

 WEB BASED FRAMEWORK FOR 911
EMERGENCY CALL HANDLING USING OPEN
 SOURCE ELASTIX PBX

 Shimoga Prasad Shashi Kiran

 Master of Science in Internetworking

 UNIVERSITY OF ALBERTA

 2011-12

2

Abstract

This document provides a brief overview on the Analysis and prototype development of
Emergency call handling module in Elastix web server GUI. It aims at providing a front-end web
framework with necessary scalability features for complete solution development resulting in a
full-fledged application that can be integrated with any Elastix server package.

Previous developer in the earlier phase of the 911 Emergency Call handling project has devised
an algorithm which will pick an available telephone line to free the resources so any user in
emergency can dial 911 in a congested environment of the PBX Elastix. This project aims on
integrating the developed algorithm with web based solution framework using Elastix. This
module will enable any novice user with sufficient access level privileges to define and
understand the context and priorities from the web based GUI. The cost priorities define the
order in which channels get freed when emergency calls need to be handled in the PBX system.

The following is the brief activity list which focuses on Analysis work done as part of 911
Emergency call handling application development:

 Development of new web GUI framework that can be integrated with Elastix
 Integration of Java script(Developed Algorithm) with web based framework
 Packaging the functional web based framework with Elastix
 Testing Elastix web based GUI framework with necessary and additional functionalities

for 911 emergency call handling and congestion control

This Capstone project report is submitted as part of MINT 709 requirement and this will act as a
suitable reference for all the developers and testers interested in exploring Open source PBX
environment with Asterisk-Java and Asterisk-PHP scripting and doing new developments in
Elastix VOIP Communications Server.

Acknowledgements

I would like to thank Dr.MacGregor for giving me an opportunity to work on the area of Open
source PBX Scripting. I would like to extend my thanks to Mr.Shahnawaz Mir for supervising the
project and guiding in the right direction. Finally I would like to convey my special thanks for Mr.
Kirupakaran Pirasath, who was the developer in the first phase of the project and whose initial
contribution and research in Asterisk PBX helped in exploring different facets of the Elastix PBX
and thus paved way for delivering a better enhanced quality solution through Elastix GUI in the
field of VoIP telephony.

3

Table of Contents

1.Introduction...8

2. Elastix Asterisk Overview and Functional Description..........................9
 2.1Elastix Web GUI and terminologies...9
 2.1.1PBXconfiguration..9
 2.1.2 Asterisk and its Usage………………………………………………….................9
 2.1.3 Asterisk and PHP-scripting………………………………………………………. 9
 2.2 Previous research and works on this topic..9
 2.3 Need for Elastix GUI Development for Emergency Call Handling
 Application……………………………………………………………………………..10
 2.4 Proposed Solution for web-based framework in Elastix GUI……………………..11

3. Elastix Server GUI Design for Emergency Call Handling
Application….……...13
 3.1 Design Specifications…………………………………………………………….........13
 3.2 Design and Development of Web-Framework in Elastix…………………………...17
 3.2.1Installation and Configuration of Java-PHP bridge………………………………17
 3.2.2 Installation of Developer module in Elastix……………………………………….19
 3.2.3 Creation of Emergency Call Handling Application in Elastix…………………...22
 3.2.3.1 Creation of Emergency Call Handling group…………………………...........22
 3.2.3.2 Designing the AGI script and running in the background…………………..26
 3.2.3.3 Creation of Emergency Call Handling Asterisk module………………….....27
 3.2.4 Updating Help documentation in the Emergency Call
 Handling application……………………………………………………...............29

4. Implementation Process and
Testing...31
 4.1 Implementation of Testing Environment and Set up..33
 4.2 Execution of Test scenarios………………………………………………………....35
 4.3 Plug and Play module implementation of the Emergency Call
 Handling application……………………………………………………………….....42

5. Conclusions..45

6. Future Scope of Work…………………………………………………….46

4

List of diagrams and tables used in the report:

Fig 3.1.1 Flowchart of the Emergency call handling application

Fig 3.1.2 Table about the extensions created for user groups

Fig 3.1.3 Work flow processes in the Emergency Call Handling application

Fig 3.2.2.2 Developer module in Elastix

Fig 3.2.2.3 Presence of newly created modules inside the Elastix server

Fig 3.2.3.1 Call priority module in Elastix

Fig 3.2.3.3 Elastix Asterisk Emergency call handling command Interpreter module

Fig 3.2.3.4 Demonstration of existing registered applications in Asterisk

Fig 3.2.4 Emergency call handling Asterisk Commands in the help section of the module

Fig 4.1 Shell script starting the DefaultAgiServer

Fig 4.1.1 Crontab entry seen in the CentOS server

Fig 4.1.2 Testing setup for running the Emergency Call Handling application

Fig 4.1.3 Registered SIP clients (usergroups) with Extension numbers

Fig 4.1.4 Important files present inside the Elastix Asterisk server

Fig 4.1.5 Extensions.conf file in the Elastix Asterisk server

Fig 4.1.6 Extensions_additional.conf file in the Elastix Asterisk server

Fig 4.2.1 Assignment of Cost for the CEO user group after execution of cost AGI inside

 inside context.php file

Fig 4.2.2 All lines dialing 911 and line circuits are busy with congestion

Fig 4.2.3 Emergency call handling asterisk demonstrating the four emergency calls active in

 progress

Fig 4.2.4 Asterisk CLI demonstrating the process when all 911 emergency calls in progress

Fig 4.2.5 All lines dialing non-911 lines and are accepted

Fig 4.2.6 Elastix GUI demonstrating that all four available channels are busy with

 non-911 lines

5

Fig 4.2.7 The Visitor call having the lowest cost priority is being freed for 911 call dialed by the

 user group “Staff” in the busy congested network

Fig 4.2.8 The Staff user group with Extension “500” is facilitated to attend emergency call after

 releasing the Visitor call(Extension:700) (which was dialing non-911and call was in

 progress)

Fig 4.2.9 VoIP yate client demonstrating that the Visitor call was disconnected

Fig 4.3.1 Loading the plug & play elastix call handling application module

6

List of Abbreviations and Acronyms used in this Report:

AGI - Asterisk Gateway Interface

Asterisk-Java - Asterisk for Java

AGI-PHP - Asterisk Gateway Interface in PHP

AMI - Asterisk Manager Interface

ASM - Asterisk Service Manager

API - Application Programming Interface

CEO - Chief Executive Officer

CLI - Command Line Interface

DTMF - Dial-Tone Multi-Frequency

DAHDI - Digium Asterisk Hardware Device Interface

GUI - Graphical User Interface

IP - Internet Protocol

IVR - Interactive Voice Response

OS - Operating System

PBX - Private Branch Exchange

PC - Personal Computer

PHP - Hypertext Preprocessor

POTS - Plain Old Telephone System

PSAP - Public Safety Answering Point

PSTN - Public Switched Telephone Network

SIP - Session Initiation Protocol

TDM - Time Division Multiplexing

UML - Unified Modeling Language

MVC - Model View Controller

YATE - Yet Another Telephony Engine

7

VoIP - Voice over Internet Protocol

HTML - Hypertext markup language

AstPHPAGI - Asterisk PHP-AGI Library

8

Introduction

Elastix, an open source VOIP communications server provides an ideal platform for
communication and telephony systems to utilize the latest technologies in the VOIP Industry
and leverage the maximum benefits out of it. The organizations can make their telephony
environment more effective and productive with the excellent usage of Elastix and its
customization with different communication systems.

