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Abstract

Multiple-input multiple-output (MIMO) systems that use multiple antennas
can significantly improve the reliability and data rate of wireless communica-
tions. MIMO systems use space-time coding techniques such as orthogonal
space-time block codes (OSTBCs). However, the use of multiple antenna in-
creases the complexity of both the transmitter and the receiver. Antenna
selection is a scheme to reduce the system complexity and cost and uses a
low-rate feedback channel from receiver to transmitter to improve the perfor-
mance.

In this thesis, we derive the bit error rate (BER) of OSTBCs with antenna
selection for independent and receive correlated Rayleigh channels. Pulse am-
plitude modulation (PAM), quadrature amplitude modulation (QAM), and
pulse shift keying (PSK) constellations are used in OSTBCs. We provide a
novel analytical framework for the diversity analysis and approximation of
BER to show approximations for BER expressions. As a conclusion the sys-
tem achieves full diversity order when transmit antenna selection scheme is

used.
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Chapter 1

Introduction

Section 1.1 gives a general introduction to multiple-input multiple-output
(MIMO) wireless systems. Antenna selection techniques are briefly summa-
rized in Section 1.2. The contributions and the organization of the remaining

chapters can be found in Section 1.3.

1.1 MIMO Wireless Systems

The increasing demand for high data rates due to emerging new technologies
makes wireless communications an exciting and challenging field. Wireless
multiple-input multiple-output (MIMO) systems, which employ multiple an-
tennas at both the transmitter and receiver, improve the reliability and achieve
larger data rates in comparison to systems that employ single antennas at the
transmitter and receiver ends [1], [2].

Wireless links are impaired by random signal fluctuations known as fad-
ing. Diversity provides the receiver with multiple (ideally independent) fading
replicas of the transmitted signal and is therefore a powerful solution to com-
bat fading. Diversity may be achieved using multiple transmit and/or receive
antennas.

Space-time codes [3—6] are capable of extracting spatial diversity order in

MIMO systems without requiring channel knowledge at the transmitter. Or-
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thogonal space-time block codes (OSTBCs) [4], [5], [7], are particularly at-
tractive since they yield the maximum spatial diversity order and, at the same
time, decouple the MIMO signal vector detection into a number of equivalent
Single-Input Single-Output (SISO) systems with scalar detection, thereby sig-
nificantly reducing decoding complexity (at the expense of spatial transmission

rate).

1.2 Antenna Selection

For practical applications, the cost and the complexity of MIMO systems are
significant because of the large number of radio frequency (RF) chains re-
quired for every active transmit/receive antenna pair. An RF chain comprises
low noise amplifiers, frequency down/up converters, a power amplifier, analog-
to-digital/digital-to-analog converters, and several filters, all of which clearly
increases the implementation costs. This increase has hindered the wide de-
ployment of MIMO systems. For example, the third-generation cellular system
(3GPP) supports the Alamouti transmit diversity scheme [4,8] with only two
transmit and one receive antenna as an option. Also in the IEEE 802.16 stan-
dard, known as WiMax [9], only the Alamouti scheme is offered as an option.

In the next-generation of wireless standards, where MIMO adoption is
needed for higher data rates, complexity issues have led many researchers
to develop methods that can reduce the implementation cost and retain the
benefits of MIMO systems. Antenna selection, which seeks the utilization of
a subset of all available antennas at the transmitter and/or receiver, is such a
technique [10] and [11]. Selecting a subset of antennas at the transmitter or
the receiver is called transmit antenna selection or receive antenna selection,

respectively.
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1.3 Contribution of this thesis

In this thesis we provide a general, exact closed-form BER analysis of transmit
antenna selection and OSTBCs for Independent and correlated fading chan-

nels.

o The exact BER for M-ary PAM and QAM is derived for arbitrary N > 2
transmit antenna selection employing OSTBCs. An approximate BER

expression for M-PSK is also derived.

e The moment generating function (MGF) of N largest instantaneous
signal-to-noise ratios (SNRs) is derived in [12] but for the generalized
selection combining (GSC) scheme. Using this MGF for the transmit
antenna selection scheme, we derive the exact and approximate BER

expressions.

e Using the asymptotic analysis, the diversity and coding gain of the sys-
tem are derived. It is shown that full diversity order is achieved through

transmit antenna selection using OSTBCs.

o The closed-form results and approximations can be computed much
faster than computer simulations and numerical methods of analysis of

performance.

e The performance problem is complicated because the analysis requires
the statistics of the ordered random variables. Although mathematical
and engineering literature has several thousands papers on order statis-
tics of independent random variables, very few results are available on
the order statistics of correlated random variables. As a result no perfor-
mance analysis is available on transmit antenna selection over correlated
channels. However, we analyze the performance for receive antenna se-

lection over correlated channels.
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Chapter 2 reviews the background and preliminaries for the whole thesis.
Chapter 3 presents the antenna selection criteria. The performance of transmit
antenna selection using OSTBCs in the independent Rayleigh fading channels
is discussed in chapter 4. In Chapter 5, the performance of OSTBCs with
transmit antenna selection in receive correlated Rayleigh fading channels is

analyzed. Chapter 6 concludes the thesis.
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Chapter 2

Background

Section 2.1 overviews the mathematical notation used throughout the the-
sis. The MIMO system model is presented in Section 2.2. Fundamentals of
digital communications are reviewed in Section 2.3. Section 2.6 overviews OS-
TBCs. Spatial multiplexing is discussed in Section 2.7. Section 2.4 reviews
the Performance analysis methods for different M-ary signal constellations in
MIMO systems. Diversity order and Coding gains are introduced in Section
2.5 for subsequent asymptotic performance analysis. Section 2.8 provides an
overview on channel capacity. Finally, some useful probability preliminaries

are presented in Section 2.9.

2.1 Notation

This thesis uses |- || p for the matrix Frobenius norm (i.e. |H|r =3, 3, [heil?)-
The Euclidean norm for vector h of length n is ||h|| = (h? + ... + A2)1/2. C™
and C™*™ are used to refer to the m-dimensional complex vector space and
the set of m x n complex matrices, respectively. The conjugate transposition
operator is given by # which is also known as Hermitian operator. The deter-
minant is represented by det(-). The operator vec(-) stacks the columns of a
matrix into one column vector. The operator ® is the Kronecker product.

A circularly symmetric complex Gaussian variable with mean p and vari-
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ance o is denoted by z ~ CN'(u,0?). &,[-] is used to denote expectation with
respect to y. The floor of a number is returned by |-]. §;; is the Kronecker

delta function.

2.2 System Model

We consider a wireless communication system with L, transmit and L, re-
ceive antennas. Let H € CI"*%t be the channel matrix. The quasi-static flat

Rayleigh fading MIMO channel for this system can be represented as [6]

/7,171 ]1172 t th,l
hz,l

H=| (2.1)
hp.n hr,2 -+ hr.r,

where h; ; is the path gain between transmit antenna j and receive antenna .
The entries of H are CA/(0, 1) with positive semi-definite autocorrelation given
by R = E{vec(H) vec (H)} of size L;L, x L,L,. The channel H is known at
the receiver while it is unknown at the transmitter. A limited-rate feedback
channel from the receiver to transmitter is available. The receiver uses this
channel to inform the transmitter about the selected antennas. N transmit
antennas out of L; are selected and activated for the transmission of OSTBC
signal matrices, while the rest are inactive.

In the presence of a line of sight (LOS) component between the transmit-
ter and receiver, the MIMO channel can be modeled as sum of a zero mean

complex gaussian channel and a fixed component [6],

s 1
H= ) — 1 m, .
TRATVITER (2.2)

where 1/K/(1 + K)H = £[H] is the fixed LOS component of the channel and
V1/(1 + K)H,, is the fading component where H,, is spatially white complex

Gaussian channel matrix. The entries of H are assumed to have unit power.
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Figure 2.1: MIMO Channel Model

K is the Rician K-factor of the MIMO system. When K = 0, the channel
reduces to the conventional Rayleigh fading channel.

In the Kronecker model for the correlated channels, the channel matrix
is modeled as the product of the receive correlation matrix, an independent
identically distributed (i.i.d.) complex Gaussian matrix, and the transmit

correlation matrix [13]

H = R!/?H,R}* (2.3)

where H,, is a L, X L; matrix with i.i.d. circular complex Gaussian elements
with mean zero and variance one, R; and R, are the transmit and receiver
correlation matrices R, = € {h;h#} (i = 1,2, ..., L;) [6]. Thus total correlation
matrix R is given by

R=R!®R,. (2.4)

The Kronecker model has been verified for non Line of sight (NLOS) [14],

[15]. However, the accuracy of model has been questioned recently in large

7
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antenna arrays [16].
Suppose an OSTBC is transmitted over the channel given in (2.1). The

received signals are expressed as

Y:,/%ﬁxjtv (2.5)

where the matrix Y € CX*7 is the complex received matrix, H is a submatrix
of H, X € CM*T is the complex transmitted matrix and V € C*T is the
additive noise matrix with independent and identical distributed entries of
CN (0, Ny). The coefficient \/m ensures that the total transmitted power
in each channel use is F; and independent of number of transmit antennas.
Since 7" symbol periods are necessary to transmit ) symbols, the symbol rate

R of the STBC is defined as R, = Q/T.

2.3 Fundamentals of Digital Communications

Fig. 2.2 shows the generic transmitter. The original message is in form of
a digital sequence of bits which is generated by an information source. The
channel encoder adds redundant bits in order to detect/correct transmission
errors.

The digital modulator maps the message bits into symbols from a constella-
tion S. Figures 2.3, 2.4, and 2.5 illustrate several popular signal constellations.

M-ary pulse amplitude modulation (M-PAM) can be expressed as
s(t) = Apcos2mft, 0<t<r (2.6)

where A), is the signal amplitude of the in-phase component, f, is the carrier

frequency, and 7 is the symbol time duration. In M-PAM, log, M bits of data

Information communication

bits channel

Figure 2.2: Generic transmitter
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are used to select from the set {£d,£3d,..., (M — 1)d}, where 2d is the

minimum distance [17] and is related to the bit energy F, as

3log, M - E
d= | —r—. 2.7
(M2 -1) (27)
M-ary Quadrature Amplitude Modulation signals are represented as

s(t) = Aprcos2m fot — Ay sin 2rft, 0<t<r (2.8)

where Ay, + jAM is the corresponding signal point as it is shown for the 16-
QAM in Figure 2.4. The in-phase amplitude A,; and the quadrature amplitude
Ay are selected from the set {+d,43d,...,+(M — 1)d}, where 2d is the
minimum distance between signal and is related to the bit energy Fj, same as
(2.7) for the M2-QAM signal constellation.

For phase shift keying (PSK) or phase pulse modulation, the signals are

0011 0001 | 0101 0111
° e ' o Y
|
]
0010 0000 | 0100 0110
o e | o o
|
N E
1010 1000 | 1100 1110
°® °® 5 ® ®
|
1011 1001 i 0011 0011
° e ' o °

Figure 2.4: 16-QAM signal constellation Gray Mapping.
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represented as

2
s(t) = cos (27rfct+ Mﬁ(m - 1)) : m=12..,M 0<t<r (29
where d is the minimum distance between signal points for M-PSK constella-

tion and is related to the bit energy F, as

d = 2sin (A—Z) log, M - By, (2.10)

The mapping of log, M data bits to the M possible signals may be done such
that the labels of the adjacent signal points differ by one bit. Such a mapping
is called Gray Mapping and is illustrated in Figures 2.3, 2.4 and 2.5.

Coded modulations based on Gray mapping may employ only one binary
component code. The theory of bit-interleaved coded modulation was devel-
oped in [18]. The performance of coded modulation over a Rayleigh fading
channel can be improved by bit-wise interleaving at the encoder output but
not considered in this thesis. However, Gray mapping offers excellent perfor-
mance in the AWGN channel [18].

