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Abstract

Driven by technological advances in emerging elds such astanomous ve-
hicles, robots, and industrial internet-of-things, multitagent systems (MASS)
continue to be a prominent research area within Control Sysins. Often,
in practical applications, the agents employ information lstained from sen-
sors, on-board and/or o -board, to accomplish complex task asynchronously.
Moreover, given the wide accessibility to electronic hardwe and infrastruc-
ture, modern agents generally employ digital sensors andgmessors and coor-
dinate wirelessly. The agents may even operate under a povetorage device
to allow for remote deployment. For modern agents, it is essgal to emphasize
that resources are often limited and access to informatioorf control updates
are only available when sampled. Given these potential resge constraints,
there is signi cant interest in further studying control protocols, which incor-
porate the characteristics of digital hardware, to reducessource consumption
while still achieving the control objectives.

In this thesis, two problem formations are considered. Firlst we consider
the problem of distributed MAS consensus where the agents' mgmics follow
a single-integrator. The control protocol of each agent ergys local relative-
state measurements, at their own sampling frequencies, aaddynamic peri-
odic event-triggered protocol to dictate when control updas occur. Unlike
continuous-time event-triggered protocols, the periodievent-triggered proto-

col only checks for events at discrete event-monitoring itats. Between sub-



sequent event-monitoring instants, the agents have no asseto information
regarding its neighbours. In our formulation, the event-mumitoring instants
are governed by sampling periods whose bounds are explicire-computed,
individually, for each agent. As a result, the designed coral protocol is in-
herently asynchronous, even when the event-trigger mechsm is redundant,
and avoids Zeno-behaviour by design. To unify the continusttime agents'
dynamics and both the discrete-time sensing and controllepdates, the over-
all MAS is modelled and analyzed within the hybrid system fraework.

Our second problem formulation aims to encompass a broadenge of
implementations. As such, we extend the agents' dynamics Wih the rst
problem formulation from a single-integrator to linear tine-invariant systems.
However, it is worth noting that since reaching consensus btasilizing to the
origin is trivial, we instead focus on achieving consensus& new stabilizing set
other than the origin. Furthermore, within our second prol@m formulation,
we explore two constructions of the dynamic periodic evemtiggered proto-
col, where the second construction is aimed at reducing theeat frequency
through incorporating an independently tunable term.

For both problem formulations, we prove consensus of the MASilizing
the Lyapunov stability theorem within the hybrid system framework. We also
provide su cient conditions on the construction of the dynamic periodic event-
trigger mechanisms and bound between event-monitoring tasts such that
consensus is guaranteed. Numerical examples, simulatioasd comparisons

are provided to demonstrate the utility and e ectiveness ofhe results.
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Chapter 1

Introduction

In this chapter, the motivation behind research involving ralti-agent sys-
tems (MASSs), in combination with the consensus problem, evetriggered
control protocols, and the hybrid system framework are int/duced. Next,
a survey of existing literature addressing the aforementied* are provided.
Inspired by previous studies, the current research gaps adenti ed, thereby
inviting further exploration. Finally, the specic contrib utions and a brief
outline of this thesis are given.

1.1 Research Motivation

MASSs can be characterised as a group of dynamic systems (aggrhat
coordinate, typically according to a communication topolgy, to cooperatively
accomplish collective objectives that are often too compddor a single agent.
General applications of MASs include, but are not limited to,cooperative
robots [1], smart grids [2], coordination of spacecrafts][&nd intelligent tra ¢
management [4]. Naturally, within MASs, one of the fundamentaareas of
research revolves around the problem of consensus, seechati [5], [6], [7],
and [8]. Consensus, as de ned in [9], can be described as alirtected agents
asymptotically converging to an agreement state(s) from gnnitial conditions.
Some potential contemporary applications of consensus, awestigated in
[10], include rendezvous, formation control, and axial ghment of unmanned
aerial vehicles (UAVs), and sensor agreement, in the contextwireless sensor
networks and sensor fusion. As can be seen by the spectrum oaikable

LExcept for the hybrid system framework. The literature review of which will instead
be consolidated within Chapter 2 - Preliminaries.



literature, the concept of MAS consensus has been historilgalvell studied,;
however, emergence of new hardware and communication praits introduce
fresh implementation bottlenecks to this classical probhe.

In practical applications, agents often employ informatio obtained from
sensors, on-board and/or o -board, for control updates. Wh modern ad-
vancements and wide accessibility to electronic hardwar@@ communication
infrastructure, the agents in MASs increasingly become digl. Here within,
we de ne the term \modern agents" to capture agents that pogss one or more
of the following components such as: digital sensors, whisample physical
guantities in speci ed intervals; processors, which quitk perform computa-
tions using discrete values; digital transceivers, whichable high-bandwidth
digital wireless communication; and potentially a power strage device, which
allows for remote operations. In this way, modern agents hawa greater capac-
ity and degree-of-freedom, compared to hard-wired systenfsr accomplishing
tasks both distributively, where each agent is responsibfer its own decision-
making, and asynchronously, where each agent operates os @wn clock for
making decisions.

As sensing, computational, communication, and energy resoas are nite,
resource-constraint circumstances may arise as a resultdaflsign requirements
(namely, deliberate extension of operation time for battgr operated devices
or reduction of actuator duty cycle [11]), or as a result of @rloading (proces-
sor utilization saturation). In fact, for a UAV studied in [12], between 26-66%
CPU utilization can be expected solely for the UAV's ight contol. This
emphasizes that control can draw signi cant computationatesources and di-
vert those resources away from being utilized for non-cowolrtask scheduling
[13], such as image processing in support of surveillancesmgtions. In such
cases, there may be an interest to sacri ce a relatively snhaegree of control
performance in order to save or divert resources to better goort the overall
mission.

One possible approach to overcoming the resource-congttain the con-
text of control, is the implementation of an event-triggerd protocol where
control actions are only taken when speci ¢ conditions are eb. Ideally, a
well constructed event-trigger mechanism (ETM) eliminate computation and
implementation of redundant control actions. Also, the ETM nust avoid
Zeno-behaviour, de ned as an infeasible phenomenon wherenite events



occur within a nite time [14], from occurring. For modern agnts, as access
to continuous-time (CT) information is not only resource egensive but also
unrealistic due to the characteristics of digital hardwargnamely, sampling
and discrete computation), this presents an additional lar of complexity in
the design of the ETM such that the control objectives remaiguaranteed.

As all physical systems in the real world exhibit CT behavioyrthe integra-
tion of digital sensors, digital controllers, and an ETM wihin modern agents
result in discrete-time (DT) control updates and may lead toonlinear closed-
loop dynamics. As a consequence, the rich dynamics of the elddoop system
is di cult to be modelled solely as a CT or DT system. A framewak that
uni es the CT dynamics of the physical agents with the DT contol updates
is necessary in order to better analytically study the contl performance and
trajectory of MASs comprising of modern agents.

1.2 Literature Survey

This thesis studies the MAS consensus problem, involving merth agents,
and the design of ETMs that are realistic for implementationvith digital hard-
ware. The overall objective is to alleviate the impact of resmce-constraint
circumstances while guaranteeing consensus. In this senti we present a
literature survey utilizing a building block approach of asociated concepts.
Speci cally, we rst present detailed literature reviews @ multi-agent con-
sensus, followed by various constructions of event-triggel protocols, and
the approaches to avoid continuous monitoring of event-ggering conditions
(ETCs). When appropriate, we draw implications from theory 6 real-world
implementation.

1.2.1 Multi-agent Consensus

One of the main characteristics de ning MASs is the coordinan among
agents; this implies that some form of communication topoffy exists. The
communication topology represents the protocol of information ow between
agents. The algebraic graph theory (AGT) [15] e ectively mdels the com-
munication topology through the interconnection of nodesral edges. Within

2Sometimes also referred to as network or interaction topology dependingn system
structure.



MASSs, most communication topologies can be captured by eithdirected or
undirected graphs. In the former, as the name suggests, infation ows one-
way between at least one agent in the network to another concted agent.
Meanwhile, in the latter, information ows bi-directionally between all con-
nected agents. In the literature [16], the authors employed directed graph
while the authors of [17] employed an undirected graph. Undewoth graphs,
the degree of connectivity has profound implications in tems of implemen-
tation. When more connections exist, it results in more infonation being
exchanged; thus, more information available for control gates but at the
cost of occupying greater bandwidth.

As previously mentioned, consensus is one of the fundamerpabblems in
MAS research. From [18], consensus can be mathematically atésed as:

tIiilm kxi(t) x;(t)k=0, 8i;j 2V; (1.2)

where x;(t) denotes the state of agent and V denotes the index set asso-
ciated with the agents within the communication topology. o can be said
that the consensus problem is solved if eq (1.1) is satis etHowever, in some
cases, eq (1.1) is di cult to be satis ed; thus, a weaker conition is practical
consensus de ned as:

limix(t) X (Ok , 8ij 2V; (1.2)

where is a positive value representing the upper bound on esensus perfor-
mance. Generally, consensus can be guaranteed in the absasfaquantization
and disturbance, as seen in [19], while only practical comseis can be guar-
anteed when those considerations are involved, as seen B][2An important
observation based on eq (1.1) is that stabilization to the ain, as studied in
[21], also satis es the condition for consensus. However,ighs considered a
trivial form of consensus. As such, the study of the consensu®blem focuses
on satisfying eq (1.1) at points other than the origin, as deanstrated in [22]
by the unbounded state trajectories (typical in kinematick but convergent
consensus state trajectories.

In MAS consensus, information exchange between agents carcwcby
absolute-state measurements (ASMs), see [17] and [23], or rejative-state
measurements (RSMs), see [24], [25], [19], and [26]. In tbenier approach,
agents broadcast their states to neighbouring agents, whiare then utilized to

4



update control. In the latter approach, agents having the gaability through
on-board sensors (e.g., radar, lidar devices, or computeision) to directly
obtain the relative states, such as distance, of neighbong agents for control
updates. The attraction in utilizing RSMs within MASs is that impact of net-
work overloading and communication constraints, studiechi[27], are largely
mitigated as information exchange between agents are olitad directly by
distributed local sensors rather than over the network. Gen the advantages
and readily available hardware to support implementationit is of bene t to
further study the MAS consensus problem utilizing RSM.

1.2.2 Event-triggered Protocols

As demonstrated in [28], the event-triggered protocol redaed control up-
dates by 26% compared to the sample-data control protocol vid obtain-
ing similar system responses. By triggering events only winé is necessary,
event-triggered protocols have the potential to reduce resrce consumption
and control actuation, thus alleviating the impacts of resarce-constraint cir-
cumstances. When exactly events are triggered depends on paty the ETC
but naturally when the ETC is checked, namely event-monitang instants
(EMIs).

[19] and [24] employed CT event-monitoring, or continuousme event-
triggered mechanism (CTETM). In this, the event conditionsare monitored
continuously and when the ETC is violated, an event is immediely triggered
which prompts control to be updated. Meanwhile, [29], [30fgnd [31] em-
ployed periodic event-monitoring, or periodic ETM (PETM).Here, the event-
conditions are checked only at discrete instants in time, thier periodically
or aperiodically, with event-monitoring being inactive inbetween subsequent
EMIs. For PETMs, as events can only be triggered at these diste EMIs, the
inter-event time is always lower bounded by the event-morating interval. As
a result, the inter-event time is always a positive value; s, Zeno behaviour
is avoided by construction. Studied in [32], combining theharacteristics
of CTETM and PETM lends to a time-regulation ETM. In time-regulation
ETM, there is a period of inactivity where the ETC is not checkd, behaving
like a PETM, and after such inactivity period elapses the ETGs continu-
ously checked, behaving like a CTETM. Each approach to eventonitoring
possesses speci ¢ advantages but also implications. Basedsimulations, in



terms of control performance and event-triggering frequeres when all else
are equal, CTETM results in faster control performance witta reduced event
frequency compared to PETM but at a greater sensing cost andfential for
Zeno-behaviour. PETM has the advantage of conserving semgiresources
but may incur more frequent events. Striking a balance betwa how often to
check for events, event-triggering frequency, and systenefiormance is some-
times a challenge [33]. Strategies to avoid continuous mtoring of event
conditions is further investigated in depth within Subsedbn 1.2.3.