The Elastix server runs on CentOS and it includes a web server component by which the
system is configured via the Elastix GUI.Elastix is an open source software used to provide all
required functionalities of a VOIP Communications Server. Elastix provides industry standard
telephony system with various features like Voicemail, call-recording, Conference, Monitoring
and many more features to the user in the form of a simple GUI framework. A user with
sufficient login access to Elastix server can explore the various functionalities that Elastix is
offering in the open source PBX environment.

One of the greatest benefits of using the Elastix web server and its GUI is its open source and
unified nature in telephony systems. The Elastix GUI acts as a single point of access by which
the entire VOIP communication server and its various channels can be suitably modified and
changed according to the requirements as and when the changes are necessary. It helps
organizations to substantially manage costs by deploying and maintaining the VOIP
communication servers in their organization environment that are highly flexible and stable.

One of the important features of Elastix is its flexibility to incorporate additional design features
in its architecture. Majority of the users do not understand the changes that happen beyond the
Elastix web server and this iterates the need for additional features to be added into the Elastix
Web GUI so that novice users will have better visibility and control in handling the telephony
operations from the web GUI.

The 911 Emergency calls are normally routed to Public Safety Answering points (PSAP) across
different locations in Canada and are given highest importance in terms of dialing and
answering them. Hence, it provides a great opportunity for the software developers and
researchers to come up and deliver new additional exceptional emergency dialing services that
will benefit the organizations in the long run.

9

2. Elastix Asterisk Overview and Functional Description:

The below section provides detailed information of the Elastix Web GUI and its interaction with
the Asterisk.

2.1Elastix Web GUI Overview and Terminologies:

2.1.1PBX Configuration in Elastix:

The Elastix Web GUI provides a simple feature to create extensions and different groups to
configure PBX .The context and priorities are defined for each extension which will be saved in
the database of the Elastix web server and will be acted upon when calls from those specific
groups are made from it.

2.1.2The Asterisk and its usage:

Asterisk is the software that helps VoIP gateways, conference servers and other PBX tools in
establishing a collaborative and supportive environment for unified VoIP communication.

The asterisk gateway interface (AGI) is a standard interface by which asterisk or Elastix asterisk
dial plan may be monitored and maintained by the external programs that will run on those
servers. The Asterisk dial plans are suitably written in such a way that the AGI(Asterisk
Gateway Interface) will act as an gateway for scripts or programs that define advanced logic
and perform some actions and operations based on the commands executed in the Asterisk.

The AGI scripts communicate over the Asterisk defined specific communication channels and
Asterisk sends lists of its variables to macro-dialouts after the AGI script begins its execution.

2.1.3Asterisk and PHP scripting:

The AGI scripts can be written in PHP with suitable modifications but the basic rules of AGI
scripting will still apply to the program that will be written in PHP .There is also the support of
PHPAGI Library for writing advanced AGI Scripts in PHP.

The Elastix web server code runs in PHP and writing AGI scripts in PHP provides an added
advantage to the programmer with the ability to modify and change not only the AGI scripting
code but also the PHP code that makes up the web based Elastix GUI.

2.2 Previous Research and Work done on this topic:

The developer in the previous phase of the project has devised an algorithm that has the
following features:

The user groups will be assigned priorities with specific costs and the user groups are
classified as Student, Visitor, CEO based on the business process model and hierarchy of the
organization
The priorities with costs will be assigned for all calls made outside of the organization and
especially under the circumstances of handling emergency calls and the incoming calls coming
through PSTN will not be assigned priority.

10

The non-emergency (non-911) lines will be disconnected based on the calls having the lowest
priority in terms of cost assigned to them in macro-dial out trunks

911 Emergency calls:

 911 Emergency calls will all have the highest priority compared to any other non-
emergency calls.

 There is a global counter called EMERGENCY that will get incremented each time the
911 call is connected to the PSAP

 There will be no disconnection of 911 emergency calls at any point of time.
 The users will try to attempt to dial 911 or non 911 will hear congestion tone or IVR when

all outgoing PSTN lines are in use with Emergency handling application
 When each call is hung up after using 911 emergency application, the Global Counter

EMERGENCY will be decremented by 1

The previous developer had proposed and developed the solution that consisted of checking
whether all the four lines/trunks were busy dialing some calls. Based on that decision, then
further decision was made on whether they were busy dialing the non-911 calls or 911 calls. If
they were dialing non-911 calls and if there is emergency call to attend then it would pick the
line which is attending non-911 call and which is present at the lowest level in terms of priorities
being assigned to them .

The Emergency call which needs to be attended would then be assigned the highest priority and
it would be connected. If all the available lines were not busy, then they would directly assign
the emergency 911 calls .If all the calls were busy with 911 dialing, then an IVR message would
be delivered to the caller informing him that the line was congested with emergency calls and
they are not in a position to disconnect any of the emergency calls and would need to wait until
one of the lines become available.

2.3 Need for Elastix GUI Development for Emergency Call handling application:

The previous developer had devised the algorithm and the code was written in java. The main
priority was to develop an Emergency call handling application using Java/PHP and Asterisk
scripting. The application in first phase of the project had certain limitations which are listed
below:

a) The Novice user was unable to identify the application since the application was running
in the Asterisk and the only way to identify the code was to login to the Asterisk CLI in
Elastix and run the program.

b) This was tedious for a novice user since most of the users will probably have less
knowledge on programming languages and will find it difficult to understand the
application

c) The finer aspects of the application are complex for a user to understand and make it
operative.

d) The development of Elastix GUI for Emergency call handling application was a typical
user requirement since the users prefer to use the application in the simplest possible

11

manner and they ideally like to have all complex features to be hidden encapsulated
from them.

e) They had to manually run the script that handles the Emergency call handling
application.

The following are the advantages of using web based Elastix GUI:

 The creation of web based application always results in higher productivity for
organizations.

 The users will have less load of performing tasks as web GUI does most of the work and
they do not have to remember each and every important task when they use the
application

 It requires less experience, less training for non-technical people to understand and use
the application.

 It nullifies the users need to adapt to usage of complex command languages in Asterisk
scripting.

 The Elastix GUI do not require large amount of memory or processing power to run the
Emergency call handling application.

2.4 Proposed Solution for web-based framework in Elastix GUI:

Based on the requirements, there were two possible solutions for development of web based
framework for Elastix:

1) Conversion of entire existing application code in java to PHP and development of
new web interface in PHP for Elastix GUI.

