University of Alberta

CACHE ARCHITECTURES TO IMPROVEIP LOOKUPS

by

Sunil Ravinder

A thesis submitted to the Faculty of Graduate Studies anddtel
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

©Sunil Ravinder
Fall 2009
Edmonton, Alberta

Permission is hereby granted to the University of Albertaraiies to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly orrgdie research purposes only. Where the thesis is

converted to, or otherwise made available in digital forime, niversity of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rightssociation with the copyright in the thesis, and
except as herein before provided, neither the thesis nosanstantial portion thereof may be printed or
otherwise reproduced in any material form whatever witlibatauthor’s prior written permission.

Examining Committee

Mike MacGregor, Computing Science

Mario A. Nascimento, Computing Science

Ehab Elmallah, Computing Science

Chinthananda Tellambura, Electrical and Computer Enginge

To Dad and Mom

Abstract

IP address lookup is an important processing function adriret routers. The challenge lies in
finding the longest prefix that matches the packet’s degimatidress. One of the issues concerning
IP address lookups is the average lookup time. In previouksya@aching was shown to be an
effective method to minimize the average lookup time. Qaghnvolves storing information on
recent IP lookup results in order to decrease average lotkgs.

In this thesis, we present two architectures that contairefiqcache and a dynamic substride
cache. The dynamic substride cache stores longest posstidé&ides from previous lookups, and is
used in conjunction with a prefix cache. Successful hits ith tiee caches help reduce the number
of worst-case lookups in the low level memory containinglfheouting table in a trie data structure.
From simulations, we show that the two architectures shot @9.9% global hit rate. Furthermore
we present analytical models to find optimal designs for W drchitectures. We also show that

the architectures can support incremental updates oncegte modifications are made to the
trie data structure.

Acknowledgements

First and foremost | would like to thank my supervisors, Bssbr Mike MacGregor and Professor
Mario Nascimento for their support. | appreciate the helpp gmidance they provided me especially
when | had made little progress in my research. | am gratefillém for providing an exceptionally
friendly and cooperative enviornment.

| gratefully acknowledge my fellow colleagues Abhishek,ddbah Reza, Yufeng, Qing and
Zhiyu for their help and advice. My appreciation to my frisrizhck home for their constant motiva-
tion. | also thank the department for their generous supgadtfor all the assistance they provided
me during my stay.

Last but not the least, | am indebted my family for their lovel @ncouragement. This thesis

would not have been possible without them.

Contents

1 Introduction 1
1.1 Background e 1
1.2 Motivation 2
1.3 Contributions e e 3

1.3.1 Architectures 3
1.3.2 Dynamic substridecaching 4
1.3.3 Preliminaryobservations 5
1.3.4 Optimal design for the architectures 6
1.3.5 Incremental updates - cachesandtrie 7
1.4 Othercontributions 7
1.5 Average-case performance e . 8
1.6 TheSiSOVerview o i 9

2 Related Work 10
2.1 Problemstatement e 10
2.2 Relatedresearch. e 11

221 Linkedlist e 11
222 Treesandtries 11
2.2.3 Hardware based solutions a. 14

224 Caching e 15

3 Prefix Caching 20
3.1 Leaf-pushedtries e 20
3.2 Prefixcachingusing skip-nodes, 22
3.3 Metrics and Implementation e 25
3.4 Dataset 6 2

3.4.1 Routingtables 6 2
3.4.2 Packettraces 7 2
3.5 Resultsanddiscussion e 27

4 Architecture 30
4.1 Prefix cache-firstarchitecture L. 30
4.2 DSCHirstarchitecture e 32
4.3 Understandingthe DSC 33
4.4 Incrementalupdates e 36

441 Addition e 37
4.4.2 Deletion. 39

5 Experiments 42
5.1 Metricsand Implementation 42
5.2 Dataset e e 34

5.2.1 Routingtables e 34
5.2.2 Packettraces e 3 4
5.3 EXPeriments e e e 44
5.3.1 Prefix cache-firstarchitecture 44
5.3.1.1 Equalcachesizes, 49
5.3.1.2 Effectsofvaluedf 55
5.3.2 DSC-firstarchitecture 56
5.3.3 Commentary 59

6 Cache Modeling and Optimization

6.1 Relatedmodels e

6.2 Ourapproach e

6.3 Prefix cache-firstarchitecture
6.3.1 Formulation.

6.4 DSC-firstarchitecture e e e
6.4.1 Formulation.

6.5 Supplementaryexperiments. e
6.5.1 Prefix cache-firstarchitecture
6.5.2 DSCHfirstarchitecture e

7 Conclusions & Future Work
7.1 Conclusion e
7.2 FutureWork e

Bibliography

List of Tables

3.1
3.2
3.3
3.4
51
52
53
5.4
5.5
5.6
5.7
5.8
5.9
51
51
51
51
5.1

.12 Global Hit Rates (%) for different valuesiofvhen cache sizes are maximum . . .
.13 Global Hit Rates (%) when cache sizes are maximum 58
.14 Average (additional) memory accesses required bylasthat find a hitin the DSC

Percentage decreaseintriesize L oo 28
Performance: Hitrates (%) -Funet 29
Performance: Hitrates (%) -ISP1 29
Performance: Hitrates (%) -ISP3, 29
Average memory accesses for all packettraces 44
GlobalHit Rates (%) 48
Actual average (additional) memory accesses requiréabixups that miss the pre-
fixcache e 48

Average (additional) memory accesses required by leekhat find a hit in the DSC 48
Actual average (additional) memory accesses requydmikups that miss the pre-

fix cache when the prefix cache size is maximum cew .. 49
Global Hit Rates (%) when cache sizes are maximum 52
Average (additional) memory accesses required by loethat find a hit in the DSC
when cache sizesaremaximum 00 52
Global Hit Rates (%) when cache sizes are maximum 53
Average (additional) memory accesses required by losthat find a hitin the DSC
when cache sizesaremaximum oL e 53
.10 Global Hit Rates (%) when cache sizes are maximum 54

.11 Average (additional) memory accesses required bylethat find a hitin the DSC

when cache sizesaremaximum i i e e 54

when cache sizesare maximum i i i e 58

List of Figures

e el el
~NouhwNPR

gaaaaoaiolr o hABAAAMRMDMBBAL WWWW NNNNOD S NN

ooo~NOYOTh~W N POO~NOUIDWNE AWNPE ~NoOulbhWw N

o

Trie representing severalprefixeso
Prefix cache-firstarchitecture
DSCHirstarchitecture e
(A) The height of a branch (B) Branch at height-3

(A) IP address space coverage of a prefix (B) IP addresssmerage of a substride 5

adbw

Cache memorydistribution 6
(A) Trie representation for prefixes (B) Reduced trimgsikip-node which is en-
coded by skip-string 101* 8
Exampleroutingtable e 10
(A) Unibit trie (B) Multibit trie with stride length 2 (CMultibit trie with variable
stridelength 21
An example of LPFST (reproduced from [46]) . T I
An example of binary search tree (reproduced from [28]) 14
Logicaldesignofa TCAM e 15
Pruning example (reproduced from[26]) 17
Minimal Prefix Expansion (reproducedfrom[8]) 19
(A) Traditional Trie (B) Leaf-pushed trie with prefix Igth encoding 22
(A) Leaf-pushed trie with redundancy (B) Leaf-pushérithout redundancy. . . 23
(A) Compressed trie obtained after the “initial” congsien (B) Trie with skip-nodes. 24
Architecture required for prefix caching using skiprode. 24
Prefix cache-firstarchitecture 31
DSCHirstarchitecture e 32
Height of a substride 101height- kwherek=1 33
Dynamic Substride Cachingfer=1 35
Dynamic Substride Caching 35
Dynamic Substride Caching L. 36
Effects on substride during parent prefixes additionién.t 38
Effects on substride during parent prefixes additionién.t 38
Leaf-pushed trie with parent prefix information 40
Subtrie after prefixdeletion oo . 40
Prefix cache hitrates 44
(A) DSC hit rates when prefix cache size is B2Z3) (B) DSC hit rates when prefix
cachesizeis51XK(=3) e 48
Prefix cache hitratesand DSC hitrales 1) 52
Prefix cache hitratesand DSC hitrales 1) 52
Prefix cache hitratesand DSC hitrales 3) 53
Prefix cache hitratesand DSC hitrales 3) 53
Prefix cache hitratesand DSC hitrales 4) 54
Prefix cache hitratesand DSC hitrales 4) 54

(A) DSC hit rates for increasing value kbfwhen prefix cache size is maximum
(upch.2) (B) Avg. memory accesses for increasing valdevafien prefix cache size
ismaximum (upch.2) 55

5.10 (A) DSC hit rates for increasing value lkfwhen prefix cache size is maximum

(ISP1) (B) Avg. memory accesses for increasing valuk when prefix cache size
ismaximum (ISP1) e 55

5.11 Prefix cache hit rates and DSC hit rates with both theecaith equal sizegk =3) 57
5.12 Prefix cache hit rates and DSC hit rates with both theecadth equal sizegk =3) 57

DA DODN D
PRPPRPOO~NOUIRWNE

NEF, O

7.1

Power functionu(t) with respect td for ISP1trace 61

CCDFforlISPltrace it 62
Prefix cache hit rates - Measured v. Curve fitted 64
DSC hit rates - Measured v. Curve fitted when preflx cack@Bentries 65
Global hit rates measured for ISP3 trace through exivausgarch 70
Optimization surface for the prefix cache - first architez (global hitrates) 71
DSC and prefix cache behavigr=@) 71
Prefix cache hit rates when DSC has 230 entries Y
DSC hit rates on varying prefix cache sizes when DSC has@B@s 72
Global hit rates measured for upcb.1 trace throughuestive search 73
DSC hit rates - Measured v. Curve fitted when DSC sizeQx=B@ries ormore . . 73
Prefix cache hit rates - Measured v. Curve fitted when D300 entries 74
Optimization surface for the DSC - first architecturelfgl hitrates) 74
Average number of memory accesses per lookup measur&sH3 trace through
exhaustive search (prefix cache-first architecture) . 75
Optimization surface for the prefix cache - first aratiites (Average number of
memory accesses perlookup) L e 75
Optimization surface for the DSC - first architecturéhwhninimum of 300 entries
allocated to the DSC(Average number of memory accessesqeup) 76
Average number of memory accesses per lookup measureat®3-upchb.1 trace
through exhaustive search (DSC-first architecture) 76

A prefix cache-first architecture with cache miss buffers. 79

Chapter 1

Introduction

1.1 Background

One of the primary functions of IP routers is packet forwagdiThis requires a longest prefix lookup
in a routing table based on the packet destination address.agproximately 1993, classful routing
logic was used where the lookup process is based on matckimgrk ID’s of a IP destination
address with the Class A (8 bits), B (16 bits) or C (24 bits)ha touting table. The poor IPv4
address utilization of classful routing brought about tewedlopment of Classless Inter-Domain
Routing (CIDR) [33] which has a better address utilizatidie many advantages of CIDR come
at the expense of making the lookup process much more compilaiching is done on variable
length network ID’s (or prefixes). Moreover, increasingeimiet traffic demands a fast mechanism
to perform lookups in routing tables that may contain thodseof prefixes. Hence, IP forwarding
remains an interesting research problem owing to redunssitiudgets.

Real-world IP traffic demonstrates two fundamental pragsrttemporal and spatial locality.
Temporal locality means that there is a high possibility peeckets destined for the same destination
addresses may arrive again within a certain time intervhkes€ occur because of traffic burstness
and network congestion and was substantiated in the stddies by Jain [21]. Spatial locality
means that the packets often reference the same subnet.x&uople, the destination addresses
172.15.16.0,172.15.16.1, 172.15.16.11 belong to the sailmeet 172.15.16.0/24. There are a few
techniques that can be used to exploit locality, e.g., dyoaiata structures and caching. Examples
of dynamic data structures representing the routing tarkeSplay trees [30], Dynamic HiCuts [9],
and Binary search trees [19]. These data structures rastetbemselves depending on the locality
patterns of the traffic. However this restructuring conssirbeth time and hardware resources.
Another popular approach is using a route cache. SimilaPid €aches, a route cache is a dedicated
memory that is fast [3] and relatively small and is exclulsivdedicated to exploit locality in the

incoming IP destination addresses.

1.2 Motivation

Standard IP forwarding data structures representing amuBng table require multiple memory
accesses for a single lookup where each memory access cambexpensive and can contribute
to network latency. A number of solutions have been propésedduce the number of memory
accesses and one such solution is caching.

In conventional routing table lookup architectures, a edstplaced between the processor and
the low-level memory containing the IP routing table. Dgrinokups, the destination addresses are
first looked up in the cache. If the cache lookup is unsucokgsbk address is then looked up in the
low-level memory which is much slower than the cache. As altgisis imperative that we increase
the number of successful lookups (or hits) in the cache sof¢inger lookups have to refer to the
low-level memory.

Traditional route caches store IP addresses [45], prefiX@s fr a combination of both [23].
Over the years, caching IP addresses has drawn criticism foater architects primarily because
IP address caches capture only temporal locality [26]. Aaofactor that does not act in favor of
IP address caches is that the IP address cache should benagier to be effective. In recent
years, prefix caching has been well received by the researamanity. Prefix caching is effective

in capturing both temporal as well as spatial locality. Safhe reasons for it to be effective are:

e Gateway routers demonstrate high locality with referenz&sry few prefixes. Caching these

popular prefixes will also decrease network latency and awgtookup rates

e ISPs assign prefixes to subnets based on geographicablocatius the traffic flowing to a
particular area is localized and will cause similar prefiedse frequently referenced. Caching

these prefixes will be useful.

The approach towards prefix caching is to store prefixes teat Vooked up more recently. These
cached prefixes then benefit subsequent lookups that tendttd ifor hit) the same prefix.
However, because of the inherent limit in the hit rate a prefighe can yield, some lookups
will not match (or hit) and so will require a reference to ltevel memory containing the complete
routing table. Ideally, we would like to reduce the numbeloakups that have to refer to the low-
level memory or reduce (significantly) the total memory ases needed by the unmatched packets
to complete the lookup process in the low-level memory. B@ngple, a single address lookup in
the lower memory may require up to 32 memory accesses whetereamory access may cost
up to 25 nsec if a routing table is represented as a trie antkimgnted in a 25 nsec-DRAM [16].
These numbers are significant considering that for OC-48@@dL92 links, we need to ensure
that an address lookup requires at most 3-8 memory accessegmge. So the idea is to reduce
the number of lookups that have to do 32 memory accesses indfs case. This goal forms the
backbone of our research. We therefore present two artinigsceach containing a prefix cache and

a dynamic substride cache (DSC) that can be beneficial irchegithe trie lookups.

1.3 Contributions
1.3.1 Architectures

An IP routing table can be represented in a data structuteasi&liCuts [20], HyperCuts [42], Trie
[25], Multibit trie [44] etc. For our work, we consideredds to be suitable to representthe IP routing
table. This is because tries are much easier to manage amnietal updates are straightforward
to implement. A prefix is represented by a path from the rodheftrie down to the leaf. A simple

example of a trie representing IP prefixes is shown in Figute 1

Routing Table

0* P1

00* P2

101%* P3

1* P4

111%* P5
Prefix Next
Hop

Figure 1.1: Trie representing several prefixes

IPv4 prefixes have a maximum length of 32 bits and IPv6 prefiea® a maximum length of
128 bits. We work exclusively with the former in this thedisf recognize the growing importance
of solving the same problem for IPv6 traffic. Accordinglyyevork considers tries to be built using
the IPv4 prefixes.

An address lookup involves traversing the complete trigiagafrom the root to determine the
next hop. We call this traversal process a full-trie lookiigan be anticipated that this process will
be expensive if a lookup has to access multiple trie nodeasgliis traversal before it finds the next
hop. Further, most lookups match prefixes of length gredisn 1.8 [13]. That would mean that
most lookups have to perform at least 18 memory accessesefefding the next hop. Thus, the
nature of the trie as well as the traffic pattern emphasizadled to reduce lookups that do a full-trie
lookup.

In this thesis we discuss two different architectures thatta reduce the number of full-trie

lookups. They are:

e Prefix cache-first architecture: This particular architeetconsists of a prefix cache and the
dynamic substride cache (DSC) where the DSC is placed bettieeprefix cache and the
low-level memory containing the trie. A sketch of the arebttre is given in Figure 1.2. The
two caches combined work much better than an architectatetintains only a prefix cache.
We introduce the DSC in Section 1.3.2.

M55 | pynamic Substride | hit/miss
Cache

(DSC)

A 4

IP Traffic _._) Prefix Cache

' 2-cache Low level memory
e eeccciiiiieoo-------D (contains IP Routing Table)

Next Hop

Figure 1.2: Prefix cache-first architecture

e DSC-first architecture: We alternatively look into an atebiure where the prefix cache is
placed between the DSC and the low-level memory. The beha¥ide two caches in this
architecture is quite different from the prefix cache-firgtétecture. A sketch of the archi-

tecture is given in Figure 1.3.

Next Hop
Dynamic Substride | miss miss
IP Traffic ————) Cache —>»| Prefix Cache —> Low level memory
i (DSC)] (contains IP Routing Table)
2-cache
hit/miss

Figure 1.3: DSC-first architecture

1.3.2 Dynamic substride caching

The two architectures incorporate an unique cache orgimizealled the dynamic substride cache
(DSC). The DSC is different from the prefix cache or the IP addrcache in that it contains sub-
strides. Briefly, substrides are shortened prefixes thadeniged from prefixes obtained during the
previous lookups over the trie. For example, if we found thatprefix 10001101* was looked up
in the trie, we store the substride 10001* in the format <tides node address> in the DSC where
the node address is the address of a node within the trie.slibitride is obtained by reducing the
height of the branch represented by prefix 10001101* ksh8itened prefixas shown in Figure 1.4.
In this format, the node address is the address of the nodagttth 3 (representetkA) within the
trie from where the lookup can proceed. Later if a new look@#paines the substride <10001*, node

address> present in the DSC, it will allow the new incomingiga to skip the substride 10001* and

start the lookup from the node at height - 3 within the trieisTprevents full-trie lookups starting
from the root of the trie. The issue of determining the heigftthe substride is studied and results
are presented in this thesis.

height - 3

height

(A) (B)

height - 3

+ address space™

(A) (B)

Figure 1.5: (A) IP address space coverage of a prefix (B) IPesddspace coverage of a substride

The DSC is effective because it covers a wider “IP addresseSpalhe substride 10001* in
Figure 1.5(B) has a wider IP address space coverage thandfive 0001101* in Figure 1.5(A). As
a result, there is a good chance that the lookups that migz#fie cache for the prefix 10001101*
may find the substride 10001* useful and can skip 10001* teged from node 1xA.

1.3.3 Preliminary observations

Apparently the DSC has different functions in the two amettiires. In the prefix cache-first archi-

tecture, the prefix cache is more likely to benefit from Idgah the destination address stream. In

this situation, the DSC cannot benefit from locality. As auteghe DSC plays a different role in
assisting lookups that fall in particular IP address spaces

In the DSC-first architecture, the DSC resolves lookupdtiegifrom locality as well as lookups
that fall in particular IP address spaces. The dual respdifigihas a marked effect on the perfor-
mance of the DSC. The prefix cache in this case acts as a cengaid holds on to prefixes relating
to victim substrides that were aged-out from the DSC. This #édokups that may re-appear in the
IP traffic after a length of time.

A possible question that may arise on the use of a DSC in ataathie is the cost (in dollars)
associated with placing a new hardware (DSC) in an alreadtimg prefix cache architecture.
Will the cost of such hardware be acceptable ? Are there amynaltive architectures that are
more worthwhile considering the implementation costs ? di®&wers to these questions are very

important, however, these comparisons are not within tbpesof our thesis work.

1.3.4 Optimal design for the architectures

Through experiments we found that using the two caches ijunotion works well in reducing the
number of full-trie lookups. Still, it is not always clearwanuch memory should be allocated to
the prefix cache and the DSC when the total available memdixeid (Figure 1.6). One simplistic
approach investigated in this thesis is to allocate equaieaemory to both the prefix cache and
the DSC. However, extensive experiments on different @tgaonvinced us that the design decision

of having “equal allocations” for the caches is not necaélystine best.

<>

=7 Prefix
- Cache

Available
Cache Memory

<>

DSC
~_

Figure 1.6: Cache memory distribution

A straightforward approach to determine the appropriatessfor the two caches in the two
architectures is exhaustive search. This process is tediodiwe need to re-run the search for every
single dataset. As an alternative, we developed an analytiethod for optimal design based on
a non-linear integer optimization technique. The primasktof the design method is to predict
the hit rates for the two caches under varying cache sizee @echave predicted the hit rates, we
compute the global hit rate to determine which combinatibcaghe sizes gives us the best global
hit rate. Specifically, global hit rate is the total numbehds in the two caches as a fraction of the
total number of address lookups. Broadly, the higher thbalbit rate the lower will be the number

of full-trie lookups.