Vital to any ETM is the design of the ETC such that events are trggered
only as needed, Zeno-behaviour is avoided, and most importiy consensus,
or potentially in the practical sense, remains guaranteedln the literature,
typically the ETC is a function taking arguments of some vadble of the
measurement error and a constant threshold [34], time-dep#ent threshold
[20], state-dependant threshold [19], or dynamic threshb[35].

With a constant threshold ETC, an event is triggered when the masure-
ment error exceeds a constant threshold. Such an ETC is capabf completely
avoiding Zeno-behaviour in linear MASs but may be unable to hieve strict
consensus. This is due to the fact that for timé > M 2 R o, the measure-
ment error is small enough, but not zero, that it never excesdhe constant
threshold. As a consequence, no events are triggered aftendit > M , with
which no control updates occur to bring the agents to consars

With time-dependant threshold ETC, a monotonically time-deaying func-
tion, usually a decaying exponential, replaces the constathreshold. By
virtue of any time instant the time-decaying function is sinply a constant
threshold, Zeno-behaviour is avoided, and as time approashin nity, the
threshold converges to zero. Therefore, achieving consenss possible. How-
ever, the cost is that the lower bound of the inter-event time relies on time
and the initial states [18], with possibility of more frequet events as time
progresses if the rate of the error growth exceeds the ratetbé decay of the
threshold. It is worth mentioning that for both constant and time-dependant
thresholds, due to the absence of feedback, the design paesens for these
thresholds can be independently selected to in uence the rsensus perfor-
mance and the event frequency.

State-dependent thresholds typically utilize the norm oftie consensus error
as the threshold, based on the input-to-state stable (ISS)ondition. As a



result, the event frequency typically is more consistent duto feedback; Zeno
behaviour is avoided; achieving consensus is possible meér MASSs.

For dynamic thresholds, typically a virtual auxiliary variable that possesses
dynamics of its own is de ned and utilized. The auxiliary vaiable takes agent
information as input, facilitating feedback, to reduce thdikeliness of events
by considering the cumulative e ects of the agents' trajectries. The ETC is
then based on this dynamic auxiliary variable. With proper dgign, it is possi-
ble to achieve consensus, Zeno-free behaviour, and redute évent-triggering
frequency. However, with dynamic ETC, there exists a slightdalitional com-
putational cost as a result of computing the evolution of thauxiliary variable.
Nonetheless, with the advantages in reducing the event fregucy, the dynamic
ETC is a suitable candidate for implementation.

Lastly, the ETC within the ETM can be evaluated either centrdly or dis-
tributively. In the former, the ETM and ETC are centrally monitored and
when conditions are violated, then all agents in the networkigger an event
in a synchronous manner [17]. To employ the centralized agach, it requires
that each agent monitors the global error, which requires ninuous commu-
nication with either a central node or access to the states afl other agents in
the network. In the distributed approach, each agent monits its own ETC
and triggers events independently of event-triggering obanected agents, thus
often resulting in asynchronous control updates between eégs. As modern
agents have the capability to perform local computations ahupdates, paired
with the impracticality of obtaining global information, the distributed ap-
proach encompasses greater breadth of real-world implertetions.

1.2.3 Avoiding Continuous Event-monitoring

As mentioned in Subsection 1.2.2, continuous monitoring of TE is in-
consistent with the objective of implementing an event-tggered protocol for
reducing resource utilization. Approaches seen in the liteture to avoid con-
tinuous event-monitoring are PETM, self-triggered protoals [36], and use of
internal models [37].

In PETM, the ETC is checked at discrete EMIs. Analogous to sanip-data
control, in most cases, there exists an upper bound on the @mval between
EMIs. For example, in sample-data control, there exists a manum sampling
interval that results in the spectral radius of the closeddop system matrix



exceeding one. This leads to instability of the equivalentistretized system
according to [38]. The implication of this for PETMs is that he sampling
interval must be selected such that when the PETM becomes nexldant, re-

ducing the event-triggered protocol to sample-data conttothe MAS must

still be capable of achieving consensus in some sense. Initold to [38],

the authors of [39] and [27] also presented techniques foegromputing the
maximum allowable sampling period (MASP), by utilizing Lyamunov stability

theorem, such that the control objective is guaranteed.

In the self-triggered approach, the next sampling instantsi predicted at
the current sampling instant based on presently availablenformation and
model of the system dynamics. Typically, the prediction is ade by again
using the Lyapunov stability theorem to determine the futue time instant at
which the condition for some notion of consensus ceases torbet, see [40].
The challenge of this approach is the persistent computaticrequired at each
current sampling instant to compute the subsequent futureasnpling instant.

In the internal model approach, as demonstrated in [41], da@gent ob-
tains samples of neighbouring agents' states and propagak®se states inter-
nally, which is then utilized to distributively check for ewents. As a similar
consequence to the self-triggered approach, this approaabnsumes excessive
computational resources in an already resource limited gétion. In addition,
when disturbances exist, internal models can become wildlyaccurate.

Of the mentioned approaches, the use of PETM with pre-compedl upper
bound on sampling interval is more consistent with the intetion of reducing
resource consumption. It is worth mentioning that in some gtial cases,
the combination of distributed MAS with ASMs and a CTETM with ti me-
based ETC has also demonstrated to not require continuous mtoring of
neighbouring agents. This is at the cost of the implicationgvolved with
implementing a time-based ETC as mentioned in Subsection212.

1.3 Research Gap

To recapitulate Section 1.1, this thesis studies the MAS coassus prob-
lem, involving modern agents, and the design of an ETM that ieealistic for
implementation on digital hardware. Based on our literatue survey in Section
1.2, we believe research potential exists in this regard. the work by [23],
the authors facilitated asynchronous broadcasts but did naonsider MASs

8



with RSMs or sensing capabilities. Meanwhile, in [20], theu¢ghors considered
linear MASs with RSMs and quantization e ects but the ETMs usd were
continuously evaluated, which might not be suitable for digal implementa-

tion. Whereas in [19], the authors implemented periodic evemonitoring

through the self-triggered approach, which might result irhigher computa-
tional demand due to sequential computation of EMIs. Lastlyin [42], the
authors considered a double integrator MAS under a directecetwork but the

PETM was static and utilized a purely time-based ETC. To the lest of our
knowledge, we believe that the distributed MAS consensus fnlem, utilizing

undirected graph and RSM sensing, combined with a dynamic H® - where

the EMIs are explicitly pre-computed individually for eachagent - remains
under-explored and warrants further study.

1.4 Thesis Contribution

Given the research gaps identi ed in Section 1.3, the specicontributions
of this thesis are summarized as follows:

" We construct and establish su cient conditions for the paraneters of
the dynamic PETMs®, designed according to the framework developed
in [35], that solve the distributed MAS consensus problem, velne agents
possess homogeneous linear time-invariant (LTI) dynami@nd utilize
undirected interaction topology combined with RSM sensingapabili-
ties.

A

We derive an expression to explicitly pre-compute the uppdround on
event-monitoring interval for the dynamic PETM, individually, for each
agent. This is such that asynchronous event-monitoring beeen agents
is supported while guaranteeing consensus of the MAS.

1.5 Thesis Outline

The layout of the remainder of this thesis has been organizedto the
following chapters. Chapter 2 introduces preliminary compts that enhance
the clarity of our main results in the subsequent chapters. Gipter 3, as a

3Although the ETM designed in this thesis is not necessarily periodi, we continue to
use the phraseperiodic ETM for historical reasons (see [35]).

9



proof of concept, establishes and executes our contributgoutlined in Section
1.4 for agents possessing single-integrator dynamics. @tex 4 extends the
work of Chapter 3 to agents with LTI dynamics and for two dynantc PETM
constructions, thereby delivering on our contributions $ted in Section 1.4.
Lastly, Chapter 5 concludes the work within this thesis and ers possible
future directions for further exploration. Unless otherwis explicitly de ned,
all variables used in this thesis are to be considered vecdor
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Chapter 2

Preliminaries

In this chapter, we introduce and detail preliminaries regaling graph the-
ory, RSM formulation, dynamic PETM, hybrid system framewok, and ap-
proaches to show consensus. The preliminaries aid in enhiawgcthe clarity
of our main results within the subsequent chapters. We mustephasize that
the concepts and work presented in this chapter do not contie as our con-
tributions; the credit should be given to the referenced ahbrs.

2.1 Algebraic Graph Theory

Introduced in Subsection 1.2.1, the AGT e ectively modelshe informa-
tion ow between agents within a MAS. According to [15],G = (V(G); E(G)
denotes a graph withN -nodes where/(G) = f1; ;Ng is the node (agent)
set andE(G) 2 fV (G) V (G)g is the edge set representing the link between
nodes. Nodg is called aneighbourof nodei if the edge ;i) 2 E(G), that is,
information can ow from nodej to nodei. The graph Gis calledundirected
i (1)2E(@Q (0  (;j) 2E(Q) for all i;j 2 V(G). In addition, the graph G
is connectedif there exists a path, comprising of a sequence of edgeHi(s),
between any two nodes in/(G).

Graphs are frequently used to model binary relationships tveeen nodes;
but, for greater generality, one may also incorporate weighgs to represent
the strength of the relationship. Adopting the latter, each dge infV (G)
V(G)g is assigned a weightg; , wherea; > 0 for (j;i) 2 E(G), elsea; =0
and a; = 0 (assuming no self-loops)8i;j 2 V(G). The adjacency matrix
and degree matrix of the G is denoted, respectively, a®\(G) = [g; ] ~ and
D(G) = diag[dy;::;dn]), whered; = szl aj . The graph Laplacian matrix is
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then dened asL(G) = D(G) A (G).

For an undirected and connected graph, some convenient pespes exist.
These properties ard_(G) = L(G)T and the eigenvalues of (G) are such that
0= 1(L(Q) < 2(L(G) o n(L(G)). Additionally, L(G) can be
diagonalized such thatL(G) = M ( L(G)M T, where (L(G)) is a diagonal
matrix comprising of the eigenvalues of. (G) and M is the corresponding
matrix of eigenvectors ofL (G) with MM T = |.

It will be seen in the main results that the Lapalcian matrix ad these
convenient properties facilitate de ning of stack vectoras well as establishing
upper bounds in consensus errors.

2.2 RSM Formulation

Highlighted in Subsection 1.2.1, information exchange bedéen agents for
control can occur through ASMs or RSMs. Figure 2.1 illustratiely highlights
the di erence between the two capabilities. According to [9}ypically fora CT
controller, the input for each agent inV(G) which solves the MAS consensus
problem takes the forni:

X
ui (t) = aj (xi(t)  xj(1); (2.1)

j=1
whereg; is associated with the graph and;(t) represents the state of agent
i. The employment of ASMs or RSMs is not distinguishable withirq (2.1),
as they are both equivalent for a CT controller. However, theistinction is
pronounced when DT controller (or, sample-data and, by extsion, event-
triggered protocol) is employed. lllustrating with a samp-data controller
with zero-order hold, lets, denote thek-th sampling instant of agenti. Then
the input for agenti when utilizing ASM takes the form:

ui(t) = aj (Xi(s)  X(Sk0); T2 [S; Sen); (2.2)
j=1

Lt is often assumed that there exists a CT controller which solves tle consensus problem
for the MAS. Since CT controllers exhibit the most active control intervention, the nonex-
istence of such a controller implies that no other forms of control prot@ol which sacri ces
control performance, e.g. sample-data or event-triggered strategiessicapable of solving
the consensus problem.
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where s{(o denotes the latest sampling instant of agent. Hence, it can be
seen in eq (2.2) that the control input for agent updates both at its own
sampling instant and the sampling instant of any of its neighours. For the
same sample-data controller, the control input for agentwhen utilizing RSM
takes the form:

X
ui(t) = aj (xi(s)) X (S); t 2 [Sii Sker): (2.3)
j=1
In eq (2.3), the control update of agent occurs only at its own sampling
instant as a result of agenti's capability of directly measuring the states
of its neighbours. In both eq (2.2) and eq (2.3), the agentstate(s) at
event-triggering instant, x;(s,), can be equivalently represented in terms of
the agent's CT state(s) with an error variable. That is, as anexample,
e(t) = xi(s) x(t). Such a reformulation facilitates mathematical ma-
nipulation and control analysis by treating the error as anriput.
It will be seen in the main results that the general form of e(3), followed
by reformulation to encompass a measurement error variables utilized to
model the relative-state sensing capabilities and eventiggered protocols for

the MAS.
M
(a) (b)

Figure 2.1: lllustration of ASM via broadcast of position in (3 and RSM via
lidar to obtain distance in (b).