 Significant analysis was done on studying the feasibility of converting the application code
written in java to PHP since the Elastix web interface code is predominantly in PHP. But the
Analysis results showed that this option had lot more disadvantages than advantages. The
following are the list of disadvantages of using the above option:

a) The existing application code had written in Java with the support of Asterisk Java
scripting. Conversion to PHP meant that entire code had to be rewritten with Asterisk
PHP scripting. Further analysis resulted in findings that Asterisk java scripting has
greater degree of support with Java-AGI libraries when compared to PHP AGI
libraries in terms of their integration with Asterisk AGI.

b) PHP developer modules in Elastix offer very little flexibility in terms of writing a
completely different PHP code that does not align with the current web based Elastix
GUI.

c) The developer module will not allow the developer to load and integrate different
PHP programs that does not follow the basic structure of packages from which
Elastix GUI was developed i.e. changes to PHP code can only be made once it is
loaded into the Elastix GUI with very little flexibility in changing the code as and when
required.

12

d) The application java code is embedded inside the AGI scripting and it gets called
inside the AGI script without any technical difficulties where as PHP scripts inside
AGI script under current scenario tends to impose technical limitations

e) The current Elastix code makes writing new PHP code more complex without the
usage of external libraries like php-agi or AstPHPAGI

2) Maintaining the existing code in Java and development of new web interface in
PHP and their integration with the help of AGI Scripting in addition of the usage of
PHP-Java bridge for future PHP-Java embedded extension code to be written in
Emergency call handling application

The above solution had additional advantages and offers more flexibility in terms of
expanding the Emergency call handling application. The important feature to be noted
here is additional support that the AGI scripting provides for java. The only drawback we
can find in this solution is the additional installation of java files and mapping it into the
Asterisk. But once the required java files are installed and required java path is set up
then it offers unparalleled support to Asterisk.

The current Elastix environment also enables the usage of open source PHP-Java
bridge , when installed in the Elastix server offers flexibility of embedding the java
classes inside the PHP code .This is where its efficient usage comes into use when
Elastix poses certain technical limitations of embedding the PHP code within the AGI
script, the installed Java-PHP bridge helps in offering the additional support of
embedding the Java classes inside the PHP code and overcomes those limitations.

13

3. Elastix Server GUI Design for Emergency Call Handling Application:

3.1 Design Specifications:

The Elastix web framework design was completely based on web development in the Elastix
web server and the overall objective was to ensure additional GUI capabilities are embedded in
Elastix for the Emergency call handling application. Accordingly, since it is web development
based framework and Elastix GUI is already developed in PHP, PHP was chosen as one of the
programming languages from which the additional features of the Elastix GUI would be
developed.

Hardware and Software Specifications:

The Elastix with CentOS server present in the MINT Lab was chosen for the Elastix GUI web
development .The Asterisk server with Asterisk 1.6.2.20 version was used to design new
features in Elastix GUI. The following specifications formed the basic Elastix environment with
which the development of web features in Elastix GUI was carried out:

 A PC/Notebook with at least 512MB/20GB/1 core
 Elastix 1.6 (bundled with CentOS release 5.7 (Final) and Asterisk 1.6.2.20)
 TDM card - Wildcard TDM410P Board 1
 Yate VoIP SIP clients(soft-phones)
 PHP 5.1.6 (cli) Zend Engine v2.1.0
 Java version "1.6.0_23"

Java(TM) SE Runtime Environment (build 1.6.0_23-b05)
Java HotSpot(TM) 64-Bit Server VM (build 19.0-b09, mixed mode)

Elastix GUI development is the ideal way to build custom telephony solutions and
applications in Asterisk and the best way to establish communication between telephony
systems through Asterisk is to adopt SIP protocol for trunking and other configurations.
The user groups communicate from the Yate VoIP clients (soft-phones) with different
extensions by adopting Session Initiation Protocol (SIP).

The following flowchart demonstrates the diagrammatic representation of the proposed
web based Elastix GUI solution:

14

Fig 3.1.1 : Flowchart of the Emergency call handling application

15

Design of Emergency call handling application and how it aligns into the purview of
Elastix web framework:

This section explains on how the base algorithm developed by the developer in the previous
phase of this project is integrated with Elastix web framework and how the users can see the
functionality of Emergency call handling application through Elastix GUI.

The following extension numbers assigned in the base algorithm of previous developer is
carried forward:

Name of the Extension Extension numbers
CEO 300
Manager 400
Staff 500
Student 600
Visitor 700

 Fig 3.1.2: Table about the extensions created for user groups

This user groups will have the same structure below in extensions.conf as defined in the base
algorithm:

[CEO]
include => from-internal
exten => 911,1,Goto(emergency,s,1)
[Manager]
include => from-internal
exten => 911,1,Goto(emergency,s,1)
[Student]
include => from-internal
exten => 911,1,Goto(emergency,s,1)
[Staff]
include => from-internal
exten => 911,1,Goto(emergency,s,1)
[Visitor]
include => from-internal
exten => 911,1,Goto(emergency,s,1)

The following emergency module gets acted upon and the AGI script runs in the background:

[emergency]

exten => s,1,ExecIf($[${EMERGENCY}>=4],Congestion)

exten => s,n,Set(GLOBAL(EMERGENCY)=$[${EMERGENCY} + 1])

exten => s,n,Set(TEST=911)

exten => s,n(dial),Dial(${EMERGENCY_TRUNK}/${EMERGENCY_NUM})

16

exten => s,n,GotoIf($["${DIALSTATUS}"="CONGESTION"]?agi)

exten => s,n,Wait(12)

exten => s,n(agi),Agi(agi://localhost/hello.agi)

exten => s,n,Goto(dial)

exten => h,1,ExecIf($[${TEST}=911],Set,GLOBAL(EMERGENCY)=$[${EMERGENCY} - 1])

The base algorithm is embedded inside the script hello.agi and this gets called only when the
Emergency call handling situation occurs.

The contexts that are set in the emergency will always refer from the macro-dialout trunk
defined in the extensions_additional.conf file in /etc/asterisk folder of the Elastix server.

[macro-dialout-trunk]

exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "CEO"],Set,COST=${Cost})

exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "Manager"],Set,COST=${Cost}-100}

exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "Staff"],Set,COST=${Cost}-200)

exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "Student"],Set,COST=${Cost}-300)

exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "Visitor"],Set,COST=${Cost}-400)

When 911 calls are made from the outside world, priorities are set for the user-groups using the
$Cost variable defined in the AGI script that gets called in from Elastix GUI to check the existing
values and assigns the values from the local variables present in the script to global variables
present in the macro-dial out trunk of the dial plan in Asterisk

When all non-emergency calls are in progress and there is an emergency call from one of the
user groups, it will trigger the Emergency process and an asterisk channel has to be freed
which is kept track by global variable EMERGENCY which indicates congestion in the line and
caller group which has the lowest cost priority gets dropped eventually.

So the work flow from the Elastix GUI is defined as follows:

17

 Fig 3.1.2: Work flow processes in the Emergency Call Handling application

3.2 Design and Development of Web Framework in Elastix:

This section provides a brief overview on methodologies followed in designing the new
emergency call handling framework in Elastix.

3.2.1Installation and Configuration of PHP-Java Bridge:

The previous developer has devised the algorithm in Java using the Asterisk-Java scripting. The
entire module structure of the Elastix is PHP oriented. This necessitated the need to integrate
PHP and Java which are two different powerful programming languages existing in the world
today.

