
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of tire

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48105-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“Good morning," sa id the little prince.
“G ood morning," said the merchant.

This was a merchant who sold p ills that had been invented to quench thirst. You need only swallow
one p ill a week, and you would fee l no need o f anything to drink.

“Why are you selling those?" asked the little prince.
“Because they save a tremendous amount o f time," said the merchant. “Computations have been

m ade by experts. With these pills, you save fifty-three minutes in every week.”
“And what do I do with those fifty-three minutes?”

“Anything you like..."
“As fo r me," sa id the little prince to himself, “i f I hadfifty-three minutes to spend as I liked, I

should walk a t my leisure toward a spring o f fresh water.”

- Antoine de Saint-Exupery [13].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

I m p r o v in g Pa c k e t C l a s s if ic a t io n : L e a r n in g F r o m T r a f f ic

by

Kevin Lyle Andrusky

A thesis submitted to the Faculty o f Graduate Studies and Research in partial fulfillment o f the
requirements for the degree o f M aster o f Science.

in

Department o f Computing Science

Edmonton, Alberta
Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0-494-09114-2

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de ('edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN:
Our file Notre reference
ISBN:

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L’auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par l'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L’auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n’y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Library R elease Form

N am e o f Author: Kevin Lyle Andrusky

Title o f Thesis: Improving Packet Classification: Learning From Traffic

Degree: Master o f Science

Year this D egree Granted: 2005

Permission is hereby granted to the University o f Alberta Library to reproduce single copies o f this
thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior
written permission.

Kevin Lyle Andrusky

Date:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Alberta

Faculty o f G raduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty o f Graduate Studies
and Research for acceptance, a thesis entitled Im proving Packet Classification: Learning From
Traffic submitted by Kevin Lyle Andrusky in partial fulfillment o f the requirements for the degree
of M aster o f Science.

M.H. (Mike) MacGregor

Chintha Tellambura

Martin Muller

Date:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Some rules in a packet classifier’s ruleset are more likely to be matched than others. Which o f these

rules are most likely to be matched cannot be known a priori, however. As a result, a classifier should

be able to adapt itself to the traffic that it sees. This thesis explores the idea o f using the traffic a

packet classifier is seeing to tune that classifier’s search structure in order to improve its average

response time. To test this idea, HICuts, a heuristic-based packet classifier recently proposed by

Gupta and McKeown, was modified to periodically restructure itself to best match the traffic it is

seeing. In addition, a Ternary Content Addressable Memory (TCAM) was added to the classifier to

act as a form o f transposition table. The classifier was also given the ability to maintain a worst-case

bound on its performance, as, by the nature o f Internet traffic, classifiers must ensure that all possible

packets be matched in a reasonable amount o f time.

In order to describe the effects o f restructuring, several modifications were made to an Interval

Decision Diagram (IDD) notation. Such notation can be used as a HICuts tree is essentially an IDD

tree with a slightly different condition for creating leaf nodes. Experimental results drawn from

synthetic tests designed to test specific situations and extreme cases, and from real-world tests using

actual packet traces are shown. In experimentation, compared to the original static HICuts classifier,

the new dynamic classifier performed significantly better in terms o f the amount o f work performed

during classification, while maintaining a strict bound on its worst-case performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to express my gratitude to all those who aided me in completing this thesis. I am deeply

indebted to my supervisor, Dr. M.H. (Mike) MacGregor, whose help, suggestions and encourage

ment guided me throughout both the research required for and the writing o f this thesis. Writing this

thesis has been one o f the most enjoyable and rewarding experiences of my life and would not have

been possible without Mike’s guidance and support.

I would also like to thank Dr. Martin Muller who provided the impetus for this research, as well

as many very helpful initial suggestions as to the course the research should take. In addition, I

acknowledge the contributions o f several o f my peers, particularly Paul Berube, who offered both

suggestions and support in aid o f this research. I am also grateful for the questions and comments

I received from many members o f the Communication Networks Research Group over the course

of my research. In particular, I would like to thank Baochun Bai, Shubhankar Chatteijee, Yuxi Li,

Qiang Ye, and Drs. Pawel Gburzynski and Ioanis Nikolaidis.

I would like to acknowledge the University o f Alberta’s Computing and Network Services (CNS)

for providing the packet traces which were used for this research. In particular, I would like to thank

Josh Ryder o f CNS for his invaluable assistance in determining a proper real-life ruleset on which

to test my algorithm. In addition, I’d like to express my gratitude to Stephen Curial, who oversaw

the final printing and submission o f this document for me.

And, o f course, I would like to thank my family, especially my parents Lyle and Vivian. Without

everything I learned from them from day one, without their support, encouragement and nagging,

without the wisdom they attempted to pass on to me, this document would not exist.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 O v e r v ie w .. 1
1.2 Problem D e f in it io n .. 2
1.3 Worst vs. Average Case: M o tiv a tio n .. 3

1.3.1 S o r t in g ... 4
1.3.2 Optimal Binary Search T r ee s .. 4
1.3.3 Packet C lassifica tion .. 6

1.4 Applicability and I m p a c t ... 7
1.5 Thesis Overview ... 9

2 Current Classification A lgorithm s 12
2.1 General O verview .. 12

2.1.1 Linear S ea rch .. 13
2.1.2 Trie Based M e t h o d s .. 13
2.1.3 Geometric A pproaches... 15
2.1.4 Recursive Flow C la ss ific a tio n .. 17
2.1.5 Use o f C a ch in g ... 17

2.2 HICuts in D eta il... 19
2.2.1 H y p e r C u ts .. 22

3 Notation and M etrics 23
3.1 IDD N o ta t io n ... 23
3.2 Mathematical N o ta t io n ... 25
3.3 Metrics ... 26

4 The D ynam ic Classifier - D esign 29
4.1 Range R eord ers... 30
4.2 Node Prom otion... 31
4.3 Range C om bination.. 34
4.4 Enhanced Cuts ... 36
4.5 TCAM C a ch in g ... 37
4.6 Remembering and Forgetting... 39
4.7 Update Frequency... 40

