Synthesis of New Light-Emitters via Zirconium-Mediated Coupling

by

Olena Shynkaruk

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Chemistry University of Alberta

© Olena Shynkaruk, 2016

Abstract

The work described within this thesis details explorations into the area of molecular luminogens, in particular using zirconium-mediated coupling to access novel classes of color tunable emitters based on germanium, tellurium, and butadienes.

Chapter 2 features new class of air-stable phosphors termed as spirocyclic germafluorene-germoles. This new library of color tunable luminogens was prepared using Suzuki-Miyaura, Stille, and zirconocenemediated couplings. In addition, the synthesis and properties of homo- and co-polymers based on spirocyclic germafluorene-germole unit were explored and challenges associated with these materials are discussed herein.

Chapter 3 describes a new general Suzuki-Miyaura cross-coupling protocol for the synthesis of symmetrical diarylalkynes. They were further transformed into new tetraarylbutadienes, and their fluorescent properties and photo- and thermal stability were investigated. Attempts to prepare potentially blue luminescent tin-capped building block based on a cumylsubstituted tetraarylbutadiene for further Stille polymerization protocols is reported.

In Chapter 4 the synthesis and characterization of new symmetric tellurium heterocycles for both hole-transport and light-emitting applications is presented. This work builds upon the general alkyne synthesis route introduced in Chapter 3.

ii

Preface

Portions of the work discussed in this thesis were completed in collaboration with other researchers within the Rivard group and Chemistry Department, as well as outside of the University of Alberta.

All X-ray crystallographic studies described in this thesis were performed by Dr. R. McDonald and Dr. M. J. Ferguson, including the mounting of crystals, set-up and operation of the diffractometer, refinement of the structures and preparation of all crystallographic data tables.

In chapter 2, lifetime, absolute quantum yield and aggregationinduced emission measurements were performed by Prof. G. He at Xi'an Jiaotong University (China). In chapters 3 and 4, these measurements were done by Mr. Y. Qi under his supervision.

In chapter 3, some microwave-assisted trials of precursor stability and screening of reaction conditions were performed with the assistance of Ms. A. Cottrell-Callback within WISEST (Women in Science, Engineering and Technology) Summer Research Program.

In chapter 4, computational analyses were performed by Dr. Mike Boone (Rivard group). In addition, photoelectron spectroscopy measurements were performed by Mr. H. Shimogawa under supervision of Prof. A. Wakamiya at Kyoto University (Japan). Electron and hole mobilities are currently being evaluated by Mr. N. Hohn under the supervision of Prof. P. Müller-Buschbaum at the Technical University of Munich (Germany).

I also would like to acknowledge the collaborators, whose work is not described in this thesis. I would like to thank Prof. R. H. Herber for Mössbauer Effect spectroscopy measurements (Hebrew University of Jerusalem, Israel) and Dr. Saeid Sadeh under supervision of Prof. J. Müller (University of Saskatchewan) for synthetic attempts towards ferrocenophanes.

According to the policy within our research group, each chapter of this thesis is essentially self-contained, and prepared in the form of a paper that is intended for publication in peer-reviewed journals.

A portion of this thesis has been published previously elsewhere, and these publications are listed below.

Chapter 2: Shynkaruk O., He G., McDonald R., Ferguson M. J., Rivard E., Chem. Eur. J. 2016, 22, 248-257.

Chapter 3: Shynkaruk O., Qi Y., Cottrell-Callbeck A., Torres Delgado W., McDonald R., Ferguson M. J., He G., Rivard E., *Organometallics*, **2016**, *35*, 2232-2241.

Publications, not highlighted in this thesis, are as follows:

(1) He G., Shynkaruk O., Lui M. W., Rivard E., Chem. Rev. 2014, 114, 7815-7880.

(2) Al-Rafia S. M. I., Shynkaruk O., McDonald S. M., Liew S. K., Ferguson M. J., McDonald R., Herber R. H., Rivard E., *Inorg. Chem.*2013, 52, 5581-5589.

(3) He G., Kang L., Torres Delgado W., Shynkaruk O., FergusonM. J., McDonald R., Rivard E., J. Am. Chem. Soc. 2013, 135, 5360-5363.

Dedicated to my grandfather Vitaliy Dubok and parents Marina Shynkaruk and Alexander Shynkaruk

"Never, never, never give up." – Winston Churchill

Acknowledgements

First and foremost, I must thank my advisor Professor Eric Rivard for accepting me in his group and all his continuous support, help and mentorship during these years. He always had his office doors opened whenever I needed an advice. His guidance, encouragement and inspiration will always be remembered and greatly appreciated. I would also like to thank Prof. Arthur Mar, Prof. Rylan Lundgren, Prof. Thomas Baumgartner, Prof. Karthik Shankar, Prof. Jon Veinot, and Prof. Gabriel Hanna, for serving on my supervisory and examination committees and their valuable contribution. I would like to express sincere gratitude to Prof. Hicham Fenniri for introducing the University of Alberta to me and his help at the early stages of the graduate school.

Next, I must thank my dear family. They are always there for me despite being on the other side of the world, rooting for me and telling me not to give up. There are no words to express how blessed and grateful I am to have them.

None of what is described in this thesis would have been possible without an expertise of the wonderful staff at the University of Alberta. We are so lucky to work with them! I would like to express special gratitude to Dr. Wayne Moffat for accepting me in his Analytical and Instrumentation lab (family) and all his assistance with instruments, measurements and useful discussions. I would like to thank Dr. Bob McDonald and Dr. Michael Ferguson for all their help with X-ray crystallography; Jing Zheng for training me to do MALDI and all the immediate and continuous help with mass spectrometry; to Dr. Jason Cooke for giving me an opportunity to teach Advanced Inorganic Chemistry labs, making this experience enjoyable and guiding me to become a better teacher. In addition, I would like to thank Jennifer Jones, Dr. Randy Whittal, Ed Fu, Bernie Hippel, Ryan Lewis, Anita Weiler, Jason Dibbs, the wonderful staff of the NMR lab, electronic and machine shops.

I must also thank all the past and present members of the Rivard group. Thank you to all of you for the ideas, support, and discussions. I would like to express my special gratitude to Dr. (and now Prof.) Gang He for being an amazing mentor and friend.

I am also thankful for having people by my side during this journey. They are Uyen Ho and Alesya Zakoretskaya; even though we are separated by thousands of kilometers their moral support is always present. Last but not least, I would like to thank my friends Dr. Alexandra Suvorova, Lena Yakovchyk, Inna Dutkanich, Dr. Pavlo Kos, Dasha Mikhaleva, Christina Gonzalez, Xunkun Liu, (my late night lab partner) Dr. Mita Dasog, William T. Delgado, Anindya Swarnakar, Melanie Lui, Kate Powers, Regina Sinelnikov and others for supporting me during these years.

Table of Contents

Chapter One: Introduction	1
1.1. Brief overview of metallacycles	2
1.2. Metallacycle transfer	4
1.2.1. Zirconacyclopentadienes	4
1.2.2. Synthesis of bicyclic zirconacycles	6
1.3. Metalloles: synthesis and challenges	11
1.4. Germoles: an overview	14
1.4.1. Synthesis	14
1.4.2. Anionic germoles and the question of their aromaticity	20
1.4.3. Molecular diaza-, dinaphto-, dithieno-, and diselenogermol	es,
and polymers of germoles, and their optoelectronic applications	21
1.5. Tellurophenes: an overview	27
1.5.1. Synthesis of tellurium heterocycles	27
1.5.2. Polytellurophenes and their application in organic	
electronics	29
1.6. The Aggregation-induced Emission (AIE) phenomenon	33
1.6.1. AIE effect in germoles	34
1.6.2. AIE effect in tellurophenes – a new class of phosphorescen	ıt
light-emitting units for optoelectronics	34
1.7. Diarylalkynes: their synthesis and applications	38
1.8. Organic light-emitting devices	43
1.9. Molecular blue emitters	47

1.9.1. Polyfluorene and group 14 analogues	47
1.9.2. Tetraarylbutadienes	60
1.10. The spiro-conjugation concept. Examples with spiro-annula	ited
bifluorene and group 14 derivatives	65
1.11. References	72
Chapter 2: Modular Synthesis of Molecular and Polymeric	
Spirocyclic Germafluorene-Germoles: A New Family of Tunabl	le
Luminogens	111
2.1. Abstract	112
2.2. Introduction	113
2.3. Results and discussion	117
2.4. On the Road to Light-emitting Spirocyclic Germafluorene-G	ermole
Polymers	140
2.4.1. Synthesis and structural characterization of polymeric	
spirocyclic germafluorene-germoles	140
2.4.2. Optical and thermal properties of polygermafluorenes ar	nd
polyfluorene	145
2.5. Conclusions	149
2.6. Experimental procedures	150
2.7. Crystallographic data	169
2.8. NMR spectral data	172
2.9. Ultraviolet-visible spectroscopy (UV/Vis) measurements	176
2.10. Photoluminescence spectra	179

Conversion into Luminescent Tetraarylbutadienes and Use of the	
Latter for the Preparation of Polymer Building Blocks	191
3.1. Abstract	192
3.2. Introduction	193
3.3. Results and discussion	196
3.3.1. Synthesis of diarylalkynes via Suzuki-Miyaura couplin	g 196
3.3.2. Tetraaryl-1,3-butadiene synthesis	206
3.3.3. Optical properties of the tetraaryl-1,3-butadienes 7a, 7b)
and 8	213
3.3.4. Photobleaching and thermal stability of functionalized	
tetraaryl-1,3-butadienes	221
3.4. Attempted synthesis of 1,4-bis(tributyllstannyl)-1,2,3,4-tetr	a(4-
isopropylbenzene)-1,3-butadiene	233
3.4.1. Results and discussion	235
3.5. Conclusions	239
3.6. Experimental section	240
3.7. Crystallographic data	259
3.8. NMR spectral data	261
3.9. Ultraviolet-visible spectroscopy (UV/Vis) measurements	277
3.10. Photostability studies	279
3.11. References	281

Chapter 3: Modular Synthesis of Diarylalkynes, their Efficient

tellurophenes	290
4.1. Abstract	291
4.2. Introduction	292
4.3. Results and discussion	294
4.3.1. Synthesis of the symmetrical tellurophenes 2a-c	294
4.3.2. Optical properties of the tellurophenes 2a-c	299
4.3.3. Thermal stability of functionalized tellurophenes	308
4.3.4. Collaborative projects with tellurophenes 2a/c	314
4.3.5. Synthesis of asymmetric tellurophenes	318
4.4. Conclusions	322
4.5. Experimental section	322
4.6. Crystallographic data	331
4.7. NMR spectral data	332
4.8. References	334
Chapter 5: Summary and future work	340
5.1. Summary and future work	341
5.2. References	353
Complete bibliography	356

Chapter 4: Synthetic explorations of luminescent (a)symmetric

List of Schemes	Page
Scheme 1.1. Products of thermal decomposition of dibutylzirconocene reaction mixture ("Cp ₂ Zr" source) at room temperature.	6
Scheme 1.2: Mechanism of formation of a zirconacycle. Structure of isolated zirconacyclopropene 10.	7
Scheme 1.3. Synthesis of asymmetrical zirconacycles using two different alkynes.	8
Scheme 1.4. Possible isomers of zirconacycles derived from coupling asymmetric alkynes. Structure of the conjugated polymer 11 .	9
Scheme 1.5. Step-wise mechanism of alkyne coupling to form asymmetric zirconacycles.	10
Scheme 1.6. Selected synthesis of organic compounds using zirconacycles.	11
Scheme 1.7. Alternative approaches for metallole formation.	13
Scheme 1.8. Diels-Alder reaction of germole 20.	16
Scheme 1.9. Synthesis of germoles 39-42.	18
Scheme 1.10. Synthesis of germoles 53-62. Mechanism of Wrackmeyer transformation.	19
Scheme 1.11. Synthesis of functionalized dithienogermoles.	23
Scheme 1.12. Synthesis of DTG derivatives via olefin cross-metathesis.	24
Scheme 1.13. Synthesis of tellurophenes 85-89 and reversible bromination of 85 .	28

Scheme 1.14. Synthesis of 3-alkyltellurophenes and their polymeric analogues.	31
Scheme 1.15. Functionalized tellurophene monomers and the diketopyrrolopyrrole-tellurophene DPP-Te polymer 103 .	32
Scheme 1.16. Various syntheses of diarylalkynes.	38
Scheme 1.17. Mechanism of the copper co-catalyzed Sonogashira cross-coupling.	40
Scheme 1.18. Yamamoto polycondensation of dihalofluorenes.	49
Scheme 1.19. Synthesis of PFs via Suzuki-Miyaura cross- coupling.	50
Scheme 1.20. Mechanism of formation of keto-defects arising from synthesis of 9-monoalkylated PF, proposed by Scherf and co-workers. Another pathway includes photo- or electro-oxidative degradation of 9,9'-dialkylated PF.	52
Scheme 1.21. Common synthetic routes to silafluorenes.	53
Scheme 1.22. Novel approaches to the synthesis of silafluorenes.	55
Scheme 1.23. Synthesis of germafluorenes.	56
Scheme 1.24. Thermolysis of 9,9'-dihydrogermafluorene (119) in the presence of (dppe)PtMe ₂ (dppe = $Ph_2PCH_2CH_2PPh_2$) and synthesis of germafluorene dianion 120.	57
Scheme 1.25. Synthetic methods used to prepare stannafluorenes.	59
Scheme 1.26. Synthesis of 9-borafluorene Lewis acids using perfluorinated stannafluorene 125.	60
Scheme 1.27. Synthesis of the tetraarylbutadienes 128-131.	62
Scheme 1.28. Piezochromic tetraaryl-1,3-butadiene 130.	63

Scheme 1.29. Mechanoluminescent butadienes 131-133 obtained by the Dong group.	64
Scheme 1.30. Cobalt-mediated regioselective synthesis of aryl-substituted butadienes 134 and 135.	65
Scheme 1.31. Original synthesis of the 9,9'-spirobifluorene 138.	69
Scheme 2.1. Zirconocene-mediated synthesis of germoles and structure of the new spirocyclic germafluorene-germoles (SGGs) introduced in this chapter.	116
Scheme 2.2. Synthesis of the alkylated SGGs 2 and 3.	118
Scheme 2.3. Preparation of the spirocyclic germafluorene- germoles 4 and 5 via Stille coupling.	121
Scheme 2.4. Preparation of the thiophene-substituted zirconocene (8), dihalogermole (9) and spirocyclic germafluorene-germole (10).	132
Scheme 2.5. Synthesis of the dihalogermole (11), pinacolborane- capped spirocyclic germafluorene (12) and Suzuki-Miyuara coupling involving 12 to obtain thiophene-capped spirogermafluorene (13).	138
Scheme 2.6. Synthesis of the polyspirogermafluorene (14) and polyfluorene (15).	142
Scheme 2.7. Synthesis of the polyspirogermafluorene (14) via Grignard metathesis polymerization.	143
Scheme 2.8. Synthesis of the thiophene-SGG copolymer 16 and the attempted synthesis of an aryl-germafluorene copolymer.	144
Scheme 3.1. Selected examples of diarylalkyne synthesis.	194

Scheme 3.2. Synthesis of diarylalkynes using Suzuki-Miyaura cross-coupling.	195
Scheme 3.3. Synthesis of the symmetric diarylalkynes 2-5 .	204
Scheme 3.4. Synthetic route to the 1,3-butadienes 7a/b and 8, and structures of the known analogues 9-11.	210
Scheme 3.5. Attempted synthesis of the monomer 9.	235
Scheme 3.6. Synthesis of the monomer 9 via 1,4-diiodo-1,3- butadiene.	238
Scheme 3.7. Synthesis of the monomer 9 in the presence of catalytic amount of copper(I) chloride.	239
Scheme 4.1. Synthesis of asymmetric tellurophenes, reported in the Rivard group.	293
Scheme 4.2. Synthesis of symmetrical tellurium heteroles 2a-b . Tellurophene 2c was provided by Dr. Mike Boone.	295
Scheme 4.3. Outline of planned synthesis for tellurophene 3a.	317
Scheme 4.4. Attempted (top) and future (bottom) syntheses of the asymmetric tellurophene 4 .	321
Scheme 5.1. Synthetic route for the targeted light-emitting SGG homopolymers.	345
Scheme 5.2. Preparation of zirconacycle precursors for the synthesis of heterofluorenes.	346
Scheme 5.3. Synthetic approaches towards the monomer 13.	348
Scheme 5.4. Proposed synthesis of a tellurophene 16 for use as a hole transport layer in perovskite solar cells.	351
Scheme 5.5. Synthetic approaches towards asymmetric tellurophenes 17 and 18.	352

Scheme 5.6. Proposed synthesis of the asymmetric tellurophene 35318.

List of Tables	Page
Table 2.1. Summarized physical and optical properties ofpolymers 14-16.	145
Table 2.2. Crystallographic data for compounds 2 and 3.	169
Table 2.3. Crystallographic data for compounds 5 and 9.	170
Table 2.4. Crystallographic data for compounds 10, 11 and 12.	171
Table 3.1. Stability of compound 1 in THF or DMF under microwave irradiation (300 W).	197
Table 3.2. Stability of compound 1 in the presence of base inTHF or DMF under microwave irradiation (300 W).	199
Table 3.3. Optimization of reaction conditions to synthesizecompound 2.	201
Table 3.4. Catalyst and base screening trials for the synthesis of 2 in refluxing THF.	203
Table 3.5. Optimization of reaction conditions when heating toreflux to synthesize 3.	205
Table 3.6. Metallacycle transfer between 6a and two equiv. of $ClSn^{n}Bu_{3}$ in various solvents	237
Table 3.7. Crystallographic data for compounds 2 and 5	259
Table 3.8. Crystallographic data for compounds 6a, 7a and 7b	260
Table 4.1 Trials for synthesis of asymmetric tellurophene	320
Table 4.2. Crystallographic data for compounds 2a/b	331

List of Figures	Page
Figure 1.1. Selected examples of metallacycles.	3
Figure 1.2. Proposed transition states during the first step of metallacycle transfer.	12
Figure 1.3. Left: π^* orbital diagram of the butadiene moiety in a germole. Right: "Sideview" of interaction of Ge with two exocyclic ligands (<i>i.e.</i> , σ^* orbital of exocyclic Si-C bonds) and the resulting σ^* - π^* orbital overlap.	14
Figure 1.4. Representative examples of germoles.	15
Figure 1.5. Selected examples of asymmetric 2,5- and 3,4- substituted germoles.	18
Figure 1.6. Synthesis of monoanionic germoles.	20
Figure 1.7. Selected examples of diaza- and dinaphthogermoles.	21
Figure 1.8. Common dithienogermole (DTG)-containing polymers in organic photovoltaics.	22
Figure 1.9. Selected examples of germole derivatives (69-76).	25
Figure 1.10. Selected examples of polymers and macrocycles containing germoles and structure of the thiophene polymer 80 .	26
Figure 1.11. Selected examples of tellurophenes and benzotellurophenes prepared in the Rivard group.	28
Figure 1.12. Structures of monocationic tellurophenes 96 and 97 as well as the tellurenyl (II) cation 98 and the butadiene-trapped 99.	29
Figure 1.13. Parent oligo- and polytellurophenes.	30

Figure 1.14. Selected luminescent organotellurium compounds.	36
Figure 1.15. Structures of some molecular semiconductors that have been used in thin film EL devices. Alq ₃ is used as electron	44
transport and emissive layer, N,N'-bis(3-methylphenyl)-N,N'-	
diphenyl[1,1'-biphenyl]-4,4'-diamine (TPD) and 4,4'-bis(9-	
carbazolyl)-1,1'-biphenyl (DCBP) are used as a hole transport	
layer and 2-(4-biphenylyl)-5-(4-tert-butyl-phenyl)-1,3,4-	
oxadiazole (PBD), green alternative 4,7-diphenyl-1,10-	
phenanthroline (BPhen) along with silole 113 are used as an	
electron transport layer.	
Figure 1.16. Structure of a single layer light-emitting device.	45
Figure 1.17. First reported polyfluorenes.	48
Figure 1.18. Red, green, and blue light-emitting PFs.	51
Figure 1.19. Selected examples of silafluorenes and their	56
associated applications.	
Figure 1.20. Selected examples of germafluorene co-polymers	58
for optoelectronic applications.	
Figure 1.21. Stannafluorene derivatives reported in the	58
literature.	
Figure 1.22. Through-space spiro-type interaction.	66
Figure 1.23. Structures of charge-transporting Spiro-TAD 136	67
and parent TAD 137 compounds.	
Figure 1.24. Structures of the spirofluorene-based polymers	70
139 and 140 .	
Figure 1.25. Spirosilabifluorenes used in LEDs and fluoride	71
sensors.	

Figure 2.1. Thermal ellipsoid plot (30 % probability) of $FlGeC_4Et_4$ (2) (Fl = fluorenyl) with hydrogen atoms omitted for clarity. Only one molecule of the two in the asymmetric unit is shown.	119
Figure 2.2. Thermal ellipsoid plot (30 % probability) of compound 3 with hydrogen atoms omitted for clarity.	120
Figure 2.3. Thermal ellipsoid plot (30 % probability) of the thiophene-capped SGG 5 with hydrogen atoms omitted for clarity; only one molecule of the two in the asymmetric unit is shown.	122
Figure 2.4. Normalized PL emission spectra of spirocyclic germafluorene-germole 5 in solution (THF) and film state.	123
Figure 2.5. UV/Vis absorption spectra of the spirocyclic germafluorene-germoles 4 and 5 and fluorene 7 (normalized).	124
Figure 2.6. UV/Vis absorption spectra of compound 5 and fluorene 7 in the film state (normalized).	125
Figure 2.7. Normalized PL emission spectra of fluorene 7 in solution (THF) and film state.	125
Figure 2.8. Emission and excitation spectra of 5 (top) and 7 (bottom) in THF.	127
Figure 2.9. Time dependence of the fluorescence emission intensity of drop-cast thin films of 5 and 7 upon exposure to a 65 W xenon lamp in air.	128
Figure 2.10. Time dependence of the emission intensity of spirocyclic germafluorene-germole 5 and fluorene 7 solution under 450 W mercury lamp (the distance of the lamp from the film was 8 cm).	130

Figure 2.11. TGA thermograms of 5 and 7 measured under Ar (10 °C/min).	131
Figure 2.12. Thermal ellipsoid plot (30 % probability) of compound 9 with hydrogen atoms omitted for clarity.	133
Figure 2.13. Top: Photoluminescence (PL) spectra of SGG 10 in different THF/water ratios; Bottom: emission intensity of SGG 10 as the THF/water ratio is altered. Inset: aggregates under UV light ($\lambda_{ex} = 365$ nm); [10] = 10 ⁻⁴ M.	135
Figure 2.14. Thermal ellipsoid plot (30 % probability) of the SGG 10 with hydrogen atoms omitted for clarity. Only the major (70 %) orientation of the disordered thienyl group is shown.	137
Figure 2.15. Thermal ellipsoid plot (30 % probability) of the dihalogermole (11) with hydrogen atoms and toluene solvate have been omitted for clarity.	139
Figure 2.16. Thermal ellipsoid plot (30 % probability) of compound 12 with hydrogen atoms omitted for clarity.	139
Figure 2.17. MALDI mass spectrum of the polyspirogermafluorene 14 .	143
Figure 2.18. Normalized UV/Vis absorption spectra of compounds 14-16 in solution (THF).	146
Figure 2.19. Normalized PL excitation and emission spectra of 14-16 in solution (THF).	147
Figure 2.20. TGA thermograms of 14-16 measured under N_2 (scan rate = 10 °C/min).	148
Figure 2.21. ¹ H NMR (in CDCl ₃) spectrum of compound 10.	172

Figure 2.22. ¹³ C{ ¹ H} NMR (in CDCl ₃) spectrum of compound 10.	173
Figure 2.23. ¹ H NMR (in CDCl ₃) spectrum of compound 13.	174
Figure 2.24. ${}^{13}C{}^{1}H$ (in CDCl ₃) spectrum of compound 13.	175
Figure 2.25. UV/Vis absorption spectra of compounds 2 and 3 (normalized).	176
Figure 2.26. UV/Vis absorption spectra of compound 10 in solution (THF) and film state (normalized).	177
Figure 2.27. UV/Vis absorption spectra of germole 11 and the spirocyclic germafluorene-germole 12 (normalized).	177
Figure 2.28. UV/Vis absorption spectra of compound 13 in solution (THF) and film state (normalized).	178
Figure 2.29. PL excitation and emission spectra of compound 10 in aggregated and film state.	179
Figure 2.30. Images of SGG 10 in solution, aggregated and film state.	179
Figure 2.31. PL emission spectra of compound 13 in solution (THF) and film state.	180
Figure 3.1. Thermal ellipsoid plot (30% probability) of compound 2 with hydrogen atoms omitted for clarity; a crystallographic inversion center ($1/2$, 0, $1/2$) lies at the midpoint of the C(1)–C(1A) bond.	205
Figure 3.2. Thermal ellipsoid plot (30 % probability) of compound 5 with hydrogen atoms omitted for clarity; a crystallographic inversion center ($1/2$, 0, $1/2$) lies at the midpoint of the C(1)–C(1A) bond.	206

Figure 3.3. Thermal ellipsoid plot (30% probability) of compound 6a with hydrogen atoms omitted for clarity; only one molecule of the two in the asymmetric unit is shown.	208
Figure 3.4. Thermal ellipsoid plot (30 % probability) of compound 7a with selected hydrogen atoms omitted for clarity; remaining hydrogen atoms presented with arbitrarily small thermal parameters. Only the major orientation of the disordered isopropyl groups is shown.	211
Figure 3.5. Thermal ellipsoid plot (30 % probability) of compound 7b with selected hydrogen atoms omitted for clarity; remaining hydrogen atoms presented with arbitrarily small thermal parameters. Only the major orientation of the disordered thienyl groups is shown. A crystallographic inversion center (1/2, 0, 1/2) lies at the midpoint of the C(1)–C(1A) bond.	212
Figure 3.6. Photoluminescence (PL) spectra of 7a in different THF/water ratios (listed as % water content). Inset: emission intensity of 7a as the THF/water ratio is altered. Insert photo: aggregates under UV light ($\lambda_{ex} = 365$ nm); [7a] = 10 ⁻⁴ M.	214
Figure 3.7. Top: Photoluminescence (PL) spectra of 7b in different THF/water ratios. Bottom: emission intensity of 7b as the THF/water ratio is altered. Inset: aggregates under UV light $(\lambda_{ex} = 365 \text{ nm}); [7b] = 10^{-4} \text{ M}.$	215
Figure 3.8. Normalized PL excitation and emission spectra of 1,3-butadiene 7a in the film state.	216
Figure 3.9. Normalized PL excitation and emission spectra of 1,3-butadiene 7b in the film state.	216

Figure 3.10. Normalized PL excitation and emission spectra of alkyne 5 in solution (THF) and film state.	218
Figure 3.11. Normalized PL excitation and emission spectra of 8 with $\lambda_{ex} = 423$ nm in THF and $\lambda_{ex} = 420$ nm in the film state.	219
Figure 3.12. UV/Vis absorption spectra of compound 8 in solution (THF) and film state (normalized).	219
Figure 3.13. Photoluminescence (PL) spectra of 8 in different THF/water ratios (listed as % water content). Inset: aggregates under UV light ($\lambda_{ex} = 365 \text{ nm}$); [8] = 10 ⁻⁴ M.	220
Figure 3.14. XRD patterns of films of the 1,3-butadienes used for photoluminescence measurements.	221
Figure 3.15. Time dependence of the fluorescence emission intensity of 7a a drop-cast thin film (30 μ L of 2 × 10 ⁻³ M THF solution) upon exposure to a 65 W xenon lamp in air. Film distance from lamp was 130 cm.	223
Figure 3.16. Time dependence of the fluorescence emission intensity of a drop-cast thin film of 7b (from 30 μ L of 2.0 × 10 ⁻³ M THF solution) upon exposure to a 65 W xenon lamp in air. Film distance from lamp was 130 cm.	224
Figure 3.17. Time dependence of the fluorescence emission intensity of 8 a drop-cast thin film (30 μ L of 2 × 10 ⁻³ M THF solution) upon exposure to a 65 W xenon lamp in air. Film distance from lamp was 130 cm.	225
Figure 3.18. TGA thermograms of 7a , 7b and 8 measured under N_2 (scan rate = 10 °C/min).	227
Figure 3.19. TGA thermograms of diarylalkynes 2-5 measured under N_2 (scan rate = 10 °C/min).	227

xxv

Figure 3.20. DSC trace of 7a measured under N ₂ (30-600 °C, scan rate = 10 °C/min).	228
Figure 3.21. DSC trace of 7b measured under N ₂ (30-600 °C, scan rate = 10 °C/min).	229
Figure 3.22. DSC trace of 8 measured under N ₂ (30-500 °C, scan rate = 10 °C/min).	229
Figure 3.23. DSC cycles of $7a$ measured under N_2 .	231
Figure 3.24. DSC cycles of $7b$ measured under N_2 .	232
Figure 3.25. DSC cycles of 8 measured under N_2 .	233
Figure 3.26. ¹ H NMR (in CDCl ₃) spectrum of compound 1.	261
Figure 3.27. ¹³ C{ ¹ H} NMR (in CDCl ₃) spectrum of compound 1.	262
Figure 3.28. ¹¹ B{ ¹ H} NMR (in CDCl ₃) spectrum of compound 1.	262
Figure 3.29. ¹ H NMR (in CDCl ₃) spectrum of 1,2-bis(4-isopropylphenyl)ethyne (2).	263
Figure 3.30. ¹³ C { ¹ H} NMR (in CDCl ₃) spectrum of 1,2-bis(4-isopropylphenyl)ethyne (2).	263
Figure 3.31. ¹ H NMR (in CDCl ₃) spectrum of crude 2 after alternative to column chromatography purification method: cold (-30 °C) diethyl ether wash (2×4 mL).	264
Figure 3.32. ¹³ C { ¹ H} NMR (in CDCl ₃) spectrum of crude 2 after alternative to column chromatography purification method: cold (-30 °C) diethyl ether wash (2 × 4 mL).	265
Figure 3.33. ¹ H NMR (in CDCl ₃) spectrum of 1,2-bis(thiophen-2-yl)ethyne (3).	266

Figure 3.34. ¹³ C{ ¹ H} NMR (in CDCl ₃) spectrum of 1,2- bis(thiophen-2-yl)ethyne (3).	266
Figure 3.35. ¹ H NMR (in CDCl ₃) spectrum of crude 3 after alternative to column chromatography purification method: cold (-30 °C) diethyl ether wash (2×4 mL).	267
Figure 3.36. ¹³ C{ ¹ H} NMR (in CDCl ₃) spectrum of crude 3 after alternative to column chromatography purification method - cold (-30 °C) diethyl ether wash (2 × 4 mL).	268
Figure 3.37. ¹ H NMR (in CDCl ₃) spectrum of bis(3-hexyl-2-thienyl)ethyne (4).	269
Figure 3.38. ¹³ C { ¹ H} NMR (in CDCl ₃) spectrum of bis(3-hexyl-2-thienyl)ethyne (4).	269
Figure 3.39. ¹ H NMR (in CDCl ₃) spectrum of 1,2- bis(triphenylamine)-ethyne (5).	270
Figure 3.40. ${}^{13}C{}^{1}H$ NMR (in CDCl ₃) spectrum of 5.	270
Figure 3.41. ¹ H NMR (in CDCl ₃) spectrum of crude compound 5 after diethyl ether wash.	271
Figure 3.42. ¹ H NMR (in C_6D_6) spectrum of bis(cyclopentadienyl)zirconium-2,3,4,5-tetra(4-isopropylphenyl)methanide (6a).	272
Figure 3.43. ¹³ C{ ¹ H} NMR (in C ₆ D ₆) spectrum of bis(cyclopentadienyl)zirconium-2,3,4,5-tetra(4-isopropylphenyl)methanide (6a).	273
Figure 3.44. ¹ H NMR (in CDCl ₃) spectrum <i>cis,cis</i> -1,2,3,4-tetra(4-isopropylbenzene)-1,3-butadiene (7a).	274
Figure 3.45. ¹³ C{ ¹ H} NMR (in CDCl ₃) spectrum of compound 7a.	274

xxvii

Figure 3.46. ¹ H NMR (in CDCl ₃) spectrum of <i>cis,cis</i> -1,2,3,4-tetra(2-thienyl)-1,3-butadiene (7b).	275
Figure 3.47. ¹³ C{ ¹ H} NMR (in CDCl ₃) spectrum of compound 7b.	275
Figure 3.48. ¹ H NMR (in CDCl ₃) spectrum of <i>cis,cis</i> -1,2,3,4-tetra(4-triphenylamine)-1,3-butadiene (8).	276
Figure 3.49. ¹³ C{ ¹ H} NMR (in CDCl ₃) spectrum of compound 8 .	276
Figure 3.50. UV/Vis absorption spectra of compound 5 in solution (THF) and film state (normalized).	277
Figure 3.51. UV/Vis absorption spectrum of compound 6a.	277
Figure 3.52. UV/Vis absorption spectra of compound 7a in solution (THF) and film state (normalized).	278
Figure 3.53. UV/Vis absorption spectra of compound 7b in solution (THF) and film state (normalized).	278
Figure 3.54. UV/Vis absorption spectra of the film of 7a before and after photobleaching.	279
Figure 3.55. UV/Vis absorption spectra of the film of 7b before and after photobleaching.	279
Figure 3.56. UV/Vis absorption spectra of the film of 8 before and after photobleaching.	280
Figure 4.1. Thermal ellipsoid plot (30% probability) of compound 2a with hydrogen atoms omitted for clarity.	297
Figure 4.2. Thermal ellipsoid plot (30% probability) of compound 2b with hydrogen atoms and chloroform solvate omitted for clarity.	298

Figure 4.3. UV/Vis absorption spectra of compound 2a in solution (THF) and film state.	300
Figure 4.4. UV/Vis absorption spectra of compound 2c in solution (THF) and film state.	301
Figure 4.5. UV/Vis absorption spectra of compound 2b in solution (THF) and film state.	302
Figure 4.6. Optical bandgaps of tellurophenes 2a-2c in solution (THF).	303
Figure 4.7. Optical bandgaps of tellurophenes 2a-2c in film state.	303
Figure 4.8. Normalized PL excitation and emission spectra of 2a with $\lambda_{ex} = 397$ and 419 nm in THF, and $\lambda_{ex} = 460$ nm in the film state.	305
Figure 4.9. Normalized PL excitation and emission spectra of	200
2c with $\lambda_{ex} = 432$ nm in THF and $\lambda_{ex} = 440$ nm in the film state.	306
0	306
2c with $\lambda_{ex} = 432$ nm in THF and $\lambda_{ex} = 440$ nm in the film state. Figure 4.10. Photoluminescence (PL) spectra of 2a in different THF/water ratios (listed as % water content). Inset: aggregates	
2c with $\lambda_{ex} = 432$ nm in THF and $\lambda_{ex} = 440$ nm in the film state. Figure 4.10. Photoluminescence (PL) spectra of 2a in different THF/water ratios (listed as % water content). Inset: aggregates under UV light ($\lambda_{ex} = 365$ nm); [2a] = 10 ⁻⁴ M. Figure 4.11. Photoluminescence (PL) spectra of 2c in different THF/water ratios (listed as % water content). Inset: aggregates	307
2c with $\lambda_{ex} = 432$ nm in THF and $\lambda_{ex} = 440$ nm in the film state. Figure 4.10. Photoluminescence (PL) spectra of 2a in different THF/water ratios (listed as % water content). Inset: aggregates under UV light ($\lambda_{ex} = 365$ nm); [2a] = 10 ⁻⁴ M. Figure 4.11. Photoluminescence (PL) spectra of 2c in different THF/water ratios (listed as % water content). Inset: aggregates under UV light ($\lambda_{ex} = 365$ nm); [2c] = 10 ⁻⁴ M. Figure 4.12. TGA thermograms of 2a-c measured under N ₂	307 307

Figure 4.15. DSC trace of 2a measured under N ₂ (30-600 °C, scan rate = 10 °C/min).	312
Figure 4.16. DSC cycles of $2a$ measured under N_2 .	313
Figure 4.17. DSC trace of 2c measured under N ₂ (30-600 °C, scan rate = 10 °C/min).	314
Figure 4.18. Calculated HOMO/LUMO plots for 2a (top) and 2c (bottom).	315
Figure 4.19. Calculated HOMO/LUMO plots of 3b.	316
Figure 4.20. ¹ H NMR (in CDCl ₃) spectrum of compound 2a.	332
Figure 4.21. ¹³ C{ ¹ H} NMR (in CDCl ₃) spectrum of compound 2a.	332
Figure 4.22. ¹ H NMR (in CDCl ₃) spectrum of compound 2b.	333
Figure 4.23. ¹³ C{ ¹ H} NMR (in CDCl ₃) spectrum of compound 2b.	333
Figure 5.1. Structures of the spirocyclic germafluorene- germoles 1-7.	341
Figure 5.2. Possible co-monomers for future polymerization trials with BPin-capped SGG.	343
Figure 5.3. Structures of polymers 8-10.	344
Figure 5.4. White-light-emitting compound reported by Chi and co-workers.	347
Figure 5.5. Structures of tellurophenes 14 and 15.	349

List of Symbols, Nomenclature or Abbreviations

$\{^nX\}$	Decoupled nucleus ⁿ X
2D	2-Dimensional
Å	Ångström
ACQ	Aggregation-Caused Quenching
AIE	Aggregation-Induced Emission
Ar	Aryl
avg.	Average
bipy	2,2'-bipyridine
br	Broad
Вр	Boiling point
BPin	Pinacolborane
°C	Degrees Celsius/centigrade
ca.	circa; approximately
Cl ₂ -py	2,6-dichloropyridine
COD	1,5-cyclooctadiene
Ср	Cyclopentadienyl ligand (η^5 -C ₅ H ₅)
Cp*	Tetramethylcyclopentadienyl ligand (η^5 -C ₅ Me ₅)
Су	Cyclopentyl ligand
d	Doublet
dba	dibenzylideneacetone
dd	Doublet of Doublets

DFT	Density Functional Theory
DMAP	4-Dimethylaminopyridine
DMF	N,N-Dimethylformamide
dppe	Ethylenebis(diphenylphosphine)
dppf	1,1'-Ferrocenediyl-bis(diphenylphosphine)
DSC	Differential Scanning Calorimetry
dt	Doublet of Triplets
EL	Electroluminescence
EPR	Electron Paramagnetic Resonance
equiv.	Equivalent
Et	Ethyl (C ₂ H ₅)
Et ₂ O	Diethyl ether
eV	Electron volt
Fl	Fluorene
FT-IR	Fourier Transform Infrared Spectroscopy
g	Gram
GRIM	Grignard Metathesis
GPC	Gel Permeation Chromatography
НОМО	Highest Occupied Molecular Orbital
Hz	Hertz
ⁱ Bu	iso-butyl (Me ₂ CHCH ₂)
ⁱ Pr	iso-propyl (Me ₂ CH)
IR	Infrared

K	Kelvin
kcal	Kilocalorie
LUMO	Lowest Unoccupied Molecular Orbital
Me	Methyl (CH ₃)
Mes	Mesityl
mg	Milligram
MHz	Megahertz
min	Minute
mL	Millilitre
mmol	Millimole
mol	Mole
Мр	Melting point
ⁿ Bu	<i>n</i> -butyl (C ₄ H ₉)
${}^{\mathrm{n}}\boldsymbol{J}_{\mathrm{AB}}$	n-bond AB coupling constant
M _n	Number average molecular weight
$M_{\rm w}$	Weight average molecular weight
NBS	N-Bromosuccinimide
NMR	Nuclear Magnetic Resonance
LDA	Lithium diisopropylamide
LED	Light-Emitting Device
OLED	Organic Light-Emitting Device
PDAF	Poly(9,9'-dialkylfluorene)
PDI	Polydispersity Index

PF	Polyfluorene
Ph	Phenyl (C ₆ H ₅)
PL	Photoluminescence
PLED	Polymer Light-Emitting Device
ру	Pyridine
ppm	Parts per million
S	Singlet
^s Bu	sec-butyl
SGG	Spirocyclic Germafluorene-Germole
t	Triplet
TBAF	Tetrabutylammonium fluoride
^t Bu	tert-butyl (Me ₃ C)
td	Triplet of Doublets
T _d	Thermal decomposition
TGA	Thermogravimetric Analysis
THF	Tetrahydrofuran
TMEDA	N,N,N',N'-Tetramethylethylenediamine
TPA	Triphenylamine
UV/Vis	Ultraviolet/Visible spectroscopy
VS.	Versus
XPhos	2-Dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl
δ	Partial charge or chemical shift in ppm
λ	Wavelength

λ_{ex}	Excitation wavelength
λ_{emis}	Emission wavelength
λ_{max}	Wavelength of maximum absorbance
η	Eta; the number of atoms through which a ligand coordinates
σ	Sigma
τ	Luminescence Lifetime
Φ	Luminescence Quantum Yield

Chapter One: Introduction
1.1. Brief overview of metallacycles

Metallacyclic compounds play a major role in the development of synthetic chemistry.¹ The most common synthetic route to metalcontaining rings is cyclometallation (Equation 1.1),² where a M-C bond is formed during the cyclization process.^{3,4} Selected examples of catalytically active metallacycles (**1-5**) are presented in Figure 1.1.

Heterocycles containing transition metals are known to activate olefins and acetylenes in catalytic processes (*e.g.*, complex 1),⁵ as well as for the electro- and photochemical reduction of water to hydrogen⁶ (*e.g.*, complex 2), cycloadditions,⁷ and different functionalization reactions.⁸ Moreover, five-membered heterocyclic compounds containing transition metals such as Pt, Pd, Rh, Ir, Ru, Os and Au, as well as N, P, O and S-coordinating atoms (*e.g.*, **3** and **4**) have been extensively explored as anticancer agents.⁹ Cyclometallated platinum(II),¹⁰ iridium(III)¹¹ and relatively unexplored gold(III) complexes (**5**)¹² have been explored in organic light-emitting devices as efficient phosphorescent luminophors with tunable color emission.

Figure 1.1. Selected examples of metallacycles.

Metallacycles have been thoroughly explored as building blocks in supramolecular chemistry,¹³ where one of the main goals is to develop molecular architectures that have similar properties to natural systems.¹⁴ Recent examples include chiral metallacycles that mimic natural enzymes,¹⁴ metallacycles for fullerenes hosts¹⁵ and supramolecular coordination complexes, obtained through coordination-driven selfassembly.¹⁶ The latter also have been highlighted as an important strategy for synthesis of fluorescent metallacycles and metallocages for ion detection.¹⁷

Metallacycles have become a major area of investigation in organometallic chemistry, and are normally generated *in situ* during reductive coupling of two unsaturated organic substrates on a low valent transition metal center.¹⁸ Zirconacycles are useful synthons¹⁹ for the onestep preparation of carbocycles (important precursors in the synthesis of natural products and functional materials),²⁰ cyclic ketones,²¹ pyridine and benzene derivatives,^{1b} as well as polyacenes with electrical conductivity.^{18b} Recent advances in the chemistry of group 4 metallacycles have been highlighted in multiple reviews by Tilley,²² Tanabe²³, Takahashi,²⁴ and Rosenthal.²⁵

Another useful reaction of zirconacycles is Fagan-Nugent transformation,²⁶ affording main group element heterocycles with a wide range of applications from nitroaromatic explosives detection²⁷ to organic light-emitting devices.²⁸ Zirconacyclopentadienes, related heterocycles and their properties will be discussed in detail in the next section as these species play a central role in advancing the chemistry described in this Thesis.

1.2. Metallacycle transfer

1.2.1. Zirconacyclopentadienes

In the 1970s, Rausch and Floriani first reported the reductive coupling of the group 14 metallocenes $Cp_2M(CH_2)_2$ or $Cp_2M(CO)_2$ (M = Zr, Ti, Hf; $Cp = \eta^5 \cdot C_5H_5$) with alkynes to give symmetrically tetrasubstituted metallocyclopentadienes $Cp_2MC_4R_4$.^{29,30} In 1961, the first tetraaryl-substituted zirconacyclopentadiene $Cp_2ZrC_4Ph_4$ was synthesized by Braye and Hübel from the condensation reaction between zirconocene dichloride (Cp_2ZrCl_2) and 1,4-dilithio-1,2,3,4-tetraphenylbutadiene; this latter reagent can be prepared from diphenylacetylene and finely divided lithium metal.³¹

The field of zirconacyclopentadienes has grown immensely due to extensive development of various formally low-valent zirconium(II) precursors, many of which can be generated and used *in situ*. Examples of reactive sources of "Cp2Zr(II)" include Cp2ZrCl2/Na,³² Cp2ZrCl2/Mg,^{30b} Cp₂ZrCl₂/Ln (Ln is an alloy of Ce, La, Nd, and Pr),³³ Cp₂ZrBu₂ (Negishi's reagent).35 reagent),³⁴ Cp_2ZrEt_2 (Takahashi's and Cp₂Zr(py)(Me₃SiCCSiMe₃) (Rosenthal's reagent).³⁶ Insights into the reaction of Cp₂ZrCl₂ with ⁿBuLi to give the commonly used zirconacycle precursor Cp₂ZrBu₂ were provided by both the Negishi and Harrod groups. First, Negishi and co-workers reported the reversible displacement of Cp⁻ from a zirconium center during the reaction of excess ⁿBuLi (3 equiv.) with Cp₂ZrCl₂, leading to the formation of a 1:1 mixture of CpZrBu₃ and LiCp.³⁷ Meanwhile, Harrod and co-workers studied decomposition of the reaction mixture of initially generated Cp₂ZrBu₂ (*i.e.*, "Cp₂Zr" source) at room temperature, where predominantly Zr(III) (7 and 8) and Zr (IV) (6 and 9) products were identified and characterized by EPR or multidimensional, multinuclear NMR spectroscopy (Scheme 1.1).38

1.2.2. Synthesis of bicyclic zirconacycles

When linked diynes are reacted with Cp₂Zr(II) sources, one can obtain bicyclic zirconacycles; a general mechanism for this reaction is presented in Scheme 1.2. Investigation of the mechanism was performed by Negishi^{30c} and Takahashi,³⁹ using alkynes. In the reaction of "Cp₂Zr" with two equivalents of PhC=CPh, zirconacyclopropene **10** (product of oxidative coupling) was trapped by stabilization with electron-donating phosphines PR₃ (PR₃ = PMe₃ and PMePh₂), and characterized by X-ray crystallography. Isolation of **10** supports the mechanism (Scheme 1.2), involving the initial generation of a zirconacyclopropene followed by its intramolecular carbometallation with the remaining free alkyne moiety of a diyne.^{30c} In the proposed mechanism by Negishi and co-workers^{30c} and later confirmed by DFT calculations from Tilley group,⁴⁰ the ratedetermining step in the reaction of Cp₂ZrCl₂ with ⁿBuLi in the presence of diyne³⁴ is formation of "Cp₂Zr". "Cp₂Zr" is a 14-electron species with two valence-shell empty orbitals and at least one filled nonbonding orbital for π -complexation/carbometallation of diyne, leading to the formation of a zirconacycle.^{30c, 34, 37b, 41}

Scheme 1.2. Mechanism of formation of a zirconacycle. Structure of the isolated zirconacyclopropene **10**.

[Adapted with permission from Negishi and co-workers, *Tetrahedron Lett.* **1986**, *27*, 2829-2832 and *J. Am. Chem. Soc.* **1989**, *111*, 3336-3346. Copyright 1986 ScienceDirect and 1989 American Chemical Society].

Asymmetric zirconacycles can be obtained either by the step-wise addition of two different alkynes or by addition of two equivalents of an asymmetrically-substituted alkyne ($R^1-C\equiv C-R^2$). In the former case, Takahashi and co-workers⁴² found that Cp₂ZrEt₂ or Cp₂ZrBu₂ in the presence of ethylene gas could be used to obtain unsymmetrical zirconacycles (Scheme 1.3). It is worth noting that when using Cp₂ZrEt₂ as a precursor (generated *in situ* from Cp₂ZrCl₂ and EtMgBr) small amounts (up to 10 %) of homocoupled alkynes (diynes) as well as low yields of cross-coupling products for silyl-substituted alkynes were reported,³⁵ while Cp₂ZrBu₂ in the presence of ethylene gas gave excellent selectivity and yields for β , β -isomer (Scheme 1.4).^{30d}

Scheme 1.3. Synthesis of asymmetrical zirconacycles using two different alkynes.

[Adapted with permission from Takahashi and co-workers, *Bull. Chem. Soc. Jpn.* **1999**, *72*, 2591-2602. Copyright 1999 The Chemical Society of Japan].

In the case of asymmetrical alkynes, substituents can adopt $\alpha\alpha$, $\alpha\beta$ or $\beta\beta$ positions on a metallocyclopentadiene ring (Scheme 1.4), and Tilley's group investigated the regioselectivity of the reaction based on the steric and electronic nature of the substituents. Using Erker's findings about the reversibility of zirconacycle formation in the presence of SiMe₃/^tBu-substituted alkynes,⁴³ Tilley and others reported that sterically demanding substituents (*e.g.*, R₃Si, ^tBu,⁴⁴ PPh₂⁴⁵) prefer to occupy α positions, while electron-withdrawing (*e.g.*, C₆F₅, mesityl) prefer β -positions, whereas mesityl groups (due to their steric bulk) also promote the reversibility of alkyne couplings.²² Indeed, based on the step-wise mechanism (Scheme 1.5), both steric and electronic factors influence the structure of the transition state, and thus, the substitution pattern in the final product. For instance, based on multidimensional NMR spectroscopy

studies and DFT calculations of the isomers, Tilley and co-workers rationalized that in the case of an electron-withdrawing C₆F₅ group, electronic factors (*i.e.*, charge distribution in the transition state) controls the orientation of at least one alkyne as they are coupled. During the formation of an asymmetric transition state, which has two unequally activated alkyne moieties, one strongly and one weakly bound alkyne is present at the zirconium center. This β , β -regioselective coupling reaction with C₆F₅-substituted alkyne was used to obtain electron-transporting conjugated polymers (*e.g.*, **11**).⁴⁰

Scheme 1.4. Possible isomers of zirconacycles derived from coupling asymmetric alkynes. Structure of the conjugated polymer 11. [Adapted with permission from Tilley and co-workers, *Acc. Chem. Res.* 2011, *44*, 435-446. Copyright 2011 American Chemical Society].

Scheme 1.5. Step-wise mechanism of alkyne coupling to form asymmetric zirconacycles.

[Adapted with permission from Tilley and co-workers, *Acc. Chem. Res.* **2011**, *44*, 435-446. Copyright 2011 American Chemical Society.]

Zirconacycles are used in the synthesis of challenging organic compounds through reactions with different electrophiles to prepare benzene derivatives,⁴⁶ (hetero)acenes,⁴⁷ indenes,⁴⁸ fluorenes,⁴⁸ pyridines,⁴⁹ multi-substituted dienes,⁵⁰ enones,⁵¹ and linear trienes.⁵² Selected synthetic transformations are presented in Scheme 1.6. The transformation of greatest relevance to this Thesis is the reaction stated at the beginning of this Introduction, namely the preparation of inorganic element-containing five-membered metalloles via formal zirconium-element exchange.

Scheme 1.6. Selected synthesis of organic compounds using zirconacycles.

1.3. Metalloles: synthesis and challenges

Metalloles are derivatives of cyclopentadiene whereby a methylene unit is replaced by a main group element (E), such as S, Se, Te, N, P, As, Sb, Bi, Si, Ge, Sn, B, Al, Ga and others.⁵³ In 1988 William Nugent and Paul Fagan first reported the synthesis of main group five-membered heterocycles through the transfer of a butadiene fragment from zirconacyclopentadienes to main group elements, a process known as *metallacycle transfer* (Equation 1.2).²⁶ In general, these metallole syntheses are facile and versatile.⁵⁴ However due to low nucleophilicity of zirconacycles,⁵³ there are some reaction scope limitations, as evidenced by the very slow reaction of some p-block element halides with less polar E-X bonds. For example, SiBr₄ reacts with Cp₂ZrC₄Me₄ over two days at 150 °C to give only a 28 % yield of the resulting silole, Br₂SiC₄Me₄.⁵⁴

$$Cp_{2}Zr$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

Nugent and Fagan proposed various transition states for metallacycle transfer (Figure 1.2) based on the coordination number of the starting main group halide. Accordingly the authors emphasized that coordinative unsaturation and low steric bulk at the main group center facilitates metallacycle transfer. Also as one descends a group, the weaker nature of the E-X bonds coupled with the generally larger sizes of the main group elements leads to much faster reactivity.⁵⁴

Figure 1.2. Proposed transition states during the first step of metallacycle transfer.

[Adapted with permission from Fagan and co-workers, *J. Am. Chem. Soc.* **1994**, *116*, 1880-1889. Copyright 1994 American Chemical Society.]

In order to expand the substrate scope and increase the effectiveness of metallacycle transfer, other strategies have been developed (Scheme 1.7) such as: a) transmetallation with 1,4-dilithio-1,3-butadienes⁵⁵ and b) copper-mediated transmetallation.⁵⁶ In general these alternate methods afford more reactive Li-C and Cu-C bonds in relation to

the Zr-C bonds in zirconacyclopentadienes. Specifically protocols a/b outlined in Scheme 1.7 were used to gain access to boroles (routes A,⁵⁷ B⁵⁸), alumoles (A),⁵⁹ siloles (A),⁶⁰ stannoles (B),⁶¹ pyrroles (A,⁶² B^{63,64}), stiboles (A),⁶⁵ bismoles (A),⁶⁶ and thiophenes (B).⁶⁷

Scheme 1.7. Alternative approaches for metallole formation.[Adapted with permission from Xi and co-workers, *Acc. Chem. Res.* 2015, *48*, 935-946. Copyright 2015 American Chemical Society.]

Metalloles are of interest in understanding the fundamental reactivity profiles of inorganic heterocycles such as the Diels-Alder [4+2] cyclodimerization of boroles.⁶⁸ Metalloles are also frequently used as building blocks for optoelectronic materials⁶⁹ including in photovoltaic devices,⁷⁰ organic light-emitting diodes,⁷¹ organic field effect transistors,⁷² chemical sensors, and in bioimaging materials.⁷³ The main focus of this Thesis is synthesis and optoelectronic properties of new germoles and tellurophenes, and pertinent review articles discussing other group 14 and 16 element-containing heterocycles can be found in the literature.^{53, 74}

1.4. Germoles: an overview

1.4.1. Synthesis

Germoles (or germacyclopentadienes) are π -building blocks with unique electronic and optical properties. One characteristic feature of these species is the presence of a low-lying LUMO due to $\sigma^*-\pi^*$ conjugation in the ring, arising from effective mixing of the σ^* orbitals of two exocyclic Ge-C bonds and the π^* orbital of the butadiene moiety of the fivemembered ring (Figure 1.3).⁷⁵ In comparison to the lighter silicon congeners (siloles), the energies of the Ge-R and Si-R σ^* orbitals are similar, leading to comparable LUMO levels in each heterocycle. The germanium atom also stabilizes/lowers the HOMO level of the diene compared to the carbon analogues⁷⁵, thus possibly increasing the thermal stability of germoles.

Figure 1.3. Left: π^* orbital diagram of the butadiene moiety in a germole. **Right:** "Sideview" of interaction of Ge with two exocyclic ligands (*i.e.*, σ^* orbital of exocyclic Si-C bonds) and the resulting $\sigma^{*-} \pi^*$ orbital overlap.

The first germole derivative (Ph₂GeC₄Ph₄, **12**) was reported by Leavitt and co-workers in 1959 from the reaction of Ph₂GeCl₂ with 1,4dilithiotetraphenylbutadiene.⁷⁶ In 1969 Curtis used a similar salt elimination reaction method to prepare a series of functionalized tetraphenylsubstituted germoles **13-17**⁷⁷ (Figure 1.4) and characterized these materials by elemental analysis. Since this important early work, interest in germacyclopentadienes has grown rapidly and a number of derivatives are now known (see Figures 1.4-1.6).⁷⁸

Figure 1.4. Representative examples of germoles.

Selected examples of germoles obtained by the initial dimerization of functionalized acetylenes in the presence of lithium metal (13-27) (Equation 1.3), followed by Fagan-Nugent transmetallation (28-37) are presented in Figure 1.4.

Electrochemical investigation of the germoles **19**, **20** and **22** showed at least two irreversible oxidation waves and a dependence of the oxidation potential on the nature of the germanium-bound substituents in the germacyclopentadiene ring. For example, compound **22**, bearing two electron-donating SiMe₃ groups, has an increased HOMO energy level and decreased oxidation potential when compared to **19** which has electron-withdrawing Cl groups at the germanium atom.⁷⁹ Density functional theory (DFT) was used to compute the electronic structures of **18** and **20** and showed that the HOMO and LUMO levels are mainly localized in the germole ring and on the two phenyl groups at the 2,5-positions.⁸⁰

Scheme 1.8. Diels-Alder reaction of germole 20.

Germoles 18, 20 and 24 also take part in Diels-Alder cycloaddition reactions with different dienophiles (e.g., 20 with tetracyanoethylene, Scheme 1.8) to form 7-germanorbornadienes and 7-germanorbornenes, and the generated norbornenes were shown to be viable precursors for generation of reactive germylenes $(R_2Ge:)$.⁸¹ Tilley and co-workers reported a reaction between $(Me_3Si)(Me)GeC_4Me_4$ (**29**) and TaCl₅ to give an η^4 -germole ligand instead of the target η^5 -germolyl tantalum complex **38** (Equation 1.4).^{78f}

Synthetic routes to germoles are not limited to the Fagan-Nugent metallacycle transfer reaction or to the coupling of 1,4-dilithiobutadienes with germanium halides. For example the asymmetrically-substituted germoles **39-41** were obtained from the reaction of the heavy carbene analogue dimethylgermylene, Me₂Ge, with the corresponding alkynes (Scheme 1.9).⁸² In addition, the 1,1-dihydro-germole **42** was synthesized via UV irradiation of matrix isolated 1,1-diazido-1-germacyclopent-3-ene (Scheme 1.9)⁸³ while the tetrahydrogermoles (R₂GeC₄H₄; R = Me, Mes or ⁿBu; **43-45**) were obtained from the palladium-catalyzed coupling of cyclogermanes (*e.g.*, (Mes₂Ge)₃) with acetylenes (Figure 1.5).⁸⁴

Scheme 1.9. Synthesis of germoles 39-42.

Figure 1.5. Selected examples of symmetric and asymmetric 2,5- and 3,4-substituted germoles.

Germoles functionalized exclusively at the 2- and 5-positions were obtained in good yield by Murakami and co-workers through the ruthenium-catalyzed (*i.e.*, [Cp*Ru(MeCN)₃]PF₆) trans-hydrogermylation of 1,3-diynes with dihydrogermanes (Ph₂GeH₂). The same strategy was successfully applied to synthesis of 2,2'-bigermoles.⁸⁵ Moreover, the area of 3,4-substituted germoles was extensively developed in the 1980s by Dubac and Manuel.⁸⁶ These germoles were obtained by the dehydration of 1-germacyclopent-4-en-3-ols on alumina (290-300 °C) or from the thermolysis of 1-germa-3-phenylcarbamoycyclopent-4-enes to give compounds **49-52** in good yield. The 3,4-substituted germoles obtained readily formed π -complexes with electron deficient metal carbonyls to give compounds of the general form (η^4 -metallole)M(CO)₃ (M = Fe or Ru).⁸⁷

Tobitsu and Chatani developed a modular synthesis of benzogermoles (*e.g.*, **53-57**) through the Rh(I)-catalyzed activation of C(sp³)-Ge bonds in 2-germylphenylboronic esters in the presence of alkynes (Scheme 1.10).⁸⁸ Germoles with electron-deficient -BEt₂ substituents at the 3-position **59-63** (Scheme 1.10) were prepared by Wrackmeyer via the 1,1-organoboration of alkyn-1-ylmetal compounds Me₂Ge-C=C-R¹ (R¹ = alkyl, aryl, silyl, or stannyl). The syntheses involved intermolecular and then intramolecular activation of the M-C bonds by electron-withdrawing triorganoborane BEt₃, followed by a selective new C-C bond formation via a 1,2-shift of an ethyl group from boron to carbon (Scheme 1.10).^{78e, 89}

Scheme 1.10. Synthesis of germoles **53-62**. Mechanism of Wrackmeyer transformation.

1.4.2. Anionic germoles and the question of their aromaticity

The synthesis, structures, physical and chemical properties of mono- and dianions of germoles were extensively studied by Saito, West and Boudjouk.⁹⁰ Dianionic germoles are considered aromatic, while in contrast to the monoanionic siloles, there is no evidence of aromaticity within monoanionic germoles with the pyramidal geometries at the germanium atom (Figure 1.6).

Figure 1.6. Synthesis of monoanionic germoles.

Reduction of 1,1-dichloro-derivatives **19** and **31** with excess lithium in THF gave the dianionic germoles Li₂GeC₄R₄ with η^5 - and η^1/η^5 coordination modes of lithium and equal C-C distances within the germole ring (*i.e.*, delocalized π -system), as determined by X-ray crystallography.⁹¹ The related dilithioplumbole Li₂[PbC₄Ph₄] (**63**) was prepared by Saito and co-workers through the reduction of hexaphenylplumbole, and is the heaviest congener of the cyclopentadienyl dianion. This species was shown to have aromatic-type bonding in the PbC₄ ring by X-ray crystallography, NMR spectroscopy and theoretical calculations.⁹² Moreover, Dysard and Tilley studied the coordination of the tetramethylgermole dianion [GeC₄Me₄]²⁻, and demonstrated binding of this dianion to one metal (*e.g.*, Hf and Zr) in a η^5 -fashion,⁹³ or to two metals (e.g., Hf/Rh and Hf/Ir) to yield bimetallic complexes with metals in σ,π -binding modes.⁹⁴ West and co-workers used [GeC₄Ph₄]²⁻ in the reductive coupling of aldehydes to obtain 1,2-diols as the sole organic product.⁹⁵

1.4.3. Molecular diaza-, dinaphto-, dithieno-, and diselenogermoles, and polymers of germoles, and their optoelectronic applications

The Heinicke group prepared various diazagermoles (**64-66**; Figure 1.7) which can be viewed as heavier homologues of diaminocarbenes.⁹⁶ Dinaphthoheteroles are of interest for their optoelectronic properties, thus Kurita and co-workers synthesized the first examples of optically active group 14 dinaphthogermoles (Figure 1.7). These species were prepared by a condensation reaction between 2,2'dilithio-1,1'-binaphtyl and dichlorogermanes (Equation 1.5). Compounds **67** and **68** are fluxional on the NMR time scale at elevated temperatures (50-80 °C) and the estimated energy barrier for racemization in **68** is $80 \pm$ 2 kJ mol^{-1.97}

Figure 1.7. Selected examples of diaza- and dinaphthogermoles.

Element-bridged bithiophenes have been extensively used as building blocks in π -conjugated oligomers and polymers.⁹⁸ This planar and potentially conjugated unit shows novel properties when bridging inorganic elements are present. For example the incorporation of germanium has attracted great interest due to enhanced interchain interaction within the resulting dithienogermoles in the solid state, leading to useful carrier transporting properties. In addition, interaction of the π^* orbitals in bithiophene with the σ^* -symmetric orbitals at germanium leads to significant lowering of the LUMO energy level and smaller HOMO-LUMO energy gaps.⁹⁹ For this reason, dithienogermoles (DTGs) (Figure 1.8) have been actively studied in organic photovoltaics by Ohshita,¹⁰⁰ Leclerc,¹⁰¹ Reynolds,¹⁰² Heeney,¹⁰³ and others.¹⁰⁴

Figure 1.8. Common dithienogermole (DTG)-containing polymers in organic photovoltaics.

A general synthetic route to DTG units is presented in Scheme $1.11.^{100a, 102a, 105}$ Compounds with this π -system exhibit higher stability to bases in comparison to their silicon analogues, thus facilitating purification by column chromatography.¹⁰⁵ The Reynolds group also developed a modular synthesis of an array of DTGs with variable alkyl chain lengths via olefin cross-metathesis followed by hydrogenation (Scheme 1.12); this procedure affords dithienogermoles with alkyl chain substituents not readily available using traditional methods.¹⁰⁶

Scheme 1.11. Synthesis of functionalized dithienogermoles.

Scheme 1.12. Synthesis of DTG derivatives via olefin cross-metathesis.

Recently Heeney reported DTG-based the group bulk heterojunction solar cells with power conversion efficiencies (PCEs) as high as 7.2 % without the need for thermal annealing or processing additives.¹⁰⁷ Interestingly, in the same area of photovoltaics, donoracceptor polymers based on dithienogermolocarbazole (e.g., 69; Figure 1.9) were made with recorded power conversion efficiencies of 4.05-4.50 %.¹⁰⁸ Furthermore, benzodiselenogermoles (70-75; Figure 1.9) were reported by Meunier and co-workers in 1991.¹⁰⁹ Heavier analogues of DTGs, diselenogermoles (DSGs), have also been explored as donor monomer units in low band gap conjugated polymers, leading to broader and more red-shifted absorption spectra in comparison to DTG analogues; polymer 76 was used a component in an inverted bulk heterojunction solar cell with a power conversion efficiency of 5.2%.¹¹⁰

Figure 1.9. Selected examples of germole derivatives (69-76).

Germole heterocycles are also excellent candidates for electron transport materials due to their low-lying LUMO states. For instance, their lighter analogues, siloles, have similar LUMO energies as commonly used the nitrogen-containing electron transport materials (*e.g.*, 1,3,4-oxadiazole) in electroluminescent devices.¹¹¹

Another fascinating application of group 14 heterocycles is the detection of nitroaromatic explosives by photoluminescent polygermoles (77-79; Figure 1.10).^{27, 112} The blue-green fluorescent polymer 77 was obtained by the dehydrocoupling polycondensation of dihydrotetraphenylgermole 18 with either 0.2 mol % of H₂PtCl₆·xH₂O and an excess of cyclohexene or 1 mol % of Wilkinson's catalyst RhCl(PPh₃)₃;¹¹³ Wurtz-type polycondensation of dihalogermoles can also yield polymers 77 and 78.¹¹² Photoluminescence quenching within 77-79 may be monitored to detect nitrobenzene, 2,4-dinitrotoluene, 2,4,6trinitrotoluene and picric acid.^{27, 112} Wurtz-type coupling was used by Tomita *et al.*¹¹⁴ to obtain a 1,1-dimethylgermole-containing polymer with a low lying LUMO of -3.95 eV, which is lower compared to the LUMO

level of -2.59 eV in the thiophene-containing polymer **80**; as mentioned, a low-lying LUMO is preferred for an electron-transporting layer in organic semiconductors.¹¹⁵

Figure 1.10. Selected examples of polymers and macrocycles containing germoles and structure of the thiophene polymer **80**.

The Tilley group reported the germole-incorporated conjugated polymer **81** via zerovalent nickel-mediated Yamamoto homocoupling of a dibromo-capped precursor (Equation 1.6). Polymer **81** displayed photoemission properties that were strongly dependent on chain length, where the sample with the highest molecular weight (M_n) of 20,000 strongly emitted green light with a quantum yield of 79 %.¹¹⁶ The same group has also developed the synthesis of trigermole macrocycles **82-84** using the zirconocene "Cp₂Zr" coupling of alkynes, followed by subsequent Zr/Ge transmetallation; these compounds might be useful as supramolecular building blocks.¹¹⁷ In addition, Tang and co-workers reported hyperbranched poly(phenylenegermolene)s, which had excellent

thermal stabilities (> 350 °C) and cooling-enhanced blue light emission properties (due to restricted intramolecular motions of the phenyl peripheries at low temperatures).¹¹⁸

1.5. Tellurophenes: an overview

1.5.1. Synthesis of tellurium heterocycles

First reported attempt to prepare a tellurium heterocycle was in 1933,¹¹⁹ however only in 1966 did Mack isolate examples of tellurophenes (**85-88**) via the reaction of functionalized 1,3-butadienes with Na₂Te (Scheme 1.13).¹²⁰ In addition, the dibromide derivative **89** was obtained upon treatment of **85** with elemental bromine; this species could be reconverted into tellurophene **85** by addition of HSO₃⁻ (Scheme 1.13).¹²⁰ Until very recently, Mack's tellurophene synthesis remained one of the most commonly used routes, although synthetic procedures have been improved over the years.¹²¹ Recent developments include *in situ* synthesis of Na₂Te from NaBH₄ and elemental tellurium.¹²² Another synthetic method, discovered by our group and highlighted in reviews by Rivard^{74d} and Xi,⁵³ involves metallacycle transfer chemistry, *i.e.*, zirconacycle formation and subsequent Zr/Te transmetallation with THF-soluble

TeCl₂·bipy¹²³ (bipy = 2,2'-bipyridine) to obtain a range of tellurium heterocycles (**90-95**).

Scheme 1.13. Synthesis of tellurophenes **85-89** and reversible bromination of **85**.

Figure 1.11. Selected examples of tellurophenes and benzotellurophenes prepared in the Rivard group.

Vargas showed [2+2] photosensitized cycloadditions of functionalized maleic anhydrides with tellurophenes.¹²⁴ In recent years McCormick, Carrera and Seferos studied the photochemistry of tellurophenes in detail, including the reversible oxidation of Te(II) heterocycles to Te(IV) halogenated derivatives;¹²⁵ the same group also prepared water-soluble tellurophenes for water splitting¹²⁶ and uncovered a detailed mechanism

associated with the light-driven loss of halogens from dihalogenated tellurophenes (see Scheme 1.13).¹²⁷ Tellurium macrocycles,¹²⁸ specifically porphyrins with embedded tellurophene fragments,¹²⁹ have been shown to have anticancer activity, and this topic has been recently reviewed.¹³⁰ Tellurium-based monocationic compounds (*e.g.*, **96** after oxidation with 1 equivalent of Cu(ClO₄)₂) have been explored in charge delocalization phenomena of π -complexes¹³¹ and as potential charge-conducting species (*e.g.*, **97**; Figure 1.12).^{131,132} In 2012, the Tokitoh group was the first to isolate and study a tellurenyl (II) cation (**98**) by trapping with triphenylphosphane or butadienes (**99**; Figure 1.12).¹³³

Figure 1.12. Structures of monocationic tellurophenes 96 and 97 as well as the tellurenyl (II) cation 98 and the butadiene-trapped 99.

1.5.2. Polytellurophenes and their application in organic electronics

Tellurium-containing polymers have attracted attention from the materials community for the following reasons: (1) high polarizability and dielectric constants stemming from the presence of the heavy element, tellurium (Te); (2) narrow HOMO-LUMO gap (1.4-1.6 eV) in

polytellurophenes leading to light absorption that extends to the near IRregion and more efficient solar light harvesting; (3) strong Te…Te intermolecular interactions leading to enhanced interchain electronic coupling and facilitation of charge transport;^{74e} and (4) light-emission that is phosphorescent in nature, giving potential enhancement of LED efficiencies up to 100 % compared the maximum value of 25 % found in fluorescent emitters.^{74d}

The first oligotellurophenes **100** and **101** were obtained as yellow/orange solids by the chemical oxidation of **85**.¹³⁴ The electrochemical polymerization of the parent tellurophene **85** as well the dimer and trimers **100** and **101** afforded the insoluble polytellurophene **102** as a black material with conductivities in the range of 10^{-5} - 10^{-12} S cm⁻¹.^{134,135}

Figure 1.13. Parent oligo- and polytellurophenes.

During the past decade, improvements in synthetic protocols enabled the isolation of various soluble polytellurophenes including the landmark preparation of poly(3-alkyl)tellurophenes by Jahnke and Seferos at the University of Toronto (Scheme 1.14).¹³⁶ Other groups were also able to install reactive functional groups onto tellurium monomers¹³⁷ (Scheme 1.15) allowing for the synthesis of a variety of copolymers using known cross-coupling methodologies.¹³⁸ The most recently class of tellurophene-copolymer are the donor-acceptor diketopyrrolopyrrole-tellurophene (DPP-Te) polymers (**103**) by Grubbs¹³⁹ and others.¹⁴⁰ These materials were tested in a range of optoelectronic devices, including within bulk heterojunctional solar cells, leading to a record power conversion efficiency of 4.4 % for a tellurium-containing donor layer.¹³⁹ It is important to note that preparation of pinacolborane-functionalized monomers by Rivard and coworkers (*via* metallaycle transfer chemistry; Figure 1.11)^{138c} for Suzuki-Miyaura polymerization avoids the use of gaseous 1,3-butadiyne or Na₂Te, and overcomes the challenges related to competing oxidation chemistry at tellurium centers when preparing functionalized monomers.^{74d}

Scheme 1.14. Synthesis of 3-alkyltellurophenes and their polymeric analogues.

Scheme 1.15. Functionalized tellurophene monomers and the diketopyrrolopyrrole-tellurophene DPP-Te polymer 103.