This section explains the installation and configuration work carried out to implement the open
source Java-PHP bridge:

18

[root@elastix ~]# which java

/usr/bin/java

[root@elastix ~]# ll /usr/bin/java

lrwxrwxrwx 1 root root 26 Jan 14 2011 /usr/bin/java -> /usr/java/default/bin/java

[root@elastix ~]# export JAVA_HOME=/usr/java/default/bin/java

If Java is not installed in the Elastix System, it can be installed using following command:

[root@elastix ~]# yum install java

Java can also be installed manually on the Elastix server.

Need to check if Java is currently installed in the system:

[root@elastix ~]# java -version

java version "1.6.0_23"

Java(TM) SE Runtime Environment (build 1.6.0_23-b05)

Java HotSpot(TM) 64-Bit Server VM (build 19.0-b09, mixed mode)

Installation of Open-source PHP Java bridge:

[root@elastix ~]#rpm2cpio php-java-bridge-4.1.8-1.FC5.i386.rpm

[root@elastix ~]#cpio –ivd

[root@elastix ~]#tar xzf php-java-bridge-4.1.8.tar.gz

[root@elastix ~]#cd php-java-bridge-4.1.8

[root@elastix ~]#phpize

(Or)

[root@elastix ~]#rpm2cpio php-java-bridge-4.1.8-1

[root@elastix ~]#./configure –with-java=$JAVA_HOME && make

[root@elastix ~]#./configure –prefix=/usr/src/php-java-bridge-4.1.8 –with-java=$JAVA_HOME

Add the following lines in the /etc/php.ini folder :

;Java Extensions;

extension=java.so

19

[java]

java.java_home="/usr/java/default/bin"

java.java="/usr/java/default/bin/java"

java.class.path="/usr/src/usr/lib/php/modules/JavaBridge.jar"

java.library="/usr/java/jdk1.6.0_23/jre/lib/amd64/server/libjvm.so"

java.library.path="/usr/src/usr/lib/php/modules"

java.log_level=3

Once the PHP-Java bridge is installed, the PHP programs can be created and executed using
Java classes.

3.2.2 Installation of Developer module in Elastix :

The Elastix GUI development depends on the installation of Developer module in Elastix. The
developer module is installed in the following two methods:

1. Via console in the Elastix CentOS server by issuing the following command :
yum install elastix-developer

2. Through Elastix web interface:
Navigate to the Addons menu to search for the Developer module, and select on Install as seen
in the addons list .If the developer module is not present in the install list, it needs to be
downloaded from the Elastix web site or the first method needs to be followed.
The following diagram shows how the developer module appears when it is installed in the
Elastix GUI:

20

 Fig 3.2.2.2: Developer module in Elastix

There are different classifications of the module such as Build Module, Delete module and Load
module etc

The build module is further divided into three parts namely General Information, Location and
Module Description. The General information section mainly consists of mandatory fields with
different access level privileges:

Module name: The name of the module which need not be unique but must be a name which
can be easily identified by the developers/users
Module Id: The name of the module folder, which must always be unique.
Name: Name of the person who is creating the new module.
E-mail: Email address of the developer who is responsible for the module
Group Permission: Access level privileges of the module whether it is accessible by
administrator or operator etc

Module Level: It can select any of the three available levels namely Level-1, Level-2 and Level-
3 etc

When Level-1 Parent is present, we define if the Level-1 parent menu exists in the newly to be
created module. When we select the option “Yes”, a drop-down list with all available Level-1
menus will be displayed. When we select the option”No”, it will be displayed as only Level-1
menu. Similarly, if the module level selected as Level-2, then Level-1 parent name and Level-1
parent id will be displayed. If the module level selected is Level 3, then Level-1/Level-2 name
and both parent id will be displayed.

21

Module Description:

 The module types can be one from the selection menus like Form, Grid or Framed etc. The
individual field name can be selected from the type field consisting of the drop-down list of text,
date, password, radio, checkbox etc
Accordingly depending on the number of fields required for the module based on whether it is
form, grid or framed can be selected based on the requirements of the developer when creating
the new module.
By creating a new module through the Build Module page, the following tasks will be completed:
1. Creation of the module menu where the new module will be placed into. This can be at level-
1 menu and the Level-2 menu depending on the requirements of the developer developing the
module.
2. Design and development of the programming/folder hierarchy, located in the modules folder
within the Elastix framework. The corresponding module folder will have as name the id given
from the Build Module interface, which should be unique and should not be repeated.

A newly created module has the architecture of MVC2 module framework where:

a)configs: Contains the configuration file needed for new module that is being created .
Whenever the database settings need to be implemented, the changes will be defined in this
section
b)help: Contains all the user documentation/help required for the development and modification
of the new and existing modules
c)images: Required for the appearance of the module in Elastix server
d)index.php: This is the main layer module where the script can be suitably modified. This is
the main PHP script for the application which controls the behavior of the newly created elastix
module.It is a script where further development can be carried out to embed additional features
into the elastix web GUI module.
e)lang: Different language transitions based on regional language requirements of the module
can be made in this folder.
f)libs: All libraries related to the module will be defined here. It basically acts as the model layer
of the MVC2 framework.
g)themes: The module layout and the associated functional appearances can be defined in this
module. It acts as the view layer of the MVC2 framework.

The modules will be stored in /var/www/modules folder of the Elastix web server. Further
development of the module is restricted to making changes and doing new development within
the newly created module folder of the Elastix server.

22

 Fig 3.2.2.3: Presence of newly created modules inside the Elastix server

As shown in the above diagram, /var/www/html/modules contain all the modules that make up
the Elastix web server.

3.2.3 Creation of Emergency call handling application:

The following are the steps followed in creating the emergency call handling application:

3.2.3.1 Creation of Emergency priority group:

One of the primary benefits of using the Elastix GUI is to have a greater control over managing
the priorities and the contexts of user groups like CEO, Student, Visitor, Manager etc.

23

 Fig 3.2.3.1: Call priority module in Elastix

The Elastix GUI offers many features with creation of new PBX extensions, assigning the
context priorities with facilities to use feature codes, inbound and outbound routes/call control
with additional options like conference settings, voicemail and system recordings, IVR ring
groups etc.

The Call priority module in Elastix was designed to enable additional features to the users to set
priorities from the Elastix GUI. The Algorithm developed by the previous developer had these
context priorities defined in the form of cost channel variable in the macro-dial trunkouts found in
the dial plans of the extension_additional.conf files in the Elastix server:

[macro-dialout-trunk]

exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "CEO"],Set,COST=600)
exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "Manager"],Set,COST=500)
exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "Staff"],Set,COST=400)
exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "Student"],Set,COST=200)
exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "Visitor"],Set,COST=100)

This resulted in the need for the creation of the separate module for call priority so that the
novice user from the Elastix GUI would be able to set priorities.i.e cost variables whose values
would be accepted and set for global channel cost variable defined in the macro-dialout trunk.

Significant analysis was done on the feasibility of setting the priority in the form of Cost variables
from Elastix GUI. As a result a module was developed that is shown in the above snapshot,
which will accept the cost values for CEO, Manager, Staff, Student, Visitor etc. The call priority

24

module is in the PHP and hence the PHP code had to establish a link with Asterisk AGI scripting
since the algorithm that was developed by the previous developer only works on the basis of
assigning values to COST variables in the macro-dial out trunk.

It was found that on Elastix offers very little flexibility when it comes to dealing with local
variables (AGI variables) and Global variables (specific to Macros-in Dial plans).To gather more
information and perform more analysis on these drawbacks as a result, a separate PHP script
was designed. A external HTML form was created and PHP script was made to run once the
data is submitted to the HTML form. This PHP script had the AGI script being embedded inside
it and was mainly used for checking the assignment and comparison of cost variables. It was
found that in PHP-AGI Scripting, the only way to assign values to the variables is by using the
command:

AGI->set_variable(“variable’’,’’value’’);

So a local variable namely $cost was created inside the PHP script and value was assigned to it
based on what users enter into the HTML form from the Elastix GUI. Accordingly,

AGI->set_variable(“Cost”,”${cost}”) where $cost is the local variable defined in the PHP script.

In the Macro-dialout-trunk ,it was defined as follows:

exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "CEO"],Set,COST=${Cost})

In this way efforts were made to assign the value generated from the local variables into the
Global variables defined in the Macro-dialout trunk. But it was found that the command :

AGI->set_variable(“Cost”,”value”) accepts only the actual values manually entered in the script
and not with the values assigned to the local variables.

This is because AGI Scripting requires its own separate set of commands to operate. Although it
can be embedded inside the PHP script to make it operate, it has its own syntax restrictions and
scripting language limitations.

Hence, the following steps were taken to find a suitable solution:

The context.php script was run as an AGI script in the macro-dialout trunk and the $Cost value
from the PHP script was passed onto the Global variable ‘COST’ in the macro-dialout trunk.

[macro-dialout-trunk]
include => macro-dialout-trunk-custom
exten => s,1,Set(DIAL_TRUNK=${ARG1})
exten => s,n(agi),Agi(/var/www/html/context.php)
exten => s,n,NoOp(Returned new priority:${PRIORITY})
exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "CEO"] ,Set,COST=${Cost})
exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "Manager"],Set,COST=$[${Cost}-100])
exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "Staff"],Set,COST=$[${Cost}-200])
exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "Student"],Set,COST=$[${Cost}-300])
exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "Visitor"],Set,COST=$[${Cost}-400])

25

One of the user groups have been assigned a fixed value in the AGI Script and based on the
value that is being passed out to the macro-dialout-trunk,the cost factor of all other groups will
get assigned before Emergency application runs when users dial 911 in a busy congested PBX
environment with all other non-911 calls being in progress.

The CEO is having the highest cost priority and based on the normal cost priority hierarchy, the
cost priorities of all other user groups are defined in the macro-dialout trunk.

The following results are seen in the Asterisk GUI :

Executing [21930@CEO:5] Macro("SIP/300-00000046", "dialout-trunk,1,21930,,") in new stack
 -- Executing [s@macro-dialout-trunk:1] Set("SIP/300-00000046", "DIAL_TRUNK=1") in new
stack
 -- Executing [s@macro-dialout-trunk:2] AGI("SIP/300-00000046",
"/var/www/html/context.php") in new stack
 -- Launched AGI Script /var/www/html/context.php
 -- <SIP/300-00000046>AGI Script /var/www/html/context.php completed, returning 0
 -- Executing [s@macro-dialout-trunk:3] NoOp("SIP/300-00000046", "Returned new priority:3")
in new stack
 -- Executing [s@macro-dialout-trunk:4] ExecIf("SIP/300-00000046", "1,Set,COST=700") in
new stack
 -- Executing [s@macro-dialout-trunk:5] ExecIf("SIP/300-00000046", "0,Set,COST=600") in
new stack
 -- Executing [s@macro-dialout-trunk:6] ExecIf("SIP/300-00000046", "0,Set,COST=500") in
new stack
 -- Executing [s@macro-dialout-trunk:7] ExecIf("SIP/300-00000046", "0,Set,COST=400") in
new stack
 -- Executing [s@macro-dialout-trunk:8] ExecIf("SIP/300-00000046", "0,Set,COST=300") in
new stack
 -- Executing [s@macro-dialout-trunk:9] GosubIf("SIP/300-00000046", "0?sub-pincheck,s,1")
in new stack
 -- Executing [s@macro-dialout-trunk:10] GotoIf("SIP/300-00000046", "0?disabletrunk,1") in
new stack
 -- Executing [s@macro-dialout-trunk:11] Set("SIP/300-00000046", "DIAL_NUMBER=21930")
in new stack
 -- Executing [s@macro-dialout-trunk:12] Set("SIP/300-00000046",
"DIAL_TRUNK_OPTIONS=tr") in new stack
 -- Executing [s@macro-dialout-trunk:13] Set("SIP/300-00000046",
"OUTBOUND_GROUP=OUT_1") in new stack
 -- Executing [s@macro-dialout-trunk:14] GotoIf("SIP/300-00000046", "1?nomax") in new
stack

In this way, the different user-groups will get assigned their cost priority values in the macro-
dialout-trunk before the Emergency call handling algorithm comes into force in the Emergency
call handling scenario.

This impending issue needs to be addressed with sufficient PHP and Asterisk(AGI) expertise
and is considered in the future scope of work in the Emergency call handling application.

26

The mapping of assigning the cost values to newly created extensions and updating it in the
call priority module is recommended as future work and it is described in detail in the Future
scope section of the document.

3.2.3.2 Designing the AGI script (Making the AGI Scripts to consistently run in the
background):

The main algorithm is developed in the Java programming language. The code resides in the
/etc/asterisk folder of the Elastix server.The AGI Script invokes the Java program when there is
Emergency.ie [Emergency] defined in the extensions.conf file and the Emergency Dial plan gets
into act .In that scenario, proper matching of AGI script and the java program is achieved with
the help of fastagi mapping properties file. For the AGI Script to consistently run,
DefaultAgiServer needs to be started and must be continuously running as a cron job in the
background. It is achieved using the following command :

[root@elastix asterisk]## java -cp asterisk-java-1.0.0.M3.jar:.
org.asteriskjava.fastagi.DefaultAGIServer

Dec16,2011 5:33:27 PM org.asteriskjava.fastagi.DefaultAgiServer startup

INFO:Listening on *:4573.

This command should be made to run in the background after the Emergency call module is
installed in the Elastix server. This triggers the defaultAGIServer to get started and maps the
classpath of Asterisk-Java jar file. When the Emergency situation occurs and user groups dial
in, then the AGI server which is running in the background accepts the incoming connections
and emergency dialplan takes care of the AGI script that executes by calling the java program
(algorithm) and the AGI script hangs up the call in the channel having the lowest cost factor.

java -cp asterisk-java-1.0.0.M3.jar:. org.asteriskjava.fastagi.DefaultAGIServer &

[root@elastix asterisk]# java -cp asterisk-java-1.0.0.M3.jar:.
org.asteriskjava.fastagi.DefaultAgiServer

17-Dec-2011 5:19:12 PM org.asteriskjava.fastagi.DefaultAgiServer startup

INFO: Listening on *:4573.

17-Dec-2011 5:20:28 PM org.asteriskjava.fastagi.DefaultAgiServer startup

INFO: Received connection from /127.0.0.1

17-Dec-2011 5:20:28 PM org.asteriskjava.fastagi.AbstractAgiServer getPool

INFO: Thread pool started.

