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Gears are widely used in gearbox to transmit power from one shaft to another. Gear crack is one of the most frequent gear fault
modes found in industry. Identification of different gear crack levels is beneficial in preventing any unexpectedmachine breakdown
and reducing economic loss because gear crack leads to gear tooth breakage. In this paper, an intelligent fault diagnosis method for
identification of different gear crack levels under different working conditions is proposed. First, superhigh-dimensional statistical
features are extracted from continuous wavelet transform at different scales.The number of the statistical features extracted by using
the proposed method is 920 so that the extracted statistical features are superhigh dimensional. To reduce the dimensionality of
the extracted statistical features and generate new significant low-dimensional statistical features, a simple and effective method
called principal component analysis is used. To further improve identification accuracies of different gear crack levels under
different working conditions, support vector machine is employed. Three experiments are investigated to show the superiority
of the proposed method. Comparisons with other existing gear crack level identification methods are conducted. The results show
that the proposed method has the highest identification accuracies among all existing methods.

1. Introduction

Gears are commonly used in mechanical transmission sys-
tems to transmit power from one shaft to another. Because
gear is a mechanical component, its performance degrades
over time when it is used [1–4]. Gear crack evaluation is a
special case only when the gear crack is taken as the first agent
in gear performance degradation process [5]. Identification
of different gear crack levels is beneficial in preventing any
unexpected machine breakdown and reducing economic
loss because gear crack leads to gear tooth breakage [6].
Vibration analysis is a major tool to diagnose gear faults

because vibration signals are easily collected from the casing
of gearboxes [7, 8]. In the past years, vibration signal
based wavelet analysis has been widely used to diagnose
gear faults [9–11]. Additionally, in recent years, to diagnose
the multistage gearbox used in a bucket wheel excavator
system, Bartelmus and Zimroz [12–16] proposed a simple and
effective health indicator for distinguishing the good and bad
health conditions of the multistage gearbox. Data collected
from such complex machines are nonstationary gearbox
vibration signals under time-varying working conditions.
Because the gearbox used in a bad health condition is more
susceptible to external varying loads, the proposed health

Hindawi Publishing Corporation
Shock and Vibration
Volume 2015, Article ID 420168, 14 pages
http://dx.doi.org/10.1155/2015/420168



2 Shock and Vibration

indicator was designed to be a function of the instantaneous
input speed. The results show that the proposed health
indicator has a linear relationship with the instantaneous
input speed when the gearbox is in the good or bad health
condition.Moreover, as the gearbox degrades, the inclination
of the linear relationship increases.

Wavelet analysis is one of the most popular methods
for diagnosing gear faults. For the use of wavelet analysis,
the selection of a proper wavelet basis is crucial because
wavelet analysis aims to calculate the inner product between
a signal and the wavelet basis. Recently, Rafiee et al. [17, 18]
made an exhaustive study for investigating the performance
of 324 mother wavelet candidates on gear fault feature
extraction. Their results showed that Daubechies 44 has the
most similar shape with gear fault features. Even though
gear fault diagnosis becomes a hot topic, according to our
literature review, only somemethods, such asmean frequency
of Scalogram [19], instantaneous energy density [20], regular-
ization dimension [21], cyclic spectral analysis [22], and self-
similarity [23], are highly related to identification of different
gear crack levels. However, because those methods are based
on signal processing, the explanation of the results obtained
by using these methods requires expertise.

To automatically identify different gear crack levels,
intelligent methods [24–26] are required to be developed.
To fill out this gap, first, a series of experiments [5] were
conducted to collect gear vibration signals under different
working conditions including four different motor speeds
and three different loads. Five different artificial gear crack
levels, including crack level 0%, crack level 25%, crack level
50%, crack level 75%, and crack level 100%, were produced
to simulate gear crack deterioration levels. The definition
of these different gear crack levels will be illustrated in
Section 3.1. Then, a weighted 𝐾-nearest neighbor algorithm
[24] was proposed to identify three different gear crack levels
including crack level 0%, crack level 25%, and crack level 50%
under four different motor speeds and three different loads
because identification of early gear crack levels is more useful
to conduct preventivemaintenance.Their results showed that
the weighted 𝐾-nearest neighbor algorithm achieves high
prediction accuracies to identify three different gear crack
levels under the four different motor speeds and the three
different loads.

In this paper, to improve the work reported in [24],
identification of three gear crack levels under the different
loads and speeds is extended to identification of five gear
crack levels under the different loads and speeds. It means
that two more crack deterioration levels including crack level
75% and crack level 100% are considered.The gear crack levels
ranged from 0% to 100% with an increase of 25% are used
to describe the whole gear crack level deterioration. Because
the number of the gear crack levels increase, the gear crack
level identification problem under different loads and speeds
becomes complicated and difficult. Therefore, it is necessary
to propose an advanced gear crack identification method.