In early 2015 Carrera and Seferos published an excellent review article about tellurium-containing homo- and copolymers and their role in high performance applications, such as in organic photovoltaics and field-effect transistors.^{74e} Since then, the Seferos group has developed a method to achieve controlled living polymerization of alkyltellurophenes with number average molecular weights (M_n) of up to 25 kDa, ¹⁴¹ and studied them in high density polyethylene blends (*i.e.*, semiconductor:insulator blends) to understand their structure-property-function relationship and develop active layers for electronic devices.¹⁴²

Recently tellurium heterocycles have emerged as a new class of light-emitting materials and the luminescence properties of these species will be discussed in Section 1.6.2.

1.6. The Aggregation-induced Emission (AIE) phenomenon

Aggregation-caused quenching (ACQ) is a phenomenon commonly observed in planar aromatic hydrocarbons (e.g., pervlene), wherby luminescence is often weakened or quenched at high concentrations or in the solid state.¹⁴³ In 2001 Prof. Ben Zhong Tang et al. discovered that 1,1-diphenyl-2,3,4,5-tetraphenylsilole can go from being essentially non-emissive in dilute solutions to a highly luminescent state in concentrated solutions or thin films due to the formation of aggregates.¹⁴⁴ This phenomenon was termed aggregation-induced emission (AIE). The origin of the AIE phenomenon lies in the restriction of intermolecular motion of ring-appended substituents which blocks non-radiative pathways and opens up the radiative channel (*i.e.*, luminescence). Since this initial key report, there have been thousands of articles dedicated to design and synthesis of new AIE systems, including recent reviews of the area published by Tang and co-workers.¹⁴⁵ This concept is not limited to inorganic heterocycles, but can also be seen in organic frameworks, such as the widely studied tetraarylethenes.¹⁴⁶ By overcoming ACQ real world applications of AIE-active luminogens (*i.e.*, light-emitters) are possible, such as their use in organic light-emitting diodes¹⁴⁷ and as fluorescencebased bioprobes.¹⁴⁸

1.6.1. AIE effect in germoles

In early the 2000s, Tracey and Mullin actively studied heavier analogues of AIE-active siloles, such as 1,1-dimethyl- (**104**) and 1,1diphenyl-2,3,4,5-tetraphenylgermoles (**105**).¹⁴⁹ They found greater photoluminescence efficiency of germoles in solution compared to the silicon analogues (up to two magnitudes greater).^{149c} The efficiency of germole photoluminescence in the aggregated state was also 30 times greater than in their corresponding silole.^{149b} Supported by TEM measurements, Tracey and Mullin showed that the initial formation of disordered aggregates occurred in mixed-solvent systems which then rearranged to yield ordered, and highly emissive, arrays of germole nanocrystals in *ca.* 35 mins.^{149a} Recent findings in the area of AIE-active germoles have been recently reviewed in an excellent manner by Mullin and Tracey¹⁵⁰ as well as by Corey.¹⁵¹

1.6.2. AIE effect in tellurophenes – a new class of phosphorescent light-emitting units for optoelectronics

The incorporation of heavy atoms in molecular arrays is desirable due to their ability to promote light emission from triplet states, *i.e.* phosphorescence. Their large spin-orbit coupling facilitates cross-over between singlet (S) and triplet (T) excited states, termed *intersystem crossing*, thus leading to substantial population of excited triplet states T_n and enabling phosphorescence to occur. Phosphorescent luminogens potentially provide quantitative internal efficiencies of light-emitting devices (LED), when compared to fluorescent emitters (*i.e.*, their maximum internal efficiency is 25 % due to the statistical distribution of singlet states) if the emission is not quenched by: a) oxygen; b) molecular rotation in excited states leading to non-radiative pathway; and c) intermolecular self-quenching by triplet-triplet annihilation in the aggregated/solid state.^{74d} In order to overcome these challenges phosphorescent emitters are generally encapsulated/suspended in host matrices, making LED manufacturing cumbersome and limiting the amount of luminogen that can be incorporated in a device. In addition, the most common phosphorescent emitters are based on the expensive elements Pt and Ir.¹⁵²

There has been interest in replacing precious metals in phosphorescent species with the less expensive main group element, tellurium, but there are some added challenges. For example, tellurium compounds are known to form close Te····Te intermolecular interactions; these interactions facilitate charge transport but they can also enhance intermolecular self-quenching of luminescence. Consequently, most tellurophenes exhibit aggregation-caused quenching (ACQ) (discussed in Section 1.5). However, over the past decades, reports have emerged in the literature where authors describe luminescence from tellurium-based heterocycles. In 1989 Zander and Kirsch noted phosphorescence of the parent benzo- and dibenzotellurophenes **106** and **107** (Figure 1.14) in frozen ethanol at 77 K.¹⁵³ A few decades later Data *et al.* reported solid state photoluminescence (PL) at 690 nm (not indicated if under air or nitrogen) of an ethynylbenzene-bistellurophene polymer **108**, but its efficiency and nature were not investigated in detail. Other examples of organotellurium species with temperature-dependent PL are presented in Figure 1.13. For instance, compounds **109** and **110** were luminescent in frozen Me-THF at 77 K and predicted to be phosphorescent by density functional theory calculations,^{125c} while the tellurapyrylium dye **111** exhibited a 5-fold increase in fluorescence intensity in an EtOH-MeOH glass at 77 K compared to room temperature.¹⁵⁴ In addition, the 1-telluro-1,3-butadiene derivative **112** exhibits blue fluorescence with a lifetime (τ) of 3.69 ns, and a moderate quantum yield (Φ) of 42 % in frozen Me-THF at 77 K.¹⁵⁵

Figure 1.14. Selected luminescent organotellurium compounds.

In 2014 Dr. Gang He from our group discovered that the BPincapped tellurophene **90** (Figure 1.11) afforded intense green phosphorescent emission in the film state ($\phi = 12$ % and $\tau = 166$ µs) at room temperature in air.¹⁵⁶ Compound 90 was not emissive in dilute solutions, however exhibited enhancement of luminescence intensity in the aggregated/solid states, thus possessing AIE characteristics. This luminogen retained emission in matrices of poly(methylmethacrylate) (from 1 to 10 wt %). In addition, 90 could be used as an on/off reversible sensor for organic vapors. Additional investigations by modification of the substitutents on the tellurophene ring and computational methods showed that the emission in 90 occurs via singlet to triplet crossing in the excited state, and requires both a Te(II) center and a bulky BPin group to be present at the 2- or 5-positions of the heterocycle. In particular, the steric bulk of BPin substitutent prevents intermolecular interactions and selfquenching (e.g., triplet-triplet annihilation in the excited state) by keeping tellurium centers over 6 Å apart. Although benzotellurophenes have been thoroughly studied for decades,157 a follow-up study by our group included phosphorescent examples of these species (94 and 95) as well as the first examples of color tunable phosphorescent regioisomers of tellurophenes (green 91 and orange 92 with $\Phi = 5$ % in film state, Figure 1.11).¹⁵⁸ In 2015 Rivard published a review about phosphorescent BPincapped tellurophenes.^{74d}

37
1.7. Diarylalkynes: their synthesis and applications

Diarylalkynes are important precursors for the synthesis of olefins,¹⁵⁹ ketones,¹⁶⁰ fused organic heterocycles¹⁶¹ as well as functional inorganic heterocycles such as Te/B heterocycles,¹⁶² π -conjugated systems,¹⁶³ vinyl cations,¹⁶⁴ clusters,¹⁶⁵ arylalkene polymers,^{52b, 166} spirocycles,¹⁶⁷ and materials with a broad range of biological activities¹⁶⁸ (e.g., antitumor agents)¹⁶⁹ and nonlinear optical properties.¹⁷⁰ In addition, the use of diarylalkynes in the synthesis of main group luminophores is described in Section 1.8.

Various synthetic methods used to prepare diarylalkynes are summarized on the Scheme 1.16.

Scheme 1.16. Various syntheses of diarylalkynes.

Sonogashira coupling, the palladium-catalyzed coupling of alkenyl or aryl halides (or triflates) with terminal alkynes is, at this moment, the most common synthetic method used to prepare diarylalkynes (Equation 1.7). This reaction was first reported in 1985 by Sonogashira, Tohda and Hagihara where they noted that iodobenzene could react with acetylene gas at room temperature in the presence of PdCl₂(PPh₃)₂ catalyst, CuI in diethylamine, to give Ph-C≡C-Ph (tolan) in 6 hours in a 85 % yield. The proposed mechanism included the generation of an active Pd(0) catalyst, Pd(PPh₃)₂, through a reductive elimination of 1,4-diphenylbutadiyne from the Pd(II) intermediate $(Ph_3P)_2Pd(C \equiv CR)_2$. The role of CuI was to facilitate the deprotonation of acetylene by the amine via a Cu-acetylene π -complex. Subsequent oxidative addition of iodobenzene was followed by copper-catalyzed alkynylation and reductive elimination of the tolan regenerated active catalyst species (Scheme 1.17).¹⁷¹ The availability of the catalyst and reagents, and the mildness of the reaction conditions and high yields of the alkynes made this reaction of great interest to the chemical community. Sonogashira coupling, in particular its mechanistic developments, reaction conditions and substrates scope have been extensively reviewed in the literature.¹⁷² Recent advances in this field include metal nanoparticle-catalyzed,¹⁷³ ligand-, copper-, and transition metal-free couplings, as well as photo-induced and microwave-assisted protocols in green solvents (e.g., water).^{172c} A related Sila-Sonogashira

39

method is known which involve the coupling of easier to handle alkylsilyl-

protected acetylenes.¹⁷⁴

[Adapted with permission from Barbosa and co-workers, *RSC Adv.*, **2014**, *4*, 53442-53446. Copyright 2014 Royal Society of Chemistry].

The Sonogashira method possesses some drawbacks: 1) the cumbersome handling of gaseous acetylene leading to, 2) the use of protected acetylenes which limit aryl halide scope (*e.g.*, carbinol-based acetylenes require strong base KOH at the deprotection step and react with aryl iodide only),¹⁷⁵ 3) trimethysilylacetylene (H-C=C-SiMe₃) and bis(trimethylsilyl)acetylene (Me₃Si-C=C-SiMe₃) are also expensive

precursors, which produce metal/organic waste at the deprotection step, and require copper co-catalyst in high loadings (e.g., 50 mol %),¹⁷⁶ 4) low product yield due to an alkyne homodimerization side reaction (to form bisalkynes R-C=C-C=C-R) requiring added purification steps, and 5) low overall yield of products at the end of time-consuming procedures, containing multiple steps including coupling-deprotection-coupling.

To avoid some of the abovementioned challenges with Sonogashira coupling, Lee and co-workers applied a new type of alkyne source, propiolic acid, in *decarboxylative coupling* to obtain a range of asymmetric diarylalkynes in moderate to good yields.¹⁷⁷ Related work in this field included one-pot protocols,¹⁷⁸ different alkynyl carboxylic¹⁷⁹ and α,β -ynoic acids as alkyne sources,¹⁸⁰ water as reaction media,¹⁸¹ aryl, benzyl and vinyl halides and triflates^{179a, 180} as well as commercially available aryl chlorides¹⁸² as coupling partners.

The *Stille coupling* of bis(tributylstannyl)acetylene with aryl iodides affords good yields of symmetrical diarylalkynes.¹⁸³ The main disadvantages of this method are the need for expensive stannylated precursors and the highly toxic nature of the organometal byproducts (*e.g.* Me₃SnX and Bu₃SnX; X = halides).

The coupling of aryl halides with organoaluminium reagents is also possible, and in a recent report the use of alkynyldimethylaluminium reagents (RC=CAlMe₂) as alkyne synthons to access a range of (a)symmetric diarylalkynes via Pd-catalyzed coupling with aromatic and heterocyclic electrophiles (*i.e.*, chloride, bromide, iodide and triflate). These RC=CAlMe₂ reagents are obtained from terminal alkynes using inexpensive AlMe₃ through Et₃N-catalyzed metalation.¹⁸⁴ Other organoaluminium coupling partners include Ar-AlⁱBu₂¹⁸⁵ and LiCl adducts of Ar-AlMe₂ (Ar = aryl).¹⁸⁶

The coupling of sp²-carbon centers with alkynylsilanols (e.g., RC=C-SiMe₂OH), was reported by Chang and co-workers, and provides an alternative approach to sila-Sonogashira coupling with shorter reaction times and higher yields of substituted alkynes; however substrate scope is only limited to aryl iodides thus far.¹⁸⁷

The Pt-catalyzed alkynylation of aryl halides can be used to synthesize a wide array of substituted alkynes. A drawback of this route is the use of expensive Pt catalysts and a substrate scope that is limited to aromatic and heterocyclic iodides without hydroxyl functionality.¹⁸⁸

Transiently formed alkenylidenes $R_2C=C$:¹⁸⁹ (R = H, Ar) are also known to undergo 1,2-migration to yield alkynes.¹⁹⁰ In addition, the *Fritsch–Buttenberg–Wiechell rearrangement* of 1,1-diaryl-2-halo-alkenes produces the abovementioned alkylidene carbenes in the presence of strong base (e.g., NaOH), which then rearrange to provide a series of substituted diarylalkynes (Scheme 1.16). This method is extensively utilized in organic synthesis to obtain polyyne structures.¹⁹¹

Another important reaction used to prepare functionalized alkynes is *Suzuki-Miyaura* coupling. Liu, Sun and co-workers reacted arylboronic acids with thermally unstable 1-iodo-2-arylalkynes to afford unsymmetrical alkynes in good to excellent yields. Although this method includes two additional synthetic steps (overall) in comparison to Sonogashira coupling, it performs well in the presence of aldehyde functionalities.¹⁹²

1.8. Organic light-emitting devices

Organic light-emitting devices (OLED) are solid state lightemitting devices based on organic semiconductors that exhibit electroluminescence. Electroluminescence (EL) is light generation created by electrical excitation.¹⁴³ EL from an organic compound was first demonstrated by Bernanose in 1953,¹⁹³ and the first light-emitting device based on an organic semiconductor was constructed with anthracene single crystals in 1965 but had a poor performance. In 1987 attention was brought back to OLEDs by Tang and VanSlyke who fabricated a twolayer green light-emitting device with tris-(8-hydroxyquinoline)aluminium (Alg₃) as the emissive and electron transport layer, and an aromatic diamine as a hole transport layer.¹⁹⁴ There are a large number of small molecule-based charge-transporting or emissive materials, created for OLEDs and some representative examples are included as Figure 1.15. Compared to liquid crystal displays, OLEDs require lower energy input, have a wider viewing angle and can be lighter in weight, thus making them highly attractive for applications in flat panel displays. The goals for

OLEDs are: 1) high internal quantum efficiency (radiative electron-hole recombinations); 2) low operation voltage; 3) high light-outcoupling efficiency (total light projected from the device into the air).¹⁹⁵

Figure 1.15. Structures of some molecular semiconductors that have been used in thin film EL devices. Alq₃ is used as electron transport and emissive layer, N,N'-bis(3-methylphenyl)-N,N'-diphenyl[1,1'-biphenyl]-4,4'-diamine (TPD) and 4,4'-bis(9-carbazolyl)-1,1'-biphenyl (DCBP) are used as a hole transport layer and 2-(4-biphenylyl)-5-(4-*tert*-butyl-phenyl)-1,3,4-oxadiazole (PBD), green alternative 4,7-diphenyl-1,10-phenanthroline (BPhen) along with silole **113** are used as an electron transport layer.

In the simplest version, an OLED consists of a single layer of electroluminescent compound and two electrodes (Figure 1.16). The anode (*e.g.*, indium tin oxide) is a hole-injecting electrode with high work function as well as is transparent to transmit light created during electroluminescence. The cathode (electron injecting electrode) is made of a thermally deposited metal with a low work function, *e.g.*, Ca, Mg or Al. When electrical current is applied to OLED, holes are injected into the HOMO level (or valence band) and electrons are injected into the LUMO level (or conduction band) of organic semiconductor. Under an electrical

bias, charge carriers are driven out of the device through an external circuit, later recombining to form neutral bound excited states (*i.e.*, singlet or triplet excitons). In an LED, recombination of an electron and hole occurs via a radiative pathway, thus emitting light. Some requirements for an emissive layer are the ability to maintain a high quantum efficiency of light emission, and good injection and mobility of charge carriers.¹⁹⁶ To achieve these requirements multi-layered structure of light-emitting devices has been introduced in the early 1990s.¹⁹⁷ These multi-layered devices have a layer with good hole/electron affinity between emissive layer and an electrode to overcome the mismatch in energy between HOMO/LUMO and electrode work function, thus reducing charge injection barrier and improving charge injection and mobility.¹⁹⁸

Al, Ca cathode									ode
	¥	E)	Θ	Θ	6	Э	:	
	Θ	Θ	Ð	⊕ ▲	0	e	€€) ♥	Θ
Ð	Ð			▲ :	⊕			⊕	
	⊎			I	Ť			•	
ľ	ТО							an	ode
ľ	ТО		gla	iss s	ubstra	ite		an	ode
ľ	01		gl:	iss s	ubstra	ite		an 7	ode

Figure 1.16. Structure of a single layer light-emitting device. [Adapted with permission from Pron and Rannou, *Prog. Polym. Sci.* 2002, *27*, 135-190. Copyright 2002 Elsevier].

Blue fluorescent emitters when combined with red and green emitters can lead to a white light-emitting device, which are themselves useful as components of full-color displays, as backlights for liquid crystal displays, and as alternatives to fluorescent bulbs and incandescent lamps. Other advantages of white OLEDs (WOLEDs) are large-area glare-free homogeneous emission and depending on the device architecture, the potential fabrication of LEDs on flexible substrates.¹⁹⁹ One challenge is that the maximum efficiency of blue-light-emitting devices is much lower than those reported for green or red²⁰⁰ light-emitting devices (e.g., 12 %²⁰¹ for blue LEDs vs 29 %²⁰² for green LEDs) and thus limiting the overall efficiency of white OLEDs. In order to overcome this challenge, along with decreasing fabrication costs and simplifying the OLED structure, the design of improved blue emissive layers with enhanced stability and charge transport properties is an active field of study.²⁰³

Main criteria for blue emissive materials¹⁹⁸ include: 1) high luminescent quantum yield in the solid state; 2) high balanced electron and holes charge-transporting properties (especially important for single layer devices); 3) good film-forming properties (pinhole free) for spin-coating processing; 4) good thermal and chemical (oxidative) stability in order to prevent degradation during vapor deposition; 5) high color purity (chromaticity) as determined by suitable CIE (Commision Internationale d'Eclairage) coordinates; 6) environmental stability in order to avoid costly device encapsulation procedures; and 7) low cost fabrication of light-weight devices.

The main challenge for blue emitters is stability during device fabrication and operation. For example, polyfluorene (Figure 1.17), a commonly used emitter in blue EL devices, degrades quickly through either oxidation or via physical aggregation that reduces emission intensity.²⁰⁴ Considerable efforts have been devoted to increasing the stability of molecular blue light-emitters and they will be discussed in the next section.

1.9. Molecular blue emitters

1.9.1. Polyfluorene and group 14 analogues

The *fluorene* unit is a cyclic cousin of rigid planar biphenyl, bridged by a carbon atom in position 9, with blue-violet fluorescent properties. Polyfluorenes (PFs) belong to the class of rigid-rod polymers linked at the 2- and 7-positions, where the methylene bridge (position 9) allows side chain modification and enhancement of polymer solubility and processability without dramatically changing the electronic structure of the backbone.

Parent polyfluorene first emerged from electrochemical community in 1985 where the anodic oxidation of fluorene²⁰⁵ and electrochemical polymerization of various 9-substituted fluorenes was investigated (Figure 1.17).²⁰⁶ The unsubstituted PF **114** was obtained as an

electroactive insoluble film, whereas soluble poly(9,9'-dialkylfluorene) (*e.g.*, **115**, $\Phi = 83 \%$)²⁰⁷ (PDAF) emerged as a novel class of materials for blue electroluminescent diodes.²⁰⁸

Figure 1.17. First reported polyfluorenes.

In the early 90s, the Yoshino group first obtained PDAF 115 as a low molecular weight (M_n up to 5000) polymer through electrochemical oxidation of dihexylfluorene using FeCl₃ in chloroform.²⁰⁹ This synthesis also produced cross-linked structures as well as a large amount of metal residue, which negatively affected the performance of light-emitting devices.²¹⁰ In order to increase polymer molecular weight, hydrophilic 3,6dioxaheptyl substituents were installed at the 9 position of nonpolar hydrophobic PDAFs to prolong polymer chain growth in polar solvents (e.g., dimethyformamide). Thus, well-defined soluble high molecular weight PDAF **116** (M_n up to 94 000; $\Phi = 77$ %) was first obtained by Pei and Yang from the nickel-catalyzed reductive polymerization of 2,7dibromo-9,9-bis(3,6-dioxaheptyl)fluorene (Figure 1.18).²¹¹ Another way to increase the molecular weight of PF bearing alkyl substituents and prevent early termination of chain growth and polymer precipitation is to use a solvent mixture consisting of polar and nonpolar solvents. This

strategy was employed by Miller and co-workers to give **115** (M_n up to 18 000, ~54 fluorene units) from 2,7-dibromofluorene using Ni(COD)₂/COD/2,2'-bipyridyl (COD = cyclooctadiene) in a toluene-DMF solvent mixture (Scheme 1.18).^{207, 212} Using the same reaction conditions, Scherf and co-workers obtained a range of very high molecular weight PFs (M_n up to 200 000, ~ 600 fluorene units) with various alkyl substituents (C_nH_{2n+1}, n = 4, 8, 10, 14 and others).²¹³

Scheme 1.18. Yamamoto polycondensation of dihalofluorenes.

The Yamamoto polycondensation method shown in Scheme 1.18 produces regiospecific PDAFs from dihalofluorenes without side branched structures, although a large amount of metal impurities can be present due to high loadings of nickel and zinc metals.²¹⁴ Thus, Suzuki-Miyaura cross-coupling was used as an alternative way of polymerization using catalytic amount of Pd(PPh₃)₄ to produce **117** and **118** (Scheme 1.19).²¹⁵ Upon base doping with potassium *tert*-butoxide, the poly(fluorenylene) derivative **118** shows electrical conductivities of 10^{-6} - 10^{-5} S cm⁻¹ and thus could be

potentially used as an electron-injecting material for light-emitting devices.^{215,216}

Scheme 1.19. Synthesis of PFs via Suzuki-Miyaura cross-coupling.

The synthesis, physical and optoelectronic properties, as well as applications of PF homo- and copolymers²¹⁷ have been highlighted in several recent reviews.^{214, 218} For instance, in addition to LED applications²¹⁹ (discussed below), PFs have been used as chemical sensors,²²⁰ optically-pumped organic semiconductor lasers,²²¹ diagnostic tools for early detection of cancer-related biomarkers,²²² and as an active layer in organic photovoltaics.²²³ Furthermore, polyfluorenes are a promising class of light-emitting materials. Introduction of different conjugated moieties to the PF backbone or at the methylene bridge allows efficient tuning of emissive properties. Interestingly, PFs are a class of

conjugated polymers that possess high thermal stability (up to over 400 °C) and can emit a whole range of visible colors with high quantum yield. For instance, pure red, green, and blue light-emitting PFs can be used to produce efficient LEDs,²²⁴ and are listed in Figure 1.18.

Figure 1.18. Red, green, and blue light-emitting PFs.

The biggest challenge related to color purity of PF is undesirable low-energy "green emission band", which was debated to be a result of exciton trapping on the electron-deficient fluorenone defect sites (Scheme 1.20) or due to the formation of aggregates.²²⁵ Accordingly, some approaches explored to increase color purity are: 1) purification of the monomer from monosubstituted 9-alkylfluorene derivatives (the latter species tend to oxidize and introduce fluorenone defect sites, Scheme 1.20),²²⁶ 2) integration of a protecting layer between the PF and the cathode, 3) introducing hole-trapping sites (*e.g.*, triarylamine units) which would compete with exciton formation on ketone defects, 4) introducing bulky substituents to the PF backbone that decrease the exciton trapping on ketone defects and prevent aggregate formation.²¹⁴

Scheme 1.20. Mechanism of formation of keto-defects arising from synthesis of 9-monoalkylated PF, proposed by Scherf and co-workers. Another pathway includes photo- or electro-oxidative degradation of 9,9'-dialkylated PF.

[Adapted with permission from Scherf *et al.*, *Adv. Mater.* **2002**, *14*, 374–378. Copyright 2002 Wiley-VCH].

The replacement of carbon at the 9-position of a fluorene unit by other group 14 elements (*i.e.*, Si, Ge, Sn) was investigated by various research groups as a new approach to increase color stability of PFs. Key advances in this field are highlighted below.

A *Silafluorene, i.e.*, dibenzosilole analogue, was first obtained in 1955 by Gilman *et al.* via reaction of dilithiobiphenyl and Cl₂SiPh₂.²²⁷ Interest in this field was rekindled in the early 2000s when it was found that polysilafluorenes could be used in blue emissive LEDs ($M_n = 31\ 000$, $\Phi = 60\ \%$, no color degradation after 16 h at 250 °C in contrast to completely degraded PF)²²⁸ as well as a material for bulk heterojunction solar cells with power conversion efficiencies approaching 1.6 %;^{223c, 229} thin-film transistors were also fabricated based on silafluorene molecules with hole mobilities as high as 0.08 cm² V⁻¹ s⁻¹.²³⁰ The most common method to prepare silafluorenes is Gilman's initial method,²³¹ with the current focus on the use of substituted biphenyl precursors.²³² Other methods (Scheme 1.21) include sila-Friedel-Crafts reactions,²³³ iridium-catalyzed [2+2+2] cycloaddition of alkynes and silicon-bridged diynes,²³⁴ palladium-catalyzed intermolecular coupling of 2-(arylsilyl)aryl triflates,^{232d} rhodium-mediated Si-H and Si-C bond activation in biphenylhydrosilanes,²³⁵ palladium-catalyzed cross-coupling of 2,2'-diiodobiaryls with dihydrosilanes,²³⁶ and ruthenium-catalyzed double trans-hydrosilylation of 1,3-diynes.²³⁷

Scheme 1.21. Common synthetic routes to silafluorenes.

The synthesis, properties, platinum cluster chemistry²³⁸ and applications of silafluorenes and their derivatives have been very recently summarized by Corey²³⁹ and Nacano.²⁴⁰ Novel approaches to silafluorene derivatives developed since 2011 are nickel-catalyzed reactions of biphenylenes with Et₂SiH₂,²⁴¹ intramolecular silylation of biphenyl-2-hydrosilanes *via* silyl radicals,²⁴² base-promoted homolytic aromatic substitution,²⁴³ B(C₆F₅)₃-catalyzed dehydrosilylation,²⁴⁴ palladium-catalyzed C-H fluorosilylation (2-phenylpyridine-based equivalent of silafluorene),²⁴⁵ double cyclization (difluorobenzosiloles),²⁴⁶ synthesis of asymmetric silafluorenes,²⁴⁷ and rhodium-mediated intramolecular C-H silylation by silacyclobutanes.²⁴⁸ These new synthetic approaches are presented in Scheme 1.22. Interestingly, dianions of silafluorenes have also been isolated and studied by X-ray crystallography,²⁴⁹ and these results have been summarized in the recent review by West.^{90b}

Scheme 1.22. Novel approaches to the synthesis of silafluorenes.

Molecular and polymeric silafluorene derivatives (Figure 1.19) have been developed for the luminescence-based sensing of explosives,²⁵⁰ photolithiographical patterning,²⁵¹ visible range emitters with high quantum yields,²⁵² rare deep blue fluorescent²⁵³ and phosphorescent (when using iridium dopant) LEDs²⁵⁴ with high operation stability, materials for electrochromic devices,²⁵⁵ photosensitizer for light-driven hydrogen production,²⁵⁶ polymer solar cells with good efficiencies (PCE = 4.05-6.05 %) and stabilities,²⁵⁷ solid state UV-fluorophores (Φ = 35-54 %) with aggregation-enhanced emission properties,²⁵⁸ and organic field effect transistors (mobility = 3 × 10⁻⁴ cm² V⁻¹ s⁻¹).²⁵⁹

Figure 1.19. Selected examples of silafluorenes and their associated applications.

The corresponding *germafluorenes* have been significantly less explored in comparison to their silicon analogues. The first germafluorene was reported in 1994,²⁶⁰ and since then only a handful of germafluorene derivatives can be found in the literature. The main synthetic routes to germafluorenes include condensation reaction of dilithiobiphenyls with dichlorogermanes,^{232a, 261} and the palladium-catalyzed reaction of diiodobiaryls with dihydrogermanes (Scheme 1.23).²³⁶

Scheme 1.23. Synthesis of germafluorenes.

The Braddock-Wilking group investigated the reactivity of 9,9'dihydrogermafluorene (119) with Pt(0) species $(Ph_3P)_2Pt(\eta^2-C_2H_4)$ and identified a mixture of mono-, di- and trinuclear platinum-germanium products after activation of Ge-H bonds.²⁶² The authors also studied the thermolysis of **119** in the presence of (dppe)PtMe₂ (dppe = Ph₂PCH₂CH₂PPh₂) to obtain five-membered platinum-germanium metallacycles (dppe)Pt(GeR₂)₄ (R = C₆H₄) (Scheme 1.24).²⁶³ Red crystals of the germafluorene dianion (**120**), in the form of potassium salt, were obtained by reduction of 9,9'-dichlorogermafluorene with sodium/potassium alloy in THF (Scheme 1.24) and characterized by X-ray crystallography.²⁶⁴

Scheme 1.24. Thermolysis of 9,9'-dihydrogermafluorene (119) in the presence of (dppe)PtMe₂ (dppe = $Ph_2PCH_2CH_2PPh_2$) and synthesis of germafluorene dianion 120.

Density-functional theory revealed that germafluorenes are potentially good electron-transporting materials due to the presence of energetically low-lying LUMO states.²⁶⁵ Moreover, replacement of the C-9 position in fluorenes with silicon or germanium tends to give to lower band gaps, enhance charge transport and promote closer intermolecular packing, leading to enhancement of solar cells efficiencies within bulk heterojunction devices.^{69, 265} Compared to silicon, germanium has higher electronegativity ($\chi = 2.01$ vs 1.90) (reducing the polarization of C-Ge bonds vs. C-Si linkages) and longer element-carbon bonds (1.96 vs 1.88 Å) which contribute to an increase in the overall stability and π -stacking interactions for germafluorenes.⁶⁹ Hence the germafluorene derivatives have been explored in organic photovoltaics²⁶⁶ (overall device efficiencies (η) up to 2.8 %), as components of field-effect transistors (mobility = 0.04 cm² V⁻¹ s⁻¹),²⁶¹ blue luminogens^{252b} (Φ in solid state = 70 %) and as host materials for LEDs (Figure 1.20).^{58, 267}

Figure 1.20. Selected examples of germafluorene co-polymers for optoelectronic applications.

Figure 1.21. Stannafluorene derivatives reported in the literature.

Currently there are only a few reported examples of literature (Figure 1.21).²⁶⁸ stannafluorenes the Structural in 9,9'-dibutyl-stannafluorene characterization (122)bv of X-rav crystallography was reported in 1984 and revealed a similar planar heterofluorene structure as the abovementioned C, Si and Ge congeners.^{268a} Stannafluorenes can be prepared through the reaction of lithiated biaryls with dihalostannanes (R2SnX2),268b, 268c as well as from the reduction of 2-bromo-2'-(trimethylstannyl)biphenyl with magnesium turnings (Scheme 1.25).^{268d}

Scheme 1.25. Synthetic methods used to prepare stannafluorenes.

Stannafluorene dianions were obtained *via* reduction of **123** or **124** (Figure 1.21) with lithium or potassium, and their compositions were indirectly confirmed by trapping with electrophiles (such as MeI).²⁶⁹ The dibutylstannafluorene **122** has been used in organic synthesis as a

precursor for dibenzofulvenes,^{268c, 270} functionalized triply annulated benzene derivatives,^{268c, 271} and near IR absorbing tetracene diimides.²⁷² Equally important is the synthesis of 9-borafluorene Lewis acids by Piers and co-workers (Scheme 1.26) using the perfluorinated precursor **125** (Figure 1.21).^{268b}

Scheme 1.26. Synthesis of 9-borafluorene Lewis acids using perfluorinated stannafluorene 125.

1.9.2. Tetraarylbutadienes

Extending π -conjugation within tetraarylethenes, an efficient class AIE luminophores,²⁷³ by functional group modification leads to a new class of luminogen²⁷⁴ with tunable emission properties.²⁷⁵ Common synthetic approaches to aryl-substituted butadienes include transition metal-catalyzed isomerization,²⁷⁶ palladium-catalyzed intermolecular coupling of aryl iodides, alkynes and alkenes,²⁷⁷ cleavage of silole rings,^{144b, 278} homocoupling of alkynes using Cp₂ZrCl₂ and mischmetall powder (an alloy of Ce, La, Nd, and Pr),³³ oxidation of diarylalkynes in

superacid HSO₃F/PbO₂ mixtures.²⁷⁹ In addition, butadienes are important precursors to substituted polycyclic organic hydrocarbons such as naphtalenes.²⁷⁹

Tetraarylbutadienes reported in the context of electroluminescent applications will now be discussed. In the early 2000s, Tamao and Tang reported the desilylation of siloles using either the strong base KOH or water to obtain substituted butadienes **126-129** (Scheme 1.27).^{118b, 167} The structure of 126 was confirmed by X-ray crystallography and has a coplanar butadiene skeleton as well as higher degree of co-planarity with the 1,4-phenyl rings in relation to the precursor silole.¹⁶⁷ The authors noticed an absence of luminescence for 126-128 derivatives in the solution, however emission in the solid state (possibly via the aggregationinduced emission (AIE) effect) was not explored. In 2001, while studying blue luminescence of siloles, Tang and co-workers obtained the tetraphenyl butadiene 129 and examined its emission properties. However the authors did not find any emission for 129 in the film state, and hypothesized that the lack of visible light emission was due to structural rotation of butadiene moiety, leading to a nonplanar structure with ineffective π -conjugation. ^{118b}

Scheme 1.27. Synthesis of the tetraarylbutadienes 128-131.

Interest in tetraarylbutadienes was revived in 2013 when Dong and co-workers first reported reversible hydrogen-bonding assisted piezochromic (i.e., difference in emission color caused by mechanic stimuli) luminescence for the butadiene derivative 130; this species was prepared as a white solid in three steps (Scheme 1.28) in an overall yield of 51 %. Compound 130 exhibits AIE ($\Phi_{\text{THF}} = 1.3$ %) in THF-hexane mixtures (fraction of hexane, f_{hex} , = 90 % and Φ = 43 %), with a high solid state fluorescence quantum yield of 70 % and thermal stability up to 320 °C.²⁸⁰ The photoluminescent color of 130 changed from blue to yellowgreen upon grinding and when exposed to polar solvent (e.g., THF, MeOH, EtOH) it eventually reverted back to the initial blue color of emission. The nature of this effect was investigated in depth by FT-IR, Xray crystallography, powder X-ray diffraction and differential scanning calorimetry. The authors concluded that the unaltered solid has an ordered structure due to strong hydrogen bonding interactions between carboxylic

acid groups in neighboring molecules, which are disrupted under high pressure.²⁸⁰ Later Dong and co-workers reported a systematic study of the structural effects on the mechanochromic performance of substituted 1,3-butadienes **131-133** with donating (NPh₂) and/or electron withdrawing (CF₃, COOCH₃) groups (Scheme 1.29).²⁸¹ Among others, compound **132** exhibited blue fluorescence with the highest quantum yield in THF solution (35 %) and in the solid state (pristine powder, $\Phi = 83$ %). Interestingly, derivative **133** with a donor- π -acceptor structure and large dipole moment had the most dramatic mechanochromic response, changing color from green to yellow during repeated fuming with solvent and grinding cycles.²⁸¹

Scheme 1.28. Piezochromic tetraaryl-1,3-butadiene 130.

Scheme 1.29. Mechanoluminescent butadienes 131-133 obtained by the Dong group.

In 2015 the Hsu group reported the reductive dimerization of internal diarylalkynes in the presence of substoichiometric amounts of $Co_2(CO)_8$ to yield regioselectively the tetraphenyl-1,3-butadienes **134** and **135** (Scheme 1.30). Both derivatives possess AIE properties in CH₃CN/H₂O mixtures, with blue light emission and high quantum yields of 83 % and 87 %, respectively when water fraction is 90 vol %.²⁷⁴

Scheme 1.30. Cobalt-mediated regioselective synthesis of aryl-substituted butadienes 134 and 135.

1.10. The spiro-conjugation concept. Examples with spiro-annulated bifluorene and group 14 derivatives

The concept of spiroconjugation was first introduced in 1967 by Simmons and Fukunaga.²⁸² The authors described electronic delocalization in molecules containing two perpendicular π -systems joined by a common tetrahedral atom (Figure 1.22). Using this theory, they predicted absorption spectra of spirenes and polyene ketals. Recently, the concept of spiroconjugation has been comprehensively described in some review articles.²⁸³

Figure 1.22. Through-space spiro-type interaction of p orbitals.[Adapted with permission from Bucknum and Castro, *J. Math. Chem.*2004, *36*, 381-408. Copyright 2004 Springer].

In recent years the spiroconjugation concept has attracted interest from the field of organic electronics.²⁸⁴ The spirocyclic linkage allows the connection of two π -systems with different functions (e.g., emission or charge transport) *via* a common sp³-hybridized atom, thus opening a door to variety of multifunctional materials. In order to improve performance of organic optoelectronic devices, it is important to understand the morphology and microscopic organization of active materials.^{284a} Amorphous materials with high glass transition temperature (T_g) are in particular demand due to absence of grain boundaries in their thin films, leading to spatial homogeneity of transport properties and diminishing of scattering effects compared to polycrystalline materials (*i.e.*, enhancement of device performance). Spiro-annulated compounds usually match the abovementioned criteria due to several reasons. First, they have increased molecular weight and cross-shaped rigid bulky structure, which effectively hinders crystallization and raises the glass transition temperature.^{284b} For

example, the T_g of 2,2',7,7'-tetrakis(diphenylamino)-9,9'-spirobifluorene (Spiro-TAD; **136**) is 133 °C, while the parent charge-transporting N,N,N',N'-tetraphenylbenzidine (TAD; **137**) has a glass transition temperature of 70 °C (Figure 1.23).^{284a} Hence spiro-linked compounds have improved morphological stability compared to parent molecular species while retaining their electronic properties.

Figure 1.23. Structures of charge-transporting Spiro-TAD **136** and parent TAD **137** compounds.

A second major benefit of spiro-annulated compounds is suppressed intermolecular interactions arising from their bulky rigid structure due to perpendicular arrangement of two molecular moieties. This also results in increased solubility compared to parent molecules. Equally important is effective suppression of excimer formation in the solid state of spiroconjugated emitters, leading to their enhanced fluorescence efficiencies.^{284c} Spirocyclic compounds have also been used as photo- and thermochromic compounds,²⁸⁵ as active materials for photonics,²⁸⁶ and as organic dyes based on intermolecular charge transfer.²⁸⁷ The synthesis of functional spirocyclic compounds, their physical and electronic properties as well as applications in optoelectronic devices have been recently summarized.^{284b, c}

There are many reported symmetric and asymmetric spiro compounds, while the most common examples are spirobifluorene derivatives. 9,9'-Spirobifluorenes have been investigated in solar cells, light-emitting devices, field-effect transistors, as well as a material for molecular recognition, optical data storage, and as precursors for chiral ligands and natural products.²⁸⁸

The most widely used synthetic route to spirobifluorenes was reported by Clarkson and Gomberg in 1930 (Scheme 1.31).²⁸⁹ It involves reaction of a Grignard reagent with 9-fluorenone to yield 9-(biphenyl-2yl)-9-fluorenols. Finally, ring closure of the carbinol is catalyzed by hydrochloric acid to afford the desired spirofluorene. This procedure has been modified by various research groups (*e.g.*, expanded scope of biphenyls and metallating agents) and the overall yields range from 55 to 94 %.^{284c, 290} Amongst other methods there are Friedel-Crafts reactions starting from 2,2'-diarylbenzophenones²⁹¹ and direct oxidative couplings.^{288a, 292}

68

Scheme 1.31. Original synthesis of the 9,9'-spirobifluorene 138.

The main advantage of spirobifluorene is minimization of ketonic defects due to photo/thermal oxidation of the 9-position of the fluorene unit, thus producing blue emitters or phosphorescent host materials (when doped with iridium complexes)²⁹³ with high thermal and color stability.²⁹⁴ For example, polymer **139** (Figure 1.24) obtained *via* Suzuki-Miyaura polycondensation, exhibited a high quantum yield in solution of 91 % (quantum yield in solid state was not mentioned) as well as extremely good thermal (400 °C) and emission stability, staying purely blue after the film was annealed at 200 °C for three hours in air.²⁹⁵ Another example includes polymer **140** with thermal stability up to 435 °C, and no observed defect-related green emission after annealing at 110 °C for 24 hours in air.²⁹⁶ The synthesis and optoelectronic properties of spirobifluorene and its derivatives have been reviewed by Salbeck and co-workers^{284b, c} as well as by Li and Bo.^{294a}

Figure 1.24. Structures of the spirofluorene-based polymers 139 and 140.

Incorporation of the heavier group 14 element, Si or Ge, into a spiro center of a bifluorene core gives a new class of compounds with photophysical properties that are similar to metalloles.²⁹⁷ In common with the latter, spiroheterobifluorenes have $\sigma(M-C)^*-\pi^*$ conjugation, therefore a small HOMO-LUMO energy gap, ensuring greater light absorption over the solar spectrum, as well as improved electron transport effects, compared to their carbon analogues.²⁹⁸ At the same time, metalloles have a low glass transition temperature and are easy to crystallize, contributing to rapid degradation when incorporated in light-emitting devices.²⁹⁹ In a similar fashion to heterofluorenes, the most common synthetic approach to spirocyclic analogues is the condensation of silicon/germanium tetrahalides with dilithiobiphenyl derivatives (Equation 1.8).³⁰⁰ In the case of spirosilabifluorenes, asymmetric derivatives were obtained by Takai co-workers and rhodium-catalyzed cyclization of via bis(biphenyl)silanes.301

Spiro-linked silafluorenes (Figure 1.25) also have outstanding stability and emission characteristics.^{297, 299} For example, the asymmetric derivative **141**, reported by Kafafi *et al.*, has a high glass transition temperature of 228 °C and easily forms a stable transparent amorphous film. It exhibits violet-blue luminescence in the solid state with high absolute quantum yield of 55 %. In 2015, the Ozin group showed that when incorporated into the blue LED, co-polymer **142** has 20 % higher emission stability over the corresponding silafluorene homopolymer.²⁹⁷ Interestingly, the parent spirosilabifluorene **143** and its NO₂-substituted derivative **144** also performed well as highly selective fluoride sensors with detection limits as low as 5 μ M (for **144**), which is close to residual concentration of fluoride in the drinking water.³⁰²

Figure 1.25. Spirosilabifluorenes used in LEDs and fluoride sensors.

Thus far, the main drawback associated with functionalized spiro(hetero)bifluorene compounds is their cumbersome multi-step synthetic procedures and the limited availability of suitable starting materials.^{288a} Therefore in this Thesis development of a modular and facile synthesis of light-emitting spirocyclic germafluorene-based compounds will be discussed.

1.11. References

- a) Nagendran, S.; Roesky, H. W., Organometallics 2008, 27, 457-492; b) Lin, Z., Acc. Chem. Res. 2010, 43, 602-611; c) García-Vivó, D.; Ramos, A.; Ruiz, M. A., Coord. Chem. Rev. 2013, 257, 2143-2191; d) Cámpora, J.; Palma, P.; Carmona, E., Coord. Chem. Rev. 1999, 193–195, 207-281; e) Lee, V. Y.; Sekiguchi, A., Chem. Soc. Rev. 2008, 37, 1652-1665; f) Landorf, C. W.; Haley, M. M., Angew. Chem. Int. Ed. 2006, 45, 3914-3936; g) Chen, J.; Jia, G., Coord. Chem. Rev. 2013, 257, 2491-2521; h) He, G.; Shynkaruk, O.; Lui, M. W.; Rivard, E., Chem. Rev. 2014, 114, 7815-7880.
- Johnson, K. R. D.; Hayes, P. G., Chem. Soc. Rev. 2013, 42, 1947-1960.
- a) Kleiman, J. P.; Dubeck, M., J. Am. Chem. Soc. 1963, 85, 1544-1545; b) Cope, A. C.; Siekman, R. W., J. Am. Chem. Soc. 1965, 87, 3272-3273.
- 4. Albrecht, M., Chem. Rev. 2010, 110, 576-623.

- 5. McGuinness, D. S., Chem. Rev. 2011, 111, 2321-2341.
- Zee, D. Z.; Chantarojsiri, T.; Long, J. R.; Chang, C. J., Acc. Chem. Res. 2015, 48, 2027-2036.
- 7. Heller, B.; Hapke, M., Chem. Soc. Rev. 2007, 36, 1085-1094.
- a) Michon, C.; MacIntyre, K.; Corre, Y.; Agbossou-Niedercorn, F., *ChemCatChem* 2016, *8*, 1755-1762; b) Adhikary, A.; Guan, H., *ACS Catalysis* 2015, *5*, 6858-6873; c) Mo, D.-L.; Zhang, T.-K.; Ge, G.-C.; Huang, X.-J.; Ding, C.-H.; Dai, L.-X.; Hou, X.-L., *Synlett* 2014, *25*, 2686-2702; d) Albrecht, M.; van Koten, G., *Angew. Chem. Int. Ed.* 2001, *40*, 3750-3781.
- a) Omae, I., Coord. Chem. Rev. 2014, 280, 84-95; b) Cook, T. R.;
 Vajpayee, V.; Lee, M. H.; Stang, P. J.; Chi, K.-W., Acc. Chem. Res. 2013, 46, 2464-2474.
- a) Turner, E.; Bakken, N.; Li, J., *Inorg. Chem.* 2013, *52*, 7344-7351; b) Chowdhury, A.; Howlader, P.; Mukherjee, P. S., *Chem. Eur. J.* 2016, *22*, 7468-7478.
- 11. Lowry, M. S.; Bernhard, S., Chem. Eur. J. 2006, 12, 7970-7977.
- 12. Bronner, C.; Wenger, O. S., *Dalton Trans.* 2011, 40, 12409-12420.
- a) Lee, E.; Lee, S. Y.; Lindoy, L. F.; Lee, S. S., *Coord. Chem. Rev.*2013, 257, 3125-3138; b) McInnes, E. J. L.; Timco, G. A.;
 Whitehead, G. F. S.; Winpenny, R. E. P., *Angew. Chem. Int. Ed.*2015, 54, 14244-14269.
- 14. Lee, S. J.; Lin, W., Acc. Chem. Res. 2008, 41, 521-537.
- Canevet, D.; Pérez, E. M.; Martín, N., Angew. Chem. Int. Ed.
 2011, 50, 9248-9259.
- 16. Cook, T. R.; Stang, P. J., Chem. Rev. 2015, 115, 7001-7045.
- a) Xu, L.; Wang, Y.-X.; Yang, H.-B., *Dalton Trans.* 2015, 44, 867-890; b) Yan, X.; Wang, M.; Cook, T. R.; Zhang, M.; Saha, M. L.; Zhou, Z.; Li, X.; Huang, F.; Stang, P. J., *J. Am. Chem. Soc.* 2016, 138, 4580-4588.
- a) Suzuki, N.; Hashizume, D., Coord. Chem. Rev. 2010, 254, 1307-1326; b) Takahashi, T.; Kanno, K., Metallocenes in Regio-and Stereoselective Synthesis. Springer: 2005.
- Majoral, J.-P.; Meunier, P.; Igau, A.; Pirio, N.; Zablocka, M.;
 Skowronska, A.; Bredeau, S., *Coord. Chem. Rev.* 1998, *178–180*, 145-167.
- 20. a) Chen, C.; Xi, C., Chin. Sci. Bull. 2010, 55, 3235-3247; b)
 Vicart, N.; J. Whitby, R., Chem. Commun. 1999, 1241-1242.
- 21. a) Takahashi, T.; Huo, S.; Hara, R.; Noguchi, Y.; Nakajima, K.;
 Sun, W.-H., J. Am. Chem. Soc. 1999, 121, 1094-1095; b) Xi, Z.;
 Fan, H.-T.; Mito, S.; Takahashi, T., J. Organomet. Chem. 2003, 682, 108-112.
- 22. Gessner, V. H.; Tannaci, J. F.; Miller, A. D.; Tilley, T. D., Acc. Chem. Res. 2011, 44, 435-446.
- 23. Tanabe, M., Tetrahedron Lett. 2014, 55, 3641-3647.

- Li, S.; Takahashi, T., Aromatic Ring Construction from Zirconocenes and Titanocenes. In *Transition-Metal-Mediated Aromatic Ring Construction*, John Wiley & Sons, Inc.: 2013; pp 299-320.
- 25. a) Beweries, T.; Haehnel, M.; Rosenthal, U., *Catal. Sci. Technol.*2013, *3*, 18-28; b) Roy, S.; Rosenthal, U.; Jemmis, E. D., *Acc. Chem. Res.* 2014, *47*, 2917-2930; c) Beweries, T.; Rosenthal, U., *Nat. Chem.* 2013, *5*, 649-650; d) Rosenthal, U.; Burlakov, V. V.;
 Bach, M. A.; Beweries, T., *Chem. Soc. Rev.* 2007, *36*, 719-728.
- Fagan, P. J.; Nugent, W. A., J. Am. Chem. Soc. 1988, 110, 2310-2312.
- 27. Toal, S. J.; Trogler, W. C., J. Mater. Chem. 2006, 16, 2871-2883.
- Steffen, A.; Ward, R. M.; Jones, W. D.; Marder, T. B., Coord. Chem. Rev. 2010, 254, 1950-1976.
- a) Rausch, M. D.; Boon, W. H.; Alt, H. G., *J. Organomet. Chem.* **1977**, *141*, 299-312; b) Atwood, J. L.; Hunter, W. E.; Alt, H.;
 Rausch, M. D., *J. Am. Chem. Soc.* **1976**, *98*, 2454-2459.
- a) Thanedar, S.; Farona, M. F., J. Organomet. Chem. 1982, 235, 65-68; b) Negishi, E.; Holmes, S. J.; Tour, J. M.; Miller, J. A., J. Am. Chem. Soc. 1985, 107, 2568-2569; c) Negishi, E.; Holmes, S. J.; Tour, J. M.; Miller, J. A.; Cederbaum, F. E.; Swanson, D. R.; Takahashi, T., J. Am. Chem. Soc. 1989, 111, 3336-3346; d) Xi, Z.; Hara, R.; Takahashi, T., J. Org. Chem. 1995, 60, 4444-4448; e)

Buchwald, S. L.; Nielsen, R. B., J. Am. Chem. Soc. 1989, 111, 2870-2874.

- Braye, E. H.; Hübel, W.; Caplier, I., J. Am. Chem. Soc. 1961, 83, 4406-4413.
- 32. Watt, G. W.; Drummond, F. O., *J. Am. Chem. Soc.* **1966**, *88*, 5926-5927.
- Denhez, C.; Médégan, S.; Hélion, F.; Namy, J.-L.; Vasse, J.-L.;
 Szymoniak, J., Org. Lett. 2006, 8, 2945-2947.
- Negishi, E.-i.; Cederbaum, F. E.; Takahashi, T., *Tetrahedron Lett.* 1986, 27, 2829-2832.
- 35. Takahashi, T.; Kageyama, M.; Denisov, V.; Hara, R.; Negishi, E., *Tetrahedron Lett.* **1993**, *34*, 687-690.
- a) Rosenthal, U.; Ohff, A.; Michalik, M.; Görls, H.; Burlakov, V. V.; Shur, V. B., *Angew. Chem. Int. Ed. Engl.* 1993, *32*, 1193-1195;
 b) Rosenthal, U.; Ohff, A.; Baumann, W.; Tillack, A.; Görls, H.; Burlakov, V. V.; Shur, V. B., *Z. Anorg. Allg. Chem.* 1995, *621*, 77-83.
- a) Negishi, E.-i.; Nguyen, T.; Maye, J. P.; Choueiri, D.; Suzuki,
 N.; Takahashi, T., *Chem. Lett.* **1992**, *21*, 2367-2370; b) Negishi,
 E.-I.; Takahashi, T., *Acc. Chem. Res.* **1994**, *27*, 124-130.
- Dioumaev, V. K.; Harrod, J. F., Organometallics 1997, 16, 1452-1464.

- Takahashi, T.; Swanson, D. R.; Negishi, E.-i., Chem. Lett. 1987, 16, 623-626.
- 40. Johnson, S. A.; Liu, F.-Q.; Suh, M. C.; Zürcher, S.; Haufe, M.;
 Mao, S. S. H.; Tilley, T. D., J. Am. Chem. Soc. 2003, 125, 4199-4211.
- 41. Broene, R. D.; Buchwald, S. L., *Science* **1993**, *261*, 1696-1701.
- 42. a) Takahashi, T.; Kotora, M.; Hara, R.; Xi, Z., Bull. Chem. Soc. Jpn. 1999, 72, 2591-2602; b) Xi, Z.; Zhang, W.; Takahashi, T., Tetrahedron Lett. 2004, 45, 2427-2429.
- 43. a) Erker, G.; Zwettler, R., J. Organomet. Chem. 1991, 409, 179-188; b) Erker, G.; Zwettler, R.; Krueger, C.; Hyla-Kryspin, I.; Gleiter, R., Organometallics 1990, 9, 524-530.
- 44. a) Nugent, W. A.; Thorn, D. L.; Harlow, R. L., J. Am. Chem. Soc.
 1987, 109, 2788-2796; b) Hara, R.; Xi, Z.; Kotora, M.; Xi, C.; Takahashi, T., Chem. Lett. 1996, 25, 1003-1004.
- 45. Miller, A. D.; Johnson, S. A.; Tupper, K. A.; McBee, J. L.; Tilley,
 T. D., *Organometallics* 2009, *28*, 1252-1262.
- 46. a) Takahashi, T.; Li, Y.; Ito, T.; Xu, F.; Nakajima, K.; Liu, Y., J. Am. Chem. Soc. 2002, 124, 1144-1145; b) Li, S.; Qu, H.; Zhou, L.; Kanno, K.-i.; Guo, Q.; Shen, B.; Takahashi, T., Org. Lett. 2009, 11, 3318-3321; c) Takahashi, T.; Sun, W.-H.; Duan, Z.; Shen, B., Org. Lett. 2000, 2, 1197-1199; d) Takahashi, T.; Ishikawa, M.; Huo, S., J. Am. Chem. Soc. 2002, 124, 388-389.

- 47. a) Ni, Y.; Nakajima, K.; Kanno, K.-i.; Takahashi, T., Org. Lett.
 2009, 11, 3702-3705; b) Takahashi, T.; Li, Y.; Stepnicka, P.; Kitamura, M.; Liu, Y.; Nakajima, K.; Kotora, M., J. Am. Chem. Soc. 2002, 124, 576-582.
- Ren, S.; Igarashi, E.; Nakajima, K.; Kanno, K.-i.; Takahashi, T., J.
 Am. Chem. Soc. 2009, 131, 7492-7493.
- 49. Takahashi, T.; Tsai, F.-Y.; Li, Y.; Wang, H.; Kondo, Y.;
 Yamanaka, M.; Nakajima, K.; Kotora, M., J. Am. Chem. Soc.
 2002, 124, 5059-5067.
- 50. Yan, X.; Zhou, Y.; Xi, C., Organometallics 2013, 32, 869-873.
- 51. Xi, C.; Yan, X.; You, W.; Takahashi, T., Angew. Chem. Int. Ed.
 2009, 48, 8120-8123.
- 52. a) Kanno, K.-i.; Igarashi, E.; Zhou, L.; Nakajima, K.; Takahashi, T., *J. Am. Chem. Soc.* 2008, *130*, 5624-5625; b) Takahashi, T.;
 Liu, Y.; Iesato, A.; Chaki, S.; Nakajima, K.; Kanno, K.-i., *J. Am. Chem. Soc.* 2005, *127*, 11928-11929.
- 53. Yan, X.; Xi, C., Acc. Chem. Res. 2015, 48, 935-946.
- Fagan, P. J.; Nugent, W. A.; Calabrese, J. C., J. Am. Chem. Soc.
 1994, 116, 1880-1889.
- 55. Xi, C.; Huo, S.; Afifi, T. H.; Hara, R.; Takahashi, T., *Tetrahedron Lett.* **1997**, *38*, 4099-4102.
- Martín, R.; Larsen, C. H.; Cuenca, A.; Buchwald, S. L., *Org. Lett.* 2007, 9, 3379-3382.

- 57. Araki, T.; Fukazawa, A.; Yamaguchi, S., *Angew. Chem. Int. Ed.*2012, *51*, 5484-5487.
- Fan, C.; Piers, W. E.; Parvez, M., Angew. Chem. Int. Ed. 2009, 48, 2955-2958.
- Agou, T.; Wasano, T.; Jin, P.; Nagase, S.; Tokitoh, N., Angew. Chem. Int. Ed. 2013, 52, 10031-10034.
- Bankwitz, U.; Sohn, H.; Powell, D. R.; West, R., J. Organomet. Chem. 1995, 499, C7-C9.
- 61. Ura, Y.; Yanzhong, L.; Zhenfeng, X.; Takahashi, T., *Tetrahedron Lett.* **1998**, *39*, 2787-2790.
- Zhan, M.; Zhang, S.; Zhang, W.-X.; Xi, Z., Org. Lett. 2013, 15, 4182-4185.
- 63. Geng, W.; Zhang, W.-X.; Hao, W.; Xi, Z., J. Am. Chem. Soc.
 2012, 134, 20230-20233.
- 64. Zhou, Y.; Yan, X.; Chen, C.; Xi, C., *Organometallics* **2013**, *32*, 6182-6185.
- Ashe, A. J.; Kampf, J. W.; Al-Taweel, S. M., Organometallics
 1992, 11, 1491-1496.
- Ashe, A. J.; Kampf, J. W.; Al-Taweel, S. M., J. Am. Chem. Soc.
 1992, 114, 372-374.
- 67. Zhao, P.; Yin, H.; Gao, H.; Xi, C., J. Org. Chem. 2013, 78, 5001-5006.

- Fagan, P. J.; Burns, E. G.; Calabrese, J. C., J. Am. Chem. Soc.
 1988, 110, 2979-2981.
- 69. He, X.; Baumgartner, T., *RSC Adv.* **2013**, *3*, 11334-11350.
- Ohshita, J.; Miyazaki, M.; Zhang, F.-B.; Tanaka, D.; Morihara, Y., *Polym J* 2013, 45, 979-984.
- 71. Romero-Nieto, C.; Durben, S.; Kormos, I. M.; Baumgartner, T., *Adv. Funct. Mater.* **2009**, *19*, 3625-3631.
- Yan, H.; Song, Y.; McKeown, G. R.; Scholes, G. D.; Seferos, D.
 S., Adv. Mater. 2015, 27, 3484-3491.
- 73. Lingyun, W.; Lingling, Y.; Derong, C., Curr. Org. Chem. 2014, 18, 1028-1049.
- a) Zhao, Z.; He, B.; Tang, B. Z., *Chem. Sci.* 2015, *6*, 5347-5365; b)
 Saito, M., *Coord. Chem. Rev.* 2012, *256*, 627-636; c) Biehl, E. R.,
 Chapter 4.1 Five-Membered Ring Systems: Thiophenes and
 Se/Te Derivatives. In *Progress in Heterocyclic Chemistry*, Gordon,
 W. G.; John, A. J., Eds. Elsevier: 2013; Vol. 25, pp 97-135; d)
 Rivard, E., *Chem. Lett.* 2015, *44*, 730-736; e) Carrera, E. I.;
 Seferos, D. S., *Macromolecules* 2015, *48*, 297-308; f) Parke S.M.;
 Boone M. P.; Rivard E., *Chem. Commun.* 2016, DOI: 10.1039/C6CC04023C.
- Yamaguchi, S.; Itami, Y.; Tamao, K., Organometallics 1998, 17, 4910-4916.

- Leavitt, F. C.; Manuel, T. A.; Johnson, F., J. Am. Chem. Soc. 1959, 81, 3163-3164.
- 77. Curtis, M. D., J. Am. Chem. Soc. 1969, 91, 6011-6018.
- a) Hissler, M.; Dyer, P. W.; Réau, R., *Coord. Chem. Rev.* 2003, 244, 1-44; b) Bandrowsky, T. L.; Carroll, J. B.; Braddock-Wilking, J., *Organometallics* 2011, 30, 3559-3569; c) Losehand, U.; Mitzel, N. W., *J. Chem. Soc., Dalton Trans.* 2000, 1049-1052; d) Freeman, W. P.; Tilley, T. D.; Liable-Sands, L. M.; Rheingold, A. L., *J. Am. Chem. Soc.* 1996, 118, 10457-10468; e) Wrackmeyer, B., *Coord. Chem. Rev.* 1995, 145, 125-156; f) Dysard, J. M.; Tilley, T. D., *Organometallics* 2000, 19, 4720-4725; g) Nosov, K. S.; Lalov, A. V.; Borovik, A. S.; Lee, V. V.; Egorov, M. P.; Nefedov, O. M., *Russ. Chem. Bull.* 45, 2623-2626.
- Dhiman, A.; Zhang, Z.-R.; West, R.; Becker, J. Y., *J. Electroanal. Chem.* 2004, 573, 139-146.
- Y. H. Park, Y. H. S. a. Y. K., J. Korean Phys. Soc. 2010, 57, 1463-1466.
- a) Maslennikova, O. S.; Nosov, K. S.; Faustov, V. I.; Egorov, M.
 P.; Nefedov, O. M.; Aleksandrov, G. G.; Eremenko, I. L.; Nefedov, S. E., *Russ. Chem. Bull.* 2000, *49*, 1275-1281; b)
 Margetić, D.; Prugovečki, B.; Đilović, I.; Eckert-Maksić, M., *Struct. Chem.* 2006, *17*, 301-306; c) Neumann, W. P.; Schriewer, M., *Tetrahedron Lett.* 1980, *21*, 3273-3276.

- Billeb, G.; Brauer, H.; Neumann, W. P.; Weisbeck, M., Organometallics 1992, 11, 2069-2074.
- Khabashesku, V. N.; Boganov, S. E.; Antic, D.; Nefedov, O. M.;
 Michl, J., Organometallics 1996, 15, 4714-4724.
- 84. Tsumuraya, T.; Ando, W., Organometallics 1990, 9, 869-871.
- a) Matsuda, T.; Kadowaki, S.; Yamaguchi, Y.; Murakami, M., Org. Lett. 2010, 12, 1056-1058; b) Matsuda, T., Synthesis of Heterocycles via X-H Bond Addition to Diynes. In Transition-Metal-Mediated Aromatic Ring Construction, John Wiley & Sons, Inc.: 2013; pp 537-547.
- a) Laporterie, A.; Iloughmane, H.; Dubac, J., J. Organomet. Chem.
 1983, 244, C12-C16; b) Dufour, P.; Dartiguenave, M.; Dartiguenave, Y.; Dubac, J., J. Organomet. Chem. 1990, 384, 61-69; c) Manuel, G.; Bertrand, G.; El Anba, F., Organometallics 1983, 2, 391-394.
- a) Guimon, C.; Pfister-Guillouzo, G.; Dubac, J.; Laporterie, A.; Manuel, G.; Iloughmane, H., *Organometallics* 1985, *4*, 636-641;
 b) Burns, G. T.; Colomer, E.; Corriu, R. J. P.; Lheureux, M.; Dubac, J.; Laporterie, A.; Iloughmane, H., *Organometallics* 1987, *6*, 1398-1406.
- 88. Tobisu, M.; Baba, K.; Chatani, N., Org. Lett. 2011, 13, 3282-3284.
- 89. Wrackmeyer, B., *Heteroat. Chem.* **2006**, *17*, 188-208.

- a) Saito, M.; Yoshioka, M., Coord. Chem. Rev. 2005, 249, 765-780; b) West, R., Novel aromatic species containing group 14 atoms. In Pure and Applied Chemistry, 2008; Vol. 80, p 563; c) Hong, J.-H.; Pan, Y.; Boudjouk, P., Angew. Chem. Int. Ed. Engl. 1996, 35, 186-188.
- 91. a) West, R.; Sohn, H.; Powell, D. R.; Müller, T.; Apeloig, Y., *Angew. Chem. Int. Ed. Engl.* 1996, 35, 1002-1004; b) Choi, S.-B.; Boudjouk, P.; Hong, J.-H., *Organometallics* 1999, 18, 2919-2921.
- 92. Saito, M.; Sakaguchi, M.; Tajima, T.; Ishimura, K.; Nagase, S.;
 Hada, M., *Science* 2010, *328*, 339-342.
- a) Dysard, J. M.; Tilley, T. D., J. Am. Chem. Soc. 2000, 122, 3097-3105; b) Dysard, J. M.; Tilley, T. D., J. Am. Chem. Soc. 1998, 120, 8245-8246.
- Dysard, J. M.; Tilley, T. D., Organometallics 2000, 19, 2671-2675.
- Liu, Y.; Ballweg, D.; West, R., Organometallics 2001, 20, 5769-5770.
- 96. a) Ullah, F.; Kühl, O.; Rehman, W.; Jones, P. G.; Heinicke, J., *Polyhedron* 2010, 29, 1041-1048; b) Heinicke, J.; Oprea, A.; Kindermann, M. K.; Karpati, T.; Nyulászi, L.; Veszprémi, T., *Chem. Eur. J.* 1998, 4, 541-545.
- Yasuike, S.; Iida, T.; Okajima, S.; Yamaguchi, K.; Seki, H.;
 Kurita, J., *Tetrahedron* 2001, *57*, 10047-10053.

- Mishra, A.; Ma, C.-Q.; Bäuerle, P., Chem. Rev. 2009, 109, 1141-1276.
- Ohshita, J.; Miyazaki, M.; Tanaka, D.; Morihara, Y.; Fujita, Y.;
 Kunugi, Y., *Polym. Chem.* 2013, *4*, 3116-3122.
- a) Ohshita, J.; Hwang, Y.-M.; Mizumo, T.; Yoshida, H.; Ooyama, Y.; Harima, Y.; Kunugi, Y., *Organometallics* 2011, *30*, 3233-3236; b) Hwang, Y.-M.; Ohshita, J.; Harima, Y.; Mizumo, T.; Ooyama, Y.; Morihara, Y.; Izawa, T.; Sugioka, T.; Fujita, A., *Polymer* 2011, *52*, 3912-3916.
- 101. Gendron, D.; Morin, P.-O.; Berrouard, P.; Allard, N.; Aïch, B. R.;
 Garon, C. N.; Tao, Y.; Leclerc, M., *Macromolecules* 2011, 44, 7188-7193.
- a) Amb, C. M.; Chen, S.; Graham, K. R.; Subbiah, J.; Small, C. E.;
 So, F.; Reynolds, J. R., *J. Am. Chem. Soc.* 2011, *133*, 10062-10065; b) Small, C. E.; Chen, S.; Subbiah, J.; Amb, C. M.; Tsang,
 S.-W.; Lai, T.-H.; Reynolds, J. R.; So, F., *Nat. Photon.* 2012, *6*, 115-120; c) Stalder, R.; Puniredd, S. R.; Hansen, M. R.; Koldemir,
 U.; Grand, C.; Zajaczkowski, W.; Müllen, K.; Pisula, W.; Reynolds, J. R., *Chem. Mater.* 2016, *28*, 1286-1297.
- a) Fei, Z.; Ashraf, R. S.; Huang, Z.; Smith, J.; Kline, R. J.;
 D'Angelo, P.; Anthopoulos, T. D.; Durrant, J. R.; McCulloch, I.;
 Heeney, M., *Chem. Commun.* 2012, 48, 2955-2957; b) Fei, Z.;
 Shahid, M.; Yaacobi-Gross, N.; Rossbauer, S.; Zhong, H.;

Watkins, S. E.; Anthopoulos, T. D.; Heeney, M., *Chem. Commun.* **2012**, *48*, 11130-11132.

- a) Gibson, G. L.; Gao, D.; Jahnke, A. A.; Sun, J.; Tilley, A. J.; Seferos, D. S., *J. Mater. Chem. A* 2014, *2*, 14468-14480; b) Kim, J. S.; Fei, Z.; Wood, S.; James, D. T.; Sim, M.; Cho, K.; Heeney, M. J.; Kim, J.-S., *Adv. Energy Mater.* 2014, *4*, 1400527-1400535;
 c) Kesava, S. V.; Fei, Z.; Rimshaw, A. D.; Wang, C.; Hexemer, A.; Asbury, J. B.; Heeney, M.; Gomez, E. D., *Adv. Energy Mater.* 2014, *4*, 1400116-1400126.
- Fei, Z.; Kim, J. S.; Smith, J.; Domingo, E. B.; Anthopoulos, T. D.;
 Stingelin, N.; Watkins, S. E.; Kim, J.-S.; Heeney, M., *J. Mater. Chem.* 2011, 21, 16257-16263.
- Zong, K.; Deininger, J. J.; Reynolds, J. R., Org. Lett. 2013, 15, 1032-1035.
- 107. Zhong, H.; Li, Z.; Deledalle, F.; Fregoso, E. C.; Shahid, M.; Fei,
 Z.; Nielsen, C. B.; Yaacobi-Gross, N.; Rossbauer, S.;
 Anthopoulos, T. D.; Durrant, J. R.; Heeney, M., J. Am. Chem. Soc.
 2013, 135, 2040-2043.
- 108. Jwo, P.-C.; Lai, Y.-Y.; Tsai, C.-E.; Lai, Y.-Y.; Liang, W.-W.; Hsu,
 C.-S.; Cheng, Y.-J., *Macromolecules* 2014, 47, 7386-7396.
- 109. Tavares, P.; Meunier, P.; Gautheron, B.; Dousse, G.; Lavayssiere, H., *Phosphorus Sulfur Silicon Relat. Elem.* 1991, *55*, 249-253.

- Fei, Z.; Ashraf, R. S.; Han, Y.; Wang, S.; Yau, C. P.; Tuladhar, P.
 S.; Anthopoulos, T. D.; Chabinyc, M. L.; Heeney, M., *J. Mater. Chem. A* 2015, *3*, 1986-1994.
- 111. Tamao, K.; Uchida, M.; Izumizawa, T.; Furukawa, K.;Yamaguchi, S., J. Am. Chem. Soc. 1996, 118, 11974-11975.
- Sohn, H.; Sailor, M. J.; Magde, D.; Trogler, W. C., J. Am. Chem. Soc. 2003, 125, 3821-3830.
- 113. Toal, S. J.; Sohn, H.; Zakarov, L. N.; Kassel, W. S.; Golen, J. A.;
 Rheingold, A. L.; Trogler, W. C., *Organometallics* 2005, *24*, 3081-3087.
- 114. Zhou, W.-M.; Tomita, I., Polym. Bull. 2008, 61, 603-609.
- 115. Pei, J.; Yu, W.-L.; Huang, W.; Heeger, A. J., *Macromolecules*2000, 33, 2462-2471.
- Lucht, B. L.; Buretea, M. A.; Tilley, T. D., Organometallics 2000, 19, 3469-3475.
- 117. Nitschke, J. R.; Don Tilley, T., J. Organomet. Chem. 2003, 666, 15-22.
- Law, C. C. W.; Chen, J.; Lam, J. W. Y.; Peng, H.; Tang, B. Z., J. Inorg. Organomet. Polym. 2004, 14, 39-51.
- McMahon F. A, P. T. G., Robinson P. L., J. Chem. Soc. 1933, 1644.
- 120. Mack, W., Angew. Chem. Int. Ed. Engl. 1966, 5, 896-896.

- 121. Rhoden, C. R. B.; Zeni, G., Org. Biomol. Chem. 2011, 9, 1301-1313.
- Sweat, D. P.; Stephens, C. E., J. Organomet. Chem. 2008, 693, 2463-2464.
- 123. Dutton, J. L.; Farrar, G. J.; Sgro, M. J.; Battista, T. L.; Ragogna, P. J., Chem. Eur. J. 2009, 15, 10263-10271.
- 124. Rivas, C.; Vargas, F.; Aguiar, G.; Torrealba, A.; Machado, R., J. Photochem. Photobiol., A 1997, 104, 53-58.
- 125. a) Carrera, E. I.; McCormick, T. M.; Kapp, M. J.; Lough, A. J.; Seferos, D. S., *Inorg. Chem.* 2013, *52*, 13779-13790; b) Carrera, E.
 I.; Seferos, D. S., *Dalton Trans.* 2015, *44*, 2092-2096; c) McCormick, T. M.; Jahnke, A. A.; Lough, A. J.; Seferos, D. S., *J. Am. Chem. Soc.* 2012, *134*, 3542-3548.
- McCormick, T. M.; Carrera, E. I.; Schon, T. B.; Seferos, D. S., Chem. Commun. 2013, 49, 11182-11184.
- Carrera, E. I.; Lanterna, A. E.; Lough, A. J.; Scaiano, J. C.;
 Seferos, D. S., *J. Am. Chem. Soc.* 2016, *138*, 2678-2689.
- a) Prasad, P.; Singh, H.; Butcher, R. A. Y., J. Chem. Sci. 2014, 126, 1311-1321; b) Li, P.-F.; Schon, T. B.; Seferos, D. S., Angew. Chem. Int. Ed. 2015, 54, 9361-9366.
- a) Ahmad, S.; Yadav, K. K.; Singh, S. J.; Chauhan, S. M. S., RSC Adv. 2014, 4, 3171-3180; b) Pacholska-Dudziak, E.; Szczepaniak, M.; Książek, A.; Latos-Grażyński, L., Angew. Chem. Int. Ed. 2013,

52, 8898-8903; c) Sathyamoorthy, B.; Axelrod, A.; Farwell, V.;
Bennett, S. M.; Calitree, B. D.; Benedict, J. B.; Sukumaran, D. K.;
Detty, M. R., *Organometallics* 2010, *29*, 3431-3441.

- 130. a) E. Lukevics, P. A., S. Belyakov, and O. Pudova, *Chem. Heterocycl. Compd.* 2002, *38*, 763-777; b) Biehl, E. R., Chapter
 5.1 Five-Membered Ring Systems: Thiophenes and Se/Te Derivatives. In *Progress in Heterocyclic Chemistry*, Gordon, W. G.; John, A. J., Eds. Elsevier: 2015; Vol. 27, pp 117-157.
- 131. Jahnke, A. C.; Spulber, M.; Neuburger, M.; Palivan, C. G.;
 Wenger, O. S., *Chem. Commun.* 2014, *50*, 10883-10886.
- Tamura, R.; Nagata, Y.; Matsumoto, A.; Shimizu, H.; Ono, N.;
 Kamimura, A.; Hori, K., *Adv. Mater.* **1993**, *5*, 719-721.
- 133. Sugamata, K.; Sasamori, T.; Tokitoh, N., *Eur. J. Inorg. Chem.*2012, 775-778.
- 134. a) Otsubo, T.; Inoue, S.; Nozoe, H.; Jigami, T.; Ogura, F., Synth.
 Met. 1995, 69, 537-538; b) Inoue, S.; Jigami, T.; Nozoe, H.;
 Otsubo, T.; Ogura, F., Tetrahedron Lett. 1994, 35, 8009-8012.
- Sugimoto, R.; Yoshino, K.; Inoue, S.; Tsukagoshi, K., *Jpn. J. Appl. Phys.* 1985, 24, L425.
- 136. a) Jahnke, A. A.; Djukic, B.; McCormick, T. M.; Buchaca Domingo, E.; Hellmann, C.; Lee, Y.; Seferos, D. S., *J. Am. Chem. Soc.* 2013, *135*, 951-954; b) Jahnke, A. A.; Seferos, D. S., *Macromol. Rapid Commun.* 2011, *32*, 943-951.

- 137. a) Dabdoub, M. J.; Dabdoub, V. B.; Pereira, M. A.; Zukerman-Schpector, J., *J. Org. Chem.* 1996, *61*, 9503-9511; b) Sweat, D. P.;
 Stephens, C. E., *Synthesis* 2009, 3214-3218.
- a) Ng, S. C.; Ding, H.; Chan, H. S. O., *Chem. Lett.* 1999, 28, 1325-1326; b) Jahnke, A. A.; Howe, G. W.; Seferos, D. S., *Angew. Chem. Int. Ed.* 2010, 49, 10140-10144; c) He, G.; Kang, L.; Torres Delgado, W.; Shynkaruk, O.; Ferguson, M. J.; McDonald, R.; Rivard, E., *J. Am. Chem. Soc.* 2013, 135, 5360-5363; d) Mahrok, A. K.; Carrera, E. I.; Tilley, A. J.; Ye, S.; Seferos, D. S., *Chem. Commun.* 2015, 51, 5475-5478; e) Gibson, G. L.; McCormick, T. M.; Seferos, D. S., *J. Am. Chem. Soc.* 2012, 134, 539-547; f) Planells, M.; Schroeder, B. C.; McCulloch, I., *Macromolecules* 2014, 47, 5889-5894; g) Al-Hashimi, M.; Han, Y.; Smith, J.; Bazzi, H. S.; Alqaradawi, S. Y. A.; Watkins, S. E.; Anthopoulos, T. D.; Heeney, M., *Chem. Sci.* 2016, 7, 1093-1099.
- Park, Y. S.; Wu, Q.; Nam, C.-Y.; Grubbs, R. B., Angew. Chem. Int. Ed. 2014, 53, 10691-10695.
- a) Ashraf, R. S.; Meager, I.; Nikolka, M.; Kirkus, M.; Planells, M.;
 Schroeder, B. C.; Holliday, S.; Hurhangee, M.; Nielsen, C. B.;
 Sirringhaus, H.; McCulloch, I., *J. Am. Chem. Soc.* 2015, *137*, 1314-1321; b) Kaur, M.; Seul Yang, D.; Shin, J.; Wan Lee, T.;
 Choi, K.; Ju Cho, M.; Hoon Choi, D., *Chem. Commun.* 2013, *49*, 5495-5497.

- 141. Ye, S.; Steube, M.; Carrera, E. I.; Seferos, D. S., *Macromolecules*2016, 49, 1704-1711.
- 142. Jahnke, A. A.; Yu, L.; Coombs, N.; Scaccabarozzi, A. D.; Tilley,
 A. J.; DiCarmine, P. M.; Amassian, A.; Stingelin, N.; Seferos, D.
 S., J. Mater. Chem. C 2015, 3, 3767-3773.
- Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.;
 Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Santos, D. A. D.;
 Bredas, J. L.; Logdlund, M.; Salaneck, W. R., *Nature* 1999, 397, 121-128.
- a) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.;
 Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z., *Chem. Commun.* 2001, 1740-1741; b) Tang, B. Z.; Zhan, X.; Yu, G.; Sze
 Lee, P. P.; Liu, Y.; Zhu, D., J. Mater. Chem. 2001, 11, 2974-2978.
- 145. a) Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Chem. Commun. 2009, 4332-4353; b) Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Chem. Soc. Rev. 2011, 40, 5361-5388.
- 146. a) Zhao, H.; Wang, Y.; Wang, Y.; He, G.; Xue, M.; Guo, P.; Dai, B.; Liu, Z.; Qi, Y., *RSC Adv.* 2015, *5*, 19176-19181; b) Zhao, Z.; Tang, B. Z., Tetraarylethenes and Aggregation-Induced Emission. In *Polycyclic Arenes and Heteroarenes*, Wiley-VCH Verlag GmbH & Co. KGaA: 2015; pp 193-222; c) Zhang, G.-F.; Wang, H.; Aldred, M. P.; Chen, T.; Chen, Z.-Q.; Meng, X.; Zhu, M.-Q., *Chem. Mater.* 2014, *26*, 4433-4446.

- 147. Chen, B.; Jiang, Y.; Chen, L.; Nie, H.; He, B.; Lu, P.; Sung, H. H.
 Y.; Williams, I. D.; Kwok, H. S.; Qin, A.; Zhao, Z.; Tang, B. Z., *Chem. Eur. J.* 2014, 20, 1931-1939.
- 148. Ding, D.; Li, K.; Liu, B.; Tang, B. Z., Acc. Chem. Res. 2013, 46, 2441-2453.
- a) Mullin, J. L.; Tracy, H. J.; Ford, J. R.; Keenan, S. R.; Fridman,
 F., *J. Inorg. Organomet. Polym Mater.* 2007, *17*, 201-213; b)
 Tracy, H. J.; Mullin, J. L.; Klooster, W. T.; Martin, J. A.; Haug, J.;
 Wallace, S.; Rudloe, I.; Watts, K., *Inorg. Chem.* 2005, *44*, 2003-2011; c) Ferman, J.; Kakareka, J. P.; Klooster, W. T.; Mullin, J. L.;
 Quattrucci, J.; Ricci, J. S.; Tracy, H. J.; Vining, W. J.; Wallace, S., *Inorg. Chem.* 1999, *38*, 2464-2472.
- Mullin, J. L.; Tracy, H. J., Aggregation-Induced Emission in Group 14 Metalloles (Siloles, Germoles, and Stannoles): Spectroscopic Considerations, Substituent Effects, and Applications. In *Aggregation-Induced Emission: Fundamentals and Applications, Volumes 1 and 2*, John Wiley and Sons Ltd: 2013; pp 39-60.
- 151. Corey, J. Y., Synthesis of Siloles (and Germoles) that Exhibit the AIE Effect. In Aggregation-Induced Emission: Fundamentals and Applications, Volumes 1 and 2, John Wiley and Sons Ltd: 2013; pp 1-37.

- Xiang, H.; Cheng, J.; Ma, X.; Zhou, X.; Chruma, J. J., Chem. Soc. Rev. 2013, 42, 6128-6185.
- 153. Zander, M.; Kirsch, G., Z. Naturforsch. A 1989, 44, 205.
- Detty, M. R.; Merkel, P. B., J. Am. Chem. Soc. 1990, 112, 3845-3855.
- Annaka, T.; Nakata, N.; Ishii, A., Organometallics 2015, 34, 1272-1278.
- He, G.; Torres Delgado, W.; Schatz, D. J.; Merten, C.; Mohammadpour, A.; Mayr, L.; Ferguson, M. J.; McDonald, R.; Brown, A.; Shankar, K.; Rivard, E., *Angew. Chem. Int. Ed.* 2014, 53, 4587-4591.
- 157. a) Bergman, J.; Engman, L., J. Organomet. Chem. 1980, 201, 377-387; b) H.Mørkved, E.; Lakshmikantham, M. V.; Cava, M. P., *Tetrahedron Lett.* 1996, 37, 9149-9150; c) Sashida, H.; Kaname, M.; Nakayama, A.; Suzuki, H.; Minoura, M., *Tetrahedron* 2010, 66, 5149-5157; d) Takimiya, K.; Kunugi, Y.; Konda, Y.; Niihara, N.; Otsubo, T., J. Am. Chem. Soc. 2004, 126, 5084-5085.
- He, G.; Wiltshire, B. D.; Choi, P.; Savin, A.; Sun, S.; Mohammadpour, A.; Ferguson, M. J.; McDonald, R.; Farsinezhad, S.; Brown, A.; Shankar, K.; Rivard, E., *Chem. Commun.* 2015, *51*, 5444-5447.

- 159. a) Chen, Z.; Luo, M.; Wen, Y.; Luo, G.; Liu, L., Org. Lett. 2014, 16, 3020-3023; b) Ilies, L.; Yoshida, T.; Nakamura, E., J. Am. Chem. Soc. 2012, 134, 16951-16954.
- 160. a) Li, X.; Huang, W.; Liang, D.; Yuan, L.; Ma, Y.; Gu, L., *Tetrahedron* 2015, 71, 1045-1049; b) Jung, M. E.; Deng, G., Org. *Lett.* 2014, 16, 2142-2145.
- 161. a) Liu, Z.; Larock, R. C., Angew. Chem. Int. Ed. 2007, 46, 2535-2538; b) Sharma, U.; Park, Y.; Chang, S., J. Org. Chem. 2014, 79, 9899-9906.
- 162. Tsao, F. A.; Cao, L.; Grimme, S.; Stephan, D. W., J. Am. Chem. Soc. 2015, 137, 13264-13267.
- 163. a) Ghosh, M.; Naskar, A.; Mishra, S.; Hajra, A., *Tetrahedron Lett.*2015, 56, 4101-4104; b) Figueira-Duarte, T. M.; Gégout, A.;
 Olivier, J.; Cardinali, F.; Nierengarten, J.-F., *Eur. J. Org. Chem.*2009, 3819-3819.
- 164. Kotani, M.; Kobayashi, S.; Chang, J.-A., J. Phys. Org. Chem.
 2002, 15, 863-868.
- Burch, R. R.; Shusterman, A. J.; Muetterties, E. L.; Teller, R. G.;
 Williams, J. M., J. Am. Chem. Soc. 1983, 105, 3546-3556.
- 166. Wei, J.; Wang, Z.; Zhang, W.-X.; Xi, Z., Org. Lett. 2013, 15, 1222-1225.
- Shi, Y.; Qian, H.; Lucas, N. T.; Xu, W.; Wang, Z., *Tetrahedron Lett.* 2009, 50, 4110-4113.

- 168. a) Rasolofonjatovo, E.; Provot, O.; Hamze, A.; Bignon, J.; Thoret, S.; Brion, J.-D.; Alami, M., *Eur. J. Med. Chem.* 2010, 45, 3617-3626; b) Calvet, G.; Livecchi, M.; Schmidt, F., *J. Org. Chem.* 2011, 76, 4734-4740.
- 169. Hadfield, J. A.; McGown, A. T., Synth. Commun. 1998, 28, 1421-1431.
- a) Hennrich, G.; Murillo, M. T.; Prados, P.; Song, K.; Asselberghs,
 I.; Clays, K.; Persoons, A.; Benet-Buchholz, J.; de Mendoza, J., *Chem. Commun.* 2005, 2747-2749; b) Fang, Z.; Teo, T.-L.; Cai, L.;
 Lai, Y.-H.; Samoc, A.; Samoc, M., *Org. Lett.* 2009, *11*, 1-4.
- 171. Sonogashira, K.; Tohda, Y.; Hagihara, N., *Tetrahedron Lett.* 1975, 16, 4467-4470.
- a) Yin; Liebscher, J., *Chem. Rev.* 2007, *107*, 133-173; b)
 Chinchilla, R.; Najera, C., *Chem. Soc. Rev.* 2011, *40*, 5084-5121;
 c) Karak, M.; Barbosa, L. C. A.; Hargaden, G. C., *RSC Adv.* 2014, *4*, 53442-53466.
- 173. Rai, R. K.; Tyagi, D.; Gupta, K.; Singh, S. K., *Catal. Sci. Technol.*2016, 6, 3341-3361.
- a) Lo, P. K.; Li, K. F.; Wong, M. S.; Cheah, K. W., J. Org. Chem.
 2007, 72, 6672-6679; b) Stężycki, R.; Grzybowski, M.; Clermont,
 G.; Blanchard-Desce, M.; Gryko, D. T., Chem. Eur. J. 2016, 22, 5198-5203.

- 175. Csékei, M.; Novák, Z.; Kotschy, A., *Tetrahedron* 2008, 64, 8992-8996.
- 176. Nishihara, Y.; Inoue, E.; Ogawa, D.; Okada, Y.; Noyori, S.;
 Takagi, K., *Tetrahedron Lett.* 2009, *50*, 4643-4646.
- Moon, J.; Jeong, M.; Nam, H.; Ju, J.; Moon, J. H.; Jung, H. M.;
 Lee, S., Org. Lett. 2008, 10, 945-948.
- Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S., J. Org. Chem. 2010, 75, 6244-6251.
- a) Zhang, W.-W.; Zhang, X.-G.; Li, J.-H., J. Org. Chem. 2010, 75, 5259-5264; b) Moon, J.; Jang, M.; Lee, S., J. Org. Chem. 2009, 74, 1403-1406.
- 180. Kim, H.; Lee, P. H., Adv. Synth. Cat. 2009, 351, 2827-2832.
- Park, K.; Bae, G.; Park, A.; Kim, Y.; Choe, J.; Song, K. H.; Lee,
 S., *Tetrahedron Lett.* 2011, *52*, 576-580.
- 182. Li, X.; Yang, F.; Wu, Y., RSC Adv. 2014, 4, 13738-13741.
- 183. Cummins, C. H., Tetrahedron Lett. 1994, 35, 857-860.
- 184. Wang, B.; Bonin, M.; Micouin, L., Org. Lett. 2004, 6, 3481-3484.
- Ishikawa, T.; Ogawa, A.; Hirao, T., J. Am. Chem. Soc. 1998, 120, 5124-5125.
- Minami, H.; Saito, T.; Wang, C.; Uchiyama, M., Angew. Chem. Int. Ed. 2015, 54, 4665-4668.
- 187. Chang, S.; Yang, S. H.; Lee, P. H., *Tetrahedron Lett.* 2001, 42, 4833-4835.

- 188. Oh, C. H.; Reddy, V. R., Synlett 2004, 2004, 2091-2094.
- 189. Knorr, R., Chem. Rev. 2004, 104, 3795-3850.
- a) Kirmse, W., Angew. Chem. Int. Ed. Engl. 1997, 36, 1164-1170;
 b) Grainger, R. S.; Munro, K. R., Tetrahedron 2015, 71, 7795-7835.
- 191. Jahnke, E.; Tykwinski, R. R., Chem. Commun. 2010, 46, 3235-3249.
- 192. Shi, Y.; Li, X.; Liu, J.; Jiang, W.; Sun, L., *Tetrahedron Lett.* 2010, 51, 3626-3628.
- 193. Bernanose, A., J. Chim. Phys. 1953, 50, 64.
- 194. Tang, C. W.; VanSlyke, S. A., Appl. Phys. Lett. 1987, 51, 913-915.
- 195. Sasabe, H.; Kido, J., Eur. J. Org. Chem. 2013, 7653-7663.
- 196. Bernius, M. T.; Inbasekaran, M.; O'Brien, J.; Wu, W., *Adv. Mater.*2000, *12*, 1737-1750.
- 197. a) Adachi, C.; Tsutsui, T.; Saito, S., *Appl. Phys. Lett.* 1990, 56, 799-801; b) Adachi, C.; Tsutsui, T.; Saito, S., *Appl. Phys. Lett.* 1989, 55, 1489-1491; c) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., *Nature* 1990, 347, 539-541.
- 198. Geffroy, B.; le Roy, P.; Prat, C., Polym. Int. 2006, 55, 572-582.
- 199. Gather, M. C.; Köhnen, A.; Meerholz, K., Adv. Mater. 2011, 23, 233-248.
- 200. Chen, C.-T., Chem. Mater. 2004, 16, 4389-4400.

- 201. D'Andrade, B. W.; Holmes, R. J.; Forrest, S. R., *Adv. Mater.* 2004, *16*, 624-628.
- 202. Tanaka, D.; Sasabe, H.; Li, Y.-J.; Su, S.-J.; Takeda, T.; Kido J., Jpn. J. Appl. Phys. 2007, 46, L10.
- 203. Wong, W.-Y.; Ho, C.-L., J. Mater. Chem. 2009, 19, 4457-4482.
- 204. Bliznyuk, V. N.; Carter, S. A.; Scott, J. C.; Klärner, G.; Miller, R.
 D.; Miller, D. C., *Macromolecules* 1999, *32*, 361-369.
- 205. Rault-Berthelot, J.; Simonet, J., J. Electroanal. Chem. Interfacial Electrochem. 1985, 182, 187-192.
- 206. J. Rault-Berthelot, J. S., Nouv. J. Chim. 1986, 10, 169-177.
- 207. Kreyenschmidt, M.; Klaerner, G.; Fuhrer, T.; Ashenhurst, J.; Karg,
 S.; Chen, W. D.; Lee, V. Y.; Scott, J. C.; Miller, R. D., *Macromolecules* 1998, 31, 1099-1103.
- 208. Yutaka, O.; Masao, U.; Keiro, M.; Katsumi, Y., *Jpn. J. Appl. Phys.*1991, 30, L1941.
- 209. a) Masahiko, F.; Keiji, S.; Katsumi, Y., Jpn. J. Appl. Phys. 1989, 28, L1433; b) Fukuda, M.; Sawada, K.; Morita, S.; Yoshino, K., Synth. Met. 1991, 41, 855-858; c) Fukuda, M.; Sawada, K.; Yoshino, K., J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 2465-2471.
- 210. McCullough, R. D.; Lowe, R. D., J. Chem. Soc., Chem. Commun.1992, 70-72.
- 211. Pei, Q.; Yang, J. Am. Chem. Soc. 1996, 118, 7416-7417.

- 212. Klaerner, G.; Miller, R. D., Macromolecules 1998, 31, 2007-2009.
- 213. Nothofer, H.-G.; Meisel, A.; Miteva, T.; Neher, D.; Forster, M.;
 Oda, M.; Lieser, G.; Sainova, D.; Yasuda, A.; Lupo, D.; Knoll, W.;
 Scherf, U., *Macromol. Symp.* 2000, 154, 139-148.
- 214. Li, Z.; Li, Z. R.; Meng, H., Organic Light-Emitting Materials and Devices. CRC Press: 2006.
- 215. Ranger, M.; Rondeau, D.; Leclerc, M., *Macromolecules* 1997, *30*, 7686-7691.
- 216. Ranger, M.; Leclerc, M., Chem. Commun. 1997, 1597-1598.
- 217. a) Li, W.-J.; Liu, B.; Qian, Y.; Xie, L.-H.; Wang, J.; Li, S.-B.; Huang, W., *Polym. Chem.* 2013, *4*, 1796-1802; b) Lee, S. K.; Ahn, T.; Cho, N. S.; Lee, J.-I.; Jung, Y. K.; Lee, J.; Shim, H. K., *J. Polym. Sci., Part A: Polym. Chem.* 2007, *45*, 1199-1209; c) Bolis, S.; Pasini, M.; Virgili, T., *Chem. Commun.* 2013, *49*, 11761-11763.
- a) Bernius, M.; Inbasekaran, M.; Woo, E.; Wu, W.; Wujkowski, L., *J. Mater. Sci. Mater. Electron.* 2000, *11*, 111-116; b) Leclerc, M., *J. Polym. Sci., Part A: Polym. Chem.* 2001, *39*, 2867-2873; c) Neher, D., *Macromol. Rapid Commun.* 2001, *22*, 1365-1385; d) Scherf, U.; List, E. J. W., *Adv. Mater.* 2002, *14*, 477-487; e) Wu, W.; Inbasekaran, M.; Hudack, M.; Welsh, D.; Yu, W.; Cheng, Y.; Wang, C.; Kram, S.; Tacey, M.; Bernius, M.; Fletcher, R.; Kiszka, K.; Munger, S.; O'Brien, J., *Microelectron. J.* 2004, *35*, 343-348; f)

Kim, D. Y.; Cho, H. N.; Kim, C. Y., Prog. Polym. Sci. 2000, 25, 1089-1139; g) Xie, L.-H.; Yin, C.-R.; Lai, W.-Y.; Fan, Q.-L.; Huang, W., Prog. Polym. Sci. 2012, 37, 1192-1264.

- 219. a) Stolz, S.; Petzoldt, M.; Dück, S.; Sendner, M.; Bunz, U. H. F.; Lemmer, U.; Hamburger, M.; Hernandez-Sosa, G., *ACS Appl. Mater. Interfaces* 2016, *8*, 12959-12967; b) Gupta, N.; Grover, R.; Mehta, D. S.; Saxena, K., *Org. Electron.* 2016, *34*, 276-283.
- 220. Fonseca, S. M.; Galvão, R. P.; Burrows, H. D.; Gutacker, A.;
 Scherf, U.; Bazan, G. C., *Macromol. Rapid Commun.* 2013, 34, 717-722.
- 221. Yi, J.; Huang, J.; Lin, Y.; Liu, C.-F.; Cheng, T.; Jiang, Y.; Tang,
 W.; Lai, W.-Y.; Huang, W., *RSC Adv.* 2016, *6*, 49903-49909.
- 222. Lv, F.; Qiu, T.; Liu, L.; Ying, J.; Wang, S., Small **2016**, *12*, 696-705.
- a) Coffin, R. C.; Peet, J.; Rogers, J.; Bazan, G. C., *Nat. Chem.*2009, *1*, 657-661; b) Kularatne, R. S.; Magurudeniya, H. D.; Sista,
 P.; Biewer, M. C.; Stefan, M. C., *J. Polym. Sci., Part A: Polym. Chem.* 2013, *51*, 743-768; c) Zhou, H.; Yang, L.; You, W., *Macromolecules* 2012, *45*, 607-632.
- 224. a) Herguth, P.; Jiang, X.; Liu, M. S.; Jen, A. K. Y., *Macromolecules* 2002, 35, 6094-6100; b) Yang, J.; Jiang, C.; Zhang, Y.; Yang, R.; Yang, W.; Hou, Q.; Cao, Y., *Macromolecules* 2004, 37, 1211-1218; c) Miteva, T.; Meisel, A.;

Knoll, W.; Nothofer, H. G.; Scherf, U.; Müller, D. C.; Meerholz,K.; Yasuda, A.; Neher, D., *Adv. Mater.* 2001, *13*, 565-570.

- a) Franco, I.; Tretiak, S., *Chem. Phys. Lett.* 2003, *372*, 403-408; b)
 He, B.; Li, J.; Bo, Z.; Huang, Y., *Polym. J.* 2007, *39*, 1345-1350;
 c) Chi, C.; Im, C.; Enkelmann, V.; Ziegler, A.; Lieser, G.; Wegner,
 G., *Chem. Eur. J.* 2005, *11*, 6833-6845; d) Hung, M.-C.; Liao, J.L.; Chen, S.-A.; Chen, S.-H.; Su, A.-C., *J. Am. Chem. Soc.* 2005, *127*, 14576-14577.
- 226. Craig M. R., de Kok M. M., Hofstraat J. W., Schenning A. P. H. J., Meijer E. W., *J. Mater. Chem.* 2003, *13*, 2861-2862.
- 227. Gilman, H.; Gorsich, R. D., J. Am. Chem. Soc. 1955, 77, 6380-6381.
- a) Chan, K. L.; McKiernan, M. J.; Towns, C. R.; Holmes, A. B., J. Am. Chem. Soc. 2005, 127, 7662-7663; b) Wang, E.; Li, C.; Mo, Y.; Zhang, Y.; Ma, G.; Shi, W.; Peng, J.; Yang, W.; Cao, Y., J. Mater. Chem. 2006, 16, 4133-4140; c) Chen, R.-F.; Fan, Q.-L.; Liu, S.-J.; Zhu, R.; Pu, K.-Y.; Huang, W., Synth. Met. 2006, 156, 1161-1167.
- 229. a) A. Sharma, D. P., T. Wagner, J. Optoelectron. Adv. Mater.
 2014, 16, 1257-1268; b) Boudreault, P.-L. T.; Michaud, A.; Leclerc, M., Macromol. Rapid Commun. 2007, 28, 2176-2179.
- 230. a) Usta, H.; Lu, G.; Facchetti, A.; Marks, T. J., J. Am. Chem. Soc.
 2006, 128, 9034-9035; b) Lu, G.; Usta, H.; Risko, C.; Wang, L.;

Facchetti, A.; Ratner, M. A.; Marks, T. J., J. Am. Chem. Soc. 2008, 130, 7670-7685.

- 231. Seesukphronrarak, S.; Takata, T., Chem. Lett. 2007, 36, 1138-1139.
- a) Chen, R.-F.; Fan, Q.-L.; Zheng, C.; Huang, W., Org. Lett. 2006, 8, 203-205; b) Corey, J. Y.; Trankler, K. A.; Braddock-Wilking, J.; Rath, N. P., Organometallics 2010, 29, 5708-5713; c) Pusztai, E.; Albright, H.; Cai, Y.; Hu, R.; West, R.; Tang, B. Z.; Guzei, I. A., Organometallics 2013, 32, 6871-6874; d) Shimizu, M.; Mochida, K.; Katoh, M.; Hiyama, T., Sci. China Chem. 2011, 54, 1937-1947; e) Li, L.; Xu, C.; Li, S., Tetrahedron Lett. 2010, 51, 622-624.
- 233. Furukawa, S.; Kobayashi, J.; Kawashima, T., J. Am. Chem. Soc.
 2009, 131, 14192-14193.
- 234. Matsuda, T.; Kadowaki, S.; Goya, T.; Murakami, M., Org. Lett.
 2007, 9, 133-136.
- Ureshino, T.; Yoshida, T.; Kuninobu, Y.; Takai, K., J. Am. Chem.
 Soc. 2010, 132, 14324-14326.
- 236. Yabusaki, Y.; Ohshima, N.; Kondo, H.; Kusamoto, T.; Yamanoi,
 Y.; Nishihara, H., *Chem. Eur. J.* 2010, *16*, 5581-5585.
- 237. Matsuda, T.; Kadowaki, S.; Murakami, M., *Chem. Commun.* 2007, 2627-2629.

- 238. a) Braddock-Wilking, J.; Corey, J. Y.; Dill, K.; Rath, N. P., Organometallics 2002, 21, 5467-5469; b) Braddock-Wilking, J.;
 Corey, J. Y.; Trankler, K. A.; Dill, K. M.; French, L. M.; Rath, N. P., Organometallics 2004, 23, 4576-4584.
- 239. Hill, A. F.; Fink, M. J., *Advances in Organometallic Chemistry*. Elsevier Science: 2011.
- 240. Nakano, K., Synthesis of Carbazoles and Related Compounds via
 C-E Bond-Forming Coupling Reactions. In *Transition-Metal-Mediated Aromatic Ring Construction*, John Wiley & Sons, Inc.:
 2013; pp 617-644.
- Breunig, J. M.; Gupta, P.; Das, A.; Tussupbayev, S.; Diefenbach,
 M.; Bolte, M.; Wagner, M.; Holthausen, M. C.; Lerner, H.-W., *Chem. Asian J.* 2014, 9, 3163-3173.
- 242. Xu, L.; Zhang, S.; Li, P., Org. Chem. Front. 2015, 2, 459-463.
- 243. Leifert, D.; Studer, A., Org. Lett. 2015, 17, 386-389.
- 244. Curless, L. D.; Ingleson, M. J., *Organometallics* **2014**, *33*, 7241-7246.
- 245. Xiao, Q.; Meng, X.; Kanai, M.; Kuninobu, Y., Angew. Chem. Int.
 Ed. 2014, 53, 3168-3172.
- 246. Li, L.; Li, S.; Zhao, C.-H.; Xu, C., *Eur. J. Inorg. Chem.* 2014, 1880-1885.

- 247. Pusztai, E.; Toulokhonova, I. S.; Temple, N.; Albright, H.; Zakai, U. I.; Guo, S.; Guzei, I. A.; Hu, R.; West, R., *Organometallics* 2013, *32*, 2529-2535.
- Zhang, Q.-W.; An, K.; Liu, L.-C.; Guo, S.; Jiang, C.; Guo, H.; He,
 W., Angew. Chem. Int. Ed. 2016, 55, 6319-6323.
- 249. Liu, Y.; Stringfellow, T. C.; Ballweg, D.; Guzei, I. A.; West, R., J.
 Am. Chem. Soc. 2002, 124, 49-57.
- a) Sanchez, J. C.; DiPasquale, A. G.; Rheingold, A. L.; Trogler, W. C., *Chem. Mater.* 2007, *19*, 6459-6470; b) Sanchez, J. C.; Urbas, S. A.; Toal, S. J.; DiPasquale, A. G.; Rheingold, A. L.; Trogler, W. C., *Macromolecules* 2008, *41*, 1237-1245; c) Martinez, H. P.; Grant, C. D.; Reynolds, J. G.; Trogler, W. C., *J. Mater. Chem.* 2012, *22*, 2908-2914.
- McDowell, J. J.; Maier-Flaig, F.; Wolf, T. J. A.; Unterreiner, A.-N.; Lemmer, U.; Ozin, G., ACS Appl. Mater. Interfaces 2014, 6, 83-93.
- a) Wang, E.; Li, C.; Zhuang, W.; Peng, J.; Cao, Y., J. Mater. Chem. 2008, 18, 797-801; b) Geramita, K.; Tao, Y.; Segalman, R.
 A.; Tilley, T. D., J. Org. Chem. 2010, 75, 1871-1887; c) Mo, Y.Q.; Deng, X.-Y.; Jiang, X.; Cui, Q.-H., J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 3286-3295.
- 253. a) Wang, J.; Zhang, C.-Q.; Zhong, C.-M.; Hu, S.-J.; Chang, X.-Y.;
 Mo, Y.-Q.; Chen, X.; Wu, H.-B., *Macromolecules* 2011, 44, 17-

19; b) Xia, L.; Xue, Y.; Xiong, K.; Cai, C.; Peng, Z.; Wu, Y.; Li,
Y.; Miao, J.; Chen, D.; Hu, Z.; Wang, J.; Peng, X.; Mo, Y.; Hou,
L., *ACS Appl. Mater. Interfaces* 2015, *7*, 26405-26413; c) Chen, S.
F.; Tian, Y.; Peng, J.; Zhang, H.; Feng, X. J.; Zhang, H.; Xu, X.;
Li, L.; Gao, J., *J. Mater. Chem. C* 2015, *3*, 6822-6830.

- 254. Wang, D.; Liu, Q.; Yu, Y.; Wu, Y.; Zhang, X.; Dong, H.; Ma, L.;
 Zhou, G.; Jiao, B.; Wu, Z.; Chen, R., *Sci. China Chem.* 2015, *58*, 993-998.
- 255. Erlik, O.; Unlu, N. A.; Hizalan, G.; Hacioglu, S. O.; Comez, S.;
 Yildiz, E. D.; Toppare, L.; Cirpan, A., J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 1541-1547.
- 256. Goy, R.; Apfel, U.-P.; Elleouet, C.; Escudero, D.; Elstner, M.;
 Görls, H.; Talarmin, J.; Schollhammer, P.; González, L.; Weigand,
 W., *Eur. J. Inorg. Chem.* 2013, 4466-4472.
- 257. a) Yuan, M.; Yang, P.; Durban, M. M.; Luscombe, C. K., *Macromolecules* 2012, 45, 5934-5940; b) Jin, J.-K.; Choi, J.-K.; Kim, B.-J.; Kang, H.-B.; Yoon, S.-C.; You, H.; Jung, H.-T., *Macromolecules* 2011, 44, 502-511; c) Wang, E.; Wang, L.; Lan, L.; Luo, C.; Zhuang, W.; Peng, J.; Cao, Y., *Appl. Phys. Lett.* 2008, 92, 033307-033310; d) Song, J.; Du, C.; Li, C.; Bo, Z., *J. Polym. Sci., Part A: Polym. Chem.* 2011, 49, 4267-4274.

- 258. Cai, Y.; Samedov, K.; Dolinar, B. S.; Albright, H.; Guzei, I. A.;
 Hu, R.; Zhang, C.; West, R., *Chem. Eur. J.* 2014, 20, 14040-14050.
- 259. Keyworth, C. W.; Chan, K. L.; Labram, J. G.; Anthopoulos, T. D.;
 Watkins, S. E.; McKiernan, M.; White, A. J. P.; Holmes, A. B.;
 Williams, C. K., *J. Mater. Chem.* 2011, *21*, 11800-11814.
- 260. K. Ogawa, Y. T., G. Manuel and R. Boukherroub, *Acta Cryst.* **1994**, *C50*, 1337-1339.
- 261. Allard, N.; Aïch, R. B.; Gendron, D.; Boudreault, P.-L. T.; Tessier,
 C.; Alem, S.; Tse, S.-C.; Tao, Y.; Leclerc, M., *Macromolecules*2010, 43, 2328-2333.
- White, C. P.; Braddock-Wilking, J.; Corey, J. Y.; Xu, H.; Redekop, E.; Sedinkin, S.; Rath, N. P., Organometallics 2007, 26, 1996-2004.
- Braddock-Wilking, J.; Bandrowsky, T.; Praingam, N.; Rath, N. P., Organometallics 2009, 28, 4098-4105.
- 264. Liu, Y.; Ballweg, D.; Müller, T.; Guzei, I. A.; Clark, R. W.; West,
 R., J. Am. Chem. Soc. 2002, 124, 12174-12181.
- 265. Chen, R.-F.; Zheng, C.; Fan, Q.-L.; Huang, W., J. Comput. Chem.
 2007, 28, 2091-2101.
- 266. B. S. Pujari, S. G., M. Brett, and A. Kovalenko, *ECS Trans.* 2011, 41, 129-134.

- 267. Yin, J.; Zhang, S.-L.; Chen, R.-F.; Ling, Q.-D.; Huang, W., *Phys. Chem. Chem. Phys.* 2010, *12*, 15448-15458.
- 268. a) Bel'skiy, V. K., *Zh. Strukt. Khim.* 1984, 25, 136-138; b) Chase,
 P. A.; Piers, W. E.; Patrick, B. O., *J. Am. Chem. Soc.* 2000, *122*, 12911-12912; c) Nagao, I.; Shimizu, M.; Hiyama, T., *Angew. Chem. Int. Ed.* 2009, 48, 7573-7576; d) van Klink, G. P. M.; de
 Boer, H. J. R.; Schat, G.; Akkerman, O. S.; Bickelhaupt, F.; Spek,
 A. L., *Organometallics* 2002, *21*, 2119-2135.
- 269. Saito, M.; Shimosawa, M.; Yoshioka, M.; Ishimura, K.; Nagase,
 S., *Chem. Lett.* 2006, 35, 940-941.
- Shimizu, M.; Nagao, I.; Kiyomoto, S.-i.; Hiyama, T., Aust. J. Chem. 2012, 65, 1277-1284.
- 271. Shimizu, M.; Hiyama, T., Eur. J. Org. Chem. 2013, 8069-8081.
- 272. Yue, W.; Gao, J.; Li, Y.; Jiang, W.; Di Motta, S.; Negri, F.; Wang,
 Z., J. Am. Chem. Soc. 2011, 133, 18054-18057.
- a) Yuan, W. Z.; Chen, S.; Lam, J. W. Y.; Deng, C.; Lu, P.; Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Zhang, Y.; Tang, B. Z., *Chem. Commun.* 2011, *47*, 11216-11218; b) Hu, R.; Maldonado, J. L.; Rodriguez, M.; Deng, C.; Jim, C. K. W.; Lam, J. W. Y.; Yuen, M. M. F.; Ramos-Ortiz, G.; Tang, B. Z., *J. Mater. Chem.* 2012, *22*, 232-240.
- 274. Ezhumalai, Y.; Wang, T.-H.; Hsu, H.-F., Org. Lett. 2015, 17, 536539.

- Desurmont, G.; Klein, R.; Uhlenbrock, S.; Laloë, E.; Deloux, L.;
 Giolando, D. M.; Kim, Y. W.; Pereira, S.; Srebnik, M.,
 Organometallics 1996, 15, 3323-3328.
- Clark, J. R.; Griffiths, J. R.; Diver, S. T., J. Am. Chem. Soc. 2013, 135, 3327-3330.
- 277. Shibata, K.; Satoh, T.; Miura, M., Org. Lett. 2005, 7, 1781-1783.
- 278. Yamaguchi, S.; Endo, T.; Uchida, M.; Izumizawa, T.; Furukawa, K.; Tamao, K., *Chem. Eur. J.* 2000, *6*, 1683-1692.
- Vasilyev, A. V.; Shchukin, A. O.; Walspurger, S.; Sommer, J., *Eur. J. Org. Chem.* 2008, 4632-4639.
- 280. Han, T.; Zhang, Y.; Feng, X.; Lin, Z.; Tong, B.; Shi, J.; Zhi, J.;
 Dong, Y., *Chem. Commun.* 2013, 49, 7049-7051.
- Zhang, Y.; Han, T.; Gu, S.; Zhou, T.; Zhao, C.; Guo, Y.; Feng, X.;
 Tong, B.; Bing, J.; Shi, J.; Zhi, J.; Dong, Y., *Chem. Eur. J.* 2014, 20, 8856-8861.
- 282. Simmons, H. E.; Fukunaga, T., J. Am. Chem. Soc. 1967, 89, 5208-5215.
- 283. a) Fleming, I., Molecular Orbitals and Organic Chemical Reactions. Wiley: 2011; b) Dewar, M. J. S.; McKee, M. L., Pure Appl. Chem. 1980, 52, 1431-1441.
- 284. a) Mahns, B.; Roth, F.; Grobosch, M.; Lindner, S.; Knupfer, M.; Saragi, T. P. I.; Reichert, T.; Salbeck, J.; Hahn, T., *J. Chem. Phys.*2012, 136, 124702-124709; b) Saragi, T. P. I.; Spehr, T.; Siebert,

A.; Fuhrmann-Lieker, T.; Salbeck, J., *Chem. Rev.* **2007**, *107*, 1011-1065; c) Pudzich, R.; Fuhrmann-Lieker, T.; Salbeck, J., Spiro Compounds for Organic Electroluminescence and Related Applications. In *Emissive Materials Nanomaterials*, Springer Berlin Heidelberg: Berlin, Heidelberg, 2006; pp 83-142.

- Berkovic, G.; Krongauz, V.; Weiss, V., Chem. Rev. 2000, 100, 1741-1754.
- 286. Minkin, V. I., Chem. Rev. 2004, 104, 2751-2776.
- 287. Maslak, P.; Chopra, A.; Moylan, C. R.; Wortmann, R.; Lebus, S.;
 Rheingold, A. L.; Yap, G. P. A., J. Am. Chem. Soc. 1996, 118, 1471-1481.
- 288. a) Trosien, S.; Schollmeyer, D.; Waldvogel, S. R., Synthesis 2013, 45, 1160-1164; b) Yang, Z.-D.; Feng, J.-K.; Ren, A.-M., Chem. Phys. Lett. 2008, 461, 9-15.
- Clarkson, R. G.; Gomberg, M., J. Am. Chem. Soc. 1930, 52, 2881-2891.
- a) Chou, C.-H.; Reddy, D. S.; Shu, C.-F., *J. Polym. Sci., Part A: Polym. Chem.* 2002, *40*, 3615-3621; b) Poriel, C.; Ferrand, Y.; Juillard, S.; Le Maux, P.; Simonneaux, G., *Tetrahedron* 2004, *60*, 145-158; c) Wu, R.; Schumm, J. S.; Pearson, D. L.; Tour, J. M., *J. Org. Chem.* 1996, *61*, 6906-6921; d) Chiang, C.-L.; Shu, C.-F.; Chen, C.-T., *Org. Lett.* 2005, *7*, 3717-3720.

- 291. Cheng, X.; Hou, G.-H.; Xie, J.-H.; Zhou, Q.-L., Org. Lett. 2004, 6, 2381-2383.
- 292. Zhai, L.; Shukla, R.; Rathore, R., Org. Lett. 2009, 11, 3474-3477.
- Wang, H.-Y.; Qian, Q.; Lin, K.-H.; Peng, B.; Huang, W.; Liu, F.;
 Wei, W., J. Polym. Sci., Part B: Polym. Phys. 2012, 50, 180-188.
- 294. a) Li, C.; Bo, Z., Polymer 2010, 51, 4273-4294; b) Lin, Y.; Chen,
 Z.-K.; Ye, T.-L.; Dai, Y.-F.; Ma, D.-G.; Ma, Z.; Liu, Q.-D.; Chen,
 Y., J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 292-301.
- 295. Wu, Y.; Li, J.; Fu, Y.; Bo, Z., Org. Lett. 2004, 6, 3485-3487.
- 296. Wu, Y.; Zhang, J.; Fei, Z.; Bo, Z., J. Am. Chem. Soc. 2008, 130, 7192-7193.
- 297. McDowell, J. J.; Gao, D.; Seferos, D. S.; Ozin, G., *Polym. Chem.*2015, 6, 3781-3789.
- 298. Agou, T.; Hossain, M. D.; Kawashima, T., Chem. Eur. J. 2010, 16, 368-375.
- 299. Lee, S. H.; Jang, B.-B.; Kafafi, Z. H., J. Am. Chem. Soc. 2005, 127, 9071-9078.
- a) Xiao, H.; Leng, B.; Tian, H., *Polymer* 2005, *46*, 5707-5713; b)
 Zabula, A. V.; Dolinar, B. S.; West, R., *J. Organomet. Chem.*2014, *751*, 458-461; c) Murakami, K.; Ooyama, Y.; Higashimura, H.; Ohshita, J., *Organometallics* 2016, *35*, 20-26.
- Kuninobu, Y.; Yamauchi, K.; Tamura, N.; Seiki, T.; Takai, K., Angew. Chem. Int. Ed. 2013, 52, 1520-1522.
Lenormand, H.; Goddard, J.-P.; Fensterbank, L., Org. Lett. 2013, 15, 748-751. Chapter 2: Modular Synthesis of Molecular and Polymeric Spirocyclic Germafluorene-Germoles: A New Family of Tunable Luminogens

2.1. Abstract

In this chapter the zirconium-mediated synthesis of a new class of air-stable luminogens, spirocyclic germafluorene-germoles (SGGs) is reported. These species contain ring-fused germafluorene and germole units that display color tunable fluorescence when peripheral aryl substituents are appended. Three distinct pathways are introduced for SGG modification: Stille, Suzuki-Miyaura and zirconocene-mediated couplings. Homopolymer and copolymers with alternating thiophene- or fluorene-thiophene repeat units were obtained using microwave-assisted Yamamoto or Stille pathways; these polymers exhibit blue luminescence and high thermal stability with no signs of degradation until *ca.* 370 °C. Thus, new libraries of molecular and polymeric spirocyclic germafluorene-germole light-emitters were prepared; they possess tunable luminescence, and desirable thermal- and photostabilities.

2.2. Introduction

Red, blue and green are the three main chromic components for achieving full color displays.¹ However obtaining long-term blue luminescence is very challenging due to the high propensity for material degradation during device operation. For example, the widely studied blue-emitting 9,9'-dialkylfluorenes^{2a,b} and their polymers^{2c,d} tend to form oxidized green emissive ketonic products over time. One strategy being explored to counteract undesired oxidation upon excitation is to construct heterofluorene emitters featuring intraring Si, Ge and Sn atoms, which leads to enhanced $\sigma^* - \pi^*$ conjugation within the metallole fragment and a lowering of the LUMO state.³ Initially reported by Holmes and coworkers,⁴ the silicon analogues of poly(9,9'-dialkylfluorene)s (PDAFs), polysilafluorenes, show excellent optical and electronic properties, advantageous film forming properties, as well as improved thermal and spectral stability due to the presence of oxidatively robust Si-C linkages; furthermore, polysilafluorenes display enhanced electron affinity in relation to its organic counterparts due to $\sigma^*-\pi^*$ conjugation within the silole fragment which lowers the energy of the LUMO state.⁵ An added advantage of polysilafluorenes, such as poly(9,9'-dioctyl-3,6-silafluorene) is its high triplet energy of 2.55 eV, which enables this polymer to be used as the host for green electrophosphorescent emitters.^{5d} Huang and coworkers investigated both silafluorenes and germafluorenes by computational methods and found that these heteroarenes are promising

electron transport materials.⁶ Later, the same group reported a random germafluorene-fluorene copolymer, and demonstrated its use as a host material in polymer light-emitting device.⁷ In 2010, Leclerc and co-workers reported a series of germafluorene homo- and copolymers; they were able to construct field-effect transistors with hole mobilities of up to $0.04 \text{ cm}^2 (\text{V} \cdot \text{s})^{-1}$ as well as bulk heterojunction solar cells with power conversion efficiencies as high as 2.8 %.⁸

Another viable approach to increase the stability of emissive heterofluorenes^{3e,9} is to orthogonally link two fluorene units within a spirocyclic arrangement; this process decreases quenching intermolecular interactions while concurrently improving the solubility and processability of the resulting materials.¹⁰ However, the widespread implementation of spirocyclic compounds as light-emitting device components has been hampered by limited synthetic approaches.¹¹ Only this year, Ohshita and co-workers reported a series of oligomers and polymers containing alternating bithiophene and spiro-fused dipyridinogermole repeat units. Altering alkyl substituents on the thiophene main chain allowed tuning intramolecular photoinduced energy and electron transfer in these compounds, thus making them potential candidates for the photovoltaics.¹²

Five-membered metalloles $R_2EC_4R'_4$ (R and R' = various substituents; E = Si to Pb) represent a prominent class of conjugated materials,¹³ with useful properties such as efficient aggregation induced emission (AIE) and the colorimetric sensing of analytes reported. Moreover, the peripheral R and R' groups and inorganic intraring element (E) can be altered, leading to luminescence tailoring.¹⁴

Recently our group has explored the synthesis of structurally related phosphorescent tellurophenes via an efficient zirconium-mediated alkyne-coupling/atom substitution process.^{15,16} A similar protocol has been used to access photoluminescent main group element-containing metalloles,¹⁷ while Tilley and co-workers have also prepared a number of neutral and dianionic siloles and germoles, also with the assistance of Negishi's reagent "Cp₂Zr" (Cp = η^5 -C₅H₅; Scheme 2.1).¹⁸ In a promising recent development, the Staubitz group synthesized polystannoles with the help of Zr/Sn element substitution chemistry.¹⁹

In order to create materials with enhanced processability, as found with spirofluorenes, while incorporating the tunable luminescence available to metallole units, the preparation of new hybrid materials was targeted, termed herein as spirocyclic germafluorene-germoles (SGGs; Scheme 2.1).^{8,20} A potentially vast array of structurally distinct SGGs can be obtained from our highly modular synthetic approach, as well as on/off switching of the emission from each heterocyclic luminophore is possible via functional group control. This property should open the door to dual light emission, which has been recently used to achieve white photoluminescence from a single molecular entity.²¹ In addition, blue light emission was observed for all polymeric spirogermafluorene analogues.

Scheme 2.1. Zirconocene-mediated synthesis of germoles and structure of the new spirocyclic germafluorene-germoles (SGGs) introduced in this chapter.

2.3. Results and discussion

This project began with the preparation of spirocyclic germafluorene-germoles (SGGs) containing tetraethylgermole GeC₄Et₄ as a core unit in order to impart solubility in common organic solvents (Scheme 2.2). The first analogue $FlGeC_4Et_4$ (2) (Fl = fluorenyl) was prepared by the condensation of readily available 2,2'-dilithiofluorene with the known dichlorogermole $Cl_2GeC_4Et_4^{18}$ (1). Compound 2 is airand moisture-stable, yet non-emissive in solution and in the solid state. Attempts to directly install bromine substituents onto the germafluorene unit by treating 2 with N-bromosuccinamide (NBS) failed as undesired Ge-C bond scission transpired. As a result we needed to condense prebrominated dilithiofluorene with 1 to yield the dibromo-functionalized germafluorene-germole **3** (Scheme 2.2). The structures of these SGGs were confirmed by single-crystal X-ray crystallography (Figures 2.1 and $(2.2)^{22}$ and as expected, perpendicular arrangements exist between the linked germole and germafluorene units (interplanar angles between each fused Ge heterocycle = $89.79(15)^\circ$ and $84.82(6)^\circ$, for 2 and 3, respectively). The central Ge-C bond distances in 2 and 3 fall within the narrow range of 1.932(4) to 1.955(4) Å, and are similar in value to the Ge-C distances found within known germafluorenes.²³

Scheme 2.2. Synthesis of the alkylated SGGs 2 and 3.

Figure 2.1. Thermal ellipsoid plot (30 % probability) of FlGeC₄Et₄ (**2**) (Fl = fluorenyl) with hydrogen atoms omitted for clarity. Only one molecule of the two in the asymmetric unit is shown. Selected bond lengths (Å) and angles (deg) with values due to the second molecule in the asymmetric unit listed in square brackets: Ge(1A)-C(1A) 1.955(4) [1.955(4)], Ge(1A)-C(12A) 1.949(4) [1.944(5)], Ge(1A)-C(13A) 1.936(4) [1.933(4)], Ge(1A)-C(16A) 1.932(4) [1.940(4)], C(1A)-Ge(1A)-C(12A) 89.19(19) [88.9(2)], C(13A)-Ge(1A)-C(16A) 90.84(19) [90.57(19)].

Figure 2.2. Thermal ellipsoid plot (30 % probability) of compound **3** with hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (deg): Ge-C(1) 1.9494(14), Ge-C(7) 1.9359(14); C(1)-Ge-C(1A) 88.78(8), C(7A)-Ge-C(7) 90.77(9).

In order to verify if the dibrominated spirocyclic germafluorenegermole **3** could undergo Stille coupling with aromatic partners to yield emissive species with potentially extended π -conjugation, compound **3** was reacted with two equivalents of trimethylstannylbenzene²⁴ and 2-(trimethylstannyl)thiophene,²⁵ respectively, under microwave-assisted reaction conditions (Scheme 2.3). In each case BrSnMe₃ elimination transpired to yield the phenyl- and thiophene-capped SGGs **4** and **5** as colorless solids in unoptimized isolated yields of 30 and 15 % after recrystallization. Notably, the use of 2-(tributylstannyl)thiophene as a coupling partner with **3** afforded pure **5** in an elevated recrystallized yield of *ca*. 50 %.

Scheme 2.3. Preparation of the spirocyclic germafluorene-germoles 4 and 5 via Stille coupling.

While the thiophene-substituted spirocyclic germafluorenegermole **5** yielded crystals of suitable quality for X-ray analysis (Figure 2.3), the phenyl-capped derivative **4** consistently afforded poorly formed crystals upon recrystallization, so only atom connectivity could be determined. Of note, the thiophene groups in **5** are positionally disordered over two sites and exist in nearly co-planar arrangements with the proximal germafluorene unit (*e.g.*, S1(A)-C13(A)-C3(A)-C2(A) torsion angle = $6.3(10)^{\circ}$).

Figure 2.3. Thermal ellipsoid plot (30 % probability) of the thiophenecapped SGG **5** with hydrogen atoms omitted for clarity; only one molecule of the two in the asymmetric unit is shown. Selected bond lengths (Å) and angles (deg) with metrical parameters for the second molecule in the asymmetric unit listed in square brackets: Ge(1A)-C(1A) 1.945(2) [1.954(2)], Ge(1A)-C(24A) 1.937(2) [1.942(3)]; C(1A)-Ge(1A)-C(12A)89.06(9) [89.36(10)], C(24A)-Ge(1A)-C(21A) 90.91(9) [90.92(11)].

Compounds **4** and **5** emit violet-blue light in THF solution when irradiated at 332 nm (**4**: $\lambda_{emis} = 377$ nm, $\Phi = 0.03$) and 348 nm (**5**: $\lambda_{emis} =$ 386 and 407 nm, $\Phi = 0.83$; Figure 2.4), respectively.

Figure 2.4. Normalized PL emission spectra of spirocyclic germafluorenegermole **5** in solution (THF) and film state.

This optical behavior mirrors that noted in the analogous phenyland thiophene-substituted dioctylfluorenes **6** and **7** prepared by Leclerc²⁶ (Scheme 2.3). However the phenyl-appended fluorene **6** has a significantly higher quantum yield of $\Phi = 0.64$ in THF solution when compared to its germanium congener **4**. Due to the similarly high quantum yields of the thiophene-capped germafluorene **5** and dioctylfluorene **7** ($\Phi = 0.75$),^{26d} their optical, thermal and photostability properties were compared in more detail. Notably, compounds **5** and **7** absorb maximally at the wavelength (*ca.* 355 nm) in THF respectively (Figures 2.5 and 2.6), and both their fluorescence spectra have vibronic features, thus suggesting a high level of rigidity of the molecules in the first excited singlet state, leading to a narrow distribution of possible conformers.^{26a} The fluorescence spectra of each species in the solid state is red-shifted by *ca*. 30 nm relative to in solution (Figures 2.4 and 2.7);²² this effect can be explained by enhanced heterofluorene-thiophene coplanarity.

Figure 2.5. UV/Vis absorption spectra of the spirocyclic germafluorenegermoles **4** and **5** and fluorene **7** (normalized).

Figure 2.6. UV/Vis absorption spectra of compound 5 and fluorene 7 in the film state (normalized).

Figure 2.7. Normalized PL emission spectra of fluorene 7 in solution (THF) and film state.

Both compounds 5 and 7 exhibit fluorescence based on the lifetimes found: 0.94 ns and 1.05 ns, respectively. The close similarity of the absorption and emission profiles between compounds 5 and 7 (Figure 2.8) suggest that the π -manifolds within the bis(thienyl)biaryl portion of the germafluorene and fluorene residues are primarily involved in luminescence^{26e} with little influence from the spirolinked Ge and C atoms, nor the germole unit in 7.

Figure 2.8. Emission and excitation spectra of **5** (top) and **7** (bottom) in THF.

To determine whether the incorporation of germanium within a spirocycle could increase the photostability for display applications, preliminary comparative irradiation experiments on thin films of **5** and **7** were performed under aerobic conditions (Figure 2.9). To the best of our

knowledge, this is the first example of such a study for heterofluorenes and the resulting data would be of potential use in identifying candidates for the development of LEDs that work without substantial encapsulation.²⁷

Figure 2.9. Time dependence of the fluorescence emission intensity of drop-cast thin films of **5** and **7** upon exposure to a 65 W xenon lamp in air.

Initially films of **5** and **7** were irradiated in air with a 450 W mercury lamp, however total sample decomposition (as verified by UV/Vis spectroscopy) and loss of emission was observed within five minutes. These data suggested that the light source was too strong to obtain the requisite comparative data; as a result, subsequent photostability trials were conducted with the 65 W xenon lamp found within our fluorimeter. We calculated the percent fluorescence intensity, and I/I_0

ratios, based on the photoluminescence intensity at the emission wavelength λ_{max} . From the data presented in Figure 2.9, the SGG 5 displays greater photostability in relation to the fluorene analogue 7 in the solid state: 42 % retention of emission intensity in 5 vs. 26 % retention in 7 after 40 minutes of exposure. We also compared the photostability of 5 and 7 in the film state to that in THF solvent $(1.8 \times 10^{-5} \text{ M concentrations})$; Figure 2.10). For these solution studies, using a 65 W xenon lamp as an irradiation source did not lead to any discernible photodegradation of either compounds 5 and 7. However irradiating THF solutions with a 450 W mercury lamp for 10 min. the SGG 5 retained only 71 % of its initial emission intensity, while the fluorene 7 maintained 94 % of its initial photoluminescence. These initial photostability experiments reveal that although the reported spirogermafluorenes have similar emission abilities as known fluorenes, they can exhibit enhanced photostability in the solid state. Whether these differences are due to inherent chemical stabilities or changes in film morphologies in the solid state remains to be verified, and one needs to be cautious in drawing generalizations from this preliminary study. In the future a more comprehensive comparative photostability study (augmented by computational studies) using molecular spirocycles that differ only by C atom substitution with heavier group 14 elements should be done; fortunately the modular synthetic routes outlined in this chapter enables us to accomplish this task.

Figure 2.10. Time dependence of the emission intensity of spirocyclic germafluorene-germole **5** and fluorene **7** solution under 450 W mercury lamp (the distance of the lamp from the film was 8 cm).

In addition, the onset of thermal decomposition (5 % weight loss), T_d , of compounds **5** and **7** were evaluated under argon using thermal gravimetric analysis (Figure 2.11). Compound **5** showed a T_d at 319 °C, which is somewhat higher than the T_d of 290 °C obtained for the bis(thienyl)dioctylfluorene **7**. These early results are encouraging and point towards a high degree of thermal stability within a spirocyclic germafluroene-germole (SGG) molecular construct.¹⁰

Figure 2.11. TGA thermograms of 5 and 7 measured under Ar (10 $^{\circ}C/min$).

The similar nature of the emission profiles between the abovementioned spirocyclic germafluorene-germoles **4** and **5** and their related organic fluorene counterparts (**6** and **7**), point towards a nonemissive nature of the fused tetraethylgermole cores. A possible explanation is that inherently high degrees of free rotation are available to the ethyl group, which encourages non-radiative decay processes.²⁸ As a result, an analogous SGG, FIGeC4(2-thienyl)4 (**10**) (Scheme 2.4) which contains thiophene-units about the germole core, was prepared. Motivation for this molecular design also comes from prior work on emissive metalloles containing aromatic side groups,^{13e,29} and a desire to demonstrate an improved method of placing potentially light-harvesting thiophene groups about a metallole ring.^{9a-c,30} It is expected that the disruption of intermolecular interactions and restrictive intramolecular motion within the flanking thiophene units could suppress non-radiative decay pathways, and enhance aggregation-induced emission,^{9d,14b,17b} thus making the resulting SGGs efficient emitters in the solid state. As added background, Kafafi and co-workers constructed an efficient green lightemitting diode based on highly emissive ($\Phi = 0.87$) spirocyclic silafluorene-silole containing linked silafluorene and tetraphenylsilole units.³¹

Scheme 2.4. Preparation of the thiophene-substituted zirconocene (8), dihalogermole (9) and spirocyclic germafluorene-germole (10).

The synthetic route to $FlGeC_4(2-thienyl)_4$ (10) first involved alkyne coupling of two bis(2-thienyl)alkyne units to Cp₂Zr to yield the moisture-sensitive zirconacycle **8** as a red solid. In a subsequent step, compound **8** undergoes metallacycle transfer chemistry with GeCl₄ to yield the dichlorogermole **9** (Figure 2.12); this species was later converted into the target thiophene-decorated SGG **10** by treatment with 2,2'dilithiobiphenyl (Scheme 2.4).

Figure 2.12. Thermal ellipsoid plot (30 % probability) of compound 9 with hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (deg): Ge-C(1) 1.935(3), Ge-C(4) 1.932(3), Ge-Cl(1) 2.1362(8), Ge-Cl(2) 2.1279(7); Cl(1)-Ge-C(1) 115.27(19), C(12)-Ge-C(4) 113.37(9), Cl(1)-Ge-Cl(2) 104.33(4).

Compound **10** is an air- and moisture-stable yellow solid that is non-emissive in solution; however, unlike **2**, SGG **10** emits a bright yellow color in the solid state ($\lambda_{emis} = 560$ nm) due to restriction rotation of the peripherally located thiophene groups. SGG **10** forms emissive aggregated states in THF/water mixtures when the water content exceeds 70 vol. % (Figure 2.13). A luminescence lifetime of 3.22 ns was found for pure films of **10** drop-coated from THF (absolute quantum yield = 2.1 %), indicating that light emission is fluorescence. A blue-shift of the emission band (λ_{emis}) was seen at 70 vol. % water in THF by ca. 20 nm relative to aggregates in higher vol. % of water. A pronounced shift in λ_{emis} was not found during the aggregation-induced emission of our tellurophene phosphors,¹⁶ however significant changes in λ_{emis} as a function of the degree of aggregation has been noted in related compounds based on silicon heterocycles, and has been attributed to conformational changes within the flexible side groups upon increasing aggregation.^{14e}

Figure 2.13. Top: Photoluminescence (PL) spectra of SGG **10** in different THF/water ratios; Bottom: emission intensity of SGG **10** as the THF/water ratio is altered. Inset: aggregates under UV light ($\lambda_{ex} = 365 \text{ nm}$); [**10**] = 10⁻⁴ M.

Crystals of **10** of suitable quality for X-ray crystallographic analysis were obtained from CH₂Cl₂/hexanes, and revealed an expected perpendicular arrangement between the fused germafluorene and tetrathiophenyl-germole units (Figure 2.14). Interestingly, the thiophene substituents which are closest to the germafluorene array (2,5-positions about the germole) lie in nearly co-planar arrangements with respect to the germole GeC₄ ring, while the remaining thiophene groups are significantly canted (by $83.62(5)^\circ$); the Ge-C bond lengths are similar to what is observed within the abovementioned SGGs **2**, **3** and **5**.

Compound 10 absorbs at 434 nm in THF, which is red-shifted compared to the λ_{max} of 276 nm in the alkylated SGG, FlGeC₄Et₄ **2**, likely a direct result of the conjugated thienyl units present in 10. In addition, compound 10 is thermally stable up to 238 °C (5 % weight loss) while the ethyl-substituted congener **2** shows degradation at 207 °C. Interestingly, compounds **10** should be amenable to further post-functionalization, such as the selective halogenation or lithiation of the peripheral thiophene groups, enabling the construction of extended structures and polymers containing **10** as a luminescent core.

Figure 2.14. Thermal ellipsoid plot (30 % probability) of the SGG **10** with hydrogen atoms omitted for clarity. Only the major (70 %) orientation of the disordered thienyl group is shown. Selected bond lengths (Å) and angles (deg): Ge-C(1) 1.938(2), Ge-C(12) 1.928(2), Ge-C(13) 1.947(19), Ge-C(16) 1.943(2); C(12)-Ge-C(1) 89.99(9), C(13)-Ge-C(16) 90.26(9).

Given our prior experiences using Suzuki-Miyaura cross-coupling to yield metallole-based polymers^{17a} (*i.e.*, polytellurophenes), we prepared a spirocyclic germafluorene-germole containing polymerizable pinacolborane (BPin) groups. Specifically the known pinacolboranecapped zirconacycle precursor **B-Zr-6-B**^{16a, 16b} was combined with excess GeCl₄ to generate the requisite halogermole (**11**) as a yellow solid in a high yield of 85 % (Scheme 2.5). In a subsequent step, incorporation of a fluorene unit at Ge to give the SGG (**12**) was achieved by combining **11** with in situ generated 2,2'-dilithiobiphenyl.³²

Scheme 2.5. Synthesis of the dihalogermole (11), pinacolborane-capped spirocyclic germafluorene (12) and Suzuki-Miyuara coupling involving 12 to obtain thiophene-capped spirogermafluorene (13).

The structures of compounds **11** and **12** were determined by singlecrystal X-ray crystallography and are presented as Figures 2.15 and 2.16, respectively. As noted in previously reported pinacolboronate (BPin)substituted tellurophenes,¹⁶ the flanking BPin groups in **12** are arranged in a slightly twisted fashion in relation to the central metallole ring (by *ca*. 12.5 to 14.5°). However in contrast to the BPin-capped tellurophenes, which are phosphorescent in the solid state, compound **12** is non-emissive both in solution and in the condensed phase. In order to verify if the quenching of the luminescence was caused by the BPin groups, we explored the coupling of **12** with 2-bromothiophene to yield a SGG wherein the BPin groups are replaced by thienyl residues.

Figure 2.15. Thermal ellipsoid plot (30 % probability) of the dihalogermole (11) with hydrogen atoms and toluene solvate have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Ge–Cl(1) 2.1513(6), Ge–Cl(2) 2.1299(6), Ge–Cl 1.9197(19), Ge–C8 1.9161(19), B(1)–O(1) 1.365(3), B(2)–O(3) 1.366(3), Cl(2)–Ge–Cl(1) 105.44(3), C(1)–Ge–C(8) 93.53(8), O(1)–B(1)–O(2) 113.74(17), O(3)–B(2)–O(4) 113.51(8).

Figure 2.16. Thermal ellipsoid plot (30 % probability) of compound **12** with hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (deg) with values due to a disordered BPin group in square brackets: Ge=C(1) 1.9488(14), Ge=C(8) 1.9345(14), Ge=C(32) 1.9469(15), Ge=C(21) 1.9391(15), B(1)=O(1A) 1.360(3) [1.392(5)], B(1)=O(2A) 1.365(3) [1.369(6)], B(2)=O(3) 1.3706(19); C(1)=Ge=C(8) 90.96(6), C(21)=Ge=C(32) 89.11(7), O(3)=B(2)=O(4) 112.33(14), O(1A)=B(1)=O(2A) 113.41(18) [109.9(3)].

Using unoptimized Suzuki-Miyaura cross-coupling conditions,³³ compound **13** was obtained in a 60 % crude yield. After rigorous purification procedures, pure **13** can be obtained as a yellow solid which absorbs at 423 nm in THF solution; this value is similar to the λ_{max} noted in the tetra-thienyl substituted SGG **10** (434 nm). Compound **13** exhibits green luminescence in solution with a relative quantum yield of 5.8 %; thus it appears in these SGGs the presence of flanking BPin group have a quenching effect (as in **12**). After optimization, the use of **12** as a comonomer for future polymerization trials should be explored.

2.4. On the Road to Light-emitting Spirocyclic Germafluorene-Germole Polymers

2.4.1. Synthesis and structural characterization of polymeric spirocyclic germafluorene-germoles

The Yamamoto coupling reaction is a dehalogenation polycondensation reaction of dihaloaromatic compounds X-Ar-X (X = halogen) promoted by Ni(0)-complexes and is a widely used synthetic pathway to lightemitting π -conjugated polymers.³⁴ Earlier Leclerc and co-workers used this reaction to obtain a homopolymer of 9,9'-dibutylgermafluorene albeit with limited solubility.⁸ Using similar conditions and THF or DMF/toluene (1:1) solvent mixtures, the synthesis of the first SGG homopolymer (14) was attempted from 3, however the reaction yielded only very low molecular weight species as determined by GPC, and no evidence for polymer formation was found by MALDI-MS. At the same time, microwave-assisted polymerization has been known to give high weight polymers,³⁵ so the polymerization of molecular 9.9dioctylfluorene³⁶ was explored first as a model and afforded high molecular weight ($M_n = 73,630$ g mol⁻¹ and $M_w = 94,870$ g mol⁻¹; confirmed by GPC) homopolymer PF8 (15) in a high yield of 92 % (Scheme 2.6). Under the same reactions conditions the SGG homopolymer 14 was produced from 3 as a yellow solid ($M_n = 3,360 \text{ g mol}^{-1}$ and $M_w =$ $6,250 \text{ g mol}^{-1}$) in a moderate yield of 38 % (Scheme 2.6). However, even in the presence of the alkylated germole unit GeC₄Et₄, the short ethyl chains in 14 prevented the polymer from being fully soluble in common organic solvents, such as THF, CH₂Cl₂, acetone, DMF, ethyl acetate, DMSO, chloroform, toluene, and trichlorobenzene, which could also explain the lower yield and molecular weight compared to PF8 (15). It is worth noting, that during operation of the MALDI instrument very high laser power is required to obtain signal for polymer 14 (*i.e.*, it is not easily ionized, thus limiting detection of polymer chains with high molecular weight).

Scheme 2.6. Synthesis of the polyspirogermafluorene (14) and polyfluorene (15).

Another approach that could be used to obtain homopolymer **14** is Grignard metathesis (GRIM) polymerization, the Ni(II)-catalysed "quasi"living chain-growth polymerization or dihaloarenes can afford high molecular weight polymers with narrow molecular weight distributions.³⁷ This reaction was first reported by McCullough³⁸ and Yokozawa³⁹ and was actively explored for poly(3-alkylthiophene)s⁴⁰ and polyphenylenes.⁴¹ The Geng group also examined this reaction in the synthesis of PF8 (**15**).³⁷ When the GRIM polymerization of **3** (Scheme 2.7) was examined, the desired polymer **14** was obtained as a yellow powder with limited solubility in a 11 % yield (M_n = 2540 g mol⁻¹ and M_w = 3610 g mol⁻¹; as determined GPC).

Scheme 2.7. Synthesis of the polyspirogermafluorene (14) via Grignard metathesis polymerization.

Figure 2.17. MALDI mass spectrum of the polyspirogermafluorene 14.

Motivated by the blue luminescence noted in the thiophene-capped SGG (5) and its high quantum yield of 83 % (see Section 2.1.3), microwave-assisted Stille coupling route was employed to obtain the co-polymer PTSGG (16) from the coupling of 3 with 2,5-

bis(trimethylstannyl)thiophene.⁴² Polymer **16** was obtained as a yellow powder in 13 % yield and this material also showed limited solubility in common organic solvents. Thus, in order to improve solution processability of the targeted polymer, the modified monomer 1,4di(trimethyltin)-2,5-dioctyloxybenzene⁴³ was used under microwaveassisted Stille cross-coupling conditions (Scheme 2.8). Despite numerous attempts, starting materials were recovered after the reaction with no sign of reaction, as confirmed by multinuclear NMR spectroscopy. The outcome of the Stille cross-coupling is very sensitive to the steric hindrance of the substrates,⁴⁴ so future work should consist of employing lithium and copper(I) halides (*e.g.*, LiCl, CuI) as additives in order to promote the reaction.⁴⁵

Scheme 2.8. Synthesis of the thiophene-SGG copolymer **16** and the attempted synthesis of an aryl-germafluorene copolymer.

2.4.2. Optical and thermal properties of polygermafluorenes and polyfluorene

During the past few decades, PF8 (**15**) has been a benchmark blue luminophore due to its highly efficient photo- and electroluminescence, good charge transport, easily tunable physical properties through chemical modifications, thermal stability and solubility in organic solvents.^{34,46} Thus, it is of interest to compare the luminescence properties of our polymeric SGGs **14** and **16** to the polyfluorene **15**.

Polym.	Yield, %	M _n , g mol ⁻¹	Mw/Mn	UV- Vis (THF) λmax, nm (ε × 10 ⁻⁴)*	TGA (°C)	Em. λ _{emis} (nm)	Quant. yield (Φ)
PSGG (14)	38	3360	1.86	382 (2.02)	370	420 (shoulder at 440)	0.67
PF8 (15)	92	73600	1.29	390 (0.777)	440	415 (shoulder at 439)	0.77
PTSGG (16)	11	1900	1.25	374 (1.79)	219	445	0.48

 Table 2.1. Summarized physical and optical properties of polymers 14-16.

*per monomer repeat unit (mol⁻¹ dm³ cm⁻¹)

In order to benchmark our studies, the optical and physical properties of PF8 (15) were measured and found to match those reported in the literature.³⁹⁻⁴¹ The optical properties of the polyspirocyclic germafluorene-germole 14 are remarkably similar to those of polyfluorene 15. The absorption maximum in the UV-Vis spectrum of 14 and 15 are
approximately the same (382 nm and 390 nm, respectively), while the thiophene-SGG copolymer **16** has a hypsochromic shift in absorbance to 374 nm potentially due to a slight decrease in π -conjugation (Figure 2.18).

Figure 2.18. Normalized UV/Vis absorption spectra of compounds **14-16** in solution (THF).

Both polymers **14** and **15** have quite similar photoluminescence (PL) profiles with emission maxima in the blue region at *ca*. 420 nm due to having the same chromophore backbone (*i.e.*, fluorene) and well-resolved vibronic structure. In general, the presence of well-defined vibronic structures in the emission spectra indicates that the polymers have a rigid and well-defined backbone.³⁵⁻³⁷ Copolymer **16** also emits in the blue region with an emission maximum at 445 nm (Figure 2.19).

Figure 2.19. Normalized PL excitation and emission spectra of **14-16** in solution (THF).

While the SGG homopolymer 14 exhibits potentially useful blue emission, it showed a *ca*. 10 % lower fluorescence quantum yield than fluorene analogue 15 (67 % and 77 %, respectively). It is worth noting that copolymer 16 possesses a lower quantum yield of 48 %, while the analogous fluorene-thiophene copolymer has a quantum yield of 78 %, comparable to 14 and 15.³⁸ To provide a reason for lower quantum yield of 16, DFT calculations of the model systems would be required.¹²

Thermal stability is also an important parameter for display materials.⁴² The polymeric SGG **14** shows a lower decomposition temperature (T_d) of 370 °C (5 % weight loss) than the polyfluorene **15** (T_d

= 440 °C); while copolymer **16** exhibits quite low thermal stability with a T_d of 219 °C possibly due to thermally labile thienyl groups (Figure 2.20).

Figure 2.20. TGA thermograms of **14-16** measured under N_2 (scan rate = 10 °C/min).

2.5. Conclusions

In summary, a series of light-emitting and thermally stable molecular spirocyclic germafluorene-germoles (SGGs) were prepared with the help of metallacycle transfer chemistry and microwave-assisted Stille and Suzuki-Miyaura cross-coupling. By altering the nature of the peripheral substituents, photoluminescence from electronically separate germafluorene and germole units could be turned on or off, leading to blue, green and orange-yellow emission. Future work will involve the attempted preparation of "on/on" dual emission SGGs²¹ with particular attention given towards obtaining white light emission within molecular or polymeric frameworks.

Lastly, blue-emitting homopolymers of spirocyclic germafluorenegermole and 9,9'-dioctylfluorene as well as a thiophene-SGG copolymer were prepared using microwave-assisted Yamamoto and Stille crosscoupling. The SGG homopolymer **14** had lower quantum yield and thermal stability that polyfluorene. It was discovered that presence of spirocyclic center did not provide enhanced solubility of the resulted polymers as expected, despite attempts to improve solubility via copolymerization with a monomer bearing long alkoxy chains. Future work on improving the solubility of SGG polymers, for example, incorporation of different substituents (*e.g.*, cumyl) on the germole ring, is under way.

2.6. Experimental procedures

2.6.1. Materials and instrumentation

All reactions were performed using standard Schlenk and glovebox (MBraun) techniques under a nitrogen atmosphere. Solvents were all dried and degassed using a Grubbs-type solvent purification system⁴⁷ manufactured by Innovative Technology, Inc., and stored under an atmosphere of nitrogen prior to use. 1,7-Octadiyne and 2,2'-bipyridine were obtained from GFS Chemicals, germanium tetrachloride and zirconocene dichloride from Strem Chemicals Inc., 1,2-dibromobenzene from Alfa Aesar; all other chemicals were obtained from Aldrich. All commercially obtained chemicals were used as received. 2,2'-Dibromobiphenyl,^{32a} Cp₂ZrC₄Et₄,¹⁸ 4,4'-dibromo-2,2'-diiodobiphenyl,⁴⁸ trimethylstannylbenzene,²⁴ 2-trimethylstannylthiophene,²⁵ 2.5bis(trimethylstannyl)thiophene.⁴² 1,4-di(trimethyltin)-2,5dioctyloxybenzene,⁴³ 2-tributylstannylthiophene,⁴⁹ 1,2-di(thiophen-2yl)ethyne,⁵⁰ 2,5-dibromothiophene,⁵¹ 9,9'-dioctyl-2,7-dibromofluorene,⁵² bis(cyclopentadienyl)zirconium(cyclohexane-1,2and

diylidenebis{(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methanide}) (**B-Zr-6-B**),^{16a} were prepared according to literature procedures. ¹H,

¹³C{¹H} and ¹¹B{¹H} NMR spectra were recorded on a Varian DD2 MR-400 spectrometer and referenced externally to SiMe₄ (¹H, ¹³C{¹H}) and F₃B•OEt₂ (¹¹B{¹H}). Elemental analyses were performed by the Analytical and Instrumentation Laboratory at the University of Alberta.

Mass spectra for small molecules were recorded using a MS-50G system (Kratos Analytical). Mass spectra for polymers were measured using an AB Sciex Voyager Elite MALDI system (AB Sciex, Foster City, CA, USA). Melting points were obtained in sealed glass capillaries under nitrogen using a MelTemp melting point apparatus and are uncorrected. UV/Vis measurements were performed using a Varian Cary 300 Scan spectrophotometer. The fluorescence measurements were conducted on a Photon Technology International (PTI) MP1 fluorescence system. All solution quantum yields were measured relative to guinine sulfate in 1 N H₂SO₄ assuming a quantum yield of 0.55.⁵³ Photoluminescence lifetimes were measured on a time-correlated single photon counting fluorescence spectrometer (Edinburgh Instruments FLS920) using an EPL-375 picosecond pulsed diode laser with vertical polarization (70.3 ps pulse width) as an excitation source; absolute quantum yields were measured with an integrating sphere system within the same fluorescence spectrometer. GPC was performed at 40 °C using THF as an eluent at a flow rate of 0.5 mL min⁻¹. GPC measurements were made using a GPC 270 Max instrument equipped with a Viscotek VE 2001 plus autosampler, three µ-Styragel columns, and a Viscotek VE 3580 refractive index (RI) detector. The columns were calibrated using polystyrene standards. Microwave reactions were performed using a Biotage Initiator Classic microwave reactor (Biotage, LLC, Charlotte, NC, USA). Photobleaching experiments on solutions were performed using an Ace-Hanovia 450 W

mercury lamp (Ace Glass Inc., Vineland, NJ, USA). Photobleaching experiments on films were performed with a Photon Technology International (PTI) MP1 fluorescence system (xenon lamp, 65 W).

2.6.2. Synthetic procedures

2.6.2.1. Synthesis of 1,1-dichloro-2,3,4,5-tetraethyl-1H-germole (1)

This compound was synthesized according to a modification of a known procedure.¹⁸ To a solution of Cp₂ZrC₄Et₄ (0.390 g, 1.0 mmol) in THF (10 mL) at room temperature was added GeCl₄ (138 μ L, 1.2 mmol), and the mixture was stirred overnight to give a pale yellow solution. The volatiles were removed under vacuum and 10 mL of hexanes was used to extract the product. The extract was then filtered through a 1 cm plug of silica gel. The solvent was then removed from the filtrate to yield Cl₂GeC₄Et₄ (1) as a colorless oil that was used without further purification (0.265 g, 85 %). The corresponding ¹H and ¹³C{¹H} NMR spectral data matched those reported previously by the Tilley group.¹⁸

2.6.2.2. Synthesis of 2,3,4,5-tetraethyl-spiro[germacyclopenta-2,4diene-1,9'-[9H-9]germafluorene] (2)

A solution of 2,2'-dibromobiphenyl (0.177 g, 0.57 mmol) in 6 mL of Et₂O was cooled to -35 °C and ⁿBuLi (454 μ L, 2.5 M in hexanes, 1.1 mmol) was added dropwise. The reaction mixture immediately became

vellow in color and was stirred for 3 hrs at room temperature. Afterwards this mixture, containing dilithiobiphenyl, was cooled down to -35 °C and a solution of 1 (0.175, 0.57 mmol) in 4 mL of diethyl ether was added, followed by stirring for 12 hrs at room temperature. A pale yellow solution formed over a white precipitate; this precipitate was allowed to settle and the yellow mother liquor was filtered through Celite. The solvent was removed from the filtrate under vacuum to yield crude 2 as a yellow oil which solidified upon standing (0.203 g, 92 %). The product was purified by column chromatography (silica gel, hexanes) and cooling of a saturated solution of 2 in hexanes to -30 °C resulted in the formation of colorless crystals of suitable quality for X-ray crystallography (0.135 g, 61 %). M.p. 80-82 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, ³J_{HH} = 7.9 Hz, 2H, Ar*H*), 7.55 (d, ${}^{3}J_{HH} = 7.2$ Hz, 2H, Ar*H*), 7.42 (td, ${}^{3}J_{HH} = 7.6$ Hz, ${}^{4}J_{\text{HH}} = 1.3 \text{ Hz}, 2\text{H}, \text{Ar}H$, 7.25 (td, ${}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, {}^{4}J_{\text{HH}} = 0.9 \text{ Hz}, 2\text{H}, \text{Ar}H$), 2.41 (q, ${}^{3}J_{HH} = 7.6$ Hz, 4H, CH₂CH₃), 2.26 (q, ${}^{3}J_{HH} = 7.5$ Hz, 4H, CH_2CH_3), 1.11 (t, ${}^{3}J_{HH} = 7.5$ Hz, 6H, CH_2CH_3), 0.68 (t, ${}^{3}J_{HH} = 7.5$ Hz, 6H, CH₂CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.2, 146.9, 137.5, 135.8, 133.5, 129.5, 127.6, 121.6 (Fl-C and Ar-C), 23.5, 21.4 (CH₂CH₃), 15.9, 15.1 (CH₂CH₃); UV/Vis (THF): λ_{max} (ϵ) = 276 nm (1.42 × 10⁴ mol⁻ 1 dm³cm⁻¹); HR-MS (EI): m/z: 390.1405 [M]⁺; C₂₄H₂₈Ge calcd: 390.1403; elemental analysis calcd (%) for $C_{24}H_{28}Ge: C, 74.08; H, 7.25;$ found: C, 73.61; H, 7.29.

2.6.2.3. Synthesis of 2',7'-dibromo-2,3,4,5-tetraethylspiro[germacyclopenta-2,4-diene-1,9'-[9H-9]germafluorene] (3)

A solution of 4,4'-dibromo-2,2'-diiodobiphenyl (1.967 g, 3.5 mmol) in diethyl ether (20 mL) was pre-cooled to -78 °C and 2.8 mL of ⁿBuLi (2.5 M in hexanes, 7.0 mmol) was added dropwise over one hour, using addition funnel. The mixture was stirred for one more hour at -78 °C, and then a pre-cooled (-78 °C) solution of 1 (1.074 g, 3.5 mmol) in 15 mL of Et₂O was added. The mixture was then warmed to room temperature and stirred for 12 hrs. The mixture was diluted with 50 mL of diethyl ether and then washed with water (100 mL) and brine (100 mL), and the isolated organic fraction was dried over MgSO₄. The solvent was removed under vacuum to give crude 3 as a colorless solid (1.105 g, 58 %). Colorless crystals suitable for X-ray crystallography were obtained by slow cooling of a warm (ca. 40 °C) hexanes solution of **3** to 0 °C (0.770 g, 40 %). M.p. 192-194 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, ³J_{HH} = 8.2 Hz, 2H, Ar*H*), 7.64 (d, ${}^{3}J_{HH} = 2.0$ Hz, 2H, Ar*H*), 7.54 (dd, ${}^{3}J_{HH} = 8.5$ Hz, ${}^{4}J_{HH} = 1.9$ Hz, 2H, Ar*H*), 2.39 (q, ${}^{3}J_{HH} = 7.5$ Hz, 4H, CH₂CH₃), 2.25 $(q, {}^{3}J_{HH} = 7.5 \text{ Hz}, 4\text{H}, CH_{2}CH_{3}), 1.10 (t, {}^{3}J_{HH} = 7.5 \text{ Hz}, 6\text{H}, CH_{2}CH_{3}),$ 0.67 (t, ${}^{3}J_{\text{HH}} = 7.5$ Hz, 6H, CH₂CH₃); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 154.1, 144.7, 140.2, 136.0, 134.8, 132.7, 123.2, 122.7 (Fl-C and Ar-C), 23.4, 21.6 (CH₂CH₃), 15.9, 15.0 (CH₂CH₃); UV/Vis (THF): λ_{max} (ϵ) = 288 nm $(2.11 \times 10^4 \text{ mol}^{-1} \text{dm}^3 \text{cm}^{-1})$; HR-MS (EI): m/z: 545.9599 [M]⁺; $C_{24}H_{26}Br_{2}Ge$ calcd: 545.9613; elemental analysis calcd (%) for $C_{24}H_{26}Br_{2}Ge$: C, 52.71; H, 4.79; found: C, 52.53; H, 4.82.

2.6.2.4. Synthesis of 2',7'-diphenyl-2,3,4,5-tetraethylspiro[germacyclopenta-2,4-diene-1,9'-[9H-9]germafluorene] (4)

Compound 3 (0.162 g, 0.30 mmol), trimethylstannylbenzene (108 μ L, 0.61 mmol), and Pd(PPh₃)₄ (0.017 g, 0.015 mmol) were dissolved in 3 mL of THF in a sealed 5 mL microwave vial. The solution was irradiated by microwave (70 min., 140 °C) and then the mixture was filtered. The volatiles removed from the filtrate and the residue purified by column chromatography (silica gel, hexanes:THF = 20:1) to yield 4 as a spectroscopically pure white solid (0.050 g, 31 %). This compound was recrystallized from a hexanes/diethyl ether mixture at -30 °C to yield colorless crystals of X-ray quality. M.p. 217-220 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, ³*J*_{HH} = 8.0 Hz, 2H, Fl*H*), 7.84 (d, ³*J*_{HH} = 1.7 Hz, 2H, Fl*H*), 7.72-7.67 (m, 6H, Fl*H* and Ph*H*), 7.46 (t, ${}^{3}J_{HH} = 7.6$ Hz, 4H, Ph*H*), 7.36 (m, 2H, Ph*H*), 2.46 (q, ${}^{3}J_{HH} = 7.5$ Hz, 4H, CH₂CH₃), 2.33 (q, ${}^{3}J_{HH} =$ 7.5 Hz, 4H, CH₂CH₃), 1.16 (t, ${}^{3}J_{HH} = 7.5$ Hz, 6H, CH₂CH₃), 0.76 (t, ${}^{3}J_{HH} =$ 7.5 Hz, 6H, CH₂CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.5, 145.8, 141.2, 140.3, 138.5, 135.8, 132.1, 128.8, 128.6, 127.2, 127.1, 122.0 (Fl-C and Ph-C), 23.6, 21.5 (CH₂CH₃), 16.0, 15.2 (CH₂CH₃); UV/Vis (THF): λ_{max} (ϵ) = 318 nm (6.28 × 10⁴ mol⁻¹dm³cm⁻¹); Fluorescence emission (THF) ($\lambda_{ex} = 332$ nm): $\lambda_{emis} = 377$ nm, fluorescence quantum yield: $\Phi =$

0.03, relative to quinine sulfate in 1.0 N H₂SO₄; HR-MS (EI): m/z: 542.2021 $[M]^+$; C₃₆H₃₆Ge calcd: 542.2029; elemental analysis calcd (%) for C₃₆H₃₆Ge: C, 79.88; H, 6.70; found: C, 79.66; H, 6.82.

2.6.2.5. Synthesis of 2',7'-bis(2-thienyl)-2,3,4,5-tetraethylspiro[germacyclopenta-2,4-diene-1,9'-[9H-9]germafluorene] (5)

Compound 3 (0.162 g, 0.30 mmol), 2-trimethylstannylthiophene (104 µL, 0.59 mmol), and Pd(PPh₃)₄ (0.012 g, 0.011 mmol) were dissolved in 3 mL of THF in a sealed 5 mL microwave vial. The solution was irradiated by microwave (70 min., 140 °C), the volatiles were then removed under vacuum, and the remaining product was purified by column chromatography (silica gel, hexanes:THF = 20:1) to give 5 compound as a white solid (0.017 g, 14 %). This product was recrystallized from hot (40 °C) hexanes, by slow cooling to room temperature to afford X-ray quality crystals. M.p. 209-212 °C; TGA: T_{dec} = 319 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, ³J_{HH} = 8.1 Hz, 2H, Fl*H*), 7.82 (d, ${}^{4}J_{\text{HH}} = 1.9$ Hz, 2H, Fl*H*), 7.69 (dd, ${}^{3}J_{\text{HH}} = 8.1$ Hz, ${}^{4}J_{\text{HH}} = 1.9$ Hz, 2H, Fl*H*), 7.37 (dd, ${}^{3}J_{HH} = 3.6$ Hz, ${}^{4}J_{HH} = 1.2$ Hz, 2H, Thienyl*H*), 7.29 (dd, ${}^{3}J_{\text{HH}} = 5.1 \text{ Hz}, {}^{4}J_{\text{HH}} = 1.2 \text{ Hz}, 2\text{H}, \text{ Thienyl}H), 7.09 (dd, {}^{3}J_{\text{HH}} = 5.1 \text{ Hz}, {}^{4}J_{\text{HH}}$ = 3.6 Hz, 2H, Thienyl*H*), 2.46 (q, ${}^{3}J_{HH}$ = 7.5 Hz, 4H, CH₂CH₃), 2.32 (q, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}, 4\text{H}, CH_2CH_3), 1.17 (t, {}^{3}J_{\text{HH}} = 7.5 \text{ Hz}, 6\text{H}, CH_2CH_3), 0.74 (t,)$ ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}, 6\text{H}, CH_2CH_3); {}^{13}C\{{}^{1}\text{H}\} \text{ NMR (100 MHz, CDCl_3): }\delta 153.6,$ 145.8, 144.6, 138.6, 135.7, 133.6, 130.7, 128.1, 127.4, 124.7, 123.1, 122.0 (Fl-*C*, thienyl-*C* and Ar-*C*), 23.6 (CH₂CH₃), 21.6 (CH₂CH₃), 15.9 (CH₂CH₃), 15.1 (CH₂CH₃); UV/Vis (THF): λ_{max} (ϵ) = 355 nm (4.92 × 10⁴ mol⁻¹dm³cm⁻¹); Fluorescence emission (THF) (λ_{ex} = 348 nm): λ_{emis} = 386 and 407 nm, fluorescence quantum yield: Φ = 0.83, relative to quinine sulfate in 1.0 N H₂SO₄; Lifetime (1 × 10⁻⁵ M solution in THF): τ = 0.94 ns; HR-MS (EI): m/z: 554.1161 [*M*]⁺; C₃₂H₃₂GeS₂ calcd: 554.1157; elemental analysis calcd (%) for C₃₂H₃₂GeS₂: C, 69.46; H, 5.83; S, 11.59; found: C, 69.59; H, 5.71; S, 11.56.

2.6.2.6. Alternate preparation of 5 from 2-tributylstannylthiophene:

Compound **3** (0.102 g, 0.19 mmol), 2-tributylstannylthiophene (119 μ L, 0.38 mmol), and Pd(PPh₃)₄ (0.011 g, 0.009 mmol) were dissolved in 3 mL of THF in a sealed 5 mL microwave vial. The solution was irradiated by microwave (70 min., 140 °C), the volatiles were then removed and the remaining product was purified by column chromatography (silica gel, hexanes:THF = 20:1) to give **5** compound as a white solid (0.053 g, 51 %).

2.6.2.7. Synthesis of 2,2'-(9,9-dioctyl-9*H*-fluorene-2,7-diyl) bisthiophene (7)

9,9'-Dioctyl-2,7-dibromofluorene (0.307 g, 0.56 mmol), 2trimethylstannylthiophene (197 μ L, 1.1 mmol), and Pd(PPh₃)₄ (0.032 g, 0.028 mmol) were dissolved in 5 mL of THF in a sealed 5 mL microwave vial. The solution was irradiated by microwave (70 min., 140 °C) and then the crude product was purified by column chromatography (silica gel, hexanes:THF = 20:1) yielding 7 as an oil (0.182 g, 59 %). ¹H and ¹³C{¹H} NMR spectral data matched those reported previously by the Leclerc group.^{26b,26d} TGA: $T_{dec} = 290$ °C. The physical data were identical to those previously reported.^{26b,26d} HR-MS (EI): m/z: 554.3054; C₃₇H₄₆S₂ calcd: 554.3041; elemental analysis calcd (%) for C₃₇H₄₆S₂: C, 80.09; H, 8.36; S, 11.56; found: C, 79.58; H, 8.30; S, 11.03.

2.6.2.8. Synthesis of bis(cyclopentadienyl)zirconium-2,3,4,5-tetra(2thienyl)methanide (8)

To a solution of Cp₂ZrCl₂ (0.610 g, 2.1 mmol) in THF (15 mL) at -78 °C was added dropwise a solution of ⁿBuLi (1.63 mL, 2.5 M solution in hexanes, 4.1 mmol). After the reaction mixture was stirred at -78 °C for 1 h, a solution of 1,2-bis(thiophen-2-yl)ethyne (0.794 g, 4.2 mmol) in THF (15 mL) was added at -78 °C. The temperature was allowed to rise to room temperature, and the mixture was stirred for another 24 h. The solvent was removed under reduced pressure and the product was extracted with 25 mL of toluene, and the mixture was filtered through Celite. After the volatiles were removed from filtrate under reduced pressure to give **8** as a crude orange-red powder (1.080 g, 86 %) that was washed with cold hexanes (5 mL; -30 °C) to give a red solid (0.913 g, 73 %). M.p. 145-148 °C (decomp., turns brown); ¹H NMR (400 MHz, CDCl₃): δ 7.12 (dd, ³*J*_{HH} = 5.0 Hz, ⁴*J*_{HH} = 1.0 Hz, 2H, Thienyl*H*), 7.04 (dd, ³*J*_{HH} = 5.1 Hz, ⁴*J*_{HH} = 1.0 Hz, 2H, Thienyl*H*), 6.79-6.76 (m, 4H, Thienyl*H*), 6.50 (dd, ³*J*_{HH} = 3.3 Hz, ⁴*J*_{HH} = 1.0 Hz, 2H, Thienyl*H*), 6.41 (s, 10 H, Cp*H*), 5.87 (dd, ³*J*_{HH} = 3.6 Hz, ⁴*J*_{HH} = 1.1 Hz, 2H, Thienyl*H*); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 185.7, 148.9, 142.6, 137.0, 127.8, 126.3, 126.0, 125.4, 125.0, 124.0 (Thienyl-*C*), 112.2 (Cp); UV/Vis (THF): λ_{max} (ϵ) = 422 nm (9.09 × 10³ mol⁻¹dm³cm⁻¹); HR-MS (MALDI): m/z: 599.9646; C₃₀H₂₂S₄Zr calcd: 599.9662; elemental analysis calcd (%) for C₃₀H₂₂S₄Zr: C, 59.86; H, 3.68; S, 21.30; found: C, 59.32; H, 3.92; S, 19.26.

2.6.2.9. Synthesis of 1,1-dichloro-2,3,4,5-tetra(2-thienyl)-1H-germole(9)

To a dark red solution of **8** (0.349 g, 0.58 mmol) in 10 mL of THF at room temperature was added GeCl₄ (99 μ L, 0.87 mmol) and the mixture was stirred overnight to give a lighter red solution. The solvent was removed under vacuum, and the product was extracted with 50 mL of hexanes in a Soxhlet apparatus. The solvent was removed from the extract to afford **9** as an orange solid (0.267 g, 88 %). X-ray quality orange crystals were obtained upon recrystallization from Et₂O/hexanes at room temperature (0.091 g, 30 %). M.p. 170-173 °C (decomp., turns into dark red oil); ¹H NMR (400 MHz, CDCl₃): δ 7.48 (dd, ³*J*_{HH} = 3.7 Hz, ⁴*J*_{HH} =

1.1 Hz, 2H, Thienyl*H*), 7.4 (dd, ${}^{3}J_{HH} = 5.1$ Hz, ${}^{4}J_{HH} = 1.2$ Hz, 2H, Thienyl*H*), 7.23 (dd, ${}^{3}J_{HH} = 5.1$ Hz, ${}^{4}J_{HH} = 1.2$ Hz, 2H, Thienyl*H*), 7.00 (m, 4H, Thienyl*H*), 6.87 (dd, ${}^{3}J_{HH} = 3.5$ Hz, ${}^{4}J_{HH} = 1.2$ Hz, 2H, Thienyl*H*); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 139.5, 138.0, 135.5, 131.5, 129.4, 129.2, 128.5, 128.1, 127.5, 126.8 (Thienyl-*C*); UV/Vis (THF): λ_{max} (ϵ) = 452 nm (1.51 × 10⁴ mol⁻¹dm³cm⁻¹); HR-MS (MALDI): m/z: 523.8396; C₂₀H₁₂Cl₂GeS₄ calcd: 523.8411; elemental analysis calcd (%) for C₂₀H₁₂Cl₂GeS₄: C, 45.84; H, 2.31; S, 24.47; found: C, 45.99; H, 2.80; S, 20.17. This compound routinely contains 5-10 % Cp₂ZrCl₂ and was used in this form for the next step.

2.6.2.10. Synthesis of 2,3,4,5-tetra(2-thienyl)-spiro[germacyclopenta-2,4-diene-1,9'-[9H-9]germafluorene] (10)

A solution of 2,2'-dibromobiphenyl (0.109 g, 0.35 mmol) in 4 mL of Et₂O was cooled to -35 °C and "BuLi (279 μ L, 2.5 M solution in hexanes, 0.70 mmol) was added dropwise. The mixture immediately became yellow in color and was stirred for 3 hrs at room temperature. Afterwards this mixture (containing 2,2'-dilithiobiphenyl) was cooled down to -35 °C and a solution of **9** (0.183 g, 0.35 mmol) in 9 mL of Et₂O was added, followed by stirring for 12 hrs. A dark orange solution formed over a precipitate; this precipitate was allowed to settle and the mother liquor was filtered through silica gel. Volatiles were removed from mother filtrate and cold (-30 °C) 5 mL of acetone was added to yield a yellow

precipitate (0.040 g, 19 %). The precipitate was then extracted with 10 mL of CH₂Cl₂ and after filtration and removal of the volatiles, 3 mL of cold (-30 °C) acetone was added to form yellow precipitate 10. The acetone filtrate was decanted and precipitate 10 was dried under high vacuum (0.034 g, 16 %), giving 0.074 g of 10 and an overall yield of 35 %. Recrystallization of combined precipitates from a CH₂Cl₂/hexanes solution at room temperature resulted in the formation of yellow crystals of X-ray quality (0.025 g, 12 %). M.p. 221-223 °C (decomp., turns brown); TGA: $T_{dec} = 238$ °C; ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, ³J_{HH} = 7.7 Hz, 2H, Ar*H*), 7.82 (d, ${}^{3}J_{HH}$ = 7.2 Hz, ${}^{4}J_{HH}$ = 0.6 Hz, 2H, Ar*H*), 7.56 (m, 2H, ArH), 7.39 (dd, ${}^{3}J_{HH} = 5.1$ Hz, ${}^{4}J_{HH} = 1.1$ Hz, 2H, ThienylH), 7.35-7.32 (m, 2H, Ar*H*), 7.01 (dd, ${}^{3}J_{HH} = 5.1$ Hz, ${}^{4}J_{HH} = 3.4$ Hz, 2H, Thienyl*H*), 6.97 (dd, ${}^{3}J_{HH} = 5.0$ Hz, ${}^{4}J_{HH} = 1.1$ Hz, 2H, Thienyl*H*), 6.92 $(dd, {}^{3}J_{HH} = 3.5 \text{ Hz}, {}^{4}J_{HH} = 1.1 \text{ Hz}, 2\text{H}, \text{Thienyl}H), 6.56 (dd, {}^{3}J_{HH} = 5.1 \text{ Hz},$ ${}^{4}J_{\text{HH}} = 3.9 \text{ Hz}, 2\text{H}, \text{Thienyl}H), 6.42 \text{ (dd, } {}^{3}J_{\text{HH}} = 3.7 \text{ Hz}, {}^{4}J_{\text{HH}} = 1.1 \text{ Hz}, 2\text{H},$ $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃): δ 146.4, 143.5, 141.5, Thienvl*H*); 138.4, 135.7, 134.4, 131.9, 130.9, 130.0, 128.8, 128.6, 127.5, 127.4, 127.3, 126.3, 122.3 (Ar-C, Thienyl-C); UV/Vis (THF): λ_{max} (ϵ) = 434 nm (2.59 × $10^4 \text{ mol}^{-1}\text{dm}^3\text{cm}^{-1}$; Lifetime (solid state): $\tau = 3.22 \text{ nm}$; quantum yield (solid state) = 2.08 %; HR-MS (MALDI): m/z: 605.9647; C₃₂H₂₀GeS₄ calcd: 605.9660; elemental analysis calcd (%) for $C_{32}H_{20}GeS_4$: C, 63.49; H, 3.33; S, 21.18; found: C, 60.07; H, 3.89; S, 20.18. Despite repeated attempts, combustion analyses gave consistently low values for and sulfur content. See Figures 2.21 and 2.22 for copies of the NMR spectra.

2.6.2.11. Synthesis of 2,2'-dichloro-(4,5,6,7-tetrahydro-2benzogermophene-1,3-diyl)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (11)

To a solution of **B-Zr-6-B**^{16a} (0.827 g, 1.4 mmol) in 25 mL of THF at room temperature was added GeCl₄ (253 µL, 2.2 mmol) and the mixture was stirred overnight to give a pale yellow solution. The solvent was removed under vacuum, and 15 mL of hexanes was used to extract the product. The extract was then filtered through a 1 cm plug of Celite. The solvent was removed from the filtrate to afford 11 as a yellow solid (0.610 g, 85 %). X-ray quality crystals were obtained upon recrystallization from hexanes at -35 °C (0.125 g, 16 %). M.p. 124-127 °C; ¹H NMR (400 MHz, C₆D₆): δ 2.85 (m, 4H, C=CCH₂CH₂), 1.24 (m, 4H, C=CCH₂CH₂), 1.07 (s, 24H, CH₃); ${}^{13}C{}^{1}H$ NMR (126 MHz, C₆D₆): δ 166.7 (Ge-C=C), 83.6 $(C(CH_3)_2)$, 30.8 (C=CCH₂CH₂), 24.8 (CH₃), 22.4 (C=CCH₂CH₂); ¹¹B{¹H} NMR (160 MHz, C₆D₆): δ 29.5 (br); UV/Vis (THF): λ_{max} (ϵ) = 327 nm 10^{3} $mol^{-1}dm^{3}cm^{-1}$); (8.78) \times HR-MS (EI): m/z: 502.1066; C₂₀H₃₂B₂Cl₂GeO₄ calcd: 502.1076; elemental analysis calcd (%) for C₂₀H₃₂B₂Cl₂GeO₄: C, 47.89; H, 6.43; found: C, 48.73; H, 5.90.

2.6.2.12. Synthesis of 4,5,6,7-tetrahydro-2-spiro[benzogermafluorene]-1,3-diyl-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (12)

A solution of 2,2'-dibromobiphenyl (0.175 g, 0.56 mmol) in 6 mL of Et₂O was cooled to -35 °C and ⁿBuLi (449 µL, 2.5 M solution in hexanes, 1.1 mmol) was added dropwise. The mixture immediately became yellow in color and was stirred for 3 hrs at room temperature. Afterwards this mixture (containing 2,2'-dilithiobiphenyl) was cooled down to -35 °C and a solution of 11 (0.281 g, 0.56 mmol) in 4 mL of Et₂O was added, followed by stirring for 12 hrs. A pale yellow solution formed over a white precipitate; this precipitate was allowed to settle and the yellow mother liquor was filtered through Celite. The solvent was removed from the filtrate under vacuum to yield crude 12 as a yellow solid. The product was purified by column chromatography (silica gel, hexanes:THF = 10:1) and slow evaporation of a hexanes/THF solution of 12 at room temperature resulted in the formation of colorless crystals of X-ray quality (0.114 g, 35 %). M.p. 189-193 °C; ¹H NMR (400 MHz, C₆D₆): δ 7.76 (d, ³J_{HH} = 7.6 Hz, 2H, ArH), 7.62 (d, ³J_{HH} = 7.2 Hz, 2H, Ar*H*), 7.18 (t, ${}^{3}J_{HH} = 7.6$ Hz, 2H, Ar*H*), 7.05 (t, ${}^{3}J_{HH} = 7.6$ Hz, 2H, Ar*H*), 3.24-3.21 (m, 4H, C=CCH₂CH₂), 1.60 (m, 4H, C=CCH₂CH₂), 0.82 (s, 24H, CH₃); ${}^{13}C{}^{1}H$ NMR (126 MHz, C₆D₆): δ 169.9, 148.1, 137.0, 133.7, 129.6, 127.6, 121.9 (Fl-C and Ar-C), 82.6 (C(CH₃)₂), 32.7 (C=CCH₂CH₂), 24.6 (*C*H₃), 23.8 (C=CCH₂*C*H₂); ¹¹B{¹H} NMR (128 MHz, C₆D₆): δ 30.8 (br); UV/Vis (THF): λ_{max} (ϵ) = 312 nm (1.25 × 10⁴ mol⁻¹dm³cm⁻¹); HR-

MS (EI): m/z: 584.2322; $C_{32}H_{40}B_2GeO_4$ calcd: 584.2324; elemental analysis calcd (%) for $C_{32}H_{40}B_2GeO_4$: C, 65.94; H, 6.92; found: C, 66.97; H, 7.10.

2.6.2.13. Synthesis of 4,5,6,7-tetrahydro-2-spiro[benzogermafluorene]-1,3-diyl-bis(2-thienyl) (13)

Compound 12 (0.200 g, 0.34 mmol), 2-bromothiophene (73 μ L, 0.75 mmol), cesium fluoride (0.313 g, 2.06 mmol) and Pd(PPh₃)₄ (0.020 g, 0.017 mmol) were dissolved in 4 mL of acetonitrile in a sealed 5 mL microwave vial. The solution was irradiated by microwave (40 min., 140 °C), poured into 100 mL of water and extracted with 20 mL of chloroform. The organic layer was washed with 100 mL of water and 2 x 100 mL of brine. The aqueous fractions were combined and extracted with 10 mL of chloroform and washed with 100 mL of brine. Then all combined organic fractions were dried over MgSO₄. The solvent was removed in vacuo and the residue was purified was purified by column chromatography (silica gel, hexanes: $CH_2Cl_2 = 5:1$) and washed with pentane (10 mL) to give **13** as a yellow solid (0.010 g, 6 %). M.p. 130 °C (decomp., turns brown); TGA: $T_{dec} = 214$ °C; ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, ³*J*_{HH} = 7.9 Hz, 2H, Ar*H*), 7.61 (d, ³*J*_{HH} = 7.3 Hz, 2H, Ar*H*), 7.49 (td, ${}^{3}J_{HH}$ = 7.6 Hz, ${}^{4}J_{HH}$ = 1.1 Hz, 2H, Ar*H*), 7.25 (td, ${}^{3}J_{HH}$ = 7.3 Hz, ${}^{4}J_{\text{HH}} = 0.9$ Hz, 7H, Ar*H*), 7.14 (dd, ${}^{3}J_{\text{HH}} = 5.1$ Hz, ${}^{4}J_{\text{HH}} = 0.7$ Hz, 2H, Thienyl*H*), 7.09 (dd, ${}^{3}J_{HH} = 5.1$ Hz, ${}^{4}J_{HH} = 3.7$ Hz, 2H, Thienyl*H*), 6.45 (dd, ${}^{3}J_{\text{HH}} = 3.4 \text{ Hz}$, ${}^{4}J_{\text{HH}} = 0.7 \text{ Hz}$, 2H, Thienyl*H*), 2.95-2.92 (m, 4H, C=CCH₂CH₂), 1.89 (m, 4H, C=CCH₂CH₂); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 148.7, 146.6, 142.3, 136.5, 134.1, 130.4, 128.3, 127.7, 127.1, 125.5, 125.4, 122.0 (Fl-*C*, thienyl-*C* and Ar-*C*), 30.9 (C=CCH₂CH₂), 23.2 (C=CCH₂CH₂); UV/Vis (THF): λ_{max} (ϵ) = 423 nm (1.13 × 10⁴ mol⁻¹dm³cm⁻¹); Fluorescence emission (THF) (λ_{ex} = 419 nm): λ_{emis} = 506 nm, fluorescence quantum yield: Φ = 0.058, relative to quinine sulfate in 1.0 N H₂SO₄; HR-MS (MALDI): m/z: 496.0369; C₂₈H₂₂GeS₂ calcd: 496.0375; elemental analysis calcd (%) for C₂₈H₂₂GeS₂: C, 67.91; H, 4.48; S, 12.95; found: C, 67.08; H, 4.89; S, 11.76. Despite repeated attempts, combustion analyses gave consistently low values for sulfur content (lower by ca. 1%). See Figures 2.23 and 2.24 for copies of the NMR spectra.

2.6.2.14. Synthesis of the spirocyclic germafluorene-germole homopolymer 14

Monomer **3** (Br₂FlGeC₄Et₄) (0.095 g, 0.18 mmol) was dissolved in 1.7 mL of toluene and combined with Ni(COD)₂ (0.120 g, 0.44 mmol), cyclooctadiene (54 μ L, 0.44 mmol) and 2,2'-bipyridine (0.068 g, 0.44 mmol) in 1.8 mL of 1:1 toluene:DMF solution in a sealed 5 mL microwave vial. The mixture was irradiated by microwave (70 min., 250 °C) and cooled to room temperature. The reaction mixture was diluted with 20 mL of chloroform and washed with aqueous HCl (2.0 M, 10 mL). The organic layer was separated and washed again with 50 mL of aqueous HCl (2.0 M). The aqueous layers were combined and extracted with chloroform (50 mL). The combined organic layers were washed with saturated aqueous Na₄-EDTA (100 mL), water (100 mL) and then dried over MgSO₄. The solution was filtered through Celite, concentrated to 1 mL and polymer **14** was obtained as the yellow solid by precipitation into methanol (200 mL) with rapid stirring. The polymer was isolated by filtration, washed with 50 mL of methanol and then dried under vacuum (0.025 g, 38 %). Heating polymer **14** to reflux over 12 hours in common deuterated solvents could not dissolve enough material to obtain informative NMR spectra. $M_n = 3.36 \times 10^3$ g mol⁻¹, $M_w = 6.25 \times 10^3$ g mol⁻¹, PDI = 1.86 by GPC (relative to polystyrene standards). UV/Vis (in THF): $\lambda_{max} = 382$ nm, ε (per monomer repeat unit) = 2.02 × 10⁴ mol⁻¹ 1 dm³cm⁻¹. Fluorescence in THF ($\lambda_{ex} = 379$ nm): $\lambda_{emis} = 420$ nm and 440 nm (shoulder), fluorescence quantum yield: $\Phi = 0.67$, relative to quinine sulfate in 1.0 N H₂SO₄.

2.6.2.15. Synthesis of the 9,9'-dioctylfluorene homopolymer 15

The procedure was adapted from the literature.^{36a} The monomer, 9,9'-dioctyl-2,7-dibromofluorene (0.105 g, 0.19 mmol), was dissolved in 1.7 mL of toluene and combined with Ni(COD)₂ (0.132 g, 0.48 mmol), cyclooctadiene (59 μ L, 0.48 mmol) and 2,2'-bipyridine (0.076 g, 0.48 mmol) in 1.8 mL of 1:1 toluene:DMF solution in a sealed 5 mL microwave vial. The solution was irradiated by microwave (70 min., 250 °C) and then cooled to room temperature. The reaction mixture was

diluted with 20 mL of chloroform and washed with aqueous HCl (2.0 M, 10 mL). The organic layer was separated and washed again with 50 mL of aqueous HCl (2.0 M, 10 mL). The resulting aqueous fractions were combined and extracted with chloroform (50 mL). The combined organic layers were then washed with saturated aqueous Na₄-EDTA (100 mL), water (100 mL) and then dried over MgSO₄. The solution was filtered through Celite, concentrated to 1 mL and 15 was precipitated into methanol (200 mL) with rapid stirring. The polymer was isolated by filtration, washed with 50 mL of methanol and then dried under vacuum (0.070 g, 94 %). The corresponding ¹H NMR spectral data matched those reported previously in the literature.³⁷ $M_n = 7.36 \times 10^4$ g mol⁻¹, $M_w = 9.49$ \times 10⁴ g mol⁻¹, PDI = 1.29 by GPC (relative to polystyrene standards). UV/Vis (in THF): $\lambda_{max} = 390$ nm, ϵ (per monomer repeat unit) = 7.77 × $10^3 \text{ mol}^{-1}\text{dm}^3\text{cm}^{-1}$. Fluorescence in THF ($\lambda_{ex} = 392 \text{ nm}$): $\lambda_{emis} = 415$ and 439 nm (shoulder), fluorescence quantum yield: $\Phi = 0.77$, relative to quinine sulfate in 1.0 N H₂SO₄.

2.6.2.16. Synthesis of the thiophene-SGG copolymer 16

Monomer **3** (Br₂FlGeC₄Et₄) (0.105 g, 0.19 mmol), 2,5bis(trimethylstannyl)thiophene⁴² (0.079 g, 0.19 mmol), Pd(PPh₃)₄ (0.011 g, 0.010 mmol) were dissolved in 2 mL of THF in a sealed 5 mL microwave vial. The solution was irradiated by microwave (70 min., 140 $^{\circ}$ C) and then filtered into the rapidly stirring 150 mL of methanol. Polymer 16 was isolated by filtration, washed with methanol (50 mL) and then dried under vacuum (0.012, 13 %). Heating polymer 16 to reflux over 12 hours in common deuterated solvents could not dissolve enough material to obtain informative NMR spectra. $M_n = 1.90 \times 10^3$ g mol⁻¹, M_w = 2.39 × 10³ g mol⁻¹, PDI = 1.25 by GPC (relative to polystyrene standards). UV/Vis (in THF): $\lambda_{max} = 374$ nm, ε (per monomer repeat unit) = 1.79 × 10⁴ mol⁻¹dm³cm⁻¹. Fluorescence in THF ($\lambda_{ex} = 358$ nm): $\lambda_{emis} =$ 445 nm, fluorescence quantum yield: $\Phi = 0.48$, relative to quinine sulfate in 1.0 N H₂SO₄.

2.7. Crystallographic data

	2	3			
empirical formula	$C_{24}H_{28}Ge$ $C_{24}H_{26}Br_2Ge$				
fw	389.05	546.86			
cryst. dimens. (mm ³)	$0.54 \times 0.31 \times 0.24$	$0.47\times0.38\times0.29$			
cryst. syst.	triclinic	monoclinic			
space group	<i>P</i> 1 (No. 2)	<i>C</i> 2/ <i>c</i> (No. 15)			
unit cell dimensions					
<i>a</i> (Å)	9.464 (2)	13.0536 (9)			
<i>b</i> (Å)	9.517 (2)	12.3124 (9)			
<i>c</i> (Å)	25.290 (6)	13.7092 (10)			
α (deg)	91.817 (3)				
β (deg)	90.409 (3)	96.0343 (8)			
$\gamma(\text{deg})$	115.529 (2)				
$V(\text{\AA}^3)$	2053.7 (9)	2191.1 (3)			
Ζ	4	4			
$\rho(\text{g cm}^{-3})$	1.258	1.658			
abs. coeff. (mm ⁻¹)	1.495 5.052				
T (K)	173 (1) 173 (1)				
$2 \Theta_{\max}(\deg)$	56.94	56.75			
total data	19172	9978			
unique data (R _{int})	9903 (0.0229)	2687 (0.0147)			
obs. data $[I > 2\sigma(I)]$	9182	2546			
params.	452	123			
$R_1 \left[I > 2\sigma(I)\right]^a$	0.0596	0.0210			
wR_2 [all data] ^a	0.1712	0.0556			
Max/Min $\Delta \rho$ (e Å ⁻³)	1.660/-0.970	0.287/-0.671			
${}^{a}P = \Sigma F - F / \Sigma F \cdot mP = [\Sigma m (F^{2} - F^{2})^{2} / \Sigma m (F^{4})]^{1/2}$					

 Table 2.2.
 Crystallographic data for compounds 2 and 3.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|; wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{4})]^{1/2}.$

	5	9	
empirical formula	$C_{32}H_{32}GeS_2$	$C_{20}H_{12}Cl_2GeS_4$	
fw	553.28	524.03	
cryst. dimens. (mm ³)	$0.14 \times 0.13 \times 0.06$	$0.37 \times 0.10 \times 0.02$	
cryst. syst.	triclinic	orthorhombic	
space group	<i>P</i> 1 (No. 2)	<i>Pna</i> 2 ₁ (No. 33)	
unit cell dimensions			
<i>a</i> (Å)	13.9264 (8) 15.0191 (3)		
<i>b</i> (Å)	15.4344 (10)	23.4380 (5)	
<i>c</i> (Å)	15.8411 (11)	6.06693 (11)	
α (deg)	61.160 (4)		
β (deg)	68.468 (4)		
$\gamma(\text{deg})$	80.676 (3)		
$V(\text{\AA}^3)$	2774.0 (3)	2135.67 (7)	
Ζ	4	4	
ρ (g cm ⁻³)	1.325	1.630	
abs. coeff. (mm ⁻¹)	3.032	7.933	
T (K)	173 (1)	173 (1)	
$2 \Theta_{\max}(\text{deg})$	144.69	148.00	
total data	19366	14870	
unique data (R _{int})	10543 (0.0311)	4227 (0.0339)	
obs. data [$I > 2\sigma(I)$]	8906	4180	
params.	732	271	
$R_1 \left[I > 2\sigma(I) \right]^{\rm a}$	0.0382 0.0243		
wR_2 [all data] ^a	0.1082	0.0633	
Max/Min $\Delta \rho$ (e Å ⁻³)	0.542/-0.638	0.471/-0.856	

 Table 2.3. Crystallographic data for compounds 5 and 9.

	10	11·C ₆ H ₅ CH ₃	12
empirical formula	$C_{32}H_{20}GeS_4$	$C_{23.50}H_{36}B_2Cl_2GeO_4$	$C_{32}H_{40}B_2GeO_4$
fw	605.31	547.63	582.85
cryst. dimens. (mm ³)	$\begin{array}{c} 0.31 \times 0.10 \times \\ 0.04 \end{array}$	$0.56 \times 0.40 \times 0.30$	$\begin{array}{c} 0.43 \times 0.20 \times \\ 0.19 \end{array}$
cryst. syst.	monoclinic	triclinic	triclinic
space group unit cell dimensions	<i>C</i> 2/ <i>c</i> (No. 15)	P1 (No. 2)	P1 (No. 2)
<i>a</i> (Å)	24.1517 (4)	9.4903 (7)	10.6516 (3)
<i>b</i> (Å)	21.4199 (4)	9.5303 (7)	11.2008 (3)
<i>c</i> (Å)	11.1333 (2)	15.7215 (12)	14.5895 (5)
α (deg)		76.8759 (9)	78.7523 (4)
β (deg)	109.9751 (7)	82.3002 (9)	88.5746 (4)
$\gamma(\text{deg})$		86.8111 (9)	62.5303 (3)
$V(\text{\AA}^3)$	5413.07 (17)	1371.84 (18)	1510.47 (8)
Ζ	8	2	2
ρ (g cm ⁻³)	1.486	1.326	1.282
abs. coeff. (mm ⁻¹)	4.576	1.337	1.048
T (K)	173 (1)	173 (1)	173 (1)
$2 \Theta_{\max}(\deg)$	148.34	53.62	56.58
total data	104294	11521	13965
unique data (R_{int})	5492 (0.0509)	5834 (0.0216)	7236 (0.0095)
obs. data [$I > 2\sigma(I)$]	5000	4854	6814
params.	349	314	424
$R_1 \left[I > 2\sigma(I)\right]^a$	0.0313	0.0304	0.0298
wR_2 [all data] ^a	0.0910	0.0782	0.0818
$\frac{\text{Max}/\text{Min}\Delta\rho(\text{e}}{\text{Å}^{-3}})$	0.568/-0.455	0.430/-0.286	1.024/-0.669

 Table 2.4.
 Crystallographic data for compounds 10, 11 and 12.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{4})]^{1/2}.$

2.8. NMR spectral data

Figure 2.21.¹H NMR (in CDCl₃) spectrum of compound 10.

Figure 2.22. ${}^{13}C{}^{1}H$ NMR (in CDCl₃) spectrum of compound 10.

Figure 2.23. ¹H NMR (in CDCl₃) spectrum of compound 13.

Figure 2.24. ${}^{13}C{}^{1}H$ (in CDCl₃) spectrum of compound 13.

2.9. Ultraviolet–visible spectroscopy (UV/Vis) measurements

Figure 2.25. UV/Vis absorption spectra of compounds 2 and 3 (normalized).

Figure 2.26. UV/Vis absorption spectra of compound **10** in solution (THF) and film state (normalized).

Figure 2.27. UV/Vis absorption spectra of germole **11** and the spirocyclic germafluorene-germole **12** (normalized).

Figure 2.28. UV/Vis absorption spectra of compound **13** in solution (THF) and film state (normalized).

2.10. Photoluminescence spectra

Figure 2.29. PL excitation and emission spectra of compound 10 in aggregated and film state.

Figure 2.30. Images of SGG 10 in solution, aggregated and film state.

Figure 2.31. PL emission spectra of compound 13 in solution (THF) and film state.

2.11. References

- a) Jüstel, T.; Nikol, H.; Ronda, C., Angew. Chem. Int. Ed. 1998, 37, 3084-3103; b) Reineke, S.; Thomschke, M.; Lüssem, B.; Leo, K., Rev. Mod. Phys. 2013, 85, 1245-1293; c) Wu, H.; Ying, L.; Yang, W.; Cao, Y., Chem. Soc. Rev. 2009, 38, 3391-3400; d) D'Andrade, B. W.; Forrest, S. R., Adv. Mater. 2004, 16, 1585-1595; e) Kamtekar, K. T.; Monkman, A. P.; Bryce, M. R., Adv. Mater. 2010, 22, 572-582; f) Gather, M. C.; Köhnen, A.; Meerholz, K., Adv. Mater. 2011, 23, 233-248; g) Crawford, M. H., IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1028-1040.
- a) Jiang, H.; Wan, J.; Huang, W., Sci. China, Ser. B: Chem. 2008, 51, 497-520; b) Kuik, M.; Wetzelaer, G.-J. A. H.; Laddé, J. G.; Nicolai, H. T.; Wildeman, J.; Sweelssen, J.; Blom, P. W. M., Adv. Funct. Mater. 2011, 21, 4502-4509; c) Chi, C.; Im, C.; Enkelmann, V.; Ziegler, A.; Lieser, G.; Wegner, G., Chem. - Eur. J. 2005, 11, 6833-6845; d) Hung, M.-C.; Liao, J.-L.; Chen, S.-A.; Chen, S.-H.; Su, A.-C., J. Am. Chem. Soc. 2005, 127, 14576-14577.
- a) Lee K. -H.; Ohshita J.; Tanaka D.; Tominaga Y.; Kunai A., J. Organomet. Chem. 2012, 710, 53-58; b) Saito M.; Imaizumi S.; Tajima T.; Ishimura K.; Nagase S., J. Am. Chem. Soc. 2007, 129, 10974-10975.
- Chan, K. L.; McKiernan, M. J.; Towns, C. R.; Holmes, A. B., J.
 Am. Chem. Soc. 2005, 127, 7662-7663.
- a) McDowell, J. J.; Schick, I.; Price, A.; Faulkner, D.; Ozin, G., *Macromolecules* 2013, 46, 6794-6805; b) Chen, R.-F.; Fan, Q.-L.; Liu, S.-J.; Zhu, R.; Pu, K.-Y.; Huang, W., *Synth. Met.* 2006, 156, 1161-1167; c) Lu, G.; Usta, H.; Risko, C.; Wang, L.; Facchetti, A.; Ratner, M. A.; Marks, T. J., *J. Am. Chem. Soc.* 2008, 130, 7670-7685; d) Chan, K. L.; Watkins, S. E.; Mak, C. S. K.; McKiernan, M. J.; Towns, C. R.; Pascu, S. I.; Holmes, A. B., *Chem. Commun.* 2005, 5766-5768; e) Geramita, K.; Tao, Y.; Segalman, R. A.; Tilley, T. D., *J. Org. Chem.* 2010, 75, 1871-1887.
- Chen, R.-F.; Zheng, C.; Fan, Q.-L.; Huang, W., J. Comput. Chem.
 2007, 28, 2091-2101.
- Chen, R.; Zhu, R.; Zheng, C.; Liu, S.; Fan, Q.; Huang, W., Sci. China Ser. B-Chem. 2009, 52, 212-218.
- Allard, N.; Aïch, R. d. B.; Gendron, D.; Boudreault, P.-L. T.; Tessier, C.; Alem, S.; Tse, S.-C.; Tao, Y.; Leclerc, M., *Macromolecules* 2010, 43, 2328-2333.
- 9. a) Katkevics, M.; Yamaguchi, S.; Toshimitsu, A.; Tamao, K., Organometallics 1998, 17, 5796-5800; b) Fadhel, O.; Szieberth,
 D.; Deborde, V.; Lescop, C.; Nyulászi, L.; Hissler, M.; Réau, R., Chem. - Eur. J. 2009, 15, 4914-4924; c) Benincori, T.; Bonometti,
 V.; De Angelis, F.; Falciola, L.; Muccini, M.; Mussini, P. R.; Pilati, T.; Rampinini, G.; Rizzo S.; Toffanin, S.; Sannicolò, F., Chem. - Eur. J. 2010, 16, 9086-9098; d) Luo, J.; Xie, Z.; Lam, J.

W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu,Y.; Zhu, D.; Tang, B. Z., *Chem. Commun.* 2001, 1740-1741.

- Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.;
 Salbeck, J., *Chem. Rev.* 2007, 107, 1011-1065.
- 11. Amara, J. P.; Swager T. M., *Macromolecules* **2006**, *39*, 5753-5759.
- Murakami, K.; Ooyama, Y.; Higashimura, H.; Ohshita, J., Organometallics 2016, 35, 20-26.
- a) Hu, R.; Leung, N. L. C.; Tang, B. Z., Chem. Soc. Rev. 2014, 43, 13. 4494-4562; b) Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z., Adv. Mater. 2014, 26, 5429-5479; c) Toal, S. J.; Jones, K. A.; Magde, D.; Trogler, W. C., J. Am. Chem. Soc. 2005, 127, 11661-11665; d) Dedeoğlu, B.; Aviyente, V.; Özen, A. S., J. Phys. Chem. C 2014, 118, 6385-6397; e) Dedeoğlu, B.; Monari, A.; Etienne, T.; Aviyente, V.; Özen, A. S., J. Phys. Chem. C 2014, 118, 23946-23953; f) Sohn, H.; Sailor, M. J.; Magde, D.; Trogler, W. C., J. Am. Chem. Soc. 2003, 125, 3821-3830; g) Ding, D.; Li, K.; Liu, B.; Tang, B. Z., Acc. Chem. Res. 2013, 46, 2441-2453; h) Ohshita, J.; Murakami, K.; Tanaka, D.; Ooyama, Y.; Mizumo, T.; Kobayashi, N.; Higashimura, H.; Nakanishi, T.; Hasegawa, Y., Organometallics 2014, 33, 517-521; i) Saito, M., Coord. Chem. *Rev.* 2012, 256, 627-636; j) Saito, M.; Sakaguchi, M.; Tajima, T.; Ishimura, K.; Nagase, S., Phosphorus, Sulfur, Silicon Relat. Elem. **2010**, 185, 1068-1076; k) Yan, D.; Mohsseni-Ala, J.; Auner, N.;

Bolte, M.; Bats, J. W., Chem. - Eur. J. 2007, 13, 7204-7214; 1) Mullin, J. L.; Tracy, H. J., Aggregation-Induced Emission in Group 14 Metalloles (Siloles, Germoles, and Stannoles): Spectroscopic Considerations, Substituent Effects, and Applications, in Aggregation-Induced Emission: Fundamentals and Applications, Volumes 1 and 2 (eds A. Qin and B. Z. Tang), John Wiley and Sons Ltd, Chichester, United Kingdom. 2013 DOI: 10.1002/9781118735183.ch02

a) Li, Z.; Dong, Y.; Mi, B.; Tang, Y.; Häussler, M.; Tong, H.; 14. Dong, Y.; Lam, J. W. Y.; Ren, Y.; Sung, H. H. Y.; Wong, K. S.; Gao, P.; Williams, I. D.; Kwok, H. S.; Tang, B. Z., J. Phys. Chem. B 2005, 109, 10061-10066; b) Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Chem. Soc. Rev. 2011, 40, 5361-5388; c) Liu, J.; Lam, J. Y.; Tang, B., J. Inorg. Organomet. Polym. 2009, 19, 249-285; d) Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z., Chem. Mater. 2003, 15, 1535-1546; e) Chen, B.; Nie, H.; Lu, P.; Zhou, J.; Qin, A.; Qiu, H.; Zhao, Z.; Tang, B. Z., Chem. Commun. 2014, 50, 4500-4503; f) Bozeman, T.; Edwards, K.; Fecteau, K.; Verde Jr., M.; Blanchard, A.; Woodall, D.; Benfaremo, N.; Ford, J.; Mullin, J.; Prudente, C.; Tracy, H., J. Inorg. Organomet. Polym. 2011, 21, 316-326; g) Mullin, J. L.; Tracy, H. J.; Ford, J. R.; Keenan, S. R.; Fridman, F., J. Inorg. Organomet. Polym. 2007, 17, 201-213; h) Tracy, H. J.; Mullin, J. L.; Klooster, W. T.; Martin, J. A.; Haug, J.; Wallace, S.; Rudloe, I.; Watts, K., *Inorg. Chem.* **2005**, *44*, 2003-2011.

- Fagan, P. J.; Nugent, W. A., J. Am. Chem. Soc. 1988, 110, 2310-2312.
- a) He, G.; Kang, L.; Torres Delgado W.; Shynkaruk, O.; Ferguson, M. J.; McDonald, R.; Rivard, E., *J. Am. Chem. Soc.* 2013, *135*, 5360-5363; b) He, G.; Torres Delgado, W.; Schatz, D. J.; Merten, C.; Mohammadpour, A.; Mayr, L.; Ferguson, M. J.; McDonald, R.; Brown, A.; Shankar, K.; Rivard, E., *Angew. Chem., Int. Ed.* 2014, 53, 4587-4591; c) He, G.; Wiltshire, B. D.; Choi, P.; Savin, A.; Sun, S.; Mohammadpour, A.; Ferguson, M. J.; McDonald, R.; Farsinezhad, S.; Brown, A.; Shankar, K.; Rivard, E., *Chem. Commun.* 2015, *51*, 5444-5447; d) Rivard, E., *Chem. Lett.* 2015, *44*, 730-736.
- 17. a) Yan, X.; Xi, C., Acc. Chem. Res. 2015, 48, 935-946; b) Baumgartner, T.; Réau, R., Chem. Rev. 2006, 106, 4681-4727; c) Matsumura, Y.; Ueda, M.; Fukuda, K.; Fukui, K.; Takase, I.; Nishiyama, H.; Inagi, S.; Tomita, I., ACS Macro Lett. 2015, 4, 124-127; d) Zhou, W.-M.; Tomita, I., J. Inorg. Organometal. Polym. Mater. 2009, 19, 113-117.
- Freeman, W. P.; Tilley, T. D.; Liable-Sands, L. M.; Rheingold, A. L., J. Am. Chem. Soc. 1996, 118, 10457-10468.

- Linshoeft, J.; Baum, E. J.; Hussain, A.; Gates, P. J.; Näther, C.;
 Staubitz, A., Angew. Chem., Int. Ed. 2014, 53, 12916-12920.
- For related studies involving dithienylgermole units, see: b)
 Ohshita, J.; Miyazaki, M.; Tanaka, D.; Morihara, Y.; Fujita, Y.;
 Kunugi, Y., *Polym. Chem.* 2013, *4*, 3116-3122; c)
 Ohshita, J.;
 Hwang, Y.-M.; Mizumo, T.; Yoshida, H.; Ooyama, Y.; Harima,
 Y.; Kunugi, Y., *Organometallics* 2011, *30*, 3233-3236.
- Xie, Z.; Chen, C.; Xu, S.; Li, J.; Zhang, Y.; Liu, S.; Xu, J.; Chi, Z., Angew. Chem., Int. Ed. 2015, 54, 7181-7184.
- 22. See Sections 2.6.5 and 2.6.6 for full details. CCDC 1416938 (2), 1416939 (3), 1416940 (5), 1416943 (9), 1416944 (10), 14169441 (11), and 1416942 (12) contain the supplementary crystallographic data for this chapter. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- 23. a) Ogawa, K.; Takeuchi, Y.; Manuel, G.; Boukherroub, R., *Acta Cryst. C* 1994, *50*, 1337-1339; b) Zabula, A. V.; Dolinar, B. S.; West, R., *J. Organomet. Chem.* 2014, *751*, 458-461.
- 24. Mutai, T.; Cheon, J.-D.; Arita, S.; Araki, K., *J. Chem. Soc., Perkin Trans. 2* 2001, 1045-1050.
- Cebeci, F. Ç.; Geyik, H.; Sezer, E.; Sezai Sarac, A., J. Electroanal. Chem. 2007, 610, 113-121.

26. a) Tirapattur, S.; Belletête, M.; Drolet, N.; Bouchard, J.; Ranger, M.; Leclerc, M.; Durocher, G., *J. Phys. Chem. B* 2002, *106*, 8959-8966;

b) Belletête, M.; Morin, J.-F.; Beaupré, S.; Ranger, M.; Leclerc, M.; Durocher, G., *Macromolecules* 2001, *34*, 2288-2297; c)
Belletête, M.; Morin, J.-F.; Beaupré, S.; Leclerc, M.; Durocher, G., *Synth. Met.* 2002, *126*, 43-51; d) Tirapattur, S.; Belletête, M.;
Drolet, N.; Leclerc, M.; Durocher, G., *Macromolecules* 2002, *35*, 8889-8895; e) Belletête, M.; Beaupré, S.; Bouchard, J.; Blondin, P.; Leclerc, M.; Durocher, G., *J. Phys. Chem. B* 2000, *104*, 9118-9125.

- Ghosh, A. P.; Gerenser, L. J.; Jarman, C. M.; Fornalik, J. E., *Appl. Phys. Lett.* 2005, *86*, 223503.
- 28. Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Chem. Commun. 2009, 4332-4353.
- a) Amro, K.; Clement, S.; Dejardin, P.; Douglas, W. E.; Gerbier,
 P.; Janot, J.-M.; Thami, T., *J. Mater. Chem.* 2010, *20*, 7100-7103;
 b) Zhang, G.; Hu, F.; Zhang, D., *Langmuir* 2015, *31*, 4593-4604.
- Araki, T.; Fukazawa, A.; Yamaguchi, S., *Angew. Chem. Int. Ed.* 2012, 51, 5484-5487.
- 31. Palilis, L. C.; Murata, H.; Uchida, M.; Kafafi, Z. H., *Org. Electron.*2003, *4*, 113-121.

- a) Dougherty, T. K.; Lau, K. S. Y.; Hedberg, F. L., *J. Org. Chem.* **1983**, *48*, 5273-5280; b) Berger, C. J.; He, G.; Merten, C.;
 McDonald, R.; Ferguson, M. J.; Rivard, E., *Inorg. Chem.* **2014**, *53*, 1475-1486.
- 33. For a recent example that illustrates the high sensitivity of Suzuki-Miyaura coupling to catalyst/base, see: Baggett, A. W.; Guo, F.;
 Li, B.; Liu, S.-Y.; Jäkle, F., Angew. Chem., Int. Ed. 2015, 54, 11191-11195.
- 34. Yamamoto, T., Synlett 2003, 0425-0450.
- 35. a) Komorowska-Durka, M.; Dimitrakis, G.; Bogdał, D.;
 Stankiewicz, A. I.; Stefanidis, G. D., *Chem. Eng. J.* 2015, 264,
 633-644; b) Zhang, C.; Liao, L.; Gong, S., *Green Chem.* 2007, 9,
 303-314.
- 36. a) Zhang, W.; Lu, P.; Wang, Z.; Ma, Y., *Sci. China Chem.* 2012, 55, 844-849; b) Simon, Y. C.; Peterson, J. J.; Mangold, C.; Carter, K. R.; Coughlin, E. B., *Macromolecules* 2009, 42, 512-516.
- 37. Huang, L.; Wu, S.; Qu, Y.; Geng, Y.; Wang, F., *Macromolecules*2008, 41, 8944-8947.
- Loewe, R. S.; Ewbank, P. C.; Liu, J.; Zhai, L.; McCullough, R. D., Macromolecules 2001, 34, 4324-4333.
- Yokoyama, A.; Miyakoshi, R.; Yokozawa, T., *Macromolecules* 2004, *37*, 1169-1171.

- 40. Iovu, M. C.; Sheina, E. E.; Gil, R. R.; McCullough, R. D., Macromolecules 2005, 38, 8649-8656.
- Miyakoshi, R.; Shimono, K.; Yokoyama, A.; Yokozawa, T., *J. Am. Chem. Soc.* 2006, *128*, 16012-16013.
- 42. Kim, K.-H.; Yu, H.; Kang, H.; Kang, D. J.; Cho, C.-H.; Cho, H.H.; Oh, J. H.; Kim, B. J., *J. Mater. Chem. A* 2013, *1*, 14538-14547.
- Koeckelberghs, G.; Vangheluwe, M.; Persoons, A.; Verbiest, T., Macromolecules 2007, 40, 8142-8150.
- 44. Saa, J. M.; Martorell, G., J. Org. Chem. 1993, 58, 1963-1966.
- 45. a) Mee, S. P. H.; Lee, V.; Baldwin, J. E., *Chem. Eur. J.* 2005, *11*, 3294-3308; b) Han, X.; Stoltz, B. M.; Corey, E. J., *J. Am. Chem. Soc.* 1999, *121*, 7600-7605.
- 46. a) Gawande, M. B.; Shelke, S. N.; Zboril, R.; Varma, R. S., Acc. Chem. Res. 2014, 47, 1338-1348; b) Nüchter, M.; Müller, U.; Ondruschka, B.; Tied, A.; Lautenschläger, W., Chem. Eng. Technol. 2003, 26, 1207-1216.
- 47. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.;
 Timmers, F. J., *Organometallics* 1996, *15*, 1518-1520.
- Keyworth, C. W.; Chan, K. L.; Labram, J. G.; Anthopoulos, T. D.;
 Watkins, S. E.; McKiernan, M.; White, A. J. P.; Holmes, A. B.;
 Williams, C. K., *J. Mater. Chem.* 2011, *21*, 11800-11814.
- 49. Göker, S.; Hızalan, G.; Udum, Y. A.; Toppare, L., Synth. Met.
 2014, 191, 19-27.

- Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K.
 L.; Brisbois, R. G.; Markworth, C. J.; Grieco, P. A., Org. Lett.
 2002, 4, 3199-3202.
- 51. Yu, J.; Shen, T.-L.; Weng, W.-H.; Huang, Y.-C.; Huang, C.-I.; Su, W.-F.; Rwei, S.-P.; Ho, K.-C.; Wang, L., *Adv. Energy Mater*. 2012, *2*, 245-252.
- 52. Liu, S.-J.; Zhao, Q.; Chen, R.-F.; Deng, Y.; Fan, Q.-L.; Li, F.-Y.;
 Wang, L.-H.; Huang, C.-H.; Huang, W., *Chem. Eur. J.* 2006, *12*, 4351-4361.
- 53. Eaton, D. F., Pure Appl. Chem. 1988, 60, 1107-1114.

Chapter 3: Modular Synthesis of Diarylalkynes, theirEfficientConversionintoLuminescentTetraarylbutadienesandUseoftheLatterforthePreparation of Polymer Building Blocks

3.1. Abstract

In this chapter, a series of electronically distinct symmetrical diarylalkynes were prepared via a general Suzuki-Miyaura cross-coupling protocol. These alkynes underwent zirconium-mediated coupling to yield zirconacycles that afford new tetraaryl-1,3-butadienes upon subsequent protonolysis; these butadienes display deep blue or green emission and represent promising building blocks for light-emitting devices. The presented synthetic pathway allows access to new libraries of molecular light-emitters with tunable luminescence and considerable thermal- and photostabilities. Initial attempts to synthesize the potentially luminescent polymer building block 1,4-bis(tributylstannyl)-1,2,3,4-tetra(4-isopropylbenzene)-1,3-butadiene are also described.

3.2. Introduction

Diarylalkynes are important precursors for the synthesis of olefins,^{1,2} ketones,³ fused organic heterocycles⁴ as well as functional inorganic heterocycles such as luminescent benzofused-siloles,⁵ Te/B heterocycles,⁶ π -conjugated systems,⁷ spirocycles,⁸ vinyl cations,⁹ arylalkene polymers,¹⁰ and materials with a broad range of biological activities¹¹ (e.g., 5-azoindoles)¹² and nonlinear optical properties.¹³

In general, the most common route to yield diarylalkynes is Sonogashira coupling: the palladium-catalyzed coupling aryl or alkenyl halides (or triflates) with terminal alkynes.¹⁴ Recent developments in the Sonogashira methodology include nanoparticle-catalyzed, ligand-free, and/or metal-free coupling, as well as photocatalyzed and microwaveassisted reactions in water.^{14c}

Despite the common use of Sonogashira coupling to form symmetric diarylalkynes, there are some drawbacks including limitations in aryl halide substrates scope when using protected acetylenes¹⁵ and the multi-step nature of known protocols, leading to low overall yields. In order to overcome these limitations Lee^{15,16} and others¹⁷ focused attention on the development of decarboxylative alkyne coupling, where propiolic acid is used as an alkyne source (Scheme 3.1). Other methods of diarylalkyne synthesis (outlined in Scheme 3.1) include sila-Sonogashira coupling,¹⁸ Stille coupling,^{8c,19} the use of organoaluminum alkyne²⁰ or alkynylsilanol reagents,²¹ the platinum-catalyzed alkynylation of aryl iodides,²² and Suzuki-Miyaura cross-coupling.²³ In the latter method, Sun's group employed a successful multi-step synthesis using boronic acids and thermally unstable acetylene iodides as coupling partners to obtain unsymmetrical alkynes (Scheme 3.2).^{23b}

Scheme 3.1. Selected examples of diarylalkyne synthesis.

Here the coupling of the easily prepared diborylethyne synthon, PinBC=CBPin $(1)^{24}$ with various aryl bromides in a general palladiumcatalyzed Suzuki-Miyaura cross-coupling reaction will be used to construct symmetric diarylalkynes (Scheme 3.2). Advantages of this methodology include a timesaving one-pot procedure (*i.e.*, reduction of work-up and purification steps compared to the Sonogashira method), and the use of commercially available aryl bromides as substrates. The resulting diarylalkynes can also be used to prepare tetraaryl-substituted 1,3-butadienes that exhibit color tunable luminescence and valuable solid state emission properties.^{25,26} Accordingly the current study represents an efficient general synthetic methodology for accessing a wide library of luminogens. Furthermore, based on the latter, transformation into a monomer for Stille cross-coupling was explored in order to incorporate a luminescent unit into polymeric structures for polymer-based lightemitting device applications.

Previously reported reaction:

 Ar^1 \longrightarrow $I + Ar^2 - B(OH)_2 \xrightarrow{PdCl_2 cat.} Ar^1 \longrightarrow Ar^2$

This work:

$$Me \xrightarrow{Me}_{Me'} O \xrightarrow{K}_{O} B \xrightarrow{K}_{O} O \xrightarrow{Me}_{Me'} + 2 \text{ Ar} - Br \xrightarrow{Pd(OAc)_2 \text{ cat.}}_{XPhos, K_3PO_4} \text{ Ar} \xrightarrow{K}_{Ar} Ar$$

Scheme 3.2. Synthesis of diarylalkynes using Suzuki-Miyaura cross-coupling.

3.3. Results and discussion

3.3.1. Synthesis of diarylalkynes via Suzuki-Miyaura coupling

This project began with an evaluation of the stability of the diborylethyne reagent 1^{24} to base-induced pinacolboronate (BPin) cleavage (Table 3.1), termed protodeboronation, as this is a common side reaction during Suzuki-Miyaura cross-coupling.²⁷ In order to minimize reaction time, microwave irradiation was applied with compound 1 dissolved in either pre-dried THF or freshly distilled DMF (as these solvents readily absorb microwave irradiation). When DMF solutions of 1 were heated to 100 °C for 20 min, compound 1 was completely converted into the known hydroxide HOBPin²⁸ (as confirmed by multinuclear NMR spectroscopy), indicating the likely presence of residual water in the DMF. Upon careful examination of the protodeboronated product mixture, the known alkyne HC=CBPin²⁹ could not be detected, suggesting that the alkyne unit was eliminated as acetylene. In contrast, a THF solution of PinBC=CBPin (1) does not undergo decomposition, even after prolonged heating in the microwave reactor to 140 °C for 40 min; while under the same microwave conditions, 1 mixed in a 3:1 THF/H₂O mixture completely converted into HOBPin, indicating the key role of water in protodeboronation.

Entry	Solvent*	Temperature (°C)	Time (min)	B-containing product of hydrolysis? (based on ¹ H and ¹¹ B NMR)
1	THF	70	40	no
2	DMF	70	40	no
3	THF	100	20	no
4	DMF	100	20	yes
				HO-BPin (100%)
5	THF	100	40	no
7	THF	140	40	no
8	THF/H ₂ O	140	40	yes
	= 3:1			HO-BPin (100 %)

Table 3.1. Stability of compound **1** in THF or DMF under microwave irradiation (300 W).

*THF was obtained from the Grubbs-type purification system and DMF was stirred overnight over CaH_2 (5% w/v), filtered and then freshly distilled from CaSO₄ and stored over molecular sieves.