2.3 Hybrid System Framework

Motivated by the intent to unify the CT dynamics of physical agents with
the DT updates of digital controllers, as mentioned in Seain 1.1, the hybrid
system framework introduced in [43] is well-suited for thipurpose. Existing
references that employed the hybrid system framework for ¢haforementioned
reason include [27], [44], and [21]. Figure 2.2 provides alustration of the
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position trajectory of a bouncing ball modelled in the hybd system frame-
work, where the ball possesses CT dynamics as it travels inetlair and DT
dynamics as it impacts the ground (instantaneous switchingf direction of
travel).

-

x, [m]
OO—*I\')CDLU'IO)\ICD(OO

Figure 2.2: Example of a hybrid domain and hybrid arc for a bouwsing ball
[45].

To establish the hybrid system framework, let 2 R" denote the hybrid
arc, which will formally be de ned later in this section. A hybrid system
H = (C;F;D;G) consists of CT dynamics, namely, ows, and DT dynamics,
namely, jumps. H can be expressed mathematically as:

—=F();, 2¢C; (2.2)
"2G(); 2D;

where:
~ C 2 R", is the ow set in which the continuous state evolves,
" F: C! R" is called the ow map,

~

D 2 R", is the jump set in which the state must belong to, to enable
jump,
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“G: D R", is a set-valued mapping (indicated by the double arrow)
called the jump map.

In eq (2.4), notice that * (or after jump) is a di erence inclusion rather
than an equality. This is to capture di erent jump maps basedon operating
modes. To ensure the existence and uniqueness of solutidhse,hybrid system
of eq (3.10) must satisfy what are called théaybrid basic assumptionswhich
State:

"~ C and D are closed sets iR",

" F is outer semi-continuous, locally bounded o, and non-empty and
convex for each 2 C,

" G is outer semi-continuous, locally bounded o, and non-empty for
each 2 D.

Unlike purely CT variables which are parametrized by timet 2 R o, or purely
DT variables which are parametrized by iteration,j 2 N o, hybrid arcs are
parametrized by both time and iteration. A compact hybrid time domain of
a hybrid arc is a stitching of a sequence of time intervals coatenated with
the associated jump sequence. Formally, a compact hybridite domain,E,
is de ned as: [

E= (t;4allj]) Ro Ny (2.5)

j=0

where 0 =ty, t; t; 2 R g,andJ 2 N . E is a hybrid time domain
if E\ ([0;T] f 0;1; ;Jg)is a compact hybrid time domain8(T;J) 2 E.
The hybrid time domain for the bouncing ball is illustrated n Figure 2.2 by the
red trace. The hybrid arc : dom ! R" is a locally absolutely continuously
di erentiable function on the intervals I = ft: (t;j) 2 dom g; 8 2 N o.
is a solution toH if:

~ (0;0)2 C[ D,

" The ow condition is satis ed, where for eachj 2 N o, I contains a
non-empty interior such that:

{t;j)2 F( (t;j)) for almostall t 2 1'; (2.6)
(t;j)2C; forallt2 I; (2.7)
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" The jump condition is satis ed, where for eacht{j) 2 dom , (t;j +1) 2
dom and such that:

(] +1) 2G((5])); (2.8)
(t.j) 2 D: (2.9)

It will be seen in the main results that the distributed MAS comsensus
problem with a dynamic PETM is modelled and analysed using & hybrid
system framework construction presented within this secth. The approaches
to show consensus of the MAS modelled in the hybrid system framiork will
be later described in Section 2.5.

2.4 Dynamic PETM

Described in Subsection 1.2.2, a PETM checks event-conditis at prede-
termined EMIs. Meanwhile, a dynamic threshold ETC utilizesan auxiliary
variable and reduces the likeliness of events by considegyithe cumulative ef-
fects of agents' trajectories. The use of a PETM with a dynaraithreshold
ETC lends to a dynamic PETM protocol, for which a general degn framework
was developed in [35]. In the referenced framework, for eaagjenti 2 V(G),
it de nes a lower-bound, "', and upper-bound,T', on the event-monitoring
intervals as:

" s, sk T 8k2N g (2.10)

wherek 2 N . Here, "' is an arbitrarily small positive constan? and T'
denotes the MASP, which is to be determined. Previously meoted in Sub-
section 1.2.3, [38] and [39] presented possible techniquescomputing the
MASP. Let fsgi_, denote the sequence of predetermined EMIs for agent
which may be selected di erently for each agent, of when néigour informa-
tion are sampled and ETCs veri ed. Additionally, forl 2 N o, let t! and
ftigt, denote thel-th event-triggering instant and the sequence of all trigge
ing instants of agenti, respectively. Then the PETM, which dictates when
the next event is triggered, and thus when control is updateds governed by:

t,, =infft>t]jt2fs.gi,; d.() < Og: (2.11)

2"i possesses both practical and theoretical implications: 1) practically;’ is associated
with the maximum sampling frequency of an agent's hardware, and 2) theorécally, "'
guarantees that Zeno-behaviour is avoided by construction, see artielby [27].
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It can be seen from eq (2.11) that events can only be triggerat EMIs. That
is, ftigk, f SiOi-,- In the scenario when the PETM of eq (2.11) becomes
redundant, then the protocol simply reduces to sample-dateontrol, in other
words, ftigt, = fslgi,,. The inequality gi() < O represents the dynamic
ETC to be designed.

Before establishing the auxiliary variable for the dynami&TC, rst let
% (t}) 2 R™ represent the vector sum of RSMs that are accessible to agént
at the triggering instant t'. In addition, let € (t) represent some measurement
error construction for agenti associated with the implementation of the event-
triggered protocol. Now, de ning the auxiliary variable of e dynamic ETC,
let { 2 R ¢ be a non-negative variable whose hybrid dynamics are goveth

by:

A1) = F1Ci(0); %, (1) t 2 [S); Sien);

. g(i):d); t2fsgnftig (2.12)

L gCiE); t2ftg
wheref ! is a continuous function,g. is the jump map atsl, when an event is
not triggered, andg! is the jump map ats, when an event is triggered. Fur-
thermore, the initial condition, (0), is a positive constant design parameter
to be selected. From eq (2.12), it can be seen that only localailable, and
intermittent information is being utilized in the dynamic ETC, i.e., informa-
tion € (t) and %, (t) are not available to agenti during t 2 (s};si,;);8k 2 N.
As well, the agents do not employ any kind of global informatm thus lending
to the protocol being distributed. As it is necessary to trackhe time elapsed
since the last EMI to determine the subsequent instant to clo& for event, a
timer variable naturally accompanies the construction of ETM. The timer
variable for each agent is de ned as' 2 R o, and its hybrid dynamic follows:

1=1; 8t 2 [sk;Sk.);

- | (2.13)
r=0;8t2fs0y:

It will be seen in the main results thatT' is established individually for
each agent, and the selection of event-monitoring inten&follows eq (2.10).
Furthermore, the construction of the dynamic PETM, to achige our contri-
butions listed in Section 1.4, is in accordance with eq (2.)land eq (2.12).
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2.5 Approaches to Show Consensus

Equally important as the aforementioned framework, protaals, and ap-
proaches, are the mathematical theory and tools to guararge¢he convergence
of the system states to the control objective, which in our & is consensus.
Typically, consensus for MAS employing CTETM is proven in thesense of
Lyapunov as demonstrated in [34], [30], and [46]. That is, Iseting a Lya-
punov function candidateV () and taking the consensus error variable(t),
as an argument, such that:

V(2) > 0 (2.14)
\(2) (V(2)); (2.15)

where ():R! R gis a positive-de nite function of its argument.

In the case where a time-based threshold ETC is utilized, ssfying the
conditions for consensus in the sense of Lyapunov may not bamediately ap-
parent due to the time-decaying function. The Barbalat's lexma [47], together
with the Comparison lemma can be utilized to show that the tira derivative
of the Lyapunov function approaches zero at time approach&snity. This
technique was employed in [24] where the authors showed that

YA t
tI!ilm . \Ldt = !II?’I V() V(0) constant (2.16)
implying (t) ! Oast!1l and that z is at least bounded. To prove that
consensus occurs, that ig(t) ! Oast!1 , a similar approach to eq (2.16)
was employed by the authors on:
YA t
tI!ilm i z(t)"z(t)dt  constant (2.17)

To prove consensus of the MAS in the hybrid system frameworkt is
necessary to show that the consensus variable and the measuent error
components of the hybrid arc converges to zero both during ws and after
jumps. It is worth noting that we do not need the hybrid arc, , to necessar-
ily converge to zero due to the inclusion of auxiliary varides, like the timer
variable, which perpetually grow and resets. The Lyapunowability theorem
is once again utilized. For a hybrid arc, , a typical Lyapunov function candi-
date to the hybrid system is de ned adJ( ) = V(z) + W(e), whereV and W
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are positive-de nite functions of its argument. The condiibns for consensus
of the MAS, in the sense of Lyapunov, within the hybrid systemramework
are:

V(z) > 0; W(e) > 0 (2.18)
u( ) (U()); 8 2C; (2.19)
U(*) U() 0,8 2D: (2.20)

It will be seen in the main results that eq (2.18) - eq (2.20) arveri ed
in order to guarantee consensus of the MAS with the implemernian of a
dynamic PETM.

19



Chapter 3

Single-integrator MAS

In this chapter, we deliver one of our main results which is establishing
and executing the contributions listed in Section 1.4 but for agents possessing
homogeneous single-integrator dynamics. This chapter serves as the founda-
tion for our subsequent chapter, which extends the agents’ dynamics to LTI
systems. The MAS structure that we are investigating is illustrated in Figure
3.1. For the outline of this chapter, we first define our problem formulation
by leveraging the preliminaries presented in Chapter 2. Then we present the
expression to explicitly pre-compute the MASP, and we introduce our theo-
rem that constructs and establishes the sufficient conditions for the dynamic
PETM, together with which consensus is guaranteed. Finally, we demonstrate
the effectiveness of our designed protocol with a numerical example and sim-

ulation.

Interaction
Topology G

Relative State
Measurements

N
_______________ Zi = Z Qij Qij
=1

Figure 3.1: Illustration of the MAS structure.
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3.1 Problem Formulation

Consider anN-agent N 2) MAS coordinating over an undirected and
connected interaction topology de ned byG = ( V; E), as previously introduced
in Section 2.1. The dynamics of each agent in the network is in@geneous
and follows:

xi(t) = ui(t);

xi () = xi(t); 8i 2V;
wherex;(t) 2 R" and u;(t) 2 R" represents the staté and the control input of
each agent in the topology, respectively. We denot&t) = [ x] (t); ;x5 ()] 2
R™ as the stacked state vector of the overall MAS.