The rest of this paper is organized as follows. The
proposed method for identification of different gear crack
levels under different loads and speeds is introduced in
Section 2. Three experiments are investigated in Section 3 to

illustrate how the proposed method works and comparisons
with other existing gear crack level identificationmethods are
conducted. Conclusions are drawn in Section 4.

2. The Proposed Method for Identification of
Different Gear Crack Levels under Different
Motor Speeds and Loads

The proposed method for identification of five different gear
crack levels under different loads and speeds is summarized
in Figure 1, where themathematical formulas of the proposed
method are introduced in the following subsections.

First, to represent different gear crack levels, statistical
features must be extracted from a gear vibration signal.
Traditionally, statistical features are directly extracted from
the temporal gear vibration signal and its corresponding
frequency spectrum. The frequency spectrum is obtained by
conducting Fourier transform on the temporal gear vibra-
tion signal. These statistical features directly extracted from
the gear vibration signal and its corresponding frequency
spectrum can be regarded as the “global” statistical features.
These “global” statistical features are useful if the signal-
to-noise ratio of the gear vibration signal is high. In other
words, the fault features caused by a gear crack can be clearly
found in the gear vibration signal and its corresponding
frequency spectrum. However, besides the fault features
caused by a gear crack, there are many noises and unknown
vibration components existing in the gear vibration signal. It
is necessary to enhance the signal-to-noise ratio of the gear
vibration signal before the statistical features are extracted.
Unlike Fourier transform, which aims to decompose the gear
vibration signal to the sum of globally complex exponentials,
a continuous wavelet transform uses inner product operation
to measure the local similarity between a gear vibration
signal and a wavelet mother function. It should be noted that
the wavelet mother function is a locally oscillated analyzing
function and can be shifted and scaled. The smaller the
scale, the more compressed the wavelet mother function.
The larger the scale, the more stretched the wavelet mother
function.The continuouswavelet transform at different scales
facilitates detecting the different local characteristics of the
gear vibration signal, such as the features generated by a
gear crack. Therefore, in this paper, the continuous wavelet
transform at different scales, namely, Scalogram [27, 28], is
conducted on the gear vibration signal to highlight the local
gear fault features. If statistical features are extracted from
the continuous wavelet coefficients, these statistical features
can be regarded as “local” statistical features and can be used
to better represent different gear crack levels. Additionally, it
is not difficult to find that the resulting wavelet coefficients
are so redundant that the statistical features extracted from
the resulting wavelet coefficients are redundant because the
wavelet functions at some of these different scales have very
similar shapes.

10 popular statistical features, including mean, standard
deviation, root mean square, peak, skewness, kurtosis, crest
factor, clearance factor, shape factor, and impulse factor, are
applied to the Scalogram at the scales ranged from 1 to 45



Shock and Vibration 3

Load gear training vibration data

Conduct db44 continuous wavelet transform at
different scales on gear training data

Load gear testing vibration data

Conduct db44 continuous wavelet transform at
different scales on gear testing data

Extract 920 statistical features from gear training
data

Extract 920 statistical features from gear testing
data

Conduct principal component analysis to obtain
an orthogonal transformation and generate new
significant statistical features from 920 statistical

features

Use the orthogonal transformation obtained by
gear training data to generate new significant

statistical features from 920 statistical features

Train support vector machines
Identify gear crack levels under varying motor

speeds and loads using the trained support vector
machines

Train support vector machines Test support vector machines

Redundant
feature

extraction

Dimensionality
reduction

Identification of
different gear

crack levels

Figure 1: The flowchart of the proposed method for identification of different gear crack levels under different motor speeds and loads.

to generate 920 dimensional redundant statistical features for
the representation of the gear crack level. The dimensionality
of the redundant statistical features is calculated as follows.
Based on the above ten statistical features and the Scalogram
at the scales ranged from 1 to 45, 45 × 10 = 450 redundant
statistical features are extracted. Besides the statistical fea-
tures extracted from the Scalogram, it is necessary to extract
the statistical features from the frequency spectra of the
Scalogram, which exhibit different gear fault signatures from
the Scalogram [29]. Consequently, there are 450 × 2 = 900

redundant statistical features extracted from the Scalogram
and its frequency spectra. Considering 20 more “global”
statistical features directly extracted from the original gear
vibration signal and its corresponding frequency spectrum,
there are 900 + 20 = 920 redundant statistical features
in all. Such redundant statistical features characterize the
“global” and “local” features of the gear vibration signal.
Moreover, according to our literature review, the use of the
high-dimensional redundant features for identification of
different gear faults is rarely reported.

