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Abstract

This thesis focuses 011 issues arising from repeated measurement designs for 

clinical trials. We construct repeated measurement designs under general 

models compared to those constructed in previous studies. We also study the 

influence of baseline measurements on repeated measurement designs, and 

propose two new design strategies to construct response-adaptive repeated 

measurement designs.

We study the optimal design problem under both the traditional and 

a more general model (self and mixed carryover effects model). We also 

explore the baseline measurement effect on constructing optimal designs, and 

give recommendations on constructing two-treatment p-period (p =  2,3,4) 

repeated measurement designs.

For dichotomous responses, a new response-adaptive allocation rule, called 

the stratified and randomized play-the-winner rule (SRPWR), is developed. 

SRPWR is a modification of the play-the-winner rule (PWR) that skews the 

allocation pattern in favor of a better treatment. SRPWR is applicable to 

clinical trials with more than two treatments. In addition, SRPWR allows 

for treatment comparisons among homogenous patients by stratifying them 

based on possible confounders (age, sex, disease status, etc.).

One of the main contributions of this thesis is to extend the single

objective designs to multiple-objective designs. We develop a new adaptive 

allocation rule, that can provide good estimates of the parameters of interest, 

and assign more patients to a better treatment. The basic idea is to modify 

the allocation rule based on the observed data from previous patients. We 

assume that patients enter the study sequentially, as is typically the case in 

clinical trials. The first m  patients are assigned using the optimal design
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suggested in the literature, or a completely randomized design. Then the 

information matrix can be calculated based on the observed data. We intro

duce the concept of an evaluation function to evaluate the performance of 

each treatm ent sequence. Among all possible treatment sequences, we choose 

the one that maximizes the allocation criteria. The criteria have two compo

nents: the first, component determines a treatment sequence that maximizes 

the information matrix; the second determines a treatment sequence that 

gives the best performance based on the observed data. The new strategy is 

demonstrated by simulations using dichotomous and continuous responses.
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Chapter 1 

Introduction

1.1 Background

This PhD dissertation research focuses on issues that arise in the use of re

peated measurement designs for clinical trials. An optimal design for any 

given situation is strongly model dependent. Many researchers have con

structed optimal designs based on certain models. For example, Bate and 

Jones (2003) considered a particular subset of crossover designs tha t are uni

form. They proved that under the traditional model, and the assumption 

of independence of the error terms (Hedayat and Afsarinejad, 1978), a uni

form strongly balanced design (Cheng and Wu, 1980) is universally optimal 

(Kiefer, 1975) for estimating the treatment and carryover effects.

However, since responses are measured on the same subject over several 

periods, the independence assumption of the error terms is often violated, 

and unreliable estimates of the regression parameters will be obtained. Be

cause the error terms are correlated, the standard errors of the regression 

coefficients will be smaller than they should be. Hence, the statistical tests 

of these parameters will be misleading, and they will suggest tha t the esti

mates of the parameters are more precise than they really are. Matthews 

(1987) discussed this problem and proposed a method of generating opti

mal repeated measurement designs for the comparison of two treatments in 

the presence of carryover effects and autocorrelated errors. To deal with 

the problem of specifying an efficient design when little is known about the 

covariance matrix of responses, researchers have also used adaptive designs

1
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to establish appropriate rules for assigning subjects to treatment sequences 

(Silvey, 1980, p. 61).

The main objective of most clinical designs is to compare the effectiveness 

of treatments efficiently. In these trials, we not only wish to improve the 

precision of treatment effect contrasts, but also to treat each patient in the 

best way possible. In addition, it may not be ethical to prolong a trial 

longer than necessary, because it may happen that an excessive number of 

patients might receive poor treatments. Those subjects who receive poor 

treatments might drop out before the experiment is complete, which results 

in a serious problem in statistical analysis: missing/incomplete data. Many 

researchers have constructed optimal designs focusing on achieving one of 

the above goals. However, research on adaptive designs for longitudinal and 

repeated responses has not received much attention. Pocock (1979) stated 

tha t any procedure must be simple, fast, objective and foolproof to be useful 

in practice. In this thesis, we have developed new appropriate response- 

adaptive rules that optimize these goals and are easily accessible to users.

W ith response-adaptive designs (RAD), we modify the trial on the basis 

of outcomes/responses in the previous observations in order to achieve a 

specific goal (Kushner 2003). Rosenberger and Lachin (1993) give a nice 

review of various types of RADs. The classical sequential trial is an RAD 

in which the decision to terminate the accession of new subjects is based on 

minimizing the expected sample size (Armitage, 1975). In play-the-winner 

designs, the goal is to minimize the number of subjects receiving an inferior 

treatment. This strategy is supported largely on ethical grounds (Zelen, 

1969; Simon, 1977; Wei and Durham, 1978; Pocock, 1979 and Bartlett et 

al., 1985). Alternatively, the designs using the randomized play-the-winner 

rule (Wei and Durham, 1978) have been adopted in major clinical trials. 

Covariate-adaptive allocation is a sequential stratification rule used to achieve 

balance in the study (Pocock and Simon, 1975). In a simple case, if, at some 

point, treatment A is being given to more old patients than treatment B, the 

remaining old patients can be given treatment B  until “ balance” is achieved. 

It is clear that both covariate-adaptive designs and response-adaptive designs

2
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require access to the history of the trial.

On the other hand, adaptive designs may have a primary goal of improv

ing the precision of estimators of unknown parameters. Schwabe (1987) has 

studied the problem of estimating regression coefficients in an experimental 

situation, in which a fixed (classical or deterministic) optimal design can be 

specified. He showed that the adaptive designs are superior with respect to 

the A-optimality criterion to any fixed design. Kushner (2003) considered 

multivariate responses, for which a fixed, optimal crossover design is not 

available due to an unknown covariance matrix. He proposed adaptive rules 

for symmetric designs that specify how to assign future subjects to sequences 

on the basis of updated estimates of the covariance matrix. This method re

laxes the assumption of a known error structure and can be generalized to 

other designs. Huang (2001) extended it to situations when within-subject 

covariance matrices are unknown and heterogeneous. However, all of these 

investigations focused on continuous responses and emphasized increasing 

the precision of treatment comparisons rather than assigning more patients 

to better treatments using the traditional model.

In this thesis, we improve the current design construction strategies in 

three directions:

1. by developing the strategy for both continuous and discrete responses;

2. by increasing both the estimation precision and the proportion of pa

tients assigned to a better treatment, to construct multiple-objective 

designs;

3. by using a more general model considering two types of carryover ef

fects and random subject effects, where the direct treatment effect will 

manifest itself no m atter where and when the treatment is applied.

1.2 Thesis Overview

In chapter 2, we review response-adaptive design rules that have been con

sidered to date.

3
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In Chapter 3, we first discuss the types of carryover effects and introduce 

models for repeated measurement designs. We then apply the Lagrange 

multiplier method to solve the optimal design problem under the traditional 

model and the self and mixed carryover effects model. We also study the 

influence of baseline measurements on constructing optimal designs for two- 

treatm ent p-period (p — 2,3,4) repeated measurement designs, under the 

traditional model and the self and mixed carryover effects model, respectively. 

Overall conclusions and recommendations are given.

In Chapter 4, we develop a new allocation rule for treatment assignments 

in stratified and randomized sequential clinical trials. The new rule is a mod

ified scheme in the spirit of the play-the-winner rule that skews the allocation 

pattern in favor of superior treatments. The results of the simulation studies 

are also discussed.

In chapter 5, we propose a new multiple-objective response-adaptive de

sign strategy for constructing repeated measurement designs. This new 

design construction method improves the current response-adaptive design 

strategy, which has only used a single objective criterion. In addition, it is 

applicable to both dichotomous responses and continuous responses.

In chapter 6, we implement the adaptive allocation rule proposed in Chap

ter 5 for repeated measurement designs with dichotomous responses. We 

provide detailed allocation rules for constructing adaptive two-treatment p- 

period repeated measurement designs. The allocation results and efficiency 

of designs based on the simulation studies are also presented.

In chapter 7, we use the adaptive allocation rule proposed in Chapter 

5 for trials with continuous responses. Under the self and mixed carry

over effects model, we construct adaptive two-treatment two-period repeated 

measurement designs first, and then extend it to two-treatment three-period 

repeated measurement designs. In simulation studies, we compare the de

signs constructed under the new proposed allocation rule with fixed optimal 

designs available in the literature. We also discuss the challenges and diffi

culties in generalizing the implementations of the adaptive allocation rule to 

construct multi-treatment multi-period repeated measurement designs.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Finally, Chapter 8 summarizes the main contributions of this thesis to the 

literature. We also discuss possible future research to expand and improve 

the design strategies proposed in this thesis.

5
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Chapter 2 

R eview  of A llocation Rules for 
R esponse-A daptive Designs

In this chapter, we review the basic principles concerning the design of clinical 

trials and the sample size in an attem pt to maximize the information gained 

and to optimize the treatment benefit. We classify the existing adaptive 

allocation rules into three categories.

2.1 M inim izing the Sam ple Size

In sequential trials, data are analyzed as they become available, and the total 

number of subjects to enter the trial is not predetermined. These decisions 

depend on the results to be accumulated in an effort to avoid unnecessary 

use of inferior treatments. The trials often come to an early termination if 

an important difference can be established (Armitage, 1975).

Cook (1995, 1996) provided interim analyses for continuous responses in 

2 x 2  crossover trials with serial patient entry. The goal is to allow early 

termination, minimize the cost and shorten the duration of the trials. Cook 

(1995) studied the properties of a two-stage crossover design in which patients 

are entered simultaneously and a single interim analysis is planned at the end 

of the first period. Alternately, Cook (1996) considered the case of a single 

interim analysis taking place after m patients have been observed on both 

treatments for similar trials.

Let yijk denote the response from patient j  randomized to sequence k
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during period i, j  = 1 ,2 , . . . ,  ra, i =  1,2, and k = 1(AB) and 2(BA).  Let 

N  denote the total number of analyses, with n  indexing the analysis stage. 

Since patients enter the study sequentially, at analysis stage n some patients 

may be randomized to group k, but are observed for a single period, while 

some are observed for both periods. Let Sfc„ and T fcn represent the set of 

individuals observed for one and two periods respectively, in sequence group 

k a t analysis stage n, with Sn =  Si„ U S2n and T n =  Ti„ U T 2„.

Individuals in Sn contribute information on the effects of treatments A 

and B, in the same way as if they were in a complete randomized trial. Based 

on these individuals, Cook(1995) considered a discrepancy measure,

D in  =  E ^ S a n i W H S a J  — ^ g S in V y i/I I S in l l

for testing

H0 : t  — 0 vs Ha : r  /  0

where r  =  72 — T\ is the difference in the efficacy of the two treatments and 

||Sfcn|| denotes the number of subjects in Sfc„.

Similarly, at stage n, individuals in T n provide responses for both treat

ments and hence generate paired data tha t can be analyzed in the standard 

fashion for 2 x 2  crossover trials. Let D2n represent the usual discrepancy 

measure based on individuals in T n given by

D2n = {£j<ETln(y2jl -  y ijl)/||T ln || -  S jeT2„(2/2j2 -  yij2) / | |T 2n||}/2.

In order to make maximal use of the data provided by individuals in both 

Sn and T n, Cook (1995) considered a linear summary discrepancy measure 

consisting of a weighted combination of Din and D2n,

Dn = UJinDin +  U!2nD2n.

If T n or S„ are null sets, then one would naturally choose weights given by 

(u>im uj2„) = (0,1) and (1,0), respectively. In general, however, the weighting 

of these components is obtained by taking coefficients consisting of the in

verse of the corresponding variances. Regardless of the particular weighting
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scheme, we can consider Zn = Dn[var(Dn)]~1̂ 2. If there is no differential 

carryover effect, under H0 \ t  — 0, we have Zn ~  iV(0,1). If the test leads to 

rejection of no treatment effects, then the trial is terminated and the minimal 

possible sample size is attained at stage n.

2.2 P lay-the-W inner Rule

Zelen (1969) developed play-the-winner rules (PWR) for a clinical trial to 

allocate more patients to the treatment tha t appears to be beneficial, based 

on the responses from patients already treated. Assume that patients enter 

the trial one at a time; the outcome of a trial is a success or failure (i.e. 

binary response) and only depends on the treatment given. He proposed 

a basic idea for the play-the-winner rule. That is, success with a current 

treatment generates a future trial with the same treatment, while a failure 

generates a trial with an alternative treatment.

In the following steps, one can easily implement this rule.

1. Place a ball marked with an “A” in a box whenever a success is obtained 

with treatment A or a failure with treatment B, and vice versa.

2. When a new patient is available for assignment, draw a ball randomly 

from the box, without replacement.

3. If the box is empty, then the assignment is determined by tossing a 

coin.

However, in practice, the time required to observe a patient’s response 

to treatm ent may be much longer than the time between patient entries. It 

follows tha t most assignments are determined by tossing a coin. Then the 

PW R assigns approximately equal numbers of patients to each treatment, 

thus not achieving the goal.

To improve the PWR, Zelen (1969) proposed the modified play-the-winner 

rule (MPWR) under the assumption tha t patients respond immediately to 

treatments. Under the MPWR, after each “success” we continue to use the

8
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same treatment. After each “failure” we switch to the other treatment. This 

method assigns more patients to a better treatment. However, the process 

overlooks past history except for the immediate past. It is not applicable to 

delayed responses to treatments. It also suffers from selection bias, because 

the response of one patient determines the allocation of the next patient, and 

it is evident what the next assignment will be.

Following Zelen (1969), various researchers proposed improved allocation 

rules. Hoel and Sobel (1971) extended the idea of the MPWR to compar

ing more than two treatments in a trial. Under the same assumption as 

MPWR, they introduced the cyclic-play-the-winner rule (PWC). The basic 

idea of PWC is to order the given treatments in a cyclic manner. After each 

“success” we continue to use the same treatment, and after each “failure” 

we switch to the next treatment in the ordering scheme. Again, this PWC is 

completely deterministic after the first assignment, and not applicable when 

patients have delayed responses to treatments.

Wei and Durham (1978) developed the randomized play-the-winner rule 

(RPWR), using all past information on allocations and responses. It re

moves the restriction about the immediate response and rescued the selection 

bias. However, RPW R considers only two treatments in a trial. The RPW R 

(RPWR([i ,a,(3) ,P  ^  a  ^  0) can be easily implemented by the following 

steps.

1. In a box, place two different types of balls marked A  and B  with p 

balls of each type.

2. When a patient is available for an assignment, draw a ball from the 

box at random, with replacement. If it is type A,  then treatment A  is 

assigned to this patient, and vice versa.

3. When the response of a previous patient to the treatment A(B)  is 

available, change the structure of the box based on the following rule. 

If the response is a success, then an additional {3 balls of type A(B)  and 

an additional a  balls of type B(A)  are put in the box; if this response

9
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is a failure, then an additional a  balls of type A(B)  and an additional 

0  balls of type B (A ) are put in the box.

4. If the box is empty, then the assignment is determined by tossing a 

coin.

Note that the difference between the P W R  and the RPWR(Q,  0,1) is 

tha t the balls are drawn without replacement in the former case and with 

replacement in the latter case. Wei and Durham (1978) showed tha t the 

RPWR([i ,a ,  0) introduced more randomization when 0 / a  is small, but 

tended to put more patients on the better treatment when 0 / a  is large. 

They also pointed out that a theoretical comparison of the R P W R ( 0,0,1) 

and the P W R  is quite difficult.

Wei (1979) proposed the Generalized Polya’s urn design {GUPD{W , a, 0)), 

which was an extension of RPW R to k(k > 2) treatments case. Where W  

is a vector that indicates how many balls of different type are in the urn at 

the beginning. If the response of a treatment is a “success,” one can add 

a  balls of the same type; while the response is a “failure,” add 0  balls of 

each other type of balls. It can be easily implemented in clinical trials based 

on a generalized polya’s urn model. If there is no information about the 

relative effectiveness of these k treatments at the outset of the trial, the au

thor suggested tha t GPUD(  1, k —1,1) should be used. However, the scheme 

G P U D ( l , k  — l , l )  appears a little drastic in its early stages, especially when 

k is large (Wei 1979). Therefore, other alternatives may be considered. In 

addition, it will be more reasonable to consider possible confounders such 

tha t the treatment comparison can be made between comparable patients.

Recent efforts to generalize the principal of the PW R have been made 

in three directions. The first major generalization is to allow the ball se

lected not to be replaced, or to allow some balls to be removed from the 

urn (Durham and Yu 1990, Smythe 1996, Durham et al. 1998, Ivanova et 

al. 2000, Ivanova and Durham 2000, and Ivanova and Flournoy 2001). The 

second major generalization is to add different expected numbers of balls to 

the urn across draws (Bai and Hu 1999). The third generalization is to add
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the number of balls obtained as a function of the previous draws (Andersen 

et al. 1994, Bai et al. 2002). Rosenberfer (2002) gave a review on the main 

properties and some recent developments of the urn models.

In a clinical trial comparing two treatments, Bandyopadhyay and Biswas 

(1999) introduced heterogeneity in patient characteristics through a discrete 

ordinal covariate, and Bandyopadhyay and Biswas (2000) considered the case 

when the response was a discrete ordinal variable.

Wei (1978) and Smith (1984) proposed adaptive biased coin designs, 

which are special cases of the doubly adaptive biased coin design (DBCD) 

proposed by Eisele (1994). The goal is to assign a predetermined propor

tion of patients to one of the two treatments, applicable to both continuous 

and discrete responses. Hu and Zhang (2004) generalized the DBCD for 

/^-treatment clinical trials.

2.3 M axim um  Likelihood (ML) Based  
A llocation  R ules

Simon, Weiss and Hoel (1975) proposed a nondeterministic allocation plan 

based on the likelihood function, with the goal of reducing the use of a 

poorer treatment. They used assumptions similar to those in MPWR for 

binary responses. The allocation rule and likelihood ratio stopping rule are 

given as follows.

Assume tha t when the success probabilities satisfy \P a  — P b \ ^  A*, the 

probability of selecting a poorer treatment for a patient will be no greater 

than A* . The maximum number of patients to be treated is N*. At any 

point in the trial, let s* and / ,  be the number of successes and failures, 

respectively, with treatment i(i — A  or B). Define a likelihood function

L(o,6) =  aSAbSB(l -  a)fA( 1 -  b)fB

where 0 < a, b < 1.

Further, define

L a =  max L(p,p — A*)A * ^ l

11
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A*<p<l

where L a  is the maximum value of the likelihood given tha t treatment A  

is the better one, while L b  is calculated under the contrary assumption. 

Termination of the sequential procedure is based on the ratio A =  L a / L b - 

The adaptive allocation scheme is based on the quantity 9 — A /(l +  A). In 

this adaptive procedure, a patient is given treatment A  with probability 9 

and treatment B  with probability 1 — 9.

The adaptive assignment continues as long as the number of tests is less 

than N*  and as long as l / k  ^  A ^  /c, where A; is a stopping parameter. If A 

exceeds k at any point in the trial, treatment A  is deemed a better one. The 

stopping rule constrains 9 to satisfy 1/(1 +  k) ^  9 ^  k / ( l  +  k).

It is a substantial improvement over PW R and MPWR, except in the 

case of competing treatments with high success probabilities. However, it is 

rather complicated for practical use.

Kushner (2003) proposed a method of constructing repeated measure

ment designs adaptively when little is known about the covariance matrix 

of responses. The rules specify the assignment of subjects to treatment se

quences on the basis of updated estimates of the covariance matrix. The 

goal of his allocation rule is to increase the precision of treatment effect es

timators, i.e., to increase the power of the design. Based on the traditional 

model with fixed subject effects, the N  independent error vectors, £ j— (e^), 

1 < i < p, and 1 < j  < N ,  are multivariate normal with mean 0, and 

p x p  covariance matrix, V , where N  is the number of subjects, and p is the 

number of periods. A very important matrix, V *  is defined as

V *  = (vij -  f y f y / z / ot) , 1 < i, j  < p, (2.1)

where v %3 is the i j th element, v1 the ith row sum, v3 the j th row sum, and vtot 

the total sum, of V -1 .

He suggested starting the experiment with initial subjects using the opti

mal or “nearly” optimal design suggested in the literature. He then computed 

the maximum likelihood (ML) estimators of V* and (3 = ( t i , . . . ,  r t , 7 1 , . . . ,
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7 t)T, for which 0 =  J2k=i Tk = Y^k=1 7fc> an<f A  by solving the following

equations:

N  N

£ ( X ,-  -  X )TV*(X,- -  X)jS =  £ ( X f -  X )TV*(y, -  y) (2.2)
j=i j=i

BP -  y -  (x > -  x)/9)(yi -  y -  (X,- -  X)£)Tj  bp = ( N -  i)(v*)+

(2.3)

where y, =  (yn , . . .  ,yjp)T , y  =  ( £ f =1 y j ) /N ,  X,- =  [ T / . T X  =  [T;T], T ,

( respectively, T j) is the j th subject’s p x t  design matrix of treatment effects 

(respectively, carryover effects), T  =  (X/yLi T j ) / N , T  =  (52jLi T j ) / N ,  B p =

Ip — J p/p  and (V*)+ denotes the Moore-Penrose inverse of V*.

The equations (2.2) and (2.3) are obtained by maximizing the density 

(2.4), defined as below, over all 2t-dimensional vectors (3 and over all non

negative p x p  matrices V* such that V * lp =  0 and rank(V*) =  p -  1

c{Trp_i{y*))^N~l^ 2exp ( -  £  <* '~1 ' ~  <** ~  ~  ?  ~  (Xf -  *)/»)
V 3=1 2

(2.4)
where c =  (27r)-(p-i)(w-i)/2 anci T,rp_i[V*] =  p|V*_1|.

New subjects were assigned to sequence k and its dual sequences, such 

tha t the information matrix of treatment effect, C d(r) defined as

c d(T) = c dll -

will be maximized under A-, D- or E-optimality criteria. Where

C „ ( r , 7 ) = ( c ' m  c " 12) '\  '~,d21 W 22 /

C di2 =  C d21, and C d(T,7 ) =  E f= i(X , -  X )TV*(XJ- -  X) is the joint infor
mation matrix of treatment and carryover effects,

Update the estimates of V*  and $  using the subjects from previous steps, 

repeating until all subjects have been allocated.
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Chapter 3 

Constructing Optimal Designs 
for R epeated M easures D ata

In this chapter, we construct optimal designs under both the traditional 

model and a more general model that includes the self and mixed carryover 

effects with random subject effects. We also study the baseline measure

ment effect on constructing optimal designs, and give recommendations on 

constructing two-treatment p-period (p = 2,3,4) repeated measurement de

signs.

3.1 Introduction

We first discuss models for repeated measures data, as optimal designs are 

strongly model dependent. The model for repeated measurement designs 

is a special case of mixed effects models, where both fixed effects such as 

treatm ent effects, period effects, and carryover effects (or sometimes called 

residual effects), and random effects like subject effects and measurement 

errors are considered. Ideally, we would like the residual effects to be washed 

out completely by the time the next treatment is applied (Figure 3.1). In 

Figure 3.1, the horizontal axis defines the treatment periods and the vertical 

axis measures the effects of treatments. The dotted lines are the carryover 

treatment effects lasting beyond the period of treatment application. The 

solid lines indicate the treatment effects increasing in a peak to relieve the 

symptoms or disease under consideration.
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In general, it is more than likely that the treatment effects do not wash out 

at the same speed as they reach their peak effect. An extra washout period 

for the treatment effects may make it possible to proceed with the planned 

investigation. However, in practice it is not always known what constitutes 

a “sufficiently long” washout period. Even if it is the case, it may not be 

feasible to have sufficiently long washout period due to budget limitations, 

time constraints, dropout problems, etc. Figure 3.2 shows the situation when 

carryover effects are not washed out completely. Even when the wash-out 

is completely effective, the physiological or psychological state induced by 

the first treatment may to some extend persist, so that the subjects are no 

longer comparable in their clinical state at the start of the next period (Hills 

and Armitage 1979 and Putt 2006). In sequence, we introduce the carryover 

effects to the models because carryover effects are not negligible between two 

consecutive treatment periods, which we refer to as the “first order carry

over effect.” Usually we assume that the carryover effects are washed out 

completely or are negligible after two treatment periods. Therefore, models 

considering only the first order carryover effects have been used in building 

optimal designs and analyzing the data.

It is ideal to measure the treatment effect when it reaches its peak. How

ever, in practice, it can be an aspect of clinical research that it is difficult 

or impossible to know when a treatment effect peaks, such tha t the treat

ment effect is actually measured before it reaches its peak (Figure 3.3 (I)). 

Sometimes, the treatment has a lasting and curative treatment effect (Figure

3.3 (II)). We do not consider this situation in this thesis because repeated 

measurement design is not a good experimental tool in this case.

The traditional model for repeated measurement designs (for details see 

Section 3.2.1) assumes that each treatment has a carryover effect which does 

not interact with the direct effect of the treatment in the following period. 

This has often been criticized as unrealistic. When a treatment follows it

self, the carryover effect for the preceding period may not be identical to 

the carryover effect when a treatment follows the other treatments. Espe

cially in the situation that a drug given in one period may still be present
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in the body in the next period (Hills and Armitage, 1979), the assumption 

tha t a treatm ent’s carryover effect is the same no matter which treatment 

follows seems more likely to be violated. To cope with this problem, Sen 

and Mukerjee (1987) introduced a model with interactions between direct 

and carryover effects, such that each treatment has a different carryover 

effect for every treatment in the next period. However, Sen and Muker- 

jee’s model generally contains too many parameters to be practically useful. 

For example, in a clinical trial comparing three treatments, we will need to 

consider 9 different interaction effects between all three direct and carryover 

effects:AA, AB, AC, BA, BB ,  BC, CA, C B  and CC,  where the interaction ef

fect xy  means the effect due to a treatment y given that there is a treatment 

x  in the previous period.

A compromise was proposed by Afsarinejad and Hedayat (2002, and see 

also Section 3.2.2). They considered that each treatment has only two dif

ferent carryover effects, one, called self carryover effect if it is followed by 

itself, and the other one, called mixed carryover effect if it is followed by any 

other treatment. In a clinical trial with three treatments, we would have self 

carryover effects A, B  and C, and mixed carryover effects A, B  and C.

We consider subject effects as random instead of fixed when analyzing 

the data, as the subjects in the study often represent a sample from a larger 

population.

In this chapter, we first introduce models for repeated measurement de

signs and discuss the type of carryover effects. Then, optimal designs will 

be constructed under these models with detailed discussion on some special 

designs. In Section 3.2, we introduce two specific types of models. Section

3.3 discusses the Lagrange multiplier solution to the optimal design prob

lems. In Section 3.4, we consider the use of the baseline measurements for 

the optimal design construction under the two types of repeated measure

ment design models described in Section 3.2, and present the optimal designs 

for two-treatment p-period (p =  2 ,3,4) repeated measurement designs.

This chapter aims to unify all optimal design results, expanding to include 

more complex models and baseline measurements.
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3.2 M odels

3.2.1 Traditional M odel

In a repeated measurement design with t treatments, p periods and N  sub

jects, denoted by R M D (N ,p , t ) ,  let y jk — {yijk)T be the vector of ob

servations from subject j  in treatment sequence k, where i — 1 , 2 , . . . , p ,  

j  =  1,2 , . . . ,  N k, k =  1 , 2, . . . ,  s, N k is the number of subjects in sequence k, 

s  is the total number of treatment sequences, and J2k N k = N.  A  traditional 

model for the response y jk is

y jk — Xjfc /3 +  $jfcl[p] +  (3.1)

where l[pj i s a p x  1 vector of ones. The parameter vector /3 =  (/i, 7t t , t t , 

7 r )T consists of the overall mean effect p, the period effects 7r =  (7Ti, 7r2 , . . . ,  

7rp)T, the direct treatment effects r  =  ( t 1; r2, . . . ,  rt)T and the first-order 

carryover or residual effect of the treatment given in the previous period 

7  =  (7 i , 7 2 , • • • , 7 t)T (Laska, Meisner and Kushner, 1983; Matthews, 1987). 

Subject effects £ -fc can be assumed fixed (Hedayat and Afsarinejad, 1978; 

Cheng and Wu, 1980; Laska, Meisner and Kushner, 1983; Kunert, 1983 

and 1984; Hedayat and Zhao, 1990) or random (Laska and Meisner, 1985; 

Carriere and Reinsel, 1992 and 1993; Kushner 2003). If they are treated 

as random, they are typically assumed to have a multi-normal distribution 

with mean 0  and variance-covariance crfl[p]lj£], mutually independent of the 

random errors £jk =  ( e ^ ,  e2jk, • • •, £Pjk)T , which also follow a multi-normal 

distribution with mean 0 and variance-covariance vjly,]- In this thesis, the 

traditional model refers to the model defined in 3.1 with random subject 

effects.

3.2.2 Self and M ixed Carryover Effects Model

To address the criticisms of the modeling of carryover effects in the tradi

tional model, Afsarinejad and Hedayat (2002) proposed an alternative model 

tha t allows for two different types of carryover effects from each treatment, 

which is a slight variation of Carriere (1994b). In their paper (Afsarinejad
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and Hedayat, 2002), they also studied the optimal two-period repeated mea

surements designs with two or more treatments based on the self and mixed 

carryover effects model with fixed subject effects. In this thesis, we incorpo

rate the random subject effects into the model. In sequence, a self and mixed 

carryover effects model is defined as

Uijk  M T  TTi T  Td[itj ] +  (1  l,j] "F &ij(Pd[i—l j ]  d” £,jk ~F &ijk ( ff*2)

where denotes the response variable for subject j  in period i, g  is an 

overall mean, 77 and are the period and subject effects, respectively, d ( i , j ) 

denotes the treatment used for subject j  in period i, i = 1 , 2 , . . .  ,p, j  = 

1 , 2 , . . . ,  Nk, k =  1 , 2 , . . . ,  s, Nk is the number of subjects in sequence k, s 

is the total number of treatment sequences, and N k = N.  Both '7C£{i—i,y] 

and tpd{i-i,j\ represent carryover effects, while 8^ is an indicator variable, 

taking 1 if d(i, j )  =  d(i — l , j )  and 0 otherwise. Thus is the carryover

effect of one treatment on a different treatment, called mixed carryover effect, 

while <Pd[i-i,j] is the carryover effect from a treatment onto itself, called self 

carryover effect, with 7 d[o,j] =  Vd[o,j] =  0 . fjk and £ijk are random effects, 

mutually independent, with mean 0  and variance cr| and respectively.

Note that, when cr| =  0, the model 3.2 becomes the fixed effects model 

with no subject effect.

3.3 Lagrange M ultiplier Solution to  the  
O ptim al D esign Problem

The optimal design involves determining the number of subjects to allocate 

to each treatment sequence in order to achieve a specific goal. It is well 

known that the optimal design problem is strongly model dependent. In 

consequence, some optimal designs, which are optimal under certain model 

assumptions, are not optimal under other models. Therefore, in this section, 

we study the optimal design problem under the two models introduced in 

Section 3.2.
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3.3.1 General Repeated Measures Model

First, let us review the Lagrange Multiplier solution to the optimal-design 

problem based on a general repeated measures model.

Let yjf. =  (yijk)T be the vector of observations from subject j  in treatment 

sequence k, where i. =  1 , 2 , . . .  ,p, j  =  1 , 2 , . . . ,  N k, and Nk is the number of 

subjects in treatment sequence k. In a typical experiment, among the tp 

possible sequences, only a few sequences are administered. Let Nk = 0 for 

unused treatm ent sequences, then we have

k

Assume that p and the total number of subjects N  are fixed, and the 

p x 1 response-vector y jk has a constant variance-covariance matrix C. The 

mean vector E[yjfc] is modelled as

where (3 — (Pi, ■ ■., Pq)T is a q x 1 column vector of unknown parameters, 

and X fc is a p x q design matrix for treatment sequence k. We are interested in 

finding designs that yield minimum-variance best linear unbiased estimators 

(BLUE) of any linear combination of the unknown parameters, 6 = m T (3, 

where m =  (mi,n i 2 , . . . , m q)T.

The linear estimator of 0 is given by

where u k (k = 1 , 2 , . . . ,  tp) are p-dimensional vectors, and they are the 

weights of the observations.

For 6 to be unbiased, we have

(3.3)

E[yjk\ = X k f3 (3.4)

(3.5)

E(§) = e

i.e.

e (%2 ^kYjk)  =  m T (3
jk
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And also,

E ( Y  u l y jk) = Y  “ kEiYjk) = Y  u k * kP
jk

= ( Y  Nk w* ■Xfc)^  = mT p
k

Therefore, ujk must satisfy the q linear constraints

Y  N k = m s, s — 1 ,2 , . . .  ,q (3.6)
k

where, for each k, X£ is the sth column of the matrix X*,. 