4.7.1 Update Frequency - F orgetting.. 40
4.7.2 Update Frequency - Major Restructurings... 41

4.8 Worst-Case B o u n d .. 42

5 The D ynam ic Classifier - Im plem entation 44
5.1 Implementation o f Static H IC u ts ... 44
5.2 Implementation o f the Dynamic Im p ro v em en ts... 46

6 Perform ance 51
6.1 Experiment D e s i g n .. 51

6.1.1 R u lesets... 52
6.1.2 Packet T r a ce s ... 53

6.2 Results and C om m entary... 53
6.2.1 Overall Improvements in C la ssifica tio n ... 53
6.2.2 Worst-Case Perform ance... 57
6.2.3 Effects o f the Individual Im p rovem en ts... 60
6.2.4 Memory U s e ... 63
6.2.5 TCAM Hits - Locality o f T r a ffic ... 66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.6 Effects o f the Rate o f Forgetting on L e a r n in g ... 68
6.3 Summary of R esu lts... 70

7 Conclusions 71
7.1 C onclu sions... 71
7.2 Future W ork ... 72

Bibliography 74

A Additional Results 76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

1.1 The relative frequency o f search for the nodes in Figure 1.1. Reproduced from [11]. 5
1.2 The relative frequency of search for the nodes in Figure 1.2..................................... 5
1.3 The Ruleset used for the motivating example.. 7
1.4 The relative frequencies o f hitting each region in our search space. Because rules 1

and 3 are found at two different depths, two frequencies are given for th em 8

6.1 Best path length results in terms o f L... 54
6.2 The average value o f L, and 2 times the standard deviation for all tests....................... 54
6.3 Actual worst case results for all tests.. 57
6.4 Maximum worst case results for all tests... 58
6.5 Effects of Node Promotion on c lassifica tion ... 61
6.6 Effects o f Range Reorders on classification .. 61
6.7 Effects o f Range Combinations on classification.. 62
6.8 Effects of the TCAM on c la ssifica tion ... 62
6.9 Effects of Enhanced Cuts on classification ... 63
6.10 Effects o f Node Promotion and Range Combination on classification 63
6.11 Average memory use results for all tests.. 64
6.12 Worst case memory use results for all tests... 65
6.13 The average number o f hits in the TCAM, as a percentage o f packets classified. . . 67
6.14 The effects o f the rate o f forgetting on the value o f L for the Single trace on the (a)

Checkerboard and (b) Snort ruleset... 68
6.15 The effects o f the rate o f forgetting on the value o f L for the Telus trace on the (a)

Checkerboard and (b) Snort ruleset... 68
6.16 The effects o f the rate o f forgetting on the value o f L for the Uniform trace on the

(a) Checkerboard and (b) Snort ruleset... 69

A. 1 The effects o f the rate o f forgetting on the value o f L for the Clumpedl trace on the
(a) Checkerboard and (b) Snort ruleset... 84

A.2 The effects o f the rate o f forgetting on the value o f L for the Clumped 10 trace on
the (a) Checkerboard and (b) Snort ruleset.. 84

A.3 The effects o f the rate o f forgetting on the value o f L for the SetSourcel trace on the
(a) Checkerboard and (b) Snort ruleset... 84

A .4 The effects o f the rate o f forgetting on the value o f L for the SetSourcelO trace on
the (a) Checkerboard and (b) Snort ruleset.. 84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Two search trees for translation, (a) is balanced while (b) is not balanced, but de
signed to take advantage o f the expected frequency o f search for each key. Repro
duced from [11]... 5

1.2 A search tree which is linear in its worst case search depth, produced by the algo
rithm from [11]. The values used to produce this tree are given in Table 1.2............... 6

1.3 A balanced binary search tree developed by a process similar to the one described
in [18]................................. 7

1.4 A new binary search tree which takes the frequencies into account, while bounding
the worst case search depth.. 8

2.1 The ruleset used for the examples in Section 2 .1.2... 15
2.2 An example o f a Hierarchical Trie on the ruleset given in Figure 2 . 1 15
2.3 An example o f a Set-Pruning Trie on the ruleset given in Figure 2.1 16

3.1 A sample path through a small HICuts tree... 24

4.1 A HICuts tree (a) before and (b) after range reordering.. 31
4.2 A HICuts tree (a) before and (b) after node promotion.. 34
4.3 A HICuts tree (a) before and (b) after range combination.. 36

5.1 The structure o f a node... 45
5.2 The structure o f a rule... 45
5.3 The structure o f an enhanced cuts node... 49

6.1 Average values o f L for S in g l e .. 56
6.2 Average values o f L for T e lu s ... 56
6.3 Average values o f L for U n ifo r m .. 56
6.4 (a) Actual and (b) maximum worst-case results for Single on Checkerboard 59
6.5 (a) Actual and (b) maximum worst-case results for Telus on Checkerboard.............. 60
6.6 (a) Actual and (b) maximum worst-case results for Uniform on Checkerboard . . . 60
6.7 (a) Average and (b) maximum memory use results for Single on Checkerboard. . . 65
6.8 (a) Average and (b) maximum memory use results for Telus on Checkerboard . . . 66
6.9 (a) Average and (b) maximum memory use results for Uniform on Checkerboard . 66