Second, compared with the statistical features used in
other intelligent gear crack level identification methods [24–
26], in which only 10 to 30 statistical features were extracted,
these 920 statistical features extracted by the proposed
method are highly redundant and they are superhigh dimen-
sional so that it is impossible to directly use all of the redun-
dant statistical features to train and test statistical models.
Before any statistical model is used, it is necessary to reduce

the dimensionality of the 920 redundant statistical features.
There are many dimensionality reduction methods includ-
ing linear and nonlinear methods [30]. For the nonlinear
dimensionalitymethods, they have some disadvantages listed
as follows. First, the calculation efficiencies of the nonlinear
dimensionality methods are low. Second, they need much
computer memory. Otherwise, the nonlinear dimensionality
methods fail to generate low-dimensional features due to lack
of computer memories. Third, even though these nonlinear
dimensionality methods could be used to process training
data, mapping of testing data to a low-dimensional space,
namely, out-of-sample extension, is still questionable and
often results in distinct estimation errors. Besides, through
some numerical and real case studies, [30] concluded that
nonlinear dimensionality reduction methods are not out-
performing the traditional linear dimensionality reduction
methods, such as principal component analysis. Therefore, a
simple and efficient linear dimensionality reduction method
called principal component analysis [31] is employed in this
paper to generate new significant low-dimensional statistical
features, namely, principal components, to distinguish differ-
ent gear crack levels under the different working conditions.

At last, to ensure high training and testing accuracies,
support vectormachine [32, 33] is utilized to identify different
gear crack levels under the different working conditions
because it is able to use the kernel trick to map these new
significant statistical features to a high-dimensional feature
space, where linear classification is possible.
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Figure 2:The analyses of the gear crack data: (a) the waveform of Daubechies 44; (b) the gear data with crack level 0%; (c) the gear data with
crack level 100%; (d) the absolute wavelet coefficients of the gear data with crack level 0%; (e) the absolute wavelet coefficients of the gear data
with crack level 100%.

2.1. Redundant Feature Extraction. Continuous wavelet
transform [27] aims to use an artificial wavelet mother
function to calculate the inner product between a signal 𝑥(𝑡)
and a wavelet mother function 𝜓(𝑡) at different scales 𝑎 > 0
and translations 𝑏:

𝑋(𝑎, 𝑏) =
1
√𝑎

∫

∞

−∞

𝑥 (𝑡) 𝜓
∗

(
𝑡 − 𝑏

𝑎
)𝑑𝑡, (1)

where∗ is the complex conjugate operator and𝑋(𝑎, 𝑏) are the
wavelet coefficients. From (1), it is seen that the continuous
wavelet transform converts a one-dimensional signal to a
two-dimensional signal (a time-scale representation), which
generates redundant wavelet coefficients at different scales.

Besides, it is found that the wavelet mother function has
a significant impact on the wavelet coefficients. Different
wavelet mother functions result in different wavelet coeffi-
cients.Therefore, for the use of continuouswavelet transform,
proper selection of the wavelet mother function becomes an
open question. As mentioned in Introduction, Daubechies
44 is used in this paper and its temporal waveform is
plotted in Figure 2(a). To show the redundant wavelet
coefficients obtained by the continuous wavelet transform,
the data with gear crack levels 0% and 100% are plotted in
Figures 2(b) and 2(c), respectively, and their corresponding
wavelet coefficients are plotted in Figures 2(d) and 2(e),
respectively, in which the absolute wavelet coefficients are



Shock and Vibration 5

used to enhance the three-dimensional visualization of the
wavelet coefficients. From the results shown in Figures 2(d)
and 2(e), it is seen that the each of the one-dimensional
gear signals shown in Figures 2(b) and 2(c) is, respectively,
transformed to a two-dimensional time-scale diagram, which
are the redundant wavelet coefficients. As a result, compared
with the original signals shown in Figures 2(b) and 2(c), the
redundant wavelet coefficients provide more fault signatures.
Following the use of the continuous wavelet transform, 10
statistical features shown in the following can be applied to
quantify the wavelet coefficients at the scales ranged from 1
to 45 and their corresponding frequency spectra. Considering
20 more statistical features extracted from the original signal
without being processed by the continuouswavelet transform
and its frequency spectrum, there are 45×10+45×10+2×10 =
920 redundant statistical features in all.The statistical features
used for quantifying wavelet coefficients at different scales
(note that the same statistical features are used to quantify
the frequency spectra of the wavelet coefficients at different
scales and𝑁 is the length of the signal) are as follows.

Mean Value

𝐹1 =
1
𝑁

𝑁

∑

𝑏=1
𝑋(𝑎, 𝑏) . (2)

Root Mean Square

𝐹2 = √
1
𝑁

𝑁

∑

𝑏=1
𝑋 (𝑎, 𝑏)

2
. (3)

Standard Deviation

𝐹3 = √
1

𝑁 − 1

𝑁

∑

𝑏=1
(𝑋 (𝑎, 𝑏) −

1
𝑁

𝑁

∑

𝑏=1
𝑋 (𝑎, 𝑏))

2

. (4)

Skewness

𝐹4 =
(1/𝑁)∑𝑁

𝑏=1 (𝑋 (𝑎, 𝑏) − (1/𝑁)∑
𝑁

𝑏=1𝑋(𝑎, 𝑏))
3

(√(1/𝑁)∑𝑁
𝑖=1 (𝑥𝑖 − (1/𝑁)∑

𝑁

𝑖=1 𝑥𝑖)
2
)

3 . (5)

Kurtosis
𝐹5

=

(1/𝑁)∑𝑁
𝑏=1 (𝑋 (𝑎, 𝑏) − (1/𝑁)∑

𝑁

𝑏=1𝑋 (𝑎, 𝑏))
4

(√(1/𝑁)∑𝑁
𝑏=1 (𝑋 (𝑎, 𝑏) − (1/𝑁)∑

𝑁

𝑏=1𝑋(𝑎, 𝑏))
2
)

4 .
(6)

Crest Factor

𝐹6 =
max (|𝑋 (𝑎, 𝑏)|)

√(1/𝑁)∑𝑁
𝑏=1𝑋(𝑎, 𝑏)

2
. (7)

Clearance Factor

𝐹7 =
max (|𝑋 (𝑎, 𝑏)|)

((1/𝑁)∑𝑁
𝑏=1√|𝑋 (𝑎, 𝑏)|)

2 . (8)

Shape Factor

𝐹8 =
√(1/𝑁)∑𝑁

𝑏=1𝑋 (𝑎, 𝑏)
2

(1/𝑁)∑𝑁
𝑏=1 |𝑋 (𝑎, 𝑏)|

. (9)

Impulse Factor

𝐹9 =
max (|𝑋 (𝑎, 𝑏)|)

√(1/𝑁)∑𝑁
𝑏=1 |𝑋 (𝑎, 𝑏)|

. (10)

Maximum

𝐹10 = max
𝑏

(𝑋 (𝑎, 𝑏)) . (11)

2.2. Dimensionality Reduction. In the previous section,
the superhigh-dimensional statistical features are extracted
based on the use of the continuous wavelet transform. The
dimensionality of the statistical features is 920.The direct use
of all 920 statistical features for identification of different gear
crack levels under the different working conditions will lead
to the curse of dimensionality [34], which means that the
number of the data used for supporting any result grows with
the dimensionality exponentially. To relieve this problem, the
dimensionality reduction is required to be conducted prior
to the use of support vector machines. As discussed at the
beginning of Section 2, in this paper, principal component
analysis is chosen and its fundamental is introduced in the
following [31]. Suppose that 𝐿 training samples for different
gear crack levels are obtained. Based on the𝐿 training samples
and the 920 statistical features extracted from each sample,
𝐿 × 920 feature matrix is constructed as follows:

F =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝐹1,1, 𝐹1,2, . . . , 𝐹1,920

𝐹2,1, 𝐹2,2, . . . , 𝐹2,920

.

.

.

𝐹
𝑘,1, 𝐹𝑘,2, . . . , 𝐹𝑘,920

.

.

.

𝐹
𝐿,1, 𝐹𝐿,2, . . . , 𝐹𝐿,920

]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (12)

From (12), it is seen that the statistical features used
in (12) are very redundant. Principal component analysis
aims to generate the significant new statistical features from
the high-dimensional space and form a low-dimensional
orthogonal space to express different gear crack levels. Each
of the new generated features is called a principal component.
Additionally, the first principal component has the greatest
variance. The second principal component has the second
greatest variance, and so on. Suppose that each column or
feature of (12) has a zeromean and a unit variance. To achieve
the above statement, the following optimization problem is
constructed:

w = argmax (‖Fw‖2) = argmax (w𝑇F𝑇Fw)

subject to ‖w‖ = 1,
(13)
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where 𝑇 is the transpose operator. The Lagrange function of
(13) is built as follows:

𝑅 (w, 𝜆) = w𝑇F𝑇Fw −𝜆w𝑇w, (14)

where 𝜆 is the Lagrange multiplier.The first partial derivative
of 𝑅 with respect to w is obtained as follows:

𝛿𝑅 (w, 𝜆)
𝛿w

= 2F𝑇Fw − 2𝜆w. (15)

If (15) is set to zero, the relationship between w and the
Lagrange multiplier is the eigenfunction of the symmetric
matrix F𝑇F and it is written as follows:

F𝑇Fw = 𝜆w. (16)

Suppose that the first column of w is the eigenvector
corresponding to the largest eigenvalue, the second column
of w is the eigenvector corresponding to the second largest
eigenvalue, and so on. Consequently, the feature matrix
shown in (12) can be mapped to a new space consisting of
the principal components:

t = Fw, (17)

where the first column of t is the first principal component 𝑡1,
the second column of t is the second principal component 𝑡2,
and so on. For fair comparison with the other existing gear
crack level identification methods reported in [24], where
seven statistical features were selected from 25 statistical
features, in this paper, the first seven principal components
obtained by the proposed method are used to train and test
support vector machines. Besides, the testing data can be
directly mapped to the new principal component space by
using the established linear transformation matrix w.

2.3. Identification of Different Gear Crack Levels under Differ-
ent Working Conditions. To automatically identify different
gear crack levels under different motor speeds and loads,
support vector machine [32] is used in this paper and it
is a kind of supervised learning method which has been
widely investigated in the past years for solving various
classification and regression problems. Given the training
data of two different gear crack levels 𝑇 = {(y

𝑖
, 𝑧
𝑖
) | y
𝑖
∈

R𝑝, 𝑧
𝑖
∈ {−1, 1}}𝑛

𝑖=1, where y𝑖 is the statistical feature vector
with a dimensionality of 𝑝 and 𝑧 is the binary classification
label, if the training data are linearly separable, a linear
decision function can be determined by solving the following
optimization problem [32]:

argmin 1
2
‖𝜔‖

2

subject to 𝑧
𝑖
(𝜔 ⋅ y
𝑖
− 𝑐) ≥ 1,

(18)

where 𝜔 is the normal vector to the decision function, ⋅ is
the dot product, and 𝑐 is the offset of the decision function.
The objective function of (18) aims to maximize the distance
between two hyperplanes, where there are no training data
between them. It means that the linear decision function

creates the maximum distance between the linear decision
function and the nearest training data.

Considering the noise with the slack variables 𝜉
𝑖
and the

error penalty constant 𝐶, (18) is revised as [32]

argmin
𝜔,𝜉

1
2
‖𝜔‖

2
+𝐶

𝑛

∑

𝑖=1
𝜉
𝑖

subject to 𝑧
𝑖
(𝜔 ⋅ y
𝑖
− 𝑐) ≥ 1− 𝜉

𝑖
, 𝜉 ≥ 0.

(19)

Solving (19) is equivalent to solving the following
Lagrangian problem with Lagrange multipliers 𝛼

𝑖
and 𝛽

𝑖
:

argmin
𝜔,𝜉,𝛼,𝛽,𝑏

1
2
‖𝜔‖

2
+𝐶

𝑛

∑

𝑖=1
𝜉
𝑖

−

𝑛

∑

𝑖=1
𝛼
𝑖
[𝑧
𝑖
(𝜔 ⋅ y
𝑖
− 𝑐) − 1+ 𝜉

𝑖
] −

𝑛

∑

𝑖=1
𝛽
𝑖
𝜉
𝑖
,

𝛼
𝑖
, 𝛽
𝑖
≥ 0.

(20)

Taking the derivatives of (20) with respect to 𝜔 and 𝑐,
respectively, it is derived that

𝜔 =

𝑛

∑

𝑖=1
𝛼
𝑖
𝑧
𝑖
y
𝑖
,

𝑛

∑

𝑖=1
𝛼
𝑖
𝑧
𝑖
= 0. (21)

Substituting (21) into (20), (20) becomes a dual quadratic
optimization problem [32]:

argmax
𝛼

𝑛

∑

𝑖=1
𝛼
𝑖
−
1
2

𝑛

∑

𝑖,𝑗=1
𝛼
𝑖
𝛼
𝑗
𝑧
𝑖
𝑧
𝑗
y
𝑖
⋅ y
𝑖

subject to 𝐶 ≥ 𝛼
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛,

𝑛

∑

𝑖=1,
𝛼
𝑖
𝑧
𝑖
= 0.

(22)

After solving (22), the linear decision function is obtained
as follows:

sign(
𝑛

∑

𝑖=1,
𝛼
𝑖
𝑧
𝑖
(y
𝑖
⋅ y) + 𝑐) . (23)

To extend the linear classification problem to the nonlin-
ear classification problem, kernel trick can be used to map
the training data to a high-dimensional space, where the
linear classification problem is possibly solved, prior to the
establishment of (23). Considering the kernel function, (23)
can be revised as [32]

sign(
𝑛

∑

𝑖=1
𝛼
𝑖
𝑧
𝑖
𝐾(y
𝑖
, y) + 𝑐) , (24)

where 𝐾(y
𝑖
, y) is the linear or nonlinear kernel function

which should satisfy Mercer’s theorem. There are three
popular kernel functions including linear, polynomial, and
Gaussian radial basis functions [32]. Generally, the Gaussian
radial basis function is the preferable choice for the use of
the support vector machine because, unlike the linear kernel,
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Figure 3: Experimental setup [24]: (a) a real picture; (b) a sketch map.

Table 1: The geometries of different gear crack levels.

Gear crack level Depth (mm) Width (mm) Thickness (mm) Angle (degree)
0% 0 0 0 0
25% 0.25𝑑 0.25𝑐 0.4

4550% 0.5𝑑 0.5𝑐 0.4
75% 0.75𝑑 0.75𝑐 0.4
100% 𝑑 𝑐 0.4

it is able to handle the nonlinear classification problem.
Furthermore, the number of hyperparameters used in the
Gaussian radial basis function is less than that used in the
polynomial function. Therefore, in this paper, the Gaussian
radial basis function is chosen and (24) is revised as

sign(
𝑛

∑

𝑖=1
𝛼
𝑖
𝑧
𝑖
exp (−𝛾 y𝑖 − y



2
) + 𝑐) , (25)

where 𝛾 is the kernel parameter and ‖ ⋅ ‖ is the modulus of the
feature vector. To classify five different gear crack levels, the
popular one-against-all strategy and one-against-one strategy
can be used [32, 33].

3. Instance Studies and Comparisons with
Other Existing Advanced Gear Crack Level
Identification Methods

3.1. Experimental Platform. In this paper, one of the coau-
thors [5] designed the experiments to collect the different
gear crack level data under different motor speeds and loads
from the experimental setup shown in Figures 3(a) and 3(b).
The experimental setup included a gearbox, a 3-hp ac motor,
which was used to drive the input shaft of the gearbox, and a
magnetic brake, which was used to provide different loads.
Four different rotation motor speeds including 1200 rpm,
1400 rpm, 1600 rpm, and 1800 rpm and three different loads
including no load, half load, and full load were used. Gears
1, 2, 3, and 4 had 48, 16, 24, and 40 teeth, respectively. Gear
3 was the tested gear used in the experimental setup. Some
artificial gear crack levels denoted as crack levels 0%, 25%,
50%, 75%, and 100% were produced to simulate all gear crack
deterioration levels and their geometries are tabulated in

Table 1.The crack thickness was 0.4mm because the available
thinnest knife in the coauthor’s lab was 0.4mm. For the four
gear crack levels, the crack depths were 0.25, 0.5, 0.75, and
1 times the half of the chordal tooth thickness, respectively,
because the tooth will break rapidly when the crack depth
is more than half of the chordal tooth thickness. Here, the
chordal tooth thickness 2𝑑 is the tooth thickness at the pitch
line. The crack widths were 0.25, 0.5, 0.75, and 1 times the
face width 𝑐 equal to 25mm, respectively. The crack angle
was 45 degree. The diagrammatic sketches of the chordal
tooth thickness, crack width, and crack angle are plotted
in Figures 4(a) and 4(b), respectively. The different gear
crack levels are shown in Figures 5(a) to 5(d), respectively.
The vibration signals were measured by two acceleration
sensors, whichwere produced byPCBElectronicswithmodel
number 352C67. These two sensors were mounted on the
casing of the gearbox in the vertical and horizontal directions,
respectively. In [5], it was reported that the vertical direction
is more sensitive to identification of the different crack levels.
Therefore, the vibration signals collected from the vertical
direction were used in this paper. The sampling frequency
was set to 5120 and, for each sample, the sampling points
were 8192. For each working condition, two samples were
collected. Consequently, there were 2 samples ×3 loads ×4
speeds ×5 gear health conditions = 120 samples in all. By
considering the different combination of different motor
speeds and loads, the similar three experiments designed in
[24] were used in this paper. Compared with the experiments
designed in [24], two more gear crack levels including 75%
and 100%were considered in this paper, whichmakes the gear
crack level identification difficult. The designed experiments
used in this paper are tabulated in Table 2.
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Crack Crack angle

(a)

Face width c

Chordal tooth thickness 2d

(b)

Figure 4: The diagrammatic view [24] of (a) the crack angle and (b) the face width and the chordal tooth thickness.