To determine the optimal distribution of memory between pihefix cache and the DSC, we
analyze the IP address traces and the selected routing talMe first try to capture the temporal
and spatial locality of the traces. We follow by choosing éiadile model that will best replicate the
locality properties of the traces. Thereafter, a consthioptimization technique is used to decide
the optimal memory distribution between the two cacheseGihe different behaviors of the two

architectures, we use a different optimization techniquefich of them.

1.3.5 Incremental updates - caches and trie

Incremental updates consisting of insertions or deletamesfrequent. Updates are complex and
require that the process be as fast as possible. In additinimg incremental updates there should
be no need to completely recreate the data structure.

Incremental updates become more complex in architecthegaraintain “extra” information
about the IP routing table. In our case, the extra infornmationstitutes the prefix cache and the
DSC. For our architectures, updates should be reflectearipréfix cache [8] and the DSC as well
as the trie that stores the IP routing table. The DSC needse &ebrched for substrides that are
inconsistent with the restructured IP routing table. Iniadd, we need to update the trie without
taking a considerable amount of time. Given that we do noehewe much control information
in the DSC, we follow a conservative approach to reflect ceamtye to updates. Further, we also
show how storing control information in the leaves and iménodes of the trie can aid insertion
and deletion of prefixes. It should be noted that our apprtaaitremental updates is applicable to

both the prefix cache-first and the DSC-first architectures.

1.4 Other contributions

We also present a subsidiary work on improving the hit rafess prefix cache. Various methods
have been proposed to increase the hit rates of a prefix caéhd(]. This is primarily achieved
by increasing the IP address space captured by a prefix. Otiodh® increase the IP address
space for a prefix is to reduce the trie [26]. In this thesis ves@nt an alternative method that uses
“skip-nodes” to reduce a trie. Skip-nodes are specializsikn in the trie that store skip-strings to
reduce the trie size.

A simple example of using skip-nodes is shown in Figure 1.ictwhllows us to reduce the size
of the trie. For instance in Figure 1.7, the skip-node camst#tie skip-string 101* which is sufficient
for us to decide the packet’s next hop (P2 or P5). Howevelffardnt architecture will be required

to store prefixes involving skip-nodes. This is detailedibsequent chapters.

(A) (B)

Figure 1.7: (A) Trie representation for prefixes (B) Redutrezlusing skip-node which is encoded
by skip-string 101*

1.5 Average-case performance

Throughout this document we stress the importance of cerisigithe average-case lookup speed as
a performance criterion. This is not to say that worst-cas&up speeds are not important. Worst-
case lookup speeds ensure that all lookups complete in atabte amount of time. However, we
emphasize that improving average-case lookup speed®ibafeficial and should be considered a
vital performance metric for any lookup architecture.

Itis evident from looking at our architectures that notatikups will find hits in the two caches.
Consequently, there will be lookups that will still have to d full-trie lookup. As a result, the
worst-case lookup speeds are not necessarily decreased.

A good average-case performance can be extremely bendéicitie performance of small
and medium-sized routers used in campus and enterpris@mestil4]. These networks support
applications such as firewalls, virus-scanning, file trarsthat involve packets of different types
and with different processing requirements. Supplyingstraase processing times to networks
supporting such different packet types is expensive. Eurtieducing the average lookup time for
each address will decrease the amount of time a resourcbdedgvare threads, memory) is held
during lookups. This will benefit other applications in tleiter competing for the same resource.

An interesting example is that of matching query patterrik sirings in a database. Assume we
use linear search and trie search for the above purposearsearch will simply match each query
pattern with the strings in the database. On the other headdarch will lookup the query pattern
in a trie built from strings in the database. Clearly the$garch performs better in the average case,
however, asymptotically both the methods perform the samtheé worst-case. Thus, trie search
should be preferred over linear search.

Consider another example where the number of memory accesgdgred by six different pack-

etsare 8, 8, 7, 8, 7, 6 where the worst-case bound is 8 memoegses. On average the six lookups
will need 7.33 memory accesses whereas in the worst-cabevwalhcequire 8 memory accesses.
Now if we can some how reduce the number of memory accessgsiéag our architectures) for
the six lookups to: 2, 2, 4, 5, 6, 8 then the average number ofiang accesses is reduced to 4.5
while the worst-case is still 8. The method has improved trexage case significantly, but the

worst-case has stayed the same.

1.6 Thesis overview

In this document we discuss different techniques to redneentimber of full-trie lookups. Rec-
ognizing that reducing full-trie lookups can help decreteenetwork latency associated with 1P
routing table lookups, we introduce methods and improveasthiat are relevant and effective. Our
work primarily focuses on taking advantage of the fact tloaklups tend to refer few IP address
spaces. To this end, we show that the two architectures tnegting approaches to reduce full-trie
lookups.

Before we present our work in detail, it is also extremely émgnt to understand how the prob-
lem was tackled in previous work. There are a number of isterg ideas and concepts that were
exploited in previous studies on IP routing table lookups e illustrate them in Chapter 2. These
previous works provide extensive details on the nature attem of IP traffic as well as the IP
routing table. They also bring to notice the importance ofémental updates and lookup speeds.
We also briefly present some popular approaches to repnegéRtrouting tables.

We then proceed to explain our work in detail in Chapter 3. W& fntroduce the traditional
prefix caching method, its utility and move towards explainthe need for encoding additional
information in the trie that would aid incremental updat@&sen, we introduce our idea of using
skip-nodes to reduce the trie size and detail its hardwapgrements.

Next, we present the overall design of our architectureshapfer 4 and general strategies
that should be followed to get the best results. We also dgsthe importance of tuning certain
parameters for the DSC in order to achieve desired resultslitidnally, incremental updates are
critical and any/every architecture should be able to sttghem. Subsequently, in Section 4.4 we
illustrate our idea for incremental updates for the entiohigecture using suitable examples.

We present our experiment results in Chapter 5 by choosigdbhe sizes in some naive ways.
However, it is important to decide the best memory configonatfor the two caches. To achieve
that, we first find an analytical model that help us in makirgsthdecisions. Chapter 6 is dedicated
to our model with some explanations as well as experimentgthér in Chapter 6 we outline
a constrained optimization method that incorporates theseh models to determine the optimal
memory distribution for the two caches.

Finally, in Chapter 7 we summarize our work.

Chapter 2

Related Work

2.1 Problem statement

In the previous chapter we briefly discussed IP address [mokiVe define the problem of IP address
lookup as determining the best (longest) matching prefixafpacket based on its destination ad-
dress. A typical IP routing table with prefixes would appesairaFigure 2.1. For example, a packet
containing the destination address 172.192.14.70 wikHa2.192.14.0/24 as the longest matching
prefix. The packet will then be routed to the next hop 2. Thahgtprocess seems straightforward,
the longest prefix lookup is much harder given that the arg\destination address does not carry
the length of the longest matching prefix. Hence, the lookuguires search to be among the space
of all prefix lengths. The problem is further aggravated wfith increasing routing table sizes. We
therefore require longest prefix searches to be as fast ahposIP address lookup speedups can
be achieved by using a prefix cache where lookups for destmatidresses showing locality can be
looked up within few clock cycles [3]. However, not all desttion addresses will find a successful
match in the prefix cache. As a result, the unsuccessful lmokuthe prefix cache may have to per-
form multiple memory accesses to complete the lookups. \poexthe idea of using the DSC that
may ensure that these unsuccessful lookups require fewmonyeaccesses to complete compared

to a full-trie lookup.

Next
Hop

172.192.14.0/24 | 2 (P1)

Prefix

172.192.0.0/16 2 (P2)

172.188.10.0/22 |16 (P3)

172.188.100.0/18 | 8 (P4)

Figure 2.1: Example routing table

10

2.2 Related research

In the following sections we introduce some proposals treabaned to tackle the IP address lookup
problem. These techniques vary based on the type of algwi#ind the type of hardware they
use. We try to illustrate some research proposals (cachidgoshers) that are relevant for the
understanding of our work. We also mention some other prdpdbat may be necessary to get a

general perspective of this research area.

2.2.1 Linked list

The most naive solution for IP address lookup is to storeledl firefixes in a linked list in the
decreasing order of their prefix lengths. A destination adslis compared to all the prefixes and the
prefix with the highest priority (longest length) is selett&his method is storage efficient requiring
only O(N) storage locationd\ is the number of prefixes). However, the lookup time scateslily

with the number of prefixes.

2.2.2 Trees and tries

A simple algorithmic solution is the trie [25] as shown in &ig 2.2 (A). Tries are used to represent
IP routing tables as a tree where the results (the next hop®ither stored in the internal nodes or
the leaves. Internal nodes that do not store next hops antaragodes and are used for traversal
decisions. During the traversal, regular nodes are exaihtimelecide whether to proceed to the
left branch or the right branch. A “0” as the next bit in the ezt means that the traversal should
proceed to the left branch and a “1” means the traversal dimokeed to the right branch. The path
starting from the root to a leaf node gives the bit string tearesents a prefix and a path from the
root to an internal node containing a next hop also represeptefix.

Some drawbacks of tries are that they take a lot of memoryhEgrthe worst-case depth of the
trie is 32 and a lookup may require 32 memory accesses in thet\wase to determine the next hop.
However, tries are well suited for research in the area diiogadechniques because no complicated
piece of hardware is needed to store them.

One extension to the trie is the multibit trie [35, 44]. Mhltitries are compressed tries which
ensure that the worst-case depths are much lower than 32muikibit compresses the trie where
the internal nodes are densely populated. The idea is tav allpacket to skip multiple bits during
traversal. These multiple bits are called strides. Instddthving just two child nodes, a multibit
trie can have™ children wheren is the fixed length stride. For example the fixed length siofdee
multibit trie in Figure 2.2(B) i2. An altogether different approach can be to have varialvigtte
strides where the stride length is not fixed as shown in Figu2€C). Both the fixed length and the
variable length strides reduce the number of memory acsesgeired by a lookup to determine the

next hop. Even though the internal nodes become more “figkiblanaging such tries is difficult.

11

Figure 2.2: (A) Unibit trie (B) Multibit trie with stride legth 2 (C) Multibit trie with variable stride
length

Incremental updates are time consuming especially in the oftries with variable length strides
and updates often result in rebuilding the whole data siract

Recently, Wulet al. proposed a longest prefix first search tree (LPFST) [46]. Kérthe tries,
the internal nodes in the LPFST tree encode prefixes. Moraouiis method, longer prefixes
are stored in the nodes present at the upper level of the Ti@s.allows the IP lookup procedure
to terminate as soon as the packet's destination addreshesabne of the prefixes. Prefix trees
resemble heaps where the prefix present in an internal nagleaser or equal in length than the
prefixes present in its children.

An example LPFST is shown in Figure 2.3. Initially, the treednsidered empty and prefix 00*
becomes the root as in Figure 2.3(a). Next, we insert 01*inageshe the two prefixes 00* and 01*
have the same prefix lengths, 00* remains the root of the ffeéereafter, 010* becomes the root
since it has the longest prefix length (see Figure 2.3(cXerAf10* has been inserted, the insertion
procedure continues and 00* is swapped with 01* since 00*%(Divalue). Similarly, in Figure
2.3(d) with the incoming prefix 0111*, the prefix 010* is pudhe second level of the tree. Since
01*is less specific than 010* and 00* < 01*, it is pushed to tightrside of the tree.

It is quite evident looking at the structure of LPFST that hieéght of the tree depends upon the
number and type of prefixes. The depth may increase or dectegrending upon the the prefix
distribution. Moreover, Wuiet al. report that for medium-sized routing tables containingubo
16000 prefixes, lookups require 18 memory accesses on &verag

Mehrotraet al. [28] developed a method that organizes the prefixes as aytsearch tree. To

12

IP routing table

00* P1

01* P2

010* P3

0110001* P4

Figure 2.3: An example of LPFST (reproduced from [46])

build the binary search tree the following two conditiongevased:

1. Giventwo prefixesl = ajas....... a,, andb = byby....... bm, if A C Bthen Ais aparent of B.

2. If A ¢ BandA < B (i.e less than in numerical value) , then A lies on the subiz&ef B.
If A and B are equal in length, then the numerical values ofpitedixes are compared. If the
lengths of A and B are not same, then the longer prefix is chbfpthe length of the shorter

prefix and then the numerical values are compared.

An example of a binary search tree is shown in Figure 2.4.cB&@sy an address in the binary search
tree, however, is not straightforward. For example, théinason address 101100*/32 lies between
011* and 101101* in the tree and it becomes difficult to detaanthe next hop. This is because
the tree does not contain sufficient information about thremqtgprefixes. Mehrotrat al. provide an
extra field for each prefix known as the Path Information F{@HtF). This PIF indicates the parent
prefixes for each of the prefixes. So for example, during tharyisearch the address matches the
prefix 101101* up to 5 bits (longest) and therefore we look ihie PIF of 101101* which indicates
that 1011* is the parent prefix. The parent prefix 1011* is aered the longest matching prefix
and the packet is routed to the next hop associated with tiefikp PIF's are bit strings where a
set bit in any bit position means that there is a parent prgfitouthat bit position. In addition, the
prefixes and the PIF are stored in an array.

Unfortunately, the above technique has a large build tinrst,Rll the prefixes need to be sorted
before a binary search tree can be built. Further, the asigpmcify a list of preprocessing steps that
need to be performed to build the binary search tree. Deletiprefixes is complicated since it will
require a binary tree traversal followed by regeneratiothefPIF field. Also, this technique will

show a high average number of memory accesses.

13

IP routing table

Root

10* P1

1011 P2

011* P3

011 10+ 101101 P4

011010% P5

///// \\\\ 011100% P6
10111* P7

011010* 011100%*

1011*

/\

101101* 10111%
Figure 2.4: An example of binary search tree (reproduced {&28])

2.2.3 Hardware based solutions

Ternary CAM (Ternary Content Addressable Memory) is a sgdzeid piece of hardware sometimes
used in routers for performing high speed searches. Te@ANs, unlike binary CAMs, provide
ternary logic with three matching states “1”, “0” and “Dog#are (x)”. This allows TCAMSs to store
binary strings of the form “1x01” which will match both of theo binary strings 1001 and 1101.

TCAMSs have been popular amongst researchers. First, betausry CAM lookups are quick
and they offer throughputs of up to 125 million lookups peca®l [37]. Secondly, the use of
a TCAM is simple since it only needs to be prepopulated with girefixes (see Figure 2.5). An
incoming address is looked up in parallel across all thexesefin the TCAM resulting in a number
of successful matches (or outputs). Thereafter, a prierigoder returns the highest priority output.

The major disadvantage of a TCAM-based lookup is its highgravensumption. Present day
TCAM devices with a capacity of 18 Mb consume up to 18W of powiéris is significantly more
than SRAM or DRAM [31]. The other disadvantage of a TCAM isdtst. A 36 Mb TCAM
will cost around 800 US dollars, while the same amount of SRAiMcost 80 US dollars. While
TCAMSs are expensive for storing a full IP routing table, a Berssized TCAM (say, with 9 Mb
storage) is well-equipped for the purposes of caching (&h&) and is not as expensive.

Zaneet al. [47] provide an index-based TCAM architecture to reduceal@ower consump-
tion. The idea is to divide the TCAM into buckets obtained Isjng a partitioning algorithm. An
initial lookup uses hashing which specifies the bucketsghatild be further investigated to com-
plete the lookup. This reduces the number of “active” bugket a single lookup thereby reducing
the power consumption.

The authors use a trie-based algorithm that partitions anufng table into a number of buck-

ets. Based on the partitioning algorithm, a relatively éarmimber of buckets (larger than 8) are

14

...

Prefix

P1]192.16.16.16/28 | 1 |—>
P2| 17219180124 | 6 > .
P | P3[172.200.200.0022 | 4 Priority | PL
17219.1824 | | P4|172.200200.0018| 3 Encoder | ¢ Next Hop: 6
il es| 17210180116 | 4
P6| 1720008 | 8
TCAM

Figure 2.5: Logical design of a TCAM

produced. However, current TCAM devices allow only 8 pemtis so that supplying more buckets
is infeasible. Further, the architecture may not be rolugetguent updates since recomputation of
hashing bits are required and the buckets need to be madisteonsvith the updates. In the recent
few years many proposals have been made to improve the TCA&Mtecture itself. Some of the
latest works in this area can be found in [17], [31], [48].

An IP packet forwarding based on partitioned lookup tabthiéecture (IFPLUT) is proposed
by Akhbarizadetet al. [7]. The authors partition the routing table based on the heps. For a
list of portsP = p1, p2, p3, ..., P Present in the routing table, their algorithm partitions thuting
table intom lookup tables. These: lookup tables (LUTs) are then looked up in parallel using
specialized circuitry. In addition, they remove all thegrarprefixes from each of the LUT to ensure
that the longest prefixes are matched.

However, the partitioning scheme may require large numb&itd's in large network access

points. Though updates are simple, creating a new LUT whamea/™ prefix with a “new” next
hop is inserted is not feasible. The same holds true duriefiquieletion where a LUT may remain
empty when all the prefixes from a LUT are deleted. In addjtiba authors discuss the possibility
of implementing IFPLUT in a TCAM. Sitill, using the TCAM for ¢harchitecture will make the
IFPLUT trivial. Further, IFPLUT’s build time is high as alé prefixes need to be sorted based on

the next hops.

2.2.4 Caching

Caching to accelerate IP lookups has been a relatively pofiield of research and a number of
methods have been developed to improve caching. As distuss8hapter 1, caching prefixes
will not reduce the worst-case lookup time but is extremallpable in decreasing the average-case
lookup time. Caching is particularly useful for distritmiand access routers which are faced with
traffic of a high degree of locality (temporal and spatialpeTidea behind caching is to store recent

lookup results which can be reused later for future inconpiagkets. In this section we introduce

15

historically the different developments in the area of daglior IP lookups and their contributions.
Later, we also explain why it is important to have a DSC in athéecture that already contains a
prefix cache. It is noteworthy to mention that the DSC can leel wgth any prefix cache mechanism
described in this section.

Early research on caching was spurred by the work of Tabatk in [45]. The authors proposed
the use of IP address caching for terabit speed routers. diteypted to demonstrate that real IP
traffic exhibits temporal locality of destination addresaad developed a cache simulator to cache
frequently referenced addresses. The authors showethéhedithe hit rates were significant (greater
than 80%) for a cache of reasonable size. However, IP adcaebing will demonstrate significantly
lower hit rates when compared to IP prefix caching since isdu capture spatial locality.

Chiuehet al. in [11] developed an independent architecture for IP addcashes known as
a host address cache (HAC). The architecture was aimed toiegPU caching. The authors
treated IP addresses as virtual memory addresses and peseldookup algorithm based on two
data structures: HAC and NART (network address routingefatfhe HAC used the Level-1 (L1)
cache in the CPU. For lookups, the 32-bit IP addresses wergidared as 32-bit virtual memory
addresses in the L1 cache. If the L1 lookup did not succeetttteelookup proceeded to the NART.
The authors treated the NART as a Level-2 cache. The NARTisteadsof three “hardware” tables
each containing the prefixes from the IP routing table. Thedixes were assigned to these three
tables using a complex indexing and tagging method. Theoasittmproved their work on the HAC
architecture by developing HARC (host address range c4tBg)This architecture based on CPU
caching is suited particularly well to a cluster of IP rostinplemented using commaodity shelf PCs.

As with IP address caching the hit rates for IP address caeitledways be lower than those for
prefix caching. Also, inconsistent virtual-to-physicatieglss mapping will result in conflict misses.
Further, supporting incremental updates is difficult duthtocomplex indexing as well as the full
prefix expansion scheme.

Cache hit rates can be maximized by providing plenty of casftges to hold as much infor-
mation from recent results. However, providing too manyheaentries for the cache may not be
practical. Nonetheless, there are alternative technigtiésplitting the cache” that are reported by
Shyuet al. [40] and Chvet®t al. [13].

Shyuet al’s aligned-prefix caching (APC) splits the cache based on théxplengths. APC
splitting creates two caches - aligned-24 cache that caalhgsefixes of length 24 or less and
aligned-32 cache that caches all prefixes of length betwéem@ 32. Since (probably) most of the
traffic matches prefixes of length greater than 24, the afigh¥cache is not (overly) polluted by
prefixes of length less than 24 and therefore can be muclr heifized. As a result, APC shows
high cache hit rates. Still, the scheme is less flexible (araglyic) since it is not certain that the
traffic will always prefer prefixes of length greater than 2MacGregor [27] however proposed a

dynamic approach to split the cache. The “splits” based efixptengths are no longer fixed but

16

vary depending upon the traffic.

01*, port 2

011*, port 2

0110*, port 3

Figure 2.6: Pruning example (reproduced from [26])

The idea of increasing the cache hit rates by routing tablapaxtion (reduction) was first
explored by Liu [26]. They demonstrated that routing taldes be reduced by 48% by using -
pruning and mask extension. A simple example of pruning @svshin Figure 2.6. The prefix P3
is a subset of prefix P2 and they have the same next hop. ThisrB@undant and can be deleted
from the IP routing table. The second technique is mask sidarthat uses the EXPRESSO tool
[34] for logic minimization. The minimizer combines two cpatible prefixes into a single routing
prefix entry. For example, the two prefixes 1100 and 1101 carob@ined as 1x00 where x is the
don’t care bit. The two techniques result in cache hit ratesgasing by nearly 15%. However, the
logic minimization process using EXPRESSO is slow. As altethe routing table build time is
very high.