27

The DefaultAGIServer is made to run in the background as a cron job and depending on user
requirements and suitability they can be restarted on a daily, weekly or monthly basis. This will
make sure the Emergency call handling application is continuously running in the background.

3.2.3.3 Creation of Emergency Call Handling Asterisk:

The Emergency call handling application consists of Emergency call handling shell in which the
novice user from the Elastix GUI can enter and run the Asterisk commands from the GUI itself.
The user can enter all valid commands related to the Asterisk operation. The valid Asterisk
command list is found in the help section of the Emergency Call Handling Asterisk module of the
application.

Below is the snapshot of the Command interpreter when the application is running and there are
4 user groups dialing the emergency number 911 :

 Fig 3.2.3.3 : Elastix Asterisk Emergency call handling command Interpreter module

28

 Fig 3.2.3.4: Demonstration of existing registered applications in Asterisk

The Elastix call handling command interpreter offers unmatched ability for a user to perform any
of the tasks related to the application. Below are some of the simple tasks that the user may be
able to perform when he encounters some issues while working with the application :

a) Restart the Asterisk server when required
b) Perform any database operations of the Asterisk database
c) Operate Dialplans from the GUI and can add and remove the extensions with the help of

the dialplan commands
d) Enable Gtalk/Skype or Jabber debugging when there are issues of integration of instant

messengers with Elastix
e) Perform DUNDi debugging and get a complete overview on the functionality of the

Asterisk through Elastix GUI.

The important benefits of using the Command Interpreter for the Emergency call handling
application is given below:

1) When the emergency call handling is in process, it can be used to check whether the
application is running successfully and whether all the lines when dialing 911 are busy.

2) It can be used to check the important processes running in the application and also
whether the application is running successfully in the background by checking PHP and
java related scripts and other processes.

29

3) It is used to run AGI commands in the Asterisk thereby checking whether the AGI Scripts

are also running successfully or not.

4) An important usage is the dialplan reload command that can be used in the command
interpreter. Most of the times , changes related to Emergency call handling application
are done in the dialplan in extensions.conf,globals_custom.conf and
extensions_additional.conf files.Dialplan reload command helps to reload the dialplan
whenever the changes are made to the application. This saves time and prevents the
user to contact administrators to run those commands and to restart the asterisk server
everytime when they encounter an issue with the application.

5) Manually perform the operation of requesting a hang up when desired by the user for
any debugging purposes.

The brief description of how these tasks are accomplished is explained in the testing scenarios
section of the current document:

3.2.4 Help Section of the modules in the Elastix GUI :

One of the important features of the Elastix GUI is the user support in the form of
documentation. Each module consists of help section which describe all the information
necessary to operate the individual module or the entire emergency call handling application.

When we consider the Emergency Call handling asterisk module, the help section provides user
the important information on the list of commands that can be used to check the application and
even the functionality of the Asterisk server.

30

Fig 3.2.4 :Emergency call handling Asterisk Commands in the help section of the module

The user documentation is prepared in the
/var/www/html/modules/Emergency_call_handling_tool/help folder of the Elastix server in the
form of HTML (hlp) files.

31

4. Implementation Process and Testing:

This section describes the implementation process and the sequence of Events that will happen
when the Emergency call process is in place.

The Emergency call handling application script runs only when the Emergency call process
situation occurs.ie. when there is the need to release a channel with low cost priority. In order
for the script to run in the background, the DefaultAGI server must always be started and
sequence of Asterisk events when the Asterisk calls are made must be running in sync with
existing Java and PHP /Asterisk set up. The following section demonstrates how the script
continuously runs in the background:

In the /etc/asterisk/ folder of the Elastix server, the DefaultAGI server must be started using the
following command :

java -cp asterisk-java-1.0.0.M3.jar:. org.asteriskjava.fastagi.DefaultAGIServer

A Shell script new.sh is developed and resides inside the /etc/asterisk folder and it contains the
above command and whenever the shell script gets executed the DefaultAGIServer gets
started.

 Fig 4.1:Shell script starting the DefaultAgiServer

A crontab entry is made in the CentOS server of the Elastix to run this process once in a day.It
can be seen using the command :

32

 Fig 4.1.1:Crontab entry seen in the CentOS server

The above snapshot shows an entry of crontab that runs daily once at 2-30 am.This will start the
DefaultAGIServer and users can implement the emergency call handling process at any point of
time in the Elastix GUI.This crontab entry can be suitably modified to run multiple number of
times depending on the requirement and usage of the Emergency call handling application.

So ,when the users use the Elastix GUI and encounter an Emergency call process situation the
main application script checks to find whether the DefaultAGI server is started and whether it is
listening/receiving the incoming connections form the Asterisk Dialplan.The AGI application
script then successfully runs calling the main application script which is in java and handles the
Emergency call process by allowing a user group to dial 911 by releasing the call of a user
group with lowest cost priority. This is explained below in the testing section of the Emergency
call handling application.

33

Internet PSTN

Switch

Yate VOIP
Client(Extension 300-

CEO)

Yate VOIP
Client(Extension 400-

Manager)

Elastix
Asterisk PBX

Yate VOIP
Client(Extension

500-Staff)

Yate VOIP
Client(Extension

600-Student)

Yate VOIP
Client(Extension 700-

Visitor

4 lines

Elastix
Web

server
GUI

 Fig 4.1.2 : Testing setup for running the Emergency Call Handling application

4.1 Implementation of Testing Environment and Setup:

Five SIP accounts were registered in the form of YATE VoIP –soft phones and it was also
registered in the Asterisk Server:

34

 Fig 4.1.3: Registered SIP clients (usergroups) with Extension numbers

The following important files were loaded in the /etc/asterisk folder of elastix server:

 Fig 4.1.4 : Important files present inside the Elastix Asterisk server

The file HelloEvents.java is the main algorithm that is present inside the /etc/asterisk folder of
the elastix server and it gets called by the AGI Script Hello.agi.

In the Emergency Call handling situation it gets the call from the Asterisk in the form of the
Argument agi://localhost/hello.agi that is defined in the dialplan [emergency] in the
extensions.conf file.

35

 Fig 4.1.5 : Extensions.conf file in the Elastix Asterisk server

The macro dialout trunk is defined in the extensions_additional.conf file present in the Asterisk
server:

 Fig 4.1.6:Extensions_additional.conf file in the Elastix Asterisk server

4.2 Execution of Test scenarios:

The Emergency call handling application is tested in the following manner :

The PHP script context.php has the fixed cost “700” being assigned to the CEO user group
(Extension:300) when it gets executed successfully in the macro-dialout trunk. The cost
assignment of other groups can be seen in the macro-dialout trunk:

36

Fig 4.2.1 : Assignment of Cost for the CEO user group after execution of cost AGI inside
context.php file

The above execution shows that a call from CEO user group was made and the cost value
“700” was assigned from the PHP script context.php. Based on the cost value of CEO group
and on the pattern in the macro-dialout trunk, the Cost values of all other groups were also
assigned.

