

mensionality [41]. A better way to quantify the similarity between vector

data is needed.

3. Robust classification of chemicals using dose-response relationship

Dose-response curves are consider as a good way to realize a more robust

classification of chemicals as dose-response curves are aimed to establish

the relationship between toxicity index (e.g. LC50 [42]) and concentra-

tions [43]. Therefore, for each concentration, dynamic information in the

TCRPs is compressed and integrated using the toxicity index. Experi-

mental noise which affects the dynamics of the TCRPs can be alleviated

by introducing the toxicity index. Classification of chemicals denoted by

TCRPs is thus addressed by switching to the classification of chemicals

based on dose-response profiles.

109



Bibliography

[1] S. Khatibisepehr, B. Huang, F. Ibrahim, J.Z. Xing, and W. Roa. Data-

based modeling and prediction of cytotoxicity induced by contaminants

in water resources. Computational Biology and Chemistry, 35(2):69–80,

2011.

[2] T. Pan, B. Huang, W. Zhang, S. Gabos, D.Y. Huang, and V. Devendran.

Cytotoxicity assessment based on the AUC50 using multi-concentration

time-dependent cellular response curves. Analytica Chimica Acta, 764:44–

52, 2013.

[3] K.A. Houck and R.J. Kavlock. Understanding mechanisms of toxicity: In-

sights from drug discovery research. Toxicology and Applied Pharmacology,

227(2):163–178, 2008.

[4] National Research Council Committee on Methods of Producing Mono-

clonal Antibodies, Institute for Laboratory Animal Research. Monoclonal

Antibody Production. The National Academies Press, 1999.

[5] H. Hosseinkhani, M. Hosseinkhani, and A. Khademhosseini. Emerging

applications of hydrogels and microscale technologies in drug discovery.

Drug Discovery, 1:32–34, 2006.

[6] S. Przyborski. Supporting cells with scaffold technology. Genetic Engi-

neering and Biotechnology News, 31(16):38–39, 2011.

110
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Appendix

This user’s guide document will illustrate how to use the GUI module designed

for Mode of Action Classification.

Interface Introduction

Figure 6.1: Main graphic user interface (GUI) of Mode of Action Classification

Figure 6.1 shows the main interface of Mode of Action Classification (MoA

Classification). It is designed by Zhankun Xi, a master candidate in Com-

116



puter Process Control, Department of Chemical and Materials Engineering,

University of Alberta. The GUI module is developed tentatively and more

functions are under consideration. If there is any suggestion, please contact

zhankun@ualberta.ca.

Result Table

In the left hand side, a uitable displays the pattern recognition results for

the data selected to be clustered. Chemicals are arranged cluster by cluster.

The headers represent the category which chemicals belong to. Chemicals in

Unclassified category are not eligible for classification due to their TCRPs are

close to control lines, which do not show apparent pattern for analysis.

Cluster Panel

Cluster Panel is used to control the input parameters to the GUI.

Cell line selection

Cell line selection is the upper pop-up menu at the top right corner. It is

used to select the cell line based on which the users classify the chemicals. One

of five default cell lines in the database, ACHN (Tissue: kidney), ARPE19

(Tissue: retinal pigmented epithelium; retina), HepG2 (Tissue: liver), Beas-

2B (Tissue: lung/bronchus) and H4 (Tissue: brain) can be selected at one

time. Other new cell lines will be added into the database later if available.

All the data files are formatted into .mat which can be directly recognized by

MATLAB R⃝.

Clustering mode selection

Clustering mode selection is the lower pop-up menu at the top right corner.

It is used to choose the clustering mode for the selected cell line. There are
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two default modes available, one level and two levels. Although the designed

algorithm belongs to hierarchical clustering, the difference between two modes

lie in whether there is a uniform tree cutting or not in hierarchical clustering.

The dendrogram generated from the algorithm is cut at one time in a one-level

scenario, while it is cut level by level in a two-level one. In other words, the

dendrogram is firstly cut into several subtrees whose volumes are relatively big.

Then, each subtree is cut again according to its actual distribution. The main

advantage of two-level hierarchical clustering scenario is that it can manipulate

the number of clusters easily under each subtree and hence the overall number

of clusters for all the input data.

Pushbutton: Click to cluster

Other than the two pop-up menus in the Cluster Panel, there is a push but-

ton, Click to cluster, to implement an approach utilizing multivariate statis-

tical techniques including principal component analysis (PCA) and functional

data analysis (FDA) and a model-based agglomerative hierarchical clustering

algorithm to cluster the input chemicals using TCRPs. Via the push button,

one or two dendrograms are generated according to users’ choice in the lower

pop-up menu. Users can cut the trees according to their satisfaction. Usually,

for classification based on TCRPs in our study, a suitable number of clusters

is around 10. The clustering results may vary due to different interpretation

and understanding about the clusters. However, the goal of this project is to

categorize chemicals whose TCRPs show similar profile shapes and tendency.

Chemicals that show similar profile shapes and tendency may show similar

Mode of Action if the experiment is done under appropriate doses or concen-

tration levels.
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Example: Cluster Panel

We consider a two-level hierarchical clustering scenario as an example. When

“Beas-2B” cell line and two-level mode are chosen separately, a dendrogram

together with a dialogue to prompt the users to type in a number is generated

after the button, click to cluster, is clicked. Users can cut the dendrogram

according to the distribution under itself, which is indicated as in Figure 6.2.

After users enter c as a number, another figure will pop out to ask the users

to input the cluster numbers under each of c subtrees. The hierarchical distri-

butions are illustrated in Figure 6.3. The prompted dialogue for the users to

input appropriate cluster numbers is shown in Figure 6.4.

Figure 6.2: First level dendrogram

Figure 6.3: Second level dendrogram
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Figure 6.4: A prompted dialogue for the users to input appropriate cluster
numbers

Output Panel

Output Panel is used to control the outputs from the GUI.

Pushbutton: Output results

In Output panel, Output results is a push button which can output the

clustering results once the execution of clustering is finished.

Output selection

The subpanel, Output selection ask users to choose the types of outputs:

Table, Figures or both. When Table is ticked, an EXCEL file whose contents

are the same as those indicated in the uitable module in MoA GUI can be gen-

erated and saved in “\Excel Result” folder when pushbutton Output results

is clicked. Users can copy and paste the contents for their further study. When

Figures is ticked, all eligible TCRPs and their corresponding concentration in-

formation will be saved into .bmp format in “\Figures Celline 65Chemicals”

folder, where Cellline is a variable according to the cell line which the users

choose in Cluster Panel.
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Example: Table

Figure 6.5: Table saved via the GUI

Example: Figures

Figure 6.6: TCRP figures saved via the GUI
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