And

Var{9) = V a r { Y  ^IVjk )  = Y V ar^ y j k )  = Y u k V ar (yjk)“ k

For particular values of N k, the BLUE of 9 and its corresponding variance 

are easily computed by solving Equations 3.5, 3.6 and 3.7. The optimal design 

problem we consider is the determination of the number of subjects, Nk, to 

allocate to each sequence k, under the constraint (3.3), that yields the BLUE 

of 9 with minimum variance. Note that the constraints (3.3) are for integers 

N k and fixed N.  According to Kiefer and Wolfowitz (1959), we define a 

discrete probability measure pk = N k/N .  The fact that pk can only take 

on multiples of 1/AT makes the optimality problem very difficult in general. 

However, the minimum of (3.7) does not depend on N.  Thus, if we choose 

N  beforehand such that N p k takes on only integral values, it yields an exact 

solution to the original optimal design problem. We shall see in Sections

3.3.3 and 3.4, in all examples we considered in this thesis, it is feasible to 

choose such a value of N.  In the sequel we treat N k as continuous variables.

Therefore, the variance of 9 is given by

Var(9) = Y  NkJ l C u k (3.7)
k
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Introduce Lagrange multipliers, A =  (Ai, A2, . . . ,  A9)T and A0, correspond

ing respectively to constraints (3.6) and (3.3), and minimized the function

f ( N i, N 2, . . . ,  Nk\ Ao, Ai, A2, . . . ,  Aq)

=  N ku Z Cmfc -  2  £ s As( E fc N k u Tk X sk -  m.)  -  A0(£ *  N k -  N)  

Then we set the differentials to zero to get

d f
duji

=  2 N kC u k — 2  XsN k X sk =  0 , for each k

Therefore, for given N k 7  ̂0, the weights of the observations in the BLUE 

of any repeated measurement design are given by

u fc =  J > C - 1X£ (3.8)

or

u k =  C -^ X i ,  X*, • • • , X«)(Ai, A2, • • • , A,)T =  C _1XfcA (3.9)

Taking the left product with XjT on both sides of Equation 3.9, multiply

ing by N k and summing over k, we get

J 2 N k X k Tu k = J ^ N kX kTC - 1XkX

i.e.,

Let

then

( mi \
m 2 

\ m q )

= C £ N kx Tkc - 1x k)
{ * l \

a 2

\  Ag /

A ^ ^ N k X l C - ' X k

A =  A ” 1!!!

For given N k, the variance of the BLUE is

(3.10)

(3.11)
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Var{9) =  Cwfc =  J ] ^ C ( J ] A , C - 1XjJ)
/c k s

= E ^ ( E ^ )  = Z a» ( E ^ x *)
k s s k

= ^  Asms =  mTA - m TA _1m
S

In order to increase the estimation precision, we need to minimize the 

variance of the estimation, or equivalently, maximize the matrix A. In fact, 

the matrix A is the information matrix of 6.

3.3.2 Two-Treatment Repeated Measures Data

In two-treatment repeated measurement designs, a duality in the design ma

trices permits simplification of the search for the optimal choice of N k.

Let d(i, k ) denote the treatment, A  or B,  given in the ith period in se

quence k,. The treatment sequence k* is the dual of k if, for alH, d(i, k*) is 

not equal to d(i, k). For example, B B A B  is the dual of AA B A .

The parameters of models, in which the concept of duals is useful, satisfy 

specific conditions. Some parameters, such as the general effect (mean effect 

and period effects in a traditional repeated measurement design model), are 

absent from the contrast of interest. For such parameters, m s — 0 in the 

equation 9 = m sfjs, and the sth column of each of the design matrices X fc 

are equal, X.sk = X s. For the remaining parameters, corresponding column 

vectors of the design matrices in general depend on the specific treatment 

sequence, but in some cases they may be the negatives of the corresponding 

column vectors of their dual. When these conditions are satisfied, the lemma 

on duals gives sufficient conditions on Nk  and the weights of the BLUE for 

a design to be optimal.

L e m m a  3 . 3 . 2 . 1 .  Let Y be a nonempty subset of the integers. Suppose 

that f o r s  6  T. we have X sk =  —X^.,  where k* is the dual ofk;  and for s £ T, 

we have m s = 0 and X k = X s. Then, a design with weights, a?*,, satisfying 

u)k =  — cufc. and N k* = N k, is optimal.
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P ro o f .  Suppose that the optimal design has an allocation of subjects 

and weights of the BLUE, denoted, respectively, by N'k and u k.

For each subject j ,  such that N'} + Nj. ^  0, introduce new allocation Nj 

and weights u>j defined by

and

Then

For s e r,

Nj = Nj. = (N'j + Nj. ) /2

u>i = -  u j .  = (Nj uj  -  Nj. Uj.)/(N'j + Nj.)

(N'i + N ' )
N3 +  Nj.  =  2 x J 2 3 = N j  + Nj.

Nj ^  ^  uJ.X*.
(N ' , + N 'j.) N ’j u T - N ' j . u ? .  _

~  2 N'j + N'j. ^

(N\ +  iV' ) (  N', i/J — Nj. uj.  \  ,
+ x j  (" x 5}

=  n - ^ - n .. „ J .x j

=  N'jiSjTVj + N'j.-SjJVj.

For s<£T,

Nj u;JXSj + Nj. u j .X*.

(N3 + N3.) ^ N j i f f - N ^
-  — T ~ x * ;  +  « ; .  x X <-

(n ; + n ; . ) (  n ; - n ;. ^

{  W " " J  j
=  0

Since the original allocations and weights satisfy the constraints (3.3 and 

3.6), so do the new allocations and weights.
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And,

(iv; +  Nj. ^ N ' j u j C  u3 +  N j  uj.C u}.) - ( N j  u f C  u 3 + Nj , u j .C  Wj.)]

=  (N'rfi u jC  uj) +  (iV;.)2( vJ.C uj,) +  NjNj , ( u jC  Vj) +  J V ^  uj.C Vj.)

tKT' \ (N i + Nj )  N 'i v Ti ~  Nj* uj. „  N 'i v i ~  N 'r u3'(N,  +  N,,)  x - 2  x 3 n 3 x 3Ti 1— 3-  x C x--* -± ,------3-j-^ ~
3 2  Nj + Nj, Nj  +  Nj,

=  N^N'.( u j C  Uj) +  JVpVj.( uj.C Uj.) -  2JVjJV;.( u jC  Uj.)

=  NjNj.( u j C i  — uj.C*)( ujC*  — uj,C*)T

> 0

Clearly, the variance of 6 made by the new allocations and weights for 

sequences j  and j * is not more than that made by the original allocation. 

Therefore, the new allocation cannot be worse. □

If the conditions of Lemma 3.3.2.1 are satisfied, the unbiasedness con

straints (3.6) become

^ 2  Nk u l x sk +  ^ 2  N k. U) l .x sk. = m s, s =  1, 2 , . . . , 5

d(X,k)=A d(l,fc*)=B

For s £ P :

E  Nk. » l . X l , =  E  A U -w D (-X J)=  E
d(l,fc*)=B d{X,k)=A d(l ,k)=A

i.e.,

2 J ]  Nk w j X sk = m s
d(X,k)=A

E  Afc u-pCJ = ^
d( l ,k)=A

For s £ T:

£  N *  u Tk. X sk. =  £  N k (-uTk ) X sk = -  £  N k u Tk X ‘k
d(l,k*)= B  d(l,fc)=A d(l,fc)=i4

Then the unbiasedness constraints (3.6) are satisfied automatically and 

independent of N k and u>k.

Therefore, we only need to consider the unbiasedness constraints for s € 

T. The duality effectively halves the number of sequences tha t need to be 

considered.
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Then the optimal design problem becomes tha t of determining the num

ber of subjects, Nk, to allocate to each sequence k satisfying d(l, k) = A, 

under the constraints
^  N
E  N“ =  T  (3-12>

d(l ,k)=A

and

E  N*“Ix l = Y ’s£ r (3.13)
d(l,fc)=A

tha t minimize

Var{§) = 2 ^  N kw l C u k (3.14)
d(i,fc)=a

Upon introducing Lagrange multipliers, Ar =  (A5)T, where s € T and A0, 

correspond respectively to constraints (3.13) and (3.12), and minimize the 

function

/  (Nu N 2, . . . , N k;X0,Xs, s E T )

= 2 5 ]  NkUJ^CoJk — 2 5 3  As( 5 3  N k L j % X t - - f )
d{l ,k)=A  s e r  d(l ,k)=A

-A 0( ^  ^ - y ) >  (3-15)
d(l,fc)=i4

We get

ser
 ̂53 AsC_1X^ — ^ C _1X£Ar , (3.16)

where X£ is a submatrix of the design matrix X*, including all Xj* with s £ T. 

We have

Ar =  A r - 1m r  (3.17)

where

and

A r =  5 3  N k X f c - ' X l  (3.18)
d(l ,k)=A

m r =  (m s)T, s e  T
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Also

Var(0) = 2 J ]  N ku Tk Cu>k = 2 £  ^ C ( ^ A aC - 1XJ)
d( l ,k)=A d( l ,k)=A s£T

= E  ^ E â  = E a*( E  N̂ l xsk)

Then the optimal design is obtained by minimizing the variance in Equa

tion 3.19, or maximizing the information matrix A r defined in Equation

where fi, i7 , r^i j)  and are the general effect, the i th period effect,

the direct effect of treatment d(i,j),  and the carryover effect of treatment 

— respectively, subject to t a + t b  — 'Ja+Ib =  0 , where d(i, j )  denotes 

the treatm ent used for subject j  in period i, i — 1 , 2 , . . .  ,p, j  = 1, 2 , . . . ,  Nk, 

k  =  1 ,2 , . . . ,  2P and N k is the number of subjects in sequence k.

Let t  == { t a  — 7 b ) / 2 and 7  =  (7,4  -  7 b ) / 2 .  Then, in effect, r  =  t a  =  —tb 

and 7  =  7 4  =  —7 b - The model becomes

Under the equicorrelated assumption, the covariance matrix of the vector

d{i ,k)=A  s e r  s e r  d(i ,k)=A

(3.19)

3.18.

3.3.3 Example

We now consider a traditional two-treatment model

— / /  +  7Tj +  Td( i j )  T 7d(i—1J) (3.20)

(3.21)

where
1 if d(i, j ) = A
- 1  \ id{i , j )  = B

and
0  if i — 1
1 if i > 1 and d(i — 1 , j )  = A
— 1 if i > 1 and d(i — 1 , j )  — B

yjk is
C =  a l lp +  c r |lpl j (3.22)
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and the correlation between yijk and y ^ k (i i'), called the within-subject 

correlation, is
cr?

—  (3.23)
° e + o \

For notational simplicity, divide Equation 3.22 by erf, but continue to 

denote the resulting matrix as C. To obtain the true variance, all of the 

following expressions for variance need to be multiplied by erf.

For p ±  1 ,
p  J 1 t  

1 - p
C = Ip + r ^ - l pl Tp (3.24)

and

C 1 -  l v i  +  (p _  l ) / p lP (3'25)

T h e  C ase o f p = 2

For a two-period design (p =  2), Equation 3.24 and Equation 3.25 become

/  1 +  _e_  _e_
C =  I

I - e-  1 +  -£-V i - p  ^  i - p

and

c - 1 =  (V p+ i  p+ i

Since the conditions of the Lemma S. 3.2.1 are satisfied, we need only 

to consider two sequences, A B  and AA.  Assume m  patients receive A B  

treatment sequence and then {N/2 — m)  receive A A  treatment sequence.

First, let us find the optimal design for estimating of r , and let m r =  

(1 ,0)T and /3r  =  ( r ,7 )T.
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Then according to Equation 3.18, we have 

A r =  N k X f c - ' X l
d( l ,k)=A

* ) ' { - %

+ !) ( 4  "lOO °
( 4m p + N —N p   i m p —N + N p  \

P + l 2(p+l) \

4 m p - N + N p  N  I
2{p+l) 2 (p+ l) J

And also, according to Equation 3.17, we have

/  2Af(p+l)Ar =  A r_1m r =  ( Al
A2

And according to Equation 3.19,

AT2—16m2+8m,/V—JV V

2(4m- N+N p) [p +l )
\  A'2-1 6 m 2+ 8 m V -V 2p2

/-x 1 r r \ r  1 1 A ( p + 1 )
v a r { T )  =  - m  A =  - Ai  =

(3.26)

(3.27)

2 2 A 2 -  16m2 +  8 m A  -  A 2p2

Clearly, the minimum of var(f )  is achieved at m =  A/4, which means the 

optimal design is AA, AB, B A  and B B  with an equal number of subjects 

per sequence.

Plug m  =  A /4 into Equation 3.27, and we have

T

Ar = 2 (p +  1 ) 2 p(p +  1 )
 ̂A(2 — p2) ’ A(2 — p2) 

and
 ̂ (p +  l)cr2

“ r(T) = W = 7 )
Based on Equation 3.16, the weights of the BLUE are

u j  =  i r _1x rAr = ( ~ P ~ l  +  p 2 1 T
1 2  lA y A ( —2 +  p2) ’ A ( —2 +  p2)

and

W2 =  I C~1X ^ X r = ^  ^ ~ 1 +  ^ 2 - 1
2 2 \ N ( —2 +  p2) ’ A ( —2 +  p2)
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We can see that the weights of the BLUE for the optimal design de

pend on p. Letting p —> 1 (i.e. cr| —> oo) yields the weights (1/N, — 1 /N)T 

for the sequence A B , and the weights (—1/N, 1/N)T for sequence AA,  and 

the var(j)  =  2a2/N .  And letting p = 0 (i.e. cr| =  0) yields the weights 

(1/2N, —1/2N)T for the sequence AB,  and the weights (1 /2N ,1 /2N)T for 

sequence AA,  and the var(f)  — o \ / 2 N .

Now, let us find the optimal design for estimating 7 .

The minimum of uar(q) is (p + l )a2/N ,  which is achieved at m  = N(1 — 

p) /4. So the optimal design for estimating 7  depends on the value of p.

When p 1, the optimal design for estimation of 7  is AA, B B  with N/2  

subjects per sequence; and the weights for the sequence A A  are (—1/N, l / N ) T

We have m r =  (0, l ) r , (3r = ( t , ^ ) t , and

/  4m p + N —N p   4mp—N + N p  \

I
p+i 2(p+l)

d[l ,k)=A  4mp—N + N p
\  2(p+l) 2(p+l) /

N

and

Ar =  A r_ 1m r

/  2 ( 4 m- N+N p) ( p+ l )  \
N 2 -  16m2+ 8 m N —N 2p2

\  N 2 -  16m2 +8m N - N 2p2 )
4 ( 4 mp+N-Np)( p+l )

Hence

var( 7 ) 1 r r xr  U  2(4mp + N  — Np)(p +  1) 
2 m  ~ 2  2 ~  N 2 - 1 6 m 2 + 8 m N - N 2p2

One can implement the optimal design by obtaining the value of p from the 

observed data or literature.

We have

The weights of the BLUE are

and
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and the weights for the sequence B B  are (1/iV, —1/N)T; and the variance of 

7  is 2(rl/N.

When p =  0, the optimal design for estimation of 7  is A A , A B , B A  and 

B B  with N / 4 subjects per sequence; and the weights for the sequence A B  

are (0, l/iV)T; and the weights for the sequence A A  are (0 ,1/N)T\ and the 

variance of 7  is of/Ab These results are consistent with these of Laska and 

Meisner (1985) and Carriere (1994), as expected.

T h e  C ase o f p =  3

Applying the approach to a three-period design (p = 3), Equation 3.24 

and Equation 3.25 become

1 +
C =

and

1 -p 
1 -p
1 -p 

(  .£±1

1 p

1+J rp
i - p

1 -p
1 -p  

1 +

C - 1 =

\

2p+ l 

'2 p + l  

" 2p+ l

_ e _  _
2p+ l

j n
2p+ l

2p+ l

2p+ l ^  
P

M . 1
2p+ l /

Although there are eight different treatment sequences in a two-treatment 

three-period design, according to the Lemma 3.3.2.1, we need only to consider 

four of them: AAA,  AAB,  A B A  and A B B .  Assume Nk patients receive the 

kth treatment sequence, k — 1,2,3,4 and X]£=i =  N/2.

And also, the design matrices including the direct and carryover treat

ment contrast columns for AAA,  AA B,  A B A  and A B B  are given below 

respectively.

To find the optimal design for estimating the direct treatment effect t ,  

let m r  =  (1,0)T and (3V = ( t , ^ ) t .
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Then according to Equation 3.18, we have 

A r =  £  N k X f c - ' X l  (3.28)
d( l ,k)=A

3 N \ — 3Nip+57V2p+37V2+5iV3p+3jV3+5iV4p+37V4 2 ( N \ —N i p — N 2 P—2 N^ p —-^3 )
2/9+1 2/9+1

2(Âi — Âip—N2P—2Nzp—N$) 2(iVi+iV2+2jV3p+jV3+2iV4p+Â 4)
2/9+1 2/9+1

Plug Equation 3.2 into Equation 3.19 and do a little algebra. Under the 

constraint (3.12), the minimum of var(f)  is (2p+ l)er//(A (5p +  3)), achieved 

at Ni =  A2 = A3 = 0, and A4 -  A /2, which means the optimal two- 

treatm ent three-period design under the model 3.20 is A B B / B A A  with an 

equal number of subjects per sequence.

Based on Equation 3.16 and Lemma 3.3.2.1, the weights of the BLUE of 

r  are

<a>a b b  =  — & b a a

= i c - 1X ^A r - 1m r

_  (  3 p + l p+ 1  P + 1 \ T
— ^ W (5p+3)’ JV(5p+3)> AT(5p+3) J

Once again, the weights of the BLUE for the optimal design depend on p. 

When p —> 1, the weights for the sequence A B B  are (1/2A, —1/4A, —1/4N ) T, 

and the weights for sequence B A A  are (—1/2JV, 1/4A, 1/4A )T, and the vari

ance of r  is 3crf/8A. When p =  0, we have the weights (1/31V, —1/3A, —1/3A )T 

for the sequence A B B , and the weights (—1/3A, 1/3A, 1/3A )T for sequence 

BA A ,  and the variance of r  is a^/3N.

W ithout much difficulty, one can show that the design A B B / B A A  is the 

optimal design for estimation of 7  as well. However, the variance and the 

weights of the BLUE of 7  are independent of the value of p. They are

var( 7 ) =  u l / 2 N

and

u a b b  = - wbaa  =  ( 0 , 277, -Af t  )T

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In fact, under the traditional model with an equi-correlated covariance 

structure, the design A B B / B A A  is known to be the universally optimal 

design (Laska, Meisner and Kushner 1983, Kershner 1986).

T h e  C ase o f p =  4

Similarly, we study the optimal four-period design. There are 16 differ

ent treatment sequences in a two-treatment four-period design. Under the 

Lemma 3.3.2.1, we need to consider eight of them: A B B B ,  A B B A , A B A B ,  

A B A A ,  A A B B ,  AA B A ,  AA A B ,  and AAAA.  Under the same notation as 

before, we assume N k patients receive kth treatment sequence, k = 1, . . .  , 8  

and E L i  N k =  A/2.

And also, the direct and carryover treatment contrast columns of the 

design matrices for each treatment sequence are given below:

/  1

X i  =

x i  =

x ^  =

0 \
1

V - 1 
f  i

- l

i  - l  
- l
0

i '
i  
i

x £

x £  =

=

/  1
- 1  

- 1

0 \
1 

- 1

: o1

1  1

- 1  1

\  - 1  -
1  /

f  1  0  \

1  1

1  1

u  w

x £  =

x r-*•6

/ 1 0 \
- 1 1
1 - 1

\ - 1 1 I
/ 1 o \

1 1
- 1 1

V 1 - 1 /

V - i  i /
To find the optimal design for estimating of the direct treatment effect r , 

let m r  =  ( l , 0 f  and f3r =  ( r ,y')T.

Then according to Equation 3.18, we have

A r =  N kX rk =  I ^
d( l ,k)=A  '  3^+1 3P+1

a 12

(3.29)

where a n  =  4[(2/o+ 1 ) ( + 7V4 + + ^ ^ 7) +  (3/o-i-1)(iV2 -+-7V3 -I-^Vs)-}-(1—p)Ag]; 

®i2 — a2i =  (p +  1)N\ — (3p +  1)(A2 +  3 A3 — A5 ) — (5p +  l)(A i +  As) — (3 p — 

1 ) ^ 7+ 3 (1 —p)Ag; and a22 =  (8 p + 3 )(A i+ A 2+ A 3+ A 4 + A 5+A g)+ 3 (A7+Ag).

Plug Equation 3.29 into Equation 3.19 and do a little algebra. Under the 

constraint 3.12, the minimum of var(f)  is a^/AN,  achieved at two situations:
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1. R esu lt 1: N\ — =  N§ — JV7 =  ATg =  0, and N 2 =  N$ =  AT/4. 

Hence, the optimal two-treatment four-period design under the model

(3.20) is A B B A / B A A B  and A A B B / B B A A  with an equal number of 

subjects per sequence;

2. R esu lt 2: N x = 7V4 =  jV6 =  N 7 =  N 8 = 0, N 2 = N / 6 , N 3 = AT/24, 

and AT5 =  7N/2A. Hence, the optimal two-treatment four-period de

sign under the model (3.20) is A B B A / B A A B ,  A B A B / B A B A  and 

A A B B / B B A A  with A//6 , AT/24, and 7A7/24 number of subjects per 

sequence, respectively.

Based on Equation 3.16, under both optimal designs mentioned in results 

1 and 2, the weights of the BLUE of r  are

^ abba — —̂ baab 

2 2

= ( 4AP ~ i N '  — 477’ 377 ) (3.30)

W A B A B  =  — & B A B A

=  - C _1Xg A r_1mr 
2 3

=  ( 477’ ~4.77’ 477’ ~  477 ) (3.31)

U A A B B  =  — W B B A A

=  ^ C -1X£Ar~1mr 
2 5

=  ( 477’ 477’ — 377’ ~377 ) (3.32)

Note tha t the weights of the BLUE of r  for both designs do not depend

on p in this case.

Similarly, one can show that the above designs are optimal for estimation 

of 7  as well. The minimized variance of the estimation of 7  is

var( 7 ) =  (3p +  1 )<72/ (N(8p +  3)).
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Further, the weights of the BLUE of 7 are

u ab ba  — —u ba ab

( 7V(8p+3)’ JV(8p+3)’ iV(8p+3)’ N(8p+3)
j)  4p+ l  2p~H 1  2/7+1 ) T (3.33)

& A B A B  =  — LBBABA

- 3 ° -

JV(8p+3) > JV(8p+3) ’
£ ___  2p+ l

7V(8p+3) > iV(8p+3)
4 p + l 2p+ l

) r  (3-34)

U A A B B  — — & B B A A

( JV(8p+3) > N(8p+3) ’ JV(8p+3) > JV(8p+3)
£   2p+ l 2p+ l 4p+ l ) T (3.35)

When p —> 1, the weights for A B B A  are (1/lliV , 5/11JV, —3/11JV, —3/11JV) 

T; the weights for A B A B  are (—1 / U N ,  3/11N,  -5 /1 1  TV, 3/11 N ) T\ the weights 

for A A B B  are (—1/lliV , 3/lliV , 3/lliV , —5/1 liV)r ; and the variance of the 

estimation of 7  is 4<r^/lliV.

When p =  0, the weights for A B B A  are (0 ,1/3N,  —1/3N,  —l/3A^)r ; the 

weights for A B A B  are (0 ,1 /3N,  —1/3N, 1/3N)T\ the weights for A A B B  are 

(0,1/3 N,  l/3iV, —1/31V)T; and the variance of the estimation of 7  is o\ j3  N.

Note that both designs mentioned in Results 1 and 2 are optimal in 

terms of minimizing the variance of the estimation. However, the design 

A B B  A / B  A A B  and A A B B / B B A A ,  also recommended by other researchers 

(Cheng and Wu 1980, Laska and Meisner 1985 and Carriere 1994), is more 

popular in practice, because it utilizes less treatment sequences and requires 

the total number of patients to be a multiplier of 4 instead of 24 as in the 

other optimal design.

Using the same approach, we can explore the optimal designs under the 

self and mixed carryover effects model as well. Due to the difficulty of the 

complex non-linear optimization problem, we use Maple software to handle 

it. The optimal designs are summarized in Section 3.4.2.
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3.4 O ptim al D esigns U tilizing B aseline M ea
surem ents

Baseline measurements are taken at the outset of an experiment, before im

plementing different treatments. Baseline measurements are commonly used 

in trials of chronic conditions where clinicians want to see whether a treat

ment can reduce pre-existing levels of pain, anxiety, hypertension, and so 

on. In some situations baseline measurements may not be required in a 

study, however, they can be useful to improve the efficiency of the study de

sign. Grizzle (1965, 1968) observed that when there were unequal carryover 

effects in the two-period crossover design A B / B A ,  treatment effects were 

not estimable using both first- and second-period data. However, Wallen

stein (1979) found that with baseline observations in each period, estimators 

and tests for treatment effects were obtainable using all of the data, which 

was therefore more efficient because no information was ignored. This phe

nomenon has motivated many researchers to study the effect of adding base

line observations to a study (Laska and Meisner 1985, Carriere 1989). It is 

interesting to see whether baseline observations improve the design to some 

extent. In this section, we study the influence of baseline measurements 

on constructing the optimal two-treatment p-period (p =  2,3,4) repeated 

measurement designs.

There are different ways to obtain the baseline measurements and model 

the data. For example, Fleiss, Wallenstein and Rosenfeld (1985) studied the 

2 -period 2 -treatment crossover design with baseline measurements measured 

at the start of both periods and they modeled the changes from the baseline 

in each period. Researchers may obtain only one baseline measurement in 

the beginning of the study and include it as an explanatory variable in the 

model. In this thesis, we discuss the effect of baseline measurements under 

the traditional model and under the self and mixed carryover effects model, 

assuming that baseline measurements are obtained in each period and the 

carryover effects are the same as those on the post treatment in the same pe

riod. For example, under the self and mixed carryover effects model described

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



x r  —bAbBbB ~

in Section 3.2.2, the columns, regarding the direct treatment contrast (r), 

mixed and self carryover effects ( 7  and <p), of the design matrix for treatment 

sequence bAbBbB is

(  0  0  0  \
1 0 0
0 1 0
- 1  1 0
0 0 - 1  

V -1  0 - 1 /
where b represents the baseline, r  = (ta — t b ) / 2 , 7  =  ( ja  — Jb) /2  and 

tp =  (ipA -  <Pb ) /2.

3.4.1 Two-Treatment p-Period Optimal Designs Based
on the Traditional Model

The traditional model defined in Section 3.2.1 satisfies the conditions of the 

Lemma 3.3.2.1 in Section 3.3.2. Therefore, an optimal design will assign an 

equal number of subjects to a treatment sequence and its dual.

Suppose N  subjects are enrolled in the study. Let p — + ct|). If

<j| =  0 , then p =  0 , the model becomes a fixed-effect model with no subject 

effect. If cr| —> 0 0  or tr| >  erf, then p —> 1 and the model is equivalent to 

the model with fixed subject effects (Afsarinejad and Hedayat, 2002).

In addition, the relative efficiency between design 1 and design 2 is defined 

as var(eDesign2)/var(dDesignl).

Maple codes for solving the optimal design problems are available upon 

request. The program is user friendly in that one can specify the total number 

of subjects, N , and the within-subject correlation, p, to obtain the optimal 

two-treatment design for any period (p =  2,3,4) under either of the two 

models described in Section 3.2, with or without baseline measurements. 

The weights of the observations for estimating the treatment effect contrast, 

r  =  (ta — tb) / 2, are also provided. W hat follows is a summary of some 

results on practically useful optimal designs.

T he Case o f p =  2
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In a two-treatment two-period (p = 2) repeated measurement design, 4 

different treatment sequences are available (AB, A  A, B A  and BB).  Let m  

be the number of patients receiving treatment sequence AB,  0 <  m  < N/2.  

Then (N/2  — m) patients receive AA  treatment sequence.

Table 3.1 shows that for estimation of r , the design A A / B B  and A B / B A  

with an equal number of subjects per sequence is optimal, no m atter whether 

the baseline measurements are included or not. The efficiency of the design 

with the baseline measurements is 1 to 2.5 times the efficiency of the design 

without, as the value of p increases from 0  to 1 , while the optimal design for 

estimation of 7  depends on the value of p, as shown in Section 3.3.3. Baseline 

measurements do improve the efficacy of the design by 78% to 100%.

T he Case o f p  =  3

In a two-treatment three-period (p = 3) repeated measurement design, 8 

different treatment sequences are available. Let Ni  be the number of patients 

receiving treatment sequence A A A , Ni  be the number of patients receiving 

treatment sequence A A B , N 3 be the number of patients receiving treatment 

sequence AB A,  and N4 be the number of patients receiving treatment se

quence A B B .  Under the constraint (3.12), we have =  N/2.

Table 3.2 shows that for estimation of treatment effect contrast, the design 

consisting of the sequences A B B  and its dual is optimal. Baseline measure

ments improve the efficiency only slightly. The relative efficiency between 

the design with the baseline measurements vs. the design without is equal 

to 1 to 1.0625 when the value of p increases from 0 to 1. Therefore, use of 

the baseline measurement does not appear to be very helpful in improving 

the design efficiency.

The Case o f p =  4

In a two-treatment four-period (p =  4) repeated measurement design, 

16 different treatment sequences are available. Table 3.3 shows tha t for es

timation of treatment difference, two designs both produce the minimum 

variance of BLUE of r: the design A B B A / B A A B  and A A B B / B B A A  with 

an equal number of subjects per sequence; and the design A B B  A / B  AAB,
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A B A B / B A B A  and A A B B / B B A A  with N/6,  iV/24 and 7N/24  subjects per 

sequence, respectively. In both situations, adding the baseline measurements 

does not reduce the variance of the parameter of interest. Actually, according 

to the weights provided in the table, one can clearly see that the BLUE of r  

does not use the baseline data at all. Hence, in a two-treatment four-period 

repeated measurement design, under the traditional model, the baseline mea

surements do not improve the efficiency of the design. Therefore, it is not 

recommended to use baseline measurements in this case.

3.4.2 Two-Treatment p-Period Optimal Designs Based  
on the Self and Mixed Carryover Effects M odel

Under the same notations defined in Section 3.4.1, we consider optimal de

signs under the self and mixed carryover effects model defined in Section 

3.2.2.

T h e  C ase o f p =  2

In a two-treatment two-period (p — 2) repeated measurement design, 

under the self and mixed carryover effects model, Table 3.4 presents the 

summary of the optimal design results. All designs for estimating the treat

ment effect provide the same variance of the treatment contrast. W ithout 

the baseline measurements, the estimation of r  is used only for the data in 

the first period, no m atter how many patients enrolled and what is the value 

of p. Failure to use the second period data is a major drawback. However, 

as shown in Table 3.4, after adding the baseline measurements, we can esti

mate the treatment effect by using all data available. In addition, the design 

with the baseline measurements increases the efficiency at least 50%. When 

within subject correlation, p, is larger, more benefit is achieved from using 

baseline measurements. For example, when p =  0.5, the design efficiency will 

increase by 130%; when p =  0.8, the design efficiency will increase by 428%.

Consider estimating the mixed carryover effect, 7 , the optimal design is 

A B / B A  with an equal number of patients per sequence. The efficiency of 

the design with the baseline measurements is at least 3 times of tha t of the
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design without baseline measurements as p increases from 0  to 1 .

The optimal design for estimation of the self carryover effect is A A / B B .  

The efficiency of the design with the baseline measurements is 2 to 3 times 

of that of the design without baseline measurements as p decreases from 1 

to 0 .

T h e  C ase o f p — 3

In a two-treatment three-period (p =  3) repeated measurement design, 

under the self and mixed carryover effects model, the optimal design for esti

mation of the the treatment effect, r , is A B A / B A B .  However, there are no 

self carryover effects with this design since a treatment is never immediately 

followed by itself. Therefore, in this section, we will draw our attention to 

those designs that are able to estimate all parameters in the self and mixed 

carryover effects model, and provide good estimates of the treatment differ

ences as well. Hence, not surprisingly, there is a price to be paid for allowing 

different types of carryover effects in the model.

Three designs are considered: 1) design A A B / B B A  and A B A / B A B  

with an equal number of subjects per sequence; 2) design A B A / B A B  and 

A B B / B A A  with an equal number of subjects per sequence; and 3) design 

A A B / B B A , A B A / B A B  and A B B  / B A A  with an equal number of subjects 

per sequence. These three designs are also recommended by Hedayat and 

Stufken (2003).

Table 3.5 summarizes the relative efficiencies (RE) of the selected designs 

compared with the design A B A / B A B ,  and the weights of the observations 

in the estimation of the treatment effect contrast, r ,  without the baseline 

measurements. Similar results for these designs with baseline measurements 

are displayed in Table 3.6. We can see that without baseline measurements, 

the design A A B / B B A  and A B A / B A B  is as at least 80% as efficient as the 

optimal design; so is the design A A B / B B A  and A B A / B A B )  and the design 

A A B / B B A ,  A B A / B A B  and A B B / B A A ,  which utilizes more treatment 

sequences, is as at least 93.3% as efficient as the optimal design. W ith the 

baseline measurements, all three designs are almost as efficient as the optimal
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design, with relative efficiency between 96.4% to 98.8%.