With Gray mapping and zero-mean additive white Gaussian noise (AWGN)
channel, the exact BER of the n-th bit for M-PAM constellation is given by [19]

Fy(n) = % Z B;Q (Di %(p)) (2.11)

3=0

011
-@--

-~

/
111 100/
e
~~_ 101 .-
\‘.__,

Figure 2.5: 8-PSK signal constellation with Gray Mapping.

10
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where the Q-function is defined as

Oz x>0

=g < f

L[ 2\ g 2.12
*E/O eXp<—QSin29> ! (212)

and the parameters of the sum are given as
1

bo= (1= )M =1 (2.132)
B, = (~1)l*=5 <2”—1 = V'i\;l + %D (2.13b)
D; = (2 +1) %. (2.13¢)

The SNR per symbol, p, is defined from the bit energy Fj, and the symbol

energy F, as

E, logy, M - E,
_bs _ &MLy 2.14
P= Ny No (2.14)

The SNR per bit «, which depends on the rate of the code used for trans-
mission, will be defined later in this thesis.

Finally, the exact average BER of arbitrary M-PAM can be obtained by
adding all bit error probabilities and normalizing by the total bits. That is,

logy M

pPAM — P, )
M 1og2M Z b(1). (2.15)

A rectangular or square QAM constellatlons can be decomposed to two
independent PAM constellations: I-ary PAM for the in-phase component and
J-ary PAM for the quadrature component, where M = I x J. Thus, the exact
average BER of M-QAM is given by |

logy 1 logy J
PRiM = > Piln E j :
M logZ(] J) ( it Py (2.16)

A tight approximation for the BER of the coherent M-ary PSK in AWGN
channels is given by [20]

a2 T s B0 0) e
“ -~ max(log, M,2) 4= S R '

11
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2.4 Performance over MIMO channel

Section (2.3) shows the BER for M-PAM signal constellation using the Gray
mapping over an AWGN channel. Since the MIMO channel is a random ma-

trix, we take the expectation with respect to the channel from the BER ex-

pression for AWGN in (2.11):
2 &
Pu(n; p) Y Z Bién [Q (Di\/ ’Yb(P))]
/2 D2
= ZBSH / e~ 720 df
2 1 [ D?
= Z Bi— / / e" 2™ f () dryydf
i=0
k
2 1 T2 D?
=— B;— b, | ——5— | db 2.18
M; 7r/0 %( 2511129) (2.18)

where Ey[] is expectation over all channel matrices and we have used

1 /2 .2
Qz) = = / e Tra d (2.19)
0

T

to obtain the above formula in respect to MGF of -,.

The exact average BER of an OSTBC for M-PAM in fading is given by

1 logo M
Puy(p) = og, 17 nz:; Pa(n; p). (2.20)

Note that a rectangular or square QAM constellations can be decomposed to
two independent PAM constellations: [-ary PAM for the in-phase component
and J-ary PAM for the quadrature component, where M = I x J. Thus, the
exact average BER of M-QAM is given by

log, logy J
P (p)= logy(1.7) IJ (ZPI n; p) +ZPJ m; P)) (2:21)

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Probability of error

Coding gain /

SNR (dB)

Figure 2.6: Diversity order and Coding gain in the plot of probability of error

2.4.1 Approximate BER for M-ary PSK

By taking the expectation of (2.17) similar to the derivation in (2.18), the
approximate BER for M-PSK and over MIMO channel is given by

max(M/4,1) /2 .2 (2w

2 1 sin® +=—
~ — o M 140, 2.22
max(log, M, 2) ; 7r/0 i ( sin® 4 ) (222)

2.5 Diversity and Coding Gains

Pur(p)

A system is said to have a diversity order (also called diversity gain) of G if

log Py

- i ———— 2.23
ES/I{/IOn_’OO Iog(Es/NO) ( )

Gy =
The average BER at high SNR may be approximated by the expression

Pu(p) = (Ge - p)~©¢ (2.24)

where G, is the coding gain, and Gy is the diversity order. The diversity order

determines the slope of the average BER curve versus the average SNR. p at
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high SNR in a log-log scale, whereas the coding gain (in decibel) determines
the shift of the curve in SNR relative to a BER curve given by (p~¢4).

In [21], Wang and Giannakis develop a simple and general method to quan-
tify the coding gain and diversity order. They show that the asymptotic per-
formance depends on the behavior of the MGF of the output SNR. We write

f(z) =olg(z)], asz — zg (2.25)
if @)
. flz)

If the MGF of ®,,(s) can be approximated by a single polynomial term for
s — 00 as

|y, ()] = bls| ™ + o(s™%), (2.27)

then d is the diversity order of the system at high SNRs and the coding gain
can be derived from b [21].

A MIMO system with L, transmit and L, receive antennas is said to have
full diversity when it has used all possible spatial diversity from antennas and

therefore has achieved diversity order of L;L,.

2.6 Orthogonal Space-time Block Codes

Receive diversity, i.e., multiple antennas at the receiver, may not be suitable
for the downlink because the placement of multiple antennas on small handsets
is expensive and difficult. The multiple antenna burden is preferably placed
at the base station. This is called transmit diversity. In this case the channel
is unknown to the transmitter but known to the receiver. With space-time
coding, transmit symbols are spread across both space and time [3-7]. In this
section, we give a general overview of space-time codes. Of these codes, one
particularly interesting structure (namely space-time block code) is the major

topic of interest for this thesis.
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Figure 2.7: Alamouti Scheme with 2 transmit antenna and 1 receive antenna

One of the simplest and most attractive transmit diversity schemes were
proposed by Alamouti [4] for the case of two transmit antennas. For trans-
mitting () = 2 complex symbols s; and sy during two time intervals uses the

following transmission matrix

X = {51 =53 } . (2.28)

s2 8]
Note that the code rate is R; = 2/2 = 1. Assuming a single receiver, let h; and
hy denote the channel coefficients for transmit antenna 1 and 2 respectively.
The channel coeflicients are assumed to be constant over two consecutive time

intervals. The received signals are given by
Y1 = h1s1 + hasa + na,
Yo = —hy 83 + hos] + no. (2.29)
Maximum likelihood (ML) detection in (2.28) would be given by
51 = Ky + hoys = (Jha]? + |ho|?)sy + 7,
Sy = oy — hiys = ([M)? + |ho|?)s2 + 152 (2.30)
We observe that the transmitted signals are effectively multiplied by |hy|? + |ho|?.
Hence, if one of the paths is in a deep fade, the other may not.

Space-time block codes derive their name from the fact that the encoding

is done in both space and time. A space-time block code is defined by the
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relationship between the @-tuple input signal s and the set of signals to be
transmitted from L; antenna over T time intervals. Such a relation is given

by L; x T transmission matrix X

Ti1 T12 - TyT
X | 2 T (2.31)
7 % B L, T
where w;; are functions of @Q-tuple input sequence si,s2, - ,sg and their

complex conjugates. At time slot 4, z; ; is transmitted from antenna j. Since
2 information symbols are transmitted over T time intervals, the rate of the
code is defined as R; = @/T. The receiver use arbitrary number of receive
antennas L,. The design does not depend on the number of receive antennas.

Tarokh et al. [5] extended the Alamouti’s 2-transmit diversity scheme to

more than two antennas. If

Q
XX = (Z |si|2> I (2.32)

i=1
where I is the identity matrix, then the code is called orthogonal STBC (OS-
TBC). If the channel coefficients are constant over a period of T symbols,
i.e. h;; in (2.1) remain constant, then simple linear decoding of OSTBC is
possible.

At the receiver, the L, receive antennas use maximum likelihood (ML)
decoding. Assuming perfect channel side-information (CSI), the decoder at
antenna j maximizes

T L, 2

2.2

=1 j=1

(2.33)

Ly
Yie = Q2 higig
i=1

Since the block coding requires only linear processing at the receiver, the
decoding can be done efficiently and quickly. Space-time block codes can be

constructed for any type of signal constellation and provide full diversity.
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In general, OSTBC codeword is created from a set of Q symbols s1, 89, -+ , g
all taken from the same signal constellation. An L; x T transmission matrix

is formulated as o

X =) (siAi+ s/B)) (2.34)
=1

where A, and B, are matrices that satisfy several orthogonality constraints
[22].

The orthogonality properties of OSTBC allows a simple linear decoding
structure [4], [5]. Coding and decoding is performed in such a way that the
receive SNR of the data stream is [4], [5]

v = lH[ 7 (2.35)

where g = E;/L;Ny. They also allow for a simple upper bound on the prob-
ability of error [10], [7]
P, < e HIE (2.36)

Equations (2.35) and (2.36) show that maximizing the channel Frobenius norm
maximizes SNR as well as minimizes the instantaneous probability of error.
This observation is used to develop the selection algorithm.
Several well-known OSTBCs will be used in the thesis and simulations.
For L, = 3, @ = 3, T' = 4 the following code is an OSTBC [23], [24]:
$1 0 s9 —s3
X5 = 0 s sb sy |. (2.37)
~s5 —s3 s7] O
This code has rate Ry = 3/4. An alternative OSTBC for L; = 3, that has the
same rate is [23], [24]:

*

51 —sy s3 0

Xg=1]s s 0 —s3 (2.38)
s3 0 —s7 s
17
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S g OSTBC X,, 3Tx — 1 Rx, 16-QAM
sl s Alamouti Xo, 2Tx - 1 Rx, 16 QAM

£
al
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Figure 2.8: BER performance of OSTBCs using 16-QAM.

For Ly = 4, T =4, @ = 3 the following code is an OSTBC [23], [24]:

Sy 0 SS9 —S83

_ 0 51 83 s
Xy = —s5 —sy s 0 (2.39)
s3 —s2 0 s

2.7 Spatial-Multiplexing

This section describes spatial multiplexing, a capacity-achieving MIMO sig-
naling technique.

In spatial-multiplexing [25], a symbol stream si, s2,- - , sz, with s; € S for
all 7, where § is the signal constellation, is demultiplexed into a space-time

matrix X , which in this case is simply a vector (T'=1)
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X=s= S’f . (2.40)
st
The received vector is
y=Hs+v. (2.41)

where &[ss*] = (Fs/ L)1}, is the power constraint for transmission vector.

In spatial-multiplexing, multiple symbols are transmitted at each channel
use. Since simple linear combining and single-dimensional detections are no
longer optimal, the detection methods are more complicated. Optimal detec-
tion is actually multi-dimensional search where vectors in S* are detected,

rather than symbols in § as was the case for OSTBCs.

2.7.1 ML receiver

The optimal receiver for detecting the symbol vector is the ML receiver. The
ML receiver is given by

§ = argmin||y — Hs|)*. (2.42)

seSht

This detection minimizes the average probability of error and requires an ex-
haustive search over all vector symbols s € S%. If an M-ary signal con-
stellation S is chosen, the search is performed over total M** possible vector
symbols. Thus, the decoding complexity of the ML receiver is exponential in

L;. However, there are fast algorithms like sphere decoding [26], [22].

2.7.2 Sphere decoding

Since signal constellation S is a discrete alphabet, each Hs can be considered
as a lattice point. The main idea behind sphere decoding is only test the

lattice points (defined as Hs) lying inside a hypersphere.
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Let the QR decomposition of the channel matrix H be

H-10:Qi| ] (2.3

where R is an L, X L; upper-triangular matrix, 0 is the (L, — L;) X L; all zero
matrix, Q; is an L, x L; unitary matrix and Qg is an L, X (L, — L;) unitary

matrix. Note that here we assume that L, > L;. Thus (2.41) is equivalent to
y =Rs+V (2.44)

where y' = Qfy and v/ = QTv is also an i.i.d. Gaussian vector with mean
zero and variance N.