(a) (b)

(c) (d)

Figure 5: The different gear crack levels [24]: (a) crack level 25%; (b) crack level 50%; (c) crack level 75%; (d) crack level 100%.

In the first experiment, for each gear crack level, 24
samples were collected from the machine under 4 different
motor speeds and 3 different loads. Therefore, 24 × 4 × 3 × 5
samples were collected in all. Then, half of the samples (12 ×
4 × 3 × 5) were used in the training phase. The other samples
(12 × 4 × 3 × 5) were used in the testing phase.

In the training phase of the second experiment, for
each gear crack level, 12 samples were collected from the
machine under 2 differentmotor speeds and 3 different loads.
Therefore, 12 × 2 × 3 × 5 samples were collected. Then, in the
testing phase, for each gear crack level, other 12 samples were
collected from the machine under other 2 different motor
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Table 2: The design of the three experiments (N, H, and F denotes no load, half load, and full load, resp.).

Experiment
Number of

training/testing
samples

Gear crack levels of
training/testing

Motor speeds of
training/testing
samples (rpm)

Loads of
training/testing

samples

Classification
labels

1

12/12 0%/0% 1200–1800/1200–1800 N, H, F/N, H, F 1
12/12 25%/25% 1200–1800/1200–1800 N, H, F/N, H, F 2
12/12 50%/50% 1200–1800/1200–1800 N, H, F/N, H, F 3
12/12 75%/75% 1200–1800/1200–1800 N, H, F/N, H, F 4
12/12 100%/100% 1200–1800/1200–1800 N, H, F/N, H, F 5

2

12/12 0%/0% 1200, 1600/1400, 1800 N, H, F/N, H, F 1
12/12 25%/25% 1200, 1600/1400, 1800 N, H, F/N, H, F 2
12/12 50%/50% 1200, 1600/1400, 1800 N, H, F/N, H, F 3
12/12 75%/75% 1200, 1600/1400, 1800 N, H, F/N, H, F 4
12/12 100%/100% 1200, 1600/1400, 1800 N, H, F/N, H, F 5

3

8/16 0%/0% 1200–1800/1200–1800 N/H, F 1
8/16 25%/25% 1200–1800/1200–1800 N/H, F 2
8/16 50%/50% 1200–1800/1200–1800 N/H, F 3
8/16 75%/75% 1200–1800/1200–1800 N/H, F 4
8/16 100%/100% 1200–1800/1200–1800 N/H, F 5

speeds and 3 different loads.Therefore, 12× 2× 3× 5 samples
were collected.The design of experiment 2 aims to investigate
the influence of different motor speeds on the prediction
accuracies of the proposed method.

In the training phase of the third experiment, for each
gear crack level, 8 samples were collected from the machine
under 4 different motor speeds and 1 load. Therefore, 8 ×
4 × 1 × 5 samples were collected. Then, in the testing phase,
for each gear crack level, 16 samples were collected from
the machine under another 4 different motor speeds and 2
different loads.Therefore, 16×4×2×5 samples were collected.
The design of experiment 3 aims to investigate the influence
of different loads on the prediction accuracies of the proposed
method.

3.2. Comparisons of the Proposed Method with the Four
Existing Gear Crack Level Identification Methods Reported in
[24]. For experiment 1, support vector machines are trained
and tested by the five different gear crack levels under four
different motor speeds and the three different loads. It means
that all different working conditions are considered in the
training of support vector machines, which makes the dif-
ferent crack levels relatively easy compared with experiments
2 and 3, in which only part of the working conditions are
used to train support vector machines. In vibration analysis,
different motor speeds and loads have great influence on the
amplitudes and waveforms of vibration signals, the changes
of which result in the changes of the statistical feature values.
Therefore, the design of experiments 2 and 3makes the differ-
ent gear crack level identification complicated. For the use of
SVM, Gaussian radial basis function was used and its kernel
width was optimized to 0.14.The prediction accuracies of the
proposed method and the four existing advanced gear crack
level identification methods reported in [24] are tabulated
in Table 3, where method 1 is the direct use of 𝐾-nearest

Table 3: Comparisons of the prediction accuracies obtained by
using the proposed method and the four methods reported in [16]
(unit: %). (Note: methods 1 to 4 are used to distinguish three gear
health conditions, while the proposedmethod is used to classify five
gear health conditions.)