Table 3.7 presents the variance of the estimator of the treatm ent dif

ference, r ,  under the designs with or without baseline measurements, and 

the relative efficiencies of the designs with the baseline measurement and 

without. It shows that under all three designs, the baseline measurements 

improve the efficiency 2 to 3 times when the value of p increases from 0 to 1. 

Therefore, baseline measurements should be recommended in this case.

The Case of p  =  4

In a two-treatment four-period (p = 4) repeated measurement design, 

the procedure to theoretically identify the optimal design for estimation of 

treatm ent difference becomes very complex. However, we were able to nu

merically prove that the lower bound of the Vax(r) is (3p +  l )a^/N(2p  +  

1). Due to the multiple solutions of the optimal problem, there are sev

eral designs which can achieve the lower bound, for example, the design 

ABBA/BAAB(N/4), ABAA/BABB(N/8 ) and AABA/BBAB(N/8 ), and the 

design ABBA/BAAB(3N/8) and AAAA/BBBB(N/8 ), and the design ABBA 

/BAAB (N/4) and AABA/BBAB(N/4).

In this section, we studied the baseline measurements influences under 

the design ABBA/BAAB, AABA/BBAB. The reasons tha t we choose this 

design are: 1 ) it is an optimal design; 2 ) it includes an equal number of 

subjects per sequence; and 3) there is no simpler design as efficient as this 

design. Actually, the designs with only one treatment sequence and its dual 

are, at most, 89% as efficient as the design ABBA/BAAB, AABA/BBAB, 

when p —> 1 .

Table 3.8 shows that the relative efficiency between the design with the 

baseline measurements vs. the design without equals 2.5 to 3.167 when the 

value of p changes from 0 to 1. Hence, it is worthwhile to add the baseline 

measurements in order to improve the design efficiency, under the assumption 

tha t patients will comply with the study.
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3.5 Conclusion

In this chapter, we applied the Lagrange multiplier method to solve the opti

mal design problems under the traditional and the self and mixed carryover 

effects models. In addition, we studied the influence of baseline measurements 

on constructing optimal designs for two-treatment p-period (p = 2 ,3 ,4) re

peated measures data. Our findings are that:

1. For two-treatment repeated measurement designs, the Lemma 3.3.2.1 

proves that optimal designs allocate an equal number of subjects to a 

treatment sequence and its dual.

2 . Optimal designs are strongly model dependent. However, when esti

mating the treatment difference, having or not having baseline mea

surements will not change the optimal design results.

Under the traditional model, the results are consistent with those ob

tained by other researchers (Cheng and Wu 1980, Laska, Meisner and 

Kushner 1983, Laska and Meisner 1985, Kershner 1986, Carriere 1994).

• p — 2: The design A A / B B  and A B / B A  with an equal number 

of subjects per sequence is optimal for estimating the treatment 

effect contrast. For estimation of carryover effect, the optimal 

design depends on the value of p : when p — 0 , the optimal design 

is A A / B B  and A B / B A  with an equal number of subjects per 

sequence; when p —> 1 the optimal design is A A / B B  with an 

equal number of subjects per sequence.

• p = 3: The design A B B / B A A  with an equal number of sub

jects per sequence is optimal for estimations of both direct and 

carryover treatment effects.

•  p =  4: The design A B B A / B A A B  and A A B B / B B A A  with an 

equal number of subjects per sequence is optimal. The design 

A B B A / B A A B , A B A B / B A B A ,  and A A B B / B B A A  with 1/6, 

1/24 and 7/24 of the total subjects per sequence, respectively, also
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gives the optimal minimum variance. The former design is more 

popular in practice because it utilizes less treatment sequences, 

uses an equal number of subjects per treatment, and requires the 

total number of subjects is a multiplier of 4 instead of 24, as in 

the latter design.

Under the self and mixed carryover effects model,

•  p =  2: W ithout baseline measurements, the estimation of the 

treatm ent difference uses only the data in the first period, hence is 

inefficient. For estimation of the mixed carryover effect, the design 

A B / B A  is optimal. For estimation of the self carryover effect, the 

design A A / B B  is optimal. Those findings are consistent with 

Afsarinejad and Hedayat (2 0 0 2 ), where they studied two-period 

optimal designs under the self and mixed carryover effects model 

with fixed subject effects.

•  p — 3: The optimal design for estimation of the treatment dif

ference is A B A / B A B ,  however, there are no self carryover effects 

with this design. Other almost equally efficient designs are rec

ommended, including design A A B / B B A  and A B A / B A B ,  design 

A B B / B A A  and A B A / B A B ,  and design A A B / B B A , A B A / B A B  

and A B B / BAA,  especially when within-subject correlation, p, is 

small. Therefore, there is a price to pay for allowing different 

types of carryover effects in the model.

• p =  4: The simplest optimal design for estimating the treat

ment effect contrast in this case is the design A B B A / B A A B  and 

A A B A / B B A B  with an equal number of subjects per sequence.

3. The influence of baseline measurements should be discussed in each 

specific situation. Under the assumptions as given in Section 3.4.1, we 

conclude:

Under the traditional model,
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• p =  2: The efficiency of the design with baseline measurements is 

1 to 2.5 times that of the design without baseline measurements. 

Therefore, it is recommended to use the baseline measurements.

•  p =  3: The baseline measurements improve the design efficiency 

only slightly. The relative efficiency between the design with base

line measurements vs. the design without is equal to 1 to 1.0625 

when p increases from 0 to 1. Therefore, the use of the base

line measurements does not appear to be helpful in improving the 

design efficiency.

• p — 4: The baseline measurements do not improve the design 

efficiency at all. In addition, by using the baseline measurement 

in each period, we extend a four-period design to an eight-period 

design. Due to the difficulty of having all subjects comply until the 

termination of the experiment and the degree of difficulty increases 

as the number of periods gets larger, long period designs should 

be avoided in practice. Therefore, it is not recommended to use 

baseline measurements in this case.

Under the self and mixed carryover effects model,

• p = 2: The baseline measurements improve the efficiency of the 

design measurements at least 1.5 times. Therefore, it is strongly 

recommended to use the baseline measurements.

• p = 3: The baseline measurements improve the design efficiency 

significantly: the improvement in relative efficiency between the 

design with and without baseline measurements ranges from 2  to 

3 times as p increases from 0 to 1. Therefore, it is recommended 

to use the baseline measurements.

• p — 4: The efficiency of the design with baseline measurements is 

2.5 to 3 times of the efficiency of the design without. Therefore, 

it is worthwhile to add the baseline measurements under the more 

complex models, such as those including self and mixed carryover
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effects.

4. Carriere (1994b) found that there is a dramatic reduction in variabil

ity for estimating the direct treatment effect contrast in three-period 

designs compared to two-period designs under various types of models. 

Our study confirm Carriere’s result and extend it to four-period designs 

under more general models utilizing baseline measurements. Table 3.9 

summarizes the variances of the estimators for the treatment difference 

with p =  0,0.5 or —► 1 under two types of models discussed in Section 

3.2 having or not having baseline measurements. One can see that

• Under the traditional model, no m atter using baseline measure

ments or not, the three-period designs achieve at least a 33% re

duction in variance compared to the two-period designs, and the 

four-period designs achieve at least a 25% reduction in variance 

compared to the three-period designs.

• Similar patterns are found under the self and mixed carryover 

effects model. For the designs utilizing baseline measurements in 

each period, there is at least a 25% reduction in variance in three- 

period designs compared to two-period designs, and at least a 2 0 % 

reduction in four-period designs compared to three-period designs. 

W ithout baseline measurements, when within subject correlation 

is 0.5 or more, compared to the two-period designs, the three- 

period designs achieve a 27% or more reduction in variability. In 

addition, a 14% or more reduction in variability is achieved when 

add one more period after the third period.
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Figure 3.1: Experiment without Carryover Effects

H

Period1 2 3 4

Note: In this situation, carryover effects are washed out completely by the next 
treatment period. Therefore, no carryover effect needs to be considered in the 
model

Figure 3.2: Experiment with Carryover Effects

4->U
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i03(N
H negligible

1 2 3 Period

Note: In this situation, carryover effects are not washed out completely, therefore, 
not negligible, especially those between two consecutive treatment periods (7 ^, 
and 7 b  in the Figure).
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Figure 3.3: Some Patterns of Treatment Effects
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Note: In (I), the treatment effects are measured before it reaches its peak, while 
in (II), they have lasting and curative effects.
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Table 3.1: Two-Treatment Two-Period Optimal Designs Based on Traditional
Model

Baseline

No

to

K
4

Var(0)

(p+l)<7?
W(2 ->)

Weights

AB

p2- p - 1
JV(p2-2 )

1
W(p2-2 )

AA

p + p - 1
Jv (/3T_2)

- 1
N(p2-2 )

/  -

Yes A
4

(P+l)(3p+l)<r?
2W (l+p2+3p)

N (l+ p 2-|-3p)
p2 + 4 p + l

2JV(l+p2+3p)

P2+P
2JV(l+p2+3p)

(2p+ l)(p+ l)
2JV(l+p2+3p)

p(2p+ l)
W (l+ p2+3p)

P2~  2p—1 
2N(L+pZ+3p)

P(P+1) 
2W (l+p2+3p)

(2p+ l)^p+ l)
2Ar( l+ p i +3p)

No iv (i-p )
4

(P+1)<A
JV

JV
XAT

N
1_

N

Yes n ( i - p )
4(l+p)

(3p+ l)g2
2AT(p+l5

/  J   \
'  N(p+1) \

_ W (p+l)
1

2N
1

\  2N

JV(p+1) 

'JV(P+1)
1 

2N  
1

\  2JV

*m: The number of patients receive treatment sequence AB, 0 < m < N/2. Then 
(N/2  — to) patients receive AA  treatment sequence, p — <7| / ( a |  + cr|) is the 
intraclass correlation coefficient.
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Table 3.2: Two-Treatment Three-Period Optimal Designs for Estimating
Treatment Effect Based on Traditional Model

Baseline Optimal Design V a r ( r )
Weights

ABB BAA

N o
A B B / B A A  

( N \  =  N 2 =  N 3 =  0 , 
N i  =  N / 2 )

(2p+l)<r=
JV(5p+3)

/  3p+ l \ /  3 p + l \
N (5p+ 3)  

P+ 1

JV(5p+3)

P + l
N(5p+3)  

p+ 1

JV(5p+3) 

P+ 1
y  N(Sp+3) ^  n (5P+3)  y

/  P \N(14p+3) (  JV(14p+3) ^
6p+ l 6p+ l

N(14p+3) N(14p+3)

A B B / B A A JV(l4p+3)
P

JV(14p+3)
Yes ( N i  = N 2 =  N 3 =  0, (5p+l)<r?

N(14p+3) 4p+ l 4p+ l
JV4 =  N /2 ) iV(14p+3)

P

N(14p+3)

P
JV(14p+3) JV(14p+3)

4p+ l 4p+ l
^  N (l4p+3) y ^  N (l4p+3) j
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Table 3.3: Two-Treatment Four-Period Optimal Designs for Estimating
Treatment Effect Based on Traditional Model

B a se lin e O p tim a l D e s ig n V a r (r ) W eig h ts
A B B A A B A B A A B B

N o

ABBA/BAAB 
AABB/BBAA 

(N2 = Ns = N/ 4 ) A N

* AN  ̂
1

AN
1

AN  

\ W J

 ̂ 47V ^
l 

47V
1

47V

 ̂ J
ABBA/BAAB 
ABAB/BABA 
AABB/BBAA 

(N2 =  N/6, N3 = N/24, 
andlV s =  7N/2A)

AN

( ™ ) 1
4 TV 

1
47V

 ̂ ^  J

/  —  \  47V \
1

47V
1

47V

V /

( ™ ) 1 
47V

1
47V

 ̂ J

Y es

ABBA/BAAB 
AABB/BBAA 

(N2 =  jV5 =  N/ 4 )
17?
AN

( °  ^ 1
47V

0
1

47V

0
1

47V

0
V ^  J

( 0  ^ 1 
47V

0
1

47V

0
1

47V

0

I  J

ABBA/BAAB 
ABAB/BABA 
AABB/BBAA 

(1V2 =  N/6, N3 = N/2 4 , 
an d  N5 =  7N/2A)

al
AN

( 0 ) 
i 

47V

0
1

47V

0
1

47V

0
V ^  J

( 0  ̂1 
47V

0
1

47V

0
1

47V

0

\ ^ )

( 0 ) 
1

47V

0
1

47V

0
1

47V

0
V J
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Table 3.4: Two-Treatment Two-Period Optimal Designs Based on Self and Mixed
Carryover Effects Model

Baseline

No

Yes

No

7

Yes

m

m

m

Var(0)

1 <r2JV (l-p )

2(P+1) -.2 
N(p+3)  £

2 (p + l)  - 2
N ( l - p ) a e

2 (3 p + l)  2 
AT(p+3)

Weights

AB
_i_
N

(  \
N(p+3)

7V(p+3)

P+ 1
iV(p+3)

 P+1
y  /V(p+3)

/ ___ 4p_ \
Af(p+3) '

___
iV(p+3)

2 (p + l)  
JV(p+3)

 P- 1
\  JV(P+3) J

AA
_i_
AT

/  \
W (p+3)

^(p+3)
P+ 1

W (p+3)

P + l
JV(p+3)

No

Yes

a2Nu£

2 (p + l)  2
A T(p+3)°e

/  \
W (p+3)

 P+1
W (p+3)

7V(p+3)

iV(p+3)

Note: See notes for Table 3.1.
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Table 3.5: Efficiencies and Weights for Selected Two-Treatment Three-Period Designs under the Self and Mixed Carryover 
Effects Model without Baseline Measurements

Design Relative Efficiency 

(p changes from 1 to 0 )

Weights

A A B A B A A B B

A A B / B B A  
A B A / B A B 80% ~  1 0 0 %

/  2/J2 —5p —3 \
W(5p+3)

2p(2p+l)
\  JV(5p+3) /

(  (2p+3)(p+ l) \  
W(5p+3)

_2£ _
W(5p+3)

4p(p+1) 
\  W(5p+3)

A B A / B A B
A B B / B A A 80% -  1 0 0 %

/  (2p+3)(p+ l) \  
W(5p+3)

2p_
W(5p+3)

4p(p+1)
\  W(5p+3) /

✓ 2p2—5p—3 \
JV(5p+3) 
2p(2p+l) 
W(5p+3)

/

A A B / B B A
A B A / B A B
A B B / B A A

93.3% ~  100%

3(2p2+5p+2) 
W(7p2+15p+6)

6p(2p+l) 
W(7p2+15p+6)

3p(2p+l)
\  N (7p2+15p+6) /

/  3(3p2+5p+2) \
W(7p2+15p+6)

 3p(p+ l)
N(7p2+15p+6)

3p(5p+3)
\  jV(7p2+15p+6) /

/  3(2p2+5p+2)
W(7p2+15p+6)

3p(2p+l) 
W(7p2+15p+6)

6p(2p+l)
W(7p2+15p+6) /
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Table 3.6: Efficiencies and Weights for Selected Two-Treatment Three-Period Designs under the Self and Mixed Carryover 
Effects Model with Baseline Measurements

Ol
10

Design Relative Efficiency 

(p changes from 1 to 0)

Weights

A A B A B A A B B

A A B /B B A  
A B A /B A B 96.4% ~  100%

/  3p(5p+l) \
JV(59p2+41p+6)
20p2 +  19p+3 

AT(59p2+41p+6)
35p2+22p+3 

2JV(59p2+41p+6)
35p2+22p+3 

2JV(59p2 +41p-f 6)
3(5p2+ 6p+ l) 

2JV(59p2+41p+6)
55p2+26p+3 

\  2iV(59p2+41p4-6) /

/ ______P(?P+3) \
iV(59p2+41p+6)
(7p+3)(4p+l)

iV(59p2+41p+6)
31p2 +  18p+3 

2;V(59p2+41p+6)
39p2+26p+3

2JV(59p2+41p+6)
59p2+30p+3

2iV(59p2+41p+6)
l lp 2+14p+3 

\  2AT(59p2+41p+6) /

A B A /B A B  
A B B /B A A

96.4% ~  100%

/  p(7p+3) \
JV(59p2+41p+6) 
(7p+3)(4p+l) 

A7(59p2+41p+6)
31p2+18p+3

2JV(59p2+41p+6)
39p2+26p+3

2JV(59p2+41p+6)
59p2+30p+3

2JV(59p2+41p+6)
l lp 2+14p+3 

\  2JV(59p2+41p+6) /

/  3p(5p+l) \
JV(59p2+41p+6)
20p2+19p+3

A7(59p2+41p+6)
3(5p2+ 6 p + l)

2JV(59p2+41p+6)
55p2+26p+3

2A7(59p2+41p+6)
35p2+22p+3

27V(59p2+41p+6)
35pa+22p+3

2W(59p2+41p+fi)

A A B /B B A  
A B A /B A B  
A B B /B A A

98.8% ~  100%

/  3(5p+l) \
JV(106p2+51p+6)
3(15p2+ 8p+ l)

iV(i06p2+Slp+6)
3(30p2+ l lp + l )

2JV(106p2+51p+6)
3(10p2+ 7p+ l)

2/7(106p2+51p+6)
3(15p2+8p-H)

2JV(106p2+51p+6)
3(25p2+ 10p+l)

\  2AT(106p2+51p+6) /

/  3p(4p+l) \.
JV(106p2+51p+6)

3 (4p+ l)2
7V(106p2+51p+6)

3(17p2+ 8 p + l)
2AT(106p2+51p+6)

3(23p2+ 10p+l)
2iV(106p2+51p+6)

3(33p2 +  12p+l) 
2JV(106p2+51p+6)

3(7p2+ 6p + l)
\  2AT(i06p2+51p+6) /

/ ____ 3(5f+!)___ \
JV(106p2+51p+6)
3(15p2+ 8 p + l)

AT(i06p2+51p+6)
3(15p2+ 8 p + l)

2JV(106p2+51p+6)
3(25p2 +  10p+l) 

2JV(106p2+51p+6)
3(10p2+ 7 p + l)

2A7(106p2+51p+6)

3(30p2 +  l lp + l )  
2JV(106p2+51p+6) /



Table 3.7: Two-Treatment Three-Period Design for Estimating Treatment 
Effect Based on Self and Mixed Carryover Effects Model

Design Baseline Var(r) Relative Efficiency 
p increases from 0 to 1

A A B / B B A
A B A / B A B

No (2p+l)(2p+3)o=
N(5p+3)

2 ~  3.3125
Yes (5p+l)(7p+3)o=

N(59p2+41p+6)

A B A / B A B
A B B / B A A

No (2p+ l)(2p+3)0;
iV(5p+3)

2 ~  3.3125
Yes (5p+l)(7p+3)o?

JV(59p3+41p+6)

A A B / B B A  
A B A / B A B  
A B B / B A A

No 3(2p+l)(3p+2)o?
JV(7p2+15p+6)

2 ~  2.9107
Yes 3(5p+l)(4p+l)o?

JV(106p'-i +51p+6)

Table 3.8: Two-Treatment Four-Period Design for Estimating Treatment 
Effect Based on Self and Mixed Carryover Effects Model

Design Baseline V a r(T
Weights

A B B A A A B A

(  *

No (3p+l)tr;
N(2p+1)

N(2p+1)

N(2p+1)

^  N (2p+1) j

(  *
~ N { 2 Pp + l)

N{2p+1)  

' N (2p+l)

/  -
A B B A /B A A B
A A B A /B B A B

Yes 2 (7 p + l)c rg
N(33p+5)

2 P
N(33p+5)

2(6p+l)
N(33p+5)

5p+ l
JV(33p+5)

9p+ l
N(33p+5)

5p+ l
JV(33p+5)

9o+l
JV(33p+5)

9p+ l
JV(33p+5)

5p+ l
iV(33p+5)

 __
JV(33p+5)

2(6p+l)
N(33p+5)

5p+ l
JV(33p+5)

9p+ l
JV(33p+5)

5p+ l
iV(33p+5)

9p+ l 
N(33p-f 5)

9p+ l
JV(33p+5)

5p+ l
JV(33p+5)
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Table 3.9: Variance (divided by cr^/N) of the Estimator for Direct Treatment 
Effect Contrast for Two-Treatment Designs

Period Design Model Baseline
Var(r)

p = 0 II o
1 a

i P -*• 1

A B / B A
1

No 0.5 0.857 2

2 A A / B B Yes 0.5 0.682 0 .8

All 2
No 1 2 oo

Yes 0.667 0.857 1

A B B / B A A
No 0.333 0.364 0.375

1
Yes 0.333 0.35 0.353

3 A B B / B A A
2

No 1 1.455 1.875
A B A / B A B Yes 0.5 0.552 0.566

A B A / B A B
2

No 1 1.455 1.875
A B B / B A A Yes 0.5 0.552 0.566

A A B / B B A
A B A / B A B
A B B / B A A

2

No 1 1.377 1.607

Yes 0.5 0.543 0.552

A B B A / B A A B
1

No 0.25 0.25 0.25
A A B B / B B A A Yes 0.25 0.25 0.25

4
A B B A / B A A B ( N /  6 ) 
A B A B /B A B A {N /2 A )  

A A B B  /  BBAA(7N/2A)
1

No 0.25 0.25 0.25

Yes 0.25 0.25 0.25

A B B A / B A A B
2

No 1 1.25 1.333
A A B A / B B A B Yes 0.4 0.419 0.421

Note: Model 1 refers to the traditional model and model 2 refers to the self 
and mixed carryover effects model.
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Chapter 4

The Stratified and Random ized  
Play-the-W inner Rule

4.1 Introduction

In most clinical trials, patients participate in the study sequentially as they 

arrive. Suppose tha t the responses of the patient to treatment are dichoto- 

mous (e.g. success/failure, positive/negative). Due to ethical issues on stud

ies involving human subjects, clinicians strive to treat patients in the best 

way possible. To meet such ethical requirements, Zelen (1969) introduced the 

play-the-winner rule (PWR) for comparing two treatments in clinical trials.

The goal of the PW R is to allocate more patients to a better treatment. 

The basic motivation for PW R is that a success with a current treatment 

should involve a future trial with the same treatment, while a failure gener

ates a trial with an alternative treatment. Zelen assumed tha t as patients 

enter the trial one at a time, the outcome of a trial only depends on the 

treatment given.

One can easily implement the PWR, using a box. A type A ball is placed 

in the box when a success is obtained with treatment A or a failure with 

treatment B.  A type B  ball is placed in the box when a success is obtained 

with treatm ent B o r a  failure with treatment A. When a new patient enters 

the study, the treatment assignment would be determined by drawing a ball 

randomly from the box without replacement. When the box is empty, the

(SR PW R ) 
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assignment is determined by tossing a coin. However, in practice, the time 

required to observe a patient’s response to treatment may be much longer 

than the time between patient entries. Then the PW R assigns approximately 

equal numbers of patients to each treatment. Therefore, it may not achieve 

the goal of allocating patients in favor of the better treatment. In addition, 

confounding variables have not been considered in this assignment rule.

To improve the PWR, Zelen (1969) also proposed the modified play-the- 

winner rule (MPWR) under the assumption that patients respond imme

diately to treatments. Under the MPWR, after each “success” the same 

treatm ent continues to be used, and after each “failure” patients will be 

switched to the other treatment. MPWR assigns more patients to the bet

ter treatment. However, the process overlooks past history except for the 

immediate past. It is not applicable to situations with delayed response to 

treatments. It also suffers from selection bias, because the response of one 

patient determines the allocation of the next patient, and it is evident what 

the next assignment will be.

In this chapter, a new, simple allocation rule is proposed for treatment 

assignments in stratified and randomized sequential clinical trials. The strat

ified and randomized play-the-winner rule (SRPWR) is a modified scheme 

in the spirit of the play-the-winner rule, in that it skews the allocation pat

tern in favor of a better treatment. It is applicable to clinical trials with 

more than two treatments. The SRPWR also allows for delayed responses. 

The randomization can be applied when we have no information about the 

superiority of one treatment over another at the beginning of the trial. In 

addition, the SRPWR allows for treatment comparisons among homogenous 

patients by stratifying them based on possible confounders, for example, age, 

sex and some comorbidity measures. This new allocation rule works for both 

fixed and random sample sizes.

In the next section, we propose a new allocation rule and discuss its prop

erties in Section 4.2. The results of the simulation studies will be presented 

in Section 4.3. Conclusions will follow in Section 4.4.
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4.2 SR P W R  A llocation Rule

SRPWR is an extension of the randomized play-the-winner rule (RPWR) 

proposed by Wei and Durham (1978), and it can be applied to trials with 

more than two treatments. The success probability of a treatment may de

pend on both the efficiency of the treatment and known confounders (for 

example, patient’s age, gender and disease status). We assume that pa

tients enter the trial one at a time, sequentially, and the outcome of a trial 

is a “success” or a “failure” (i.e., dichotomous response). In order to adjust 

treatment comparisons for confounding variables, stratification is used, while 

patient homogeneity is assumed within each stratum.

The SRPWR is denoted by SRP W R (n ,a , (3 , t , s ) ,  where t is the number 

of treatments, s is the number of stratifications, /x >  0, both a  and /3 are 

multiples of (t — 1 ) and satisfies

0 < a(t  — 1 ) <  (3.

A SRPWR(/j , ,a ,  (3,t,s) can be easily implemented as follows.

S tep  1 : Define s strata based on known confounders.

S tep  2: Prepare s boxes, one for each stratum. In each box, place t 

different types of balls marked i (i = 1 , 2  , . . . , £) ,  with \i balls of each type.

S tep  3: When a patient belonging to the kth (k =  1,2, . . .  , s) stratum  

is available for an assignment, draw a ball from the kth box at random and 

with replacement. If the ball is type i , then treatment i is assigned to this 

patient. If the box is empty, then the assignment is determined by generating 

a uniform random number. If it is smaller than i / t  and larger than or equal 

to {i — 1 ) jt ,  then treatment i is assigned to the patient.

S tep  4: When the response of a previous patient to treatment i is avail

able, change the structure of the corresponding box based on the following 

rule. A ssum e this patient belongs to the kth stratus. If this response is a 

success, then additional f3 balls of type i and additional a  balls of other types 

with a/{ t  — 1) for each type are put in the kth box. If this response is a fail

ure, then additional a  balls of type i and additional (3 balls of other types
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with 0 /{ t  — 1 ) for each type are put in the kth box.

S tep  5: Repeat steps 3 to 4 until all patients have been allocated (for 

fixed sample size) or investigators decide to terminate the study.

In the allocation rule described above, we see tha t after each assignment, 

exactly (a  +  0)  additional balls are added to the corresponding box. If the 

response to treatment i is a success, there is a higher probability of assigning 

the next patient to the same treatment (0 >  a). If the response to treatment 

i is a failure, there is a higher probability of assigning the next patient to 

one of the alternative treatments (a  <  0 / ( t  — 1)). Note tha t the R P W R  is 

a special case of the S R P W R  with t =  2 and s — 1.

In the next subsections, we assess the performance of the SRPWR by 

obtaining the expected number of patients to each treatment.

4.2.1 Performance of SRPW R for Three Treatments

Now let us consider a clinical trial comparing three treatments (t = 3) among 

homogenous patients (s — 1). To study the properties of S R P W R ( p ,  a, 0 , 3,1), 

we assume tha t the response of a patient is instantaneous. Let R A{n): R B(n) 

and R c(n )  be the numbers of balls of types A, B  and C  in the box, respec

tively, after n  assignments. Let Si (n ) and Fi(n) be the numbers of successes 

and failures with treatment i after n  responses, respectively, where i — A, B  

or C. Then we have

R A{n) = ii + p S A{n) +  aFA(n) + ~[SB(n) + Sc {n)\ + FB{n) +  Fc {n)] 

R B(n) =  fi + p S B( n ) + a F B(n) + ^ [ S A{n) + Sc {n)] + ^[FA(n) + Fc (n)} 

Rc(n )  = fi + 0 S c (n) + aFc {n) + ^ [ S A(n) + SB(n)} + ^[FA(n) + FB(n)]

(4.1)

Note that the total number of balls after n  responses, Tn, is a constant,

i.e.,

Tn — R A(n) +  R B(n) +  Rc (n) =  3/x +  n(a + 0) (4.2)

Let Ni(n) be the number of patients assigned to treatment i after n 

assignments, pi be the probability of a single trial success for treatment i,
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and qi = 1 — pi where i — A, B  or C. Then

NA(n) + N B(n) + N c (n) = n  (4.3)

And

£ [$ (n )] =  E[Ni(n)]pi (4.4)

where i = A, B  or C.

R esu lt 4 .2 .1 .1 : In SR P W R {p ,  a, (3,3,1), the expected numbers of balls

of types A  and B  in the box after the (n +  1) assignments, given the first n

assignments, are

E{RA(n +  1)] =  ^ (apc + /3qc ) + 1 a ( u  ~  \ p c )  +  P{pa ~  \qc)

+ W - - a)£ a - q c ) E \R B (n))

E[RA(n)] 

(4.5)

E[RB(n + 1)]

and

- ( apc  +  Pqc) + 1 + -  \ p c ) +  P(pb  -  \qc) E[RB(n)\

(4.6)

E[Rc (n +  1)] =  3/i +  (n +  l) (a  +  (3) -  E[RA(n + 1)] -  E[RB(n + 1)] (4.7)

Proof:  Given the first n responses, R A(n +  1) has four possible values: 

RA(n) + /3, R A(n) + a, R A(n) +  ( a / 2 ) or R A(n) +  (/?/2) with probabilities

Prob[RA(n +  1) =  R A(n) + (3\Hn] = pA—~ -
n

Prob[RA(n +  1) =  R A(n) + a\Hn\ =  qA Râ
n

td id ( i i id ( i ^  i u  i R b {p ) . Tn (Ra (ti) -F R B(n))Prob[RA(n +  1) =  R A(n) +  - \ H n\ = pB v + p c *-------- '—LL
"  D n  D 71

n  i . r n  / i \  r .  / N \ TT 1 R b M  Tn — (RA(n) +  R B(n))Prob[RA(n +  1) =  R A(n) +  %\Hn] = qB- = ~  +  qc~ ----
^ -Ln - * n

(4.8)

where Hn contains the information R A(n) , R B(n) and Tn upon the previous 

n  assigned subjects.
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Then,

E[RA(n +  1)]

=  E[E[RA( n + l ) \ H n]

= E  

+ E  

+ E  

+E  

= E  

+E  

+E  

+E

(.RA(n)+P)p,
R A{n)

Tn 
RA(n)

(RA(n) +  a)qA 

( R A{n) +  [ Pb

R a ( u )  +  £

R B(n) , Tn -  (R A(n) +  R B(n))
T  +Pc" T
■*n -*n

R B(n) Tn -  (.RaO) +  # s ( n ) ) \  
9 s —j,----- 1- qc------------- j ,----------------1

pAR 2A(n) /3pAR A(n) qAR A{n) aqAR A{n)
+ +T  T  T± n  i n  n

pBRA(n)RB(n) apBR B(n)

+

Tn
+

2 r n +  R A{n)pc —
P c R A(n) pc R A(n)RB{n)

Tn
a apc RA(n) apc R B(n) qBR A(n)RB(n) 0qBR B(n)
2PC 27; 2Tn Tn 2Tn

RA{n)qc ~ qcRA{n) qc R A{n)RB{n) /3 (3qc R A(n) f}qc R B{n)~
T± 71

+  - 9 c - 2Tn 2Tn
R A(n) . RA(n), \ R A(n)RB(n) . .

A { (PA +  qA) ~  ipc  +  qc) +  V £  V ; (ps +  9b)

R A(n)RB{n)
T-*• n. (pc +  qc) + R A{n)

Tn
Pp a  . 0tqA a p e  , p q c

+  —  + P c -  +  qc ~

. n [ “ PS aPc , /?9s Pqc 
+flfl(n) 27; “  27; +  25; "  27;
1 ,  . -  . L a{qA -  \pc)  +  P{Pa  ~  ^ 9c)

Tn
a j3 

+ - PC + j  9c

2 Tn 27;

=  2 ^ c  +  ^ l?c') + 1 + £[i?a(n)]

+  (/? qc ) E [RB(n)]
2Tn

Similarly, we can prove that Equation 4.6 holds.

According to Equation 4.2, after (n +  1) assignments, we have

E[RA(n +  1) +  R B{n +  1) +  Rc(n  +  1)] =  3p +  (n +  l) (a  +  /?) 

