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Abstract

This thesis studies how to enable a real-world robot to efficiently learn a new

task by watching human demonstration videos. We propose to introduce a ge-

ometric task structure as an interpretable inductive bias to the learning prob-

lem. We aim to learn a representation that geometrically encodes “what the

task is” from offline human demonstration videos and then transfer the learned

representation to a robot controller using uncalibrated visual servoing (UVS).

Specifically, we propose Visual Geometric Skill Imitation Learning (VGS-IL),

which uses a graph-structured task function to learn a task representation un-

der structural constraints in the form of a predefined graph priori related to

a geometric constraint type. The task function is optimized by Incremental

Maximum Entropy Inverse Reinforcement Learning (InMaxEnt-IRL) based on

“temporal-frame-orders” in human demonstration videos.

We show that the learned representation selects task-relevant image fea-

tures to compose projective invariant geometric constraints, thus forming an

efficient and interpretable representation. Secondly, the learned representation

selects out the equivalent geometric constraints in the robot scene with adjoint

geometric errors used in visual servoing controllers, thus removing the need for
ii



extra robot training when mapping the task representation to robot actions.

Lastly, by building task specification correspondence, we show that the learned

task function selects task-relevant geometric constraints on categorical objects

with the same task functionality, thus achieving task generalization. This

is proposed as Categorical Object Generalizable VGS-IL (CoVGS-IL). Various

real-world experiments were conducted to verify our proposed method’s ability

regarding sample efficiency and task generalization.
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Preface

This thesis is partly based on our previous publications. Details are as follows:

• Chapter 3 is based on our previous publication as [Jin, J., Petrich, L.,

Dehghan, M., Zhang, Z., and Jagersand, M. (2019, May). “Robot eye-

hand coordination learning by watching human demonstrations: a task

function approximation approach.” In 2019 International Conference on

Robotics and Automation (ICRA) (pp. 6624-6630). IEEE.]. Changes

have been made including correcting several typos, adding more descrip-

tions on the method and experiment details in the evaluation.

• Chapter 5 is based on our previous two publications as [Jin, J., Petrich,

L., Zhang, Z., Dehghan, M., and Jagersand, M. (2020, May). “Visual

geometric skill inference by watching human demonstration.” In 2020

IEEE International Conference on Robotics and Automation (ICRA)

(pp. 8985-8991). IEEE.] and [Jin, J., Petrich, L., Dehghan, M., and

Jagersand, M. (2020). “A geometric perspective on visual imitation

learning.” In 2020 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (pp. 5194-5200). IEEE.]. Changes have

been made including combining the two papers systematically, deleting

the overlapping contents, adding details about the geometric constraint’s

graph structure design, and adding more details in the experiments.
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The authors’ contributions in the three mentioned publications are stated

as below:

• Jun Jin’s contribution was recognized as methodology proposal and im-

plementation, experiments, data preparation and draft writing.

• Laura Pestrich implemented the baselines, helped with the experiments,

prepared the data and participated in draft writing. The other co-

authors helped with paper revision.

The remaining chapters have been submitted for publications. Details are

as below:

• Chapter 4 “Task specification capability of geometric constraints” was

submitted to 2022 IEEE International Conference on Robotics and Au-

tomation (ICRA) titled with “How many features do we need: an empir-

ical study on the capability of visual task specification using geometric

features”.

• Chapter 6 “Generalizable task representation learning” was submitted

to 2022 IEEE International Conference on Robotics and Automation

(ICRA) titled with “Generalizable task representation learning from hu-

man demonstration videos: a geometric approach”.
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To myself of 2003,

For the everlasting dreams that brought me here.
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Learn how to see. Realize that everything connects to everything else.

– Leonardo da Vinci.
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CHAPTER 1

Introduction

The demand for new ways of robotic task specification: Robotic task

specification has been the core problem for the industry since the first robot

was deployed in the automobile production line in the 1970s. With nearly

fifty years of technological development, as summarized in Fig. 1.1, though

industrial solutions of robotic task specification have been improved signifi-

cantly, the requirement for robotic experts to hand specify every task on-site

has not been changed fundamentally. For example, the fact that for every task,

on-site professionals are required to hand design each perception pipeline and

each robot motion trajectory still remains, which impedes the large-scale de-

ployment of robots. Therefore, new robotic task specification solutions that

remove the requirements of robotic experts and generally apply to a wide range

of manipulation tasks are still demanding.

Human demonstrations provide an intuitive interface for robotic task speci-

fication. Various methods have been proposed during the past decade including

trajectory design based LfD (Learning from Demonstration [7]) and PbD (Pro-

gramming by Demonstration [27]), reward function based IRL (inverse rein-

forcement learning [6]) and many recent approaches [40, 129, 140]. One major

limitation of the above methods is that they typically require collecting massive

1



Chapter 1. Introduction

A B C D

Figure 1.1: Task specification solutions in the industry still require robotic experts
to hand design every task. A: Designing a car assembly task by PLC programming
in the 1980s. B: Design a palletizing robotic system using ABB RobotStudio [1]
which was firstly realsed in 1998 [24]. C: In the era of collaborative robots (2010s),
task waypoints are specified by kinesthetic teaching [120] using UR10 robot from
Universal Robots A/S . D: In the era of artificial intelligence powered robotic solu-
tions, perception pipelines such as object detection/pose estimation combined with
conventional trajectory designing tools are used to specify the task. The figure shows
a parcel sorting robot released in 2021, and applied in the logistics industry from
Speedbot Inc. [139], a robotic startup in China.

robot-involved samples either via human kinethetic teaching/teleoperation [37,

40, 131], or via robot-environment interactions [6, 37, 60]. Therefore, from the

perspective of time cost, hardware wear-out and human resource cost, apply-

ing such methods in the real world does not manifest significant advantages

over traditional methods that rely on calibrated instrumentation and hand-

designed trajectories. These challenges impede the large-scale acceptance of

methods using robot learning from human demonstrations in real-world tasks.

The demand for interpretable models: During the past decade, ma-

chine learning in robotics, compared to its influences in computer vision and

natural language processing (NLP), has not been widely applied in real-world

robotic applications. To better understand the industrial concerns, we con-

duct investigations by consulting from leading robotic AI firms, including Vi-

wistar [146] in China, YPC in Canada [163], and a robotic system integration

company located in the manufacturing cluster of Yangtze River Delta. We

find that one major concern is the model’s interpretability. Unlike computer

vision and NLP tasks, robotic applications care more about safety and diag-

nosability, which relate to a model’s interpretability. We typically demand a

method that can be trusted when deployed in the real world and diagnosed

when an unexpected failure occurs.

A recent research trend of interpretable machine learning is to introduce

2



Chapter 1. Introduction

strong inductive bias in learning, for example, using object relations to implic-

itly extract task-relevant information [11, 165], and using task hierarchies to

explicitly model complex robot motions [114]. In these methods, a model’s in-

terpretability is enabled by structural representations. Compared to learning

without any inductive bias, recent works [11, 165] also report using a structural

representation will be more sample efficient and have a better generalization

performance. Inspired by the above methods, we aim to research on what

interpretable inductive bias can be introduced to robot learning that enables

sample efficiency and task generalization.

Our approach: We address the above demands by introducing a geomet-

ric task structure (Fig. 1.3A) as an interpretable inductive bias to the prob-

lem of robot learning from human demonstrations. Specifically, we propose a

method that learns geometric task specifications from offline human demon-

stration videos, as shown in Fig. 1.2A and B. We formulate the problem as

learning a task represenation with structural constraints in the form of pre-

defined graph structures that relate to geometric constraint types (Fig. 1.2C

and D). We show that combining the approach of robot learning from human

demonstrations and geometric task structure will remove the need for hand-

selected features in traditional visual servoing methods [48], and will make the

learning from human demonstrations sample efficient and task generalizable.

In summary, our method views the robotic task specification problem from

a geometric perspective that can be learned using only human demonstration

videos, which provides a practical way for real-world robot learning. Fig. 1.2

explains our method using a hammering task. The above claims are explained

in the following sections.

The remainder of this chapter is as follows. In section 1.1, we review re-

search on geometric task specification and robot learning from human demon-

strations. Then we explain why our method will overcome each method’s

limitations. Sections 1.2, 1.3, and 1.4 introduce how our proposed method

enables sample efficiency and task generalization in learning a new task. In

the remaining sections, we summarize our contributions, describe outlines of

each chapter and our publication notes.
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Figure 1.2: Overview of our method explained using a hammering task. Given
human demonstration videos (Fig. A), we aim to learn a task representation that
defines the task (Fig. B) by point-to-point (f1 and f2) and line-to-line (f3, f4, f5
and f6) constraints. This is achieved by constraining the representation space using
predefined graph structures, where each structure defines a geometric constraint
type. A task representation has two parts. (1) The geometric constraint part (Fig.
C1) outputs geometric errors Et that links to an uncalibrated visual servoing (UVS)
controller [68] so that mapping the learned representation to robot actions is achieved
without extra robot training. (2) The relation encoding part (Fig. C2) uses a graph
neural network g to encode the association relationship between image features,
thus representing point-to-point and line-to-line constraints. During testing, given
an image observation ot, the learned representation selects image features to fit in
the graph nodes and outputs geometric errors Et for robot control (Fig. D). In this
example, Et is computed from the coordinate difference between two points, [y2−y1]
and the parallelism metric between two lines, [(y3 × y4)× (y5 × y6)]. Details of how
Et is used in an UVS controller can be found in Chapter 7, Section 7.4.

A semantic task structure

BA

A geometric task structure

Figure 1.3: Two types of task structures: (1) a geometric task structure A)
that defines tasks by geometric constraints; (2) a semantic task structure [126] (B)
that extract task semantic meanings in the forms of knowledge graphs [110], gram-
mar trees [161], behaviour trees [112] or the planning domain definition language
(PDDL) [88]. We choose a geometric task structure as the inductive bias since its
adjoint outputs—geometric errors, compared to a semantic task structure’s output,
are more friendly to robot controllers as shown in the previous Fig. 1.2E.
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1.1Background

1.1.1Geometric task structure in robotics

Broadly speaking, there are two types of task structures: (1) a geometric task

structure (Fig. 1.3A) and (2) a semantic task structure (Fig. 1.3B).

Humans have been using points and lines to describe structural concepts

for about 5,000 years. Many tasks in our everyday life can be described using

geometric features (as shown in Fig. 1.4 A, B). Likewise, in robotics, compos-

ing a task from image or point cloud data by the association, combinations

and sequential linkage of geometric features is studied in the visual servoing

literature, including the theoretical frameworks [20, 54, 59], system [29] and

applications [49]. Examples of robotic task specification using geometric con-

straints are shown in Fig. 1.4 C and D.

A B C D

Figure 1.4: Examples of using geometric constraints to specify tasks, A and B
are human task examples while C and D are robotic task examples. A: a tool
insertion tasks [14] which is specified by two point coincidences. B: a wiping stairs
handle task [14] which is specified by a point-to-line and point-to-point constraint.
The point-to-line constraint means a point on the cloth stays contact with the stair
handle. The point-to-point constraint means a point on the cloth should approach a
point to the far end of the stair handle. C: an open drawer task [48] which is specified
by a point-to-line constriant. D: a circuit board RAM insertion task [48] which is
specified by a line-to-line alignment constraint and a point-to-point constraint.

In addition to traditional methods, geometric task structures, can be used

as an intermediate representation in robot learning to improve sample effi-

ciency and task generalization. For example, S. Levine et al. 2015 [89] and

their following works [37] report sample efficiency using the spatial-softmax

operator (Fig. 1.5A) to enforce the neural network extracting task-relevant

feature point structures. Qin et al. 2019 [116] show task generalization in re-

inforcement learning by representing the task using keypoint structures (Fig.
5
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A CB D

Figure 1.5: Example of current researches using geometric task structures in robot
learning to improve sample efficiency (A, B) and task generalization performance (C,
D). The top row shows the method, geometry structures are extracted by modules
marked with a blue block. A: S. Levin et al. 2016 [89], the geometry module is
“spatial softmax”. B: Transporters, Kulkarni et al. 2019 [84], the geometry module
is “KeyNet”. C: KETO, Qin et al. 2019 [116], the geometry module is “keypoint
generator”. D: kPAM, Manuelli et al. 2019 [99], the geometry module is “3D keypoint
detection network”.

1.5C). Other examples can be found in Fig. 1.5 B and D.

Although there are the above benefits of a geometric task structure, the

below limitations make it hard to be used in real-world tasks. For example,

in visual servoing, a geometric task structure needs to be hand specified and

relies on robust trackers [22]. On the other hand, in robot learning methods, a

geometric task structure resides in the intermediate layers of neural networks

that are jointly optimized with the policy. Since there are no supervisory clues

that can be used to learn a representation with geometric task structures,

massive training samples are typically required in the above approaches.

Our work aims to overcome the above limitations by using offline human

demonstration videos to learn geometric task specifications, thus removes the

need for hand-selected features and robust trackers in visual servoing. We use

human demonstrations to guide the learning of a representation with geometric

task structures. As shown in Fig. 1.6, Compared to methods that jointly learn

a representation [89, 116], our method uses offline human demonstrations to

guide the learning, thus can better extract task-relevant geometric features

with fewer robot-involved samples.
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A B

Figure 1.6: Comparison of our method to other feature-point representation based
works [89]. A: the representation learned in [89] are visually salient, but not nec-
essarily task-salient. For example, in A, the insertion task, no feature points are
extracted on the to-be-inserted block. B: As a comparison, our method selects
features by observing their saliency in describing task movement and alignments.
Furthermore, since our learned features are specific to the task, task generalization
can be achieved by selecting features on different objects but are specific to the same
task (as described in Chapter 6).

1.1.2Robot learning from human demonstrations

Robot learning from human demonstration approaches include the early pi-

oneers of robot learning by watching human demonstrations 1, robot learn-

ing from demonstration (LfD [7]) or robot programming by demonstration

(PbD [27]), behavior cloning [7] , inverse reinforcement learning (IRL) or ap-

prenticeship learning [6], and some recent approaches [37, 40, 60, 140]. A

common assumption shared by different methods is that human demonstration

data contains task-relevant information, which helps to boost up robot learn-

ing in two folds. (1) It facilitates the task specification problem. For example,

IRL [6] removes the need for tedious reward engineering by approximating a

reward function using the expert assumption in human demonstrations. For

another example, in the third-view visual imitation learning [140], we can learn

a task goal generator from human demonstrations since they define the task.

(2) Some approaches collect state and robot action as sample pairs, which

provide supervisory signals in learning a controller. Such guided state-action

mapping is used as a learning clue in approaches including LfD [7], behaviour
1The earliest work can be traced back to Ikeuchi et al. [66] and Kuniyoshi et al. [85] in

1994.
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Task function approximation

Figure 1.7: Summary of existing methods from the perspective of training data
and the position of our approach marked with red sqaure. A list of all the methods
metioned above with citations is as below : RL [89], self-supervised [70, 131], VS [22],
UVS [68], offline RL [90], Behavior cloning (BC) [63], DAGGER [121], IRL [6, 37],
GAIL [60], DDPGfD [145], meta-learning (one-shot) [40], visual imitation learning
(zero-shot) [108], ORIL [173], LfD [7], 3rd person view visual imitation learning [130,
134], Sim2real [78]

cloning [7] and one-shot visual imitation learning [40]. Fig. 1.7 shows the

characteristics of learning from human demonstration approaches that differ

from other robot learning methods from the perspective of training data.

One major limitation of the above mentioned methods is that , as shown in

Fig. 1.7, most robot learning from human demonstration approaches require a

massive amount of robot-involved samples since the state-action space is large

to be covered properly either by collecting massive data from human kines-

thetic teaching/teleoperation (BC [7], one-shot [40]) or by robot-environment

interactions (IRL [6], GAIL[60]). The requirement of massive robot-involved

sample collection impedes the acceptance of learning from demonstration meth-

ods in real-world applications.

In order to overcome the above limitations, one approach is to decou-

ple learning what the task is to how to do the task. Such a decoupled ap-

proach views human demonstration data as the information source for only

task specification purpose. The key insight of this approach is to rethink

the correspondence problem [7] in learning from demonstration (LfD) that the

8
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actuation mechanisms of a robot and a human are fundamentally different.

Therefore, the only shared component is the mapping from observation to

task definitions—task representation. In this learning paradigm, human only

needs to show the robot the task without tedious kinesthetic teaching or tele-

operation.

This learning paradigm is named as learning by watching [66, 94], or third

view visual imitation learning [134, 140]. Since there are no robot actions in

the training samples, there is no link between the learned task definition to

a specific robot’s actions. Thus it is challenging to train a robot controller.

For example, in [140], the task specification is represented by a neural network

parameterized goal generator, which requires massive robot-environment in-

teractions when using the goal generator to control the robot. This limitation

contradicts the benefit of the decoupled learning paradigm. Is there a better

way to represent the task specification that enables effcient robot control?

Our work uses a geometric task structure as a priori to construct a repre-

sentation space that is shared by the human demonstrator and robot imitator.

Given a task T , the insight is that geometric constraints-based task specifi-

cation are the same regardless of the task executor is human or robot. For

example, a hammering task is specified by geometric constraints on features

from the hammer and the nail regardless of whether a human or a robot holds

the hammer (Fig. 1.2A, B). In addition to form a shared representation space,

a geometric task structure outputs geometric errors (Fig. 1.2D) that can be

directly used in visual servoing controllers without extra robot training (Fig.

1.2E).

Therefore, our approach constructs a geometry-structured representation

space to learn task specification from human demonstration videos, enabling

human-friendly task teaching and solving the sample efficiency problem when

mapping task specification to robot actions. We show that using a geometric

task structure as a learning priori also brings in task generalization. The above

claims are elaborated in Sections 1.2, 1.3 and 1.4.

9
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1.2Research questions

As summarized above, our purpose is to introduce a geometric task structure

as an inductive bias to construct a representation space that enables the robot

to efficiently learn a new task from offline human demonstration videos. There-

fore, our method enables teaching the robot a new task by simply showing it.

Our introduced geometric task structure extracts task-relevant geometric con-

straints from an image state, which provides model interpretability. In order to

implement such a learning system, we have to answer the following questions.

(1) How to make geometric task specification learnable from data? Cur-

rent methods either require humans to select geometric constraints as the

task specification [22, 48] or learning task-relevant geometric features without

considering their associations that define a task [84, 116]. We propose to view

learning geometric task specification as a representation learning problem that

uses a graph-structured priori (Fig. 1.2D) to define each geometric constraint

type. our method forms the representation of geometric constraints by select-

ing task-relevant image features into the graph nodes. We call our approach

geometric task representation learning, which was published in ICRA2020 [75]

and elaborated in Section 1.3 and Chapter 5.

(2) How to learn geometric task specification from unlabeled human demon-

stration videos? Current approaches commonly require tedious human anno-

tation [99, 140] on each video frame. Inspired by the expert assumption in

the IRL (inverse reinforcement learning) literature [6] that the human demon-

stration video itself actually defines what the task is, we propose to use the

temporal-frame-orders, a time clue commonly used in human video under-

standing [18, 91, 148, 171], to learn such a representation from human demon-

stration videos. Our proposed method was published in ICRA 2019 [72] and

is elaborated in Chapter 3.

(3) How to efficiently map the learned task specification to robot actions?

We propose to use the learned representation in an uncalibrated visual ser-

voing (UVS) controller, which online estimates the linear mapping between

the learned representation to robot actions. This method was proposed as a

10
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Figure 1.8: An arbitrary geometric constraint is a multi-entity relationship be-
tween a set of feature points, wherein the low level, the inner-connections (solid line)
between feature points define a complex geometric feature and in the high level, the
outer-connection (dashed line) between geometric features defines different geometric
constraints.

conference paper in ICRA 2019 [72] and elaborated mainly in Chapters 3 and

7.

(4) How to learn generalizable task representation? Additionally, we are in-

terested in generalizable task representation learning using human demonstra-

tion videos under different task settings. Our intuition is geometric constraints

that specify a task stay the same under different task settings, such as in the

hammering task using different hammers. We propose a method that uses

the task specification correspondence (explained below in Section 1.3) to learn

generalizable task representations from several human demonstration videos

using different objects. Our proposed method is introduced in Chapters 6 and

7.

To summarize, the keywords of the thesis are robotic task specification,

representation learning, sample-efficient learning and task generalization.

1.3Concept of geometric task representation

A key contribution of this research is our proposed geometric task representa-

tion. We explain the details as below.

Representation: Generally, an arbitrary geometric constraint is a binary

relationship between two geometric primitives (point, line, conic and plane)

observed in image space or point clouds. Considering the difficulty of repre-

senting complex geometric primitives using neural networks and that complex

geometric features can be further decomposed to discrete points, then a ge-

11
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ometric constraint can be represented as a multi-entity relationship between

feature points (Fig. 1.8). This relationship can be encoded using an undirected

graph G = {V,E}, with each graph node v ∈ V representing an image feature.

The connections E between graph nodes define (1) how complex geometric

features are constructed from feature points; (2) how geometric features are

associated as a geometric constraint. This way, we use a graph to encode the

relationship between image features to represent a geometric constraint. We

call this approach geometric task representation, as shown in Fig. 1.8. The

graph structure that encodes the multi-entity relationship to represent each

geometric constraint is derived in Chapter 5.

Generalization: We explain how geometric task representation enables

task generalization. The key is the task specification correspondence which

means given the same task, geometric constraints from different task domains

should be the same. For example, given task T , the task-relevant image fea-

tures on categorical objects compose similar graphs that define the same ge-

ometric constraints. Thus, generalizable task representation learning can be

fulfilled. This part is elaborated in Section 6.

Scalability: Geometric task representation has the scale up ability to

represent complex tasks since different types of geometric constraints can be

further combined or chained. Moreover, since they are encoded using graphs,

extending them will scale up to define more complex tasks.

Linkage to controllers: Geometric task representation enables efficient

robot controller design since each geometric constraint has its corresponding

geometric errors (Fig. 1.2E), which can be used in visual servoing, uncalibrated

visual servoing, or alternatively a policy training that maps geometric errors

to robot actions. Using a geometric task representation in control is more

efficient than encoding an image as task-irrelevant features by VAE [80] or

forward prediction-based methods [107].

12
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1.4Methodology

Learning geometric task specifications: We formulate the problem of

learning geometric task specification from data as a representation learning

problem that can be solved by approximating a graph-structured task function

T . Formally, T is defined as a mapping from image observation ot to a d-

dimensional latent vector zt which encodes the task definition, T : ot → zt,

where ot ∈ Rw×h×c, zt ∈ Rd, and w, h, c are image width, height, and channels

respectively.

Introducing a geometric task structure into the task definition zt is done

by adding a graph structured priori G to the task function T . Specifically, let

G = {V,E}, which is an undirected graph that defines a geometric constraint

type with nodes V relating to image features and edges E relating to their

inner-connection and outer-connections (Fig. 1.8). Therefore, a task function

T is defined as:

zt = T (ot|G) (1.1)

, which means T selects image features to fit the graph nodes V to construct

a geometric constraint. T is called task function because it specifies the task

by geometric constraints. So its output zt is the compact vector represent-

ing the graph that describes the geometric constraint. zt is computed by a

graph neural network given a graph structure defined by G and image fea-

tures selected by T as the graph nodes. Chapter 5 discusses the design of the

graph-structured task function for each geometric constraint.

Meanwhile, applying the local coordinates of image features to the graph

defined geometric constraint will output geometric errors Et ∈ Rk, where k is

the degree of freedom that a geometric constraint contributes. Examples of

computing Et for each geometric constraint type are included in Chapter 7,

Section 7.2.

Learning from human demonstration videos: To optimize the task

function cost-effectively, we apply unsupervised learning from human demon-

13
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stration videos. Our learning approach does not need to run sample collec-

tion on the robot, which avoids robot hard wear-out and the tedious human

kinesthetic teaching or teleoperation. The unsupervised learning clue is the

temporal-frame-orders in human demonstration videos, similar to the expert

assumption in inverse reinforcement learning (IRL) [6]. It makes unsuper-

vised learning of the task function from human demonstration videos pos-

sible. Our method is formulated as Incremental Maximum Entropy-Inverse

Reinforcement Learning (InMaxEnt-IRL) in Chapter 3 and Visual Geometric

Skill-Imitation Learning (VGS-IL) in Chapter 5.

Generalizable task representation: The graph-structured task function

facilitates task generalization by extracting task-relevant geometric constraints

on different objects with the same task functionality. This is called task spec-

ification correspondence since the geometric constraints from different task

domains define the same task. We propose Categorical Object generalizable

VGS-IL (CoVGS-IL) to build task specification correspondence between cate-

gorical objects. CoVGS-IL learns generalizable task functions using different

human demonstration videos with categorical objects, thus fulfils generalizable

task representation learning.

System: Lastly, we combine each module together as a geometric task learn-

ing system, which is described from system architecture, data collection, train-

ing and real-world deployment, forming a conceptual prototype of a real-world

geometric task learning system.

1.5Contributions

Our research contributions are as below:

• We propose Incremental Maximum Entropy-Inverse Reinforcement Learn-

ing (InMaxEnt-IRL, Chapter 3), an unsupervised learning method that

optimize a task function from human demonstration videos using the

emporal-frame-orders between frame transitions.

14
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• We propose Visual Geometric Skill-Imitation Learning (VGS-IL, Chap-

ter 5), an imitation learning method that learns geometric task structures

from human demonstration videos. Specifically, VGS-IL uses a graph-

structured task function to represent geometric constraints, and learn to

select out task-relevant geometric constraints from human demonstration

videos using our proposed InMaxEnt-IRL.

• We propose Categorical Object Generalizable VGS-IL (CoVGS-IL, Chap-

ter 6), which learns a generalizable task representation by building the

task specification correspondence (as defined in Section 1.3) between cat-

egorical objects. Specifically, CoVGS-IL uses a graph-structured task

function to select out task-relevant image features on categorical objects

with the same task functionality, thus fulfilling task generalization.

Other contributions include: (1) this is the first work that empirically stud-

ies the task specification capability of geometric features on recently proposed

real-life task datasets (Chapter 4). (2) We provide a detailed description of how

to deploy a geometric task learning system on a Kinova Gen3 robot (Chapter

7), which takes an input of human demonstration videos, learns the geometric

task structure and outputs joint velocity commands that guide the robot to

fulfil the task.

1.6Thesis outline

The remaining chapters are organized as follows.

• Chapter 2 reviews different robotic task specification approaches and ge-

ometric task specifications in robotics. Then we highlight our appproach

among the current methods.

• Chapter 3 introduces InMaxEnt-IRL, an algorithm that uses temporal-

frame-orders in human demonstration videos to optimize a task function.