Since we are interested in solving the consensus problem bypdoying
RSMs, as previously introduced in Section 2.2, and with an ent-triggered
protocol, the control input for each agent 2 V is designed as:

(3.1)

ui(t) = 2(t); (3.2)

2(t) = zi(t) = a; % (1), t2 [t t,,): (3.3)
j=1

Here, for everyi;j 2V, we dene % (t) = xi(t) x;(t) as the RSM between
agenti andj, andt! is the-th event-triggering instant of agenti, as previously
de ned. Itcan be seenin eq (3.2) that, owing to the distribued event-triggered
protocol, agenti's control input is only updated during its sequence of event
triggering instants f /g, . Between events, the control input is held constant
(i.e. zero-order hold) potentially leading to reduced resmce consumption and
actuator wear (by avoiding high frequency actuation updats.

Next, we de ne the RSM error between any two agentsj 2V ( denoted
by the subscript one) as sensed by agent (denoted by the superscript ore)
as:

()= a (%) %M t2[tt,): (3.4)
Similarly, we let el(t) = [} (t); 56y (D]7 2 R™ and e(t) = [e}' ;e T 2
R™? denote the stacked vectors of the RSM errors associated widgent i
and the overall MAS, respectively. It is worth noting that, agin owing to
the distributed protocol and error construction,e;ij (t) may not be equal to

lplease note, we employ then-dimension state vector for each agent, even in the case
for single-integrator agents, in order to allow for broader generalization. This enables us to
maintain the same notations in the subsequent chapter with LTI agent dynamics.
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(%i (t) due to di erent event-triggering instants of the agentsi and agent;j .
With eq (3.4), the agents' state dynamics in eq (3.1) and the ahamics of the
stacked state vector of the MAS can be, respectively, represed as:

X
xi= (Li In)x €82V, (3.5)
i=1

x=fx(x;e)= (L In)x T& (3.6)

whereL; is the i-th row of the Laplacian matrix, L, and "= (ly  15) In.
Similarly, the dynamics of both e:J and the stacked error vectore are given
by:
. . X X
g =a e+ (Li L) lnx+ €& G
p2vnf jg p2Vv
t2 [tlithy); (3.7)
. ( e; t2fs.gnftg;

& ° h(e); t 2 ftlg; (3.8)

h
e= g(x;€e) = diadfa;gijav) In (In  In i
Iv InL 1y x+ (In In1L v I 1)) lhe; (3.9)
8i;J; 2V and whereh(') is a mapping function for the reset of the RSM error.
Attributed by the interaction topology's connectivity, it can be seen in eq (3.4)
and eq (3.7) that when [;i) Z2E | a; =0, then €| (t) = € (t) = 0 as that
edge does not contribute to control, i.e.q; = 0.

In terms of implementation, CTETM poses a concern because iihplies
that CT sensing/monitoring is necessary; this is resourcee cient and, more
importantly, digitally unimplementable. For our problem formulation, we
choose a dynamic PETM in order to avoid continuous event maoring and
to reduce the likeliness of event occurrence compared to atst PETM, ac-
cording to [48]. For the formulation of the dynamic PETM, we efer to
Section 2.4 of our preliminaries chapter. However, we just mete (t) =
[ 1(t); 5 n@]" 2 RY,and (t) = f ( (t);x(t);e(t)) 2 RN as the stacked
auxiliary variable vector and its dynamics for the MAS, respaively, while
the stacked timer vector is denoted as = [ 1;::; n]T 2 RN, The specic
construction of eq (2.12) and the design parameter selectior our problem
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is later presented in our Theorem 1. Furthermore, it will be émonstrated in
Section 3.2 that the magnitude off' of each agent is in uenced by the individ-
ual agent's gain associated with their corresponding RSMrers. Lastly, we
assume that when the ETC in eq (2.11) is satis ed, thed (t) = h(€) = Oy,

elsed’ (t) = €(t). That is, we do not consider the e ects of quantization
which can be mapped by the functiorh( ), according to [27].

We form the hybrid dynamical system by unifying the contribtions of
eq (2.11), eq (2.12), eq (2.13) for each agent, along with €2)§) and eq (3.9).
For brevity, we sometimes drop function and variable argunmés. Let the
hybrid arc (signal) for the MAS be dened as = (x;e; ; )2 X = R™W
R™N? RN, RN,. According to Section 2.3, then the hybrid systemi, can
be expressed as:

—=F() 2C
(3.10)
"2G(); 2Db;
where the ow set,C, and jump set,D, are domain sets de ned as:
c=f 2Xxj0 ' T\ 8i2Vg; (3.11)
M 2 o
D = fRnN RnN [O, Tl] FII . Tlﬂ
i=1 tim:r{z‘_of (312)
agent i entering jump
[0;TV] RVg:

It can be seen from eq (3.11) that when all agents ow, then thieybrid signal

2 C. On the other hand, if any agent inV experiences a jump, then the
hybrid signal must have beenirD. F( ) and G( ) from eq (3.10) are de ned
as:

FO)=[f:00;15:fTT (3.13)
[N
G()= | Gi( ); (3.14)
where: g 8 .
E 3Gy g >0
G()=_3 09 &<0 1 2[NT] (3.15)
3 GG ¢=0
B 2T
Here, G° = [xT;e";(1; )T (1 + d)'T", G = [XT;((1i 1w)®T5( )T,
(i +d)™T", |y = diagfl; ;0; 1g) with 0 at the i th place, ¢ =
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[0 o O0,g =[0 g O] and; is a null set. We note that the
hybrid system, eq (3.10), is nominally well-posed, as de den [49].

With the MAS formulated as a hybrid system, the objectives for lte re-
mainder of this chapter is to: 1) construct the dynamic PETM m accordance
with eq (2.12) and establish su cient conditions for the paameter selection,
and 2) obtain the T' for each agent inV such that the consensus problem is
solved for the MAS in eq (3.1).

3.2 Dynamic PETM Construction

In this section, we employ the Lyapunov stability theorem taompute the
event-monitoring intervals governed by eq (2.10) and consict the dynamic
PETM governed by eq (2.12). To that e ect, we rst introduce Assumptions
1 and 2 and Lemma 1, as general construction which we employ in the proof
of our theorem to guarantee consensus of the MAS in eq (3.1).

Assumption 1 For the hybrid system de ned in eq (3.10), there exists,
8i;j 2V:

" a continuous functionsW; (€ ) : R" ! R o,

) —w) () W () 2Ky,

* scalar functionsH; (x) : R™ I R o andJ; (€;€):R*™ I R,
~ and a non-negative constantC; ,

such that:
—w, (kef k) W (&) w) (ke ); (3.16)
hr Wi (€] ); €)1 Cj Wi (&) + Hy () + Jj (€l: €): (3.17)
The purpose of Assumption 1 (and eq (3.17)) is to upper-boundhe error
growth by a sum of non-negative functions.

Assumption 2 Suppose Assumption 1 holds. Assume that for the hybrid
system in eq (3.10) there exists:

" a continuous functionsV(x) : R™ I R ,
" positive-de nite functions Vi1();Vi2():R ¢! R o,
~ classK; -functions _, (), ~v(),
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A

state transformation ( x): R™ I R™
"~ functions z;(x);2(x) : R™ I R";8i 2V,
" positive scalars , i, i1, i20 i

such that, 2> ;,, and:

—v(k(x)k) V(X)) vk ( x)k); (3.18)

X X _
hr V(x); xi 1Vit(kzik) i 2(Wj )?

i=1 i =1

X , X
+ 7(Wi)? ViZ(k2ik)

ij =1 i=1

X .
Hif (x) Ji(e;e): (3.19)
i =1 ij =1

Later we will show in the proof of Theorem 1, that with a specic choice of
V (x) and with appropriate selection of design parameters, thaAssumption
2 is satis ed. Speci cally for eq (3.19), this is done by begning with input-
to-state stability (ISS) assumptions and selectively absbing the e ects of
the last three terms into the rst three terms on the right-hand side of the
equation.

Remark 1 As our control objective, in this work, is consensus rather
than stabilization, the agent statesx;(t) may not necessarily converge to the
origin. To facilitate this, we dene ( x) = 0 in Assumption 2 as a repre-
sentation of our consensus stabilization set. For a givengiblem, the choice
of transformation ( x) may not be unique. For instance, for the consensus
problems over connected undirected networks, we can havex)= (L I,)x,
(x)=(C L I)xor (x)= (Iy NillT) In X. Generally, z(x), which
will be formally de ned later, can be thought of as a functiorthat maps the
agents' states to a consensus error state, arkd;(x)k can be interpreted as
some measure of distance affrom the stability set ( x) =0.

To derive an explicit expression to compute the MASPT', we slightly
modify the framework developed in [39].
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Lemma 1 For the gain, (t) 2 R o, let its dynamics be modelled by the
following di erential equation:

)= 2 4t 2G i(b) 1 i 8i2V; (3.20)

where C; = max;,yfCjg > 0 and with the initial condition ;(0) = l for
some choice of ; 2 (0;1). Then, ;(t) monotonously decreases and is such
that, for someT', ;(T')= ;. Inorderfor ;(t)to be non-negative as time pro-
gresses given eq (3.20), the reset gft) at eachfs, gi_, follows ;( ") = ;(0)
for ;  T'. Solving eq (3.20) and isolating fofl' for the given terminal condi-
tions, derivations omitted as solving the di erential equéion follows standard
procedures, yields the explicit expression:

2 i+Ci
——atan ' ; — £>C5;
% o Ere
; 2 i+ C+ 2
T = L 2 Z2=c? 3.21
§ (G 2.0 men B2
1 1 2Ll 2
In i , = 2<Ch
2Ci|' 3(_ ICiIr i +1)
. q 2 2 2.i+Ci 2
for i 2 V and wherer = —(E'i;) 1, ;= —er— 2= =t G,
o1, o1, . . .
3=(1 Z'Ciir Sy Z'C'ir S +1) ! The magnitude is taken in eq (3.21)

due to the fact that we want the positive argument for the MASP.

Remark 2 In the article [39], the range for ; is based on the assumption
that the measure of error, namelyW,, decreases during jumps in accordance
with:

W) Wi(e); st2ftig: (3.22)

From eq (3.15), sinced” =0 ! W,/ (e") = 0 at every event-triggering instant;
therefore, eq (3.22) holds true for any choice of 2 (0; 1).

With Assumptions 1 and 2 and Lemma 1 introduced, we now presentiio
theorem on the construction and su cient conditions for thedesign parameters
of the dynamic PETM such that consensus of the MAS, eq (3.1), &chieved.
Theorem 1 . For the hybrid system in eq (3.10), considev (x) = %XT(L [h)X
and W; (€ ) = ke| k; 8i;j 2 V. If the functions (f'; g.; ) of the dynamic
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PETM described by eq (2.12) are constructed as follows:

fl= i+ (2'2)
d= i+ (i & w3

- o (3.23)
g= i+ i Lf)(vvi} )2;

j=1

where z (x(t)) = (Li 1.)x(t), 2 = z(x(t})), and the design parameters
i>0, ; 0 >0, 1>0,and ; > 0 are such that:

2
1 4'amax

Q=01

i;2:(i 2N i)>0-

NI

N ) O,

And with T' computed through Lemma 1 using:
Cij = &,

N2+ ),

2 — 1 2
i _(ﬂN+4amax

8i 2V, whereamnax = maxi; ov f g; g, then the closed-loop system is asymptot-
ically stable with respect tofx 2 R™Nj(M~ ( L)MT 1,)x = 0g (stabilizing
set for consensus of the MAS).

Remark 3 For clarity, iNzl iVi2(k2k) in eq (3.19) represents the con-
tribution from the ;(272) component of the dynamic PETMs in eq (3.23).
This contribution has the e ect of reducing the likeliness bevent occurrence
by restraining the rate of decay of ; at the cost of potentially slower rate of
consensus.

Remark 4 It is worth mentioning that Theorem 1 only guarantees con-
sensus of the MAS. The performance of the dynamic PETM, in tersnof the
event frequency, requires tuning of the parameters (whictptmal parameter
selection is a separate objective). However, as previouslhemntioned in Sec-
tion 2.4, in the worst case, the dynamic PETM simply becomegdundant and
reduces the event-triggered protocol to sample-data coofr thus providing a
safety net for avoiding Zeno-behaviour.

Proof. First, we will show that with the specic form of Wi} , V(x), and
conditions on the dynamic PETM design parameters presentethder Theorem
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1 that the Assumptions 1 and 2 are satis ed. Subsequently, wellixshow that
consensus of the MAS is achieved using the hybrid system Lyayaw function:

X o X
U()= VX + DWWy (€)= + i(t): (3.24)
i =1 i=1
Checking Assumption 1 It is easy to see that forW| = ke, k, W| can
be lower and upper bounded b¥; functions via scalar constants. To upper
bound the error growth rate, we employ the dynamics cdj (1), eq (3.7), then:

hej g

hr Wi (€, ); €i = @ k € k; (3.25)
ka € ®+((Li L) I)x() (3.26)
X X
+ e (1) g, (1) k
p2vnf jg p2v

which, by employing series of norm inequalities, leads to:
hr W, (& : g i W+ as k L, . | )X
] (dj ) = ial_J{Z_I} ?4] (( fFJ) n) ¥
ij

Cij Wi]!

X | o (3.27)
+ g Wip t g ij :
p=1nfjg p=1
I {z }

Jij
With the above bound on the error growth rate, given by eq (3.37 Assump-
tion 1 is satis ed. Next we check Assumption 2.

Checking Assumption 2. DiagonalizingL = M ( L)MT and taking the
new stabilizing set as (x) = (M~ (L)MT 1,)x, we can then express
V(x) = 2k ( x)k?. SinceL is the Laplacian for a graph that is undirected and
connected, then (L) = 0; thus, there exists anx 6 0 such that ( x) =0. It
is then clear to see thaW/ (x) can be lower and upper bounded by,, (k ( x)k),
“v(k ( X)k) through scalar constants. Next, takingz(t) = (L 1,)x(t) as the
consensus variable, then:

hr V(x);xi = x" (L 1n)x
=x"(L 1) (L 1)x Te);
2Tz + :_ZL 127z + 2—1l(rE)T(re);
X

1 T 1 X i \2.
1 > 1) Z i + > N (W)™ (3.28)
i=1 o=
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Py Py
We chen add and subtract the terms: [ _; HZ, N J7
ar&)d :\j -1 i(Wi} )2 to eq (3.28). Applying Young's inequality on

,NJ - Jij2 allows us to obtain the upper bounds:

X
H 4ai N Z'z;
ihj =1 i=1
X .
3 4aluN? (W)
=1 i =1
Incorporating eq (3.29) and eq (3.30) into eq (3.28) then gig:
X X .
hr V(x): xi iz z, (W )?
i=1 i =1
X 1 .
(1 5 1 4az N i)z Z,
i=1 | {z }
Qi
Xoq ,
+ (2_N+4amaxN + I)(Wu)
i =1 | z }
i2
X
HE J2
ijj =1 ij =1

P
Finally, we add and subtract v, 272 to eq (3.31) where:

N X _ ha\
i2iT2‘| 2N i(Wi} )2+2 iZiTZi:
i=1 i =1 i=1

PN

ij ! Pll'

z'z,

2
ijj 1HIJ’

(3.29)

(3.30)

(3.31)

(3.32)

Then, by selecting parameters in accordance with Theorem Zlhat is, Q;
and i2=( ;i 2N ;)> 0 (which ;; i.2), 81 2V - the upper bound of\L

becomes:
_ X
Ve (L i
i1 Vit()
X ;(W )%+ 8 AW )?

ij=1 F_{Iz ! ij =1 !

X H X 5.

@3?) i =1 ” ij =1 B

29
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with which Assumption 2 is satis ed. Next we will prove that corsensus
for the MAS is guaranteed. For the hybrid system de ned in eq (30) and
the Lyapunov function as de ned in eq (3.24), we need to shovhat U( )
monotonically decreases over both the ow domairC, and jump domain,D.

Flow domain. During the ow domain, the time derivative of U( ) takes
the form:

Uu= o+ i _,.(WIJI )2 +2 i iWij! V\L”I + - (334)
ijj =1 ij =1 i=1
Substituting for the associated time derivatives on the rigt hand side of
eg (3.34) with eq (3.20), eq (3.23), eq (3.27), and eq (3.33¢Ms:

X T y 2. X 2paiy2
u i1Z Zi i2(Wi ) + F(Wy)
i=1 ij =1 ihj =1
X X
g ow
i=1 i =1 ihj =1
X 2 1 i\2
+ i( 207 2Gi = )W) (3.35)
ijj =1
X _ _
+2 WG (Cy Wi + Hy + J5)
ihj =1
X T
+ (it i3 2)
i=1

Again, employing Young's inequality on the cross terms, we gaobtain an
upper bound represented by:

X . .
2 W (G Wy + Hy + J5)

ihj =1

X o X -

2 i iGi(Wj)°+2 (i iW;)
ij =1 i =1
X X
+ HE + JF: (3.36)

i =1 i =1
Incorporating eq (3.36) into eq (3.34) and cancelling likeetms, we can show

that:
X X _ X
u i;lziT Z; i;2(Wi} )2 i (337)

i=1 i =1 i=1
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Since from Theorem 1., and ; > 0, as a result, we can obtain:

u( ) (U()); 8 2C; (3.38)

where ():R! R g is a positive-de nite function. Hence, it is shown that
U( ) monotonically decreases over the ow domairC.

Jump domain. To show that U( ) monotonically decreases over the jump
domain, D, we need to show that the Lyapunov function candidate decrsas
after each jump, i.e.,U( *) U( ) < 0. To this end, according to [35], we
de ne the following sets:

= fi2Vjt2fsigi,;d < Og; (3.39)
= fi2Vvjt2fs.gi,;d > Og; (3.40)
= f g @g=fi2Vjt2fsg,:d =0g; (3.41)
= fi2Vjta2fsgi,o (3.42)
where [ [ [ = V,and sand ; are subset of whose agents' jump

map areG? and G!, respectively. In other words, we are partitioning the set
of agents in the network into set of agents that triggered anvent, sampled
but did not trigger an event, and are not participating in jump (or simply still
owing). Then:

+ + X X\l + it\2 X +
U(")= V(") + i (W )7+ :
i2 [ ¢j=1 i2 [ ¢
X X . . X .
+ g (W )+ i
i2 [ sj=1 i2 [ s
XXX,
+ i (W )+ i (3.43)
i2 j=1 i2

where employing the jump maps established in eq (3.15) and@yping the fact

thatfor ; T'! () «(TH= i(r () i), and x* = x yields:
X W . X
i (W )%+ P =
i2 [ (j=1 i2 [
X X 2
(i+ i( i )W) (3.44)
i2 [ i=1 '



XXX XX g
i (W )7+ i = i(—)(Wj)
i2 [ si=1 i2 [ s i2 [ sj=1 !
X X 1 y .
o (i i = =W
i2 [ s j=1 ! '
and:
XXX, X X X
[ i(Wij )+ Pi= i i(Wij) + i
i2 j=1 i2 i2 j=1 i2

Performing the same set partition onJ( ), we obtain:
X X . X X .
uc™) U() i2(W; ) i2(W; )

i2 [ (j=1 i2 [ sj=1

As > Oand ;,> 0, from Theorem 1; hence:
uct) u() o

which shows thatU( ) monotonically decreases after each jump.

(3.45)

(3.46)

(3.47)

(3.48)

With eq (3.38) and eq (3.48), the proof is completed and asynyitc con-
sensus of the MAS, eq (3.1), with the control protocol, eq (3,2and dynamic
PETM, in accordance with Theorem 1, is guaranteed. Next, we K& the
main results of this section as well as the performance of tdgnamic PETM

with a numerical example.

3.3 Numerical Example and Simulation

In this section, we consider a numerical example involving&agent MAS
coordinating under an undirected and connecte® = (V;E) illustrated by
Figure 3.2. The agent's dynamics and control input are constcted following

eg (3.1) and eq (3.2), respectively.
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Figure 3.2: MAS interaction topology.

The Laplacian matrix representingG (considering binary relationship for sim-
plicity) is given by:

2 3 2 3 2 3
1 000 0010 1 0 1 O
8o 10 5001%_5011 _

‘0032 110541 1 3 1567 (349
0 001 0010 O 0 1 1
I {z—1} | {z—}
Degree Matrix Adacency Matrix
For this example, we select the parameters as follows:
1=1;
— 1 .
~ 16N’
[ 1; 2; 3; 4] =[0:050:1;0:15, 0:2];
i=1; 8 2V;
[ 1; 2; 3; 4] =[0:00310:00630:0094 0:0125]
i =0:5; 8i2V:

According to Theorem 1, we obtain:

[Q1; Q2; Q3; Q4] = [0:2;0:15; 0:1; 0:05}
Ci=1;8 2V,
[ 17 27 37 4] =[1:74641:7607 1:7748 1:7889]
[ 11; 21 31 41] =[0:04380:08750:13130:175]}
[ 12; 22; 32, 42] =[0:0250:05 0:075 0:1];
It can be seen that with our selection of design parameter®; 0; 1> O,
and ;, > 0; 8 2 V. T's are then explicitly and individually pre-computed
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using eq (3.21) for each agent, which we obtain:
[T%; T2, T3 T4 =[0:013Q0:0129 0:0128 0:0127] (3.50)

Hence, if the event-monitoring intervals for each agent is lgghan T' for alll
time, then consensus of the MAS is guaranteed through the proaf Theorem
1.

Remark 5 It is worth noting that the computed T' in eq (3.50) for each
agent are very similar. This is attributed by the fact that ; was selected
identically the same across all agents. For contrasting between agents, then
there would be greater distinction between the compute@’. As mentioned in
Remark 2, di erent ; may arise by designer selection or dictated by eq (3.22).
In the latter, such a scenario could occur if some agents eropéd quantizers,
thus, narrowing the allowable range for; for that agent. Although our results
do not consider the e ects of quantization, being able to copute the MASP
individually for each agent could lay the foundation for sagrios where some
agents of the MAS employ quantizers or even non-uniform quanérs.

For the simulation, following eq (2.10), we select the asyhmwnous peri-
odic? event-monitoring intervals for the agents as:

[(Si.; Si)lsizv = [0:01;0:00750:012 0:005} (3.51)

Additionally, we simulate a CTETM, designed in [19], to compie with our
results for the same MAS. Figure 3.3 presents the state trajextes of the
agents, for both the PETM and CTETM. Based on Figure 3.4, conssus of
the MAS with both event-triggered protocols can be observedlhen, Table
3.1 summarizes the event frequencies for both Theorem 1's P& and the
CTETM. Furthermore, Figure 3.5 provides some statistical dia with respect
to the inter-event times for our dynamic PETM and Figure 3.6 pits the
trajectories of the auxiliary variables. Lastly, for the snulation, an integration
time step of 1 10 # seconds was used.

2An asynchronous aperiodic event-monitoring interval can be utilizedfor each agent
provided eq (2.10) is always satis ed.
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T T
Agent 1 (PETM)
————— Agent 1 (CTETM)
Agent 2 (PETM) | .
-~~-- Agent 2 (CTETM)
Agent 3 (PETM)
fffff Agent 3 (CTETM)
Agent 4 (PETM)
————— Agent 4 (CTETM)

State

Time [s]

Figure 3.3: State trajectories of single-integrator agentsvith Theorem 1 vs.
CTETM.
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T T I

Agent 1 (PETM)
————— Agent 1 (CTETM)
Agent 2 (PETM)
***** Agent 2 (CTETM)
Agent 3 (PETM)
————— Agent 3 (CTETM) | 7
Agent 4 (PETM)

Q
S N Agent 4 (CTETM)
n i
wn
-}
wn
C e —
[ —
o -
c
@]
O
2+ 4
4 H -
'6 1 L 1 1 1
0 1 2 3 4 5 6

Time [s]

Figure 3.4: Consensus state trajectories of single-integrator agents, with The-
orem 1 vs. CTETM.

Table 3.1: ETM performance comparison between dynamic PETM, according
to Theorem 1, against CTETM for single-integrator agents.

Events E\./ent. Triggering Events
. Monitoring .
Agents | Triggered Instants Frequency Triggered
(PETM) (PETM) (PETM) (CTETM)
1 123 600 20.5% A7
2 92 800 11.5% 39
3 446 500 89.2% 2496
4 96 1200 8.0% 45
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Max inter-event time Min inter-event time

1 2 3
Agents

1 2 3 4

4 ,
I Inter-event time Agents

Il Event-monitoring interval

Average inter-event time Intergration step
0.07 0.07

Median inter-event time

1 2 3 4
Agents Agents

Figure 3.5: Max, min, average, and median inter-event times of single-
integrator agents, with Theorem 1.
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0.03 . . .

Agent 1

Agent 2
0.025 Agent 3| |

Agent 4
0.02 1
& 0.015 [ 1
0.01 1
0.005 1

0 Pl L ] ] ]

0 1 2 3 4 5 6

Time [s]

Figure 3.6: n trajectories of single-integrator agents, with Theorem 1.

Remark 6. In Figure 3.6, it can be observed that during some time intervals
that 7n; increases. In other words, the dynamics of 7 is positive. This is
contributed by the 3;(2]'2;) component of the dynamic PETM which restrains
the rate of decay, and sometimes increases, the distance of n; from zero during
flows. Through doing so, the likeliness of event occurrence at jumps reduce
given the triggering condition, g'(-) < 0, in eq (2.11).

It can be seen from Table 3.1 that the total number of events triggered
and EMIs, given our dynamic PETM, are 757 (column 2) and 3,100 (column
3), respectively, while the CTETM triggered a total of 2,627 events (column
5). Hence, the control update frequency is significantly reduced compared
to a sample-data protocol, granted if control update was to occur at every
EMI. As a result of our dynamic PETM protocol, the control computation
and the actuator wear are significantly reduced. In addition, for this specific
scenario and construction of the CTETM, the MAS employing the CTETM
achieves consensus slightly faster, as seen by the trajectories in Figure 3.4,

but with a higher number of events compared to our dynamic PETM (though
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this is not always the case). Moreover, in the CTETM, the RSM$iave to
be measured continuously which: 1) is not digitally implem#able, and 2)
is inconsistent with the objective of reducing resource ceamption. Just to
highlight the second point, consider a laser diode, which mononly serves as
the core component within a lidar. Let the laser diode have agwer rating
of 90 watts and a pulse width of 100 ns, based on the technicglesi cation
[50]. Then, sensing costs for the MAS with Theorem 1's PETM wdal have
consumed 90watts 100ns 3;100 pulses = 00279 joules while 90 watts
6s 4agents = 2160 joules (hypothetically) would have been camsed with
the CTETM. It evident that, comparatively, our PETM protoco | presents a
saving of sensing resources by77 10%.
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Chapter 4

Linear Time-invariant MAS

In this chapter, for the system structure illustrated by Figue 3.1, our
second main result fully establishes and executes the cabtrtions listed in
Section 1.4. We accomplish this by again leveraging the cepts in the pre-
liminaries chapter and by extending the results of Chapter.3Similar to the
outline of the previous chapter, we rst de ne our problem fomulation by
rede ne the MAS in Section 3.1 from agents possessing singleegrator dy-
namics to now LTI dynamics. Then, we present our theorems thaonstruct
and establish su cient conditions for the design of two dynanic PETMSs,
which we subsequently prove that consensus of the LTI MAS is granteed.
To determine the event-monitoring intervals for the PETMswe utilize Lemma
1 from the previous chapter to compute the MASP for each agenEinally, we
conclude this chapter by once again utilizing a numerical ample to demon-
strate the e ectiveness of our designed protocols. Throught this chapter,
unless otherwise rede ned, we maintain the same notationsi@d de nitions as
were established in the previous chapters.

4.1 Problem Formulation

Consider anN-agent N 2) MAS coordinating over an undirected and
connected interaction topology de ned byG = (V; E). The dynamics of each
agent in the network is homogeneous and follows:

Xi(t) = Ax;(t) + Bu;(t); 8i 2 V; (4.1)

whereA 2 R" ", B 2 R" " are known matrices with @;B) stabilizable
and u;(t) 2 R"™. For consensus of eq (4.1), employing RSMs and with an
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event-triggered protocol, the control input for each agent2 V is designed as:
ui(t) =  cKA(t); t 2 [thtl,); (4.2)

wherec > 0 is a positive constant andK 2 R"™ " is a constant gain matrix
to be designed. Taking the same!;j de nition in accordance with eq (3.4),
the agents' state dynamics in eq (4.1) and the dynamics of thetacked state
vector can then be represented by:

xi = Ax; CcBK(L; I,)x cBK(1} In)€; (4.3)

x=Tfy(x;e)=(In A)Xx (L cBK)x (In cBK)re: (4.4)

Furthermore, the dynamics o1‘e}j , given LTI agents, and the stacked vectoe
are given by:

()= a A% CcBK (Li Lj) Inx
cBK (1Y ) d) ;t2]t]t,);
(4.5)

( e(t); t 2f s gnftg;

. | (4.6)
h(e(t)); t 2 ftg;

e (t) =

e= g(x;e)=  diadfa; gij2v) h A (In Iy Iy In) In X
+ diagfa;g;2v) cBK (In v Iy IN)L I X
[
+ (In 1L Iy I 1Y) lhe: 47)
In this problem formulation, we again chose a dynamic PETM irorder to
reduce the likeliness of event occurrence. Like in Sectioril 3the dynamic
PETMs follow the design framework introduced in Section 2.df our prelimi-
naries chapter. The speci c construction and parameter ssdtion for consen-
sus of the LTI MAS, eq (4.1), are detailed within our theoremsnder Sections
4.2 and 4.3. In addition, we continue to assume that when theTE in eq (2.11)
is satis ed, then €” (t) = h(el) = Oy, elsed’ (t) = €(t).
Similarly, we form the hybrid dynamical system for the LTI MASby uni-
fying the contributions of eq (2.11), eq (2.12), eq (2.13) feeach agent, along
with eq (4.4) and eq (4.7). We maintain the same de nition of lte hybrid
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signal, as de ned in Section 3.1, for the LTI MAS, that is, = (x;e; ; ) 2
X = RW RW? RN RN, The hybrid system, H, can be formed by
utilizing the same representations as eq (3.10) - eq (3.13)e omit explicitly
stating again the expressions foH to avoid repetition.

The objectives for the remainder of this chapter is again tol) construct
the dynamic PETM and establish su cient conditions for the parameter selec-
tion, and 2) obtain the T' for each agent inV such that the consensus problem
is solved for the LTI MAS in eq (4.1).

4.2 Dynamic PETM Construction

In this section, we again employ the Lyapunov stability the@m to design
the event-monitoring intervals governed by eq (2.10) and ¢hdynamic PETM
according to eq (2.12). Furthermore, we assume that Assumeti 1, previously
introduced in Section 3.2, holds, and maintain the expressis under Lemma
1 for computing the MASP for each agent. We also introduce Assuyotion 3
(replacing Assumption 2) and Condition 1, which combined wit Assumption
1 and Lemma 1, facilitate the proof of our theorem to guarangeconsensus of
the LTI MAS.

To enhance clarity and reduce ambiguity, we establish somew notations
and de nitions that are utilized within this section. We dermote L = (Iy
NilN 1],) as the averageconsensus Laplacian matrix for & -agent MAS. L
can be interpreted analogous th of a graph whereE = fV Vg anda; = Ni
for 8i;j 2 V; i 6 j; thereby, the properties ofL for an undirected and
connected graph holds fot. . Furthermore, given our problem formulation,
L facilitates some convenient identitessuchds=L L =LL =L LL and
L = L 2, which we exploit in this chapter. We de ne the average conesus
state variable asz(t) = [z] (t); ;zJ(1)]" 2 R"™ , wherez(t) = (L  I,)x(t)
andz(t)=(L; I,)x(t) 2 R"with L; being thei-th row of L . Additionally,
through the properties ofL , we can expresg(t) =(L I,)z(t), wherez! O
impliesz! 0. Lastly, we collectively de ne/denote the following:

=diag[ 1; ; ~ND»
=diad[ 1;, ; ~ND»
=diag[ z; 2D,
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w=dag[¥; ; ND,where ;1,2 R; 82V,
g= ki, KTKK

R 2 2
& = q; keBK (L LJ) In k=,
iij =1

& = &N,
Qs=LTL,
=diad[ 1, ; nD),

H=[Hu;, ;Hw; SHno SHwT,
J=[Ji;  Jw; Inz I

2=[2; T,

EL2RN N,

E,2 RN N,

W =[(WIDTs (Wi )T,

W =[(WHT W)™,

0, =[0; ;1 ;0]", with 1 in the i-th element,

where Hj; ;Jj 2 R o were previously de ned in Assumption 1. Next, we
modify Assumption 2 to construct Assumption 3 and subsequegtipresent
Condition 1.

Assumption 3 Suppose Assumption 1 holds. Assume that for the hybrid
system in Section 4.1 there exist:

" a continuous functionV(x) : R™ I R g,

" positive-de nite function V(): R™ I R ,,

" positive-semi-de nite functionV?(): R™ I R ,
~ positive-de nite function V3(): R™*1 R ,,

~ classK; -functions (), ~v(),
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A

state transformation ( x): R™ I R™
" function z(x);2(x) : R™ I R™
~ positive scalar

such that, W( T Iy)W > V3(), and:

—vk(x)k) V(X)) vk ( x)k); (4.8)

hr V(x); xi Viz) VEW)+W( T W
HTH JTJ V2®): (4.9

Condition 1. If (A; B) is stabilizable, then a positive-de nite matrix, P, ,,
can be found to satisfy the algebraic Riccati equatiodd"P+PA PBBTP+
Q =0, for any selection of positive-de nite matrix, Q, .

Theorem 2 . Letc= ﬁ and K = BTP. For H in Section 4.1, consider
V(x)= 3xT(L 2 P)xandW; (€)= ke k; 8i;j 2V. If functions (f'; d; g)
of the dynamic PETM described by eq (2.12) are constructed dsllows:

fl=" i+ (&' 2)
. X 1 : .
o= it i — —)(WuI )2;
- o (4.10)
g = it i W)

j=1

where ; > 0 is a small arbitrary constant, and the design parameters; > 0,
i 0, 1>01,>0,82V, > 0, ;>0,andQ > 0 are such that:

Q1= m(Q) 18 16 kKAK*&;, N 4eln 2, O
Ei=(. 2Q3)>0,
E=("w 2N )>0.
And with T' computed through Lemma 1 using:
Cij = a; ckBK K,
P = OiTp T, for T = (55 +4 @i CKBKKPN?) Iy + w,
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then the closed-loop system is asymptotically stable withespect tofx 2
RNjM(L)MT (P) x = 0g (stabilizing set for consensus of the LTI
MAS).