Therefore,

E[Rc(n + 1)] =  3p + (n + l) ( a  +  /?) -  £[iiU(n +  1)] -  E[RB{n +  1)]

□
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According to Result 4-2.1.1, we can obtain the expectations £'[i?J4 (n)], 

E[Rb (ti)] and E[Rc(n)\, recursively. For example, since

E[J2a(0)] =  E[Rb { 0)] =  E[Rc m  =  fi (4.9)

Then we have

E[Ra {1)} =  M +  v-Qa ) +  q (pb +Pc ) +  +  Qc)

E[Rb { 1)] =  R +  ^{Ppb +  aqB) +  ^{pa  +  Pc) +  ^{Qa +  qc)

E [ R c {  1)] =  M +  Oi +  f3 --------  — (Pa + P b ) --------g— (qa +  Qb )

- ^ ( a p c  + Pqc) (4.10)

To assess the performance of S R P W R (n ,  a, /3,3,1), we need to calcu

late the expected numbers of patients treated by treatments A, B  and C,

respectively, i.e., E[Ni(n)] where i — A , B , or C.

R esu lt 4 .2 .1 .2 : In S R P W R ( n , a , 0 , 3,1), the expected number of pa

tients treated by each treatment after the n assignments is

E\NA(n)} = (^^[Ryt(n)] -  ^ E [ N B(n)}) +  u f a  -  uA)
A V2 ^ 4  -  W s

B[A W „)| =  -  ^ g [jV B(n)l) +  ^  -  vs)
W S  -  ^2^4

E[Nc (n)} =  n - E [ N A( n ) ) - E [ N B(n)) (4.13)

where vx = H +  f  {apc + Pqc), =  a(qA -  \pc ) + 0 {pa  ~  \qc),  "z =

\ { 0 - a ) { q B- q c ) ,  ^4 =  a{qB~\pc)+0{PB~\qc) ,  andvh =  \ { 0 - a ) ( q A-qc) -

Proof:  By (4.1), (4.3) and (4.4), we have
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E[RA(n)} =  E (jl +  PSA(n) +  aFA(n) + ^[SB(n) +  5c (n)] +  ^[FB(n) +  Fc {n)\

a
=  (i + 0pAE[NA(n)] +  aqAE[NA(n)\ +  -  (pBE[NB(n)} + pc E[Nc {n)})

P,+ 2 ^ B E [ N B(n)} + qcE[Nc{n)})
a

= p + PpAE[NA(n)] +  aqAE[NA(n)\ +  - p BE[NB(n)} 

+ ^P c(n  -  E[NA(n)\ -  E[NB(n)\) + ^ qBE[NB(n)\

+ ^ Q c { n -  E[NA(n)\ -  E{NB{n)})

= ^ + 2  (aPc + Pqc) + <x {<Ia  ~  T j P c ) +  P(pA -  ^ q c ) E[NA(n)\

+  2 ^  “  a ){<lB -  qc)E[NB(n)\ (4.14)

Similarly, we have

E[RB(n)} = p +  - ( apc + Pqc) + u{qB -  ^Pc ) +  P(Pb ~  ]pc)

+ 2 ^ ~  a ^ qA ~  qc)E[NA(n)}

E[NB(n)] 

(4.15)

Let vi = p + | ( a p c +  pqc), v2 =  a{qA -  ±pc ) +  P{pa ~  |? c ) , ^3  =  

\ { P -a ) { q B-Qc),  Va = u{qB- \pc )+ P {P B ~ \qc ) ,  and v5 = \ { P - a ) ( q A- q c ), 

Equations 4.14 and 4.15 become

E[RA(n)\ = vx + u2E[NA{n)] +  u3E[NB(n)} 

E[RB(n)\ =  vx + v4E[NB(n)\ + v5E[NA(n)]

(4.16)

(4.17)

W ithout much difficulty, we will obtain (4.11) and (4.12) by solving Equa

tions 4.16 and 4.17. In addition, we can prove that Equation 4.13 holds 

according to Equation 4.3. □

To summary above, based on Result 4-2.1.1, we can obtain the value of 

E[i?^(n.)], E{RB(n)} and E[Rc{n)] recursively from the values of jE[K,i(n—1)] 

and E[RB(n — 1)], where E[RA(n)] represents the expected number of type A  

balls in the box after n assignments, and E[RB(n)} represents the expected 

number of type B  balls in the box after n  assignments. Based on Result
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4-2.1.2, the expected numbers of patients treated by each treatment can be 

calculated. If the new allocation rule works well, we will have E[Na (ti)\ > 

E[NB(n)] > £ ’[iVc(n)], assuming that treatment A  is the best and treatment 

C  is the worst.

Let us consider the simplest S R P W R (p ,a , (3 , 3,1) with p  =  a  =  0 and 

(3 = 2. The expected number of patients treated by each of the three treat

ments using S R P W R  (0, 0, 2, 3, 1) is provided in Table 4.1. W ithout loss of 

generality, we assume that treatment A  has the highest success probability 

(best treatment), and then treatment B,  and treatment C  has the lowest 

success probability. Tables 4.1 shows that S R P W R ( 0,0, 2,3,1) in a clinical 

trial tends to assign more patients to the better treatment no m atter how 

small the sample size is. As an example, when pa =  0 .8 , pb  — 0.5, pc  =  0.3 

and the total number of subjects (n) is 30, the expected numbers of patients 

treated by treatment A, B  or C  are 16.19, 8.1 and 5.71, respectively.

In comparison with existing rules, Table 4.2 shows tha t S R P W R ( 0, 

0, 2, 3, 1) tends to allocate more patients to better treatments than the 

GPUD(  1,2,1) (Wei, 1979) and PWC rule (Hoel and Sobel, 1971). For ex

ample, when p a  = 0.4, p B =  0.2, p c  =  0.1 and the total number of subjects 

(n) is 6 , the expected number of patients assigned to treatment A by the 

new rule is 2.4081, while it is 2.2581 under GPUD(1 ,2,1) and 2.2292 under 

PWC rule. Such result holds true regardlessly of the sample size. Therefore, 

the new rule is superior on ethical grounds.

4.2.2 Generalization to t  Treatments

The generalization to f-treatment clinical trials is rather straightforward, 

although the derivation is quite tedious.

Based on the same notation developed in the previous section and letting 

i = 1 , 2 , we have

Ri(n) = p  +  (3 Si (n) +  aFj (n ) +  — ^  5V (n) +  ^  Fv (n)
i'jti »v*

(4.18)
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Tn =  ^  Ri{n) = tfi + n(a  4- /3)
i

(4.19)

^ J V ;(n )  =  n (4.20)
i

and

£ [$ (« )] =  £?[Ai(n)]pi (4.21)

In addition, the transition probabilities for Ri(-) from stage n  to n  +  1

are

Prob[Ri(n + l) = Ri(n) + (3\Hn] =  3 ^
n

Prob[Ri( n + l )  = R i (n) + a\Hn} =
■L n

Prob[Ri{n +  1) =  Ri(n) +  I#*] =

P ro 6 [/?i(n +  1 ) =  i 2i(n) +  r^ -y l^ n ] =  4̂ '22^
»'#* 71

for i —  1, 2 , . . . ,  t.

Based on the transition probabilities given in (4.22), analog to the three- 

treatment case discussed earlier, we can obtain the expectations E[Ri(n)], 

recursively.

We then take the expectation on both sides of Equation 4.18 to obtain 

t equations. Solving the equations, along with Equations (4.19), (4.20) and

(4.21), we are able to calculate E[Ni(n)], the expected number of patients

treated by treatment i after n  assignments.

4.3 Sim ulation Study

To simplify, let us first consider an example of the S R P W R  for assigning 

patients to three treatments with one stratum: S R P W R { 0,0,2,3,1),  where 

t = 3, s = 1, /j, =  a  =  0 and (3 — 2.

The average number of patients from 1,000 simulations treated by each 

treatment using S R P W R ( 0 , 0 ,2 ,3 , 1 ) is provided in Table 4.3. The average
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probability of patients treated by each treatment using S R P W R ( 0, 0, 2 , 3, 1) 

is provided in Table 4.4. The C + +  program code is available upon request.

Similar to the result in Table 4.1, Tables 4.3 and 4.4 clearly show that 

S R P W R ( 0, 0, 2, 3, 1) assign more patients to the better treatment no m atter 

how small the sample size is. As an example, when Pa =  0.8, pb  — 0.5, 

Pc =  0.3 and the total number of subjects (n) is 30, the estimated numbers 

of patients treated by treatment A, B  or C  are 15.993 (53.3%), 8.399 (28%) 

and 5.608 (18.7%) respectively.

We then consider the case of two strata (s =  2) defined according to the 

patients’ characteristics. Table 4.5 shows the simulation result given different 

probabilities in each stratum, where “Total” is the total number of patients 

assigned to each treatment in the trial. When a treatment works well for 

one group of patients but not for the other group (the last case in Table 

4.5), S R P IV R ( 0,0,2,3,2) successfully adjusts the allocations according to 

the patients’ characteristics and therefore treats each patient in the best 

possible way.

4.4 Conclusion

Since Zelen (1969) proposed the PW R for controlled clinical trials, various 

researchers have proposed and investigated allocation rules for better patient 

treatment. The main contribution of this chapter has been in proposing a 

simple allocation rule which considers the heterogeneity of subjects. Sim

ulation studies show that, on average, the SRPWR tends to assign more 

patients to the better treatment. SRPWR is superior to existing allocation 

rules, and it successfully adjusts the allocation results while accommodating 

the heterogeneity of the patients, leading to a better allocation strategy and 

better patient treatment.
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Table 4.1: Expected Number of Patients Treated by each Treatment for
SRP W R  (0, 0, 2, 3, 1)

Pa Pb PC n A B C
1 0 5.02 2.89 2.09
15 7.78 4.22 3.01
2 0 10.56 5.52 3.91
30 16.19 8 .1 0 5.71

0 .8 0.5 0.3 40 21.87 10.64 7.49
50 27.58 13.17 9.26

1 0 0 56.34 25.63 18.03
500 289.78 123.15 87.18

1 0 0 0 583.44 243.78 172.78
1 0 4.03 3.28 2 .6 8
15 6.174 4.896 3.930
2 0 8.333 6.504 5.163

0 .8 0.7 0 .6 30 12.69 9.706 7.604
40 17.078 12.896 10.026
50 21.49 16.08 12.44

1 0 0 43.702 31.914 24.384
1 0 5.879 2.195 1.926
15 9.120 3.132 2.748
2 0 12.392 4.0512 3.557

0 .8 0 .2 0 .1 30 18.984 5.862 5.154
40 25.615 7.651 6.734
50 32.27 9.43 8.30

1 0 0 65.723 18.202 16.075
1 0 3.741 3.308 2.951
15 5.63 4.96 4.41
2 0 7.513 6.607 5.880

0.3 0.3 0 .1 30 11.284 9.905 8.811
40 15.055 13.203 11.742
50 18.825 16.502 14.673

1 0 0 37.675 32.994 29.331
0 .8 0 .8 0 .8 50 16.67 16.67 16.67
0 .8 0 .2 0 .2 50 31.54 9.23 9.23

Note: p a , Pb  and pc  are success probabilities for treatment A, B  and C  
respectively, and n  is the sample size. W ithout loss of generality, we assume 
tha t Pa  > Pb  >  Pc-
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Table 4.2: Comparisons of S R P W R (0 ,0, 2, 3, 1) ,  GPUD(  1, 2, 1) and P W C

Pa Pb PC n
S R P W R (0 , 0 , 2 , 3, 1 ) 
A B C

G P U D (1 ,2,1) 
A B C

P W C  rule 
A B C

0.4 0 .2 0 .1 6 2.4081 1.8961 1.6958 2.2581 1.9399 1.8021 2.2292 1.9249 1.8458
12 4.8923 3.76 3.3478 4.671 3.833 3.496 4.4677 3.8581 3.6742
18 7.3758 5.6228 5.0014 7.1104 5.7155 5.1741 6.7093 5.7892 5.5016
27 11.1007 8.4166 7.4827 10.7933 8.5286 7.6781 10.0713 8.6857 8.243

0 .6 0.3 0 .2 6 2.6565 1.7764 1.5672 2.3913 1.8751 1.7333 2.4108 1.8321 1.7571
12 5.5103 3.4597 3.0301 5.0679 3.6407 3.2914 4.8604 3.6591 3.4805
18 8.3788 5.1329 4.4882 7.8129 5.3747 4.8124 7.3087 5.4867 5.2046
27 12.6931 7.6353 6.6716 11.9885 7.947 7.0645 10.9811 8.2281 7.7908

0 .8 0.4 0 .2 6 3.0534 1.6785 1.2682 2.5982 1.8419 1.5599 2.7568 1.673 1.5702
12 6.5576 3.1286 2.3138 5.7051 3.4897 2.8052 5.651 3.3047 3.0443
18 10.1337 4.5311 3.3352 8.967 5.0595 3.9735 8.5457 4.9363 4.518
27 15.561 6.5932 4.8458 14.0068 7.3372 5.656 12.8878 7.3837 6.7285

0.9 0.5 0.3 6 3.1449 1.6498 1.2053 2.6278 1.8338 1.5384 2.9476 1.5604 1.492
12 6.8994 2.998 2.1027 5.8504 3.4415 2.7045 6.1829 3.0068 2.8103
18 10.7874 4.2623 2.9503 9.2827 4.9459 3.7714 9.4169 4.4536 4.1295
27 16.7468 6.0784 4.1748 14.6445 7.091 5.2645 14.268 6.6238 6.1082

Note: Entries are the expected number of patients treated by each Treatment.



Table 4.3: Average Number of Patients Treated by each Treatment for
SRP W R  (0, 0, 2, 3, 1)

Pa Pb P c n A B C
1 0 4.817 3.079 2.104
15 7.548 4.442 3.01
2 0 10.431 5.496 4.073
30 15.993 8.399 5.608

0 .8 0.5 0.3 40 21.663 10.754 7.583
50 28.071 12.848 9.081

1 0 0 57.454 25.057 17.489
500 289.716 123.535 86.749

1 0 0 0 584.881 243.834 171.285
10 3.939 3.435 2.626
15 6.25 5.11 3.64
2 0 8.285 6.528 5.187

0 .8 0.7 0 .6 30 12.98 9.978 7.042
40 17.112 13.553 9.335
50 22.605 16.205 11.19

1 0 0 44.797 31.837 23.366
10 5.778 2.197 2.025
15 8.934 3.125 2.941
2 0 12.604 3.729 3.667

0 .8 0 .2 0 .1 30 18.925 5.609 5.466
40 25.865 7.082 7.053
50 32.949 8.392 8.659

1 0 0 66.447 16.955 16.598
1 0 3.661 3.322 3.017
15 5.43 4.896 4.674
2 0 7.284 6.47 6.246

0.3 0 .2 0 .1 30 11.177 9.493 9.33
40 15.005 12.722 12.273
50 18.682 16.078 15.24

1 0 0 37.365 32.379 30.256
0 .8 0 .8 0 .8 50 18.337 16.777 14.886
0 .8 0 .2 0 .2 50 31.854 8.645 9.501

Note: See notes for Table 4.1, and the entries are average from 1,000 simu
lations.
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Table 4.4: Average Probability of Patients Treated by each Treatment for
SRPW R  (0, 0, 2, 3, 1)

Pa Pb Pc n A B C
10 0.482 0.308 0 .2 1 0

15 0.503 0.296 0 .2 0 1

2 0 0.522 0.275 0.204
30 0.533 0.280 0.187

0 .8 0.5 0.3 40 0.542 0.269 0.190
50 0.561 0.257 0.182

1 0 0 0.575 0.251 0.175
500 0.579 0.247 0.173

1 0 0 0 0.585 0.244 0.171
1 0 0.394 0.344 0.263
15 0.417 0.341 0.243
2 0 0.414 0.326 0.259

0 .8 0.7 0 .6 30 0.433 0.333 0.235
40 0.428 0.339 0.233
50 0.452 0.324 0.224

1 0 0 0.448 0.318 0.234
1 0 0.578 0 .2 2 0 0.203
15 0.596 0.208 0.196
2 0 0.630 0.186 0.183

0 .8 0 .2 0 .1 30 0.631 0.187 0.182
40 0.647 0.177 0.176
50 0.659 0.168 0.173

1 0 0 0.664 0.170 0.166
10 0.366 0.332 0.302
15 0.362 0.326 0.312
2 0 0.364 0.324 0.312

0.3 0 .2 0 .1 30 0.373 0.316 0.311
40 0.375 0.318 0.307
50 0.374 0.322 0.305
1 0 0 0.374 0.324 0.303

0 .8 0 .8 0 .8 50 0.367 0.336 0.298
0 .8 0 .2 0 .2 50 0.637 0.173 0.190

Note: See notes for Table 4.3.
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Table 4.5: Average Number of Patients Treated by each Treatment by Stratification for S R P W R (0 ,0,2,3, 2)

Success Probability Sample Size Stratum 1 S t r a t u m  2 Total
Stratum 1 Stratum 2 n(ni,n2) B B B

6 ( 3 ,3 )  
12(6 ,6)
1 8  ( 9 ,9 )  

2 7  ( 1 3 ,  1 4 )  
1 0 0  ( 5 0 ,  5 0 )

1 .1 6 5
2 .3 6 6
3 .5 5 9
5 .1 6 9
2 0 .4

0 .9 8 3
1 .9 2 4
2 .8 4 2
4 .1 7 1

1 5 .1 6 3

0 .8 5 2
1 .7 1

2 .5 9 9
3 .6 6

1 4 .4 3 7

1 .0 0 3
1 .9 5 2
3 .0 1

4.648
1 6 .0 8 8

0 .9 1 9
1 .9 7 1
2 .8 3 6
4 .4 7 4
1 6 .0 1

1 .0 7 8
2 .0 7 7
3 .1 5 4
4 .8 7 8

1 7 .9 0 2

2 .1 6 8
4 .3 1 8
6 .5 6 9
9 .8 1 7

3 6 .4 8 8

1 .9 0 2
3 .8 9 5
5 .6 7 8
8 .6 4 5

3 1 .1 7 3

1 .9 3
3 .7 8 7
5 .7 5 3
8 .5 3 8

3 2 .3 3 9
6 ( 3 ,3 )  
12(6 ,6 )
18  ( 9 ,9 )  

2 7  (1 3 ,  1 4 )  
1 0 0  ( 5 0 ,  5 0 )

1 .2 0 4
2 .6 0 3
3 .9 1 6
5 .9 9

2 3 .6 0 1

0 .9 2 9
1 .8 2 2
2 .7 3 1
3 .7 5 4

1 3 .7 4 1

0 .8 6 7
1 .5 7 5
2 .3 5 3
3 .2 5 6

1 2 .6 5 8

1 .3 1 6
2.957
4 .5 5 4
7 .5 0 6

2 9 .6 8 7

0 .9 0 2
1.8

2 .4 6 5
3 .7 2 3

1 1 .4 6 3

0 .7 8 2
1 .2 4 3
1 .9 8 1
2 .7 7 1
8 .8 5

2 .5 2
5 .5 6
8 .4 7

1 3 .4 9 6
5 3 .2 8 8

1 .8 3 1
3 .6 2 2
5 .1 9 6
7 .4 7 7

2 5 .2 0 4

1 .6 4 9
2 .8 1 8
4 .3 3 4
6 .0 2 7

2 1 .5 0 8
6 ( 3 ,3 )  
12(6 ,6)
1 8  ( 9 ,9 )  

2 7  (1 3 ,  1 4 )  
1 0 0  ( 5 0 ,  5 0 )

1 .2 9 7
3 .1 1 8
4 .8 3

7 .2 0 2
3 2 .5 4 4

0 .9 1 4
1 .6 3 5
2 .4 3 4
3 .4 2 5

1 0 .3 6 9

0 .7 8 9
1 .2 4 7
1 .7 3 6
2 .3 7 3
7 .0 8 7

0 .7 8 9
1 .2 4 7
1 .7 3 6
2 .5 9 6
7 .0 8 7

0 .9 1 4
1 .6 3 5
2 .4 3 4
3 .7 2 9

1 0 .3 6 9

1 .2 9 7
3 .1 1 8
4 .8 3

7 .6 7 5
3 2 .5 4 4

2 .0 8 6
4 .3 6 5
6 .5 6 6
9 .7 9 8

3 9 .6 3 1

1 .8 2 8
3 .2 7

4 .8 6 8
7 .1 5 4

2 0 .7 3 8

2 .0 8 6
4 .3 6 5
6 .5 6 6

1 0 .0 4 8
3 9 .6 3 1

Note: Entries are average from 1,000 simulations.



Chapter 5 

R esponse-Adaptive R epeated  
M easurem ent Designs

In this chapter, we develop a new adaptive allocation rule, which can accu

rately provide good estimates of the treatment effect and assign more patients 

to a better treatment. To achieve this goal, we introduce the concept of an 

evaluation function to evaluate the performance of each treatment sequence, 

and define a new optimality criteria, which has two components: the first 

component determines a treatment sequence that maximizes the information 

matrix; the second determines a treatment sequence that gives the best per

formance based on the observed data. This new design strategy is applicable 

to trials with both dichotomous and continuous responses.

5.1 Introduction

There has been a growing interest in the development of clinical trials to help 

ensure tha t the allocation strategy is better, being informed from all available 

sources. This interest has been fueled by the fact that some health interven

tions are largely ineffective and even harmful, and thus both a waste of public 

resources and unethical. In response-adaptive designs (RAD), we modify the 

trial on the basis of outcomes in previous observations in order to achieve a 

specific goal. Optimal designs are usually constructed under a single optimal

ity criterion. For example, Kushner(2003) proposed an adaptive allocation 

rule, which was found by replacing the classical optimal design strategy with
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a response adaptive allocation method to maximize the resulting information 

matrix on treatment effects after first few subjects have been observed. In 

the classical sequential trial, the decision to terminate the accession of new 

subjects is based on minimizing the expected sample size (Armitage, 1975). 

In play-the-winner designs, the goal is to minimize the number of subjects 

receiving inferior treatments (Zelen, 1969). However, such designs with a 

single objective are less intuitive. Clinical investigators may need to deal 

with more than one objective when designing an experiment (Moerbeek and 

Wong, 2002).

In this chapter we consider improving the current response-adaptive de

signs in three directions: 1 ) by developing the strategy for continuous as 

well as discrete responses, 2 ) by constructing optimal multiple-objective de

signs to increase both the estimation precision and the proportion of patients 

treated by better treatments, and 3) by using a more general model includ

ing the model with self and simple mixed carryover effects (Afsarinejad and 

Hedayat, 2002) and random subject effects as discussed in Chapter 3. Some 

applications to dichotomous and continuous responses will be discussed in 

Chapter 6  and Chapter 7, respectively.

Since the new allocation rule for response-adaptive RMD aims to address 

ethical issues, we will first define a way to evaluate the performance of a 

treatment sequence in Section 5.2. We then present the new allocation rule 

in Section 5.3.

5.2 Evaluation Function for a Treatm ent Se
quence

In order to assign more patients to better performing treatment sequences, 

we need an objective way to evaluate the performance of each treatment 

sequence. An Evaluation Function for a treatm ent sequence w ill be defined.

P ro p e rtie s  o f an  E valua tion  Function: An evaluation function for 

treatment sequence k based on the existing data, <?&(•), follows the following 

properties:
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1 ) it is non-negative;

2 ) it is monotonic.

Defining an evaluation function for a given treatment sequence is not 

unique. As long as the above two properties are satisfied, one can define 

various types of evaluation functions. Following an evaluation function, when 

two treatment sequences have the same values, we say that the performances 

of these two treatment sequences are indistinguishable.

Following are two examples of how to define an evaluation function.

E xam ple  1 : Consider a synthetic, two-treatment, two-period repeated 

measurement design, where drug A  and drug B  are randomly assigned to 10 

patients and dichotomous responses (1  if success, 0  if failure) are collected. 

The data are given in Table 5.1.

We advocate the idea from the play-the-winner rule and evaluate the 

performance of a treatment sequence by calculating the probability of suc

cess over all subjects, given that particular treatment sequence. Thus, an 

evaluation function can be defined as

_ = 1 I M9k m  ( • )

where ||S/<j| denotes the total number of successes for treatment sequence k 

in all periods, and ||/C|| denotes the total number of patients given treatment 

sequence k

In our example data, the corresponding value for each possible treatment 

sequence, based on the given evaluation function is:

5  i c7  2  19aa  =  g  —  1 - 6 7  ; gAB =  -  =  1;
2 2

9b a  =  g  —  0 - 6 7  ; gBB —  -  =  1 .

Therefore, treatment sequence A A  is the best among these four possible

treatment sequences. The performances of the treatment sequence A B  and 

B B  are indistinguishable at the current stage.

Exam ple 2: Let us consider another two-treatment two-period repeated 

measurement design to study the treatment effect of reducing the fever tem

perature. The data are given in Table 5.2.
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The normal body temperature is considered to be 37°C. When the body 

temperature rises above 37°C, the patient is said to have a fever. A better 

treatment sequence could reduce the fever to normal body temperature.

An evaluation function can be defined as a sample deviation from the cho

sen value of 37°C of a normal body temperature. In this case, a smaller value 

of gk indicates a better treatment sequence, because it indicates the treat

ment sequence that successfully reduces the body temperature of a patient 

to the normal level
zU=i HjiVijk -  37) 2

gt =  M i  { ]
where i(— 1 , 2 ) is the index of the period, j  represents those patients given 

treatm ent sequence k and yijk is the body temperature for the j th subject in 

the i th period given treatment sequence k, and ||A || is the total number of 

patients given treatment sequence k 

In our example data,

(37.5 -  37) 2 +  (37 -  37) 2 +  (37.8 -  37) 2 +  (37 -  37) 2
9 a a

-

+

(3 8 - 37) 2 + 
3

(3 7 -
3

37) 2 
’ - 0 .6 3

(37.5 — 37) 2 +  (38 -  37) 2 +  (37.5 -  37) 2 +  (37.5 — 37) 2

(37.5 — 37) 2 +  (37
2

-  37) 2 +  (38.5 -  37) 2 +  (37.5 — 37) 2

(38.5 — 37) 2 + (37.
3 8 -  37)9-1.75

(38.5 — 37) 2 +  (39 -  37) 2 +  (39 - 37) 2 +  (38.5 - 37) 2

gAB = --------------------------------------------------------------------------=  0.875

9 b a

9 b b  = ----------------------------------   =  6.25

Therefore, treatment sequence A A  performs the best among the four 

possible treatment sequences.

5.3 A llocation  Rule

A new allocation rule for setting up an adaptive design with total N  subjects 

can be conducted as follows.

S tep  1 : The first m (m  < N ) patients will be assigned using the optimal 

design suggested in the literature or a completely randomized design.
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S tep  2 : To allocate the j th patient, j  ^  m  + 1 , calculate the observed 

information matrix based on the data available from the first (j — 1 ) patients, 

denoted by A j_ i(Ii7-_i), and the evaluation function (Uj-_i),'where k =

1 , 2 , . . . ,  s, s is the total number of treatment sequences, H j_i is the allocation- 

and-response history of all first (j — 1 ) patients, including the following in

formation: 1 ) how many patients have been assigned to each treatment se

quence, 2 ) the values of the response variable at each time period for each 

patient.

For simplicity, we omit from and

For example, based on model 3.4 in Chapter 3, the observed information 

matrix given the data from the first j  — 1 patients is defined in Equation 

3.10, i.e.,

A j ^ =  N kX l C - 'X k
fceHj.i

where X k is the design matrix for treatment sequence k, and C is the esti

mated variance-covariance matrix for the response vector yjfc.

Under the equicorrelated covariance assumption,

C =  <7£2I +  < rfllT (5.3)

one can estimate the variance-covariance matrix using

C =  of I +  (5.4)

where of and of can be estimated using H j_i

S tep  3: Choose a treatment sequence k* for the j th patient to maximize 

the criterion A in (5.5). In situations where more than one treatment se

quence achieves the maximum criterion score, one can randomly assign one 

treatm ent sequence to the j th patient.

Here, without loss of generality, where we assume a higher value of g j- i tk 
indicates a better treatment sequence, the criterion A is defined as

A =  A— - -  +  (1 -  A) 9j~l'k (5.5)
Q ( A fa) (% _!))
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where A is a constant between zero and one.

Note that the criterion A has two components. The first component deals 

with choosing a treatment sequence to maximize the information matrix. 

The second deals with choosing a treatment sequence tha t gives the best 

performance based on the observed data. The A is used to balance the 

two objectives, and can be chosen by investigators prior to the experiment. 

Different values of A will give different weights to these two elements. The 

choice of A is often driven by which of these components researchers want to 

emphasize. We will discuss the effect of using different A values along with 

specific applications in Chapter 6  and Chapter 7.

A*(IHIj-i) is the (expected) Fisher information matrix after the j th obser

vation, given the history of the first (j — 1 ) patients, and the assump

tion tha t j th patient will be treated by treatment sequence k. For example, 

indicates the expected Fisher information matrix, which is cal

culated using the first j  patients and involves the data from the first (j — I) 

patients and uses the assumption that the j th patient will be treated by the 

treatment sequence A A.

The unknown parameters in the expected Fisher information matrix, 

A * ( H j _ i ) ,  can be estimated based on the observed data from the first (j — 1) 

patients. After using the plug-in method, the estimated Fisher information 

matrix is obtained, denoted by A * ( H j _ i ) .  For example, under the model 

(3.4) in Chapter 3, the estimated Fisher information matrix for k — A A  is

A f A(MJ- l ) =  £  M tX ^C _1X fc +  X ^ C ^ X aa  = A j - i  +

(5.6)

©(•) is an optimality criteria function such as the determinant (D-optimality), 

the trace (A-optimality) or the maximum eigenvalue (E-optimality) of the 

information matrix. Under the D-optimality criteria, treatment sequence k ^  

satisfies

© ( A p ^ i ) )  =  max |A |(H j_i))| (5.7)

Treatment sequence k ^  is the best treatment sequence based on the 

observed data If,--! under the evaluation function.
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S tep  4: Repeat steps 2 to 3 until all patients have been allocated.

Note that the above adaptive approach is applicable for both discrete and 

continuous responses, under suitable model assumptions.

In the next two chapters, we will discuss the implementation of the new al

location rule to trials with dichotomous responses and continuous responses, 

respectively.

5.4 Conclusion

In this chapter, we proposed a response-adaptive design strategy for con

structing repeated measurement designs to increase both the estimation pre

cision and the proportion of patients treated by better treatm ent sequences 

measured by a predefined evaluation function. This strategy improves the 

current response-adaptive designs, which have been constructed under a sin

gle objective. In addition, this new allocation rule is applicable to both 

continuous and dichotomous responses, and applicable to any type of re

peated measurement design models. We will discuss the applications of the 

new allocation rule in Chapters 6  and 7.
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Table 5.1: Dichotomous Response Data Example
Subject ID Treatment Sequence Resp 1 Resp 2

1 AA 1 1
2 AB 0 0
3 AA 1 1
4 BA 0 1

5 BB 1 0
6 BA 0 0

7 AB 1 1

8 AA 0 1

9 BA 0 1

10 BB 1 0

Table 5.2: Continuous Response Data Example
Subject ID Treatment Sequence Resp 1 Resp 2

1 AA 37.5 37
2 AB 37.5 38
3 AA 37.8 37
4 BA 37.5 37
5 BB 38.5 39
6 BA 38.5 37.5
7 AB 37.5 37.5
8 AA 38 37
9 BA 38.5 37.5

10 BB 39 38.5
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Chapter 6

A daptive R epeated  
M easurem ent Designs for 
Dichotom ous Responses

In this chapter, we implement the adaptive allocation rule proposed in Chap

ter 5 for repeated measurement designs with dichotomous responses. The 

evaluation function is defined in the spirit of the play-the-winner rule. We 

provide the detailed allocation rule for constructing adaptive two-treatment 

two-period repeated measurement designs, and then extend it to two-treatment 

p-period repeated measurement designs. Simulations are carried out to study 

the performance of the allocation rule.

6.1 A daptive Two-Treatm ent R epeated  M ea
surem ent D esign

6.1.1 Allocation Rule for Two-Period Repeated Mea
sures Data

Consider a two-treatment two-period repeated measurement design, where 

investigators want to compare the effectiveness of two drugs, A  and B.  There 

are four possible treatment sequences AA, AB , B A  and B B .  Suppose that 

N  patients were randomly selected from a well-defined population, and the 

first i patients were assigned using a design suggested in the literature, a 

completely randomized design, for example.

According to our new allocation rule, in order to allocate the (i +  l ) tft

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



patient, the observed information based on the data available from the first i 

patients should be calculated. Up to the i th patient, let Nu, N 2i, N3i and JV4i 

be the number of patients who were allocated to treatment sequence AA, AB,  

B A  and B B ,  respectively, with X)t=i ^ki = i- Let us further denote that

SiAi is the number of successes by A  in the first period; S2Ai is the number

of successes by A  in the second period; SiBl is the number of successes by B  

in the first period; and S2Bi is the number of successes by B  in the second 

period.

Obviously, S im  comes from two possible sources: 1) patients who received 

treatment sequence A A  and succeeded in the first period, denoted by S ^ ,  

and 2) those who received treatment sequence A B  and succeeded in the first 

period, denoted by S ^ .  Hence, S1Ai = + S ^ .

Similarly, we have S2Ai = + Sg£, Sw i = and S2Bi =

Sim  +  SiBu where S^m  denotes the number of successes by A A  in the second 

period; S^m denotes the number of successes by B A  in the second period; 

SfJi denotes the number of successes by B A  in the first period; denotes 

the number of successes by B B  in the first period; S2Bi denotes the number 

of successes by A B  in the second period; and S^b , denotes the number of 

successes by B B  in the second period.

According to Example 1 in Chapter 5, an evaluation function for a given 

treatment sequence can be defined as

q A A  I q A A

gAA,i

9AB,i

9BA,i

N u
q A B  i q A B  
J lA i ~r J 2Bi

N2l
q B A  i q B A  
° l B i  m  ° 2 At

N 3l 
+   ̂

N

C B B  I c B B
J lB i  J 2Bi (a  i \

9 B B , i  =  T7  (6.1)

The likelihood up to the i patient is

Li oc Tr̂ 1Ai ( l - 7r1)(Arii+iV2i_‘Sl>li)7rf1Bi( l - 7r2)(iV3,+JV4i_5lBi) x

7rfM1(l -  7r3 )(JVli+Ar3i_'s^ i)7rf2Bi(l -  7r4 ) (Af2i+JV“ - * « )  (6.2)
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where 7Ti is the success probability of A  in the first period; 7t2 is the success 

probability of B  in the first period; 7r3 is the success probability of A  in the 

second period; and 7r4 is the success probability of B  in the second period. 

Here, for simplicity, we assume there are no covariates, and iTi, 7t2, 7t3 and 7r4 

are fixed but unknown parameters of interest.

The log-likelihood k  is then

k  OC Si  At log 7Ti +  (Nu + N 2i -  SlAi) log (1 -  7TX)

+  SiBi log 7T2 +  (N3i +  N u  — SiBi) log (1 — 7T2)

+  S 2Ai log 7T3 +  (N u + N u  -  S 2Ai) log (1 -  7T3)

+  S 2Bi log 7r4 +  (N2i +  N Al -  S 2Bi) log (1 -  7r4) (6.3)

The (expected) Fisher information matrix up to the ith patient is

d 2li d 2h d 2li d 2U \d n J d ir td n 2 d n id w 3 dirxdiTi

dH i a 2h d 2 U
d n id n i dn2dTZ3 C?7T2#7T4

d 2U d 2li d 2L d 2h
dTTzd-Kl

d 2li d 2u d 2h d 2li
O n t(97T4^7ri d~,idn2

/

In particular, we have
d2l  1 = 0  

dnrdn'r
for any r ^  r' and r, r' — 1 , 2 ,3,4.

Therefore, the expected Fisher information matrix becomes

A t = diag( E ( ^  +  " “ f f f f i * ), £ ( ^ f  +  *^ « - git t ),

E { s ^  +  M g b a r ) ,  E (Zgi +  ( 6 ' 5 )

If the treatment sequence A  A  is assigned to the (i +  l ) th patient, at 

the (i +  l ) th stage, the number of patients who were allocated to treatment 

s e q u e n c e  A A, 7Vl l + 1 , will i n c r e a s e  b y  1 , a n d  t h e  n u m b e r  of p a t i e n t s  who were 

allocated to other treatment sequences will remain the same. Therefore, we 

have

E ( i V s ,.+ 1 M A )  =  { ^  +  1 “  J 2 i 3 4  ( 6 . 6 )
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Also, the expected number of successes by treatment A / B  in the first/second 

period up to the (i + l ) th patient, given the history of H, and the assumption 

tha t the (i +  l ) th patient will be allocated to treatment sequence AA, will 

become

E(S\A,i+l\AA) =  (SlAi +  1 )  ■ 7Ti +  SlAi • (1  — 7Tl) =  SlAi +  TTl
E(S2A,i+l\AA) = ( 5 2Ai +  1 )  ■ 7T3 +  S2A1 ■ ( 1  — ^ 3) =  S2A1 +  ^ 3
E(S1B<i+i\AA) = S1Bi
E{S2B,i+i\AA) — S2Bi (6-7)

Then, by plugging Equation 6 .6  and 6.7 into Equation 6.5, we have

A f^iM i)  = diag( jm n p  +  gtgi +

‘̂2At+'7r3 I ■̂ li+-/V3i + l~(^2J4i+7r3) S2S1 1 - ^ 2 i+ - ^ 4 i \
7r| (X—7T3)2 ’ ( l - 7 r 4 )2 /

(6 .8)

If the treatment sequence for the (i + l ) t/l patient is A B ,  we have the 

similar derivation results:

£(Ww I ^ - H “  +  1 (6.9)

and

E(SiA,i+l\AB)  — SlAi +  TTl 
E{S2A,i+i\AB) — S2Ai 
E(SiB,i+i\AB) =
E ( S 2B,i+l\AB) =  S2Bi +  7T4 (6.10)

Also,

A ^ i M t )  = diag( *1 ^ : 1  +  +  **+*«-?»»,

S2Ai  1 N i i + N i i —S i A i  S i r i + 7 T 4  . A ^ i + A f c i + l  —  ( ^ 2 B i + ^ 4 )  \

^ 3  ( 1  — 7 T 3 ) 2  ’  ^ 4  ( 1  — 7 T 4 ) 2  2

(6 .11)

Similarly, if the treatment sequence for the (i +  l ) th patient is BA,  then

* t i w M ) = { j £ +I s , 2>4 <6-12)
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and

E(S1A,i+1 \BA) = S1Ai
E(S2A,i+l\BA) — S2Ai+n3

S i  B i  +  112

E(S2B, i+i \BA) =  S 2B1 (6.13)

Then

A™{Mi ) = diag{

SlAi+n*  I N li + N n  +  l - ( 5 2 A i + ’''3) S 2 B1 . N2i+N4j — S 2 Bi ^
* 3  ( 1 - 7 T 3 ) 2 ’ 7 T | ( 1 - 7 T 4 ) 2  >

(6.14)

Finally, if the treatment sequence for the (i + l ) th patient is BB, then

w « i m , = { £ + 1  K i 2 , 3  («■«)

and

E (5 2Ai+1 |fiB ) — S2Ai

E(SiB,i+i\BB) = SiBi +  7T2
E(S2B,i+i\BB) =  S 2 B1 +  ^ 4  (6.16)

Then
i4 ^ (H i)  =  diag{ ^  +  ^«+^4|+i-(giB<+ita)

S2Ai I N u + N 2 i — S2Ai S 2 B i + ^ 4  I A r2 i + N 4 j  +  1 - ( ^ B i + T T - l )  \

* 3  ( 1 -JT3 ) 2  ’ i r j  ( l - i r 4 ) 2  /

(6.17)

R esu lt 6.1.1: The unknown parameters 7Ti, 7r2, ^ 3  and 114 in equations 

6 .8 , 6 .1 1 , 6 . I 4  and 6.17, are estimated using the data up to the ith patients, 

as below.

~   SlAi
Nu  +  iV2i

- _  SiBi
N31 +  Nm

- _  S2A1 

*3 ~  N u +  N 3i

7r4 =  S2B\ r (6.18)N21 + N&i
83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P r o o f  : According to the log-likelihood function given in Equation 6.3, 

we have

()  I , ( lr  TTlr  — d r  . ,
^ ±  = - - ~ T ----- -• r  =  1 ) 2 ,3,4 6.19
OTXr  7Tr  1 — 7Tr

where a\ =  5 i,4;, 02 =  SiBi, n.3 =  S 2A1, 0,4 =  S^Bi, m i ^ 1* +  Af2i, m 2 -

JV* +  m 3 =  TVij +  N$i and m 4 =  iV2j +  A^j.

If we let Equation 6.19 equal zero, then we have

7Tr =  — , r  =  l ,2 ,3 ,4 (6.20)
m r

Therefore Equation 6.18 holds. □

For a given value of A, under the optimality criteria of the estimated 

information matrix, 0 (.), we allocate a treatment sequence k* to the (i +  l ) th 

patient by maximizing the A as defined earlier in Chapter 5, Equation 5.5, 

i.e.,

A =  a — +  (1  -  A ) - ^ - ,  k = AA, AB, B A  or B B

where k'a's is a treatm ent sequence that maximizes 0 (A^+1(lHi)), and k ^  is 

a treatment sequence that maximizes gk,i-

We continue applying the same technique until all N  patients are assigned.

6.1.2 Allocation Rule for Three-Period Repeated Mea
sures Data

In three-period repeated measurement designs comparing the effectiveness 

of two drugs, drug A and drug B, there axe 8 (=  23) possible treatment 

sequences. Let T  be the set of all possible treatment sequences, i.e., T  =  

{AAA, A A B , A B A , A B B , B B B ,  B B A , B A B , B A A },  and let T*, be the kth 

element/treatment sequence in the set T, k = 1 ,2 , . . . ,  8 . For simplicity, we 

sometimes use the treatment sequence k to represent the treatment sequence 

Tk. As in Section 6.1.1, we assume that N  patients were randomly selected
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from a well-defined population, and the first i patients were assigned using the 

optimal design suggested in the literature, a completely randomized design, 

for example.

Let 7rr (where r = 1,2 and 3) be the success probability of treatment 

A  in the r th period and nr (where r =  4,5 and 6 ) be the success proba

bility of treatment B  in the (r — 3) ^ 1 period. Up to the ith patient, N& 

denotes the number of subjects receiving the treatment sequence k, where 

A; =  l , 2 , . . . , 8 . Sqti denotes the number of successes of treatment t in the qth 

period, where q = 1,2 and 3 and t = A  or B. For example, SiAi represents 

the number of successes of A in the first period up to the ith patients. Let 

Si =  {Si m , Si a,., S3Ai , SiBi, S2Bi, S3Bi)T, and let Si[r] be the rth element of S t, 

r  =  1 , 2 , . . .  , 6 .

Under the same assumptions as in Section 6.1.1, the likelihood function 

up to the i th patient is then

Li = H ’r?<W(l -  TTr)(NL' lr]~Slir]) (6 .2 1 )
r = l

where ATjl] =  Nu  +  N2i +  N3i +  Nu, A^,,[2 ] =  Nu  +  N u  +  Nn  +  N&, 

N l, [3] =  Nu + N 3i + N$i +  N%i, 1^(4] =  N$i +  N& +  Nu  +  N&, ^^[5 ] =  

N 3i +  N «  +  N$i +  N6i, and N i t [6 ] =  Nu  +  Nu  +  N 5i 4- Nn, with N^. =  

{NLi[l],NLi[ 2 i - . - ,N LM T-
The log-likelihood function /, becomes 

6

hoc ^ 2  (Si[r}lognr + (7VLi[r] -  Si[r])log(l -  Tiy)) (6.22)
r = 1

The expected Fisher information matrix up to the ith patient, Ai, which 

is a 6  x 6  diagonal matrix, becomes

< ^ 3 )

where r  =  1 , 2 , . . . ,  6 .

Similar to the Result 6.1.1 for adaptive two-treatment two-period RMDs, 

the unknown parameters 7rr at the current stage i are estimated as below

*  = H h  <6'24)
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where r =  1 , 2 , . . . ,  6

R esu lt 6.1.2: In two-treatment three-period repeated measurement de

signs with 8 possible treatment sequences: T  =  {AAA, A A B , A B A , A B B ,  

B B B ,  B B A , B A B , B A A }, the expected Fisher information matrix on the 

(z +  l ) t/l stage, given the history of Mi under the assumption that the (z +  l ) t/l 

patient receiving treatment sequence Tk, where Tk is the k th element in the 

treatment sequence set, and k = 1 ,2 ,. . .  ,8, is

A [ f 1(Mi) = D i a g ( ^ 4 -V 7T̂\  n r
+

N,
i + l  L Si+i[r]

(1  -  7Tr ) 2
(6.25)

where S i+1 = Si +  Diag{-K x u k), 7r =  ( 7̂ , 7̂ ,  . . . , 7 r 6 ) T , N Li+l = N Li +  u f ,  

Si and N Lt are defined in Equation 6.21, <Si+i[r] and N Lt+1 [r] are the rth 

element of Si+ 1 and N Li+l, respectively, and u k is the kth row vector of the 

matrix U defined below

U =  { u i ,u 2, . . . ,us)T =

( 1 1 1 0 0 0 \
1 1 0 0 0 1
1 0 1 0 1 0
1 0 0 0 1 1
0 0 0 1 1 1
0 0 1 1 1 0
0 1 0 1 0 1

^ 0 1 1 1 0 0 ^
k  =  1 , 2 , . . .  , 8 ,  r  — 1 , 2 , . . .  , 6 .

Proof:  First let us consider the case when k = 1, that is, the (i +  l) th

patient will receive treatment sequence AA A{—T\).

Similar to the case for adaptive two-treatment two-period RMDs in Sec

tion 6 .1 .1 , the expected number of patients receiving the treatment sequence 

k up to the (i + l ) th patient, given the history Hi and the assumption that 

the (i + l) th patient will be allocated to treatment sequence A A A  will become

E W j+ 1 | ^ )  =  { ^  +  1 kk Z { 3 8

and the expected number of successes by treatment A / B  in the l st/2 nd/3 rd 

period up to the (i +  l ) ih patient, given the history Hi and the assumption 

tha t the (z +  l ) th patient will be allocated to treatment sequence A A A  will 

become
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E

I  S, \  \  

| AAA

/

li4 ,i+ l  
^2i4,i+l
Saa.i+l 
5 l B , i + l

\  5'3Bii+i )
(  (S \ A i  +  1)^1 +  — 7Ti) ^

{S2A1 +  1 ) ^ 2  +  &2Ai(1  ~  712)
{ S 3 A 1 +  1)7T3  +  5 3 ^ ( 1  — 7I3 )

SlB i  

SlBi
V &3Bi

Let

Si+i[r] = { JrAi

and

N U+1[r]

( SiAi +  tti ^
5 mi +  712
S3A1 +  713
SlBi
SlBi

\  Sw i /

1,2,3
4,5,6

=  1 , 2 , . . . 6

(6.26)

with

u a a a  =  ( u A a a [1\, ■ ■ ■ , u A a a [6])T  =  ( 1 , 1 , 1 , 0 , 0 , 0 ) 5 

Therefore, we have

Af+r  (Hi) =  Diag(
5i+i[r] iVLi+1[ r ] - 5 i+1[r]

+
71f (1  -  7Tr ) 2

)

Similarly, we can show that Equation 6.25 holds true for other treatment 

sequences (k = 2 , 3 , . . . ,  8 ). □

Similar to the result for adaptive two-treatment two-period RMDs, the 

evaluation function (Equation 6.1) for treatment sequence k up to the i th 

patient is given below

9k i  —
Ufa X S%

Niki
(6.27)

where k — 1 ,2 , . . . ,  8 , and Uk is defined in Result 6.1.2.

For a given value of A, under the optimality criteria of the estimated 

information matrix, 0 (.), we choose a treatment sequence k* to the (i +  l ) th 

patient by maximizing A, defined in Equation 5.5, i.e.,

A = Ae(jh (H|))+ (i_ A)̂ +
e(A&°i(Mi)) ' ’ 9kWs

where ©(.), and k ^  are defined the same as before.
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6.1.3 Simulation Study

In this section, we first apply the allocation rule described in Section 6.1.1 

to construct two-treatment two-period response-adaptive RMDs, and then 

extend it to two-treatment three-period response-adaptive RMDS. 

T w o-treatm ent Tw o-period R esponse-A daptive R M D s  

Suppose at the initial stage, four patients were assigned, one for each 

type of treatment sequence. We then consider how to allocate the rest of the 

patients adaptively.

To assess the efficiency of an adaptive design, a matrix of mean squared 

error was computed

M S E  = E [ ( G -  0 ) ( 0 -  0)T] (6.28)

In the simulation study, the M SE  is estimated by

B

M S E  =  J ] (0 (6) -  0)( 0(6) — G f / B  (6.29)
6=1

where 0 ^  is the MLE obtained in the bth simulation run, B  is the total 

number of simulations.

Denote M S E \  as the matrix of mean squared error for the proposed 

adaptive design and M S E 0 for the reference design. Based on A —, D — 

or E —optimality criteria (Kiefer 1975), the relative efficiency (RE) of the 

adaptive design compared with the reference design is defined as below, re

spectively

trac e(M SE 0)
R E a 

R E i)

trace (M SEi)
\M SE 0\
\MSEi\
maxeigenvalu e(M S E 0)

E m a x e i g e n v a l u e  (MSEi)
When R E  — a > 1, the adaptive design is (a — 1) x 100% more efficient 

than the reference design. When R E  — a < 1, the adaptive design is only 

a x 1 0 0 % as efficient as the reference design.
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We investigated the performance of the allocation rule under various con

ditions by choosing combinations of adjusted weight (A) and total number of 

patients in the study (N). Five values of A (1,0.9,0.7,0.3 and 0), and four 

values of N  (10,20,40 and 100) were used. When A =  1, we only consider the 

objective of increasing the estimation precision, i.e., maximizing the infor

mation matrix and this will result in the usual response adaptive designs as 

considered by others (Kushner, 2003). When A =  0, the only objective of the 

design is to increase the proportion of patients assigned to a better treatment 

as considered in designs for the typical play-the-winner rule (Zelen, 1969). 

When 0 < A < 1, both objectives are taken into consideration, and the adap

tive design balances these two objectives according to the specified goal. In 

this section, 1,000 simulation data were generated for each condition. The R 

program code is available upon request.

The Case o f Equal Success Probability

We first consider the situation when treatments A  and B  perform equally 

well in both periods 1 and 2, i.e., 7Ti =  7t2 =  7r3 =  7t4. Table 6.1 summarizes 

the estimated average number of patients receiving each treatment sequence 

based on the 1,000 simulation results with 7q =  0.5, i = 1,2,3,4.  We can see 

tha t in this case, for all combinations of N  and A, an approximately equal 

number of patients will be assigned to each of the four treatment sequences. 

As the total number of patients increases, the distribution of the allocation 

is skewed a little, it is due to the limited data available in the initial stage. 

The estimation of the success probabilities of treatments in different periods, 

Hi, and the precision of the estimations are displayed in Table 6.2 and Table 

6.3.

Table 6.2 presents the mean and standard deviation (SD) of the 1,000 

simulation samples. It shows that, for a fixed value of A, when the total 

number of patients enrolled in the study increases, the standard deviation of 

the estimation decreases. When A < 1 , the estimated success probabilities 

are systematically lower than the true values. It is because some simulation 

samples produce extremely small (close to zero) estimations of the success 

probabilities. Therefore, mean and standard deviation may not be good
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measures to characterize the center and the variability of the estimates when 

A < 1.

Table 6.3 presents the median and median absolute deviation (MAD) of 

the estimates from the 1,000 simulation data samples, where MAD is defined 

as

MAD =  median(|x, — £|) (6.31)

where x  is the median of the data. It shows that the median of the 1,000 

simulated results are close to the true values. MAD measures a variation of 

the average absolute deviation. It is also less affected by extremes in the tail. 

Not surprisingly, for a fixed value of A, when the total number of patients 

enrolled in the study increases, the precision of the estimation also increases. 

For a fixed value of N,  when A decreases, the MAD increases, that is, the 

precision of the estimation decreases as expected. The design with A =  1 

produces estimations with better precision than the designs with A < 1, as 

expected.

Table 6.4 summarizes the characteristics of the mean squared error (MSE) 

of each design under the A-, D- and E-optimality, respectively. We find the 

similar patterns as observed in Tables 6.2 and 6.3 as a function of N  and A.

Figures 6.1, 6.2 and 6.3 illustrate the relative efficiency between the adap

tive designs with A < 1 and the reference design (the design with A =  1) under 

the A-, D- and E-optimality, respectively. Once again, we can see tha t the de

sign with A =  1 produces a more precise estimation than designs with A < 1. 

This is as expected, and it is because more weight is given to considering 

the performance of the treatments rather than the precision of the estimates 

as the value of A decreases. In addition, the simulation demonstrates tha t 

the adaptive design with A close to 1 both provides estimates with relatively 

high precision and favors the allocation results to more effective treatments.

The Case o f Unequal Success Probability
Similarly, we consider the situation when the success probabilities, 7qs, 

are not all the same, for example, tti = 0.6, 7r2 =  0.3, tt3 =  0.7 and 7t4 =  0.5. 

For each combination of A and N,  1,000 data samples were simulated.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 6.5 shows that when A =  1, on average, adaptive designs assign ap

proximately equal numbers of patients to each treatment sequence; however 

when A < 1, the adaptive design constructed under the new allocation rule 

successfully assigns more patients to the better treatment sequence, which 

is treatm ent sequence A A  in this case, even when sample size is small (e.g. 

N  =  10). In addition, as N  increases, the proportion of patients receiving the 

best treatment {AA) increases; whereas the proportion of patients receiving 

the worst treatment (B B ) decreases.

Tables 6 . 6  and 6.7 report the mean (standard deviation) and the median 

(median absolute deviation) of the point estimates of the success probabilities 

from the 1,000 simulated data samples, respectively. They both show that 

the spread of the estimate of 7q decreases when the total number of patients 

increases.

Table 6 . 8  summarizes the characteristics of the mean squared error (MSE) 

of each design under the A-, D- and E-optimality, respectively. Figures 6.4, 

6.5 and 6 . 6  illustrate the relative efficiency between the adaptive designs with 

A < 1 and the reference design (the design with A =  1) under the A-, D- and 

E-optimality, respectively. Similar to the equal success probability situation, 

although the design with A =  1 has the highest efficiency in terms of MSE, 

the design with A — 0.9 takes treatment performances into account and offers 

relatively high estimation precision.

Tw o-treatm ent Three-period R esponse-A daptive R M D s

Similar to the simulation study carried out for adaptive two-treatment 

two-period RMDs, we then apply the allocation strategy to construct two- 

treatment three-period RMDs adaptively. Suppose at the initial stage, eight 

patients were assigned, one for each type of treatment sequence. We then 

consider how to allocate the rest of the patients adaptively. As before, we 

consider the cases when A =  1,0.9,0.7,0.3 and 0, and N  =  40,80 and 120, 

and we assess the efficiency of a design using the mean squared errors.

The Case o f Equal Success Probability
Firstly, we consider the case when all treatments perform equally well. 

Assume tha t 7Tj =  0.5, i = 1 , 2 , . . . , 6 . Table 6.9 summarizes the estimated
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average number of patients who received each of 8  possible treatm ent se

quences based on the 1,000 simulated samples. It shows that when A < 1, 

an approximately equal number of patients was assigned to each treatment 

sequence. When A =  1, an equal number of patients was assigned to a treat

ment sequence and its dual treatment sequence, and treatment sequences 

A B B /B A A  slightly have more patients than other treatment sequences. 

Note that the design with A B B /B A A  is recommended by several researchers 

(Laska, Meisner and Kushner 1983, Kershner 1986) in the class of three- 

period designs with two treatments.

Tables 6.10 and 6.11 characterize the center and spread of the point esti

mates (based on Equation 6.24) of success probabilities, ^ s ,  using mean/SD 

and median/MAD respectively. Both tables clearly indicate that when the 

total number of patients involved in the study increases, the precision of the 

estimates increases accordingly.

Table 6.12 summarizes the mean squared error of estimates for 9=(iri, 

7r2 , 7t3, 7r4, 775, 7t6)t  under the A-, D- and E-optimality, respectively, for each 

adaptive design. The smaller value indicates a design with more efficiency 

in terms of MSE. In addition, Figures 6.7, 6 . 8  and 6.9 illustrate the relative 

efficiency between the designs with A < 1 and the reference design (the 

design with A =  1 ) under the A-, D- and E-optimality, respectively. They 

demonstrate that the design with A =  1 has the highest efficiency in terms 

of MSE. However, the design with A =  0.9 offers relatively high precision of 

the estimation, and more importantly, it takes the treatment benefits into 

account.

The Case o f Unequal Success Probability

Secondly, we consider the case when the success probabilities, 7qs, are not 

equal. Assume nq =  0.5, 7t2 =  0.6, 7t3 =  0.7, 7t4 =  0.5, 7t5 =  0.4 and =  0.3. 

The estimated average number of patients for each treatment sequence, based 

on the 1,000 simulation study, is given in Table 6.13; the center and spread of 

the point estimates of 7TjS are presented in Tables 6.14 and 6.15. In addition 

the assessment of the efficiency of adaptive designs with various combinations 

of A and N  are illustrated in Table 6.16, and Figures 6.10, 6.11 and 6.12.
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To summarize the above, when A =  1 , an approximately equal num

ber of subjects was assigned to a treatment sequence and its dual treatment 

sequence, and slightly more patients were given A B B /B A A ,  which is the op

timal 3-period design for two treatments recommended by several researchers 

(Laska, Meisner and Kushner 1983, Kershner 1986). However, when A <  1, 

adaptive designs assign more patients to the best treatment, AAA, and less 

subjects to the worst treatment, B B B , as A decreases. In addition, when the 

total number of patients involved in the study increases, the precision of the 

estimates increases accordingly. The design with A =  1 has the highest effi

ciency in terms of MSE. However, the designs with A < 1 take the treatment 

advantage into account. In practice, these two objectives should be balanced 

out.

6.2 A daptive Two-Treatm ent p-Period R epeated  
M easurem ent D esign

Now we consider an adaptive two-treatment multiple-period repeated mea

surement design (t = 2 and p >  2). Let A and B denote the two different 

treatments. There are 2P possible treatment sequences.

Suppose that N  patients were randomly selected from a well-defined pop

ulation, and the first i patients were assigned using the optimal design sug

gested in the literature, a completely randomized design, for example.

Let 7rr , when r =  1 , 2 , . . .  ,p, be the success probability of treatment A  in 

the r th period; when r  =  p + l ,p  +  2 , . . . ,  2p, nr is the success probability of 

treatm ent B  in the (r — p)th period.

Up to the ith patient (or sometimes called the i th stage), N u  denotes the 

number of subjects receiving treatment sequence k, where k =  1, 2 , . . . ,  2P.

Si =  (SiAi,- ■ ■, SPAi,SiBi,. • •, SPBi)T, where Sqti denotes the number of suc
c e s s e s  of t r e a t m e n t  t in t h e  qth p e r i o d ,  w h e r e  q = 1 ,2 ,...  ,p a n d  t = A or B.

For example, SiAi represents the number of successes of A in the first period 

at the i th stage.
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The likelihood function up to the ith patient is then

Li = I I  -  7rr )(Wi-[r|“s''M) (6.32)
r = l

where Si[r] is the r th element of Si, and if 1 < r < p, A^Jr] denotes the total 

number of patients receiving treatment A in the rth period; if p + 1 <  r  < 2p, 

N Li [r] denotes the total number of patients receiving treatment B in the 

(r -  p)th period. Finally, let N Li =  (iVLi[l], JVLi[2],. . . ,  NLi[2p])T 

The log-likelihood function f  becomes

2 p

* « £  {Si[r]logirr + (N Li[r] -  Sj[r])Zo0 (l -  7rr )) (6.33)
r = 1

and for each r, r = 1, 2, . . . ,  2p, we have

dk __ Si[r] +  A^Jr] -5 j[ r ]
d i rr  7rr  — (1  — 7rr )

9%  =  5j[r] N Li[r] -  Sj[r}
d i r 2 7r2 (1  — 7rr ) 2

o 2  ?

( b f o r r ^ r '  (6.34)
d 'K rd 'K r i

The expected Fisher information matrix, A i} which is a 2p x Ip  diagonal 

matrix, becomes

A. -  D„ s  ( e (SE1 +  M L = M )  E m  +
7T ( 1 - V r O 2 ' 7T2 ( l - 7 T 2p)21 “ 1J " 2  p

(6.35)

Similar to Result 6.1.1, the maximum likelihood estimation of unknown 

parameter 7rr  at t h e  stage i is obtained as

Wr =  ( }

where r = 1 , 2 , . . . ,  2p.

Similar to Result 6.1.2, we have the following result for calculating the 

conditional expected information matrix for the next stage.

R esu lt 6.2.1: In two-treatment p-period repeated measurement designs, 

the expected information matrix on the (i + l ) th stage, given the history o f Mi
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and the assumption that the (i + l) th patient is receiving treatment sequence 

k, where k =  1 , 2 , . . . ,  2P, is

TTf (1  -  TTi)*
Si+1[2p] , Nl  [2p] — Si+i [2p]

+  — (1 -  n2py  > (6 '37)

where

5i+i[r] =  5j[r] +  a T, r = 1,2, . . .  ,2p

and

n l,+i [r] = N Li[r]+0r i r = l , 2 , . . . ,  2p

where a r is the rth element of Diag(rr x u k), 7r =  (ttj, 7T2 , ...,7r2p)r , and f3r 

is the r th element of u k, and Uk =  (d(l, k ) , . . .  ,d(2p, k)). I f  1 <  r < p, 

d(r, k) — 1 if the treatment in the rth period of the treatment sequence k is

the treatment A; d(r, k) =  0, otherwise. I f  p + 1 <  r < 2p, d(r, k) — 1 i f  the

treatment in the (r — p)th period of the treatment sequence k is the treatment 

B ; d(r, k ) =  0, otherwise. And k =  1 , 2 , . . . ,  2P, r =  1 ,2 , . . . ,  2p.

Based on the play-the-winner rule, the evaluation function for treatment 

sequence k at stage i is given below

u k x Si 
9kl ~  N ki

where k = 1 , 2 , . . . ,  2P.

For a given value of A, under the optimality criteria of the estimated 

information matrix, 0 (.), we choose a treatment sequence k  to the (i + l ) th 

patient by maximizing the A

©(^(Mi)) 3kW,i

where k is a treatment sequence among 2P possible treatment sequences 

that maximizes © (A ^^H i)), and k ^  is a treatment sequence that maximizes 

gk}i, where k = 1 , 2 , . . . ,  2 P. Continue the application until all N  patients are 

assigned.
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6.3 A daptive t-Treatm ent p-Period R epeated  
M easurem ent D esign

The allocation rule is also applicable to construct adaptive t-Treatment p- 

Period repeated measurement designs. The major difficulty is that, in a gen

eral t-treatm ent p-period design, there are tp possible treatment sequences. 

The number of possible treatment sequences increases substantially as the 

values of t and p increase. In this case, one should narrow down the num

ber of treatment sequences of interest, and then apply the allocation rule 

to construct an adaptive design. The resulting adaptive design may not be 

optimal mathematically, but it is somewhat manageable to construct. Also, 

due to the difficulty of having all subjects comply until the termination of 

the experiment and the degree of difficulty increases as the number of periods 

gets larger, long period designs should be avoided in practice.

6.4 Conclusion

In this chapter, we utilized the allocation strategy proposed in Chapter 5 

to construct adaptive repeated measurement designs with dichotomous re

sponses/outcomes. We provide the detailed allocation rule for constructing 

adaptive two-treatment two-period repeated measurement designs, and then 

extend it to two-treatment p-period repeated measurement designs. In sim

ulation studies, we demonstrate that the designs with A < 1 constructed 

under the new proposed allocation rule are not as efficient as the design with 

A =  1 in terms of the mean squared error, but those designs successfully put 

more patients into the better treatment sequence. The value of A can be 

pre-determined by researchers, which is used to balance the two objectives of 

increasing the estimation precision and decreasing the proportion of patients 

receiving inferior treatments. A large value of A will place more emphasis on 

the estimation precision. When A =  1 the allocation rule becomes the usual 

response adaptive design as considered by other researchers (Kushner, 2003). 