We give an elementary example by using a basic convolutional neural
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network to parameterize the task function. Limitations of such parame-

terization give clues to the design of a graph-structured task function in

Chapters 5 and 6.

• Chapter 4 studies the task specification capability of geometric con-

straints using real-life task datasets. We find using only points and lines

has the same task speciation capability as using general and complex

(conics, planes) geometric features. Meanwhile, we answer the question

about how many geometric constraints are sufficient to define a task.

These findings guide our neural network design of the task function in

Chapters 5 and 6.

• Chapter 5 introduces VGS-IL, a method that learns task-relevant geo-

metric constraints from human demonstration videos.

• Chapter 6 introduces CoVGS-IL, a method that learns generalizable task

representation by building task specification correspondence between cat-

egorical objects.

• Chapter 7 assembles each proposed module, described from system archi-

tecture, data collection, training and real-world deployment, introduce a

real-world geometric task learning system.

• Chapter 8 concludes the thesis, discusses our method’s limitations, and

describes the future direction.

1.7Publication note

This thesis is based on our previous publications. Details are as follows.

Chapter 3 is based on our previous publication as [72]. Changes have been

made include correcting several typos, adding more descriptions on the method

and experiment details in the evaluation. Chapter 5 is based on our previous

two publications as [75] and [73]. Changes have been made include combining

the two papers systematically, deleting overlapping contents, adding details

about the geometric constraint’s graph structure design, and adding more

16
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details in the experiments. All the other chapters are our new contributions

and are planned for publication (details are listed in the Preface page).
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CHAPTER 2

Literature review

2.1A survey of robotic task specification

2.1.1Overview of methods

Based on how a task is specified, current robotic task specification methods

can be categorized into four types: (1) methods that rely on human hand

specification; (2) methods that require human design a reward/cost function;

(3) methods that require trajectory level design of tasks1; (4) methods that

use human demonstration to specify tasks.

Alternatively, based on the observation space dimensionality, current meth-

ods can also be divided into two categories, (1) methods that work for high

dimensional observations, such as images or point clouds, and (2) methods

that only work for low dimensional observation, such as object poses and

robot states.

Furthermore, based on the learning level of robot motions, current methods

can also be divided into two types, learning low-level motion skills and learning
1The trajectory level design category actually shares many commonalities with the other

three, but it is listed separately since many impactful works [12, 65] have been proposed
under this category.
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Human specify Human demonstrations
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dim 
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dim 
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Select features
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specification

Specify target image / state

① Feature based VS ② Direct VS

⑤ Visual Servoing

⑥ HRI ⑦ Knowledge Graph

Semantic task specification

⑧ Policy learning ⑨ Pre-recorded motions

Reward/cost design
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⑫ IRL ⑬ BC ⑭ LfD
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⑱ Spline-based, ⑲ HMM, ⑳ GMM, ㉑ DMP

㉓ MoMP㉒ CST

Trajectory design

③ Goal 
conditioned 

RL

Goal conditioned 
task specification

④ UVS

⑮ One-shot ⑯ Zero-shot

Reward function

Cost function

Trajectory 
fitting/learning

Categories of task specification Task specification interface Forms of task definition

Methods on low-level motions Methods on high-level action composition Ours approach

Links to motion controllers Link to a method Implicit link to a method

Figure 2.1: A survey of robotic task specification research. Current methods can
be categorized based how a task is specified (shadowed in light blue color), whether
a method can work with high-dimensional observations (marked with grey arrows),
and if a method learns the low-level motions (shadowed in light grey color) or the
high-level action compositions (shadowed in light orange color). A total number of
21 methods are summarized. Table 2.1 gives a description and the citation of all
the methods mentioned above. Chapter 2, Section 2.1 reviews the details of each
method.

high-level action compositions, such as complex tasks that require sequential

linking of motion primitives.

A summary of method categories is shown in Fig. 2.1. Different colours

mark different category types and the characteristics of the method. Table

2.1 summarises the methods mentioned in Fig. 2.1. Detailed analyses are as

below.

2.1.2Human involved task specification

This category of methods requires humans to hand specify tasks. Based on the

form to represent the task definition, approaches in this category can have three

types: (1) representing task definition using geometric task specification [20,

54]; (2) representing task definition using semantic task specification [110, 161];

(3) representing task definition using a goal conditioned task specification [22,
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# Metehods Comment

1 Hutchinson et al. 1996 [64] Feature based visual servoing

2 Chaumette et al. 2006 [22] Direct visual servoing

3 Schual et al. 2015 [127] Goal conditioned RL

4 Jagersand et al. 1997 [68] Uncalibrated visual servoing

5 Chaumette et al. 2006 [22] Visual seroving

6
Guerin et al. 2016 [79],

Paxton et al. 2017 [112]

HRI approaches, use AR/VR/Touch Screen to

construct robot tasks

7 Paulius et al. 2016 [111]
Knowledge graph based appraoches,

use knowledge graph to generate task plans

8 Saxena et al. 2014 [126]
Map the semantic task specification to robot actions

by an extra policy learning module

9 Leidner et al. 2012 [88]
Map the semantic task specification to robot actions

by pre-recorded trajectories

10 Sutton et al. 2018 [141] Reinforcement learning, task specified by the reward function

11 Camacho et al. 2013 [17] Model predictive control, task specified by cost function

12 Abbeel et al. 2004 [6] IRL, Inverse reinforcement learning

13 Argall et al. 2009 [7] BC, Behavior cloning, supervised learning

14 Billard et a. 2004 [12]
LfD, Learning from demonstration,

PbD, Programming by demonstration

15 Finn et al. 2017 [40] One-shot visual imitation learning

16 Pathak et al. 2018 [108] Zero-shot visual imitation learning

17 Stadie et al. 2019 [140]
3rd person view visual imitation learning,

learning by watching human demonstration videos

18 Miyamoto et al. 1996 [103] Spline-based, using spline to cast motion characteristics

19 Williams et al. 2008 [152] Using HMM to learn motion pritimives

20 Calinon et al. 2007 [16] Using GMM to cast motion characteristics

21 Ijspeert et al. 2013 [65]
DMPs, dynamical movement primitives to

represent robot motions

22 Konidaris et al. 2010 [81]
CST, constructing skill tree,

an options based method for skill chaining

23 Mulling et al. 2013 [105]
MoMP, mixture of motor primitives. A method to select

motion basis and use them to compose new motions.

Table 2.1: A list of methods mentioned in Fig. 2.1.
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A B C

Figure 2.2: Task specification examples in research. A: A VR/AR robotic task
teaching system from JHU [79]. B: A task tree based task specification system,
coSTAR from JHU [112]. C: A knowledge graph constructed by annotated human
demontration videos [111].

127].

Ordered by how general these methods can specify a task, semantic task

specification is the most general form to represent a task, however, it is the

most difficult one since its hierarchical structure commonly requires human-

engineered sub-modules [88] or additional policy training when map the se-

mantic task definition to robot actions [126]. Geometric task specification is

the second general method, but it is controller-friendly since its output geomet-

ric errors are compact and task-relevant. Goal conditioned task specification

has the lowest generality, it only works by assuming a task can be specified by

a target image or state does not generally apply in many tasks.

We review each category type as follows.

Semantic task specification approaches: Approaches using semantic task

specification can generate the semantic task plan either from an HRI (human-

robot interface) device, such as AR/VR [79] and touch screens [112] or from a

pre-obtained knowledge graph or behavior tree. For example in HRI research,

using an AR/VR device (Fig. 2.2B) enables humans to specify a task by defin-

ing each motion, each gripper action visually [79]. Using a touchscreen-based

task tree (coSTAR) (Fig. 2.2C) [112], humans can drag and construct tasks

by the pre-defined modules.

In approaches that build robot knowledge graphs (Fig. 1.3 A), researchers
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use massive data annotation from images or point clouds to extract task se-

mantic graphs [111] by the method of ontology that views object instances as

graph entities and object affordance as node properties. Then a new task can

be planned using the pre-obtained knowledge graph. The semantic approaches

commonly face difficulties when mapping the semantic task meaning to robot

actions. There are two ways that map semantic task specification to robot ac-

tions. (1) Training a standalone policy but requires additional samples for each

task [126]. (2) Using pre-recorded robot motions but has the trajectory gen-

eralization issue when initial task settings are different from the pre-recording

conditions [88]. Further combing LfD (learning from demonstration) methods

will address this issue.

Geometric task specification approaches: In approaches that use geo-

metric task specification (Fig. 1.3 B), human needs to hand-select task features

and specify types of geometric constraints. This form of task specification is

closely related to geometric vision-based controllers (visual servoing [22]) that

virtual linkage maps observed feature motions to robot actions. Visual servo-

ing that takes in this form of task specification is called feature-based visual

servoing. Besides, in the uncalibrated camera scenario, geometric task specifi-

cation can also be used in uncalibrated visual sevoing [50]. Our work applies

a similar approach in the thesis.

Goal conditioned task specification approaches: In approaches that

use goal conditioned task speciation, human is required to specify a target

image or target state. The corresponding controllers are DVS (direct visual

seroving [22]) and goal conditioned RL [127]. Direct visual servoing drives

robot motions by computing the relative pose (homography) between the tar-

get image and the current image observed by an eye-in-hand camera, There-

fore, it requires the target and current image to be similar, which means their

relative distance should be under a threshold given a distance metric. As a

comparison, goal conditioned RL augments the state with goals and specifies

the task via a reward function. It does not need to limit the distance between
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Reward function design 
for the peg-in-hole task

Figure 2.3: Reward function design example of a peg-in-hole task [87]. Each
hyperparameters in the reward function determines if the learnd policy can finish
the task successfully.

the current and target state. However, the training itself needs massive data

and challenges to be done on real-world robots.

2.1.3Task specification via reward/cost function design

Methods fall in this category specify a task in a more general way than methods

fall in the first category. However, as the “no free lunch” theorem, indicates,

it brings extra challenges when applied in robot learning. For example, the

reward shaping problem in reinforcement learning (RL) [141], does not only

matter sample efficiency, policy generalization, but also maters the fundamen-

tal part—how should the agent learn the correct behaviour that we specified.

In some literature, this phenomenon is called reward hacking. For another ex-

ample, in model predictive control (MPC [17]), the design of the cost function

also affects if the robot will finish the task as we expected. Tedious tuning

efforts are required in design an MPC controller.

2.1.4Task specification via trajectory design

Methods that fall in this category include the early approach in industrial

robots that require point, line and arc parameters to define the robot’s 3D

trajectory and semantic task specification approaches that use pre-recorded

robot trajectories to map the semantic task meaning to robot actions.
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A B

Figure 2.4: Task specification examples in research. A: Robot learns striking
motion by explict modeling the motion primitives using MoMP (mixture of motion
primitives [81, 105]). B: Robot learns flipping pan skills [83] by encoding human
demonstrated motions as DMPs (dynamic movement primitives [65])

Moreover, there are various approaches in learning from demonstrations

(LfD [12]) or learning by programming (PbD) that learn the characteris-

tics of human demonstrated trajectory. Methods include spline-based [103],

HMM (hidden Markov model)-based [152], GMM (Gaussian mixture model)-

based [16] and DMP (dynamical system motor primitives)-based [65] approaches.

These methods focus on the trajectory level, take efforts to build different mod-

els (spline, HMM, GMM, DMP) in order to cast the characteristics of human

demonstrated motions. However, these methods only work on low-dimensional

space that requires known object pose and robot states. It still remains chal-

lenging to directly learn trajectory properties from raw image observations.

2.1.5Task specification via human demonstration

Methods that fall in this category have a basic assumption that human demon-

strators are experts and their demonstrations define the task itself. This aligns

with our approach in the thesis.

Generally, methods can be divided into two types, (1) demonstrations that

include robot actions via kinesthetic teaching or teleoperation; (2) demonstra-

tions that do not have any robot actions and are collected merely by humans

showing the task. The first type has the most research focus and proposed

works.
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Data collected via kinesthetic teaching or teleoperation: The first

type can have many tricks to play since robot actions are included.

In IRL (Inverse Reinforcement Learning [6]), via the “expert assumption”,

we can learn a reward function from human demonstration, and jointly op-

timize the reward function and the policy. Therefore, IRL is typically not

sample-efficient since it involves not only optimizing the reward but also the

policy.

In BC (behaviour cloning [8]), we use supervised learning that maps obser-

vation to robot actions by learning a regressor. Behaviour cloning commonly

will overfit to the demonstrated samples.

In addition to IRL and BC, when methods learn from video frames in

human demonstrations, we call this approach visual imitation learning. Meth-

ods include one-shot visual imitation learning [40], which uses thousands of

human kinesthetic teaching data to learn the shared mechanism of state to

action mapping between different tasks, —meta-learning. Zero-shot visual im-

itation learning [108] follows a decoupled “what” and “how” learning paradigm

and represent the task using a goal conditioned neural network,

The last category that falls in this data type are methods in LfD (learning

from demonstration) and PbD (programming by demonstration) [12], which

have fruitful works proposed. This type of learning includes learning can be

divided into learning low-level individual motions and learning the high-level

action compositions. The first types of learning focus on understanding the

task from the trajectory level. Methods including spline-based [152], GMM-

based [16] and DMP-based [65] approaches, which are introduced previously.

The second type uses pre-learned motions to compose higher-level and complex

actions. For example, MoMP (mixture of motor primitives) composes a new

motion by a linear combination of motion basis in a pre-trained motion library.

CTS (constructing skill trees) detects the changing point in human demon-

strated motion trajectories and uses them to chain the motion trajectories,

thus builds a skill tree by constructing options automatically.
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Data collected via human showing the task: The second type, also

known as 3rd-person-view visual imitation learning [140], commonly suffers

from the “correspondence problem” [7] that humans and robots essentially

have different kinematic mechanisms. In theory, it is impossible for the robot

to imitate the mapping from observation to actions. Therefore, a common ap-

proach is a decoupled “what” and “how” learning paradigm that assumes the

task definition can be learned and can be transferred from human demonstra-

tor to robot imitator. Then using a pre-defined controller, or a conventional

controller like UVS [68], or learning a policy, to map the task definition to

robot actions. Our work applies a similar approach. The difference is that we

introduce geometry as a structural prior when learning the task definitions.

2.2Task specification using geometric constraints

In robotics, representing a task using geometric constraints was firstly studied

in visual servoing [22]. Research started with two-point coincidence and soon

expanded to point-to-line, line-to-line, more geometric features (planes, conics,

cylinders) and hierarchical structure linking [29] of the geometric constraints.

Fig. 2.3 shows tasks that are defined using geometric constraints.

Assumptions: Task specification by geometric constraints has the following

two assumptions. (1) A task can be refined by the association of geometric

features on objects, tools, and robot end effectors. (2) All the features can

be simultaneously observed in the same camera system. A quantitative study

of the task specification capability using geometric constraints is included in

Chapter 3.

2.2.1Geometric constraints:

Let’s define the robot workspace as W ∈ SE(3) and camera view space as V

which are basically features observed in the image plane. A task is defined by a

list of geometric features {f1, f2, . . . , fn} and their geometric constraints. For

example, fi can be a point, line, plane or conics. Their geometric constraints
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Figure 2.5: Tasks defined using geometric constraints [59]. Top row shows
schematic examples and bottom row shows real-world image observations. Left:
a socket plugin task is defined by three point-coincidences. Middle: a screwdriver
task is defined by a four-point-collinearity. Right: a disk insertion task is defined by
P, S, T, P’ being coplanar and P, S coincidence with P’, S’.

Figure 2.6: Examples of geometric constraints.

can be point-to-point coincidence, point-in-line, three-point-collinearity, four-

point-coplanarity, line-to-line parallelism and perpendicularity, point-in-plane

and etc., as shown in Fig. 2.6.

For simplicity, Let’s define feature list {f1, f2, . . . , fn} as f , and F as non

empty subset of Vn which means the Cartesian product of V for n times, and

f ∈ F . We call F as the admissible space. For example, F for point-to-point

constraint consists of all possible two-point combinations of the feature points

observed in the image plane V . A geometric constraint is a feature list f ∈ F

combined with a feature relationship structure, such as point-to-point is a two

feature connection relationship.
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2.2.2Task function:

A task function is defined as T : f 7→ [0, 1], f ∈ F . A geometric task function

T maps a set of features in admissible space to 0 or 1 values.

A task specified by T is the equation T (f) = 0, if which holds, we say a

task is accomplished at f . Note here 0 means task accomplishment since this

is measured by minimizing the geometric loss error to 0 as shown in visual

servoing literature [20, 64, 68]. Let’s give some examples.

Let Tp2p designates two point coincidence task, denote Fp2p
def
= V×V , f ∈ F .

Let f = {f1, f2}, where f1, f2 are two feature points observed in image. Now

n = 2, by the rule which maps:

f 7→

{
0 the corresponding 3D points in W of f1 and f2 are the same.
1 otherwise

(2.1)

Tl2l is a geometric task function defined on Fl2l
def
= V × V . f = {f1, f2} is a

set of two line features that are mapped according to:

f 7→

{
0 the corresponding 3D lines in W of f1 and f2 are parallel.
1 otherwise

(2.2)

Tcol is a geometric task function defined on Fcol
def
= V × V × V that maps

f = {f1, f2, f3} according to the rule:

f 7→

{
0 the corresponding 3D points in W of fi are colinear.
1 otherwise

(2.3)

Fig. 2.5 shows three examples of how a task can be defined using geometric

constraints.

Therefore, the above task function plays the role of selecting geometric

features to fit in the geometric constraint and output geometric errors for the

controller. But it does not have an encoder that represents the selected geo-

metric features and their relationships. This thesis extends the task function

to a graph-structured neural network that selects out task-relevant geomet-

ric features and encodes the whole graph as the representation of geometric

constraints.
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2.2.3Task construction:

More complex tasks can be constructed by task operators and task changing.

Following [54], we define the following task operators:

• Complement: ¬k(f) def
= 1− k(f), perform the opposite of task k(f).

• Disjunction: (k1 ∨ k2)(f)
def
= k1(f)|k1(f), perform task k1(f) or k1(f).

• Conjunction: (k1 ∧ k2)(f)
def
= k1(f)|k1(f), perform task k1(f) and k1(f).

Following [29], we can also construct hierarchical tasks by a task chain-

ing link:A = (Einit(.),M,Efinal(.)) [29], where Einit(.) and Efinal(.) represent

perceptual conditions and final configurations of a task T (f).

Here E is image-based sub-task encoding using basic geometric constraints

defined above. M describes a maintaining constraint, e.g., maintaining grasp-

ing, avoiding joint limits/singularity. M is not limited to projective geometric

constraints, but any equational constraints that can drive control, for exam-

ple, a “up” motion defined in robot base coordinate frame. As a result, a

sequence {A0, A1, A2, ...} represent a chained task. Likewise, we can generate

a tree-structured task hierarchy [29].

In this thesis, we only consider conjunction operators on geometric con-

straints. We leave other task construction methods as future directions to

explore.

Figure 2.7: Examples of task function surjective mapping [59], which means mul-
tiple sets of geometric constraints can define the same task. For example, the same
disk insertion task can be defined as shown in Fig. 2.5. Alternatively, it can be de-
fined as three point-coincidences in (1), or two point-coincidences with a line-to-line
parallelism in (2) and (3).
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Task surjective mapping: Task specification using geometric features is a

surjective mapping from F to the task definition, which means multiple sets of

geometric features can specify the same task definition. As shown in Fig. 2.7,

the alignment task can be defined by four point-coincidences or three point-

coincidences, or two point-coincidences combined with two-line parallelism.

Projective ambiguity: For a given camera system, not all tasks are de-

cidable because of projective ambiguity. This is because the task execution

happens in the 3D robot’s workspace W but a task function uses point and

line features in V which are on the 2D image plane. For example, as shown in

Fig. 2.8, we use image coordinates to decide if two points coincide, but there

are situations where two different 3D points in W are observed as coincidence

because of the camera’s projective transformation. [59] gives an elaborate

analysis of the projective decidability problem. Since adding multiple view

camera systems will easily solve the problem, in this thesis we don’t consider

projective ambiguity that when a task is visually achieved from the image

observations, we mark the trial as success.

Figure 2.8: Example of projective ambiguity and its related decidability [69]. The
pen tip falls in line as observed from (1) and (2) cameras, however it’s far from the
lines when observed in a slightly top-down view. This examples also shows projective
ambiguity related task decidability. Designing a more multiple-view-camera system
will solve the problem.

2.2.4The virtual linkage to robot actions:

The virtual linkage (Fig. 2.9) maps the motion of task-relevant features ob-

served in the 2D image space to robot actions using the camera’s geometry

model — the perspective projection model. This mapping is called the vir-

tual linkage in visual servoing [21, 22], which is explicitly expressed using an
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Figure 2.9: The virtual linkage that maps task-relevant features observed in the
2D image space to robot actions using the camera’s geometry model [21].

interaction matrix.

2.3Summary: how this research stands out

On the learning paradigm level, this thesis employes a decoupled “what” and

“how” approach that learns a task function from human demonstration videos

and enables an efficient controller design by the graph-structured task function.

This learning paradigm significantly reduces the training cost of real-world

robot learning.

On the technique level, this thesis focuses on geometry-based task spec-

ifications. We introduce graph structures to the task function design that

enables learning task-relevant geometric constraints from human demonstra-

tion videos. The geometric constraints are represented as image feature-based

graphs. Compared to a direct approach learning from image pixels, such a

graph-structured task function makes more sample efficient training and brings

in generalizable task representation since the structure encodes the task defi-

nition which can be used to build “task specification correspondence” for task

generalization.
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Task function approximation using
human demonstrations

TL;DR:

“Task function, which encodes the task definition, is learned from

raw video frames by assuming the temporal-frame-orders in human

demonstration videos.”

We present incremental maximum entropy inverse reinforcement learning

(InMaxEnt-IRL) that directly learns visual task specifications by watching

human demonstrations. Task specification is represented as a task function,

which is learned by maximizing the entropy distribution of observed state

transitions in the expert trajectory. The learned task function’s output is

then used as continuous feedbacks in an uncalibrated visual servoing (UVS)

controller designed for the execution phase.

This chapter will also give the formation of task function that is used to

encode task definition from an image state and learned from human demonstra-

tion videos. For simplicity, we gives a case study that directly parameterizes

the task function using convolutional neural networks without any structural
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inductive bias. Analysis in Section 3.5.5 will show its drawbacks which mo-

tivate us to further improve it by introducing geometric task structure as an

inductive bias to the task function design—a graph-structured task function,

which is elaborated in Chapter 5.

3.1Introduction

As discussed in Chapter 1, Section 1.2, a learning paradigm that uses only

human demonstration videos has a zero training cost of robot hardware wear-

out but suffers the “correspondence” problem when mapping the observations

to actions. Motivated by “peer learning” or “observational learning” [15] in

human experience that humans can quickly grasp the task definition—“what is

the task”—by merely watching others, and then practice the task individually

through multiple success or failure attempts. We propose first to learn a

task function, which encodes the task specification by measuring how good

or bad the observed state transition is. Then, let the robot try the learned

task function online that approximates the Jacobian, which maps the task

function’s output to robot joint actions.

The proposed method decouples learning “what is the task” from human

demonstration videos and “how to do the task” from online robot trials, sig-

nificantly reducing the number of training samples needed from real-world

robot-environment interactions. Fig. 3.1 shows an overview of the learning

paradigm.

Lastly, a case study that uses a convolutional neural network to parame-

terize the task function is given and evaluated under four different tasks under

various task/ environmental setting changes.

3.2Related works

Since our approach is unsupervised learning from unlabeled human demonstra-

tion videos, it is worth firstly reviewing the unsupervised learning signals used

in the state-of-art human video understanding research in computer vision.

The answer is the time clues in human demonstration videos.
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Figure 3.1: Our proposed method firstly learns a task function from human demon-
stration videos. The learned task function receives real-time video streams and out-
puts a task-relevance score vector ∆zt, which is used as continuous feedbacks in a
close-loop UVS controller to guide robot motions in the execution phase.

Time clues in human demonstration videos: Using different time clues

in human videos is not new in computer vision tasks like human activity clas-

sification and human video understanding. Overall, current approaches can

be divided into two categories: using time clues in the local frame transitions

and the global frame transitions.

For example, in the case of local frame transitions, the time clue of temporal-

frame-orders are used to characterize human motions in video frames. Wei et

al. 2018 [149], used optical flow and supervised learning applied on the lo-

cally selected consecutive T frames for the human activity analysis. Carreira

et al 2020 [19], stack the local T frames as 3D-conv-nets that encodes the

temporal-frame-order for human activity classification tasks.

Other works see the importance of characterizing the overall frame transitions—

global transitions. For example, Dimitri et al. 2020 [171] propose “global-

informative-score” of the whole video sequence as a clue for a video classi-

fication task. Cao et al. 2020 [18] propose a whole sequence matching tech-

nique for few-shot-temporal-alignment. Materzynska et al. 2020 [101] proposes

“something-else”, which analyze human-object interactions in the whole frame

sequence that encode task goal by modelling geometric relationships between

objects. This approach directly models the task goal as the characteristic of

a human activity video, is similar to our approach that model task definitions
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by geometric feature relationships in Chapter 5 and 6.

Task specification in visual servoing: This work was inspired by research

advances in visual servoing, including defining a task function using geometric

constraints [26, 30, 49, 55, 117], direct visual servoing (DVS [136]) method

to remove the tracking challenge, and increasing generalization ability in vi-

sual servoing [10] using deep neural networks. DVS is very similar to our

approach. However, it relies on a planar assumption and an inconvenient task

specification process.

Inverse reinforcement learning (IRL) IRL seeks to derive a reward func-

tion from observable actions and is closely related to learning from demonstra-

tion (also known as imitation learning or apprenticeship learning) [6]. This

learned reward function is synonymous with the visual servoing error func-

tion, notwithstanding the scalar output of the reward function. In contrast,

the error function outputs a vector with dimensionality determined by task

DOF. Maximum entropy IRL was proposed to manage the problem of sub-

optimal demonstrations [172], and Wulfmeier et al. 2015 represented the re-

ward function using neural networks to handle non-linearity [155]. A challenge

still exists in estimating the partition function Z, since it must solve the en-

tire Markov Decision Process (MDP); this can be computationally expensive

and unfeasible to generalize in a large action space or under unknown system

dynamics. Finn et al. proposed an iterative solution using importance sam-

pling to approximate a soft optimal policy[38] and recent works revealed the

connection between IRL and generative adversarial networks (GAN) [39, 60].

Limitations of learning-based approaches have been detailed in Section1.

Robot learning by watching human demonstrations This approach,

commonly known as visual imitation learning [6], has been recently gaining

interest. Sermanet et al. presented TCN [131] to learn from contrastive pos-

itive and negative frame changes over time. Yu et al. proposed a meta-

learning-based method [164] to encode prior knowledge from a few thousand
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human/robot demonstrations, then learned a new task from one demonstra-

tion. End-to-end learning approaches lack interpretability. Our approach is

similar to TCN but different in the controller design that we TCN separately

trains a controller on the robot. In contrast, our approach maps the learned

task encoding to robot actions using uncalibrated visual servoing.

In addition to the recently proposed end-to-end approaches, hierarchical

methods that extract the semantic task definition from human demonstration

videos have nearly two decades of research. Such approaches try to generate

human-readable symbolic representations at a semantic level [27, 158, 161]

to provide high-level task planning, which is important for generalizability.

Ikeuchi et al. presented a general framework [66] that relies on object/task/-

grasp recognition to generate assembly plans from observation. Modern ap-

proaches use a grammar parser [161], causal inference [158], and neural task

programming [160]. Konidaris et al. proposed constructing skill trees [82] at

the trajectory level to acquire skills from human demonstration using hierar-

chical reinforcement learning (RL) with options. This work presents a general

framework to learn a tree-level structured task. However, such works require

hard-coded recognition submodules or lack generality in various tasks.

3.3InMaxEnt-IRL: learning task function from
human demonstration videos

We propose Incremental Maximum Entropy inverse reinforcement learning

(InMaxEnt-IRL) to learn the task function from demonstrations. We utilize

the same entropy maximization principle of the “expert assumption” in inverse

reinforcement learning (IRL).

Unlike most IRLs that optimize on the whole trajectory level, our method

learns from state observation transitions [43, 94, 129] which has the potential

of bringing a better generalization ability [43]. Since it learns on the state

observation level, changes between successive observations can be incremen-

tally stacked with increased human demonstrations. For simplicity, we use one

demonstration in this section to derive the basics.
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3.3.1Terms and definitions

Firstly, we give the terms and definitions as below:

Task function: Let a task function T maps an arbitrary high dimensional

observation oi to a latent vector zi ∈ Rd, where d is the dimension of the

latent vector. We denote a task function as: zi = T (oi), where zi is the task

embedding since it describes the task. The latent vector zi will be linked to

the task by a score function as stated below.

Score function: Given two arbitrary state observations oi and oj, and

their corresponding task embeddings zi and zj, we define a score function R

that maps the observation change tuple (zi, zj) to a scalar score rij ∈ R, where

rij measures the task relevance weighting score: R : (zi, zj) → rij. Linking

the score function with the task function, we have: rij = R(T (oj), T (oi)). For

computation convenience, we bound the rij into the range of [−1, 1]. The

higher rij, the more task relevance that the change from oi to oj contributes.

Since the final learning signal is rij, in practice, we link the task function

T and score function R as one function φ with parameter weights θ. So, we

have:

rij = φ(oj, oi|θ) (3.1)

Apparently, without any supervision signal, the above function could en-

code any information. In order to ensure T and R extract task-definition

related information, let us plugin human demonstrations.

Temporal-frame-orders assumption: Given an expert demonstration

τi. Let ot denotes the raw image observation sampled at time t, and τi = {ot}.

Because of the “expert assumption” in the human demonstrated trajectory, an

observed state transition from ot to t+1 is a positive change pair (ot → ot+1). Its

corresponding task relevance score, r∗t = φ(ot, ot+1) represents expert changes

that will contribute to a high task relevance score. This is the temporal-frame-

orders time clue that we used to optimize the task function.

Generic actions: A generic action atj is defined as any actions that cause

state transition from ot to oj, regardless of where they are from, human or
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robot. So a generic action is independent of a specific robot or human, it gen-

erally indicates a state transition. The mapping from generic actions to par-

ticular actions (e.g., joint velocity, torques) is done by a traditional controller

in our method. Policy learning methods can also be used (e.g., RL[113]).

3.3.2Boltzmann Distribution with Human Factor

Next, we model the oberved state change behaviour in human demonstrations

as a Boltzmann distribution that measures expert’s preference over the se-

lection of trajectory states. A Boltzmann distribution is commonly used in

maximum entropy-based IRL [172] to model a human demonstrator’s pref-

erence. Unlike IRL [172] approaches that model human preference over the

trajecotry leve, we measure the expert’s preference in the state transition level

in that how a generic action is selected during demonstration that causes state

changes from ot to ot+1.

We assume that in a human demonstration, at state ot, the probability of

transiting to the observed state ot+1 follows a Boltzmann distribution:

p(ot+1|ot) =
1

Zt

exp(r∗t )p(r
∗
t ), (3.2)

where r∗t is the score of this observed state change, and

Zt = Ertj∼p(rtj ;r∗t )
[exp(rtj)] (3.3)

, is the partition function, rtj measures the score of state transition from ot to

an arbitrary state oj, and rtj ∼ N (r∗t , σ
2
0) is a truncated normal distribution

within range [-1,1]. This means that the expert prefers the action with the

highest score among all possible generic actions At ={atj}.

σ0 is a human factor prior since it varies with the human demonstrator’s

confidence and used to tackle the “imperfect expert demonstrations” as ex-

plained below.

3.3.3Imperfect expert demonstrations

The temporal-frame-orders assumption does not always hold in practice since

perfectness is hard to be guaranteed. Considering imperfect expert demon-
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strations, we introduce σ0) as the human factor prior in the euqations above

that refers the demonstrator’s confidence α during the demonstration.

The confidence level α will have a resulting variance σ0, where a high

confidence level corresponds to low σ0, vice versa. For example, if an expert

is pretty sure about what actions are optimal at ot, he is selecting only from

a small set of candidate actions. On the other hand, if he/she is unsure what

actions are ‘good’, the expert will have a hard time making decisions since

the candidate action pool becomes large. We measure this behaviour using a

Boltzmann Distribution with Human Factor as stated above.

The role of human factor σ0 casts how stronger the expert assumption is. It

will determine how much effort we should invest in optimization. Obviously, if

an expert is very confident in his/her demonstrations, we should invest greater

efforts in optimization since we know it’s promising. On the contrary, if an

expert is more indecisive in the demonstration, we should invest less effort in

optimization since the expert assumption is weak. The effect of using σ0 is

further explained in the below optimization section and in Appendix B1.

3.3.4Optimization

Loss function: Given an expert trajectory τi, we formulate the learning prob-

lem by maximizing the likelihood of an observed state sequence {o1, ..., on},

p({ot}). By applying MDP property, we have:

L = argmax
θ

∑
log[p(ot+1|ot)] (3.4)

With equation 3.2 and removing the last constant, the cost function can be

further written as:

L = argmax
θ

∑
r∗t − logZt (3.5)

To give an intuitive interpretation of the derived loss function, our al-

gorithm maximizes the score of positive state observation transitions to ap-

proximate the task function, which is precisely the “temporal-frame-orders”

assumption used as a time clue in human video understanding tasks, smiliar

to works in human video understanding [19, 149].
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Optimization: Let’s rewrite Zt is a function of r∗t , which is further rep-

resented using a task function T and score function R. Then, we have:

∇θL =
∑
∇θr

∗
t −

1

Zt

∇r∗t
Zt∇θr

∗
t (3.6)

∇θr
∗
t can be solved by back propagation from eq. (7) to the graph neural

network in the skill kernel. Zt can be estimated by a Monte Carlo estimator

sampling o1 samples from the truncated normal distribution p(rtj):

Zt ≈
1

o1

o1∑
exp(rtj), rtj ∼ p(rtj) (3.7)

∇θZt is the derivative of an expectation. By applying the log derivative trick,

we have:
∇r∗t
Zt = ∇r∗t

Ep(rtj)[exp(rtj)]

= Ep(rtj)[exp(rtj)∇r∗t
log p(rtj)]

≈ 1

o1

o1∑
exp(rtj)∇r∗t

log p(rtj), rtj ∼ p(rtj)

(3.8)

Since p(rtj) is a truncated normal distribution1 that is tractable, it’s trivial to

get:

∇r∗t
log p(rtj) =

xµ
σ0

+
exp(−b2µ/2)− exp(−a2µ/2)√

2πσ0[φ(bµ)− φ(aµ)]
(3.9)

xµ = (rtj − r∗t )/σ0, aµ = (−1 − r∗t )/σ0, bµ = (1 − r∗t )/σ0. where φ is defined

in [150]. By combining the above equations, ∇θL is solved.

The optimization on φ is summarized in Algorithm 1.

3.4Designing choices of task functions

One challenge of using InMaxEnt-IRL is how to ensure the learned task func-

tion T ’s output can have numerical properties that are friendly to the controller

used in the task execution phase. Given the example of using an online UVS

controller, directly approximate the task function using a neural network may

learn a vector zt that encodes task definition. However, it can not guarantee a
1This is because we bound the task relevance score rtj to [-1, 1] for computation conve-

nience, as defined in Eq. 3.1. Note that if p(rtj) is a normal distribution without a truncated
domain, the loss function will degenerate to a constant. Proofs can be found on Appendix
B1.
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Algorithm 1: InMaxEnt-IRL
Input: Expert demonstration video frames {o1, ..., on}, confidence level α
Result: Optimal weights θ∗ of the linked task and score function φ
Prepare State Change Samples Ds
Compute σ0 using α; Shuffle Ds; Initialize θ0

for each iteration do
for each observed sample change in Ds do

Forward pass
Compute r∗t
Compute ∇r∗t

L =
∑

1− 1
Zt
∇r∗t
Zt

grad = φ.backProp(∇r∗t
L)

Gradient ascent update
θn+1 = updateWeights(θn, grad)

end
end

Ot

Ot+1

rt

Figure 3.2: Neural network architecture of the task function.

high success rate in the task execution phase. As a result, the designing choice

of task function affects the robot controller design.

This chapter gives the example of a task function using neural networks.

Readers will find the success rate of such design reaches only 60% even given

11 human demonstrations. This result is equivalent to other visual imita-

tion learning methods [40] that use only human demonstration videos and a

controller trained on the robot, where 70% success rate was reported given

thousands of human demonstration videos.

It is worth noting that, in the remaining chapters, we improve the success

rate significantly by introducing graph structural priors to the task function

design. As a result, the example given below can be treated as a case study of

different task function designs.
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3.4.1Example task function design

Given two successive states observed in human demonstrations, ot and ot+1,

from eq. 4.1, we have r∗t = φ(ot, ot+1), which can be directly approximated

using a neural network takes input of ot and ot+1 and outputs r∗t . To process an

ordered input pair (ot, ot+1), one possible solution is to use a Siamese neural

network structure for both ot and ot+1, and encode the positive transition

by subtraction. Alternatively, in order to have a minimal parameter size of

the neural network, we apply a simple modular subtraction between the two

images to encode the state transition change ot → ot+1 as ∆ot. So, we have

∆zt = nn(∆ot), where ∆zt ∈ Rd with all elements in the range [−1, 1]. Then

a scalar score r∗t is computed by a dot product with v = 1
d
[1, ..., 1]>. Fig. 3.2

shows the network design.

3.4.2Example controller design

Given the above neural network’s output ∆zt, uncalibrated visual servoing

(UVS [68]) is used to directly approximate an affine mapping from task space

to robot joint space. UVS has four steps in a closed-loop control manner: 1)

estimate an initial Jacobian by driving random motions and observing changes

in task function. This is the only online training process on a robot and costs

an average of 4-7 seconds, depending on hardware speed. 2) Calculate action

(joint velocity) using this Jacobian and execute this action. 3) Observe new

changes in task function. 4) Broyden update the Jacobian.

Since we want an action that results in a maximum score, which can be

defined as rmax = [1, ..., 1]> ∈ Rd, where d is the task degree of freedom. A

robot action is computed by:

q̇ = Ĵ†
t rmax (3.10)

, where Ĵ†
t is the estimated Jacobian.

The biggest challenge is how to handle accumulated drifting error caused

by continuous Broyden updates. In practice, we set a threshold vector rthres to

estimate Ĵ†
t+1’s singularity proximity and perform Ĵ0 re-calibration if necessary.
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We name this approach as adaptive UVS control, as shown in Algorithm 2.
Algorithm 2: Adaptive UVS Control

Input: Learned Task Function nn, real-time video stream S, robot joint
number m

Result: Task fulfilled
Initial Jacobian Estimation
Estimate by exploratory motions: Ĵt = init(m)
while Task not fulfiled do

Set reference state: ot = S.currentImage
Move robot
q̇ = Ĵ†

t rmax

moveRobot(q̇)
Return ∆zt
Set current state: ot+1 = S.currentImage
Compute ∆ot using ot, ot+1

∆zt = nn(∆ot)
Jacobian update
if ∆zt � rthres or havePhysicalConstraints then

Re-estimate: Ĵt = init(m)
else

Ĵt+1 = BroydenUpdate(Ĵt,∆zt, q̇)
Update current Jacobian: Ĵt ← Ĵt+1

end
end

3.5Evaluations

3.5.1Objectives and setup

Evaluation objectives: Our experimental objective aims to answer the fol-

lowing three questions: (1) What kind of task is our method capable of, and

what task fails? (2) How does generalization differ under variances with tasks

and environments? (3) How does performance change with a varying number

of demonstrations?

Experimental setup: We consider four tasks shown in Fig. 3.4 left: (1)

a 3DOF task with regular geometric shapes “stack blocks”; (2) a 3DOF task

with complex backgrounds “plug in a socket on circuit board”; (3) a same “plug

in” task with 6DOF. (4) a 3DOF task with small visual signatures “pointing

with the tip of a screw driver”. All tasks were trained on a moderate PC (one

GTX 1080Ti GPU) using 11 human demonstrations.

43



Chapter 3. Task function approximation using human demonstrations

Figure 3.3: (A) experimental setup, a low-cost uncalibrated webcam is used to
record human demonstrations and guide robot motions; (B, C, D) measurement of
error using pixel distance between current position(green dot) to target(red dot). A
threshold of 20 pixels (≈ 7mm) in a 580 × 580 image is used to determine a trial’s
success. Examples of successful and failure trials are shown in Fig. 3.4.

Figure 3.4: Left: Tasks designed. Right: success and failure instances.

3.5.2Capability with different tasks

Each task includes ten trials. After each trial, a visual error was manually

measured as shown in Fig. 3.3. Results, as shown in Table. 3.1 and Fig.

3.4, indicates, the proposed method performs moderately well in tasks with

regular geometric shapes and complex backgrounds, but fails in small visual

change conditions and 6DOF tasks. In the screw_driver task, image changes

are mostly caused by image noise instead of caused by actual robot motions.

This also results in a longer training time. For the 6DOF task, the learned

task function is still coarse and the adaptive UVS controller is a local method

that’s difficult to control with a coarse model.
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Task Training (only images) Successes Mean error

stack_blocks 7.6 min 7/10 6.3±2.2
plug_in 9.8 min 6/10 6.3±1.6
screw_driver 13.3 min 0/10 -
plug_in 6DOF 11.84 min 0/10 -

Table 3.1: Evaluation results on different tasks. Training on robots happens only
in initial jacobian estimation. avg is 7 seconds which is minimum.

Figure 3.5: Evaluation setup under different task/environment settings. Up row:
initial settings; Down row: robot execution results, details are shown in Table 3.2.
Results show that it can generalize well under moderately changed target positions
and backgrounds, occlusions and illumination changes.

3.5.3Generalization to environmental changes

We tested the following settings (Fig. 3.5): (1) change_target1: The target

block is translated 45mm long and rotated with 20◦; (2) change_target2: The

target block is translated 75mm long and rotated with 40◦; (3) background1:

Background is changed to a super messy one; (4) background2: Background

is changed by adding an extra object; (5) object_occlusion: One face of the

small block is occluded; (6) target_occlusion: One face of the target block is

occluded; (7) change_illumination: An extra light source is placed opposite to

the scene (Fig. 3.5). Each of the seven setting had 10 trials. After each trial,

visual error was manually measured following the same rule as stated before.

Results (Fig. 3.5 and Table 3.2) show that it can generalize well under

moderately changed target positions and backgrounds, occlusions and illumi-

nation changes. Since the state images are further processed using modular

subtraction, it’s not surprising that environment changes does not affect the

performance as much, but the method performs poorly with large target or

background changes.
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Variant settings Avg. steps Successes Error (Pixel)

(1) change_target1 23 5/10 7.6±3.8
(2) change_target2 22 2/10 2.0±0.3
(3) background1 45 4/10 9.7±2.6
(4) background2 24 9/10 6.6±4.0
(5) object_occlusion 26 7/10 12.1±2.2
(6) target_occlusion 36 6/10 9.0±4.2
(7) change_illumination 30 6/10 7.5±1.8

Table 3.2: Evaluation results of generalization ability.

Demo Num Training (only images) Successes Mean error

1 2.0 min 1/10 10.8±0
5 5.0 min 2/10 16.3±0.5
11 9.8 min 6/10 6.3±1.6

Table 3.3: Evaluation results using different number of human demonstrations.
Results show that the performance improves when using more demonstrations.

3.5.4Ablation studies

Performance as Number of Human Demonstrations Increases: We

are also interested in performance evaluation with varing numbers of human

demonstrations. Using the same task “plug_in”, we trained using 1, 5, and 11

human demonstrations, respectively. For each trained model, 10 trials were

conducted and visual error was again used as a performance measure. Results

are shown in Table 3.3.

Discussion on failures Failure trials mainly come from two aspects: (i)

the accuracy of task function, especially in cases with changing target posi-

tion with patterns unseen in training samples. That’s also the reason why

increasing human demonstration numbers will improve its performance. (ii)

the Jacobian estimation in UVS control since quality of Ĵ0 has a large effect

on the control convergence. Jacobian estimation error mostly comes from the

strategy of switching between Broyden update and Ĵ0 re-calibration, which is

similar to the exploration vs. exploitation problem in Reinforcement Learning.
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target

Task relevance score

A

B

Figure 3.6: Visualization of the learned task function of stacking_blocks task. The
colored sphere represents the resulting reward when object moves from the center
point (green dot) towards any direction on this sphere surface. The red dot defines
the target. Left sphere and right sphere show results on different positions. Results
show the region of directions going towards the target will return a maximum task
relevance score.

3.5.5Visualization and analysis

Visualization of the learned task function: We also visualize the learned

task function by collecting samples from a human kinesthetic teaching process.

Specifically, we design a virtual sphere as a haptic constraint around a fixed

3D point then human kinethetically move the end effector to collect dense

samples inside this sphere. Given the image observation ot when the end

effector locates in the sphere center, we feed the corresponding image ot+1 of

each sampled end effector positions, then visualize the output task relevance

score in a color map. Fig. 3.6 shows the visualization results.

A detailed visualization of ∆zt vector of the stack_blocks and plug_in 3

DoF tasks are found in Appendix A.1, Fig. A.1.

3.6Summary

This chapter presents InMaxEnt-IRL, an algorithm that uses “temporal-frame-

orders” in human demonstration videos to optimize a task function. Our pro-

posed method can directly learn task specifications from raw videos, which
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removes the need for hand-engineering. Benefiting from the use of a UVS

controller, the training on the real robot only happens at initial Jacobian es-

timation, which takes an average of 4-7 seconds for a new task. Besides, the

learned controller is independent of a particular robot, thus has the potential

of fast adapting to other robot platforms. We give an elementary example

by using a basic convolutional neural network to parameterize the task func-

tion. Various experiments were designed to show that, for a task with certain

DOFs, our method can adapt to task/environment changes in target positions,

backgrounds, illuminations, and occlusions.

Though some initial success has been achieved, two limitations are worth

mentioning. (1) The output vector of the task function has a large variance

that deteriorates the success rate of using a UVS controller. (2) Furthermore,

with regards to task interpretability, it is still unclear how the output vector of

the task function interprets the task definition, especially for high DOF tasks.

Limitations of such a parameterization example give clues to the design of

a graph-structured task function in Chapters 5 and 6.
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CHAPTER 4

Task specification capability of
geometric constraints

TL;DR:

“Statistical significance test on real-life manipulation dataset is

used to study task specification capability of geometric

constraints.”

In Chapter 3, we’ve seen a task function based on a conventional image

intensity front-end can represent “what is the task” and analyze its drawback

as stated in Section 3.6. Then, to further improve the task function’s per-

formance, we propose to learn a graph-structured task function that extracts

task-relevant geometric constraints since geometric features, compared to raw

image pixels, are more salient that give more clues about task-relevant infor-

mation. Nevertheless, before we go to the algorithm details in Chapters 5,

we must first understand the generality of task specification using geometric

constraints.
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4.1Introduction

In robotics, representing a task using visually observed geometric features

(points, lines, conics, planes) has been widely used in traditional visual ser-

voing methods and recently proposed visuomotor policy learning methods.

For example, in visual servoing, humans specify a task by selecting what ge-

ometric features should be associated to compose geometric constraints. In

learning-based methods, using task-relevant key points as the image represen-

tation shows advantages regarding sample efficiency and task generalization.

However, despite its usage for decades, the task specification capability of ge-

ometric features is unclear that in practice, we simply rely on our intuition

to decide what and how many features are required for each ad-hoc task. We

conclude the problem with three task specification questions. (1) How general

that geometric features define a task. (2) Can we use only simple features

(points and lines) instead of complex features (conics and planes). (3) How

many geometric features are sufficient to define a task. This paper conducts

an empirical study on the three task specification questions. By answering the

three questions, the generality of task specification using geometric features

is validated, and a minimum set of geometric constraints that define a wide

range of manipulation tasks is found.

4.1.1Background

Since the dawn of the first robots applied in the automobile production line,

researchers have been seeking better ways of robotic task programming [2] to-

wards the ultimate goal of general-purpose robots. The combination of vision,

robotics, and artificial intelligence (AI) aims for general-purpose systems [54]

instead of ad-hoc systems specifically designed for a particular task. Among

the various approaches, using geometric features observed in image planes pro-

vides a generative way to construct robotic tasks, which is a possible approach

towards general-purpose robotic task programming (Fig. 4.1B).

Task specification using geometric constraints in visual servoing:

Research of task specification using geometric constraints spans for nearly 25
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A B

Figure 4.1: Two ways of task programming. A: programming a task by coordinates
using human kinesthetic teaching, which only works for a simple “reach” motion. B::
programming a task by constructing geometric constraints which works for various
tasks.

years. Chaumette et al. 1994 [20] propose using basic geometric constraints,

such as point coincidence, line alignment and point-to-ellipse alignment, to

compose complex tasks by stacking the error vector of each geometric con-

straint. They furthermore derive the interaction matrix for each type of geo-

metric constraint by assuming a known camera’s perspective projection model,

which forms an explicitly mapping from observed image features to robot ac-

tions, namely the “virtual linkage”. Therefore, Chaumette et al. 1994 present a

complete system from task programming to controller design in vision-guided

robot control, which is named as visual servoing. Dodds et al. 1999 [31] and

Hager et al. 2000 [54] extend Chaumette’s geometry-based task specification

to uncalibrated systems. They study how to construct a new task from basic

geometric constraints in a more general way. They introduce different task

operators [54], including complement, disjunction and conjunction for task

composition. Dodds et al. 1999 [29] further extended the generative task con-

struction to a hierarchical approach that enables chaining different geometric

constraints under triggering conditions to program more complex tasks.

Task specification using geometric features in robot learning: In

recent robot learning approaches, as shown in Fig. 1.5, various methods pro-

posed to use geometric features observed in the image space or point clouds

as task-relevant representations. Such approaches do not focus on general-

purpose task programming but on learning task-relevant state representations,
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for the purpose of sample efficient robot learning and task generalization. The

critical insight here is to learn task-relevant keypoints from objects as an effi-

cient and informative image state representation.

For example, in the seminal paper from Levine et al. 2016 [89], using a

spatial softmax to extract image points for policy learning is proved a sample-

efficient strategy. In KETO [116], using a keypoint generator to extract task-

relevant keypoints from point clouds also proves to be a sample efficient and

task generalization strategy in reinforcement learning. In dense object descrip-

tors [42], using a camera view-invariant descriptor can help humans specify

tasks using point coincidence, point-to-plan to fulfil flexible task specifica-

tions. In the following work of kPAM [99], they further extend the descriptor

learning to categorical object generalization by the point correspondence built

from human annotations. The generalizable descriptor, when further com-

bined with human task specification using point coincide or point-to-plane,

kPAM enables task generalization.

A summary of deep learning with keypoints to robotic visual ser-

voing: In summary, although recent advances using keypoint structures in

robot learning have achieved significant success regarding sample efficiency

and task generalization, however, it is unclear how a task is represented by

keypoints or more general geometric features in the observation space. The

current research efforts stop at “learning task-relevant keypoints” from the in-

tuition that they should be “good” for visuomotor policy learning but never

investigate why these visually observed geometric features can represent a task.

In comparison, in traditional visual servoing literature, the study of task spec-

ification mechanisms using geometric features is more thorough and in-depth.

Such researches, including the theoretical frameworks [20, 54, 59], system [29]

and applications [49], are more complete, profound and interpretable that

explains clearly such as, how a task is specified using geometric constraints

and when such specifications will fail [59].

In all the above methods, however, it is unclear how many tasks can be

specified using geometric constraints. Is task specification using geometric

constraints a general method or an ad-hoc solution for a specific application?
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This is especially important in the era of robot learning that when we apply

spatial softmax [89], keypoint bottleneck [84] to extract geometric points or

more general geometric features in robot learning since we need to know how

many features are sufficient.

4.1.2Three task specification questions

Questions: Specifying robotic tasks using geometric features has long been

used in visual servoing [20] and recently proposed learning-based methods [73].

However, three fundamental questions are hanging.

• (1) How many tasks can we specify using geometric features, namely,

is task specification based on geometric features a general and scalable

method, or just an ad-hoc approach?

• (2) Empirically, we know that using only points and lines can represent

more complex geometric features, such as conics, planes. Then does task

specification using only points and lines also have the same capability as

using general geometric features?

• (3) Assume using only points, and lines can also define a wide range of

manipulation tasks, then what is the minimum set of points, lines form-

ing constraints that define a reasonable range of tasks? Such a minimum

set gives us an estimation of the complexity upper bound regarding how

many and how complex geometric constraints are needed for a task spec-

ification.

The significations: why are these questions important?

The first question concerns the generality and scalability of task specifica-

tion using geometric features.

The second question concerns the possibility of using a neural network

to represent the geometric constraints. For example, suppose we can prove

that using merely points and lines is sufficient. Thus complex features are not

needed. Then, it will facilitate the design of a neural network since the descrip-

tor for complex geometric features in the raw image or point cloud data is still
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challenging to get in both hand-engineered and deep learning-based methods.

As a result, answering this question will make learning geometry-based task

specifications possible, which will be further explored in the following chapters.

The third question concerns the complexity upper bound when designing

such a neural network, which helps us estimate how many constraints are

sufficient to represent a task. For example, if the number is insufficient, the

designed neural network’s representation power will be inadequate. Mean-

while, if the number is overly large, then the neural network will have a vast

parameter size resulting in extra training difficulty.

The challenges: To answer the questions, one evident approach is to con-

struct a pool of tasks as the test set firstly. Then we can try decreasing or

increasing the number and complexity of geometric constraints to get a set G.

Successively we can use a visual servoing controller to test the corresponding

success rate, which will give us the answers.

Two challenges make it impossible in practice. First, the process of con-

structing a pool of tasks has lots of subjective factors. For example, the lab bias

indicates that researchers tend to build tasks they think should be common

in real-life environments. Therefore, we need a pool of more objective tasks.

Second, it is an impossible task considering time and labour cost. For exam-

ple, suppose we are testing N geometric constraints by changing the number

of complexity, N = 1000. Furthermore, we try them on M tasks, M = 500.

For each test, we need to run k times to get an average success rate, k = 10.

Then the total number of trials is N ∗M ∗ k, which are 5.0 million tests that

are impossible to finish in a reasonable amount of time. As a result, we apply

a similar approach as to [14] that uses real-life datasets to have human raters

empirically evaluate the task specification capability of geometric constraints.

4.2Related works

Task specification capability of geometric constraints: There are very

few researchers studying the task specification capability of geometric con-
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straints. Hespanha et al. 1999 studies the problem of how a task can be

visually decidable by observing the geometric constraints considering differ-

ent camera models, such as injective cameras, weakly calibrated projective

cameras and uncalibrated projective cameras. They analyze the relationship

between visually decidable task sets of the three camera models. However,

they do not study what is the range of tasks that can be specified using ge-

ometric constraints. The recently published real-life task dataset enables an

empirical study of this problem.

A review of manipulation datasets: Ego-centric video footage of human

activities of daily life (ADL) provides useful samples for the study of robotic

taxonomy, human attention mechanism during task execution, semantic task

representation learning, and benchmarking different robot learning algorithms

if the dataset is augmented with robot sensory data and actions. Various

datasets have been proposed. Fathi et al. 2012 propose GTEA Gaze+ [36]

dataset containing a large number of human egocentric activity videos for the

study of human gaze-action coordination mechanisms. Bullock et al. 2015 [14]

propose Yale_GRASP showing daily human activities in a household and a

machine shop environment. Goyal et al. 2017 [46] propose 20BN-something-

something dataset with more general human activity recordings restricted to

manipulation task videos. Mandlekar et al. 2019 [98] propose RoboTurk,

which is originally an offline dataset for benchmarking robot learning algo-

rithms. In this paper, we use only the robot’s videos to study the task spec-

ification capability of geometric constraints. Huang et al. 2019 [62] propose

USF_DIM dataset, which contains both vision and force/torque sensor read-

ings.

A review of manipulation taxonomy: There are tremendous research

efforts to build a proper robotic task taxonomy in the research community.

However, building a general robotic task taxonomy involves finding a general

way to specify robotic tasks, which is intimidating. As a result, published

research mainly focuses on one aspect of robotic tasks. Two common aspects
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are taxonomy for robotic grasping and robot motions.

For example, the taxonomy of robotic grasping has attracted a lot of re-

search focus. Works are proposed to build a complete grasping action tax-

onomy for everyday lives. Therefore, real-life datasets and human empirical

evaluation techniques are used. Liu et al. 2014 [93] uses data annotations on

pre-recorded video clips about activities of daily livings to study how to build

a complete grasp of taxonomy. Bullock et al. 2015 [14] studies the grasping

taxonomy by having multiple raters on a pool of tasks that are record using

a head-mounted camera. Another two examples are in the taxonomy of robot

motions. Zech et al. 2019 [166] introduce a taxonomy for robot motions by

a comprehensive literature survey. Paulius et al. 2020 [109] build motion

codes for general robotic tasks by annotating datasets collected using sensors

mounted on the task objects. The methodology of this research aligns with the

works mentioned above in that we use real-life datasets to empirically evaluate

the task specification capability of geometric constraints.

4.3Methods

4.3.1Overview

Task dataset: 
human / robot 

task videos

Rater 1

Reliability test

reject

pass

Redo the process

Statistical test
...

conclusion

Rating workflow
H0, HaRater 2

Rater n

Figure 4.2: Overview of test procedures.

Benefiting from the recently proposed manipulation datasets [14, 62, 98,

101], we construct our pool of tasks coming from real-world environments

(household, machine shop, kitchen, lab). Therefore, the test results will reflect

the distribution of tasks for real-world demands.

Furthermore, we borrow the same approach from the early research on

building a robotic taxonomy [14] by statistical significance tests on different

human raters’ responses to each task in the pool. Using raters’ responses
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can significantly reduce the test time cost, makes the test doable. Fig. 4.2

shows the test procedures. Sections below explain each module shown in the

diagram.

M6 Vertical Cut

M11 Spear objects using 
fork

M18 Use hammer

M20 use file to file wood

user2, demo1, plastic bottle

Object1 place down

adjusting 
clamp

cranking wrench

wiping 
counter

openning

A B C D E

aiming bottle

brushing part

adjusting faucet

arranging object

M2 Stir with spatula

M4 Spread/Oil M13 Fasten screws

M16 Fasten nut with wrench Grasping bottle

grasping bowl

Figure 4.3: Example tasks in the dataset. A: Kitchen environment from
USF_DIM [62]. B: Hand tool workshop environment from USF_DIM. C:
Lab environment from RoboTurk[98]. D: Machine Shop environment from
Yale_GRASP [14]. E: Household environment from Yale_GRASP. Full example
lists are attached to the thesis. Red dots indicate point-to-point alignment con-
straints and green lines line alignment constraints.

4.3.2Task pool construction

We use three manipulation datasets to construct a pool with 393 different tasks

from various environments, such as kitchen environment, hand tool workshop

environment, lab environment, machine shop environment and household en-

vironment. The three datasets are:

• USF_DIM [62] was proposed by Huang et al. 2019 with human task

videos showing 18 tasks in the kitchen environment and 6 tasks in the

hand tool workshop environment.
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Environment Data source Videos Duration Tasks Av. VPT Av. TPV

Kitchen USF_DIM 599 1h 49m 49s 18 33 1
Hand tool USF_DIM 205 0h 37m 35s 6 34 1

Lab RoboTurk 30 0h 52m 30s 78 1 2
Machine Shop Yale_GRASP 67 14h 54m 0s 186 3 14

Household Yale_GRASP 67 14h 54m 0s 105 3 15

Table 4.1: Statistical analysis of the dataset we used. VPT: number of video clips
per task. TPV: number of tasks per video clip. An example of detailed task list in
USF_DIM dataset is shown in table C.3

• RoboTurk [98] was proposed by Mandlekar et al. 2019 with robot task

videos showing 78 tasks in the lab environment.

• Yale_GRASP [14] by Bullock et al. 2015 with human task videos show-

ing 196 tasks in the machine shop environment and 118 tasks in the

household environment.

Table. 4.1 shows a detailed analysis of the three datasets we use to con-

struct our pool of tasks. Fig. 4.3 Shows task examples from each dataset. A

full analysis of all the tasks in our major dataset source Yale_GRASP [14] is

included in Appendix C, Fig. C.1 and C.2.

4.3.3Participants

We select two raters from diverse backgrounds. Rater A has experience in

robotics engineering, hand tool usage and household tasks. Rater B does not

have any experience in robotics engineering but with experience in hand tool

usage and household tasks. Both rater A and B are trained with machine shop

experience by watching the “Yale_GRASP” video footage and their annota-

tions.

4.3.4Response format for raters

Given an evaluation objective, for example, evaluating the task specification

capability using general geometric constraints, each rater is required to go

through all the tasks in the pool and respond if each task can be specified

using a geometric constraint.
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Task name M6 Vertical cut

Response 1 line-to-line (horizontal) 
1 line-to-line (vertical)
1 point-to-point

Task name M18 Using hammer

Response 1 point-to-point

Task name Grasp plastic bottle

Response 2 point-to-points

Task name Arranging objects

Response 1 line-to-line
1 point-to-point

Task name cleaning stair rail

Response 1 point-to-line
1 point-to-point

Task name Turning knob

Response Unable to specify, 
contact force required.

Figure 4.4: Examples of rater B’s response in evaluating the general geometric
constraints on the household environment from YAL_GRASP dataset. Rater B
is more optimistic about the task specification capability of geometric constraints.
Using human raters for an empirical evaluation may result in either over-optimistic
or under-pessimistic estimation. An ultimate solution is to design tasks in simulation
and let a visual servoing controller decide, however, this approach is impractical as
stated in Section 4.1.2.

Then the rater is required to annotate the dataset with his/her response

by recording the response in a table and drawing what kind of geometric

constraints define that task on a video image. If the response is “unable to

specify”, the rater needs to record reasons in the table. Fig. 4.4 shows examples

of the rater’s response on tasks from the five environments.

Table 4.2 shows examples of raters’ responses in evaluating the general geo-

metric constraints on the household environment from YAL_GRASP dataset.

4.3.5Visual task decidability

How should a rater tell if a task can be specified by a certain type of geometric

constraint? Before rating, each rater is trained on the basics of how geometric

constraints can define a task.
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Video # Task Name Description Response Comment

156 adjusting faucet touching the faucet
and pull 1 1 point-to-point

141 adjusting object touching the two
points and adjusting 1 2 sets of point-to-point

49 aiming at surface aiming the nozzle
to the surface 1 multiple point-to-points

41 wiping faucet wiping 1 1 point-to-point,
1 point-to-line

130 arranging grasping point,
placing inside the net 1 2 sets of point to point

177 arranging furniture arranging the chair
in good pose 1 1 point to point,

1 line to line

41 arranging object arranging object along
the counter edge 1 1 point-to-point,

1 line-to-line

43 cleaning floor picking up the two rugs 0 rugs are hard to be
described using points

44 cleaning mop rising the mop cloth
under the faucet 0

it is hard to describe
how to brush and

make sure it’s clean.

44 cleaning stair rail swiping along the rails 1 1 point-to-point
1 point-to-line

Table 4.2: Example of a rater’s response in evaluating the task specification capa-
bility of general geometric constraints using the YAL_Grasp dataset [14] with the
household environment.

Suppose a task T ∈ T , where T is task space (pool of tasks), and a set of

geometric constraints G is given for evaluation. If the rater responds that T can

be defined using G by geometric features from an image, we say T is visually

decidable by G. Here we don’t consider the visual ambiguity problem and

assuming multiple view cameras can be easily set up at an arbitrary location

for the task.

4.3.6The rating workflow

Fig. 4.5 shows a rater’s workflow. First, a rater receives basic training regard-

ing the definition of geometric constraints and how to mark them on a task

image using graphic tools visually. Then the rater needs to go through each

geometric constraint test on each task. Note that, in the dataset, each task

has multiple video clips. A randomly selected video clip is presented to the

rater and lets the rater decide whether a task is doable or not by the given

geometric constraints. If the rater provides a positive answer, they need to
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explain in texts and draw them on the task video frame. If the answer is

negative, the rater needs to provide a reason. Fig. 4.5 shows a rater’s rating

process.

Can this task be 
visually decided?

Basic 
Trainings

Task A

Pool of task videos

Query Randomly select

Video clip A

Pool of tasks

Yes

● Explain in text
● Draw on the image

● Explain in text
NoTest instance

Figure 4.5: A rater’s rating workflow.

4.3.7Raters’ reliability test

Unlike using a real robot for the test, the human rater may be over-optimistic

or pessimistic depending on how much robotic engineering experience they

have. So there are subjective factors in the rater’s response. To further elim-

inate such factors, similar to [14], we introduce an additional reliability test.

If the reliability test won’t pass, the rating workflow needs to be redone from

the start.

The reliability test is undertaken by considering raters with different back-

grounds and statistically measuring all the raters’ decision alignment by a

Cohen’s kappa coefficient κ, computed from the agreement matrix using each

rater’s response for all the tasks. If the statistics κ < β, where β is a threshold

value, the reliability test will fail. Following [14], we set β = 0.6 in our tests.

4.4Evaluation results

4.4.1Experiments design

Metrics: The task coverage metric is used to evaluate geometric constraints’

task specification capability. Specifically, given a pool fo tasks T , a task cov-

erage η is defined as η = n
N
∗ 100%, where N = |T | is the size of the task

space and n is the number of tasks that are visually specified by the geometric

constraints.
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Test using general geometric constraints: The evaluation objective is

to answer the first question raised in Section 3.1.1—is task specification using

geometric constraints a general method or just an ad-hoc method?

For convenience, let’s denote set Gall as all the possible combinations or

sequential linkage of general geometric constraints. The evaluation process of

a rater is defined as:

• For each task T ∈ T , the rater is required to follow the rating workflow

as described in Section 3.3.6.

• The rater records response by deciding if any subset of Gall can be used

to describe the task T visually.

• Compute the average task coverage ηall which marks the task specifica-

tion capability using general geometric constraints.

Then, the null hypothesisH0 in this test is: there is no relationship between

any subset of Gall and the task specification of an arbitrary task T . The

observation of successful task specifications using a subset from Gall is because

of randomness.

Suppose the resulting task coverage using general geometric constraints is

ηall. Formally, the null hypothesis and alternative hypothesis can be written

as a one-tailed tests:

• Null hypothesis Hall
0 : ηall < τall

• Alternative hypothesis Hall
a : ηall ≥ τall

, where the resulting τall under a significance level threshold is the task coverage

using general geometric constraints Gall.

Test using points lines constraints: Likewise, the evaluation objective

is to answer the second question raised in Section 3.1.1—is task specification

using only points and lines also a general and scalable method?

For convenience, let us denote set Gpl as all the possible combinations or

sequential linkage of point-to-point, point-to-line, line-to-line constraints. The

evaluation process of a rater is defined as:
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• For each task T ∈ T , the rater is required to follow the rating workflow

as described in Section 3.3.6.

• The rater records response by deciding if any subset of Gpl can be used

to describe the task T visually.

• Compute the average task coverage ηpl which marks the task specification

capability using general geometric constraints.

Suppose the resulting task coverage using point and line constraints is ηpl.

Formally, the null hypothesis and alternative hypothesis can be written as a

one-tailed tests:

• Null hypothesis Hpl
0 : ηpl < τpl

• Alternative hypothesis Hpl
a : ηpl ≥ τpl

, where the resulting τpl under a significance level threshold is the task coverage

using general geometric constraints Gpl.

4.4.2Find the minimum set of geometric constraints:

The evaluation objective is to answer the third question raised Section 3.11

—what is the minimum set of point and line constrain that can define a rea-

sonable range of tasks? This question setting is different from the above two

in that we are required to give the specific task coverage for each possible

combination using point-to-point, point-to-line and line-to-line constraints.

Test set construction: We consider basic the geometric constraints using

only point and line as following. (1) A point-to-point constraint denoted as

“PP” that defines two-point coincidence. (2) A point-to-line constraint denoted

as “PL” that defines a point fits in a line. (3) A line-to-line constraint denoted

as “LL” that defines two lines in parallel. Then a test instance is constructed

by different numbers of such constraints, in the form “[i] PP; [j] PL; [k] LL”.

For example, “1PP;0PL;3LL” defines a task with one point-to-point constraint
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# num of constraints PP num PL num LL num remark

1 1 1 0 0 1PP;0PL;0LL
2 1 0 1 0 0PP;1PL;0LL
3 1 0 0 1 0PP;0PL;1LL
4 2 2 0 0 2PP;0PL;0LL
5 2 1 1 0 1PP;1PL;0LL
6 2 0 2 0 0PP;2PL;0LL
7 2 1 0 1 1PP;0PL;1LL
... ... ... ... ... ...

342 18 6 6 6 6PP;6PL;6LL

Table 4.3: Test instance examples of S.

and three line-to-line constraints. Obviously, the above test instances have an

infinite number of combinations.

For simplicity, we consider each test instance can use a maximum number

of 6 for each geometric constraint type, 0 ≤ i, j, k ≤ 6. Therefore, the total

number of test instances is 7∗7∗7−1 = 342. Following this way, we construct

our test set S, where |S| = 342. Examples in the test set are given in table 4.3.

Evaluation process: The evaluaton process of a rater is defined as:

• For each task T ∈ T , the rater is required to follow the rating workflow

as described in Section 3.3.6.

• For each geometric constraint S ∈ S, the rater records response by de-

ciding if using S can sufficiently describe the task T .

• Compute the average task coverage ηS for each S ∈ S.

Results reporting protocol: In order to efficiently report the 342 test

results in a succinct way. We categorize the 342 test instances by their total

number of constraints used, as summarized in Appendix C, table C.2 We

report only the highest ηS value among all the test instances per category for

convenience.

Reduced task pool: Since there are 342 test instances and 393 tasks, the

total number of experiments will be 342 ∗ 393 = 134, 406, which is almost im-
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possible to finish in a reasonable time. As a compromise solution, we randomly

sample 20 tasks from the pool, with five tasks sampled from each dataset1.

Each geometric constraint will then be evaluated using the select-out 20 tasks.

Test hypothesis: Given a test instance S ∈ S, we want to know its average

task dicidability ηS on the randomly selected 20 tasks. Suppose the resulting

task coverage using the test geometric constraint S is ηS. Formally, the null

hypothesis and alternative hypothesis can be written as a one-tailed tests:

• Null hypothesis HS
0 : ηS < τS

• Alternative hypothesis HS
a : ηS ≥ τS

For each of the 342 test instances, we construct the above HS
0 and HS

a

hypothesis test. To reduce workload, we are only interested in results consid-

ering τS = τpl, which means we are interested in finding the minimum number

of constraints used that has an equal task specification capability of using

points, lines constraints without number limitations. The intuition is to find

the minimum number of geometric constraints that are competent to them.

Therefore, suppose k geometric constraints {S1, ..., Sk} all have a task cov-

erage equal to τall and τpl, the minimum number of constraints used among

them is the minimum set we want to find.

4.4.3Results

Capability using general geometric constraints: Following the rating

process defined in 3.1.2, rater A responds using general geometric constraints

can define a task covarege of ηall = 79.3%, while rater B reports the task

coverage of ηall = 84.4%.

Then we conduct the reliability test. Firstly, we construct the agreement

matrix, as shown in Table. 4.4, by listing rater A and B’s positive/negative

response of each task. Then, we compute the Cohen’s kappa coefficient κ =

0.63 > β, which means both raters’ reponses are accepcted.
1Yale_GRASP dataset is divided into household and machine shop dataset since it is

too large.
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Rater A \B Positive Negative

Positive 299 12
Negative 32 50

Table 4.4: Agreement matrix of rater A and B in testing the task specification
capability of Gall.

Then we take the average ηall = 81.9% and perform Z-test using a sample

size of 393, compute the correponding p-values given different τall ranging from

[0, ..., 100%] with an incremental step size 0.1%. Plots are shown in Fig. 4.6.

Considering the significance level α = 0.05, we conclude that with τall = 78.3%,

the corresponding p-value p-val < α, therefore reject the null hypothesis in

favor of an alternative.

p-value

%
Task coverage 78.3

Figure 4.6: Z-test results using general geometric constraints Gall given different
τall as shown in the horizonal axis.

Conclusion: using Gall for task specification covers at least 78.3 % of tasks

in the pool with p-value < 0.05.

Capability using point and line constraints: Following the rating pro-

cess defined in 3.1.2, rater A responds using only point and lines geometric

constraints can define ηpl = 77.9% tasks in the pool, while rater B reports

ηpl = 84.4%.

Then we conduct the reliability test. Firstly, we construct the agreement

matrix, as shown in Table. 4.5, by listing rater A and B’s positive/nega-

tive response of each task. Then, we compute the Cohen’s kappa coefficient
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κ = 0.615 > β, which means both raters’ responses are accepted. Each rater’s

detailed response including visual decidability marks on each task failed rea-

sons and visually marked geometric constraints are included as attachments

to this thesis.

rater A \B positive Negative

Positive 297 12
Negative 34 50

Table 4.5: Agreement matrix of rater A and B in testing the task specification
capability of Gpl.

p-value

%
Task coverage 77.5

Figure 4.7: Z-test results using point and line constraints Gpl given different τpl
values as shown in the horizonal axis.

Then we take the average ηpl = 81.2% and perform Z-test using a sample

size of 393, compute the correponding p-values given different τpl ranging from

[0, ..., 100%] with incremental step size 0.1%. Plots are shown in Fig. 4.6.

Considering a significance level of α = 0.05, we conclude that with τpl = 77.5%,

the corresponding p-value p− val < α, therefore reject the null hypothesis in

favor of an alternative.

Conclusion: we find that using Gpl covers at least 77.5 % of tasks in the

pool with p-value < 0.05.

Fiding the minimum set of geometric constraints: Following the rating

process defined in 3.1.2, two raters respond results using each of the 342 test

67



Chapter 4. Task specification capability of geometric constraints

instances S from S on the 20 tasks and report the average task decidability ηS
for each S.

Then we categorize the 342 results by the total number of geometric con-

straints used in each test instance and report only the best ηS value per cat-

egory. After that we perform Z-test using a sample size of 20, compute the

corresponding p-values given P0 = 78.3% and P0 = 77.5% respectively. Plots

are shown in Fig. 4.8, wherein the horizontal axis represents a total number

of geometric constraints used in the test and the vertical axis is the p-value.

Table. C.1 in Appendix C shows the number of test instances under each

category and detailed results of this test.

p-value

0.05

Total number of constraints7

3PP; 2PL; 2LL

Figure 4.8: P-values different number of used geometric constraints in the test using
τS = τpl which means we want to find the minimum number of constraints that has
the same task specification capability with Gpl that has no number limitations.

Considering the significance level α = 0.05, we conclude that using a total

number of 7 geometric constraints (“3PP;2PL;2LL”) with τs = τpl, the corre-

sponding p-value p-val < α.

Conclusion: we find that using three point-to-point, two point-to-line, and

two line-to-line constraints matches the task specification capability of using

Gpl with p-values < 0.05.
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4.5Summary

This chapter studies the task specification capability using geometric con-

straints. Statistical significance test on real-life manipulation dataset is used

based on a human rating approach. We find that:

• Using general geometric constraints Gall that use an unlimited number

of constraints, and complex geometric features cover 78.3 % of tasks in

the pool with p-value < 0.05.

• Using only points-lines constraints Gpl without limiting the constraint

number covers 77.5% of tasks in the pool with p-value < 0.05. This

means task specification using only point and line is competent with

general geometric constraints.

• The minimum geometric constraint set is found, which consists of three

point-to-point, two point-to-line and two line-to-line constraints. These

few constraints also solve 77.5% of tasks, hence match the task specifi-

cation capability using Gpl with p-value < 0.05.

These findings will guide the design of a graph-structured task function in

Chapters 5 and 6.
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Geometric Task
Representation Learning
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CHAPTER 5

A geometric perspective on visual
imitation learning

TL;DR:

“Geometry-structured task representation which defines ‘what is

the task’, is parameterized by relational encoders (graph neural

network), and learned from human demonstration videos assuming

the temporal-frame-orders.”

As discussed in Chapter 4, section 4.4, in the visual imitation learning

problem following a “what–how” decoupled approach, different choices of the

task function design affect the successive robot controller. Therefore, this

chapter introduces geometric feature-based task specification from visual ser-

voing to the task function design. Specifically, we propose geometry-structured

task representation learning, which introduces a graph structural priori to the

task function design, and enables the neural network to extract task-relevant

interconnections between geometric features.
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5.1Introduction

Compared to traditional robotic task teaching methods, such as kinesthetic

teaching and teleoperation, visual imitation learning promises a more intuitive

way for general-purpose task programming. Like most other learning methods,

the requirement of a large number of robot-environment interactions impedes

its deployment in real-world robotic tasks. This is regarded as the sample

efficiency problem, moreover, in real-world applications, training sample size

obtained on the robot is our critical concern.

Commonly, three strategies are used to tackle such sample efficiency prob-

lems. The first one is to increase the number of human demonstrations via

kinesthetic teaching or teleoperation. This has been proven effective for su-

pervised learning methods such as behaviour cloning [7]. However, it requires

long and tedious human supervision work. The second strategy is to assume

access to robot-environment interactions where more samples can be explored

via reinforcement learning (RL) methods (e.g. IRL [6], GCL [37], GAIL [60]).

Unfortunately, new issues regarding transfer learning and low sample efficiency

arise during both simulation and real-world training. The last strategy assumes

that shared knowledge can be learned from demonstration samples across mul-

tiple but similar tasks; from this shared knowledge, the robot is able to learn a

new task when given one more demonstration. This strategy is used in meta-

learning-based approaches (e.g. one-shot [40]), however, thousands of human

kinesthetic teaching and specially designed ad-hoc robot controllers are still

required.

Generally, the aforementioned methods use human demonstration as state-

action samples to learn a policy mapping from image to action (i.e. they

approximate a target state-action distribution). Consequently, in order to

cover the whole state-actino space, it is necessary to collect more state-action

experiences from either human teaching (supervision) or robot self-exploration

(RL training). However, neither approach proves satisfactory. This motivates

us to ask the question: is it possible to learn by watching only a few human

demonstrations without the extra effort of interactive training?

72



Chapter 5. A geometric perspective on visual imitation learning

Figure 5.1: Rethinking the classical ‘correspondence’ problem [8] in imitation learn-
ing reveals two essential questions: i) ‘what ’ information should be transferred from
a human demonstrator to a robot imitator; and ii) ‘how ’ can this information be
used to bring about actions (i.e. motor action). This paper presents a geometric
perspective to this problem. We find a proper geometric representation of ‘what ’
that facilitates the training of ‘how ’.

Recently, several methods have been proposed to tackle this question. One

key insight is to rethink the classical ‘correspondence’ problem [8] which stud-

ies the difference between demonstrator and imitator. Such insight changes

our view on human demonstration: what if more task concepts, instead of

control, were encoded from the demonstrated data? Empirically, this aligns

with our cognitive process in peer learning which involves first understanding

the task before attempting any motor actions1. This hierarchical view decou-

ples learning the ‘what’ and ‘how’ (zero-shot [25, 108], see Fig. 5.1). Benefits

of this method are immediately observed: i) the promise to sample efficiency

since it learns a high-level cognitive concept [71, 72, 134] of the task instead

of directly matching state-action distributions; and ii) the promise of reusable

low-level policies as basic skills across different tasks [75]. However, two new

problems arise: (1) what is the high-level task; and (2) how can we train the

low-level controllers without an additional intensive cost.

In this paper, we provide a geometric perspective to derive solutions.

We show that, instead of learning from image pixels to actions, learning a

geometry-parameterized task concept2 provides an explainable and invariant
1This is studied in observational learning [15] in psychology.
2For further reading, task parameterization using geometric constraints (e.g. point-to-

point, point-to-line, point-to-conics, etc.) are intensively studied in [29–31, 55].

73



Chapter 5. A geometric perspective on visual imitation learning

representation across demonstrator to imitator under various environmental

settings. Moreover, it provides controllability that can be directly linked to

geometric vision-based controllers (e.g. visual servoing).

we propose VGS-IL (visual geometric skill imitation learning), an end-

to-end geometry-parameterized task function approximation method, to infer

globally consistent geometric feature association rules from human demon-

strated video frames. Instead of learning actions from image pixels, we show

that learning a geometry-structured task function provides an explainable and

invariant representation across demonstrator to imitator under various envi-

ronmental settings. Moreover, unlike prevalent methods requiring hierarchi-

cally training of an additional control policy [40–42, 108, 134], we show that

such a geometry-structured task representation provides a direct link with ge-

ometric vision-based controllers (e.g. visual servoing), allowing for efficient

mapping of high-level task concepts to low-level robot actions.

5.2Related works

Visual imitation learning : The problem defined in visual imitation learn-

ing is: given one or several human demonstration videos, how can a new task

be learned? Research on this topic dates back to 1994 [66, 85]. With the rise

of deep learning and reinforcement learning, more influential works have since

been published. While some are reviewed in Section 5.1, which aim to learn

a task from visual inputs, it’s worth noting another research stream aiming

to learn a semantic knowledge representation. This method commonly relies

on independent pipelines like object detection, action recognition etc. Despite

of their method complexity, experiments show they can learn semantic task

plans that follow a procedural manner [3, 158, 161].

Hierarchical visual imitation learning : Instead of simultaneously learn-

ing task definition and control, hierarchical approaches decouple the two by

focusing on learning a shared high-level task representation across human

demonstrator and robot imitator. The two core problems are: i) how to rep-
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resent the high-level task concept; and ii) how to train the low-level control

policy. The first one is more important since representation of the task con-

cept determines the controller training. For example, many pioneer works

parameterize the task concept in pixel level by using sub-goal output from a

neural network [108, 134]. The low-level policy is then sub-goal conditioned

and trained following a Hierarchical Reinforcement Learning manner.

More recent works represent a task in the object level where object cor-

respondence [41, 42] or graph structure [135] relationships are utilized to pa-

rameterize a task. The low-level controller is then trained based on distance

errors in the embedded parameterization space. This approach shows suc-

cess in pushing and placing tasks, however, it lacks the definition resolution

required for more complex tasks like insertion.

Geometry approach visual imitation learning : Alternatively, going

deeper inside the objects, geometric feature level based approaches arise. Early

pioneer works from Ahmadzadeh et al. 2015 [3] proposed VSL to learn feature

point correspondence based task representation given one human demo video.

A similar approach from Qin et al. 2019 [116] presents KETO which utilizes

key point relationships to represent a tool manipulation task. In general, their

low-level controllers are tediously trained separately without enough study

emphasis on how a proper task representation will facilitate the low-level policy

training.

Beyond a simple key point correspondence based task concept represen-

tation, other basic geometric constraints (point-to-line, line-to-line, etc.) can

enrich our toolbox for parameterization of task concepts [50]. Furthermore, by

concurrently combining and sequentially linking them [29], we can find a gen-

eral way to program more complex manipulation tasks that exhibit scalability.

To the authors best knowledge, applying such systematic geometry-based task

programming in visual imitation learning is rarely studied.

Graph-structured knowledge representation learning in robotics: Pre-

vious studies show that, given a 3rd view human demonstration video, we can
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extract semantic meaning of the task which is represented as a graph or tree

structure [158, 161]. Based on terms from Ontology, each entity in the graph

represents an object, the associated motion primitives represents object affor-

dance and the relationship between entities defines a procedural task [110].

Such approaches also have a long history of research ranging from the two

pioneering papers on learning by watching human desmontraion [66, 85], to

“things are made for what they are” [88], and recent works on functional object

networks(FON) [111].

These approaches are good at representing a procedure task but is ex-

tremely tedious in training, which relies on object detection/segmentation,

frame by frame human annotation. Moreover, the mapping from a task plan

to robot actions hugely relies on prerecorded motion primitives. How to adapt

them to task initial conditions changes remains challenging. While most ap-

proaches focus on how to extract semantic meaning of a task, very few works

have been done in studying how to extract the geometric meaning of a

task.

Scene graph representation in computer vision: The closest literature

to our proposed modelling geometric feature connections of an image as graph-

structured task definitions is the scene graph representation learning in com-

puter vision tasks, such as image captioning [5], visual question answer [76].

Scene graph approaches also view an image as a structured graph where each

entity is detected objects [23, 51, 97, 159, 167] and edges representing their

relationships (spatial or verbal). The relationships are predefined predicates

commonly modelled as message passing in a graph convolutional neural net-

work—and learning based on clustering similar relationship objects together

by finding the smallest bounding box between two objects. Scene graph ap-

proaches share the same viewpoint as ours — images are more than just a

collection of objects and attributes. The relationship of interconnected parts

of an image makes sense in visual understanding. However, the relationship

types of scene graphs are restricted to predefined predicates [32], as compared

to ours, we have more flexible tools to define spatial relationships. Besides, the
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bounding box-based approach of scene graphs lacks the description accuracy

to define manipulation tasks. In our method, each graph instance encodes the

geometric structure of a task and has a geometric loss conjugate, a natural

signal that guides robot control.

Neural relational encoders: Commonly, approaches that encodes rela-

tional inductive bias can be classified into two categories. (1) Methods that

encodes only local dependency, for example, recurrent neural networks (RNNs)

and long-short-term-memory (LSTM [61]) that are applied to sequential data

encoding. (2) Methods that encodes both local and non-local dependencies,

for example, self-attention based methods (transformers [144, 153] and visual

transformers [57] in computer vision tasks) and graph neural networks [154].

Battaglia et al. 2018 [11] gave a good summary of the above approaches. We

are more interested in methods that are capable of both local and non-local de-

pendency encoding, specifically, we investigate visual transformers and graph

neural networks.

Visual transformers use a dot-product based similarity score to measure

pair-wise relationships which is quite efficient in computing since dot-product

vectorization, however huge parameters introduced since the heavy pair-wise

relationship encoding [52]. So visual transformers typically rely on large data

corpus to train [162]. Since we want to extend our previous work to encode

relationships between pixel-wise vectors in a dense visual descriptor X, pair-

wise entity relationship computation will be intimidating. In contrast, graph

neural networks directly encode any relationships based on a pre-defined struc-

ture3 The aggregation based node-edge relationship encoding [154], compared

to similarity based self-attention, collects messages from all connected nodes

and edges, thus reserves permutation invariance. Our approach utilize a graph

neural network to directly encode relationships other than a similarity based

self-attention module commonly used in transformers.
3There are also preliminary researches studying dynamically changing graph struc-

tures [122, 138].
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5.3Preliminaries: graph neural networks

This thesis considers representing a task from an image using graphs com-

posed of geometric features. Many real-world applications [170], such as social

network analysis, traffic prediction and scene understanding, require graph-

structured data processing. Graph neural networks prove to be an efficient

tool for such roles to encode the whole graph nodes as compact vectors, pre-

diction graph nodes’ connections and cluster graphs. Based on whether the

graph structure is fixed or not, approaches of graph neural networks can be

overall categorized as methods that deal with fixed graphs and methods that

deal with dynamic graphs. Here we consider only fixed graph approaches.

A B

Figure 5.2: Comparison of 2D convolution (A) and a graph node convolution
(B) [154]. The 2D convolutional operator takes a weighted average of a fixed-size
neighbouring window around the red dotted pixel. The graph convlutional operator
also takes the average value of all neighbouring nodes but with variable node numbers
and orders.

Alternatively, different approaches of graph neural networks can also be

categorized into spectral approaches and spatial approaches. The early pro-

posed graph neural networks are spectral approaches [13] that have a solid

foundation in graph signal processing based on convolution operators in the

spectral domain. These methods involves intensively computing the eigen-

vector of the graph Laplacian matrix as the operator filters. On the other

hand, the newly proposed spatial-based graph neural networks [44, 102] di-

rectly operate convolutions on the graph nodes based on the node’s spatial

relationships. Fig. 5.2 shows the difference between a traditional 2D convo-

lutional operator and a node operator on the graph. This thesis applies the

spatial-based approaches.
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Graph
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Read out...Graph Conv Aggregation

Layer 1

Graph Conv Aggregation

Layer K

Z

Figure 5.3: A typical framework of the spatial approach based graph neural net-
work.

5.3.1Message passing neural network (MPNN)

As shown in Fig. 5.3, a typical framework of the spatial approaches contains

multiple-layer convolution blocks (graph convolution, node aggregation) fol-

lowed by a readout function that outputs a compact latent vector to represent

the graph. On each module in the framework, many different advances such

as NN4G [102], DCNN [9], have been made recently, wherein the earliest in-

spiring approach is the message passing neural network (MPNN) [44]. MPNN

treats the graph convolution as a message-passing process that generates mes-

sages and propagates messages based on node connections. Fig. 5.4 shows the

process of message passing.

Figure 5.4: Overview of the message pasing machanism [56]. Take the example of
node A, it aggregates all incoming messages from its neighbouring nodes. Likewise,
all the other nodes take the same aggregation process.

For example, suppose an undirected graph is defined as G = (V , E) along

with a set of node features X ∈ Rd×|V|, where V denotes the nodes and E

defines the edges. MPNN assumes each node u ∈ V has a hidden embedding

state hk
u and an accompanying message mk

u, at the kth layer convolutional

block. From layer k to k+1, the update is made in three steps. (1) A pair

message generation using a generatorM:
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m(k)
u→v =M(h(k)

u ,h(k)
v ), ∀v ∈ Neighbor(u) (5.1)

, which generates pair-wise message between all connected nodes. Neighbor(u)

denotes the neighbours of node u.

(2) A message aggregation module:

m(k)
u = AGGREGATE(m(k)

u→v), ∀v ∈ Neighbor(u) (5.2)

, where in this thesis, we consider a simple message aggregation operator

by summing up all neighborhood incoming messages.

m(k)
u =

∑
(m(k)

u→v), ∀v ∈ Neighbor(u) (5.3)

(3) A hidden state update module:

h(k+1)
u = UPDATE(h(k)

u ,m(k)
u ) (5.4)

, where a gated recurrent unit (GRU) is used as the update module in our

implementation:

After K layers of such convolutional blocks, each node will have a final hid-

den state denoted as h
(K)
u , ∀u ∈ V . Then, a readout function parse all nodes’

final state to a new embedding z to represent the graph. In our implementa-

tion, the readout funcion is the summation of all h(K)
u .

5.3.2Permutation invariance

One critical issue considering processing graph-structured data is the permu-

tation invariance. Generally, suppose we can define a graph encoder f which

takes the nodes of the adjacency matrix of an undirected graph G, which in all

we define as graph features A, and output a vector z representing the graph.

Permutation invariance is defined as:

f(π(A)) = f(A) (5.5)

, where π is a permutation operator which selects the input order of graph

nodes. The intuition is simply that given the same graph structure, the output

of f should not depend on the arbitrary ordering of the graph nodes.
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Now let us consider the case that f is a simple multi-layer perceptron.

Obviously, such permutation invariance can not be satisfied. As mentioned

above, the graph neural network is supposed to have this permutation invari-

ance property by the design of multi-layer graph convolutional blocks since

node orders are not used, and only the adjacent relationships matter the layer

update [100].

5.4VGS-IL: visual geometric skill imitation learn-
ing

5.4.1Representing geometric constraints using graphs

As discussed in Chapter 2, section 2.1.3, geometric constraints provide a sys-

tematic framework for visual task specifcation. In this chapter, we propose

to use graphs as structural priors to encode the geometric constraints. More

specifically, given a set of geometric features X = {xi}, we define an undi-

rected graph G = (V , E) as a representation of the innerconnections between

geometric features, where the nodes V are variables that take input of feature

descriptors xi ∈ X and edges E define their association relationships. Further-

more, suppose a graph neural network g is used to encode the graph structure

G along with the node feature inputs X and output a latent embedding z

representing this geometric constraint. We have:

z = g(X|G) (5.6)

Representing complex geometric features using keypoints: The above

equation is the basic idea of geometric constraint graphs. However, one ma-

jor challenge in practice is how to represent complex geometric features, such

as lines, conics, planes, as inputs to the graph neural network. In computer

vision, the problem of designing or learning complex geometric feature de-

scriptors per se is intriguing to solve. Nevertheless, for keypoints, there have

been many off-the-shelf hand-crafted feature point descriptors (SIFT, SURF,

ORB), or deep learning-based descriptors [168]. Can we represent complex
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geometric features using a set of keypoints to simplify the problem? This ap-

proach aligns with recently proposed methods of learning complex geometric

feature descriptors. For convenience, we use [xi, ..., xm] to define a complex

geometric feature, where xi are the keypoints used for its representation.

Commonly, any geometric constraint is a binary relationship on two geo-

metric features, such as two points, a point and a line, two lines, a point and

a plane. To generally describe complex geometric features using keypoints, as

proposed above, a geometric constraint is now extended to a multiple-entity

relationship that operates on a set of feature points. Given this defintion, eq.

5.6 is rewritten as below:

z = g(X = {[x1, ..., xm], [xm+1, ..., xn]}|G) (5.7)

, where xi are keypoints, [x1, ..., xm] and [xm+1, ..., xn] represent the two geo-

metric features, the square brackets define a complex feature composed from

a set of keypoints. For simplicity, we denote eq. 5.7 as:

z = g([x1, ..., xm], [xm+1, ..., xn]) (5.8)

Since we’ve introduced an extra composition structure to represent a com-

plex geometric feature, the graph structure G should satisfy the below two

properties. For convience, let us give the line-to-line constriant as an example,

its graph representation is g([x1, x2], [x3, x4]) where each line is represented

using two points:

• Permutation-invariant, which means an arbitrary order of the two

complex features and the keypoints inside each feature should contribute

to an invariant graph structure, namely:

g([x1, x2], [x3, x4]) = g([x3, x4], [x1, x2]) (5.9)

g([x1, x2], [x3, x4]) = g(π([x1, x2]), π([x3, x4])) (5.10)

, where π is the permutation operator.
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• Non-inner-associative, which means changing the inner association

rules of the complex features will change the graph structure, namely

g([x1, x2], [x3, x4]) 6= g([x1, x4], [x3, x2])

g([x1, x2], [x3, x4]) 6= g([x1, x3], [x2, x4])
(5.11)

From section 5.3.2, we know that eq. 5.9 is naturally satisfied by the graph

definition and graph neural network. However, to satisfy eq. 5.10 and eq. 5.11,

specially designed G is required for each geometric constraint representation,

which is discussed below.

Graph structure of basic geometric constraints: Now we give the graph

structure G of the three basic geomeric constraints as shown in Fig. 5.5: (1)

point-to-point; (2) point-to-line; (3) line-to-line.

point-to-point point-to-line line-to-line

g(x1, x2) g(x1, [x2, x3]) g([x1,x2], [x3, x4])

x1 x2

x1

x2 x3

x1

x3 x4

x2

Figure 5.5: The select-out graph structure of three basic geometric constraints.
The grey shaded region means the two points represent a line. The selection process
is shown in Fig. 5.6

Each graph structure is derived by enumerating all possible node connec-

tions and filtering out graphs that do not satisfy the “permutation-invariant”

or “non-inner-associative” property. To list all possible node connections inside

a graph G, we require any node v ∈ G that its degree should satisfy deg(v) ≥ 1

and the intermediate connection nodes with deg(v) ≥ 2, since the graph needs

organize all the points without any node or edge isolations. For example, con-

sider the line-to-line constraint using four keypoints. There are a total of 38

possible structures of G. After filtering out, the structure shown in Fig. 5.5 is

selected out. Fig. 5.6 shows the selection process.
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Violate the permutation-invariant property

point-to-line
g(x1, [x2, x3])

line-to-line
g([x1,x2], [x3, x4])

x1

x2 x3

x1

x2 x3

x1

x2 x3

x1

x2 x3

x1

x3 x4

x2

All possible structures✓

x1

x3 x4

x2 x1

x3 x4

x2

Examples of possible structures✓

Select out

Select out

x1

x3 x4

x2

Violate the non-inner-associative propertyLegend:

1

2

1

2

1

2

1

2

A1 A2 A3 A4

B1 B2 B3 B4

Figure 5.6: Examples of how the graph structure of point-to-line and line-to-line
constraints are selected out. We firstly enumerate all possible node connections
without any node or edge isolation, wherein the point-to-line has 4 candicates and
the line-to-line has 38 candidates. Then we filter out candicates that violate the
above mentioned two properties. As shown above, red dot indicates violation of the
permutation-invariant property and yellow dot for the non-inner-associative prop-
erty. To give examples of such violations, in B3, non-inner-associative property is
violated since g([x1, x2], [x3, x4]) = g([x1, x4], [x3, x2]).In B4, permutation-invariant
property is violated since g([x1, x2], [x3, x4]) 6= g([x3, x4], [x1, x2]).

5.4.2Graph-structured visual task encoders

In previous sections, we have covered how a graph neural network encodes node

relationships (section 5.3.1) and the graph structure G of geometric constraints

(section 5.4.1). Now the only missing block is the input to a graph neural

network—node features X. Suppose an encoder φ maps image point features

{fi} to latent vectors that are graph nodes, we define:

X = φ({fi}) (5.12)

In this thesis, we consider two types of node feature, one that uses off-the-

shelf feature descriptors (SIFT, ORB) and one that uses a deep neural network

to encode image features as the point feature descriptor.

Hand-crafted feature graph: As shown in Fig. 5.7A, an intuitive way to

construct graph node features X from an image is to use hand-crafted features

{fi}, such as SIFT or ORB. However, it does not learn task-relevant descriptors

since they are not end-to-end trainable.
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A: Hand-crafted feature graph B: Deep feature graph

Figure 5.7: Graph structured visual task encoder Ell of a line-to-line geometric con-
straint. (A): A hand-crafted feature graph that takes off-the-shelf feature descriptors
such as ORB or SIFT as node features X feeding to the graph neural network. (B):
A deep feature graph that uses a deep neural network to encode the image features
as node features X. A simple example of a two-node graph neural network is given,
as shown in the right. More details are depicted in section 5.3.1.

Deep feature graph: Alternatively, we can extract image features {fi} that

represent the keypoint and use a convolutional neural network (Fig. 5.7B) to

construct graph node features X. Following this approach, it is possible to

learn task-relevant feature descriptors and, as will be discussed in Chapter 6,

to learn task generalizable feature descriptors.

Generally, given any feature encoder φ, combined with the graph neural

network g, we construct a graph-structured task encoder Ek, which takes input

of point features {fi} and the graph structure G of a geometric constraint k,

outputs a d dimensional latent vector z ∈ Rd:

z = Ek(X|Gk) = g ◦ φ({fi}|Gk) (5.13)

5.4.3Task function design

Graph selector: A graph selector Uk is defined as: bj = Uk(zj), which maps

a graph neural network’s output vector zi to a scale value measures the task-

relevance factor of this graph instance. Uk selects top k graph instances based

the rank of their task-relevance factor.

Task function: Combining all above modules, a task function is defined as:

Tk = Uk ◦ Ek (5.14)
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Figure 5.8: Graph structured task function T. Given image features and the graph
structure prior that defines a type of goemetric constraint, the task function firstly
use deep feature graph encoder to encode the interconnections between image features
as an embedding of the geometric constraint z. Then pass the embedding to a
selector that rank the task-relevance weight of this geometric constraint. Given an
image with a pool of feature points, the selector furture selects out the largest weight
valued geometric constraint, as shown in Fig. 5.9.

Applying task function on image: Given an image Ot, the process taht

task function T extracts task-relevant geometric constraints is as below:

• (1) Keypoint detection: suppose a third party keypoint detector outputs

m keypoints.

• (2) Admissible space F construction: Construct admissible space F =

{Gj} by enumerating all possible keypoint combinations to construct

graph instances, where Gj denotes a graph instance.

• (3) Compute task-relevance factor value bj for each graph instance. And

select top p graph instances that represent the task.

5.4.4Score function design

Score function based on geometric error output: To recap what has

been covered in chapter 4, to use the “temporal-frame-orders” as an unsuper-

vised clue in human demonstration videos, a score function that measures how

good or bad an image observation transit from ot to ot+1 is required.

One solution is to measure the geometric error output from the selected

geometric constraint ans asumming the norm of error vector is overall decreas-
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Figure 5.9: Task relevance based graph selector. Given image and constructed
admissible space F , the selector maps each graph instance’s embedding vector zj
to a task relevance factor bj . After a Softmax layer, it is further converted to the
probability that the corresponding graph instance defines the task.

ing in an expert demonstration. For example, in a point-to-point task, if our

task function selects out the correct geometric constraints both on image ot
and ot+1, the observed geometric errors, which are errt and errt+1 respectively,

will be overall decreasing. This clue is used to define a score function R as

below. Let ∆errt = ‖errt‖ − ‖errt+1‖, we define:

rt =
2

1 + exp(β∆errt)
− 1 (5.15)

, where r∗t ∈ (−1, 1) measures the “temporal-frame-orderness” of observation

transtion from ot to ot+1 and, β normalizes the scale of different geometric

constraint’s output err.

Differential linkage to task function However, the difficulty is that the

task function selects out geomeric constraints whose output geometric errors

do not directly link to back to the task function itself. To solve this problem,

we add a Softmax operator on task-relevance factors.

gj = Softmax(bj, {b1, ..., bj, ...}) (5.16)

errt =
∑

gjEj (5.17)

, where gj is the probability that the corresponding graph instance define

the task and Ej is the geometric error of the geometric constraint that this
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graph instance defined. Then, each image ot outputs a weighted geometric

error errt. Now the score function links to the task function, by optimizing

the score function, the task function will selectout task-relevant geometric

constraints over a pool of all possible candicates.

5.4.5Optimization

Since the task function T and score function R are clearly defined, applying

the InMaxEnt-IRL algorithm proposed in chapter 4 will solve the problem.

Cost function: The cost function is as below:

L = argmax
Ek,Uk

∑
r∗t − logZt (5.18)

, where the partition function Zt is estimated by a Monte Carlo estimator as

stated in chapter 4, section 4.3.4.

RSW regularizer: In practice, using an average weighted geometric error

as a guided signal in optimization will cause the selector Uk to predict a nar-

rowly distributed task relevance probability that can not differentiate the top

selections from all the candidates. To make Uk selects in a more deterministic

manner, we introduce Residual Sum of Weights (RSW) penalty to the loss

function as −λRSW , which makes Uk output major task relevance weights

on selected p alternatives while minimizing the residual sum of weights. RSW

penalty is appended to the loss function defined in eq. 5.18.

GCR regularizer: To ensures selecting out consisent features between dif-

ferent observations, we introduce a Geometry Consistent selection Regularizer

(GCR), which is defined as: −α ‖bt+1 − bt‖22, where α is a hyper-parameter. A

GCR regularizer is appended to the loss function defined in eq. 5.18.

The VGS-IL algorithm details are summarized in algorithm 3.

88



Chapter 5. A geometric perspective on visual imitation learning

Algorithm 3: VGS-IL
Input: Expert demonstration video frames {o1, ..., on}, demonstrator’s

confidence level α, graph structural priori Gk of a geometric
constraint k.

Result: Optimal weights θ∗ of task function Tk

Construct graph instances on each frame
Define S = {}
for t = 1:n do

Feature extraction on ot according to k defined in Section 5.4.3
st ← Construct all graph instances by feature association
S ← Append st

end
Prepare State Change Samples Ds = {st → st+1}
θ∗ = InMaxEnt-IRL(Ds, α, Tk)

Given one Human Demonstration Video

B

C D

A

* We evaluate VGS-IL on four 
different tasks.

C

Robot Infers a Geometry-parameterized Task Concept

E1

E2

F1 F2 G1 H1

F3 F4 G2 H2

Figure 5.10: Left: Four tasks designed in evaluation: Sorting, Insertion, Folding
and Screw. Right: Qualitative evaluation results of VGS-IL in the four tasks. We
select two frames for each task. The Insertion task includes two columns representing
point-to-point and line-to-line constraint respectively. For a fair test, we changed
the background and target pose in each trial. Red line indicates selected feature
association with highest confidence.

5.5Evaluation of VGS-IL

Evaluation objectives: We aim to evaluate: (1) what kind of tasks are

VGS-IL capable of and what are not; (2) will the learned geometry structured

task function transfer from a human demonstrator to robot imitator; (3) will

the learned task function generalize to environmental changes; (4) what exactly

is InMaxEnt-IRL optimizing when learning the graph-structured task function.

Additionally, we conduct ablation studies to determine the effectiveness of

the RSW and GCR regularizer.

Tasks design: Four types of tasks are tested (Fig. 5.10A, B, C, D). A:

Sorting task represents a regular setting; B: Insertion is for tasks that need

a combination of point-to-point and line-to-line constraints; C: Folding is for
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Figure 5.11: A: Camera and robot setup. B: Changing camera pose in order
to evaluate generalization performance under projection variances. C: The hand-
tracking baseline.

manipulation with deformable objects; D: Screw task represents types that

have low image textures.

Evaluation protocol: Each task is evaluated firstly on videos showing a

human holding the object and moving in random actions. Then we evalu-

ate videos of a robot performing the same task with random motions. The

objective is to test if the learned task funcion can select correct geometric con-

straints to define the demonstrated task. Camera and robot setup is shown in

Fig. 5.11A.

Each task function is trained by feeding only one human demonstration

video and tested if our proposed method will output correct and consistent

geometric constraints to define the task. Increasing the number of human

demonstration videos will improve the performance, which we leave for future

work. Note that this evaluation protocol is challenging as studied intensively

in the visual imitation learning literature [40, 156].

Metrics: We design two evaluation metrics: (1) Acc to measure accuracy;

and (2) conAcc to measure consistency. Specifically, given N video frames,

Acc= M×100
N

%, where M is the number of frames with correct geometric task

concept inference. Defining conAcc is challenging since directly measuring the

inference consistency involves complex statistical methods [142]. For simplic-

ity, we measure the time-series control error output {errt} (i.e. the inference

outcome) and define conAcc = Autocorr({‖errt‖}, k), which is the autocorre-

lation measurement over time-series error norms with shift=k. We fix k=2 in
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all experiments.

Baselines: There are no existing methods that learn geometric feature asso-

ciations from human demonstration videos to our best knowledge. Therefore,

for a better analysis of our proposed method, we hand-designed three baselines

as below.

(1) A hand-tracking-baseline based on a video-tracking module and a re-

dundant feature set, which is often used by conventional visual servoing. As

shown in Fig. 5.10 C, it involves humans carefully selecting N pairs of geo-

metric features (point or lines) to represent a task and initializing N feature

trackers for each camera. As long as one pair out of N can track throughout

the entire task process, we define the baseline succeeds. Moreover, measuring

the conAcc is hard since it is a collection of redundant pairs of trackers. In this

case we assume that conAcc=1, the maximum, if baseline succeeds. A KLT

point tracker and a moving edge tracker from the ViSP [67] toolkit library are

used. As a result, the hand-tracking baseline is a strong one since the above

special considerations.

(2) A ORB-graph baseline, which relies on ORB descriptors [123].

(3) A SIFT-graph baseline, which which relies on SIFT descriptors [96].

Our proposed method deep-feature graph uses generalized image features

as graph inputs without any hand-engineered feature descriptors.

Training: All task functions have the same graph layer size=5 with hidden

state dimension=512. In training, we set the regularizer coefficient λ = 0.1,

and human factor σ0 = 0.55. Each encoder and selector with different descrip-

tors or deep features are trained individually on a moderate lab PC with an

Intel Core i7-3770 CPU and Nvidia GeForce GTX 1080 Ti GPU.

5.5.1Task capability evaluation

To evaluate the proposed VGS-IL’s capability with different tasks, we train the

task function using one human demonstration video for each task. Then we

conduct evaluations on videos showing a human performing the same task but
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A1

A2

B1

B2

C1

C2

D1

D2

E1

E2

Figure 5.12: Qualitative evaluations of task capability. Each task is shown with
3 frames averagely selected spanning the whole input video sequence. A1, A2:
a point-to-point Sorting task; B1, B2, C1, C2: a point-to-point and line-to-line
insertion task; D1, D2: a point-to-point folding task; E1, E2: a point-to-point
screwing task. Top five feature connections are selected out. Only the top one, as
marked in red color, is used in evaluation to compute Acc and ConAcc.

with random behaviours. The Acc and ConAcc metric is used for comparison.

Fig. 5.12 displays qualitative evaluations and Table 5.1 shows quantitative re-

sults respectively. Experiments show VGS-IL succeeds in learning a consistent

geometry-parameterized task concept from a human demonstrator in all the

four tasks. Quantitative results are displayed in Table 5.1.

Results: Results (Table 5.1) of the 4 tasks show our method is capable of the

Sorting and Insertion tasks but performs moderately in folding and Screwing

tasks. Overall, a deep feature based visual task encoder is better than SIFT

and ORB.

Analysis: In experiments, we observed that when both object and target

have rich textures, results are better. One reason is the use of hand-crafted

feature detectors (point, line) that the detected feature number will be low

when image textures are plain. We find that the more features that can be fed

into the task function, the better accuracy it performs. Due to our hardware

GPU limitation, we can only test using a small number (60 on average) of

features. Due to our lab GPU limitation, we expect to see better results when

a deeper network structure is used.
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Methods Hand-tracking SIFT-graph ORB-graph Deep-feature graph
Tasks Acc ConAcc Acc ConAcc Acc ConAcc Acc ConAcc
Sorting 100.0% 1.00 100.0% 0.86 78.9% 0.78 100.0% 0.98
Insertion-pp 100.0% 1.00 100.0% 0.90 68.7% 0.82 100.0% 0.85
Insertion-ll 100.0% 1.00 81.2% 0.42 81.2% 0.31 93.0% 0.91
Folding 10.0% -0.12 80.0% 0.93 74.2% 0.50 84.0% 0.98
Screwing 8.2% -0.36 33.0% 0.93 27.0% 0.75 49.0% 0.92

Table 5.1: Evaluation results of different methods. Deep-feature graph is our pro-
posed method that uses image features in a graph structured task function.

H1 H2 H3

R1 R2 R3

Figure 5.13: Qualitative evaluation of transferring from human demonstrator to a
robot imitator under a different camera pose, background and various target poses.
Three different frames are displayed. H1, H2, H3: three frames from a human
evaluation video. R1, R2, R3: three frames from a robot evaluation video. Results
show the selected geometric constraints stay consistent from a human demonstrator
to a robot imitator.
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Figure 5.14: Evaluation on different environmental changes.

5.5.2Transfer from human to robot

Next, we test if the learned task function generalizes from a human demonstra-

tor to robot imitator. The task function is trained using our deep-feature graph

encoder with a GCR regularizer and evaluated on videos showing a robot per-

forming the same task under random settings. A WAM robot equipped with

a Barret Hand is used to test the Sorting task (Fig. 5.11A). A qualitative

evaluation is shown in Fig. 5.13.

5.5.3Generalization to environmental changes

Furthermore, we keep testing on the robot while exploring more variance set-

tings, as shown in Fig. 5.14: (A) random target ; (B) move camera: We test

for real-world projective invariance by randomly translating and rotating the

camera; (C) object occlusion; (D) object outside FOV : The object moves out-

side the camera’s field of view, and each method is required to recover when

the object is back in the image automatically; and (E) change illumination:

the lighting condition is changed by adding a spotlight light source. We pick

the task Sorting for evaluation. A detailed environmental change evaluation

setup can be found in Appendix A. Fig. A.2.

Results: Quantitative results are shown in Table 5.2 and a qualitative study

of how the selection behavior differs under various environmental settings are

displayed in Appendix A, Fig. A.3.

Analysis: In general, 1) our method exhibits adaptive behaviours that when

some geometric features are occluded, the task function selects a candidate

geometric constraint to make it up; 2) our method exhibits robust behaviour
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Methods hand-tracking SIFT-graph ORB-graph deep-feature graph
Settings Acc conAcc Acc conAcc Acc conAcc Acc conAcc

A 100.0% 1.00 99.1% -0.03 83.5% 0.08 100.0% 0.55
B 0.0% n/a 96.7% -0.10 79.3% -0.10 95.0% 0.61
C 0.0% n/a 92.7% -0.05 89.6% -0.17 97.3% 0.10
D 0.0% n/a 81.2% -0.03 72.7% -0.09 79.8% 0.19
E 0.0% n/a 0.0% n/a 0.0% n/a 19.2% 0.42

Table 5.2: Evaluation results of transferring the learned encoder, selector from
human demonstrator to a robot imitator under various environmental settings. A:
random target; B: change camera; C: object occlusion; D: object running outside
of FOV; E: changing illumination conditions.

that the failure between frames doesn’t affect successive frames since it directly

selects the feature association on each frame. In contrast, the baseline depends

on the initialization of trackers and continuous tracking. We observe that

the learned model tends to select fixed feature associations while showing

the flexibility of selecting alternatives when fixed ones are not observable.

It reaches high accuracy under projective variance (B), however, fails under

illumination changes (E).

5.5.4Ablation studies

Evaluation of RSW regularizer: As an ablation study, we continue to

investigate how a Residual Sum of Weights (RSW) regularizer helps to learn

a “good” selector that selects in a deterministic manner so that the differenti-

ation of “correct” and “wrong” feature connections is learned. Fig. 5.15 shows

evaluation results.

RSW measures how much relevance contributed from the non-selected con-

nection instances. The lower RSW, the more deterministic in select-out. Fig.

5.15A shows the training curve with RSW regularizer. The relevance from

the remaining instances stays below 0.1%. 5.15B is without RSW regularizer.

Though the cost function is optimized, the non-selected ones still occupy 75%

of relevance. Note that we are maximizing the loss. Therefore, an RSW reg-

ularizer effectively enforces the graph-structured task function to differentiate

“correct” geometric constraints that define the task from “wrong” constraints

as much as possible.
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Figure 5.15: Ablation studies the training curve and the sum of residual weights
with (A) and without B a RSW regularizer. A RSW regularizer effectively enforces
the task function to differentiate “correct” and “wrong” geometric constraints as much
as possible.

Method w/ GCR regularizer w/o GCG regularizer

Metrics Acc ConAcc Acc ConAcc

Sorting 100.00% 0.98 92.50% 0.12
Insertion-pp 100.00% 0.85 89.30% 0.01
Insertion-ll 93.00% 0.91 51.50% -0.11

Folding 84.00% 0.98 70.00% 0.03
Screwing 49.00% 0.92 41.20% 0.06

Table 5.3: Ablation studies on GCR regularizer.

Evaluation of GCR regularizer: Recall that, a Geometry Consistent Reg-

ularizer (GCR) ensures a consistent geometric constraint selection. To test its

effectiveness, tboth euantivative and qualitative evaluations are conducted.

Quantitative results: To evaluate how GCR works, we conduct quanti-

tative evaluations on different methods by training the task function with and

without GCR. Results (Table. 5.3) clearly shows the task function trained

with GCR performs the best selection consistency.

Qualitative results: Furthermore, we test qualitatively how a GCR reg-

ularizer affects selection consistency by testing the task function on 6 succes-

sive image frames on different tasks. Fig. 5.16) clearly shows GCR improves

selection consistency. However, the results also show our proposed method’s

performance is downgraded in a line-to-line insertion task and a point-to-point

screwing task, which means a generalized image patch based line representation

needs further improvement and our method can not work very well in tasks
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t1 t2 t3 t4 t5 t6

A

B

GCR

GCR

Figure 5.16: Qualitative evaluations of the task functions trained with GCR and
without GCR for the the A: a point-to-point Sorting task; B: a point-to-point
insertion task. 6 image frames for each task are selected. Each of the same image
is evaluated twice by a model trained without GCR (top row of each task) and with
GCR (down row of each task) respectively. A circled red cross means inconsistent
selection detected in the located frame transition. Full results of all the tasks are
included in Appendix A Fig. A.4

with low image textures. All the above issues are worth further studying.

GCR regularizer improves smooth geometric error output: Lastly,

we visualize the time-series geometric error curve using a model trained with

GCR and without GCR, respectively (Fig. 5.17). Note that both two models

can output correct geometric constraints that represent the same task for every

input frame. However, a GCR regularized model can output more smooth

geometric loss signals because it ensures both correct and consistent selection.

Considering that the geometric loss output will guide a robot controller, a

smooth signal output will be important.

5.5.5Visualizing the learned task function

Visualize the geometric error output: We use the point-to-point sorting

task to visualize how the geometric error output from the learned task function

changes in different training stages. We save the snapshot of the learned

task function at three different training stages (Fig. 5.18): S1, S2 and S3

represent the early, middle and final training stages, respectively. Then a

robot task video is fed into the three model snapshots and outputs the time-

series geometric errors from the selected geometric constraints. To do this, we

had the robot perform the sorting task via teleoperation, then record video
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Figure 5.17: GCR w.r.t. smooth geometric loss signal output. We visualize
the select-out geometric constraint’s loss signal output by feeding the same human
demonstration video to two models trained with GCR (B) and without GCR (A)
respectively. GCR regularized model can output more smooth geometric loss signals
because it ensures both correct and consistent selection.
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Figure 5.18: Visualization of time-series control signal outputs from different opti-
mization stages. A: Training curve of VGS-IL with three different stages picked for
evaluation. B, C, D: Geometric error signals output from VGS-IL trained in stage
S1, S2, S3.

frames. Results are shown in Fig. 5.18 that our proposed VGS-IL is actually

optimizing the task function to produce “good” control error signals. Therefore,

the optimization process is optimizing the quality of control error signals.

Visualize the geometric feature selection: Lastly, we are interested in

evaluating how geometric constraints are selected out for all the tasks. As

shown in Appendix A. Fig. A.5, the output of the graph-structured task func-

tion selects correct geometric constraints across different tasks. The learned

task function is interpretable by the use of the structural prior G.
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5.6Summary

This chapter firstly introduces a graph-structured task function that can be

used to encode geometric constraints. Then, we propose VGS-IL, which trains

the task function using the “temporal-frame-orders” in human demonstration

videos. The learned task function selects correct geometric constraints that

specify the task. Experiments are performed to study the capability, general-

ization of the learned task function. Ablation studies of each module of our

proposed method are also conducted. In summary, this chapter makes learning

geometry-based task specifications from human demonstration videos possible.

Limitations and future directions:

(1) The generalization performance, as shown above, only concerns en-

vironmental changes. Besides environmental changes, task generalization to

categorical objects with the same task functionality will be a more interesting

direction. We argue that the proposed graph-structured task function should

have the generalization potential to categorical objects since it encodes image

patch relationships rather than using the whole image pixels to represent a

task. This limitation will be studied in Chapter 6.

(2) Though we demonstrated the use of combined geometric constraints,

for example combing a point-to-point and line-to-line constraint by learning

two task function separately, it is worth further exploring how to sequentially

link those constraints under predicates of perceptual conditions and final con-

figurations as discussed in [29]. A hierarchical learning framework will be an

interesting direction to explore.
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CHAPTER 6

Generalizable task representation
learning

TL;DR:

“Task generalizable representation learning is achieved by extract-

ing the interconnection of image features on different objects that

have the same task functionality. It is trained using human demon-

stration videos showing the same task but using categorical ob-

jects.”

This chapter considers the problem of generalizable task representation

learning. Unlike end-to-end methods that either learn generalizable state rep-

resentation [86, 169] or generalizable policy [118] via massive robot-environment

interactions, our method introduces a structural geometry priori to learn a task

function that transfers across categorical objects. The structural priori enables

the task function to extract interconnection of image features on categorical

objects that have the same task functionality, therefore, forms the representa-

tion of the task on each image state. Experimental results show the learned

task representation consistently defines the task across the human demonstra-

tor, robot imitator and categorical objects.
100



Chapter 6. Generalizable task representation learning

6.1Introduction

Task-specification correspondence: Commonly, a task has two parts: a

‘what’ part that specifies the task and a ‘how’ part that drives task execu-

tion. One attractive characteristic of the ‘what’ part—the task specification,

is its consistency, which means task specification will not change from human

demonstrator to robot imitator, and different task settings, such as different

tools, objects or backgrounds. As a result, the consistency of task specification

builds correspondence between different task settings, which is the key to task

generalization.

The task-specification correspondence brings in task generalization. For ex-

ample, in generalizable reinforcement learning, although we have seen different

approaches that tackle the generalization problem on either the state level [86,

147], the policy level [118], or the more subtle MDP blocks level [169], the an-

chor point for why it generalizes is the reward signal which consistently defines

the same task and guides the task learning. Therefore, the consistent reward

function provides task-specification correspondence across different task do-

mains.

Forming the task-specification correspondence using a reward function could

be a scalable and general method. However, the training requires not only te-

dious reward shaping but also massive robot-environment interactions. Con-

sidering the training cost on the real-world robot, as discussed in Chapter 2,

learning directly from human demonstration videos is more cost-efficient. So

then, in the problem of task generalization, how to build task-specification

correspondence using human demonstration videos?

Our approach: We build task-specification correspondence between categor-

ical objects using a task function learning approach from a geometric perspec-

tive. We approximate a task function that directly encodes task specification

from an image observation by extracting task-relevant geometric constraints.

As a result, the learned task function is the bridge between different task set-

tings, forms the task specification correspondence, and enables generalizable
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Figure 6.1: Task specification correspondence. The same geometric constraint
from categorical objects defines the same task, which is called task specification
correspondence. The affordance of object parts alone does not define any task. Be-
yond affordance, the interconnections between multiple object parts provides task
specification, thus represents the task and can be used to build task specification
correspondence.

task representation learning.

6.2Related works

Object affordance and functional parts: The study of how parts of the

different objects have the same functionality has decades of research in “affor-

dance”. As commonly studied in functional objects [111], object affordance [88,

110], key-point based task representation [41, 42, 116] and scene graphs [51,

76], functional parts of an objects (commonly they are basic geometry primi-

tives) generally applies to different task settings. These parts are world clues

that give the sense of how a manipulation task should be described and con-

structed. For example, the shape of the teapot handle provides functional

clues that how a human hand should pick up the mug [106].

In a manipulation task setting, such clues generally apply as well. However,

the affordance clue only defines how object parts should be used, but not how

a task should be executed. For example (Fig. 6.1 A), although the screw

driver’s functional part is always its pen tip regardless of what size, colour it

is, it does not define any task. Instead, a screwing task is an interconnection

between a screwdriver’s pen tip to a screw top. More examples are given in Fig.

6.1. As a result, beyond affordance, object parts relations bring more insights

into generalizable task representation. However, representing a task using the

association between object parts is rarely studied in current researches.
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Task generalization using geometric features: Recent studies have shown

the generalization performance by formatting a manipulation task using key-

point features. Florence et al. 2019 propose to learn invariant keypoint de-

scriptors across categorical objects by human labelled samples. The learned

keypoint descriptor is then used to guide the robot motions via a Cartesian con-

troller, thus fulfil task generalization. Qin et al. 2019 propose to unsupervised

learn task-relevant keypoints on objects and use the learned representation

in a reinforcement learning task for generalizable task learning. Looking at

extracting task-relevant keypoints could be a way towards task generalization.

However, the ability of how keypoints convey task-relevant information and

how the task is represented has not been studied.

In fact, beyond keypoint only, using the association of more general geo-

metric features to specify a task has been systematically studied in visual ser-

voing (chamuteell 1995, Hagger). The generalization potential also has been

discussed by Hager et al. 2000 [54], “when describing how a screwdriver is

used for a task, the description should apply to all screwdrivers, not a specific

instantiation of one.”. However, due to the computation resource limitations

and the lack of an efficient representation tool, such ideas were not further

explored. With the significant advances in computation resources and the rep-

resentation power of neural networks, our work continues the research towards

this direction and proposes a method that makes it work.

Relational representation for generalization: Our work tackles gener-

alizable task representation learning by looking at relationships between object

parts. Likewise, Battaglia et al. 2018 [11] cast relational inductive bias as a

key path to combinatorial generalization for building AI (artificial intelligence)

with human-like abilities. In their successive work [165], a self-attention-based

neural network is introduced to encode relationships between different image

features, achieving the best performance in reinforcement learning of StarCraft

game. Their self-attention module is a pair-wise similarity measure (scaled-

dot-product [144]) between different entities output from an image encoder

(e.g., convolutional layers). As a result, it is using pair-wise similarity weights
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to encode entity-level relationships. The idea of encoding relationships as the

key to generalization does not get sufficient attention in the research commu-

nity. However, as more progress has been made in relational encoders such as

graph neural networks, visual transformers, and capsule networks, we expect

to see a lot more works in the near future.

Generalizable visual descriptors: Our work is inspired by the various

approaches that learn generalizable visual descriptors for robotic tasks. Com-

monly, these approaches learn the generalizable visual descriptors based on 3D

correspondence, involving 3D reconstruction and then reprojection generated

correspondence samples on the images. For example, Dense Object Descrip-

tor [42], which combines object segmentation pipelines to ignore learning de-

scriptors for the background. Their further work kPAM [99] uses contrastive

learning to explore learning dense object descriptor that is invariant across cat-

egorical objects. However, such training requires laborious annotations on each

of the images. Our work proposes to build the correspondence in an unsuper-

vised way by extracting task-relevant geometric constraints across categorial

objects. Apart from the task generalization gain in our approach, compared

to these methods that require hand-engineered robot controllers, using geo-

metric constraints is more controller friendly that can be directly applied to a

geometric vision controller (visual servoing).

6.3Background: task representation learning

In this thesis, we propose to learn a task function, which encodes the task

definition, from human demonstration videos. The idea of using a task function

to approximate task specification has a long history of research, which we name

as task function-based approaches.

The early works rely on hand designing the task function and are restricted

to its task representation capability [124, 125]. Recently, learning a task def-

inition/task function using human demonstration has gained much attention,

among which one major challenge is how to parameterize a task function gen-
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A

B

C

Figure 6.2: Examples of learning task specifications. A, raw image level [134] :
Robot learns a goal generator parameterized by a neural network to approximate the
specification of human demonstrated task. B, object level [135]: Robot learns the
task specification by infererring relationships between objects using a graph neural
network. C, keypoint level: kPAM [99] firstly learns an invariant dense object
descriptor [42] by 3D reconstruction and then requires user click on a target point.
Lastly, a controller is trained using loss defined inside the black box.

erally. Based on the inductive bias introduced, the state-of-art works can be

categorized into three types:

(1) Directly using a neural network to approximate the task function [72,

134]. Then the latent output vector represents the task. A typical example is

third person visual imitation learning [134] (Fig. 6.2A). The authors prove that

decoupling task ‘what’ and ‘how’ significantly reduces human demonstrations

needed in training and improves learning efficiency compared to conventional

visual imitation learning approaches. However, the training process of third

person visual imitation learning is still tedious.

(2) Introducing the prior knowledge that object-level spatial relationship

strongly relates to the task definition. This is intensively studied on object-

level imitation learning [135, 143](Fig. 6.2B), object-oriented reinforcement

learning [28, 104] and our previous work [72] in learning a controllable ob-

ject spatial relationship encoding. While it is fair to say object-level spatial

relationship-based task encoding can cover many manipulation tasks, it lacks

enough granularity to represent tasks like object alignment or more complex

tasks. So it can not be used to describe a task generally.
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(3) Introducing key points and their relationships. This method has a more

substantial task representation power and generalization performance by look-

ing deep into features on objects. For example, in Dense Object Descriptor [41,

42] and their extended work kPAM [99](Fig. 6.2C), the task of hanging a mug

on the rack can be precisely described as the relationship between the handle

center and rack endpoint. A similar idea has also been tried in KETO [116].

Dense Object Descriptor relies on robots driving the eye-in-hand camera to

collect samples. The training has multiple phases. Firstly a dense descriptor,

if learned by correspondence pairs generated using 3D reconstruction, then a

manipulation task still relies on humans specifying a target point to define

the task. So it does not circumvent the hand specification process. At each

image frame, it searches over pixels to find the target point by descriptor vec-

tor matching. After the eye-hand calibration, the controller commands the

robot to that 3D target with a preset orientation. As a result, it is a point-to-

point coincidence, a particular case of our geometric task encoding method.

Meanwhile, most such approaches have to train a controller tediously.

Our work extends key point-based approaches to a more general geometry-

based approach. We give a more thorough discussion on using geometric fea-

tures like points, lines and conics to represent a task. Moreover, we take extra

considerations on studying how to design a proper parameterization of what

to make designing how much easier.

6.4CoVGS-IL: generalization by structural pro-
jection

We propose CoVGS-IL, a categorical object generalization version of VGS-IL,

which learns generalizable task functions by extracting geometric constraints

of categorical objects with the same functionality. CoVGS-IL is learned from

multiple human demonstration videos of categorical objects without the need

for human annotation or robot-environment interactions.
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6.4.1Global structures for task representation

The key part of CoVGS-IL is to project each video frame image on a geometric

structural prior G to get a structured representation of the task. The prior G

plays the role of a global structure for the task representation across categorical

objects.

Global semantic structures: In the field of extracting semantic task rep-

resentations, we have seen multiple successes by projecting human demonstra-

tion videos on a grammar-based tree structure for long-term action planning

by generating action trees [161] or semantic task plans [92, 160]. The critical

insight among these approaches is the existence of a global semantic structure

representing the task by parsing human demonstration videos.

Global geometric structures: Apart from the global semantic structures,

a global geometric structure can also be used for task representation, observing

that various manipulation tasks can be specified by combinations of geometric

constraints (see chapter 3 for more details). Moreover, compared to semantic

structures, using a geometric structure will output geometric errors that are

more controller friendly and directly link to geometric vision-based controllers

(visual servoing).

Using a global geometric structure for task representation is motivated by

decades of task specification research using geometric constraints. The critical

insight is that a geometric constraint is inherently a connection relationship

between geometric features. It is such a relationship that defines the task.

For example, a point-to-point constraint is the relationship of two-point con-

nections. Similarly, a point-to-line constraint is a relationship between three

points if we describe a line using two points as depicted in chapter 5, section

5.4.1.

Such structure is global because the relationship itself stays consistently

between arbitrary video frames and across video frames showing categorical

objects. Thus, empirically, it is like human experience that the task objective

(task specification) exists in our working memory, spans the whole duration
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when we do the task, and remains unchanged when trying a different object

to do the same task.

The structural prior G: Therefore, we define the global geometric structure

as a graph G that encodes the interconnection relationship between geometric

features. Formally, G is un undirected graph G = (V , E), where the nodes V are

variables that take input of geometric features xi ∈ X and edges E define their

association relationships. Finding the graph structure of G for each geometric

constraint is defined in chapter 5.4.2.

6.4.2Task representation by global structure projection

Given a global structural prior G, the projection operator on an image obser-

vation ot, as shown in Fig. 6.1, is selecting task-relevant geometric features to

fit in the graph structure and to form a geometric constraint that defines the

task.

Therefore, projecting an image observation ot on G will output a d di-

mensional latent vector zt for relationship encoding and a feature coordinates

based geometric error signal Et for the controller. Assuming a graph neural

network g is used, then:

zt = g(X|G) (6.1)

, assuming a function ψ takes input of feature coordinates y and compute

the geometric errors, then:

Et = ψ(y|G) (6.2)

, dtails about computing geometric error based on the geometric constraint

structure G can be found in [48, 58].

So the output zt is a descriptor that encodes feature connections. Et is a

task objective error signal that encodes feature coordinates.

6.4.3Building task-specification correspondence

Task-specification correspondence relates task-relevant features from different

domains, such as categorical objects, different backgrounds, and task execu-
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Algorithm 4: CoVGS-IL
Input: Human demonstration videos S = {{oit}, {o

j
t}, ...} with object i, j,

...; demonstrator’s confidence level α; graph structural priori Gk of a
geometric constraint k.

Result: Optimal weights θ∗ of the task function Tk

Randomly initialize θ of Tk, cloning Tk as T sim
k with weights θsim

Prepare dataset: define Ds = {}, Dimg = {}
for each video {oit} ∈ S do

Prepara state change samples Di

Ds ← Append Di

end
for each image frame ot in all demo videos S do

Feacture extraction on ot according to k defined in Section 5.4.3.
st ← Construct all graph instances by feature association
Dimg ← Append st

end
Shuffule D,Dimg

for n=1:N do
Optimize Tk using the “temporal-frame-orders” loss L for N1 steps:
θn+1 = VGS-IL(D, α, Tk, θ

n)
Copy weights θn+1 to θnsim.
Optimize T sim

k using the similarity loss Lsim for N2 steps:
θn+1
sim = θnsim +∇θsimLsim(Dimg)

Perform one step momentum update on Tk:
θn+1 = βθn+1+(1−β)θn+1

sim , where β ∈ (0, 1) is a momentum coefficient.
end

tors, but with the same task functionality. As a result, task specification

correspondence enables generalizable state representation learning.

In this chapter, we propose to use a geometric structural prior G to extract

task-relevant geometric constraints as the task representation. By projecting

an image over G, we get the task embedding z as the task specification.

Task embedding similiarity loss: Therefore, given two different images

oi and oj showing human doing the same task with two different object i and

j respectively, their task embedding zi and zj build a correspondence link

since they should both define the same task, which means by maximizing the

similarity between zi and zj:

Lsim = argmax
Tk

1

N

∑
sim(zi, zj) (6.3)
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, where Tk is the task function as defined in chapter 5, section 5.4.3, N is

the total number of image pairs from object i and j, sim(zi, zj) is a similarity

metric. By maximizing the loss function, we can enforce the task function Tk
learns generalizable task representations for categorical objects.

In the thesis, we use a cosine distance as the similarity metric to normalize

the magnitude of task embeddings.

sim(zi, zj) =
zi · zj

‖zi‖ ‖zj‖
(6.4)

The consideration is the corresponding geometric constraint on different

objects, though defining the same task functionality usually has different tex-

tures. As a result, a cosine similarity metric is preferred over a l2 norm distance

metric.

6.4.4Differential linkage to task function

When directly linking the above loss function to the task function will cause

difficulties during training. This is because the task function operates on the

whole admissible space F , which is a pool of candidate geometric constraints,

to select out the one with the highest task-relevance factor value. So the

gradient signal from the above loss function will only pass through the select

graph instance. To avoid this issue, we add a differential linkage from the

loss function in eq.6.3 to the task function Tk, by replacing z with a weighted

vector z̃ considering all graph instances in the selection pool. z̃ is defined as

below:

gj = Softmax(bj, {b1, ..., bj, ...}) (6.5)

z̃ =
∑

gjzj (6.6)

6.4.5Joint optimization

We perform a joint optimization approach to maximize the “temporal-frame-

orders” loss (eq. 5.18) proposed in VGS-IL and the task embedding similarity

loss (eq. 6.3). Each loss function used to optimize the task functions for several
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steps on the whole dataset until both converge. To ensure training stability,

we momentum update is performed in the switched opimitzation phase.

The CoVGS-IL algorithm details are summarized in algorithm 4.

6.5Evaluation of CoVGS-IL

CoVGS-IL, Categorical object/tool generalizable visual geometric skill imita-

tion learning.

Evaluation objectives: We aim to evaluate: (1) will the learned task func-

tion extract correct and consistent geometric constraints that specify the task

from human evaluation video frames? (2) will the learned task function trans-

fer from a human demonstrator to robot imitator; (2) will the learned task

function generalize to categorical objects; (3) what exactly is CoVGS-IL learn-

ing when optimizing the graph-structured task function.

Tasks: We use the hammering task, as shown in Fig. 6.3, which means ham-

mering a nail that requires a robot holding a hammer with random grasping

frame displacement and approach the hammer to the nail with the correct

orientation. The hammering task does not consider the striking motion in the

final steps since (1) a striking motion involves force/torque control beyond

our study scope; (2) a striking motion can be made when visually an initial

alignment between the hammer and nail is satisfied.

Therefore, a hammering task can be expressed as a point-to-point con-

straint (a point on hammer bottom to a point on nail top) and line-to-line

parallelism (an edge on the hammer part to the body of the nail). Obviously,

there are multiple points or lines that can define such constraints, especially

for the features on the hammer. Therefore, the task function needs to learn

how to select them considering categorical object generalization.

The learned task function is required to extract correct point-to-point and

line-to-line constraints that represent the task.
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A B C

Robot Camera

Position of Human 
demonstrator

Camera-view of human demonstrationsRobot, camera, demonstrator setup Camera-view of robot imitator

Figure 6.3: Task design for categorical object generalization evaluation. A: Robot-
camera-demonstrator setup. B: Human demonstrates the hammering task from the
camera’s view. C: Robot imitates the hammering task from the camera’s view.

Baselines: To our best knowledge, no existing works are learning generaliz-

able task representations that explicitly extract a task’s geometric definition

from one image. Therefore, to better analyze our proposed method, we design

a tracking baseline that serves as a strong baseline.

The hand-tracking baseline needs humans to manually select multiple points

and lines to define the task for each hammer. Therefore, as described in Chap-

ter 5, Section 5.5.1, the hand-tracking baseline is a strong one since it involves

humans manually defining each hammer’s task.

The closest work is k-PAM, which builds keypoint correspondence on cat-

egorical objects by 3D reconstruction and human-annotated samples. k-PAM

can only represent keypoint reaching tasks like reaching the point for grasping,

hanging the mug on the rack by keypoint alignment. Compared to k-PAM, our

work (1) does not require human annotation or 3D reconstruction to extract

keypoint correspondence; (2) is more general for geometry-based task specifi-

cation. Since the above limitation, k-PAM is not suitable for our evaluation

purpose.

Table. 6.1 shows the comparison between CoVGS-IL, the hand-tracking

baseline, and k-PAM.

Training: All tasks are trained using the same neural network architecture

for the task function. In addition, the task function is jointly optimized by

the task embedding similarity loss and the “temporal-frame-orders” loss with

both RSW and GCR regularizers, as introduced in Chapter 5.
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Methods Feature selection Correspondence matching Task generalization

Hand-tracking hand selected by continuous tracking
per frame No

kPAM [99] hand selected by 3D reconstruction
+ human annotation Yes

coVGS-IL (ours) learnable learned by time step
projection on G Yes

Table 6.1: Comparison between CoVGS-IL (ours) and baselines.

Methods Hand-tracking Ours
Task Acc ConACC Acc ConAcc

Hammering-pp 100.0% ± 0.0% 1.00 ± 0.00 100.0% ± 0.0% 0.94 ± 0.05
Hammering-ll 100.0% ± 0.0% 1.00 ± 0.00 95.4% ± 3.1% 0.89 ± 0.05

Table 6.2: Evaluation results of the hammering task. Hammering-pp: defines using
a point-to-point constraint in the hammering task. Hammering-ll defines using a
line-to-line parallelism constraint in the hammering task. In practice, the above
two constraints are combined for one hammering task. For analysis, we seperately
evaluate them. Results show the learned task function matches the performance
with baseline which involes human hand selecting 10 pairs of features and running
multiple trackers.

6.5.1Human video evaluation

We train the task function using ten videos showing humans demonstrating

the use of the hammer (Fig. 6.5A). Then we evaluate the task function on five

different videos showing humans holding the hammer in the task scene and

moving in arbitrary motions.

For each video, we use the “correctness” metric Acc and the “consistency”

metric ConAcc as defined in Chapter 5. After running on the 5 different

videos, we report average Acc and ConAcc with their corresponding standard

variance. Quantitative results are shown in Table.6.2.

Results show that the learned task function successfully extracts task-

relevant geometric constraints of the hammering task.

6.5.2Transfer from human to robot

We continue to test if the learned task function transfers from human to robot.

Using the same task function trained from 10 human videos, we evaluate its

performance on five robot videos showing the robot holding the hammer in the
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Methods Hand-tracking Ours
Task Acc ConACC Acc ConAcc

Hammering-pp 100.0% ± 0.0% 1.00 ± 0.00 95.9% ± 6.3% 0.96 ± 0.06
Hammering-ll 97.4% ± 6.0% 0.97 ± 0.06 96.8% ± 6.1% 0.90 ± 0.09

Table 6.3: Evaluation results on task function transferring from human to robot.
Results show the learned task function matches the performance of hand selection
baseline. Note that the baseline does not transfer from human to robot since it
requires hand clicking 10 feature pairs on the robot’s view image again otherwise a
directly transfer will fail. Instead, our method is trained using only human demon-
straion video and tested on robot’s view images.

task scene and moving in arbitrary motions. This protocol is shown in Fig.

6.4. Average Acc and ConAcc with their corresponding standard variance are

reported.

Task Function
+

TestingTraining

Human Robot

Figure 6.4: Evaluation of human to robot transfer. The graph-structured task
function is trained using human demonstration videos and evaluated on a robot
imitator’s task video showing the robot holding the hammer in the task scene and
moving in arbitrary motions. The goal is to evaluate if the learned task function
extracts correct geomeric constraints on a robot’s view images.

Evaluation results (Table. 6.3) shows the task task function, when applied

on the robot imitator, can successfully extract task-relevant geometric features.

The same successful transfer has been observed in Chapter 5.

6.5.3Categorical object generalization

To evaluate categorical object generalization, we use four different hammers

to test generalization regarding interpolation and extrapolation.

Interpolation: As shown in Fig. 6.5, three types of hammers (A, B, C) are

used in training by humans demonstrating how to use them, and a single task

function is required to extract task-relevant geometric constraints for the three

hammers when used by the robot imitator.
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Human 
demonstration 
videosHammer A

Hammer BHammer C

Training

Hammer D

Extrapolation

Task Function
+

Hammer A Hammer B

Hammer C

Interpolation

Figure 6.5: Evaluating categorical object generalization regarding interpolation
and extrapolation.

Methods Hand-tracking Ours

Tasks Acc ConACC Acc ConAcc

Hammer A PP 100.0% ± 0.0% 1.00 ± 0.00 100.0% ± 0.0% 0.91 ± 0.05
LL 100.0% ± 0.0% 1.00 ± 0.00 95.4% ± 3.1% 0.89 ± 0.09

Hammer B PP 89.4% ± 8.7% 0.89 ± 0.07 88.4% ± 7.1% 0.80 ± 0.11
LL 81.4% ± 17.7% 0.49 ± 0.59 86.2% ± 7.2% 0.60 ± 0.28

Hammer C PP 100.0% ± 0.0% 1.00 ± 0.00 97.2% ± 3.5% 0.60 ± 0.28
LL 96.0% ± 4.1% 0.88 ± 0.13 98.6% ± 2.3% 0.89 ± 0.08

Table 6.4: Categorical object generalization regarding interpolation. Results show
the learned task function’s performance moderately matches the hand-trakcing base-
line. The hand-trakcing baseline requires human mannually select 10 pairs of geo-
metric features for each constraint for each of the hammer tpye, and then requires
multiple trackers initiated. This gives us further clues to combine both our learned
task function and short-term trackers, which will be studied in Chapter 7.

This protocol evaluates the interpolation performance since the testing

samples are different from the training samples that (1) their robot poses

during the task are different; (2) their robot end-effector to hammer tool frame

displacements are different.

We train a single task function by feeding human demonstration videos

using hammers A, B and C. Each hammer has ten videos starting from random

poses. Then we evaluate videos showing the robot holding hammers A, B and

C in the task scene with random motions. Each hammer is evaluated on five

different videos. Average Acc and ConAcc with their corresponding standard

variance are reported.Results are shown in Table 6.4.
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Methods Hand-tracking Ours

Tasks Acc ConACC Acc ConAcc

Hammer D PP 88.3% ± 8.9% 0.71 ± 0.15 91.1% ± 4.7% 0.87 ± 0.08
LL 84.0% ± 15.1% 0.61 ± 0.42 86.7% ± 7.0% 0.74 ± 0.21

Table 6.5: Categorical object generalization regarding extrapolation. Results show
the learned task function’s performance matches the hand-tracking baseline. Again,
note that the hand tracking baseline does not generalize to hammer D since it requires
human select a pool of features and keeps tracking them.

Hammer A
The learned task function

t=1

Hammer B

Hammer C

Hammer D

Random selector

2   3   4   5  6   7               …                      16
Time steps

t=1 2   3   4   5  6   7               …                      16
Time steps

Figure 6.6: Task-specification correspondence visualization of the hammering-PP
task which involes two points coincidence to define the task. Left: the learned
task function’s output zt. For convenience, we visualize the first component of zt
in 16 successive time steps. Results show that the embedding zt for hammer A, B,
C and D stays similar to each other while allowing slight value changes. This is
done by selecting image features on objects and construct a graph to represent their
geometric constraints. zt is the representation of the constructed graph. Right: a
random selector’s output zt. Results show a random selector, though selects image
features and constructs the same graph structure; the embedding zt of the four
hammers do not match with each other. A complete visualziaton of all components
of zt can be found in Fig. A.6.

Extrapolation: We train the same task function using human demonstra-

tion videos with hammer A, B, and C, then tests its performance on a robot

imitator using hammer D. Five different videos showing the robot holding

hammer D in the task scene with random movements are used to report the

average Acc and ConAcc with their corresponding standard variance. Results

are shown in Table 6.5.

This protocol evaluates extrapolation performance since hammer D is dif-

ferent from the training samples using hammer A, B and C. We test if the

learned single task function can extract task-relevant geometric constraints

on hammer D considering its texturing similarity to hammer B and shape

similarity to hammer A and C.
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Hammer A
The learned task function

t=1

Hammer B

Hammer C

Hammer D

Random selector

2   3   4   5  6   7               …                      16
Time steps

t=1 2   3   4   5  6   7               …                      16
Time steps

Figure 6.7: Task-specification correspondence visualization of the hammering-LL
task which involes two line parallelism to define the task. Results show our task
function’s outputs that are the line-to-line constraint’s representation zt on categor-
ical objects staying similar to each other while allowing individual varying factor
changes. zt is visualized using 16 successive frames’ output and select the first com-
ponent for visualization convenience. A complete visualziaton of all components of
zt can be found in Fig. A.7.

Hammer A Hammer B Hammer C Hammer D

Figure 6.8: Visualization of the select-out goemetric constraints in the four types
of hammers. From multiple possible selection candicates that all “correctly” define
the task, the learned task function selects out image features that share common
charactersistics among categorical objects.

6.5.4Visualization and analysis

Visualize the task-specification correspondence: Furthermore, we test

if the task-specification correspondence is successfully built by the global struc-

ture projection. Specifically, we visual the graph-structured task function’s

output zt given input image observation ot from categorical hammers A, B, C,

and D as shown in Fig. 6.5.

Results are displayed in Fig. 6.6 and Fig. 6.7, which show the global

consistency of a task descriptor zt from categorical objects across multiple

time steps is learned in the task function, thus builds the task-specification

correspondence and achieves categorical object generalization.

A complete visualziaton of all components of zt along 16 time steps of the

hammering-PP task can be found in Appendix A, Fig. A.6 and the hammering-

LL task visualized in Appendix A, Fig. A.7
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We also visualize the learned task function’s geometric constraint selection

of the four hammers, as shown in Fig. 6.8. Results indicate the task function

can select both correct geometric constraints that represent the task and image

features are share more common characteristics, like image clues that represent

the shape, in order to make the output zt generalize to categorical objects.

The geometric error output for control: At last, we visualize the geo-

metric error output for control, again on hammers A, B, C and D by feed-in

each with a human demonstration video. Results are shown in Fig. 6.9.

Though the global task descriptor zt stays almost unchanged between time

steps, Fig. 6.9 indicates the geometric error output which is computed based

on features’ local coordinates, changes consistently along with actions, which

provides a good signal for control. This will be further studied in Chapter 7.

A B

DC

Figure 6.9: Image error outputs of the task function using local coordinates of
geometric features and their constraint definition. Each curve is generated by run-
ning the task function on a human demonstration video. Therefore, the image error
changes indicate how human demonstrated the task. A, B, C, D represents human
demonstration of hammer A, B, C and D respectively. PP-x, PP-y : x, y errors of the
point-to-ponit constraint. LL-par : parallel line error computed by the dot product
of two lines. All image errors are calculated using normalized coordinates. Details
are covered in Chapter 7, Section 7.4.2.
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6.6Summary

This chapter presents CoVGS-IL, which learns generalizable task representa-

tion of an image state by building task-specification correspondence between

categorical objects. Specifically, we introduce a graph-structured task func-

tion to extract task-relevant geometric constraints on different objects but

with the same task functionality. Experimental results show the effectiveness

of CoVGS-IL in extracting generalizable task representations.

Limitations and future work: Although the learned task function can

consistently select task-relevant geometric features, such consistency can not

be always guaranteed along with the whole task execution when deploying a

learned task function on the real robot. Because the GCR regularizer only

enforces consistent task-relevance factors between two frames but does not

directly enforce the selected geometric constraints of the two frames are the

same. Additionally, in real-world practice, some slight illumination changes

may impact the accuracy of the learned task function as well. This limitation

relates to the robustness of the task function and will result in large turbulent

error signal outputs when plugins a controller. This consistency issue could

be solved by combining short-term trackers, which will make the learned task

function much easier to be deployed on the robot.
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CHAPTER 7

The geometric task learning
system

TL;DR:

“A geometric task learning system includes modules proposed in

previous chapters and combined as a solution that takes the input

of human demonstration videos and enables the robot to acquire

the demonstrated skills.”

7.1Introduction

In this chapter, we assembly the previous modules and propose a practical

geometric task learning system. Following the discussion on cost-effective real-

world robot learning, we continue the “what” and “how” decoupling approach

that separates the learning of task specification and the design of a task con-

troller. Specifically, a geometric structured task representation enables the

design of a visual servoing controller with a few robot-environment interac-

tions.

This chapter describes the whole process, including the hardware/software

architecture, dataset preparation, training and deployment on a real-world
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Control PC Training Server

Router

Robot Camera

USB cable

Ethernet

Ethernet

Figure 7.1: System’s hardware architecture.

# Device name Model No. Specifications

1 Manipulator Konova Gen 3 Ultra lightweight
7 Dof, Control frequency: 1kHz,
joint position/velocity control

force/torque control
2 Camera Asus Xtion Pro VGA (640 X 480), 30 fps
3 Router Belkin AC 1800 100Mb ethernet connection

4 Control PC Assemblyl machine CPU: Intel Core i7-4500
RAM: 32GB

5 Training server Assemblyl machine GPU: NVIDIA GeForce GTX 1080 Ti

Table 7.1: Device list.

robot. During deployment, the robot feeds the observed image into the learned

task function (as described in Chapter 5 and 6) and then uses the select-out

geometric constraints to guide robot actions.

At last, we use the hammering task as an example, testing skill transfer

from human to robot and task generation to different hammers. A Kinova

Gen 3 7-DOF manipulator is used in our experiments.

7.2System design

7.2.1Overview

Firstly, we give the system overview as follows.

Hardware architecture: Fig. 7.1 shows the system’s hardware architec-

ture, consisting of a robot, camera, control PC, and a training server. The

robot, control PC and the training server are connected via ethernet cables to

a 100 Mbps router. The camera uses a USB cable to connect to the control

PC. Table 7.1 shows the list of each hardware device’s specifications.
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PyTorch
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Figure 7.2: System’s software architecture.

# Software name Source License

1 ROS Open Robotics Inc. Free BSD
2 Openni2_camera Julius Kammer [77] Free BSD
3 opencv-python Alexander Smorkalov [4] MIT
4 PyTorch FAIR [34] Free BSD
5 Kinova Kortex Kinova Robotics Inc. Proprietary
6 MTF Abhineet Singh [137] Free BSD
7 VGS-IL Ours Free BSD
8 CoVGS-IL Ours Free BSD
9 UVS-python Ours Free BSD

Table 7.2: Software list.

Software architecture: Our system is built on several open-source soft-

ware/libraries. Arranging by the system’s workflow order, the software stack

architecture of the system is depicted in Fig. 7.2. Top blocks are built upon the

bottom blocks. A full list of software packages and libraries are summarized

in Table 7.2.

7.2.2Interfaces for human demonstration

The dataset preparation has the following steps:

Camera calibration: Before data collection, we need to calibrate the cam-

era’s intrinsic parameters. The calibration process uses a 9 × 8 chessboard

and runs the ROS “camera_calibration” node. After calibration, the intrinsic

parameters are saved as a .yaml file and configured in the “openni2_launch”

package’s camera launch file.

Human demonstration video recording: In the video recording process,

we first start the camera video stream by running the “openni2” library’s launch

file. During recording, a human demonstrator must slowly show the task on
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an average task duration of 13.4s. Moreover, it is recommended that hu-

mans demonstrate the task in a more deterministic way to manifest a strong

“temporal-frame-orders” assumption used in unsupervised training. In the fol-

lowing experiments, we use the expert’s confidence level α = 0.9. Fig. 7.5

shows the setup of human demonstration video recording.

Data processing: As shown in Section 5.4.3, the VGS-IL and CoVGS-IL

algorithms rely on standalone feature point detectors. We use the ORB feature

detector provided by the opencv-python library. Each image is pre-processed

by running the ORB feature detector and save the keypoint coordinates, key-

point image features as a dictionary, which is further stored as a pickle file.

The dictionary structure is defined as:

“ {’image id’: {’points’: [[x1, y1], [x2, y2],...], ’features’: [P1, P2, ...]}}
”

, where xi, yi are noramlized values in the range of [-1, 1] computed from image

pixel coordinates ui, vi and width w, height h as below:

xi = ui ∗ 2/w − 1

yi = vi ∗ 2/h− 1
(7.1)

Pi ∈ Rc∗w0∗h0 is a fixed length (w0 × h0) image patch extracted from the

original image given a centroid coordinate (xi, yi). In the task we use w0 =

h0 = 20 in pixel unit from an image of 640× 480 pixel resolution.

7.2.3Model training

Our experiments test two algorithms to learn the task function: (1) VGS-IL

for an essential task function learning that extracts task-relevant geometric

constraints. (2) CoVGS-IL for a generalizable task function learning that ex-

tracts task-relevant geometric constraints on categorical objects. The training

is done on an NVIDIA GeForce GTX 1080 Ti GPU server. The average train-

ing time of VGS-IL is around 4 hrs and the CoVGS-IL 6 hrs.
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Figure 7.3: Diagram of the feed back control loop.

7.2.4Deployment

Deploy the trained task function model: After training, the learned task

function is then deployed on the control PC. Finally, we transfer the weights

saved on the training sever to the control PC. During testing, a task function

model instance loads the pre-trained weights, takes in an image observation

and outputs the select-out geometric constraint.

The feedback control loop design: The task function is used in a feedback

control loop as described in Fig. First, the camera’s video stream is fed into the

task function, mapped to the selected out geometric constraints that define the

task. Successively, geometric errors are computed from the selected geometric

constraint and used for the uncalibrated visual servoing (UVS) controller [119].

Details of how geometric errors are computed from basic geometric con-

straints are as follows.

(1) For the point-to-point constraint:

E = (y2 − y1) (7.2)

, where y1,y2 are two points normalized coordinates, as defined in Section 7.3.

(2) For the point-to-line constraint:

E = (y1 · (y2 × y3)) (7.3)

, where y1 are the coordinates of the point, and y2,y3 are the coordinates of
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the two point that represent the line. All coordinates here are used in the their

homogenous form.

(3) For the parallel line-to-line constraint:

E = ((y1 × y2)× (y3 × y4)) (7.4)

, where y1,y2 are the coordinates of the two point representing the first line

and y3,y4 are the coordinates of the two point representing the other line. All

coordinates here are used in the their homogenous form. Note that, the line

coordinates computed from (y1×y2), and (y3×y4) are in their homogeneous

form as (a1, b1, c1)
> and (a2, b2, c2)

>. Before further computing their cross

product, they need to be normalized with the last item dropped since parallel

line constraint only considers the slope changes. For example (a1, b1, c1)
> is

normalized with last element dropped as 1√
(a2+b2)

(a1, b1)
>.

UVS controller The uncalibrated visual servoing controller (UVS) is used

to map geometric errors to robot actions. When camera model and the robot

model are unknown, uncalibrated visual servoing uses online trial-and-errors

to directly estimates the Jacobian J̃ ∈ Rd×n [68, 119] which maps image ob-

servations to robot actions, where d is the visual feature dimension, and n is

the number of joints used for control. As a result, given the output geometric

error signal Et at time t, the control law is formulated as:

q̇ = −λJ̃+
t Et (7.5)

, where J̃+
t is the pseudo-inverse of J̃t.

A UVS controller starts with an initial estimation of J̃0 by exploratory

motions, which measure how robot action affects the numerical value changes

of observed features. The initial Jacobian estimation via trial-and-errors is

based on the following equation:

J̃0 =

[[
∆eq1
∆q1

]
...

[
∆eqm
∆qm

]]
(7.6)

, which means the ∆qi amount of joint i movement results in geometric er-

ror change ∆eqi . After initial estimation, this Jacobian is then continuously

updating online via Broyden update during iterations:
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Figure 7.4: Diagram of the long-short term trackers design.

J̃t+1 = J̃t + α
(∆e− Ĵt∆q)∆qT

∆qT∆q
(7.7)

, where α is the update step size. Except for the Broyden update method,

more improvements can be found in [132] and [35].

Long-short-term tracker To ensure a higher success rate, we introduce

long-short term trackers to the system. Although the learned task function can

consistently select out geometric constraints on each image frame when trained

with the GCR regularizer (see Chapter 5, Section 5.4.5), in practice, this is

not rigorously guaranteed due to insufficient training samples. As we know,

there is always a trade-off between the training cost and the performance gain

in deploying a real-world learning system. To further improve the robustness,

we utilize the off-the-shelf trackers, which work short-term while cooperating

with the task function in the long term. Such design considers that trackers

typically work well in the short term, and the task function can play the role

of a tracker initializer in the long term when tracking is lost.

As shown in Fig. 7.4, the long-short-term tracker is designed as following.

Given a pre-trained task function T, at the first time step, we initialize tracker

M using the task function’s output geometric constraint’s coordinates and

keeps tracking for the following k−1 steps. Then the tracker will be calibrated

by the task function using its output geometric constraint’s coordinates.
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Figure 7.5: Experimetal setup of the hammering task.

7.3Experiments

Evaluation objectives: In the experiments, we continue using the hammer-

ing task as described in Chapter 6, Section 6.5, as an example to test if the

proposed geometric task learning system can be deployed on a real-world robot.

Specifically, we aim to evaluate the following aspects. (1) Skill transfer from

human to the robot: will the system enable a acquire the demonstrated task

given human demonstration videos; (2) Generalizable task learning: will the

system enable generalizable task learning given human demonstration videos

using categorical objects.

We evaluate using the task functions trained in Chapter 6 in an uncali-

brated visual servoing (UVS) controller that maps the learned task function

to robot actions. Fig. 7.5 shows the experimental setup.

Evaluation metric: Each task runs ten trials, and we report the success

rate. For each trial, the robot holds the hammer with a random displacement

between the end-effector frame to the object frame and starts the trial at a

random pose.
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Baselines: For a single task evaluation — evaluating skill transfer from hu-

man to robot, we design three baselines. Since no existing works directly

learn from human demonstration videos and map to robot actions without

pre-defined controller or extra training, we consider designing our baselines

by removing the following limitations in our problem setting. (1) We lift the

data source limitation so that any data source, including robot-environment

interactions samples, is qualified. (2) We standardize the evaluation protocol

as stated above. During testing trials, the robot starts at a random initial

pose and holds the hammer with a random displacement.

Following the above considerations, we design three baselines as below:

• Trajectory replay: We record the robot joint trajectory given one ini-

tial pose of the robot and demonstrate the task by kinesthetic teaching.

• RL (SAC): We train a soft-actor-critic (SAC) agent for the task. The

state is the image observation ot, and the actions are robot’s 7 joint

velocities q̇. Since we do not have instrumentation that could determine

the ground truth pose of the hammer, we use a reward classifier, similar

to [33], as the reward function. The reward classifier collects failure and

success samples and outputs the probability of an image in the successful

task status. In the experiments, we did not successfully train the RL

agent since the state-action space is large. Using a reward classifier

introduces prediction errors that need special treatments that impede

our further exploration. The training curve is included in Appendix A.

Fig. A.8.

• Behavior cloning: We collect robot image and joint value pairs (ot, q)

using human kinesthetic teaching. The dataset for each object has 10

human demonstration videos via kinesthetic teaching, which are around

3400 image action pairs per object. We consider resizing the input im-

age to 216 ∗ 144 dimension. Then, we supervised training a four-layer

convolutional neural network that regresses the function mapping from

image to robot joint values and uses the trained model on the robot.
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Methods Data Training
Trajectory replay Robot joints trajectory n/a

RL (SAC) Robot image states, actions Actor-critic
Bahevior Cloning Robot image states, actions Supervised

Ours Human image states Self-supervised

Table 7.3: Comparison of baselines.

Methods skill transfer Categorical object generalization
object 1 object 2 object 3 object 4

Trajectory replay 10% 10% 10% 10% 10%
RL (SAC) F n/a n/a n/a n/a
Bahevior Cloning 60% 20% 20% F F
Ours 100% 100% 90% 100% 70%

Table 7.4: Overview of results in the hammering task considering skill transferring
and task generalization. “F” marks failure.

A comparison of all methods is given in Table 7.3.

For the task generalization evaluation — evaluating generalizable task

learning, we use the Behavior cloning and trajectory replay baseline for com-

parison. The Behavior cloning baselines trains with image action pairs (ot, q)

covering hammers A, B, and C. Ideally, we expect the baseline learn a gener-

alizable regressor that maps categorical object image states to robot actions.

The other two baselines are not considered for the generalization evaluation

since generalizable reinforcement learning is still challenging. No existing work

can be trained on the real-world robot to learn a generalizable policy that maps

image states to robot actions.

7.3.1Results and analysis

An overview of all the results is shown in Table 7.4. From the results, we have

the following observations.

(1) The trajectory replay baseline success only at the first trial when the

initial robot pose exactly matches the human teaching pose.

(2) RL (SAC) agent training failed since the high dimensional state-action

space of this problem. Fine-tuning the convolutional neural network or using

a ResNet [133] backbone could help, but we did not try due to resource limits.
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Therefore, we terminate the training after 10K steps, which is about 6 hrs in

wall time. The training curve is included in Appendix A. Fig. A.8.

(3) The Behaviour cloning performed moderately that the trained image

to joint regressor’s accuracy matters the most in the final performance. More-

over, the Behaviour cloning baseline has worse performance in the generaliza-

tion test when using a convolutional neural network directly maps categorical

object images to robot actions.

7.3.2System user interface

To better visualize the output of the learned task function and facilitate ex-

periments in the robot control phase, we design the following user interface.

As shown in Fig. 7.6, four windows are displayed.

Err t

+ 0.121

- 0.093

+ 0.115

Task embeddings Geometric errors

PP-x:

PP-y:

LL-par:

Select-out geometric constraints

PP: point-to-point LL: line-to-line

Geometric errors

Joint velocities

Condition number of Jacobian

A B

C D 1

2

3

Figure 7.6: System’s user interface. The top left (A) shows all candidate geometric
features. The top right (B) shows the select-out top 1 geometric constraint by the
task function along with the long-short-term trackers. The bottom left (C) shows the
output task embeddings and geometric errors, where PP means point-to-point and
LL means line-to-line (parallel lines). Bottom right visualize the (1) geometric error
output, (2) command joint velocities and the (3) estimated Jacobian’s condition
number.
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7.3.3Skill transfer from human to robot

We evaluate the system by feeding ten human demonstration videos and test if

the robot can acquire the task using an uncalibrated visual servoing controller.

Quantitative results are shown in Table 7.4. Fig. 7.7 plots the image error,

robot joint velocity and the Jacobian matrix’s condition number during the

task execution.
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Figure 7.7: Control curves of the hammering task. We use a total number of 4
joints in the UVS controller. Left: image errors per time step when plugin the task
function with the UVS controller. Middle: joint velocity command from the UVS
controller. The large joint velocity changes mostly happen when the estimation
Jacobian matrix’s condition number jumps high. This phenomenon also gives us
the clue for future study of robust UVS. Right: the Jacobian matrix’s condition
number per time step. During the experiment, the condition number of the estimated
Jacobian remains relatively low, which benefits from consistent geometric constraint
selection and our normalized image errors described in Section 7.2.2.

7.3.4Skill transfer of categorical object generalization

We consider using hammers A, B, C, D (Fig. 6.5. In evaluation, we feed in

30 human demonstration videos of hammer A, B, and C (10 for each), and

test if the robot can acquire a generalizable skill — uses a single task function

to generalize to A, B, C, and D. A detailed analysis of the generalizable task

function can be found in Chapter 6, Section 6.5. The success rate is reported

in Table 7.4. Details about image error, joint velocities and condition number

of the Jacobian matrix during the task execution using all the four hammers

can be found in Appendix A. Fig. A.9.
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Methods Success rate Percentage of successfully tracked frames

W/ LSTT 100% 100.0% ± 0.0%
W/O LSTT 20% 90.9% ± 4.8%

Table 7.5: Ablation study on the imparct of using long-short-term tracker (LSTT)
in the hammering task.

7.3.5Ablation studies

Long-short term trackers: Additionally, we conduct ablation studies to

assess the impact of our proposed long-short-term trackers by removing the

trackers using only the learned task function. As shown in Table 7.5, using the

proposed long-short-term trackers significantly improves the final performance.

Number of human demo videos

Lastly, we test how the number of human demonstration videos affects the

success rate of task execution. We consider using 1, 5, 10, and 20 demonstra-

tion videos to access the success rate. Fig. 7.8 shows the results. Therefore,

increasing the number of human demonstration videos will increase the success

rate since more samples will cover more image state space.

Num of human demonstrations

Su
cc

es
s 

ra
te

 %

0

25

50

75

100

1 5 10 20

Figure 7.8: Ablation studies on different number of human demonstrations used
in training the task function. Results are evaluated using hammer A. Success rate
is based on 5 runs of each learned task function.

7.4Summary

This chapter introduces the geometric task learning system that assembly

each module presented in Chapters 4, 5, and 6. We describe the system from

133



Chapter 7. The geometric task learning system

hardware architecture, software architecture, training and deployment, respec-

tively. To make the learned task function practically applied in a real-world

robot controller, we introduce long-short-term trackers, which in the long-

term initialize the tracker by the learned task function and utilize existing

off-the-shelf trackers in the short-term improve its geometric constraint selec-

tion consistency. Experiments are done using a Kinova Gen3 7-DOF robot.
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Conclusions

8.1Summary

This thesis mainly focuses on how to learn geometry-based task specifications

from human demonstration videos. The learning paradigm we introduced is

sample efficient in that it only requires a few real-world robot-environment

interactions when mapping the learned task specifications to robot actions.

Furthermore, this learning paradigm represents a task’s specification from a

geometric perspective, which enables task generalization.

Specifically, chapter 4 empirically studied the task specification capability

using geometric constraints. Chapters 3 and 5 introduced a graph-structured

task function and use temporal-frame-orders as an unsupervised learning clue

in human demonstration videos to extract task-relevant geometric constraints.

Chapter 6 introduced how such graph structure in the task function enables

generalizable task representation learning that extracts geometric constraints

with the same task functionality from different objects. Finally, chapter 7

introduced how to deploy a geometric task learning system in the real world.
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8.2Discussion

8.2.1The decoupled what and how learning paradigm

One characteristic of this thesis is the choice of a decoupled what and how

learning paradigm, wherein only human demonstration videos are given, which

means there are no robot view images or robot actions, and we require the

robot to learn the demonstrated task. This problem setting is challenging

since no robot actions are given, there are no clues about mapping the video

samples to robot actions. Furthermore, there are very few learning clues in the

video samples that can be used to decide what geometric features are helpful

and how should they be associated. So why do we choose this approach?

Firstly, it involves almost zero cost of real-world robot interaction. Only

a few samples are needed when mapping the learned task function to a robot

controller, for example, when in the initial Jacobian estimation of a UVS con-

troller. Moreover, since the task function outputs compact geometric errors,

designing a UVS controller or learning a policy online will be efficient. 1

Second, it enables model transfer from human to a robot by learning only

the representation of the task since the action mechanisms of humans and

robots are fundamentally different. Compared to learning a direct mapping

from observation to actions, it decouples out learning what the task is—the

task specification to learn a shared geometric task representation between

human and robot.

8.2.2Our proposed geometric approach

Our proposed approach uses a graph-structure task function to extract task-

relevant geometric constraints. It has the following advantages.

Firstly, the graph structure G enables the task function to extract only task-

relevant image feature associations which defines a task and does not relate to

whether the task executor is a human desmontrator or robot imitator.
1Though we did not explore using an RL controller with the task function’s output

geometric errors, since its compact output, we can expect training an RL controller will be
more efficient than directly using image states.
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Meanwhile, introducing a graph structure to the task function also brings in

generalization since task-relevant geometric constraints are extracted from dif-

ferent object but with the same task functionality. Therefore, task-specification

correspondence(Chapter 7, Section 7.1) is built between different objects.

Moreover, introducing a graph structure to the task function also brings

advantages in the controller design or policy learning since a graph instance

corresponds to a geometric constraint that will output geometric errors, as

compact and task-relevant signals for control.

Limitation: It is worth noting that introducing such a strong inductive bias

also has the below limitations. Firstly, not all tasks can be specified using

geometric constraints. Second, even if a task can be defined using geometric

constraints, it is challenging to determine if we should combine them or link

them, or add more triggering conditions [29].

Lastly, apart from geometric visual clues, factors regarding force feedback

and a tool’s physical properties are also crucial to the success of robotic task

learning. For example, in the hammering task shown in Chapter 6 and Chapter

7, we only consider geometric feature alignments of the task by assuming the

striking motions can be easily pre-defined. However, when the hammer’s mass

is large, the final strking motion to nail down will be difficult to execute if

we simply follow a pre-defined motion pattern. A method combining both

geometric visual clues and force feedback is required.

8.3Open research questions

8.3.1End-to-end learning geometric constraints

The proposed method still relies on hand-crafted feature detectors, which out-

puts feature points based on saliency instead of task relevance. This general

feature detector will produce a large number of candidate geometric features,

resulting in quadratic complexity when computing the task-relevance factor

for each geometric feature combination since the constructed combinatorial

admissible space F is large. To reduce computation complexity, if we simply
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restrict the number of key points detected, then we can not guarantee that the

learned task function is optimal since the input features are filtered out. One

promising direction to go is to train the feature detector and the task function

so that the detector will only output a fixed number of task-relevant features.

For example, using an FCN [95] neural network architecture, or region pro-

posal network (RPN [45]), or dense visual descriptors [128] could be promising

to explore.

8.3.2Task-camera-robot factorization

In a robot learning problem, systematically, we have three factors — task,

camera, and robot. “Task” determines the specifications. “Camera” determines

how features are observed —the distribution of observations. “Robot” deter-

mines how observation maps to an action. In visual servoing control, these

factors are explicitly factorized [22]. For example, a typical visual servoing

control law is as below:

ṡ = −Ls
cVF J

r
e q̇ (8.1)

This equation provides explicit modelling of the task-camera-robot factoriza-

tion where ṡ represents the task, Ls represents the Jacobian (interaction ma-

trix [20]) that maps observed feature motion to camera motion . cVF repre-

sents camera model, and Jr
e represents the robot’s proprioceptive model — the

kinematics model. Such factorization enables fast reconfiguration of a task.

Examples are as below.

• To construct a new task, we only need to stack new task features into ṡ

and compute the corresponding interaction matrix Ls.

• To adapt to a new camera configuration, we only need to get the cali-

bration parameters and replace the cVF with the new one.

• To adapt to a new robot, we only need to get a new Jacobian to replace

Jr
e , which means Jr

e represents the kinematics model of the robot itself,

and can be easily defined.
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In contrast to the visual servoing methods [20, 21], a typical robot learning

method directly maps observation to robot action so that it does not explicitly

differentiate the three factors. In some cases, methods that addressing task

generalization only implicitly differentiate the three factors. For example,

when tackling task generalization [86, 118, 169] regarding task factor changes,

the underlying assumption is the other two factors remaining unchanged.

Factorziation enables model-reuse and fast adaptation: The problem

of the approaches mentioned above is that there is no way to reuse or fast

adapt models to tackle each factor. We may develop a task generalization

model, a robotic platform generalization model, and a camera-configuration

generalization model respectively. However, how to flexibly reuse these models

when we deploy them remains challenging. For example, the camera may be

relocated, the tool frame may be changed, or we may need to fast adapt to a

new robot.

If the above factorziation can be built and an explicit replationship be-

tween the models tackling each factor is known, we can easily reconfigure any

robotic task by reusing models designed for each factor, thus, achieving a

higher generalization level.

In robot learning, how should we formulate such factorization? Factor

“task” concerns what is a standardized form to represent a task. Factor “cam-

era” concerns how to model the mapping from observed state changes to a

robot’s workspace by the camera model. Lastly, factor “robot” concerns how

to represent a robot’s proprioception — its ability to move, that can be fast

adapted to any specific tasks. We look forward to seeing future works done in

this direction.

8.3.3Robotic task specification research

This thesis views task specification learning from a geometric perspective,

extracting the geometric meaning of a task. More fundamentally, our method

is based on the understanding of robotic task specifications —“what is a task”

and “how should it be defined”.
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As we know, the problem of how to systematically define manipulation

tasks remains challenging that even the basics regarding building a proper

taxonomy are difficult. New robotic task specification solutions that remove

the requirements of robotic experts, generally apply to a wide range of ma-

nipulation tasks, and enable the robot’s semi-autonomy to compose the task

details given a task context automatically, are still demanding.

Therefore, we believe the research on general task specification is worth

exploring further since only if we understand “what is a task”, building a

general-purpose robotic system will become possible.
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Appendix A. Additional results

Human Demonstrator

Case 1

Case 2

Case 3

[0.996, 0.992, 0.991]

[-0.57, -0.58, -0.81]

[-0.99, -0.99, -0.99]

[-0.61, -0.70, -0.74]

Robot Stack Blocks Task (3DoF)

[0.961, 0.965, 0.981]

[0.488, 0.743, 0.763]

[0.258, 0.520, 0.469]

[-0.86, -0.69, -0.84]

[0.681, 0.802, 0.824]

[0.999, 0.999, 1.0]

[0.999, 0.999, 0.999]

[-0.45, -0.45,-0.092]

Robot Plug-In Task (3DoF)

Case 4

Response

Response

Response

Response

Figure A.1: Evaluation setup under different task/environment settings. Up row:
initial settings; Down row: robot execution results, details are shown in Table 3.2.
Results show that it can generalize well under moderately changed target positions
and backgrounds, occlusions and illumination changes.
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CAM

CAM

Manipulator

C1

C2

S0 A

B C

D E

Figure A.2: C1: Human demonstration settings. C2: Robot imitation settings.
S0: Human demonstration video used to train VGS-IRL. A - E: Evaluation on robot
under five different environmental settings. A) random target ; B) change camera;
C) object occlusion; D) object outside camera’s FOV ; E) change illumination.
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t1 t2 t3

A

B

C

D

E

Figure A.3: Qualitative study of the learned task function under various envi-
ronmental settings. A: random target; B: change camera; C: object occlusion; D:
object running outside of FOV; E: changing illumination conditions.
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t1 t2 t3 t4 t5 t6

A

B

C

D

E

GCR

GCR

GCR

GCR

GCR

Figure A.4: Qualitative evaluations of GCR based on deep-feature method trained
with and without GCR. A: a point-to-point Sorting task; B, C: a point-to-point
and line-to-line insertion task; D: a point-to-point folding task; E: a point-to-
point screwing task. 6 image frames for each task are selected from different time
t1, t2, t3, t4, t5 and t6. Each of the same image is evaluated twice by a model trained
without GCR (top row of each task) and with GCR (down row of each task) respec-
tively. A circled red cross means inconsistent selection detected in the located frame
transition.
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Given one Human Demonstration Video

A

Robot Infers Geometric Constraints as the Task Specification

B C D

E

F

G

H

I

t1 t2 t3

Figure A.5: Qualitative evaluations of different tasks. A, B, C, D: input human
demonstration videos of four tasks. E: a point-to-point Sorting task; F, G: a point-
to-point and line-to-line insertion task; H: a point-to-point folding task; I: a point-
to-point screwing task. Each task is shown with 3 frames averagely selected spanning
the whole input video sequence. Top five feature connections are selected out. Only
the top one, as marked in red color, is used in evaluation to compute Acc and ConAcc.

160



Appendix A. Additional results

The learned task function Random selector

Hammer A Hammer B Hammer C Hammer D

256 dim
 Z

t

Time step 1 … 16 1 … 16 1 … 16 1 … 16

Hammer A Hammer B Hammer C Hammer D

Time step 1 … 16 1 … 16 1 … 16 1 … 16

Figure A.6: Task-specification correspondence visualization of the hammering-PP
task which involes two points coincidence to define the task. Left: the learned
task function’s output zt. For convenience, we visualize the first component of zt
in 16 successive time steps. Results show that the embedding zt for hammer A, B,
C and D stays similar to each other while allowing slight value changes. This is
done by selecting image features on objects and construct a graph to represent their
geometric constraints. zt is the representation of the constructed graph. Right: a
random selector’s output zt. Results show a random selector, though selects image
features and constructs the same graph structure; the embedding zt of the four
hammers do not match with each other. A complete visualziaton of all compooe

The learned task function Random selector

Hammer A Hammer B Hammer C Hammer D

256 dim
 Z

t

Time step 1 … 16

Hammer A Hammer B Hammer C Hammer D

1 … 16 1 … 16 1 … 16 Time step 1 … 16 1 … 16 1 … 16 1 … 16

Figure A.7: Task-specification correspondence visualization of the hammering-LL
task which involes two line parallelism to define the task. Again, results to the left
are our task function’s outputs that show the line-to-line constraint’s representation
zt on categorical objects stays similar to each other while allowing individual varying
factor changes. Right shows the results using a random selector. zt is visualized
using 16 successive frames’ output and select the first component for visualization
convenience.
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SAC baseline training on the Kinova Gen3 robot

Episode return

Figure A.8: Training curve of the baseline, RL (SAC [53]) agent using a reward
classifier. The state consists of an image observation and the 7 joints positions
and velocities. The policy’s output action is a 7-dimensional continuous space that
represents the seven joints’ velocities. A reward classifier provides a reward signal
that outputs the probability of successful state status within the range [0,1]. Traing
step number is 100 for each episode. The training was not successful since the
high dimensional state-action space of this problem. Fine-tuning the convolutional
neural network or using a ResNet [133] backbone could help, but we did not try due
to resource limits. The training was terminated after 10 K steps, which is about 6 hrs
wall time. As a comparison, our proposed method requires human demonstration
videos to learn “what” is the task, then map the learned task function to robot
actions by uncalibrated visual servoing (UVS) controller.
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(c) Hammer C
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(d) Hammer D

Figure A.9: Control curves of the hammering task by plugin the learned task func-
tion in a UVS controller. The task function was trained using human demonstrations
of hammers A, B, and C. D is the new introduce hammer for testing. During UVS
control, we use 4 joints in the task. Left column: image errors per time step when
plugin the task function with the UVS controller. Middle column: joint velocity
command from the UVS controller. The large joint velocity changes mostly happen
when the estimation Jacobian matrix’s condition number jumps high. This phe-
nomenon also gives us the clue for future study of robust UVS. Right column: the
Jacobian matrix’s condition number per time step. During the experiment, the con-
dition number of the estimated Jacobian remains low, which benefits from consistent
geometric constraint selection and our normalized image errors described in Section
7.2.2.
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Supplementary Material

B.1Task fucntion approximation from human
demonstrations

B.1.1Conditions when the cost function is a constant

We prove that when p(rtj) is a regular normal distribution in doman [−∞,∞],

the cost function Eq. (11) in our paper is a constant which is related to human

factor1 σ2
0.

Firstly, let’s review the cost function in Eq. (11):

L = argmax
θ

∑
r∗t − logZt (B.1)

, where Zt is the partition function that integrates the exponential reward rtj
of all possible actions {atj} when human demonstrator is at state st. Since

human demonstrator makes selections only from promising actions instead of

any uniform actions, we assume rtj ∼ N (r∗t , σ0), where r∗t is reward from the

selected action a∗t that is observed in the demonstration. So Zt can be written

as:
1σ2

0 is determined by human demonstrator’s confidence level α.
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Zt = Ep(rtj ;r∗t )
[exp(rtj)] (B.2)

Considering a [−∞,∞] domain of rtj, we have:

Zt =

∫ ∞

−∞
exp(rtj)p(rtj)drtj (B.3)

where p(rtj) = N (rtj|r∗t , σ0), Eq. (3) can be rewritten as:

Zt =
1√
2πσ0

∫ ∞

−∞
exp(− 1

2σ2
0

r2tj + (
r∗t
σ2
0

+ 1)rtj

− 1

2σ2
0

r∗2t )drtj

(B.4)

Now Zt has a standard form as a Gaussian integral, which is tractable in

practice[151]: ∫ ∞

−∞
k exp(−fx2 + gx+ h)dx = k

√
π

f
exp(

g2

4f
+ h) (B.5)

So, we have:

Zt = exp(r∗t +
σ2
0

2
) (B.6)

As a result, r∗t is neutralized in the cost function, Eq. (1) can be rewritten as:

L = argmax
θ

∑
−σ

2
0

2
(B.7)

which is now a constant related to human factor σ0.

Figure B.1: Cost function values with different σ0 and r∗t .
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B.1.2Cost function with truncated normal distribution

We empirically calculate the cost values given different rt∗ and σ0 (Fig. 2.).

A Monte Carlo estimator with a sampling size=2000 is used for computation.

Results show the cost value overall increases as r∗t grows, however the slope is

different. Lower σ0 outputs a smaller gradient for learning the reward function

while higher σ0 outputs a larger one.

Intuitively, a lower σ0 means human demonstrator is more confident in

selecting actions, which will result the learned reward function easily over-fit

to observed demonstrations. On the other side, a higher σ0 means human

demonstrator is not so confident in demonstration. So the demonstration

samples have more randomness compared to smaller σ0 demonstrations. Any

updates in the resulting r∗t should have more value in learning.
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Appendix C. Task specification capability of geometric constraints: additional analysis

Total num of constraints best η value p-value (P0=78.3%) p-value (P0=77.5%)

1 0.3 0.999 0.999
2 0.6 0.957 0.946
3 0.8 0.500 0.500
4 0.85 0.324 0.296
5 0.9 0.159 0.142
6 0.95 0.062 0.054
7 1 0.019 0.016
8 1 0.0186 0.016
9 1 0.0186 0.016
10 1 0.0186 0.016
11 1 0.0186 0.016
12 1 0.0186 0.016
13 1 0.0186 0.016
14 1 0.0186 0.016
15 1 0.0186 0.016
16 1 0.0186 0.016
17 1 0.0186 0.016
18 1 0.0186 0.016

Table C.1: Statistican signifance test results of each test instance in S.

Num of constraints 1 2 3 4 5 6 7 8 9

Num of test instances 3 6 10 15 21 28 33 36 37

Num of constraints 10 11 12 13 14 15 16 17 18

Num of test instances 36 33 28 21 15 10 6 3 1

Table C.2: The correspondence between the total number of constraints and test
instance number. Top row: total number of geometric constraints in a test instance.
Bottom row: count of all test instances with the same number of constraints.
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Action code Video Num Task name Sub-skills Vision task

m2 25 stir with spatula stiring 1
m3 40 spinkle, shake pepper move spinkle to pan 1
m4 25 spread/oil spread 1
m6 25 vertical cut cut 1
m7 35 use spoon to pick up 0
m8 25 pizza wheel wheeling 1
m10 25 use black brush brushing 1
m11 30 spear object using fork spearing 1
m12 25 stir water using spoon stiring 1
m13 40 fasten screw with screw driver aligning 1
m14 0 loosen screw with screw driver 0
m15 75 unlock lock with key aligning 1
m16 15 fasten nut with wrench aligning 1
m17 25 use paint brush to dip and spread dip, spread 1
m18 25 use hammer to hammer in nail 1
m19 25 brush teeth touching teeth 1
m20 25 use file to file wooden thing touching wood 1
m21 25 comb hair 1
m22 25 scrape substrace from surface touching surface 1
m23 30 peel cucumber/potato peeling 1
m24 25 slice cucumber aligning in slicing 1
m25 74 flip bread reaching and aligning 1
m26 25 use spoon to scoop and pour reaching 1
m27 30 shave object reaching 1
m28 30 use roller to roll out dough 0
m30 0 loosen nut with wrench 0
m31 30 scoop and pour with measuring spoon/cup 1
m32 0 insert peg into pegboard 0
m33 0 brush powder across grey tray 0
m34 0 insert straw through to-go cup lid 0
m35 25 m34 with eyes closed insertion 1
m36 0 m31 without pour 0

Total 804 Valied vision tasks 24
Avg. videos per task 33

Table C.3: Statistics of the USF_DIM dataset [62].
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(a) Top frequency tasks: arranging objects, handling cleaning suppliers, wiping surface wiping
surface

(b) Top frequency objects: Mop, spray bottle, sponge, towel.

(c) Frequency of task durations

Figure C.1: Statistical analysis of the tasks in YAL_Grasp dataset [14], machine
shop environment. In order to help us better study the task speciation capability
using geometric constraints, we analyze our primary source in the task pool— the
YALE_Grasp dataset. We compute the frequency of task types, objects and task
duration to filter out the most common tasks and objects used in our everyday life.
Results show that the top frequency tasks and their sub-skills relate to geometric
constraint-based task specification. Furthermore, the top frequent objects have reg-
ular shapes that could be convenient to use geometric features to define their task
functionality. Meanwhile, the analysis of task duration provides a hint for us to
design a real-world robotic system that serves humans in our workspace or homes.
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(a) Top frequency tasks: holding part, turning knob, holding tool, moving object.

(b) Top frequency objects: small part, small knob, ruler, rod

(c) Frequency of task durations

Figure C.2: Task statistics of YALE_GRASP [14] dataset-household environment.
Detailed analysis stays the same as described in Fig. C.1.
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