Kasnaviet al. [23] developed a multizone pipelined cache (MPC), a twdieaarchitecture
comprised of a TCAM (Ternary CAM) and a CAM. The TCAM is usedcaxhe the prefixes and
the CAM is used to cache the IP addresses. In terms of mentmy,provide an equal number
of “entries” to both the TCAM as well as the CAM. Basicallyethmethod can be termed a half
prefix/half full-address cache. In their architecture,@#eéM is used to exploit temporal locality and
the TCAM is used to exploit spatial locality. They furtherfitton the CAM into two equal sized
CAMs, each storing 16 bits of the 32 bits of the IPv4 address.

The authors state that matching the first 16 bits of the cadhbelp decide whether it is worth
looking (matching) the next 16 bits of an IP address which nedyice latency during CAM lookups.
Further, they use Chvets al's[13] multizone method to split the two caches (though nottafo
information is provided regarding the the configuratiohé&soe they use for multizone caches). For
the pipelining in the MPC architecture, they place a buffsn®en the two caches and the IP routing
table. This buffer stores recent lookup results obtainechfthe two caches. The primary use of the
buffer is to prevent stalling of lookups in the two caches wiige lookup proceeds to the slow IP
routing table. While the IP routing table lookup is perfodnthe two caches continue lookups and

store all the unsuccessful matches in the buffer. Once theufng table lookup is finished, the

17

lookup result is used to clear the buffer to ensure similaklgs need not proceed to the IP routing
table. This essentially reduces the latency that existsd®t the two caches and the IP routing
table.

Apart from the hardware-based improvements suggestedegutiors for the two caches, they
employ a short-prefix expansion (SPE) technique on a trigi(gf the IP routing table) where they
expand all the prefixes until they become disjoint prefixeddaves) or 17 bits in length.

Understandably, the above architecture does not scaleinvedkms of performance and has
nearly twice the miss rates of a prefix cache. In any evengfixrache will always show a better hit
rate than an MPC. Further, the SPE technique, unlike fidlexpansion [44], has no clear benefits
and may only marginally improve the MPC cache hit rate sih@edvides a slightly better chance
to cache “parent” prefixes. In addition, it is not clear wiegthplitting of the two CAMs is useful
since jumping from one CAM to another will incur latency whimay outweigh the advantages of
having two CAMs.

Ugaet al. in [39] proposed storing intermediate nodes of a Patriga {86] in CAMs. The
authors propose using three CAMs that store prefixes ofrdiffelengths. More specifically, the
authors prepopulate prefixes of length 8, 16 and 24 in thiféereint CAMs. When a packet arrives,
the intermediate nodes are looked up in the three cacheg thriirst 8, 16 or 24 bits of the packet.
The highest priority match is selected and the search thetineees by jumping at the intermediate
node (found from the cache) within the Patricia Tree.

However, it is not possible to hold all the intermediate rodspecially in the case of a CAM
storing prefixes of length 24. This is true especially for adiam-sized routing table (~30,000
prefixes) that may easily show about 15,000 prefixes (abouf) Mith lengths 24 or more [29].
In order to cope with the above problem, prefix aggregatichri@ue is used where prefixes of
length 8 to 15 are aggregated into prefixes of length 8. Likewihe prefixes of length 16 to 23
and 24 to 32 are aggregated into prefixes of length 16 and péctgely. For example, if there
are three prefixes: 10.64.0.0/12,12.96.0.0/14 and 12(825) then the second and third prefix are
aggregated resulting in the prefix 12.0.0.0/8. The first prE3i64.0.0/12 is stored as 10.0.0.0/8.

Unfortunately, the build time of the method is extremelythido perform the required aggre-
gation, three different exhaustive (entire Patricia tidey)th-first traversals will be required for the
prefix lengths 8,16 and 24. Further, incremental updatedheaome complicated considering that
aggregated prefixes in three CAMs can become inconsistémtivg addition or deletion of prefixes
in the Patricia tree.

Penget al. [32] proposed a supernode caching scheme to efficientlyceetRilookup latency in
processors. Supernodes are nodes of a tree bitmap [15]eAitreap is a compressed subtree that
reduces the number of levels in a tree. During IP lookup® g visited supernodes in the bitmap
tree are stored in a SRAM based cache. These supernodesesresied by subsequent lookups.

Still, the highly compressed tree bitmap by itself (withthue cache) ensures that lookups require

18

only 4 or less memory accesses. So, there is no substantigfitia having a cache for supernodes.
Our approach is different in that we cache the longest plesbitanches at minimal height from the
leaf of the trie to obtain the longest possible jumps withia trie.

RRC (Reverse Routing Cache) was proposed by Akhbarizatigh [8]. RRC employs a
minimal expansion (ME) technique to deem parent prefixesagbaable. “Parent prefixes” are
prefixes that are a prefix of other prefixes. For example, Br2410/8 is a prefix of 172.19.24.0/24.
In prior work it was illustrated that caching of parent prefixshould be avoided as it could result in
incorrect lookups. For example, if we cache prefix 172.19/84 then subsequent lookups for the
subnet 172.19.24.0/8 will find a match. However, a lookuptiersubnet 172.19.24.0/8 will match
the prefix 172.19.24.0/24, yielding an incorrect result.

The Minimal Expansion (ME) technique proposed by the athmwovides a more intelligent
way to handle parent prefixes. A simple example of ME is shawRigure 2.7 where the parent
prefix is 1*. When an address (e.g, 1110) is looked up in tlee we first find that the parent prefix
1* is a match. However, we cannot place 1* in the cache. Asultrege continue the traversal and
generate the prefix n = 11*. Again, 11* is not cacheable siheeet exists a more specific prefix
110* in P1. We then add the bit “1” (third bit of the address Q)Lfo the prefix n = 11* . The
expanded prefix 111* is therefore a match for 1110. Sincerrtimmally expanded prefix 111* is
not a parent prefix, we can safely cache the prefix 111*. Thiereaackets destined to the subnet
111*find a match in the cache.

Though the authors provide a suitable method to cache parefirtes, their method cannot avoid
full-trie lookups for a significant percentage of the paskeftor example, for a cache size of 128
entries, they show that 92% of the packets were looked upeicéiche. That is, 8% of the lookups
still had to do a full-trie lookup. However, in later chapgteve present our architectures (prefix

cache-first and DSC-first) which are primarily aimed at rédgthe number of full-trie lookups.

Parent Prefix Node: '
Intermediate Node: O

o

.
[}

Expanded Node: o
O P4 Parent Prefix = 1*

[y

@ @ .} Minimal Expansion 111*

Figure 2.7: Minimal Prefix Expansion (reproduced from [8])

19

Chapter 3

Prefix Caching

A prefix cache is an integral part of our architectures (prefixhe-first and DSC-first) and we
dedicate this chapter to describe the workings of a prefikeand a prefix caching scheme that
uses skip-nodes. Skip-nodes help reduce the size of theleshied trie and helps increase the
prefix cache hit rates. The technique of using skip-nodeaisihefor prefix caching is not tried out
previously.

We first outline the overall process to build trie using skipdes as well as the architecture
required for it to be feasible. In addition we provide vadauetrics to evaluate the performance of

a prefix cache. We also detail the experimental results andhijtlications.

3.1 Leaf-pushed tries

As discussed earlier, tries can be used to represent préfigesouting table. A prefix is simply a
path in a trie starting from the root to a node that containex-hop. We call nodes containing a
next-hop as decision nodes. In addition, we refer to all saither than leaves as internal nodes.
Further, a decision node can be an internal node of a trie hasiés leaf as shown in Figure 3.1(A).
Before we get into the details, we introduce some notati@h wWe will be using in subsequent
sections.

SupposeR = ry,ro,...,rN IS @ set of N prefixes andd = hq, ha,...., hyy iS @ set of M
unique next hops. Then we represent a single entry in a pwible R by the prefix-next hop
pair < r;, h; >. The following rules are followed during an address lookapell as during the

construction of a trie:

e For an entry< r,, hy, > in R, 1, is a parent prefix if there exists an entyr;, h; > in R
such that-, is a prefix ofr; and the length of,, is less than the length ef. The above rule

holds irrespective of the values bf andh;.

o Aparent prefix-, of a prefixr; in R has a lower priority than prefix, during address lookups.

20

e For two entries< r;,h; > and< r;,h; > in R, the prefixes; andr; are independent if

neither of them is a parent prefix of each other.

e If there exist two entriesc r;, h; > and< r;, h; > in R such that the prefix; = r; (similar)
and the length of prefix; is equal to the length of prefix; then both the prefix; andr; have

equal priority.

In a trie, a parent prefix,, is represented by a path from the root to a decision node shat i
internal node. In Figure 3.1(A), the prefiy = 10« is the parent prefix of 1001* and 101*. Take
a hypothetical case where a packet with destination addi@381 arrives at the router ingress.
Looking at Figure 3.1(A) and following the rules stated abowe traverse up to the leaf node
storing0. Since the traversal had already seen the parent prgfix 10+, we route the packet to
h, = P3.

However, we use a different scheme to represent our rougilg.t We use a leaf-pushed trie
where the next hops of the parent prefixes are pushed to thesleathe trie instead of storing them
in the internal nodes [44]. The next hap of a parent prefix, is pushed within the subtrie rooted
by the internal node that was containing the next hppFor example, in Figure 3.1(A) the internal
node containing the next hdp, = P3 is a root of a subtrie. During the leaf-pushing process, if
a leaf turns out to be a decision node, we do not push the ngxkie= P3 to that leaf. On the
other hand, if a leaf is storing@ then we replace with the next hoph, = P3. An example of
a leaf-pushed trie is illustrated in Figure 3.1(B) wherepheent prefixes 10* and 0* are pushed to
the leaves.

During prefix caching, we keep note of the prefixes that wereegged from the trie during
address lookups. For example in Figure 3.1(B), for a packit gestination address 10001, we
generate the prefix 1000* during the traversal. Thereafterstore the paix 1000%, P3 > in the
prefix cache which can be used for future address lookupsolild be noted that the leaf-pushed
trie for prefix caching is an extension of the work done in [8r example in Figure 3.1(B), a
traversal along the path 01110 generates the minimallyredgzh (ME) prefix 01*. Then the pair
< 01x, P6 > can be safely stored in the prefix cache since 01* is an indkpemprefix. Even though
leaf-pushing increases processing during trie build, vesvsh Chapter 4 that the leaf-pushed trie is
indeed necessary for architectures containing the DSC.

Apart from storing the next-hop; in a leaf for a prefix-;, we also store the prefix lengths as
shown in Figure 3.1(B). This additional control informatics useful during incremental updates
and is discussed in detail in Section 4.4.

Traditionally, a trie with no leaf pushing is preferred oedeaf-pushed trie since it is convenient
to delete parent prefixes during incremental updates. Fample, if the routing table entry <10*,
P3> needs to be deleted from the trie, we traverse up to teengltnode storing P3. Thereafter,

we delete P3 from the internal node and make it a “non-datisiode. The worst-case complex-

21

Prefix Next

Hop

0* P6

00* P1

1001* P2

10* P3
101* P4
11* P5
Routing Table

@ 3 (Prefix Length)

(A) (B)

Figure 3.1: (A) Traditional Trie (B) Leaf-pushed trie withglix length encoding

ity of deleting a prefix from a trie i©(W)where W is the worst-case length of a prefix (i.e 32).
Nonetheless, we show in Chapter 4 that parent prefixes caalbied from a leaf-pushed trie with
a marginal increase in complexity.

A major component that affects the performance of a cacHeeisdplacement strategy. In our
work we used least recently used (LRU) stack. The primanaathge of a LRU stack is that it
is well suited to exploit locality due to packets arrivingshort bursts. As per the strategy, the
most recently referenced (matched) prefix is moved to th@tape cache while other prefixes are
moved down by one position in the cache. This ensures thatlaoprefixes remain near the top
of the cache. At the same time, not so popular prefixes tendnt@in at the bottom of the cache
and gradually age out from the cache. We also tried FIFOtfRirEirst-Out) replacement strategy
where a prefix at the top of the cache gradually moves downableecwith time. However, prefixes
that have a chance to become popular once again (becausailair Sprevious” bursts) may get
aged out from the cache. As a result, the cache will showivelgiower hit rates. This was evident

from empirical results where the LRU stack out-performe@®in terms of hit rates.

3.2 Prefix caching using skip-nodes

Trie compression is one way to improve the performance otéxpcache. A compressed trie will
have fewer prefixes than the original trie. This will imprabe hit rates since more prefixes can
occupy a single cache entry. During compression we alsaretisat address lookups return correct
results.

First, we compress subtries that have leaves containinggtime next hops. We call this method

initial compression (IC). This technique was also investg by Kasnavet al. [23]. We describe

22

the technique using a simple example from Figure 3.2 (A).la the leaves in the subtrie rooted
by the nodes 1xC and 1xB contain the next hbps= P1 andh, = P2 respectively. We compress
these subtries into singular nodes containing their re@ecext hops (P1 and P2 respectively) as
shown in Figure 3.2 (B). After the compression, the numbaarefixes in the trie is reduced from 6
to 3. This scheme is simple and provides an “initial” compeektrie before we generate skip-nodes
on the trie. It may at first seem that this initial compress®agelf-sufficient. However, we show

from empirical results that by using skip-nodes we imprdneefierformance of the prefix cache.

(A) (B)

Figure 3.2: (A) Leaf-pushed trie with redundancy (B) Leakped trie without redundancy.

Skip-nodes in the leaf-pushed trie are generated after ywhy déipe IC technique. We use the

following steps to generate the skip-nodes:

e For two distinct next hop&; andhs, we search the trie depth-first for subtries containing

leaves that store eithéy or hs.

e If a subtrie has just two leaves each storing eithepr hs, then the two leaves are replaced

with a single skip-node.

o If a subtrie contains multiple leaves storihg and a single leaf storinfs or multiple leaves

storinghs and a single leaf storingy;, then the subtrie is replaced with a single skip-node.
e Other cases that do not satisfy the above three rules ar@acemsidered.

A simple example of a trie containing skip-nodes is shownigufe 3.3. The two subtries that
satisfy the above rules are reduced to skip-nodes contpskiip-strings 01* and 101*. A lookup
for a destination address 1010100 in the trie will find th@pakbde containing the skip-string 101*.
Thereafter, the most significant bits of the address is coatpaith the skip-string 101*. A match
will result in the packet being routed to the next iop= P3. Otherwise, the packet is routed to the

next hoph, = P2. The above mechanism compresses the trie by representigyip of prefixes

23

by a skip-node. In Figure 3.3(B) we can see that we requiretyus skip-nodes in place of five
different prefixes.

However, we would need a different architecture for prefishiag. This can be explained from
Figure 3.3(B). For a prefix cache architecture supportingeshof the form< r;, h; > pairs, we
can store the entry. 11, P5 > in the prefix cache. However, if we find P5 as the lookup result
for a destination address, we cannot store the prefix 001tarptefix cache since the architecture
does not support assigning two ports (P1 and P5) for a singfexgentry. Moreover, no extra logic
is available with the architecture to decide the correct heyp for a destination address (P1 or P5)

that matches the prefix 001* .

(A) (B)

Figure 3.3: (A) Compressed trie obtained after the “init@mpression (B) Trie with skip-nodes.

CAM1 CAM2

10101110 —->| 000101110

True
| P2
— 7w

False
e
True
11111110 | 00001 :t: = 1(B)
hit/miss -
False
e
Next
8 bits 24 bits Hop

Figure 3.4: Architecture required for prefix caching usikgpsiodes

Alternatively, a different architecture can be used andustrated in Figure 3.4. Such archi-

tectures are prominent in the area of caching and have beestigated previously [23, 24]. For

24

our work, we use two CAMs (content addressable memorieghtocache. For caching, the first
8 bits of a prefix are stored in CAM1 and the remaining bits ofefip are stored in CAM2. For a
successful address lookup, a packet's destination adsihessd match a single “continuous” entry
in both the CAMs.

In the architecture, CAM2 can be used to store skip-strifigs.instance in Figure 3.3(B) if a
lookup found the skip-node containing the skip-string 1@iting lookup, then we cache the skip-
string 101* in CAM2 and 10* in CAM1. The logic required to ctemthe correct next hop is placed
between CAM2 and the RAM. A match in CAM2 will cause the padkdte routed to the next hop
ho = P3. Otherwise, the packet is routed to the next hgp= P2. Further, the next hops; and
ho associated with a skip-node is placed adjacently in the RAdt.the above examplé,; = P2
andhs = P3 will be placed adjacently in the RAM. The “~” in the RAM indits that the lookup
needs to proceed to the low-level memory containing theatnié is specifically meant for entries
like <11*, P5> that contain a single next hop.

The problem with using skip-nodes in a trie is that we losesmerable control information
regarding the prefixes. One obvious loss is that we no longewlabout the prefixes that were
present in the trie (i.e after the compression). Furthercareno longer reliably associate priorities
to the prefixes that were compressed.

The loss of vital control information is a hindrance for iaarental updates. This is true because
for adding or deleting a prefix from the trie, we might have éoreate the compressed subtrie to
make the trie reflect the latest routing table. For instancEigure 3.3, it is not easy to recreate
the subtrie that was replaced by the skip-node. This is tvaa & the subtrie had just two prefixes
since we cannot be sure about the priority (prefix lengthf)@two prefixes. At the same time it is
essential for any architecture to support incremental tggd@onsequently, in the prefix cache-first

or the DSC-first architecture we do not perform any compoessf the trie .

3.3 Metrics and Implementation

There are two different metrics that are used to evaluatpeéhfermance of the technique described
in this chapter.

Firstly, in order to test the effectiveness of skip-nodes,oalculate the size of the of trie after
generating skip-nodes within the trie. The reason for $ielgsuch a metric is that it indicates
whether the number of prefixes in the compressed trie hagihdeluced when compared to the
original trie.

The metric mentioned above is obtained by simply searchapgtdfirst the number of prefixes
in the trie. The prefix as a result of a skip-node is considayédxd a single prefix since it effectively
consumes just a single cache line in the two CAMs irrespedatfvits representation in the RAM.
Similarly, we consider a prefix that does not result from ggkdde to be just one prefix. The

measurements described above may slightly vary dependimytine properties of packet trace and

25

routing table that we employ.

Secondly, we calculate the number of times a match is fouttteiprefix cache. To express the
numbers in fractions of the total, we count the number of eddn the prefix cache of the total
number of searches in the prefix cache. For better readahititterm the fraction as the hit rate. A
higher hit rate would mean that many lookups are able to fin@iimin the prefix cache. It should
also be noted that the performance of a cache also dependshgcache size (i.e number of cache
entries). Thereby we also show how and why performanceswisinjincreasing cache size.

To test our idea we performed experiments on different sacel routing tables (datasets). For
evaluation, we first built the leaf-pushed trie without gextiag the skip-nodes. We then determined
the number of prefixes in the trie. At first it may seem that thmher of prefixes should be equal
to the number of prefixes in the original (raw) routing tabfel @o there is no need to perform
this search. However, the leaf-pushing process descriteibpisly causes “prefix-expansion” [23].
This results in the number of prefixes in the trie to be largantthat present in the original routing
table. Once the trie is built, we perform tests by simulathmglookups in the prefix cache. Lookups
that find a hit in the cache are considered as completed I@klupokups that miss the prefix
cache are then simulated to be traversing down the the trigle\& lookup is being performed, we
simultaneously generate the pairr;, h; > . A lookup that finds a leaf is considered complete. The
pair < r;, h; > that is generated as a result is then moved to the prefix cache.

We simulate the prefix cache using C programming language@mslder the prefix cache to be
residing in a contiguous memory where the beginning of thigtiguous memory is the top (first-
entry) of the prefix cache. Henceforth, to simulate the LRplaeement strategy, the most recently
looked up pai r;, h; > is moved to the top of the contiguous memory and othet, h; > pairs
were moved down by one position. Further, we simulate the gizhe prefix cache by the size of
the contiguous memory.

A similar process is followed while evaluating the prefix lsaasing skip-nodes. This time we
build a trie first applying the IC technique followed by ouoposed method. Further, the prefix
cache is simulated as having two contiguous regions of mginstead of just one. For the next
hop information we considered a contiguous memory as wékre/two adjacent memory locations

stored the two next hops associated with a prefix.

3.4 Dataset
3.4.1 Routing tables

For the experiments, we use three different routing tabdesmibaded from different sources. These
routing tables are real-world and each are drawn from differouters. This allows us to verify
whether the proposed technique for prefix caching has neéevander real-world circumstances.

These routing tables vary in their size and prefix lengttrithistion.

26

We first used the Funet routing table that was made availaljf.iFunet is a backbone network
providing Internet connections for Finnish universitiesiather research institutes. For our work,
we downloaded a routing table that contained 41362 prefixeslium-sized). This routing table
has a significant number of parent prefixes. This gives us d gpportunity to compress the trie.
Moreover, the number of distinct next hops = hq, ho,, hy is relatively small| H| = 11. In
addition, like modern day routers, the routing table hasnedixof length less than 8 [22].

The other two routing tables ISP1 and ISP3 are drawn fronniloigion routers made available
by local service providers. These routing tables have fewefixes (10166) than the Funet table.
Unlike Funet, these routing tables have very few parentygsfiThat is to say most of the prefixes
are independent. The number of distinct next hops in ISP1I8R8 is|H| = 32. However, the

smaller number of parent prefixes causes the initial corspeso be less effective.

3.4.2 Packettraces

The real-world packet traces Funet, ISP1, and ISP3 usechéextperiment are related to their
respective routing tables. The three packet traces ar@xippately 100,000 packets in length and
contain destination addresses only. The traces are difféameterms of locality properties. The
Funet trace has less locality compared to the ISP1 and IS#8gr In particular, ISP1 and ISP3
demonstrate high degree of temporal locality. It is not saipg that the Funet trace shows less
temporal locality because the IP traffic at the Funet backouter sees significantly more flows as
compared to ISP1 and ISP3. A distinctly greater number offlmereases the inter-arrival times of
similar packets resulting in reduced temporal locality.ti#¢ same time, the Funet trace has fewer
unigue destination addresses. Consequently, the Funetrrquires a smaller cache to achieve peak

performance.

3.5 Results and discussion

Table 3.1 gives a fair idea of the amount of compression intrikeafter we apply the two com-
pression techniques. The amount of compression is rel\atyamd for all three routing tables. As
hinted earlier about the presence of redundancy in the Fangng table, nearly 46% of the prefixes
have been removed after applying the IC technique. Thislglsaggests that there was significant
redundancy in the trie where the overlap to a great exteratused by parent prefixes. As ISP1 and
ISP3 had a large percentage of independent prefixes, thiyrped relatively worse than the Funet
routing table. However, the level of compression is stibd@and this demonstrates the effectiveness
of the proposed method. The amount of compression can haeek&dimprovement on the perfor-
mance of the prefix cache. As for applying our proposed metinadp of the IC technique, we can
see the results are still relatively good. We get nearly @% 8eduction in the size of the trie for all
three routing tables. ISP1 and ISP3 show slightly lower casgion than Funet because there are

more distinct next hops present in the routing tables. Tédsices the probability of finding subtries

27

Table 3.1: Percentage decrease in trie size

Routing Table| Initial Compression (IC)| Proposed (After IC)
Funet 46% 31%
ISP1 27.2% 26%
ISP3 27.2% 26%

that satisfy the rules stated in Section 3.2. Further, tlebar of independent prefixes in the routing
tables also affects the amount of compression.

Tables 3.2 to 3.4 shows the hit rates for all three tracesherl€ technique as well as the
proposed technique. For the Funet trace, the IC techniques gi reasonable improvement in hit
rates. This is correlated with the amount of compressiohwa achieved (46%). At the same
time, ISP1 and ISP3 show significantly less improvementtmdies. This again is because the IC
technique was not overly successful in performing compoasdt is interesting to see that ISP3
hardly shows any improvement even though there was somergrabcompression after using the
IC technique. This is because the destination addressaésdea fall in the part of the trie that was
not compressed. This also suggests that redundancy wasifmtothroughout the routing table.

As with the proposed technique, we can see that the hit ratesihcreased by up to 5% when
compared to the IC technique. The improvement in hit rateégjutbe proposed technique gradually
decreases with increasing cache size. This is because eadhe size grows, we get nearer to the
peak performance and improving upon it gets harder. The $eniaks true for the performance of
the IC technique. The Funet trace has a better performance #ie compression achieved using
the proposed method is much higher. In addition, since theefrouting table had more parent
prefixes, the chances of subtries satisfying the compnessles are greater. This is substantiated
by the extent of compression resulting from the proposedahigcie. Further, ISP3 shows up to 4%
increase in the prefix cache hit rate. This also indicatestitteadestination addresses tend to fall in
the part of the trie that was compressed by the skip-nodesoritrast, we see the pattern of cache
hit rates for ISP1 to be similar to that for the IC techniquéeTP traffic, again, does not seem to

prefer the address space that was compressed using theoslap n

28

Table 3.2: Performance: Hit rates (%) - Funet

Cache Sizel No Compression Initial Compression (IC)| Proposed (skip-node + IC

32 58 60 63.8

64 | 68.4 | 70.2 | 75.2 |
128 | 774 | 80.5 | 84.4 |
256 | 89 | 91.6 | 93.8 |
512 | 96.7 | 97.8 | 98.4 |
1024 | 98.9 | 99.1 | 99.3 |

Table 3.3: Performance: Hit rates (%) - ISP1

Cache Sizel No Compression Initial Compression (IC)| Proposed (skip-node + 1C)

32 65 65 65.8

64 | 72 | 73 | 76 |
128 | 84 | 85 | 87.3 |
256 | 92.6 | 933 | 94.8 |
512 | 97 | 97.4 | 98.4 |
1024 | 98.6 | 98.8 | 99.1 |

Table 3.4: Performance: Hit rates (%) - ISP3

Cache Sizel No Compression Initial Compression (IC)| Proposed (skip-node+ IC

32 51.8 52 54

64 | 615 | 615 | 64 |
128 | 719 | 72 | 76 |
256 | 835 | 83.7 | 87.3 |
512 | 92.6 | 92.6 | 95 |
1024 | 9757 | 97.57 | 98.9 |

29

Chapter 4

Architecture

In this chapter we introduce the idea of using the prefix cdtheand DSC-first architectures to
reduce the number of full-trie lookups. The important comgrtt in the two architectures is the
DSC. The DSC exploits locality as well as assists lookupsftiiein particular address spaces. We
are further helped by the fact that the DSC can be used in gsocgthat already have a prefix cache.
In Sections 4.1 and 4.2 we give the datapath for our architest In Section 4.3 we discuss
substrides and the way we generate them. In Section 4.4, sezide incremental updates that are

applicable to both the architectures.

4.1 Prefix cache-first architecture

Figure 4.1 presents the datapath for our prefix cache-ficttitecture. The architecture consists
of two major components. The first component consists of théixocache and the DSC that will
reside in a processor. The second component consists eafpulished trie that is made available
in the low-level memory. The <prefix, next hop> pairs are estioin the prefix cache while the
<substride, node address> pairs are stored in the DSC. Gthgponents in the architecture such
asgl’, g2, g3 andg4’ are required for providing decision logic. Further, theyirol the flow of
information within the architecture. It should be notedttiva have not applied any pipelining in
the above architecture and the direction of flow of informais from left to right. In any case, the
DSC always waits for the prefix cache lookup results. By imfation we mean the data such as IP
destination addresses and lookup results. Further, irgfoomcan flow through a line (say, T) if and
only if it is enabled.

Initially when a destination address needs to be lookedhgantcoming lines to the prefix cache
andg1l’ fromT are enabled. A decision il’ is made only after results are obtained from the prefix
cache. If a destination address finds a match in the prefiveg#ioh output lines are enabled. Hence,
the line U is enabled and the lookup result (next-hop) is foded to the output interface. Since the
lookup process no longer needs to be continued, the inpitdipl " via the prefix cache is enabled.

Consequently, the lookup does not proceed to the DSC. Ifableulp in the prefix cache fails, the

30

input line tog1’ via the prefix cache is disabled. As a result, the input sigtwej1’ remain enabled

and the lookup then proceeds to the DSC.

gl’
Dynamic 93
o N .
Substride <substride,
Cache _(R). node address>
hitmiss Y hit/miss
I
IP dest addr Prefix next-ho
- p‘
77 cache v () .
A 2 B
9 High f (5) >
9

\4

substride-update
Leaf-Pushed Trie

prefix-update

Yy,

next—hop'

Result

(output interface)

Figure 4.1: Prefix cache-first architecture

A similar logic is followed when we perform a lookup in the DSI€a lookup in the DSC is
successful, the output lines are enabled. Subsequerdkybs proceed by jumping within the trie.
If line R is disabled them4 will enable output line S. This will result in the lookups ¢isuing
from the root of the trie. For caching, we update the prefixheaand the DSC with prefixes and
substrides (respectively) generated during trie looklipss update happens if only if a lookup was
successful in the leaf-pushed trie.

The following are the characteristics of the prefix cachst-firchitecture:

e InFigure 4.1 we can see that the prefix cache sees the destindtress stream first. Thereby

in this architecture, the prefix cache remains focused itoéipuy locality.

e The DSC in this architecture is focused to assist lookupsiedr from the prefix cache. Based
on the empirical results, we found that the DSC benefits fitoerfact that most of the left over
lookups fall in particular address spaces. In fact, som&e$e¢ lookups that are assisted by

the DSC result from compulsory misses in the prefix cache.

e The performance of the prefix cache does not depend upon tifierrpance of the DSC.

However, the DSC performance may vary depending upon tHix gaeche performance.

31

4.2 DSC-first architecture

Figure 4.2 presents the datapath for our DSC-first architectThe architecture is different from
the prefix cache-first architecture in that the DSC is placsfdre the prefix cache. Moreover, the
information flow is slightly different for this architecteir The main difference is that we refer to the
leaf-pushed trie when the output line U is enabled. Furtloeena successful lookup in the prefix

cache will give the next hop result which is immediately farded to the output line.

gl’
93
Prefix N next-hop >
Cache (R)
hit/miss .
Dynamic | hit/miss A <substride,
IP dest addr X p
p > Substride / node address>
T %4 7)
Cache

y,

(S)
A 92 High —.3
i /
prefix-update

Leaf-Pushed Trie

&
<

substride-update

y,

next-hop

Result

(output interface)

Figure 4.2: DSC-first architecture

The following are the characteristics of the DSC-first aeatture:

e The DSC in this architecture sees the destination addnesswsfirst. Without doubt the DSC
will exploit the locality in the destination address streaithe DSC will also be active in

assisting lookups that fall in particular address spaces.

e The prefix cache in this architecture may act as a supporet®8C and may assist lookups
that do not find corresponding substrides in the DSC. Thistieh can be attributed to a
more-active DSC and a less-active prefix cache. We discissmtfreater detail in Chapter 5
and Chapter 6.

e The two caches in this architecture are inclusive i.e the P&@ormance depends upon the

prefix cache and vice-versa (Chapter 5 and Chapter 6).

¢ |t should not be surprising if we see a DSC alone performiregjadtely. In fact, we see this

behavior for few datasets (Chapter 6).

32

4.3 Understanding the DSC

An important functional component in the two architectusethe DSC which is used to store sub-
strides. Before we get into details of how we generate siglestrit is important to understand some
notation that we will be using throughout this chapter.

Firstly, we represent a substride by the pair <substridderaddress>. The substride in the
<substride, node address> format is a shortened prefix giededuring lookups whereas the node
address is the address of an internal node within the legtigulitrie. Similar to a prefix, we represent
a substride by a bit string. Since substrides are shorteredtkgs, their bit length is not more than
32. These pairs, in concept, point to different subtriefinithe trie. Moreover, the substride and
the node address in the pair are obtained dynamically bas#iiedP traffic seen by the trie rather
than by preloading the DSC.

Secondly, we represent the height of a substridédayht — k which is measured from the root
of the trie. The ternk in the notation indicates skippiriglevels from the leaf of a trie. The values
of k have an affect on the performance of the DSC and we later dheimtportance of choosing a

good value fork. An illustration is provided in Figure 4.3.

height - 1

k=1
height (‘

Figure 4.3: Height of a substride 101teight - kwherek = 1

Dynamic substride caching is a technique which helps altexthe problems of full-trie lookups.
The DSC stores substrides obtained from recent lookup<itriéh Leveraging substrides, lookups
can proceed directly from an internal node within a trieppking many internal nodes along the path.
This, in effect, reduces the number of memory accesses dégdesingle address lookup. Consider
a simple example in Figure 4.4 where the lookup is being peréd for a packet with destination
address 10100. Also assume that we have a DSC which conta@rgry <101*, 0xB>.The address
lookup will find a hit in the DSC because the most significatd bf the destination address match
the substride 101*. This allows the lookup to skip 101 andtpeal from node 0xB in the trie. Then

the lookup has to do two more memory accesses to find the latdioing the next hop,; = P3 .

33

Clearly, in this case we skip three memory accesses.

Once a lookup has completed we store the prefix and the siébatrihe prefix cache and the
DSC respectively. Consider the previous example where lkufpéor the packet with destination
address 10100 finds the next hbp= P3. Firstly, the pair <10100*, P3> is stored in the prefix
cache. Secondly, we store the pair <1010%, 1xC> in the DSCrevtiee substride is 1010* and the
node address is 1xC. The substride 1010* is obtained by eglttee height of the path represented
by the prefix 10100* by 1. For the previous example we considiéiie value of: to be 1.

The lookup requires one top-down traversal to determingthéx as well as the substride. To
achieve the above, we initialize two pointers to the rooth# trie - one for the prefixp() and
the other for the substride(). Thep. always begins the traversal down the trie. Thestarts its
traversal only whep, has completed edge traversals. Thereaftgg,follows p. one edge at a time
until p.. finds a leaf node. The internal node whetepoints wherp,. reaches the leaf node is the
required node address for the pair <substride, node address

While we cache the prefixes resulting from a full-trie lookwe also want to ensure that the
prefixes that were successfully looked up because of thdrglgsare also moved to the prefix
cache. This allows us to fully utilize the prefix cache andmmte it affected because of the DSC.
For the same, we perform a full-trie lookup and ps@ndp, to traverse and generate the prefix and
the substride. However, if the lookup was assisted by the 8@ we do not have the opportunity
to generate the prefix or the substride using the two pointers

Alternatively we can use a different architecture for thed(See Figure 4.5). As shown, the tag
array in the DSC stores the substride and the data arraysstorecsubstride, node address> pair. A
lookup that finds a hit in the tag array retrieves the corradp@ <substride, node address> from
the data array. Once a lookup completes, we can extract thatrile from the <substride, node
address> pair to generate the prefix as well as the subskatexample in Figure 4.4, 10100* for
the prefix cache is generated using the substride 101* frerD®C and the remaining trie path (00)
traversed starting from 0xB due to the DSC lookup 101*.

Previously we mentioned that it is important to have a lasfhed trie to prevent incorrect
lookups. Incorrect lookups can be explained by a simple g@kansing Figure 4.6(A) where prefix
10* is the parent prefix of 1001* and 1011*. If we receive a pdlr which P4 is the best match
and we cache the pair <101*, C> in the DS€{ght — 1) then subsequent lookups that should have
foundh; = P3 as the next hop result may end up finding 101* in the DSC. Asalttdgokups in
the future may fail to find the next hop = P3. Such an outcome is erroneous and may result in
a large number of misses. We therefore solve this by usingfepleshed trie as shown in Figure
4.6(B). Lookups assisted by the DSC can find any of the threéxes (P2, P3 and P4) without
being incorrect.

An important parameter that effects the performance of tBE ¥ the value of in height — k.

The value ofk indicates the number of levels we skip starting from the tfad trie. The larger

34

Lookup 10100

Dynamic Substride Cache | 101%* <101*,0xB>

Hit

<101*,0xB>

1xC ! height - 1

05 |
Oy
OO

Figure 4.4: Dynamic Substride Caching foe= 1

Tag Array Data Array
> 101010101*
> 10101000%
101000101*
> 000000*
10010010% <10010010*, Node Address>
7 1111011111%
> 1011*
1111110*
> 0000010*
111011*
IP destination

address

> 10010010*
+
Node Address

Figure 4.5: Dynamic Substride Caching

the value oft , the more levels we skip while generating the substrides Tdreases the number
of additional memory accesses that lookups need to perféiantaey jump within the trie. At the
same time, if we choose a smaller valuekof the DSC will show relatively lower hit rates. This
scenario can be explained from Figure 4.4 where the DSC witi@hstrate a better hit rate when
we cache substride up to OxB rather than 1xC. This is becdngssubstride up to 0xB covers a
larger address space when compared to the substride 1xGaudgviookups that benefit from the
substride up to OxB have to perform at most two more memorgssss in order to find the leaves.
On the other hand, lookups that benefit from 1xC have to perftrmost one memory access in
order to find the leaves.

Our choice for the value of is based on empirical results. We found that the valug oén
be selected anywhere between 2 and 4. By chodsibgtween these values lookups that use the

substrides are able to jump as deep as possible within theByi doing this, we found that only an

35

Lookup: 1010

Trie Traversal

(A) (B)

Figure 4.6: Dynamic Substride Caching

additional 3 to 5 memory accesses on average are requir@isto e lookup. While we could have
choserk = 1, we realized that the DSC then shows relatively lower hégsaflso, values of more
than 4 were found not suitable because they induced an avefagore than 5 memory accesses.
We consider average memory accesses of less than 5 to bblsditrause it is permissible for
the OC-192 line rates [16]. Further, we identified the valtié o= 3 to be the best because then
lookups need to perform at most an additional 5 average meaemesses. Further discussion on

the parametet is provided in Section 5.3.1.2.

4.4 Incremental updates

A routing table is subject to change during updates. Thedatep can lead to inconsistency in the
prefix cache-first or the DSC-first architectures. Two situret where the data can become incon-
sistent are addition and deletion of prefixes. The task afiémg consistency gets even harder since
we store information in three different components in oghéecture - prefix cache, DSC, and the
leaf-pushed trie. Given the importance, we present an mldadremental updates that is applicable
to both the prefix cache-first as well as the DSC-first archites. Some views on incremental up-
dates on a leaf-pushed trie are presented in [44]. Howéwayr,do not present views in cases where
parent prefixes are deleted from the leaf-pushed trie. Adiarely, we show that encoding extra
information in the internal nodes and leaves will be suffiti® ensure proper deletion of parent
prefixes from the leaf-pushed trie. Further, since DSC isiquencache organization, we provide a
new mechanism to ensure consistency in DSC during increah@mtlates. In addition, Akbarizadeh
et al. [8] provide schemes for incremental updates in a prefix cadbeever, they use an approach
where they do not consider next hop information when makexgsions. This results in removal of
prefixes from the prefix cache that can actually be done witliaue consider the next hops. We
show that using next hop information of the newly updatediyend the prefix in the prefix cache,

we can reduce the number of prefix removals from the prefixesathis will only reduce latency

36

during updates.

Moreover, we have do not do any implementations for incraaiempdates due to lack of rele-
vant datasets. Nonetheless, we present all the possilds vdeere incremental updates can cause
inconsistency and provide solutions for them.

For readability, we call prefixes in the leaf-pushed trieand prefixes in the prefix cache.

Further, we call prefixes to be added or deleted;as

4.4.1 Addition

When a new prefix; in < r;, h; > is to be added, we take the following steps to make the leaf-
pushed trie consistent. First, we traverse down the triedas the prefix; in < r;, h; >. If the
traversal finishes at a leaf encoded withthen we replacé with ;. In this case, the prefix; is an
independent prefix. We also store the prefix length;af the leaf. If the traversal finishes at a leaf
node which is a decision node, we compare the prefix lengthwith prefix length ofr, presentin
the leaf. The prefix that turns out to be the longest gets tiogifgrand the next hop associated with
it is encoded in the leaf. In the case where the prefix lengththe same, we encode the leaf with
bothr; andr; since both the prefixes have the same priority. In additibthd traversal exceeds
beyond a leaf with), then we continue by creating the new nodes for the prefidhe leaf in the
new branch will encodé; The above process has the complexifyV) whereW is the worst case
depth of the trie.

The update becomes much more complex in the event the tedfimishes at an internal node.
This would mean that prefix; is a parent prefix. The internal node where the traversahi@sisin
effect, is a root of a subtrie. Then we traverse the entirérisutlepth-first starting from the root of
the subtrie. Subsequently, we follow a similar techniqudescribed above. Any leaf in the subtrie
encoded with), is replaced withh;. For other cases, we compare the prefix lengths present in the
leaves with that of ;. Changes are made to leaves depending upon the outcomeswéfix length
comparisons. This multiple traversal has comple@W)whereN is the number of paths in the
subtrie. Further if the new prefix makes an independent prefixin the leaf-pushed trie a parent
prefix, then we follow the method described above. We tratrs leaf-pushed trie using the prefix
ry instead ofr; to find the root of a subtrie. Then we traverse the entire gibtrdepth-first order
starting from the root of the subtrie and update the leavesdan the rules stated above.

The DSC is looked up for substrides in <substrides, nodeeaddrsuch that either one of them
- substride or; is a parent of the other. For readability, we make the distoncdhat “parent” is
meant for comparisons between a substride and a prefix. Guttibehand, “parent prefix” is meant
for comparisons between two prefixes.

Firstly, in the case where the new prefixis a parent of the substride, we do not remove the
corresponding <substride, node address> from the DSC.ig iscause the new prefix in this

case is a parent prefix and does not effect the leaf-pushedtterms of the number of prefixes

37

(i.e the address space). Since the leaf-pushed trie hahiaoged, the effects of the jump from the
substride will also not change. This is shown in Figure 4.7.

Secondly, if the substride is a parents¢f we still need to verify whether the new prefixis
a parent prefix or not. This information can be obtained fromrecent addition process forin
the leaf-pushed trie. If the leaf-pushed trie “saw” thatvas a parent prefix, we still do not remove
<substride, node address> from the DSC. This is becauseirikis case the leaf-pushed trie is
not altered due to the prefix. This shown in Figure 4.8. Otherwise i is not a parent prefix we
follow a conservative approach. We check how much longey is length than the substride. If it
is more thark levels, we delete the corresponding <substride, node asielrd his is to ensure that

we (approximately) maintain the propertyluight - k

Add Prefix: 1* (P3) Substride 11* remains valid
Substride in DSC: 11*

Figure 4.7: Effects on substride during parent prefixestaudin trie

Add Prefix: 110* (P3) - Parent Prefix Substride 11* remains valid
Substride in DSC: 11*

Figure 4.8: Effects on substride during parent prefixestaudin trie

Preliminary work on making the prefix cache consistent afteremental updates is provided in

[8]. However, they do not cover all the possible scenarias¢in make the prefix cache inconsistent.

38

We look at each of the scenarios one at a time.
We look out for a prefix:; in the prefix cache such that eithgror r; is the parent prefix of the
other. It should also be noted that the leaf-pushed trie hsindependent prefixes even after the

new prefixr; is added to the leaf-pushed trie. The following cases magari

1. If we do not find a prefix; where either; or r; is a parent of each other, then we stop the

search in the prefix cache. In this situation the prefix caslensistent.

2. If r; is a parent prefix of; andh; # h;, then< r;, h; > is removed from the prefix cache.
Since we do not have enough information aboute its prefix length, it is not possible to
decide the highest priority prefix or r;. However, ifh; = h; then the entry r;, h; > is
not removed from the prefix cache. This is becayd®as not effected the leaf containing the

next hoph,; for prefixr;.

3. If r; is a parent prefix of;, then again we need to remove the entryr;, h; > from the
prefix cache. This is becausghas a higher priority and the the entyr;, h; > can make

the prefix cache inconsistent.

4. If both the prefix are same ang = h;, then the prefix is not removed from the prefix cache.
However, ifh; # hj, then the entry< r;, h; > is removed from the prefix cache since the

packet should be routed tg andh;, noth; alone.

4.4.2 Deletion

Deletion of prefixes from a leaf-pushed trie is much more dicafed. To ensure correct deletions
in a leaf-pushed trie, we need to store additional inforareéibout parent prefixes in the leaf-pushed
trie. As a result, we encode an internal node with a flag irtdigahe presence of a parent prefix. In
addition, we store the next hdp. of the parent prefix in the internal node. However, interrales
encoded with the above information are not decision noddsdamot participate during address
lookups in the two architectures. This additional inforimais meant for incremental updates only.
A simple example is shown in Figure 4.9. This information barencoded during leaf-pushing (trie
build) and during prefix addition (incremental updates).

During deletion, we traverse down the leaf-pushed trie thasethe prefix-; in < r;, h; >.
During the traversal we check whether any of the internaksadd the path havélag = 1. If yes,
we keep note of the parent prefix information. In addition,remember the number of edges we
saw before we met the internal node. The remembering is dwried most recently visited internal
node having thglag = 1. Further, information pertaining to previous internal asds forgotten.

The following cases occur when a prefixis to be deleted from a leaf-pushed trie:

1. Suppose we traverse down the leaf-pushed trie for a gikefixp; wherer; is not a parent

prefix. When the traversal finishes at a leaf, we first checktmdrave met an internal node

39

11* (P3) - Parent Prefix
Prefix Length: 2

Parent prefix information
flag = 1 and next hop = P3

Figure 4.9: Leaf-pushed trie with parent prefix information

Delete 1100* (P3) Substride: 11*
Substride: 11*

Figure 4.10: Subtrie after prefix deletion

with flag = 1 during the traversal. If not, we clear the next hep(i.e we make it a non
decision nodd) and the prefix length encoded in the leaf. If we did see an {irex®nt)
internal node withflag = 1 during the traversal, we replace the next tgpwith the next
hoph; we saw in the internal node. We also replace the previousdezfgth in the leaf with

the one we remembered for the internal node.

. Similarly, if we traverse down the leaf-pushed trie forieeg prefixr; wherer; is a parent
prefix, then again, we check whether we met an internal node g = 1 during the
traversal. The internal node where the traversal finishéisoot of the subtrie which is then
traversed for the deletion of the prefixes. If we did not meeindernal node withflag = 1
during the traversal, then we clear the next hops from aliéHeaves that contairy. We also
clear the prefix lengths. This clearing is done only if thefigriengths ofr; is equal tor;

that is encoded in the leaves. In the event, we saw an inteouls with flag = 1 during the

40

traversal, we replace the next hops from leaves contaiijimgth hj. Further, we replace the
prefix lengths in the leaves with the one we remembered. Agairdo the replacement only

if the prefix lengths match.

For the DSC, we follow a conservative approach during dabetiAfter the deletion process, we
cannot accurately determine whether a substride is usefidto This is shown in Figure 4.10. The
subtrie rooted by the substride has leaves stdyirgeemingly, the substride is no longer useful for
address lookups. As a result, we follow a simple approachrevive remove all <substride, node
address> entries from the DSC where either the substridgisa parent of the other.

The two type of prefixes that can be deleted from a leaf-pustie@re parent or independent
prefixes. A prefix cache at any particular time can store eitdependent prefixes or prefixes
grafted from parent prefixes (minimally expanded prefix)e Tollowing cases may occur when a

prefixr; is deleted from a leaf-pushed trie which is also investigaid8]:

1. For a prefixr; in the prefix cache, if; andr; are same and;, = h;, then we remove the

entry < r;, h; > from the prefix cache.

2. For a prefixr; in the prefix cache, if; is a parent prefix of; andh; = hj, then< r;, h; >
is removed from the prefix cache. Otherwisehjf# h;, then we do not remove the entry

< ri, hy > from the prefix cache.

3. In any event, no prefix; can be a parent prefix of because the prefix cache contains only

independent prefixes.

41

Chapter 5

Experiments

In this chapter, we first describe the different metrics we tasevaluate our idea of using the two
different architectures (prefix cache-first and DSC-firsthe metrics are used to determine the
effectiveness of the two caches in the two architecturesedisas their contribution in reducing the

number of full-trie lookups. Further, in Section 5.2 we désethe packet traces and routing tables
we use for the experiments. Section 5.3 onwards we preseshtipirical results as well as detailed

analysis.

5.1 Metrics and Implementation

In order to test our technique, several different measunésngere taken into account in order to
evaluate the performance of the architectures (prefix céicsteand DSC-first).

Firstly, we determine the hit rates of the prefix cache as thelDSC. These hit rates are local
to the cache. For readability we call them local hit rd{es) wherec; is either the prefix cache or
the DSC. A higher local hit rate in both the prefix cache anddB€ would mean that a significant
percentage of address lookups were assisted by both the paefie as well as the DSC.

Secondly, the local hit rates are not sufficient on their owimticate the performance of the
architectures as a whole. As a result, we also use the gldlratdg(c) to evaluate the performance

of the two caches in combination. The global hit rate can lmepded using the following equation:

. Total number of hits in prefix cachie Total number of hits in DSC
global hit rate= x 100 (5.1)
Total number of address lookups

Quantitatively, the global hit rates indicate the percgateeduction in the number of full-trie
lookups.

Finally, we measure the average number of memory accesgeise® by lookups that are as-
sisted by the DSC. As mentioned earlier, address lookupsitieethe DSC jump to an internal node
within the leaf-pushed trie. Thereafter, these lookupsirecfew more memory accesses to find the
next hop. Preferably, we would like all lookups to cost noreihan 5 memory accesses on average

considering the requirements of the OC-192 links [16].

42

One aspect that needs to be considered is the valkieTdfis value does not necessarily indicate
the performance of the DSC. However, it does have a profompadct on the performance of the
DSC. Thus, it is imperative to find an appropriate valug:ofA high value ofk would result in
higher hit rates in the DSC. However, the improvements inhiheates come at the expense of an
increased number of average memory accesses. At the samelioosing a lower value fércan
lead to lower hit rates in the DSC. Since the performancee®ft8C varies with the value é&f we
therefore perform exhaustive simulations on differenadats to arrive at an appropriate valué: of

We consider the implementation of the DSC to be similar topitedix cache where the DSC is
considered to be residing in a contiguous memory. The bagjrof the contiguous memory is the
top (first-entry) of the DSC. Henceforth, to simulate the LRRiglacement strategy, the most recently
looked up pair <substride , node address> is moved to theftde@ontiguous memory and other
<substride , node address> pairs were moved down by onegoodit should be noted that we do
not measure the number of clock cycles required for a lookugpdache. In addition we do not take
into consideration the cache power consumption nor thadgtassociated with the prefix cache and
the DSC.

5.2 Dataset
5.2.1 Routing tables

For the experiments, we consider a few more routing tabtesgalith the ones mentioned in Chapter
3. The new routing tables, again, are real-world and aremfeam different routers. These routing
tables vary depending on size and prefix length distributirese routing tables are larger in size
and demonstrate significantly less redundancy.

We downloaded two routing tables, rrc03 and rrc11, from [&¢he containing 132210 and
126687 (large-sized) prefixes respectively. These routides, rrc03 and rrcll, were resident
in routers in the Internet exchanges located at AmsterdatiNamw York respectively. Further, we
downloaded an as1221 routing table from [1] containing 2&2drefixes. This routing table was
resident in a router located in Sydney, Australia. Signifiyarrc03, rrc11 and as1221 have nearly
80% of the prefixes of length greater than 18. We also use I8&thg table which contains 6342
prefixes. Like ISP1 and ISP3, ISP2 is also drawn from distigloLrouters.

5.2.2 Packet traces

We downloaded three traces upch.1, upcb.2 and bell fromTH¢ bell trace was collected at Bell
Labs whereas the upcb traces were collected at a Catalaarebsgetwork. The upcb.1 and bell
traces had around 0.9 million packets whereas the upcle@ brad around 0.6 million packets. It
should be noted that the three traces have relatively lomeuat of temporal locality and thereby

require the caches to be comparatively larger in size thawotie used for ISP1, ISP2, ISP3 and the

43

| Dataset | Average memory accessgsStandard Deviatior]

Funet 16.0 2.7
ISP1 14.8 4.4
ISP2 19.7 4.2
ISP3 15.8 4.9
rrc03 - upch.1 16.4 3.1
rrcll - bell 15.9 2.2
as1221- upch.2 17.4 3.6

Table 5.1: Average memory accesses for all packet traces

100

100
=K
,,,,,, - 90
e grig P S—
S S
B 80 X 2 70 xr
S 53| ISP1—+ 3 ¥
= ISP2->¢- = 60
E—. , ISP3 % T x
< il FUNET £ 2 50
§ 7 8
40
60[,"' X ¥ rrell - bell +
il 30 rrc03 - upch.1-%-
o>< as1221 - upch.2k
5032 64 128 256 512 1024 %12 1024 2048 4096 8192
Cache Size (entries) Cache Size (entries)

Figure 5.1: Prefix cache hit rates

Funet trace. Further, the destination addresses in th&rdedls are destined to fewer address spaces
when compared to the upcb traces. Consequently, the upmstshould find the DSC more useful
as opposed to the bell trace. For the experiments, we ranpitte Litrace over rrc03 routing table,
the upcb.2 trace over as1221 routing table and the bell errc11 routing table. Further, we use
the ISP2 trace which we use it over the ISP2 routing table2 I&mtains around 100000 packets
and has more locality in comparison to ISP1 and ISP3.

5.3 Experiments

Table 5.1 gives the average number of memory accesses edduyrall the packet traces. We
also present the standard deviation with respect to theageeralue. These values are obtained by
performing address lookups on a leaf-pushed trie. It is@sting to note that ISP1 requires only
14.8 average memory accesses. This suggests that mospowklEP1 match prefixes of length
less than 16. However, for the as1221 routing table, the.@pgadicket trace requires 19.7 memory

accesses on average. Clearly, address lookups for all tkettaaces are expensive.

5.3.1 Prefix cache-first architecture

Figure 5.1 shows the prefix cache hit rates for all the packees. As discussed earlier, the upcb.1,
upch.2, and bell packet traces have substantially leséitipcas a result, the hit rates are compara-
tively lower when compared to the other packet traces. Gpresgtly, we require a prefix cache that

is much larger in size. As shown, the hit rates for the padketetupch.2 is comparatively lower

44

than upcb.1 and bell packet traces. This suggests that2ipab.lower temporal and spatial locality.
Further, the bell trace and the upcb.1 trace show less inepnewt in hit rate with increasing cache
size. This in fact shows that we are closer to the inherent &md improving upon it will only get
harder.

Clearly, by using the prefix cache a significant percentageefookups will not perform full-
trie lookups. For instance for the packet trace upch.2 In&48s6 of the lookups will not proceed to
the leaf-pushed trie when the prefix cache has 8192 entriesla8y, for the Funet trace 98.9% of
the lookups will not perform full-trie lookups.

For the packet traces ISP1, ISP2, ISP3 and Funet, the prefite@dtains peak hit rates at cache
size 1024. We found that we do not improve on the hit rate efiem acreasing the size of the
prefix cache. Similarly, for the remaining packet traces,fghefix cache should have at most 8192
entries to achieve peak hit rates. At this point, howevenegeire something new.

We first explore the idea of using a prefix cache with a smallex and a DSC with varying
size. There are couple of advantages of doing this. Firatlymall prefix cache can be used to
exploit temporal locality. This can be seen in Figure 5.1 sglee prefix cache size with 32 entries
is beneficial for the ISP1, ISP2, ISP3 and Funet packet trades is because a small prefix cache
will be sufficient to consume most of the temporal localityimfar results hold true for the packet
traces upch.1, upch.2 and bell. This ensures that straigtafd lookups need not proceed to the
DSC. Secondly, a small prefix cache will reduce the likelithad the DSC getting polluted with
substrides resulting from temporal locality. As a resuie DSC can then be used exclusively to
exploit spatial locality.

Figure 5.2 shows the DSC hit rates when the prefix cache sigmadl. For the experiment
we considerk = 3. Further, for the packet traces ISP1, ISP2, ISP3 and Funeiliweate 32
entries to the prefix cache. In addition, we allocate 512&nto the prefix cache for the remaining
traces. It should be noted that the DSC exploits two diffepatterns in the traces. First is the
spatial locality where destinations addresses belonge@dime subnet. Second is the case where
destination addresses fall in fewer address spaces.

Figure 5.2(A) shows that the DSC hit rates increase witheiasing DSC size. For example, the
DSC with 256 entries has nearly 95% local hit rate for ISPJis Thprimarily due to better locality
demonstrated by the ISP1 trace. In contrast, the DSC hi fateéhe traces upch.1, upch.2, and bell
are comparatively lower (Figure 5.2(B)). This is becaugsgtefix cache is not very effective in this
case. The reason is that the upch.1, upcb.2 and bell trageddveer spatial and temporal locality.
As a result, most of the lookups miss the prefix cache and ptbtethe DSC. Consequently, the
DSC serves most of the address lookups that could have beésiter by a prefix cache had it had
more entries. Similarly, in Figure 5.2(B), the DSC with 81&2ries shows only 66% local hit rates
for the upcb.1 trace. This suggests that these 8192 entdes mostly useful in exploiting tempo-

ral locality and to some extent spatial locality. Howevlae DSC was not effective in exploiting

45

addresses that belong to a specific address space. Unfetfuhare, we find that having a small
prefix cache size can also be counter-productive.

It is not surprising that the DSC demonstrates a higher ét far the upch.2 trace. This is
because the prefix cache with 512 entries shows lower hi fataipch.2 trace when compared to
the upcb.1 and bell traces. As a result, the DSC has more tynities to exploit locality. Had we
allocated more entries to the prefix cache, the DSC would bega comparatively less effective.

In addition, if we look into the performance of the overalthitecture (prefix cache-first), we
can see that the global hit rates are up to 99.66% (Table 5.2).

Table 5.3 gives the average number of memory accesses ttkaide may require if we do not
consider the DSC in the architecture. Clearly, lookups neayire up to 22.5 memory accesses on
average. This indicates that most of the lookups that mesgtefix cache match prefixes of length
greater than 18. As it turns out, even a small percentage sdawiin the prefix cache can prove
expensive. For example for upcb.1 trace, the prefix cacHetiP entries yields a hit rate of 84%.
This means 16% of the address lookups missed the prefix cachmay require up to 17 memory
accesses on average. However, if we have a DSC in the prefivedast architecture with 8192
entries then 65% of the lookups for the upcb.1 trace will fitnit én the DSC. As a result, only 5.6%
of the lookups would require 17 memory accesses.

It is interesting to see the average number of memory aced¢sata lookup requires when it
finds a hit in the DSC. Table 5.4 gives the average number of angaccesses for all the packet
traces. It should be noted that this value may vary deperatirthe DSC size. These values change
because different DSC cache sizes will see different typdsokups. Hence, a particular DSC
size will demonstrate a slightly different average numldenemory accesses. In the table we have
recorded the worst-case average memory accesses (WO gyilookups amongst the different
DSC sizes we considered in Figure 5.2.

The upcb.2 trace (Table 5.3) shows a high average humber ofonyeaccesses. Moreover,
the deviation about the average is also very high. The relasbimd the high value is that as1221
is a comparatively large-sized routing table with manyidcitprefixes. As a result, some of the
substrides do not provide a “deep” enough jump within thé peshed trie. This leads to lookups
performing comparatively more memory accesses.

We use the empirical results showed in Figure 5.2 and Ta#leosddemonstrate the full benefits
of the DSC. Consider a simple example where lookups for dpichce may require 4.29 memory
accesses on average for a DSC with 8192 entries. As noteergtimé DSC shows 65% hit rates for
the upchb.1 packet trace. Consequently, 65% of the lookulbsagiuire only 4.29 memory accesses
on average as opposed to 17.

It may appear that it is wiser to allocate all the availablemgy to the prefix cache rather
than distributing part of it to the DSC. This is not necedgdrie. This can be explained from
Figure 5.2(B). Consider a prefix cache with 2048 entries shatvs 87% hit rate for the upcb.1

46

trace. However, if we allocate 512 entries to the prefix cattbthe remaining to the DSC, then the
global hit rate will be around 92%. The same holds true forupeb.2 trace where the prefix cache
of 2048 entries has a 56% hit rate. However, if we allocatediitBies to the prefix cache and the
remaining to the DSC, then we achieve 71% global hit rate.

47

100

920

80

60

50

ISP1—+
ISP2-5¢

DSC Hit Rate (%)

40

ISP3 ¥
Funet {3

30

20,

6

4

128

256 512

Cache Size (entries)

Figure 5.2: (A) DSC hit rates when prefix cache size isi82 @) (B) DSC hit rates when prefix
cache size is 51X (= 3)

1024

DSC Hit Rate (%)

100

90

80

70

60

rrcll - bell 4

rrc03 - upch.1-%¢
as1221 - upch.2Zk

1024

2048

4096

Cache Size (entries)

| Dataset | DSC size (Maximum) - Prefix cache sizeGlobal Hit Rate §.) |

Funet 2048 - 32 98.27

ISP1 2048 - 32 99.26

ISP2 2048 - 32 99.66

ISP3 2048 - 32 99.22

rrc03 -upch.1 8192 -512 96.11
rrc11-bell 8192 -512 96.73
as1221-upch.Z 8192 -512 90.46

Table 5.2: Global Hit Rates (%)

| Dataset | Avg. memory accessefs Std. Dev. |

Funet 18.7 4.3

ISP1 22.5 3.2

ISP2 18.1 4.7

ISP3 19.4 3.9

rrc03 - upch.1 17.0 2.9
rrc1l - bell 15.9 4.4
as1221 - upch.2 17.7 3.2

8192

Table 5.3: Actual average (additional) memory accesseasinat)by lookups that miss the prefix

cache

| Dataset | Avg. memory accesses (WQ)Std. Dev. |

Funet 4.1 1.8

ISP1 4.2 1.6

ISP2 3.9 2.2

ISP3 4.4 1.8

rrc03 - upch.1 4.29 2.4
rrc1l - bell 4.22 2.4
as1221 - upch.2 4.9 3.1

Table 5.4: Average (additional) memory accesses requiyéddiups that find a hit in the DSC

48

| Dataset | Prefix Cache Siz¢ Avg. memory accessef Std. Dev. |

Funet 2048 19 3.8
ISP1 2048 18.3 4.6
ISP2 2048 16.8 3.1
ISP3 2048 17.1 4.4
rrc03 - upch.1 8192 18.2 2.9
rrcll - bell 8192 17.9 3.6
as1221 - upch.2 8192 19.1 4.2

Table 5.5: Actual average (additional) memory accesseasingt)by lookups that miss the prefix
cache when the prefix cache size is maximum

5.3.1.1 Equal cache sizes

It is important to explore the individual improvements tagdSC can bring when the prefix cache
in itself is very effective. To test the idea, we keep the sizboth the prefix cache and the DSC
the same. By doing this we give equal priorities to both thehea and we aim to achieve high
global hit rates. This essentially means we need not nedggseefer an under-performing cache
within the prefix cache-first architecture. Further, thiff kgep the prefix cache completely focused
in exploiting the spatial as well as temporal locality. Natnis to be seen whether the DSC still
manages to be effective.