Remark 7. In Theorem 2, it can be observed that the system\ matrix
in uences the parameter selection for the dynamic PETM, tha a ecting its
performance. Intuitively, when the agents are more dynamig.e., the eigen-
values of the system matrix are father away from the origin othe real and
imaginary plane), then it is expected that the PETM must chek for events
more frequently to account for the potentially rapid changgin system states.
This intuition holds true within our theorem because when tB maximum
eigenvalue ofA is large, a smaller is required to counteract the contributions
of A to satisfy the conditionQ; 0. We can see from eq (3.20) that a smaller

results in the dynamics of j(t) being more negative. As a consequence,
the time it takes for ;(t) to evolve from ;(0) to ;(T') is shorter; hence, the
MASP of the PETM is smaller, contributing to more frequent EME.
Proof. Similar to the proof in Section 3.2, we show that with the speéc
form of Wi} , V(x), and conditions on the construction of the dynamic PETM,
presented under Theorem 2, that Assumptions 1 and 3 are satesl. Sub-
sequently, we show that consensus of the LTI MAS is achieveding the
previously introduced hybrid system Lyapunov function, eq3.24).

Checking Assumption 1 Again, for Wi = ke, k, W} can be lower and
upper bounded byK; functions via scalar constants. To upper bound the
error growth rate, we employ the dynamics oﬂ’e:J (t) de ned by eq (4.5). Then:

e W (€ ); ¢ = "ile—f"k' (4.11)
k € k; (4.12)
k a A% cBK (Li Lj) Inx (4.13)
CBK (L} l.)(¢ €) k
ka A% CcBK (Li Lj) I,xk (4.14)

+ kay cBK (1) 1n)elk+ kay cBK (1]  1n)ek;

which by employing series of norm inequalities, and the fatitat ka; cBK (1}
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I,)ek a; ckBK k1] W/, leads to:
hr Wi (el ); éi @ ckBK kWi + a; kA%  cBK((L; L;) 1,)x
ij (QJ) =y |aiJ {Z } F‘J ﬂ %& | J) n) ¥

Cj WIJ Hijj

T ; ;
+ iai,- ckBK k(1§ G, )}/;/; + ay ckBK k1T W/ :

}

Ji
(4.15)
With the above, Assumption 1 is veri ed. Next we check Assumptior2.
Checking Assumption 3 As previously mentioned,L can be interpreted
as a Laplacian matrix of aN -node graph whereE = fV Vg ; therefore, the
properties for an undirected and connected graph apply. Hemove diagonalize
L =M (L)MT and take the new stabilizing setas x)= M (L )MT
(P) x where we can again expred(x) = %k( x)k?. As (L ) =0, there
exists anx 6 0 such that ( x) = 0. Furthermore, it is clear to see thatV (x)
can be lower and upper bounded by, (k ( x)k) and —y (k ( x)k) through
scalar constants. Next, we can expre3s as:

V(0 = X (L2 P)x+ axT(L 2 P)x
= :—ZLXT(IN A)T(L?% P)x+ %xT(L 2 P)In A)X
x"(L?2 P)L cBK)x x'(L? cPBK);
= %XT(L I)" In (ATP+PA) 2(L cPBK)
(L I,)x x'(L? cPBK)R: (4.16)
By substituting the average consensus variabigt) = (L  1,)x(t),c= Tl(L)

the fact that ,(L)kzk? z"Lz (proof omitted), and utilizing Condition 1,
we can upper bound the rst term on the right-hand side of eq (46) as:
1

éxT(|_ ID" In (ATP+PA) 2L cPBK) (L I,)x
%zT In (ATP+PA PBB'P) z
1 T
52" In m(Q)l, z< O (4.17)

For the second terms on the right-hand side of eq (4.16), weilize Young's
inequality to separate the cross-terms and use the fact that = L 2 to obtain
the upper bound:

XT(L? cPBK)E  Z'(In erln)z+2er

1

wWTw: (4.18)
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Employing eq (4.17) and eq (4.18), we can obtain:

VO 52 I (@ el zE

1

wWTw: (4.19)

We then add and subtract the terms:z"( , 1,)z, WT(w In)W, H TH,
J TJ to eq (4.19). Utilizing norm inequalities and the identity% = (X;
Xj)=(xi X F1lix+31\x)=(z z), the latter two terms can be upper
bounded by:

HTH %zT In (16 kAK?&Z N +4 e)l, z; (4.20)

JT) 4a?,  ?kBK k*’N2WTW: (4.21)
Incorporating eq (4.20) and eq (4.21) into eq (4.19) foH "H and J TJ, we
have:
hr V(x); xi Z27(, 1)z Wi (w InW

1
EZT |( m(Q) 16 16 kAl{(ZzafnaxN 4 ql)IN 22} In YA

Q1
+WT (21+4 a2 CKkBKKN?Y)Iy + w Iy W
22 ( )

H™H JTJ

(4.22)
Since we select parameters in accordance with Theorem 2 sticht Q; 0,
then:

hr V (x); xi 2'(, 1z Wi(w InW
+WT(T IWOW HT™H  JTJ (4.23)

We then add and subtractzf  1,)2 (contribution from the dynamic PETM)
to eq (4.23) where its upper bound is:

M 1.)2 z27(2Q3 1.)z+ WT(2N  I\)W: (4.24)
With eq (4.24), we arrive at the upper bound foAL as:

hr V(x); xi z" (, 2Q3) 1,z W' (w . 2N In W
f_{é_% f_{é_i (4.25)
+WT(T  IWOW HTH 3T 2 1.)%:
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Since we also select parameters, in accordance with Theor@nsuch that
Ei;E > 0, and 0, then:

hrv(x):x lzT(El{z )3 ?NT(EZ{Z W
V1() V3()
+WT(T IWO)W HTH J7J Fl{z

va()

05 (4.26)

with which Assumption 2 is satis ed. Next, we will show that cosensus for
the LTI MAS employing Theorem 2's PETM is guaranteed. FoH, established
in Section 4.1, with the hybrid system Lyapunov function, deed in eq (3.24),
we again need to show thatJ( ) monotonically decreases over both the ow
domain, C, and jump domain,D.

Flow domain During the ow domain, the time derivative of U( ) is
represented by eq (3.34). We substitute eq (3.20), eq (4.1@q (4.15), and
eq (4.26) for the associated time derivatives on the rightamd side of eq (3.34),
yielding:

U z'(E 1)z WI(E Iy)W

+WT(T  IWOW HT™H JT3 2T 1,)2
X

1 .
+ (207 2GS )W)?
i =1 (4.27)
X W (. Wi ; .
+2 i i Wi (Cy Wy + Hy + J5)
ij =1
+ 1] + blkdiagfz{; ;z{g)? :

We again separate the cross-terms to obtain:

X . :
2 Wy (Cy Wy + H + Jj)
ihj =1
X _ X :
2 iGi(W, )2 +2 (i iWj)?+ HTH+ J7J (4.28)
i =1 ij =1
We substitute eq (4.28) into eq (4.27) and after cancellingke terms, we
obtain:

U z'(E l)z WHE InW 1§ : (4.29)
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SinceE;;E:; > 0, from Theorem 2, we have:

u( ) (U(): 8 2C; (4.30)

with which it is shown that U( ) monotonically decreases over the ow domain,
C.

Jump domain. To show that U( ) monotonically decreases over the jump
domain, D, we need to show that the Lyapunov function candidate decrsas

after each jump. We maintain the set de nitions for , , , a ccording to
eqg (3.39) - eq (3.42). Then, we can similarly partitioJ( ) into eq (3.43).
Again applying the fact that ;  T'! () (THY = (or ()

i), and x* = x at jumps, we have:

X X e X .
i (W )+ i =
i2 [ tj:l i2 [ t
X Xy : o
(it i )W), (4.31)
i2 [t j=1 !
and:
X X T X . X X 1 .
i (W )+ i = i(—)(Wj)
i2 [ sj=1 i2 [ s i2 [ sj=1 !
X X 1 : -
+ (i+ (i —  )XWp)9); (4.32)
i2 [ s j=1 ! !
and:
X X . - X . X X . X
i (Wi )° + P = (Wi )© + ii (4.33)
i2 j=1 i2 i2 j=1 i2

Performing the same set partition onJ( ), then we obtain the inequality:
. X X o X X o
uc™) u() i(Wy) (W)= (4.34)
i2 [ =1 i2 [ sj=1
As > 0Oand ; > 0, according to Theorem 2, then:
uc*) u() o (4.35)

with which it is shown that U( ) monotonically decreases after jumps.
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Combining eq (4.30) and eq (4.35), the proof is complete angyanptotic
consensus of the LTI MAS, eq (4.1), with the control protocoleq (4.2), and
dynamic PETM, in accordance with Theorem 2, is guaranteed. k@ in Sec-
tion 4.4, we verify the results of this section as well as theepformance of
Theorem 2's PETM with a numerical example.

4.3 Dynamic PETM Construction Incorporat-
ing an Independently Tunable Time-dep-
endent Function

In this section, for the hybrid systemH formulated in Section 4.1, we ex-
tend the results of Section 4.2 by modifying the constructioof Theorem 2's
PETM. This modi cation aims to provide more design exibility and improve
ETM performance while still guaranteeing consensus of theTLMAS. The
modi cation to Theorem 2's PETM follows incorporating an exonential de-
cay term (time-based threshold) intof . The purpose of the exponential term
is analogous to the contribution from ;(272) regarding event frequency, as
mentioned in Remark 3. The caveat of incorporating such a tieabased thresh-
old has been mentioned in Subsection 1.2.2. The computatiohT' remains
unchanged from Section 4.2.

Theorem 3 . Let c= ﬁ and K = BTP. For H in Section 4.1, consider
V(x)= 3x"(L 2 P)xandW; (€)= ke k; 8i;j 2 V. If functions (f'; gi; of)
of the dynamic PETM described by eq (2.12) are as follows:

fl= i+ i(2f2)+ fe o
. X 1
g = i+ (i — =)W )%
i P (4.36)
g = it G W)

j=1

where ; > 0 is a small arbitrary constant, | 0, , > 0, and the design

parameters ; >0, ; 0, .>0, !, >0,82V, > 0, 1>0,andQ>0
are such that:
Ql = m(Q) 16 16 kAkzaanaxN 4 6 IN 2 z 0,

Et=( . 2Q3)>0,
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EE=("w 2N )>0,
And with T' computed through Lemma 1 using:
Cij = g5 ckBK Kk,

TP —
=0, T 0, for T =(;-+4aj,

kBK k2N2)Iy + w,

then the closed-loop system is asymptotically stable withespect tofx 2
RNfM(L)MT (P) x = 0g (stabilizing set for consensus of the LTI
MAS).

Remark 8 It can be seenthatag !'1 , ie 21 0,8 2V. Therefore,
ast!1 , the construction of Theorem 3's PETM approaches Theoremg"'
PETM, which we have proven guarantees consensus for the LTIAS eq (4.1).
Proof. Since we only incorporate an exponential decay term into of each
agent, the consensus proof of Section 4.2 remains largelg ttame. The only
change from Section 4.2 is in the Rlow domain' step. As the other steps
of the proof remain una ected by the incorporation of the expnential decay
term, we choose to omit those steps in this proof to avoid refi@on.