The lattice point Rs lies in a sphere of radius d if, and only if
ly’ — Rs||* < d2. (2.45)

Thus (2.45) can be expanded as

2

Ly Ly
Z yi — Z riisi| < d* (2.46)
=1 j=t

where 7, ;, (i < j) are nonzero entries of R. Expanding the left hand side of

(2.46) yields

(y’Lt - rLt,LtsLt)z + (y,Lt—l — TLy—1,L:SLy — TLt"l,Lt—lsLt"l)Q +oet
Ly Lt 2
Z <yi - Zrl,jsj> S d2 (247)
i=1 j=1
where the first term depends only on sg,, the second term on sj,,s;,_1 and
so forth. For Rs to lie within the sphere, it is necessary that each of the
terms of left hand side of equation above be less than d*, which means (y;, —

TLu1SL,)° < d?. This is equivalent to

( —_dj_@z_] <sp < V_ij (2.48)

TLy,Ly TLi,Ly
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For each candidate of s;, satisfying the above bound, we subtract value of
the first term from both sides of (2.47). The next step is to define necessary

condition for sz, ;

(Vo1 = TLe~1,L0SLe = TLi-1,L,-151,-1)° < di,_y = &> = (Y}, — Lo LoSL,)° (2.49)

which leads to the following decision bound for sg,_;

o - a P
[—stq + Y1~ ’Lf,—l,LtSLt-\ < < !Vst—l +Yr,—1 — ’"Lt—l,LtSLt_!
S Sp-1 S .

TLi—1,L1—1 TLi—1,Ls—1

(2.50)
The sphere decoder chooses a candidate for sp,_; from the above bound. The

same process will be continued for sy, o and so on.

2.7.3 V-BLAST

V-BLAST is a simple receiver scheme using sequential nulling and interference
cancelation [27]. Nulling is performed by linearly weighting the received sym-
bols to satisfy the zero forcing (ZF) or minimum mean squared error (MMSE)
criterion. Zero-Forcing is used as nulling step without detection ordering. Let
h; be the ith column of the channel matrix H. Thus, the ZF nulling vector

w;, 4 =1,2,---, L, is chosen such that

Thus, the effect of symbols which have already been detected will be subtracted
from the symbols not detected yet. This interference cancelation improves the
overall performance when the order in which the components of symbol vector
s are detected is chosen carefully.

Let sq1),5@),- -, 8(z,) be the order of the symbols that must be detected,
where (i) is an integer between 1 and L;. Let the received vector y be y.
The first symbol is then detected as

54y = arg rgin s—wilym|. (2.52)
se
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The next step is to subtract the interference due to §(;) on the other symbols
by taking y2) = ya) — $qyhq). Assuming the detection is correct (i.e. 31y =
s(1)), the next symbol s(z) is then detected using ZF nulling vector wz). Same
steps are then performed for next symbols by operation in turn on the modified
received vectors y ), ..., y,)-

To find the optimal order of detection of symbols, note that in the kth
iteration of V-BLAST algorithm, the signal with maximum post-detection
SNR among remaining L; —k-+1 symbols must be detected. The post-detection
SNR for the kth detected symbol is given by

E|sil?
o £l

= Tl (2.53)

The V-BLAST scheme can also be described by the QR decomposition

explained in the previous section.

2.8 Channel Capacity

In this section, we provide an overview on the MIMO channel capacity. Chan-
nel capacity provides a limit to the amount of information that can be trans-

mitted across the channel with low probability of error.

2.8.1 Channel capacity for Single-user system

Channel capacity of a single user system where the transmitter sends the signal
p.d.f. px(x) is given by [28]
C =max I[{X;Y), (2.54)
px (@)

i.e., channel capacity is mutual information between input and output signals,
maximized over all possible distributions of the input. The significance of the
channel capacity is that if the information rate R from the source is less than C

(i.e. R < C), then it is theoretically possible to achieve error free transmission
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through the channel by appropriate coding. In this case, the length of the
channel codes goes to infinity and the error goes to zero. If R > C, error free
communication is not possible.

Information capacity is the maximum bits of information per channel use
that can be transmitted error-free through the communication channel. For
an AWGN channel H which is known and constant, the capacity is

C= m(aﬁcl(X, Y|H) =1logy(1+ p) bits/sec/Hz, (2.55)
plz

where p is the SNR.
In wireless communications, the channel gains vary due to fading. The

average mutual information, ergodic capacity, is defined as
C = & [loga(1 + | B]12)] (2.56)

for a system with a single transmit and multiple (say, L,) receive antennas.

2.8.2 Capacity of system with Multiple Antennas
In [2], the capacity of multiple antenna systems is derived. The ergodic ca-
pacity for such systems is given by

Rs>0,trRe=Ls

C= max €& [log det (ILT + LﬁHRsHHﬂ (2.57)
t

where the expectation is taken over the distribution of the random matrix H.
The capacity-achieving s is a zero-mean complex Gaussian vector with covari-
ance matrix & [ssf] = R, ¢, where it is the capacity-maximizing covariance

matrix. With the optimizing covariance is Ry o5 = I, the capacity becomes

c=¢£ {log det (ILT + Zp—HHH)} . (2.58)

2.9 Some useful probability preliminaries

This section gives preliminary material on probability useful for performance

analysis.
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Gaussian (normal) distribution: The pdf and cdf of a Gaussian random

variable, A'(p, o) with mean p and variance o2 is

L 2
S (2.59)

f(z) =

2no

and

— (x ; “) (2.60)

where erf(-) and Q(-) are defined as

erf(z) = —= [ &’dt, (2.61)

Q) = -;-_ %erf (—%) _ \/—12—7 / St (2.62)

Complex Gaussian distribution: A circularly symmetric complex Gaus-
sian random variable, CN (i, o), is a random variable Y = Y, + jY; where each
of Y, and Y; are independent Gaussian distributed random variables with vari-
ance o2 /2.

Chi-square distribution: Let random variable Y defined as

Y =>"X? (2.63)
i=1
where the X;, ¢ = 1,2,...,n are statistically independent and identically dis-
tributed Gaussian random variables with mean zero and variance one. The
pdf of Y is
1 n_1 ¥
= gyl T, > 0, 2.64
fr(y) Ty ¢ Y (2.64)
where I'(-) is function defined as
I(r) = / e tdt, (2.65a)
0
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'iry=(r-1)! reN, (2.65Db)

Ulr+ 1) =rI(r), (2.65c¢)
r(%) — 7 (2.654)

This pdf is called Chi-square (or Gamma) pdf with n degrees of freedom. The
cdf of Y is given by

Y 1 n 13
Fyly) = | ———t27te72dt, y>0, 2.66
v(y) /O 2T () e y > (2.66)

which can be expressed in terms of the incomplete gamma function. When n

is even integer, assume m = %n, the cdf is given in closed-form as

m~1 1

Fy(y)zl—e*%zﬂ(%)k, y >0, (2.67)

This case where n is even, is of interest in next chapters. It arises for a sum
of square magnitudes of a number of complex Gaussian random variables,
The non-central chi-square distribution arises if X;, ¢ =1,2,...,n in (2.63)
are statistically independent and Gaussian distributed random variables with
non-zero mean i, « = 1,2, ...,n and identical variance o2. Thus, the pdf of Y

in this case is

1 Y T _ 6ty Uy
) =55 (P) e WI%—1< {

g

) , y=0 (2.68)
where, by definition

w=>y u (2:69)
i=1

is the noncentrality chi-square parameter and I,(-) is the modified Bessel func-

tion of the first kind represented by

2k

la(w) = (%) D REIT(a+ k+ 1) (2:70)

k=0

For even integers of m = in, the pdf in (2.68) can be simplified to

So () = ==y le 5 i vy y>0. (271
T ey — (202 K(m+ k-1 7T '
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The cdf of the noncentral chi-square distribution with an even integer n degrees
of freedom can be expressed in terms of the generalized Marcum’s Q function,
which is defined as

2

Qnla,B) = ! /OO T In—1(az)dz. (2.72)
B

@m~1

Thus the cdf can be expressed as [17]
Fy(y)=1-2Qn (g g) : (2.73)

Rayleigh distribution: In cellular radio, the received signal envelope has
a distribution that is closely related to the central chi-square distribution. We

provide pdf and cdf of generalized Rayleigh random variable R defined as

(2.74)

where X;, 1 = 1,2,...,n are i.i.d. Gaussian random variables with mean zero

2

and variance o?. The random variable Y = R? has chi-square distribution.

The pdf of the generalized Rayleigh distribution can be obtained as

7An-—l 2

T

r)=—s—————e 22, 71 >0 2.75
falr) 2" onT(1n) (275)

The Rayleigh cdf for even numbers of n = 2m is

2 T 2
Fp(r)=1-—¢e27 Y o (%3) , r>0. (2.76)
k=0

Ricean distribution: Ricean-distributed random variable is closely re-
lated to non-central chi-square distribution. A Rice random variable R is
defined as (2.74) where X;, i = 1,2,...,n are statistically independent Gaus-
sian random variables with mean p; and variance ¢2. The mean p is defined
in the same way as noncentrality chi-square parameter in (2.69). Thus, the

pdf of R is given by

fr(r) = e T I (), r>0 (2.77)

o o2
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The cdf of Rice distribution for the special case where m = %n is an integer is
expressed as
uor
Fr(r)=1-Qn (2,2}, r>0 (2.78)

g o

Order statistics distributions: Suppose there are n independent ran-
dom variables X;, ¢« = 1,2,...,n each having the same pdf f(z) and the cdf

F(zx). If they are arranged in ascending order of magnitude as
Xy < Xg < < Xy, (2.79)

then X4y, 1 =1,2,...,n is called the ith order statistic. In this section X; are
assumed to be statistically independent and identically distributed. However,
when these random variables are correlated the analysis of order statistic is

much more difficult. The pdf of the rth order statistic is given by [29]

L _f@F @l - @ (2.80)

0@ = T =

and the cdf is

n

Fota) = 3 (1) F@l - Fa (281)

The joint pdf of Xy, X¢yy, ..., X) where 1 < 4y < --- < 4 < n and
1 <k < nisgiven in [29] as

n!
X P () fz)[F(wg) — Fa)]2

X f(ze) - [1 = F(zg)]* ™™ f(xk). (2.82)

fi1,i2 ,,,,, ik(:cl, ,CEk) =

Moment Generating Function: The moment generation function (MGF)

of a random variable X is defined as the statistical average

Ex [eX] = Ox(s) = /000 e f(x)dx = L, [f(z)](s) (2.83)

where the variable s can be any complex number and is the Laplace transform

of the pdf f(z). In the special case when s = jv, 7 = v/—1 and v is a real
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number, the MGF is called characteristic function and may be described as
the Fourier transform of the pdf f(z).
Assume (2.79) and a random variable is defined from sum of L largest

variables as

Y= ) Xu (2.84)

i=n—I+1

Then the MGF of YV is given by [12]

n

@y(s):l<l) /O.ooe““f(x)[F(m)]”“l[gb(s,m)]l‘ldx, l<i<n (2.85)

where ¢(s,z) = [ e ! f(t)dt.

2.10 Summary

In this chapter a brief overview of OSTBCs is given. Different receivers such as
ML, V-BLAST and Sphere decoders are introduced. Diversity order and cod-
ing gain are defined. Useful probability variables and formulas are discussed

for subsequent performance analysis.
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Chapter 3

Antenna Selection

This chapter discusses antenna selection for multiple-antenna wireless systems.
The motivations for antenna selection is discussed in Section 3.1. Antenna se-
lection can be implemented on transmit and/or receiver sides. Receive antenna
selection briefly discussed in Section 3.2. Transmit antenna selection is dis-
cussed in Section 3.3. Transmit antenna selection criteria based on probability

of error minimization and capacity maximization are discussed in Section 3.4.

3.1 Introduction

Multiple antenna wireless communication systems have recently sparked a sig-
nificant interest due to their higher capacity and better performance compared
to SISO systems. The capacity of MIMO system increases linearly with num-
ber of receiver or transmit antennas [1,2]. However, the increase in the number
of antennas results in high hardware complexity. Since additional antenna el-
ements such as patch or dipole antennas are usually inexpensive, the major
cost factor of transmitters and receivers that employ multiple antennas is not
actually the number of antennas. An RF chain includes high power amplifier,
low-noise amplifier (LNAs), up/downconverter, and digital-to-analog/analog-
to-digital converters (DACs/ADCs) and is expensive. Therefore, the number

of antennas may be larger than the number of RF chains, and, at any time
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Figure 3.1: MIMO antenna selection system

period, only a subset of antennas via a low-cost RF switch is used for trans-
mission. Thus, antenna selection reduces hardware complexity and costs and
yet keeps the advantages of multiple antenna systems. At the receive side,
antenna selection reduces the complexity. More interestingly, at the transmit
side, antenna selection not only reduces the complexity, but also improves the
capacity of the MIMO system [30], [31], [32] at the cost of a minimal amount
of feedback. Moreover, full diversity systems are achievable through antenna
selection.

Fig. 3.1 shows a MIMO system with transmit and receive antenna selec-
tion. An input bit stream is sent through an encoder and modulator. The
space-time encoder converts a single bitstream into symbol streams through
a proper mapping i.e. Gray mapping and then converts the complex sym-
bol vector into N parallel streams of symbols. Each of these streams is sent
through an RF chain to produce signal for transmission through each transmit
antennas. However, the number of RF chains are less than transmit anten-
nas (i.e. N < L;), thus the RF switch chooses the best N antennas out of L;.
At the receiver, the RF switch chooses best N, out of L, receive antennas
(N, < L,). The channel seen by the selected subset of transmit and receive

antennas, is the sub-matrix Hag € C¥*¥ | which is obtained by selecting the
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rows and columns of the channel matrix H that correspond to the selected

Lt

N) (JI(,:) possible sub-matrices of H.

receive and transmit antennas. There are (

The selection criteria are based either on system capacity [33], or bit er-
ror rate (BER) improvement [10]. Optimizing capacity and outage in spatial
multiplexing systems is one approach. The other approach is exploring the
diversity order and array gain or performance of system for space-time coded
systems.

We briefly review previous antenna selection research and show different

antenna selection types.

3.2 Receive Antenna Selection

Consider a diversity reception system where several copies of the transmitted
signal are received by receiver. Each of these copies experiences different fad-
ing gains by a different path. The receiver combines these copies (known as
diversity combining) in order to maximize the achievable SNR, and reduce the
complexity of decoder.

There are several types of diversity combining. Selection diversity chooses
the path with the highest SNR and signal detection based on that specific
path. Optimal linear combination of signals received from all the different
paths leads to mazimal ratio combining (MRC) method. Equal gain combining
(EGC) simply add received signal after being co-phased. Generalized selection
combining (GSC) [34] is a diversity combining scheme where N, (1 < N, < L,)
branches with the highest SNR are selected from total L, branches and then
combined. Due to its ease of implementation, GSC is known as a widely
employed receive diversity technique. However, compared to MRC or EGC,
the error performance in fading channels is much poorer when the number of

receive antennas L, is large.
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Tx selection

Figure 3.2: Transmit antenna selection scheme

3.3 Transmit Antenna Selection

Transmit antenna selection requires feedback from the receiver side. There
are (jLV‘) combinations of N transmit antennas out of total L; antennas. Thus
log, (fv*) feedback bits are required, which specially for the case of single an-
tenna selection is as low as log, L; and is feasible for the practical purposes.
Aside from the complexity reduction which is the same as receive antenna
selection which has discussed before, transmit antenna selection improves ca-
pacity and performance of system surprisingly. This is a direct result of having
limited feedback from the receiver [30], [31], [32].

Transmit antenna selection has recently been extensively studied; a number
on antenna selection algorithms, various selection criteria based on capacity,
error rates, and outage and performance analysis techniques have been devel-
oped. Capacity of MIMO channels with antenna selection is studied in [35]
Joint transmit/receive antenna selection algorithms are presented in [36]. In
the multi-mode antenna selection scheme [37], both the number of trans-
mit antennas and mapping of substreams to antennas are dynamically ad-
justed to get the better performance. However, in this system spatial multi-

plexing with linear receiver is used over transmit antennas selected. Hybrid
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selection/maximal-ratio transmission is proposed and studied in [38] where the
best N antennas out of total L, are selected, and then combined to reduce the
complexity of system. The outage probability, capacity and SER of antenna
selection scheme in MIMO systems are also given in [38].

A method to select optimal set of antennas based on capacity maximiza-
tion is given in [39]. Gore et al. proposed a method for optimal selection for
transmit antennas for rank deficient channel matrices based on capacity maxi-
mization [40]. These results were further generalized and several fast methods
for transmit antenna selection are proposed in [41]. A correlated selection al-
gorithm is presented in [42] where the subset of transmit (receive) antennas
are selected in order to maximize the determinant of the transmit (receive)
subset selection. This result is based on capacity maximization of antenna
selection over correlated channels.

It is shown in [30] that optimum signaling for largest ergodic capacity is
generally different with antenna selection than without antenna selection. If
the outage probability is used as a performance merit such in wireless local
area networks, transmit antenna selection criteria are different. In [43] the
active transmit antennas are selected to minimize the total transmit power
among users in correlated multiple access channel to achieve a target outage
probability and a data rate of each users. Comprehensive surveys on antenna
selection can be found in [11,36].

Transmit antenna selection has recently been studied; a number of an-
tenna selection algorithms, various selection criteria based on capacity, error
rates, and outage and performance analysis techniques have been developed.
Comprehensive surveys can be found in [11,36]. Although receive antenna
selection with various channel/correlation models have been widely studied
(see [44-50]), the analogous results are limited for transmit antenna selection.

This thesis will discuss the performance analysis of transmit antenna selection

and OSTBCs in fading channels.
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The symbol error rate (SER) performance of transmit antenna selection
combined with OSTBCs is analyzed in [51]; however, the results are not in
closed form. The asymptotic error performance of single transmit antenna
selection and receive maximal-ratio (MRC) with generalized selection criterion
is investigated in [52]. In [53], the SER formulas of combined single transmit
antenna selection and receive generalized selection combining is derived. In
this scheme the receiver first selects best receiving antennas for each transmit
antenna and then selects the best transmit antenna based on received SNR.
Again, the formulas are left as integrals and numerical method are needed.
The exact bit error rate (BER) performance of only two transmit antennas
with BPSK signals using the Alamouti scheme is derived in [54], [55]. In [56]
the asymptotic bit error performance of the Alamouti scheme with transmit
antenna selection is investigated for imperfect selection of antenna subset.
Transmit antenna selection schemes, most discussed only over independent

Rayleigh fading not for the correlated cases and for other kinds of fading.

3.4 Antenna Selection based on Capacity Max-
imization

Transmit antenna selection is achieved through a feedback from the receiver.
However, the transmitter does not know H. The system chooses the best N
transmit antennas and sends the symbol vectors through the selected subset.

Therefore, the received signal vector can be defined as

y= H]EVS‘HASS"FV (31)

where s € C¥ is the symbol vector transmitted from N transmit antennas
and selected from arbitrary signal constellation S. Fjy is the total transmis-

sion power and v is the noise vector of size L, which has i.i.d. entries of
CN (0, Np). The channel model is provided as in (2.3). In fact, the chan-

nel seen by the subset is the sub-matrix, Hag, that is obtained by selecting
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the rows and columns of the channel matrix H corresponding to the selected
antenna subsets. The optimal subset of selected antennas gives the largest
mutual information between the transmitter and receiver. The capacity with

antenna selection is thus given by [35]

By
Cas = I{Ilj;{log det (ILt + mHASHgS) . (32)

The maximization is over all possible N, x N sub-matrices of H. Therefore,

the optimal antenna selection channel subset H g 4 is given by

Hys op: = arg maxlogdet (ILt + ﬁHASHQIS) (3.3)
Hug Lt

A closed form solution for this criteria is quite difficult. For receive antenna

selection, lower and upper bound of C4g can be found in [35] and [57].

3.4.1 Antenna Selection for OSTBCs

When OSTBCs are employed with antenna selection, the probability of error
can be upper bounded by
P < e~ W IHasllE (3.4)

Given that the channel subset H 45 is selected, the instantaneous SNR of

the received signal y45 is given by [6]

Yas = ‘]%HHASHJZE‘ (3.5)

where N is the number of transmit antennas selected. Since above upper bound
is enough tight and in a communication system maximizing SNR minimizes
the probability of error, thus the optimal rule is to choose H4g to minimize
the probability of error. Therefore, the selected sub-matrix has the largest
Frobenius norm of all possible sub-matrices of the channel matrix:

HAS,opt = arg max ”HASH% (36)
Has
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Transmit antenna selection corresponds to the selection of a set of columns
of the channel matrix. Since the Frobenius norm of a matrix is equal to the
sum of norms of its columns, transmit antenna selection leads to selecting the

number of columns of the channel matrix H with the largest norms. Assume
H = [h;hy---hy,] (3.7)

and order the columns of H with respect to their norms as
bl 2 [hg| = - > [heyl, (3.8)

Then selecting N transmit antennas out of L; antennas gives the transmit

antenna selection channel matrix as

HTAS = [h(l)h(g) B h(N)] . (39)

3.5 Summary

The cost and hardware complexity of MIMO wireless systems can be reduced
by reducing number of active antennas. This is feasible through antenna selec-
tion. Moreover, transmit antenna selection also improves the capacity of the
MIMO system and gives better performance. With minimal number of bits
of feedback, transmitter chooses the best set of transmit antennas. Transmit
antenna selection criteria include maximizing the capacity of system after se-
lection which leads to selecting antennas through exhaustive search algorithm
with capacity as an objective function. Minimizing the error rate and there-
fore maximizing achievable received SNR leads to selecting transmit antennas

which have highest norms of the corresponding channel column.
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Chapter 4

Performance of OSTBCs over
Transmit Antenna Selection

In this chapter, we analyze the performance of transmit antenna selection
with OSTBCs over independent Rayleigh fading channels. For this purpose,
the MGF of the received SNR is needed. Using order statistics, exact BER
expressions are derived in Section 4.3. Section 4.4 presents an asymptotic
performance analysis. Diversity and coding gain of this system are derived.

Numerical results, simulations and conclusions conclude the chapter.

4.1 System Model

Fig. 4.2 shows a MIMO system with OSTBC with transmit antenna selection.
Gray mapping of signal constellation symbols is used. The OSTBC encoder
produces an space-time block matrix for transmission over T time slots and
over N transmit antennas which are selected based on the criterion of selection
to minimize the error rate of the system. Total transmission power is divided
by N number of active transmit antennas to fix the total transmission power
E;. The modulated signal waveforms are sent over the Rayleigh fading channel.
The channel is assumed to have quasi-static fading which means the channel
parameters are constant complex values over T time slots, one block period

but may change from one block period to the next T" time slots.
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In this chapter, we assume that the transmit and receive antennas have no
correlation (i.e. R, =1, R, =1y ). Finally the received signal is processed
by the OSTBC decoder. Due to orthogonality property of OSTBCs (2.32), the
decoder can detect each symbol separately and treat the MIMO system as an

equivalent number of SISO systems. Thus, this eases the decoding complexity.