A small value of A will emphasize the performance/benefit of the treatment.
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When A =  0, the allocation rule becomes a typical play-the-winner rule (Ze- 

len, 1969). In addition, simulation studies show tha t the design with a high 

value of A significantly favors the allocation results toward more effective 

treatm ent sequences without loss of much estimation precision.
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Figure 6.1: Relative Efficiency of 9 under A-optimality: p =  2, equal success
probabilities
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Note: 9={tti, 7t2, 7t3, 7r4)T. The design with A =  1 is the reference design. 
Relative efficiencies are calculated based on 1,000 simulations under 
2-treatment 2-period RMDs with iq =  0.5, i = 1,2,3,4
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Figure 6.2: Relative Efficiency of 9 under D-optimality: p — 2, equal success
probabilities
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Note: See notes for Figure 6.1.
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Figure 6.3: Relative Efficiency of Q under E-optimality: p — 2, equal success
probabilities

lam bda= 0.9  
-A -  lam bda= 0.7  
•■+■ lam bda=0.3  
-x- lam bda=0

>.

o

10 20 30 40 50 60 70 80 90 100

Note: See notes for Figure 6.1.
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Figure 6.4: Relative Efficiency of 9 under A-optimality: p = 2
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Note: 0 = (7Ti,7t2 ,tt3 , 7T4)t . The design with A =  1 is the reference design. 
Relative efficiencies are calculated based on 1,000 simulations under 
2-treatment 2-period RMDs with 7Ti =  0.6, 7T2 =  0.3, 7r3 =  0.7, and 774 =  0.5.
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Figure 6.5: Relative Efficiency of 6 under D-optimality; p =  2
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Figure 6.6: Relative Efficiency of 6 under E-optimality: p = 2
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Note: See notes for Figure 6.4.
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Figure 6.7: Relative Efficiency of 6 under A-optimality: p = 3, equal success
probabilities
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Note: tt2, 7T3 , 7T4 , 7t5, 7T6)t . The design with A =  1 is the reference
design. Relative efficiencies are calculated based on 1,000 simulations under 
2-treatment 3-period RMDs with 7T; =  0.5, i = 1 ,2 , . . . ,  6
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Figure 6.8: Relative Efficiency of 6 under D-optimality: p = 3, equal success
probabilities
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Note: See notes for Figure 6.7.
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Figure 6.9: Relative Efficiency of 6 under E-optimality: p = 3, equal success
probabilities
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Note: See notes for Figure 6.7.
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Figure 6.10: Relative Efficiency of 0 under A-optimality; p =  3
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Note: 0 = (7Ti, 7T2 , 773, 7T4 , 7T5 , 7T6)t . The design with A =  1 is the reference 
design. Relative efficiencies are calculated based on 1,000 simulations under 
2-treatment 3-period RMDs with 7Ti =  0.5, 7t2 =  0.6, 773 =  0.7, 774 =  0.5, 
7r5 =  0.4, and 776 =  0.3.
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Figure 6.11: Relative Efficiency of 6 under D-optimality: p — 3
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Note: See notes for Figure 6.10.
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Figure 6.12: Relative Efficiency of 6 under E-optimality: p = 3
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Table 6.1: Estimated Numbers of Patients for Each Treatment Sequence:
p = 2, equal success probabilities

N A N aa N ab N b a N b b
1 0 1 2.308 2.411 2.858 2.423
10 0.9 2.581 2.315 2.693 2.411
1 0 0.7 2.541 2.408 2.7 2.351
1 0 0.3 2.582 2.414 2.49 2.514
1 0 0 2.355 2.526 2.482 2.637
2 0 1 4.933 4.94 5.279 4.848
2 0 0.9 5.252 4.721 5.128 4.899
2 0 0.7 5.764 4.748 4.688 4.8
2 0 0.3 5.461 4.724 4.752 5.063
2 0 0 4.626 4.805 4.947 5.622
40 1 9.956 9.868 10.113 10.063
40 0.9 11.233 9.051 9.693 10.023
40 0.7 1 2 .0 1 1 9.376 9.149 9.464
40 0.3 10.757 10.084 8.904 10.255
40 0 10.168 9.178 9.97 10.684

1 0 0 1 24.973 24.799 25.141 25.087
1 0 0 0.9 26.218 24.679 24.711 24.392
1 0 0 0.7 31.736 23.866 21.512 2 2 .8 8 6

1 0 0 0.3 27.429 24.049 23.112 25.41
1 0 0 0 24.241 26.554 25.172 24.033

Note: Entries are based on 1,000 simulations under 2-treatment 2-period 
RMDs with 7Tj =  0.5, i — 1, 2,3,4.
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Table 6.2: Mean and Standard Deviation of the Parameters of Interest: p =  2, equal success probabilities

N A 7f2 7T3 7f4
10 1 0.507 ( 0.208 ) 0.496 ( 0.205 ) 0.495 ( 0 .2 1 2  ) 0.503 ( 0.224 )
10 0.9 0.487 ( 0.213 ) 0.491 ( 0 .2 0 2  ) 0.490 ( 0.207 ) 0.479 ( 0 .2 2 0  )
10 0.7 0.481 ( 0.206 ) 0.491 ( 0.204 ) 0.472 ( 0 .2 0 1  ) 0.477 ( 0.231 )
10 0.3 0.468 ( 0.239 ) 0.470 ( 0.236 ) 0.452 ( 0.243 ) 0.456 ( 0.241 )
10 0 0.459 ( 0.260 ) 0.443 ( 0.257 ) 0.442 ( 0.262 ) 0.438 ( 0.251 )
2 0 1 0.499 ( 0.159 ) 0.507 ( 0.155 ) 0.506 ( 0.154 ) 0.498 ( 0.157 )
2 0 0.9 0.487 ( 0.161 ) 0.492 ( 0.162 ) 0.482 ( 0.154 ) 0.488 ( 0.168 )
2 0 0.7 0.477 ( 0.164 ) 0.474 ( 0.164 ) 0.466 ( 0.158 ) 0.452 ( 0.195 )
2 0 0.3 0.452 ( 0.197 ) 0.448 ( 0.205 ) 0.434 ( 0.199 ) 0.431 ( 0 .2 1 0  )
2 0 0 0.425 ( 0.226 ) 0.445 ( 0 .2 2 0  ) 0.428 ( 0.242 ) 0.435 ( 0 .2 2 1  )
40 1 0.500 ( 0 .1 1 2  ) 0.502 ( 0 .1 1 0  ) 0.500 ( 0.114 ) 0.496 ( 0 .1 1 2  )
40 0.9 0.490 ( 0.116 ) 0.486 ( 0.123 ) 0.491 ( 0 .1 2 0  ) 0.480 ( 0.116 )
40 0.7 0.468 ( 0.131 ) 0.467 ( 0.137 ) 0.466 ( 0.135 ) 0.444 ( 0.155 )
40 0.3 0.431 ( 0.177 ) 0.424 ( 0.193 ) 0.415 ( 0.192 ) 0.426 ( 0.187 )
40 0 0.428 ( 0.197 ) 0.416 ( 0.193 ) 0.429 ( 0.199 ) 0.410 ( 0.197 )

1 0 0 1 0.503 ( 0.072 ) 0.497 ( 0.071 ) 0.500 ( 0.072 ) 0.502 ( 0.070 )
1 0 0 0.9 0.488 ( 0.079 ) 0.489 ( 0.077 ) 0.493 ( 0.079 ) 0.487 ( 0.083 )
1 0 0 0.7 0.468 ( 0 .1 0 0  ) 0.459 ( 0 .1 2 0  ) 0.464 ( 0.105 ) 0.444 ( 0.139 )
1 0 0 0.3 0.416 ( 0.170 ) 0.421 ( 0.169 ) 0.415 ( 0.171 ) 0.418 ( 0.171 )
1 0 0 0 0.418 ( 0.183 ) 0.412 ( 0.189 ) 0.415 ( 0.186 ) 0.413 ( 0.189 )

Note: See notes for Table 6.1
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Table 6.3: Median and Median Absolute Deviation of the Parameters of Interest: p = 2, equal success probabilities

N A Tfl *2 7T3 7f4
1 0 1 0.500 ( 0.148 ) 0.500 ( 0.148 ) 0.500 ( 0.148 ) 0.500 ( 0.247 )
1 0 0.9 0.500 ( 0.148 ) 0.500 ( 0.148 ) 0.500 ( 0.247 ) 0.500 ( 0.247 )
1 0 0.7 0.500 ( 0.247 ) 0.500 ( 0.247 ) 0.500 ( 0.247 ) 0.500 ( 0.247 )
1 0 0.3 0.500 ( 0.247 ) 0.500 ( 0.247 ) 0.500 ( 0.247 ) 0.500 ( 0.247 )
1 0 0 0.500 ( 0.247 ) 0.500 ( 0.247 ) 0.500 ( 0.247 ) 0.500 ( 0.247 )
2 0 1 0.500 ( 0.148 ) 0.500 ( 0.148 ) 0.500 ( 0.148 ) 0.500 ( 0.148 )
2 0 0.9 0.500 ( 0.148 ) 0.500 ( 0.148 ) 0.500 ( 0.148 ) 0.500 ( 0.171 )
2 0 0.7 0.500 ( 0.148 ) 0.500 ( 0.185 ) 0.471 ( 0.159 ) 0.464 ( 0.194 )
2 0 0.3 0.500 ( 0.165 ) 0.500 ( 0.185 ) 0.471 ( 0.168 ) 0.471 ( 0.192 )
2 0 0 0.500 ( 0.185 ) 0.500 ( 0.165 ) 0.500 ( 0.185 ) 0.500 ( 0.171 )
40 1 0.500 ( 0.117 ) 0.500 ( 0.106 ) 0.500 ( 0.117 ) 0.500 ( 0.106 )
40 0.9 0.500 ( 0.114 ) 0.500 ( 0.117 ) 0.500 ( 0.114 ) 0.477 ( 0.108 )
40 0.7 0.482 ( 0 .1 2 2  ) 0.484 ( 0.130 ) 0.486 ( 0.128 ) 0.470 ( 0.134 )
40 0.3 0.471 ( 0.136 ) 0.474 ( 0.151 ) 0.467 ( 0.155 ) 0.474 ( 0.132 )
40 0 0.486 ( 0.127 ) 0.469 ( 0.129 ) 0.485 ( 0.136 ) 0.473 ( 0.140 )
1 0 0 1 0.500 ( 0.076 ) 0.500 ( 0.059 ) 0.500 ( 0.073 ) 0.500 ( 0.073 )
1 0 0 0.9 0.500 ( 0.076 ) 0.497 ( 0.070 ) 0.500 ( 0.074 ) 0.492 ( 0.073 )
1 0 0 0.7 0.490 ( 0.077 ) 0.488 ( 0.089 ) 0.488 ( 0.085 ) 0.480 ( 0.091 )
1 0 0 0.3 0.474 ( 0.098 ) 0.478 ( 0.103 ) 0.471 ( 0.106 ) 0.480 ( 0.094 )
1 0 0 0 0.479 ( 0.099 ) 0.479 ( 0.098 ) 0.479 ( 0.090 ) 0.480 ( 0 .1 0 0  )

Note: See notes for Table 6.1



Table 6.4: Characteristics of Mean Squared Error (MSE)
0=(tti, 7t2, 7t3, 'K\)t ' p =  2, equal success probabilities

N A Trace(MSE) Det(MSE) Eigen(MSE)
10 1 0.18019919 4.07E-06 0.050600461
10 0.9 0.1780056 3.87E-06 0.04894022
10 0.7 0.17903574 3.90E-06 0.054245484
10 0.3 0.23608263 1.18E-05 0.066660262
10 0 0.27697381 2.29E-05 0.073366209
2 0 1 0.09771915 3.55E-07 0.025904089
2 0 0.9 0.10446655 4.59E-07 0.029074776
2 0 0.7 0.12130864 7.85E-07 0.040481772
2 0 0.3 0.17835594 3.55E-06 0.057635957
2 0 0 0.22469509 9.63E-06 0.065059258
40 1 0.05016585 2.45E-08 0.013747111
40 0.9 0.05722919 4.13E-08 0.015987678
40 0.7 0.084193 1.78E-07 0.028976599
40 0.3 0.16325074 2.22E-06 0.057483292
40 0 0.17933922 3.61E-06 0.059754418

1 0 0 1 0.02034397 6.68E-10 0.005340812
1 0 0 0.9 0.02579329 1.69E-09 0.007233284
1 0 0 0.7 0.06192835 4.39E-08 0.025031049
1 0 0 0.3 0.14284705 1.18E-06 0.053077945
1 0 0 0 0.16899279 2.66E-06 0.059161278

Note: See notes for Table 6.1
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Table 6.5: Estimated Numbers of Patients for Each Treatment Sequence:
p = 2

N A n aa N ab N ba N bb
10 1 2.28 2.27 3.06 2.39
10 0.9 2.70 2.05 2.95 2.31
10 0.7 2.97 2 .1 0 2.80 2.13
10 0.3 3.35 2.38 2.43 1.84
10 0 3.42 2.60 2 .2 0 1.78
2 0 1 4.78 4.87 5.64 4.71
2 0 0.9 7.06 3.94 4.83 4.17
2 0 0.7 7.97 4.57 4.49 2.97
2 0 0.3 8.69 4.70 4.06 2.55
2 0 0 8.80 4.95 3.78 2.48
40 1 9.87 9.93 10.33 9.88
40 0.9 17.22 7.97 7.93 6 .8 8
40 0.7 20.49 8.58 6.74 4.19
40 0.3 20.74 9.69 6.26 3.31
40 0 18.60 11.09 6.92 3.39

1 0 0 1 25.05 24.73 25.07 25.16
1 0 0 0.9 53.87 19.91 15.89 10.32
1 0 0 0.7 63.15 2 0 .6 6 11.29 4.91
1 0 0 0.3 59.45 23.58 12.17 4.80
1 0 0 0 56.86 22.95 14.85 5.34

Note: Entries are based on 1,000 simulations under 2-treatment 2-period 
RMDs with 7Ti =  0.6, ir2 =  0.3, 7r3 =  0.7, and 7r4 — 0.5.
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Table 6 .6 : Mean and Standard Deviation of the Parameters of Interest: p — 2

N A TTl 7T2 7T3 7f4
1 0 1 0.575 ( 0.213 ) 0.314 ( 0.185 ) 0.683 ( 0.187 ) 0.506 ( 0.218 )
1 0 0.9 0.586 ( 0.204 ) 0.313 ( 0.189 ) 0.684 ( 0.188 ) 0.492 ( 0 .2 2 2  )
1 0 0.7 0.578 ( 0.208 ) 0.324 ( 0.178 ) 0 .6 6 6 ( 0.199 ) 0.474 ( 0.233 )
1 0 0.3 0.569 ( 0.213 ) 0.273 ( 0 .2 2 1  ) 0.649 ( 0.235 ) 0.441 ( 0.267 )
1 0 0 0.558 ( 0.241 ) 0.245 ( 0.241 ) 0.664 ( 0.260 ) 0.450 ( 0.276 )
2 0 1 0.601 ( 0.154 ) 0.305 ( 0.141 ) 0.697 ( 0.138 ) 0.497 ( 0.158 )
2 0 0.9 0.584 ( 0.150 ) 0.297 ( 0.145 ) 0.690 ( 0.141 ) 0.476 ( 0.180 )
2 0 0.7 0.587 ( 0.146 ) 0.303 ( 0.144 ) 0.677 ( 0.160 ) 0.451 ( 0.207 )
2 0 0.3 0.573 ( 0.180 ) 0.279 ( 0.189 ) 0.653 ( 0.188 ) 0.409 ( 0.242 )
2 0 0 0.569 ( 0.187 ) 0.227 ( 0.204 ) 0.660 ( 0 .2 0 0  ) 0.410 ( 0.262 )
40 1 0.601 ( 0.109 ) 0.299 ( 0.104 ) 0.699 ( 0 .1 0 0  ) 0.501 ( 0.118 )
40 0.9 0.602 ( 0.099 ) 0.293 ( 0.114 ) 0.691 ( 0.097 ) 0.476 ( 0.141 )
40 0.7 0.586 ( 0.105 ) 0.294 ( 0.126 ) 0.674 ( 0.123 ) 0.441 ( 0.184 )
40 0.3 0.568 ( 0.144 ) 0.257 ( 0.182 ) 0.641 ( 0.191 ) 0.415 ( 0 .2 2 0  )
40 0 0.553 ( 0.168 ) 0 .2 2 2 ( 0.203 ) 0.642 ( 0.195 ) 0.420 ( 0.228 )

1 0 0 1 0.600 ( 0.072 ) 0.300 ( 0.065 ) 0.702 ( 0.063 ) 0.503 ( 0.069 )
1 0 0 0.9 0.598 ( 0.058 ) 0.283 ( 0.096 ) 0.693 ( 0.065 ) 0.474 ( 0 .1 1 0  )
1 0 0 0.7 0.594 ( 0.073 ) 0.289 ( 0.126 ) 0.679 ( 0.094 ) 0.428 ( 0.178 )
1 0 0 0.3 0.565 ( 0.131 ) 0.253 ( 0.177 ) 0.645 ( 0.158 ) 0.403 ( 0 .2 1 2  )
1 0 0 0 0.559 ( 0.146 ) 0.223 ( 0.190 ) 0.645 ( 0.180 ) 0.393 ( 0.227 )

Note: See notes for Table 6.5
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Table 6.7: Median and Median Absolute Deviation of the Parameters of Interest: p = 2

N A Tfl 7T2 7T3 7f4

1 0 1 0.600 ( 0.297 ) 0.286 ( 0.169 ) 0.714 ( 0.169 ) 0.500 ( 0.247 )
10 0.9 0.600 ( 0.297 ) 0.250 ( 0.185 ) 0.714 ( 0.169 ) 0.500 ( 0.247 )
10 0.7 0.600 ( 0 .2 2 2  ) 0.333 ( 0.198 ) 0.714 ( 0 .2 1 2  ) 0.500 ( 0.247 )
10 0.3 0.600 ( 0 .2 2 2  ) 0.286 ( 0.318 ) 0.667 ( 0.247 ) 0.500 ( 0.247 )
10 0 0.600 ( 0 .2 2 2  ) 0.250 ( 0.371 ) 0.714 ( 0.238 ) 0.500 ( 0.247 )
2 0 1 0.600 ( 0.148 ) 0.300 ( 0.148 ) 0.700 ( 0.148 ) 0.500 ( 0.148 )
2 0 0.9 0.583 ( 0.124 ) 0.286 ( 0.169 ) 0.700 ( 0.127 ) 0.500 ( 0.185 )
2 0 0.7 0.600 ( 0.148 ) 0.286 ( 0.169 ) 0.700 ( 0.148 ) 0.500 ( 0 .2 0 2  )
2 0 0.3 0.600 ( 0.148 ) 0.300 ( 0.198 ) 0 .6 8 8 ( 0.134 ) 0.467 ( 0.198 )
2 0 0 0.611 ( 0.165 ) 0.250 ( 0.371 ) 0 .6 8 8 ( 0.134 ) 0.500 ( 0.247 )
40 1 0.600 ( 0.109 ) 0.300 ( 0.074 ) 0.700 ( 0.092 ) 0.500 ( 0.117 )
40 0.9 0.607 ( 0.088 ) 0.297 ( 0.113 ) 0.700 ( 0.094 ) 0.500 ( 0.148 )
40 0.7 0.594 ( 0.092 ) 0.286 ( 0.127 ) 0.692 ( 0.097 ) 0.500 ( 0.148 )
40 0.3 0.595 ( 0.094 ) 0.266 ( 0.183 ) 0 .6 8 8 ( 0.105 ) 0.500 ( 0.148 )
40 0 0.579 ( 0.116 ) 0.250 ( 0.371 ) 0 .6 8 6 ( 0 .1 1 1  ) 0.486 ( 0.165 )

1 0 0 1 0.600 ( 0.073 ) 0.300 ( 0.059 ) 0.700 ( 0.059 ) 0.500 ( 0.073 )
1 0 0 0.9 0.600 ( 0.059 ) 0.286 ( 0.095 ) 0.699 ( 0.058 ) 0.483 ( 0.099 )
1 0 0 0.7 0.600 ( 0.058 ) 0.281 ( 0 .1 2 0  ) 0.698 ( 0.055 ) 0.473 ( 0.145 )
1 0 0 0.3 0.593 ( 0.053 ) 0.265 ( 0.163 ) 0.691 ( 0.061 ) 0.478 ( 0.138 )
1 0 0 0 0.596 ( 0.059 ) 0.250 ( 0 .2 2 2  ) 0.690 ( 0.061 ) 0.476 ( 0.142 )

Note: See notes for Table 6.5



Table 6.8: Characteristics of Mean Squared Error (MSE)
0 = (7 r 1,7r2,7r3,7r4)r : p  =  2

N A Trace(MSE) Det(MSE) Eigen(MSE)
10 1 0.16301349 2.63E-06 0.047964887
1 0 0.9 0.16218494 2.59E-06 0.049870342
1 0 0.7 0.17198315 3.15E-06 0.055518706
1 0 0.3 0.22817374 9.59E-06 0.076045226
1 0 0 0.26811325 1.96E-05 0.079994734
2 0 1 0.08739959 2.22E-07 0.025007511
2 0 0.9 0.09665183 3.12E-07 0.03306143
2 0 0.7 0.11333011 5.08E-07 0.046129547
2 0 0.3 0.17281864 2.83E-06 0.06788199
2 0 0 0.20118257 5.24E-06 0.078267402
40 1 0.04642482 1.75E-08 0.013890562
40 0.9 0.05272822 2.44E-08 0.020892127
40 0.7 0.08027354 1.01E-07 0.037778329
40 0.3 0.15216839 1.55E-06 0.058318031
40 0 0.17710033 3.28E-06 0.060463731

1 0 0 1 0.01813612 4.12E-10 0.005239642
1 0 0 0.9 0.02997347 1.72E-09 0.013215
1 0 0 0.7 0.06735765 2.74E-08 0.037849566
1 0 0 0.3 0.13439885 8.68E-07 0.056416272
1 0 0 0 0.16316947 1.96E-06 0.066333508

Note: See notes for Table 6.5
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Table 6.9: Estimated Numbers of Patients for Each Treatment Sequence:
p =  3, equal success probabilities

N A N aaa N aab N a b a N a b b N b b b N b b a N b a b N b a a
40 1 3.782 4.356 5.263 6.599 3.782 4.356 5.263 6.599
40 0.9 5.058 4.957 4.857 5.057 5.118 4.975 4.904 5.074
40 0.7 4.704 5.108 5.027 5.014 5.095 4.975 5.230 4.847
40 0.3 4.701 4.816 5.370 5.194 4.792 4.864 5.163 5.100
40 0 4.949 4.691 4.880 4.619 4.931 5.709 4.892 5.329
80 1 7.714 8.698 10.117 13.471 7.715 8.697 10.116 13.472
80 0.9 10.309 10.337 9.006 9.991 10.514 10.483 9.290 10.070
80 0.7 10.528 9.701 10.108 9.568 10.246 9.674 10.039 10.136
80 0.3 10.633 10.016 10.338 9.507 9.922 9.556 9.318 10.710
80 0 9.879 9.906 10.266 1 0 .0 1 0 9.506 9.816 1 0 .8 6 6 9.751

1 2 0 1 11.570 13.311 15.175 19.944 11.575 13.306 15.170 19.949
1 2 0 0.9 14.580 15.294 15.921 13.732 14.895 15.386 16.205 13.987
1 2 0 0.7 15.172 15.462 13.146 16.140 14.413 15.481 14.822 15.364
1 2 0 0.3 15.579 14.301 14.807 13.386 15.279 15.327 14.209 17.112
1 2 0 0 15.202 14.835 15.184 14.824 14.801 14.414 14.521 16.219

Note: Entries are based on 1,000 simulations under 2-treatment 3-period 
RMDs with 7q =  0.5, * =  1, 2 , . . . ,  6 .
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Table 6.10: Mean and Standard Deviation of the Parameters of Interest: p = 3. equal success probabilities

N A Tfl 7T2 7T3 7f4 7T5 Tfe
40 1 0.495 ( 0 .1 1 1  ) 0.501 ( 0.109 ) 0.493 ( 0 .1 1 2  ) 0.503 ( 0 .1 1 0  ) 0.499 ( 0.114 ) 0.496 ( 0 .1 2 0 )
40 0.9 0.494 ( 0 .1 1 0  ) 0.499 ( 0.113 ) 0.489 ( 0 .1 1 0  ) 0.496 ( 0 .1 1 1  ) 0.496 ( 0.115 ) 0.493 ( 0.116)
40 0.7 0.484 ( 0.123 ) 0.484 ( 0 .1 2 1  ) 0.481 ( 0 .1 2 2  ) 0.481 ( 0.123 ) 0.484 ( 0.116 ) 0.495 ( 0 .1 2 0 )
40 0.3 0.469 ( 0.140 ) 0.462 ( 0.134 ) 0.474 ( 0.137 ) 0.474 ( 0.133 ) 0.469 ( 0.139 ) 0.470 ( 0.137)
40 0 0.464 ( 0.149 ) 0.451 ( 0.153 ) 0.469 ( 0.145 ) 0.463 ( 0.145 ) 0.463 ( 0.147 ) 0.462 ( 0.147)
80 1 0.498 ( 0.078 ) 0.500 ( 0.080 ) 0.503 ( 0.079 ) 0.498 ( 0.080 ) 0.504 ( 0.078 ) 0.504 ( 0.079)
80 0.9 0.490 ( 0.083 ) 0.493 ( 0.079 ) 0.493 ( 0.079 ) 0.499 ( 0.084 ) 0.494 ( 0.081 ) 0.497 ( 0.080)
80 0.7 0.487 ( 0.094 ) 0.490 ( 0.091 ) 0.481 ( 0.095 ) 0.484 ( 0.097 ) 0.482 ( 0.097 ) 0.479 ( 0 .1 0 0 )
80 0.3 0.464 ( 0 .1 2 2  ) 0.466 ( 0.116 ) 0.470 ( 0 .1 1 1  ) 0.465 ( 0.117 ) 0.462 ( 0.117 ) 0.461 ( 0 .1 2 1 )
80 0 0.455 ( 0.133 ) 0.460 ( 0.136 ) 0.460 ( 0.139 ) 0.455 ( 0.132 ) 0.459 ( 0.139 ) 0.461 ( 0.132)

1 2 0 1 0.499 ( 0.066 ) 0.500 ( 0.064 ) 0.501 ( 0.066 ) 0.497 ( 0.064 ) 0.497 ( 0.063 ) 0.497 ( 0.063)
1 2 0 0.9 0.497 ( 0.066 ) 0.495 ( 0.069 ) 0.497 ( 0.066 ) 0.493 ( 0.066 ) 0.493 ( 0.067 ) 0.495 ( 0.064)
1 2 0 0.7 0.486 ( 0.083 ) 0.482 ( 0.083 ) 0.484 ( 0.080 ) 0.479 ( 0.084 ) 0.474 ( 0.085 ) 0.483 ( 0.085)
1 2 0 0.3 0.458 ( 0.115 ) 0.466 ( 0.103 ) 0.467 ( 0 .1 1 2  ) 0.470 ( 0 .1 1 1  ) 0.459 ( 0.107 ) 0.460 ( 0.115)
1 2 0 0 0.450 ( 0.132 ) 0.465 ( 0.124 ) 0.448 ( 0.130 ) 0.458 ( 0.129 ) 0.449 ( 0.139 ) 0.449 ( 0.134)

Note: See notes for Table 6.9
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Table 6.11: Median and Median Absolute Deviation of the Parameters of Interest: p =  3, equal success probabilities

N A 7Tl 7?2 7T3 7f4 7T5 7T6
40 1 0.500 ( 0.074 ) 0.500 ( 0.148 ) 0.500 ( 0.074 ) 0.500 ( 0.148 ) 0.500 ( 0.148 ) 0.500 ( 0.148)
40 0.9 0.500 ( 0.106 ) 0.500 ( 0.117 ) 0.500 ( 0.106 ) 0.500 ( 0.117 ) 0.500 ( 0.117 ) 0.500 ( 0.117)
40 0.7 0.500 ( 0.117 ) 0.500 ( 0.106 ) 0.500 ( 0.117 ) 0.500 ( 0.114 ) 0.500 ( 0.117 ) 0.500 ( 0.106)
40 0.3 0.500 ( 0.128 ) 0.484 ( 0.124 ) 0.500 ( 0.124 ) 0.500 ( 0.124 ) 0.500 ( 0.124 ) 0.500 ( 0.124)
40 0 0.484 ( 0.127 ) 0.479 ( 0.117 ) 0.500 ( 0.116 ) 0.485 ( 0.126 ) 0.486 ( 0.127 ) 0.500 ( 0.124)
80 1 0.500 ( 0.074 ) 0.500 ( 0.074 ) 0.500 ( 0.074 ) 0.500 ( 0.074 ) 0.500 ( 0.074 ) 0.500 ( 0.074)
80 0.9 0.490 ( 0.080 ) 0.500 ( 0.078 ) 0.490 ( 0.076 ) 0.500 ( 0.086 ) 0.500 ( 0.078 ) 0.500 ( 0.078)
80 0.7 0.500 ( 0.082 ) 0.500 ( 0.087 ) 0.489 ( 0.083 ) 0.500 ( 0.082 ) 0.500 ( 0.084 ) 0.500 ( 0.089)
80 0.3 0.489 ( 0.092 ) 0.486 ( 0.086 ) 0.493 ( 0.090 ) 0.486 ( 0.090 ) 0.485 ( 0.094 ) 0.484 ( 0.091)
80 0 0.485 ( 0.097 ) 0.491 ( 0.093 ) 0.500 ( 0.093 ) 0.486 ( 0.091 ) 0.493 ( 0.095 ) 0.487 ( 0.087)

1 2 0 1 0.500 ( 0.074 ) 0.500 ( 0.074 ) 0.500 ( 0.074 ) 0.500 ( 0.074 ) 0.500 ( 0.074 ) 0.500 ( 0.074)
1 2 0 0.9 0.500 ( 0.064 ) 0.500 ( 0.067 ) 0.500 ( 0.062 ) 0.500 ( 0.065 ) 0.500 ( 0.067 ) 0.500 ( 0.062)
1 2 0 0.7 0.500 ( 0.067 ) 0.494 ( 0.071 ) 0.494 ( 0.066 ) 0.491 ( 0.066 ) 0.487 ( 0.067 ) 0.498 ( 0.069)
1 2 0 0.3 0.482 ( 0.082 ) 0.488 ( 0.075 ) 0.495 ( 0.070 ) 0.500 ( 0.073 ) 0.485 ( 0.079 ) 0.486 ( 0.084)
1 2 0 0 0.484 ( 0.082 ) 0.500 ( 0.077 ) 0.483 ( 0.084 ) 0.491 ( 0.077 ) 0.491 ( 0.086 ) 0.486 ( 0.077)

Note: See notes for Table 6.9



Table 6.12: Characteristics of Mean Squared Error (MSE) of 6=(7Tx, 7r2,
tt5, tt6)T; P =  3, equal success probabilities

N A Trace(MSE) Det(MSE) Eigen(MSE)
40 1 0.0760775 4.04E-12 0.014800874
40 0.9 0.07599807 4.06E-12 0.013851653
40 0.7 0.0893677 1.06E-11 0.01656812
40 0.3 0.11764665 5.32E-11 0.024628863
40 0 0.13984216 1.47E-10 0.031615421
80 1 0.03736813 5.75E-14 0.006886318
80 0.9 0.03935808 7.74E-14 0.007510049
80 0.7 0.05636365 6.42E-13 0.011299752
80 0.3 0.0900547 9.75E-12 0.021702422
80 0 0.11987797 5.75E-11 0.026890976

1 2 0 1 0.02482528 4.91E-15 0.004631228
1 2 0 0.9 0.02649665 7.24E-15 0.00515708
1 2 0 0.7 0.04382803 1.40E-13 0.009511979
1 2 0 0.3 0.08165085 5.17E-12 0.020276189
1 2 0 0 0.11699973 4.42E-11 0.029867605

Note: See notes for Table 6.9
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Table 6.13: Estimated Numbers of Patients for Each Treatment Sequence:
p  = 3

N A N a a a N a a b N a b  a N a b b N b b b N b b a N b a b N b a a

40 1 4.287 4.455 5.039 6.219 4.276 4.460 5.037 6.227
40 0.9 6.598 4.456 5.257 3.829 4.155 5.126 4.633 5.946
40 0.7 8.168 3.661 5.193 2.945 2.681 5.506 3.760 8.086
40 0.3 8.754 3.480 5.167 2.301 2.233 5.408 3.127 9.530
40 0 9.439 2.923 5.321 2.033 1.958 5.200 3.266 9.860
80 1 8.367 9.042 10.171 12.420 8.382 9.027 10.156 12.435
80 0.9 15.035 8.258 10.429 6.753 6.773 10.736 7.864 14.152
80 0.7 19.718 6 .1 2 1 10.602 3.584 3.772 10.996 5.746 19.461
80 0.3 21.402 4.771 11.564 2.722 2.579 9.639 4.421 22.902
80 0 21.828 4.673 10.346 2.315 2.282 10.951 5.369 22.236

1 2 0 1 12.804 13.233 15.164 18.799 12.840 13.197 15.128 18.835
1 2 0 0.9 24.069 11.577 15.615 8.346 8.431 16.210 10.653 25.099
1 2 0 0.7 34.098 6.872 14.337 4.194 3.977 15.040 7.265 34.217
1 2 0 0.3 37.799 5.791 15.596 2.742 2.752 13.698 5.864 35.758
1 2 0 0 36.854 7.053 15.007 2.629 2.635 15.271 6.218 34.333

Note: Entries are based on 1,000 simulations under 2-treatment 3-period 
RMDs with 7ri =  0.5, 7t2 =  0.6, n3 = 0.7, 7r4 =  0.5, 7t5 =  0.4, and 7r6 =  0.3.
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Table 6.14: Mean and Standard Deviation of the Parameters of Interest: p — 3