Next the effect of added base on the stability of **1** was evaluated under microwave-assisted reaction conditions (Table 3.2). In each trial, compound **1** was dissolved in either THF or DMF (0.12 M solutions) and 6 equivalents of oven-dried K₃PO₄ was added. Upon the microwave heating of $1/K_3PO_4$ in THF at 70 °C for 40 min compound **1** completely decomposed into the bis-boryloxide PinBOBPin³⁰ and hydroxide HO-BPin; the same reaction carried out in DMF gave only HOBPin as a boron-containing product. In addition, heating $1/K_3PO_4$ to reflux in THF for 36 hrs led to partial decomposition of **1** (11 % according to ¹H and ¹¹B NMR spectroscopy) into PinBOBPin. One possible explanation for the formation of protodeboronation products with K₃PO₄ under seemingly non-aqueous conditions is the presence of residual water in the potassium phosphate, despite prior heating at 170 °C for 2 days. When **1** and CsF (2 equiv.) were heated in a microwave reactor to 70 °C for 40 min in THF, similarly rapid protodeboronation to yield HOBPin transpired. Not surprisingly, the use of aqueous potassium carbonate (6 eq.) as a base under the same microwave reaction conditions converted **1** into hydroxide HOBPin. These trials effectively show that protodeboronation is a reaction that will compete with C-C bond formation during Suzuki-Miyaura cross-coupling, leading to some reduction in yield of the target diarylalkyne (*vide infra*).

Entry	Base&	Solvent*	Temperature (°C)	Time (min)	B-containing product? (based on ¹ H and ¹¹ B NMR)
1	K ₃ PO ₄	THF	70	40	O(BPin) ₂ (13 %) + HO-BPin (87 %)
2	CsF	THF	70	40	HO-BPin (100 %)
3	K ₂ CO ₃	THF	70	40	HO-BPin (100 %)
4	K ₃ PO ₄	DMF	70	40	HO-BPin (100 %)
5	K ₃ PO ₄	THF	100	20	HO-BPin (100 %)
6	K ₃ PO ₄	DMF	100	20	HO-BPin (100 %)
7	K ₃ PO ₄	THF	100	40	HO-BPin (100 %)
8	K ₃ PO ₄	DMF	100	40	HO-BPin (100 %)
9	K ₃ PO ₄	THF	140	40	O(BPin) ₂ (25 %) + HO-BPin (31 %) + 1 (44 %)
10	CsF	THF	140	40	O(BPin) ₂ (17 %) +
				-	HO-BPin (83 %)
11	K_2CO_3	THF	140	40	HO-BPin (100 %)

Table 3.2. Stability of compound **1** in the presence of base in THF or DMF under microwave irradiation (300 W).

 $^{\&}$ K₃PO₄ and CsF were dried in the oven (170 °C) for 48 hrs before use, 2.0 M aqueous solution of K₂CO₃ was freshly prepared and degassed prior to use; *THF was obtained from the Grubbs-type purification system and DMF was stirred overnight over CaH₂ (5% w/v), filtered and then freshly distilled from CaSO₄ and stored over molecular sieves.

4-Bromoisopropylbenzene was chosen as a substrate for crosscoupling optimization trials the target diarylalkyne (4as $^{i}PrC_{6}H_{4}C \equiv C(C_{6}H_{4}^{i}Pr-4)$ (2) could only be previously prepared via procedures.³¹ multi-step The challenging catalytic system $Pd_2(dba)_3/XPhos$ (dba = dibenzylideneacetone)³² was explored under different conditions, starting from microwave heating at 100 °C for 20 min and up to 140 °C for 40 min in different solvents (Table 3.3). The best isolated yield of **2** (Scheme 3.3) was 55 % and arose when a $Pd_2(dba)_3$ -XPhos-K₃PO₄ pre-catalyst/ligand/base system was employed with microwave heating to 140 °C for 40 min in THF. The analogous reactions in DMF or toluene did not yield any product. In the case of DMF, the complete protodeboronation of **1** transpired, while in toluene, no reaction occurred as toluene is known to be a poor absorber of microwave radiation.³³ Interestingly, use of a THF/H₂O (3:1) solvent combination gave the desired product (4-ⁱPrC₆H₄)C=C(C₆H₄ⁱPr-4) (**2**) in a 30 % isolated yield after purification by column chromatography, while on the other hand a DMF/H₂O (3:1) solvent medium did not lead to the formation of **2** with only protodeboronation transpiring. Overall the microwave-assisted trial reactions summarized in Table 3.3 helped identify a suitable solvent (THF) for future explorations.

Ent ry	Cat., mol % of Pd	Ligand, mol %	Base ^{&} , eq.	Solv.*	Tem p. (°C)	Time (min)	Purif. yield, %
1	$\frac{\mathrm{Pd}_2(\mathrm{dba})_3}{2},$	XPhos, 8	K ₃ PO ₄ , 6	THF	100	20	24
2	-	XPhos, 8	-	DMF	100	20	31
3	$Pd_2(dba)_3,$	XPhos, 8	-	THF	100	40	35
4	Pd2(dba)3	XPhos, 8	K ₃ PO ₄	THF	140	40	55
	, 2		, 6				
5	$Pd_2(dba)_3$,	XPhos, 8	K ₃ PO ₄ ,	DMF	140	40	0
	2		6				
6	Pd ₂ (dba) ₃ ,	XPhos, 8	K ₃ PO ₄ ,	Toluene	140	40	0
	2		6				
7	Pd ₂ (dba) ₃ ,	XPhos, 8	K ₂ CO ₃	THF	140	40	0
	2		(aq), 6				
8	Pd ₂ (dba) ₃ ,	H ^t Bu ₃ PB	K ₂ CO ₃	THF	140	40	0
	2	F4, 8	_(aq) , 6				
9	Pd ₂ (dba) ₃ ,	H ^t Bu ₃ PB	K ₂ CO ₃	DMF	140	40	0
	2	F4, 8					
10	Pd ₂ (dba) ₃ ,			THF:H ₂	140	40	33
	2		6	O = 3:1			
11	Pd ₂ (dba) ₃ ,	XPhos, 8	K ₃ PO ₄ ,	DMF:H ₂	140	40	0
	2		6	O = 3:1			

 Table 3.3. Optimization of reaction conditions to synthesize compound 2.

 ${}^{\&}K_{3}PO_{4}$ and CsF were dried in the oven (170 °C) for 48 hrs before use, 2.0 M aqueous solution of K₂CO₃ was freshly prepared and degassed prior to use; *THF was obtained from the Grubbs-type purification system and DMF was stirred overnight over CaH₂ (5% w/v), filtered and then freshly distilled from CaSO₄ and stored over molecular sieves.

In order to effectively scale-up the reaction between 4bromoisopropylbenzene and PinBC=CBPin (1), conventional heating in refluxing THF for 36 hrs was applied with different catalyst/base combinations examined. Specifically Pd catalysts commonly used in

Suzuki-Miyaura cross-coupling were explored while using 6 equivalents of K_3PO_4 base in relation to 1.^{34a} The Pd(OAc)₂/XPhos (1:4 ratio; 2 mol. % of Pd) mixture afforded pure 2 in a 40 % isolated yield, which is comparable to the yield obtained with the Pd₂(dba)₃/XPhos combination mentioned above (35 % isolated yield of 2; 2 mol. % of Pd). However the use of 2 mol. % of Pd(PPh₃)₄ as a catalyst gave 2 in a much lower isolated yield of 20 % (Table 3.4). In addition, the Pd(OAc)₂/XPhos catalyst combination when mixed with two equiv. of CsF relative to 1 in THF, afforded the target alkyne 2 in a similar isolated yield of 40 %.^{34b} In order to facilitate the handling of the reagents, the air-stable pre-catalyst Pd(OAc)₂ was chosen in future coupling reactions instead of the airsensitive $Pd_2(dba)_3$. То investigate the effect of the Pd(OAc)₂/XPhos/K₃PO₄ mixture on the stability of 1, a THF solution of 1 in the presence of Pd(OAc)₂/XPhos (1:4 ratio; 2 mol. % of Pd) and K₃PO₄ (6 eq.) was heated to reflux for 36 hrs leading to partial decomposition (ca. 40 %) of 1 into PinBOBPin; this represents a slight increase in protodeboronation when compared to heating 1 with 6 equiv. of K_3PO_4 in the absence of Pd(OAc)₂/XPhos (only 11 % decomposition occurred).

Entry	Catalyst, mol % of Pd	Ligand, mol %	Base ^{&} , eq	Solv.*, time refluxed (hrs)	Purified yield, %
1	Pd ₂ (dba) ₃ ,	XPhos,	K ₃ PO ₄ ,	THF,	35
	2	8	6	36	
2	Pd(OAc) ₂ ,	XPhos,	K ₃ PO ₄ ,	THF,	40
	2	8	6	36	
3	Pd(OAc) ₂ ,	XPhos,	CsF, 2	THF,	40
	2	8		36	
4	Pd(PPh ₃) ₄ ,	-	K ₃ PO ₄ ,	THF,	20
	2		6	36	
5	Pd(PPh ₃) ₄ ,	-	CsF, 2	THF,	15
	2			36	
6	-	-	K ₃ PO ₄ ,	THF,	9 %
			6	18	decomp.
					of 1 to
					O(BPin) ₂
7	-	-	K ₃ PO ₄ ,	THF,	11 %
			6	36	decomp.
					of 1 to
					O(BPin) ₂
8 (no 4-	Pd(OAc) ₂ ,	XPhos,	K ₃ PO ₄ ,	THF,	33 %
bromoisopropyl	2	8	6	18	decomp.
benzene added)					of 1 to
					O(BPin) ₂
9 (no 4-	Pd(OAc) ₂ ,	XPhos,	K ₃ PO ₄ ,	THF,	40 %
bromoisopropyl	2	8	6	36	decomp.
benzene added)					of 1 to
					O(BPin) ₂

Table 3.4. Catalyst and base screening trials for the synthesis of 2 inrefluxing THF.

[&]K₃PO₄ and CsF were dried in the oven (170 °C) for 48 hrs before use; *THF was obtained from the Grubbs-type purification system.

To further investigate the developed synthetic procedure, the thiophene-substituted acetylenes **3** and **4** were prepared according to the

conditions presented in Scheme 3.3 and in Table 3.5. After slight variations in the catalytic loadings and reaction times, it was found that a reaction mixture with a 1:4 ratio of the Pd(OAc)₂ pre-catalyst to the XPhos ligand in THF that is refluxed for 36 hrs gave repeatedly the best isolated yields of analytically pure bis(thienyl)alkynes **3** and **4** (40 and 51 % yield, respectively) after column chromatography. The symmetric alkyne **5** was also prepared, containing capping triphenylamine (TPA) groups due to the use of TPA units to achieve two-photon absorption and enhanced hole transport properties in optoelectronics.³⁵ The diarylalkynes **2-5** were obtained as very pure materials in *ca.* 30-50 % yield after column chromatography, however one can rapidly obtain alkynes **2, 3** and **5** in > 90-95 % purity (according to ¹H NMR) by simply washing the crude alkynes **2, 3** and **5** with Et₂O, leading to enhanced isolated yields: 73 % (**2**), 40 % (**3**) and 60 % (**5**).

i) 2 eq. ⁱPrOBPin, -78°C, Et₂O; *ii*) 3.2 eq. HCI (diox), -78°C; 3 hrs at rt; -2 ⁱPrOH, - 2 LiCI

Scheme 3.3. Synthesis of the symmetric diarylalkynes 2-5.

Entry	Pd(OAc)2, mol %	XPhos, mol %	K3PO4 ^{&} , eq.	Time, hrs	Purified yield, %
1	1	2	6	36	26
2	1	2	4.5	36	15
3	1	2	6	18	15
4	2	4	6	36	30
5	2	8	6	36	40

Table 3.5. Optimization of reaction conditions when heating to reflux to synthesize **3**.

 K_3PO_4 was dried in the oven (170 °C) for 48 hrs before use and THF was obtained from the Grubbs-type purification system.

The structures of alkynes **2** and **5** were confirmed by single-crystal X-ray crystallography (Figures 3.1 and 3.2, respectively) and afforded expected metrical parameters; for example, the C=C bond lengths in **2** and **5** are the same within experimental error [1.196(3) and 1.198(2) Å, respectively].

Figure 3.1. Thermal ellipsoid plot (30% probability) of compound **2** with hydrogen atoms omitted for clarity; a crystallographic inversion center (1/2, 0, 1/2) lies at the midpoint of the C(1)–C(1A) bond. Selected bond lengths (Å) and angles (deg): C(1)–C(1A) 1.196(3), C(1)–C(2) 1.435(17), C(2)–C(3) 1.394(2), C(3)–C(4) 1.391(19), C(5)–C(8) 1.522(17); C(1A)–C(1)–C(2) 178.75(19), C(1)–C(2)–C(3) 121.13(13), C(3)–C(2)–C(7) 118.64(12), C(4)–C(5)–C(8) 121.87(12), C(2)–C(3)–C(4) 120.02(13).

Figure 3.2. Thermal ellipsoid plot (30 % probability) of compound **5** with hydrogen atoms omitted for clarity; a crystallographic inversion center (1/2, 0, 1/2) lies at the midpoint of the C(1)–C(1A) bond. Selected bond lengths (Å) and angles (deg): C(1)–C(1A) 1.198(2), C(1)–C(2) 1.4336(15).

3.3.2. Tetraaryl-1,3-butadiene synthesis

The preparation of arylated 1,3-dienes has received limited literature,^{26b,c} the despite attention in their reversible novel mechanochromic properties (i.e., changing emission color in response to external mechanical stimuli) and occasionally high fluorescence quantum vields in the solid state.^{26a} Scheme 3.4 outlines the overall procedure used to prepare the symmetric tetraaryl-1,3-butadienes 7a, 7b and 8. To begin, the cumyl-substituted zirconacycle $Cp_2ZrC_4(4-iPrC_6H_4)_4$ 6a and the previously reported tetrathiophene zirconacycle **6b** ($Cp_2ZrC_4T_4$; T = 2thienyl)³² were obtained by combining two equiv. of the alkynes 2 and 3 each with *in situ* generated "Cp₂Zr" (made from Cp₂ZrCl₂/2 ⁿBuLi)^{36a} in THF. The new zirconacycle **6a** was isolated as an air- and moisturesensitive red solid in a high yield of 90 % and its structure was determined by single-crystal X-ray crystallography (Figure 3.3). The average Zr–C bond lengths in the five membered ZrC₄ ring in **6a** are 2.264(4) Å and in accordance with the reported Zr–C bond lengths in pinacolboronatefunctionalized zirconacycles.³⁷ The cumyl groups adjacent to the Cp₂Zr unit are twisted from the five membered zirconacycle core by 55.80(6)° and 58.25(8)°, while the remaining cumyl-based rings are also canted by 55.80(8)° and 54.90(9)° to yield an overall propeller arrangement of the four cumyl groups in **6a**.

Figure 3.3. Thermal ellipsoid plot (30% probability) of compound **6a** with hydrogen atoms omitted for clarity; only one molecule of the two in the asymmetric unit is shown. Selected bond lengths (Å) and angles (deg) with metrical parameters for the second molecule in the asymmetric unit are listed in square brackets: Zr-C(1) 2.269(2) [2.259(3)], Zr-C(4) 2.267(3) [2.259(3)], C(1)-C(2) 1.363(4) [1.369(4)], C(2)-C(3) 1.489(3) [1.494(3)], C(3)-C(4) 1.366(3) [1.368(4)]; C(1)-Zr-C(4) 77.50(9) [78.27(9)].

Conversion of the zirconacycles **6a** and **6b** into the target 1,3butadienes **7a** and **7b** with exclusive cis-trans-cis geometries of the appended aryl groups was readily accomplished by adding an excess of HCl in Et₂O (Scheme 3.4). The Cp₂ZrCl₂ by-product was effectively removed by filtration of a CH₂Cl₂:hexanes solution of the reaction products through a silica gel plug. Compound **7a** was obtained as a white solid (57 % yield) after further washing with hexanes, while compound **7b** was isolated as a yellow solid (40 % yield) after washing the crude material with cold (-35 °C) Et₂O. Both the cumyl-substituted butadiene **7a** and the thiophene-capped analogue **7b** yielded crystals of suitable quality for X-ray analysis and their respective structures are found as Figures 3.4 and 3.5. As in the previously characterized tetratolyl-1,3-butadiene **9** and tetraphenyl-1,3-butadiene **11** (Scheme 3.4),^{26b,c} one of the four aryl rings in compound **7a** (containing C(41), Figure 3.4) is nearly coplanar with the butadiene core (dihedral angle of 4°), while the remaining rings are twisted from the diene unit by 34.9, 67 and 87.5°. Due to the significant twisting of the aryl groups and the presence of sterically encumbered isopropyl groups in **7a** there is a lack of substantial intermolecular π - π stacking; however significant intermolecular aryl---(H-C)Aryl contacts are present (as short as 2.46 Å). In the case of **7b**, the two terminallypositioned thienyl groups are only slightly twisted from the butadiene core by 8.8°, while the two remaining thienyl rings are arranged in a nearly perpendicular fashion.

Scheme 3.4. Synthetic route to the 1,3-butadienes 7a/b and 8, and structures of the known analogues 9-11.

Figure 3.4. Thermal ellipsoid plot (30 % probability) of compound 7a with selected hydrogen atoms omitted for clarity; remaining hydrogen atoms presented with arbitrarily small thermal parameters. Only the major orientation of the disordered isopropyl groups is shown. Selected bond lengths (Å) and angles (deg): C(1)-C(2) 1.347(3), C(2)-C(3) 1.477(3), C(3)-C(4) 1.347(3); C(2)-C(3)-C(4) 121.07(17), C(1)-C(2)-C(3) 121.70(17).

Figure 3.5. Thermal ellipsoid plot (30 % probability) of compound **7b** with selected hydrogen atoms omitted for clarity; remaining hydrogen atoms presented with arbitrarily small thermal parameters. Only the major orientation of the disordered thienyl groups is shown. A crystallographic inversion center (1/2, 0, 1/2) lies at the midpoint of the C(1)–C(1A) bond. Selected bond lengths (Å) and angles (deg): C(1)–C(1A) 1.477(2), C(1)–C(2) 1.351(2), C(2)–C(3) 1.4489(19); C(2)–C(1)–C(1A) 121.31(15), C(1)-C(1A)-C(2A) 121.31(15).

Although the triphenylamine (TPA)-functionalized butadiene **8** could be obtained using the zirconium source "Cp₂Zr" (generated from Cp₂ZrCl₂/2 ⁿBuLi *in situ*), it could also obtained via a slightly different one-pot procedure starting from the thermally stable and isolable Cp₂Zr source Cp₂Zr(pyridine)(Me₃SiCCSiMe₃)^{36b} (Scheme 3.4). Specifically, Cp₂Zr(pyridine)(Me₃SiCCSiMe₃) and two equivalents of (TPA)C=C(TPA) **5** were combined in THF to yield a red solution containing the zirconacycle, Cp₂ZrC₄(TPA)₄, which was reacted in situ with an excess of HCl to give crude **8** as an orange solid. The resulting product contained Cp₂ZrCl₂ byproduct as well as unreacted **5**, thus

additional purification by multiple washes with cold (-30 °C) Et_2O , followed by washing with acetone at room temperature were required to afford pure **8** as a bright yellow solid in a 26 % yield. Unfortunately, crystals of **8** of suitable quality for single-crystal X-ray crystallographic analysis could not be obtained.

3.3.3. Optical properties of the tetraaryl-1,3-butadienes 7a, 7b and 8

Tetraarylbutadienes are an emerging class of solid state emitters with high photoluminescence quantum yield, thus optical properties of **7a**, **7b** and **8** were studied in more detail. Compounds **7a** and **7b** undergo a drastic change from a nonemissive state in THF solution to highly emissive aggregated states in THF/H₂O mixtures when the water content exceeded 60% ν/ν and 80% ν/ν , respectively; this effect is termed aggregation-induced emission²⁵ and was previously observed for butadienes **9-11**.²⁶ The fluorescence emission spectra of **7a/b** in THF/H₂O are presented in Figures 3.6 and 3.7. In addition, compound **7a** emits a bright-blue color in the solid state ($\lambda_{emis} = 426$ nm and 463 nm) due to the restricted rotation of the peripheral cumyl groups (Figure 3.8). As a comparison, bright green photoluminescence ($\lambda_{emis} = 506$ nm) is noted in the solid state for **7b** with a spectral tail that extends to *ca*. 650 nm (Figure 3.9).

Figure 3.6. Photoluminescence (PL) spectra of **7a** in different THF/water ratios (listed as % water content). Inset: emission intensity of **7a** as the THF/water ratio is altered. Insert photo: aggregates under UV light ($\lambda_{ex} = 365 \text{ nm}$); [**7a**] = 10⁻⁴ M.

Figure 3.7. Top: Photoluminescence (PL) spectra of **7b** in different THF/water ratios. Bottom: emission intensity of **7b** as the THF/water ratio is altered. Inset: aggregates under UV light ($\lambda_{ex} = 365$ nm); [**7b**] = 10⁻⁴ M.

Figure 3.8. Normalized PL excitation and emission spectra of 1,3butadiene 7a in the film state.

Figure 3.9. Normalized PL excitation and emission spectra of 1,3butadiene 7b in the film state.

Given the emissive nature of unsaturated compounds bearing triphenylamine (TPA) substituents, the luminescence of the alkyne 5 and its 1,3-butadiene derivative 8 was investigated. In agreement with previously reported emission data for 5 in CHCl₃,^{35b} alkyne 5 displays blue emission in THF when irradiated at 267 and 322 nm ($\lambda_{emis} = 413$ nm, $\Phi_{\text{absolute}} = 79.7\%$; Figure 3.10), however this emission maxima is slightly blue-shifted when compared to in CHCl₃, where $\lambda_{emis} = ca$. 430 nm. The relative quantum yield of 5 and 8 (vs. quinine sulfate in $1.0 \text{ N H}_2\text{SO}_4$) is lower within predicted error³⁸ than their absolute quantum yield and is presented in the Section 3.6. The 1,3-butadiene analogue 8 shows a change of luminescence color upon aggregation, which one could conceivably take advantage of for sensing applications.^{26c} When **8** is dissolved in THF, blue-green emission is observed ($\lambda_{emis} = 472 \text{ nm}, \Phi_{absolute} = 34.6\%, \tau = 2.1$ ns), however in the film state there is a substantial red-shift in λ_{emis} to 516 nm, corresponding to bright green emission (Figure 3.11). As a comparison, the relative quantum yield of the TPA-containing butadiene 10 (Scheme 3.4) in THF ($\phi = 4.7\%$; $\lambda_{emis} = 545$ nm) is about 7-fold lower as in 8, thus the added TPA units and overall steric bulk in 8 appear to hinder non-radiative decay pathways.^{26a} Similarly to 5 and 10,^{26a} the UV/Vis spectrum of 8 shows absorption peaks at 305 and 380 nm in THF (Figure 3.12), however in line with the dramatic changes in emission data in the solid state, the longer wavelength absorption is red-shifted by ca. 30 nm to 410 nm, thus aggregation triggers enhanced conjugation within 8.
The aggregation behavior of compound **8** is very different compared to the butadienes **7a/b** and **9-11** which do not show a change in photoluminescence color upon aggregation, but rather only an enhancement of emission intensity.²⁶ Under UV irradiation **8** undergoes a change from blue emission in pure THF ($\lambda_{emis} = 472 \text{ nm}$) to green ($\lambda_{emis} = 505 \text{ nm}$) when the water composition exceeds 60% *v/v* (Figure 3.13) in line with aggregation promoting restricted intramolecular motion and enhanced conjugation in **8**.

Figure 3.10. Normalized PL excitation and emission spectra of alkyne **5** in solution (THF) and film state.

Figure 3.11. Normalized PL excitation and emission spectra of **8** with λ_{ex} = 423 nm in THF and λ_{ex} = 420 nm in the film state.

Figure 3.12. UV/Vis absorption spectra of compound **8** in solution (THF) and film state (normalized).

Figure 3.13. Photoluminescence (PL) spectra of **8** in different THF/water ratios (listed as % water content). Inset: aggregates under UV light ($\lambda_{ex} = 365 \text{ nm}$); [**8**] = 10⁻⁴ M.

The solid state emission spectra for the butadienes **7a/b** and **8** were recorded from amorphous films (with amorphous character confirmed by X-ray powder diffraction; Figure 3.14). Compounds **5**, **7a**, **7b** and **8** all show fluorescence in the solid state according to the lifetimes found: 2.4, 1.0, 1.2, and 2.1 ns, respectively. The 1,3-butadiene analogue **7a** has the highest absolute quantum yield of 24.8% in the solid state, while the thiophene-capped analogue **7b** and alkyne **5** have similarly low quantum yields of 1.5% and 1.7%. Even though in solution the quantum yield of **8** was higher than **10** (Φ = 34.6% versus 4.7 %), in the solid state **8** has quantum yield of 10.7% while the previously reported TPA-substituted butadiene **10** has a solid state photoluminescence quantum yield of 40.1%.^{26c, 39} Given the lack of X-ray data for **8**, it is difficult to provide a convincing reason for the reduced fluorescence efficiency of **8** in the solid state.

Figure 3.14. XRD patterns of films of the 1,3-butadienes used for photoluminescence measurements.

3.3.4. Photobleaching and thermal stability of functionalized tetraaryl-1,3-butadienes

To determine how the incorporation of cumyl, thienyl or triphenylamine groups within a butadiene framework affects the photostability, thin films of **7a/b** and **8** were irradiated under air. In each photostability trial, $30 \ \mu$ L of a 2.0×10^{-3} M THF solution of the butadiene was drop-casted onto a glass slide and each experiment was conducted in triplicate under aerobic conditions (see Figures 3.15 – 3.17). This is the first example of such a study for tetraaryl-substituted 1,3-butadienes and

helps identify candidates for the development of LEDs that work without substantial encapsulation.⁴⁰ After drop-casting, the resulting films of **7a**, 7b and 8 were irradiated in air with a 65 W xenon lamp found within our fluorimeter. The resulting I/I₀ ratios were derived from the recorded photoluminescence intensity at the emission wavelength, λ_{max} . The cumyl (4-isopropylbenzene)-substituted butadiene 7a showed rapid degradation with 50 % retention of emission intensity ($I/I_0 = 0.50$) after 23 minutes of exposure (Figure 3.15); the triphenylamine (TPA)-functionalized butadiene 8 retains half of the initial photoluminescence (PL) intensity after 16 minutes of exposure (Figure 3.17). Interestingly, the thiopheneappended butadiene **7b** shows considerably enhanced photostability⁴¹ relative to 7a and 8, with a 50 % reduction in PL after 75 minutes of sustained exposure to the xenon lamp (Figure 3.16). A decrease of the emission intensity due to degradation of the butadienes was also verified by UV/Vis spectroscopy (see Section 3.6.6, Figures 3.54-3.56).

Figure 3.15. Time dependence of the fluorescence emission intensity of 7a a drop-cast thin film (30 μ L of 2 × 10⁻³ M THF solution) upon exposure to a 65 W xenon lamp in air. Film distance from lamp was 130 cm.

Figure 3.16. Time dependence of the fluorescence emission intensity of a drop-cast thin film of **7b** (from 30 μ L of a 2.0 × 10⁻³ M THF solution) upon exposure to a 65 W xenon lamp in air. Film distance from lamp was 130 cm.

Figure 3.17. Time dependence of the fluorescence emission intensity of **8** a drop-cast thin film (30 μ L of 2 × 10⁻³ M THF solution) upon exposure to a 65 W xenon lamp in air. Film distance from lamp was 130 cm.

Thermal stability is another important parameter to consider when selecting emitters for full color displays. The onset of thermal decomposition (5 % weight loss, T_d) of compounds **7a/b** and **8** were evaluated under nitrogen using thermal gravimetric analysis (Figure 3.18). The TPA-functionalized butadiene **8** has the highest thermal stability (T_d = 401 °C) in the series, followed by the cumyl-substituted butadiene **7a** (T_d = 267 °C) and thienyl analogue **7b** (T_d = 241 °C). This trend is mirrored by the precursor diarylalkynes **2-5** (Figure 3.19), albeit with lower thermal stabilities. The most thermally stable diarylalkyne is (TPA)C=C(TPA) (**5**) with a T_d of 206 °C, followed by the cumyl-substituted alkyne **2** (T_d = 186 °C) and the thiophene-appended alkyne **3** (T_d = 118 °C). Surprised by the low apparent decomposition temperature of (2-thienyl)C=C(2-thienyl) (3), we measured its melting point in a sealed capillary tube under nitrogen atmosphere and found that this compound melts at 97-100 °C without any decomposition; notable discoloration started at 175 °C and the melt became dark brown at 230 °C. Based on the DSC measurements under nitrogen atmosphere, the alkyne 3 melts at 97-100 °C (in agreement with melting point data) and decomposes at 179 °C, thus 118 °C is the temperature at which 5% weight loss occurred is most likely due to the evaporation of the alkyne. Compound 3 was also heated in refluxing toluene (*ca.* 110 °C) for 24 hrs with no sign of decomposition; such data is important as this alkyne is being increasingly used as a reagent in the chemical community, for instance in preparation of conducting and fluorescent polymers.³³

Figure 3.18. TGA thermograms of **7a**, **7b** and **8** measured under N₂ (scan rate = 10 °C/min).

Figure 3.19. TGA thermograms of diarylalkynes 2-5 measured under N_2 (scan rate = 10 °C/min).

Compounds **7a/b** also yielded dramatic weight losses (up to 95%) when subjected to TGA under N₂ (Figure 3.18). During DSC analysis upon heating from ambient temperature to 600 °C, the onset of thermal decomposition/weight loss for **7a/b** and **8** was found at 230 °C, 271 °C, and 308 °C. The melting points of these species were extracted from DSC data and afforded values of 209 °C, 218 °C, and 274 °C, respectively (Figures 3.20 to 3.22), in agreement with those measured in sealed capillary tubes.

Figure 3.20. DSC trace of **7a** measured under N₂ (30-600 °C, scan rate = 10 °C/min).

Figure 3.21. DSC trace of **7b** measured under N₂ (30-600 °C, scan rate = 10 °C/min).

Figure 3.22. DSC trace of 8 measured under N₂ (30-500 °C, scan rate = 10 °C/min).

Compound 7a also showed a crystallization temperature (T_c) of 130 °C which emerged upon cooling of the melt. To test possible decomposition, compounds 7a/b and 8 where subjected to repeated heating and cooling cycles in the DSC to temperatures ca. 10 °C above noticeable melting events (Figures 3.23 to 3.25); the weight loss after these measurements was negligible (< 2 %), excluding the evaporation of butadienes 7a/b and 8 during heating. It was found that the cumyl-capped butadiene 7a has stable melt, as noted by reoccurring а melting/recrystallization after the first cycle. In contrast, recrystallization and melting were not observed after the first heating for compounds 7b and 8, thus confirming their decomposition upon melting. Thus the weight loss in 7a noted during TGA could be due to evaporation (which is rapid above 230 °C), while in 7b decomposition occurs upon melting.

Figure 3.23. DSC cycles of **7a** measured under N₂ (first heating: 30-220 °C, scan rate = 10 °C/min; first cooling: 220-30 °C, scan rate = 30 °C/min; second heating: 30-220 °C, scan rate = 10 °C/min; second cooling: 220-30 °C, scan rate = 30 °C/min; third heating: 30-300 °C, scan rate = 10 °C/min; third cooling: 300-50 °C, scan rate = 30 °C/min; fourth heating: 50-220 °C, scan rate = 10 °C/min).

Figure 3.24. DSC cycles of **7b** measured under N₂ (first heating: 30-230 °C, scan rate = 10 °C/min; first cooling: 230-30 °C, scan rate = 30 °C/min; second heating: 30-230 °C, scan rate = 10 °C/min; second cooling: 230-30 °C, scan rate = 30 °C/min; third heating: 30-300 °C, scan rate = 10 °C/min; third cooling: 300-50 °C, scan rate = 30 °C/min; fourth heating: 50-230 °C, scan rate = 10 °C/min).

Figure 3.25. DSC cycles of **8** measured under N₂ (first heating: 30-285 °C, scan rate = 10 °C/min; first cooling: 285-30 °C, scan rate = 30 °C/min; second heating: 30-285 °C, scan rate = 10 °C/min; second cooling: 285-30 °C, scan rate = 30 °C/min; third heating: 30-400 °C, scan rate = 10 °C/min; third cooling: 400-50 °C, scan rate = 30 °C/min; fourth heating: 50-285 °C, scan rate = 10 °C/min).

3.4. Attempted synthesis of 1,4-bis(tributyllstannyl)-1,2,3,4-tetra(4-isopropylbenzene)-1,3-butadiene

Polymer light-emitting diodes (PLEDs) are light-weight, easy to fabricate, and emissive at low power, making them promising candidates for use as main display components in our information society. However, in order to achieve tunable full color emission from PLEDs, some challenges associated with blue light-emitting polymers such as luminous efficiency, spectra and operating stability, need to be overcome.⁴² Given the blue luminescent nature of some tetraarylbutadienes described already

in this chapter, a subsequent goal was to incorporate these units into polymeric structures via known Stille coupling protocols. Accordingly the attempted synthesis of a suitable stannylated 1,3-butadiene monomer 1,4-bis(tributylstannyl)-1,2,3,4-tetra(4-isopropylbenzene)-1,3-butadiene was explored.

Stille cross-coupling is one of the most common routes in π conjugated polymer synthesis⁴³ and specifically the distannylated olefin (E)-(R₃Sn)CH=CH(SnR₃), R = Me and Bu, has been widely used to make π -conjugated vinylene copolymers with interesting optoelectronic properties. For example, the most recent findings include co-polymers of heavier group 16 element heterocycles (e.g., selenophene and tellurophene)⁴⁴ as well as naphthodithiophene diimide.⁴⁵ However, distannylated 1,3-butadienes (R₃Sn)CH=CH-CH=CH(SnR₃) (R = Me and Bu) are not commonly studied due to their cumbersome syntheses, starting from either 2,4-hexadiyne⁴⁶ or 1,4-dichloro-1,3-butadiene.⁴⁷ An arylated distannyl butadiene can be synthesized via a Pd-catalyzed alkyne insertion chemistry involving terminal arylalkynes and Me₃Sn-SnMe₃.⁴⁸ As a result, Zn/Sn metathesis chemistry was thought to be explored as a way to gain access to stannylated butadienes.

Earlier in this chapter a modular synthesis of tetraaryl-substituted 1,3-butadienes was investigated and the cumyl-appended analogue (7a) which exhibits efficient blue luminescence in the solid state (i.e., absolute quantum yield is 24.8 %), while showing improved solubility in organic

solvents compared to commonly used blue emitter 1,1,4,4-tetraphenyl-1,3butadiene.⁴⁹ Thus, it was of interest to explore if transformation of **6a** into distannylated analogue of **7a** would be possible.

3.4.1. Results and discussion

The planned route to the distannylated butadiene monomer **9** started with the direct Zr/Sn metallacycle transfer reaction between the cumyl-substituted zirconacycle **6a** and two equivalents of Bu₃SnCl (Scheme 3.5). The choice of the appended butyl instead of methyl groups on tin was due to the 100-fold lower toxicity of the ⁿBu₃Sn-group. In addition, the trimethyltin derivatives have much lower boiling points, thus are more volatile when exposed to air.⁵⁰

Scheme 3.5. Attempted synthesis of the monomer 9.

First, the most common solvent used in the zirconium-mediated transfer, *i.e.*, tetrahydrofuran, was tested. The reaction was monitored by multinuclear NMR spectroscopy, but no conversion to the product **9** was observed after 24 hours of stirring the zirconacycle **6a** with ClSnⁿBu₃ at room temperature. Earlier it was noted by Fagan and Nugent that

quantitative conversion of zirconacycles into stannoles takes a longer time compared to germoles (*i.e.*, 48 hours *versus* 2 min),⁵¹ thus this reaction mixture (Scheme 3.5) was left stirring for another 48 hours, however complete decomposition of **6a** was found (four new *Cp* environments were detected by NMR spectroscopy) with no formation of the expected byproduct Cp_2ZrCl_2 .

Previously, remarkable solvent effects have been reported for synthesis of siloles from zirconacycles using halosilanes reagents, with one documented case of reactivity occurring in chloroform and dichloromethane, but not in THF.⁵² Thus the reaction was investigated between **6a** and ClSnⁿBu₃ in different solvents, with aliquots being taken after 24 hours and 72 hours of stirring (Table 3.6). It was found that zirconacycle **6a** decomposes after 72 hours of stirring in THF (100 %) and halogenated solvents (*i.e.*, dichloromethane (100 %) and CDCl₃ (90 %)), as well as after 24 hours of stirring in acetonitrile (42 %) and heating in toluene at 85 °C (18 %). In all other cases only starting materials (and no Cp₂ZrCl₂) were observed by multinuclear (¹H and ¹³C {¹H}) NMR spectroscopy with decomposition of **6a** occasionally noted.

Entry	Solvent	Temperature (°C)	Time (hrs)	Product?
				(based on ¹ H and
				¹³ C{ ¹ H} NMR)
1	THF	22	24	starting materials
2	THF	22	72	6a decomp. (100 %)
3	Et ₂ O	22	24	starting materials
4	Et ₂ O	22	72	starting materials
5	Acetonitrile	22	24	6a decomp. (42 %)
6	Toluene	22	24	starting materials
7	Toluene	22	72	starting materials
8	Toluene	85	24	6a decomp. (18 %)
9	CDCl ₃	22	24	6a decomp. (58 %)
10	CDCl ₃	22	72	6a decomp. (90 %)
11	Dichloromethane	22	24	6a decomp. (37 %)
12	Dichloromethane	22	72	6a decomp. (100 %)

Table 3.6. Metallacycle transfer between **6a** and two equiv. of $ClSn^nBu_3$ in various solvents.

As a result of the abovementioned experiments, another approach to the monomer **9** was taken using a 1,4-diiodo-1,3-butadiene (Scheme 3.6) analogue as a reagent. In order to obtain this compound, procedure developed by Ashe and coworkers was applied; this synthetic protocol was also used to efficiently prepare I₂C₄Et₄ from Cp₂ZrC₄Et₄ and iodine in reproducibly excellent yields (> 80 %; Scheme 3.6).

Scheme 3.6. Synthesis of the monomer 9 via 1,4-diiodo-1,3-butadiene.

The iodination of **6a** was tested three times, where slow addition of iodine (in THF) to this zirconacycle at -78 °C and -35 °C was performed under nitrogen atmosphere, followed by warming to room temperature for 3 hrs. In each case a complex mixture of products was obtained every time, although cleavage of cumyl groups of zirconacycle **6a** was not observed (based on the absence of cumyl iodide in the NMR spectra of the products).⁵³ When brominating agents, such as CuBr₂,⁵⁴ were combined with **6a**, large amounts of metallic precipitate formed as well as the decomposition of **6a**.

Lastly, I tried the transmetallation reaction between **6a** and ClSnⁿBu₃ in the presence of catalytic amount (10 mol. %) of CuCl (Scheme 3.7); this method was developed by Takahashi and co-workers and allowed a very efficient transfer (in one hour) of zirconacycles into stannoles and spirostannoles in excellent yields (> 80 %).⁵⁵ When **6a** and two equiv. of ClSnⁿBu₃ were combined with 10 mol. % of CuCl in THF, a complex mixture of products was generated with no sign of the expected Cp₂ZrCl₂ by-product, even after 48 hours of stirring. The Staubitz⁵⁶ and

Piers⁵⁷ groups used toluene as the solvent for this class of transformation, however use of toluene as a solvent yielded similarly complex reaction mixtures.

Scheme 3.7. Synthesis of the monomer **9** in the presence of catalytic amount of copper(I) chloride.

3.5. Conclusions

A general synthetic protocol to yield diarylalkynes and functionalized tetraaryl-1,3-butadienes *via* sequential Suzuki-Miyaura and zirconium-mediated alkyne coupling was developed. Altering the nature of the peripheral substituents appended to the butadiene unit leads to blue or green photoluminescence in the solid state. In addition, incorporation of these emissive units into polymeric structures for the fabrication of mechanically robust LEDs was attempted. The synthesis of the stannylated 1,3-butadiene (${}^{n}Bu_{3}Sn$)₂C₄Ar₄ (Ar = cumyl) **9**, a possible monomer for later use in Stille coupling polymerization, was tested. Despite exploring Zr/Sn exchange in different solvents and temperatures, and in the presence of copper(I) chloride, no sign of the desired product was noted, possibly due to the sterically encumbered nature of the zirconacycle starting material **6a**. The future work will involve examining Zr/Sn transmetallation with less hindered zirconacycles as a possible entry to next generation blue PLEDs based on thermally stable butadiene units.

3.6. Experimental section

3.6.1. Materials and instrumentation

All reactions were performed using standard Schlenk and glovebox (MBraun) techniques under a nitrogen atmosphere. Solvents were all dried and degassed using a Grubbs-type solvent purification system⁵⁸ manufactured by Innovative Technology, Inc., and stored under an atmosphere of nitrogen prior to use. 4-Bromoisopropylbenzene was obtained from TCI America, palladium(II) diacetate and zirconocene dichloride from Strem Chemicals Inc., 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane from Oakwood Chemicals, pyridine from Caledon Laboratory Chemicals; all other chemicals were obtained from Aldrich. Commercially obtained chemicals were used as received except for pyridine (pyr), which was freshly distilled under nitrogen from potassium hydroxide.⁵⁹ Acetonitrile was dried over anhydrous potassium carbonate for 24 hours, then over boric anhydride, followed by distillation under nitrogen.59 Bis(cyclopentadienyl)zirconium(2,3,4,5-tetra(2thienyl)methanide) (Cp2ZrC4T4),³² Cp2Zr(pyr)(Me3SiCCSiMe3),⁵⁶ 2bromo-3-hexylthiophene,⁶⁰ and 4-bromotriphenylamine⁶¹ were prepared according to literature procedures. ${}^{1}H$, ${}^{13}C^{1}$ and ${}^{11}B{}^{1}H$ NMR spectra were recorded on a Varian DD2 MR-400 spectrometer and referenced

externally to SiMe₄ (¹H, ¹³C{¹H}) and $F_3B \cdot OEt_2$ (¹¹B{¹H}). Elemental analyses were performed by the Analytical and Instrumentation Laboratory at the University of Alberta. Mass spectrometry were recorded using a MS-50G system (Kratos Analytical). Melting points were obtained in sealed glass capillaries under nitrogen using a MelTemp melting point apparatus and are uncorrected. UV/Vis measurements were obtained using Varian Cary 300 Scan spectrophotometer. The fluorescence а measurements were conducted on a Photon Technology International (PTI) MP1 fluorescence system. All relative solution quantum yields were measured in comparison to quinine sulfate in 1.0 N H₂SO₄ as a standard, assuming a quantum yield of 0.55.38a Photoluminescence lifetimes were measured on a time-correlated single photon counting fluorescence spectrometer (Edinburgh Instruments FLS920) using an EPL-375 picosecond pulsed diode laser with vertical polarization (70.3 ps pulse width) as an excitation source; absolute quantum yields were measured with an integrating sphere system within the same fluorescence spectrometer. The X-ray powder diffraction patterns were collected on an Inel diffractometer equipped with a curved position-sensitive detector (CPS 120) and a Cu $K\alpha_1$ radiation source. Thermogravimetric analysis was performed under nitrogen atmosphere on Perkin Elmer Pyris 1 TGA. Differential scanning calorimetry measurements were conducted under nitrogen atmosphere on Perkin Elmer Pyris 1 DSC. Microwave reactions were performed using a Biotage Initiator Classic microwave reactor

(Biotage, LLC, Charlotte, NC, USA). Photobleaching experiments on films were performed with a Photon Technology International (PTI) MP1 fluorescence system (xenon lamp, 65 W).

3.6.2. Synthetic procedures

3.6.2.1. Synthesis of 1,2-bis(4',4',5',5'tetramethyl[1',3',2']dioxaborolan-2'-vl)ethyne (1)

This compound was synthesized according to a modification of a known procedure.²⁴ To a 100 mL 1:1 mixture of THF and Et₂O at -78 °C was added a solution of ⁿBuLi (2.5 M in hexanes, 75 mmol). Then 2.25 mL (25 mmol) of trichloroethylene in 25 mL of Et₂O was added dropwise over 15 min with stirring. After the addition was completed, the cooling bath was removed immediately and the resulting pale yellow mixture was stirred overnight to give white slurry. The mixture containing dilithioacetylide was then transferred via cannula to a pre-cooled (-78 °C) solution of 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (10 mL, 49 mmol) in Et₂O (100 mL), followed by stirring at -78 °C for four hours. Next the mixture was warmed up to the room temperature and stirred for four hours. The reaction mixture was then cooled down to -78 °C and 20 mL of HCl (4.0 M in dioxane, 80 mmol) was added and the flask followed by stirring for three hours at room temperature. The LiCl precipitate was allowed to settle and the supernatant was filtered through a pad of Celite. The volatiles were then removed from the filtrate under reduced pressure to give 1 as a brown semi-solid that was washed with cold pentane (2 × 10 mL; -30 °C) to give 1 as an air-stable light beige powder (5.195 g, 75 %). The corresponding ¹H and ¹³C{¹H} NMR spectral data in C₆D₆ matched those reported previously by the Therien group.²⁴ ¹H NMR (400 MHz, CDCl₃): δ 1.25 (s, 24H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 84.7 (*C*(CH₃)₂), 24.6 (*C*H₃); ¹¹B{¹H} NMR (160 MHz, CDCl₃): δ 23.3 (br).

3.6.2.2. Stability trials for compound 1 in different solvents under microwave radiation (300 W)

Compound **1** (0.050 g, 0.18 mmol) was dissolved in 1.5 mL of solvent and heated in a microwave reactor under conditions presented in Table 3.1.

3.6.2.3. Stability of compound 1 in the presence of base in THF or DMF under microwave irradiation (300 W)

Compound 1 (0.050 g, 0.18 mmol) and either a solid K_3PO_4 (0.215 g, 1.08 mmol) or solid CsF (0.055 g, 0.36 mmol) or aqueous K_2CO_3 (0.54 mL, 2.0 M solution, 1.08 mmol) were dissolved in 1.5 mL of solvent and heated in a microwave reactor under the conditions presented in the Table 3.2.

3.6.2.4. Condition trials for synthesis of 1,2-bis(4isopropylphenyl)ethyne (2) under microwave irradiation (300 W)

Compound 1 (0.100 g, 0.36 mmol), 4-bromoisopropylbenzene (109 μ L, 0.72 mmol), Pd₂(dba)₃ (0.007 g, 0.0072 mmol), ligand (8 mol % relative to 1) and either a solid K₃PO₄ (0.458 g, 2.16 mmol) or aqueous K₂CO₃ (1.1 mL, 2.0 M solution, 1.08 mmol) were dissolved in 3 mL of solvent and heated in a microwave reactor under the conditions presented in Table 3.3. Afterwards the reaction mixture was cooled to room temperature, poured into 50 mL of water and extracted with 10 mL of chloroform. The organic layer was washed with 40 mL of water and 2 × 40 mL of brine. The aqueous fractions were combined and extracted with 10 mL of chloroform and washed again with 2 × 40 mL of brine. Then the combined organic fractions were dried over MgSO₄. The solvent was removed in vacuo and the residue was purified by column chromatography (silica gel, ethyl acetate:hexanes = 1:20, R_f = 0.74) to give pure **2** in variable isolated yields (see Table 3.3).

3.6.2.5. Optimization of reaction conditions when heating to reflux to synthesize 2

Compound 1 (0.250 g, 0.899 mmol), 4-bromoisopropylbenzene (273 μ L, 1.80 mmol), catalyst, 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (XPhos) (0.034 g, 0.072 mmol) and either solid

K₃PO₄ (1.146 g, 5.40 mmol) or CsF (0.273 g, 1.80 mmol) (Table 3.4) were dissolved in 10 mL of THF and heated to reflux for 36 hrs. Afterwards the reaction mixture was cooled to room temperature, poured into 50 mL of water and extracted with 10 mL of chloroform. The organic layer was washed with 40 mL of water and 2 × 40 mL of brine. The aqueous fractions were combined and extracted with 10 mL of chloroform and washed with 2 × 40 mL of brine. Then all combined organic fractions were dried over MgSO₄. The solvent was removed in vacuo and the residue was purified by column chromatography (silica gel, ethyl acetate:hexanes = 1:20, $R_f = 0.74$) to give pure **2** in various yields (see Table 3.4).

3.6.2.6. Synthesis of 1,2-bis(4-isopropylphenyl)ethyne (2)

Compound **1** (1.00 g, 3.60 mmol), 4-bromoisopropylbenzene (1.09 mL, 7.20 mmol), K₃PO₄ (4.58 g, 21.6 mmol), palladium(II) diacetate (0.016 g, 0.072 mmol), 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (XPhos) (0.137 g, 0.288 mmol) were mixed in a 100 mL flask under N₂. Degassed THF (20 mL) was then added and the mixture was stirred for 30 min at room temperature (for catalyst activation)⁶² and the flask was then immersed in a pre-heated oil bath and the solvent was refluxed for 36 hrs. Afterwards the reaction mixture was cooled to room temperature, poured into 100 mL of water and extracted with 30 mL of chloroform. The organic layer was washed with 100 mL of

water and 2×100 mL of brine. The aqueous fractions were combined and extracted with 20 mL of chloroform, and the organic layer washed with 2 \times 100 mL of brine. Then all combined organic fractions were dried over MgSO₄. The solvent was removed in vacuo and the residue was purified by column chromatography (silica gel, ethyl acetate:hexanes = 1:20, $R_f =$ 0.74) to give 2 as a light yellow solid (0.417 g, 44 %). X-ray quality colorless crystals were obtained upon recrystallization from ethyl acetate/hexanes at room temperature. In addition, the crude mixture can also be purified by washing with cold (-30 °C) diethyl ether $(2 \times 4 \text{ mL})$ to yield 2 as a pale brown solid (1.003 g of 1 gives 0.687 g of 2, 73 % yield, ca. 95 % purity; see Figures 3.31 and 3.32). The corresponding ¹H NMR spectral data matched those reported previously in the literature.³¹ TGA: $T_{dec} = 186 \text{ °C}; ^{1}\text{H} \text{ NMR} (400 \text{ MHz}, \text{CDCl}_3): \delta 7.46 \text{ (d, } ^{3}J_{HH} = 7.9 \text{ Hz}, 4\text{H},$ ArH), 7.21 (d, ${}^{3}J_{HH} = 8.0$ Hz, 4H, ArH), 2.92 (sept, ${}^{3}J_{HH} = 6.9$ Hz, 2H, $CH(CH_3)_2$, 1.26 (d, ${}^{3}J_{HH} = 6.9$ Hz, 12H, CH_3); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃): δ 149.1, 131.6, 126.5, 120.9 (Ar-C), 88.9 (-C≡C-), 34.1 (CH(CH₃)₂), 23.9 (CH₃); HR-MS (EI): m/z: 262.1721; C₂₀H₂₂ calcd: 262.1722; elemental analysis calcd (%) for C₂₀H₂₂: C, 91.55; H, 8.45; found: C, 90.73; H, 8.54.

3.6.2.7. Optimization of reaction conditions when heating to reflux to synthesize 1,2-bis(thiophen-2-yl)ethyne (3)

In a 100 mL flask, compound **1** (1.00 g, 3.60 mmol), 2bromothiophene (731 μ L, 7.56 mmol), K₃PO₄, palladium (II) diacetate, 2dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (XPhos) were mixed. Degassed THF (20 mL) was then added and then mixture was heated to reflux (Table 3.5). Afterwards the reaction mixture was cooled to room temperature, poured into 100 mL of water and extracted with 30 mL of chloroform. The organic layer was washed with 100 mL of water and 2 x 100 mL of brine. The aqueous fractions were combined and extracted with 20 mL of chloroform and washed with 2 × 100 mL of brine. Then all combined organic fractions were dried over MgSO₄. The solvent was removed in vacuo and the residue was purified by column chromatography (silica gel, hexanes, $R_f = 0.35$) to give pure **3** as a pale yellow solid; see below for the spectroscopic data of **3**.

3.6.2.8. Synthesis of 1,2-bis(thiophen-2-yl)ethyne (3)

In a 100 mL flask, compound **1** (1.00 g, 3.60 mmol), 2bromothiophene (731 μ L, 7.56 mmol), K₃PO₄ (4.58 g, 21.6 mmol), palladium (II) diacetate (0.016 g, 0.072 mmol), 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (XPhos) (0.137 g, 0.288 mmol) were mixed. Degassed THF (20 mL) was then added and the mixture was stirred for 30 min at room temperature (for catalyst activation)⁶² and then the flask was

inserted in a pre-heated oil bath and the solvent was refluxed for 36 hrs. Afterwards the reaction mixture was cooled to room temperature, poured into 100 mL of water and extracted with 30 mL of chloroform. The organic layer was washed with 100 mL of water and 2×100 mL of brine. The aqueous fractions were combined and extracted with 20 mL of chloroform, and the organic fractions were washed with 2×100 mL of brine. Then all combined organic fractions were dried over MgSO₄. The solvent was removed *in vacuo* and the residue was purified by column chromatography (silica gel, hexanes, $R_f = 0.35$) to give **3** as a pale yellow solid (0.275 g, 40 %). In addition, the crude residue can also be purified by washing with cold (-30 °C) diethylether $(2 \times 4 \text{ mL})$ to yield **3** as a dark brown solid (0.999 g of 1 gives 0.274 g of 3, 40 % yield, ca. 95 % purity; Figures 3.35 and 3.36). The corresponding ¹H NMR and ${}^{13}C{}^{1}H$ spectral data matched those reported previously in the literature.^{15, 63} DSC: $T_{dec} =$ 179 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.31 (dd, ³*J*_{HH} = 5.1 Hz, ⁴*J*_{HH} = 1.1 Hz, 2H, Thienyl*H*), 7.29 (dd, ${}^{3}J_{HH} = 3.7$ Hz, ${}^{4}J_{HH} = 1.2$ Hz, 2H, Thienyl*H*), 7.02 (dd, ${}^{3}J_{\text{HH}} = 5.1 \text{ Hz}$, ${}^{4}J_{\text{HH}} = 3.7 \text{ Hz}$, 2H, Thienyl*H*); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 132.1, 127.6, 127.2, 122.9 (Thienyl-C), 86.3 (-C=C-); HR-MS (EI): m/z: 189.9915; C₁₀H₆S₂ calcd: 189.9911; elemental analysis calcd (%) for C₁₀H₆S₂: C, 63.12; H, 3.18; S, 33.70; found: C, 63.28; H, 3.13; S, 33.64.

3.6.2.9. Synthesis of bis(3-hexyl-2-thienyl)ethyne (4)

Compound 1 (1.013 g, 3.64 mmol), 2-bromo-3-hexylthiophene (1.892 g, 7.65 mmol), K₃PO₄ (4.642 g, 21.8 mmol), palladium(II) diacetate (0.016 g, 0.073 mmol), 2-dicyclohexylphosphino-2',4',6'triisopropylbiphenyl (XPhos) (0.139 g, 0.292 mmol) were mixed in a 100 mL flask under N₂. Degassed THF (20 mL) was then added and the mixture was stirred for 30 min at room temperature (for catalyst activation)⁶² and then heated to reflux for 36 hrs. Afterwards the reaction mixture was cooled to room temperature, poured into 100 mL of water and extracted with 30 mL of chloroform. The organic layer was washed with 100 mL of water and 2×100 mL of brine. The aqueous fractions were combined and extracted with 20 mL of chloroform, and the CHCl₃ layer was washed with 2×100 mL of brine. Then all combined organic fractions were dried over MgSO4. The solvent was removed in vacuo and the residue was purified by column chromatography (silica gel, petroleum ether, $R_f = 0.62$) to give 4 as a pale yellow oil (0.667 g, 51 %). The corresponding ¹H NMR and ¹³C $\{^{1}H\}$ spectral data matched those reported previously in the literature.^{33,64} ¹H NMR (400 MHz, CDCl₃): δ 7.20 (d, ${}^{3}J_{\text{HH}} = 5.2 \text{ Hz}, 2\text{H}, \text{Thienyl}H), 6.91 (d, {}^{3}J_{\text{HH}} = 5.2 \text{ Hz}, 2\text{H}, \text{Thienyl}H), 2.78$ $(t, {}^{3}J_{HH} = 7.7 \text{ Hz}, 4\text{H}, \text{Thienyl-CH}_{2}), 1.66-1.72 (m, 4\text{H}, \text{Thienyl-})$ CH₂(CH₂)₄-CH₃), 1.33-1.42 (m, 12H, Thienyl-CH₂(CH₂)₄-CH₃), 0.92 (t, ${}^{3}J_{\text{HH}} = 7.1 \text{ Hz}, 6\text{H}, \text{Thienyl-(CH_2)_5-CH_3}; {}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR} (100 \text{ MHz},$ CDCl₃): δ 147.6, 128.3, 126.1, 118.4 (Thienyl-C), 88.0 (-C=C-), 31.7, 30.4, 29.7, 29.1, 22.7 (Thienyl-(*C*H₂)₅-CH₃), 14.1 (Thienyl-(CH₂)₅-*C*H₃); HR-MS (EI): m/z: 358.1785; C₂₂H₃₀S₂ calcd: 358.1789; elemental analysis calcd (%) for C₂₂H₃₀S₂: C, 73.69; H, 8.43; S, 17.88; found: C, 73.92; H, 8.39; S, 17.48.

3.6.2.10. Synthesis of 1,2-bis(triphenylamine)-ethyne (5)

In a 100 mL flask, compound 1 (1.015 g, 3.65 mmol), 2-bromo-3hexylthiophene (2.412 g, 7.44 mmol), K₃PO₄ (4.737 g, 22.3 mmol), palladium(II) diacetate (0.017 g, 0.074 mmol), 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (XPhos) (0.142 g, 0.298 mmol) were mixed. Degassed THF (20 mL) was then added and the mixture was stirred for 30 min at room temperature (for catalyst activation)⁶² and then heated to reflux for 36 hrs. Afterwards the reaction mixture was cooled to room temperature, poured into 100 mL of water and extracted with 30 mL of chloroform. The organic layer was washed with 100 mL of water and 2 \times 100 mL of brine. The aqueous fractions were combined and extracted with 20 mL of chloroform, and the organic layer was washed with 2×100 mL of brine. Then all combined organic fractions were dried over MgSO₄. The solvent was removed in vacuo and the residue was purified by column chromatography (silica gel, hexanes: $CH_2Cl_2 = 8:2$, $R_f = 0.38$) to give 5 as a pale yellow solid (0.572 g, 31 %). Slow evaporation of a solution of 5 in 8:2 hexanes:CH₂Cl₂ at room temperature resulted in the formation of colorless crystals of X-ray quality (0.286 g, 15 %). The crude mixture can

be also be purified by washing with with Et₂O (2×15 mL) to yield 5 as a light brown solid of ca. 90 % purity in 60 % yield (1.015 g of 1 gives 1.116 g of 5; see Figure 3.41). TGA: $T_{dec} = 206 \text{ °C}$. ¹H NMR (400 MHz, CDCl₃): δ 7.38 (d, ${}^{3}J_{\text{HH}} = 8.6$ Hz, 4H, ArH), 7.29-7.31 (m, 8H, ArH), 7.07-7.14 (m, 12H, Ar*H*), 7.03 (d, ${}^{3}J_{HH}$ = 8.6 Hz, 4H, Ar*H*); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 147.7, 147.3, 132.4, 129.4, 124.9, 123.5, 122.6, 116.7 (Ar-*C*), 88.9 (-*C*=*C*-); UV/Vis (THF): λ_{max} (ϵ) = 301 nm (4.02 × 10⁴ mol⁻¹ dm³ cm⁻¹) and 369 nm (6.65 × 10⁴ mol⁻¹ dm³ cm⁻¹); UV/Vis (film): $\lambda_{max} =$ 312 and 367 nm; Fluorescence emission (THF) ($\lambda_{ex} = 322$ nm): $\lambda_{emis} = 413$ nm, fluorescence quantum yield: $\Phi = 48$ %, relative to quinine sulfate in 1.0 N H₂SO₄; Absolute quantum yield (THF): Φ = 79.7 %; Lifetime (1 × 10⁻⁵ M solution in THF): $\tau = 1.4$ ns; Fluorescence emission (film) ($\lambda_{ex} =$ 383 nm): $\lambda_{emis} = 484$ nm; Lifetime (film): $\tau = 2.4$ ns; Absolute quantum yield (film) = 1.7 %. The optical data matched those previously reported.^{35b} HR-MS (EI): m/z: 512.2239; C₃₈H₂₈N₂ calcd: 512.2252; elemental analysis calcd (%) for C₃₈H₂₈N₂: C, 89.03; H, 5.51; N, 5.46; found: C, 88.27; H, 5.37; N, 5.43.

3.6.2.11. Synthesis of bis(cyclopentadienyl)zirconium-2,3,4,5-tetra(4isopropylphenyl)methanide) (6a)

To a solution of Cp₂ZrCl₂ (0.183 g, 0.63 mmol) in THF (10 mL) at -78 °C was added dropwise a solution of ⁿBuLi (0.49 mL, 2.5 M solution in hexanes, 1.2 mmol). After the reaction mixture was stirred at -78 °C for

1 h, a solution of 2 (0.328 g, 1.25 mmol) in THF (10 mL) was added at -78 °C. The temperature was allowed to rise to room temperature, and the mixture was stirred for another 24 hrs. The solvent was removed under reduced pressure and the product was extracted with 15 mL of toluene, and the resulting extract was filtered through Celite. The volatiles were then removed from filtrate under reduced pressure to give 6a as a red powder (0.420 g, 90 %). This compound was recrystallized from hexanes at -35 °C to yield red crystals that were of suitable quality for X-ray crystallography. M.p. 119-124 °C (dec.); ¹H NMR (400 MHz, C₆D₆): δ 6.95 (two overlapping doublets, 8H, ArH), 6.73 (d, ${}^{3}J_{HH} = 8.1$ Hz, 4H, ArH), 6.71 (d, ${}^{3}J_{\text{HH}} = 8.1$ Hz, 4H, ArH), 6.07 (s, 10H, CpH), 2.66 (sept, ${}^{3}J_{\text{HH}} = 6.9 \text{ Hz}, 2\text{H}, CH(CH_{3})_{2}), 2.50 \text{ (sept, } {}^{3}J_{\text{HH}} = 6.9 \text{ Hz}, 2\text{H}, CH(CH_{3})_{2}),$ 1.11 (d, ${}^{3}J_{\text{HH}} = 6.9$ Hz, 12H, CH₃), 0.99 (d, ${}^{3}J_{\text{HH}} = 6.9$ Hz, 12H, CH₃); ¹³C{¹H} NMR (100 MHz, C₆D₆): δ 194.2, 146.3, 144.8, 143.3, 142.9, 139.6, 131.2, 127.8, 125.9, 125.0 (Ar-C), 112.1 (Cp), 33.81, 33.78 $(CH(CH_3)_2)$, 24.2, 24.0 (CH₃); UV/Vis (THF): λ_{max} (ϵ) = 374 nm (6.78 × $10^3 \text{ mol}^{-1} \text{ dm}^3 \text{ cm}^{-1}$; HR-MS (MALDI): m/z: 744.3271; C₅₀H₅₄Zr calcd: 744.3284; elemental analysis calcd (%) for C₅₀H₅₄Zr: C, 80.48; H, 7.29; found: C, 79.93; H, 7.50.

3.6.2.12. Synthesis of cis,cis-1,2,3,4-tetra(4-isopropylbenzene)-1,3butadiene (7a)

To a solution of **6a** (0.421 g, 0.56 mmol) in 15 mL of Et_2O , was added a solution of HCl (0.9 mL, 2.0 M solution in Et₂O, 1.8 mmol). The red color of **6a** immediately disappeared to give yellow slurry. The mixture was stirred for 12 hrs at room temperature and then the solvent was removed under vacuum. The residue was dissolved in a 2:1 CH₂Cl₂:hexanes solvent mixture (5 mL) and filtered through a 1 cm plug of the silica gel. The solvent was removed from the filtrate and the resulting solid (0.220 g, 74 %) was washed with hexanes (2×5 mL) to yield 7a as a white solid (0.168 g, 57 %). The product was crystallized from hexanes at -35 °C to give X-ray quality colorless crystals of 7a. M.p. 198-201 °C; TGA: $T_{dec} = 267$ °C; ¹H NMR (400 MHz, CDCl₃): δ 7.29 (d, ${}^{3}J_{\rm HH} = 8.1$ Hz, 4H, Ar*H*), 7.24 (d, ${}^{3}J_{\rm HH} = 8.1$ Hz, 4H, Ar*H*), 6.89 (d, ${}^{3}J_{\rm HH} =$ 8.1 Hz, 4H, ArH), 6.66 (d, ${}^{3}J_{HH} = 8.1$ Hz, 4H, ArH), 6.24 (s, 2H, =CH-), 3.00 (sept, ${}^{3}J_{HH} = 6.9$ Hz, 2H, CH(CH₃)₂), 2.76 (sept, ${}^{3}J_{HH} = 6.9$ Hz, 2H, $CH(CH_3)_2$, 1.35 (d, ${}^{3}J_{HH} = 6.9$ Hz, 12H, CH_3), 1.16 (d, ${}^{3}J_{HH} = 6.9$ Hz, 12H, CH₃); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃): δ 147.8, 147.2, 145.2, 137.6, 135.1, 131.2, 130.2, 129.5, 126.8, 125.9 (Ar-C), 34.0, 33.7 $(CH(CH_3)_2)$, 24.2, 23.8 (CH_3) ; UV/Vis (THF): λ_{max} (ϵ) = 327 nm (3.06 × $10^4 \text{ mol}^{-1} \text{ dm}^3 \text{ cm}^{-1}$), 339 nm (3.49 × $10^4 \text{ mol}^{-1} \text{ dm}^3 \text{ cm}^{-1}$), and 356 nm $(2.38 \times 10^4 \text{ mol}^{-1} \text{ dm}^3 \text{ cm}^{-1})$; UV/Vis (film): $\lambda_{\text{max}} = 331$, 346 and 367 nm; Fluorescence emission (film) ($\lambda_{ex} = 380$ nm): $\lambda_{emis} = 426$ and 463 nm;
Lifetime (film): $\tau = 1.0$ ns; Absolute quantum yield (film) = 24.8 %. HR-MS (EI): m/z: 526.3597; C₄₀H₄₆ calcd: 526.3600; elemental analysis calcd (%) for C₄₀H₄₆: C, 91.20; H, 8.80; found: C, 91.26; H, 9.01.

3.6.2.13. Synthesis of *cis,cis*-1,2,3,4-tetra(2-thienyl)-1,3-butadiene (7b)

To a solution of $6b^{32}$ (0.202 g, 0.34 mmol) in 10 mL of THF was added a solution of HCl (0.54 mL, 2.0 M solution in Et₂O, 1.09 mmol). The red color of **6b** immediately disappeared to give yellow slurry. The mixture was stirred for 12 hrs at room temperature and the solvent was removed under vacuum; the pale yellow residue was then dissolved in dichloromethane (5 mL) and filtered through a 1 cm plug of the silica gel with CH_2Cl_2 :hexanes = 2:1 solvent mixture (30 mL). The solvent was removed from the filtrate and the product was washed with cold (-35 °C) Et₂O (5 mL) to yield **7b** as a bright yellow solid (0.051 g, 40 %). M.p. 198-200 °C; TGA: $T_{dec} = 241$ °C; ¹H NMR (400 MHz, CDCl₃): δ 7.62 (dd, ${}^{3}J_{\text{HH}} = 5.1 \text{ Hz}, {}^{4}J_{\text{HH}} = 1.1 \text{ Hz}, 2\text{H}, \text{Thienyl}H), 7.25 \text{ (dd, } {}^{3}J_{\text{HH}} = 5.1 \text{ Hz}, {}^{4}J_{\text{HH}}$ = 3.4 Hz, 2H, ThienylH), 7.13 (dd, ${}^{3}J_{HH}$ = 5.0 Hz, ${}^{4}J_{HH}$ = 1.1 Hz, 2H, Thienyl*H*), 7.05 (dd, ${}^{3}J_{HH} = 3.4$ Hz, ${}^{4}J_{HH} = 1.1$ Hz, 2H, Thienyl*H*), 6.85 (dd, 3JHH = 3.7 Hz, ${}^{4}J_{\text{HH}}$ = 1.3 Hz, 2H, Thienyl*H*), 6.80 (dd, ${}^{3}J_{\text{HH}}$ = 3.6 Hz, ${}^{4}J_{\text{HH}} = 0.7$ Hz, 2H, Thienyl*H*), 6.73 (s, 2H, =CH-); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃): δ 140.9, 137.8, 134.3, 130.0, 129.3, 128.2, 128.1, 128.0, 127.8, 126.2; UV/Vis (THF): λ_{max} (ϵ) = 350, 367, and 387 nm (2.65) $\times 10^4$, 3.61 $\times 10^4$ and 2.81 $\times 10^4$ mol⁻¹ dm³ cm⁻¹); UV/Vis (film): $\lambda_{max} =$ 364, 384 and 410 nm; Fluorescence emission (film) ($\lambda_{ex} = 383$ nm): $\lambda_{emis} = 506$ nm; Lifetime (film): $\tau = 1.2$ ns; Absolute quantum yield (film) = 1.5 %. HR-MS (EI): m/z: 381.9979; C₂₀H₁₄S₄ calcd: 381.9978; elemental analysis calcd (%) for C₂₀H₁₄S₄: C, 62.79; H, 3.69; S, 33.52; found: C, 62.76; H, 3.70; S, 32.98.

3.6.2.14. Synthesis of cis,cis-1,2,3,4-tetra(4-triphenylamine)-1,3butadiene (8)

Compound 5 (0.316 0.62 mmol) and g, Cp₂Zr(pyr)(Me₃SiCCSiMe₃)⁴⁴ (0.145 g, 0.31 mmol) were dissolved in 10 mL of THF, and the resulting mixture was allowed to stir for 12 hrs to give a dark red solution. A solution of HCl (0.6 mL, 2.0 M solution in Et₂O, 1.2 mmol) was added followed by stirring for 12 hrs at room temperature, resulting in an orange mixture. The solvent was removed under reduced pressure, and the residue was washed with cold Et₂O (2×5 mL, -35 °C) and then acetone $(3 \times 5 \text{ mL})$ to yield 8 as a bright yellow solid (0.083 g, 26 %). M.p. >250 °C; TGA: $T_{dec} = 401$ °C; ¹H NMR (400 MHz, CDCl₃): δ 7.25-6.99 (m, 48H, ArH), 6.81 (d, ${}^{3}J_{HH} = 8.8$ Hz, 4H, ArH), 6.72 (d, ${}^{3}J_{HH} =$ 8.8 Hz, 4H, ArH), 6.32 (s, 2H, =CH-); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃): δ 147.8, 147.5, 146.9, 146.2, 144.1, 134.4, 131.7, 131.3, 130.5, 130.4, 129.3, 124.5, 124.4, 124.3, 123.0, 122.8, 122.5; UV/Vis (THF): λ_{max} (ϵ) = 305 and 380 nm (6.68 and 8.88×10^4 mol⁻¹ dm³ cm⁻¹); UV/Vis (film): λ_{max} = 310 and 410 nm; Fluorescence emission (THF) (λ_{ex} = 423 nm): λ_{emis} =

472 nm, fluorescence quantum yield: $\Phi = 13$ %, relative to quinine sulfate in 1.0 N H₂SO₄; absolute quantum yield (THF): $\Phi = 34.6$ %; Lifetime (1 × 10⁻⁵ M solution in THF): $\tau = 2.1$ ns; Fluorescence emission (film) ($\lambda_{ex} =$ 420 nm): $\lambda_{emis} = 516$ nm; Lifetime (film): $\tau = 2.0$ ns; Absolute quantum yield (film) = 3.6 %. HR-MS (MALDI): m/z: 1026.4656; C₇₆H₅₈N₄ calcd: 1026.4661; elemental analysis calcd (%) for C₇₆H₅₈N₄: C, 88.86; H, 5.69; N, 5.45; found: C, 87.30; H, 5.69; N, 5.24. Despite repeated attempts, combustion analyses gave consistently low values for carbon content. See Figures 3.48 and 3.49 in the Section 3.6.4 for copies of the NMR spectra.

3.6.2.15. Attempted synthesis of the $(^{n}Bu_{3}Sn)_{2}C_{4}Ar_{4}$ (Ar = cumyl) (9) in various solvents

To a solution of Cp₂ZrC₄Ar₄ (**6a**) (0.100 g, 0.134 mmol) in solvent (7 mL) (see Table 3.8) was added ⁿBu₃SnCl (73 μ L, 0.27 mmol), and the mixture was stirred over 24/72 hours to give a dark red solution. The volatiles were removed under vacuum and the residue was dissolved in CDCl₃ for NMR analysis.

3.6.2.16. Attempted synthesis of the (Bu₃Sn)₂C₄Ar₄ (Ar = cumyl) (9) in the presence of CuCl

To a solution of $Cp_2ZrC_4Ar_4$ (**6a**) (0.089 g, 0.12 mmol) in THF or toluene (5 mL) in the dark was added CuCl (0.002 g, 0.01 mmol),

followed by stirred for 5 min. ⁿBu₃SnCl (65 μ L, 0.24 mmol) was then added and the reaction mixture was stirred for 24 hours to give a dark red solution. The volatiles were removed under vacuum and the residue was dissolved in CDCl₃ for NMR analysis.