A.1 Average values o f L for C lu m p e d l... 76
A.2 Average values o f L for C lu m p ed lO ... 77
A.3 Average values o f L for SetSourcel ... 77
A.4 Average values o f L for SetSourcelO ... 77
A.5 (a) Actual and (b) maximum worst-case results for Clumpedl on Checkerboard . . 78
A.6 (a) Actual and (b) maximum worst-case results for ClumpedlO on Checkerboard . 78
A.7 (a) Actual and (b) maximum worst-case results for SetSourcel on Checkerboard . . 78
A.8 (a) Actual and (b) maximum worst-case results for SetSourcelO on Checkerboard . 78
A.9 (a) Actual and (b) maximum worst-case results for Clumpedl on S n ort............... 79
A. 10 (a) Actual and (b) maximum worst-case results for ClumpedlO on S n o r t 79
A .11 (a) Actual and (b) maximum worst-case results for SetSourcel on S n o r t 79
A.12 (a) Actual and (b) maximum worst-case results for SetSourcelO on Snort 79
A. 13 (a) Actual and (b) maximum worst-case results for Single on S n o r t 80
A. 14 (a) Actual and (b) maximum worst-case results for Telus on S n o r t 80
A. 15 (a) Actual and (b) maximum worst-case results for Uniform on Snort.................. 80
A. 16 (a) Average and (b) maximum memory use results for Clumpedl on Checkerboard 81
A.17 (a) Average and (b) maximum memory use results for ClumpedlO on Checkerboard 81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. 18 (a) Average and (b) maximum memory use results for SetSourcel on Checkerboard 81
A. 19 (a) Average and (b) maximum memory use results for SetSource 10 on Checkerboard 81
A.20 (a) Average and (b) maximum memory use results for Single on S n o r t 82
A.21 (a) Average and (b) maximum memory use results for Telus on S n ort......................... 82
A.22 (a) Average and (b) maximum memory use results for Uniform on S n o r t 82
A.23 (a) Average and (b) maximum memory use results for Clumpedl on S n o r t 82
A.24 (a) Average and (b) maximum memory use results for ClumpedlO on Snort 83
A.25 (a) Average and (b) maximum memory use results for SetSourcel on Snort 83
A.26 (a) Average and (b) maximum memory use results for SetSourcelO on Snort 83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Overview

Packet classifiers work by matching the headers o f packets against a large set o f rules. Each rule

contains instructions dictating how the packet (and the associated network flow) is to be dealt with

by the router. With both increasing bandwidth and increasing demand for classifiers which can

work on exceedingly large sets o f rules over many dimensions (each dimension being a field in the

packet header) classifiers which can more efficiently search such a space are always needed. This

document explores the idea o f using the traffic a packet classifier is seeing to tune the classifier’s

search structure in order to improve its average response time, while ensuring that the worst case

response time can be bounded to ensure proper functioning o f the router (or other hardware) the

classifier is running on.

It is a given that some rules in a packet classifier are more likely to be matched than others,

however, it cannot be known with any certainty which rules are most likely to be matched a priori.

A classifier should be able to adapt itself to the traffic that it sees. To test this idea, HICuts [17],

an algorithm for packet classification which uses heuristics to construct a search which balances

the search times for all rules, has been modified to periodically restructure itself to best match the

patterns o f the traffic it is seeing. Several distinct methods o f restructuring the search space are

described, and techniques for ensuring that worst case times can be bounded are given for each

method. In addition, means for determining the optimum interval between restructurings (to best

counter the costs o f restructuring versus the savings on subsequent searches) are detailed.

The effects o f restructuring are described via a modified Interval Decision Diagram (IDD) no

tation (which can be used since a HICuts tree is essentially an IDD tree which a slightly different

condition for creating leaves). This notation describes the path of a single packet through the classi

fier. Combining the notations o f the paths for all packets allows for full representation o f the HICuts

(or IDD) tree. The IDD notation gives the ability to directly and accurately estimate the amount o f

work performed by the new, dynamic HICuts algorithm. By computing the sum o f the individual

costs o f a large number o f searches, the average search time over a large number o f packet classifi-

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cations can be computed. By looking at the maximum value o f the estimated costs for classification,

it can be guaranteed that the classifier is not exceeding any worst case bound placed on it.

The effects o f the dynamic improvements on classification are then tested via experiments using

synthetic tests designed to test specific situations and extreme cases, and real-world tests using

actual packet traces and a subset o f the classification rules used by Snort, an intrusion detection

system which works via packet classification. Compared to a static HICuts classifier, the dynamic

classifier performed significantly better in terms o f both search depth and amount o f work performed

during classification.

1.2 Problem Definition

Packet classifiers work from the base o f a set o f rules. Each rule is defined over d components, d

being the number o f dimensions in the search. Each component corresponds to a particular entry in

a packet header (such as the destination or source address, or the destination or source port). These

components can take various forms, including regular expressions, ranges or simple numbers. For

every packet that a classifier sees, the rule that matches that packet is found - and relates the proper

action for the device running the classifier. A rule is deemed to have matched a packet if, on all o f

the d dimensions being classified, the values stored in the packet header match the corresponding

component o f the rule. If more than one rule is matched by a packet, some technique must be used

to determine which rule has the highest priority (i.e. takes precedence over the other rules). This

determination could be due, for example, to the position o f the rules in the classifier - those rules

that come first are considered to have higher priority.

There are many different criteria on which to base the performance o f classifiers. Some o f these

criteria, including several adapted from [14] are listed below.

Above all, packet classifiers must ensure that the correct rule is always found for any given

packet. Once this is guaranteed, then we must consider the performance o f a packet classifier on

other criteria. Packet classifiers must work quickly and must be able to work within whatever mem

ory they are given. Several different metrics can be used to gauge the performance o f a packet

classifier.

A lOGb/s line can bring in up to 31.25 million packets every second [14], Searches must be

performed quickly enough to classify this many packets. A general rule of thumb is to consider only

the worst case search speed, as we must guarantee that all packets must be matched in a reasonable

amount o f time. It will be argued below, however, that average case performance is also an important

measure o f a classifier’s performance.

Smaller storage requirements are generally better in terms o f costs (though not if using a small

amount o f memory degrades the speed o f classification by a large amount). In particular, techniques

that use specialized memory hardware such as ternary Content Addressable Memories (TCAMs)

need to be very careful about the amount o f memory they use in order to limit the costs o f the

o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hardware needed.

A good packet classification algorithm should be scalable to any number o f rules with little

increase in the average and worst case search time. With the advent o f faster packet classification

schemes, ideas have been put forward that would have looked impossible only a few years ago. User

driven rule sets for ISP routers could drive the number o f rules searched for some routers into the

hundreds o f thousands [3]. Also, there should be no limit on the size o f d. Since multi-dimensional

searches are often quite difficult to perform this constraint can be relaxed slightly to ensure that d at

least can be large enough to satisfy the most-used entries in a packet header. Finally, the operators

for checking to see if a packet matches a field should be as general as possible (perhaps even full

regular expressions) in order to help reduce the number of rules that a classifier needs.

Updates to the classifier - be they insertions, deletions or changes to the rules themselves - should

be as quick as possible. In addition, there should be no need to completely recreate a search structure

every time a change is made to the ruleset.

Currently, packet classifiers are designed to ensure that all rules can be matched in approximately

the same amount o f time. Since traffic patterns are often not known beforehand, it is generally

assumed that this is the most effective way o f ensuring that, at least, the worst case search time o f

the algorithm can be controlled, to ensure that packets are matched at an appropriate rate. However,

Internet traffic is never uniform, so balancing all rules so that they are equally likely to be matched

will not result in optimal performance. For many classifiers it would be extremely likely that certain

regions in the search space will be visited more frequently than others. The easier it is to match the

rules in these regions, the better the overall performance o f the classifier.

At the same time, a classifier must never allow any rule to require an excessive amount o f time

to match. Classifiers must react to traffic as it com es in. If a packet takes a significant amount o f

time to be matched we must queue up or drop other packets. This will result in poorer performance

o f the classifier (and, worse, poorer performance o f the network), and must be avoided at all costs.

These two requirements present a dilemma. The rest o f this document details the ways that the

average case search time o f a classifier can be improved by decreasing the search time for rules in

frequently searched regions, while the worst case search time can be bounded to ensure that all rules

can be matched in a reasonable amount o f time.

1.3 Worst vs. Average Case: Motivation

It is important to emphasize exactly why average case performance is a metric which should be

considered alongside worst case performance. To do this, three examples are given below. The first

two show the improvements we can expect when considering average case performance, along with

the possible dangers o f focusing on improving the average case. The final example shows, explicitly,

the applicability o f improving average case search time in packet classifiers.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3.1 Sorting

Consider Quicksort and Insertion Sort. Both o f these sorting algorithms work in quadratic time in

the worst case. It would be impossible to choose the “better” o f these two algorithms based solely on

this information - in fact, given that Quicksort is heavily recursive, while Insertion Sort is iterative,

one might be tempted to choose the latter over the former. However the average case complexity

of Quicksort is sub-quadratic (0 (n log n)), while the average case complexity o f Insertion Sort

remains quadratic. Since it is known that Quicksort will never perform worse than Insertion Sort

and that Quicksort performs better than Insertion Sort in the average case, Quicksort is the better

choice, given no other constraints on the choice.

1.3.2 Optimal Binary Search Trees

A slightly more interesting example is that o f building a search tree for looking up words for a

translation program [11]. A perfectly balanced binary search tree would certainly work for such

a purpose, however such a tree would make searching for frequently used words in a language as

difficult as searching for infrequently used words. Translating English to French, it would make

sense for a dictionary to quickly be able to find words such as the or /, at the expense of other words

which are likely to be infrequently searched.

It is well known that, given a set o f words and a set o f frequencies for the use o f those words,

a search tree can be built which will provide optimal expected lookup performance (given that the

frequencies used in constructing the search tree are, in fact, correct). This can be done via a simple

dynamic programming technique, which runs in f2(n3) time [11], where n is the number o f words

to be placed in the search tree.

[11] gives an example o f a balanced binary search tree which, with the given word frequencies,

is not optimal. This is reproduced as Figure 1.1. The frequencies by which nodes are searched for

are given in Table 1.1. The nodes themselves are labeled p i and q, and follow the rules for searching

that p i < pi+i> Qi < Qi+i . and qi < p i+ i < qi+ i . So, for example, Pi w ill be found to the left o f

p i + 1 in the binary search tree. The tree constructed via the dynamic programming technique is no

longer balanced, but has a lower expected search time than the balanced search tree. This is exactly

the expected benefit o f considering rules frequencies in a classifier. Rather than a balanced splitting

o f rules, a splitting which divides the rules up such that the overall expected search time is lower

than in a balanced situation is preferable. However, two differences between the lookup problem

and the classification problem need to be highlighted.

First, there is no way to bound a worst case in the lookup algorithm. Since this code is probably

not having to deal with input rates it cannot control, this may not be an issue. The example given

in Figure 1.2 shows how some search frequencies could result in the search tree’s performance

degrading from logarithmic to linear in the worst case. A packet classification algorithm could

never allow such performance degradation.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b)a)

Figure 1.1: Two search trees for translation, (a) is balanced while (b) is not balanced, but designed
to take advantage o f the expected frequency o f search for each key. Reproduced from [11].

i 0 1 2 3 4 5

Pi 0.150 0.100 0.050 0.100 0.200
Qi 0.050 0.100 0.050 0.050 0.050 0.100

Table 1.1: The relative frequency o f search for the nodes in Figure 1.1. Reproduced from [11].

Second, one must consider what happens if the frequencies given for the words searched are

wrong. Consider that the translation tree has been built for translating standard spoken English

to standard spoken French. If it is used for this purpose it will probably perform as expected.

If, however, it is then put to the task o f translating formal technical documents between the two

languages, it will probably exhibit significantly worse performance. Given the example in Figure

1.1, consider if p$ is, in fact, the m ost frequently searched. The search performance is no longer

even remotely optimal, and the search performs worse than the expected search time on the balanced

tree. If the dictionary were able to adapt itself to the circumstances it sees, it would likely perform

significantly better in many cases where incorrect assumptions about word frequency have been

made.

In fact, since the algorithm runs quite quickly, it would be possible to actually generate word use

statistics at runtime, and periodically rebuild the search tree to reflect these statistics.

i 0 1 2 3 4 5
Pi 0.250 0.100 0.050 0.025 0.030
Qi 0.250 0.100 0.040 0.030 0.015 0.010

Table 1.2: The relative frequency o f search for the nodes in Figure 1.2.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.2: A search tree which is linear in its worst case search depth, produced by the algorithm
from [11]. The values used to produce this tree are given in Table 1.2.

1.3.3 Packet Classification

The examples given above illustrate why average case is an important metric to consider. The

importance o f the average case to packet classification itself will now be illustrated.

Given in Table 1.3 is the ruleset which will be used for this example. This ruleset is defined

over a 256 x 256 region. The packet classification algorithm used in this case is a modification

of the trie-based classifier described in [18]. Here, at every level in the tree, one comparison is

performed against a range. If the comparison succeeds, the search follows the right child, otherwise

it follows the left child. The result is a trie-like binary search structure which can be used for packet

classification.

One possible configuration o f the search tree to correspond to the rules given in Table 1.3, which

tries to balance the search tree as much as possible, is given in Figure 1.3. While values are given

for both arcs leaving a node, it is important to remember that only one comparison is performed at

each node in the search tree. All rules are either three or four nodes from the root o f the tree - since

all that is performed at each level is one comparison, the depth o f a rule in the tree is a valid metric

for the amount o f work performed by the classifier to classify a packet which matches that rule.

If it is assumed that all rules are to be matched equally (and that rules 1 and 3, which are found

at two depths in the search tree, split their hits equally between those two depths) then we can easily

see that the expected required amount o f work for any given packet header this classifier will see

is approximately 3.28. If, however, the distribution o f packet headers is not uniform, but instead

follows the distribution given in Table 1.4, such expected performance would no longer be seen. In

that case, the expected work performed would now be 3.52, slightly worse than i f the rules were

equally distributed.

However, classifiers can perform better than this. Even if we keep a tight bound on the worst

case search depth (in this case, requiring it to be no more than the worst case depth o f 4 in the initial

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rule X Range Y Range

1 0 - 9 5 192 - 255
2 9 6 - 127 192 - 255
3 0 -1 2 7 0 - 1 9 1
4 128 - 255 128 - 255
5 128 - 254 64 -1 2 7
6 128 - 254 0 - 6 3
7 255 - 255 0 - 1 2 7

Table 1.3: The Ruleset used for the motivating example.

127 < X < 256X< 128

0 < X < 96 15 < X < 128
127 < X < 255

127 <Y <256Y < 128
191 < Y <256 V<128Y < 192

63 < Y < 128

Y <64

Figure 1.3: A balanced binary search tree developed by a process similar to the one described in
[18]-

search structure) we can redesign the search space from the configuration in Figure 1.3 into the one

shown in 1.4. Here the worst-case bound is maintained. It is easy to calculate that the expected work

performed for any packet header, given that the headers are distributed following Table 1.4, is now

only 3.03. This is significantly better than the performance on the balanced tree.

The benefits o f considering average case are shown clearly here. It is possible to create a search

structure for packet classification which can reduce the amount o f work performed by a classifier

on average while not affecting the worst-case performance of the classifier. This thesis is dedicated

to describing how a classifier could be built to consider traffic patterns and use that data to create a

better (on average) search structure.

1.4 Applicability and Impact

It has long been asserted that packet classifiers must only consider their worst case search time when

ascertaining their time performance. That was originally proposed in [20], and has been echoed

throughout the literature on packet classification ever since. The claim that packet classifiers must

consider the worst case is certainly valid, as classifiers deal with traffic which is not completely

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Region (Rule) Hit Frequency Work

1 10% 3
2 3% 3
3 4% 3
4 30% 3
5 50% 4
6 2% 4
7 1% 3

Table 1.4: The relative frequencies o f hitting each region in our search space. Because rules 1 and 3
are found at two different depths, two frequencies are given for them

127 < X < 256 X < 128

Y < 6 4 :1 2 7 < Y < 2 5 663< Y < 128 X < 9 6 , 95 < X < 128

127 < Y < 256 191 < Y <256Y < 6 4
Y < 192

127 < X < 255 Y < 192

127 < X < 2 5 5 254 < X < 256

Figure 1.4: A new binary search tree which takes the frequencies into account, while bounding the
worst case search depth.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

predictable, and which arrives at quick, and difficult to control, rates. If classifiers had excellent

average-case performance, but poor worst-case performance, it is easy to envision the problems that

could crop up should a large number o f packets which all can only be classified in the worst-case

time require classification at once: long queues, dropped packets, and reduced network throughput,

among others.

However, this does not mean, as many in the field o f packet classification assert, that w e should

not consider metrics other than worst case when evaluating the time performance o f classifiers.

Certainly, as shown above, it is possible to improve the average case o f classifiers, while ensuring

that the worst case is bounded, and thus cannot detrimentally impact the network itself based upon

the ‘wrong’ traffic showing up at the classifier at any given moment. That is the primary appeal of

this research. Even more than simply showing the benefits o f a dynamic classifier, over a static one,

it proves that such a classifier can be made, and that while we must always consider the worst-case

search time o f our algorithms, that does not render us incapable o f improving average-case search

time.

Improving the average case search time has several advantages. Many classifiers are not run

on their own hardware. Intrusion detection programs (such as Snort), firewalls and other programs

which aid in ensuring the security o f personal computers often run on those computers themselves.

In these cases, the less work the classifier performs, the more CPU time is available for the other

processes running on that system. Certainly, considering only worst-case time in such a situation

would place (relatively) excessive demands on the CPU. While a classifier can guarantee that it

reacts to packets in time, there is no guarantee that it is doing so in an efficient manner, friendly to

other processes running on the same hardware.

Improving average search time is also useful for dedicated routing hardware. A s quality of

service becomes increasingly important, the number o f rules over which classification is performed,

as well as the number o f dimensions over which classification is performed continue to increase [3],

Any technique which can speed up the average time needed for classification would be extremely

beneficial for providing such service. W hile no speed-up can be expected in the worst case, the fact

that, on average, packets are classified faster than they would otherwise be certainly contributes to

the overall quality o f service provided by a network.

1.5 Thesis Overview

Throughout this document, several techniques which allow the HICuts algorithm (presented in Sec

tion 2.2) to adapt itself to the traffic which it is seeing are presented. These techniques provide

significant improvements in the average case performance o f HICuts, while ensuring that the worst-

case performance can be bounded. This same adaptivity could be applied to many other classification

algorithms, some o f which are detailed in Section 2.1. Whether or not general techniques which can

be applied to all classifiers exist is an interesting question which is not investigated in this work.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to best describe the effects o f any changes to a classification structure, a formal, math

ematical notation would be beneficial. A notation based upon the notation for Interval Decision

Diagram (IDD) based firewall classifiers by Christiansen and Fleury [7] is developed for this pur

pose and is described in Chapter 3. The notation allows for the description o f the path through the

search structure taken when classifying a packet header. In doing so, it gives a quick way o f estimat

ing the amount o f work done by the classifier for a single packet, as well as for determining the total

amount o f work performed by the classifier. Additionally, Chapter 3 describes the notation which

will be used for the formulas which make use o f the IDD based path description, and describes the

ways in which some o f the metrics described in Section 1.2 are measured.

Using this formal notation, along with algorithm excerpts and informal diagrams, the actual

processes involved in redesigning the search tree are then outlined. General designs for all the re

structuring techniques, along with the motivation for those techniques provide the bulk o f Chapter

4. First, four techniques which actually affect the search structure - node promotion, range reorders,

range combinations and enhanced cuts - are described in Sections 4.1 through 4.4, along with expla

nations o f how they would improve the overall performance o f the search structure.

Next, the idea o f using a TCAM as a cache for rules which have been recently matched is

explored. Since a TCAM can be used with any classifier (in fact, given a small enough ruleset, and

a large enough TCAM, a TCAM can serve by itself as a classifier) the effects o f the TCAM are first

described in relation to all classifiers, static and dynamic. Then the specific advantages o f using a

TCAM with a dynamic classifier are outlined. This discussion is found in Section 4.5.

There are several other questions with regards to the performance o f a dynamic packet classifier.

In particular, it is important to know that a worst-case bound on the classifier’s performance can

be enforced. Techniques for dealing with this case are given below as Section 4.8. In addition, it

is important to determine how often updates to the search structure should be performed (they do

take a significant amount o f resources themselves) and how quickly the classifier should forget the

information it is remembering about the traffic it is seeing. If reorganized frequently, the classifier

would probably benefit - but at the risk o f occupying too many resources which would better be used

by the classifier or other processes also running on the same hardware. Section 4 .7 details the effects

of varying the rate at which the classifier restructures the tree and at which it forgets the traffic it has

seen.

After the overall design o f the classifier has been explained, it is important to describe exactly

how it was implemented. Many choices, such as the algorithm used for sorting and the use o f static

and dynamic memory affect the performance o f the classifier. As a result, it is important to detail

and justify the actual implementation o f the dynamic classifier. Chapter 5 explains exactly how the

static classifier (5.1) and the dynamic improvements to it (5.2) were actually implemented.

Chapter 6 deals with the design o f the experiments used to test the effectiveness o f the techniques

described in this document. The selection and generation o f packet traces is discussed, as is the

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

selection and generation o f rulesets. The process by which the various possible improvements to the

classifier are tested is given in detail, along with explanations for the choices used in experimentation

for the given parameters. The results o f these experiments are also given in Chapter 6 . These results

are discussed in detail, using both informal explanations of the effects o f the classifier’s decisions,

along with formal descriptions which make use o f the modified IDD notation.

The overall conclusions of this research are then presented in Chapter 7.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Current Classification Algorithms

As described in Section 1.2, packet classification is the problem o f determining which o f a large

number o f rules best matches a given packet header. A rule is simply a statement o f certain properties

that a packet header must show. For example, a rule may state that a header may come from any

source address, may be heading to any address in a particular subnet, and must have a source and

destination port of 80. In addition, a rule contains an action which is to be performed is a packet

header does have all the properties defined in the rule. Common actions include dropping, accepting

and forwarding to other devices. Rules are commonly grouped into rulesets.

Rules can be defined over multiple dimensions, where each dimension corresponds to a particu

lar field in a packet header (such as the source address or the destination port). The term field is used

not only to describe a component o f a packet header, but also to describe the particular component

of a rule used to determine if the packet header matches the rale on that component o f the packet

header.

The goal o f any packet classifier is to find the rale which ‘best’ matches a given packet header.

This is done by finding the rale which matches a packet header on every field defined in the rule.

If multiple rales match, the classifier must choose the ‘best’ rale. Often this is accomplished by

encoding a priority into rules. When given the choice between rales which all match a packet

header, the classifier chooses the rale with the highest priority.

2.1 General Overview

The problem o f packet classification has been around for as long as networks have existed. In that

time, many different techniques for classifying packets have been proposed. Given below is an

overview o f several different classification techniques. The algorithms chosen below are illustrative

of the various ways in which packets can be classified. Many variations o f these techniques exist,

and there are a few rarely-used algorithms which are not detailed below.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.1 Linear Search

For a linear search, all the rules are stored in sequential order by priority. A packet is compared to

each rule in turn until a rule is found which the packet matches.

Linear searches are very efficient in terms o f storage - very little is needed beyond a single copy

of each rule. In addition, updates to the rules can be performed relatively easily. There is no need

to perform more than a local update around the modified, inserted, or deleted rule unless a change

affecting that rule’s position in the list is made.

Of course, as is well known, linear searches perform poorly when time is an issue. The worst

case o f a linear search is to have to search every rule in the rule set. On average, under the assumption

that every rule is equally likely to match a packet header, and that every packet matches a rule, a

linear search must search half o f its rules to find a match. If no rule matches for a packet, we must

do a full linear search to confirm this. For these reasons, this technique scales very poorly in the

number o f rules it has to classify over [18]. The number o f dimensions needed affects this approach

only in that there will probably be additional rules in the classifier if there are additional dimensions

to classify over, and, depending on how rules are encoded, that each comparison o f a packet against

a rule may take longer than a comparison on fewer dimensions.

2.1.2 Trie Based Methods

Since packet classification can be seen as trying to find matching rules based upon the prefixes o f

the various fields on which w e are trying to match, the concept o f using trie-like structures comes

immediately to mind.

A trie is a tree structure where w e determine which branch (or branches) to search from a node

based upon the prefix o f what we are searching for (this description is adapted from [1]). A trie

for an English dictionary may have nodes with up to 26 children - one child for each letter in the

language. A search for the word “categorize” then, would follow an edge to the “c” node (a child o f

the root), then the edge to the “ca” node (the “a” child o f the “c” node), and so on until the word is

found in the trie or a mismatching leaf node is reached.

A trie generally only operates over a single dimension [18]. This leaves no means by which

to classify packets over multiple dimensions, at least when using a simple trie structure. Several

methods have been proposed to use tries in an attempt to solve problems in packet classification.

These include Hierarchical Tries, Set-Pruning Tries and Grid-of-tries.

The simplest o f these methods is the Hierarchical Trie [18]. A Hierarchical Trie simply con

structs a trie on one particular dimension. Then for each node in that trie, another trie is built on

another dimension, containing only those rules that satisfy the node o f the original trie the second

trie is anchored to. I f a matching rule is found in the trie over the final dimension, the classifier

knows that this rule properly matches on every dimension, even though the current trie it is search

ing is only on one dimension. A Hierarchical trie is shown in Figure 2.2, which shows the rule set

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

described in Figure 2.1 split along its two dimensions. Thes ruleset is defined on two dimensions,

using prefixes. It is important to note the branch leaving the node for the prefix 0* in the Hierarchical

trie. This branch exists because the rules R4 and R3 are defined for prefixes o f exactly 0*. That this

must be done is one o f the major drawbacks o f Hierarchical Tries.

While conceptually simple, this algorithm performs poorly in terms o f both time and space com

plexity [18]. The time for finding any particular match is determined by the number o f dimensions

and the depth o f the trie constructed for each dimension. This could get quite large as more dimen

sions (as well as more rules) are added to the classification scheme. In addition, as a Hierarchical

Trie only places rules in sub-tries if they exactly match the prefix held in the node in trie for the

previous dimension, multiple tries in later dimensions may need to be searched as more than one

node in an earlier dimension may match the packet. The best match in one trie is not guaranteed to

lead to a matching rule, and tries under less-constrained nodes on that dimension must be searched

to find a rule, or ensure that no rule matches. In terms o f space, a trie can take up a lot o f memory.

Having several levels o f multiple tries per level simply makes storage costs worse.

To improve on lookup time a structure called a Set-Pruning trie ([18] which in turn cites an

unpublished report by P. Tsuchiya) can be used. This is very similar to a Hierarchical Trie. However,

care is taken to ensure that only one branch can be followed at each level. W hile the Hierarchical

Trie only placed rules in the lower dimension tries if the packet properly matched the prefix in the

above tries, a Set-Pruning tree includes all rules that could match that prefix - including those which

could match another more specific node further down in the trie. This way, the classifier only has

to follow one branch in each trie. However, this also means that rules can be duplicated across tries

of lower dimensions. This makes the storage space of the algorithm worse than that o f Hierarchical

tries. A trie built by this method over the ruleset in Figure 2.1 is given as Figure 2.3.

The set-pruning technique can be further improved. A technique known as the grid-of-tries, put

forward by Srinivasan et al ([18], [24]), builds structures that are equivalent to the tries built by the

original hierarchical approach. However, the grid-of-tries approach maintains additional pointers in

the other tries for the same dimension. Information stored in these nodes allows the search to know if

it can - and if it should - “jump” from one trie to another. This is conceptually as i f w e were building

a set-pruning trie, but instead o f maintaining each trie separately, we merge redundant sub-tries in all

the tries on a particular dimension in order to save on storage space. In doing this, only one branch

of any trie needs to be searched (eliminating the main deficiency o f the Hierarchical method) and

rules need not be stored in more than one place (eliminating the main deficiency o f the Set-Pruning

method). A set pruning tree can be seen as a form of Directed A cyclic Graph. For reasons o f space,

an example o f a Grid-of-Tries is not included, a good example can be found as Figure 5 in [18].

The trie method may not be the best way to construct search trees for the problem o f packet

classification. Among other failings, it may be prudent to perform classification over dimensions

together, not separating them into distinct structures. If the classifier was to look at the structure o f

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R5 R6

R2 R3

R1

R1 0 0 * 0 0 *
R2 0* 0 1 *
R3 1* 0*
R4 0 0 * 0*
R5 0* 1*
R6 ★

0 X

Figure 2.1: The ruleset used for the examples in Section 2.1.2.

T r i e o n
Y A x i s

R6

T r i e s o n
X A x i s

RS
R1 R3 R2

R4

Figure 2.2: An example o f a Hierarchical Trie on the ruleset given in Figure 2.1

the rule sets used in building a a search structure, it might be able to exploit this structure to build

more efficient packet classifiers [18].

2.1.3 Geometric Approaches

As the search space o f a packet classifier can be seen as a d-dimensional geometric space, the

applicability o f geometric search algorithms and data structures to the problem is readily apparent. In

recent years, several geometric approaches have been proposed to help solve the problem o f packet

classification. While these approaches tend to work very well for 2 dimensional classification, many

scale poorly, or worse, cannot be scaled beyond 2 dimensions at all.

In Cross-producting (described along with die aforementioned Grid-of-Tries in [24]) each di

mension is divided into small ranges, based upon the ranges o f the rules stored in the ruleset. These

ranges are then combined into tuples. These tuples are used as references into a cross-product table

which would dictate which rule is to be followed when a packet falls into those ranges on every di

mension. This is very similar to the Tuple space search outlined below, however, Cross-producting

is not limited to prefixes and can com pose ranges on more general criteria. Unfortunately, as there

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T r i e o n
Y A x is

T r i e s o n
X A x is

Figure 2.3: An example o f a Set-Pruning Trie on the ruleset given in Figure 2.1

can be many ranges generated on each possible dimension, the total size o f such a table quickly

becomes too large to be practical for large rulesets and/or a large number o f dimensions.

Area-based quadtrees, described by Buddhikot et al [5], allow for quick classification o f any

number o f rules in two or fewer dimensions. Every node in a quadtree [12] represents a two-

dimensional region o f the search space, and has four children, representing the four equal-sized

quadrants which the regions can be divided into. Starting with the full space, new nodes are created

until each contains only one rule. Such a structure allows for the construction o f a tree which is not

overly large in terms o f the number o f rules stored and which is easy to search. However, quadtrees

are limited to classification on only two dimensions. That it constructs new nodes based on very

strict criteria may also result in larger quadtrees than would be constructed under more flexible

criteria.

A segment tree is a balanced binary search tree containing the end points o f a large collection S

o f line segments. The details o f such a data structure are given in [12]. Each node in such a search

tree represents a certain range in one dimension o f the overall search space, each leaf corresponds

to a single line segment and every non-leaf is the union o f all the ranges o f its children. FIS (Fat

Inverted Segment) trees were proposed by Feldman and Muthukrishnan [14] to adapt segment trees

for use in two-dimensional classifiers. These trees increase the number o f children per node (hence

‘fat’) and follow paths from child to parent in searches (hence ‘inverted’). A HS-tree is created

for the first dimension (with each rule’s values on that dimension used as a line segment). Each

node contains a table o f associated rules, which can be searched using the value for the second

dimension. A query for a certain point (the packet header value for that dimension) is carried out to

find the proper leaf node. Nodes are then searched towards the root o f the tree to find if any higher-

priority rules exist. Such a technique makes finding nodes quick, and uses little memory. Again, this

technique cannot be scaled beyond two dimensions, rendering it useless for more advanced uses of

classifiers such as the provision o f Quality o f Service.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.4 Recursive Flow Classification

For every possible packet header we know that there is either a rule which best matches that packet,

or no rule that matches that packet. Therefore, it would seem a good idea to come up with a mapping

for every possible packet header to the number o f the particular rule that packer header matches.

Unfortunately, this would use a very large amount o f memory. If t is the number o f bits in the

fields o f a packet header being used for classification, then there are obviously 2 £ different bit strings

to be classified in this manner [18]. Even if each packet is classified over a single 32-bit value, the

costs o f storing this much information in' any form o f fast storage would be astronomical.

Therefore, it was proposed by Gupta and McKeown (in [16] and summarized in [18]), that this

process be done in stages. The required fields o f the packet header would be broken up into many

independent pieces, and each piece would serve as an index into parallel memory. The results of

these lookups could then be combined to provide indices into other memory, which in turn would

provide additional indices until finally the index into the rule set itself is computed.

Preprocessing of the rules must be performed to help make two choices [16]. First, the number

of iterations (intermediary index lookups) needed to produce the actual ID o f the rule we need must

be decided. Second, since there are many ways to split and recombine the packet information and the

indices returned, a scheme for combining the results o f each phase must be determined. Generally,

chunks with close correlation are combined first. As many chunks are combined at each stage as is

physically possible given memory constraints.

In terms o f performance RFC can classify any packet very quickly. In fact the speed o f clas

sification is predetermined and never changes unless the rule set is processed again with different

parameters. This provides predictable performance, and gives a reliable upper bound on the clas

sifier’s worst-case performance. The technique can be expanded to as many different fields in the

packet header as the user would like.

However, RFC is costly in terms o f memory use. It needs to store all the intermediate results

in separate parallel memories. For larger and larger classification rule sets, this scheme becomes

almost impossible to implement in a small amount of memory. Also, changes to the rule set may

make it necessary to reprocess the entire structure for the algorithm. If rule sets change infrequently,

this isn’t a problem, however it could be prohibitive if frequent changes are made to the rules a

classifier uses.

2.1.5 Use of Caching

Caching o f important information is a common strategy in many algorithmic techniques. A signif

icant amount o f research has gone into the use o f caching for use in classification, and currently,

caching is seen by many as the only viable solution for classification in core routers [21]. There

are two distinct forms o f caching which can be used with classification. The first uses specialized

hardware, the second, regular memory.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ternary CAMs

Ternary CAMs (Ternary Content Addressable Memories, TCAMs) provide what appears, in almost

all regards, to be the perfect solution to the problem o f packet classification. A ternary CAM pro

vides a means to find an address into memory based upon some particular value (which in this case

could be a packet header) [18]. Ternary CAMS are so-named because they implement ternary logic.

Each line is composed o f trits which can take on the values 1, 0 and “D on’t Care.”

TCAMs provide several benefits. First, the use o f a ternary CAM is trivial - even simpler than

a linear search. All one has do do is provide the information to be matched to the TCAM, and the

TCAM returns all list o f all the rules that match [18]. These can be searched to find the one with

the highest priority. Second, Ternary CAMs provide results very quickly. In fact, the results may be

returned within 10ns[18]. A Ternary CAM compares the information it is given against every one o f

its elements in parallel - indicating all the matches on its output lines simultaneously. If many rules

match, the classifier must use some metric to determine which rule to apply. Usually, the lowest

output line which is active is used, with rules sorted according to priority in the TCAM.

But, as with all classification schemes, there are drawbacks to using Ternary CAMs. The most

notable is the cost. