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Abstract

IP address lookup is an important processing function of Internet routers. The challenge lies in

finding the longest prefix that matches the packet’s destination address. One of the issues concerning

IP address lookups is the average lookup time. In previous works, caching was shown to be an

effective method to minimize the average lookup time. Caching involves storing information on

recent IP lookup results in order to decrease average lookuptimes.

In this thesis, we present two architectures that contain a prefix cache and a dynamic substride

cache. The dynamic substride cache stores longest possiblesubstrides from previous lookups, and is

used in conjunction with a prefix cache. Successful hits in both the caches help reduce the number

of worst-case lookups in the low level memory containing theIP routing table in a trie data structure.

From simulations, we show that the two architectures show upto 99.9% global hit rate. Furthermore

we present analytical models to find optimal designs for the two architectures. We also show that

the architectures can support incremental updates once appropriate modifications are made to the

trie data structure.
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Chapter 1

Introduction

1.1 Background

One of the primary functions of IP routers is packet forwarding. This requires a longest prefix lookup

in a routing table based on the packet destination address. Until approximately 1993, classful routing

logic was used where the lookup process is based on matching network ID’s of a IP destination

address with the Class A (8 bits), B (16 bits) or C (24 bits) in the routing table. The poor IPv4

address utilization of classful routing brought about the development of Classless Inter-Domain

Routing (CIDR) [33] which has a better address utilization.The many advantages of CIDR come

at the expense of making the lookup process much more complex: matching is done on variable

length network ID’s (or prefixes). Moreover, increasing Internet traffic demands a fast mechanism

to perform lookups in routing tables that may contain thousands of prefixes. Hence, IP forwarding

remains an interesting research problem owing to reduced time budgets.

Real-world IP traffic demonstrates two fundamental properties: temporal and spatial locality.

Temporal locality means that there is a high possibility that packets destined for the same destination

addresses may arrive again within a certain time interval. These occur because of traffic burstness

and network congestion and was substantiated in the studiesdone by Jain [21]. Spatial locality

means that the packets often reference the same subnet. For example, the destination addresses

172.15.16.0, 172.15.16.1, 172.15.16.11 belong to the samesubnet 172.15.16.0/24. There are a few

techniques that can be used to exploit locality, e.g., dynamic data structures and caching. Examples

of dynamic data structures representing the routing tablesare Splay trees [30], Dynamic HiCuts [9],

and Binary search trees [19]. These data structures restructure themselves depending on the locality

patterns of the traffic. However this restructuring consumes both time and hardware resources.

Another popular approach is using a route cache. Similar to CPU caches, a route cache is a dedicated

memory that is fast [3] and relatively small and is exclusively dedicated to exploit locality in the

incoming IP destination addresses.
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1.2 Motivation

Standard IP forwarding data structures representing an IP routing table require multiple memory

accesses for a single lookup where each memory access can be very expensive and can contribute

to network latency. A number of solutions have been proposedto reduce the number of memory

accesses and one such solution is caching.

In conventional routing table lookup architectures, a cache is placed between the processor and

the low-level memory containing the IP routing table. During lookups, the destination addresses are

first looked up in the cache. If the cache lookup is unsuccessful, the address is then looked up in the

low-level memory which is much slower than the cache. As a result, it is imperative that we increase

the number of successful lookups (or hits) in the cache so that fewer lookups have to refer to the

low-level memory.

Traditional route caches store IP addresses [45], prefixes [13], or a combination of both [23].

Over the years, caching IP addresses has drawn criticism from router architects primarily because

IP address caches capture only temporal locality [26]. Another factor that does not act in favor of

IP address caches is that the IP address cache should be largein order to be effective. In recent

years, prefix caching has been well received by the research community. Prefix caching is effective

in capturing both temporal as well as spatial locality. Someof the reasons for it to be effective are:

• Gateway routers demonstrate high locality with referencesto very few prefixes. Caching these

popular prefixes will also decrease network latency and improve lookup rates

• ISPs assign prefixes to subnets based on geographical location. Thus the traffic flowing to a

particular area is localized and will cause similar prefixesto be frequently referenced. Caching

these prefixes will be useful.

The approach towards prefix caching is to store prefixes that were looked up more recently. These

cached prefixes then benefit subsequent lookups that tend to match (or hit) the same prefix.

However, because of the inherent limit in the hit rate a prefixcache can yield, some lookups

will not match (or hit) and so will require a reference to low-level memory containing the complete

routing table. Ideally, we would like to reduce the number oflookups that have to refer to the low-

level memory or reduce (significantly) the total memory accesses needed by the unmatched packets

to complete the lookup process in the low-level memory. For example, a single address lookup in

the lower memory may require up to 32 memory accesses where each memory access may cost

up to 25 nsec if a routing table is represented as a trie and implemented in a 25 nsec-DRAM [16].

These numbers are significant considering that for OC-48 andOC-192 links, we need to ensure

that an address lookup requires at most 3-8 memory accesses on average. So the idea is to reduce

the number of lookups that have to do 32 memory accesses in theworst case. This goal forms the

backbone of our research. We therefore present two architectures each containing a prefix cache and

a dynamic substride cache (DSC) that can be beneficial in reducing the trie lookups.

2



1.3 Contributions

1.3.1 Architectures

An IP routing table can be represented in a data structure such as HiCuts [20], HyperCuts [42], Trie

[25], Multibit trie [44] etc. For our work, we considered tries to be suitable to represent the IP routing

table. This is because tries are much easier to manage and incremental updates are straightforward

to implement. A prefix is represented by a path from the root ofthe trie down to the leaf. A simple

example of a trie representing IP prefixes is shown in Figure 1.1.

Figure 1.1: Trie representing several prefixes

IPv4 prefixes have a maximum length of 32 bits and IPv6 prefixeshave a maximum length of

128 bits. We work exclusively with the former in this thesis,but recognize the growing importance

of solving the same problem for IPv6 traffic. Accordingly, our work considers tries to be built using

the IPv4 prefixes.

An address lookup involves traversing the complete trie starting from the root to determine the

next hop. We call this traversal process a full-trie lookup.It can be anticipated that this process will

be expensive if a lookup has to access multiple trie nodes during its traversal before it finds the next

hop. Further, most lookups match prefixes of length greater than 18 [13]. That would mean that

most lookups have to perform at least 18 memory accesses before finding the next hop. Thus, the

nature of the trie as well as the traffic pattern emphasize theneed to reduce lookups that do a full-trie

lookup.

In this thesis we discuss two different architectures that aim to reduce the number of full-trie

lookups. They are:

• Prefix cache-first architecture: This particular architecture consists of a prefix cache and the

dynamic substride cache (DSC) where the DSC is placed between the prefix cache and the

low-level memory containing the trie. A sketch of the architecture is given in Figure 1.2. The

two caches combined work much better than an architecture that contains only a prefix cache.

We introduce the DSC in Section 1.3.2.

3



Figure 1.2: Prefix cache-first architecture

• DSC-first architecture: We alternatively look into an architecture where the prefix cache is

placed between the DSC and the low-level memory. The behavior of the two caches in this

architecture is quite different from the prefix cache-first architecture. A sketch of the archi-

tecture is given in Figure 1.3.

Figure 1.3: DSC-first architecture

1.3.2 Dynamic substride caching

The two architectures incorporate an unique cache organization called the dynamic substride cache

(DSC). The DSC is different from the prefix cache or the IP address cache in that it contains sub-

strides. Briefly, substrides are shortened prefixes that arederived from prefixes obtained during the

previous lookups over the trie. For example, if we found thatthe prefix 10001101* was looked up

in the trie, we store the substride 10001* in the format <substride, node address> in the DSC where

the node address is the address of a node within the trie. Thissubstride is obtained by reducing the

height of the branch represented by prefix 10001101* by 3 (shortened prefix) as shown in Figure 1.4.

In this format, the node address is the address of the node at height - 3 (represented1xA) within the

trie from where the lookup can proceed. Later if a new lookup matches the substride <10001*, node

address> present in the DSC, it will allow the new incoming packet to skip the substride 10001* and

4



start the lookup from the node at height - 3 within the trie. This prevents full-trie lookups starting

from the root of the trie. The issue of determining the heightof the substride is studied and results

are presented in this thesis.

Figure 1.4: (A) The height of a branch (B) Branch at height - 3

Figure 1.5: (A) IP address space coverage of a prefix (B) IP address space coverage of a substride

The DSC is effective because it covers a wider “IP address space”. The substride 10001* in

Figure 1.5(B) has a wider IP address space coverage than the prefix 10001101* in Figure 1.5(A). As

a result, there is a good chance that the lookups that miss theprefix cache for the prefix 10001101*

may find the substride 10001* useful and can skip 10001* to proceed from node 1xA.

1.3.3 Preliminary observations

Apparently the DSC has different functions in the two architectures. In the prefix cache-first archi-

tecture, the prefix cache is more likely to benefit from locality in the destination address stream. In
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this situation, the DSC cannot benefit from locality. As a result, the DSC plays a different role in

assisting lookups that fall in particular IP address spaces.

In the DSC-first architecture, the DSC resolves lookups resulting from locality as well as lookups

that fall in particular IP address spaces. The dual responsibility has a marked effect on the perfor-

mance of the DSC. The prefix cache in this case acts as a container and holds on to prefixes relating

to victim substrides that were aged-out from the DSC. This aids lookups that may re-appear in the

IP traffic after a length of time.

A possible question that may arise on the use of a DSC in a architecture is the cost (in dollars)

associated with placing a new hardware (DSC) in an already existing prefix cache architecture.

Will the cost of such hardware be acceptable ? Are there any alternative architectures that are

more worthwhile considering the implementation costs ? Theanswers to these questions are very

important, however, these comparisons are not within the scope of our thesis work.

1.3.4 Optimal design for the architectures

Through experiments we found that using the two caches in conjunction works well in reducing the

number of full-trie lookups. Still, it is not always clear how much memory should be allocated to

the prefix cache and the DSC when the total available memory isfixed (Figure 1.6). One simplistic

approach investigated in this thesis is to allocate equal cache memory to both the prefix cache and

the DSC. However, extensive experiments on different datasets convinced us that the design decision

of having “equal allocations” for the caches is not necessarily the best.

Figure 1.6: Cache memory distribution

A straightforward approach to determine the appropriate sizes for the two caches in the two

architectures is exhaustive search. This process is tedious and we need to re-run the search for every

single dataset. As an alternative, we developed an analytical method for optimal design based on

a non-linear integer optimization technique. The primary task of the design method is to predict

the hit rates for the two caches under varying cache size. Once we have predicted the hit rates, we

compute the global hit rate to determine which combination of cache sizes gives us the best global

hit rate. Specifically, global hit rate is the total number ofhits in the two caches as a fraction of the

total number of address lookups. Broadly, the higher the global hit rate the lower will be the number

of full-trie lookups.
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To determine the optimal distribution of memory between theprefix cache and the DSC, we

analyze the IP address traces and the selected routing tables. We first try to capture the temporal

and spatial locality of the traces. We follow by choosing a suitable model that will best replicate the

locality properties of the traces. Thereafter, a constrained optimization technique is used to decide

the optimal memory distribution between the two caches. Given the different behaviors of the two

architectures, we use a different optimization technique for each of them.

1.3.5 Incremental updates - caches and trie

Incremental updates consisting of insertions or deletionsare frequent. Updates are complex and

require that the process be as fast as possible. In addition,during incremental updates there should

be no need to completely recreate the data structure.

Incremental updates become more complex in architectures that maintain “extra” information

about the IP routing table. In our case, the extra information constitutes the prefix cache and the

DSC. For our architectures, updates should be reflected in the prefix cache [8] and the DSC as well

as the trie that stores the IP routing table. The DSC needs to be searched for substrides that are

inconsistent with the restructured IP routing table. In addition, we need to update the trie without

taking a considerable amount of time. Given that we do not have have much control information

in the DSC, we follow a conservative approach to reflect changes due to updates. Further, we also

show how storing control information in the leaves and internal nodes of the trie can aid insertion

and deletion of prefixes. It should be noted that our approachto incremental updates is applicable to

both the prefix cache-first and the DSC-first architectures.

1.4 Other contributions

We also present a subsidiary work on improving the hit rates of a prefix cache. Various methods

have been proposed to increase the hit rates of a prefix cache [26, 40]. This is primarily achieved

by increasing the IP address space captured by a prefix. One method to increase the IP address

space for a prefix is to reduce the trie [26]. In this thesis we present an alternative method that uses

“skip-nodes” to reduce a trie. Skip-nodes are specialized nodes in the trie that store skip-strings to

reduce the trie size.

A simple example of using skip-nodes is shown in Figure 1.7 which allows us to reduce the size

of the trie. For instance in Figure 1.7, the skip-node contains the skip-string 101* which is sufficient

for us to decide the packet’s next hop (P2 or P5). However, a different architecture will be required

to store prefixes involving skip-nodes. This is detailed in subsequent chapters.
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Figure 1.7: (A) Trie representation for prefixes (B) Reducedtrie using skip-node which is encoded
by skip-string 101*

1.5 Average-case performance

Throughout this document we stress the importance of considering the average-case lookup speed as

a performance criterion. This is not to say that worst-case lookup speeds are not important. Worst-

case lookup speeds ensure that all lookups complete in a acceptable amount of time. However, we

emphasize that improving average-case lookup speeds is also beneficial and should be considered a

vital performance metric for any lookup architecture.

It is evident from looking at our architectures that not all lookups will find hits in the two caches.

Consequently, there will be lookups that will still have to do a full-trie lookup. As a result, the

worst-case lookup speeds are not necessarily decreased.

A good average-case performance can be extremely beneficialfor the performance of small

and medium-sized routers used in campus and enterprise networks [14]. These networks support

applications such as firewalls, virus-scanning, file transfers that involve packets of different types

and with different processing requirements. Supplying worst-case processing times to networks

supporting such different packet types is expensive. Further, reducing the average lookup time for

each address will decrease the amount of time a resource (e.ghardware threads, memory) is held

during lookups. This will benefit other applications in the router competing for the same resource.

An interesting example is that of matching query patterns with strings in a database. Assume we

use linear search and trie search for the above purpose. Linear search will simply match each query

pattern with the strings in the database. On the other hand, trie search will lookup the query pattern

in a trie built from strings in the database. Clearly the triesearch performs better in the average case,

however, asymptotically both the methods perform the same in the worst-case. Thus, trie search

should be preferred over linear search.

Consider another example where the number of memory accesses required by six different pack-
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ets are 8, 8, 7, 8, 7, 6 where the worst-case bound is 8 memory accesses. On average the six lookups

will need 7.33 memory accesses whereas in the worst-case each will require 8 memory accesses.

Now if we can some how reduce the number of memory accesses (say, using our architectures) for

the six lookups to: 2, 2, 4, 5, 6, 8 then the average number of memory accesses is reduced to 4.5

while the worst-case is still 8. The method has improved the average case significantly, but the

worst-case has stayed the same.

1.6 Thesis overview

In this document we discuss different techniques to reduce the number of full-trie lookups. Rec-

ognizing that reducing full-trie lookups can help decreasethe network latency associated with IP

routing table lookups, we introduce methods and improvements that are relevant and effective. Our

work primarily focuses on taking advantage of the fact that lookups tend to refer few IP address

spaces. To this end, we show that the two architectures are interesting approaches to reduce full-trie

lookups.

Before we present our work in detail, it is also extremely important to understand how the prob-

lem was tackled in previous work. There are a number of interesting ideas and concepts that were

exploited in previous studies on IP routing table lookups and we illustrate them in Chapter 2. These

previous works provide extensive details on the nature and pattern of IP traffic as well as the IP

routing table. They also bring to notice the importance of incremental updates and lookup speeds.

We also briefly present some popular approaches to representing IP routing tables.

We then proceed to explain our work in detail in Chapter 3. We first introduce the traditional

prefix caching method, its utility and move towards explaining the need for encoding additional

information in the trie that would aid incremental updates.Then, we introduce our idea of using

skip-nodes to reduce the trie size and detail its hardware requirements.

Next, we present the overall design of our architectures in Chapter 4 and general strategies

that should be followed to get the best results. We also discuss the importance of tuning certain

parameters for the DSC in order to achieve desired results. Additionally, incremental updates are

critical and any/every architecture should be able to support them. Subsequently, in Section 4.4 we

illustrate our idea for incremental updates for the entire architecture using suitable examples.

We present our experiment results in Chapter 5 by choosing the cache sizes in some naive ways.

However, it is important to decide the best memory configurations for the two caches. To achieve

that, we first find an analytical model that help us in making those decisions. Chapter 6 is dedicated

to our model with some explanations as well as experiments. Further in Chapter 6 we outline

a constrained optimization method that incorporates the chosen models to determine the optimal

memory distribution for the two caches.

Finally, in Chapter 7 we summarize our work.
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Chapter 2

Related Work

2.1 Problem statement

In the previous chapter we briefly discussed IP address lookups. We define the problem of IP address

lookup as determining the best (longest) matching prefix fora packet based on its destination ad-

dress. A typical IP routing table with prefixes would appear as in Figure 2.1. For example, a packet

containing the destination address 172.192.14.70 will have 172.192.14.0/24 as the longest matching

prefix. The packet will then be routed to the next hop 2. Thoughthe process seems straightforward,

the longest prefix lookup is much harder given that the arriving destination address does not carry

the length of the longest matching prefix. Hence, the lookup requires search to be among the space

of all prefix lengths. The problem is further aggravated withthe increasing routing table sizes. We

therefore require longest prefix searches to be as fast as possible. IP address lookup speedups can

be achieved by using a prefix cache where lookups for destination addresses showing locality can be

looked up within few clock cycles [3]. However, not all destination addresses will find a successful

match in the prefix cache. As a result, the unsuccessful lookups in the prefix cache may have to per-

form multiple memory accesses to complete the lookups. We explore the idea of using the DSC that

may ensure that these unsuccessful lookups require fewer memory accesses to complete compared

to a full-trie lookup.

Figure 2.1: Example routing table
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2.2 Related research

In the following sections we introduce some proposals that are aimed to tackle the IP address lookup

problem. These techniques vary based on the type of algorithms and the type of hardware they

use. We try to illustrate some research proposals (caching and others) that are relevant for the

understanding of our work. We also mention some other proposals that may be necessary to get a

general perspective of this research area.

2.2.1 Linked list

The most naive solution for IP address lookup is to store all the prefixes in a linked list in the

decreasing order of their prefix lengths. A destination address is compared to all the prefixes and the

prefix with the highest priority (longest length) is selected. This method is storage efficient requiring

only O(N) storage locations (N is the number of prefixes). However, the lookup time scales linearly

with the number of prefixes.

2.2.2 Trees and tries

A simple algorithmic solution is the trie [25] as shown in Figure 2.2 (A). Tries are used to represent

IP routing tables as a tree where the results (the next hops) are either stored in the internal nodes or

the leaves. Internal nodes that do not store next hops are regular nodes and are used for traversal

decisions. During the traversal, regular nodes are examined to decide whether to proceed to the

left branch or the right branch. A “0” as the next bit in the address means that the traversal should

proceed to the left branch and a “1” means the traversal should proceed to the right branch. The path

starting from the root to a leaf node gives the bit string thatrepresents a prefix and a path from the

root to an internal node containing a next hop also represents a prefix.

Some drawbacks of tries are that they take a lot of memory. Further, the worst-case depth of the

trie is 32 and a lookup may require 32 memory accesses in the worst-case to determine the next hop.

However, tries are well suited for research in the area of caching techniques because no complicated

piece of hardware is needed to store them.

One extension to the trie is the multibit trie [35, 44]. Multibit tries are compressed tries which

ensure that the worst-case depths are much lower than 32. Themultibit compresses the trie where

the internal nodes are densely populated. The idea is to allow a packet to skip multiple bits during

traversal. These multiple bits are called strides. Insteadof having just two child nodes, a multibit

trie can have2n children wheren is the fixed length stride. For example the fixed length strideof the

multibit trie in Figure 2.2(B) is2. An altogether different approach can be to have variable length

strides where the stride length is not fixed as shown in Figure2.2(C). Both the fixed length and the

variable length strides reduce the number of memory accesses required by a lookup to determine the

next hop. Even though the internal nodes become more “flexible”, managing such tries is difficult.
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Figure 2.2: (A) Unibit trie (B) Multibit trie with stride length 2 (C) Multibit trie with variable stride
length

Incremental updates are time consuming especially in the case of tries with variable length strides

and updates often result in rebuilding the whole data structure.

Recently, Wuuet al. proposed a longest prefix first search tree (LPFST) [46]. Unlike the tries,

the internal nodes in the LPFST tree encode prefixes. Moreover in this method, longer prefixes

are stored in the nodes present at the upper level of the tree.This allows the IP lookup procedure

to terminate as soon as the packet’s destination address matches one of the prefixes. Prefix trees

resemble heaps where the prefix present in an internal node isgreater or equal in length than the

prefixes present in its children.

An example LPFST is shown in Figure 2.3. Initially, the tree is considered empty and prefix 00*

becomes the root as in Figure 2.3(a). Next, we insert 01* but since the the two prefixes 00* and 01*

have the same prefix lengths, 00* remains the root of the tree.Thereafter, 010* becomes the root

since it has the longest prefix length (see Figure 2.3(c)). After 010* has been inserted, the insertion

procedure continues and 00* is swapped with 01* since 00* < 01* (in value). Similarly, in Figure

2.3(d) with the incoming prefix 0111*, the prefix 010* is pushed to second level of the tree. Since

01* is less specific than 010* and 00* < 01*, it is pushed to the right side of the tree.

It is quite evident looking at the structure of LPFST that theheight of the tree depends upon the

number and type of prefixes. The depth may increase or decrease depending upon the the prefix

distribution. Moreover, Wuuet al. report that for medium-sized routing tables containing about

16000 prefixes, lookups require 18 memory accesses on average.

Mehrotraet al. [28] developed a method that organizes the prefixes as a binary search tree. To
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Figure 2.3: An example of LPFST (reproduced from [46])

build the binary search tree the following two conditions were used:

1. Given two prefixesA = a1a2.......am andb = b1b2.......bm, if A ⊂ B then A is a parent of B.

2. If A 6⊂ B andA < B (i.e less than in numerical value) , then A lies on the subtreeleft of B.

If A and B are equal in length, then the numerical values of theprefixes are compared. If the

lengths of A and B are not same, then the longer prefix is chopped to the length of the shorter

prefix and then the numerical values are compared.

An example of a binary search tree is shown in Figure 2.4. Searching an address in the binary search

tree, however, is not straightforward. For example, the destination address 101100*/32 lies between

011* and 101101* in the tree and it becomes difficult to determine the next hop. This is because

the tree does not contain sufficient information about the parent prefixes. Mehrotraet al. provide an

extra field for each prefix known as the Path Information Field(PIF). This PIF indicates the parent

prefixes for each of the prefixes. So for example, during the binary search the address matches the

prefix 101101* up to 5 bits (longest) and therefore we look into the PIF of 101101* which indicates

that 1011* is the parent prefix. The parent prefix 1011* is considered the longest matching prefix

and the packet is routed to the next hop associated with that prefix. PIF’s are bit strings where a

set bit in any bit position means that there is a parent prefix up to that bit position. In addition, the

prefixes and the PIF are stored in an array.

Unfortunately, the above technique has a large build time. First, all the prefixes need to be sorted

before a binary search tree can be built. Further, the authors specify a list of preprocessing steps that

need to be performed to build the binary search tree. Deletion of prefixes is complicated since it will

require a binary tree traversal followed by regeneration ofthe PIF field. Also, this technique will

show a high average number of memory accesses.
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Figure 2.4: An example of binary search tree (reproduced from [28])

2.2.3 Hardware based solutions

Ternary CAM (Ternary Content Addressable Memory) is a specialized piece of hardware sometimes

used in routers for performing high speed searches. TernaryCAMs, unlike binary CAMs, provide

ternary logic with three matching states “1” , “0” and “Don’tCare (x)”. This allows TCAMs to store

binary strings of the form “1x01” which will match both of thetwo binary strings 1001 and 1101.

TCAMs have been popular amongst researchers. First, because ternary CAM lookups are quick

and they offer throughputs of up to 125 million lookups per second [37]. Secondly, the use of

a TCAM is simple since it only needs to be prepopulated with the prefixes (see Figure 2.5). An

incoming address is looked up in parallel across all the prefixes in the TCAM resulting in a number

of successful matches (or outputs). Thereafter, a priorityencoder returns the highest priority output.

The major disadvantage of a TCAM-based lookup is its high power consumption. Present day

TCAM devices with a capacity of 18 Mb consume up to 18W of power. This is significantly more

than SRAM or DRAM [31]. The other disadvantage of a TCAM is itscost. A 36 Mb TCAM

will cost around 800 US dollars, while the same amount of SRAMwill cost 80 US dollars. While

TCAMs are expensive for storing a full IP routing table, a smaller sized TCAM (say, with 9 Mb

storage) is well-equipped for the purposes of caching (Chapter 3) and is not as expensive.

Zaneet al. [47] provide an index-based TCAM architecture to reduce overall power consump-

tion. The idea is to divide the TCAM into buckets obtained by using a partitioning algorithm. An

initial lookup uses hashing which specifies the buckets thatshould be further investigated to com-

plete the lookup. This reduces the number of “active” buckets for a single lookup thereby reducing

the power consumption.

The authors use a trie-based algorithm that partitions an IProuting table into a number of buck-

ets. Based on the partitioning algorithm, a relatively large number of buckets (larger than 8) are
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Figure 2.5: Logical design of a TCAM

produced. However, current TCAM devices allow only 8 partitions so that supplying more buckets

is infeasible. Further, the architecture may not be robust to frequent updates since recomputation of

hashing bits are required and the buckets need to be made consistent with the updates. In the recent

few years many proposals have been made to improve the TCAM architecture itself. Some of the

latest works in this area can be found in [17], [31], [48].

An IP packet forwarding based on partitioned lookup table architecture (IFPLUT) is proposed

by Akhbarizadehet al. [7]. The authors partition the routing table based on the next hops. For a

list of portsP = p1, p2, p3, ..., pm present in the routing table, their algorithm partitions the routing

table intom lookup tables. Thesem lookup tables (LUTs) are then looked up in parallel using

specialized circuitry. In addition, they remove all the parent prefixes from each of the LUT to ensure

that the longest prefixes are matched.

However, the partitioning scheme may require large number of LUTs in large network access

points. Though updates are simple, creating a new LUT when a “new” prefix with a “new” next

hop is inserted is not feasible. The same holds true during prefix deletion where a LUT may remain

empty when all the prefixes from a LUT are deleted. In addition, the authors discuss the possibility

of implementing IFPLUT in a TCAM. Still, using the TCAM for the architecture will make the

IFPLUT trivial. Further, IFPLUT’s build time is high as all the prefixes need to be sorted based on

the next hops.

2.2.4 Caching

Caching to accelerate IP lookups has been a relatively popular field of research and a number of

methods have been developed to improve caching. As discussed in Chapter 1, caching prefixes

will not reduce the worst-case lookup time but is extremely valuable in decreasing the average-case

lookup time. Caching is particularly useful for distribution and access routers which are faced with

traffic of a high degree of locality (temporal and spatial). The idea behind caching is to store recent

lookup results which can be reused later for future incomingpackets. In this section we introduce
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historically the different developments in the area of caching for IP lookups and their contributions.

Later, we also explain why it is important to have a DSC in an architecture that already contains a

prefix cache. It is noteworthy to mention that the DSC can be used with any prefix cache mechanism

described in this section.

Early research on caching was spurred by the work of Talbotet al. in [45]. The authors proposed

the use of IP address caching for terabit speed routers. Theyattempted to demonstrate that real IP

traffic exhibits temporal locality of destination addresses and developed a cache simulator to cache

frequently referenced addresses. The authors showed that the cache hit rates were significant (greater

than 80%) for a cache of reasonable size. However, IP addresscaching will demonstrate significantly

lower hit rates when compared to IP prefix caching since it does not capture spatial locality.

Chiuehet al. in [11] developed an independent architecture for IP address caches known as

a host address cache (HAC). The architecture was aimed to exploit CPU caching. The authors

treated IP addresses as virtual memory addresses and developed a lookup algorithm based on two

data structures: HAC and NART (network address routing table). The HAC used the Level-1 (L1)

cache in the CPU. For lookups, the 32-bit IP addresses were considered as 32-bit virtual memory

addresses in the L1 cache. If the L1 lookup did not succeed then the lookup proceeded to the NART.

The authors treated the NART as a Level-2 cache. The NART consisted of three “hardware” tables

each containing the prefixes from the IP routing table. The prefixes were assigned to these three

tables using a complex indexing and tagging method. The authors improved their work on the HAC

architecture by developing HARC (host address range cache)[12]. This architecture based on CPU

caching is suited particularly well to a cluster of IP routers implemented using commodity shelf PCs.

As with IP address caching the hit rates for IP address cacheswill always be lower than those for

prefix caching. Also, inconsistent virtual-to-physical address mapping will result in conflict misses.

Further, supporting incremental updates is difficult due tothe complex indexing as well as the full

prefix expansion scheme.

Cache hit rates can be maximized by providing plenty of cacheentries to hold as much infor-

mation from recent results. However, providing too many cache entries for the cache may not be

practical. Nonetheless, there are alternative techniquesof “splitting the cache” that are reported by

Shyuet al. [40] and Chvetset al. [13].

Shyuet al.’s aligned-prefix caching (APC) splits the cache based on the prefix lengths. APC

splitting creates two caches - aligned-24 cache that cachesall prefixes of length 24 or less and

aligned-32 cache that caches all prefixes of length between 24 and 32. Since (probably) most of the

traffic matches prefixes of length greater than 24, the aligned-24 cache is not (overly) polluted by

prefixes of length less than 24 and therefore can be much better utilized. As a result, APC shows

high cache hit rates. Still, the scheme is less flexible (or dynamic) since it is not certain that the

traffic will always prefer prefixes of length greater than 24.MacGregor [27] however proposed a

dynamic approach to split the cache. The “splits” based on prefix lengths are no longer fixed but
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vary depending upon the traffic.

Figure 2.6: Pruning example (reproduced from [26])

The idea of increasing the cache hit rates by routing table compaction (reduction) was first

explored by Liu [26]. They demonstrated that routing tablescan be reduced by 48% by using -

pruning and mask extension. A simple example of pruning is shown in Figure 2.6. The prefix P3

is a subset of prefix P2 and they have the same next hop. Thus P2 is redundant and can be deleted

from the IP routing table. The second technique is mask extension that uses the EXPRESSO tool

[34] for logic minimization. The minimizer combines two compatible prefixes into a single routing

prefix entry. For example, the two prefixes 1100 and 1101 can becombined as 1x00 where x is the

don’t care bit. The two techniques result in cache hit rates increasing by nearly 15%. However, the

logic minimization process using EXPRESSO is slow. As a result, the routing table build time is

very high.

Kasnaviet al. [23] developed a multizone pipelined cache (MPC), a two-cache architecture

comprised of a TCAM (Ternary CAM) and a CAM. The TCAM is used tocache the prefixes and

the CAM is used to cache the IP addresses. In terms of memory, they provide an equal number

of “entries” to both the TCAM as well as the CAM. Basically, their method can be termed a half

prefix/half full-address cache. In their architecture, theCAM is used to exploit temporal locality and

the TCAM is used to exploit spatial locality. They further partition the CAM into two equal sized

CAMs, each storing 16 bits of the 32 bits of the IPv4 address.

The authors state that matching the first 16 bits of the cache will help decide whether it is worth

looking (matching) the next 16 bits of an IP address which mayreduce latency during CAM lookups.

Further, they use Chvetset al.’s [13] multizone method to split the two caches (though not a lot of

information is provided regarding the the configuration/scheme they use for multizone caches). For

the pipelining in the MPC architecture, they place a buffer between the two caches and the IP routing

table. This buffer stores recent lookup results obtained from the two caches. The primary use of the

buffer is to prevent stalling of lookups in the two caches when the lookup proceeds to the slow IP

routing table. While the IP routing table lookup is performed, the two caches continue lookups and

store all the unsuccessful matches in the buffer. Once the IProuting table lookup is finished, the
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lookup result is used to clear the buffer to ensure similar lookups need not proceed to the IP routing

table. This essentially reduces the latency that exists between the two caches and the IP routing

table.

Apart from the hardware-based improvements suggested by the authors for the two caches, they

employ a short-prefix expansion (SPE) technique on a trie (storing the IP routing table) where they

expand all the prefixes until they become disjoint prefixes (or leaves) or 17 bits in length.

Understandably, the above architecture does not scale wellin terms of performance and has

nearly twice the miss rates of a prefix cache. In any event, a prefix cache will always show a better hit

rate than an MPC. Further, the SPE technique, unlike full-trie expansion [44], has no clear benefits

and may only marginally improve the MPC cache hit rate since it provides a slightly better chance

to cache “parent” prefixes. In addition, it is not clear whether splitting of the two CAMs is useful

since jumping from one CAM to another will incur latency which may outweigh the advantages of

having two CAMs.

Uga et al. in [39] proposed storing intermediate nodes of a Patricia tree [36] in CAMs. The

authors propose using three CAMs that store prefixes of different lengths. More specifically, the

authors prepopulate prefixes of length 8, 16 and 24 in three different CAMs. When a packet arrives,

the intermediate nodes are looked up in the three caches using the first 8, 16 or 24 bits of the packet.

The highest priority match is selected and the search then continues by jumping at the intermediate

node (found from the cache) within the Patricia Tree.

However, it is not possible to hold all the intermediate nodes especially in the case of a CAM

storing prefixes of length 24. This is true especially for a medium-sized routing table (~30,000

prefixes) that may easily show about 15,000 prefixes (about 50%) with lengths 24 or more [29].

In order to cope with the above problem, prefix aggregation technique is used where prefixes of

length 8 to 15 are aggregated into prefixes of length 8. Likewise, the prefixes of length 16 to 23

and 24 to 32 are aggregated into prefixes of length 16 and 24 respectively. For example, if there

are three prefixes: 10.64.0.0/12, 12.96.0.0/14 and 12.32.0.0/15, then the second and third prefix are

aggregated resulting in the prefix 12.0.0.0/8. The first prefix 10.64.0.0/12 is stored as 10.0.0.0/8.

Unfortunately, the build time of the method is extremely high. To perform the required aggre-

gation, three different exhaustive (entire Patricia tree)depth-first traversals will be required for the

prefix lengths 8,16 and 24. Further, incremental updates canbecome complicated considering that

aggregated prefixes in three CAMs can become inconsistent with the addition or deletion of prefixes

in the Patricia tree.

Penget al. [32] proposed a supernode caching scheme to efficiently reduce IP lookup latency in

processors. Supernodes are nodes of a tree bitmap [15]. A tree bitmap is a compressed subtree that

reduces the number of levels in a tree. During IP lookups, recently visited supernodes in the bitmap

tree are stored in a SRAM based cache. These supernodes are later used by subsequent lookups.

Still, the highly compressed tree bitmap by itself (withoutthe cache) ensures that lookups require
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only 4 or less memory accesses. So, there is no substantial benefit in having a cache for supernodes.

Our approach is different in that we cache the longest possible branches at minimal height from the

leaf of the trie to obtain the longest possible jumps within the trie.

RRC (Reverse Routing Cache) was proposed by Akhbarizadehet al. [8]. RRC employs a

minimal expansion (ME) technique to deem parent prefixes as cacheable. “Parent prefixes” are

prefixes that are a prefix of other prefixes. For example, 172.19.24.0/8 is a prefix of 172.19.24.0/24.

In prior work it was illustrated that caching of parent prefixes should be avoided as it could result in

incorrect lookups. For example, if we cache prefix 172.19.24.0/8, then subsequent lookups for the

subnet 172.19.24.0/8 will find a match. However, a lookup forthe subnet 172.19.24.0/8 will match

the prefix 172.19.24.0/24, yielding an incorrect result.

The Minimal Expansion (ME) technique proposed by the authors provides a more intelligent

way to handle parent prefixes. A simple example of ME is shown in Figure 2.7 where the parent

prefix is 1*. When an address (e.g, 1110) is looked up in the trie, we first find that the parent prefix

1* is a match. However, we cannot place 1* in the cache. As a result, we continue the traversal and

generate the prefix n = 11*. Again, 11* is not cacheable since there exists a more specific prefix

110* in P1. We then add the bit “1” (third bit of the address 1110) to the prefix n = 11* . The

expanded prefix 111* is therefore a match for 1110. Since, theminimally expanded prefix 111* is

not a parent prefix, we can safely cache the prefix 111*. Thereafter, packets destined to the subnet

111* find a match in the cache.

Though the authors provide a suitable method to cache parentprefixes, their method cannot avoid

full-trie lookups for a significant percentage of the packets. For example, for a cache size of 128

entries, they show that 92% of the packets were looked up in the cache. That is, 8% of the lookups

still had to do a full-trie lookup. However, in later chapters we present our architectures (prefix

cache-first and DSC-first) which are primarily aimed at reducing the number of full-trie lookups.

Figure 2.7: Minimal Prefix Expansion (reproduced from [8])
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Chapter 3

Prefix Caching

A prefix cache is an integral part of our architectures (prefixcache-first and DSC-first) and we

dedicate this chapter to describe the workings of a prefix cache and a prefix caching scheme that

uses skip-nodes. Skip-nodes help reduce the size of the leaf-pushed trie and helps increase the

prefix cache hit rates. The technique of using skip-node especially for prefix caching is not tried out

previously.

We first outline the overall process to build trie using skip-nodes as well as the architecture

required for it to be feasible. In addition we provide various metrics to evaluate the performance of

a prefix cache. We also detail the experimental results and its implications.

3.1 Leaf-pushed tries

As discussed earlier, tries can be used to represent prefixesin a routing table. A prefix is simply a

path in a trie starting from the root to a node that contains a next-hop. We call nodes containing a

next-hop as decision nodes. In addition, we refer to all nodes other than leaves as internal nodes.

Further, a decision node can be an internal node of a trie as well as its leaf as shown in Figure 3.1(A).

Before we get into the details, we introduce some notation that we will be using in subsequent

sections.

SupposeR = r1, r2, ..., rN is a set ofN prefixes andH = h1, h2, ...., hM is a set ofM

unique next hops. Then we represent a single entry in a routing tableR by the prefix-next hop

pair < ri, hi >. The following rules are followed during an address lookup as well as during the

construction of a trie:

• For an entry< rp, hp > in R, rp is a parent prefix if there exists an entry< ri, hi > in R

such thatrp is a prefix ofri and the length ofrp is less than the length ofri. The above rule

holds irrespective of the values ofhp andhi.

• A parent prefixrp of a prefixri in R has a lower priority than prefixri during address lookups.
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• For two entries< ri, hi > and< rj , hj > in R, the prefixesri andrj are independent if

neither of them is a parent prefix of each other.

• If there exist two entries< ri, hi > and< rj , hj > in R such that the prefixri = rj (similar)

and the length of prefixri is equal to the length of prefixrj then both the prefixri andrj have

equal priority.

In a trie, a parent prefixrp is represented by a path from the root to a decision node that is an

internal node. In Figure 3.1(A), the prefixrp = 10∗ is the parent prefix of 1001* and 101*. Take

a hypothetical case where a packet with destination address10001 arrives at the router ingress.

Looking at Figure 3.1(A) and following the rules stated above, we traverse up to the leaf node

storing0. Since the traversal had already seen the parent prefixrp = 10∗, we route the packet to

hp = P3.

However, we use a different scheme to represent our routing table. We use a leaf-pushed trie

where the next hops of the parent prefixes are pushed to the leaves of the trie instead of storing them

in the internal nodes [44]. The next hophp of a parent prefixrp is pushed within the subtrie rooted

by the internal node that was containing the next hophp. For example, in Figure 3.1(A) the internal

node containing the next hophp = P3 is a root of a subtrie. During the leaf-pushing process, if

a leaf turns out to be a decision node, we do not push the next hop hp = P3 to that leaf. On the

other hand, if a leaf is storing a0, then we replace0 with the next hophp = P3. An example of

a leaf-pushed trie is illustrated in Figure 3.1(B) where theparent prefixes 10* and 0* are pushed to

the leaves.

During prefix caching, we keep note of the prefixes that were generated from the trie during

address lookups. For example in Figure 3.1(B), for a packet with destination address 10001, we

generate the prefix 1000* during the traversal. Thereafter,we store the pair< 1000∗, P3 > in the

prefix cache which can be used for future address lookups. It should be noted that the leaf-pushed

trie for prefix caching is an extension of the work done in [8].For example in Figure 3.1(B), a

traversal along the path 01110 generates the minimally expanded (ME) prefix 01*. Then the pair

< 01∗, P6 > can be safely stored in the prefix cache since 01* is an independent prefix. Even though

leaf-pushing increases processing during trie build, we show in Chapter 4 that the leaf-pushed trie is

indeed necessary for architectures containing the DSC.

Apart from storing the next-hophi in a leaf for a prefixri, we also store the prefix lengths as

shown in Figure 3.1(B). This additional control information is useful during incremental updates

and is discussed in detail in Section 4.4.

Traditionally, a trie with no leaf pushing is preferred overa leaf-pushed trie since it is convenient

to delete parent prefixes during incremental updates. For example, if the routing table entry <10*,

P3> needs to be deleted from the trie, we traverse up to the internal node storing P3. Thereafter,

we delete P3 from the internal node and make it a “non-decision” node. The worst-case complex-
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Figure 3.1: (A) Traditional Trie (B) Leaf-pushed trie with prefix length encoding

ity of deleting a prefix from a trie isO(W) where W is the worst-case length of a prefix (i.e 32).

Nonetheless, we show in Chapter 4 that parent prefixes can be deleted from a leaf-pushed trie with

a marginal increase in complexity.

A major component that affects the performance of a cache is the replacement strategy. In our

work we used least recently used (LRU) stack. The primary advantage of a LRU stack is that it

is well suited to exploit locality due to packets arriving inshort bursts. As per the strategy, the

most recently referenced (matched) prefix is moved to the topof the cache while other prefixes are

moved down by one position in the cache. This ensures that popular prefixes remain near the top

of the cache. At the same time, not so popular prefixes tend to remain at the bottom of the cache

and gradually age out from the cache. We also tried FIFO (First-In First-Out) replacement strategy

where a prefix at the top of the cache gradually moves down the cache with time. However, prefixes

that have a chance to become popular once again (because of similar “previous” bursts) may get

aged out from the cache. As a result, the cache will show relatively lower hit rates. This was evident

from empirical results where the LRU stack out-performed FIFO in terms of hit rates.

3.2 Prefix caching using skip-nodes

Trie compression is one way to improve the performance of a prefix cache. A compressed trie will

have fewer prefixes than the original trie. This will improvethe hit rates since more prefixes can

occupy a single cache entry. During compression we also ensure that address lookups return correct

results.

First, we compress subtries that have leaves containing thesame next hops. We call this method

initial compression (IC). This technique was also investigated by Kasnaviet al. [23]. We describe
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the technique using a simple example from Figure 3.2 (A). As shown the leaves in the subtrie rooted

by the nodes 1xC and 1xB contain the next hopsh1 = P1 andh2 = P2 respectively. We compress

these subtries into singular nodes containing their respective next hops (P1 and P2 respectively) as

shown in Figure 3.2 (B). After the compression, the number ofprefixes in the trie is reduced from 6

to 3. This scheme is simple and provides an “initial” compressed trie before we generate skip-nodes

on the trie. It may at first seem that this initial compressionis self-sufficient. However, we show

from empirical results that by using skip-nodes we improve the performance of the prefix cache.

Figure 3.2: (A) Leaf-pushed trie with redundancy (B) Leaf-pushed trie without redundancy.

Skip-nodes in the leaf-pushed trie are generated after we apply the IC technique. We use the

following steps to generate the skip-nodes:

• For two distinct next hopsh1 andh2, we search the trie depth-first for subtries containing

leaves that store eitherh1 or h2.

• If a subtrie has just two leaves each storing eitherh1 or h2, then the two leaves are replaced

with a single skip-node.

• If a subtrie contains multiple leaves storingh1 and a single leaf storingh2 or multiple leaves

storingh2 and a single leaf storingh1, then the subtrie is replaced with a single skip-node.

• Other cases that do not satisfy the above three rules are are not considered.

A simple example of a trie containing skip-nodes is shown in Figure 3.3. The two subtries that

satisfy the above rules are reduced to skip-nodes containing skip-strings 01* and 101*. A lookup

for a destination address 1010100 in the trie will find the skip-node containing the skip-string 101*.

Thereafter, the most significant bits of the address is compared with the skip-string 101*. A match

will result in the packet being routed to the next hoph1 = P3. Otherwise, the packet is routed to the

next hoph2 = P2. The above mechanism compresses the trie by representing a group of prefixes
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by a skip-node. In Figure 3.3(B) we can see that we require just two skip-nodes in place of five

different prefixes.

However, we would need a different architecture for prefix caching. This can be explained from

Figure 3.3(B). For a prefix cache architecture supporting entries of the form< ri, hi > pairs, we

can store the entry< 11∗, P5 > in the prefix cache. However, if we find P5 as the lookup result

for a destination address, we cannot store the prefix 001* in the prefix cache since the architecture

does not support assigning two ports (P1 and P5) for a single prefix entry. Moreover, no extra logic

is available with the architecture to decide the correct next hop for a destination address (P1 or P5)

that matches the prefix 001* .

Figure 3.3: (A) Compressed trie obtained after the “initial” compression (B) Trie with skip-nodes.

Figure 3.4: Architecture required for prefix caching using skip nodes

Alternatively, a different architecture can be used and is illustrated in Figure 3.4. Such archi-

tectures are prominent in the area of caching and have been investigated previously [23, 24]. For
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our work, we use two CAMs (content addressable memories) forthe cache. For caching, the first

8 bits of a prefix are stored in CAM1 and the remaining bits of a prefix are stored in CAM2. For a

successful address lookup, a packet’s destination addressshould match a single “continuous” entry

in both the CAMs.

In the architecture, CAM2 can be used to store skip-strings.For instance in Figure 3.3(B) if a

lookup found the skip-node containing the skip-string 101*during lookup, then we cache the skip-

string 101* in CAM2 and 10* in CAM1. The logic required to choose the correct next hop is placed

between CAM2 and the RAM. A match in CAM2 will cause the packetto be routed to the next hop

h2 = P3. Otherwise, the packet is routed to the next hoph2 = P2. Further, the next hopsh1 and

h2 associated with a skip-node is placed adjacently in the RAM.For the above example,h1 = P2

andh2 = P3 will be placed adjacently in the RAM. The “–” in the RAM indicates that the lookup

needs to proceed to the low-level memory containing the trieand is specifically meant for entries

like <11*, P5> that contain a single next hop.

The problem with using skip-nodes in a trie is that we lose considerable control information

regarding the prefixes. One obvious loss is that we no longer know about the prefixes that were

present in the trie (i.e after the compression). Further, wecan no longer reliably associate priorities

to the prefixes that were compressed.

The loss of vital control information is a hindrance for incremental updates. This is true because

for adding or deleting a prefix from the trie, we might have to recreate the compressed subtrie to

make the trie reflect the latest routing table. For instance in Figure 3.3, it is not easy to recreate

the subtrie that was replaced by the skip-node. This is true even if the subtrie had just two prefixes

since we cannot be sure about the priority (prefix lengths) ofthe two prefixes. At the same time it is

essential for any architecture to support incremental updates. Consequently, in the prefix cache-first

or the DSC-first architecture we do not perform any compression of the trie .

3.3 Metrics and Implementation

There are two different metrics that are used to evaluate theperformance of the technique described

in this chapter.

Firstly, in order to test the effectiveness of skip-nodes, we calculate the size of the of trie after

generating skip-nodes within the trie. The reason for selecting such a metric is that it indicates

whether the number of prefixes in the compressed trie has indeed reduced when compared to the

original trie.

The metric mentioned above is obtained by simply searching depth-first the number of prefixes

in the trie. The prefix as a result of a skip-node is consideredto be a single prefix since it effectively

consumes just a single cache line in the two CAMs irrespective of its representation in the RAM.

Similarly, we consider a prefix that does not result from a skip-node to be just one prefix. The

measurements described above may slightly vary depending upon the properties of packet trace and
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routing table that we employ.

Secondly, we calculate the number of times a match is found inthe prefix cache. To express the

numbers in fractions of the total, we count the number of matches in the prefix cache of the total

number of searches in the prefix cache. For better readability, we term the fraction as the hit rate. A

higher hit rate would mean that many lookups are able to find a match in the prefix cache. It should

also be noted that the performance of a cache also depends upon the cache size (i.e number of cache

entries). Thereby we also show how and why performances varywith increasing cache size.

To test our idea we performed experiments on different traces and routing tables (datasets). For

evaluation, we first built the leaf-pushed trie without generating the skip-nodes. We then determined

the number of prefixes in the trie. At first it may seem that the number of prefixes should be equal

to the number of prefixes in the original (raw) routing table and so there is no need to perform

this search. However, the leaf-pushing process described previously causes “prefix-expansion” [23].

This results in the number of prefixes in the trie to be larger than that present in the original routing

table. Once the trie is built, we perform tests by simulatingthe lookups in the prefix cache. Lookups

that find a hit in the cache are considered as completed lookups. Lookups that miss the prefix

cache are then simulated to be traversing down the the trie. While a lookup is being performed, we

simultaneously generate the pair< ri, hi > . A lookup that finds a leaf is considered complete. The

pair< ri, hi > that is generated as a result is then moved to the prefix cache.

We simulate the prefix cache using C programming language andconsider the prefix cache to be

residing in a contiguous memory where the beginning of this contiguous memory is the top (first-

entry) of the prefix cache. Henceforth, to simulate the LRU replacement strategy, the most recently

looked up pair< ri, hi > is moved to the top of the contiguous memory and other< ri, hi > pairs

were moved down by one position. Further, we simulate the size of the prefix cache by the size of

the contiguous memory.

A similar process is followed while evaluating the prefix cache using skip-nodes. This time we

build a trie first applying the IC technique followed by our proposed method. Further, the prefix

cache is simulated as having two contiguous regions of memory instead of just one. For the next

hop information we considered a contiguous memory as well, where two adjacent memory locations

stored the two next hops associated with a prefix.

3.4 Dataset

3.4.1 Routing tables

For the experiments, we use three different routing tables downloaded from different sources. These

routing tables are real-world and each are drawn from different routers. This allows us to verify

whether the proposed technique for prefix caching has relevance under real-world circumstances.

These routing tables vary in their size and prefix length distribution.

26



We first used the Funet routing table that was made available in [2]. Funet is a backbone network

providing Internet connections for Finnish universities and other research institutes. For our work,

we downloaded a routing table that contained 41362 prefixes (medium-sized). This routing table

has a significant number of parent prefixes. This gives us a good opportunity to compress the trie.

Moreover, the number of distinct next hopsH = h1, h2, ...., hM is relatively small|H | = 11. In

addition, like modern day routers, the routing table has no prefix of length less than 8 [22].

The other two routing tables ISP1 and ISP3 are drawn from distribution routers made available

by local service providers. These routing tables have fewerprefixes (10166) than the Funet table.

Unlike Funet, these routing tables have very few parent prefixes. That is to say most of the prefixes

are independent. The number of distinct next hops in ISP1 andISP3 is|H | = 32. However, the

smaller number of parent prefixes causes the initial compression to be less effective.

3.4.2 Packet traces

The real-world packet traces Funet, ISP1, and ISP3 used for the experiment are related to their

respective routing tables. The three packet traces are approximately 100,000 packets in length and

contain destination addresses only. The traces are different in terms of locality properties. The

Funet trace has less locality compared to the ISP1 and ISP3 traces. In particular, ISP1 and ISP3

demonstrate high degree of temporal locality. It is not surprising that the Funet trace shows less

temporal locality because the IP traffic at the Funet backbone router sees significantly more flows as

compared to ISP1 and ISP3. A distinctly greater number of flows increases the inter-arrival times of

similar packets resulting in reduced temporal locality. Atthe same time, the Funet trace has fewer

unique destination addresses. Consequently, the Funet trace requires a smaller cache to achieve peak

performance.

3.5 Results and discussion

Table 3.1 gives a fair idea of the amount of compression in thetrie after we apply the two com-

pression techniques. The amount of compression is relatively good for all three routing tables. As

hinted earlier about the presence of redundancy in the Funetrouting table, nearly 46% of the prefixes

have been removed after applying the IC technique. This clearly suggests that there was significant

redundancy in the trie where the overlap to a great extent is caused by parent prefixes. As ISP1 and

ISP3 had a large percentage of independent prefixes, they performed relatively worse than the Funet

routing table. However, the level of compression is still good and this demonstrates the effectiveness

of the proposed method. The amount of compression can have a marked improvement on the perfor-

mance of the prefix cache. As for applying our proposed methodon top of the IC technique, we can

see the results are still relatively good. We get nearly 20-30% reduction in the size of the trie for all

three routing tables. ISP1 and ISP3 show slightly lower compression than Funet because there are

more distinct next hops present in the routing tables. This reduces the probability of finding subtries
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Table 3.1: Percentage decrease in trie size
Routing Table Initial Compression (IC) Proposed (After IC)

Funet 46% 31%
ISP1 27.2% 26%
ISP3 27.2% 26%

that satisfy the rules stated in Section 3.2. Further, the number of independent prefixes in the routing

tables also affects the amount of compression.

Tables 3.2 to 3.4 shows the hit rates for all three traces for the IC technique as well as the

proposed technique. For the Funet trace, the IC technique gives a reasonable improvement in hit

rates. This is correlated with the amount of compression that was achieved (46%). At the same

time, ISP1 and ISP3 show significantly less improvement in hit rates. This again is because the IC

technique was not overly successful in performing compression. It is interesting to see that ISP3

hardly shows any improvement even though there was some amount of compression after using the

IC technique. This is because the destination addresses tended to fall in the part of the trie that was

not compressed. This also suggests that redundancy was not uniform throughout the routing table.

As with the proposed technique, we can see that the hit rates have increased by up to 5% when

compared to the IC technique. The improvement in hit rates using the proposed technique gradually

decreases with increasing cache size. This is because as thecache size grows, we get nearer to the

peak performance and improving upon it gets harder. The sameholds true for the performance of

the IC technique. The Funet trace has a better performance since the compression achieved using

the proposed method is much higher. In addition, since the Funet routing table had more parent

prefixes, the chances of subtries satisfying the compression rules are greater. This is substantiated

by the extent of compression resulting from the proposed technique. Further, ISP3 shows up to 4%

increase in the prefix cache hit rate. This also indicates that the destination addresses tend to fall in

the part of the trie that was compressed by the skip-nodes. Incontrast, we see the pattern of cache

hit rates for ISP1 to be similar to that for the IC technique. The IP traffic, again, does not seem to

prefer the address space that was compressed using the skip node.
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Table 3.2: Performance: Hit rates (%) - Funet
Cache Size No Compression Initial Compression (IC) Proposed (skip-node + IC)

32 58 60 63.8

64 68.4 70.2 75.2

128 77.4 80.5 84.4

256 89 91.6 93.8

512 96.7 97.8 98.4

1024 98.9 99.1 99.3

Table 3.3: Performance: Hit rates (%) - ISP1
Cache Size No Compression Initial Compression (IC) Proposed (skip-node + IC)

32 65 65 65.8

64 72 73 76

128 84 85 87.3

256 92.6 93.3 94.8

512 97 97.4 98.4

1024 98.6 98.8 99.1

Table 3.4: Performance: Hit rates (%) - ISP3
Cache Size No Compression Initial Compression (IC) Proposed (skip-node+ IC)

32 51.8 52 54

64 61.5 61.5 64

128 71.9 72 76

256 83.5 83.7 87.3

512 92.6 92.6 95

1024 97.57 97.57 98.9
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Chapter 4

Architecture

In this chapter we introduce the idea of using the prefix cache-first and DSC-first architectures to

reduce the number of full-trie lookups. The important component in the two architectures is the

DSC. The DSC exploits locality as well as assists lookups that fall in particular address spaces. We

are further helped by the fact that the DSC can be used in processors that already have a prefix cache.

In Sections 4.1 and 4.2 we give the datapath for our architectures. In Section 4.3 we discuss

substrides and the way we generate them. In Section 4.4, we describe incremental updates that are

applicable to both the architectures.

4.1 Prefix cache-first architecture

Figure 4.1 presents the datapath for our prefix cache-first architecture. The architecture consists

of two major components. The first component consists of the prefix cache and the DSC that will

reside in a processor. The second component consists of the leaf-pushed trie that is made available

in the low-level memory. The <prefix, next hop> pairs are stored in the prefix cache while the

<substride, node address> pairs are stored in the DSC. Othercomponents in the architecture such

asg1
′

, g2, g3 andg4
′

are required for providing decision logic. Further, they control the flow of

information within the architecture. It should be noted that we have not applied any pipelining in

the above architecture and the direction of flow of information is from left to right. In any case, the

DSC always waits for the prefix cache lookup results. By information we mean the data such as IP

destination addresses and lookup results. Further, information can flow through a line (say, T) if and

only if it is enabled.

Initially when a destination address needs to be looked up, the incoming lines to the prefix cache

andg1
′

from T are enabled. A decision ing1
′

is made only after results are obtained from the prefix

cache. If a destination address finds a match in the prefix cache, the output lines are enabled. Hence,

the line U is enabled and the lookup result (next-hop) is forwarded to the output interface. Since the

lookup process no longer needs to be continued, the input line tog1
′

via the prefix cache is enabled.

Consequently, the lookup does not proceed to the DSC. If the lookup in the prefix cache fails, the
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input line tog1
′

via the prefix cache is disabled. As a result, the input signals tog1
′

remain enabled

and the lookup then proceeds to the DSC.

Figure 4.1: Prefix cache-first architecture

A similar logic is followed when we perform a lookup in the DSC. If a lookup in the DSC is

successful, the output lines are enabled. Subsequently, lookups proceed by jumping within the trie.

If line R is disabled theng4
′

will enable output line S. This will result in the lookups continuing

from the root of the trie. For caching, we update the prefix cache and the DSC with prefixes and

substrides (respectively) generated during trie lookups.This update happens if only if a lookup was

successful in the leaf-pushed trie.

The following are the characteristics of the prefix cache-first architecture:

• In Figure 4.1 we can see that the prefix cache sees the destination address stream first. Thereby

in this architecture, the prefix cache remains focused in exploiting locality.

• The DSC in this architecture is focused to assist lookups left-over from the prefix cache. Based

on the empirical results, we found that the DSC benefits from the fact that most of the left over

lookups fall in particular address spaces. In fact, some of these lookups that are assisted by

the DSC result from compulsory misses in the prefix cache.

• The performance of the prefix cache does not depend upon the performance of the DSC.

However, the DSC performance may vary depending upon the prefix cache performance.
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4.2 DSC-first architecture

Figure 4.2 presents the datapath for our DSC-first architecture. The architecture is different from

the prefix cache-first architecture in that the DSC is placed before the prefix cache. Moreover, the

information flow is slightly different for this architecture. The main difference is that we refer to the

leaf-pushed trie when the output line U is enabled. Furthermore a successful lookup in the prefix

cache will give the next hop result which is immediately forwarded to the output line.

Figure 4.2: DSC-first architecture

The following are the characteristics of the DSC-first architecture:

• The DSC in this architecture sees the destination address stream first. Without doubt the DSC

will exploit the locality in the destination address stream. The DSC will also be active in

assisting lookups that fall in particular address spaces.

• The prefix cache in this architecture may act as a support to the DSC and may assist lookups

that do not find corresponding substrides in the DSC. This behavior can be attributed to a

more-active DSC and a less-active prefix cache. We discuss this in greater detail in Chapter 5

and Chapter 6.

• The two caches in this architecture are inclusive i.e the DSCperformance depends upon the

prefix cache and vice-versa (Chapter 5 and Chapter 6).

• It should not be surprising if we see a DSC alone performing adequately. In fact, we see this

behavior for few datasets (Chapter 6).
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4.3 Understanding the DSC

An important functional component in the two architecturesis the DSC which is used to store sub-

strides. Before we get into details of how we generate substrides, it is important to understand some

notation that we will be using throughout this chapter.

Firstly, we represent a substride by the pair <substride, node address>. The substride in the

<substride, node address> format is a shortened prefix generated during lookups whereas the node

address is the address of an internal node within the leaf-pushed trie. Similar to a prefix, we represent

a substride by a bit string. Since substrides are shortened prefixes, their bit length is not more than

32. These pairs, in concept, point to different subtries within the trie. Moreover, the substride and

the node address in the pair are obtained dynamically based on the IP traffic seen by the trie rather

than by preloading the DSC.

Secondly, we represent the height of a substride byheight− k which is measured from the root

of the trie. The termk in the notation indicates skippingk levels from the leaf of a trie. The values

of k have an affect on the performance of the DSC and we later show the importance of choosing a

good value fork. An illustration is provided in Figure 4.3.

Figure 4.3: Height of a substride 101*:height - kwherek = 1

Dynamic substride caching is a technique which helps alleviate the problems of full-trie lookups.

The DSC stores substrides obtained from recent lookups in the trie. Leveraging substrides, lookups

can proceed directly from an internal node within a trie, skipping many internal nodes along the path.

This, in effect, reduces the number of memory accesses needed by a single address lookup. Consider

a simple example in Figure 4.4 where the lookup is being performed for a packet with destination

address 10100. Also assume that we have a DSC which contains an entry <101*, 0xB>.The address

lookup will find a hit in the DSC because the most significant bits of the destination address match

the substride 101*. This allows the lookup to skip 101 and proceed from node 0xB in the trie. Then

the lookup has to do two more memory accesses to find the leaf containing the next hophi = P3 .
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Clearly, in this case we skip three memory accesses.

Once a lookup has completed we store the prefix and the substride in the prefix cache and the

DSC respectively. Consider the previous example where a lookup for the packet with destination

address 10100 finds the next hophi = P3. Firstly, the pair <10100*, P3> is stored in the prefix

cache. Secondly, we store the pair <1010*, 1xC> in the DSC where the substride is 1010* and the

node address is 1xC. The substride 1010* is obtained by reducing the height of the path represented

by the prefix 10100* by 1. For the previous example we considered the value ofk to be 1.

The lookup requires one top-down traversal to determine theprefix as well as the substride. To

achieve the above, we initialize two pointers to the root of the trie - one for the prefix (pc) and

the other for the substride (ps). Thepc always begins the traversal down the trie. Theps starts its

traversal only whenpc has completedk edge traversals. Thereafter,ps follows pc one edge at a time

until pc finds a leaf node. The internal node whereps points whenpc reaches the leaf node is the

required node address for the pair <substride, node address>.

While we cache the prefixes resulting from a full-trie lookup, we also want to ensure that the

prefixes that were successfully looked up because of the substrides are also moved to the prefix

cache. This allows us to fully utilize the prefix cache and nothave it affected because of the DSC.

For the same, we perform a full-trie lookup and usepc andps to traverse and generate the prefix and

the substride. However, if the lookup was assisted by the DSCthen we do not have the opportunity

to generate the prefix or the substride using the two pointers.

Alternatively we can use a different architecture for the DSC (see Figure 4.5). As shown, the tag

array in the DSC stores the substride and the data array stores the <substride, node address> pair. A

lookup that finds a hit in the tag array retrieves the corresponding <substride, node address> from

the data array. Once a lookup completes, we can extract the substride from the <substride, node

address> pair to generate the prefix as well as the substride.For example in Figure 4.4, 10100* for

the prefix cache is generated using the substride 101* from the DSC and the remaining trie path (00)

traversed starting from 0xB due to the DSC lookup 101*.

Previously we mentioned that it is important to have a leaf-pushed trie to prevent incorrect

lookups. Incorrect lookups can be explained by a simple example using Figure 4.6(A) where prefix

10* is the parent prefix of 1001* and 1011*. If we receive a packet for which P4 is the best match

and we cache the pair <101*, C> in the DSC (height−1) then subsequent lookups that should have

foundhi = P3 as the next hop result may end up finding 101* in the DSC. As a result, lookups in

the future may fail to find the next hophi = P3. Such an outcome is erroneous and may result in

a large number of misses. We therefore solve this by using a leaf-pushed trie as shown in Figure

4.6(B). Lookups assisted by the DSC can find any of the three prefixes (P2, P3 and P4) without

being incorrect.

An important parameter that effects the performance of the DSC is the value ofk in height− k.

The value ofk indicates the number of levels we skip starting from the leafof a trie. The larger
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Figure 4.4: Dynamic Substride Caching fork = 1

Figure 4.5: Dynamic Substride Caching

the value ofk , the more levels we skip while generating the substride. This increases the number

of additional memory accesses that lookups need to perform after they jump within the trie. At the

same time, if we choose a smaller value ofk , the DSC will show relatively lower hit rates. This

scenario can be explained from Figure 4.4 where the DSC will demonstrate a better hit rate when

we cache substride up to 0xB rather than 1xC. This is because the substride up to 0xB covers a

larger address space when compared to the substride 1xC. However, lookups that benefit from the

substride up to 0xB have to perform at most two more memory accesses in order to find the leaves.

On the other hand, lookups that benefit from 1xC have to perform at most one memory access in

order to find the leaves.

Our choice for the value ofk is based on empirical results. We found that the value ofk can

be selected anywhere between 2 and 4. By choosingk between these values lookups that use the

substrides are able to jump as deep as possible within the trie. By doing this, we found that only an
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Figure 4.6: Dynamic Substride Caching

additional 3 to 5 memory accesses on average are required to finish the lookup. While we could have

chosenk = 1 , we realized that the DSC then shows relatively lower hit rates. Also, values ofk more

than 4 were found not suitable because they induced an average of more than 5 memory accesses.

We consider average memory accesses of less than 5 to be suitable because it is permissible for

the OC-192 line rates [16]. Further, we identified the value of k = 3 to be the best because then

lookups need to perform at most an additional 5 average memory accesses. Further discussion on

the parameterk is provided in Section 5.3.1.2.

4.4 Incremental updates

A routing table is subject to change during updates. These updates can lead to inconsistency in the

prefix cache-first or the DSC-first architectures. Two situations where the data can become incon-

sistent are addition and deletion of prefixes. The task of ensuring consistency gets even harder since

we store information in three different components in our architecture - prefix cache, DSC, and the

leaf-pushed trie. Given the importance, we present an idea for incremental updates that is applicable

to both the prefix cache-first as well as the DSC-first architectures. Some views on incremental up-

dates on a leaf-pushed trie are presented in [44]. However, they do not present views in cases where

parent prefixes are deleted from the leaf-pushed trie. Alternatively, we show that encoding extra

information in the internal nodes and leaves will be sufficient to ensure proper deletion of parent

prefixes from the leaf-pushed trie. Further, since DSC is a unique cache organization, we provide a

new mechanism to ensure consistency in DSC during incremental updates. In addition, Akbarizadeh

et al. [8] provide schemes for incremental updates in a prefix cache. However, they use an approach

where they do not consider next hop information when making decisions. This results in removal of

prefixes from the prefix cache that can actually be done without if we consider the next hops. We

show that using next hop information of the newly updated prefix and the prefix in the prefix cache,

we can reduce the number of prefix removals from the prefix cache. This will only reduce latency
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during updates.

Moreover, we have do not do any implementations for incremental updates due to lack of rele-

vant datasets. Nonetheless, we present all the possible cases where incremental updates can cause

inconsistency and provide solutions for them.

For readability, we call prefixes in the leaf-pushed triert and prefixes in the prefix cacherj .

Further, we call prefixes to be added or deleted asri.

4.4.1 Addition

When a new prefixri in < ri, hi > is to be added, we take the following steps to make the leaf-

pushed trie consistent. First, we traverse down the trie based on the prefixri in < ri, hi >. If the

traversal finishes at a leaf encoded with0, then we replace0 with hi. In this case, the prefixri is an

independent prefix. We also store the prefix length ofri in the leaf. If the traversal finishes at a leaf

node which is a decision node, we compare the prefix length ofri with prefix length ofrt present in

the leaf. The prefix that turns out to be the longest gets the priority and the next hop associated with

it is encoded in the leaf. In the case where the prefix lengths are the same, we encode the leaf with

both ri andrt since both the prefixes have the same priority. In addition, if the traversal exceeds

beyond a leaf with0, then we continue by creating the new nodes for the prefixri. The leaf in the

new branch will encodehi The above process has the complexityO(W)whereW is the worst case

depth of the trie.

The update becomes much more complex in the event the traversal finishes at an internal node.

This would mean that prefixri is a parent prefix. The internal node where the traversal finishes, in

effect, is a root of a subtrie. Then we traverse the entire subtrie depth-first starting from the root of

the subtrie. Subsequently, we follow a similar technique asdescribed above. Any leaf in the subtrie

encoded with0, is replaced withhi. For other cases, we compare the prefix lengths present in the

leaves with that ofri. Changes are made to leaves depending upon the outcomes of the prefix length

comparisons. This multiple traversal has complexityO(NW)whereN is the number of paths in the

subtrie. Further if the new prefixri makes an independent prefixrt in the leaf-pushed trie a parent

prefix, then we follow the method described above. We traverse the leaf-pushed trie using the prefix

rt instead ofri to find the root of a subtrie. Then we traverse the entire subtrie in depth-first order

starting from the root of the subtrie and update the leaves based on the rules stated above.

The DSC is looked up for substrides in <substrides, node address> such that either one of them

- substride orri is a parent of the other. For readability, we make the distinction that “parent” is

meant for comparisons between a substride and a prefix. On theother hand, “parent prefix” is meant

for comparisons between two prefixes.

Firstly, in the case where the new prefixri is a parent of the substride, we do not remove the

corresponding <substride, node address> from the DSC. Thisis because the new prefixri in this

case is a parent prefix and does not effect the leaf-pushed trie in terms of the number of prefixes
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(i.e the address space). Since the leaf-pushed trie has not changed, the effects of the jump from the

substride will also not change. This is shown in Figure 4.7.

Secondly, if the substride is a parent ofri, we still need to verify whether the new prefixri is

a parent prefix or not. This information can be obtained from the recent addition process forri in

the leaf-pushed trie. If the leaf-pushed trie “saw” thatri was a parent prefix, we still do not remove

<substride, node address> from the DSC. This is because evenin this case the leaf-pushed trie is

not altered due to the prefixri. This shown in Figure 4.8. Otherwise, ifri is not a parent prefix we

follow a conservative approach. We check how much longer isri in length than the substride. If it

is more thank levels, we delete the corresponding <substride, node address>. This is to ensure that

we (approximately) maintain the property ofheight - k.

Figure 4.7: Effects on substride during parent prefixes addition in trie

Figure 4.8: Effects on substride during parent prefixes addition in trie

Preliminary work on making the prefix cache consistent afterincremental updates is provided in

[8]. However, they do not cover all the possible scenarios that can make the prefix cache inconsistent.
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We look at each of the scenarios one at a time.

We look out for a prefixrj in the prefix cache such that eitherri or rj is the parent prefix of the

other. It should also be noted that the leaf-pushed trie has only independent prefixes even after the

new prefixri is added to the leaf-pushed trie. The following cases may arise:

1. If we do not find a prefixrj where eitherri or rj is a parent of each other, then we stop the

search in the prefix cache. In this situation the prefix cache is consistent.

2. If ri is a parent prefix ofrj andhi 6= hj , then< rj , hj > is removed from the prefix cache.

Since we do not have enough information aboutrj i.e its prefix length, it is not possible to

decide the highest priority prefix -ri or rj . However, ifhi = hj then the entry< rj , hj > is

not removed from the prefix cache. This is becauseri has not effected the leaf containing the

next hophj for prefixrj .

3. If rj is a parent prefix ofri, then again we need to remove the entry< rj , hj > from the

prefix cache. This is becauseri has a higher priority and the the entry< rj , hj > can make

the prefix cache inconsistent.

4. If both the prefix are same andhi = hj , then the prefix is not removed from the prefix cache.

However, ifhi 6= hj , then the entry< rj , hj > is removed from the prefix cache since the

packet should be routed tohi andhj, nothj alone.

4.4.2 Deletion

Deletion of prefixes from a leaf-pushed trie is much more complicated. To ensure correct deletions

in a leaf-pushed trie, we need to store additional information about parent prefixes in the leaf-pushed

trie. As a result, we encode an internal node with a flag indicating the presence of a parent prefix. In

addition, we store the next hophk of the parent prefix in the internal node. However, internal nodes

encoded with the above information are not decision nodes and do not participate during address

lookups in the two architectures. This additional information is meant for incremental updates only.

A simple example is shown in Figure 4.9. This information canbe encoded during leaf-pushing (trie

build) and during prefix addition (incremental updates).

During deletion, we traverse down the leaf-pushed trie based on the prefixri in < ri, hi >.

During the traversal we check whether any of the internal nodes in the path haveflag = 1. If yes,

we keep note of the parent prefix information. In addition, weremember the number of edges we

saw before we met the internal node. The remembering is done for the most recently visited internal

node having theflag = 1. Further, information pertaining to previous internal nodes is forgotten.

The following cases occur when a prefixri is to be deleted from a leaf-pushed trie:

1. Suppose we traverse down the leaf-pushed trie for a given prefix ri whereri is not a parent

prefix. When the traversal finishes at a leaf, we first check whether we met an internal node
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Figure 4.9: Leaf-pushed trie with parent prefix information

Figure 4.10: Subtrie after prefix deletion

with flag = 1 during the traversal. If not, we clear the next hophj (i.e we make it a non

decision node0) and the prefix length encoded in the leaf. If we did see an (most-recent)

internal node withflag = 1 during the traversal, we replace the next hophj with the next

hophk we saw in the internal node. We also replace the previous prefix length in the leaf with

the one we remembered for the internal node.

2. Similarly, if we traverse down the leaf-pushed trie for a given prefixri whereri is a parent

prefix, then again, we check whether we met an internal node with flag = 1 during the

traversal. The internal node where the traversal finishes isthe root of the subtrie which is then

traversed for the deletion of the prefixes. If we did not meet an internal node withflag = 1

during the traversal, then we clear the next hops from all those leaves that containhi. We also

clear the prefix lengths. This clearing is done only if the prefix lengths ofri is equal torj

that is encoded in the leaves. In the event, we saw an internalnode withflag = 1 during the
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traversal, we replace the next hops from leaves containinghi with hk. Further, we replace the

prefix lengths in the leaves with the one we remembered. Again, we do the replacement only

if the prefix lengths match.

For the DSC, we follow a conservative approach during deletion. After the deletion process, we

cannot accurately determine whether a substride is useful or not. This is shown in Figure 4.10. The

subtrie rooted by the substride has leaves storing0. Seemingly, the substride is no longer useful for

address lookups. As a result, we follow a simple approach where we remove all <substride, node

address> entries from the DSC where either the substride orri is a parent of the other.

The two type of prefixes that can be deleted from a leaf-pushedtrie are parent or independent

prefixes. A prefix cache at any particular time can store either independent prefixes or prefixes

grafted from parent prefixes (minimally expanded prefix). The following cases may occur when a

prefixri is deleted from a leaf-pushed trie which is also investigated in [8]:

1. For a prefixrj in the prefix cache, ifri andrj are same andhi = hj , then we remove the

entry< ri, hi > from the prefix cache.

2. For a prefixrj in the prefix cache, ifri is a parent prefix ofrj andhi = hj , then< ri, hi >

is removed from the prefix cache. Otherwise, ifhi 6= hj , then we do not remove the entry

< ri, hi > from the prefix cache.

3. In any event, no prefixrj can be a parent prefix ofri because the prefix cache contains only

independent prefixes.
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Chapter 5

Experiments

In this chapter, we first describe the different metrics we use to evaluate our idea of using the two

different architectures (prefix cache-first and DSC-first).The metrics are used to determine the

effectiveness of the two caches in the two architectures as well as their contribution in reducing the

number of full-trie lookups. Further, in Section 5.2 we describe the packet traces and routing tables

we use for the experiments. Section 5.3 onwards we present the empirical results as well as detailed

analysis.

5.1 Metrics and Implementation

In order to test our technique, several different measurements were taken into account in order to

evaluate the performance of the architectures (prefix cache-first and DSC-first).

Firstly, we determine the hit rates of the prefix cache as wellthe DSC. These hit rates are local

to the cache. For readability we call them local hit ratesl(ci) whereci is either the prefix cache or

the DSC. A higher local hit rate in both the prefix cache and theDSC would mean that a significant

percentage of address lookups were assisted by both the prefix cache as well as the DSC.

Secondly, the local hit rates are not sufficient on their own to indicate the performance of the

architectures as a whole. As a result, we also use the global hit rateg(c) to evaluate the performance

of the two caches in combination. The global hit rate can be computed using the following equation:

global hit rate=
Total number of hits in prefix cache+ Total number of hits in DSC

Total number of address lookups
× 100 (5.1)

Quantitatively, the global hit rates indicate the percentage reduction in the number of full-trie

lookups.

Finally, we measure the average number of memory accesses required by lookups that are as-

sisted by the DSC. As mentioned earlier, address lookups that use the DSC jump to an internal node

within the leaf-pushed trie. Thereafter, these lookups require few more memory accesses to find the

next hop. Preferably, we would like all lookups to cost not more than 5 memory accesses on average

considering the requirements of the OC-192 links [16].
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One aspect that needs to be considered is the value ofk. This value does not necessarily indicate

the performance of the DSC. However, it does have a profound impact on the performance of the

DSC. Thus, it is imperative to find an appropriate value ofk. A high value ofk would result in

higher hit rates in the DSC. However, the improvements in thehit rates come at the expense of an

increased number of average memory accesses. At the same time, choosing a lower value fork can

lead to lower hit rates in the DSC. Since the performance of the DSC varies with the value ofk, we

therefore perform exhaustive simulations on different datasets to arrive at an appropriate value ofk.

We consider the implementation of the DSC to be similar to theprefix cache where the DSC is

considered to be residing in a contiguous memory. The beginning of the contiguous memory is the

top (first-entry) of the DSC. Henceforth, to simulate the LRUreplacement strategy, the most recently

looked up pair <substride , node address> is moved to the top of the contiguous memory and other

<substride , node address> pairs were moved down by one position. It should be noted that we do

not measure the number of clock cycles required for a lookup in a cache. In addition we do not take

into consideration the cache power consumption nor the latency associated with the prefix cache and

the DSC.

5.2 Dataset

5.2.1 Routing tables

For the experiments, we consider a few more routing tables along with the ones mentioned in Chapter

3. The new routing tables, again, are real-world and are drawn from different routers. These routing

tables vary depending on size and prefix length distribution. These routing tables are larger in size

and demonstrate significantly less redundancy.

We downloaded two routing tables, rrc03 and rrc11, from [5] each containing 132210 and

126687 (large-sized) prefixes respectively. These routingtables, rrc03 and rrc11, were resident

in routers in the Internet exchanges located at Amsterdam and New York respectively. Further, we

downloaded an as1221 routing table from [1] containing 292496 prefixes. This routing table was

resident in a router located in Sydney, Australia. Significantly, rrc03, rrc11 and as1221 have nearly

80% of the prefixes of length greater than 18. We also use ISP2 routing table which contains 6342

prefixes. Like ISP1 and ISP3, ISP2 is also drawn from distribution routers.

5.2.2 Packet traces

We downloaded three traces upcb.1, upcb.2 and bell from [4].The bell trace was collected at Bell

Labs whereas the upcb traces were collected at a Catalan research network. The upcb.1 and bell

traces had around 0.9 million packets whereas the upcb.2 trace had around 0.6 million packets. It

should be noted that the three traces have relatively lower amount of temporal locality and thereby

require the caches to be comparatively larger in size than the one used for ISP1, ISP2, ISP3 and the
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Dataset Average memory accessesStandard Deviation

Funet 16.0 2.7
ISP1 14.8 4.4
ISP2 19.7 4.2
ISP3 15.8 4.9

rrc03 - upcb.1 16.4 3.1
rrc11 - bell 15.9 2.2

as1221- upcb.2 17.4 3.6

Table 5.1: Average memory accesses for all packet traces
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Figure 5.1: Prefix cache hit rates

Funet trace. Further, the destination addresses in the belltraces are destined to fewer address spaces

when compared to the upcb traces. Consequently, the upcb traces should find the DSC more useful

as opposed to the bell trace. For the experiments, we ran the upcb.1 trace over rrc03 routing table,

the upcb.2 trace over as1221 routing table and the bell traceover rrc11 routing table. Further, we use

the ISP2 trace which we use it over the ISP2 routing table. ISP2 contains around 100000 packets

and has more locality in comparison to ISP1 and ISP3.

5.3 Experiments

Table 5.1 gives the average number of memory accesses required by all the packet traces. We

also present the standard deviation with respect to the average value. These values are obtained by

performing address lookups on a leaf-pushed trie. It is interesting to note that ISP1 requires only

14.8 average memory accesses. This suggests that most lookups in ISP1 match prefixes of length

less than 16. However, for the as1221 routing table, the upcb.2 packet trace requires 19.7 memory

accesses on average. Clearly, address lookups for all the packet traces are expensive.

5.3.1 Prefix cache-first architecture

Figure 5.1 shows the prefix cache hit rates for all the packet traces. As discussed earlier, the upcb.1,

upcb.2, and bell packet traces have substantially less locality. As a result, the hit rates are compara-

tively lower when compared to the other packet traces. Consequently, we require a prefix cache that

is much larger in size. As shown, the hit rates for the packet trace upcb.2 is comparatively lower
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than upcb.1 and bell packet traces. This suggests that upcb.2 has lower temporal and spatial locality.

Further, the bell trace and the upcb.1 trace show less improvement in hit rate with increasing cache

size. This in fact shows that we are closer to the inherent limit and improving upon it will only get

harder.

Clearly, by using the prefix cache a significant percentage ofthe lookups will not perform full-

trie lookups. For instance for the packet trace upcb.2, nearly 74% of the lookups will not proceed to

the leaf-pushed trie when the prefix cache has 8192 entries. Similarly, for the Funet trace 98.9% of

the lookups will not perform full-trie lookups.

For the packet traces ISP1, ISP2, ISP3 and Funet, the prefix cache attains peak hit rates at cache

size 1024. We found that we do not improve on the hit rate even after increasing the size of the

prefix cache. Similarly, for the remaining packet traces, the prefix cache should have at most 8192

entries to achieve peak hit rates. At this point, however, werequire something new.

We first explore the idea of using a prefix cache with a smaller size and a DSC with varying

size. There are couple of advantages of doing this. Firstly,a small prefix cache can be used to

exploit temporal locality. This can be seen in Figure 5.1 where a prefix cache size with 32 entries

is beneficial for the ISP1, ISP2, ISP3 and Funet packet traces. This is because a small prefix cache

will be sufficient to consume most of the temporal locality. Similar results hold true for the packet

traces upcb.1, upcb.2 and bell. This ensures that straightforward lookups need not proceed to the

DSC. Secondly, a small prefix cache will reduce the likelihood of the DSC getting polluted with

substrides resulting from temporal locality. As a result, the DSC can then be used exclusively to

exploit spatial locality.

Figure 5.2 shows the DSC hit rates when the prefix cache size issmall. For the experiment

we considerk = 3. Further, for the packet traces ISP1, ISP2, ISP3 and Funet weallocate 32

entries to the prefix cache. In addition, we allocate 512 entries to the prefix cache for the remaining

traces. It should be noted that the DSC exploits two different patterns in the traces. First is the

spatial locality where destinations addresses belong to the same subnet. Second is the case where

destination addresses fall in fewer address spaces.

Figure 5.2(A) shows that the DSC hit rates increase with increasing DSC size. For example, the

DSC with 256 entries has nearly 95% local hit rate for ISP1. This is primarily due to better locality

demonstrated by the ISP1 trace. In contrast, the DSC hit rates for the traces upcb.1, upcb.2, and bell

are comparatively lower (Figure 5.2(B)). This is because the prefix cache is not very effective in this

case. The reason is that the upcb.1, upcb.2 and bell traces have lower spatial and temporal locality.

As a result, most of the lookups miss the prefix cache and proceed to the DSC. Consequently, the

DSC serves most of the address lookups that could have been exploited by a prefix cache had it had

more entries. Similarly, in Figure 5.2(B), the DSC with 8192entries shows only 66% local hit rates

for the upcb.1 trace. This suggests that these 8192 entries were mostly useful in exploiting tempo-

ral locality and to some extent spatial locality. However, the DSC was not effective in exploiting
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addresses that belong to a specific address space. Unfortunately here, we find that having a small

prefix cache size can also be counter-productive.

It is not surprising that the DSC demonstrates a higher hit rate for the upcb.2 trace. This is

because the prefix cache with 512 entries shows lower hit rates for upcb.2 trace when compared to

the upcb.1 and bell traces. As a result, the DSC has more opportunities to exploit locality. Had we

allocated more entries to the prefix cache, the DSC would havebeen comparatively less effective.

In addition, if we look into the performance of the overall architecture (prefix cache-first), we

can see that the global hit rates are up to 99.66% (Table 5.2).

Table 5.3 gives the average number of memory accesses that lookups may require if we do not

consider the DSC in the architecture. Clearly, lookups may require up to 22.5 memory accesses on

average. This indicates that most of the lookups that miss the prefix cache match prefixes of length

greater than 18. As it turns out, even a small percentage of misses in the prefix cache can prove

expensive. For example for upcb.1 trace, the prefix cache with 512 entries yields a hit rate of 84%.

This means 16% of the address lookups missed the prefix cache and may require up to 17 memory

accesses on average. However, if we have a DSC in the prefix cache-first architecture with 8192

entries then 65% of the lookups for the upcb.1 trace will find ahit in the DSC. As a result, only 5.6%

of the lookups would require 17 memory accesses.

It is interesting to see the average number of memory accesses that a lookup requires when it

finds a hit in the DSC. Table 5.4 gives the average number of memory accesses for all the packet

traces. It should be noted that this value may vary dependingon the DSC size. These values change

because different DSC cache sizes will see different types of lookups. Hence, a particular DSC

size will demonstrate a slightly different average number of memory accesses. In the table we have

recorded the worst-case average memory accesses (WC) required by lookups amongst the different

DSC sizes we considered in Figure 5.2.

The upcb.2 trace (Table 5.3) shows a high average number of memory accesses. Moreover,

the deviation about the average is also very high. The reasonbehind the high value is that as1221

is a comparatively large-sized routing table with many distinct prefixes. As a result, some of the

substrides do not provide a “deep” enough jump within the leaf-pushed trie. This leads to lookups

performing comparatively more memory accesses.

We use the empirical results showed in Figure 5.2 and Table 5.4 to demonstrate the full benefits

of the DSC. Consider a simple example where lookups for upcb.1 trace may require 4.29 memory

accesses on average for a DSC with 8192 entries. As noted earlier, the DSC shows 65% hit rates for

the upcb.1 packet trace. Consequently, 65% of the lookups will require only 4.29 memory accesses

on average as opposed to 17.

It may appear that it is wiser to allocate all the available memory to the prefix cache rather

than distributing part of it to the DSC. This is not necessarily true. This can be explained from

Figure 5.2(B). Consider a prefix cache with 2048 entries thatshows 87% hit rate for the upcb.1
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trace. However, if we allocate 512 entries to the prefix cacheand the remaining to the DSC, then the

global hit rate will be around 92%. The same holds true for theupcb.2 trace where the prefix cache

of 2048 entries has a 56% hit rate. However, if we allocate 512entries to the prefix cache and the

remaining to the DSC, then we achieve 71% global hit rate.
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Figure 5.2: (A) DSC hit rates when prefix cache size is 32 (k = 3) (B) DSC hit rates when prefix
cache size is 512 (k = 3)

Dataset DSC size (Maximum) - Prefix cache sizeGlobal Hit Rate (gc)

Funet 2048 - 32 98.27
ISP1 2048 - 32 99.26
ISP2 2048 - 32 99.66
ISP3 2048 - 32 99.22

rrc03 -upcb.1 8192 - 512 96.11
rrc11-bell 8192 - 512 96.73

as1221-upcb.2 8192 - 512 90.46

Table 5.2: Global Hit Rates (%)

Dataset Avg. memory accesses Std. Dev.

Funet 18.7 4.3
ISP1 22.5 3.2
ISP2 18.1 4.7
ISP3 19.4 3.9

rrc03 - upcb.1 17.0 2.9
rrc11 - bell 15.9 4.4

as1221 - upcb.2 17.7 3.2

Table 5.3: Actual average (additional) memory accesses required by lookups that miss the prefix
cache

Dataset Avg. memory accesses (WC)Std. Dev.

Funet 4.1 1.8
ISP1 4.2 1.6
ISP2 3.9 2.2
ISP3 4.4 1.8

rrc03 - upcb.1 4.29 2.4
rrc11 - bell 4.22 2.4

as1221 - upcb.2 4.9 3.1

Table 5.4: Average (additional) memory accesses required by lookups that find a hit in the DSC

48



Dataset Prefix Cache Size Avg. memory accesses Std. Dev.

Funet 2048 19 3.8
ISP1 2048 18.3 4.6
ISP2 2048 16.8 3.1
ISP3 2048 17.1 4.4

rrc03 - upcb.1 8192 18.2 2.9
rrc11 - bell 8192 17.9 3.6

as1221 - upcb.2 8192 19.1 4.2

Table 5.5: Actual average (additional) memory accesses required by lookups that miss the prefix
cache when the prefix cache size is maximum

5.3.1.1 Equal cache sizes

It is important to explore the individual improvements thata DSC can bring when the prefix cache

in itself is very effective. To test the idea, we keep the sizeof both the prefix cache and the DSC

the same. By doing this we give equal priorities to both the caches and we aim to achieve high

global hit rates. This essentially means we need not necessarily prefer an under-performing cache

within the prefix cache-first architecture. Further, this will keep the prefix cache completely focused

in exploiting the spatial as well as temporal locality. Now,it is to be seen whether the DSC still

manages to be effective.

Figures 5.3 and 5.4 shows the hit rates in the prefix cache as well as the DSC. We initially assume

the value ofk as 1. As discussed previously, the prefix cache hit rates increase with size. However,

the downward trends of DSC hit rates in Figure 5.3 are different from those in Figure 5.2. This

exemplifies the idea of using equal cache sizes. Initially, when the prefix cache is small, say 256

entries (Figure 5.3), the prefix cache is not at its best. Mostlocality in the destination addresses is

not exploited by the prefix cache. As a result, the DSC which issimilar in size, more or less aids

the prefix cache and exploits the left-over locality in the destination addresses. Thus, the hits in the

DSC are mostly due to left-over locality in the destination addresses and to some extent the address

lookups that fall in fewer address spaces. However, as the prefix cache size increases, most locality

is captured by the prefix cache. This causes the DSC hit rates to decrease. The other important

reason for the trend is that the substrides in the DSC were notuseful for the left-over lookups. This

is partly becausek = 1 (low) and partly because the left-over destination addresses were destined

to different IP address spaces. Thus, the increased efficiency of the prefix cache and the reduced

effectiveness of the substrides together cause the DSC hit rates to decrease.

However, in Figure 5.4 we see that the DSC hit rates for the upcb.1, upcb.2 and bell traces

improve with increasing cache size. The primary reason for the trend is that the prefix cache hit

rates improve with increasing size. Consequently, most of the locality in the destination addresses is

exploited by then. What is left-over are mostly lookups thatfall in fewer address spaces. Fortunately,

the substrides in the DSC are able to exploit it even with the value ofk being 1.

In the Figures 5.3 and 5.4, the prefix cache hit rates are maximum at sizes 1024 and 8192
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respectively. The prefix cache hit rates do not improve beyond this point. It is interesting to see

how the DSC performs in this scenario. For reference, we haverecorded the average number of

memory accesses that lookups will require when they miss theprefix cache. This entry in the table

is made when the prefix cache hit rates are at their peak i.e at maximum prefix cache size (Table

5.5). However, these values may change depending upon the prefix cache size. Again, we see that

the average number of memory accesses for the lookups are high. This clearly indicates the need

and scope of reducing the number of full-trie lookups.

It can be seen that the DSC hit rates are not very high for all the traces when the prefix cache

hit rates are maximum. This is because we skip only a single level (k = 1) when generating the

substrides from the prefixes. Moreover for the ISP1, ISP2, ISP3 and Funet traces, the left-over

destination addresses are destined to different IP addressspaces. As a result, most of the lookups are

not able find the substrides useful. Hence, for all the tracesthe DSC hit rates do not go beyond 50%.

Further, we observe that the DSC hit rates are not greater than 10% for the Funet trace. Clearly,

it shows that addresses in the Funet trace are destined to different IP address spaces within the

leaf-pushed trie.

The lower hit rates in the DSC also reflect in the global hit rates (Table 5.6). Though there is

improvement, it is only marginal. For the upcb.1 and bell traces, the global hit rates do not exceed

97%. As a result, we have nearly 3% of the lookups performing full-trie lookups. Though the

numbers are small, this, it is costly since each lookup may require more than 15 memory accesses

(Table 5.5). Similarly, the upcb.2 trace shows only 81.2% global hit rate. That means nearly 19% of

the lookups proceed to the leaf-pushed trie for a full-trie lookup. This again is very expensive. The

above discussion also holds true for the ISP1, ISP2, ISP3 andFunet traces.

The average number of memory accesses recorded in Table 5.7 is significantly lower. The table

also shows the standard deviations which again is not extremely high. As previously, we have

recorded only the worst-case average number of memory accesses seen by lookups under any prefix

cache - DSC size combination. It is shown that the address lookups that find a hit in the DSC do

not require more than 3 memory accesses on average. The reasons are similar to the situation above.

We choose to skip only a single levelk = 1 when generating the substrides. As a result, most of

the jumps are nearer to the leaves. Consequently, most of thelookups do not require more than 3

memory accesses to find the next hop.

However, we would very much want a situation where the DSC hashigh hit rates. At the same

time, we would want the average number of memory accesses notto exceed a certain quantitative

point. Clearly, there is a trade off. If we skip more levels togenerate the substrides, we will get

better hit rates. Again, this comes at the expense of increased average number of memory accesses.

Given its importance we will be discussing this trade-off ingreater detail in the following sections.

In Figures 5.5 and 5.6, we show the DSC hit rates fork = 3. Clearly, the DSC hit rates have

improved substantially up to a maximum of 88%. The DSC hit rates have improved especially for
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the upcb.1, upcb.2 and bell traces. It shows that the value ofk has a marked effect on the DSC hit

rates. However, the DSC does not show considerable improvements for the Funet trace. Further,

increasing the DSC size does not help either. Unfortunately, the lookups for the Funet trace do

not find the substrides extremely useful. The primary reasonis that most of the addresses are not

destined to the address spaces captured by the substrides. This has to do with the nature of the source

of Funet traffic stream.

Not surprisingly, the DSC hit rates for the upcb.1, upcb.2 and bell traces have improved. This is

mostly due to the fact that substrides are more effective when k = 3. In addition, the prefix cache

plays its part by taking care of lookups originating due to spatial and temporal locality.

Table 5.8 gives the global hit rates for all the packet traces. As shown, the global hit rates reach

99.88%. In addition, Table 5.9 gives the average number of memory accesses that lookups may

require when they find a hit in the DSC. Again, the values are not extremely high and do not exceed

5 memory accesses. This also suggests that any increase in the value ofk will only increase the

average memory accesses. Thus, we can considerk = 3 to be suitable given that the lookups may

not require more than 5 average memory accesses.

Taking a cue from the previous discussions, we would also like to further highlight the impor-

tance of the DSC. We see that the DSC hit rates are significant even when the prefix cache hit rates

are maximum. This clearly shows that the DSC is beneficial even after having high prefix cache per-

formance. For instance, the DSC shows 88% hit rates for the ISP1 trace even when the prefix cache

is at its peak. This also indicates that the the prefix cache does not really hamper the performance of

the DSC. Practically, for an infinite trace it is not possibleto identify the quantitative point where a

prefix cache may show peak hit rates. However, we show using a finite packet trace that the DSC is

beneficial even when used in conjunction with a prefix cache.

However, a higher value ofk can increase the average memory accesses appreciably. We show

that by considering the value ofk of 4. The average number of memory accesses fork = 4 are

recorded in Table 5.11. The increase is primarily due to the number of levels we skip from the

leaves when we generate the substrides. As a result, most of the substrides do not provide a jump

within the trie that is reasonable in terms of average numberof memory accesses. However, skipping

more levels from the leaves increases the DSC hit rates considerably. The DSC hit rates for most of

the traces exceed 90% (Figure 5.7 & Figure 5.8). Further, theglobal hit rates are nearly up to 99.9%

(Table 5.10). However, the DSC hit rates for the Funet trace do not show sufficient improvement.

This certainly confirms that the addresses in the Funet tracedo not find the substrides extremely

useful.
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Figure 5.3: Prefix cache hit rates and DSC hit rates(k = 1)
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Figure 5.4: Prefix cache hit rates and DSC hit rates(k = 1)

Dataset Cache Size (Prefix cache & DSC)Global Hit Rate (gc)

Funet 2048 99
ISP1 2048 99.2
ISP2 2048 99.6
ISP3 2048 99.0

rrc03 - upcb.1 8192 96.34
rrc11 - bell 8192 97

as1221 - upcb.2 8192 81.2

Table 5.6: Global Hit Rates (%) when cache sizes are maximum

Dataset Avg. memory accesses (WC)Std. Dev.

Funet 2.3 1.7
ISP1 1.9 2.1
ISP2 1.5 2.3
ISP3 2.1 1.8

rrc03 -upcb.1 2.4 2.2
rrc11 - bell 2.2 2.7

as1221 - upcb.2 3.1 2.4

Table 5.7: Average (additional) memory accesses required by lookups that find a hit in the DSC
when cache sizes are maximum
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Figure 5.5: Prefix cache hit rates and DSC hit rates(k = 3)

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1024  2048  4096  8192

P
re

fi
x 

C
ac

h
e 

H
it

 R
at

e 
(%

)

Cache Size (entries)

rrc11 - bell
rrc03 - upcb.1

as1221 - upcb.2

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1024  2048  4096  8192

D
S

C
 H

it
 R

at
e 

(%
)

Cache Size (entries)

rrc11 - bell
rrc03 - upcb.1

as1221 - upcb.2

Figure 5.6: Prefix cache hit rates and DSC hit rates(k = 3)

Dataset Cache Size (Prefix cache & DSC)Global Hit Rate (gc)

Funet 2048 99.3
ISP1 2048 99.83
ISP2 2048 99.88
ISP3 2048 99.49

rrc03 -upcb.1 8192 99.23
rrc11-bell 8192 99.34

as1221-upcb.2 8192 92.2

Table 5.8: Global Hit Rates (%) when cache sizes are maximum

Dataset Avg. memory accesses (WC)Std. Dev.

Funet 4.1 2.6
ISP1 3.5 1.9
ISP2 3.6 1.7
ISP3 3.9 2.1

rrc03 -upcb.1 4.66 2.9
rrc11-bell 4.49 3.1

as1221-upcb.2 4.52 3.4

Table 5.9: Average (additional) memory accesses required by lookups that find a hit in the DSC
when cache sizes are maximum
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Figure 5.7: Prefix cache hit rates and DSC hit rates(k = 4)
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Figure 5.8: Prefix cache hit rates and DSC hit rates(k = 4)

Dataset Cache Size (Prefix cache & DSC)Global Hit Rate (gc)

Funet 2048 99.38
ISP1 2048 99.88
ISP2 2048 99.94
ISP3 2048 99.58

rrc03 - upcb.1 8192 99.4
rrc11- bell 8192 99.5

as1221- upcb.2 8192 94.1

Table 5.10: Global Hit Rates (%) when cache sizes are maximum

Dataset Avg. memory accesses (WC)Std. Dev.

Funet 6.0 2.6
ISP1 5.1 3.2
ISP2 5.6 2.4
ISP3 5.8 2.8

rrc03 - upcb.1 6.3 3.8
rrc11- bell 6.1 2.2

as1221-upcb.2 6.5 4.2

Table 5.11: Average (additional) memory accesses requiredby lookups that find a hit in the DSC
when cache sizes are maximum
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Figure 5.9: (A) DSC hit rates for increasing value ofk when prefix cache size is maximum (upcb.2)
(B) Avg. memory accesses for increasing value ofk when prefix cache size is maximum (upcb.2)
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Figure 5.10: (A) DSC hit rates for increasing value ofk when prefix cache size is maximum (ISP1)
(B) Avg. memory accesses for increasing value ofk when prefix cache size is maximum (ISP1)

5.3.1.2 Effects of value ofk

In Section 5.3.1.1, we summarized the average number of memory accesses required by destination

addresses for all the packet traces fork = 3. We also demonstrated that the DSC hit rates improved

when we selectedk = 3 overk = 1. But in order to achieve further improvements in performance,

we might be tempted to choose a larger value fork. However, choosing a larger value ofk can be

counter-productive. In Figures 5.9 and 5.10, we show the effects ofk for the upcb.2 and ISP1 traces

respectively. For the experiment we considered equal-sized caches. Further, we allocated 8192

entries to both the caches when considering the upcb.2 trace. In addition, for the ISP1 trace, we

allocated 1024 entries to both caches. It can be seen that fork = 5, the average number of memory

accesses is as high as 7.0 for the upcb.1 trace even though theglobal hit rates have increased (Table

5.12). Similarly, fork = 4 the average number of memory accesses goes beyond 5 for both the

traces. Hence, we can safely choose a value ofk that is between 1 and 3 considering that we decided

not to exceed 5 memory accesses.

DSC hit rate is one important parameter that can help us decide a suitable value ofk. In Figure
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Dataset k = 1 k = 2 k = 3 k = 4 k = 5

Funet 99 99.21 99.3 99.38 99.46
ISP1 99.2 99.49 99.83 99.88 99.91
ISP2 99.6 99.79 99.88 99.94 99.96
ISP3 99.0 99.30 99.49 99.58 99.67

rrc03 - upcb.1 96.34 97.72 99.23 99.4 99.67
rrc11 - bell 97 98.21 99.34 99.5 99.75

as1221 - upcb.2 81.2 86.74 92.2 94.1 95.84

Table 5.12: Global Hit Rates (%) for different values ofk when cache sizes are maximum

5.9 (A) and Figure 5.10 (A), we see that the DSC hit rates for values ofk = 1 or k = 2 are lower

when compared to those whenk = 3. However,k = 3 increases the average number of memory

accesses when compared tok = 2. Nonetheless, the change in the average number of memory

accesses is not drastic andk = 3 can be considered to be suitable.

It may seem from Figures 5.9 and 5.10 that there is no real benefit in choosingk = 3 overk = 2

since the average number of memory accesses do not change drastically between the two values of

k. For instance, for the upcb.2 trace there is only 0.9 increase in average memory accesses when

we choosek = 3 overk = 2. The same discussion holds true for the ISP1 trace. However,the

DSC hit rates corresponding to the values ofk provides a strong reason for our choice. The DSC

hit rates for upcb.2 trace fork = 3 are nearly 20% more than for what we have fork = 2. That

means 20% more lookups that missed the prefix cache did not perform a full-trie lookup. Consider

Table 5.5 where the upcb.2 trace requires 19.1 memory accesses for full-trie lookups. Suppose

we have 1000 lookups that missed the prefix cache. So, when consideringk = 2, we require

(3.9 ∗ 0.49 ∗ 1000) + (1000 − 0.49 ∗ 1000) ∗ 19.1 = 11652 memory accesses. On the other hand,

whenk = 3, we require(4.52∗0.70∗1000)+(1000−0.70∗1000)∗19.1 = 8894 memory accesses.

Thus, by choosingk = 3 we save up to 23.6% memory accesses. If we follow the same procedure,

we will find that for the ISP1 trace, we save up to 37% memory accesses when we considerk = 3.

5.3.2 DSC-first architecture

In the experiments described previously, we considered theprefix cache to be placed before the

DSC. These experiments showed that the DSC is not necessarily dependent on the prefix cache.

This demonstrates that the DSC can be a valuable part of an architecture that employs a prefix

cache. Then how about about a design scenario where the DSC comes before the prefix cache ?

This design scenario seems interesting and it is to be seen whether the DSC has a good influence on

the prefix cache.

In Figure 5.11 and 5.12 we show the hit rates demonstrated by the prefix cache and the DSC

for all the packet traces whenk = 3 in an architecture where the DSC precedes the prefix cache.

It should be noted that we have considered the sizes of both the caches as equal. We first evaluate

the results for the traces ISP1, ISP2, ISP3 and Funet. Apparently, the hit rates in the prefix cache
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Figure 5.11: Prefix cache hit rates and DSC hit rates with boththe cache with equal sizes(k = 3)
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Figure 5.12: Prefix cache hit rates and DSC hit rates with boththe cache with equal sizes(k = 3)

for the traces ISP1, ISP2, and ISP3 are marginal. Actually, for 256 entries, the prefix cache has a

hit rate of 0.017% hit rates for the ISP1 trace. If we further increase the size of the DSC, the prefix

cache hit rates approach 0%. This shows that the DSC is capable of achieving high global hit rates

entirely on its own. That is, the DSC exploits all of the temporal and spatial locality in the addresses.

Furthermore, it does more by assisting lookups for addresses that fall in fewer address spaces.

The improved performance in the DSC has a negative impact on the prefix cache. Higher DSC

hit rates mean that the prefix cache have very few lookups to assist. To add to that, the prefixes in

the prefix cache are more or less not useful for the lookups. This is because prefixes can be used

to exploit locality only. Since the DSC does well on that front, the prefixes in the prefix cache are

generally never referenced. In this case, we can consider the prefix cache redundant for the ISP1,

ISP2 and ISP3 traces.

For the Funet trace, the prefix cache shows only 8% hit rate andthis value remains stable even

if we increase the size of the prefix cache. Seemingly, the prefix cache is not useful for any of these

four traces. However, the DSC shows significant results. We have recorded the global hit rate values

in Table 5.13 for the four traces. These values are mostly dueto the DSC. Further, these values are

not lower than the one recorded in Table 5.8. In fact, the global hit rates in Table 5.13 are slightly

better. Moreover, we can see from Figure 5.11 that to achieve99.9% global hit rate we need not

require a large DSC cache. For instance, for the ISP1 trace werequire only 256 entries to get near

to peak hit rates. Similarly, for other traces the DSC cache size need not be more than 512 entries
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Dataset Cache Size (Prefix cache & DSC)Global Hit Rate (gc)

Funet 2048 99.26
ISP1 2048 99.9
ISP2 2048 99.9
ISP3 2048 99.7

rrc03 - upcb.1 8192 99.31
rrc11 - bell 8192 99.38

as1221- upcb.2 8192 96.13

Table 5.13: Global Hit Rates (%) when cache sizes are maximum

Dataset Avg. memory accesses (WC)Std. Dev.

Funet 3.25 1.77
ISP1 3.33 1.56
ISP2 3.12 1.21
ISP3 3.23 1.41

rrc03 - upcb.1 3.4 1.73
rrc11 - bell 3.34 1.66

as1221 - upcb.2 3.78 1.91

Table 5.14: Average (additional) memory accesses requiredby lookups that find a hit in the DSC
when cache sizes are maximum

in order to obtain peak performance. But again, this comes atthe expense of a few more memory

accesses. Table 5.14 gives the average number of memory accesses that lookups will require if they

hit the DSC. The values for the traces ISP1, ISP2, ISP3 and Funet are lower than 5. The question

then arises: Is it reasonable to have a DSC alone in the architecture without being overly concerned

about the average number of memory accesses (lower than 5) that it may yield for each lookup ? This

again is a design choice which may depend upon the needs of theproblem at hand. Alternatively,

there is the prefix cache-first architecture to fall back uponif router architects believe that memory

accesses may induce unnecessary latency.

The situation is slightly different for the upcb.1, upcb.2 and bell traces. For explanation, we

use Figure 5.12 which shows the prefix cache hit rates as well as the DSC hit rates. Clearly, the

prefix cache hit rates are substantially lower than those recorded in Figure 5.6. For the upcb.2 trace,

the prefix cache hit rates gradually increase with the increasing prefix cache size. Provided that

we allocate enough entries to the prefix cache, we may witnesssome decent contributions from the

prefix cache towards the global hit rates. The same result holds true for the upcb.2 and bell traces.

These numbers are mostly because of a more-active DSC and a less-active prefix cache. An active

DSC results in some substrides getting aged out. Yet these substrides may be referenced again in

future lookups. However, the lookups that missed matching these substrides find a matching prefix in

the prefix cache. These matching prefixes remained resident in the prefix cache and did not get aged

out because of less activity in the prefix cache. But for this to happen we may need a substantially

larger prefix cache to hold on to those important prefixes.

These results suggest that we might place a sufficiently large prefix cache between the DSC and

58



the leaf-pushed trie. Even though the prefix cache alone may not achieve high hit rates, it may have

some reasonable contribution towards the global hit rates.

5.3.3 Commentary

We showed through empirical results that both the architectures perform reasonably well in reducing

the number of full-trie lookups. We achieve up to 99.9% global hit rates for both the architectures.

Further, the DSC-first architecture shows up to 4% increase in the global hit rates when compared

to the prefix cache-first architecture.

However, for the DSC-first architecture we will find that the average number of memory accesses

per lookup is higher in comparison to the prefix cache-architecture. This can be explained using

Figures 5.6 and 5.12. Consider the as1221-upcb.2 dataset and the case where we allocate 8192

entries to both the prefix cache and the DSC. For the prefix cache-first architecture, we have 74%

local hit rates in the prefix cache and 70% local hit rates in the DSC. Similarly, for the DSC-first

architecture, we have 91% local hits rates in the DSC and 57% local hit rates in the prefix cache.

Using these local hit rate values we can calculate the average number of memory accesses per lookup

for both the architectures. We use the following equation:

Average number of memory accesses/lookup=
num(PC) * 0 + num(DSC) * t + num(trie) * wc

Total number of lookups
(5.2)

In the equationnum indicates the number of hits in the individual components i.e the prefix cache

(PC), the DSC and the trie. The variablest andwc are the number of memory accesses required by

a lookup that hits the DSC and the trie respectively. In a realistic scenario the values oft andwc can

vary depending upon the type of lookup. Nonetheless, we use the worst-case values fort andwc to

lend more clarity to our argument. So for convenience, we considert = 5 which simply indicates

that a lookup that finds a hit in the DSC will take at most 5 memory accesses to find the next hop.

Similarly, we considerwc = 32 which is the number of memory accesses a lookup will require in

the worst-case if it misses both the prefix cache and the DSC.

For the upcb.2 with 0.9 million lookups, a single lookup in the prefix cache-first architecture will

require only 3.4 memory access on average. In contrast, in the DSC-first architecture the average

number of memory accesses per lookup is nearly 5.7. Using theprefix cache-first architecture, we

can achieve up to 40% reduction in the average number of memory accesses per lookup. Clearly, a

lookup in the DSC-first architecture will require few more memory accesses on average in compar-

ison to the prefix cache-first architecture.

Evidently, the choice of a suitable architecture should be made only after realistic decisions

regarding hardware implementations. If the router architects come up with a hardware design that

focuses more on average memory accesses per lookup, then theprefix cache-first architecture is a

definite choice for them. However, if global hit rates are thestronger consideration then the DSC-

first architecture should be preferred.
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Chapter 6

Cache Modeling and Optimization

In the previous chapter we presented empirical results for two different architectures (prefix cache-

first and DSC-first) where we primarily considered a scenariowhere we allocate equal number of

entries to both the prefix cache and the DSC. However, allocating equal cache entries to both caches

may not yield the best global hit rates. Clearly, for the two architectures the design decision is to

optimally allocate cache entries between the two caches fora given number of cache entries. In this

chapter we present an analytical method that can be used to arrive an optimal cache design that gives

the maximum global hit rates.

The idea is to first choose an analytical method that best models the hit rates in the two caches.

Once we have decided upon an analytical method, we can formulate the design decision as an

optimization problem.

In Section 6.1, we briefly describe some previous works that model cache memories. In Section

6.2, we describe our analytical method and we shows its effectiveness. In Sections 6.3 and 6.4 we

present the optimization technique and follow it with the experimental results. In Section 6.5 we

present results to validate the discussions in Section 5.3.3.

6.1 Related models

It is a known fact that cache behavior depends upon the locality in the destination address stream

that the cache sees. Models that can measure these locality properties can help understand cache

behavior. In fact, such models provide means to predict the cache hit rates.

Singhet al. [41] provide a model to characterize locality in reference stream. This model is in

turn used to derive a method to predict hit rates. They provide a power functionu(t) that gives the

number of unique references in the reference stream of length t:

u(t) = Wta (6.1)

This power function captures the temporal locality in the reference stream. For instance, if

u(1000) = 300 then at the1000th reference, we have already seen 300 unique references. In order
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to obtain the parameter valuesW anda, they fit the power function using linear regression. They

further illustrate how the power function can be used to arrive at a model for the cache miss rates.

Specifically, they take the derivative of the power functiongiven a cache sizeC:

M(C) =
u(t)

dt
= aW 1/aC1−1/a (6.2)

M(C) gives the miss rate for a given cache of sizeC. In other words, this is the rate at which

the unique references occur in a trace at the time when the cache is filled with unique references

and is also the rate at which cache misses occur. This is true because a cache withC entries will

contain at most C unique addresss where each cache entry can hold a single address reference only.

Apparently, the model has shortcomings. In Eq. 6.2, if we considerC = 0 then the miss rateM(C)

should be 1. However, it turns outM(C) will give zero. Clearly, the equation does not satisfy the

boundary conditions. Meeting the boundary conditions is important else this will lead the optimizer

to predict that the miss rates are least when cache size is zero.
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Figure 6.1: Power functionu(t) with respect tot for ISP1 trace

Another concern is that Eq. 6.2 does not hold for an initial transient. This can be shown in

Figure 6.1 where we take a subsample of trace ISP1 containing500 destination addresses. We then

fit Eq. 6.1 with the measuredu(t) values. Apparently, the fit is relatively poor especially whent is

less than 50. Actually, whent is less than 50, the slope of the fitted curve is above 1. This implies

that the cache miss rate is in excess of 100% which is erroneous.

Another approach towards characterizing locality is reusedistance [10][38]. Reuse distance

gives the measure of temporal locality in the references andis defined assizeof(stack)+1. Assume

we have a stack with infinite size and we push each reference onto this stack. If an incoming

reference has been seen before, we remove the similar reference from its current position in the

stack and we push it onto the top of the stack. The reuse distance here is the index of the stack entry
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Figure 6.2: CCDF for ISP1 trace

where the reference was found. If the incoming reference hasnever been seen before, then we push

this new entry onto the top of the stack. If the reference present at the top of the stack is seen again,

then we define the reuse distance as 0. The greater the number of reuse distances closer to the top of

the stack, the better is the temporal locality in the reference stream.

The distribution of the reuse distances in the packet tracescan be used to predict hit rates. Specif-

ically, we can use the CCDF (complementary cumulative distribution function) of reuse distances:

S(x) = Pr[X > x] = 1 − F (x) (6.3)

wherex is the reuse distance. Thus, for a given cache size, the cachemiss rates can be predicted

from the CCDF curve. For example, in Figure 6.2 we show the CCDF curve for the ISP1 trace. The

reuse distance here can be considered as the cache size whereas the CCDF as the cache miss rates.

Given the CCDF for the trace, we can fit the CCDF curve using some distribution (Pareto, Weibull

etc.).

However, the CCDF is not accurate for larger reuse distances. For instance at reuse distance

1000, the cache miss rate predicted is almost 0%. Again, thiswill force the optimizer to believe that

the best miss rate seen by the cache is 0%.

Attempts have been made to usedelaysandstridesto measure memory reference locality in

programs that use a small part of a memory. Delay is the distance (time) between two references.

This is calculated by counting the total number of references between two items. Stride indicates the

distance in memory between the same two references. Stridesare meant to capture spatial locality.

Grimsrudet al.[18] use these concepts to arrive at a locality surface. Theycount the number of times

each delay and stride combination occur in the memory reference trace. Each of these combinations
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are divided by the total number of references in the trace. The results are shown on a log-log scale

which indicates the extent of locality. However, they do notprovide a mechanism to predict cache

miss rates. Further, strides are not useful to quantify spatial locality in destination address streams.

6.2 Our approach

For our work, we model cache hit rates as a power-law function:

H(x) = 1 − Axθ (6.4)

wherex is the cache size andA andθ are constants. The above equation is useful for cache hit rate

modeling and is also investigated by Smith [43]. However, similar to other models, Eq. 6.4 does not

satisfy the boundary conditions. At cache size 0,H(x) will give 100% cache hit rate. Clearly, we

would need a model which gives 0% cache hit rate for a cache of size 0. In addition, it is important

to predict cache hit rates of 100% when the cache size is infinity. Considering the need, we make

the following changes to Eq. 6.4:

• To ensure that the equation meets the boundary condition when cache size is 0, we replace the

termxθ with (x + 1)θ.

• To ensure that the equation meets the boundary condition when cache size is infinity, we place

the term(x + 1)θ in the denominator.

• We scale the value ofx directly by A. So we moveA to the denominator ofx. Thus, the

cache hit rates increase with increasing value ofθ or decrease with increasing value ofA.

This gives us the following equation:

H(x) = 1 −
1

( x
A + 1)θ

(6.5)

The changes to Eq. 6.4 ensure that the modeling will not fail when the cache size is 0 or infinity. We

use Eq. 6.5 to model the local hit rates for both the prefix cache as well as the DSC.

6.3 Prefix cache-first architecture

In the following section we show the effectiveness of the model for the architecture where the prefix

cache precedes the DSC. We first show whether Eq. 6.5 properlymodels the prefix cache hit rates.

For demonstration, we first try to fit the model with the observed prefix cache hit rates for the packet

trace ISP3. We consider a prefix cache with 240 entries. Clearly, the model fits with the observed

values very well (Figure 6.3). For the fitted curve we foundA = 11.7422 andθ = 0.565. Moreover,

the curve suggests that the hit rates follow the 80/20 rule where cache hit rates increase by 20% with

every increase (doubling) of the cache size.
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Figure 6.3: Prefix cache hit rates - Measured v. Curve fitted

Consider a scenario where we have a total of 240 cache entries. We decide to allocate 25 entries

to the prefix cache and the remaining to the DSC. We also assumethat the value ofk to be 2. We

demonstrate that Eq. 6.5 can fit very well with the observed DSC hit rates for the packet trace ISP3.

Figure 6.4 shows the results of the curve fit. For the fit, we findθ = 1.2266 andA = 80.44 for the

part of the destination addresses seen by the DSC when the prefix cache has 25 entries. Apparently,

the fit is good when the DSC cache size is beyond 200 entries. There is a certain degree of misfit

when the DSC size is less than 50. This is due to the peculiar nature of the curve that was seen

during the simulation.

We first see how the cache entries get distributed between theprefix cache and the DSC when

we use an exhaustive search considering that we wish to achieve the best global hit rates. For this

particular problem instance, we selected a total cache sizeof 240 entries. We also considered the

value ofk to be 2. Figure 6.5 gives the global hit rates for the simulated cache configurations for

the ISP3 trace. The x-axis indicates the number of cache entries allocated to the prefix cache out of

the total available cache entries. As shown, the best globalhit rate is obtained when 49 entries are

allocated to the prefix cache and the remaining 191 entries tothe DSC. This indicates that a small

prefix cache in front of the DSC is beneficial. This substantiates the point that was made in Chapter

5 regarding a small prefix cache. A small prefix cache here manages to exploit most of the temporal

locality seen in the ISP3 trace. This enables the DSC to be more focused on exploiting spatial

locality as well as lookups that fall in particular IP address spaces. The two behaviors combined

help to increase the global hit rates.
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Figure 6.4: DSC hit rates - Measured v. Curve fitted when prefixcache has 25 entries

6.3.1 Formulation

The cache entry distribution between the prefix cache and theDSC can be formulated as a con-

strained non-linear integer optimization problem. This will essentially prevent us from using ex-

haustive search which is much more tedious. We use the TOMLAB[6] optimization environment

for the formulation. Considering Eq. 6.5 as a method to predict hit rates, we formulate the problem

of finding the optimal cache entry allocations in the following way:

maximize [y1 × H1(c1) + y2 × H2(c2)] (6.6)

subject to:

y1 = L y2 = L − H1(c1) × y1

H1(c1) = 1 − ( c1

β(s) + 1)−α(s)

H2(c2) = 1 − ( c2

βφ(c1)
+ 1)−αφ(c1)

αφ(c1) = [αs, αe]

βφ(c1) = [βs, βe]

j = θ, 2θ, 3θ, ..., c

i = j − (θ − 1)

c1 = [s, e] wheres = max(i) ande = min(j)

c1 + c2 = c

c1andc2 are integers

c1, c2 ≥ 0
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y1 is the fraction of address references seen by the prefix cacheandy2 is the fraction of address

references left-over from the prefix cache.c is the total available cache entries.α(s) andβ(s) are

the parameters from Eq. 6.5 for the address references that find a hit in the prefix cache. Similarly,

αφ(c1) andβφ(c1) are the parameters from Eq. 6.5 for the DSC. However,αφ(c1) andβφ(c1) de-

pend upon the prefix cache size. More specifically, the intervals associated withαφ(c1) andβφ(c1)

are used to select the values ofαφ(c1) andβφ(c1) depending upon the value ofc1. Further, the size

of the interval is defined byθ.