3.6.2.17. Attempted synthesis of the 1,4-diiodo-1,3-butadiene (I₂C₄Ar₄; Ar = cumyl)

To a cold (-78 °C) solution of Cp₂ZrC₄Ar₄ (**6a**) (0.202 g, 0.271 mmol) in THF (15 mL) was added dropwise a solution of iodine (0.137 g, 0.541 mmol) in 15 mL of THF over 30 min. The reaction mixture was then stirred for 30 min. at -78 °C, then the cold bath was removed and the flask was allowed to warm to the room temperature over the next three hours. Afterwards, the reaction mixture was extracted with 50 mL of dichloromethane and the organic layer was washed with aqueous Na₂S₂O₃ (2 × 50 mL), water (2 × 50 mL) and dried over MgSO₄. The volatiles were removed from the organic fraction *in vacuo* and the residue was dissolved in CDCl₃ for NMR analysis.

3.6.2.18. Reaction of CuBr₂ with zirconacycle 6a

To a dark red solution of $Cp_2ZrC_4Ar_4$ (**6a**) (0.102 g, 0.137 mmol) in THF (5 mL) was added solid $CuBr_2$ (0.186 g, 0.833 mmol) which led to the formation of a brown slurry after 5 min. The reaction mixture was allowed to stir for another 6 hrs to give a dark brown (black) solution and metallic precipitate. The volatiles were removed under vacuum and the residue was dissolved in CDCl₃ for NMR analysis.

3.7. Crystallographic data

	2	5	
empirical formula	$C_{20}H_{22}$	$C_{38}H_{28}N_2$	
fw	262.37	512.62	
cryst. dimens. (mm ³)	$0.42 \times 0.41 \times 0.03$	$0.28\times0.27\times0.08$	
cryst. syst.	monoclinic	triclinic	
space group	<i>P</i> 2 ₁ / <i>c</i> (No. 14)	<i>P</i> 1 (No. 2)	
unit cell dimensions			
<i>a</i> (Å)	10.6089 (3)	5.61635 (9)	
<i>b</i> (Å)	9.2470 (2)	11.25535 (19)	
<i>c</i> (Å)	8.2942 (2)	11.73665 (18)	
α (deg)		104.2892 (5)	
β (deg)	103.0778 (12)	98.3322 (5)	
$\gamma(\text{deg})$		93.1680 (6)	
$V(\text{\AA}^3)$	792.56 (3)	708.16 (2)	
Ζ	2	1	
ρ (g cm ⁻³)	1.099	1.202	
abs. coeff. (mm ⁻¹)	0.457	0.534	
T (K)	173 (1)	233 (1)	
$2 \Theta_{\max}(\deg)$	145.42	147.63	
total data	5299	4967	
unique data (R _{int})	1577 ($R_{\text{int}} = 0.0280$)	2733 ($R_{\rm int} = 0.0311$)	
obs. data $[I > 2\sigma(I)]$	1420	2540	
params.	91	182	
$R_1 [I > 2\sigma(I)]^a$	0.0520	0.0515	
wR_2 [all data] ^a	0.1484	0.1453	
Max/Min $\Delta \rho$ (e Å ⁻³)	0.388/-0.208	0.279/-0.221	
a_{-} = $(-2, -2, -2, -2, -4, -1/2)$			

 Table 3.7. Crystallographic data for compounds 2 and 5.

 $\frac{||P_{o}| - |P_{o}|| - |F_{o}|| - |F_{o}|| + ||P_{o}|| + ||P_{o$

	6a	7a	7b
empirical	C ₅₀ H ₅₄ Zr	$C_{40}H_{46}$	$C_{20}H_{14}S_4$
formula	C501154Z1	C_{40}	
fw	746.15	526.77	382.55
cryst. dimens.	0.25 imes 0.18 imes	$0.41 \times 0.05 \times 0.02$	$0.32 \times 0.22 \times$
(mm^3)	0.11	$0.41 \times 0.03 \times 0.02$	0.15
cryst. syst.	triclinic	monoclinic	monoclinic
space group	P1 (No. 2)	<i>P</i> 2 ₁ / <i>c</i> (No. 14)	<i>P</i> 2 ₁ / <i>c</i> (No. 14)
unit cell			
dimensions			
<i>a</i> (Å)	12.1953 (2)	11.4211 (2)	11.6007 (3)
<i>b</i> (Å)	17.8804 (3)	20.4302 (3)	6.55480 (10)
<i>c</i> (Å)	19.9108 (3)	14.2505 (2)	12.6109 (3)
α (deg)	99.7859 (7)		
β (deg)	100.4733 (8)	105.6028 (9)	110.6202 (5)
$\gamma(\text{deg})$	102.8382 (7)		
$V(\text{\AA}^3)$	4061.19 (11)	3202.61 (9)	897.50 (3)
Z	4	4	2
ρ (g cm ⁻³)	1.220	1.093	1.416
abs. coeff. (mm ⁻¹)	2.446	0.453	4.833
T (K)	173 (1)	173 (1)	173 (1)
$2 \Theta_{\max}(\deg)$	148.21	135.95	145.09
total data	15789	20490	5982
unique data	$15789 (R_{int} =$	5623 ($R_{int} =$	$1776 (R_{int} =$
$(R_{\rm int})$	0.0405)	0.0646)	0.0202)
obs. data [$I > 2\sigma(I)$]	14538	4172	1759
params.	917	446	143
$R_1 [I > 2\sigma(I)]^a$	0.0356	0.0584	0.0322
wR_2 [all data] ^a	0.0987	0.1742	0.0951
$\frac{\text{Max/Min}\Delta\rho(\text{e})}{\text{Å}^{-3}}$	0.844/-0.499	0.357/-0.242	0.367/-0.400

Table 3.8. Crystallographic data for compounds 6a, 7a and 7b.

 $\frac{||F_{o}||}{||F_{o}|| - |F_{c}||/\Sigma|F_{o}|; wR_{2} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w(F_{o}^{4})]^{1/2}.$

3.8. NMR spectral data

Figure 3.26. ¹H NMR (in CDCl₃) spectrum of compound 1.

Figure 3.27. ${}^{13}C{}^{1}H$ NMR (in CDCl₃) spectrum of compound 1.

Figure 3.28. ¹¹B{¹H} NMR (in CDCl₃) spectrum of compound 1.

Figure 3.29. ¹H NMR (in CDCl₃) spectrum of 1,2-bis(4-isopropylphenyl)ethyne (**2**).

Figure 3.30. ${}^{13}C{}^{1}H$ NMR (in CDCl₃) spectrum of 1,2-bis(4-isopropylphenyl)ethyne (2).

Figure 3.31. ¹H NMR (in CDCl₃) spectrum of crude **2** after alternative to column chromatography purification method: cold (-30 °C) diethyl ether wash (2×4 mL).

Figure 3.32. ¹³C{¹H} NMR (in CDCl₃) spectrum of crude **2** after alternative to column chromatography purification method: cold (-30 °C) diethyl ether wash (2×4 mL).

Figure 3.33. ¹H NMR (in CDCl₃) spectrum of 1,2-bis(thiophen-2-yl)ethyne (**3**).

Figure 3.34. ${}^{13}C{}^{1}H$ NMR (in CDCl₃) spectrum of 1,2-bis(thiophen-2-yl)ethyne (3).

Figure 3.35. ¹H NMR (in CDCl₃) spectrum of crude **3** after alternative to column chromatography purification method: cold (-30 °C) diethyl ether wash (2×4 mL).

Figure 3.36. ¹³C{¹H} NMR (in CDCl₃) spectrum of crude **3** after alternative to column chromatography purification method - cold (-30 °C) diethyl ether wash (2 \times 4 mL).

Figure 3.37. ¹H NMR (in CDCl₃) spectrum of bis(3-hexyl-2-thienyl)ethyne (4).

Figure 3.38. ${}^{13}C{}^{1}H$ NMR (in CDCl₃) spectrum of bis(3-hexyl-2-thienyl)ethyne (4).

Figure 3.39. ¹H NMR (in CDCl₃) spectrum of 1,2-bis(triphenylamine)ethyne (5).

Figure 3.40. ${}^{13}C{}^{1}H$ NMR (in CDCl₃) spectrum of 5.

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)

Figure 3.41. ¹H NMR (in CDCl₃) spectrum of crude compound **5** after diethyl ether wash.

Figure3.42. ^{1}H NMR (in C_6D_6)spectrum ofbis(cyclopentadienyl)zirconium-2,3,4,5-tetra(4-isopropylphenyl)methanide (6a).

Figure 3.43. ${}^{13}C{}^{1}H$ NMR (in C_6D_6) spectrum of bis(cyclopentadienyl)zirconium-2,3,4,5-tetra(4-isopropylphenyl)methanide (6a).

Figure 3.44. ¹H NMR (in CDCl₃) spectrum *cis,cis*-1,2,3,4-tetra(4-isopropylbenzene)-1,3-butadiene (7a).

Figure 3.45. ${}^{13}C{}^{1}H$ NMR (in CDCl₃) spectrum of compound 7a.

Figure 3.46. ¹H NMR (in CDCl₃) spectrum of *cis,cis*-1,2,3,4-tetra(2-thienyl)-1,3-butadiene (**7b**).

Figure 3.47. ¹³C $\{^{1}H\}$ NMR (in CDCl₃) spectrum of compound 7b.

Figure 3.48. ¹H NMR (in CDCl₃) spectrum of *cis,cis*-1,2,3,4-tetra(4-triphenylamine)-1,3-butadiene (**8**).

Figure 3.49. ¹³C{¹H} NMR (in CDCl₃) spectrum of compound 8.

measurements

Figure 3.50. UV/Vis absorption spectra of compound **5** in solution (THF) and film state (normalized).

Figure 3.51. UV/Vis absorption spectrum of compound 6a.

Figure 3.52. UV/Vis absorption spectra of compound **7a** in solution (THF) and film state (normalized).

Figure 3.53. UV/Vis absorption spectra of compound **7b** in solution (THF) and film state (normalized).

Figure 3.54. UV/Vis absorption spectra of the film of **7a** before and after photobleaching.

Figure 3.55. UV/Vis absorption spectra of the film of **7b** before and after photobleaching.

Figure 3.56. UV/Vis absorption spectra of the film of 8 before and after photobleaching.

3.11. References

- a) Chatani, N.; Hanafusa, T., J. Chem. Soc., Chem. Commun. 1985, 838-839; b) Chen, Z.; Luo, M.; Wen, Y.; Luo, G.; Liu, L., Org. Lett. 2014, 16, 3020-3023; c) Kuroda, S.; Dekura, F.; Sato, Y.; Mori, M., J. Am. Chem. Soc. 2001, 123, 4139-4146; d) Ilies, L.; Yoshida, T.; Nakamura, E., J. Am. Chem. Soc. 2012, 134, 16951-16954.
- Adams, R. D.; Barnard, T. S., Organometallics 1998, 17, 2567-2573.
- a) Sun, S.; Edwards, J. O.; Sweigart, D. A.; D'Accolti, L.; Curci, R., Organometallics 1995, 14, 1545-1547; b) Wei, C.-H.; Mannathan, S.; Cheng, C.-H., J. Am. Chem. Soc. 2011, 133, 6942-6944; c) Li, X.; Huang, W.; Liang, D.; Yuan, L.; Ma, Y.; Gu, L., Tetrahedron 2015, 71, 1045-1049; d) Bu, M.; Lu, G.; Cai, C., Catal. Sci. Technol. 2016, 6, 413-416; e) Jung, M. E.; Deng, G., Org. Lett. 2014, 16, 2142-2145.
- 4. a) González-Cantalapiedra, E.; de Frutos, Ó.; Atienza, C.; Mateo, C.; Echavarren, A. M., *Eur. J. Org. Chem.* 2006, 1430-1443; b) Balamurugan, R.; Gudla, V., *Org. Lett.* 2009, *11*, 3116-3119; c) Nakamura, I.; Bajracharya, G. B.; Mizushima, Y.; Yamamoto, Y., *Angew. Chem. Int. Ed.* 2002, *41*, 4328-4331; d) Ragaini, F.; Rapetti, A.; Visentin, E.; Monzani, M.; Caselli, A.; Cenini, S., *J. Org. Chem.* 2006, *71*, 3748-3753; e) Sharma, U.; Park, Y.; Chang,

S., J. Org. Chem. 2014, 79, 9899-9906; f) Lu, B.; Luo, Y.; Liu, L.;
Ye, L.; Wang, Y.; Zhang, L., Angew. Chem. Int. Ed. 2011, 50, 8358-8362; g) Tokoro, Y.; Sugita, K.; Fukuzawa, S., Chem. Eur. J. 2015, 21, 13229-13232.

- a) Curless, L. D.; Ingleson, M. J., Organometallics 2014, 33, 7241-7246; b) He, G.; Wiltshire, B. D.; Choi, P.; Savin, A.; Sun, S.; Mohammadpour, A.; Ferguson, M. J.; McDonald, R.; Farsinezhad, S.; Brown, A.; Shankar, K.; Rivard, E., Chem. Commun. 2015, 51, 5444-5447; c) Quint, V.; Morley-Savary, F.; Lohier, J.-F.; Lalevée, J.; Gaumont, A.-C.; Lakhdar, S., J. Am. Chem. Soc. 2016, 138, 7436-7441.
- Tsao, F. A.; Cao, L.; Grimme, S.; Stephan, D. W., J. Am. Chem. Soc. 2015, 137, 13264-13267.
- a) Boydston, A. J.; Yin, Y.; Pagenkopf, B. L., J. Am. Chem. Soc.
 2004, 126, 3724-3725; b) Ghosh, M.; Naskar, A.; Mishra, S.;
 Hajra, A., Tetrahedron Lett. 2015, 56, 4101-4104; c) Yamaguchi,
 S.; Xu, C.; Tamao, K., J. Am. Chem. Soc. 2003, 125, 13662-13663.
- a) Zuo, Z.; Yang, X.; Liu, J.; Nan, J.; Bai, L.; Wang, Y.; Luan, X., J. Org. Chem. 2015, 80, 3349-3356; b) Zhang, X.; Hou, W.; Zhang-Negrerie, D.; Zhao, K.; Du, Y., Org. Lett. 2015, 17, 5252-5255; c) Shi, Y.; Qian, H.; Lucas, N. T.; Xu, W.; Wang, Z., Tetrahedron Lett. 2009, 50, 4110-4113.

- Kotani, M.; Kobayashi, S.; Chang, J.-A., J. Phys. Org. Chem.
 2002, 15, 863-868.
- a) Takahashi, T.; Liu, Y.; Iesato, A.; Chaki, S.; Nakajima, K.;
 Kanno, K., J. Am. Chem. Soc. 2005, 127, 11928-11929; b) Wei, J.;
 Wang, Z.; Zhang, W.-X.; Xi, Z., Org. Lett. 2013, 15, 1222-1225.
- a) Hoye, R. C.; Baigorria, A. S.; Danielson, M. E.; Pragman, A. A.; Rajapakse, H. A., *J. Org. Chem.* **1999**, *64*, 2450-2453; b) Rasolofonjatovo, E.; Provot, O.; Hamze, A.; Bignon, J.; Thoret, S.; Brion, J.-D.; Alami, M., *Eur. J. Med. Chem.* **2010**, *45*, 3617-3626.
- 12. Calvet, G.; Livecchi, M.; Schmidt, F., J. Org. Chem. 2011, 76, 4734-4740.
- a) Song, Y. P.; Yarwood, J.; Tsibouklis, J.; Feast, W. J.; Cresswell, J.; Petty, M. C., *Langmuir* 1992, *8*, 262-266; b) Hennrich, G.; Murillo, M. T.; Prados, P.; Song, K.; Asselberghs, I.; Clays, K.; Persoons, A.; Benet-Buchholz, J.; de Mendoza, J., *Chem. Commun.* 2005, 2747-2749.
- 14. a) Sonogashira, K.; Tohda, Y.; Hagihara, N., *Tetrahedron Lett.*1975, 16, 4467-4470; b) Chinchilla, R.; Nájera, C., *Chem. Soc. Rev.* 2011, 40, 5084-5121; c) Karak, M.; Barbosa, L. C. A.;
 Hargaden, G. C., *RSC Adv.* 2014, 4, 53442-53466.
- Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S., J. Org. Chem. 2010, 75, 6244-6251.

- Moon, J.; Jeong, M.; Nam, H.; Ju, J.; Moon, J. H.; Jung, H. M.;
 Lee, S., Org. Lett. 2008, 10, 945-948.
- a) Kim, H.; Lee, P. H., Adv. Synth. Catal. 2009, 351, 2827-2832; b)
 Zhang, W.-W.; Zhang, X.-G.; Li, J.-H., J. Org. Chem. 2010, 75, 5259-5264; c) Li, X.; Yang, F.; Wu, Y., RSC Adv. 2014, 4, 13738-13741.
- Nishihara, Y.; Inoue, E.; Ogawa, D.; Okada, Y.; Noyori, S.; Takagi,
 K., *Tetrahedron Lett.* 2009, *50*, 4643-4646.
- a) Li, J.-H.; Liang, Y.; Wang, D.-P.; Liu, W.-J.; Xie, Y.-X.; Yin, D.-L., J. Org. Chem. 2005, 70, 2832-2834; b) Cummins, C. H., *Tetrahedron Lett.* 1994, 35, 857-860; c) Fang, Z.; Teo, T.-L.; Cai, L.; Lai, Y.-H.; Samoc, A.; Samoc, M., Org. Lett. 2009, 11, 1-4.
- 20. a) Ishikawa, T.; Ogawa, A.; Hirao, T., J. Am. Chem. Soc. 1998, 120, 5124-5125; b) Wang, B.; Bonin, M.; Micouin, L., Org. Lett.
 2004, 6, 3481-3484; c) Minami, H.; Saito, T.; Wang, C.; Uchiyama, M., Angew. Chem. Int. Ed. 2015, 54, 4665-4668.
- 21. Chang, S.; Yang, S. H.; Lee, P. H., *Tetrahedron Lett.* **2001**, *42*, 4833-4835.
- 22. Oh, C. H.; Reddy, V. R., *Synlett* **2004**, 2091-2094.
- a) Li, J.-H.; Li, J.-L.; Wang, D.-P.; Pi, S.-F.; Xie, Y.-X.; Zhang, M.-B.; Hu, X.-C., *J. Org. Chem.* 2007, *72*, 2053-2057; b) Shi, Y.; Li, X.; Liu, J.; Jiang, W.; Sun, L., *Tetrahedron Lett.* 2010, *51*, 3626-3628.

- 24. Kang, Y. K.; Deria, P.; Carroll, P. J.; Therien, M. J., Org. Lett.
 2008, 10, 1341-1344.
- 25. a) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z., *Chem. Commun.* 2001, 1740-1741; b) Hong, Y.; Lam, J. W. Y.; Tang, B. Z., *Chem. Commun.* 2009, 4332-4353; c) Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z., *Chem. Rev.* 2015, *115*, 11718-11940.
- 26. a) Zhang, Y.; Han, T.; Gu, S.; Zhou, T.; Zhao, C.; Guo, Y.; Feng, X.; Tong, B.; Bing, J.; Shi, J.; Zhi, J.; Dong, Y., *Chem. Eur. J.*2014, 20, 8856-8861; b) Ezhumalai, Y.; Wang, T.-H.; Hsu, H.-F., *Org. Lett.* 2015, 17, 536-539; c) Chen, J.; Xu, B.; Ouyang, X.; Tang, B. Z.; Cao, Y., *J. Phys. Chem. A* 2004, 108, 7522-7526.
- 27. Oberli, M. A.; Buchwald, S. L., Org. Lett. 2012, 14, 4606-4609.
- 28. a) Bettinger, H. F.; Filthaus, M.; Bornemann, H.; Oppel, I. M., *Angew. Chem. Int. Ed.* 2008, 47, 4744-4747; b) Sueki, S.; Kuninobu, Y., *Org. Lett.* 2013, 15, 1544-1547.
- Kinoshita, H.; Takahashi, H.; Miura, K., Org. Lett. 2013, 15, 2962-2965.
- 30. Hawkeswood, S.; Stephan, D. W., Dalton Trans. 2005, 2182-2187.
- a) Han, G. Y.; Han, P. F.; Perkins, J.; McBay, H. C., *J. Org. Chem.* **1981**, *46*, 4695-4700; b) Perner, R. J.; Gu, Y.-G.; Lee, C.-H.;
 Bayburt, E. K.; McKie, J.; Alexander, K. M.; Kohlhaas, K. L.;

Wismer, C. T.; Mikusa, J.; Jarvis, M. F.; Kowaluk, E. A.; Bhagwat,S. S., *J. Med. Chem.* 2003, *46*, 5249-5257.

- Shynkaruk, O.; He, G.; McDonald, R.; Ferguson, M. J.; Rivard, E., Chem. Eur. J. 2016, 22, 248-257.
- Ng, S.-C.; Ong, T.-T.; S. O. Chan, H., J. Mater. Chem. 1998, 8, 2663-2669.
- 34. a) Suzuki, A., J. Organomet. Chem. 1999, 576, 147-168; b) Lee, J.;
 Han, A. R.; Lee, S. M.; Yoo, D.; Oh, J. H.; Yang, C., Angew. Chem.
 Int. Ed. 2015, 54, 4657-4660.
- 35. a) Hu, Z.; Khadka, V.; Wang, W.; Galipeau, D.; Yan, X., J. Mol. Model. 2012, 18, 3657-3667; b) Fang, Z.; Samoc, M.; Webster, R.
 D.; Samoc, A.; Lai, Y.-H., Tetrahedron Lett. 2012, 53, 4885-4888;
 c) Krishna, A.; Sabba, D.; Yin, J.; Bruno, A.; Boix, P. P.; Gao, Y.; Dewi, H. A.; Gurzadyan, G. G; Soci, C.; Mhaisalkar, S. G; Grimsdale, A. C., Chem. Eur. J. 2015, 21, 15113-15117.
- 36. a) Negishi, E.; Cederbaum, F. E.; Takahashi, T., *Tetrahedron Lett.*1986, 27, 2829-2832; b) Rosenthal, U.; Ohff, A.; Baumann, W.;
 Tillack, A.; Görls, H.; Burlakov, V. V.; Shur, V. B., *Z. Anorg. Allg. Chem.* 1995, 621, 77-83; c) Yan, X.; Xi, C., *Acc. Chem. Res.* 2015, 48, 935-946.
- a) He, G; Kang, L.; Torres Delgado, W.; Shynkaruk, O.; Ferguson,
 M. J.; McDonald, R.; Rivard, E., J. Am. Chem. Soc. 2013, 135,
 5360-5363; b) He, G; Torres Delgado, W.; Schatz, D. J.; Merten,

C.; Mohammadpour, A.; Mayr, L.; Ferguson, M. J.; Brown, A.; Shankar, K.; Rivard, E., *Angew. Chem. Int. Ed.* **2014**, *53*, 4857-4591.

- 38. a) Eaton, D. F. *Pure Appl. Chem.* 1988, 60, 1107-1114; b) Würth,
 C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U., *Nat. Protocols* 2013, 8, 1535-1550.
- Yuan, W. Z.; Lu, P.; Chen, S.; Lam, J. W. Y.; Wang, Z.; Liu, Y.;
 Kwok, H. S.; Ma, Y.; Tang, B. Z., *Adv. Mater.* 2010, *22*, 2159-2163.
- Ghosh, A. P.; Gerenser, L. J.; Jarman, C. M.; Fornalik, J. E., *Appl. Phys. Lett.* 2005, *86*, 223503.
- 41. For a related study, see: Chen, J.; Wang, D.; Turshatov, A.; Munoz-Espi, R.; Ziener, U.; Koynov, K.; Landfester, K., *Polym. Chem.*2013, 4, 773-781.
- 42. a) Guo, T.; Yu, L.; Zhao, B.; Ying, L.; Wu, H.; Yang, W.; Cao, Y., J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 1043-1051; b) Kim, D. Y.; Cho, H. N.; Kim, C. Y., Prog. Polym. Sci. 2000, 25, 1089-1139; c) Yang, C.; Song, H.-S.; Liu, D.-B., J. Mater. Sci. 2013, 48, 6719-6727.
- 43. Farina, V.; Venkat, K.; Scott, W. J., *The Stille Reaction*. Wiley: 1998.
- 44. a) Bedi, A.; Senanayak, S. P.; Narayan, K. S.; Zade, S. S., *Macromolecules* 2013, 46, 5943-5950; b) Al-Hashimi, M.; Han, Y.;

Smith, J.; Bazzi, H. S.; Alqaradawi, S. Y. A.; Watkins, S. E.; Anthopoulos, T. D.; Heeney, M., *Chem. Sci.* **2016**, *7*, 1093-1099.

- 45. Nakano, M.; Osaka, I.; Takimiya, K., *Macromolecules* **2015**, *48*, 576-584.
- Ashe, A. J.; Lohr, L. L.; Al-Taweel, S. M., Organometallics 1991, 10, 2424-2431.
- 47. a) Kiehl, A.; Eberhardt, A.; Adam, M.; Enkelmann, V.; Müllen, K., *Angew. Chem. Int. Ed. Engl.* 1992, *31*, 1588-1591; b) Ashe, A. J.; Mahmoud, S., *Organometallics* 1988, *7*, 1878-1880.
- 48. Khan, A.; Lough, A. J.; Gossage, R. A.; Foucher, D. A., *Dalton Trans.* 2013, 42, 2469-2476.
- Itami, K.; Ushiogi, Y.; Nokami, T.; Ohashi, Y.; Yoshida, J.-i., Org. Lett. 2004, 6, 3695-3698.
- 50. Li, C.; Bo, Z., CHAPTER 1 New Chemistry for Organic Photovoltaic Materials. In *Polymer Photovoltaics: Materials, Physics, and Device Engineering*, The Royal Society of Chemistry: 2016; pp 1-31.
- 51. a) Fagan, P. J.; Nugent, W. A., J. Am. Chem. Soc. 1988, 110, 2310-2312; b) Fagan, P. J.; Nugent, W. A.; Calabrese, J. C., J. Am. Chem. Soc. 1994, 116, 1880-1889.
- 52. Kanno, K.-i.; Kira, M., Chem. Lett. 1999, 28, 1127-1128.
- 53. Niu, L.; Zhang, H.; Yang, H.; Fu, H., Synlett 2014, 25, 995-1000.
- 54. Bhatt, S.; Nayak, S. K., Synth. Commun. 2007, 37, 1381-1388.

- 55. Ura, Y.; Yanzhong, L.; Zhenfeng, X.; Takahashi, T., *Tetrahedron Lett.* **1998**, *39*, 2787-2790.
- Linshoeft, J.; Baum, E. J.; Hussain, A.; Gates, P. J.; Näther, C.;
 Staubitz, A., *Angew. Chem. Int. Ed.* 2014, *53*, 12916-12920.
- 57. Fan, C.; Piers, W. E.; Parvez, M., Angew. Chem. Int. Ed. 2009, 48, 2955-2958.
- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.;
 Timmers, F. J., *Organometallics* 1996, 15, 1518-1520.
- Armarego, W. L. F.; Chai, C. L. L., Chapter 4 Purification of Organic Chemicals. In *Purification of Laboratory Chemicals* (Sixth Edition), Chai, W. L. F. A. L. L., Ed. Butterworth-Heinemann: Oxford, 2009; pp 88-444.
- Dell, E. J.; Capozzi, B.; DuBay, K. H.; Berkelbach, T. C.; Moreno,
 J. R.; Reichman, D. R.; Venkataraman, L.; Campos, L. M., *J. Am. Chem. Soc.* 2013, *135*, 11724-11727.
- 61. Xiao, H.; Shen, H.; Lin, Y.; Su, J.; Tian, H., *Dyes Pigm.* **2007**, *73*, 224-229.
- 62. Altman, R. A.; Buchwald, S. L., *Nat. Protocols* **2007**, *2*, 3115-3121.
- a) Zhang, W.; Kraft, S.; Moore, J. S., J. Am. Chem. Soc. 2004, 126, 329-335; b) Melzig, L.; Metzger, A.; Knochel, P., Chem. Eur. J. 2011, 17, 2948-2956.
- 64. Li, J.; Pang, Y., Macromolecules 1997, 30, 7487-7492.
Chapter 4: Synthetic explorations of luminescent (a)symmetric tellurophenes

4.1. Abstract

In this chapter, a series of symmetrical tellurium heterocycles were prepared via zirconocene-mediated coupling. Despite possible excited state singlet-triplet crossing due to the heavy atom effect, triphenylamine (TPA)-bearing tellurophenes displayed green fluorescence in the solid state due to restriction of molecular motion of the sterically demanding amine substituents. In addition, some of the newly reported tellurophenes were investigated as possible hole transport layers in perovskite-based solar cells. The regioselective synthesis of phosphorescent asymmetric tellurophenes containing pinacolborane (BPin) group at the 2-positions was attempted, either via one-pot procedures or through the isolation of zirconacyclopropene intermediates. This synthetic strategy would allow access to new libraries of molecular luminescent light-emitters with considerable thermal stability.

4.2. Introduction

Sulfur-containing heterocycles, *i.e.*, thiophenes, are the most commonly used light-harvesting/charge-transporting materials, but their narrow light absorption range is a major limitation for optoelectronic applications such as in solar cells, or as photodetectors.¹ Substitution of a sulfur atom by heavier tellurium² creates a new class of materials with advantageous properties, such as decreased HOMO-LUMO energy gaps, high polarizability, high dielectric constants, and the ability to emit light from long-lived triplet excited states, *i.e.*, phosphorescence.³ Narrow optical bandgaps increase solar light absorption, leading to potentially improved overall power conversion efficiencies of photovoltaic cells. On the other hand, phosphorescence, emission from triplet excited states, can lead to enhancement of LED internal emission quantum efficiencies beyond the theoretical maximum of 25 % for fluorophors to 100 %.⁴ In addition, significant Te...Te intermolecular interactions cause enhanced interchain electronic coupling in the solid state, which potentially facilitates the mobility of charge carriers, a favorable property for organic photovoltaics and thin film transistors.³

In general, tellurophenes are non-emissive due to the "heavymetal effect" whereby heavy elements encourage singlet-to-triplet crossing, leading to the formation of long-lived triplet excited states that are prone to self (triplet-triplet annihilation) or external (oxygen and/or solvent-mediated) quenching.⁵ At the same time, luminescent behavior from tellurium heterocycles was originally noted in frozen solutions at 77 K, originating from the restriction of intramolecular rotations and the suppression of molecular aggregation and self-quenching.^{5b, 6} Recently our group uncovered a new class of pinacolboronate (BPin)-capped tellurophenes which show efficient green phosphorescence in the solid state at room temperature and in the presence of water and oxygen.⁷ Further studies revealed that Te(II) center and BPin group(s) placed at the 2- or 5-positions of a tellurophene ring are involved in the emission process. Asymmetric phosphorescent tellurophenes containing BPin and Ph groups were obtained as a mixture of isomers (Scheme 4.1), where each isomer had a different emission color (orange and green), thus enabling their manual separation under UV light.⁸

Scheme 4.1. Synthesis of asymmetric tellurophenes, reported in the Rivard group.

In this chapter new tellurium heterocycles with considerable thermal stability and potentially high carrier mobilities were synthesized *via* zirconium-mediated coupling. The development of a general regioselective synthetic protocol for generating phosphorescent asymmetrically-substituted tellurophenes (with BPin group at an adjacent position to tellurium) was attempted.

4.3. Results and discussion

4.3.1. Synthesis of the symmetrical tellurophenes 2a-c

Motivation for the molecular design of **2a-c** (Scheme 4.1) comes from prior work on emissive metalloles (*e.g.*, siloles),⁹ and the enhanced two-photon absorption¹⁰ and hole transport properties associated with triphenylamine (TPA)-based materials,¹¹ as well as the above mentioned properties one can obtain when heavy elements are present in heterole units.¹² Scheme 4.2 outlines the overall procedure used to prepare the symmetric tetrasubstituted tellurium heterocycles $TeC_4(2-thienyl)_4$ (**2a**) and $TeC_4(TPA)_4$ (**2b**; $TPA = -C_6H_4-N(C_6H_5)_2$). The disubstituted tellurophene **2c** was synthesized and characterized by Dr. Mike Boone, who graciously allowed this species to be included in this chapter for more insightful comparison of optoelectronic properties.

Scheme 4.2. Synthesis of symmetrical tellurium heteroles **2a-b**. Tellurophene **2c** was provided by Dr. Mike Boone.

To triphenylamine-substituted begin, the zirconacycle $Cp_2ZrC_4(TPA)_4$ (1a; TPA = PhNPh₂) and the previously reported tetrathiophene zirconacycle **1b** $(Cp_2ZrC_4T_4; T = 2\text{-thienyl})^{9b}$ were obtained by combining two equiv. of the corresponding alkynes with in situ generated "Cp2Zr" (made from Cp2ZrCl2/2 "BuLi)13 in THF. Formation of the zirconacycle **1a** was confirmed by multinuclear NMR spectroscopy and high-resolution mass spectrometry. Subsequent Zr/Te transmetallation chemistry between 1a/1b and bipy•TeCl₂¹⁴ yielded the target tellurophenes $TeC_4(TPA)_4$ (2a) and TeC_4T_4 (2b) as yellow solids in *ca*. 30 % yield after purification by column chromatography and further washing with hexanes. It is worth noting that tellurophene 2a could also be obtained using a slightly different one-pot procedure. Specifically,

 $Cp_2Zr(pyridine)(Me_3SiCCSiMe_3)^{15}$ and two equivalents of $(TPA)C\equiv C(TPA)$ were combined in THF to yield a red solution containing the zirconacycle **1a**, which was reacted *in situ* with an excess of bipy•TeCl₂,¹⁴ and after purification compound **2a** was obtained in a similar yield to the abovementioned procedure (when zirconacycle was isolated). Slow evaporation of CH₂Cl₂/Et₂O (**2a**) and THF/pentane (**2b**) solutions at room temperature yielded crystals of suitable quality for X-ray analysis and the respective structures of these tellurophenes are found as Figures 4.1 and 4.2. Unfortunately, despite repeated attempts, X-ray quality crystals of **2c** could not be obtained.

Figure 4.1. Thermal ellipsoid plot (30% probability) of compound 2a with hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (deg): Te-C(1) 2.055(2), Te-C(4) 2.066(2), C(2)-C(3) 1.462(3), N(1)-C(14) 1.423(3), N(3)-C(34) 1.434(3), C(1)-C(11) 1.485(3), C(3)-C(31) 1.493(3); C(1)-Te-C(4) 82.79(9), Te-C(1)-C(11) 118.63(16), Te-C(4)-C(41) 119.33(16), C(2)-C(3)-C(31) 121.43(19), C(3)-C(2)-C(21) 121.87(19).

Figure 4.2. Thermal ellipsoid plot (30% probability) of compound **2b** with hydrogen atoms and chloroform solvate omitted for clarity. Selected bond lengths (Å) and angles (deg): Te–C(1) 2.071(5), Te–C(4) 2.087(5), C(2)–C(3) 1.443(8), C(2)–C(21) 1.493(7), C(4)–C(41) 1.447(8); C(1)–Te–C(4) 81.9(2), Te–C(1)–C(11) 117.3(4), Te–C(4)–C(41) 117.3(4), S(1)–C(11)–C(1) 123.7(4), S(4)–C(41)–C(4) 123.6(4).

In compound **2a**, the phenylene rings of TPA substituents that are appended to the TeC₄ core in the 2-, 3-, and 5-positions are canted by $41.20(8)^{\circ}-44.54(7)^{\circ}$, while the remaining aryl group at the 4-position is twisted by 57.32(9)°. In contrast, in **2b** the thienyl substituents in 2,5positions are almost co-planar with TeC₄ ring (*e.g.*, dihedral angle is 9.8(3)°), while the remaining thienyl groups are significantly canted by *ca*. 81°. The intraring Te-C bond lengths are similar to what is observed within earlier reported BPin-capped tellurophenes.^{7-8, 16} The shortest intermolecular Te···Te distances in the solid state are 5.23 Å and 4.09 Å, for compounds **2a** and **2b**, respectively. In the case of **2a** the long Te---Te distance is indicative of a lack of significant interactions as the interatomic distance is greater than the sum of the van der Waals radii for two Te centers (4.12 Å);¹⁷ this has been shown in the past to promote phosphorescence in the solid state by limiting triplet-triplet annihilation.⁴

4.3.2. Optical properties of the tellurophenes 2a-c

Because tellurophenes are an emerging class of solid state emitters,⁴ the optical properties of the new tellurophenes **2a**-**c** were studied in more detail. The TPA-capped tellurophenes **2a** and **2c** show similar absorption in THF as triphenylamine itself (*i.e.*, $\lambda_{max} = 300$ nm).¹⁸ Specifically, the tetraTPA-substituted tellurophene **2a** absorbs maximally at 302 nm, while the bis(TPA) tellurophene **2c** absorbs at $\lambda_{max} = 307$ nm; both of these species also have a shoulder at *ca*. 345 nm, which in the solid state becomes red-shifted by *ca*. 30 nm due to enhanced conjugation. Thus, the transition at 302 nm (**2a**) or 307 nm (**2c**) presumably corresponds to the triphenylamine unit, while the shoulder at 345 nm corresponds to π - π * transition in the tellurophene.

Figure 4.3. UV/Vis absorption spectra of compound **2a** in solution (THF) and film state.

Figure 4.4. UV/Vis absorption spectra of compound **2c** in solution (THF) and film state.

Compound **2b** absorbs maximally at 394 nm with some discernable vibronic features. In the solid state an additional shoulder appears at 427 nm, presumably a result of extended conjugation. Moreover considerable tailing of the absorption to *ca*. 800 nm in films of **2b** was noted.^{16, 19}

Figure 4.5. UV/Vis absorption spectra of compound **2b** in solution (THF) and film state.

The optical bandgaps were determined for 2a-2c in THF solution (Figure 4.6) and they are 2.97 eV, 2.85 eV, and 3.06 eV, respectively. While the number of triphenylamine substituents did not significantly alter the optical bandgap (2.97 eV *vs* 3.06 eV), the thiophene-substituted **2b** has the smallest bandgap of 2.85 eV. Consistent with the red-shift of the absorption in the solid state, optical bandgaps for **2a-2c** decreased to 2.59 eV, 2.53 eV, and 2.72 eV, respectively (Figure 4.7).

Figure 4.6. Optical bandgaps of tellurophenes 2a-2c in solution (THF).

Figure 4.7. Optical bandgaps of tellurophenes 2a-2c in film state.

In contrast to the non-emissive nature of **2b**, tellurophenes **2a** and **2c** show dramatic changes in emission character upon aggregation, which could be applied for sensing applications.⁷ When **2a** and **2c** are dissolved in THF, blue-green emission is observed ($\lambda_{em} = 472$ and 484 nm, $\Phi_{absolute} = 11.8$ % and 5.4 %, respectively), however in the film state there is a substantial red-shift in λ_{em} to 520 and 510 nm, corresponding to green colored emission (Figure 4.8 and 4.9). Tellurophenes **2a** and **2c** show fluorescence both in solution and in the solid state, according to the respective lifetimes: 1.8, 2.0 ns (**2a/c** in solution) and 1.8, 0.5 ns (**2a/c** in solid state). The tetrasubstituted analogue **2a** has a higher absolute quantum yield in both solution (11.8 % vs 5.4 %) and solid state (3.8 % vs 1.0 %), possibly due increased steric interaction between the four TPA groups, compared to **2c**, thus rotational non-radiative decay pathways are less efficient in **2a**.

Figure 4.8. Normalized PL excitation and emission spectra of **2a** with λ_{ex} = 397 and 419 nm in THF, and λ_{ex} = 460 nm in the film state.

Figure 4.9. Normalized PL excitation and emission spectra of **2c** with λ_{ex} = 432 nm in THF and λ_{ex} = 440 nm in the film state.

To investigate the aggregation behavior of the tellurophenes **2a** and **2c**, miscible THF/H₂O mixtures were employed to adjust the solubility of tellurophenes and to eventually induce aggregation. The resulting emission spectra of **2a** and **2c** were recorded in various THF/H₂O mixtures, and the results are presented in Figures 4.10 and 4.11. Both derivatives have spectral tails that extend to *ca*. 650 nm. The tellurophenes **2a** and **2c** show aggregation-caused quenching²⁰ when the water fraction is over 60 %. Interestingly, **2a** shows color change from blue emission in pure THF (**2a**: $\lambda_{em} = 472$ nm) to green emission (**2a**: $\lambda_{em} = ca$. 505 nm) when the water composition exceeds 60 % (in aggregation state), albeit with much lower intensity.

Figure 4.10. Photoluminescence (PL) spectra of **2a** in different THF/water ratios (listed as % water content). Inset: aggregates under UV light ($\lambda_{ex} = 365 \text{ nm}$); [**2a**] = 10⁻⁴ M.

Figure 4.11. Photoluminescence (PL) spectra of **2c** in different THF/water ratios (listed as % water content). Inset: aggregates under UV light ($\lambda_{ex} = 365 \text{ nm}$); [**2c**] = 10⁻⁴ M.

4.3.3. Thermal stability of functionalized tellurophenes

Thermal stability is a crucial parameter to consider when selecting functional materials for optoelectronic applications. The onsets of thermal decomposition (5 % weight loss, T_d) of compounds **2a-c** were evaluated under nitrogen using thermal gravimetric analysis (Figure 4.12). The tetrasubstituted tellurophene **2a** has the highest thermal stability ($T_d = 457$ °C), followed by the disubstituted **2c** ($T_d = 299$ °C). This trend could be explained by increase in the steric demand of heterocycles. The thiophene-capped tellurophene **2b** has the lowest decomposition temperature of 296 °C.

Figure 4.12. TGA thermograms of **2a-c** measured under N_2 (scan rate = 10 °C/min).

Surprised by dramatic weight loss of **2b** (up to 95 %), its thermal stability was further investigated by differential scanning calorimetry under nitrogen atmosphere. Upon heating from ambient temperature to 600 °C, the onset of thermal decomposition for **2b** was found at *ca*. 300 °C (in agreement with TGA data), while the melting point ($T_m = 199$ °C) was found to be in agreement with sealed capillary tube melting point data (Figure 4.13). The weight loss after the measurement was negligible (< 5 %), hence excluding the possibility that tellurophene **2b** evaporated during the study. Furthermore, to investigate the melt stability of **2b**, repeated heating-cooling DSC cycles (to temperatures *ca*. 20 °C above the melt) were performed under nitrogen atmosphere (Figure 4.14). Interestingly, it was found that tellurophene **2b** has a stable melt, as noted by reoccurring melting/recrystallization ($T_c = 158$ °C) after the first cycle.

Figure 4.13. DSC trace of 2b measured under N₂ (30-600 °C, scan rate = 10 °C/min).

Figure 4.14. DSC cycles of **2b** measured under N₂ (first heating: 30-220 °C, scan rate = 10 °C/min; first cooling: 220-30 °C, scan rate = 30 °C/min; second heating: 30-220 °C, scan rate = 10 °C/min; second cooling: 220-30 °C, scan rate = 30 °C/min; third heating: 30-370 °C, scan rate = 10 °C/min; third cooling: 370-30 °C, scan rate = 30 °C/min; fourth heating: 30-220 °C, scan rate = 10 °C/min).

Tellurophenes **2a** and **2c** were also investigated by differential scanning calorimetry under nitrogen atmosphere. Upon heating tellurophene **2a** from ambient temperature to 600 °C, the onset of thermal decomposition was found at *ca*. 357 °C, while the crystallization (T_c) occurred at 178 °C and melting point (T_m) was found at 251 °C (Figure 4.15). Furthermore, to investigate the melt stability of **2a**, repeated heating-cooling DSC cycles (to temperatures *ca*. 15 °C above the melt) were performed under nitrogen atmosphere (Figure 4.16). Interestingly, it

was found that tellurophene **2a** has a stable melt, as noted by reoccurring melting/recrystallization ($T_c = 186$ °C) after the first cycle. In contrast, crystallization at 178 °C was not observed after the first heating-cooling cycle.

Figure 4.15. DSC trace of 2a measured under N₂ (30-600 °C, scan rate = 10 °C/min).

Figure 4.16. DSC cycles of **2a** measured under N₂ (first heating: 30-265 °C, scan rate = 10 °C/min; first cooling: 265-30 °C, scan rate = 30 °C/min; second heating: 30-265 °C, scan rate = 10 °C/min; second cooling: 265-30 °C, scan rate = 30 °C/min; third heating: 30-265 °C, scan rate = 10 °C/min; third cooling: 265-30 °C).

Upon heating tellurophene 2c from ambient temperature to 600 °C, the onset of thermal decomposition was found at *ca*. 280 °C (in agreement with TGA data), however melting for 2c was not observed (Figure 4.17).

Figure 4.17. DSC trace of **2c** measured under N₂ (30-600 °C, scan rate = 10 °C/min).

4.3.4. Collaborative projects with tellurophenes 2a/c

Conjugated compounds bearing TPA substituents have been successfully used as hole transport layers in thin film transistors²¹ and within solar cells.²² Thus it would be beneficial to investigate the hole and electron mobility of tellurophenes **2a/c**. Samples were sent to the group of Prof. Peter Müller-Buschbaum at the Technical University of Munich (Germany) and the measurement of charge mobilities is currently under investigation.

At the same time, in collaboration with Dr. Mike Boone, the HOMO and LUMO energy levels of **2a/c** were probed by density functional theory calculations at B3LYP/6-31G(d) level of theory for all elements except tellurium, where B3LYP/LANL2DZ was used (Figure 4.18). In tellurophene **2a** the HOMO was found delocalized over the entire molecule, while in **2c** it was found to be located on the tellurium ring and attached TPA-substituents with little contribution from the alkyl –(CH₂)₄-linker. In both **2a/c** the LUMOs were located on the TeC₄ core and the adjacent phenyl rings.

Figure 4.18. Calculated HOMO/LUMO plots for **2a** (top) and **2c** (bottom).

In collaboration with the Wakamiya group (Kyoto University, Japan), tellurophenes 2a/c were sent to be tested as hole transport layers in perovskite solar cells. First, their HOMO energy levels were determined by photoelectron spectroscopy and found to be -5.58 eV (2a) and -5.59 eV

(2c), which is lower than HOMO level of the perovskite (-5.45 eV), indicating that hole extraction from the perovskite layer using these tellurophenes would be difficult. Thus new molecular systems (**3a/b**) were designed, which incorporated a thienyl spacer and electron-donating methoxy groups on the TPA units in order to increase the HOMO level (see Figure 4.19 and Scheme 4.2). Density functional theory calculations at the B3LYP/6-31G(d) level of theory (Figure 4.19) were performed by Mr. Shimogawa Hiroyuki in Kyoto and showed a delocalized HOMO level at -4.35 eV in **3b**, which based on their earlier work on hole-transporting two-dimensional π -systems of azulene,²³ would give an experimental value (*i.e.*, by photoelectron spectroscopy) in the range of - 5.2 to -5.1 eV, suitable for application in perovskite solar cells.²⁴ Moreover the high LUMO level computed (-1.30 eV) is optimal for concurrent electron-blocking behavior in **3b**.

Figure 4.19. Calculated HOMO/LUMO plots of 3b.

The synthetic route towards tellurophene **3a** is presented in Scheme 4.3, while tellurophene **3b** is currently being synthesized by Dr. Mike Boone.

Scheme 4.3. Outline of planned synthesis for tellurophene 3a.

The project began the multigram synthesis of pure 1,2bis(thiophen-2-yl)ethyne *via* three-step Sonogashira coupling procedure (see also Chapter 3).²⁵ It was noticed that intermediate H-C=C-T (T = thienyl) has a very short bench lifetime (~ 2 hours) and is sensitive to light, temperature and air. Attempts to install bromine substituents onto the thienyl units by treating (2-thienyl)-C=C-(2-thienyl) with Nbromosuccinamide (NBS) failed and only starting materials were identified. As a result a lithiation/bromination procedure was adapted from the literature²⁶ and the target brominated alkyne was isolated as a yellow solid in 59 % yield after purification by column chromatography. The brominated precursor was further used to couple with bis(4methoxyphenyl)amine²⁷ following reported Buchwald-Hartwig amination conditions for bromothiophene derivatives,²⁸ however at the end of the reaction only starting material were identified. Increasing catalytic loading (up to 4 % of Pd₂(dba)₃) did not lead to any particular improvement (starting materials were recovered). Future direction would involve the synthesis of iodinated 1,2-bis(thiophen-2-yl)ethyne and use of RuPhosbased catalyst/ligand system in Buchwald-Hartwig amination reaction to obtain the desired product.^{29,30} Interestingly, the Grimsdale group studied the sulfur analogue of **3a** as a hole transport layer in the perovskite-based solar cell devices and obtained a high power conversion efficiency of 15.4 %.31

4.3.5. Synthesis of asymmetric tellurophenes

In 2014 Dr. Gang He discovered phosphorescence in a solid pinacolborane-capped tellurophene under ambient conditions at room temperature;⁷ since then a variety of derivatives were obtained and studied in our laboratory, including asymmetrically substituted tellurophenes.⁸ The latter species with PBin and Ph susbtituents were obtained as a mixture of isomers (2,5- and 2,4-BPin₂ regioisomers) that were manually separated under UV/Vis irradiation since these isomers each exhibited different green and orange emission colors. This procedure included synthesis of asymmetric BPin-containing alkynes³² as well as a time-consuming purification protocol that could not be applied across a range of derivatives. Thus it would be beneficial to develop a general regioselective synthesis of asymmetric tellurophenes. These heterocycles constitute an emerging class of luminogen for LEDs, constructed without encapsulation of emissive active layers in host matrices.⁴

The study began with subsequent addition of BPin-C=C-BPin and TPA-C=C-TPA to Cp₂Zr(pyridine)(Me₃SiCCSiMe₃)¹⁵ to trigger the selective formation of an asymmetrically substituted zirconacycle (Equation 4.1). After transmetallation with TeCl₂•bipy, only the symmetric derivative TeC₄BPin₄ and the starting TPA-capped alkyne, TPA-C=C-TPA, were identified by multinuclear NMR spectroscopy (¹H, ¹³C{¹H} and ¹¹B{¹H}) and thin-layer chromatography (Equation 4.1); these compounds could be separated and isolated in pure form via column chromatography. Lower reaction temperatures (*i.e.*, -30 °C), longer reaction times (*i.e.*, 12 hours *vs.* 2 hours of stirring after TPA-C=C-TPA addition) and switching the order of alkynes did not lead to any desired tellurophene. These trials are summarized in the Table 4.1.

Products t2, t3, Order of (based on NMR Temp. tı, Entry hr hr alkynes (°C) and thin-layer hrs S S chromat.) **BPinCCBPin** TeC₄BPin₄, 1 r.t. 0.5 2 16 TPAA TPAA 2 BPinCCBPin 0.5 TeC₄BPin₄, r.t. 16 16 TPAA TPAA 3 BPinCCBPin 0.5 2.5 TeC₄BPin₄, 16 r.t. TPAA TPAA 4 **BPinCCBPin** 0.25 1 16 TeC₄BPin₄, -30 TPAA TPAA 5 TPAA 1 0.2 16 TPAA, r.t BPinCCBPin BPinCCBPin

Table 4.1. Trials for synthesis of asymmetric tellurophene.

The next synthetic attempt included isolation of the BPin-capped zirconacyclopropene intermediate Cp₂Zr(pyr)(PinBCCBPin), reported earlier by Rosenthal and co-workers (Equation 4.2).³³ However, their results could not be reproduced despite repeated attempts.

In 2000, the Gouygou group obtained asymmetric 2,3-Ph₂phospholes *via* selective intramolecular cross-coupling of two different alkynes and *in situ* formation of asymmetric zirconacycle.³⁴ This reaction condition was applied towards the possible synthesis of the asymmetric tellurophene **4** (Scheme 4.4) where tolan (Ph-C=C-Ph) and BPin-C=C-BPin were used as alkyne sources. However, the reaction yielded only the starting alkynes as major products, which were identified by multinuclear NMR spectroscopy (¹H, ¹³C{¹H} and ¹¹B{¹H}) and thin layer chromatography.

Scheme 4.4. Attempted (top) and future (bottom) syntheses of the asymmetric tellurophene **4**.

Future work could include the isolation of a zirconacyclopropene intermediate through stabilization with phosphines $(e.g., PMe_3)^{35}$ and testing its reactivity with BPin-C=C-BPin to form an asymmetric zirconacycle in a regioselective manner (Scheme 4.4).

4.4. Conclusions

In summary, light-emitting and thermally stable symmetric tellurophenes were prepared with the help of metallacycle transfer chemistry. By altering the nature of peripheral substituents, photoluminescence could be turned on or off, occasionally leading to green emission in the aggregated state. Furthermore, increasing the number of the ring appended triphenylamine substituents leads to amplification of the fluorescence quantum yield. Future work will involve the attempted preparation of electron-rich tellurophenes for use as hole-transporting materials and the development of a regioselective synthesis of asymmetrically-substituted phosphorescent tellurophenes³⁵ in order to induce luminescence color tuning.

4.5. Experimental section

4.5.1. Materials and instrumentation

All reactions were performed using standard Schlenk and glovebox (MBraun) techniques under a nitrogen atmosphere. Solvents were all dried and degassed using a Grubbs-type solvent purification system³⁶ manufactured by Innovative Technology, Inc., and stored under an atmosphere of nitrogen prior to use. 2,2'-bipyridine was obtained from GFS Chemicals, zirconocene dichloride from Strem Chemicals Inc., pyridine from Caledon Laboratory Chemicals; all other chemicals were obtained from Aldrich. Commercially obtained chemicals were used as

received except for pyridine, which was freshly distilled under nitrogen from potassium hydroxide.³⁷ Bis(cyclopentadienyl)zirconium-2,3,4,5tetra(2-thienyl)methanide $Cp_2ZrC_4T_4$,^{9b} bipy•TeCl₂,¹⁴ $Cp_2Zr(pyr)(Me_3SiCCSiMe_3)$,³⁸ 1,2-bis(4',4',5',5'-

tetramethyl[1',3',2']dioxaborolan-2'-yl)ethyne,³⁹ 2-(trimethylsilylethynyl)thiophene,^{25c} 2-ethynylthiophene,^{25a} and bis(4methoxyphenyl)amine²⁷ were prepared according to literature procedures. ¹H, ¹³C{¹H} and ¹¹B{¹H} NMR spectra were recorded on a Varian DD2 MR-400 spectrometer and referenced externally to SiMe₄ (${}^{1}H$, ${}^{13}C{}^{1}H$) and $F_3B \cdot OEt_2$ (¹¹B{¹H}). Elemental analyses were performed by the Analytical and Instrumentation Laboratory at the University of Alberta. Mass spectra for small molecules were collected using a MS-50G system (Kratos Analytical). Melting points were obtained in sealed glass capillaries using a MelTemp melting point apparatus and are uncorrected. UV/Vis measurements were performed using a Varian Cary 300 Scan spectrophotometer. Photoluminescence and lifetimes were measured on a time-correlated single photon counting fluorescence spectrometer (Edinburgh Instruments FLS920) using an EPL-375 picosecond pulsed diode laser with vertical polarization (70.3 ps pulse width) as an excitation source; absolute quantum yields were measured with an integrating sphere system within the same fluorescence spectrometer.

323

4.5.2. Synthetic procedures

4.5.2.1.Synthesisof2,3,4,5-tetra{4-(diphenylamino)phenylene}tellurophene (2a)

Cp₂Zr(pyr)(Me₃SiCCSiMe₃) (0.526 g, 1.12 mmol) and 1,2bis(triphenylamine)-ethyne (Ph₂N-C₆H₄-C=C-C₆H₄-NPh₂) (1.145 g, 2.23 mmol) were dissolved in 20 mL of THF, and the resulting mixture was allowed to stir for 12 hrs to give a dark red solution. Solid bipy•TeCl₂ (0.437 g, 1.23 mmol) was added directly to the vial and the resulting slurry was stirred for another 18 hrs. A dark green solution formed over a black precipitate; this precipitate was allowed to settle and the mother liquor was filtered through 1 cm plug of silica gel. The volatiles were removed from red colored filtrate and the crude product was purified by column chromatography (silica gel, CH_2Cl_2 :hexanes = 1:2 as the eluent, $R_f = 0.38$) to yield **2a** as the orange-yellow powder which was further washed with room temperature hexanes $(2 \times 15 \text{ mL})$ to give **2a** as a bright yellow solid (0.322 g, 25 %). X-ray quality crystals of 2a were obtained from slow evaporation of the CH₂Cl₂/Et₂O solution at the room temperature. M.p. 133-137 °C; TGA: $T_{dec} = 457$ °C; ¹H NMR (400 MHz, CDCl₃): δ 7.23-7.27 (m, 8H, ArH), 7.16-7.19 (m, 8H, ArH), 7.08-7.10 (m, 8H, ArH), 6.94-7.04 (m, 20H, ArH), 6.79-6.87 (m, 12H, ArH); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 148.6, 147.8, 147.6, 146.4, 145.8, 141.2, 135.8, 134.2, 132.0, 130.5, 129.3, 129.2, 124.7, 124.0, 123.2, 123.1, 122.54, 122.46; UV/Vis (THF): λ_{max} (ϵ) = 302 nm (7.31×10⁵ mol⁻¹dm³cm⁻¹), shoulder at 345 nm; UV/Vis (film): $\lambda_{max} = 308$ (shoulder at 375 nm); Fluorescence emission (THF) ($\lambda_{ex} = 397$ and 419 nm): $\lambda_{em} = 472$ nm, absolute fluorescence quantum yield: $\Phi = 11.8$ %; Lifetime (1×10^{-5} M solution in THF): $\tau = 1.8$ ns; Fluorescence emission (film) ($\lambda_{ex} = 460$ nm): $\lambda_{em} = 520$ nm; Lifetime (film): $\tau = 1.8$ ns; Absolute quantum yield (film) = 3.8 %. HR-MS (EI): m/z: 1154.3533; C₇₆H₅₆N₄Te calcd: 1154.3567; elemental analysis calcd (%) for C₇₆H₅₆N₄Te: C, 79.18; H, 4.90; N, 4.86; found: C, 78.65; H, 5.13; N, 4.70.

4.5.2.2. Synthesis of 2,3,4,5-tetra(2-thienyl)-tellurophene (2b)

Cp₂ZrC₄(2-thienyl)₄^{9b} (0.151 g, 0.25 mmol) and bipy•TeCl₂ (0.098 g, 0.28 mmol) were dissolved in 6 mL THF and the resulting mixture was allowed to stir at room temperature for 24 hrs. A dark green solution formed over a black precipitate; this precipitate was allowed to settle and the mother liquor was filtered through 1 cm plug of silica gel. The volatiles were removed from the filtrate and resulting crude product was purified by column chromatography (silica gel, THF:pentane = 1:2 as the eluent, $R_f = 0.70$) to yield **2b** as a green powder which was further washed with room temperature hexanes (2 × 5 mL) to give **2b** as a light yellow solid (0.037 g, 33 %). X-ray quality crystals of **2b** were obtained from slow evaporation of a THF/pentane solution at the room temperature. M.p. 196-197 °C; TGA: $T_{dec} = 296$ °C; ¹H NMR (400 MHz, CDCl₃): δ 7.28 (dd, ³*J*_{HH} = 5.1 Hz, ⁴*J*_{HH} = 1.1 Hz, 2H, Thienyl*H*), 7.14 (dd, ³*J*_{HH} = 5.1 Hz,
⁴*J*_{HH} = 1.2 Hz, 2H, Thienyl*H*), 6.90-6.92 (two overlapping dd, ³*J*_{HH} = 3.5 Hz, ⁴*J*_{HH} = 1.2 Hz, 4H, Thienyl*H*), 6.86 (dd, ³*J*_{HH} = 5.1 Hz, ⁴*J*_{HH} = 3.7 Hz, 2H, Thienyl*H*), 6.82 (dd, ³*J*_{HH} = 3.5 Hz, ⁴*J*_{HH} = 1.2 Hz, 2H, Thienyl*H*); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 142.0, 140.7, 140.3, 134.9, 129.5, 127.7, 127.0, 126.9, 126.6 (Thienyl-*C*); UV/Vis (THF): λ_{max} (ε) = 394 nm (1.81 × 10⁴ mol⁻¹ dm³ cm⁻¹); UV/Vis (film): λ_{max} = 386 and 427 (shoulder) nm; HR-MS (EI): m/z: 509.8871; C₂₀H₁₂S₄Te calcd: 509.8884; elemental analysis calcd (%) for C₂₀H₁₂S₄Te: C, 47.27; H, 2.38; S, 25.24; found: C, 47.12; H, 2.51; S, 25.30.

4.5.2.3. Synthesis of 1,2-bis(thiophen-2-yl)ethyne

To a solution of 2-bromothiophene (0.43 mL, 4.41 mmol) in dry Et₃N (20 mL) were added PdCl₂(PPh₃)₂ (0.056 g, 0.080 mmol), PPh₃ (0.042 g, 0.160 mmol), CuI (0.031 g, 0.16 mmol), and 2-ethynylthiophene (0.433 g, 4.00 mmol). After stirring for 16 hours at 70 °C, the volatiles were removed *in vacuo* and the residue was dissolved in CH₂Cl₂ (50 mL) and filtered through 1 cm plug of silica gel. The solvent was removed from the filtrate and the crude product was purified by column chromatography (loaded as a 5 mL solution in CH₂Cl₂, silica gel, hexanes as eluent, $R_f = 0.73$) to yield 1,2-bis(thiophen-2-yl)ethyne as a white solid (0.433 g, 57 %). The corresponding ¹H and ¹³C{¹H} NMR spectral data matched those reported previously in the literature.⁴⁰

4.5.2.4. Synthesis of 1,2-bis(5-bromo-thiophen-2-yl)ethyne

A solution of 1,2-bis(thiophen-2-yl)ethyne (0.433 g, 2.28 mmol) in 20 ml of THF was cooled to -78 °C and "BuLi (2.0 mL, 2.5 M solution in hexanes, 5.0 mmol) was added dropwise. The reaction mixture turned into a light yellow slurry and the mixture was stirred for 45 min at -78 °C. Afterwards Br₂ (0.26 mL, 5.0 mmol) was added at -78 °C and the cold bath was removed immediately. The reaction mixture was stirred at room temperature for 4 hours, leading to the production of a brown solution. The resulting mixture was poured into 100 mL of saturated aqueous Na₂S₂O₃ and extracted with 50 mL of chloroform. The organic layer was washed again with saturated Na₂S₂O₃ (aq.) (100 mL), water (2×100 mL), brine $(2 \times 100 \text{ mL})$, and dried over MgSO₄. The solvent was removed in vacuo and the brown residue was purified by column chromatography (silica gel, compound loaded as a 3 mL solution in CH₂Cl₂, elution with petroleum ether: $Et_2O = 99:1$, $R_f = 0.71$) to give 1,2-bis(5-bromo-thiophen-2-yl)ethyne as a yellow solid (0.467 g, 59 %). The corresponding ¹H and $^{13}C{^{1}H}$ NMR spectral data matched those reported previously by the Tortech and Fichou.²⁶

4.5.2.5. Attempted synthesis of 1,2-bis(5-(4-methoxyphenyl)aminothiophen-2-yl)ethyne

A solution of Pd₂(dba)₃ (0.015 g, 0.016 mmol) and P^tBu₃ (0.010 g, 0.048 mmol) in 15 mL of toluene was stirred at room temperature for 30 min. To the resulting dark pink mixture was added 1,2-bis(5-bromo-thiophen-2-yl)ethyne (0.554 g, 1.59 mmol), bis(4-methoxyphenyl)amine (0.766 g, 3.34 mmol), and NaO^tBu (0.615 g, 6.37 mmol). The reaction flask was then immersed in a pre-heated oil bath (110 °C) and the solvent was refluxed for 16 hrs. Afterwards the reaction mixture was cooled to room temperature, extracted with 50 mL of dichloromethane and filtered through 2 cm plug of silica gel. The volatiles were removed from the filtrate *in vacuo*, and the dark brown residue was analyzed by thin-layer chromatography (CH₂Cl₂:hexanes = 3:1) and NMR spectroscopy (in CDCl₃) to reveal starting materials (alkyne and amine).

4.5.2.6. Attempted synthesis of 2,3-bis(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-4,5-di(4-triphenylamine)tellurophene

To a solution of Cp₂Zr(pyr)(Me₃SiCCSiMe₃) (0.273 g, 0.58 mmol) in 6 mL of hexanes and 3 mL of pyridine, was added a slurry of PinB-C=C-BPin (0.145 g, 0.52 mmol, BPin = pinacolborane) in 5 mL of toluene, and the mixture was stirred for 30 min at room temperature. Afterwards, a solution of 1,2-bis(triphenylamine)-ethyne (0.297 g, 0.58 mmol) in toluene (5 mL) was added and the reaction mixture was stirred for 16 hours. Then solid bipy•TeCl₂ (0.226 g, 0.64 mmol) was added in one portion, and the reaction mixture was stirred for 16 hours. A dark red solution formed over a black precipitate; this precipitate was allowed to settle and the mother liquor was filtered through 1 cm plug of silica gel. The volatiles were removed from the filtrate and the crude residue was analyzed by NMR spectroscopy (in CDCl₃) and thin-layer chromatography (THF:hexanes = 2:1). The results are summarized in the Table 4.1.

4.5.2.7. Attempted synthesis of 2,3-bis(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-4,5-diphenyltellurophene (4)

A solution of Cp₂ZrCl₂ (0.750 g, 2.57 mmol) in 25 mL of THF was cooled to -78 °C and ⁿBuLi (2.0 mL, 2.5 M solution in hexanes, 5.0 mmol) was added dropwise. The yellow reaction mixture was allowed to stir for 15 min and 4-dimethylaminopyridine (0.611 g, 5.01 mmol) was added rapidly. The reaction mixture was warmed to room temperature over 75 min and stirred for a further 90 min. The resulting dark red solution was cooled to 0 °C, diphenylacetylene (0.457 g, 2.57 mmol) was added and the solution was stirred for 90 min. Afterwards of PinB-C≡C-BPin (0.713 g, 2.57 mmol) was added and the solution was warmed up to room temperature over 40 minutes and stirred for 2 hrs. The obtained dark orange mixture was cooled again to -78 °C and bipy•TeCl₂ (1.001 g, 2.83 mmol) was added rapidly, and the resulting mixture was allowed to stir at room temperature for 24 hrs. A brown solution formed over a black precipitate; this precipitate was allowed to settle and the mother liquor was filtered through 1 cm plug of silica gel. The volatiles were removed from the filtrate and the crude residue was analyzed by NMR spectroscopy (in CDCl₃) and thin layer chromatography (THF:hexanes = 2:1) to reveal unreacted diphenylacetylene and PinB-C=C-BPin.

4.6. Crystallographic data

	2a	2b
empirical formula	C76H56N4Te	$C_{21}H_{13}Cl_3S_4Te$
fw	1152.84	627.50
cryst. dimens. (mm ³)	$0.38 \times 0.11 \times 0.07$	$0.48 \times 0.09 \times 0.04$
cryst. syst.	monoclinic	orthorhombic
space group	<i>P</i> 2 ₁ / <i>c</i> (No. 14)	<i>Pna</i> 2 ₁ (No. 33)
unit cell dimensions		
<i>a</i> (Å)	13.5430 (10)	19.7292 (12)
<i>b</i> (Å)	41.973 (3)	16.0519 (10)
<i>c</i> (Å)	10.4308 (7)	7.1294 (4)
α (deg)		
β (deg)	103.6079 (11)	
$\gamma(\text{deg})$		
$V(\text{\AA}^3)$	5762.8 (7)	2257.8 (2)
Ζ	4	4
ρ (g cm ⁻³)	1.329	1.846
abs. coeff. (mm ⁻¹)	0.566	2.050
T (K)	173 (1)	173 (1)
$2 \Theta_{\max}(\deg)$	55.11	56.44
total data	52176	20609
unique data (R_{int})	13298 ($R_{int} = 0.0554$)	5551 ($R_{\rm int} = 0.0445$)
obs. data [$I > 2\sigma(I)$]	9312	4642
params.	730	292
$R_1 \left[I > 2\sigma(I) \right]^{\rm a}$	0.0394	0.0337
wR_2 [all data] ^a	0.1012	0.0873
Max/Min $\Delta \rho$ (e Å ⁻³)	0.635/-0.522	1.285/-0.531

Table 4.2. Crystallographic data for compounds 2a/b

4.7. NMR spectral data

Figure 4.20. ¹H NMR (in CDCl₃) spectrum of compound 2a.

Figure 4.21. ¹³C {¹H} NMR (in CDCl₃) spectrum of compound 2a.

Figure 4.22. ¹H NMR (in CDCl₃) spectrum of compound 2b.

Figure 4.23. ${}^{13}C{}^{1}H$ NMR (in CDCl₃) spectrum of compound 2b.

4.8. References

- a) Malytskyi, V.; Simon, J.-J.; Patrone, L.; Raimundo, J.-M. *RSC Adv.* 2015, *5*, 354-397; b) Günes, S.; Neugebauer, H.; Sariciftci, N. S. *Chem. Rev.* 2007, *107*, 1324-1338.
- 2. Chivers, T.; Laitinen, R. S. Chem. Soc. Rev. 2015, 44, 1725-1739.
- 3. Carrera, E. I.; Seferos, D. S. *Macromolecules* **2015**, *48*, 297-308.
- 4. Rivard, E. Chem. Lett. 2015, 44, 730-736.
- a) Koide, Y.; Kawaguchi, M.; Urano, Y.; Hanaoka, K.; Komatsu, T.; Abo, M.; Terai, T.; Nagano, T. *Chem. Commun.* 2012, 48, 3091-3093; b) McCormick, T. M.; Jahnke, A. A.; Lough, A. J.; Seferos, D. S. J. Am. Chem. Soc. 2012, 134, 3542-3548.
- a) Detty, M. R.; Merkel, P. B. J. Am. Chem. Soc. 1990, 112, 3845-3855; b) Annaka, T.; Nakata, N.; Ishii, A. Organometallics 2015, 34, 1272-1278; c) Kremer, A.; Aurisicchio, C.; De Leo, F.; Ventura, B.; Wouters, J.; Armaroli, N.; Barbieri, A.; Bonifazi, D. Chem. Eur. J. 2015, 21, 15377-15387.
- He, G.; Torres Delgado, W.; Schatz, D. J.; Merten, C.; Mohammadpour, A.; Mayr, L.; Ferguson, M. J.; McDonald, R.; Brown, A.; Shankar, K.; Rivard, E. *Angew. Chem. Int. Ed.* 2014, 53, 4587-4591.
- He, G.; Wiltshire, B. D.; Choi, P.; Savin, A.; Sun, S.; Mohammadpour, A.; Ferguson, M. J.; McDonald, R.; Farsinezhad,

S.; Brown, A.; Shankar, K.; Rivard, E. Chem. Commun. 2015, 51, 5444-5447.

- 9. a) Hammerstroem, D. W.; Braddock-Wilking, J.; Rath, N. P. J. Organomet. Chem. 2016, 813, 110-118; b) Shynkaruk, O.; He, G.; McDonald, R.; Ferguson, M. J.; Rivard, E. Chem. Eur. J. 2016, 22, 248-257; c) Zhao, Y.; Hao, W.; Ma, W.; Zang, Z.; Zhang, H.; Liu, X.; Zou, S.; Zhang, H.; Liu, W.; Gao, J. New J. Chem. 2014, 38, 5754-5760.
- a) Ding, A.-X.; Hao, H.-J.; Gao, Y.-G.; Shi, Y.-D.; Tang, Q.; Lu,
 Z.-L. *J. Mater. Chem. C* 2016, *4*, 5379-5389; b) Chang, Z.-F.; Jing,
 L.-M.; Chen, B.; Zhang, M.; Cai, X.; Liu, J.-J.; Ye, Y.-C.; Lou, X.;
 Zhao, Z.; Liu, B.; Wang, J.-L.; Tang, B. Z. *Chem. Sci.* 2016, *7*, 4527-4536.
- a) Krishna, A.; Sabba, D.; Yin, J.; Bruno, A.; Boix, P. P.; Gao, Y.; Dewi, H. A.; Gurzadyan, G. G.; Soci, C.; Mhaisalkar, S. G.; Grimsdale, A. C. *Chem. Eur. J.* 2015, *21*, 15113-15117; b) Carli, S.; Baena, J. P. C.; Marianetti, G.; Marchetti, N.; Lessi, M.; Abate, A.; Caramori, S.; Grätzel, M.; Bellina, F.; Bignozzi, C. A.; Hagfeldt, A. *ChemSusChem* 2016, *9*, 657-661; c) Chi, W.-J.; Li, Q.-S.; Li, Z.-S. *Nanoscale* 2016, *8*, 6146-6154.
- a) Araki, T.; Fukazawa, A.; Yamaguchi, S. *Angew. Chem. Int. Ed.* **2012**, *51*, 5484-5487; b) Scheuble, M.; Goll, M.; Ludwigs, S.
 Macromol. Rapid Commun. **2015**, *36*, 115-137.

- Negishi, E.-i.; Cederbaum, F. E.; Takahashi, T. *Tetrahedron Lett.* 1986, 27, 2829-2832.
- Dutton, J. L.; Farrar, G. J.; Sgro, M. J.; Battista, T. L.; Ragogna, P. J. Chem. Eur. J. 2009, 15, 10263-10271.
- Rosenthal, U.; Ohff, A.; Baumann, W.; Tillack, A.; Görls, H.;
 Burlakov, V. V.; Shur, V. B. Z. Anorg. Allg. Chem. 1995, 621, 77-83.
- He, G.; Kang, L.; Torres Delgado, W.; Shynkaruk, O.; Ferguson,
 M. J.; McDonald, R.; Rivard, E. J. Am. Chem. Soc. 2013, 135, 5360-5363.
- 17. Bondi, A. J. Phys. Chem. 1964, 68, 441-451.
- Fang, Z.; Samoc, M.; Webster, R. D.; Samoc, A.; Lai, Y.-H. *Tetrahedron Lett.* 2012, *53*, 4885-4888.
- a) Zhang, X.; Köhler, M.; Matzger, A. J. *Macromolecules* 2004, 37, 6306-6315; b) Zhao, H.; Wei, Y.; Zhao, J.; Wang, M. *Electrochimica Acta* 2014, 146, 231-241; c) Gibson, G. L.; McCormick, T. M.; Seferos, D. S. J. Am. Chem. Soc. 2012, 134, 539-547.
- 20. Malkin, J. Photophysical and Photochemical Properties of Aromatic Compounds. Taylor & Francis: 1992.
- a) Diallo, A. K.; Metri, N.; Brunel, F.; Sallenave, X.; Goubard, F.;
 Margeat, O.; Ackermann, J.; Videlot-Ackermann, C. Synth. Met.

2013, *184*, 35-40; b) Yan, P.; Liu, Z.; Zhang, S.; Liu, D.; Wang, X.; Yue, S.; Zhao, Y. *APL Mater.* **2014**, *2*, 116103-116110.

- a) Hsu, C.-Y.; Chen, Y.-C.; Lin, R. Y.-Y.; Ho, K.-C.; Lin, J. T. *Phys. Chem. Chem. Phys.* 2012, *14*, 14099-14109; b) Nguyen, W. H.; Bailie, C. D.; Unger, E. L.; McGehee, M. D. *J. Am. Chem. Soc.* 2014, *136*, 10996-11001; c) Meira, R.; Costa, P. M. M.; Di Paolo, R. E.; Morgado, J.; Alcacer, L.; Bastos, J. P.; Cheyns, D.; Charas, A. *New J. Chem.* 2015, *39*, 7389-7396.
- 23. Nishimura, H.; Ishida, N.; Shimazaki, A.; Wakamiya, A.; Saeki,
 A.; Scott, L. T.; Murata, Y. J. Am. Chem. Soc. 2015, 137, 15656-15659.
- a) Yu, Z.; Sun, L. Adv. Energy Mater. 2015, 5, 1500213-1500230;
 b) Swetha, T.; Singh, S. P. J. Mater. Chem. A 2015, 3, 18329-18344; c) Ameen, S.; Rub, M. A.; Kosa, S. A.; Alamry, K. A.; Akhtar, M. S.; Shin, H.-S.; Seo, H.-K.; Asiri, A. M.; Nazeeruddin, M. K. ChemSusChem 2016, 9, 10-27.
- 25. a) Van Overmeire, I.; Boldin, S. A.; Venkataraman, K.; Zisling,
 R.; De Jonghe, S.; Van Calenbergh, S.; De Keukeleire, D.;
 Futerman, A. H.; Herdewijn, P. *J. Med. Chem.* 2000, *43*, 41894199; b) Pawle, R. H.; Eastman, V.; Thomas, S. W. *J. Mater. Chem.* 2011, *21*, 14041-14047; c) Wang, F.; Kaafarani, B. R.;
 Neckers, D. C. *Macromolecules* 2003, *36*, 8225-8230; d) Wu, R.;
 Schumm, J. S.; Pearson, D. L.; Tour, J. M. *J. Org. Chem.* 1996, *61*,

6906-6921; e) Uttiya, S.; Miozzo, L.; Fumagalli, E. M.; Bergantin,
S.; Ruffo, R.; Parravicini, M.; Papagni, A.; Moret, M.; Sassella, A. *J. Mater. Chem. C* 2014, *2*, 4147-4155.

- Bertrand, G. H. V.; Tortech, L.; Gandon, V.; Aubert, C.; Fichou,
 D. *Chem. Commun.* 2014, *50*, 8663-8666.
- 27. Pratt, D. A.; DiLabio, G. A.; Valgimigli, L.; Pedulli, G. F.; Ingold,
 K. U. J. Am. Chem. Soc. 2002, 124, 11085-11092.
- Odom, S. A.; Lancaster, K.; Beverina, L.; Lefler, K. M.; Thompson, N. J.; Coropceanu, V.; Brédas, J.-L.; Marder, S. R.; Barlow, S. *Chem. Eur. J.* 2007, 13, 9637-9646.
- 29. Zhang, H.-C.; Pu, L. Tetrahedron 2003, 59, 1703-1709.
- 30. Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125-146.
- Li, H.; Fu, K.; Boix, P. P.; Wong, L. H.; Hagfeldt, A.; Grätzel, M.; Mhaisalkar, S. G.; Grimsdale, A. C. *ChemSusChem* 2014, *7*, 3420-3425.
- a) Brown, H. C.; Bhat, N. G.; Srebnik, M. *Tetrahedron Lett.* 1988, 29, 2631-2634; b) Gandon, V.; Leca, D.; Aechtner, T.; Vollhardt, K. P. C.; Malacria, M.; Aubert, C. *Org. Lett.* 2004, *6*, 3405-3407.
- Altenburger, K.; Arndt, P.; Spannenberg, A.; Baumann, W.;
 Rosenthal, U. *Eur. J. Inorg. Chem.* 2013, 3200-3205.
- 34. Hydrio, J.; Gouygou, M.; Dallemer, F.; Daran, J.-C.; Balavoine, G.
 G. A. *J. Organomet. Chem.* 2000, *595*, 261-267.

- Takahashi, T.; Swanson, D. R.; Negishi, E.-i. Chem. Lett. 1987, 16, 623-626.
- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.;
 Timmers, F. J. *Organometallics* 1996, 15, 1518-1520.
- Armarego, W. L. F.; Chai, C. L. L. Chapter 4 Purification of Organic Chemicals. In *Purification of Laboratory Chemicals* (Sixth Edition), Chai, W. L. F. A. L. L., Ed. Butterworth-Heinemann: Oxford, 2009; pp 88-444.
- Linshoeft, J.; Baum, E. J.; Hussain, A.; Gates, P. J.; Näther, C.;
 Staubitz, A. Angew. Chem. Int. Ed. 2014, 53, 12916-12920.
- 39. Kang, Y. K.; Deria, P.; Carroll, P. J.; Therien, M. J. Org. Lett.
 2008, 10, 1341-1344.
- 40. a) Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S. J. Org. Chem. 2010, 75, 6244-6251; b) Zhang, W.; Kraft, S.; Moore, J. S. J. Am. Chem. Soc. 2004, 126, 329-335; c) Melzig, L.; Metzger, A.; Knochel, P. Chem. Eur. J. 2011, 17, 2948-2956.

Chapter 5: Summary and future work

5.1. Summary and future work

Chapter 2 described a modular synthesis of a new hybrid class of air-stable luminogen termed spirocyclic germafluorene-germoles (SGGs). SGGs contain germafluorene and germole rings appended in spirocyclic manner. At first zirconium-mediated coupling was used to obtain $Cl_2GeC_4Et_4$ which then participated in the condensation reaction with 2,2'dilithiofluorene or its pre-brominated analogue to obtain $FlGeC_4Et_4$ (1) and $Br_2FlGeC_4Et_4$ (2) (Fl = fluorenyl; Figure 5.1). Because these analogues were not luminescent, in order to obtain emissive species with extended π -conjugation, Stille coupling with trimethylstannylbenzene and 2-(trimethylstannyl)thiophene was performed under microwave-assisted conditions.

Figure 5.1. Structures of the spirocyclic germafluorene-germoles 1-7.

The thienyl-substituted SGG **3** (Figure 5.1) exhibited blue photoluminescence with high quantum yield of 83 % in the solution; its dioctylfluorene analogue **4** was also prepared for further comparison of

optical properties as well as photo- and thermal stability. Both compounds have similar absorption and emission profiles, leading to a conclusion that only the bis(thienyl)biaryl portion was primarily involved in the luminescence. However, the SGG analogue **3** exhibited greater thermal and photooxidative stability in the solid state, which is an important factor for application in light-emitting devices. Next $FlGeC_4(2-thienyl)_4$ (5) was obtained using our modular approach and it showed bright yellow emission in the solid state as well as aggregation-induced emission properties due to restriction rotation of the peripherally located thiophene groups. Moreover, the non-emissive SGG precursor (6), capped with pinacolborane (BPin) groups was synthesized. The BPin groups had a quenching effect on luminescence, however one analogue was used in Suzuki-Miyaura cross-coupling to obtain a green-emitting SGG 7. Future work related to this BPin-capped co-monomer $\mathbf{6}$ includes optimization of its synthetic procedure. It was obtained only in 35 % yield after purification by column chromatography, followed by crystallization. Monomers for AA/BB-type polymerization (Equation 5.1) should have high degree of purity, otherwise there will be a dramatic reduction in the molecular weight of resulting polymers.¹

Hence, scaling up the reaction to obtain at least 1 g of the pure monomer per synthesis should be probed. Next, monomers for future polymerization trials are presented on the Figure 5.2. Synthesis of the comonomers could be found in the literature.² It would be of interest to investigate optical properties of the polymers (*e.g.*, quantum yield) as well as their thermal and photostability. Suzuki-Miyaura polymerization would give an access to a vast array of colour tunable luminescent polymers, which could be used as active layers in light-emitting devices, field-effect transistors and organic photovoltaics.

Figure 5.2. Possible co-monomers for future polymerization trials with BPin-capped SGG.

Blue emissive homopolymers of FlGeC₄Et₄ and 9,9'dioctylfluorene were prepared using Grignard metathesis or microwaveassisted Yamamoto polymerization routes (Figure 5.3). The SGG homopolymer **8** had lower quantum yield and thermal stability than polyfluorene **9**. SGG co-polymer with thiophene (**10**) was obtained using microwave-assisted Stille polymerization.

Figure 5.3. Structures of polymers 8-10.

Unfortunately, it was found that spirocyclic center did not provide the expected increase in solubility in the resulting polymers, despite attempts to incorporate a monomer unit with long alkoxy chains. Future work would include improvement of the solubility and thermal stability of SGG homopolymers by structural modification of a germole ring. Fortunately, the modular synthetic routes outlined in Chapters 2 and 3 should allow this to be accomplished. Synthesis of SGG homopolymers, which could be obtained by Grignard metathesis or microwave-assisted Yamamoto polymerization are presented in Scheme 5.1. They would potentially have enhanced processability, thermal stability and color tunable emission.

Scheme 5.1. Synthetic route for the targeted light-emitting SGG homopolymers.

Another future direction could be improvement of the synthetic route to heterofluorenes. Currently most used synthetic method is lithiation of biphenyl derivatives with average yields of the products *ca*. 30 %,³ thus it would be beneficial to obtain stable functionalized zirconacycle precursors, that could undergo one step metallacycle transfer to obtain any desired heterofluorenes. Parent zirconafluorene **11** (Scheme 5.2), indefinitely stable at 25 °C and in THF or Et₂O solutions, was reported in 86 % yield by Hilton and King.⁴ The proposed synthesis of brominated zirconafluorene **12** is outlined on the Scheme 5.2. The metallacycle route is general, includes only one by-product of Cp₂ZrCl₂ that could be separated by precipitation in hexanes and does not require purification by column chromatography in contrast to the condensation route, reported by Wei group.³ Notably, it could give an easy access to the class of dibenzotellurophenes (materials with nonlinear optical properties),⁵ which is poorly explored due to the cumbersome nature of existing syntheses.⁶

Scheme 5.2. Preparation of zirconacycle precursors for the synthesis of heterofluorenes.

In conclusion, in this chapter it was found that by altering the nature of the peripheral substituents, photoluminescence from electronically separate germafluorene and germole units could be turned on or off, leading to blue, green and orange-yellow emission. In 2015 the Chi group discovered that a single organic molecule (Figure 5.4), showed "on/on" dual white light emission by combining blue- and yellow-lightemitting units.⁷ Hence, future studies of SGGs would involve preparation of molecular or polymeric SGGs with "on/on" dual (preferably white) light emission.

Figure 5.4. White-light-emitting compound reported by Chi and co-workers.

Chapter 3 described development of Suzuki-Miyaura protocol to obtain symmetrical diarylalkynes. They were further converted into the tetraarylbutadienes with tunable luminescent properties, and moderate quantum yields (*e.g.*, 24.8 % in the solid state) as well as thermal and photooxidative stability. Future work could involve expanding of the protocol towards the one-pot synthesis of asymmetric diarylalkynes (Equation 5.2).

In order to incorporate blue-emissive tetracumylbutadiene into polymeric structures, synthesis of the tributyltin-capped tetracumylbutadiene monomer **13** was attempted *via* transmetallation with Bu₃SnCl; however it did not yield the desired product (Scheme 5.3).

Scheme 5.3. Synthetic approaches towards the monomer 13.

Hence synthetic route through iodination/lithiation of zirconacycle was tested, but synthesis of 1,4-diiodo-1,3-butadiene was not successful. Interestingly, Takahashi and co-workers showed remarkable effect of copper chloride on diiodination of zirconacyclopentadienes as well the effectiveness of iodine monochloride as an iodinating agent,⁸ thus improvement of the synthesis of 1,4-diiodo-1,3-butadiene could be potentially made by using CuCl as a catalyst or ICl as a source of iodine. A third approach towards halogenated 1,3-butadienes could be one-pot oxidation of diarylalkyne by HSO₃F/PbO₂ system, followed by quenching with hydrochloric (or hydrobromic) acid to yield 1,4-dihalo-1,3-butadiene, although extreme care has to be taken when working with fluorosulfuric acid (HSO₃F).⁹

Another approach to blue-emissive polymers (Equation 5.3) is using TaCl₅/ⁿBu₄Sn catalytic system¹⁰ to convert diarylalkynes into fluorescent polyacetylenes,¹¹ which are used for nitroaromatic sensing. For example, Schanze group studied poly[1-phenyl-2-(4trimethylsilylphenyl)ethyne] as thin-film fluorescence sensor for dinitrotoluene.¹²

Chapter 4 outlined the preparation of (a)symmetric tellurophenes. The triphenylamine-capped symmetrical tellurium heterocycles (**14** and **15**; Figure 5.5) exhibited green fluorescence in the solid state, arising from restriction of molecular motion of appended amine substituents.

Figure 5.5. Structures of tellurophenes 14 and 15.

Their electron and hole mobilities are currently under investigation through the collaboration with the Müller-Buschbaum group (TU Munich). Furthermore, in collaboration with Dr. Mike Boone (UofA) and the Wakamiya group (Kyoto University), their HOMO and LUMO levels were computed by DFT as well as by photoelectron spectroscopy. Based on these results, these compounds were determined to be unsuitable candidates for hole transport layers in perovskite solar cells, so a new system (**16**) with suitable HOMO level (\approx -5.0 eV) was designed; however the synthetic route towards **16** failed at the one step prior to the final. Thus, future work includes modification of the synthesis by using RuPhosbased catalyst/ligand system and an iodide-capped 1,2-bis(thiophen-2yl)ethyne¹³ for Buchwald-Hartwig amination in place of the bromidesubstituted reagent used in the current study. The proposed synthetic pathway is outlined on the Scheme 5.4.

Scheme 5.4. Proposed synthesis of a tellurophene 16 for use as a hole transport layer in perovskite solar cells.

Moreover, asymmetric tellurophenes with a pinacolborane group (BPin) at the 2-position are of interest due to their efficient colour tunable phosphorescence in the solid state.¹⁴ In this chapter synthetic attempts (summarized in Scheme 5.5) towards the abovementioned tellurophenes (**17** and **18**) were reported, including the step-wise addition of alkynes to Rosenthal's reagent Cp₂Zr(pyridine)(Me₃SiCCSiMe₃),¹⁵ followed by transmetallation with TeCl₂•bipy; however only symmetric derivatives were obtained.

Scheme 5.5. Synthetic approaches towards asymmetric tellurophenes 17 and 18.

The second approach was isolation of previously reported¹⁶ pyridine-stabilized zirconacyclopropene intermediate capped with BPin groups, however the procedure could not be reproduced. In 2000 Gouygou and co-workers reported synthesis of asymmetrically-substituted phospholes from *in situ* generated zirconacyclopropenes stabilized by dimethylaminopyridine.¹⁷ These conditions were probed for the step-wise coupling of tolan (PhC=CPh) and BPin-C=C-BPin, but only starting alkynes were identified as major products at the end of the reaction. Future work would be based on the report by Negishi and co-workers, where they isolated zirconacyclopropene-phosphine intermediate (in the dashed box

in Scheme 5.6 below) as a thermally stable solid.¹⁸ With this in mind, the isolated intermediate could further react with PinB-C=C-BPin and TeCl₂•bipy to form the desired phosphorescent tellurophenes. Moreover, a second approach would involve the synthesis of an asymmetrically-susbstituted zirconacycle using methodology developed by the Takahashi group (Scheme 5.6).¹⁹

Scheme 5.6. Proposed synthesis of the asymmetric tellurophene 18.

5.2. References

- 1. Leclerc, M.; Morin, J. F. Design and Synthesis of Conjugated Polymers. Wiley: 2010.
- a) Allard, N.; Aïch, R. B.; Gendron, D.; Boudreault, P.-L. T.; Tessier, C.; Alem, S.; Tse, S.-C.; Tao, Y.; Leclerc, M. *Macromolecules* 2010, 43, 2328-2333; b) Palermo, E. F.; van der Laan, H. L.; McNeil, A. J. *Polym. Chem.* 2013, 4, 4606-4611; c) Jaroch, T.; Maranda-Niedbała, A.; Góra, M.; Mieczkowski, J.; Zagórska, M.; Salamończyk, M.; Górecka, E.; Nowakowski, R. *Synth. Met.* 2015, 204, 133-140.

- Chen, R.-F.; Fan, Q.-L.; Zheng, C.; Huang, W. Org. Lett. 2006, 8, 203-205.
- 4. Hilton, C. L.; King, B. T. Organometallics 2006, 25, 4058-4061.
- Suzuki, H.; Nakamura, T.; Sakaguchi, T.; Ohta, K. J. Org. Chem. 1995, 60, 5274-5278.
- a) Sato, S.; Furukawa, N. *Tetrahedron Lett.* 1995, *36*, 2803-2806;
 b) Murata, S.; Suzuki, T.; Yanagisawa, A.; Suga, S. *J. Heterocycl. Chem.* 1991, *28*, 433-438; c) Sato, S.; Kondo, N.; Furukawa, N. *Organometallics* 1994, *13*, 3393-3395; d) Petragnani, N.; Stefani, H. A. *Tellurium in Organic Synthesis: Second, Updated and Enlarged Edition.* Elsevier Science: 2010.
- Xie, Z.; Chen, C.; Xu, S.; Li, J.; Zhang, Y.; Liu, S.; Xu, J.; Chi, Z.
 Angew. Chem. Int. Ed. 2015, 54, 7181-7184.
- Xi, C.; Huo, S.; Afifi, T. H.; Hara, R.; Takahashi, T. *Tetrahedron Lett.* 1997, 38, 4099-4102.
- Vasilyev, A. V.; Shchukin, A. O.; Walspurger, S.; Sommer, J. *Eur. J. Org. Chem.* 2008, 4632-4639.
- Tsuchihara, K.; Masuda, T.; Higashimura, T. J. Am. Chem. Soc.
 1991, 113, 8548-8549.
- 11. Toal, S. J.; Trogler, W. C. J. Mater. Chem. 2006, 16, 2871-2883.
- Liu, Y.; Mills, R. C.; Boncella, J. M.; Schanze, K. S. *Langmuir* 2001, 17, 7452-7455.
- 13. Zhang, H.-C.; Pu, L. Tetrahedron 2003, 59, 1703-1709.

- He, G.; Wiltshire, B. D.; Choi, P.; Savin, A.; Sun, S.; Mohammadpour, A.; Ferguson, M. J.; McDonald, R.; Farsinezhad, S.; Brown, A.; Shankar, K.; Rivard, E. *Chem. Commun.* 2015, *51*, 5444-5447.
- Rosenthal, U.; Ohff, A.; Baumann, W.; Tillack, A.; Görls, H.;
 Burlakov, V. V.; Shur, V. B. Z. Anorg. Allg. Chem. 1995, 621, 77-83.
- Altenburger, K.; Arndt, P.; Spannenberg, A.; Rosenthal, U. *Eur. J. Inorg. Chem.* 2015, 44-48.
- Hydrio, J.; Gouygou, M.; Dallemer, F.; Daran, J.-C.; Balavoine, G.
 G. A. *J. Organomet. Chem.* 2000, *595*, 261-267.
- Takahashi, T.; Swanson, D. R.; Negishi, E.-i. Chem. Lett. 1987, 16, 623-626.
- Takahashi, T.; Kotora, M.; Hara, R.; Xi, Z. Bull. Chem. Soc. Jpn.
 1999, 72, 2591-2602.

Complete bibliography

Chapter One

- a) Nagendran, S.; Roesky, H. W., Organometallics 2008, 27, 457-492; b) Lin, Z., Acc. Chem. Res. 2010, 43, 602-611; c) García-Vivó, D.; Ramos, A.; Ruiz, M. A., Coord. Chem. Rev. 2013, 257, 2143-2191; d) Cámpora, J.; Palma, P.; Carmona, E., Coord. Chem. Rev. 1999, 193–195, 207-281; e) Lee, V. Y.; Sekiguchi, A., Chem. Soc. Rev. 2008, 37, 1652-1665; f) Landorf, C. W.; Haley, M. M., Angew. Chem. Int. Ed. 2006, 45, 3914-3936; g) Chen, J.; Jia, G., Coord. Chem. Rev. 2013, 257, 2491-2521; h) He, G.; Shynkaruk, O.; Lui, M. W.; Rivard, E., Chem. Rev. 2014, 114, 7815-7880.
- Johnson, K. R. D.; Hayes, P. G., Chem. Soc. Rev. 2013, 42, 1947-1960.
- a) Kleiman, J. P.; Dubeck, M., J. Am. Chem. Soc. 1963, 85, 1544-1545; b) Cope, A. C.; Siekman, R. W., J. Am. Chem. Soc. 1965, 87, 3272-3273.
- 4. Albrecht, M., Chem. Rev. 2010, 110, 576-623.
- 5. McGuinness, D. S., *Chem. Rev.* **2011**, *111*, 2321-2341.
- Zee, D. Z.; Chantarojsiri, T.; Long, J. R.; Chang, C. J., Acc. Chem. Res. 2015, 48, 2027-2036.
- 7. Heller, B.; Hapke, M., Chem. Soc. Rev. 2007, 36, 1085-1094.
- a) Michon, C.; MacIntyre, K.; Corre, Y.; Agbossou-Niedercorn, F., *ChemCatChem* 2016, *8*, 1755-1762; b) Adhikary, A.; Guan, H.,

ACS Catalysis 2015, 5, 6858-6873; c) Mo, D.-L.; Zhang, T.-K.; Ge, G.-C.; Huang, X.-J.; Ding, C.-H.; Dai, L.-X.; Hou, X.-L., Synlett 2014, 25, 2686-2702; d) Albrecht, M.; van Koten, G., Angew. Chem. Int. Ed. 2001, 40, 3750-3781.

- 9. a) Omae, I., Coord. Chem. Rev. 2014, 280, 84-95; b) Cook, T. R.;
 Vajpayee, V.; Lee, M. H.; Stang, P. J.; Chi, K.-W., Acc. Chem. Res. 2013, 46, 2464-2474.
- a) Turner, E.; Bakken, N.; Li, J., *Inorg. Chem.* 2013, *52*, 7344-7351; b) Chowdhury, A.; Howlader, P.; Mukherjee, P. S., *Chem. Eur. J.* 2016, *22*, 7468-7478.
- 11. Lowry, M. S.; Bernhard, S., Chem. Eur. J. 2006, 12, 7970-7977.
- 12. Bronner, C.; Wenger, O. S., Dalton Trans. 2011, 40, 12409-12420.
- a) Lee, E.; Lee, S. Y.; Lindoy, L. F.; Lee, S. S., *Coord. Chem. Rev.*2013, 257, 3125-3138; b) McInnes, E. J. L.; Timco, G. A.;
 Whitehead, G. F. S.; Winpenny, R. E. P., *Angew. Chem. Int. Ed.*2015, 54, 14244-14269.
- 14. Lee, S. J.; Lin, W., Acc. Chem. Res. 2008, 41, 521-537.
- Canevet, D.; Pérez, E. M.; Martín, N., Angew. Chem. Int. Ed.
 2011, 50, 9248-9259.
- 16. Cook, T. R.; Stang, P. J., Chem. Rev. 2015, 115, 7001-7045.
- a) Xu, L.; Wang, Y.-X.; Yang, H.-B., *Dalton Trans.* 2015, *44*, 867890; b) Yan, X.; Wang, M.; Cook, T. R.; Zhang, M.; Saha, M. L.;

Zhou, Z.; Li, X.; Huang, F.; Stang, P. J., J. Am. Chem. Soc. 2016, 138, 4580-4588.

- a) Suzuki, N.; Hashizume, D., Coord. Chem. Rev. 2010, 254, 1307-1326; b) Takahashi, T.; Kanno, K., Metallocenes in Regio-and Stereoselective Synthesis. Springer: 2005.
- Majoral, J.-P.; Meunier, P.; Igau, A.; Pirio, N.; Zablocka, M.;
 Skowronska, A.; Bredeau, S., *Coord. Chem. Rev.* 1998, *178–180*, 145-167.
- 20. a) Chen, C.; Xi, C., Chin. Sci. Bull. 2010, 55, 3235-3247; b)
 Vicart, N.; J. Whitby, R., Chem. Commun. 1999, 1241-1242.
- 21. a) Takahashi, T.; Huo, S.; Hara, R.; Noguchi, Y.; Nakajima, K.;
 Sun, W.-H., *J. Am. Chem. Soc.* **1999**, *121*, 1094-1095; b) Xi, Z.;
 Fan, H.-T.; Mito, S.; Takahashi, T., *J. Organomet. Chem.* **2003**, 682, 108-112.
- 22. Gessner, V. H.; Tannaci, J. F.; Miller, A. D.; Tilley, T. D., Acc. Chem. Res. 2011, 44, 435-446.
- 23. Tanabe, M., Tetrahedron Lett. 2014, 55, 3641-3647.
- Li, S.; Takahashi, T., Aromatic Ring Construction from Zirconocenes and Titanocenes. In *Transition-Metal-Mediated Aromatic Ring Construction*, John Wiley & Sons, Inc.: 2013; pp 299-320.
- a) Beweries, T.; Haehnel, M.; Rosenthal, U., *Catal. Sci. Technol.* **2013**, *3*, 18-28; b) Roy, S.; Rosenthal, U.; Jemmis, E. D., *Acc.*

Chem. Res. **2014**, *47*, 2917-2930; c) Beweries, T.; Rosenthal, U., *Nat. Chem.* **2013**, *5*, 649-650; d) Rosenthal, U.; Burlakov, V. V.; Bach, M. A.; Beweries, T., Chem. Soc. Rev. **2007**, *36*, 719-728.

- Fagan, P. J.; Nugent, W. A., J. Am. Chem. Soc. 1988, 110, 2310-2312.
- 27. Toal, S. J.; Trogler, W. C., J. Mater. Chem. 2006, 16, 2871-2883.
- Steffen, A.; Ward, R. M.; Jones, W. D.; Marder, T. B., Coord. Chem. Rev. 2010, 254, 1950-1976.
- a) Rausch, M. D.; Boon, W. H.; Alt, H. G., *J. Organomet. Chem.* **1977**, *141*, 299-312; b) Atwood, J. L.; Hunter, W. E.; Alt, H.;
 Rausch, M. D., *J. Am. Chem. Soc.* **1976**, *98*, 2454-2459.
- a) Thanedar, S.; Farona, M. F., J. Organomet. Chem. 1982, 235, 65-68; b) Negishi, E.; Holmes, S. J.; Tour, J. M.; Miller, J. A., J. Am. Chem. Soc. 1985, 107, 2568-2569; c) Negishi, E.; Holmes, S. J.; Tour, J. M.; Miller, J. A.; Cederbaum, F. E.; Swanson, D. R.; Takahashi, T., J. Am. Chem. Soc. 1989, 111, 3336-3346; d) Xi, Z.; Hara, R.; Takahashi, T., J. Org. Chem. 1995, 60, 4444-4448; e) Buchwald, S. L.; Nielsen, R. B., J. Am. Chem. Soc. 1989, 111, 2870-2874.
- Braye, E. H.; Hübel, W.; Caplier, I., J. Am. Chem. Soc. 1961, 83, 4406-4413.
- 32. Watt, G. W.; Drummond, F. O., *J. Am. Chem. Soc.* **1966**, *88*, 5926-5927.

- Denhez, C.; Médégan, S.; Hélion, F.; Namy, J.-L.; Vasse, J.-L.;
 Szymoniak, J., Org. Lett. 2006, 8, 2945-2947.
- Negishi, E.-i.; Cederbaum, F. E.; Takahashi, T., *Tetrahedron Lett.* 1986, 27, 2829-2832.
- Takahashi, T.; Kageyama, M.; Denisov, V.; Hara, R.; Negishi, E., *Tetrahedron Lett.* 1993, 34, 687-690.
- a) Rosenthal, U.; Ohff, A.; Michalik, M.; Görls, H.; Burlakov, V. V.; Shur, V. B., *Angew. Chem. Int. Ed. Engl.* 1993, *32*, 1193-1195;
 b) Rosenthal, U.; Ohff, A.; Baumann, W.; Tillack, A.; Görls, H.; Burlakov, V. V.; Shur, V. B., *Z. Anorg. Allg. Chem.* 1995, *621*, 77-83.
- 37. a) Negishi, E.-i.; Nguyen, T.; Maye, J. P.; Choueiri, D.; Suzuki,
 N.; Takahashi, T., *Chem. Lett.* 1992, *21*, 2367-2370; b) Negishi,
 E.-I.; Takahashi, T., *Acc. Chem. Res.* 1994, *27*, 124-130.
- Dioumaev, V. K.; Harrod, J. F., Organometallics 1997, 16, 1452-1464.
- Takahashi, T.; Swanson, D. R.; Negishi, E.-i., *Chem. Lett.* 1987, 16, 623-626.
- 40. Johnson, S. A.; Liu, F.-Q.; Suh, M. C.; Zürcher, S.; Haufe, M.;
 Mao, S. S. H.; Tilley, T. D., J. Am. Chem. Soc. 2003, 125, 4199-4211.
- 41. Broene, R. D.; Buchwald, S. L., *Science* **1993**, *261*, 1696-1701.

- 42. a) Takahashi, T.; Kotora, M.; Hara, R.; Xi, Z., Bull. Chem. Soc. Jpn. 1999, 72, 2591-2602; b) Xi, Z.; Zhang, W.; Takahashi, T., Tetrahedron Lett. 2004, 45, 2427-2429.
- 43. a) Erker, G.; Zwettler, R., J. Organomet. Chem. 1991, 409, 179-188; b) Erker, G.; Zwettler, R.; Krueger, C.; Hyla-Kryspin, I.; Gleiter, R., Organometallics 1990, 9, 524-530.
- 44. a) Nugent, W. A.; Thorn, D. L.; Harlow, R. L., J. Am. Chem. Soc.
 1987, 109, 2788-2796; b) Hara, R.; Xi, Z.; Kotora, M.; Xi, C.; Takahashi, T., Chem. Lett. 1996, 25, 1003-1004.
- 45. Miller, A. D.; Johnson, S. A.; Tupper, K. A.; McBee, J. L.; Tilley,
 T. D., *Organometallics* 2009, *28*, 1252-1262.
- 46. a) Takahashi, T.; Li, Y.; Ito, T.; Xu, F.; Nakajima, K.; Liu, Y., J. Am. Chem. Soc. 2002, 124, 1144-1145; b) Li, S.; Qu, H.; Zhou, L.; Kanno, K.-i.; Guo, Q.; Shen, B.; Takahashi, T., Org. Lett. 2009, 11, 3318-3321; c) Takahashi, T.; Sun, W.-H.; Duan, Z.; Shen, B., Org. Lett. 2000, 2, 1197-1199; d) Takahashi, T.; Ishikawa, M.; Huo, S., J. Am. Chem. Soc. 2002, 124, 388-389.
- 47. a) Ni, Y.; Nakajima, K.; Kanno, K.-i.; Takahashi, T., Org. Lett.
 2009, 11, 3702-3705; b) Takahashi, T.; Li, Y.; Stepnicka, P.; Kitamura, M.; Liu, Y.; Nakajima, K.; Kotora, M., J. Am. Chem. Soc. 2002, 124, 576-582.
- Ren, S.; Igarashi, E.; Nakajima, K.; Kanno, K.-i.; Takahashi, T., J.
 Am. Chem. Soc. 2009, 131, 7492-7493.
- 49. Takahashi, T.; Tsai, F.-Y.; Li, Y.; Wang, H.; Kondo, Y.;
 Yamanaka, M.; Nakajima, K.; Kotora, M., J. Am. Chem. Soc.
 2002, 124, 5059-5067.
- 50. Yan, X.; Zhou, Y.; Xi, C., Organometallics 2013, 32, 869-873.
- Xi, C.; Yan, X.; You, W.; Takahashi, T., Angew. Chem. Int. Ed.
 2009, 48, 8120-8123.
- 52. a) Kanno, K.-i.; Igarashi, E.; Zhou, L.; Nakajima, K.; Takahashi, T., *J. Am. Chem. Soc.* 2008, *130*, 5624-5625; b) Takahashi, T.;
 Liu, Y.; Iesato, A.; Chaki, S.; Nakajima, K.; Kanno, K.-i., *J. Am. Chem. Soc.* 2005, *127*, 11928-11929.
- 53. Yan, X.; Xi, C., Acc. Chem. Res. 2015, 48, 935-946.
- Fagan, P. J.; Nugent, W. A.; Calabrese, J. C., J. Am. Chem. Soc.
 1994, 116, 1880-1889.
- 55. Xi, C.; Huo, S.; Afifi, T. H.; Hara, R.; Takahashi, T., *Tetrahedron Lett.* **1997**, *38*, 4099-4102.
- Martín, R.; Larsen, C. H.; Cuenca, A.; Buchwald, S. L., *Org. Lett.* 2007, 9, 3379-3382.
- 57. Araki, T.; Fukazawa, A.; Yamaguchi, S., *Angew. Chem. Int. Ed.*2012, *51*, 5484-5487.
- Fan, C.; Piers, W. E.; Parvez, M., Angew. Chem. Int. Ed. 2009, 48, 2955-2958.
- Agou, T.; Wasano, T.; Jin, P.; Nagase, S.; Tokitoh, N., Angew. Chem. Int. Ed. 2013, 52, 10031-10034.

- Bankwitz, U.; Sohn, H.; Powell, D. R.; West, R., J. Organomet. Chem. 1995, 499, C7-C9.
- 61. Ura, Y.; Yanzhong, L.; Zhenfeng, X.; Takahashi, T., *Tetrahedron Lett.* **1998**, *39*, 2787-2790.
- Zhan, M.; Zhang, S.; Zhang, W.-X.; Xi, Z., Org. Lett. 2013, 15, 4182-4185.
- 63. Geng, W.; Zhang, W.-X.; Hao, W.; Xi, Z., J. Am. Chem. Soc.
 2012, 134, 20230-20233.
- 64. Zhou, Y.; Yan, X.; Chen, C.; Xi, C., *Organometallics* **2013**, *32*, 6182-6185.
- Ashe, A. J.; Kampf, J. W.; Al-Taweel, S. M., Organometallics
 1992, 11, 1491-1496.
- Ashe, A. J.; Kampf, J. W.; Al-Taweel, S. M., J. Am. Chem. Soc.
 1992, 114, 372-374.
- Zhao, P.; Yin, H.; Gao, H.; Xi, C., J. Org. Chem. 2013, 78, 5001-5006.
- Fagan, P. J.; Burns, E. G.; Calabrese, J. C., J. Am. Chem. Soc.
 1988, 110, 2979-2981.
- 69. He, X.; Baumgartner, T., *RSC Adv.* **2013**, *3*, 11334-11350.
- Ohshita, J.; Miyazaki, M.; Zhang, F.-B.; Tanaka, D.; Morihara, Y., *Polym J* 2013, 45, 979-984.
- 71. Romero-Nieto, C.; Durben, S.; Kormos, I. M.; Baumgartner, T., *Adv. Funct. Mater.* **2009**, *19*, 3625-3631.

- Yan, H.; Song, Y.; McKeown, G. R.; Scholes, G. D.; Seferos, D.
 S., *Adv. Mater.* 2015, *27*, 3484-3491.
- Lingyun, W.; Lingling, Y.; Derong, C., Curr. Org. Chem. 2014, 18, 1028-1049.
- a) Zhao, Z.; He, B.; Tang, B. Z., *Chem. Sci.* 2015, *6*, 5347-5365; b)
 Saito, M., *Coord. Chem. Rev.* 2012, *256*, 627-636; c) Biehl, E. R.,
 Chapter 4.1 Five-Membered Ring Systems: Thiophenes and
 Se/Te Derivatives. In *Progress in Heterocyclic Chemistry*, Gordon,
 W. G.; John, A. J., Eds. Elsevier: 2013; Vol. 25, pp 97-135; d)
 Rivard, E., *Chem. Lett.* 2015, *44*, 730-736; e) Carrera, E. I.;
 Seferos, D. S., *Macromolecules* 2015, *48*, 297-308; f) Parke S.M.;
 Boone M. P.; Rivard E., *Chem. Commun.* 2016, DOI: 10.1039/C6CC04023C.
- Yamaguchi, S.; Itami, Y.; Tamao, K., Organometallics 1998, 17, 4910-4916.
- Leavitt, F. C.; Manuel, T. A.; Johnson, F., J. Am. Chem. Soc. 1959, 81, 3163-3164.
- 77. Curtis, M. D., J. Am. Chem. Soc. 1969, 91, 6011-6018.
- a) Hissler, M.; Dyer, P. W.; Réau, R., *Coord. Chem. Rev.* 2003, 244, 1-44; b) Bandrowsky, T. L.; Carroll, J. B.; Braddock-Wilking, J., *Organometallics* 2011, 30, 3559-3569; c) Losehand, U.; Mitzel, N. W., *J. Chem. Soc., Dalton Trans.* 2000, 1049-1052; d) Freeman, W. P.; Tilley, T. D.; Liable-Sands, L. M.; Rheingold, A. L., *J. Am.*

Chem. Soc. 1996, 118, 10457-10468; e) Wrackmeyer, B., Coord.
Chem. Rev. 1995, 145, 125-156; f) Dysard, J. M.; Tilley, T. D.,
Organometallics 2000, 19, 4720-4725; g) Nosov, K. S.; Lalov, A.
V.; Borovik, A. S.; Lee, V. V.; Egorov, M. P.; Nefedov, O. M.,
Russ. Chem. Bull. 45, 2623-2626.

- Dhiman, A.; Zhang, Z.-R.; West, R.; Becker, J. Y., J. Electroanal. Chem. 2004, 573, 139-146.
- Y. H. Park, Y. H. S. a. Y. K., J. Korean Phys. Soc. 2010, 57, 1463-1466.
- 81. a) Maslennikova, O. S.; Nosov, K. S.; Faustov, V. I.; Egorov, M.
 P.; Nefedov, O. M.; Aleksandrov, G. G.; Eremenko, I. L.; Nefedov, S. E., *Russ. Chem. Bull.* 2000, *49*, 1275-1281; b)
 Margetić, D.; Prugovečki, B.; Đilović, I.; Eckert-Maksić, M., *Struct. Chem.* 2006, *17*, 301-306; c) Neumann, W. P.; Schriewer, M., *Tetrahedron Lett.* 1980, *21*, 3273-3276.
- Billeb, G.; Brauer, H.; Neumann, W. P.; Weisbeck, M., Organometallics 1992, 11, 2069-2074.
- Khabashesku, V. N.; Boganov, S. E.; Antic, D.; Nefedov, O. M.;
 Michl, J., Organometallics 1996, 15, 4714-4724.
- 84. Tsumuraya, T.; Ando, W., *Organometallics* **1990**, *9*, 869-871.
- a) Matsuda, T.; Kadowaki, S.; Yamaguchi, Y.; Murakami, M.,
 Org. Lett. 2010, 12, 1056-1058; b) Matsuda, T., Synthesis of
 Heterocycles via X-H Bond Addition to Diynes. In Transition-

Metal-Mediated Aromatic Ring Construction, John Wiley & Sons, Inc.: 2013; pp 537-547.

- a) Laporterie, A.; Iloughmane, H.; Dubac, J., J. Organomet. Chem.
 1983, 244, C12-C16; b) Dufour, P.; Dartiguenave, M.; Dartiguenave, Y.; Dubac, J., J. Organomet. Chem. 1990, 384, 61-69; c) Manuel, G.; Bertrand, G.; El Anba, F., Organometallics 1983, 2, 391-394.
- a) Guimon, C.; Pfister-Guillouzo, G.; Dubac, J.; Laporterie, A.; Manuel, G.; Iloughmane, H., *Organometallics* 1985, *4*, 636-641;
 b) Burns, G. T.; Colomer, E.; Corriu, R. J. P.; Lheureux, M.; Dubac, J.; Laporterie, A.; Iloughmane, H., *Organometallics* 1987, *6*, 1398-1406.
- 88. Tobisu, M.; Baba, K.; Chatani, N., Org. Lett. 2011, 13, 3282-3284.
- 89. Wrackmeyer, B., Heteroat. Chem. 2006, 17, 188-208.
- a) Saito, M.; Yoshioka, M., Coord. Chem. Rev. 2005, 249, 765-780; b) West, R., Novel aromatic species containing group 14 atoms. In Pure and Applied Chemistry, 2008; Vol. 80, p 563; c) Hong, J.-H.; Pan, Y.; Boudjouk, P., Angew. Chem. Int. Ed. Engl. 1996, 35, 186-188.
- 91. a) West, R.; Sohn, H.; Powell, D. R.; Müller, T.; Apeloig, Y., *Angew. Chem. Int. Ed. Engl.* 1996, *35*, 1002-1004; b) Choi, S.-B.; Boudjouk, P.; Hong, J.-H., *Organometallics* 1999, *18*, 2919-2921.

- 92. Saito, M.; Sakaguchi, M.; Tajima, T.; Ishimura, K.; Nagase, S.;
 Hada, M., *Science* 2010, *328*, 339-342.
- a) Dysard, J. M.; Tilley, T. D., J. Am. Chem. Soc. 2000, 122, 3097-3105; b) Dysard, J. M.; Tilley, T. D., J. Am. Chem. Soc. 1998, 120, 8245-8246.
- Dysard, J. M.; Tilley, T. D., Organometallics 2000, 19, 2671-2675.
- Liu, Y.; Ballweg, D.; West, R., Organometallics 2001, 20, 5769-5770.
- 96. a) Ullah, F.; Kühl, O.; Rehman, W.; Jones, P. G.; Heinicke, J., *Polyhedron* 2010, 29, 1041-1048; b) Heinicke, J.; Oprea, A.; Kindermann, M. K.; Karpati, T.; Nyulászi, L.; Veszprémi, T., *Chem. Eur. J.* 1998, 4, 541-545.
- Yasuike, S.; Iida, T.; Okajima, S.; Yamaguchi, K.; Seki, H.; Kurita, J., *Tetrahedron* 2001, *57*, 10047-10053.
- Mishra, A.; Ma, C.-Q.; Bäuerle, P., Chem. Rev. 2009, 109, 1141-1276.
- Ohshita, J.; Miyazaki, M.; Tanaka, D.; Morihara, Y.; Fujita, Y.;
 Kunugi, Y., *Polym. Chem.* 2013, *4*, 3116-3122.
- a) Ohshita, J.; Hwang, Y.-M.; Mizumo, T.; Yoshida, H.; Ooyama,
 Y.; Harima, Y.; Kunugi, Y., *Organometallics* 2011, *30*, 32333236; b) Hwang, Y.-M.; Ohshita, J.; Harima, Y.; Mizumo, T.;

Ooyama, Y.; Morihara, Y.; Izawa, T.; Sugioka, T.; Fujita, A., *Polymer* **2011**, *52*, 3912-3916.

- 101. Gendron, D.; Morin, P.-O.; Berrouard, P.; Allard, N.; Aïch, B. R.;
 Garon, C. N.; Tao, Y.; Leclerc, M., *Macromolecules* 2011, 44, 7188-7193.
- 102. a) Amb, C. M.; Chen, S.; Graham, K. R.; Subbiah, J.; Small, C. E.;
 So, F.; Reynolds, J. R., *J. Am. Chem. Soc.* 2011, *133*, 10062-10065; b) Small, C. E.; Chen, S.; Subbiah, J.; Amb, C. M.; Tsang,
 S.-W.; Lai, T.-H.; Reynolds, J. R.; So, F., *Nat. Photon.* 2012, *6*, 115-120; c) Stalder, R.; Puniredd, S. R.; Hansen, M. R.; Koldemir,
 U.; Grand, C.; Zajaczkowski, W.; Müllen, K.; Pisula, W.; Reynolds, J. R., *Chem. Mater.* 2016, *28*, 1286-1297.
- 103. a) Fei, Z.; Ashraf, R. S.; Huang, Z.; Smith, J.; Kline, R. J.; D'Angelo, P.; Anthopoulos, T. D.; Durrant, J. R.; McCulloch, I.; Heeney, M., *Chem. Commun.* 2012, *48*, 2955-2957; b) Fei, Z.; Shahid, M.; Yaacobi-Gross, N.; Rossbauer, S.; Zhong, H.; Watkins, S. E.; Anthopoulos, T. D.; Heeney, M., *Chem. Commun.* 2012, *48*, 11130-11132.
- a) Gibson, G. L.; Gao, D.; Jahnke, A. A.; Sun, J.; Tilley, A. J.;
 Seferos, D. S., *J. Mater. Chem. A* 2014, *2*, 14468-14480; b) Kim,
 J. S.; Fei, Z.; Wood, S.; James, D. T.; Sim, M.; Cho, K.; Heeney,
 M. J.; Kim, J.-S., *Adv. Energy Mater.* 2014, *4*, 1400527-1400535;
 c) Kesava, S. V.; Fei, Z.; Rimshaw, A. D.; Wang, C.; Hexemer, A.;

Asbury, J. B.; Heeney, M.; Gomez, E. D., *Adv. Energy Mater.* 2014, *4*, 1400116-1400126.

- Fei, Z.; Kim, J. S.; Smith, J.; Domingo, E. B.; Anthopoulos, T. D.;
 Stingelin, N.; Watkins, S. E.; Kim, J.-S.; Heeney, M., *J. Mater. Chem.* 2011, 21, 16257-16263.
- Zong, K.; Deininger, J. J.; Reynolds, J. R., Org. Lett. 2013, 15, 1032-1035.
- 107. Zhong, H.; Li, Z.; Deledalle, F.; Fregoso, E. C.; Shahid, M.; Fei,
 Z.; Nielsen, C. B.; Yaacobi-Gross, N.; Rossbauer, S.;
 Anthopoulos, T. D.; Durrant, J. R.; Heeney, M., J. Am. Chem. Soc.
 2013, 135, 2040-2043.
- 108. Jwo, P.-C.; Lai, Y.-Y.; Tsai, C.-E.; Lai, Y.-Y.; Liang, W.-W.; Hsu,
 C.-S.; Cheng, Y.-J., *Macromolecules* 2014, 47, 7386-7396.
- 109. Tavares, P.; Meunier, P.; Gautheron, B.; Dousse, G.; Lavayssiere,
 H., *Phosphorus Sulfur Silicon Relat. Elem.* 1991, *55*, 249-253.
- Fei, Z.; Ashraf, R. S.; Han, Y.; Wang, S.; Yau, C. P.; Tuladhar, P.
 S.; Anthopoulos, T. D.; Chabinyc, M. L.; Heeney, M., *J. Mater. Chem. A* 2015, *3*, 1986-1994.
- 111. Tamao, K.; Uchida, M.; Izumizawa, T.; Furukawa, K.;
 Yamaguchi, S., J. Am. Chem. Soc. 1996, 118, 11974-11975.
- Sohn, H.; Sailor, M. J.; Magde, D.; Trogler, W. C., J. Am. Chem.
 Soc. 2003, 125, 3821-3830.

- 113. Toal, S. J.; Sohn, H.; Zakarov, L. N.; Kassel, W. S.; Golen, J. A.;
 Rheingold, A. L.; Trogler, W. C., *Organometallics* 2005, *24*, 3081-3087.
- 114. Zhou, W.-M.; Tomita, I., Polym. Bull. 2008, 61, 603-609.
- 115. Pei, J.; Yu, W.-L.; Huang, W.; Heeger, A. J., *Macromolecules*2000, 33, 2462-2471.
- Lucht, B. L.; Buretea, M. A.; Tilley, T. D., Organometallics 2000, 19, 3469-3475.
- 117. Nitschke, J. R.; Don Tilley, T., J. Organomet. Chem. 2003, 666, 15-22.
- Law, C. C. W.; Chen, J.; Lam, J. W. Y.; Peng, H.; Tang, B. Z., J. Inorg. Organomet. Polym. 2004, 14, 39-51.
- 119. McMahon F. A, P. T. G., Robinson P. L., J. Chem. Soc. 1933, 1644.
- 120. Mack, W., Angew. Chem. Int. Ed. Engl. 1966, 5, 896-896.
- 121. Rhoden, C. R. B.; Zeni, G., Org. Biomol. Chem. 2011, 9, 1301-1313.
- 122. Sweat, D. P.; Stephens, C. E., J. Organomet. Chem. 2008, 693, 2463-2464.
- 123. Dutton, J. L.; Farrar, G. J.; Sgro, M. J.; Battista, T. L.; Ragogna, P. J., *Chem. Eur. J.* 2009, *15*, 10263-10271.
- Rivas, C.; Vargas, F.; Aguiar, G.; Torrealba, A.; Machado, R., J. Photochem. Photobiol., A 1997, 104, 53-58.

- 125. a) Carrera, E. I.; McCormick, T. M.; Kapp, M. J.; Lough, A. J.; Seferos, D. S., *Inorg. Chem.* 2013, *52*, 13779-13790; b) Carrera, E.
 I.; Seferos, D. S., *Dalton Trans.* 2015, *44*, 2092-2096; c) McCormick, T. M.; Jahnke, A. A.; Lough, A. J.; Seferos, D. S., *J. Am. Chem. Soc.* 2012, *134*, 3542-3548.
- McCormick, T. M.; Carrera, E. I.; Schon, T. B.; Seferos, D. S., Chem. Commun. 2013, 49, 11182-11184.
- Carrera, E. I.; Lanterna, A. E.; Lough, A. J.; Scaiano, J. C.;
 Seferos, D. S., J. Am. Chem. Soc. 2016, 138, 2678-2689.
- a) Prasad, P.; Singh, H.; Butcher, R. A. Y., J. Chem. Sci. 2014, 126, 1311-1321; b) Li, P.-F.; Schon, T. B.; Seferos, D. S., Angew. Chem. Int. Ed. 2015, 54, 9361-9366.
- a) Ahmad, S.; Yadav, K. K.; Singh, S. J.; Chauhan, S. M. S., *RSC Adv.* 2014, *4*, 3171-3180; b) Pacholska-Dudziak, E.; Szczepaniak, M.; Książek, A.; Latos-Grażyński, L., *Angew. Chem. Int. Ed.* 2013, *52*, 8898-8903; c) Sathyamoorthy, B.; Axelrod, A.; Farwell, V.; Bennett, S. M.; Calitree, B. D.; Benedict, J. B.; Sukumaran, D. K.; Detty, M. R., *Organometallics* 2010, *29*, 3431-3441.
- 130. a) E. Lukevics, P. A., S. Belyakov, and O. Pudova, *Chem. Heterocycl. Compd.* 2002, *38*, 763-777; b) Biehl, E. R., Chapter
 5.1 Five-Membered Ring Systems: Thiophenes and Se/Te Derivatives. In *Progress in Heterocyclic Chemistry*, Gordon, W. G.; John, A. J., Eds. Elsevier: 2015; Vol. 27, pp 117-157.

- Jahnke, A. C.; Spulber, M.; Neuburger, M.; Palivan, C. G.;
 Wenger, O. S., *Chem. Commun.* 2014, *50*, 10883-10886.
- Tamura, R.; Nagata, Y.; Matsumoto, A.; Shimizu, H.; Ono, N.;
 Kamimura, A.; Hori, K., *Adv. Mater.* **1993**, *5*, 719-721.
- 133. Sugamata, K.; Sasamori, T.; Tokitoh, N., *Eur. J. Inorg. Chem.*2012, 775-778.
- 134. a) Otsubo, T.; Inoue, S.; Nozoe, H.; Jigami, T.; Ogura, F., Synth.
 Met. 1995, 69, 537-538; b) Inoue, S.; Jigami, T.; Nozoe, H.;
 Otsubo, T.; Ogura, F., Tetrahedron Lett. 1994, 35, 8009-8012.
- Sugimoto R.; Yoshino K.; Inoue S.; Tsukagoshi K., Jpn. J. Appl. Phys. 1985, 24, L425.
- 136. a) Jahnke, A. A.; Djukic, B.; McCormick, T. M.; Buchaca Domingo, E.; Hellmann, C.; Lee, Y.; Seferos, D. S., *J. Am. Chem. Soc.* 2013, *135*, 951-954; b) Jahnke, A. A.; Seferos, D. S., *Macromol. Rapid Commun.* 2011, *32*, 943-951.
- 137. a) Dabdoub, M. J.; Dabdoub, V. B.; Pereira, M. A.; Zukerman-Schpector, J., *J. Org. Chem.* 1996, *61*, 9503-9511; b) Sweat, D. P.;
 Stephens, C. E., *Synthesis* 2009, 3214-3218.
- a) Ng, S. C.; Ding, H.; Chan, H. S. O., *Chem. Lett.* 1999, 28, 1325-1326; b) Jahnke, A. A.; Howe, G. W.; Seferos, D. S., *Angew. Chem. Int. Ed.* 2010, 49, 10140-10144; c) He, G.; Kang, L.; Torres Delgado, W.; Shynkaruk, O.; Ferguson, M. J.; McDonald, R.; Rivard, E., *J. Am. Chem. Soc.* 2013, *135*, 5360-5363; d) Mahrok,

A. K.; Carrera, E. I.; Tilley, A. J.; Ye, S.; Seferos, D. S., *Chem. Commun.* 2015, *51*, 5475-5478; e) Gibson, G. L.; McCormick, T.
M.; Seferos, D. S., *J. Am. Chem. Soc.* 2012, *134*, 539-547; f)
Planells, M.; Schroeder, B. C.; McCulloch, I., *Macromolecules*2014, *47*, 5889-5894; g) Al-Hashimi, M.; Han, Y.; Smith, J.;
Bazzi, H. S.; Alqaradawi, S. Y. A.; Watkins, S. E.; Anthopoulos,
T. D.; Heeney, M., *Chem. Sci.* 2016, *7*, 1093-1099.

- Park, Y. S.; Wu, Q.; Nam, C.-Y.; Grubbs, R. B., Angew. Chem. Int. Ed. 2014, 53, 10691-10695.
- a) Ashraf, R. S.; Meager, I.; Nikolka, M.; Kirkus, M.; Planells, M.;
 Schroeder, B. C.; Holliday, S.; Hurhangee, M.; Nielsen, C. B.;
 Sirringhaus, H.; McCulloch, I., *J. Am. Chem. Soc.* 2015, *137*, 1314-1321; b) Kaur, M.; Seul Yang, D.; Shin, J.; Wan Lee, T.;
 Choi, K.; Ju Cho, M.; Hoon Choi, D., *Chem. Commun.* 2013, *49*, 5495-5497.
- 141. Ye, S.; Steube, M.; Carrera, E. I.; Seferos, D. S., *Macromolecules*2016, 49, 1704-1711.
- 142. Jahnke, A. A.; Yu, L.; Coombs, N.; Scaccabarozzi, A. D.; Tilley,
 A. J.; DiCarmine, P. M.; Amassian, A.; Stingelin, N.; Seferos, D.
 S., J. Mater. Chem. C 2015, 3, 3767-3773.
- 143. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Santos, D. A. D.;

Bredas, J. L.; Logdlund, M.; Salaneck, W. R., *Nature* **1999**, *397*, 121-128.

- a) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.;
 Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z., *Chem. Commun.* 2001, 1740-1741; b) Tang, B. Z.; Zhan, X.; Yu, G.; Sze
 Lee, P. P.; Liu, Y.; Zhu, D., J. Mater. Chem. 2001, 11, 2974-2978.
- 145. a) Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Chem. Commun. 2009, 4332-4353; b) Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Chem. Soc. Rev. 2011, 40, 5361-5388.
- 146. a) Zhao, H.; Wang, Y.; Wang, Y.; He, G.; Xue, M.; Guo, P.; Dai, B.; Liu, Z.; Qi, Y., *RSC Adv.* 2015, *5*, 19176-19181; b) Zhao, Z.; Tang, B. Z., Tetraarylethenes and Aggregation-Induced Emission. In *Polycyclic Arenes and Heteroarenes*, Wiley-VCH Verlag GmbH & Co. KGaA: 2015; pp 193-222; c) Zhang, G.-F.; Wang, H.; Aldred, M. P.; Chen, T.; Chen, Z.-Q.; Meng, X.; Zhu, M.-Q., *Chem. Mater.* 2014, *26*, 4433-4446.
- 147. Chen, B.; Jiang, Y.; Chen, L.; Nie, H.; He, B.; Lu, P.; Sung, H. H.
 Y.; Williams, I. D.; Kwok, H. S.; Qin, A.; Zhao, Z.; Tang, B. Z., *Chem. Eur. J.* 2014, 20, 1931-1939.
- 148. Ding, D.; Li, K.; Liu, B.; Tang, B. Z., Acc. Chem. Res. 2013, 46, 2441-2453.
- a) Mullin, J. L.; Tracy, H. J.; Ford, J. R.; Keenan, S. R.; Fridman,
 F., J. Inorg. Organomet. Polym Mater. 2007, 17, 201-213; b)

Tracy, H. J.; Mullin, J. L.; Klooster, W. T.; Martin, J. A.; Haug, J.;
Wallace, S.; Rudloe, I.; Watts, K., *Inorg. Chem.* 2005, *44*, 2003-2011; c) Ferman, J.; Kakareka, J. P.; Klooster, W. T.; Mullin, J. L.;
Quattrucci, J.; Ricci, J. S.; Tracy, H. J.; Vining, W. J.; Wallace, S., *Inorg. Chem.* 1999, *38*, 2464-2472.

- 150. Mullin, J. L.; Tracy, H. J., Aggregation-Induced Emission in Group 14 Metalloles (Siloles, Germoles, and Stannoles): Spectroscopic Considerations, Substituent Effects, and Applications. In Aggregation-Induced Emission: Fundamentals and Applications, Volumes 1 and 2, John Wiley and Sons Ltd: 2013; pp 39-60.
- 151. Corey, J. Y., Synthesis of Siloles (and Germoles) that Exhibit the AIE Effect. In Aggregation-Induced Emission: Fundamentals and Applications, Volumes 1 and 2, John Wiley and Sons Ltd: 2013; pp 1-37.
- Xiang, H.; Cheng, J.; Ma, X.; Zhou, X.; Chruma, J. J., *Chem. Soc. Rev.* 2013, 42, 6128-6185.
- 153. Zander, M.; Kirsch, G., Z. Naturforsch. A 1989, 44, 205.
- 154. Detty, M. R.; Merkel, P. B., J. Am. Chem. Soc. 1990, 112, 3845-3855.
- 155. Annaka, T.; Nakata, N.; Ishii, A., Organometallics 2015, 34, 12721278.

- 156. He, G.; Torres Delgado, W.; Schatz, D. J.; Merten, C.; Mohammadpour, A.; Mayr, L.; Ferguson, M. J.; McDonald, R.; Brown, A.; Shankar, K.; Rivard, E., *Angew. Chem. Int. Ed.* 2014, 53, 4587-4591.
- 157. a) Bergman, J.; Engman, L., J. Organomet. Chem. 1980, 201, 377-387; b) H.Mørkved, E.; Lakshmikantham, M. V.; Cava, M. P., *Tetrahedron Lett.* 1996, 37, 9149-9150; c) Sashida, H.; Kaname, M.; Nakayama, A.; Suzuki, H.; Minoura, M., *Tetrahedron* 2010, 66, 5149-5157; d) Takimiya, K.; Kunugi, Y.; Konda, Y.; Niihara, N.; Otsubo, T., J. Am. Chem. Soc. 2004, 126, 5084-5085.
- He, G.; Wiltshire, B. D.; Choi, P.; Savin, A.; Sun, S.; Mohammadpour, A.; Ferguson, M. J.; McDonald, R.; Farsinezhad, S.; Brown, A.; Shankar, K.; Rivard, E., *Chem. Commun.* 2015, *51*, 5444-5447.
- 159. a) Chen, Z.; Luo, M.; Wen, Y.; Luo, G.; Liu, L., Org. Lett. 2014, 16, 3020-3023; b) Ilies, L.; Yoshida, T.; Nakamura, E., J. Am. Chem. Soc. 2012, 134, 16951-16954.
- 160. a) Li, X.; Huang, W.; Liang, D.; Yuan, L.; Ma, Y.; Gu, L., *Tetrahedron* 2015, 71, 1045-1049; b) Jung, M. E.; Deng, G., Org. *Lett.* 2014, 16, 2142-2145.
- 161. a) Liu, Z.; Larock, R. C., Angew. Chem. Int. Ed. 2007, 46, 25352538; b) Sharma, U.; Park, Y.; Chang, S., J. Org. Chem. 2014, 79, 9899-9906.

- Tsao, F. A.; Cao, L.; Grimme, S.; Stephan, D. W., J. Am. Chem. Soc. 2015, 137, 13264-13267.
- 163. a) Ghosh, M.; Naskar, A.; Mishra, S.; Hajra, A., *Tetrahedron Lett.*2015, 56, 4101-4104; b) Figueira-Duarte, T. M.; Gégout, A.;
 Olivier, J.; Cardinali, F.; Nierengarten, J.-F., *Eur. J. Org. Chem.*2009, 3819-3819.
- 164. Kotani, M.; Kobayashi, S.; Chang, J.-A., J. Phys. Org. Chem.
 2002, 15, 863-868.
- Burch, R. R.; Shusterman, A. J.; Muetterties, E. L.; Teller, R. G.;
 Williams, J. M., J. Am. Chem. Soc. 1983, 105, 3546-3556.
- Wei, J.; Wang, Z.; Zhang, W.-X.; Xi, Z., Org. Lett. 2013, 15, 1222-1225.
- 167. Shi, Y.; Qian, H.; Lucas, N. T.; Xu, W.; Wang, Z., *Tetrahedron Lett.* 2009, 50, 4110-4113.
- 168. a) Rasolofonjatovo, E.; Provot, O.; Hamze, A.; Bignon, J.; Thoret, S.; Brion, J.-D.; Alami, M., *Eur. J. Med. Chem.* 2010, 45, 3617-3626; b) Calvet, G.; Livecchi, M.; Schmidt, F., *J. Org. Chem.* 2011, 76, 4734-4740.
- 169. Hadfield, J. A.; McGown, A. T., Synth. Commun. 1998, 28, 1421-1431.
- a) Hennrich, G.; Murillo, M. T.; Prados, P.; Song, K.; Asselberghs,I.; Clays, K.; Persoons, A.; Benet-Buchholz, J.; de Mendoza, J.,

Chem. Commun. **2005**, 2747-2749; b) Fang, Z.; Teo, T.-L.; Cai, L.; Lai, Y.-H.; Samoc, A.; Samoc, M., *Org. Lett.* **2009**, *11*, 1-4.

- 171. Sonogashira, K.; Tohda, Y.; Hagihara, N., *Tetrahedron Lett.* 1975, *16*, 4467-4470.
- a) Yin; Liebscher, J., *Chem. Rev.* 2007, *107*, 133-173; b)
 Chinchilla, R.; Najera, C., *Chem. Soc. Rev.* 2011, *40*, 5084-5121;
 c) Karak, M.; Barbosa, L. C. A.; Hargaden, G. C., *RSC Adv.* 2014, *4*, 53442-53466.
- 173. Rai, R. K.; Tyagi, D.; Gupta, K.; Singh, S. K., *Catal. Sci. Technol.*2016, 6, 3341-3361.
- a) Lo, P. K.; Li, K. F.; Wong, M. S.; Cheah, K. W., *J. Org. Chem.*2007, 72, 6672-6679; b) Stężycki, R.; Grzybowski, M.; Clermont,
 G.; Blanchard-Desce, M.; Gryko, D. T., *Chem. Eur. J.* 2016, 22, 5198-5203.
- 175. Csékei, M.; Novák, Z.; Kotschy, A., *Tetrahedron* 2008, 64, 8992-8996.
- 176. Nishihara, Y.; Inoue, E.; Ogawa, D.; Okada, Y.; Noyori, S.;
 Takagi, K., *Tetrahedron Lett.* 2009, *50*, 4643-4646.
- Moon, J.; Jeong, M.; Nam, H.; Ju, J.; Moon, J. H.; Jung, H. M.;
 Lee, S., Org. Lett. 2008, 10, 945-948.
- Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S., J. Org. *Chem.* 2010, 75, 6244-6251.

- a) Zhang, W.-W.; Zhang, X.-G.; Li, J.-H., J. Org. Chem. 2010, 75, 5259-5264; b) Moon, J.; Jang, M.; Lee, S., J. Org. Chem. 2009, 74, 1403-1406.
- 180. Kim, H.; Lee, P. H., Adv. Synth. Cat. 2009, 351, 2827-2832.
- 181. Park, K.; Bae, G.; Park, A.; Kim, Y.; Choe, J.; Song, K. H.; Lee, S., *Tetrahedron Lett.* 2011, *52*, 576-580.
- 182. Li, X.; Yang, F.; Wu, Y., RSC Adv. 2014, 4, 13738-13741.
- 183. Cummins, C. H., Tetrahedron Lett. 1994, 35, 857-860.
- 184. Wang, B.; Bonin, M.; Micouin, L., Org. Lett. 2004, 6, 3481-3484.
- Ishikawa, T.; Ogawa, A.; Hirao, T., J. Am. Chem. Soc. 1998, 120, 5124-5125.
- Minami, H.; Saito, T.; Wang, C.; Uchiyama, M., Angew. Chem. Int. Ed. 2015, 54, 4665-4668.
- 187. Chang, S.; Yang, S. H.; Lee, P. H., *Tetrahedron Lett.* 2001, 42, 4833-4835.
- 188. Oh, C. H.; Reddy, V. R., Synlett 2004, 2004, 2091-2094.
- 189. Knorr, R., Chem. Rev. 2004, 104, 3795-3850.
- a) Kirmse, W., Angew. Chem. Int. Ed. Engl. 1997, 36, 1164-1170;
 b) Grainger, R. S.; Munro, K. R., Tetrahedron 2015, 71, 7795-7835.
- 191. Jahnke, E.; Tykwinski, R. R., Chem. Commun. 2010, 46, 3235-3249.

- Shi, Y.; Li, X.; Liu, J.; Jiang, W.; Sun, L., *Tetrahedron Lett.* 2010, 51, 3626-3628.
- 193. Bernanose, A., J. Chim. Phys. 1953, 50, 64.
- 194. Tang, C. W.; VanSlyke, S. A., Appl. Phys. Lett. 1987, 51, 913-915.
- 195. Sasabe, H.; Kido, J., Eur. J. Org. Chem. 2013, 7653-7663.
- 196. Bernius, M. T.; Inbasekaran, M.; O'Brien, J.; Wu, W., *Adv. Mater.*2000, *12*, 1737-1750.
- 197. a) Adachi, C.; Tsutsui, T.; Saito, S., *Appl. Phys. Lett.* 1990, 56, 799-801; b) Adachi, C.; Tsutsui, T.; Saito, S., *Appl. Phys. Lett.* 1989, 55, 1489-1491; c) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., *Nature* 1990, 347, 539-541.
- 198. Geffroy, B.; le Roy, P.; Prat, C., Polym. Int. 2006, 55, 572-582.
- Gather, M. C.; Köhnen, A.; Meerholz, K., Adv. Mater. 2011, 23, 233-248.
- 200. Chen, C.-T., Chem. Mater. 2004, 16, 4389-4400.
- 201. D'Andrade, B. W.; Holmes, R. J.; Forrest, S. R., *Adv. Mater.* 2004, *16*, 624-628.
- 202. Tanaka D.; Sasabe H.; Li Y.-J.; Su S.-J.; Takeda T.; Kido J., *Jpn. J. Appl. Phys.* 2007, 46, L10.
- 203. Wong, W.-Y.; Ho, C.-L., J. Mater. Chem. 2009, 19, 4457-4482.
- 204. Bliznyuk, V. N.; Carter, S. A.; Scott, J. C.; Klärner, G.; Miller, R.
 D.; Miller, D. C., *Macromolecules* 1999, *32*, 361-369.

- 205. Rault-Berthelot, J.; Simonet, J., J. Electroanal. Chem. Interfacial Electrochem. 1985, 182, 187-192.
- 206. J. Rault-Berthelot, J. S., Nouv. J. Chim. 1986, 10, 169-177.
- 207. Kreyenschmidt, M.; Klaerner, G.; Fuhrer, T.; Ashenhurst, J.; Karg,
 S.; Chen, W. D.; Lee, V. Y.; Scott, J. C.; Miller, R. D., *Macromolecules* 1998, 31, 1099-1103.
- 208. Yutaka, O.; Masao, U.; Keiro, M.; Katsumi, Y., *Jpn. J. Appl. Phys.* **1991**, *30*, L1941.
- 209. a) Masahiko, F.; Keiji, S.; Katsumi, Y., Jpn. J. Appl. Phys. 1989, 28, L1433; b) Fukuda, M.; Sawada, K.; Morita, S.; Yoshino, K., Synth. Met. 1991, 41, 855-858; c) Fukuda, M.; Sawada, K.; Yoshino, K., J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 2465-2471.
- 210. McCullough, R. D.; Lowe, R. D., J. Chem. Soc., Chem. Commun. 1992, 70-72.
- 211. Pei, Q.; Yang, J. Am. Chem. Soc. 1996, 118, 7416-7417.
- 212. Klaerner, G.; Miller, R. D., Macromolecules 1998, 31, 2007-2009.
- 213. Nothofer, H.-G.; Meisel, A.; Miteva, T.; Neher, D.; Forster, M.;
 Oda, M.; Lieser, G.; Sainova, D.; Yasuda, A.; Lupo, D.; Knoll, W.;
 Scherf, U., *Macromol. Symp.* 2000, 154, 139-148.
- 214. Li, Z.; Li, Z. R.; Meng, H., Organic Light-Emitting Materials and Devices. CRC Press: 2006.

- 215. Ranger, M.; Rondeau, D.; Leclerc, M., *Macromolecules* **1997**, *30*, 7686-7691.
- 216. Ranger, M.; Leclerc, M., Chem. Commun. 1997, 1597-1598.
- 217. a) Li, W.-J.; Liu, B.; Qian, Y.; Xie, L.-H.; Wang, J.; Li, S.-B.; Huang, W., *Polym. Chem.* 2013, *4*, 1796-1802; b) Lee, S. K.; Ahn, T.; Cho, N. S.; Lee, J.-I.; Jung, Y. K.; Lee, J.; Shim, H. K., *J. Polym. Sci., Part A: Polym. Chem.* 2007, *45*, 1199-1209; c) Bolis, S.; Pasini, M.; Virgili, T., *Chem. Commun.* 2013, *49*, 11761-11763.
- a) Bernius, M.; Inbasekaran, M.; Woo, E.; Wu, W.; Wujkowski, L., *J. Mater. Sci. Mater. Electron.* 2000, *11*, 111-116; b) Leclerc, M., *J. Polym. Sci., Part A: Polym. Chem.* 2001, *39*, 2867-2873; c) Neher, D., *Macromol. Rapid Commun.* 2001, *22*, 1365-1385; d) Scherf, U.; List, E. J. W., *Adv. Mater.* 2002, *14*, 477-487; e) Wu, W.; Inbasekaran, M.; Hudack, M.; Welsh, D.; Yu, W.; Cheng, Y.; Wang, C.; Kram, S.; Tacey, M.; Bernius, M.; Fletcher, R.; Kiszka, K.; Munger, S.; O'Brien, J., *Microelectron. J.* 2004, *35*, 343-348; f) Kim, D. Y.; Cho, H. N.; Kim, C. Y., *Prog. Polym. Sci.* 2000, *25*, 1089-1139; g) Xie, L.-H.; Yin, C.-R.; Lai, W.-Y.; Fan, Q.-L.; Huang, W., *Prog. Polym. Sci.* 2012, *37*, 1192-1264.
- 219. a) Stolz, S.; Petzoldt, M.; Dück, S.; Sendner, M.; Bunz, U. H. F.; Lemmer, U.; Hamburger, M.; Hernandez-Sosa, G., *ACS Appl.*

Mater. Interfaces **2016**, *8*, 12959-12967; b) Gupta, N.; Grover, R.; Mehta, D. S.; Saxena, K., Org. Electron. **2016**, *34*, 276-283.