N A TTl 7f2 7T~3 7f4 7T5 ^ 6

40 1 0.497 ( 0.113 ) 0.606 ( 0.109 ) 0.696 ( 0.103 ) 0.497 ( 0 .1 1 0  ) 0.397 ( 0 .1 1 1  ) 0.305 ( 0 .1 0 0  )
40 0.9 0.498 ( 0 .1 1 2  ) 0.592 ( 0.106 ) 0.704 ( 0.097 ) 0.489 ( 0 .1 1 2  ) 0.393 ( 0.115 ) 0.296 ( 0.113 )
40 0.7 0.485 ( 0.126 ) 0.590 ( 0 .1 1 0  ) 0.693 ( 0.096 ) 0.482 ( 0 .1 2 2  ) 0.383 ( 0.127 ) 0.280 ( 0.125 )
40 0.3 0.471 ( 0.136 ) 0.583 ( 0.123 ) 0.691 ( 0.103 ) 0.472 ( 0.139 ) 0.371 ( 0.145 ) 0.279 ( 0.143 )
40 0 0.464 ( 0.149 ) 0.571 ( 0.130 ) 0.692 ( 0.106 ) 0.455 ( 0.148 ) 0.360 ( 0.160 ) 0.264 ( 0.159 )
80 1 0.502 ( 0.077 ) 0.599 ( 0.078 ) 0.700 ( 0.072 ) 0.499 ( 0.080 ) 0.397 ( 0.075 ) 0.294 ( 0.072 )
80 0.9 0.500 ( 0.081 ) 0.598 ( 0.075 ) 0.696 ( 0.066 ) 0.488 ( 0.085 ) 0.395 ( 0.082 ) 0.292 ( 0.088 )
80 0.7 0.475 ( 0.104 ) 0.589 ( 0.087 ) 0.698 ( 0.065 ) 0.481 ( 0 .1 0 2  ) 0.384 ( 0.107 ) 0.283 ( 0.106 )
80 0.3 0.468 ( 0.115 ) 0.578 ( 0.103 ) 0.692 ( 0.084 ) 0.464 ( 0.124 ) 0.376 ( 0.134 ) 0.276 ( 0.135 )
80 0 0.462 ( 0.139 ) 0.570 ( 0.123 ) 0.687 ( 0.092 ) 0.458 ( 0.138 ) 0.354 ( 0.146 ) 0.263 ( 0.154 )

1 2 0 1 0.499 ( 0.064 ) 0.598 ( 0.064 ) 0.699 ( 0.058 ) 0.498 ( 0.065 ) 0.399 ( 0.063 ) 0.302 ( 0.059 )
1 2 0 0.9 0.491 ( 0.070 ) 0.598 ( 0.059 ) 0.698 ( 0.052 ) 0.494 ( 0.068 ) 0.392 ( 0.072 ) 0.293 ( 0.074 )
1 2 0 0.7 0.481 ( 0.087 ) 0.592 ( 0.064 ) 0.700 ( 0.049 ) 0.477 ( 0.091 ) 0.372 ( 0 .1 0 1  ) 0.279 ( 0.106 )
1 2 0 0.3 0.470 ( 0.115 ) 0.574 ( 0.098 ) 0.692 ( 0.068 ) 0.461 ( 0.124 ) 0.356 ( 0.133 ) 0.278 ( 0.126 )
1 2 0 0 0.461 ( 0.131 ) 0.565 ( 0 .1 2 2  ) 0.685 ( 0.094 ) 0.453 ( 0.139 ) 0.349 ( 0.149 ) 0.265 ( 0.157 )

Note: See notes for Table 6.13
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Table 6.15: Median and Median Absolute Deviation of the Parameters of Interest: p — 3

N A *2 7?3 7f4 7T5 Tfe
40 1 0.500 ( 0.148 ) 0.600 ( 0.074 ) 0.700 ( 0.074 ) 0.500 ( 0.074 ) 0.400 ( 0.148 ) 0.300 ( 0.074 )
40 0.9 0.500 ( 0.117 ) 0.600 ( 0.109 ) 0.708 ( 0 .1 0 1  ) 0.500 ( 0.117 ) 0.390 ( 0.115 ) 0.294 ( 0.118 )
40 0.7 0.500 ( 0.124 ) 0.600 ( 0.099 ) 0.697 ( 0.093 ) 0.500 ( 0.124 ) 0.391 ( 0.134 ) 0.278 ( 0.142 )
40 0.3 0.485 ( 0.126 ) 0.594 ( 0.108 ) 0.704 ( 0.089 ) 0.500 ( 0.124 ) 0.383 ( 0.144 ) 0.273 ( 0.152 )
40 0 0.500 ( 0.126 ) 0.588 ( 0.105 ) 0.706 ( 0.087 ) 0.474 ( 0.126 ) 0.375 ( 0.164 ) 0.265 ( 0.146 )
80 1 0.500 ( 0.074 ) 0.600 ( 0.074 ) 0.700 ( 0.074 ) 0.500 ( 0.074 ) 0.400 ( 0.074 ) 0.300 ( 0.074 )
80 0.9 0.500 ( 0.082 ) 0.600 ( 0.076 ) 0.698 ( 0.066 ) 0.488 ( 0.083 ) 0.394 ( 0.079 ) 0.292 ( 0.091 )
80 0.7 0.492 ( 0.089 ) 0.603 ( 0.071 ) 0.703 ( 0.058 ) 0.497 ( 0.089 ) 0.394 ( 0.095 ) 0.286 ( 0 .1 1 2  )
80 0.3 0.490 ( 0.091 ) 0.597 ( 0.069 ) 0.699 ( 0.062 ) 0.492 ( 0.094 ) 0.388 ( 0.116 ) 0.272 ( 0.136 )
80 0 0.493 ( 0.096 ) 0.595 ( 0.076 ) 0.700 ( 0.059 ) 0.493 ( 0.096 ) 0.375 ( 0.116 ) 0.273 ( 0.156 )

1 2 0 1 0.500 ( 0.049 ) 0.600 ( 0.049 ) 0.700 ( 0.049 ) 0.500 ( 0.074 ) 0.400 ( 0.074 ) 0.300 ( 0.049 )
1 2 0 0.9 0.500 ( 0.067 ) 0.600 ( 0.059 ) 0.699 ( 0.048 ) 0.493 ( 0.069 ) 0.394 ( 0.075 ) 0.295 ( 0.076 )
1 2 0 0.7 0.491 ( 0.073 ) 0.597 ( 0.056 ) 0.704 ( 0.044 ) 0.491 ( 0.069 ) 0.385 ( 0.083 ) 0.282 ( 0 .1 1 2  )
1 2 0 0.3 0.491 ( 0.081 ) 0.594 ( 0.060 ) 0.699 ( 0.044 ) 0.487 ( 0.083 ) 0.377 ( 0.115 ) 0.277 ( 0.114 )
1 2 0 0 0.491 ( 0.078 ) 0.594 ( 0.060 ) 0.701 ( 0.047 ) 0.491 ( 0.084 ) 0.375 ( 0 .1 2 0  ) 0.278 ( 0.144 )

Note: See notes for Table 6.13



Table 6.16: Characteristics of Mean Squared Error (MSE) of 7r2,
7T4, 7T5 , 7T6 ) t : p  = 3

N A Trace(MSE) Det(MSE) Eigen(MSE)
40 1 0.1767575 3.58E-11 0.1136501
40 0.9 0.1769994 3.71E-11 0.1135412
40 0.7 0.1948637 7.72E-11 0.122277
40 0.3 0.21776 2.58E-10 0.1255553
40 0 0.2395586 5.89E-10 0.1322444
80 1 0.1385881 9.41E-13 0.1078347
80 0.9 0.1413767 1.21E-12 0.109019
80 0.7 0.1539715 6.14E-12 0.1090196
80 0.3 0.1858105 5.10E-11 0.1180341
80 0 0.2200243 2.35E-10 0.1302987

1 2 0 1 0.1228153 1.24E-13 0.1020549
1 2 0 0.9 0.1254579 1.67E-13 0.1034812
1 2 0 0.7 0.1418052 1.57E-12 0.1075898
1 2 0 0.3 0.1775834 2.50E-11 0.1187581
1 2 0 0 0.213967 1.60E-10 0.1301959

Note: See notes for Table 6.13
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Chapter 7

A daptive R epeated  
M easurem ent Design for 
Continuous Responses

In this chapter, we illustrate the application of the new allocation rule pro

posed in Chapter 5 for trials with continuous responses/outcomes. Based on 

the self and mixed carryover effects model proposed in Chapter 3, we con

struct an adaptive two-treatment two-period repeated measurement designs 

first, and then extend it to two-treatment three-period repeated measure

ment designs. In simulation studies, we demonstrate that the efficiency of 

the designs constructed under the new proposed allocation rule increases with 

sample size, and these adaptive designs are more efficient than fixed optimal 

designs in terms of the mean squared error. Finally, we discuss the chal

lenges and difficulties in generalizing the results to arbitrary multi-treatment 

multi-period repeated measurement designs.

7.1 A daptive Two-Treatm ent R epeated  M ea
surem ent D esign

7.1.1 Allocation Rule for Two-Period Repeated Mea
sures Data

In an adaptive two-treatment two-period repeated measurement design, four 

different treatment sequences, AA, AB, B A  and B B ,  are available for assign

ment. Suppose that N  patients were randomly selected from a well-defined
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population, and the first i patients were assigned using some optimal design 

suggested in the literature, a completely randomized design, for example. Let 

Nu, N 2i, N-m and Nu  be the number of patients who have received treatment 

sequence AA, AB, B A  and B B ,  respectively, up to patient i.

The self and mixed carryover effect model for a two-treatment two-period 

repeated measurement design is defined as below.

Yjfe =  Xfc (3+ £ jl[2] +  £jk (7.1)

where y jk =  (yijidBjk)7' is the vector of observations from subject j  in 

treatm ent sequence k, where k can be AA, AB, B A  or BB ,  and 1 [2] is a 2  x 1 

vector of ones.

The parameter vector (5 =  (p, ir, r ,  7, tp)T consists of the overall mean 

effect ji, the period effect 7r (coefficient is 0  for the 1st period, and coefficient 

is 1 for the 2 nd period), the direct treatment effect r  (coefficient is 1 if receiv

ing treatm ent A, and coefficient is -1 if receiving treatment B),  the mixed 

carryover effect 7 (coefficient is 0  in the 1st period, coefficient is 1 if receiving 

treatment B  in the current period but receiving treatment A  in the previous 

period, and coefficient is -1  if receiving treatment A  in the current period but 

receiving treatment B  in the previous period), and the self carryover effect <p 

(coefficient is 0 in the 1st period, coefficient is 1 if receiving treatment A  in 

both previous and current periods, and coefficient is -1  if receiving treatment 

B  in both previous and current periods).

Therefore, the design matrix X*, for a given treatment sequence k is de

fined as follows.

„  /  1 0  1 0  0
-  \  1 1 1 0 1

Y /  1 0  1 0  0

^ 1 1 - 1  1 0

Y /  1 0  - 1  0  0

BA \  1 1 1 - 1 0

* » -  (:;:;roo < ->

are random subject effects, assumed to have a multi-normal distri

bution with mean 0 and a variance-covariance matrix cr| 1 [2] l^j. We assume
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that is independent of the random error e3k — (sijk, £2jk)T, which follows 

a multi-normal distribution with mean 0  and a variance-covariance matrix 

<t|I[2], where Ip] is a 2  x 2  identity matrix.

The variance-covariance matrix of the vector y jk , C, is then written as

Var(yjk) — C = CTgI[2 ] + u |l[ 2 ]lp] (7.3)

Up to the ith patient, based on the current observations, H*, the estimated 

information matrix up to the ith patient is

Ai = ' £  C-'X* = £  NkX Tk(a2EI [2] +  ^ | l [2]lg ]) - 1X fc (7.4)
feeH, feeHi

where of and are restricted maximum likelihood estimates (REML) for of 

and of, respectively, using the EM algorithm proposed by Laird and Ware 

(1982).

Then the estimated information matrix, given the history H* and the 

assumption that the (i +  l ) th patient receiving the treatment sequence AA,  

AB,  B A  or B B ,  will be defined as below, respectively.

Af+Mr)  = A i + X TAAC - ' X aa 

A f ^ m  = A, + X TABC~lX AB 

A ^ i M i )  = A t + X 1gAC~1X BA 

Af+®(Hi) =  Ai +  X L C - 1X BS (7.5)

At the same time, an evaluation function, gitk, is defined to evaluate the 

quality of the treatment sequence k based on the information of the first i pa

tients. To simplify, we assume a larger value of a response indicates a better 

treatment sequence and all the responses are nonnegative. Then the sum

mation of all outcomes from a given treatment sequence is a straightforward 

way to define an evaluation function.

For the predetermined value of A, the treatment sequence for the (i +  l ) t/l 

patient is determined by maximizing the criterion A as defined earlier in 

Chapter 5, Equation 5.5, i.e.,

A =  Ae ^ W ) + ( 1  — A)-gq

0 (A^°1, ( e i)) 
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where 0 (.) is the optimality criteria function such as the determinant (D- 

optimality), the trace (A-optimality) or the maximum eigenvalue (E-optimality) 

of the information matrix, is the treatment sequence which maximizes 

© (-^ i+ iO ® i))>  and k ^  is the treatment sequence which maximizes ĝ i- 
Repeat the same technique until all N  patients have been allocated.

7.1.2 Allocation Rule for Three-Period Repeated Mea
sures Data

The allocation rule for an adaptive two-treatment three-period repeated mea

surement design is a natural extension of that for a two-treatment two-period 

design. Eight different treatment sequences are available for assignment. We 

assume at the initial stage, first i patients are entered into the study. Let iVfci 

be the number of patients receiving treatment sequence k, where k  =  AAA,  

AAB,  AB A,  A B B ,  B B B ,  B B A ,  B A B  and BAA.

The self and mixed carryover effects model for a two-treatment three- 

period repeated measurement design can be written as

Vij T  7Ti T  [jjj +  (1  $ij)̂ fd[i—l,j] T  $iĵ Pd{i—1 J] T T  &ij ( 7 6 )

where denotes the response variable for subject j  in period i, y  is an 

overall mean, 7q and ^  are the period and subject effects, respectively, and 

d(i, j )  denotes the treatment used for subject j  in period i. Both 7d[i-ij] and 

<Pd[i-i,j\ represent carryover effects, while 5ij is an indicator variable, taking 

1 if d( i , j ) =  d(i — 1 , j )  and 0 otherwise. Thus 7d [i-i,j] is the mixed carryover 

effect, while <£>d[t-i,j] is the self carryover effect, with 7 d[op] =  Vtyoj] =  0  

A matrix format of the model (7.6) is

yjk — Xfc P + £ j 1 [3] +  £jk (7.7)

where y jk =  {yijk,y2jk,V3jk)T is the vector of observations from subject j  in 

treatm ent sequence k, and 1[3] is a 3 x 1 vector of ones.

The parameter vector (3 = {ji, 7r2, 7t3, t ,  7 , <p)T consists of the overall 

mean effect y,  the second period effect 7T2, the third period effect 773, the
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direct treatment effects r, the mixed carryover effect 7 and the self carryover

are random subject effects, assumed to have a multi-normal distribu

tion with mean 0 and variance-covariance matrix cr| 1 [3] 1 ^ .  We assume that 

is independent of the random error £jk =  (£ijk,£‘2jk,£3jk)T , which fol

lows a multi-normal distribution with mean 0  and variance-covariance matrix 

cr|I[3], where I [3] is a 3 x 3 identity matrix.

Then we have the design matrix X k for a given treatment sequence k, 

defined as follows.

/  1 0 0 1 0 0 \
= 1 1 0  1 0  1 

\  1 0  1 1 0  1 /

/  1 0  0  1 0  0  \
X/i/ijB = 1 1 0  1 0 1

\  1 0 1 —1 1 0 /
/  1 0  0  1 0  0  \

X ABA = 1 1 0 - 1  1 0
\  1 0 1 1 —1 0 /

/  1 0  0  1 0  0  \
X ABB = 1 1 0 - 1 1  0

\  1 0 1 —1 0 —1 /

/  1 0 0 -1 0 o \
X b b a  =  J 1 1 0 — 1 0 — I I

\  1 0  1 1 - 1  0  /

/  1 0  0  - 1  0  0  \
X bab = ( l l 0  1 —1 0 j

\  1 0  1 — 1 1 0 J

Similar to the two-treatment two-period RMD, under the equicorrelated 

covariance assumption, the covariance matrix of the vector y-fc, C, is then

effect ip.

■BAA (7.8)

C -  a-gl[3] +  <=r|l[3] Ipj]
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And the estimated information matrix up to the ith patient is 

A  = 2 2  N kX l C ~ lX k =  Y ,  MkX.Tk (a2£I[3] +  *?lp j lD - 'X *  (7.10)
fceiHi fceHi

And then the estimated information matrix, given the i + 1 patient re

ceiving the treatment sequence k, will become

A$+1(mi) = Ai + X l C - 1X k

Let g^k be an evaluation function for treatment sequence k up to the 

ith patients. To simplify, we assume a larger value of gttk indicates a better 

treatment sequence. For a predetermined value of A, the treatment sequence 

for the (i + l ) th patient is determined by maximizing the criterion A as defined 

earlier in Chapter 5, Equation 5.5, i.e.,

A =  Ae (A U H ,) ) + ( i _ A)- ^

© ( ^ ( M i ) )  9i*w

where 0 (.), k ^  and k ^  are defined the same as before.

Repeat the same technique until all N  patients have been allocated.

7.1.3 Simulation Study

Tw o-Period Designs

We first study the properties of the allocation rule proposed in the pre

vious section for two-period repeated measurement designs by simulations. 

Suppose at the initial stage, four patients have entered the study and each 

of them receives one of the four different treatment sequences (AA, AB,  B A  

or BB).  We then consider how to allocate the rest of the patients adaptively 

according to the observed data from these four patients.

In simulations, suppse <r| =  2, cr̂  =  1, and g  =  100. We choose 

A — 1,0.9,0.7,0.3 and 0, and N  =  10,20,40 and 100, respectively, where 

N  is the total number of patients in the study. A =  1 indicates we only con

sider the objective of increasing the estimation precision, i.e., maximizing the 

information matrix, while, A =  0 indicates the only objective of the design is 

to increase the proportion of patients assigned to a better treatment. When
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0 < A < 1, both objectives are taken into consideration, and the adaptive de

sign will balance these two objectives according to the researchers’ request. 

One thousand simulation data were generated for each situation. The R 

program code is available upon request.

For 7r =  T =  7  =  (p =  0, Table 7.1 shows, for all combinations of N  and 

A values, the trial will assign an approximately equal number of subjects to 

each of the four treatment sequences. In addition, the estimation of each 

parameter with its standard error (reported in the bracket) is summarized 

in Table 7.2, which indicates when sample sizes increase, standard errors of 

the estimations of the parameters of interest decrease. Given a fixed number 

of patients, the estimations of the parameters and their standard errors are 

quite similar among different A values, and they are all very close to the true 

values.

For 7r =  r  =  ip = 25 and 7  =  —25, Table 7.3 shows when A — 1 , we will 

assign an equal number of subjects to each of the four treatment sequences. 

When A < 1, more patients will be assigned to treatment sequence A A.  The 

rest of the patients, in decreasing order, will receive treatments BA, A B  or 

BB .  Based on the values of the parameters of interest, treatment A  is more 

effective than treatment B  (r  > 0); the treatment effect in the second period 

is stronger than tha t in the first period (7r >  0 ); the self carryover effect 

for the treatment sequence A A  is stronger than that for treatment sequence 

B B  (ip > 0), and the mixed carryover effect for treatment sequence B A  

is stronger than that for treatment sequence A B  ( 7  < 0). Therefore, the 

allocation results from the simulations are quite consistent with what one 

can expect (see Table 7.4).

The estimation of each parameter with its standard error in the bracket is 

summarized in Table 7.5. It indicates that in all cases, the estimated values 

are very close to the true values of the parameters of interest. For a fixed 

value of A, when N  increases, the precision of the estimation decreases. For 

a fixed value of N,  the standard error slightly increases when the value of A 

decreases. This happened because when A decreased we gave more concern 

to the ethical criterion rather than the precision of the estimators. It is a
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trade-off between benefit and cost. However, this result does not hold when 

N  — 10. It seems that when sample sizes are small, the precision of the 

estimation does not vary, whether the ethical issues are taken into account 

or not.

Three-Period D esigns

We then consider constructing three-period repeated measurement de

signs using the new adaptive allocation rule. Assume that 8  subjects were 

already entered in the study, one for each type of treatment sequence. Let 

cr| =  2, a\  =  1 , and fj, =  100. We choose A =  1,0.9,0.7,0.3 and 0, and 

N  = 40,80 and 120, respectively. One thousand simulation data were gener

ated for each situation. To assess the efficiency of a design, we still use the 

mean squared error method described in Chapter 6 .

Under the traditional model with an equi-correlated covariance structure, 

the design A B B / B A A  is known to be the universally optimal design (Laska, 

Meisner and Kushner 1983, Kershner 1986), as shown in Chapter 3, while, 

under the self and mixed carryover effects model, as shown in Chapter 3, 

the design A B A / B A B  is optimal for estimating the treatment difference. In 

this section, we also compare the adaptive designs constructed under the new 

allocation to the fixed designs, design A B B / B A A  and design A B A / B A B .

N o Treatm ent Difference

For 7t2 =  7r3 =  r  =  7  =  ip = 0, Table 7.6 shows when A < 1, we will 

assign an approximately equal number of subjects to each of the 8  treatment 

sequences. When A =  1, we will assign an approximately equal number of 

subjects to a treatment sequence and its dual treatment sequence. Most 

subjects were given A B B / BAA,  which is, by the way, a very popular design 

in clinical trials for comparing three treatments.

Table 7.7 summarizes the estimation of each parameter with its standard 

error. It shows tha t when N  increases, the standard error of the estimation of 

each parameter of interest decreases. For estimation of the treatment effect, 

r , the designs with A =  1 provide the smallest standard errors as expected. 

However, other designs also provide quite accurate estimates with slightly 

larger standard errors.
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Table 7.8 shows the trace, the determinant and the maximum eigenvalue 

of the mean squared error (MSE) matrix for designs with various values of 

A and for fixed designs A B A / B A B  and A B B / B A A ,  where smaller entries 

indicate more efficient designs. Note that, for design A B A / B A B ,  the trace, 

the determinant and the maximum eigenvalue of MSE for the estimation 

of 0 = (t, 7 , <p)T are not applicable, because the self carryover effect ip is not 

estimable in this case.

Figures 7.1, 7.2, 7.3 and 7.4 plot the estimated relative efficiency (RE) 

with design A B B / B A A  as the reference design for estimation of G=(r, 7 , p)T 

under A-, D-, and E-optimality, and for estimation treatment effect r ,  re

spectively, where RE > 1 indicates a more efficient design than the reference 

design. In all cases, adaptive designs increase the design efficiency 1.5 to 4 

times when compared with the fixed design A B B / BAA.  For estimation of 

the direct treatment contrast, design A B A / B A B  has the highest efficiency. 

However, the new proposed adaptive designs can provide similar high effi

ciency while also taking the treatment performance into consideration, which 

is superior to fixed designs.

W it h  T rea tm en t  D i f ference

For 7T2 =  7T3 =  r  =  ip = 25 and 7  =  —25, Table 7.9 shows that, as before, 

when A =  1, we will assign an approximately equal number of subjects to a 

treatment sequence and its dual treatment sequence, and most subjects were 

given A B B / BAA.  However, when A < 1, we will assign more subjects to 

treatment A A A  and less subjects to treatment B B B ,  as A decreases.

Table 7.10 summarizes the estimation of each parameter with its standard 

error in the bracket. It shows that when N  increases, the standard error of 

the estimation of the parameter decreases. For estimation of the treatment 

contrast, r ,  the design with A =  1 provides the smallest standard error since 

we only focus on the estimation precision in this situation. However, other 

adaptive designs with A < 1 also provide quite accurate estimations, with 

slightly larger standard errors.

Table 7.11 shows the trace, the determinant and the maximum eigenvalue 

of the mean squared error (MSE) matrix for designs with various values of
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A and for the fixed design A B A / B A B  and design A B B / BAA.  As before, 

smaller values indicate more efficient designs, and for design A B A / B A B ,  

the trace, the determinant and the maximum eigenvalue of MSE for the 

estimation of 0 — ( t , 7 , tp)T are not applicable.

Figures 7.5, 7.6, 7.7 and 7.8 plot the estimated relative efficiency (RE) 

with design A B B / B A A  as the reference design for the estimation of 6 under 

A-, D-, and E-optimality, respectively, and for estimation treatment effect 

r . As before, RE > 1 indicates a more efficient design than the reference 

design. In all cases, adaptive designs increase the design efficiency 1.5 to 4 

times when compared with the fixed design A B B / B A A .  For estimation of 

the direct treatment contrast, design A B A / B A B  has the highest efficiency. 

However, the new proposed adaptive designs can provide similar high effi

ciency, especially when the total number of subjects is large. It means that 

those adaptive designs constructed under the new adaptive allocation rule 

not only take the treatment performance into consideration, but also have 

relatively high efficiency, which makes them more attractive.

7.2 G eneralization

One can generalize the allocation rule to construct adaptive t-Treatment 

p-Period repeated measurement designs. However, similar to the case for 

dichotomous responses discussed in Chapter 6 , the main challenge is to nar

row down the number of treatment sequences out of tv possibilities, which 

increase substantially as the number of treatments and periods increase. One 

can consider a particular subset of RMDs, for example uniform cross-over de

signs (Bate and Jones, 2003). Or one can refer to the fixed optimal design re

sults available in the literature (Ebbutt 1984, Kershner 1986, Matthews 1987, 

Carriere and Reinsel 1992, 1993, Carriere 1994, Hedayat and Stufken 2003). 

For example, as shown in Chapter 3, the optimal two-treatment four-period 

design for estimating the treatment contrast based on the self and mixed car

ryover effects model is the design A B B A / B A A B  and A A B A / B B A B \  based 

on the traditional model is the design A B B A / B A A B  and A A B B / B B A A ,  or
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the design A B B A j B A A B ,  A B A B / B A B A  and A A B B / B B A A .  Then the 

allocation rule can be applied to a smaller subset containing the treatment 

sequences of interest to construct the adaptive design.

7.3 Conclusion

In this chapter, we use the allocation rule proposed in Chapter 5 to construct 

adaptive repeated measurement designs with continuous responses/outcomes, 

based on the self and mixed carryover effects model. We provide detailed al

location rule for constructing adaptive two-treatment two-period repeated 

measurement designs, and then extend it to two-treatment three-period re

peated measurement designs. In simulation studies, we demonstrate tha t 

the efficiency of the designs constructed under the new proposed allocation 

rule increases with sample size. Moreover, those adaptive designs are more 

efficient than fixed design A B B / B A A  in terms of the mean squared error. 

Similar to the dichotomous responses case in Chapter 6 , the simulation study 

shows tha t designs with a high value of A, say A =  0.9, significantly skew the 

allocation results toward more effective treatment sequences without the loss 

of much estimation precision.
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Figure 7.1: Relative Efficiency of 6 under A-optimality: no treatment differ
ence
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Figure 7.2: Relative Efficiency of 6 under D-optimality: no treatment differ
ence
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Note: see notes for Figure 7.1
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Figure 7.3: Relative Efficiency of 6 under E-optimality: no treatment differ
ence
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Note: see notes for Figure 7.1
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Figure 7.4: Relative Efficiency of r: no treatment difference
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Note: Design A B B / B A A  is the reference design. Relative efficiencies are 
calculated based on 1,000 simulations under 2-treatment 3-period RMDs 
with 7t2 =  7t3 =  r  =  7  =  tp = 0, <7? =  2, = 1 and /i =  100
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Figure 7.5: Relative Efficiency of 6 under A-optimality
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Note: 0 — ( t , 7 , Design A B B / B A A  is the reference design. Relative 
efficiencies are calculated based on 1,000 simulations under 2-treatment 3- 
period RMDs with 7t2 =  7t3 =  r  =  ip = 25, 7  =  —25, cr| =  2, of =  1 and
/ i  =  100
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Figure 7.6: Relative Efficiency of 6 under D-optimality
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Note: see notes for Figure 7.5
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Figure 7.7: Relative Efficiency of Q under E-optimality
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Figure 7.8: Relative Efficiency of r
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Note: Design A B B / B A A  is the reference design. Relative efficiencies are 
calculated based on 1,000 simulations under 2-treatment 3-period RMDs 
with 7t2 =  7t3 =  r  =  ip — 25, 7  =  —25, <r| =  2, of =  1 and fi = 100
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Table 7.1: Estimated Numbers of Patients for Each Treatment Sequence:
p = 2, no treatment difference

N A N aa N ab N ba Nbb
1 0 1 2.502 2.498 2.466 2.534
1 0 0.9 2.497 2.503 2.510 2.490
1 0 0.7 2.501 2.499 2.488 2.512
1 0 0.3 2.479 2.518 2.491 2.512
1 0 0 2.527 2.506 2.484 2.483
40 1 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0

40 0.9 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0

40 0.7 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0

40 0.3 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0

40 0 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0

80 1 2 0 .0 0 0 2 0 .0 0 0 2 0 .0 0 0 2 0 .0 0 0

80 0.9 19.998 20.007 2 0 .0 0 0 19.995
80 0.7 19.997 20.009 19.999 19.995
80 0.3 2 0 .0 0 1 19.995 2 0 .0 0 2 2 0 .0 0 2

80 0 19.995 2 0 .0 0 0 19.998 20.007
1 0 0 1 25.000 25.000 25.000 25.000
1 0 0 0.9 25.008 24.991 25.001 25.000
1 0 0 0.7 24.999 24.999 24.997 25.005
1 0 0 0.3 25.004 24.986 24.997 25.013
1 0 0 0 24.971 25.014 25.006 25.009

Note: Entries are based on 1,000 simulations under 2-treatment 2-period 
RMDs with 7t =  t  =  7  =  (̂  =  0, cr| =  2, — 1 and p = 100
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Table 7.2: Estimated Parameters of Interest: p = 2, no treatment difference

N A 7T r 7 at a'i
1 0 1 99.980 ( 0.532 ) 0.009 ( 0.237 ) 0.042 ( 0.582 ) 0.096 ( 1.143 ) -0.008 ( 0.627 ) 2.018 0.992
1 0 0.9 99.974 ( 0.534 ) 0.010 (  0.236 ) -0.017 (  0.583 ) -0.015 ( 1.145 ) 0.012 ( 0.631 ) 2.035 0.987
1 0 0.7 99.969 ( 0.534 ) 0.001 ( 0.238 ) -0.015 ( 0.583 ) -0.028 ( 1.146 ) -0.003 ( 0.632 ) 2.027 0.998
10 0.3 99.973 ( 0.536 ) -0.003 ( 0.238 ) -0.011 ( 0.585 ) -0.023 ( 1.149 ) 0.014 ( 0.634 ) 2.048 0.998
1 0 0 99.964 ( 0.525 ) 0.006 ( 0.236 ) 0.033 ( 0.575 ) 0.041 ( 1.128 ) 0.007 ( 0.625 ) 1.956 0.979
40 1 99.998 ( 0.255 ) 0.000 ( 0.113 ) 0.004 ( 0.279 ) 0.020 ( 0.550 ) 0.001 ( 0.306 ) 2.029 1 .0 0 2

40 0.9 99.986 ( 0.253 ) 0.004 ( 0.113 ) -0.003 ( 0.277 ) 0.000 ( 0.547 ) -0.004 ( 0.305 ) 2.009 0.989
40 0.7 100.013 ( 0.255 ) 0.001 ( 0.114 ) -0.005 ( 0.279 ) -0.008 ( 0.550 ) -0.001 ( 0.307 ) 2.026 1.008
40 0.3 99.996 ( 0.253 ) -0.003 ( 0.114 ) -0.007 ( 0.277 ) -0.001 ( 0.546 ) 0.009 ( 0.306 ) 1.993 1.006
40 0 99.988 ( 0.252 ) 0.005 ( 0.114 ) -0.012 ( 0.277 ) -0.016 ( 0.545 ) -0.013 ( 0.307 ) 1.971 1.009
80 1 99.993 ( 0.178 ) 0 .0 0 0  ( 0.080 ) -0.008 ( 0.195 ) -0.010 ( 0.384 ) 0.003 ( 0.215 ) 2 .0 0 0 1 .0 0 1

80 0.9 100.001 ( 0.178 ) -0 .0 0 1  ( 0.080 ) -0.006 ( 0.195 ) -0.017 ( 0.385 ) -0 .0 0 1  ( 0.216 ) 2.004 1.007
80 0.7 100.000 ( 0.178 ) -0.002 ( 0.079 ) -0.001 ( 0.195 ) 0.001 ( 0.385 ) -0.010 ( 0.214 ) 2.016 0.993
80 0.3 99.994 ( 0.178 ) -0.005 ( 0.079 ) -0.005 ( 0.195 ) -0.003 ( 0.385 ) 0.007 ( 0.215 ) 2.018 0.995
80 0 99.993 ( 0.178 ) -0 .0 0 1  ( 0.080 ) 0.005 ( 0.195 ) 0.012 ( 0.384 ) -0.004 ( 0.215 ) 2 .0 0 0 1 .0 0 2

1 0 0 1 99.998 ( 0.159 ) -0.002 ( 0.071 ) 0.009 ( 0.174 ) 0.012 ( 0.344 ) 0.001 ( 0.192 ) 2.007 1.003
1 0 0 0.9 100.007 ( 0.159 ) 0.002 ( 0.071 ) 0.006 ( 0.174 ) 0.015 ( 0.343 ) 0.005 ( 0.193 ) 2 .0 0 1 1.003
1 0 0 0.7 99.998 ( 0.159 ) 0.001 ( 0.071 ) 0.000 ( 0.174 ) 0.012 ( 0.343 ) -0.001 ( 0.193 ) 1.995 1.006
1 0 0 0.3 100.007 ( 0.159 ) -0.002 ( 0.071 ) -0.007 ( 0.174 ) -0.014 ( 0.344 ) 0.000 ( 0.192 ) 2.019 0.994
1 0 0 0 99.997 ( 0.159 ) 0.000 ( 0.071 ) -0.008 ( 0.174 ) -0.011 ( 0.343 ) 0.002 ( 0.192 ) 1.999 1 .0 0 0