Figure 6.6 gives the optimization surface for the design of aprefix cache-first architecture (c =

240). The z-axis shows the global hit rates. The other axes show the number of cache entries

allocated to the prefix cache and the DSC respectively. From the figure we can see that the optimal

design decision is to allocate 47 entries to the prefix cache and the remaining 193 entries to the

DSC. Also, the global hit rate is up to 90.75%. In contrast, ifwe allocate all the memory to the

prefix cache, then we see a global hit rate of only 82.56%. Similarly, if we allocate all the memory

to the DSC, the global hit rate is just around 87.24%. Clearly, allocating some entries to the prefix

cache is indeed beneficial.

In fact, the cache distribution predicted by the optimization technique is very close to what we

had seen through exhaustive search. The exhaustive search demonstrated that 49 entries needed to

be allocated to the prefix cache. Moreover, the global hit rates seen through exhaustive search is

near to 90.22%. This shows that the values determined using our optimization technique are quite

close to what we see using exhaustive search.

6.4 DSC-first architecture

In this section, we describe a method to determine optimal cache entry allocation in a scenario where

the DSC precedes the prefix cache. In this situation, the DSC sees all the address references and has

the opportunity to exploit locality. It will be interestingto see the performance of the prefix cache

given that the DSC exploits all the locality in the address references.

However, this architecture turns out to be much more complexto model due to its inclusive

nature. In other words, the performance of the prefix cache has a marked effect on how the DSC

performs. This can be explained from Figure 6.7. For illustration, consider that the DSC and the

prefix cache have been provided with three entries each. Assume that the initial state of the caches

is as in Figure 6.7(A). Suppose a new reference arrives (Figure 6.7(B)) that is already present in the

DSC. As a result, there is some activity in the DSC. Further, when a reference 01111001010 arrives,

the substride 1010 is evicted from the DSC (Figure 6.7(C)). However, the prefix cache still holds

the prefix 101000 corresponding to the substride 1010. Consequently, any future address references

that match 101000 will find the prefix cache useful (Figure 6.7(D)). This will prevent any updates

for substride 1010 in the DSC. Subsequently, the DSC will always show a miss for a reference that

matches the 1010 substride and this will lead to a lower DSC hit rate. We can term substrides such
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as 1010 as “victim substrides”.

This cache behavior can be attributed to fortunate occurrences. Had we allocated only two

entries to the DSC and the prefix cache, the DSC would had been updated with the substride 1010.

Not surprisingly, the DSC in this case will show a different hit rate. Hence, the DSC hit rates may

fluctuate depending upon how the prefix cache performs.

This inclusive nature of the two caches can be seen in Figure 6.8 and 6.9. For illustration, we

allocate 230 entries to the DSC and we then vary the size of theprefix cache(k = 3). Initially, when

the prefix cache is less active, the DSC shows relatively stable hit rates. However, as the prefix cache

size grows, the chances of it being effective increases. This leads to a sudden drop in the DSC hit

rate. This is because many substrides are not updated in the DSC once the prefix cache size grows

beyond a certain point. Thus, modeling such curves can be very complex.

In order to reduce the complexity, we suggest using a DSC of sufficiently large size so that the

prefix cache has a meager effect on the DSC hit rates. This can be explained from Figure 6.10 which

shows the global hit rates obtained from exhaustive search for the upcb.1 trace. In this case, we

consider the total available memory as 400 entries. Further, we keep the value ofk as 3. As shown,

the global hit rates are at their peak when most of the entriesare allocated to the DSC. This means

that the DSC is less affected by the prefix cache which is relatively smaller in size. The result is that

the DSC hit rate and the prefix cache hit rate curves are relatively less complex.

We proceed with our experiment with the criteria that the DSCwill have at least 300 entries

out of the available 400 entries. This assumption helps significantly in predicting global hit rates.

Figure 6.11 shows the DSC hit rate curve for the upcb.1 trace.The DSC hit rates increase linearly

with increasing size. This simplifies the problem and allowsus to use a simple linear equation to

fit the curve. The prefix cache curves are also less complex. Figure 6.12 shows the prefix cache hit

rates when the DSC has 300 entries. The prefix cache hit rate curve, again, varies if the DSC has

more entries. However, we found that the curves follow the power-law nature even when the DSC

has 395 entries. As a result, we use Eq. 6.5 for curve fitting.

6.4.1 Formulation

The optimization problem is in ways similar to the one described in Section 6.3.1. We have:

maximize [y1 × H1(c1) + y2 × H2(c2)]

subject to:

y1 = L y2 = L − H1(c1) × y1

H1(c1) = M(c1) × c1 + A(c1)

H2(c2) = 1 − ( c2

βφ(c1)
+ 1)−αφ(c1)

M(c1) = [Ms, Me]
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A(c1) = [As, Ae]

αφ(c1) = [αs, αe]

βφ(c1) = [βs, βe]

j = θ, 2θ, 3θ, ..., c

i = j − (θ − 1)

c1 = [s, e] wheres = max(i) ande = min(j)

c1 + c2 = c

c1andc2 are integers

c1, c2 ≥ 0 andc1 ≥ P

M(c1)andA(c1) are the parameters for the address references seen by the DSC. The intervals for

M(c1)andA(c1) select the values of the parameters depending upon the valueof c1 . P indicates

the lower bound on the number of cache entries pre-allocatedto the DSC.

Figure 6.13 gives the global hit rate curves after the optimization (c = 400). For the experiment,

we consideredP = 300 and as a result at most 100 entries could have been allocated to the prefix

cache. The optimal global hit rate is 0.881 where 25 entries were allocated to the prefix cache and

the remaining 375 entries to the DSC. This is close to what we see using the exhaustive search where

29 entries were allocated to the prefix cache (Figure 6.10).

The results show that a small prefix cache after a DSC is sufficient to hold some prefixes corre-

sponding to the victim substrides that were evicted from theDSC. For example, for the upcb.1 trace

a small prefix cache has a contribution towards to the global hit rate. However, a small prefix cache

after the DSC may not be always beneficial especially in scenarios where the DSC is self-sufficient.

Given this behavior, the optimization technique can prove to be useful to determine the optimal

balance of cache entries for different traces.

6.5 Supplementary experiments

In Section 5.3.3 we argued that the prefix cache-first architecture performs better than the DSC-first

architecture in terms of the average number of memory accesses per lookup. We further validate

that argument by providing some supplementary experiment results.

We focus on finding an optimal distribution of cache entries between the prefix cache and the

DSC that minimizes the number of memory accesses. To be precise, our objective is to find an

optimal cache entry allocations between the prefix cache andthe DSC such that the average number

of memory accesses required by a single lookup is the least. We compute them using Eq. 5.2.

This exercise will also show whether the DSC has a reasonablecontribution in reducing the average

number of memory accesses per lookup.
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6.5.1 Prefix cache-first architecture

First we see how the cache entries are distributed between the prefix cache and the DSC when we

use exhaustive search. For illustration we consider the total available cache entries as 240 and we

select the value ofk to be 2. Moreover, for Eq. 5.2 we consider the valuest = 5 andwc = 32.

Figure 6.14 demonstrates the distribution of cache entriesfor the ISP3 trace using exhaustive search.

We can see that the lowest average number of memory accesses per lookup is seen when 78 entries

are allocated to the prefix cache and the remaining 162 entries to the DSC.

The task of finding the optimal distribution of cache entriescan be formulated as a non-linear

integer optimization problem. The optimization tableau issimilar to the one described in Section

6.3.1 with the only change being in the objective function. The objective function for this particular

problem is:

minimize [y1 ×H1(c1)× 0 + y2 ×H2(c2)× t + (L− y1 ×H1(c1)− y2 ×H2(c2))×wc] (6.7)

Figure 6.15 gives the optimization surface for the design ofthe prefix cache-first architecture. The

optimizer predicts that 155 entries should be allocated to the DSC and the remaining 85 entries to

the prefix cache. For the optimal distribution, the average number of memory accesses per lookup

is 4.363. However, if we allocate all the entries to the prefixcache a lookup will require up to

5.6223 memory accesses. Quantitatively, the DSC in the architecture helps reduce the average

number of memory accesses per lookup by 22.5% i.e we decreasethe memory traffic by 22.5%.

Not surprisingly, the DSC in this architecture has a better contribution in reducing the memory

accesses for each lookup. This conforms to the argument we made in Section 5.3.3 regarding the

prefix cache-first architecture.

6.5.2 DSC-first architecture

For the DSC-first architecture we use the optimization tableau listed in Section 6.4.1 and we use the

objective function as in Eq. 6.7. Similar to Section 6.4.1, we consider that only 400 cache entries

are available. We considerk = 3, t = 5 andwc = 32. Further, we allocate a minimum of 300

entries to the DSC as a starting point for the optimization. Figures 6.16 is the result from the opti-

mization. Clearly, from the experiment we see that the DSC does not decrease the average number

of memory accesses per lookup substantially. However, the starting point for the optimization does

not shed light on the actual results. Given the current limitations in our optimization method, we use

exhaustive search. Using exhaustive search we can get results on all possible cache configurations.

Figure 6.17 is the result from the exhaustive search for all possible cache configurations. Evidently,

from the exhaustive search we find that 395 entries need to be allocated to the prefix cache and 5

entries to the DSC. This indicates that there are less benefits of a DSC in a DSC-first architecture

if we consider average number of memory accesses per lookup as a criteria. This is precisely what

we expected from the discussions in Section 5.3.3 and this isprimarily due to additional memory
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accesses (up to 5) required by lookups that hit the DSC. In conclusion, if the router architects believe

that average number of memory accesses per lookup is a concern, then they should opt for the prefix

cache-first architecture.
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Figure 6.5: Global hit rates measured for ISP3 trace throughexhaustive search

70



ISP3 trace

 50
 100

 150
 200

Prefix cache size
 50  100  150  200

DSC size

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

Global												
hit rate												

Figure 6.6: Optimization surface for the prefix cache - first architecture (global hit rates)

Figure 6.7: DSC and prefix cache behavior (k=3)
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Figure 6.8: Prefix cache hit rates when DSC has 230 entries
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Figure 6.9: DSC hit rates on varying prefix cache sizes when DSC has 230 entries
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Figure 6.10: Global hit rates measured for upcb.1 trace through exhaustive search
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Figure 6.11: DSC hit rates - Measured v. Curve fitted when DSC size is 300 entries or more
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Figure 6.12: Prefix cache hit rates - Measured v. Curve fitted when DSC has 300 entries
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Figure 6.13: Optimization surface for the DSC - first architecture (global hit rates)
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Figure 6.14: Average number of memory accesses per lookup measured for ISP3 trace through
exhaustive search (prefix cache-first architecture)
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Figure 6.16: Optimization surface for the DSC - first architecture with minimum of 300 entries
allocated to the DSC(Average number of memory accesses per lookup)
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Figure 6.17: Average number of memory accesses per lookup measured for rrc03-upcb.1 trace
through exhaustive search (DSC-first architecture)
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Chapter 7

Conclusions & Future Work

7.1 Conclusion

In this thesis, we propose two architectures that can be usedto reduce IP lookup latencies for in-

coming destination addresses. In particular, we use a novelcache organization called the dynamic

substride cache (DSC) along with a prefix cache to reduce the number of full-trie lookups. Firstly,

we tested the utility of a DSC when it is placed between the prefix cache and the leaf-pushed trie

(prefix cache-first architecture). We show experimentally using different traces that the DSC is in-

deed effective in ensuring that fewer full-trie lookups areperformed. A clear benefit of the DSC is

that it is has great utility even when we have a prefix cache that is delivering good hit rates. In fact,

we achieve nearly 88% hit rates in the DSC even when the prefix cache has reached its maximum

hit rate. This shows that the DSC is able to assist a good percentage of lookups that are misses in

the prefix cache. We also demonstrated that any lookup that isassisted by the DSC via a substride

has to do at most of 5 memory accesses on average instead of a full-trie lookup that may cost up to

19.7 memory accesses on average.

Our experiments rely on finding a suitable value for the parameterk that is used to generate the

substrides. We showed that the DSC performance indeed varies in terms of the local hit rates and

the average number of memory accesses under different values ofk. We use these results to indicate

the suitable value ofk for generating the substrides. Importantly, using this architecture we achieve

a global hit rate of up to 99.88% when we set the value ofk as 3. This result is significant since the

architecture ensures that only 0.12% of the lookups are required to do the full-trie lookups. We put

up a strong case especially for traces that show less locality. For these traces we achieve global hit

rates up to 95% if we consider only a prefix cache in the architecture. However, if we use the prefix

cache in conjunction with the DSC, we achieve global hit rates up to 99.34%. This also suggests that

our architecture can perform better even when there is a limited amount of locality in the incoming

destination address stream.

Additionally, we introduced a DSC-first architecture wherethe prefix cache is placed between

the DSC and the leaf-pushed trie. This architecture retainsthe prefix cache which enables it to

77



exploit the locality in destination address streams. We showed through empirical results that for

some traces the DSC alone can achieve significant global hit rates. In contrast, we showed that

for some traces the prefix cache is certainly beneficial and does make some contribution towards

the global hit rates. Comparatively, we find that the DSC-first architecture is better than the prefix

cache-first architecture where we improve up to 4% in terms ofglobal hit rates.

Another important consideration in an IP lookup scheme is the requirement for incremental

updates. Incremental updates are frequent and it is important for our two architectures to support

addition and deletion of prefixes. In order to make incremental updates possible in a leaf-pushed

trie, we suggested storing extra information on prefixes in the leaves as well as the internal nodes.

We demonstrated that these additional information on prefixes is essential for incremental updates

in a leaf-pushed trie.

In addition, we provide schemes that need to be followed in order to ensure that the DSC is

consistent after the addition or deletion of prefixes from a leaf-pushed trie. However, we required

the scheme to be conservative as the DSC has little control information on the prefixes that were

added or deleted.

Lastly, we investigated the optimal distribution of memorybetween the prefix cache and the DSC

for the two architectures. We proceeded first by finding a model that can help us predict the hit rates

in the two caches. Initially, we presented some existing models but showed that they may not be

suitable for our work. As an alternative, we presented a model that satisfied the boundary conditions

and was able to adequately mimic the hit rates in the prefix cache and the DSC. Thereafter, we used

optimization techniques to arrive at an optimal distribution of cache entries. We also argued that we

arrive at an optimal distribution that is quite close to whatwe find using exhaustive search.

7.2 Future Work

There is an important issue that could be addressed as part ofour future work. A potential concern

in both architectures is that we need to stall lookups while misses or DSC hits are being serviced.

For instance in the prefix cache-first architecture, we need to stall lookups in the prefix cache while

lookups are being performed in the DSC or the leaf-pushed trie. Further, we need to stall lookups

in the DSC when a previous successful lookup in the DSC proceeds to the leaf-pushed trie. Such

frequent stalls in between lookups can induce latency.

A potential solution to this problem is using buffers between the prefix cache and the DSC for

pipelining purposes. As an example, we demonstrate the use of two cache miss buffers (CMB1 and

CMB2) between the prefix cache and the DSC in Figure 7.1 for a prefix cache-first architecture. The

CMB1 buffer can be used to store lookups from prefix cache misses in case any lookup is still in

process in the DSC. The CMB2 buffer can be used to store lookups from DSC in case a lookup in the

leaf-pushed trie is still in process. The CMB1 buffer allowsthe prefix cache to perform lookups even

when lookups are being performed in the DSC or the leaf-pushed trie. However, the prefix cache
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Figure 7.1: A prefix cache-first architecture with cache missbuffers

needs to stall if the CMB1 buffer gets full. Similarly, the CMB2 buffer allows the DSC to perform

lookups even when lookups are in process in the leaf-pushed trie. Again, DSC lookups need to stall

when the CMB2 buffer gets full. It should be noted that we needto stall the lookup process in the

two caches while we are updating a prefix and a substride from aprevious lookup in the leaf-pushed

trie. The above discussion of using buffers is also applicable to the DSC-first architecture.

Even though the preliminary data path is available to us, we still need to experimentally evaluate

the improvements the two buffers might provide in terms of the number of clock cycles. Moreover,

we still need to determine at what intervals the two buffers need to be signaled to flush out the

lookups for further processing.
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