Now in order to showcase the working functionality of Emergency call handling application,
Emergency 911 calls were made using Yate VoIP user client from the four user groups namely
CEO, Manager, Staff, Student and the following snapshot shows that it accepted all four
emergency calls and did not disconnect any of the emergency calls or did not respond to other
911 calls as busy when any one of the Emergency 911 call was in progress:

Fig 4.2.2: All lines dialing 911 and line circuits are busy with congestion

Now when the fifth 911 call was made an IVR response was initiated and only the cost
assignment script got executed and no 911 call was disconnected from the elastix GUI. This
indicates that the utmost preference is given to 911 emergency calls in the emergency call
handling application and no 911 call will be disconnected under any circumstances. This was
congestion as current setup supports only four concurrent 911 emergency calls at a time.

37

Fig 4.2.3: Emergency call handling asterisk demonstrating the four emergency calls active in
progress

This was confirmed in the Elastix server as shown in the above diagram.The user groups
CEO(300),Manager(400),Staff(500),Student(600) were in progress and IVR response was
initiated for the fifth 911 caller.

Fig 4.2.4: Asterisk CLI demonstrating the process when all 911 emergency calls in progress

38

As we can see in the above diagram when visitor with extension 700 decided to call since all
911 calls were busy, an IVR response indicating that the line was busy with emergency calls
and hence could not disconnect any call –response was initiated.

Here is a case where the successful execution of the emergency call handling application is
demonstrated:

The user groups namely Visitor(Extension number:700),Student(Extension
number:600),Manager(Extension number:400) and CEO(Extension number:300) are all dialing
non-911 extension numbers and all the lines are busy as shown in the below diagram:

Fig 4.2.5: All lines dialing non-911 lines and are accepted

So according to the Cost assignment script(context.php)which runs in the macro-dialout trunk
the cost values with user groups: CEO has a cost of “700”,Manager has a cost of “600”,Staff
has a cost of “500”,Student has a cost of “400”, Visitor has a cost of “300”.

The user groups namely CEO, Manager, Student and Visitor are busy dialing non-911 lines as
shown in the below diagram:

39

Fig 4.2.6: Elastix GUI demonstrating that all four available channels are busy with non-911 lines

Now, Staff has to dial 911 for emergency in the current scenario but all the lines are busy and
there is congestion in the network.

So when the staff dials 911 during this busy period, the DefaultAGIserver that runs in the
background maps on to the Emergency Call handling script.The script finds that among all the
busy channels the one which is having the lowest cost is Visitor(Extension :700) and its cost is
“300”.Hence it will release the channel having the lowest cost that is Visitor. This process is
shown in below :

40

Fig 4.2.7: The Visitor call having the lowest cost priority is being freed for 911 call dialed by the
user group “Staff” in the busy congested network

So the channel having the lowest cost is released and application script successfully runs and it
is seen in the Emergency call handling asterisk as shown below:

Fig 4.2.8: The Staff user group with Extension “500” is facilitated to attend emergency call after
releasing the Visitor call(Extension:700) (which was dialing non-911and call was in progress)

The below diagram also demonstrates successful release of the channel with the lowest cost
variable in the Elastix server:

41

Fig 4.2.9: VoIP yate client demonstrating that the Visitor call was disconnected

The Emergency call module application works with current four lines being set up and is being
tested from the Elastix GUI.

The $DIALSTATUS global variable is currently returns Congestion message if the application
has more number of channels or lines available in their set up(>=5).This Elastix GUI was
developed based on the number of trunks the application was supporting initially and based on
number of lines selected by the previous developer in the first phase of the project. Changes to
this requires minor customization in expanding the solution to more number of trunks in the
macro-dialout trunk.

The following steps would guide us to expand the current scope to cater it to a wider channel
base when the application is deployed by the organizations in the future:

1) The Macro-dialout trunk needs to be modified/changed to enable the $DIALSTATUS
variable to change its state to congestion based on the limit fixed(Number of available
channels) depending on the number of lines the organization would like to support in
their setup.

2) The [emergency] in the extensions.conf needs to be changed to a value that
corresponds with the available number of free channels to be used in the application

3) The Emergency call handling script in java needs to be modified suitably so that it
executes the action on the events in the Asterisk accordingly depending on number of
channels concurrently supported in it.

4) The Elastix GUI needs to upgraded with minor web developments when the number of
channels are increased and Elastix can be deployed across a wider range of users and
user groups.

42

4.3 Plug and Play Module implementation of the Emergency Call Handling
Application:

The following section explains the process by which the Emergency call handling application
can be implemented as plug and play module in a new elastix setup:

The Elastix Emergency call handling application consists of following modules in the asterisk
server :

a) Call priority module
b) Emergency call handling
c) Emergency call handling Asterisk tool

These modules are found in the /var/www/html folder of the Elastix server. The below section
explains the process to implement the Emergency call handling application in a new Elastix
server:

a) The Developer module needs to be installed in the Elastix web server.

b) The Emergency call handing application module will be loaded in the load module section of
the Developer module.

Fig 4.3.1:Loading the plug & play elastix call handling application module

The module will be loaded in the form of module.tar.gz. Each of the developed modules will be
extracted in the form of module_name.tar.gz format.

c) Once the modules are installed ,the elastix server needs to ensure updated version of Java
is present in the server. Also to ensure Java compiler support is obtained in the centos of the
Elastix server

d) Latest stable version of Asterisk-Java 1.0.0.M3 needs to be installed in the Elastix Asterisk
server

e)Open-Source PHP-Java bridge needs to be installed in the server. This is optional and is
required to be installed only if the developers anticipate the need to require support for Java
classes in their PHP code

43

f)The starting of DefaultAGI server which is the important task that ensures successful running
of the Java-Asterisk AGI Algorithm should be started in the background as cron job in the form
of a simple shell script that is included in the Emergency call handling application.

g)SIP Clients(softphones) needs to be installed and the accounts of the user groups like
CEO,Student,Manager,Visitor etc needs to be created in the SIP VoIP client software

h) The extension.conf in /etc/asterisk/ folder of Elastix server needs to be updated with the
following dial-plan :
[emergency]
exten => s,1,ExecIf($[${EMERGENCY}>=4],Congestion)
exten => s,n,Set(GLOBAL(EMERGENCY)=$[${EMERGENCY} + 1])
exten => s,n,Set(TEST=950)
exten => s,n(dial),Dial(${EMERGENCY_TRUNK}/${EMERGENCY_NUM})
exten => s,n,GotoIf($["${DIALSTATUS}"="CONGESTION"]?agi)
exten => s,n,Wait(12)
exten => s,n(agi),Agi(agi://localhost/hello.agi)
exten => s,n,Goto(dial)
exten => h,1,ExecIf($[${TEST}=950],Set,GLOBAL(EMERGENCY)=$[${EMERGENCY} - 1])

(Here $TEST is a cost variable used only for testing purposes)

[CEO]
include => from-internal
exten => 911,1,Goto(emergency,s,1)

[Manager]
include => from-internal
exten => 911,1,Goto(emergency,s,1)

[Student]
include => from-internal
exten => 911,1,Goto(emergency,s,1)

[Staff]
include => from-internal
exten => 911,1,Goto(emergency,s,1)

[Visitor]
include => from-internal
exten => 911,1,Goto(emergency,s,1)

The globals_custom.conf needs to be updated with the following information:

EMERGENCY_TRUNK=DAHDI/g0
EMERGENCY_NUM=911(MINT Lab Extension number 21930 is used as Emergency number
for testing purposes)
EMERGENCY=0

The macro-dialout trunk needs to include the following information after the line
exten => s,1,Set(DIAL_TRUNK=${ARG1}) in the extensions_additional.conf file :

44

exten => s,n(agi),Agi(/var/www/html/context.php)
exten => s,n,NoOp(Returned new priority:${PRIORITY})
exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "CEO"],Set,COST=${Cost})
exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "Manager"],Set,COST=$[${Cost}-100])
exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "Staff"],Set,COST=$[${Cost}-200])
exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "Student"],Set,COST=$[${Cost}-300])
exten => s,n,ExecIf($["${MACRO_CONTEXT}" = "Visitor"],Set,COST=$[${Cost}-400])

i)The Asterisk should contain all the required Java and PHP files .The application code is in the
form of Hello.agi script which in turn calls the script HelloEvents.java .The following files need to
be downloaded into the Asterisk server:
a)HelloEvents.java
 b)HelloLive.java

A properties file fastagi-mapping that will map the AGI script and the Java code using the line
hello.agi=HelloEvents needs to be included in the /etc/asterisk folder of the asterisk server

j)The shell script new.sh needs to be made an entry into the crontab for the application to have
its DefaultAGIServer to get started.This shell script contains the commands to set java
classpath to map the DefaultAGIServer to accept the incoming connections of the Asterisk
events when Emergency call process is in place.

k)Certain PHP files which provide PHP-Agi support which is described below needs to be
included in the asterisk server:
 a) phpagi-asmanager.php
 b) phpagi.php

The file context.html and context.php which was designed with a view to set up context priorities
(cost) from the Elastix GUI will be included as part of the Emergency Call handling application
module and gets loaded with the module.

l)In the PBX section of the Elastix GUI,the new extensions of user groups like
CEO,Visitor,Student,Manager,Staff etc needs to be created in the PBX configuration module
found in the Elastix GUI and same login credentials should be used when configuring the VOIP
SIP clients

m)Any future development of the modules can only be carried out after installing the Developer
module for the Emergency call handling application.

45

5. Conclusion:

The successful results of different scenarios in testing the Emergency call handling application
indicate that the user will have the complete flexibility in operating the application from the
Elastix GUI with full control. This also eliminates the need for the user/administrator to perform
complex tasks by logging into Asterisk CLI and making changes ,running different commands,
tasks like starting and stopping/restarting the server when required etc. This also demonstrates
the powerful integration of PHP with both Asterisk-Java framework and Asterisk-PHP scripting.
Asterisk uncovers the full flexibility that it offers to design the application by writing external
scripts in PHP and integrating it in the PHP-Java combined environment. The Java and PHP are
two extremely powerful programming languages whose object oriented features are best utilized
when designing and developing the emergency call handling application. Additionally, the
presence of open source streaming XML based network protocol Java-PHP bridge also offers
much needed support in PHP-Java integration.

The Elastix GUI server has been efficiently designed in PHP and customization of the Elastix
server requires not only good programming knowledge of Java and PHP but also the need to
understand the complexity involved in Asterisk (AGI) Scripting with Asterisk-Java and Asterisk-
PHP integration.

This design offers scalability in terms of adding more modules to the Emergency call handling
application as and when required by installing the required developer module. Concurrent dial-
outs can be increased and application can be further customized based on the needs of the
organizations.

One important feature of this design is to integrate the java work within the Elastix web GUI that
enables the implementation of connecting PHP (front end) with a Java virtual machine(in the
backend) and combining it with Asterisk AGI Scripting.In this way, the main algorithm which is
the Java code will run in the backend and is more secure when compared to PHP.

From a developer’s perspective, this Elastix web server architecture offers enormous amount of
challenges in terms of extending the existing design and creating new plug and play modules
that successfully integrate into any Elastix server when installed and implemented in it. It
provides an opportunity to gain exteremely good amount of knowledge in the areas of Asterisk
AGI scripting and its integration with PHP and Java framework and leads to a situation where
the developers can seamlessly works towards writing different complex scripts and comeout
with more enhanced applications in Elastix that can benefit all the users in the VoIP Telephony
industry and also the organizations that rely and understand the importance of Elastix in their
office setup.

46

6. Future Scope of Work:

One of the challenges encountered while developing the Emergency call handling application is
embedding of Asterisk AGI scripting inside the PHP scripts. When setting the priority for groups
from the Elastix GUI ,the Elastix variable offers very little flexibility to change when the cost AGI
script runs .The Elastix variable takes values that are defined in the Macro-dial trunkouts. It
poses some architectural and AGI scripting limitations when accepting the values coming in
from the other local channel variables. Hence they are currently tested and executed with
manually fixed assigned values in the script.

This is an interesting area in Asterisk where the developers in future can perform some more
analysis and research and bring in their expertise to overcome the very little limitations that
Elastix is currently exhibiting so that Elastix architecture can be made even more powerful with
seamless integration of different applications that are developed using wide range of
programming and scripting languages like Java, PHP, Perl ,Python etc

Another area is the integration of Elastix PBX configurations with the Emergency call handling
applications. At present, Elastix does not offer the flexibility of interconnecting and interrelating
different modules across different distributed platforms within the same server. The Developer
module only facilitates the development of new modules or addition/deletion of the new and
existing modules as separate independent entities into the Elastix web GUI. The interoperability
between modules is one such area in Elastix where there is enormous amount of research that
needs to be done thereby making Elastix the extremely powerful open source VoIP
communications server .

Concurrent dialouts can be increased and application can be customized to cater to a wider
range of Asterisk channels. Elastix , being open source offers full support to wide range of
customizations and hence scalability of the architecture is well supported and can benefit the
organizations in the long run.

47

 BIBLIOGRAPHY

1)Elastix-Basic Fault Finding and Techniques.pdf by Bob Fryer, Blue Packets(ACT Australia)

2)http://circuitid.net/forum/viewtopic.php?t=8&p=208

3)http://www.elastix.org/en/developers/elastix-hello-world.html

4)http://ergonomics.about.com/od/computingergonomics/qt/GUI_benefits.htm

5)http://answers.yahoo.com/question/index?qid=20081013083327AAaEy54

6)http://www.teach-ict.com/gcse/software/userinterface/miniweb/pg6.htm

7)http://www.esds.co.in/forum/f11/how-install-php-java-bridge-3570/

8)http://www.elastix.org/en/component/kunena/117-asterisk-a-programming/38062-a-very-
simple-phpagi-example.html

9) http://www.voicetrunking.com/sip-trunk/elastix/

10) http://www.asteriskguru.com/tutorials/cli_cmd_14.html

11) http://examples.oreilly.com/9780596009625/openbook/ch09.pdf (AGI-Asterisk.pdf)

12) a)http://php-java-bridge.sourceforge.net/pjb/

 b)http://sourceforge.net/projects/php-java-bridge/

13)Emergency call handling in Open Source PBX by Kirupakaran Pirasath, Edmonton, Alberta