- Fonseca, S. M.; Galvão, R. P.; Burrows, H. D.; Gutacker, A.;
 Scherf, U.; Bazan, G. C., *Macromol. Rapid Commun.* 2013, 34, 717-722.
- 221. Yi, J.; Huang, J.; Lin, Y.; Liu, C.-F.; Cheng, T.; Jiang, Y.; Tang,
 W.; Lai, W.-Y.; Huang, W., *RSC Adv.* 2016, *6*, 49903-49909.
- 222. Lv, F.; Qiu, T.; Liu, L.; Ying, J.; Wang, S., Small 2016, 12, 696-705.
- a) Coffin, R. C.; Peet, J.; Rogers, J.; Bazan, G. C., *Nat. Chem.*2009, *1*, 657-661; b) Kularatne, R. S.; Magurudeniya, H. D.; Sista,
 P.; Biewer, M. C.; Stefan, M. C., *J. Polym. Sci., Part A: Polym. Chem.* 2013, *51*, 743-768; c) Zhou, H.; Yang, L.; You, W., *Macromolecules* 2012, *45*, 607-632.
- 224. a) Herguth, P.; Jiang, X.; Liu, M. S.; Jen, A. K. Y., *Macromolecules* 2002, *35*, 6094-6100; b) Yang, J.; Jiang, C.; Zhang, Y.; Yang, R.; Yang, W.; Hou, Q.; Cao, Y., *Macromolecules* 2004, *37*, 1211-1218; c) Miteva, T.; Meisel, A.; Knoll, W.; Nothofer, H. G.; Scherf, U.; Müller, D. C.; Meerholz, K.; Yasuda, A.; Neher, D., *Adv. Mater.* 2001, *13*, 565-570.
- 225. a) Franco, I.; Tretiak, S., *Chem. Phys. Lett.* 2003, *372*, 403-408; b)
 He, B.; Li, J.; Bo, Z.; Huang, Y., *Polym. J.* 2007, *39*, 1345-1350;
 c) Chi, C.; Im, C.; Enkelmann, V.; Ziegler, A.; Lieser, G.; Wegner,

G., Chem. Eur. J. 2005, 11, 6833-6845; d) Hung, M.-C.; Liao, J.L.; Chen, S.-A.; Chen, S.-H.; Su, A.-C., J. Am. Chem. Soc. 2005, 127, 14576-14577.

- 226. Craig M. R., de Kok M. M., Hofstraat J. W., Schenning A. P. H. J., Meijer E. W., *J. Mater. Chem.* 2003, *13*, 2861-2862.
- 227. Gilman, H.; Gorsich, R. D., J. Am. Chem. Soc. 1955, 77, 6380-6381.
- a) Chan, K. L.; McKiernan, M. J.; Towns, C. R.; Holmes, A. B., J. Am. Chem. Soc. 2005, 127, 7662-7663; b) Wang, E.; Li, C.; Mo, Y.; Zhang, Y.; Ma, G.; Shi, W.; Peng, J.; Yang, W.; Cao, Y., J. Mater. Chem. 2006, 16, 4133-4140; c) Chen, R.-F.; Fan, Q.-L.; Liu, S.-J.; Zhu, R.; Pu, K.-Y.; Huang, W., Synth. Met. 2006, 156, 1161-1167.
- 229. a) A. Sharma, D. P., T. Wagner, J. Optoelectron. Adv. Mater.
 2014, 16, 1257-1268; b) Boudreault, P.-L. T.; Michaud, A.; Leclerc, M., Macromol. Rapid Commun. 2007, 28, 2176-2179.
- 230. a) Usta, H.; Lu, G.; Facchetti, A.; Marks, T. J., J. Am. Chem. Soc.
 2006, 128, 9034-9035; b) Lu, G.; Usta, H.; Risko, C.; Wang, L.;
 Facchetti, A.; Ratner, M. A.; Marks, T. J., J. Am. Chem. Soc. 2008, 130, 7670-7685.
- 231. Seesukphronrarak, S.; Takata, T., *Chem. Lett.* **2007**, *36*, 1138-1139.

- a) Chen, R.-F.; Fan, Q.-L.; Zheng, C.; Huang, W., Org. Lett. 2006, 8, 203-205; b) Corey, J. Y.; Trankler, K. A.; Braddock-Wilking, J.; Rath, N. P., Organometallics 2010, 29, 5708-5713; c) Pusztai, E.; Albright, H.; Cai, Y.; Hu, R.; West, R.; Tang, B. Z.; Guzei, I. A., Organometallics 2013, 32, 6871-6874; d) Shimizu, M.; Mochida, K.; Katoh, M.; Hiyama, T., Sci. China Chem. 2011, 54, 1937-1947; e) Li, L.; Xu, C.; Li, S., Tetrahedron Lett. 2010, 51, 622-624.
- 233. Furukawa, S.; Kobayashi, J.; Kawashima, T., J. Am. Chem. Soc.
 2009, 131, 14192-14193.
- 234. Matsuda, T.; Kadowaki, S.; Goya, T.; Murakami, M., Org. Lett.
 2007, 9, 133-136.
- Ureshino, T.; Yoshida, T.; Kuninobu, Y.; Takai, K., J. Am. Chem.
 Soc. 2010, 132, 14324-14326.
- 236. Yabusaki, Y.; Ohshima, N.; Kondo, H.; Kusamoto, T.; Yamanoi,
 Y.; Nishihara, H., *Chem. Eur. J.* 2010, *16*, 5581-5585.
- 237. Matsuda, T.; Kadowaki, S.; Murakami, M., *Chem. Commun.* 2007, 2627-2629.
- 238. a) Braddock-Wilking, J.; Corey, J. Y.; Dill, K.; Rath, N. P., Organometallics 2002, 21, 5467-5469; b) Braddock-Wilking, J.;
 Corey, J. Y.; Trankler, K. A.; Dill, K. M.; French, L. M.; Rath, N. P., Organometallics 2004, 23, 4576-4584.

- 239. Hill, A. F.; Fink, M. J., *Advances in Organometallic Chemistry*. Elsevier Science: 2011.
- 240. Nakano, K., Synthesis of Carbazoles and Related Compounds via
 C-E Bond-Forming Coupling Reactions. In *Transition-Metal-Mediated Aromatic Ring Construction*, John Wiley & Sons, Inc.:
 2013; pp 617-644.
- Breunig, J. M.; Gupta, P.; Das, A.; Tussupbayev, S.; Diefenbach,
 M.; Bolte, M.; Wagner, M.; Holthausen, M. C.; Lerner, H.-W., *Chem. Asian J.* 2014, 9, 3163-3173.
- 242. Xu, L.; Zhang, S.; Li, P., Org. Chem. Front. 2015, 2, 459-463.
- 243. Leifert, D.; Studer, A., Org. Lett. 2015, 17, 386-389.
- 244. Curless, L. D.; Ingleson, M. J., *Organometallics* **2014**, *33*, 7241-7246.
- 245. Xiao, Q.; Meng, X.; Kanai, M.; Kuninobu, Y., Angew. Chem. Int.
 Ed. 2014, 53, 3168-3172.
- 246. Li, L.; Li, S.; Zhao, C.-H.; Xu, C., *Eur. J. Inorg. Chem.* 2014, 1880-1885.
- 247. Pusztai, E.; Toulokhonova, I. S.; Temple, N.; Albright, H.; Zakai, U. I.; Guo, S.; Guzei, I. A.; Hu, R.; West, R., *Organometallics* 2013, *32*, 2529-2535.
- Zhang, Q.-W.; An, K.; Liu, L.-C.; Guo, S.; Jiang, C.; Guo, H.; He,
 W., Angew. Chem. Int. Ed. 2016, 55, 6319-6323.

- 249. Liu, Y.; Stringfellow, T. C.; Ballweg, D.; Guzei, I. A.; West, R., J.
 Am. Chem. Soc. 2002, 124, 49-57.
- a) Sanchez, J. C.; DiPasquale, A. G.; Rheingold, A. L.; Trogler, W. C., *Chem. Mater.* 2007, *19*, 6459-6470; b) Sanchez, J. C.; Urbas, S. A.; Toal, S. J.; DiPasquale, A. G.; Rheingold, A. L.; Trogler, W. C., *Macromolecules* 2008, *41*, 1237-1245; c) Martinez, H. P.; Grant, C. D.; Reynolds, J. G.; Trogler, W. C., *J. Mater. Chem.* 2012, *22*, 2908-2914.
- 251. McDowell, J. J.; Maier-Flaig, F.; Wolf, T. J. A.; Unterreiner, A.N.; Lemmer, U.; Ozin, G., ACS Appl. Mater. Interfaces 2014, 6, 83-93.
- 252. a) Wang, E.; Li, C.; Zhuang, W.; Peng, J.; Cao, Y., J. Mater. Chem. 2008, 18, 797-801; b) Geramita, K.; Tao, Y.; Segalman, R.
 A.; Tilley, T. D., J. Org. Chem. 2010, 75, 1871-1887; c) Mo, Y.Q.; Deng, X.-Y.; Jiang, X.; Cui, Q.-H., J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 3286-3295.
- a) Wang, J.; Zhang, C.-Q.; Zhong, C.-M.; Hu, S.-J.; Chang, X.-Y.;
 Mo, Y.-Q.; Chen, X.; Wu, H.-B., *Macromolecules* 2011, 44, 1719; b) Xia, L.; Xue, Y.; Xiong, K.; Cai, C.; Peng, Z.; Wu, Y.; Li,
 Y.; Miao, J.; Chen, D.; Hu, Z.; Wang, J.; Peng, X.; Mo, Y.; Hou,
 L., *ACS Appl. Mater. Interfaces* 2015, 7, 26405-26413; c) Chen, S.
 F.; Tian, Y.; Peng, J.; Zhang, H.; Feng, X. J.; Zhang, H.; Xu, X.;
 Li, L.; Gao, J., *J. Mater. Chem. C* 2015, *3*, 6822-6830.

- 254. Wang, D.; Liu, Q.; Yu, Y.; Wu, Y.; Zhang, X.; Dong, H.; Ma, L.;
 Zhou, G.; Jiao, B.; Wu, Z.; Chen, R., *Sci. China Chem.* 2015, *58*, 993-998.
- 255. Erlik, O.; Unlu, N. A.; Hizalan, G.; Hacioglu, S. O.; Comez, S.;
 Yildiz, E. D.; Toppare, L.; Cirpan, A., J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 1541-1547.
- 256. Goy, R.; Apfel, U.-P.; Elleouet, C.; Escudero, D.; Elstner, M.;
 Görls, H.; Talarmin, J.; Schollhammer, P.; González, L.; Weigand,
 W., *Eur. J. Inorg. Chem.* 2013, 4466-4472.
- 257. a) Yuan, M.; Yang, P.; Durban, M. M.; Luscombe, C. K., *Macromolecules* 2012, 45, 5934-5940; b) Jin, J.-K.; Choi, J.-K.; Kim, B.-J.; Kang, H.-B.; Yoon, S.-C.; You, H.; Jung, H.-T., *Macromolecules* 2011, 44, 502-511; c) Wang, E.; Wang, L.; Lan, L.; Luo, C.; Zhuang, W.; Peng, J.; Cao, Y., *Appl. Phys. Lett.* 2008, 92, 033307-033310; d) Song, J.; Du, C.; Li, C.; Bo, Z., *J. Polym. Sci., Part A: Polym. Chem.* 2011, 49, 4267-4274.
- 258. Cai, Y.; Samedov, K.; Dolinar, B. S.; Albright, H.; Guzei, I. A.;
 Hu, R.; Zhang, C.; West, R., *Chem. Eur. J.* 2014, 20, 14040-14050.
- 259. Keyworth, C. W.; Chan, K. L.; Labram, J. G.; Anthopoulos, T. D.;
 Watkins, S. E.; McKiernan, M.; White, A. J. P.; Holmes, A. B.;
 Williams, C. K., *J. Mater. Chem.* 2011, *21*, 11800-11814.

- 260. K. Ogawa, Y. T., G. Manuel and R. Boukherroub, *Acta Cryst.* **1994**, *C50*, 1337-1339.
- 261. Allard, N.; Aïch, R. B.; Gendron, D.; Boudreault, P.-L. T.; Tessier,
 C.; Alem, S.; Tse, S.-C.; Tao, Y.; Leclerc, M., *Macromolecules*2010, 43, 2328-2333.
- White, C. P.; Braddock-Wilking, J.; Corey, J. Y.; Xu, H.; Redekop, E.; Sedinkin, S.; Rath, N. P., Organometallics 2007, 26, 1996-2004.
- Braddock-Wilking, J.; Bandrowsky, T.; Praingam, N.; Rath, N. P., Organometallics 2009, 28, 4098-4105.
- 264. Liu, Y.; Ballweg, D.; Müller, T.; Guzei, I. A.; Clark, R. W.; West,
 R., J. Am. Chem. Soc. 2002, 124, 12174-12181.
- 265. Chen, R.-F.; Zheng, C.; Fan, Q.-L.; Huang, W., J. Comput. Chem.
 2007, 28, 2091-2101.
- 266. B. S. Pujari, S. G., M. Brett, and A. Kovalenko, *ECS Trans.* 2011, 41, 129-134.
- 267. Yin, J.; Zhang, S.-L.; Chen, R.-F.; Ling, Q.-D.; Huang, W., Phys. Chem. Chem. Phys. 2010, 12, 15448-15458.
- 268. a) Bel'skiy, V. K., *Zh. Strukt. Khim.* 1984, 25, 136-138; b) Chase,
 P. A.; Piers, W. E.; Patrick, B. O., *J. Am. Chem. Soc.* 2000, 122,
 12911-12912; c) Nagao, I.; Shimizu, M.; Hiyama, T., *Angew. Chem. Int. Ed.* 2009, 48, 7573-7576; d) van Klink, G. P. M.; de

Boer, H. J. R.; Schat, G.; Akkerman, O. S.; Bickelhaupt, F.; Spek,A. L., *Organometallics* 2002, *21*, 2119-2135.

- Saito, M.; Shimosawa, M.; Yoshioka, M.; Ishimura, K.; Nagase,
 S., *Chem. Lett.* 2006, 35, 940-941.
- 270. Shimizu, M.; Nagao, I.; Kiyomoto, S.-i.; Hiyama, T., Aust. J.
 Chem. 2012, 65, 1277-1284.
- 271. Shimizu, M.; Hiyama, T., Eur. J. Org. Chem. 2013, 8069-8081.
- 272. Yue, W.; Gao, J.; Li, Y.; Jiang, W.; Di Motta, S.; Negri, F.; Wang,
 Z., J. Am. Chem. Soc. 2011, 133, 18054-18057.
- a) Yuan, W. Z.; Chen, S.; Lam, J. W. Y.; Deng, C.; Lu, P.; Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Zhang, Y.; Tang, B. Z., *Chem. Commun.* 2011, *47*, 11216-11218; b) Hu, R.; Maldonado, J. L.; Rodriguez, M.; Deng, C.; Jim, C. K. W.; Lam, J. W. Y.; Yuen, M. M. F.; Ramos-Ortiz, G.; Tang, B. Z., *J. Mater. Chem.* 2012, *22*, 232-240.
- 274. Ezhumalai, Y.; Wang, T.-H.; Hsu, H.-F., Org. Lett. 2015, 17, 536-539.
- Desurmont, G.; Klein, R.; Uhlenbrock, S.; Laloë, E.; Deloux, L.;
 Giolando, D. M.; Kim, Y. W.; Pereira, S.; Srebnik, M.,
 Organometallics 1996, 15, 3323-3328.
- Clark, J. R.; Griffiths, J. R.; Diver, S. T., J. Am. Chem. Soc. 2013, 135, 3327-3330.
- 277. Shibata, K.; Satoh, T.; Miura, M., Org. Lett. 2005, 7, 1781-1783.

- 278. Yamaguchi, S.; Endo, T.; Uchida, M.; Izumizawa, T.; Furukawa, K.; Tamao, K., *Chem. Eur. J.* 2000, *6*, 1683-1692.
- Vasilyev, A. V.; Shchukin, A. O.; Walspurger, S.; Sommer, J., *Eur. J. Org. Chem.* 2008, 4632-4639.
- 280. Han, T.; Zhang, Y.; Feng, X.; Lin, Z.; Tong, B.; Shi, J.; Zhi, J.;
 Dong, Y., *Chem. Commun.* 2013, 49, 7049-7051.
- Zhang, Y.; Han, T.; Gu, S.; Zhou, T.; Zhao, C.; Guo, Y.; Feng, X.;
 Tong, B.; Bing, J.; Shi, J.; Zhi, J.; Dong, Y., *Chem. Eur. J.* 2014, 20, 8856-8861.
- 282. Simmons, H. E.; Fukunaga, T., J. Am. Chem. Soc. 1967, 89, 5208-5215.
- 283. a) Fleming, I., Molecular Orbitals and Organic Chemical Reactions. Wiley: 2011; b) Dewar, M. J. S.; McKee, M. L., Pure Appl. Chem. 1980, 52, 1431-1441.
- a) Mahns, B.; Roth, F.; Grobosch, M.; Lindner, S.; Knupfer, M.; Saragi, T. P. I.; Reichert, T.; Salbeck, J.; Hahn, T., *J. Chem. Phys.*2012, *136*, 124702-124709; b) Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J., *Chem. Rev.* 2007, *107*, 1011-1065; c) Pudzich, R.; Fuhrmann-Lieker, T.; Salbeck, J., Spiro Compounds for Organic Electroluminescence and Related Applications. In *Emissive Materials Nanomaterials*, Springer Berlin Heidelberg: Berlin, Heidelberg, 2006; pp 83-142.

- Berkovic, G.; Krongauz, V.; Weiss, V., Chem. Rev. 2000, 100, 1741-1754.
- 286. Minkin, V. I., Chem. Rev. 2004, 104, 2751-2776.
- 287. Maslak, P.; Chopra, A.; Moylan, C. R.; Wortmann, R.; Lebus, S.;
 Rheingold, A. L.; Yap, G. P. A., J. Am. Chem. Soc. 1996, 118, 1471-1481.
- 288. a) Trosien, S.; Schollmeyer, D.; Waldvogel, S. R., Synthesis 2013, 45, 1160-1164; b) Yang, Z.-D.; Feng, J.-K.; Ren, A.-M., Chem. Phys. Lett. 2008, 461, 9-15.
- Clarkson, R. G.; Gomberg, M., J. Am. Chem. Soc. 1930, 52, 2881-2891.
- a) Chou, C.-H.; Reddy, D. S.; Shu, C.-F., *J. Polym. Sci., Part A: Polym. Chem.* 2002, 40, 3615-3621; b) Poriel, C.; Ferrand, Y.; Juillard, S.; Le Maux, P.; Simonneaux, G., *Tetrahedron* 2004, 60, 145-158; c) Wu, R.; Schumm, J. S.; Pearson, D. L.; Tour, J. M., *J. Org. Chem.* 1996, 61, 6906-6921; d) Chiang, C.-L.; Shu, C.-F.; Chen, C.-T., *Org. Lett.* 2005, 7, 3717-3720.
- 291. Cheng, X.; Hou, G.-H.; Xie, J.-H.; Zhou, Q.-L., Org. Lett. 2004, 6, 2381-2383.
- 292. Zhai, L.; Shukla, R.; Rathore, R., Org. Lett. 2009, 11, 3474-3477.
- Wang, H.-Y.; Qian, Q.; Lin, K.-H.; Peng, B.; Huang, W.; Liu, F.;
 Wei, W., J. Polym. Sci., Part B: Polym. Phys. 2012, 50, 180-188.

- 294. a) Li, C.; Bo, Z., Polymer 2010, 51, 4273-4294; b) Lin, Y.; Chen,
 Z.-K.; Ye, T.-L.; Dai, Y.-F.; Ma, D.-G.; Ma, Z.; Liu, Q.-D.; Chen,
 Y., J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 292-301.
- 295. Wu, Y.; Li, J.; Fu, Y.; Bo, Z., Org. Lett. 2004, 6, 3485-3487.
- 296. Wu, Y.; Zhang, J.; Fei, Z.; Bo, Z., J. Am. Chem. Soc. 2008, 130, 7192-7193.
- 297. McDowell, J. J.; Gao, D.; Seferos, D. S.; Ozin, G., *Polym. Chem.*2015, 6, 3781-3789.
- 298. Agou, T.; Hossain, M. D.; Kawashima, T., Chem. Eur. J. 2010, 16, 368-375.
- 299. Lee, S. H.; Jang, B.-B.; Kafafi, Z. H., J. Am. Chem. Soc. 2005, 127, 9071-9078.
- 300. a) Xiao, H.; Leng, B.; Tian, H., *Polymer* 2005, *46*, 5707-5713; b)
 Zabula, A. V.; Dolinar, B. S.; West, R., *J. Organomet. Chem.*2014, *751*, 458-461; c) Murakami, K.; Ooyama, Y.; Higashimura,
 H.; Ohshita, J., *Organometallics* 2016, *35*, 20-26.
- Kuninobu, Y.; Yamauchi, K.; Tamura, N.; Seiki, T.; Takai, K., Angew. Chem. Int. Ed. 2013, 52, 1520-1522.
- Lenormand, H.; Goddard, J.-P.; Fensterbank, L., Org. Lett. 2013, 15, 748-751.

Chapter Two

- a) Jüstel, T.; Nikol, H.; Ronda, C., Angew. Chem. Int. Ed. 1998, 37, 3084-3103; b) Reineke, S.; Thomschke, M.; Lüssem, B.; Leo, K., Rev. Mod. Phys. 2013, 85, 1245-1293; c) Wu, H.; Ying, L.; Yang, W.; Cao, Y., Chem. Soc. Rev. 2009, 38, 3391-3400; d) D'Andrade, B. W.; Forrest, S. R., Adv. Mater. 2004, 16, 1585-1595; e) Kamtekar, K. T.; Monkman, A. P.; Bryce, M. R., Adv. Mater. 2010, 22, 572-582; f) Gather, M. C.; Köhnen, A.; Meerholz, K., Adv. Mater. 2011, 23, 233-248; g) Crawford, M. H., IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1028-1040.
- a) Jiang, H.; Wan, J.; Huang, W., Sci. China, Ser. B: Chem. 2008, 51, 497-520; b) Kuik, M.; Wetzelaer, G.-J. A. H.; Laddé, J. G.; Nicolai, H. T.; Wildeman, J.; Sweelssen, J.; Blom, P. W. M., Adv. Funct. Mater. 2011, 21, 4502-4509; c) Chi, C.; Im, C.; Enkelmann, V.; Ziegler, A.; Lieser, G.; Wegner, G., Chem. - Eur. J. 2005, 11, 6833-6845; d) Hung, M.-C.; Liao, J.-L.; Chen, S.-A.; Chen, S.-H.; Su, A.-C., J. Am. Chem. Soc. 2005, 127, 14576-14577.
- a) Lee K. -H.; Ohshita J.; Tanaka D.; Tominaga Y.; Kunai A., J. Organomet. Chem. 2012, 710, 53-58; b) Saito M.; Imaizumi S.; Tajima T.; Ishimura K.; Nagase S., J. Am. Chem. Soc. 2007, 129, 10974-10975.
- Chan, K. L.; McKiernan, M. J.; Towns, C. R.; Holmes, A. B., J.
 Am. Chem. Soc. 2005, 127, 7662-7663.

- a) McDowell, J. J.; Schick, I.; Price, A.; Faulkner, D.; Ozin, G., *Macromolecules* 2013, 46, 6794-6805; b) Chen, R.-F.; Fan, Q.-L.; Liu, S.-J.; Zhu, R.; Pu, K.-Y.; Huang, W., *Synth. Met.* 2006, 156, 1161-1167; c) Lu, G.; Usta, H.; Risko, C.; Wang, L.; Facchetti, A.; Ratner, M. A.; Marks, T. J., *J. Am. Chem. Soc.* 2008, 130, 7670-7685; d) Chan, K. L.; Watkins, S. E.; Mak, C. S. K.; McKiernan, M. J.; Towns, C. R.; Pascu, S. I.; Holmes, A. B., *Chem. Commun.* 2005, 5766-5768; e) Geramita, K.; Tao, Y.; Segalman, R. A.; Tilley, T. D., *J. Org. Chem.* 2010, 75, 1871-1887.
- Chen, R.-F.; Zheng, C.; Fan, Q.-L.; Huang, W., J. Comput. Chem.
 2007, 28, 2091-2101.
- Chen, R.; Zhu, R.; Zheng, C.; Liu, S.; Fan, Q.; Huang, W., Sci. China Ser. B-Chem. 2009, 52, 212-218.
- Allard, N.; Aïch, R. d. B.; Gendron, D.; Boudreault, P.-L. T.; Tessier, C.; Alem, S.; Tse, S.-C.; Tao, Y.; Leclerc, M., *Macromolecules* 2010, 43, 2328-2333.
- 9. a) Katkevics, M.; Yamaguchi, S.; Toshimitsu, A.; Tamao, K., Organometallics 1998, 17, 5796-5800; b) Fadhel, O.; Szieberth,
 D.; Deborde, V.; Lescop, C.; Nyulászi, L.; Hissler, M.; Réau, R., Chem. - Eur. J. 2009, 15, 4914-4924; c) Benincori, T.; Bonometti,
 V.; De Angelis, F.; Falciola, L.; Muccini, M.; Mussini, P. R.; Pilati, T.; Rampinini, G.; Rizzo S.; Toffanin, S.; Sannicolò, F., Chem. - Eur. J. 2010, 16, 9086-9098; d) Luo, J.; Xie, Z.; Lam, J.

W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu,Y.; Zhu, D.; Tang, B. Z., *Chem. Commun.* 2001, 1740-1741.

- Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.;
 Salbeck, J., *Chem. Rev.* 2007, 107, 1011-1065.
- 11. Amara, J. P.; Swager T. M., *Macromolecules* **2006**, *39*, 5753-5759.
- Murakami, K.; Ooyama, Y.; Higashimura, H.; Ohshita, J., Organometallics 2016, 35, 20-26.
- a) Hu, R.; Leung, N. L. C.; Tang, B. Z., Chem. Soc. Rev. 2014, 43, 13. 4494-4562; b) Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z., Adv. Mater. 2014, 26, 5429-5479; c) Toal, S. J.; Jones, K. A.; Magde, D.; Trogler, W. C., J. Am. Chem. Soc. 2005, 127, 11661-11665; d) Dedeoğlu, B.; Aviyente, V.; Özen, A. S., J. Phys. Chem. C 2014, 118, 6385-6397; e) Dedeoğlu, B.; Monari, A.; Etienne, T.; Aviyente, V.; Özen, A. S., J. Phys. Chem. C 2014, 118, 23946-23953; f) Sohn, H.; Sailor, M. J.; Magde, D.; Trogler, W. C., J. Am. Chem. Soc. 2003, 125, 3821-3830; g) Ding, D.; Li, K.; Liu, B.; Tang, B. Z., Acc. Chem. Res. 2013, 46, 2441-2453; h) Ohshita, J.; Murakami, K.; Tanaka, D.; Ooyama, Y.; Mizumo, T.; Kobayashi, N.; Higashimura, H.; Nakanishi, T.; Hasegawa, Y., Organometallics 2014, 33, 517-521; i) Saito, M., Coord. Chem. *Rev.* 2012, 256, 627-636; j) Saito, M.; Sakaguchi, M.; Tajima, T.; Ishimura, K.; Nagase, S., Phosphorus, Sulfur, Silicon Relat. Elem. **2010**, 185, 1068-1076; k) Yan, D.; Mohsseni-Ala, J.; Auner, N.;

Bolte, M.; Bats, J. W., Chem. - Eur. J. 2007, 13, 7204-7214; 1) Mullin, J. L.; Tracy, H. J., Aggregation-Induced Emission in Group 14 Metalloles (Siloles, Germoles, and Stannoles): Spectroscopic Considerations, Substituent Effects, and Applications, in Aggregation-Induced Emission: Fundamentals and Applications, Volumes 1 and 2 (eds A. Qin and B. Z. Tang), John Wiley and Sons Ltd, Chichester, United Kingdom. 2013 DOI: 10.1002/9781118735183.ch02

14. a) Li, Z.; Dong, Y.; Mi, B.; Tang, Y.; Häussler, M.; Tong, H.; Dong, Y.; Lam, J. W. Y.; Ren, Y.; Sung, H. H. Y.; Wong, K. S.; Gao, P.; Williams, I. D.; Kwok, H. S.; Tang, B. Z., J. Phys. Chem. B 2005, 109, 10061-10066; b) Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Chem. Soc. Rev. 2011, 40, 5361-5388; c) Liu, J.; Lam, J. Y.; Tang, B., J. Inorg. Organomet. Polym. 2009, 19, 249-285; d) Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z., Chem. Mater. 2003, 15, 1535-1546; e) Chen, B.; Nie, H.; Lu, P.; Zhou, J.; Qin, A.; Qiu, H.; Zhao, Z.; Tang, B. Z., Chem. Commun. 2014, 50, 4500-4503; f) Bozeman, T.; Edwards, K.; Fecteau, K.; Verde Jr., M.; Blanchard, A.; Woodall, D.; Benfaremo, N.; Ford, J.; Mullin, J.; Prudente, C.; Tracy, H., J. Inorg. Organomet. Polym. 2011, 21, 316-326; g) Mullin, J. L.; Tracy, H. J.; Ford, J. R.; Keenan, S. R.; Fridman, F., J. Inorg. Organomet. Polym. 2007, 17, 201-213; h) Tracy, H. J.;
Mullin, J. L.; Klooster, W. T.; Martin, J. A.; Haug, J.; Wallace, S.; Rudloe, I.; Watts, K., *Inorg. Chem.* **2005**, *44*, 2003-2011.

- Fagan, P. J.; Nugent, W. A., J. Am. Chem. Soc. 1988, 110, 2310-2312.
- a) He, G.; Kang, L.; Torres Delgado W.; Shynkaruk, O.; Ferguson, M. J.; McDonald, R.; Rivard, E., *J. Am. Chem. Soc.* 2013, *135*, 5360-5363; b) He, G.; Torres Delgado, W.; Schatz, D. J.; Merten, C.; Mohammadpour, A.; Mayr, L.; Ferguson, M. J.; McDonald, R.; Brown, A.; Shankar, K.; Rivard, E., *Angew. Chem., Int. Ed.* 2014, 53, 4587-4591; c) He, G.; Wiltshire, B. D.; Choi, P.; Savin, A.; Sun, S.; Mohammadpour, A.; Ferguson, M. J.; McDonald, R.; Farsinezhad, S.; Brown, A.; Shankar, K.; Rivard, E., *Chem. Commun.* 2015, *51*, 5444-5447; d) Rivard, E., *Chem. Lett.* 2015, *44*, 730-736.
- 17. a) Yan, X.; Xi, C., Acc. Chem. Res. 2015, 48, 935-946; b) Baumgartner, T.; Réau, R., Chem. Rev. 2006, 106, 4681-4727; c) Matsumura, Y.; Ueda, M.; Fukuda, K.; Fukui, K.; Takase, I.; Nishiyama, H.; Inagi, S.; Tomita, I., ACS Macro Lett. 2015, 4, 124-127; d) Zhou, W.-M.; Tomita, I., J. Inorg. Organometal. Polym. Mater. 2009, 19, 113-117.
- Freeman, W. P.; Tilley, T. D.; Liable-Sands, L. M.; Rheingold, A. L., J. Am. Chem. Soc. 1996, 118, 10457-10468.

- Linshoeft, J.; Baum, E. J.; Hussain, A.; Gates, P. J.; Näther, C.;
 Staubitz, A., Angew. Chem., Int. Ed. 2014, 53, 12916-12920.
- For related studies involving dithienylgermole units, see: b)
 Ohshita, J.; Miyazaki, M.; Tanaka, D.; Morihara, Y.; Fujita, Y.;
 Kunugi, Y., *Polym. Chem.* 2013, *4*, 3116-3122; c)
 Ohshita, J.;
 Hwang, Y.-M.; Mizumo, T.; Yoshida, H.; Ooyama, Y.; Harima,
 Y.; Kunugi, Y., *Organometallics* 2011, *30*, 3233-3236.
- Xie, Z.; Chen, C.; Xu, S.; Li, J.; Zhang, Y.; Liu, S.; Xu, J.; Chi, Z., Angew. Chem., Int. Ed. 2015, 54, 7181-7184.
- 22. See Sections 2.6.5 and 2.6.6 for full details. CCDC 1416938 (2), 1416939 (3), 1416940 (5), 1416943 (9), 1416944 (10), 14169441 (11), and 1416942 (12) contain the supplementary crystallographic data for this chapter. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- 23. a) Ogawa, K.; Takeuchi, Y.; Manuel, G.; Boukherroub, R., *Acta Cryst. C* 1994, *50*, 1337-1339; b) Zabula, A. V.; Dolinar, B. S.; West, R., *J. Organomet. Chem.* 2014, *751*, 458-461.
- 24. Mutai, T.; Cheon, J.-D.; Arita, S.; Araki, K., *J. Chem. Soc., Perkin Trans. 2* 2001, 1045-1050.
- Cebeci, F. Ç.; Geyik, H.; Sezer, E.; Sezai Sarac, A., J. Electroanal. Chem. 2007, 610, 113-121.

26. a) Tirapattur, S.; Belletête, M.; Drolet, N.; Bouchard, J.; Ranger, M.; Leclerc, M.; Durocher, G., *J. Phys. Chem. B* 2002, *106*, 8959-8966;

b) Belletête, M.; Morin, J.-F.; Beaupré, S.; Ranger, M.; Leclerc, M.; Durocher, G., *Macromolecules* 2001, *34*, 2288-2297; c)
Belletête, M.; Morin, J.-F.; Beaupré, S.; Leclerc, M.; Durocher, G., *Synth. Met.* 2002, *126*, 43-51; d) Tirapattur, S.; Belletête, M.;
Drolet, N.; Leclerc, M.; Durocher, G., *Macromolecules* 2002, *35*, 8889-8895; e) Belletête, M.; Beaupré, S.; Bouchard, J.; Blondin, P.; Leclerc, M.; Durocher, G., *J. Phys. Chem. B* 2000, *104*, 9118-9125.

- Ghosh, A. P.; Gerenser, L. J.; Jarman, C. M.; Fornalik, J. E., *Appl. Phys. Lett.* 2005, *86*, 223503.
- 28. Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Chem. Commun. 2009, 4332-4353.
- a) Amro, K.; Clement, S.; Dejardin, P.; Douglas, W. E.; Gerbier,
 P.; Janot, J.-M.; Thami, T., *J. Mater. Chem.* 2010, *20*, 7100-7103;
 b) Zhang, G.; Hu, F.; Zhang, D., *Langmuir* 2015, *31*, 4593-4604.
- Araki, T.; Fukazawa, A.; Yamaguchi, S., *Angew. Chem. Int. Ed.* 2012, 51, 5484-5487.
- 31. Palilis, L. C.; Murata, H.; Uchida, M.; Kafafi, Z. H., *Org. Electron.*2003, *4*, 113-121.

- a) Dougherty, T. K.; Lau, K. S. Y.; Hedberg, F. L., *J. Org. Chem.* **1983**, *48*, 5273-5280; b) Berger, C. J.; He, G.; Merten, C.;
 McDonald, R.; Ferguson, M. J.; Rivard, E., *Inorg. Chem.* **2014**, *53*, 1475-1486.
- 33. For a recent example that illustrates the high sensitivity of Suzuki-Miyaura coupling to catalyst/base, see: Baggett, A. W.; Guo, F.;
 Li, B.; Liu, S.-Y.; Jäkle, F., Angew. Chem., Int. Ed. 2015, 54, 11191-11195.
- 34. Yamamoto, T., Synlett 2003, 0425-0450.
- 35. a) Komorowska-Durka, M.; Dimitrakis, G.; Bogdał, D.;
 Stankiewicz, A. I.; Stefanidis, G. D., *Chem. Eng. J.* 2015, 264,
 633-644; b) Zhang, C.; Liao, L.; Gong, S., *Green Chem.* 2007, 9,
 303-314.
- 36. a) Zhang, W.; Lu, P.; Wang, Z.; Ma, Y., *Sci. China Chem.* 2012, 55, 844-849; b) Simon, Y. C.; Peterson, J. J.; Mangold, C.; Carter, K. R.; Coughlin, E. B., *Macromolecules* 2009, 42, 512-516.
- 37. Huang, L.; Wu, S.; Qu, Y.; Geng, Y.; Wang, F., *Macromolecules*2008, 41, 8944-8947.
- Loewe, R. S.; Ewbank, P. C.; Liu, J.; Zhai, L.; McCullough, R. D., Macromolecules 2001, 34, 4324-4333.
- Yokoyama, A.; Miyakoshi, R.; Yokozawa, T., *Macromolecules* 2004, *37*, 1169-1171.

- 40. Iovu, M. C.; Sheina, E. E.; Gil, R. R.; McCullough, R. D., Macromolecules 2005, 38, 8649-8656.
- Miyakoshi, R.; Shimono, K.; Yokoyama, A.; Yokozawa, T., *J. Am. Chem. Soc.* 2006, *128*, 16012-16013.
- 42. Kim, K.-H.; Yu, H.; Kang, H.; Kang, D. J.; Cho, C.-H.; Cho, H.H.; Oh, J. H.; Kim, B. J., *J. Mater. Chem. A* 2013, *1*, 14538-14547.
- Koeckelberghs, G.; Vangheluwe, M.; Persoons, A.; Verbiest, T., Macromolecules 2007, 40, 8142-8150.
- 44. Saa, J. M.; Martorell, G., J. Org. Chem. 1993, 58, 1963-1966.
- 45. a) Mee, S. P. H.; Lee, V.; Baldwin, J. E., *Chem. Eur. J.* 2005, *11*, 3294-3308; b) Han, X.; Stoltz, B. M.; Corey, E. J., *J. Am. Chem. Soc.* 1999, *121*, 7600-7605.
- 46. a) Gawande, M. B.; Shelke, S. N.; Zboril, R.; Varma, R. S., Acc. Chem. Res. 2014, 47, 1338-1348; b) Nüchter, M.; Müller, U.; Ondruschka, B.; Tied, A.; Lautenschläger, W., Chem. Eng. Technol. 2003, 26, 1207-1216.
- 47. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.;
 Timmers, F. J., *Organometallics* 1996, *15*, 1518-1520.
- Keyworth, C. W.; Chan, K. L.; Labram, J. G.; Anthopoulos, T. D.;
 Watkins, S. E.; McKiernan, M.; White, A. J. P.; Holmes, A. B.;
 Williams, C. K., *J. Mater. Chem.* 2011, *21*, 11800-11814.
- 49. Göker, S.; Hızalan, G.; Udum, Y. A.; Toppare, L., Synth. Met.
 2014, 191, 19-27.

- Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K.
 L.; Brisbois, R. G.; Markworth, C. J.; Grieco, P. A., *Org. Lett.* 2002, 4, 3199-3202.
- 51. Yu, J.; Shen, T.-L.; Weng, W.-H.; Huang, Y.-C.; Huang, C.-I.; Su, W.-F.; Rwei, S.-P.; Ho, K.-C.; Wang, L., *Adv. Energy Mater*. 2012, *2*, 245-252.
- 52. Liu, S.-J.; Zhao, Q.; Chen, R.-F.; Deng, Y.; Fan, Q.-L.; Li, F.-Y.;
 Wang, L.-H.; Huang, C.-H.; Huang, W., *Chem. Eur. J.* 2006, *12*, 4351-4361.
- 53. Eaton, D. F., Pure Appl. Chem. 1988, 60, 1107-1114.

Chapter Three

- a) Chatani, N.; Hanafusa, T., J. Chem. Soc., Chem. Commun. 1985, 838-839; b) Chen, Z.; Luo, M.; Wen, Y.; Luo, G.; Liu, L., Org. Lett. 2014, 16, 3020-3023; c) Kuroda, S.; Dekura, F.; Sato, Y.; Mori, M., J. Am. Chem. Soc. 2001, 123, 4139-4146; d) Ilies, L.; Yoshida, T.; Nakamura, E., J. Am. Chem. Soc. 2012, 134, 16951-16954.
- Adams, R. D.; Barnard, T. S., Organometallics 1998, 17, 2567-2573.
- a) Sun, S.; Edwards, J. O.; Sweigart, D. A.; D'Accolti, L.; Curci, R., Organometallics 1995, 14, 1545-1547; b) Wei, C.-H.; Mannathan, S.; Cheng, C.-H., J. Am. Chem. Soc. 2011, 133, 6942-6944; c) Li, X.; Huang, W.; Liang, D.; Yuan, L.; Ma, Y.; Gu, L., Tetrahedron 2015, 71, 1045-1049; d) Bu, M.; Lu, G.; Cai, C., Catal. Sci. Technol. 2016, 6, 413-416; e) Jung, M. E.; Deng, G., Org. Lett. 2014, 16, 2142-2145.
- 4. a) González-Cantalapiedra, E.; de Frutos, Ó.; Atienza, C.; Mateo, C.; Echavarren, A. M., *Eur. J. Org. Chem.* 2006, 1430-1443; b)
 Balamurugan, R.; Gudla, V., *Org. Lett.* 2009, *11*, 3116-3119; c)
 Nakamura, I.; Bajracharya, G. B.; Mizushima, Y.; Yamamoto, Y., *Angew. Chem. Int. Ed.* 2002, *41*, 4328-4331; d) Ragaini, F.;
 Rapetti, A.; Visentin, E.; Monzani, M.; Caselli, A.; Cenini, S., *J. Org. Chem.* 2006, *71*, 3748-3753; e) Sharma, U.; Park, Y.; Chang,

S., J. Org. Chem. 2014, 79, 9899-9906; f) Lu, B.; Luo, Y.; Liu, L.;
Ye, L.; Wang, Y.; Zhang, L., Angew. Chem. Int. Ed. 2011, 50, 8358-8362; g) Tokoro, Y.; Sugita, K.; Fukuzawa, S., Chem. Eur. J. 2015, 21, 13229-13232.

- a) Curless, L. D.; Ingleson, M. J., Organometallics 2014, 33, 7241-7246; b) He, G.; Wiltshire, B. D.; Choi, P.; Savin, A.; Sun, S.; Mohammadpour, A.; Ferguson, M. J.; McDonald, R.; Farsinezhad, S.; Brown, A.; Shankar, K.; Rivard, E., Chem. Commun. 2015, 51, 5444-5447; c) Quint, V.; Morley-Savary, F.; Lohier, J.-F.; Lalevée, J.; Gaumont, A.-C.; Lakhdar, S., J. Am. Chem. Soc. 2016, 138, 7436-7441.
- Tsao, F. A.; Cao, L.; Grimme, S.; Stephan, D. W., J. Am. Chem. Soc. 2015, 137, 13264-13267.
- a) Boydston, A. J.; Yin, Y.; Pagenkopf, B. L., J. Am. Chem. Soc.
 2004, 126, 3724-3725; b) Ghosh, M.; Naskar, A.; Mishra, S.;
 Hajra, A., Tetrahedron Lett. 2015, 56, 4101-4104; c) Yamaguchi,
 S.; Xu, C.; Tamao, K., J. Am. Chem. Soc. 2003, 125, 13662-13663.
- a) Zuo, Z.; Yang, X.; Liu, J.; Nan, J.; Bai, L.; Wang, Y.; Luan, X., J. Org. Chem. 2015, 80, 3349-3356; b) Zhang, X.; Hou, W.; Zhang-Negrerie, D.; Zhao, K.; Du, Y., Org. Lett. 2015, 17, 5252-5255; c) Shi, Y.; Qian, H.; Lucas, N. T.; Xu, W.; Wang, Z., Tetrahedron Lett. 2009, 50, 4110-4113.

- Kotani, M.; Kobayashi, S.; Chang, J.-A., J. Phys. Org. Chem.
 2002, 15, 863-868.
- a) Takahashi, T.; Liu, Y.; Iesato, A.; Chaki, S.; Nakajima, K.;
 Kanno, K., J. Am. Chem. Soc. 2005, 127, 11928-11929; b) Wei, J.;
 Wang, Z.; Zhang, W.-X.; Xi, Z., Org. Lett. 2013, 15, 1222-1225.
- a) Hoye, R. C.; Baigorria, A. S.; Danielson, M. E.; Pragman, A. A.; Rajapakse, H. A., *J. Org. Chem.* **1999**, *64*, 2450-2453; b) Rasolofonjatovo, E.; Provot, O.; Hamze, A.; Bignon, J.; Thoret, S.; Brion, J.-D.; Alami, M., *Eur. J. Med. Chem.* **2010**, *45*, 3617-3626.
- 12. Calvet, G.; Livecchi, M.; Schmidt, F., J. Org. Chem. 2011, 76, 4734-4740.
- a) Song, Y. P.; Yarwood, J.; Tsibouklis, J.; Feast, W. J.; Cresswell, J.; Petty, M. C., *Langmuir* 1992, *8*, 262-266; b) Hennrich, G.; Murillo, M. T.; Prados, P.; Song, K.; Asselberghs, I.; Clays, K.; Persoons, A.; Benet-Buchholz, J.; de Mendoza, J., *Chem. Commun.* 2005, 2747-2749.
- 14. a) Sonogashira, K.; Tohda, Y.; Hagihara, N., *Tetrahedron Lett.*1975, 16, 4467-4470; b) Chinchilla, R.; Nájera, C., *Chem. Soc. Rev.* 2011, 40, 5084-5121; c) Karak, M.; Barbosa, L. C. A.;
 Hargaden, G. C., *RSC Adv.* 2014, 4, 53442-53466.
- Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S., J. Org. Chem. 2010, 75, 6244-6251.

- Moon, J.; Jeong, M.; Nam, H.; Ju, J.; Moon, J. H.; Jung, H. M.; Lee, S., Org. Lett. 2008, 10, 945-948.
- a) Kim, H.; Lee, P. H., Adv. Synth. Catal. 2009, 351, 2827-2832; b)
 Zhang, W.-W.; Zhang, X.-G.; Li, J.-H., J. Org. Chem. 2010, 75, 5259-5264; c) Li, X.; Yang, F.; Wu, Y., RSC Adv. 2014, 4, 13738-13741.
- Nishihara, Y.; Inoue, E.; Ogawa, D.; Okada, Y.; Noyori, S.; Takagi,
 K., *Tetrahedron Lett.* 2009, *50*, 4643-4646.
- a) Li, J.-H.; Liang, Y.; Wang, D.-P.; Liu, W.-J.; Xie, Y.-X.; Yin, D.-L., J. Org. Chem. 2005, 70, 2832-2834; b) Cummins, C. H., *Tetrahedron Lett.* 1994, 35, 857-860; c) Fang, Z.; Teo, T.-L.; Cai, L.; Lai, Y.-H.; Samoc, A.; Samoc, M., Org. Lett. 2009, 11, 1-4.
- 20. a) Ishikawa, T.; Ogawa, A.; Hirao, T., J. Am. Chem. Soc. 1998, 120, 5124-5125; b) Wang, B.; Bonin, M.; Micouin, L., Org. Lett.
 2004, 6, 3481-3484; c) Minami, H.; Saito, T.; Wang, C.; Uchiyama, M., Angew. Chem. Int. Ed. 2015, 54, 4665-4668.
- 21. Chang, S.; Yang, S. H.; Lee, P. H., *Tetrahedron Lett.* **2001**, *42*, 4833-4835.
- 22. Oh, C. H.; Reddy, V. R., *Synlett* **2004**, 2091-2094.
- a) Li, J.-H.; Li, J.-L.; Wang, D.-P.; Pi, S.-F.; Xie, Y.-X.; Zhang, M.-B.; Hu, X.-C., *J. Org. Chem.* 2007, *72*, 2053-2057; b) Shi, Y.; Li, X.; Liu, J.; Jiang, W.; Sun, L., *Tetrahedron Lett.* 2010, *51*, 3626-3628.

- 24. Kang, Y. K.; Deria, P.; Carroll, P. J.; Therien, M. J., Org. Lett.
 2008, 10, 1341-1344.
- 25. a) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z., *Chem. Commun.* 2001, 1740-1741; b) Hong, Y.; Lam, J. W. Y.; Tang, B. Z., *Chem. Commun.* 2009, 4332-4353; c) Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z., *Chem. Rev.* 2015, *115*, 11718-11940.
- 26. a) Zhang, Y.; Han, T.; Gu, S.; Zhou, T.; Zhao, C.; Guo, Y.; Feng, X.; Tong, B.; Bing, J.; Shi, J.; Zhi, J.; Dong, Y., *Chem. Eur. J.*2014, 20, 8856-8861; b) Ezhumalai, Y.; Wang, T.-H.; Hsu, H.-F., *Org. Lett.* 2015, 17, 536-539; c) Chen, J.; Xu, B.; Ouyang, X.; Tang, B. Z.; Cao, Y., *J. Phys. Chem. A* 2004, 108, 7522-7526.
- 27. Oberli, M. A.; Buchwald, S. L., Org. Lett. 2012, 14, 4606-4609.
- 28. a) Bettinger, H. F.; Filthaus, M.; Bornemann, H.; Oppel, I. M., *Angew. Chem. Int. Ed.* 2008, 47, 4744-4747; b) Sueki, S.; Kuninobu, Y., *Org. Lett.* 2013, 15, 1544-1547.
- Kinoshita, H.; Takahashi, H.; Miura, K., Org. Lett. 2013, 15, 2962-2965.
- 30. Hawkeswood, S.; Stephan, D. W., *Dalton Trans.* 2005, 2182-2187.
- a) Han, G. Y.; Han, P. F.; Perkins, J.; McBay, H. C., *J. Org. Chem.* **1981**, *46*, 4695-4700; b) Perner, R. J.; Gu, Y.-G.; Lee, C.-H.;
 Bayburt, E. K.; McKie, J.; Alexander, K. M.; Kohlhaas, K. L.;

Wismer, C. T.; Mikusa, J.; Jarvis, M. F.; Kowaluk, E. A.; Bhagwat,S. S., *J. Med. Chem.* 2003, *46*, 5249-5257.

- Shynkaruk, O.; He, G.; McDonald, R.; Ferguson, M. J.; Rivard, E., Chem. Eur. J. 2016, 22, 248-257.
- Ng, S.-C.; Ong, T.-T.; S. O. Chan, H., J. Mater. Chem. 1998, 8, 2663-2669.
- 34. a) Suzuki, A., J. Organomet. Chem. 1999, 576, 147-168; b) Lee, J.;
 Han, A. R.; Lee, S. M.; Yoo, D.; Oh, J. H.; Yang, C., Angew. Chem.
 Int. Ed. 2015, 54, 4657-4660.
- 35. a) Hu, Z.; Khadka, V.; Wang, W.; Galipeau, D.; Yan, X., J. Mol. Model. 2012, 18, 3657-3667; b) Fang, Z.; Samoc, M.; Webster, R.
 D.; Samoc, A.; Lai, Y.-H., Tetrahedron Lett. 2012, 53, 4885-4888;
 c) Krishna, A.; Sabba, D.; Yin, J.; Bruno, A.; Boix, P. P.; Gao, Y.; Dewi, H. A.; Gurzadyan, G. G; Soci, C.; Mhaisalkar, S. G; Grimsdale, A. C., Chem. Eur. J. 2015, 21, 15113-15117.
- 36. a) Negishi, E.; Cederbaum, F. E.; Takahashi, T., *Tetrahedron Lett.*1986, 27, 2829-2832; b) Rosenthal, U.; Ohff, A.; Baumann, W.;
 Tillack, A.; Görls, H.; Burlakov, V. V.; Shur, V. B., *Z. Anorg. Allg. Chem.* 1995, 621, 77-83; c) Yan, X.; Xi, C., *Acc. Chem. Res.* 2015, 48, 935-946.
- a) He, G; Kang, L.; Torres Delgado, W.; Shynkaruk, O.; Ferguson,
 M. J.; McDonald, R.; Rivard, E., J. Am. Chem. Soc. 2013, 135,
 5360-5363; b) He, G; Torres Delgado, W.; Schatz, D. J.; Merten,

C.; Mohammadpour, A.; Mayr, L.; Ferguson, M. J.; Brown, A.; Shankar, K.; Rivard, E., *Angew. Chem. Int. Ed.* **2014**, *53*, 4857-4591.

- 38. a) Eaton, D. F. *Pure Appl. Chem.* 1988, 60, 1107-1114; b) Würth,
 C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U., *Nat. Protocols* 2013, 8, 1535-1550.
- Yuan, W. Z.; Lu, P.; Chen, S.; Lam, J. W. Y.; Wang, Z.; Liu, Y.;
 Kwok, H. S.; Ma, Y.; Tang, B. Z., *Adv. Mater.* 2010, *22*, 2159-2163.
- Ghosh, A. P.; Gerenser, L. J.; Jarman, C. M.; Fornalik, J. E., *Appl. Phys. Lett.* 2005, *86*, 223503.
- 41. For a related study, see: Chen, J.; Wang, D.; Turshatov, A.; Munoz-Espi, R.; Ziener, U.; Koynov, K.; Landfester, K., *Polym. Chem.*2013, 4, 773-781.
- 42. a) Guo, T.; Yu, L.; Zhao, B.; Ying, L.; Wu, H.; Yang, W.; Cao, Y., J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 1043-1051; b) Kim, D. Y.; Cho, H. N.; Kim, C. Y., Prog. Polym. Sci. 2000, 25, 1089-1139; c) Yang, C.; Song, H.-S.; Liu, D.-B., J. Mater. Sci. 2013, 48, 6719-6727.
- 43. Farina, V.; Venkat, K.; Scott, W. J., *The Stille Reaction*. Wiley: 1998.
- 44. a) Bedi, A.; Senanayak, S. P.; Narayan, K. S.; Zade, S. S.,
 Macromolecules 2013, 46, 5943-5950; b) Al-Hashimi, M.; Han, Y.;

Smith, J.; Bazzi, H. S.; Alqaradawi, S. Y. A.; Watkins, S. E.; Anthopoulos, T. D.; Heeney, M., *Chem. Sci.* **2016**, *7*, 1093-1099.

- 45. Nakano, M.; Osaka, I.; Takimiya, K., *Macromolecules* **2015**, *48*, 576-584.
- Ashe, A. J.; Lohr, L. L.; Al-Taweel, S. M., Organometallics 1991, 10, 2424-2431.
- 47. a) Kiehl, A.; Eberhardt, A.; Adam, M.; Enkelmann, V.; Müllen, K., *Angew. Chem. Int. Ed. Engl.* 1992, *31*, 1588-1591; b) Ashe, A. J.; Mahmoud, S., *Organometallics* 1988, *7*, 1878-1880.
- 48. Khan, A.; Lough, A. J.; Gossage, R. A.; Foucher, D. A., *Dalton Trans.* 2013, 42, 2469-2476.
- Itami, K.; Ushiogi, Y.; Nokami, T.; Ohashi, Y.; Yoshida, J.-i., Org. Lett. 2004, 6, 3695-3698.
- 50. Li, C.; Bo, Z., CHAPTER 1 New Chemistry for Organic Photovoltaic Materials. In *Polymer Photovoltaics: Materials, Physics, and Device Engineering*, The Royal Society of Chemistry: 2016; pp 1-31.
- 51. a) Fagan, P. J.; Nugent, W. A., J. Am. Chem. Soc. 1988, 110, 2310-2312; b) Fagan, P. J.; Nugent, W. A.; Calabrese, J. C., J. Am. Chem. Soc. 1994, 116, 1880-1889.
- 52. Kanno, K.-i.; Kira, M., Chem. Lett. 1999, 28, 1127-1128.
- 53. Niu, L.; Zhang, H.; Yang, H.; Fu, H., Synlett 2014, 25, 995-1000.
- 54. Bhatt, S.; Nayak, S. K., Synth. Commun. 2007, 37, 1381-1388.

- 55. Ura, Y.; Yanzhong, L.; Zhenfeng, X.; Takahashi, T., *Tetrahedron Lett.* **1998**, *39*, 2787-2790.
- Linshoeft, J.; Baum, E. J.; Hussain, A.; Gates, P. J.; Näther, C.;
 Staubitz, A., *Angew. Chem. Int. Ed.* 2014, *53*, 12916-12920.
- 57. Fan, C.; Piers, W. E.; Parvez, M., Angew. Chem. Int. Ed. 2009, 48, 2955-2958.
- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.;
 Timmers, F. J., *Organometallics* 1996, 15, 1518-1520.
- Armarego, W. L. F.; Chai, C. L. L., Chapter 4 Purification of Organic Chemicals. In *Purification of Laboratory Chemicals* (Sixth Edition), Chai, W. L. F. A. L. L., Ed. Butterworth-Heinemann: Oxford, 2009; pp 88-444.
- Dell, E. J.; Capozzi, B.; DuBay, K. H.; Berkelbach, T. C.; Moreno,
 J. R.; Reichman, D. R.; Venkataraman, L.; Campos, L. M., *J. Am. Chem. Soc.* 2013, *135*, 11724-11727.
- 61. Xiao, H.; Shen, H.; Lin, Y.; Su, J.; Tian, H., *Dyes Pigm.* **2007**, *73*, 224-229.
- Altman, R. A.; Buchwald, S. L., Nat. Protocols 2007, 2, 3115-3121.
- a) Zhang, W.; Kraft, S.; Moore, J. S., J. Am. Chem. Soc. 2004, 126, 329-335; b) Melzig, L.; Metzger, A.; Knochel, P., Chem. Eur. J. 2011, 17, 2948-2956.
- 64. Li, J.; Pang, Y., Macromolecules 1997, 30, 7487-7492.

Chapter Four

- a) Malytskyi, V.; Simon, J.-J.; Patrone, L.; Raimundo, J.-M. *RSC Adv.* 2015, *5*, 354-397; b) Günes, S.; Neugebauer, H.; Sariciftci, N. S. *Chem. Rev.* 2007, *107*, 1324-1338.
- 2. Chivers, T.; Laitinen, R. S. Chem. Soc. Rev. 2015, 44, 1725-1739.
- 3. Carrera, E. I.; Seferos, D. S. *Macromolecules* **2015**, *48*, 297-308.
- 4. Rivard, E. Chem. Lett. 2015, 44, 730-736.
- a) Koide, Y.; Kawaguchi, M.; Urano, Y.; Hanaoka, K.; Komatsu, T.; Abo, M.; Terai, T.; Nagano, T. *Chem. Commun.* 2012, 48, 3091-3093; b) McCormick, T. M.; Jahnke, A. A.; Lough, A. J.; Seferos, D. S. J. Am. Chem. Soc. 2012, 134, 3542-3548.
- a) Detty, M. R.; Merkel, P. B. J. Am. Chem. Soc. 1990, 112, 3845-3855; b) Annaka, T.; Nakata, N.; Ishii, A. Organometallics 2015, 34, 1272-1278; c) Kremer, A.; Aurisicchio, C.; De Leo, F.; Ventura, B.; Wouters, J.; Armaroli, N.; Barbieri, A.; Bonifazi, D. Chem. Eur. J. 2015, 21, 15377-15387.
- He, G.; Torres Delgado, W.; Schatz, D. J.; Merten, C.; Mohammadpour, A.; Mayr, L.; Ferguson, M. J.; McDonald, R.; Brown, A.; Shankar, K.; Rivard, E. Angew. Chem. Int. Ed. 2014, 53, 4587-4591.
- He, G.; Wiltshire, B. D.; Choi, P.; Savin, A.; Sun, S.;
 Mohammadpour, A.; Ferguson, M. J.; McDonald, R.; Farsinezhad,

S.; Brown, A.; Shankar, K.; Rivard, E. Chem. Commun. 2015, 51, 5444-5447.

- 9. a) Hammerstroem, D. W.; Braddock-Wilking, J.; Rath, N. P. J. Organomet. Chem. 2016, 813, 110-118; b) Shynkaruk, O.; He, G.; McDonald, R.; Ferguson, M. J.; Rivard, E. Chem. Eur. J. 2016, 22, 248-257; c) Zhao, Y.; Hao, W.; Ma, W.; Zang, Z.; Zhang, H.; Liu, X.; Zou, S.; Zhang, H.; Liu, W.; Gao, J. New J. Chem. 2014, 38, 5754-5760.
- a) Ding, A.-X.; Hao, H.-J.; Gao, Y.-G.; Shi, Y.-D.; Tang, Q.; Lu, Z.-L. *J. Mater. Chem. C* 2016, *4*, 5379-5389; b) Chang, Z.-F.; Jing, L.-M.; Chen, B.; Zhang, M.; Cai, X.; Liu, J.-J.; Ye, Y.-C.; Lou, X.; Zhao, Z.; Liu, B.; Wang, J.-L.; Tang, B. Z. *Chem. Sci.* 2016, *7*, 4527-4536.
- a) Krishna, A.; Sabba, D.; Yin, J.; Bruno, A.; Boix, P. P.; Gao, Y.; Dewi, H. A.; Gurzadyan, G. G.; Soci, C.; Mhaisalkar, S. G.; Grimsdale, A. C. *Chem. Eur. J.* 2015, *21*, 15113-15117; b) Carli, S.; Baena, J. P. C.; Marianetti, G.; Marchetti, N.; Lessi, M.; Abate, A.; Caramori, S.; Grätzel, M.; Bellina, F.; Bignozzi, C. A.; Hagfeldt, A. *ChemSusChem* 2016, *9*, 657-661; c) Chi, W.-J.; Li, Q.-S.; Li, Z.-S. *Nanoscale* 2016, *8*, 6146-6154.
- a) Araki, T.; Fukazawa, A.; Yamaguchi, S. *Angew. Chem. Int. Ed.* **2012**, *51*, 5484-5487; b) Scheuble, M.; Goll, M.; Ludwigs, S.
 Macromol. Rapid Commun. **2015**, *36*, 115-137.

- Negishi, E.-i.; Cederbaum, F. E.; Takahashi, T. *Tetrahedron Lett.* 1986, 27, 2829-2832.
- Dutton, J. L.; Farrar, G. J.; Sgro, M. J.; Battista, T. L.; Ragogna, P. J. Chem. Eur. J. 2009, 15, 10263-10271.
- Rosenthal, U.; Ohff, A.; Baumann, W.; Tillack, A.; Görls, H.;
 Burlakov, V. V.; Shur, V. B. Z. Anorg. Allg. Chem. 1995, 621, 77-83.
- He, G.; Kang, L.; Torres Delgado, W.; Shynkaruk, O.; Ferguson,
 M. J.; McDonald, R.; Rivard, E. J. Am. Chem. Soc. 2013, 135, 5360-5363.
- 17. Bondi, A. J. Phys. Chem. 1964, 68, 441-451.
- Fang, Z.; Samoc, M.; Webster, R. D.; Samoc, A.; Lai, Y.-H. *Tetrahedron Lett.* 2012, *53*, 4885-4888.
- a) Zhang, X.; Köhler, M.; Matzger, A. J. *Macromolecules* 2004, 37, 6306-6315; b) Zhao, H.; Wei, Y.; Zhao, J.; Wang, M. *Electrochimica Acta* 2014, 146, 231-241; c) Gibson, G. L.; McCormick, T. M.; Seferos, D. S. J. Am. Chem. Soc. 2012, 134, 539-547.
- 20. Malkin, J. Photophysical and Photochemical Properties of Aromatic Compounds. Taylor & Francis: 1992.
- a) Diallo, A. K.; Metri, N.; Brunel, F.; Sallenave, X.; Goubard, F.;
 Margeat, O.; Ackermann, J.; Videlot-Ackermann, C. Synth. Met.

2013, *184*, 35-40; b) Yan, P.; Liu, Z.; Zhang, S.; Liu, D.; Wang, X.; Yue, S.; Zhao, Y. *APL Mater.* **2014**, *2*, 116103-116110.

- a) Hsu, C.-Y.; Chen, Y.-C.; Lin, R. Y.-Y.; Ho, K.-C.; Lin, J. T. *Phys. Chem. Chem. Phys.* 2012, *14*, 14099-14109; b) Nguyen, W. H.; Bailie, C. D.; Unger, E. L.; McGehee, M. D. *J. Am. Chem. Soc.* 2014, *136*, 10996-11001; c) Meira, R.; Costa, P. M. M.; Di Paolo, R. E.; Morgado, J.; Alcacer, L.; Bastos, J. P.; Cheyns, D.; Charas, A. *New J. Chem.* 2015, *39*, 7389-7396.
- 23. Nishimura, H.; Ishida, N.; Shimazaki, A.; Wakamiya, A.; Saeki,
 A.; Scott, L. T.; Murata, Y. J. Am. Chem. Soc. 2015, 137, 15656-15659.
- a) Yu, Z.; Sun, L. Adv. Energy Mater. 2015, 5, 1500213-1500230;
 b) Swetha, T.; Singh, S. P. J. Mater. Chem. A 2015, 3, 18329-18344; c) Ameen, S.; Rub, M. A.; Kosa, S. A.; Alamry, K. A.; Akhtar, M. S.; Shin, H.-S.; Seo, H.-K.; Asiri, A. M.; Nazeeruddin, M. K. ChemSusChem 2016, 9, 10-27.
- 25. a) Van Overmeire, I.; Boldin, S. A.; Venkataraman, K.; Zisling,
 R.; De Jonghe, S.; Van Calenbergh, S.; De Keukeleire, D.;
 Futerman, A. H.; Herdewijn, P. *J. Med. Chem.* 2000, *43*, 41894199; b) Pawle, R. H.; Eastman, V.; Thomas, S. W. *J. Mater. Chem.* 2011, *21*, 14041-14047; c) Wang, F.; Kaafarani, B. R.;
 Neckers, D. C. *Macromolecules* 2003, *36*, 8225-8230; d) Wu, R.;
 Schumm, J. S.; Pearson, D. L.; Tour, J. M. *J. Org. Chem.* 1996, *61*,

6906-6921; e) Uttiya, S.; Miozzo, L.; Fumagalli, E. M.; Bergantin, S.; Ruffo, R.; Parravicini, M.; Papagni, A.; Moret, M.; Sassella, A. *J. Mater. Chem. C* **2014**, *2*, 4147-4155.

- Bertrand, G. H. V.; Tortech, L.; Gandon, V.; Aubert, C.; Fichou,
 D. *Chem. Commun.* 2014, *50*, 8663-8666.
- 27. Pratt, D. A.; DiLabio, G. A.; Valgimigli, L.; Pedulli, G. F.; Ingold,
 K. U. J. Am. Chem. Soc. 2002, 124, 11085-11092.
- Odom, S. A.; Lancaster, K.; Beverina, L.; Lefler, K. M.; Thompson, N. J.; Coropceanu, V.; Brédas, J.-L.; Marder, S. R.; Barlow, S. *Chem. Eur. J.* 2007, 13, 9637-9646.
- 29. Zhang, H.-C.; Pu, L. Tetrahedron 2003, 59, 1703-1709.
- Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125-146.
- Li, H.; Fu, K.; Boix, P. P.; Wong, L. H.; Hagfeldt, A.; Grätzel, M.;
 Mhaisalkar, S. G.; Grimsdale, A. C. *ChemSusChem* 2014, *7*, 3420-3425.
- a) Brown, H. C.; Bhat, N. G.; Srebnik, M. *Tetrahedron Lett.* 1988, 29, 2631-2634; b) Gandon, V.; Leca, D.; Aechtner, T.; Vollhardt, K. P. C.; Malacria, M.; Aubert, C. *Org. Lett.* 2004, *6*, 3405-3407.
- Altenburger, K.; Arndt, P.; Spannenberg, A.; Baumann, W.;
 Rosenthal, U. *Eur. J. Inorg. Chem.* 2013, 3200-3205.
- 34. Hydrio, J.; Gouygou, M.; Dallemer, F.; Daran, J.-C.; Balavoine, G.
 G. A. *J. Organomet. Chem.* 2000, *595*, 261-267.

- Takahashi, T.; Swanson, D. R.; Negishi, E.-i. Chem. Lett. 1987, 16, 623-626.
- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.;
 Timmers, F. J. *Organometallics* 1996, 15, 1518-1520.
- Armarego, W. L. F.; Chai, C. L. L. Chapter 4 Purification of Organic Chemicals. In *Purification of Laboratory Chemicals* (Sixth Edition), Chai, W. L. F. A. L. L., Ed. Butterworth-Heinemann: Oxford, 2009; pp 88-444.
- Linshoeft, J.; Baum, E. J.; Hussain, A.; Gates, P. J.; Näther, C.;
 Staubitz, A. Angew. Chem. Int. Ed. 2014, 53, 12916-12920.
- 39. Kang, Y. K.; Deria, P.; Carroll, P. J.; Therien, M. J. Org. Lett.
 2008, 10, 1341-1344.
- 40. a) Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S. J. Org. Chem. 2010, 75, 6244-6251; b) Zhang, W.; Kraft, S.; Moore, J. S. J. Am. Chem. Soc. 2004, 126, 329-335; c) Melzig, L.; Metzger, A.; Knochel, P. Chem. Eur. J. 2011, 17, 2948-2956.

Chapter Five

- 1. Leclerc, M.; Morin, J. F. Design and Synthesis of Conjugated Polymers. Wiley: 2010.
- a) Allard, N.; Aïch, R. B.; Gendron, D.; Boudreault, P.-L. T.; Tessier, C.; Alem, S.; Tse, S.-C.; Tao, Y.; Leclerc, M. *Macromolecules* 2010, 43, 2328-2333; b) Palermo, E. F.; van der Laan, H. L.; McNeil, A. J. *Polym. Chem.* 2013, 4, 4606-4611; c) Jaroch, T.; Maranda-Niedbała, A.; Góra, M.; Mieczkowski, J.; Zagórska, M.; Salamończyk, M.; Górecka, E.; Nowakowski, R. *Synth. Met.* 2015, 204, 133-140.
- Chen, R.-F.; Fan, Q.-L.; Zheng, C.; Huang, W. Org. Lett. 2006, 8, 203-205.
- 4. Hilton, C. L.; King, B. T. Organometallics **2006**, *25*, 4058-4061.
- Suzuki, H.; Nakamura, T.; Sakaguchi, T.; Ohta, K. J. Org. Chem.
 1995, 60, 5274-5278.
- a) Sato, S.; Furukawa, N. *Tetrahedron Lett.* 1995, *36*, 2803-2806;
 b) Murata, S.; Suzuki, T.; Yanagisawa, A.; Suga, S. *J. Heterocycl. Chem.* 1991, *28*, 433-438; c) Sato, S.; Kondo, N.; Furukawa, N. *Organometallics* 1994, *13*, 3393-3395; d) Petragnani, N.; Stefani, H. A. *Tellurium in Organic Synthesis: Second, Updated and Enlarged Edition.* Elsevier Science: 2010.
- Xie, Z.; Chen, C.; Xu, S.; Li, J.; Zhang, Y.; Liu, S.; Xu, J.; Chi, Z.
 Angew. Chem. Int. Ed. 2015, 54, 7181-7184.

- Xi, C.; Huo, S.; Afifi, T. H.; Hara, R.; Takahashi, T. *Tetrahedron Lett.* 1997, 38, 4099-4102.
- Vasilyev, A. V.; Shchukin, A. O.; Walspurger, S.; Sommer, J. *Eur. J. Org. Chem.* 2008, 4632-4639.
- Tsuchihara, K.; Masuda, T.; Higashimura, T. J. Am. Chem. Soc.
 1991, 113, 8548-8549.
- 11. Toal, S. J.; Trogler, W. C. J. Mater. Chem. 2006, 16, 2871-2883.
- Liu, Y.; Mills, R. C.; Boncella, J. M.; Schanze, K. S. *Langmuir* 2001, 17, 7452-7455.
- 13. Zhang, H.-C.; Pu, L. *Tetrahedron* **2003**, *59*, 1703-1709.
- He, G.; Wiltshire, B. D.; Choi, P.; Savin, A.; Sun, S.; Mohammadpour, A.; Ferguson, M. J.; McDonald, R.; Farsinezhad, S.; Brown, A.; Shankar, K.; Rivard, E. *Chem. Commun.* 2015, *51*, 5444-5447.
- Rosenthal, U.; Ohff, A.; Baumann, W.; Tillack, A.; Görls, H.;
 Burlakov, V. V.; Shur, V. B. Z. Anorg. Allg. Chem. 1995, 621, 77-83.
- Altenburger, K.; Arndt, P.; Spannenberg, A.; Rosenthal, U. *Eur. J. Inorg. Chem.* 2015, 44-48.
- Hydrio, J.; Gouygou, M.; Dallemer, F.; Daran, J.-C.; Balavoine, G.
 G. A. *J. Organomet. Chem.* 2000, *595*, 261-267.
- Takahashi, T.; Swanson, D. R.; Negishi, E.-i. Chem. Lett. 1987, 16, 623-626.

Takahashi, T.; Kotora, M.; Hara, R.; Xi, Z. Bull. Chem. Soc. Jpn.
 1999, 72, 2591-2602.