Flow domain Given ; = f', wheref' is from Theorem 3, we can simply
modify eq (4.29) to:

U ZzZ'(E 1)z WI(E IyW 1] + le 2t (4.37)
N 1

As a result of the sum of exponential term, it is di cult to expressU( )
(U()); 8 2 C. Instead, we employ Barbalet's lemma introduced in
Section 2.5to show thatag!1 that U;z;W; ! 0. In order to do so, we

need to show that: Z .
lim udt Ky; (4.38)
ti1 0
Z t
lim Z'z+ W'W + 1] dt  Ky; (4.39)
’ 0

where K 1j;jK,j < 1 are arbitrary nite constants. To show eq (4.38), we
use the fact thatE;; E;; > 0 where we can upper bound eq (4.37) by just:

u ie o (4.40)
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Integrating both sides from 0 tot and taking the limitast!1 , we can see

that:
X
u@a) u(@)

N

- (4.41)
Ki:

Thus, with the above, in accordance with Barbalat's lemma wean claim that

U! Oast!1 andthat z;W; are atleast bounded. To show eq (4.39),

we rstdene = minf ,(E); m(E); m( )g. Then we can establish an

upper bound to eq (4.37) as:

u mZ'z  oW'W 1l o+ e o (4.42)
i=1
which we can rearrange as:
T T T 1 1 X i bt
z'z+ W' W+ 1 —Uu+ — 1€ 2 (4.43)
m m =1

Integrating both sides from 0O tot and taking the limitast!1 , we obtain:

g 1 1 X
lim (z'z+W'W + 1] )dt — U(1)_ U@, +— - (4.44)
i m | {fz—} m., 2
K1
K ,: (4.45)
Again according to Barbalat's lemmaz;W; ! Oast!1l . Combined with

the jump domain proof of Section 4.2, consensus of the LTI MA®q (4.1),
with Theorem 3's PETM, is guaranteed. This concludes the pod. In the
subsequent numerical example, we verify the results of thggction.

4.4 Numerical Example

In this section, we consider a numerical example involving4&agent MAS
coordinating under the same grapl® as in Section 3.3. As a consequence, the
Laplacian matrix representingG is again expressed by eq (3.49). Each agent's
dynamics is modelled by eq (4.1) where we've selected theteys matrices as:

2. - 0.
30 B= 1 (4.46)
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and with the control input protocol following eq (4.2). It can be seen through
the A matrix that the agents exhibit purely harmonic behaviour; tus, triv-

ial consensus through stabilization to the origin is avoide As well, given
eq (4.46), it can be determined that A; B) is controllable. For this example,
we select the following design parameters:

1
°= 5 ) (4.47)
K=BTP; (4.48)
Q = diag[0:5; 0:5)]); (4.49)
; = diag[0:05; 0:1; 0:15; 0:15]); (4.50)
w = diag[0:05; 0:1; 0:15; 0:15]); (4.51)
= diag[0:04; 0:03; 0:02 0:01]) (4.52)
= diag[0:0027 0:0022 0:0032 0:015]), (4.53)
[ 1; 2; 3; 4] =[0:02840:08, 0:0824 0:1244] (4.54)
1= %q_ (4.55)
- 22(16<Ak2;§1aXN rq)’ (4.56)
[ 1; 2; 37 4]=[0:020:0150:03 0:01} (4.57)
According to the theorems in this chapter, we obtain:
Q.= giag([O:BOQJ; 0:209% 0:109%, 0:1091]) 3 (4.58)
0:0382  0:0064 00246 0:0064
E = 9:0064 00892 00236 0:006 ; (4.59)
0:0246 00236 00526 00492
0:0064 0:0064 00492 01136
E; = diag[0:0284 0:0824 0:1244 0:030]); (4.60)
T = diag[7:731% 7:7811, 7:8311% 7:8311]) (4.61)

It can be seen that with our parameter selection, the eigenvees ofQq; E;; E, >
0, thus, indicating positive-de niteness. Following Lemra 1, we calculate the
T's for the agents as:

[T%; T2 T3 T4 = [0:0011 0:0014 0:0008 0:0018] (4.62)

Here, due to the contrast in our selection of;, the computedT' has greater
distinction between one another. For the simulation, we ssit the asyn-
chronous periodic event-monitoring intervals for the agésas [S.,; S| )]sizv =
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[T, 72,73, 7. Additionally, we simulate the CTETM, designed in [19], to
compare with our results for the same LTI MAS. For our simulation, we utilize

an integration time step of 1 x 107 seconds.

4.4.1 Simulation 1

In this subsection we present the simulation results for the LTI MAS uti-
lizing Theorem 2’s PETM with parameter selection as described in Section
4.4. Since (Y1, 81,82 > 0 and the event-monitoring intervals for each agent is
less than or equal to T% for all time, consensus of the LTI MAS, employing
Theorem 2’s PETM, is guaranteed through the proof of Subsection 4.2. Figure
4.1 presents the state trajectories of each agent in the MAS, where the states
can be seen converging. Figure 4.2 presents the average consensus state tra-
jectory z(t), which can be seen approaching the origin, thus clearly achieving
consensus. We again note the relationship z(t) = (L®1,)3(t), where 5(t) — 0
implies z(t) — 0. Table 4.1 summarizes the event-trigger frequencies for both
Theorem 2’s PETM and the CTETM. Figure 4.3 plots the trajectories of the
auxiliary PETM variable n. Lastly, Figure 4.4 provides some statistical data
with respect to the inter-event times for Theorem 2’s PETM.

T
Agent 1 (PETM)
————— Agent 1 (CTETM)
Agent 2 (PETM)

Agent 1 (PETM)
————— Agent 1 (CTETM)
Agent2 (PETM) |
Agent 2 (CTETM)
Agent 3 (PETM)

Agent 3 (CTETM)
Agent 4 (PETM)

Agent 4 (CTETM)

Agent 2 (CTETM) ||
Agent 3 (PETM)
fffff Agent 3 (CTETM)
Agent 4 (PETM)
————— Agent4 (CTETM) | |

State

Time [s] Time [s]

Figure 4.1: 1st (left) and 2nd (right) state trajectories of LTI agents, with
Theorem 2 vs. CTETM.
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Consensus State
o

---- Agent4 (CTETM)

Agent 1 (PETM)
Agent 1 (CTETM)
Agent 2 (PETM)
Agent 2 (CTETM)
Agent 3 (PETM)
Agent 3 (CTETM)
Agent 4 (PETM)

Time [s]

Consensus State

Agent 1 (PETM)
————— Agent 1 (CTETM)
Agent 2 (PETM)

Agent 2 (CTETM) |-
Agent 3 (PETM)
----- Agent 3 (CTETM)
Agent 4 (PETM)
————— Agent 4 (CTETM) | _

n L
6 8 10

Figure 4.2: 1st (left) and 2nd (right) average consensus state trajectories of
LTT agents, with Theorem 2 vs. CTETM.

Table 4.1: ETM performance comparison between dynamic PETM, according
to Theorem 2, against CTETM for LTT agents.

Events Ex'/ent. Triggering Events
. Monitoring )

Agents | Triggered Instants Frequency Triggered
(PETM) (PETM) (PETM) (CTETM)

1 739 9252 7.9% 1762

2 884 7404 11.9% 2841

3 7418 13282 55.8% 408

4 359 5681 6.3% 1055
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0.018

0.016 |

0.014

Agent 1
Agent 2
Agent 3
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Time [s]

Figure 4.3: n trajectories of LTI agents, with Theorem 2.
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Max inter-event time Min inter-event time

0.025

I (nter-event time
I Event-monitoring interval
Intergration step

0.03

Agents Agents

Average inter-event time Median inter-event time

0.025 |

0.02 1

[s]

0.015

ime

T

0.01

0.005 |

Agents Agents

Figure 4.4: Max, min, average, and median inter-event times of LTI agents,
with Theorem 2.

Similar to the numerical example involving the single-integrator MAS in
Section 3.3, it can be seen through Table 4.1 that the control update frequency
is significantly reduced compared to a sample-data protocol. Based on Figure
4.1, Figure 4.2, and Table 4.1, the CTETM is capable of achieving consensus
faster and with less events triggered overall. The total number of events trig-
gered and EMIs given our dynamic PETM are 9,400 and 35, 619, respectively.
Meanwhile, the CTETM triggered a total of 6,066 events. However, compar-
ing the sensing costs for the MAS employing the laser diode in [50], Theorem
2’s PETM protocol would have consumed 90 watts x 100 ns x 35619 pulses =
0.3206 joules while 90 watts x 10s x 4 agents = 3600 joules would have been
consumed (hypothetically) with the CTETM. It can be seen that our protocol
presents a total saving to sensing resources by 1.1 x 10°% while incurring an
increase to the event frequency by 150% within this simulation. In Figure 4.3,
especially pronounced for agent 4, we can see the contributions of 3;(2] 2;) tak-
ing into effect where 1y grows during flow, reducing the likeliness that ¢g¢ < 0

at jumps (thus, reducing the likeliness of event triggering).
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Chapter 5

Conclusion and Future Work

In this chapter, we conclude the research and work performeshder this
thesis. As closing notes, we present some potential extemsiand directions
for future work.

5.1 Conclusion

Motivated by the growing applications and scale of impleméation of
MASSs, this thesis studies the consensus problem for MASs enyhg an
event-triggered protocol. Through our literature surveywe discovered that
the research gap involving distributed MAS consensus, undan undirected
graph, where the agents employs RSM sensing capabilitiesntbned with a
dynamic PETM, warranted further study. Addressing the reseah gap, our
speci ¢ contributions consist of establishing su cient canditions on the design
of the dynamic PETM such that the consensus problem is solvednd deriv-
ing an expression to pre-compute an upper bound on EMIs, indglually, for
each agent. To that e ect, our research and main results culmated in three
theorems. For each of the theorems, we modelled the MAS undé&ethybrid
system framework and utilized the Lyapunov stability theoem to prove and
guarantee consensus. The results of the three theorems amenmarized as
follows:

1. Theorem 1 establishes su cient conditions for the constiction and pa-
rameter selection of the dynamic PETM such that the consensyprob-
lem identi ed in the research gap is solved for a single-ingeator MAS.
We presented a modi ed expression, Lemma 1, to pre-compule for
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each agent. In the numerical example, it was evident that Tlogem 1's
PETM resulted in signi cant savings in sensing resources drtriggered
less events while, overall, achieving similar consensusrfpemance as
compared to the CTETM.

2. Theorem 2 extends the results of Theorem 1 from single-@gfrator agents
to more general LTI agents by updating the su cient conditions of the
PETM to account for the A matrix. Once again, we see that Theorem
2's PETM resulted in signi cant sensing resource saving, buthis time,
at the cost of higher event frequency while consensus perf@ance is
slower compared to the CTETM.

3. Theorem 3 modi es the construction of the dynamic PETM of heo-
rem 2 to provide greater design freedom in reducing event @ueencies
by incorporating a decaying exponential term into the CT dyamics of
the PETM auxiliary variable. The exponential term potentidly causes
the state of the auxiliary variable to grow during ow, thus reducing the
likeliness that the triggering condition is violated at junps (thereby, re-
ducing event frequencies). In the proof, we employed Barlaék lemma
to overcome the contribution of the exponential term in sasifying the
conditions to guarantee consensus in the sense of Lyapunav.the nu-
merical example, for the same LTI MAS, the sensing resourcensomp-
tion and the event frequency were signi cantly reduced withTheorem
3's PETM compared to the CTETM. Additionally, the consensus pr-
formance is similar to that of Theorem 2's PETM, though it cores at
the cost of sacri cing some level of feedback within the PETM

5.2 Future Work

Some possible extensions and future directions of the worlenformed
within this thesis are provided below:

1. In applications, when utilizing sensors to measure the RS there is
typically measurement noise introduced. One possible ertgon is to
investigate the consensus performance and ETM performanegen dis-
turbance is introduced in each agent's input; (t).
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2. With digital hardware, namely, sensors or processors, ftieeis typically
guantization of information that occurs and possibly satuation. These
phenomenons are exacerbated with low-bit hardware that avéidely em-
ployed due to their cost-e ectiveness. As such, another paske exten-
sion is to investigate the consensus performance and ETM fmmance
when some level of quantization and saturation are consiaer within
each agent's inputu; (t).

3. As can be seen in the numerical example for the LTI MAS withinhis
thesis, it is di cult to pre-determine where the agents will converge in
consensus as it is based on initial conditions and evolutiasf agents'
states. In other words, it would be bene cial to designers ifthe nal
consensus state can be pre-determined or dictated. One pbles ap-
proach is time-varying reference (or target tracking) of ane-determined
consensus trajectory. For example, a consensus trajectaat follows a
circle where the agents not only consensus with each othertloonsensus
following this consensus trajectory.
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