Prediction accuracy Experiment 1 Experiment 2 Experiment 3
𝐾-nearest neighbor
without statistical
feature selection [16]

89.58 87.42 87.67

𝐾-nearest neighbor
with random
statistical feature
selection [16]

80.17 77.29 78.08

𝐾-nearest neighbor
with Euclidean
distance evaluation
[16]

96.53 99.15 92.10

The weighted
𝐾-nearest neighbor
method [16]

96.68 99.61 92.62

The proposed method 100 100 100

neighbor without statistical feature selection, method 2 is𝐾-
nearest neighbor with random statistical feature selection,
method 3 is 𝐾-nearest neighbor with Euclidean distance
evaluation used for statistical feature selection and without
weighting technique, andmethod 4 is the weighted𝐾-nearest
neighbor method proposed in [24]. From the result shown
in Table 3, it is found that the proposed method has the
highest prediction accuracies among all methods. Besides,
the prediction accuracies achieve 100%.

The reasons why the proposed method has such high
prediction accuracies are explained as follows. First, the
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Figure 6:The principal components of the training data for experiment 1: (a) the first two principal components; (b) the first three principal
components.
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Figure 7: The principal components of the testing data for experiment 1: (a) the first two principal components; (b) the first three principal
components.

statistical features used in the proposed method are very
redundant and their number is high to 920. The redundant
statistical features provide more gear crack fault signatures.
Second, the principle components are the new significant
statistical features generated from the redundant statistical
features to represent different gear crack levels. For exper-
iment 1, the first two principal components and the first

three principal components of the training data are plotted
in Figures 6(a) and 6(b), respectively. From the result shown
in Figure 6(a), it is seen that only the gear crack levels 25%
and 100% are overlapped with each other. From the result
shown in Figure 6(b), the five different gear crack levels
are separable in a three-dimensional principal component
space. The first two principal components and the first
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Figure 8:The principal components of the training data for experiment 2: (a) the first two principal components; (b) the first three principal
components.
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Figure 9: The principal components of the testing data for experiment 2: (a) the first two principal components; (b) the first three principal
components.

three principal components of the testing data are shown
in Figures 7(a) and 7(b), respectively, where it is found that
the principal components are the new significant statistical
features to distinguish the five different gear crack levels.
It can be inferred that, with the number of the principal
components increasing, the five different gear crack levels
are well separable. For experiments 2 and 3, the first two

and three principal components of training data and testing
data are plotted in Figures 8–11, respectively, where it is
found that the five different gear crack levels are separable
in three-dimensional principal component space. At last,
because support vector machine uses the kernel trick to
map a low-dimensional feature space to a high-dimensional
feature space, where it is possible for the features to be
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Figure 10:The principal components of the training data for experiment 3: (a) the first two principal components; (b) the first three principal
components.
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Figure 11: The principal components of the testing data for experiment 3: (a) the first two principal components; (b) the first three principal
components.

linearly separated in a high-dimensional space, this technique
enhances the prediction accuracy of the five different gear
crack levels.

4. Conclusions

In this paper, an intelligent gear crack level identification
method under different working conditions is proposed.

The major idea of the proposed method is to use superhigh-
dimensional redundant statistical features to represent five
different gear crack levels under different working conditions.
The number of the redundant features is high to 920, which
is obtained by using 10 statistical features extracted from
the Scalogram and its frequency spectra. Then, to reduce
the dimensionality of the redundant statistical features and
relieve the curse of dimensionality, principal component
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analysis is performed on the redundant statistical features to
generate new significant statistical features. At last, support
vector machines with a Gaussian radial basis function are
used to identify the five different gear crack levels under the
four different motor speeds and three different loads. The
comparisons with the four existing gear crack level identifica-
tionmethods show that the proposedmethod has the highest
prediction accuracies among all existing methods and the
prediction accuracies obtained by the proposed method are
high to 100% for the three different experiments.The reasons
for such high prediction accuracies of the proposed method
are summarized as follows.

First, extraction of high-dimensional redundant statis-
tical features from the continuous wavelet transform at
different scales is helpful to mine more gear fault signatures
under different working conditions because these high-
dimensional redundant statistical features can be used to
reflect the global and local characteristics of the gear crack
level data. Second, the new significant statistical features,
namely, the principal components, generated from these
high-dimensional redundant statistical features are useful
to distinguish different crack levels under different working
conditions. From the principal components shown in Figures
6 to 11, it is obvious to find that as the number of the principal
components increases from 1 to 3, the five different crack
levels are well separable. At last, support vector machine uses
the kernel trick to map the principal components to a high-
dimensional feature space, where the separation of the five
different crack levels is more notable.
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