4.2 The received SNR

With OSTBCs, the MIMO system is equivalent to ¢) independent single input
single output (SISO) systems defined as [5], [3]

. Es (1
=5 (g Brasl )+ g=1w@ (@D

where v, ~ CN (O, R%HHTASI]QFN()) We conclude that the SNR per bit with

an M-ary constellation is

(0) = 2
TP =N, R,Nlog, M

IHras|% = collHrasl (4.2)

where p = f,—o is the SNR per channel and ¢ = 1/(RyN log, M). Therefore,
the antenna selection criterion in (3.6), which selects N transmit antennas,

maximizes the instantaneous SNR and thereupon minimizes the error rate.

bits
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Figure 4.1: MIMO OSTBC with transmit antenna selection.
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rate R, == 5,'4

Figure 4.2: OSTBC MIMO system is equivalent to @) independent SISO sys-
tems

Thus, as discussed in Chapter 4, the antenna selection criterion involves se-
lecting selects a subset of antennas which minimize the error rate of system

and therefore maximizing the SNR of the system. We have

HTAS,opt = argmax P)/b(p)
Hras

= arg max Cﬂ”HTASH%'
Hras

= argmax ||Hyasl| . (4.3)
Hras

Let the scaled norms of the columns of H be v, = cp||h|?, k= 1,2, ..., L.
Maximizing the SNR is equivalent to maximize the Frobenius norm of the
transmit antenna selection sub-channel. The Frobenius norm of a matrix is
equal to the sum of the norms of its columns. Thus, optimal transmit antenna
selection yields a sub-matrix of the channel matrix H with the columns with
highest norms. In transmit antenna selection (3.6), the best N antennas with

the largest v, are selected. Assume that

Yy = V@) 2 2 WL (4.4)

or equivalently
lhay| > [hgy| = -+ > [h,l (4.5)

Thus, the received SNR per bit (4.2) is the sum of N largest order statistics
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Vi) = Cp“h(i)||27 1=1,2,..., L; and can be written as

Y = Z Vk)- (4.6)

4.3 BER Expressions

Now that we have derived the received SNR, using the relations between MGF
of the received SNR and BER in Section 2.4, we will obtain the closed-form
expressions of BER for M-PAM, M-QAM and M-PSK signal constellations.

4.3.1 M-ary PAM and QAM

Recall from last section that v = cp||hs]|?, & = 1,2,..., Ls, are the scaled
norms of the columns of H, which are the received SNR from the kth transmit
antenna. In an independent flat Rayleigh MIMO channel, v, &k = 1,2, ..., L;
are i.i.d. chi-squared variables with pdf [17]

ILT—I

e (:E) = (Cp)LT(LT — 1)!6_“"/00’ x>0 (4.7)

and the cumulative density distribution (cdf) is given by [17]

Lr—1 k
1 [ x
1 _ p,—xfcp Il
F,(x)=1-¢ kE:O 7 <0p> , >0 (4.8)

The received SNR from the (k)th transmit antenna, v, k = 1,2,..., N, are
a set of order statistics (4.4). Thus, the MGF of the sum of N largest order
statistics is given by [12]

0,00 = N () [T e @ @ o s, 0 s, 1N < L

(4.9)
where ¢, (s,z) = [ e * f, (t)dt. Simply by changing variables in this inte-
gral, an other version of the MGF is given by [12]

0 = (L) () [ R @@ s e, 1< N(f L;
.10
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The function ¢, (s, z) can be simplified as

b (5,7) = / et ()t

1 = Ly—1 _—t(s+L
~GEm o, e

k
—x(s-#%) Ly—-1 {L‘k (S + c_l-)
=——"_y — (4.11)
(cp)tr (s + i) k=0 '

Therefore, substituting these results into (4.9) the MGF of the received SNR

for transmit antenna selection is

2., (s) =N<f;)

Ly—1 Le-N

oo Le—1_—z(s+¢ k
/ Ce 1—6‘“”/6’32“1’ =
o (ep) (L, = 1! 2o \ep
k1 N-1

6~$(S+$) Ly-1 xk (S + .(il_p)
L, |
(cp)t (s + cip) k=0 &

The second term within the integral above can be expanded as

dz. (4.12)

Lo—1 q LN

1 /z\"
— p—le =
[1 PP k! (cp>

k=0
LN ML, —1 k J
Ly — N\ _is 1l (x
—1y/ ¢ T\
2! )< J ) ” Zk!<cp>}
(_1)J'(Lt—,N>e_Jc% Z a{Lrd) (_”_) (4.13)

Li—
J n=0

iNg

20

Il

Il

7=0

where a&m’") is the coeflicient of =" in expression

m—1 .’L‘k n
[Z ﬁ} . (4.14)
k=0
Using this expansion into the MGF expression in (4.12), similar to simpli-

fication done in [58] the MGF closed-form expression can be obtained as [59]

and [60]
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(Lr—1)(N-1)

L,
®. (s :N< > a,gL’"’N'l)
w9 =Ny ) ey N[(L F X
Li—N J(Ly—
y Le— )(_l)j Z a(m) (+r+L,—1)
p= — (cp)t
1 1

X LT(N_I)—T ' 1 l+7‘+L7‘ (4 15)
(o) ™ (o)

cp
Therefore, the BER for the PAM signals can be obtained from (4.15) and
(2.18) as [59] and [60].

2N (L) logs Mk (Lr=1)(N-1)

PM(p):Mlog;VM L, —1 w Z ZB Z CL?(“L“N_D

n=1 =0 r=0
HLr-1)

Li~N
Li— N . oy L+ 7+ Ly — 1)]
g Z ( ' >(*1)J Z a " N+l
= ] s (N +]) +r+Ly
2 2
7 (c,oDi | Nc,oDi.
2 "2(N +j)

;LT(N—I)—r,l+T+Lr> (4.16)

where

L (™ sin?g \™ sing  \"™
I(cq, co;my, my) :;/0 (sin20+01) (Sin20+02) ”

(c1/ca)™! {’" (2- 1)kskzk<c2>

- 2(1 = ¢y /cg)mtma—l c~ \ &

_aye <1 _ _> kak(cl)] (4.17)

¢
2 k=0

is the integration which has been evaluated in [61]

(4.18a)

mg—1 k
DY m%n)qffm (4.18b)
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(m2-1) ™y

Ry & (—1)meith ok I (mi+me—n), (4.18c)
(mg = 1)! n=1,ntk+1
k
_ c (2n = 1!
L)) =1-/7— [1+;n,2n(1+6)n (4.18d)

4.3.2 M-ary PSK

Using the tight approximation for the BER of the coherent M-ary PSK in
AWGN channels in (2.17), the BER for M-PSK can be approximated as

max (M /4,1) /2 .2 (2w

9 1 [ sin? ==
Pu(p) ~ Soo e, [ as. (419
() max(log, M,2) 7r/0 7”( sin? ¢ ) (4.19)

Thus using the same integral simplification in previous section, the exact BER

expression is given by

QN(Lt) 1 max(M/4,1) (Lr—1)(N-1)
P — N (Lr,N-1)
() max(log, M, 2) [(L, — DIV ; ; o
Li—N i(Lr—1)
L,—N ' (Leg) L+ 7+ Ly = 1)
X Z ( j >(—1)J Z @ (N + )+ +Lr
7=0 =0
Nepd?
x I cpéf, L. (N -1 ——r,l+r+Lr> 4.20
(002, i Lo = ) (4.20)
where §; = sin %’1

4.4 Asymptotic performance Analysis

In this section, we find asymptotic performance, diversity order and coding
gain of the system.
Recall that if the MGF of ®,,(s) can be approximated by a single polyno-

mial term for s — 0o as

|5, (5)] = bls| ™ + o(s™) (4.21)
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then d is the diversity order of the system at high SNRs and the coding gain
can be derived from b [21]. Thus, to obtain the coding gain and diversity order

of the system, the approximate MGF is needed as s — oo. Note that

+00 Y
e =S lj) (4.22)
k=0 )
L Le=1 4
N (=2 R Zbr
Z p T=1-15 +o(z*), z—0. (4.23)
k=0 ' i=0 r
Thus we can approximate I, (z) in (4.8) as z — 0
Ll ok
ST e
= k! \cp
1 z\ L,
“zila + o(z™r), (4.24)
o
and note that
e el 1 e‘m(s‘*—.cl—p) Lr~1 xk(s _l.. _];)k
St (B)dt = = 4.25
/x € f’yk() (3.&_;:1;)[@ (Cp)LT poe k' ( )

By substituting these into (4.9), the MGF can be obtained as

L 00
o (S) _ N(I\;) / e—-mN(s+—61;)er—1
) ST L 0+ 7 s

X [LLT' (_x_) T + o(xLT)} {i f—g—g—'il} dz. (4.26)

cp k=0

To show that the MGF is o(s~%¢), we ignore the o(x*") term in the second

term of the integral,

Ly L,
P ~N
'Yb(’s) <N> (Cp)LTLt(L'[‘!>Lt~N+1(S + ch)LTN
(Lr=1)(N-1) 1\ oo
X a(org) [
— cp 0
J
(4.27)
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in which a; is the coefficient of 27, j = 0,1, ..., (L, —1)(N —1), in the expansion

2] .

k=0

Since we have

OO —ax m!pm
/0 e P, (x)dz = prws) (4.29)
where P, (z) = > " piz* is a polynomial of degree m with respect to z,
N () L
(I)%(S) :(Cp)LrLt(LT!)Lt‘“N+1NL7‘(Lt_N+1)
Lo=1)(N—1 .
. lz)(: V4 [Lo(Le— N +1) + 5 — 1]t
Ni
=0
X 1 +o(sH ), as s — o0 (4.30)
.L LrLi ’ )
(S + (:p>
For notational brevity, we define
LTI g LB = N+ 1) 45 - 1)
E= ) 7 . (4.31)

=0
We substitute the approximated MGF into (2.18) to approximate the BER as
Ly 2 L.z
Par(p) =N <N) Mlogy M (L) L= N+INL-(Le=N+1)

IOgZ M k’n

x > > Bilp, (Dicp/2) (4.32)

n=1 ¢=0

where [61,62]

1 /2 sin?g \™
In(p) == —— | df
(1) 7T/0 (c+sin20>

:5% <1 \/1—;) tz:; (") ( ﬁ)k (4.33)

to find the approximation of MGF above, we need to know the limit

. 2m 1 1
lim I,,(p) = <m ) o1 (4.34)

—0Q
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Thus by using this limit, (4.34), we can find

lim Py (p) = 2N (3) Lr _
PLIEO M(p) —M10g2 M(LT!)Lt_N‘{’lNLr(Lt—N—{—l)“‘
logy Mk, 9Ly
Bi (L L )
* A 4.35
( ; ; D?LrLt) 2LTL"H(CP)LTL1 ( )

and compare it to (2.24) to obtain the coding gain and diversity order of system

as

G. =N Ly 2 L=
° N ) Mlog, M ' (LT!)L:—-N—HNLT(LV-N-H)

IOgZ M kn 2L, Ly - 6;

x Bl ( L.l )

: : : : D?LTLt 2LTL1,+1CL1-L1
n=1 4=0 ?

Gy =L,Ls. (4.36)

Therefore, if N antennas corresponding to the largest received SNRs are se-

lected, a full diversity order of L, L, is obtained.

4.5 Numerical Results

In this section, we consider the orthogonal design proposed in [5], [3], with
the rate 3/4 and 3 < L, < 6 transmit antennas. The MIMO system which
has been chosen for simulation and numerical results is shown in Fig. 4.3 In
order to use this orthogonal space-time block code, we select N = 3 transmit
antennas. Fig. 4.4 compares the exact expression (4.16), the approximation
(4.30) and (4.32), and the Monte Carlo simulation results for the system with
L, = 2 receive antennas, all using 16-QAM. Note that (5.45) asymptotically
approaches (4.30), which is a tight bound of (4.16) at high SNRs. Fig. 4.5
shows the exact BER for (Ly; N, L,) systems, where the OSTBC is transmitted
over N selected antennas of L; available transmit antennas. L, is the num-
ber of receive antennas in the system. Again, 16-QAM is used to show the

general forms of BER expressions.Therefore, if N antennas corresponding to
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MIMO channel

Figure 4.3: MIMO system using OSTBC of rate 3/4 and 3 transmit antenna
selected

the largest received SNR, or ~,, are selected, a full diversity order of L,L; is

obtained.