Note: Entries are estimated values (standard errors) based on 1,000 simulations under 2-treatment 2-period RMDs with 7r =  
t =  7  =  ip =  0 , cr| =  2 , =  1 and p  — 1 0 0



Table 7.3: Estimated Numbers of Patients for Each Treatment Sequence:
p = 2

N A N aa N ab N b a N b b
10 1 2.519 2.481 2.441 2.559
1 0 0.9 3.000 2 .0 0 0 3.000 2 .0 0 0

1 0 0.7 3.000 2 .0 0 0 3.000 2 .0 0 0

1 0 0.3 3.000 2 .0 0 0 3.000 2 .0 0 0

1 0 0 3.000 2 .0 0 0 3.000 2 .0 0 0

40 1 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0 1 0 .0 0 0

40 0.9 1 2 .0 0 0 9.000 11.000 8 .0 0 0

40 0.7 13.000 9.000 1 1 .0 0 1 6.999
40 0.3 13.416 8.986 11.030 6.568
40 0 13.717 8.979 1 1 .0 2 2 6.282
80 1 2 0 .0 0 0 2 0 .0 0 0 2 0 .0 0 0 2 0 .0 0 0
80 0.9 25.547 17.930 22.405 14.118
80 0.7 26.810 17.693 22.451 13.046
80 0.3 27.127 17.624 22.426 12.823
80 0 27.243 17.602 22.374 12.781

1 0 0 1 25.000 25.000 25.000 25.000
1 0 0 0.9 32.299 22.197 28.103 17.401
1 0 0 0.7 33.664 2 2 .0 2 1 28.089 16.226
1 0 0 0.3 34.051 21.959 28.054 15.936
1 0 0 0 34.134 21.955 28.051 15.860

Note: Entries are based on 1,000 simulations under 2-treatment 2-period 
RMDs with 7r =  r  =  </3 =  25, 7  =  —25, <r| =  2, =  1 and n  =  100

Table 7.4: Expected Outcome for Each Treatment Sequence Based on the 
Values Used for Simulations

Treatment Sequence Expected Outcomes

AA (  125  ̂
I 175 )

A B ( 1 2 5  1 
I 75 i

B A (  7 5  1 
V 175 )

B B (5 )
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Table 7.5: Estimated Parameters of Interest: p =  2

N A 7T T 7 al
10 1 99.986 ( 0.538 ) 25.013 ( 0.237 ) 25.009 ( 0.587 ) -24.993 ( 1.156 ) 24.978 ( 0.626 ) 2.079 0.989
10 0.9 100.010 ( 0.538 ) 25.005 ( 0.238 ) 24.985 ( 0.587 ) -25.030 ( 1.169 ) 25.014 ( 0.604 ) 2.069 0.998
10 0.7 100.007 ( 0.529 ) 24.992 ( 0.243 ) 24.973 ( 0.582 ) -25.047 ( 1.156 ) 25.004 ( 0.615 ) 1.969 1.038
10 0.3 99.999 ( 0.532 ) 24.989 ( 0.236 ) 25.012 ( 0.582 ) -24.988 ( 1.158 ) 25.027 ( 0.601 ) 2.023 0.986
10 0 99.992 ( 0.531 ) 25.003 ( 0.237 ) 25.007 ( 0.581 ) -25.004 ( 1.156 ) 24.967 ( 0.604 ) 2.004 0.995
40 1 100.000 ( 0.253 ) 24.994 ( 0.113 ) 25.003 ( 0.277 ) -24.998 0.546 ) 25.001 ( 0.304 ) 2.006 0.988
40 0.9 100.008 ( 0.253 ) 24.996 ( 0.115 ) 25.002 ( 0.277 ) -25.009 ( 0.544 ) 25.006 ( 0.313 ) 1.977 0.999
40 0.7 100.000 ( 0.257 ) 25.006 ( 0.117 ) 25.011 ( 0.280 ) -24.971 ( 0.552 ) 24.999 ( 0.315 ) 2.025 1.012
40 0.3 99.991 ( 0.257 ) 25.001 ( 0.117 ) 24.997 ( 0.280 ) -25.013 ( 0.550 ) 25.003 ( 0.318 ) 2.017 0.999
40 0 100.008 ( 0.258 ) 24.994 ( 0.117 ) 25.012 ( 0.281 ) -24.958 ( 0.551 ) 25.003 ( 0.317 ) 2.028 0.992
80 1 100.001 ( 0.178 ) 25.000 ( 0.079 ) 25.003 ( 0.195 ) -24.999 0.384 ) 25.000 ( 0.214 ) 2.010 0.992
80 0.9 100.002 ( 0.179 ) 25.001 ( 0.081 ) 24.995 ( 0.195 ) -25.011 ( 0.384 ) 24.998 ( 0.220 ) 1.987 1.001
80 0.7 99.999 ( 0.179 ) 25.002 ( 0.082 ) 25.000 ( 0.195 ) -25.002 ( 0.385 ) 25.004 ( 0.221 ) 1.982 0.999
80 0.3 100.006 ( 0.181 ) 25.000 ( 0.082 ) 25.003 ( 0.197 ) -24.986 ( 0.388 ) 24.987 ( 0.222 ) 2.023 1.002
80 0 99.990 ( 0.180 ) 25.003 ( 0.082 ) 25.002 ( 0.197 ) -25.002 ( 0.387 ) 25.008 ( 0.222 ) 2.008 1.002
100 1 99.995 ( 0.159 ) 24.998 ( 0.071 ) 25.000 ( 0.174 ) -25.008 ( 0.343 ) 24.999 ( 0.193 ) 1.987 1.006
100 0.9 100.005 ( 0.160 ) 25.000 ( 0.073 ) 24.999 ( 0.175 ) -25.007 ( 0.344 ) 25.002 ( 0.197 ) 2.000 1.002
100 0.7 99.997 ( 0.161 ) 25.003 ( 0.073 ) 25.003 (  0.175 ) -24.998 ( 0.345 ) 25.006 ( 0.199 ) 1.992 1.005
100 0.3 100.001 ( 0.161 ) 25.001 ( 0.073 ) 25.021 ( 0.175 ) -24.960 ( 0.346 ) 24.989 ( 0.198 ) 2.007 0.997
100 0 99.999 ( 0.161 ) 24.999 ( 0.073 ) 24.996 ( 0.175 ) -25.011 ( 0.345 ) 25.002 ( 0.198 ) 1.994 0.997

Note: Entries are estimated values (standard errors) based on 1,000 simulations under 2-treatment 2-period RMDs with ir =
t = ip — 25, 7 =  —25, c r | =  2, of =  1 and p — 100



Table 7.6: Estimated Numbers of Patients for Each Treatment Sequence:
p = 3, no treatment difference

N A N a a a N a a b N a b a N a b b N b b b N b b a N b a b N b a a

40 1 1.016 5.984 5.977 7.023 1.018 5.982 5.974 7.026
40 0.9 4.144 5 5.591 5.263 4.149 5 5.609 5.244
40 0.7 5 5 5 5 5 5 5 5
40 0.3 5 5 5 5 5 5 5 5
40 0 5 5 5 5 5 5 5 5
80 1 1.009 12.998 11.848 14.145 1.007 13 11.842 14.151
80 0.9 9.065 9.996 10.647 10.297 9.062 1 0 10.628 10.305
80 0.7 10 10 1 0 .0 0 1 10 9.998 10 1 0 .0 0 1 1 0
80 0.3 10 10 1 0 10 10 10 10 10

80 0 10 10 1 0 10 10 10 10 1 0

1 2 0 1 1 .0 1 20.016 17.649 21.325 1.007 20.019 17.63 21.344
1 2 0 0.9 14.098 14.972 15.629 15.324 14.089 14.964 15.592 15.332
1 2 0 0.7 14.95 14.994 15.039 15.019 14.953 14.999 15.028 15.018
1 2 0 0.3 14.997 14.999 15 15.004 14.999 14.996 15.002 15.003
1 2 0 0 15.001 14.996 15.003 15.003 14.999 15.004 14.998 14.996

Note: Entries are based on 1,000 simulations under 2-treatment 3-period 
RMDs with 7t2 =  7T3 =  t  =  7  =  ip =  0, cr| =  2, a* — 1 and p  =  100
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Table 7.7: Estimated Parameters of Interest: p = 3, no treatment difference

N A 7T2 7T3 T 7
40 1 99.999 ( 0.278 ) 0.003 ( 0.227 ) 0.000 ( 0.227 ) 0.003 ( 0.194 ) 0.009 ( 0.275 ) -0.002 ( 0.295 ) 2.005 1.005
40 0.9 100.000 ( 0.277 ) 0.010 ( 0.226 ) 0.004 ( 0.226 ) -0.005 ( 0.195 ) 0.005 ( 0.281 ) 0.001 ( 0.264 ) 2.006 0.995
40 0.7 99.995 ( 0.277 ) -0.007 ( 0.227 ) 0.003 ( 0.227 ) -0.016 ( 0.197 ) -0.010 ( 0.286 ) 0.009 ( 0.262 ) 1.994 1.006
40 0.3 100.002 ( 0.276 ) -0.007 ( 0.225 ) 0.002 ( 0.225 ) -0.003 ( 0.196 ) -0.003 ( 0.285 ) 0.000 ( 0.258 ) 1.984 0.991
40 0 100.006 ( 0.278 ) -0.010 ( 0.227 ) -0.004 ( 0.227 ) 0.004 ( 0.198 ) 0.004 ( 0.288 ) 0.003 ( 0.259 ) 2.005 1.004
80 1 99.995 ( 0.195 ) 0.010 ( 0.159 ) 0.008 ( 0.159 ) -0.003 ( 0.136 ) -0.003 ( 0.194 ) -0.007 ( 0.208 ) 2.000 1.000
80 0.9 99.994 ( 0.195 ) 0.002 ( 0.159 ) -0.002 ( 0.159 ) -0.007 ( 0.138 ) -0.011 ( 0.200 ) 0.004 ( 0.184 ) 2.001 1.001
80 0.7 99.997 ( 0.195 ) -0.004 ( 0.160 ) -0.006 ( 0.160 ) -0.001 ( 0.139 ) 0.002 ( 0.202 ) 0.008 ( 0.183 ) 1.986 1.005
80 0.3 100.004 ( 0.195 ) -0.005 ( 0.159 ) 0.000 ( 0.159 ) 0.000 ( 0.139 ) 0.002 ( 0.203 ) 0.001 ( 0.182 ) 2.007 1.004
80 0 99.993 ( 0.194 ) 0.006 ( 0.159 ) 0.001 ( 0.159 ) -0.005 ( 0.139 ) -0.007 ( 0.202 ) 0.005 ( 0.181 ) 1.978 0.998
120 1 100.008 ( 0.159 ) -0.002 ( 0.130 ) -0.004 ( 0.130 ) -0.004 ( 0.111 ) 0.000 ( 0.158 ) 0.005 ( 0.170 ) 1.991 0.999
120 0.9 99.996 ( 0.158 ) 0.009 ( 0.129 ) 0.012 ( 0.129 ) 0.001 ( 0.112 ) 0.001 ( 0.163 ) 0.003 ( 0.149 ) 1.985 0.994
120 0.7 99.999 ( 0.159 ) -0.001 ( 0.130 ) -0.003 ( 0.130 ) -0.003 ( 0.113 ) -0.007 ( 0.165 ) 0.002 ( 0.149 ) 2.013 1.005
120 0.3 100.004 ( 0.159 ) -0.001 ( 0.130 ) -0.003 ( 0.130 ) -0.002 ( 0.113 ) -0.008 ( 0.165 ) 0.001 ( 0.148 ) 1.994 1.003
120 0 99.999 ( 0.159 ) 0.005 ( 0.130 ) 0.002 ( 0.130 ) -0.001 ( 0.113 ) -0.004 ( 0.165 ) 0.003 ( 0.148 ) 1.995 1.002

Note: Entries are estimated values (standard errors) based on 1,000 simulations under 2-treatment 3-period RMDs with n2 = 
7T3 =  r  =  7  =  yj =  0 , a |  =  2 , cr̂  =  1 and fj, = 1 0 0
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Table 7.8: Characteristics of Mean Squared Error (MSE): no treatment difference

Design A N Trace(MSE(0)) Det(MSE(0)) Eigen(MSE(0)) MSE(t )
1 1 40 0 .2 0 2 4.55E-05 0.157 0.038
1 1 80 0.096 5.06E-06 0.073 0.017
1 1 1 2 0 0.066 1.53E-06 0.051 0 .0 1 2

2 0.9 40 0.191 4.89E-05 0.142 0.037
2 0.9 80 0.093 5.53E-06 0.070 0.019
2 0.9 1 2 0 0.060 1.74E-06 0.045 0.013
3 0.7 40 0.203 6.63E-05 0.149 0.042
3 0.7 80 0.106 8.08E-06 0.078 0 .0 2 1

3 0.7 1 2 0 0.060 1.58E-06 0.045 0 .0 1 2

4 0.3 40 0 .2 1 0 7.41E-05 0.152 0.044
4 0.3 80 0 .1 1 0 9.76E-06 0.081 0.023
4 0.3 1 2 0 0.072 2.66E-06 0.053 0.014
5 0 40 0.205 7.11E-05 0.151 0.043
5 0 80 0.104 8.29E-06 0.076 0 .0 2 0

5 0 1 2 0 0.067 2.64E-06 0.049 0.013
6 A B A /B A B 40 N A N A N A 0.036
6 A B A /B A B 80 N A N A N A 0.016
6 A B A /B A B 1 2 0 N A N A N A 0 .0 1 2

7 A B B  1 B A A 40 0.542 1.01E-04 0.509 0.072
7 A B B /  B A A 80 0.261 1.21E-05 0.244 0.034
7 A B B /B A A 1 2 0 0.188 3.88E-06 0.177 0.025

Note: 9= ( t , 7, ip)T. MSE are calculated based on 1,000 simulations under 2-treatment 3-period RMDs with 7r2 =  7r3 =  r  =  7 =
ip — 0, — 2, — 1 and n = 100



Table 7.9: Estimated Numbers of Patients for Each Treatment Sequence:
p  =  3

N A N aaa N a a b N a b a N a b b N b b b N b b a N b a b N b a a
40 1 1.014 5.986 5.968 7.032 1.014 5.986 5.98 7.02
40 0.9 5.144 5 6 4.856 3 5 5 6

40 0.7 6.009 5.003 5.977 4 3.011 5 5 6

40 0.3 6.975 5.001 5.01 4 3.014 5 5 6

40 0 6.996 5 5 4 3.005 5 4.999 6

80 1 1.006 12.998 11.842 14.154 1.009 12.995 11.839 14.157
80 0.9 1 2 .0 0 1 10.28 11.038 8.736 6.328 9.501 9.999 12.117
80 0.7 12.999 10.81 10.996 8 .0 0 1 6.749 9.119 9.321 12.005
80 0.3 13.067 10.947 10.973 8 6.859 9.071 9.083 1 2

80 0 13.151 10.944 10.947 8 6.84 9.057 9.06 1 2 .0 0 1

1 2 0 1 1 .0 1 1 2 0 .0 2 1 17.645 21.323 1.008 20.024 17.651 21.317
1 2 0 0.9 18.662 15.878 16.712 12.31 9.767 14.008 14.444 18.219
1 2 0 0.7 19.968 15.999 16.029 11.998 9.971 13.999 14.007 18.029
1 2 0 0.3 2 0 .0 1 15.998 16.005 11.999 9.98 14 14 18.008
1 2 0 0 20.019 16 16 11.992 9.988 13.999 13.998 18.004

Note: Entries are based on 1,000 simulation under 2-treatment 3-period RMD 
with 7t2 =  7t3 =  r  =  ip = 25, 7  =  —25, <r| =  2, of =  1 and p — 100
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Table 7.10: Estimated Parameters of Interest: p = 3

N A TT'2 7T3 T 7 9
40 1 100.003 ( 0.278 ) 24.999 ( 0.227 ) 25.003 ( 0.227 ) 24.999 0.193 ) -25.006 0.275 ) 24.999 ( 0.294 ) 2.011 1.000
40 0.9 99.989 ( 0.277 ) 25.003 ( 0.227 ) 25.007 ( 0.228 ) 25.002 0.196 ) -24.994 0.281 ) 24.996 ( 0.267 ) 1.998 1.004
40 0.7 100.001 ( 0.278 ) 24.984 ( 0.228 ) 24.981 ( 0.229 ) 24.995 0.197 ) -24.997 0.286 ) 25.001 ( 0.263 ) 2.008 1.006
40 0.3 100.005 ( 0.278 ) 25.004 ( 0.227 ) 25.004 ( 0.228 ) 25.006 0.196 ) -24.995 0.285 ) 24.999 ( 0.262 ) 2.015 0.997
40 0 99.976 ( 0.278 ) 25.014 ( 0.227 ) 25.006 ( 0.228 ) 25.004 0.196 ) -25.004 0.286 ) 25.006 ( 0.262 ) 2.019 0.996
80 1 100.005 ( 0.195 ) 25.013 ( 0.159 ) 25.004 ( 0.160 ) 25.001 0.137 ) -25.000 0.194 ) 24.995 ( 0.208 ) 2.003 1.005
80 0.9 100.004 ( 0.195 ) 25.003 ( 0.160 ) 25.004 ( 0.160 ) 24.998 0.138 ) -25.001 0.200 ) 25.004 ( 0.186 ) 2.001 1.001
80 0.7 100.004 ( 0.195 ) 24.999 ( 0.160 ) 25.005 ( 0.161 ) 25.009 0.139 ) -24.996 0.202 ) 24.992 ( 0.184 ) 1.989 1.005
80 0.3 100.000 ( 0.196 ) 24.994 ( 0.160 ) 24.997 ( 0.161 ) 25.000 0.139 ) -24.998 0.203 ) 25.005 ( 0.184 ) 2.008 1.004
80 0 100.000 ( 0.194 ) 25.004 ( 0.160 ) 24.996 ( 0.160 ) 24.997 0.139 ) -25.001 0.202 ) 25.013 ( 0.183 ) 1.978 0.998
120 1 99.998 ( 0.159 ) 24.997 ( 0.130 ) 24.997 ( 0.130 ) 25.003 0.111 ) -24.992 0.158 ) 24.991 ( 0.170 ) 2.003 1.000
120 0.9 99.997 ( 0.158 ) 25.009 ( 0.130 ) 25.012 ( 0.130 ) 24.996 0.113 ) -25.004 0.163 ) 24.997 ( 0.150 ) 1.982 0.995
120 0.7 99.997 ( 0.159 ) 25.000 ( 0.131 ) 24.998 ( 0.131 ) 25.004 0.113 ) -24.992 0.165 ) 24.992 ( 0.150 ) 2.009 1.005
120 0.3 100.005 ( 0.159 ) 24.999 ( 0.131 ) 24.997 ( 0.131 ) 24.998 0.113 ) -25.004 0.165 ) 24.999 ( 0.150 ) 1.991 1.004
120 0 99.999 ( 0.159 ) 25.004 ( 0.131 ) 25.001 ( 0.131 ) 24.999 0.113 ) -25.003 0.165 ) 25.003 ( 0.150 ) 1.994 1.002

Note: Entries axe estimated values (standard errors) based on 1,000 simulations under 2-treatm ent 3-period RMDs with n2 — 
7T3 =  r  =  ip =  25, 7  =  —25, cr| =  2, — 1 and p  =  100
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Table 7.11: Characteristics of Mean Squared Error (MSE)

Design A N Trace(MSE(0)) Det(MSE(0)) Eigen(MSE(0)) MSE(r)
1 1 40 0.198 4.54E-05 0.151 0.037
1 1 80 0.107 6.29E-06 0.084 0 .0 2 0

1 1 1 2 0 0.068 1.68E-06 0.052 0.013
2 0.9 40 0.194 5.47E-05 0.144 0.042
2 0.9 80 0.091 6.51E-06 0.065 0.018
2 0.9 1 2 0 0.062 1.99E-06 0.046 0.013
3 0.7 40 0.192 5.31E-05 0.143 0.040
3 0.7 80 0.096 7.00E-06 0.070 0 .0 2 1

3 0.7 1 2 0 0.061 1.75E-06 0.045 0.013
4 0.3 40 0.190 5.35E-05 0.140 0.041
4 0.3 80 0.097 6.94E-06 0.072 0 .0 2 0

4 0.3 1 2 0 0.062 1.85E-06 0.045 0.013
5 0 40 0.189 5.45E-05 0.139 0.040
5 0 80 0.095 6.41E-06 0.069 0.019
5 0 1 2 0 0.062 1.84E-06 0.045 0 .0 1 2

6 A B A /B A B 40 N A N A N A 0.036
6 A B A /B A B 80 N A N A N A 0.016
6 A B A /B A B 1 2 0 N A N A N A 0 .0 1 2

7 A B B /B A A 40 0.542 1.01E-04 0.509 0.072
7 A B B /B A A 80 0.261 1.21E-05 0.244 0.034
7 A B B /B A A 1 2 0 0.188 3.88E-06 0.177 0.025

Note: 0 = (r , 7, ip)T . MSE are calculated based on 1,000 simulations under 2-treatment 3-period RMDs with tt2 =  7r3 =  r =  </? =
25, 7 =  —25, c r | =  2, c r | =  1  and /z =  100



Chapter 8 

Conclusion

This thesis is a study of design issues in clinical trials that use repeated mea

surement designs, especially those that are concerned with response-adaptive 

designs for comparing two treatments. We have constructed optimal repeated 

measurement designs under more general models than those constructed in 

previous studies, examined the influence of baseline measurements on con

structing repeated measurement designs, and proposed new design strategies 

to construct response-adaptive repeated measurement designs. Further, the 

R codes developed for this study can be used as design software to provide 

an optimal treatment sequence for the next patient entering the study.

8.1 M ain C ontribution

8.1.1 Optimal Designs and Baseline Measurement Study  
Under the Self and Mixed Carryover Effects M odel

We apply the Lagrange multiplier method to solve the optimal design prob

lems under both the traditional and a more general model, the self and mixed 

carryover effects model with random subject effects where the direct treat

ment effect will manifest itself no m atter where and when the treatment is 

applied. The model with both self and mixed carryover effects was proposed 

by Afsarinejad and Hedayat (2002). They studied two-period optimal designs 

under this model with fixed subject effects. In this thesis, we consider random 

subject effects in the self and mixed carryover effects model and construct 

p-period optimal designs comparing two treatments. We also consider the
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effect of the baseline measurements on constructing optimal designs, under 

both the traditional model and the self and mixed carryover effects model, 

and we find that

1. For two-treatment repeated measurement designs, the duality Lemma 

3.3.2.1 proves that optimal designs allocate equal number of subjects 

to a treatment sequence and its dual.

2. Optimal designs, in terms of minimizing the variance of the parameters 

of interest, are strongly model dependent and are not unique under the 

same model. Under the traditional model, the results here are identi

cal to what is available in the literature. When p =  2, for estimation 

of the treatment difference, the design A A /B B  and A B /B A  with an 

equal number subjects per sequence is optimal. For estimation of the 

carryover effect, the optimal design depends on the value of p: when 

p — 0, the optimal design is A A /B B  and A B /B A  with an equal num

ber of subjects per sequence; when p —> 1 the optimal design is A A /B B  

with an equal number of subjects per sequence. When p = 3, the design 

A B B / B A A , with an equal number of subjects per sequence, is optimal 

for estimation of direct treatment and carryover effects. When p = 4, 

the design A B B A /B A A B  and A A B B /B B A A  with an equal number 

of subjects per sequence is optimal. We also find for the first time that 

the design A B B A /B A A B , A B A B /B A B A  and A A B B /B B A A  with 

1/6, 1/24 and 7/24 of the total subjects per sequence, respectively, is 

also optimal. The former design is more popular in practice because 

it utilizes less treatment sequences, uses an equal number of subjects 

per treatment, and requires the total number of subjects to be a mul

tiplier of 4 instead of 24, as in the latter design. Under the self and 

mixed carryover effects model with random subject effects, we present 

the optimal results for the first time in the literature. When p = 2, 

without baseline measurements, the estimation of the treatment differ

ence uses only the data in the first period, therefore, it is not efficient. 

For estimation of the mixed carryover effect, the design A B /B A  is op-
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timal. For estimation of the self carryover effect, the design A A /B B  is 

optimal. When p = 3, the optimal design for estimation of the treat

ment difference is A B A /B A B , however, there are no self carryover 

effects with this design. Other designs are recommended such as de

sign A A B /B B A  and A B A /B A B ,  design A B B /B A A  and A B A /B A B ,  

and design A A B /B B A , A B A /B A B  and A B B /B A A . Those designs 

are almost as efficient as the design A B A /B A B ,  especially when p is 

small. Therefore, there is a price to be paid for allowing different types 

of carryover effects in the model. When p = 4, the simplest optimal 

design is the design A B B A /B A A B  and A A B A /B B A B  with an equal 

number of subjects per sequence.

3. The use of baseline measurements should be discussed in each spe

cific situation. Under the assumptions about baseline measurements 

in Section 3.4.1, we can conclude that under the traditional model, 

when p =  2, the efficiency of the design with baseline measurements 

is 1 to 2.5 times that of the design without baseline measurements. 

Therefore, it is recommended to use the baseline measurements. When 

p =  3, the baseline measurements improve the efficiency only slightly. 

The relative efficiency between the design with baseline measurements 

vs. the design without is equal to 1 to 1.0625 when p increases from 0 

to 1. Therefore, use of the baseline measurement does not appear to 

be helpful in improving the design efficiency. When p = 4, the baseline 

measurements do not improve the efficiency at all. While under the 

self and mixed carryover effects model, we also gain something from 

the baseline measurements. When p — 2, the baseline measurements 

improve the efficacy of the design measurements by at least 1.5 times. 

Therefore, it is strongly recommended to use the baseline measure

ments. When p — 3, the baseline measurements improve the efficiency 

significantly: the relative efficiency between the design with baseline 

measurements vs. the design without baseline measurements is equal 

to 2 to 3 when p increases from 0 to 1. Therefore, it is recommended to
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use the baseline measurements. When p — 4, the efficiency of the de

sign with baseline measurements is 2.5 to 3 times that of the efficiency 

of the design without. Therefore, it is worthwhile to add the baseline 

measurements in the study.

4. There is a dramatic reduction in variability for estimating the direct 

treatment effect contrast when extending two-period designs to three- 

period or four-period designs. In particular, under the traditional 

model, no m atter using baseline measurements or not, the three-period 

designs achieve at least a 33% reduction in variance compared to the 

two-period designs, and the four-period designs achieve at least a 25% 

reduction in variance compared to the three-period designs. Similar 

patterns are found under the self and mixed carryover effects model. 

For the designs utilizing baseline measurements in each period, there is 

at least a 25% reduction in variance in three-period designs compared to 

two-period designs, and at least a 20% reduction in four-period designs 

compared to three-period designs. W ithout baseline measurements, 

when within subject correlation is 0.5 or more, compared to the two- 

period designs, the three-period designs achieve a 27% or more reduc

tion in variability. In addition, a 14% or more reduction in variability 

is achieved when add one more period after the third period.

8.1.2 Stratified and Randomized Play-the-W inner Rule 
(SRPW R)

Since Zelen (1969) proposed the PW R for controlled clinical trials, vari

ous researchers proposed and investigated allocation rules for better patient 

treatment (Wei and Durham 1978, Wei 1978 and 1979, Smith 1984, Durham 

and Yu 1990, Andersen et al. 1994, Eisele 1994, Smythe 1996, Durham et 

al. 1998, Bai and Hu 1999, Biswas 1999, Bandyopadhyay and Biswas 2000, 

Ivanova et al. 2000, Ivanova and Durham 2000, Ivanova and Flournoy 2001, 

Bai et al. 2002, Hu and Zhang 2004). The main contribution of this chapter 

is in proposing a simpler allocation rule, which considers the heterogeneity

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of subjects. Simulation studies show that, on average, the SRPWR tends to 

assign more patients to the better treatment. SRPWR is superior to existing 

allocation rules, and it successfully adjusts the allocation results while ac

commodating the heterogeneity of the patients, leading to a better treatment 

strategy.

8.1.3 M ultiple-Objective Approach for Constructing  
Response-Adaptive Repeated Measurement D e
signs

One of the main contributions of this thesis is to extend single objective de

signs to multiple objective designs. In this thesis we develop a new adaptive 

allocation rule, which can provide good estimates of the treatment differences 

and assign more patients to a better treatment. The basic idea is to modify 

the allocation rule based on the observed data from previous patients. We 

assume patients enter the study sequentially. The first few patients are as

signed using the optimal design suggested in the literature or a completely 

randomized design. Then the information matrix can be calculated based on 

the observed data. We also propose an evaluation function to evaluate the 

performance of each treatment sequence. For the next patient, we consider 

all possible treatment sequences and choose the treatment sequence to maxi

mize the criteria, which has two components: the first component is to choose 

a treatment sequence to maximize the information matrix; the second is to 

choose a treatment sequence which gives the best performance based on the 

observed data. A weight parameter A is used to balance the two objectives, 

and can be chosen by the investigator prior to the experiment. A large value 

of A will place more emphasis on the estimation precision. When A =  1 the 

allocation rule becomes the usual response adaptive designs as considered by 

Kushner (2003). A small value of A will emphasize the performance/benefit 

of the treatment. When A =  0, the allocation rule becomes a typical play- 

the-winner rule (Zelen, 1969). Note tha t Kushner’s adaptive allocation rule 

is for trails with continuous outcomes, and Zelen’s play-the-winner rule is 

for trials with dichotomous outcomes. However, our new adaptive allocation
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rule is applicable to trials with both continuous and dichotomous outcomes.

In Chapter 6, we utilize this allocation strategy to construct adaptive re

peated measurement designs with dichotomous responses/outcomes. We pro

vide the detailed allocation rule for constructing adaptive two-treatment two- 

period repeated measurement designs, and then extend it to two-treatment 

p-period repeated measurement designs. In simulation studies, we demon

strate tha t the designs with A < 1 constructed under the new proposed allo

cation rule are not as efficient as the design with A =  1 in terms of the mean 

squared error, but it successfully put more patients to the better treatment 

group. In addition, simulation studies show that the design with a high value 

of A, say A =  0.9, significantly favors the allocation results to more effective 

treatment sequences without loss of much estimation precision.

In Chapter 7, we utilize this allocation rule to construct adaptive re

peated measurement designs with continuous responses/outcomes, based on 

the self and mixed carryover effects model. We provide a detailed allocation 

rule for constructing adaptive two-treatment two-period repeated measure

ment designs, and then extend it to two-treatment three-period repeated 

measurement designs. In simulation studies, we demonstrate tha t the de

signs constructed under the new proposed allocation rule are more efficient 

than the fixed design A B B /B A A  in terms of the mean squared error. The 

value of A is pre-determined by researchers, which is used to balance the two 

objectives between increasing the estimation precision and decreasing the 

proportion of patients receiving inferior treatments. In the simulation study, 

we notice that the design with A =  0.9 substantially skews the allocation re

sults to more effective treatment sequences without loss of much estimation 

precision. Therefore, choosing a high value of A is recommended in practice.

8.2 Future Research

There are still some issues that need to be further studied. When Afsarine- 

jed and Hedayat (2002) introduced for the first time the topic of simple and 

mixed carryover effects, they presented some two-period optimal design re-
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suits under the model with fixed subject effects. We considered the optimal 

designs under the self and mixed carryover effects model with random subject 

effects for designs comparing two treatments in p periods (p — 2,3,4), un

der the equicorrelated variance-covariance matrix structure. It is well known 

that no design is optimal under all models, and under a specific model there 

could be many optimal designs. Further study should explore optimal de

signs comparing more than two treatments under the model with various 

types of carryover effects, variance-covariance matrix structures and random 

subject effects. In addition, instead of constructing a design that is optimal 

under a particular model, it is needed to build a design that is reasonably 

simple and has relatively high efficiency under different models.

We are working on extending the stratified and randomized play-the- 

winner rule we proposed for clinical trials with dichotomous outcomes, to ex

periments with ordinal responses. One possibility is to give different weights 

for each response, with the number of balls added to the urn being propor

tional to the weights.

Finally, one of the main contributions of this thesis is in proposing an 

adaptive allocation rule to construct multiple-objective repeated measure

ment designs. We studied the performance of the design strategy for dichoto

mous and continuous responses, respectively, through simulation studies. In 

clinical trials, it is more often tha t several outcomes, continuous or discrete 

or both, will be measured to examine many aspects of the interventions. 

Therefore, further research is needed to apply the allocation rule to mixed 

outcome data.
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