Figures 5.3 and 5.4 shows the hit rates in the prefix cacheldastbe DSC. We initially assume
the value ofk as 1. As discussed previously, the prefix cache hit ratesaserwith size. However,
the downward trends of DSC hit rates in Figure 5.3 are diffefeom those in Figure 5.2. This
exemplifies the idea of using equal cache sizes. Initiallyemvthe prefix cache is small, say 256
entries (Figure 5.3), the prefix cache is not at its best. Nbastlity in the destination addresses is
not exploited by the prefix cache. As a result, the DSC whidinslar in size, more or less aids
the prefix cache and exploits the left-over locality in thetdwtion addresses. Thus, the hits in the
DSC are mostly due to left-over locality in the destinatioidigesses and to some extent the address
lookups that fall in fewer address spaces. However, as #fexrache size increases, most locality
is captured by the prefix cache. This causes the DSC hit ratdedrease. The other important
reason for the trend is that the substrides in the DSC weras®gjul for the left-over lookups. This
is partly becausé = 1 (low) and partly because the left-over destination adé®sgere destined
to different IP address spaces. Thus, the increased efficigithe prefix cache and the reduced
effectiveness of the substrides together cause the DS@&tbg to decrease.

However, in Figure 5.4 we see that the DSC hit rates for théo.dpaipch.2 and bell traces
improve with increasing cache size. The primary reasonHerttend is that the prefix cache hit
rates improve with increasing size. Consequently, mostefdcality in the destination addresses is
exploited by then. What is left-over are mostly lookups faliin fewer address spaces. Fortunately,
the substrides in the DSC are able to exploit it even with #laerofk being 1.

In the Figures 5.3 and 5.4, the prefix cache hit rates are maxi@t sizes 1024 and 8192

49

respectively. The prefix cache hit rates do not improve béytbis point. It is interesting to see

how the DSC performs in this scenario. For reference, we haserded the average number of
memory accesses that lookups will require when they misprbiéx cache. This entry in the table
is made when the prefix cache hit rates are at their peak i.eaginmam prefix cache size (Table

5.5). However, these values may change depending uponéfig pache size. Again, we see that
the average number of memory accesses for the lookups dre iflgs clearly indicates the need
and scope of reducing the number of full-trie lookups.

It can be seen that the DSC hit rates are not very high for alttfices when the prefix cache
hit rates are maximum. This is because we skip only a singkl (@ = 1) when generating the
substrides from the prefixes. Moreover for the ISP1, ISPP3I8nd Funet traces, the left-over
destination addresses are destined to different IP adsipasgs. As a result, most of the lookups are
not able find the substrides useful. Hence, for all the trdwe®SC hit rates do not go beyond 50%.
Further, we observe that the DSC hit rates are not greatart@go for the Funet trace. Clearly,
it shows that addresses in the Funet trace are destinedfévedif IP address spaces within the
leaf-pushed trie.

The lower hit rates in the DSC also reflect in the global hiesafTable 5.6). Though there is
improvement, it is only marginal. For the upcb.1 and beltéis the global hit rates do not exceed
97%. As a result, we have nearly 3% of the lookups performiritfie lookups. Though the
numbers are small, this, it is costly since each lookup mgyire more than 15 memory accesses
(Table 5.5). Similarly, the upcb.2 trace shows only 81.2&tgl hit rate. That means nearly 19% of
the lookups proceed to the leaf-pushed trie for a full-i@dup. This again is very expensive. The
above discussion also holds true for the ISP1, ISP2, ISPFandt traces.

The average number of memory accesses recorded in Tabke Sighificantly lower. The table
also shows the standard deviations which again is not extsehigh. As previously, we have
recorded only the worst-case average number of memorysesesen by lookups under any prefix
cache - DSC size combination. It is shown that the addredaufmmothat find a hit in the DSC do
not require more than 3 memory accesses on average. Thaseasssimilar to the situation above.
We choose to skip only a single level= 1 when generating the substrides. As a result, most of
the jumps are nearer to the leaves. Consequently, most éddkaps do not require more than 3
memory accesses to find the next hop.

However, we would very much want a situation where the DSChirgis hit rates. At the same
time, we would want the average number of memory accessés eateed a certain quantitative
point. Clearly, there is a trade off. If we skip more levelgggnerate the substrides, we will get
better hit rates. Again, this comes at the expense of inetkagerage number of memory accesses.
Given its importance we will be discussing this trade-offjreater detail in the following sections.

In Figures 5.5 and 5.6, we show the DSC hit rateskfee 3. Clearly, the DSC hit rates have

improved substantially up to a maximum of 88%. The DSC hisdtave improved especially for

50

the upcb.1, upcb.2 and bell traces. It shows that the valdehafs a marked effect on the DSC hit

rates. However, the DSC does not show considerable imprentnfor the Funet trace. Further,

increasing the DSC size does not help either. Unfortunatieéylookups for the Funet trace do

not find the substrides extremely useful. The primary reasdinat most of the addresses are not
destined to the address spaces captured by the substride$ias to do with the nature of the source
of Funet traffic stream.

Not surprisingly, the DSC hit rates for the upcb.1, upcb.@ bell traces have improved. This is
mostly due to the fact that substrides are more effectivemkthe: 3. In addition, the prefix cache
plays its part by taking care of lookups originating due tated and temporal locality.

Table 5.8 gives the global hit rates for all the packet tragesshown, the global hit rates reach
99.88%. In addition, Table 5.9 gives the average number ohong accesses that lookups may
require when they find a hit in the DSC. Again, the values atertvemely high and do not exceed
5 memory accesses. This also suggests that any increase valtre ofk will only increase the
average memory accesses. Thus, we can conkideB to be suitable given that the lookups may
not require more than 5 average memory accesses.

Taking a cue from the previous discussions, we would alstlikfurther highlight the impor-
tance of the DSC. We see that the DSC hit rates are signifivzantwehen the prefix cache hit rates
are maximum. This clearly shows that the DSC is beneficial efer having high prefix cache per-
formance. For instance, the DSC shows 88% hit rates for thé& tEace even when the prefix cache
is atits peak. This also indicates that the the prefix caclks dot really hamper the performance of
the DSC. Practically, for an infinite trace it is not possitilédentify the quantitative point where a
prefix cache may show peak hit rates. However, we show usimite fiacket trace that the DSC is
beneficial even when used in conjunction with a prefix cache.

However, a higher value df can increase the average memory accesses appreciably.oWe sh
that by considering the value &fof 4. The average number of memory accesses:fer 4 are
recorded in Table 5.11. The increase is primarily due to timalrer of levels we skip from the
leaves when we generate the substrides. As a result, mds¢ sfibstrides do not provide a jump
within the trie that is reasonable in terms of average nurob@remory accesses. However, skipping
more levels from the leaves increases the DSC hit ratesdenadily. The DSC hit rates for most of
the traces exceed 90% (Figure 5.7 & Figure 5.8). Furthegliigal hit rates are nearly up to 99.9%
(Table 5.10). However, the DSC hit rates for the Funet tracaeat show sufficient improvement.
This certainly confirms that the addresses in the Funet tlaceot find the substrides extremely

useful.

51

100

2048

DSC Hit rate (%)

80/

7d>m".” S

60y
L
]

40
30 ISP1+
20} 1SPs %

ISP33K
10t Funet -1 L;

i

512 1024

Cache Size (entries)

Figure 5.3: Prefix cache hit rates and DSC hit rgkes 1)

s el
E j *
© .
= 9% /E
I /’
: ISP1—+
¢ ISP2 -
: ISP3
:] K Funet =
g 92
= o2 1024
Cache Size (entries)
100
95
g
o 90
T gk
b 80
; rrc1l - bell +-
S 75 rrc03 - upch.1-5¢
: as1221 - upch 2¢
T 70
I
65
80027 2048 .

Cache Size (entr

ies)

8192

DSC Hit Rate (%)

45

2048

40

35

rrcll - bell +
rrc03 - upch.1-%-

30

as1221 - upch.2k

25

20

.

1024

2048 4096

Cache Size (entries)

Figure 5.4: Prefix cache hit rates and DSC hit rgkes 1)

| Dataset | Cache Size (Prefix cache & DSG)Global Hit Rate §.) |

Funet 2048 99

ISP1 2048 99.2

ISP2 2048 99.6

ISP3 2048 99.0

rrc03 - upchb.1 8192 96.34
rrcll - bell 8192 97

as1221 - upch.Z 8192 81.2

Table 5.6: Global Hit Rates (%) when cache sizes are maximum

| Dataset | Avg. memory accesses (WQ)Std. Dev. |
Funet 2.3 1.7
ISP1 1.9 2.1
ISP2 15 2.3
ISP3 2.1 1.8
rrc03 -upch.1 2.4 2.2
rrc1l - bell 2.2 2.7
as1221 - upch.2 3.1 2.4

8192

Table 5.7: Average (additional) memory accesses requiydddkups that find a hit in the DSC

when cache sizes are maximum

52

100

100

e P S S—
§ o ¥ 8o
. i S
s £ e
< ISP1—+ = s
8 w ISP2%- o so B
3 Flspeié 8 ISP1—+
2 o x une O P R £l
30l ISP3-¥
Funet-t
9%56) 512 1024 2048 2%56 512 1024 2048
Cache Size (entries) Cache Size (entries)
Figure 5.5: Prefix cache hit rates and DSC hit rgkes 3)
100 100
=% 9 rrcll - bell - X
S g 80— 1rc03 - upch.1->< P
3 S as1221 - upch.2¥
X gsK” o 70
2 & el - bell z ®
5 75 rrc03 - upch.1-¢ 2 O 50 X
= as1221 - upch.Z¥ 2
g 7 07
& *
65 30
*
69024 2048 4096 8192 29024 2048 4096 8192
Cache Size (entries) Cache Size (entries)
Figure 5.6: Prefix cache hit rates and DSC hit rgkes 3)
| Dataset | Cache Size (Prefix cache & DS()Global Hit Rate {.) |
Funet 2048 99.3
ISP1 2048 99.83
ISP2 2048 99.88
ISP3 2048 99.49
rrc03 -upch.1 8192 99.23
rrcll1-bell 8192 99.34
as1221-upch.2 8192 92.2

Table 5.8: Global Hit Rates (%) when cache sizes are maximum

| Dataset | Avg. memory accesses (W() Std. Dev. |

Funet 4.1 2.6
ISP1 3.5 1.9

ISP2 3.6 1.7

ISP3 3.9 2.1
rrc03 -upch.1 4.66 2.9
rrc11-bell 4.49 3.1
asl1221-upch.2 4,52 3.4

Table 5.9: Average (additional) memory accesses requiydddkups that find a hit in the DSC
when cache sizes are maximum

53

100

2048

—
LN
g "B x
2 70
[
I ;
o % isp1+ ;
2 ISP2 3¢

50| ISP3-% ;

Funet {3
5 2]
40
256 512 1024 2048

Cache Size (entries)

Figure 5.7: Prefix cache hit rates and DSC hit rgkes 4)

s el
E j *
© .
= 9% /E
I /’
: ISP1—+
¢ ISP2 -
: ISP3
:] K Funet =
g 92
= o2 1024
Cache Size (entries)
100
95
g
o 90
T gk
b 80
; rrc1l - bell +-
S 75 rrc03 - upch.1-5¢
: as1221 - upch 2¢
T 70
I
65
80027 2048 .

Cache Size (entries)

8192

DSC Hit Rate (%)

100

90

80

70

60 S

SQS./”

40 rrcdi - bell -

3071 1rc03 - upch.1->¢
as1221 - upch.2Zk

ozz 2048 2096

Cache Size (entries)

Figure 5.8: Prefix cache hit rates and DSC hit rgkes 4)

| Dataset | Cache Size (Prefix cache & DSQ)Global Hit Rate §.) |

Funet 2048 99.38
ISP1 2048 99.88
ISP2 2048 99.94
ISP3 2048 99.58

rrc03 - upchb.1 8192 99.4

rrc11- bell 8192 99.5
as1221- upch.2 8192 94.1

Table 5.10: Global Hit Rates (%) when cache sizes are maximum

| Dataset | Avg. memory accesses (W() Std. Dev. |

Funet 6.0 2.6

ISP1 51 3.2

ISP2 5.6 2.4

ISP3 5.8 2.8

rrc03 - upch.1 6.3 3.8
rrc11- bell 6.1 2.2
asl1221-upch.2 6.5 4.2

8192

Table 5.11: Average (additional) memory accesses reqbiyddokups that find a hit in the DSC
when cache sizes are maximum

54

©
=]
®

@
S
T
~
T

=) ~

S =]
))
T T

o
=]

DSC hit rates

Avg. memory accesses

[
o
[

o
o

k k

Figure 5.9: (A) DSC hit rates for increasing valuekafihen prefix cache size is maximum (upch.2)
(B) Avg. memory accesses for increasing valu& afhen prefix cache size is maximum (upcb.2)

80|

700

60|

50|

a0t [

30} |

20}

10F I

0 2 |3(4 ° 1 2 Ii 4

Figure 5.10: (A) DSC hit rates for increasing valueafhen prefix cache size is maximum (ISP1)
(B) Avg. memory accesses for increasing valu& afhen prefix cache size is maximum (ISP1)

~

100

DSC hit rates
Avg. memory accesses

N

5.3.1.2 Effects of value ok

In Section 5.3.1.1, we summarized the average number of myemeoesses required by destination
addresses for all the packet traces#or 3. We also demonstrated that the DSC hit rates improved
when we selectedl = 3 overk = 1. But in order to achieve further improvements in perfornenc
we might be tempted to choose a larger valueifoHowever, choosing a larger value otan be
counter-productive. In Figures 5.9 and 5.10, we show trextdfofk for the upcb.2 and ISP1 traces
respectively. For the experiment we considered equatisiaehes. Further, we allocated 8192
entries to both the caches when considering the upcb.2. tlacaddition, for the ISP1 trace, we
allocated 1024 entries to both caches. It can be seen that05, the average number of memory
accesses is as high as 7.0 for the upcb.1 trace even thougloba hit rates have increased (Table
5.12). Similarly, fork = 4 the average number of memory accesses goes beyond 5 forhgoth t
traces. Hence, we can safely choose a valuetbét is between 1 and 3 considering that we decided
not to exceed 5 memory accesses.

DSC hit rate is one important parameter that can help us decgliitable value df. In Figure

55

| Dataset | k=1]k=2[k=3]k=4]k=5]

Funet 99 99.21| 99.3 | 99.38 | 99.46
ISP1 99.2 | 99.49 | 99.83| 99.88 | 99.91
ISP2 99.6 | 99.79| 99.88 | 99.94 | 99.96
ISP3 99.0 | 99.30 | 99.49 | 99.58 | 99.67
rrc03 - upch.1 | 96.34 | 97.72| 99.23 | 99.4 | 99.67
rrcll - bell 97 98.21 | 99.34| 99.5 | 99.75
asl221-upch.2 81.2 | 86.74| 92.2 | 94.1 | 95.84

Table 5.12: Global Hit Rates (%) for different valuestofvhen cache sizes are maximum

5.9 (A) and Figure 5.10 (A), we see that the DSC hit rates ftwasofk = 1 or k = 2 are lower
when compared to those whén= 3. However,k = 3 increases the average number of memory
accesses when comparedito= 2. Nonetheless, the change in the average number of memory
accesses is not drastic ahd= 3 can be considered to be suitable.

It may seem from Figures 5.9 and 5.10 that there is no reaffihénehoosingk = 3 overk = 2
since the average number of memory accesses do not chasgiealygbetween the two values of
k. For instance, for the upcb.2 trace there is only 0.9 ineé@asverage memory accesses when
we choose: = 3 overk = 2. The same discussion holds true for the ISP1 trace. Howgher,
DSC hit rates corresponding to the values:gfrovides a strong reason for our choice. The DSC
hit rates for upchb.2 trace fdr = 3 are nearly 20% more than for what we have foe= 2. That
means 20% more lookups that missed the prefix cache did niorpea full-trie lookup. Consider
Table 5.5 where the upch.2 trace requires 19.1 memory axéss full-trie lookups. Suppose
we have 1000 lookups that missed the prefix cache. So, whesidesimgk = 2, we require
(3.9 % 0.49 % 1000) + (1000 — 0.49 * 1000) * 19.1 = 11652 memory accesses. On the other hand,
whenk = 3, we requirg4.52x0.70+1000) + (1000 —0.70+1000) x 19.1 = 8894 memory accesses.
Thus, by choosing = 3 we save up to 23.6% memory accesses. If we follow the sameguoe,

we will find that for the ISP1 trace, we save up to 37% memorgsases when we consider= 3.

5.3.2 DSC-first architecture

In the experiments described previously, we consideregtbéix cache to be placed before the
DSC. These experiments showed that the DSC is not necgsdapkendent on the prefix cache.
This demonstrates that the DSC can be a valuable part of ditesnture that employs a prefix
cache. Then how about about a design scenario where the D@€sdoefore the prefix cache ?
This design scenario seems interesting and it is to be seethesthe DSC has a good influence on
the prefix cache.

In Figure 5.11 and 5.12 we show the hit rates demonstratetidoprefix cache and the DSC
for all the packet traces when= 3 in an architecture where the DSC precedes the prefix cache.
It should be noted that we have considered the sizes of bethabhes as equal. We first evaluate

the results for the traces ISP1, ISP2, ISP3 and Funet. Appgréhe hit rates in the prefix cache

56

10 100
BS
s 9 Fin
£ dH £ = H H H] % ’
% g 98
x 6 5} /
= ISP1—+)
© ISP2->¢ it
R s -
_5 2 .l ISP2-5¢ /
©) ISP3-%
o oay Funet {3
% ; 5) 1024 932 64 8 2% 512 1024
Cache Size (entries) Cache Size (entries)

Figure 5.11: Prefix cache hit rates and DSC hit rates with tattache with equal siz€k = 3)

100 100
90 N N K
£ 80 80 %
2 10 g x
14 rrcll - bell 4 2 60
I 60} rrc03 - upch.1->¢ 4 5
2 as1221 - upch.2x - -
S 50 — £
g 1) 40
P Q rrcll - bell +
T 30 20 rrc03 - upch.1 -
a as1221 - upch.2k
20
W "1 2048 7096 8192 812 1024 2048 4096 8192
Cache Size (entries) Cache Size (entries)

Figure 5.12: Prefix cache hit rates and DSC hit rates with tiattache with equal sizék = 3)

for the traces ISP1, ISP2, and ISP3 are marginal. Actually266 entries, the prefix cache has a
hit rate of 0.017% hit rates for the ISP1 trace. If we furthmarease the size of the DSC, the prefix
cache hit rates approach 0%. This shows that the DSC is aap&hthieving high global hit rates
entirely on its own. That s, the DSC exploits all of the temgd@and spatial locality in the addresses.
Furthermore, it does more by assisting lookups for addsabse fall in fewer address spaces.

The improved performance in the DSC has a negative impadi®prefix cache. Higher DSC
hit rates mean that the prefix cache have very few lookupssistago add to that, the prefixes in
the prefix cache are more or less not useful for the lookupss i§thecause prefixes can be used
to exploit locality only. Since the DSC does well on that frahe prefixes in the prefix cache are
generally never referenced. In this case, we can consiggurfix cache redundant for the ISP1,
ISP2 and ISP3 traces.

For the Funet trace, the prefix cache shows only 8% hit ratataadialue remains stable even
if we increase the size of the prefix cache. Seemingly, thisqrache is not useful for any of these
four traces. However, the DSC shows significant results. &Ve hecorded the global hit rate values
in Table 5.13 for the four traces. These values are mosthtaltiee DSC. Further, these values are
not lower than the one recorded in Table 5.8. In fact, theglbli rates in Table 5.13 are slightly
better. Moreover, we can see from Figure 5.11 that to acl98v@% global hit rate we need not
require a large DSC cache. For instance, for the ISP1 traceguere only 256 entries to get near

to peak hit rates. Similarly, for other traces the DSC cadhe seed not be more than 512 entries

57

| Dataset | Cache Size (Prefix cache & DSG)Global Hit Rate §.) |

Funet 2048 99.26
ISP1 2048 99.9
ISP2 2048 99.9
ISP3 2048 99.7
rrc03 - upchb.1 8192 99.31
rrcll - bell 8192 99.38
as1221- upch.2 8192 96.13

Table 5.13: Global Hit Rates (%) when cache sizes are maximum

| Dataset | Avg. memory accesses (WQ)Std. Dev. |

Funet 3.25 1.77
ISP1 3.33 1.56
ISP2 3.12 1.21
ISP3 3.23 1.41
rrc03 - upch.1 3.4 1.73
rrcll - bell 3.34 1.66
as1221 - upch.2 3.78 1.91

Table 5.14: Average (additional) memory accesses reqbiyddokups that find a hit in the DSC
when cache sizes are maximum

in order to obtain peak performance. But again, this coméiseaéxpense of a few more memory
accesses. Table 5.14 gives the average number of memosasdbat lookups will require if they
hit the DSC. The values for the traces ISP1, ISP2, ISP3 andtrare lower than 5. The question
then arises: Is it reasonable to have a DSC alone in the acthit without being overly concerned
about the average number of memory accesses (lower thaat ¥y yield for each lookup ? This
again is a design choice which may depend upon the needs pfabéem at hand. Alternatively,
there is the prefix cache-first architecture to fall back upoouter architects believe that memory
accesses may induce unnecessary latency.

The situation is slightly different for the upcb.1, upcbrdabell traces. For explanation, we
use Figure 5.12 which shows the prefix cache hit rates as welileaDSC hit rates. Clearly, the
prefix cache hit rates are substantially lower than thoserdeal in Figure 5.6. For the upcb.2 trace,
the prefix cache hit rates gradually increase with the irsingaprefix cache size. Provided that
we allocate enough entries to the prefix cache, we may wiswse decent contributions from the
prefix cache towards the global hit rates. The same resulsttale for the upcb.2 and bell traces.
These numbers are mostly because of a more-active DSC asg-adBve prefix cache. An active
DSC results in some substrides getting aged out. Yet thésstrgles may be referenced again in
future lookups. However, the lookups that missed matchiagé substrides find a matching prefix in
the prefix cache. These matching prefixes remained residém prefix cache and did not get aged
out because of less activity in the prefix cache. But for thisdppen we may need a substantially
larger prefix cache to hold on to those important prefixes.

These results suggest that we might place a sufficientlg lprgfix cache between the DSC and

58

the leaf-pushed trie. Even though the prefix cache alone mgaahieve high hit rates, it may have

some reasonable contribution towards the global hit rates.

5.3.3 Commentary

We showed through empirical results that both the architestperform reasonably well in reducing
the number of full-trie lookups. We achieve up to 99.9% gldberates for both the architectures.
Further, the DSC-first architecture shows up to 4% incremsleda global hit rates when compared
to the prefix cache-first architecture.

However, for the DSC-first architecture we will find that tiveeage number of memory accesses
per lookup is higher in comparison to the prefix cache-agchitre. This can be explained using
Figures 5.6 and 5.12. Consider the as1221-upch.2 datagdgharcase where we allocate 8192
entries to both the prefix cache and the DSC. For the prefixezficdt architecture, we have 74%
local hit rates in the prefix cache and 70% local hit rates @@$C. Similarly, for the DSC-first
architecture, we have 91% local hits rates in the DSC and ®¢% hit rates in the prefix cache.
Using these local hit rate values we can calculate the agenagnber of memory accesses per lookup
for both the architectures. We use the following equation:

PC)*0 + DSC)*t+ trie) *
Average number of memory accesses/lookunpum() num() numtrie) * we
Total number of lookups

(5.2)
In the equatiomum indicates the number of hits in the individual componemgshe prefix cache
(PC), the DSC and the trie. The variableendwc are the number of memory accesses required by
a lookup that hits the DSC and the trie respectively. In astakcenario the values ofandwc can
vary depending upon the type of lookup. Nonetheless, wehesw/orst-case values foandwc to
lend more clarity to our argument. So for convenience, wesiclent = 5 which simply indicates
that a lookup that finds a hit in the DSC will take at most 5 mgaarcesses to find the next hop.
Similarly, we considetvc = 32 which is the number of memory accesses a lookup will require i
the worst-case if it misses both the prefix cache and the DSC.

For the upch.2 with 0.9 million lookups, a single lookup ie firefix cache-first architecture will
require only 3.4 memory access on average. In contrasteiD8C-first architecture the average
number of memory accesses per lookup is nearly 5.7. Usingréfex cache-first architecture, we
can achieve up to 40% reduction in the average number of meatgesses per lookup. Clearly, a
lookup in the DSC-first architecture will require few moremy accesses on average in compar-
ison to the prefix cache-first architecture.

Evidently, the choice of a suitable architecture should lzalenonly after realistic decisions
regarding hardware implementations. If the router arcksteome up with a hardware design that
focuses more on average memory accesses per lookup, thprefhecache-first architecture is a
definite choice for them. However, if global hit rates are $hhenger consideration then the DSC-

first architecture should be preferred.

59

Chapter 6

Cache Modeling and Optimization

In the previous chapter we presented empirical resultsifordifferent architectures (prefix cache-
first and DSC-first) where we primarily considered a scenatiere we allocate equal number of
entries to both the prefix cache and the DSC. However, alluggatjual cache entries to both caches
may not yield the best global hit rates. Clearly, for the twohétectures the design decision is to
optimally allocate cache entries between the two caches §ren number of cache entries. In this
chapter we present an analytical method that can be usedve an optimal cache design that gives
the maximum global hit rates.

The idea is to first choose an analytical method that best mdigie hit rates in the two caches.
Once we have decided upon an analytical method, we can fatenthe design decision as an
optimization problem.

In Section 6.1, we briefly describe some previous works tradehcache memories. In Section
6.2, we describe our analytical method and we shows itstaféaess. In Sections 6.3 and 6.4 we
present the optimization technique and follow it with th@esimental results. In Section 6.5 we

present results to validate the discussions in Sectio.5.3.

6.1 Related models

It is a known fact that cache behavior depends upon the tgdalithe destination address stream
that the cache sees. Models that can measure these loqaligrfies can help understand cache
behavior. In fact, such models provide means to predictdcbe hit rates.

Singhet al. [41] provide a model to characterize locality in referentteamn. This model is in
turn used to derive a method to predict hit rates. They peaigower function:(t) that gives the

number of unique references in the reference stream ofieéngt

u(t) = Wt (6.1)

This power function captures the temporal locality in thierence stream. For instance, if

1(1000) = 300 then at thel000*" reference, we have already seen 300 unique referencesdén or

60

to obtain the parameter valué anda, they fit the power function using linear regression. They
further illustrate how the power function can be used tovarat a model for the cache miss rates.

Specifically, they take the derivative of the power functiiren a cache siz€’:

M(C) = % = aWt/ect-1e (6.2)
M (C) gives the miss rate for a given cache of sizeln other words, this is the rate at which
the unique references occur in a trace at the time when theedadilled with unique references
and is also the rate at which cache misses occur. This is #oause a cache with entries will
contain at most C unique addresss where each cache entryplcha $ingle address reference only.
Apparently, the model has shortcomings. In Eq. 6.2, if wesadgrC' = 0 then the miss raté/ (C')
should be 1. However, it turns o (C') will give zero. Clearly, the equation does not satisfy the
boundary conditions. Meeting the boundary conditions igartant else this will lead the optimizer
to predict that the miss rates are least when cache sizeds zer
ISP1

60

—— Measured
|| — Curve fitted

0

.
0 50 100 150 200 250 300 350 400 450 500

t

Figure 6.1: Power function(¢) with respect ta for ISP1 trace

Another concern is that Eq. 6.2 does not hold for an initiahsient. This can be shown in
Figure 6.1 where we take a subsample of trace ISP1 contdifiglestination addresses. We then
fit EQ. 6.1 with the measurea(t) values. Apparently, the fit is relatively poor especiallyemtt is
less than 50. Actually, whenis less than 50, the slope of the fitted curve is above 1. Thidiés
that the cache miss rate is in excess of 100% which is err@aneou

Another approach towards characterizing locality is redistance [10][38]. Reuse distance
gives the measure of temporal locality in the referencessaefined asizeof (stack)+1. Assume
we have a stack with infinite size and we push each referenethis stack. If an incoming
reference has been seen before, we remove the similar meéefeom its current position in the

stack and we push it onto the top of the stack. The reuse distagre is the index of the stack entry

61

ISP1

10

10 E

10°F E

CCDF

10°F k!

10’ 1 1
10° 10" 10° 10°

Reuse Distance

Figure 6.2: CCDF for ISP1 trace

where the reference was found. If the incoming referencabasr been seen before, then we push
this new entry onto the top of the stack. If the referencegamkat the top of the stack is seen again,
then we define the reuse distance as 0. The greater the nufmbase distances closer to the top of
the stack, the better is the temporal locality in the refeeestream.

The distribution of the reuse distances in the packet treme$e used to predict hit rates. Specif-

ically, we can use the CCDF (complementary cumulativeiBiistion function) of reuse distances:

S(x)=Pr[X >z]=1-F(x) (6.3)

wherez is the reuse distance. Thus, for a given cache size, the caidserates can be predicted
from the CCDF curve. For example, in Figure 6.2 we show the EClrve for the ISP1 trace. The
reuse distance here can be considered as the cache sizastierdCCDF as the cache miss rates.
Given the CCDF for the trace, we can fit the CCDF curve usingesdistribution (Pareto, Weibull
etc.).

However, the CCDF is not accurate for larger reuse distanEes instance at reuse distance
1000, the cache miss rate predicted is almost 0%. Againwiliiforce the optimizer to believe that
the best miss rate seen by the cache is 0%.

Attempts have been made to udelaysand stridesto measure memory reference locality in
programs that use a small part of a memory. Delay is the distéime) between two references.
This is calculated by counting the total number of refersrtween two items. Stride indicates the
distance in memory between the same two references. Saideveant to capture spatial locality.
Grimsrudet al.[18] use these concepts to arrive at a locality surface. Thapt the number of times

each delay and stride combination occur in the memory reéer&race. Each of these combinations

62

are divided by the total number of references in the trace rébkults are shown on a log-log scale
which indicates the extent of locality. However, they do paivide a mechanism to predict cache

miss rates. Further, strides are not useful to quantifyi@datality in destination address streams.

6.2 Our approach

For our work, we model cache hit rates as a power-law function

H(z)=1- Az’ (6.4)

wherez is the cache size and andf are constants. The above equation is useful for cache hit rat
modeling and is also investigated by Smith [43]. Howevenjlsir to other models, Eq. 6.4 does not
satisfy the boundary conditions. At cache sizél) will give 100% cache hit rate. Clearly, we
would need a model which gives 0% cache hit rate for a cache®Ds In addition, it is important

to predict cache hit rates of 100% when the cache size istypfiGionsidering the need, we make

the following changes to Eq. 6.4:

e To ensure that the equation meets the boundary condition edxghe size is 0, we replace the

termz? with (z + 1)%.

e To ensure that the equation meets the boundary condition wédoghe size is infinity, we place

the term(z + 1) in the denominator.

e We scale the value of directly by A. So we moveA to the denominator of. Thus, the

cache hit rates increase with increasing valué of decrease with increasing value 4f

This gives us the following equation:

ot

(5 +1)°
The changesto Eq. 6.4 ensure that the modeling will not faémthe cache size is 0 or infinity. We
use Eqg. 6.5 to model the local hit rates for both the prefix eashwell as the DSC.

H(z) = (6.5)

6.3 Prefix cache-first architecture

In the following section we show the effectiveness of the aldarr the architecture where the prefix
cache precedes the DSC. We first show whether Eq. 6.5 prapedgls the prefix cache hit rates.
For demonstration, we first try to fit the model with the obselrprefix cache hit rates for the packet
trace ISP3. We consider a prefix cache with 240 entries. [§Jébhe model fits with the observed
values very well (Figure 6.3). For the fitted curve we fouhe: 11.7422 andf = 0.565. Moreover,
the curve suggests that the hit rates follow the 80/20 rulererbache hit rates increase by 20% with

every increase (doubling) of the cache size.

63

ISP3

0.9

(%]
o)
E i
E 4
(]
<
Q
3 i
o
X
X i
o
o i

01 —— Measured ||

—— Curve fitted
0 ‘ ‘ ‘ :
0 50 100 150 200 250

Prefix cache size

Figure 6.3: Prefix cache hit rates - Measured v. Curve fitted

Consider a scenario where we have a total of 240 cache entveedecide to allocate 25 entries
to the prefix cache and the remaining to the DSC. We also asthahthe value of: to be 2. We
demonstrate that Eq. 6.5 can fit very well with the observe@ B rates for the packet trace ISP3.
Figure 6.4 shows the results of the curve fit. For the fit, we fird 1.2266 and A = 80.44 for the
part of the destination addresses seen by the DSC when tieqaehe has 25 entries. Apparently,
the fit is good when the DSC cache size is beyond 200 entriesteTik a certain degree of misfit
when the DSC size is less than 50. This is due to the pecultarsaf the curve that was seen
during the simulation.

We first see how the cache entries get distributed betweeprédiix cache and the DSC when
we use an exhaustive search considering that we wish towactiie best global hit rates. For this
particular problem instance, we selected a total cached$i2d0 entries. We also considered the
value ofk to be 2. Figure 6.5 gives the global hit rates for the simdlai@che configurations for
the ISP3 trace. The x-axis indicates the number of cachesrallocated to the prefix cache out of
the total available cache entries. As shown, the best gluibgdte is obtained when 49 entries are
allocated to the prefix cache and the remaining 191 entrifset®SC. This indicates that a small
prefix cache in front of the DSC is beneficial. This substaesizhe point that was made in Chapter
5 regarding a small prefix cache. A small prefix cache here ges® exploit most of the temporal
locality seen in the ISP3 trace. This enables the DSC to bes fumused on exploiting spatial
locality as well as lookups that fall in particular IP addrepaces. The two behaviors combined

help to increase the global hit rates.

64

ISP3

0.9

0.8

0.7

0.6

DSC hit rates

0.3

0.2

0,1,/ —— Measured ||
/ —— Curve fitted

I I n
0 50 100 150 200 250

DSC size

Figure 6.4: DSC hit rates - Measured v. Curve fitted when prefohe has 25 entries

6.3.1 Formulation

The cache entry distribution between the prefix cache and®@ can be formulated as a con-
strained non-linear integer optimization problem. Thifl e§sentially prevent us from using ex-
haustive search which is much more tedious. We use the TOM|6ABptimization environment

for the formulation. Considering Eq. 6.5 as a method to mtddt rates, we formulate the problem

of finding the optimal cache entry allocations in the follagiiway:

maximize [y1 X Hy(c1) + y2 X Ha(co)] (6.6)
subject to
ylzL yQZL—Hl(Cl)Xyl
Hy(e1) =1 = (555 + 1)@
Ha(e) =1 = (5785 + 1)~awlen)
ag(c1) = |, acl
ﬁ(ﬁ(cl) = [ﬁSaBE]
j=0,20,30,..,c
i=j—(0-1)

c1 = [s, €] wheres = max(i) ande = min(j)
c1+cp=c
ciandc, are integers

c1,c2 20

65

y1 is the fraction of address references seen by the prefix cauthg, is the fraction of address
references left-over from the prefix cacheis the total available cache entries(s) andg(s) are
the parameters from Eq. 6.5 for the address referencesrtidad fiit in the prefix cache. Similarly,
ag(c1) andBy(c1) are the parameters from Eq. 6.5 for the DSC. Howevg(¢:) andGy(c1) de-
pend upon the prefix cache size. More specifically, the iaterassociated withys (c1) andBs(c1)
are used to select the valuesf(c;) and S, (c1) depending upon the value of. Further, the size
of the interval is defined bg.

Figure 6.6 gives the optimization surface for the design pffedix cache-first architecture &
240). The z-axis shows the global hit rates. The other axes shewntmber of cache entries
allocated to the prefix cache and the DSC respectively. Fhenfigure we can see that the optimal
design decision is to allocate 47 entries to the prefix caclietiae remaining 193 entries to the
DSC. Also, the global hit rate is up to 90.75%. In contrastyéf allocate all the memory to the
prefix cache, then we see a global hit rate of only 82.56%. |8ityj if we allocate all the memory
to the DSC, the global hit rate is just around 87.24%. Cleallgcating some entries to the prefix
cache is indeed beneficial.

In fact, the cache distribution predicted by the optimizatiechnique is very close to what we
had seen through exhaustive search. The exhaustive sesarandtrated that 49 entries needed to
be allocated to the prefix cache. Moreover, the global hésaeen through exhaustive search is
near to 90.22%. This shows that the values determined usingmimization technique are quite

close to what we see using exhaustive search.

6.4 DSC-first architecture

In this section, we describe a method to determine optinceantry allocation in a scenario where
the DSC precedes the prefix cache. In this situation, the @8€ all the address references and has
the opportunity to exploit locality. It will be interestirtg see the performance of the prefix cache
given that the DSC exploits all the locality in the addregsnences.

However, this architecture turns out to be much more comfg@exodel due to its inclusive
nature. In other words, the performance of the prefix caclseahmarked effect on how the DSC
performs. This can be explained from Figure 6.7. For illsbtn, consider that the DSC and the
prefix cache have been provided with three entries each.niassiiat the initial state of the caches
is as in Figure 6.7(A). Suppose a new reference arrives (Eig' (B)) that is already present in the
DSC. As aresult, there is some activity in the DSC. Furtheema reference 01111001010 arrives,
the substride 1010 is evicted from the DSC (Figure 6.7(Cpweler, the prefix cache still holds
the prefix 101000 corresponding to the substride 1010. Cpreswly, any future address references
that match 101000 will find the prefix cache useful (FigurgB)Y. This will prevent any updates
for substride 1010 in the DSC. Subsequently, the DSC wilbgtswshow a miss for a reference that

matches the 1010 substride and this will lead to a lower D$@ake. We can term substrides such

66

as 1010 as “victim substrides”.

This cache behavior can be attributed to fortunate occoe®n Had we allocated only two
entries to the DSC and the prefix cache, the DSC would had hegated with the substride 1010.
Not surprisingly, the DSC in this case will show a differerttrate. Hence, the DSC hit rates may
fluctuate depending upon how the prefix cache performs.

This inclusive nature of the two caches can be seen in Fig@rartd 6.9. For illustration, we
allocate 230 entries to the DSC and we then vary the size gfrifex cachef = 3). Initially, when
the prefix cache is less active, the DSC shows relativelyestdbrates. However, as the prefix cache
size grows, the chances of it being effective increasess [Elaids to a sudden drop in the DSC hit
rate. This is because many substrides are not updated inSReddce the prefix cache size grows
beyond a certain point. Thus, modeling such curves can lyecaanplex.

In order to reduce the complexity, we suggest using a DSCf&i€mntly large size so that the
prefix cache has a meager effect on the DSC hit rates. Thisecaxdiained from Figure 6.10 which
shows the global hit rates obtained from exhaustive seancth&é upcb.1 trace. In this case, we
consider the total available memory as 400 entries. Funteekeep the value df as 3. As shown,
the global hit rates are at their peak when most of the erdriesillocated to the DSC. This means
that the DSC is less affected by the prefix cache which isivelstsmaller in size. The result is that
the DSC hit rate and the prefix cache hit rate curves arevelatiess complex.

We proceed with our experiment with the criteria that the D& have at least 300 entries
out of the available 400 entries. This assumption helpsifeigntly in predicting global hit rates.
Figure 6.11 shows the DSC hit rate curve for the upch.1 trabe. DSC hit rates increase linearly
with increasing size. This simplifies the problem and allmsgo use a simple linear equation to
fit the curve. The prefix cache curves are also less complegxr&6.12 shows the prefix cache hit
rates when the DSC has 300 entries. The prefix cache hit rate,cagain, varies if the DSC has
more entries. However, we found that the curves follow thegrdaw nature even when the DSC

has 395 entries. As a result, we use Eq. 6.5 for curve fitting.

6.4.1 Formulation

The optimization problem is in ways similar to the one ddssuliin Section 6.3.1. We have:

maximize [y1 X Hi(c1) + y2 X Ha(co)]

subject to:

=1L Y2 = L — Hi(e1) Xy
Hi(er) = M(c1) X e1 + A(er)

Hy(c2) =1~ (5.5 + 1))
M(cy) = [Ms, Me]

67

Aler) = [As, Ac]

ag(er) = [as, ac

By(c1) = [Bs, Bel

j=06,20,30,....c

i=j—(0-1)

c1 = [s, €] wheres = maxz(i) ande = min(j)
c1+cp=c

ciandc, are integers

c1,C2 > Oandcl >P

M (c1)and A(cq) are the parameters for the address references seen by theTb&@tervals for
M (c1)and A(eq) select the values of the parameters depending upon the edye P indicates
the lower bound on the number of cache entries pre-allocatéte DSC.

Figure 6.13 gives the global hit rate curves after the ogtitiidon ¢ = 400). For the experiment,
we considered® = 300 and as a result at most 100 entries could have been alloaatbd prefix
cache. The optimal global hit rate is 0.881 where 25 entrieewallocated to the prefix cache and
the remaining 375 entries to the DSC. This is close to whateaising the exhaustive search where
29 entries were allocated to the prefix cache (Figure 6.10).

The results show that a small prefix cache after a DSC is serfitcdo hold some prefixes corre-
sponding to the victim substrides that were evicted fromDBE. For example, for the upcb.1 trace
a small prefix cache has a contribution towards to the globbahte. However, a small prefix cache
after the DSC may not be always beneficial especially in stemwhere the DSC is self-sufficient.
Given this behavior, the optimization technique can pravbé useful to determine the optimal

balance of cache entries for different traces.

6.5 Supplementary experiments

In Section 5.3.3 we argued that the prefix cache-first arctuite performs better than the DSC-first
architecture in terms of the average number of memory aesqss lookup. We further validate
that argument by providing some supplementary experinesofts.

We focus on finding an optimal distribution of cache entriesateen the prefix cache and the
DSC that minimizes the number of memory accesses. To bespresur objective is to find an
optimal cache entry allocations between the prefix cacheétenBSC such that the average number
of memory accesses required by a single lookup is the least.céhpute them using Eq. 5.2.
This exercise will also show whether the DSC has a reasocablteibution in reducing the average

number of memory accesses per lookup.

68

6.5.1 Prefix cache-first architecture

First we see how the cache entries are distributed betweepr#iix cache and the DSC when we
use exhaustive search. For illustration we consider tha tokilable cache entries as 240 and we
select the value of to be 2. Moreover, for Eq. 5.2 we consider the valtes 5 andwe = 32.
Figure 6.14 demonstrates the distribution of cache erftsidhe ISP3 trace using exhaustive search.
We can see that the lowest average number of memory accesdeskup is seen when 78 entries
are allocated to the prefix cache and the remaining 162 entrigtne DSC.

The task of finding the optimal distribution of cache entgas be formulated as a non-linear
integer optimization problem. The optimization tableasimilar to the one described in Section
6.3.1 with the only change being in the objective functioheDbjective function for this particular

problem is:
minimize [y1 X Hi(c1) X 0+ ya2 X Ha(cz) x t+ (L —y1 X Hi(c1) — y2 X Ha(cz)) x we] (6.7)

Figure 6.15 gives the optimization surface for the desigthefprefix cache-first architecture. The
optimizer predicts that 155 entries should be allocateti¢oDSC and the remaining 85 entries to
the prefix cache. For the optimal distribution, the averagmlmer of memory accesses per lookup
is 4.363. However, if we allocate all the entries to the prefixhe a lookup will require up to
5.6223 memory accesses. Quantitatively, the DSC in theitacthre helps reduce the average
number of memory accesses per lookup by 22.5% i.e we dectieaseemory traffic by 22.5%.
Not surprisingly, the DSC in this architecture has a bettarticbution in reducing the memory
accesses for each lookup. This conforms to the argument we imaSection 5.3.3 regarding the

prefix cache-first architecture.

6.5.2 DSC-first architecture

For the DSC-first architecture we use the optimization tblested in Section 6.4.1 and we use the
objective function as in Eq. 6.7. Similar to Section 6.4.&, eonsider that only 400 cache entries
are available. We considér= 3, ¢t = 5 andwc = 32. Further, we allocate a minimum of 300
entries to the DSC as a starting point for the optimizaticigufes 6.16 is the result from the opti-
mization. Clearly, from the experiment we see that the DS€sdmwt decrease the average number
of memory accesses per lookup substantially. However térdrsy point for the optimization does
not shed light on the actual results. Given the currentétidhs in our optimization method, we use
exhaustive search. Using exhaustive search we can getsresuall possible cache configurations.
Figure 6.17 is the result from the exhaustive search foraasible cache configurations. Evidently,
from the exhaustive search we find that 395 entries need tdidmated to the prefix cache and 5
entries to the DSC. This indicates that there are less bermdéfd DSC in a DSC-first architecture
if we consider average number of memory accesses per lockaateria. This is precisely what

we expected from the discussions in Section 5.3.3 and tlpansarily due to additional memory

69

accesses (up to 5) required by lookups that hit the DSC. lolasion, if the router architects believe
that average number of memory accesses per lookup is a eotioen they should opt for the prefix

cache-first architecture.

ISP3 (Maximum cache entries available: 240 entries)
91 ‘ ‘ ‘ ‘

90 B

88 B

871 N

86 B

Global hit rates

83| B

82 s s s s
0 50 100 150 200 250
Increasing prefix cache size

Figure 6.5: Global hit rates measured for ISP3 trace thraxgaustive search

70

ISP3 trace

0.92

0.9

0.88
Global
hitrate 0.86 |

0.84 A

=
‘/
082 | SO
5
10
15055

Prefix cache size
DSC size

Figure 6.6: Optimization surface for the prefix cache - firsh#ecture (global hit rates)

Initial state New reference - 000100111 (already present)
L1l 0001
1010 {D5C) 1111 (DSO)
0001
w (B) 1010
101000 (PC) 101000 (PC)
000100 000100
New reference - 01111001010 New reference - 1010001100 (present in prefix cache)
01111 01111
0001 (DSC) 0001 (DSC)
11 1111
(0 I (o) J—
0111100 0111100
111100 (PC) 111100 (PC)
101000 101000

Figure 6.7: DSC and prefix cache behaviorg)

71

rrc03 — upcb.1
0.7 T T T

0.5F 1

0.4r B

Prefix cache hit rates

0.2 B

0
0 50 100 150 200 250 300 350 400

Increasing prefix cache size

Figure 6.8: Prefix cache hit rates when DSC has 230 entries

rrc03 — upch.1
0.9 ‘ ‘

0.851

DSC hit rates
o
[e2]

o

3

a
T

0.7

0.65 I I I I I I I
0 50 100 150 200 250 300 350 400

Increasing prefix cache size

Figure 6.9: DSC hit rates on varying prefix cache sizes whe@ B& 230 entries

72

rrc03 — upcb.1 (Maximum cache size entries available: 400)
0.9 : : ‘

0.89

0.88

0.87

0.86

Global hit rates

0.85

0.84

0.83 : : .
0 50 100 150 200 250 300 350 400

Increasing prefix cache size

Figure 6.10: Global hit rates measured for upcb.1 tracaitfin@xhaustive search

rrc03 — upch.1 (Maximum cache size entries available:400)

0.88 ‘ ‘ ‘ ‘ ‘ ‘
0.875}]
[%]
[
9
©
e
=
°
(@]
[}
a)
0.87 b
— Measured
— Curve fitted
0.865

300 310 320 330 340 350 360 370 380 390 400
DSC size

Figure 6.11: DSC hit rates - Measured v. Curve fitted when D3€is 300 entries or more

73

rrc03 — upch.1 (Maximum cache size entries available:400)
0.08 ‘ : : ‘ ‘

0.07 1

0.06 1

0.051 1

0.04 1

Prefix cache hit rates

0.02| 1

0.011 —— Measured
—— Curve fitted
0 ‘ ‘ : :

0 20 40 60 80 100 120
Prefix cache size

Figure 6.12: Prefix cache hit rates - Measured v. Curve fitteen\DSC has 300 entries

rrc01 - upch.1

0.8815
0.881
0.8805
Global 0.88
hit rate (0.8795
0.879
0.8785
0.878
0.8775

300
320
340

360
380 00
DSC size 400

Prefix cache size

Figure 6.13: Optimization surface for the DSC - first arcttisee (global hit rates)

74

ISP3 (Maximum cache entries available: 240 entries)
85

Avge(mem) per lookup
o o ~
a (o2} (5] ~ ol ©

ol

45
0 50 100 150 200 250

Increasing prefix cache size

Figure 6.14: Average number of memory accesses per look@gsuned for ISP3 trace through
exhaustive search (prefix cache-first architecture)

ISP3 trace

4 -
45

5 E

55+
Avge(mem) 6
per lookup 6.5 -
7 L

75+

gl {
85

S—
—

e A ——

e

——
—_—
—=

5
10
15 20

Prefix cache size
DSC size

Figure 6.15: Optimization surface for the prefix cache - firshitecture (Average number of mem-
ory accesses per lookup)

75

rrc03 - upch.1

8.18

8.2
e W

Avge(mem) =
per lookup 8.22 = —

8.24
8.26

DSC size

Figure 6.16: Optimization surface for the DSC - first arottitee with minimum of 300 entries
allocated to the DSC(Average number of memory accessesqeunp)

rrc03 — upcb.1 (Maximum cache entries available: 400 entries)
9 . . .

Avge(mem) per lookup

0 50 100 150 200 250 300 350 400
Increasing prefix cache size

Figure 6.17: Average number of memory accesses per look@gsumed for rrc03-upch.1 trace
through exhaustive search (DSC-first architecture)

76

Chapter 7

Conclusions & Future Work

7.1 Conclusion

In this thesis, we propose two architectures that can be eseetiuce IP lookup latencies for in-
coming destination addresses. In particular, we use a mawble organization called the dynamic
substride cache (DSC) along with a prefix cache to reduceuhbar of full-trie lookups. Firstly,
we tested the utility of a DSC when it is placed between thépoache and the leaf-pushed trie
(prefix cache-first architecture). We show experimentadiyng different traces that the DSC is in-
deed effective in ensuring that fewer full-trie lookups pegformed. A clear benefit of the DSC is
that it is has great utility even when we have a prefix cacheist@elivering good hit rates. In fact,
we achieve nearly 88% hit rates in the DSC even when the prafikechas reached its maximum
hit rate. This shows that the DSC is able to assist a good pege of lookups that are misses in
the prefix cache. We also demonstrated that any lookup tlzessisted by the DSC via a substride
has to do at most of 5 memory accesses on average insteadlbfréeflookup that may cost up to
19.7 memory accesses on average.

Our experiments rely on finding a suitable value for the patank that is used to generate the
substrides. We showed that the DSC performance indeedsviarterms of the local hit rates and
the average number of memory accesses under differenvaliee\We use these results to indicate
the suitable value df for generating the substrides. Importantly, using thisisecture we achieve
a global hit rate of up to 99.88% when we set the valuk @ 3. This result is significant since the
architecture ensures that only 0.12% of the lookups arenexdjto do the full-trie lookups. We put
up a strong case especially for traces that show less IpchBiitr these traces we achieve global hit
rates up to 95% if we consider only a prefix cache in the archite. However, if we use the prefix
cache in conjunction with the DSC, we achieve global hitsaeto 99.34%. This also suggests that
our architecture can perform better even when there is addh@mount of locality in the incoming
destination address stream.

Additionally, we introduced a DSC-first architecture whthre prefix cache is placed between

the DSC and the leaf-pushed trie. This architecture rettiegprefix cache which enables it to

77

exploit the locality in destination address streams. Wengltbthrough empirical results that for
some traces the DSC alone can achieve significant globahtas.r In contrast, we showed that
for some traces the prefix cache is certainly beneficial ares$ doake some contribution towards
the global hit rates. Comparatively, we find that the DSG-firshitecture is better than the prefix
cache-first architecture where we improve up to 4% in terngdaidal hit rates.

Another important consideration in an IP lookup scheme ésrdquirement for incremental
updates. Incremental updates are frequent and it is impdida our two architectures to support
addition and deletion of prefixes. In order to make incrermlempdates possible in a leaf-pushed
trie, we suggested storing extra information on prefixeh@leaves as well as the internal nodes.
We demonstrated that these additional information on prefix essential for incremental updates
in a leaf-pushed trie.

In addition, we provide schemes that need to be followed dento ensure that the DSC is
consistent after the addition or deletion of prefixes fronea-pushed trie. However, we required
the scheme to be conservative as the DSC has little confarhiation on the prefixes that were
added or deleted.

Lastly, we investigated the optimal distribution of membegween the prefix cache and the DSC
for the two architectures. We proceeded first by finding a ribde can help us predict the hit rates
in the two caches. Initially, we presented some existing @l®bdut showed that they may not be
suitable for our work. As an alternative, we presented a itbdésatisfied the boundary conditions
and was able to adequately mimic the hit rates in the prefikeaad the DSC. Thereafter, we used
optimization techniques to arrive at an optimal distribatof cache entries. We also argued that we

arrive at an optimal distribution that is quite close to wivatfind using exhaustive search.

7.2 Future Work

There is an important issue that could be addressed as paut &fture work. A potential concern
in both architectures is that we need to stall lookups whileses or DSC hits are being serviced.
For instance in the prefix cache-first architecture, we neetit lookups in the prefix cache while
lookups are being performed in the DSC or the leaf-pushed Further, we need to stall lookups
in the DSC when a previous successful lookup in the DSC paxtethe leaf-pushed trie. Such
frequent stalls in between lookups can induce latency.

A potential solution to this problem is using buffers betwelee prefix cache and the DSC for
pipelining purposes. As an example, we demonstrate thefus®@ache miss buffers (CMB1 and
CMB2) between the prefix cache and the DSC in Figure 7.1 foefiyprache-first architecture. The
CMBL1 buffer can be used to store lookups from prefix cacheesigs case any lookup is still in
process in the DSC. The CMB2 buffer can be used to store Iaolkam DSC in case a lookup in the
leaf-pushed trie is still in process. The CMB1 buffer allavws prefix cache to perform lookups even

when lookups are being performed in the DSC or the leaf-plistie However, the prefix cache

78

__|prefix Cache!Mt it

IP dest addr

miss CMB1: Cache Miss Buffer 1
CMB2: Cache Miss Buffer 2
— CMB1 ———=— Control Signal
S DSC

Leaf-pushed Trie data structure

|

result

Figure 7.1: A prefix cache-first architecture with cache rhigfers

needs to stall if the CMB1 buffer gets full. Similarly, the &% buffer allows the DSC to perform
lookups even when lookups are in process in the leaf-pusheediigain, DSC lookups need to stall
when the CMB2 buffer gets full. It should be noted that we nieestall the lookup process in the
two caches while we are updating a prefix and a substride frpravaous lookup in the leaf-pushed
trie. The above discussion of using buffers is also applectdbthe DSC-first architecture.

Even though the preliminary data path is available to us,tileeed to experimentally evaluate
the improvements the two buffers might provide in terms eftnmber of clock cycles. Moreover,
we still need to determine at what intervals the two buffezsdhto be signaled to flush out the

lookups for further processing.

79

Bibliography

[1] BGP routing table analysis report. http://bgp.potanab.
[2] Finnish University and Research Network (Funet). itipavw.csc.fi/english/funet/.
[3] Freescale semiconductor. PowerPC MPC7451. http://Mnsescale.com/.

[4] Merit Network Inc. Internet performance measuremerd damalysis (IPMA) statistics and
daily reports . http://www.merit.edu.

[5] Ripe Network Centre. http://www.ripe.net/projectsfrawdata.html.
[6] Tomlab optimization. http://tomopt.com/tomlab/.

[7] M. Akhbarizadeh and M. Nourani. An IP packet forwardirghnique based on partitioned
lookup table. INEEE International Conference on Communicationslume 4, pages 2263—
2267, 2002.

[8] M. Akhbarizadeh and M. Nourani. Efficient prefix cachiray hetwork processors. IfEEE
Symposium on High Performance Interconngpégies 41-46, August 2004.

[9] K. Andrusky and M.H MacGregor. Improving packet classfion: Learning from traffic. In
Internet Technologies and applicatiqr&eptember 2005.

[10] M. Brehob and R. Enbody. An analytical model of local#gd caching. Technical Report
MSU-CSE-99-31, CSE Department. Michigan State Universig9.

[11] T.C Chiueh and P. Pradhan. High-performance IP routbée lookup using CPU caching. In
IEEE INFOCOM volume 3, pages 1421-1428, May 1999.

[12] T.C Chiueh and P. Pradhan. Cache memory design forneterocessors.IEEE Micro,
20(1):28-33, Jan/Feb 2000.

[13] I.L Chvets and M.H MacGregor. Multi-zone caches forelecating IP routing table lookups.
In High Performance Switching and Routingages 121-126, May 2002.

[14] E. Cohen and C. Lund. Packet classification in large 18lesign and evaluation of decision
tree classifiers. IBIGMETRICS '05:; Proceedings of the 2005 ACM SIGMETRICSriate
tional conference on Measurement and modeling of compystemspages 73—84, 2005.

[15] W. Eatherton, G. Varghese, and Z. Dittia. Tree bitmaprdware/software IP lookups with
incremental updates. lCM SIGCOMM Computer Communication Revigalume 34, pages
97-122, 2004.

[16] W.N Eatherton. Abstract hardware-based Internetqu@tprefix lookups. Master’s thesis,
Washington University, May 1999.

[17] M. Faeizipour and M. Nourani. Wire-speed TCAM basechésztures for multimatch packet
classification.|[EEE Transactions on Computeis8(1):5-17, January 2009.

[18] K. Grimsrud, J. Archibald, R. Frost, and B. Nelson. Om #iccuracy of memory reference
models. InComputer performance evaluation, modeling techniquesamid pages 369-388,
May 1994.

[19] P. Gupta. Algorithms for Routing Lookups and Packet Classificatid*hD thesis, Stanford
University, 2000.

80

[20] P. Gupta and N. McKeown. Algorithms for packet classifion. InIEEE Network Special
Issue volume 15, pages 24-32, March/April 2000.

[21] R. Jain and S.A Routhier. Packet trains: Measurememtsanew model for computer network
traffic. IEEE Journal on Selected Areas of Communicatjdn286—295, 1986.

[22] W. Jiang, Q. Wang, and V.K Prasanna. Beyond TCAMs: An SRiased parallel multi-
pipeline architecture for terabit IP lookup. IBEE INFOCOM pages 1786—1794, 2008.

[23] S. Kasnavi, P. Berube, V. Gaudet, and J.N Amaral. A cdedsed Internet Protocol address
lookup architectureComputer Network$2(2):303—-326, 2008.

[24] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cachaamplent based on reuse-distance
prediction. Ininternational Conference on Computer Desigages 245-250, October 2007.

[25] D. Knuth. The art of computer programming. Addison-Wg$rofessional.1997.

[26] H. Liu. Reducing cache miss ratio for routing prefix cacin IEEE GLOBECOMvolume 3,
pages 2323-2327, November 2002.

[27] M.H MacGregor. Design algorithms for multi-zone IP aglss caches. IHigh Performance
Switching and Routingpages 281-285, June 2003.

[28] P. Mehrotra and P.D Franzon. Binary search schemesagiP lookups. IHEEE GLOBE-
COM, volume 2, pages 2005-2009, November 2002.

[29] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang.v4Raddress allocation and
the BGP routing table evolution. KCM SIGCOMM Computer Communication Revigal-
ume 35, pages 71-80, January 2005.

[30] N.B Neji and A. Bouhoula. Dynamic scheme for packet sifigation using splay trees. In
International Workshop on Computational Intelligence iec@rity for Information Systems
CISIS volume 53, pages 211-218, October 2008.

[31] D. Pao, Y. Li, and P. Zhou. Efficient packet classificatissing TCAMs.Computer Networks
50(18):3523-3535, December 2006.

[32] L. Peng, W. Lu, and L. Duan. Power efficient IP lookup wstlpernode caching. IMEEE
GLOBECOM volume 48, pages 215-219, November 2007.

[33] Y. Rekhter and T. Li. An architecture for IP address edltion with CIDR. InRFC 1518
September 1993.

[34] R.L Rudell. Multiple-valued logic minimization for PA synthesis. Technical Report
UCB/ERL M86/65, EECS Department, University of CaliforniBerkeley, 1986.

[35] S. Sahni and K.S Kim. Efficient construction of variaiskeide multibit tries for IP lookup. In
IEEE Symposium on Applications and Interrpeiges 220227, 2002.

[36] R. Sedgewick. Algorithms in C++. Addison-Wesley. 1990

[37] D. Shah and P. Gupta. Fast incremental updates on Te@¥¥s for routing table lookups
and packet classification. Proceedings of Hot Interconnectsgages 145-153, August 2000.

[38] W. Shi, M.H MacGregor, and P. Gburzynski. Traffic lotglcharacteristics in a parallel for-
warding systeminternational Journal of Communications syste$(9):823—-839, 2003.

[39] K. Shiomoto, M. Uga, M. Omatani, S. Shimizu, and T. ChamaScalable Multi-Qos IP +
ATM switch router architecture. IFEEE Communications Magazineolume 38, pages 86—
92, December 1999.

[40] W.L Shyu, C.S Wu, and T.C Hou. Multilevel aligned IP prefiaching based on singleton
information. INIEEE GLOBECOMVvolume 3, pages 2345-2349, November 2002.

[41] J.P Singh, H.S Stone, and D.F Thiebaut. A model of wa#land its use in miss-rate pre-
diction for fully associative cachedEEE Transactions on Computer$1(7):811-825, July
1992,

[42] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Pdekstfication using multidimensional
cutting. Technical Report CS2003-0736, CSE DepartmenSD003.

81

[43] A.J Smith. Two methods for the efficient analysis of meyraddress datdEEE Transactions
on Software Engineerin@(1):94-101, 1977.

[44] V. Srinivasan and G. Varghese. Faster IP lookups usorgrolled prefix expansionACM
Transactions on Computer Systerhg(1):1-40, February 1999.

[45] B. Talbot, T. Sherwood, and B. Lin. IP caching for tetadpieed routers. IEEE GLOBECOM
volume 2, pages 1565-1569, May 1999.

[46] L.C Wuu, T.J Liu, and K.M Chen. A longest prefix first seateee for IP lookup.Computer
Networks 51(12):3354—-3367, August 2007.

[47] F. Zane, G. Narlikar, and A.Basu. CooICAMs: A power affit TCAMs for forwarding
engines. INEEE INFOCOM volume 1, pages 42-52, March-April 2003.

[48] K. Zheng, H. Che, Z. Wang, and B. Liu. TCAM-based digttid parallel packet classification
algorithm with range matching solution. IREE INFOCOM volume 1, pages 5-17, March
2005.

82