4.6 Conclusion

In this chapter, we have derived the performance of transmit antenna selection
and OSTBCs. The exact BER expressions for M-PAM and M-QAM and an
approximate BER for M-PSK were derived. Our results are sufficiently general
to handle an arbitrary number of antennas, unlike the previous results. More-
over, we directly derived the BER, not via the symbol error probability. As
expected, we find that this scheme achieves full diversity order asymptotically

(i.e., Ly not N), as if all the transmit antennas were used.
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~—— (3;2,2) ~ Exact
10 [ | =% (4,2,2) ~ Exact
—#—(5,2.2) — Exact
(3;2,2) — Approximation (2)
(4;2,2) — Approximation (2)
- (5;2,2) — Approximation (2)
(3;2,2) — Approximation (1)
(4;2,2) — Approximation (1)
(5;2,2) — Approximation (1)
13 1 1 t 1
5 10 15 20 25 30
p (dB)

92 8 0 6 0

Figure 4.4: Comparison between exact BER for (L, N; L,) systems, selecting
optimal N transmit antennas out of L; with L, antennas in receiver, using
16-QAM and approximations derived in (4.32) and (4.35) and diversity and
coding gain approximated BER in (4.35).
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Figure 4.5: Exact BER derived in (5.45) for (L;; N, L,) transmit antenna
selection systems, using 16-QAM
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Chapter 5

Performance of OSTBCs over
Transmit Antenna Selection in
Receive Correlated Channels

In this chapter, we analyze the performance of transmit antenna selection
using OSTBCs in receive correlated Rayleigh fading channels. Using order
statistics, we derive the exact expressions for the MGF of the received SNR
in Section 5.2 and Exact BER expressions in Section 5.3. Section 5.3 also
presents the asymptotic performance analysis. The diversity order and coding

gain are obtained.

bits

Receive correlated
Rayleigh flat MIMO channel

1 channel estimation

P R =

Receive correlation R,

Figure 5.1: MIMO system using OSTBC over Transmit antenna selection in
Rayleigh flat fading channel with receive correlation R,
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5.1 System Model

Fig. 5.1 shows transmit antenna selection over receive correlated channels. The
OSTBC encoder is used to encode symbols into space-time block matrix. The
correlation between receive antennas can be represented by receive correlation
matrix R, of size L, x L,. However, there is no correlation between the
transmit antennas. Thus we can treat the received SNR from each transmit

antenna independently. Using the Kronecker model (2.3), we find
H = R!/?H,, (5.1)

where R, = Eg{h;h/’}, i = 1,2,..., L, with the assumption that the receive
correlation is symmetric between receive antennas. The total correlation ma-

trix has a block structure given by

R=1, ¢ R,
R, Orxz, -+ Opxp,
_ | O, R, : : | (5.2)
: e R, Op.«y,
0r, %L, - Or.x, R, LeLrxLtLy

Since, there is no transmit correlation, thus the antenna selection criteria still
selects the transmit antennas with highest norms of the corresponding columns

in the channel matrix H.

5.2 The received SNR

Recall that v, = cpllhi||?, £ = 1,2, ..., Ly, are the scaled norms of the columns
of H, which are the received SNR from the kth transmit antenna. Note that
there is no correlation between transmit antennas and therefore the received
SNR from each transmit antennas, 7, are an independent sequence of random

variables. Since, the entries of each vector h; are correlated with the correlation
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matrix R,, then the MGF of 4y denoted by 1+, (s) is given by [6]

|
Yo () = En{e™ ) = [ | s (5:3)
i=1 *

where Ay, ..., A, are the non-zero eigenvalues of R,. Without loss of generality,
we assume that Ay > As > --- > A, > 0 and there exist L distinct values
with multiplicity o; for ¢+ = 1,2,..., L in A;’s. where ay + a9 + -+ + af, = m.

Therefore, the MGF of 7, can be rewritten as

zm4@==;%5f1(s+;ﬁ;)ﬂ” (5.4)

Alp) = Hﬁzl(cp(q)aq. Using partial fractions, the MGF can be simplified as

P, (8) = ZZﬁq, (s+ )l (5.5)

g=1 =1

where o, = ¢p(, and

1 1 dlea=1)
= A0 (ag = 1)1 | 2ot
Therefore, pdf of v, can be obtained by the inverse Laplace transform of

(6.5) [63]. We must find the pdf as

11 (+_1_)m_ 5

=1,j%#q
oq

L

S (@) = WW Zzﬁm e

q-—l =1
_Ze oq Pq (57)

where P,(z) = S_1%, Z%’l—l)—!ml_l is a polynomial in z of degree oy —1 and Pq(k)(ac)

is the k-th derivative of P,(z) with respect to z. Therefore, the cdf of ~; would
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be

=1 I=1 k=0

L ag—1

=1 Z 6—:1:/47,1 Pq(k)(w)o,k-l—l
g=1 k=0
L

1o Y ey a) 53)
q=1

where Q,(z) = 32073 P¥(2)o*+! is a polynomial in z of degree a,—1.1If

there are no multiple eigenvalues, (i.e. a, =1 for ¢ =1,2,..., L), the MGF of

v, can be rewritten as

I SE N VI CE

g=1

where A(p) = H5:1 o, and

By = S f[ (i - i) _1. (5.10)

A(p> j=1,j#q U] Uq

Therefore, pdf of 44 can be obtained as
L T
fu(@) = Bee7, (5.11)
g=1
and the cdf of that can be found as
L T
r)=1- Bo.e . (5.12)
g=1

For the general case, to obtain the MGF, using (4.9), we find that

D, (s)=(L;— N) <[]<;> /000 Ze—x/o‘IPq(x) (1 - ZE_Z/U‘ZQq(x)>
<Z —a(s+5-) Z ($+ > dx

g=1

Li—N-1

(5.13)
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Note that

m

/ Po(x)e *dx = e Z P (5.14)

k=0
where P, (z) is a polynomial in z of degree m and P®)(z) is the k-th derivative

of Py, (x) with respect to z. Thus, we find that

D, (s) =(L <Lt>/ Z ee/74 P (1 (1_ZE_I/U‘IQ )Lt—N—l

g (s+ )

(5.15)

where R,(z;s) = 3200 PM(z) (s + ;1;)0‘4"“"1. By expanding (5.15), we find
that

., (s) =(L, — N) (ijt> Lth»l(_l)j (Lt —;\7 - 1) /0°° o—Naz ie—l’/”qpq(x)

q=1
*Lsm)

» Z N 6_$(%+...+_.L_ fI :C S ]np da
nl,... ’nL npaq

n :1

(5.16)

where the sums over i = (i1,49,- -+ ,iy) and n = (ny,ng,- -+ ,ny) are over all

combinations of nonnegative integers such that Zle iy = j and Zle ng=N.
We also define

Sia) = Qv (z) - QF (@), i=(in,yin) D ix=] (5.17)
k=1
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Therefore,
=N =1\ &
(" T)REE
g= i n

x{( )( S e =5 > e 7

(5.18)
where P,(0) = 8,1, and S;(0) = Q(0) - - - Q£ (0) where Qq(0) = Y52, B, x0F =

T,(o,) therefore, S;(0) = qul Tg"(aq), and R,(0;5) = 52, Bonls + 31;)0‘4_’“.
Therefore, the MGF has different poles at

N

Tgim = 7~ — - of order 1 (5.19a)
(.Tq + Ek:l ﬁ + Zk:l (,—:)
g, of order Ng, (5.19b)
where 41,9, -+ ,7; and ny,ng,- - ,ny are combinations of integers such that

Zle ir, = 7 and Zlenk = N. Thus, MGF can be simplified by using the

partial expansion as
Li— L Nog

PIDIDH B IO D e M LY

g=1 j=1 qun g=1 |=1

-1

Note that the coefficients of b,; and a(g;i;n) can be derived directly from
the integral form of MGF (4.9).

5.2.1 Constant Correlation Model

In this case, the receive correlation matrix is

1 r
r 1l - r
R, =1 . o . (5.21)
ror 1
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Therefore, R, has one eigenvalue of order one equal to A\; = (L, — 1) + 1
and one equal to Ay =1 —r of order L, — 1. Thus, 01 = ¢pA; and 03 = cpAs.
Therefore, the MGF of 7, would be like

1 1 \*!
() :1-1—5(71 (1-&-302)

. B 4 Ba1 T Ba,1,-1

- 1 1 Ly—1°
8+01 8+02 (8-{-—%)
2

Thus the pdf of the received SNR of the kth transmit antenna, ; is obtained

(5.22)

by inverse Laplace transformation of the MGF of v, (5.22)

Lr—1 -1 -

fu(w) = 51,16_% + Z ﬂg,zﬁx_—l)'e'ﬁ. (5.23)
I=1 ‘

By integrating from the pdf, we find the cdf as

Ly—1 -1 k
.z —Z 1 x
F, (z) = frio(1 —e 1) + ; Bo,0h (1 —eEYy (£> > (5.24)

k=0

where

L.—1 1—-L,
fa=p="0 (i—i>

0105, g1 02

1 1\ (—1)Ei < 11 )I‘LT
= (=1 et/ (i
Pai = (=1)' 01, <01 02> T \o o

by letting p = 0—11 — (}2 the pdf of v; can be simplified as,

Lr—1

J () = B, {6_% - lz—; %’f_jg)l—;!le_%} (5.25)

thus, the MGF of v, = Zszl (k) Which is the sum of N largest independent
order statistics can be obtained from (4.9) and (4.10), [12]

@,,(s) =(Le — N) @f) erNfl(—l):’(Lt _1> ii()( >

j=1 g=1 i=0 n=0
. /61+z+n i ( ﬁO’ )J i 1 i O'? Ly—1 ~ /6 n
i+——“‘N1 n 2 4 N (s+¢)” o1 \1+ s02
{Tq a a o1
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Note that for deriving the formula above for the MGF we have used the fact

that -
1+S(71 <1+802) B + Z (527)

thus we have

" | 1 . L1
§ = — - 2
L P sy L {al <1+sa2> ﬁl’l} (5:28)

k= 02

and we can substitute it in (4.9). Setting s = 0, we find that

L,.-1 /6
Z Ba kUQ = Z 2k

using these simplifications, the final MGF for the constant receive correlation

=1- ﬁ1710'1 (529)

s=0

case can be derived easily.

5.2.2 Tridiagonal Correlation Model

We assume that the correlation matrix R, is a tridiagonal matrix of the form

[1 » O e 0
r 1 r
rR=|%" 1 : (5.30)
: r 0
T 1
| 0 0 r 1]

where 7 is a correlation parameter. From (5.3), the MGF of 7, depends on
the eigenvalues of the correlation matrix R.. for the receive correlated channel.
The eigenvalues of a matrix can be found through the characteristic function
of the matrix as Ay (A) = det(R, —AI) = 0. The solutions of this equation for
A are eigenvalues of R,. We know from the results in [64] that for a tridiagonal
matrix of the above form with size L, x L, the characteristic function is

sin(l, + 1)

A, (A) =1 = A) S0

(5.31)
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where L, = 2[, + 1 is odd and

sin(l, +1)8 4+ sinl,.f0
Ar,(\) =1t ( Sizl 7 (5.32)

where L, = 2[, is even and @ is defined implicitly from A and the correlation

parameter r as

(1—X)%=2r? +2r? cos § = 4r? cos? g (5.33)
which means that
A =1%2rcos —g— (5.34)
Thus, the eigenvaiues for an odd L, are A; = 1 and the others can be derived
from
sin(l, + 1) =0 (5.35)
where sin 6 # 0. Thus
02%, k:i,Q,...,lr (5.36)

Therefore, using the definition of ¢ in (5.33), The rest of eigenvalues of the

correlation matrix with odd size are

i ,
/\27;,)\214_1 = 1= 2rcos m, 1= 1,2,...,lr. (537)
When L, = 2I, where [, is an integer, then
sin(l, +1)8 +sinl,6 =0, sinf #0 (5.38)
where gives us the result that
GL+0)0=02k-)r—10, k=12 .1 (5.39)
(2k — V)m
= — =1,2,.. .
g L1 k=1,2,..1, (5.40)
thus the eigenvalues are
2i —1
Azi_l,)\gi = 1=+ 2rcos ( ! )7T 1= 1,2,...,[7« (541)

20, +1 7
For the tridiagonal correlation, the eigenvalues are distinct and therefore (5.11)

and (5.12) can be used to derive the MGF and the BER expressions.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2.3 Exponential Correlation Model
The components of R, in the exponential correlation model is given by
Ty = ’f’li_jl, I’I”I <1 (542)

where r is the (complex) correlation coefficient of neighboring receive antennas.
This is a simple single-parameter model which allows one to study the effects
of receive correlation on transmit antenna scheme.
The eigenvalues \;,i = 1,2, ..., L, of the R, can be calculated as follows [65]:
1—1r?

/\i: )
1—2rcos@,; +1r?

i=1,2, .., L (5.43)

where 6, for i = 1,2, ..., L, are solutions of the equations:
L.+ 1)8 . (L, —1)8

2 2 ’
L, L, —1)f
cos g—-;—l)g = 7 COS (———2—>— (5.44)

The eigenvalues of the exponential receive correlation matrix are distinct
and therefore the MGF and BER expressions can be obtained from (5.11) and
(5.12).

5.3 BER expressions

In this section, we are finding the BER expressions for transmit antenna. selec-

tion scheme using OSTBCs over receive correlated Rayleigh fading channels.

5.3.1 M-ary PAM and QAM

Using the closed-form expressions in (5.20) and (2.18), the BER can be ob-

tained as
logy, M & L Na
2 L= { D?o
Py(p) = ——— B; b,]( L q)

+ Zi;LtZN;l > algin)h (Q%ﬂi> } (5.45)

i n
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where I,,(11) has been defined in (4.33).

5.3.2 M-PSK

The tight approximation of M-PSK BER in (2.17) and employing (5.20), (2.18)
yield the approximate BER expressions for M-PSK as follows:

9 max(M/4,1) L Naog 22 _ 1)
P o b
M(p) max(log2 M, 2) Z {; lzl: q, i (Uq sin® Vi )

+§L:Ltz ZZ a(g;i;n)I (aq,i,nsinz(g—i_ﬁllg}. (5.46)

5.4 Asymptotic Performance Analysis

Using the inverse Laplace transformation of the MGF of 74, we obtain another

representation for pdf and cdf of v, as
Jon (@) = L3 [y, (5)]
F, (x) = / £ (t)dt = [W( )} | (5.47)

Thus, by inserting inverse Laplace transformation representation of pdf and
cdfs into the MGF expressions (4.9) of ~,, the achievable received SNR of

transmit antenna selection system, we obtain

0, =N () [ e )
X {/:;1 [-@} }Lt—N [ / st f%(t)dt} T (ag)

Note that if f(z) can be approximated as a single polynomial [21]
f(z) =az’ +o(z?), -0 (5.49)

then the Laplace transformation of f(z) also can be approximated as a single

polynomial like

W(s) = LIf(@)] = ﬁ[il—i-o(sﬂl) 5= 00, (5.50)
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We use the facts as follows in the approximation process of the MGF and

further BER performance of the system.

o0 |
/0 e P(z)dz = jﬁg , (5.51)
* ey = g (2 5.5
i (A = SQ lzzo: 7,' 9 ( . )
%) o) N-1 A
/ e 5Ty {/ e"StP(t)dt:} dr = = +o(s™") (5.53)
0 x S

where P(z) = p,x? + o(z?) as x — 0, is a function of z and B=Q + 1+ (¢ +
1)(N —1). Therefore, o(z?) can be ignored from P(z) in order to approximate
the MGF. From (5.3), and the inverse Laplace transformation of the MGF, we

have

f'Yk (:L’) =L

ﬁ = - . A (@™ 1), (5.54)
1+scoh | (ep)™[Tepe (m—1)! ars

i=1
“where m is the rank of the receive correlation matrix R,.. Using the fact that

Py (z) = L' [344,(s)], we also have

SR 1
—_r-11-. I
Fulz) =L L’ E 1+ scp);

1 ™ m

Therefore, using the fact in (5.51), the MGF as s — oo is simplified as

L\ [* 1 m-1 1 m Bl
O, (s) N[ / e5% 1= L e

N/ J (co)™ detR, (m—1)! | (cp)™ detR, m!

" {/m ﬂcp)miet R e 11)! " O(tm)} dt}m e

We ignore the o(t™~1) term and use (5.51), thus
N

Ly m

P =N
2 =N () R
> 1 T2 (sz)* A
~Nsx r(Li—N —
X/o g~ Nz pr{le—N+1) 18m(1\7—1) [E x ] dx, (5.57)
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in which a; is the coefficient of 27, j = 0, 1, ..., (m—1)(IN—1), in the expansion

[i (S];)k] . (5.58)

k=0

Thus, inserting the above definition into the MGF expressions, we get
Ly m¥ 1
q) 5 :N
'Yb(‘s) <N> (cp)Ltm[det RT]Lg (m!)Lt Sm(N—l)

(m=1)(N-1) [e's)
X Z / e~ Nowg sl gmibe—N+D+5-1 5 (5.59)
J=0 0

and therefore MGF can be approximated as

Lt mN 1

P =N
Yo (8) (N) (Cp)Ltm[det Rr]Lt (m!)Lt Nm(Lt —-N+1) sltm
(m-1)(N-1)

a; [m(Ly = N+1) +5 = 1]
< 3 '

(5.60)
=0
For the simplicity of the expression, we define
(m=1)(N—1) .
iim(L; — N +1 — 1!

7=0
which is a parameter depends on m, N, L;. The comparison between (5.60)

and (4.21) reveals that

N (R)m" A(cp)~"em
[det R,| Lt (m!)Le Nm(Li=N+1)

d =mL, (5.62)

If we substitute the approximated MGF into (2.18) then

2N(Lt) m” A(cp)~Lem 82 M
M(p) M 10g2 M [det RT]L‘(W,!)LtNm(L‘_N+1) ; ; i4mLy ( sz/z)
(5.63)
where I,,,(1) has been defined in (4.33). Note that
. 2p 1 1
62
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Thus

lim P _ 2N(§V‘)mN A

ngo w(p) = Mlog, M ' [det R, Le(m!)Le NmEe=N+1)
(QmLt loges Mk,

mLf
22er+1 (Z Z DZmLt) Cp)mLt (5-65)
n=1 =0
shows that
G = 2N(?Vt)mN A
“ ] Mlog, M [det R,] Lt (m!)Ee Nm(Li=N+1)

(ZmLf) logy M k. - Gq
mLf
X 3Lt 22mLt+lcmL¢ ( Z Z DZmLt) } ’
n=1 14=0 ?
Gg =mLy. (5.66)
are the coding gain and diversity order. Therefore, if N antennas correspond-

ing to the largest received SNR, or v, are selected, and the receive correlation

matrix is full rank then full diversity order of L, L, is obtained.

5.5 Conclusion

This chapter analyzed the performance of OSTBCs with transmit antenna
selection in receive correlated Rayleigh fading channels. The exact BER. for
M-PAM and M-QAM and an approximate BER for M-PSK were derived.
Our results are sufficiently general to handle an arbitrary number of antennas
and specially for correlated fading channels. We also derived the BER for
the constant receiver correlation. The asymptotic performance of the system
has been derived. The diversity order and coding gain of system is found.
Thus, full diversity is achieved through transmit antenna selection in receive

correlated fading channels.
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Figure 5.2: Comparison between the exact expression, approximation and
simulation for N = 2 transmit antenna selection out of L; = 3,4 with L, = 2
correlated receive antennas, 16-QAM.
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Figure 5.3: Comparison of the performance between different correlation pa-
rameter r for N = 2 transmit antenna selection out of L; = 3 with L, = 2
correlated receive antennas, 16-QAM.
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Figure 5.4: Comparison between different correlation parameter r for N =
2 transmit antenna selection out of L, = 3 with L, = 2 correlated receive
antennas and two approximation of performance, using 16-QAM constellations
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Chapter 6

Conclusions and Future Work

The performance of transmit antenna selection with OSTBC in MIMO wire-
less systems is derived for Rayleigh fading channels without correlation and
with receive correlation. Transmit antenna selection gives the better perfor-
mance and achieves full diversity while reducing the number of RF chains and
consequently cost and complexity of system.

In Chapter 2, MIMO wireless systems are introduced. OSTBCs is reviewed
and preliminaries for performance analysis of system is presented. In Chap-
ter 3, antenna selection scheme is discussed. The motivations for antenna
selection and the recent works are reviewed. There are two main antenna
selection criteria, one is based on capacity maximization to achieve the full
rate of transmission which leads to spatial multiplexing techniques such as
V-BLAST. Minimizing the error rate is another scheme to select transmit an-
tennas. Minimizing probability of error in systems using OSTBCs leads to
selecting antennas with the highest received SNR. Maximizing SNR, needs se-
lection of antennas which have largest norms of corresponding columns in the
MIMO channel matrix.

Chapter 4 studies the performance of OSTBCs with transmit antenna se-
lection in independent Rayleigh fading channels. Exact closed-form BER ex-
pressions are derived, which also lead to approximations. The diversity order

and coding gain are obtained exactly. We show that a system using any num-
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ber of transmit antennas and sends OSTBCs over them achieves full diversity.

In Chapter 5, the performance of transmit antenna selection is analyzed for
channels with receive correlation. Despite the receive correlation, the received
SNRs from transmit antennas are independent. Thus order statistic results
can be used in performance analysis of transmit antenna selection. The ap-
proximations and coding gain and diversity order of system are derived from
the exact form BER expression. Order statistics for correlated variables are
not available in the literature at this time thus deriving performance for fading
channels with transmit correlation appears impossible.

As a result, transmit antenna selection with OSTBCs achieves full diversity
and gives better performance and lower complexity rather than no selection,
with the expense of minimal number feedback bits.

Although we derived the performance analysis of transmit antenna selec-
tion for receive correlated channels, no performance analysis is available for
the transmit correlated case. Studying the performance of transmit antenna
selection leads to future system designs to get better performance.

The only known optimum antenna selection in capacity based criteria is
exhaustive search. Thus proposing suboptimum and fast selection algorithms
with lower complexity is a topic of current and future research.

Transmit antenna selection is only one of the adaptive antenna systems
using low rate feedback from receiver to design system and signaling at the
transmitter to get better performance. Other adaptive antenna methods are

of interest.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

(1] G. J. Foschini and M. J. Gans, “On limits of wireless communications in
a fading environment when using multiple antennas,” Wireless Personal

Communications, vol. 6, no. 3, pp. 311-335, Mar. 1998.

[2] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Euro. Trans.

Telecommun., vol. 10, no. 6, pp. 585-595, 1999.

[3] E. G. Larsson and P. Stoica, Space-time Block Coding for Wireless Com-

munications. Cambridge University Press, 2003.

[4] S. Alamouti, “A simple transmit diversity technique for wireless commu-
nications,” IEEE J. Select. Areas Commun., vol. 16, pp. 14511458, Oct.
1998.

[5] V. Tarokh, H. Jafarkhani, and A. Calderbank, “Space-time block codes
from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, pp. 1456~
1467, July 19909.

[6] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless
Communications. Cambridge, United Kingdom: Cambridge University
Press, May 2003.

[7] V. Tarokh, H. Jafarkhani, and A. Calderbank, “Space-time block coding
for wireless communications: performance results,” IEEE J. Select. Areas

Commun., vol. 17, pp. 451-460, Mar. 1999.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[8] H. Holma and A. Toskala, WCDMA for UMTS. John Wiley and Sons,
2000.

[9] IEEFE 802.16 Standard, Part 16: Air Interface for Fized Broadband Wire-
less Access Systems, October 2004.

[10] D. A. Gore and A. J. Paulraj, “MIMO antenna subset selection with
space-time coding,” IEEE Trans. Signal Processing, vol. 50, pp. 2580—
2588, Oct. 2002.

[11] A. F. Molisch and M. Z. Win, “MIMO systems with antenna selection,”
IEEE Microwave Mag., vol. 5, no. 1, pp. 46-56, Mar. 2004.

[12] A. Annamalai, G. K. Deora, and C. Tellambura, “Theoretical diversity
improvement in GSC(N,L) receiver with nonidentical fading statistics,”

IEEFE Trans. Commun., vol. 53, pp. 1027-1035, June 2005.

[13] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and
F. Frederiksen, “A stochastic MIMO radio channel model with experi-
mental validation,” IEEFE J. Select. Areas Commun., vol. 20, no. 6, pp.
1211-1226, Aug. 2002.

[14] K. Yu, M. Bengtsson, B. Ottersten, D. McNamara, P. Karlsson, and
M. Beach, “Second order statistics of NLOS indoor MIMO channels based
on 5.2 GHz measurements,” IEEE Global Telecommn. Conf. (GLOBE-
COM), vol. 1, pp. 156-160, 2001.

[15] D. Chizhik, J. Ling, P. W. Wolniansky, R. A. Valenzuela, N. Costa, and
K. Huber, “Multiple-input-multiple-output measurements and modeling
in manhattan,” IKEFE J. Select. Areas Commun., vol. 21, no. 3, pp. 321~
331, 2003.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[16] H. Ozcelik, M. Herdin, W. Weichselberger, J. Wallace, and E. Bonek, “De-
ficiencies of 'kronecker’ mimo radio channel model,” Electronics Letters,

vol. 39, no. 16, pp. 1209-1210, 2003.

[17] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw
Hill, 2000.

[18] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,”
IEEE Trans. Inform. Theory, vol. 44, no. 3, pp. 927-946, May 1998.

[19] K. Cho and D. Yoon, “On the general BER expression of one- and two-
dimensional amplitude modulations,” IEEE Trans. Commun., vol. 50, pp.

1074-1080, July 2002.

[20] J. Lu, K. B. Letaief, J. C. Chuang, and M. L. Liou, “M-PSK and M-QAM
BER computation using signal-space concepts,” IEEE Trans. Commun.,
vol. 47, pp. 181-184, Feb. 1999.

[21] Z. Wang and G. Giannakis, “A simple and general parameterization quan-
tifying performance in fading channels,” IFEE Trans. Commun., vol. 51,

pp. 1389-1398, 2003.

[22] B. Hassibi and H. Vikalo, “On the expected complexity of integer least-

squares problems,” Proc. IEEE Int. Conf. Acoustics, Speech, and Signal
Processing (ICASSP), vol. 2, pp. 1497-1500, 2002.

[23] G. Ganesan and P. Stoica, “Space-time diversity using orthogonal and
amicable orthogonal designs,” Proc. IEEFE Int. Conf. Acoustics, Speech,
and Signal Processing (ICASSP), vol. 5, pp. 25612564, 2000.

[24] ——, “Space-time block codes: A maximum SNR approach,” IEEE
Trans. Inform. Theory, vol. 47, no. 4, pp. 1650-1656, 2001.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[25] G. J. Foschini, “Layered space-time architecture for wireless communica-
tion in a fading environment when using multi-element antennas,” Bell

Labs Technical Journal, vol. 1, no. 2, pp. 41-59, 1996.

[26] B. Hassibi and H. Vikalo, “On the expected complexity of sphere decod-
ing,” Asilomar Conference on Signals, Syst., Compt., vol. 2, pp. 1051—
1055, 2001.

[27] P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V-BLAST:
an architecture for realizing very high data rates over the rich-scattering

wireless channel,” Int. Symposium on Signals, Systems, and Electronics

(URSI), pp. 295-300, 1998.

[28] C. E. Shannon, “The mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379423, 1948,

[29] H. A. David, Order Statistics, 2nd ed. New York : Wiley, 1981.

[30] R.S. Blum and J. H. Winters, “On optimum MIMO with antenna selec-
tion,” IEEE Commun. Lett., vol. 6, pp. 322-324, 2002.

[31] R. H. D. Gore and A. Paulraj, “Transmit selection in spatial multiplexing
systems,” [EEE Commun. Lett., vol. 6, no. 1, pp. 491-493, 2002.

[32] S. Sanayei and A. Nosratinia, “Asymptotic capacity gain of transmit an-
tenna selection,” Proc. IEEE Int. Symp. on Infor. Theory (ISIT), June
2004.

[33] D. A. Gore, R. U. Nabar, and A. Paulraj, “Selecting an optimal set of
transmit antennas for a low rank matrix channel,” Proc. IEEE Int. Conf.
Acoustics, Speech, and Signal Processing (ICASSP),vol. 5, pp. 27852788,
2000.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[34] N. Kong, T. Eng, and L. B. Milstein, “A selection combining scheme for
rake receivers,” in Proc. IEEE Int. Conf. on Universal Personal Commun.

(ICUPC). 1EEE, 1995, pp. 426-430.

[35] A. F. Molisch, M. Z. Win, Y.-S. Choi, and J. H. Winters, “Capacity of
MIMO systems with antenna selection,” IEEFE Trans. Wireless Commun.,

vol. 4, no. 4, pp. 1759-1771, 2005.

[36] S. Sanayei and A. Nosratinia, “Antenna selection in MIMO systems,”
[EEE Commun. Mag., vol. 42, no. 10, pp. 68-73, Oct. 2004.

[37] R. W. Heath Jr. and D. J. Love, “Multimode antenna selection for spatial
multiplexing systems with linear receivers,” IEEE Trans. Signal Process-

ing, vol. 53, no. 8, pp. 3042-3056, 2005.

[38] A. F. Molisch, M. Z. Win, and J. H. Winter, “Reduced-complexity
transmit/receive-diversity systems,” IEEE Trans. Signal Processing,

vol. 51, no. 11, pp. 27292738, 2003.

[39] S. Sandhu, A. Paulraj, R. U. Nabar, and D. A. Gore, Method and appa-
ratus for selection and use of optimal antennas in wireless systems. U.

S. Patent 6 917 820, July 2005.

[40] D. Gore, R. Nabar, and A. Paulraj, “Selecting an optimal set of transmit
antennas for a low rank matrix channel,” Proc. IEEFE Int. Conf. Acoustics,

Speech, and Signal Processing (ICASSP), vol. 5, pp. 2785-2788, 2000.

[41] S. Sandhu, R. Nabar, D. Gore, and A. Paulraj, “Near-optimal selection
of transmit antennas for a MIMO channel based on shannon capacity,”

Asilomar Conf. on Signals, Systems and computers, vol. 1, pp. 567-571,
2000.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[42] L. Dai, S. Sfar, and K. Letaief, “Optimal antenna selection based on
capacity maximization for MIMO systems in correlated channels,” IEEFE

Trans. Commun., vol. 54, pp. 563-573, Mar. 2006.

[43] R. Narasimhan, “Transmit antenna selection based on outage probability
for correlated MIMO multiple access channels,” IEEE Trans. Wireless
Commun., vol. 5, pp. 2945-2955, Oct. 2006.

[44] G. K. Karagiannidis, “Performance analysis of SIR-based dual selection
diversity over correlated Nakagami-m fading channels,” IEEE Trans. Veh.

Technol., vol. 52, pp. 1207-1216, Sept. 2003.

[45] V. A. Aalo and T. Piboongungon, “On the multivariate general-
ized gamma distribution with exponential correlation,” IEEE Global
Telecommn. Conf. (GLOBECOM), vol. 3, pp. 1229-1233, Dec. 2005.

[46] Q. T.Zhang and H. G. Lu, “A general analytical approach to multi-branch
selection combining over various spatially correlated fading channels,”

IEEE Trans. Commun., vol. 50, pp. 10661073, July 2002.

[47] N. C. Sagias, G. K. Karagiannidis, D. A. Zogas, P. T. Mathiopoulos,
and G. S. Tombras, “Performance analysis of dual selection diversity in
correlated Weibull fading channels,” IEEE Trans. Commun., vol. 52, pp.
1063-1067, July 2004.

[48] Y. Chen and C. Tellambura, “Distribution functions of selection combiner
output in equally correlated Rayleigh, Rician, and Nakagami-m fading
channels,” IEEE Trans. Commun., vol. 52, no. 11, pp. 1948-1956, Nov.
2004.

[49] —---, “Performance analysis of L-branch equal gain combiners in equally
correlated Rayleigh fading channels,” IEFE Commun. Lett., vol. 8, no. 3,
pp. 150-152, Mar. 2004.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[50] —-——, “Performance analysis of three-branch selection combining over
arbitrarily correlated Rayleigh-fading channels,” IEEE Trans. Wireless
Commun., vol. 4, no. 3, pp. 861-865, Apr. 2005.

[51] D. J. Love, “On the probability of error of antenna-subset selection with
space-time block codes,” IEEE Trans. Commun., vol. 53, pp. 1799-1803,
Nov. 2005.

[52] Z. Chen, “Asymptotic performance of transmit antenna selection with
maximal-ratio combining for generalized selection criterion,” IEEE Com-

mun. Lett., vol. 8, pp. 247-249, Apr. 2005.

[53] X. Cai and G. B. Giannakis, “Performance analysis of combined transmit
selection diversity and receive generalized selection combining in Rayleigh
fading channels,” IEEE Trans. Commun., vol. 3, pp. 1980-1983, Nov.
2004.

[54] Z. Chen, J. Yuan, B. Vucetic, and Z. Zhou, “Performance of Alamouti
scheme with transmit antenna selection,” IEE Elect. Lett., vol. 39, pp.

16661668, Nov. 2003.

[55] ——, “Performance of Alamouti scheme with transmit antenna selection,”
IEEE Int. Symposium on Personal, Indoor and Mobile Radio Commun.
(PIMRC), vol. 2, pp. 1135-1141, Sept. 2004.

[56] Z. Chen, B. Vucetic, and J. Yuan, “Asymptotic performance of space-time
block codes with imperfect transmit antenna selection,” IEE FElect. Lett.,

vol. 41, pp. 538-540, Apr. 2005.

[57] A.F.Molisch, M. Z. Win, and J. H. Winters, “Capacity of MIMO systems
with antenna selection,” Int. Conf. on Commun.Systems (ICCS), vol. 2,
pp. 570-574, 2001.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(58] Y. Ma and C. C. Chai, “Unified error probability analysis for generalized
selection combining in Nakagami fading channels,” IEEFE J. Select. Areas
Commun., vol. 18, pp. 2198-2210, Nov. 2000.

[59] S. Kaviani and C. Tellambura, “Closed-form BER analysis for antenna
selection using orthogonal space-time block codes,” IEEE Commun. Lett.,

vol. 10, pp. 704706, Oct. 2006.

[60] — -, “Closed-form BER performance analysis for antenna selection using
orthogonal space-time block codes,” Proc. IEEE Vehicular Technology
Conf. (VTC), Sept. 2006.

[61] M. K. Simon and M.-S. Alouini, Digital Communication over Fading
Channels: A wunified approach to performance analysis, 1st ed. New

York: Wiley, 2000.

[62] 1. S. Gradshteyn and [. M. Ryzhik, Table of Integrals, Series, and Prod-
ucts, 5th ed. Academic Press, Inc., 1994.

[63] M. S. Alouini and M. K. Simon, “An MGF-based performance analysis
of generalized selection combining over Rayleigh fading channels,” [EEE

Trans. Commun., vol. 48, pp. 401-415, Mar. 2000.

[64] S. Kouachi, “Eigenvalues and eigenvectors of tridiagonal matrices,” Elec-

tron. J. Linear Algebra, vol. 15, pp. 115-133, Apr. 2006.

[65] S. Kotz and J. W. Adams, “Distribution of sum of identically distributed
exponentially correlated Gamma-variables,” The Annals of Mathematical

Statistics, vol. 35, no. 1, pp. 277-283, Mar. 1964.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



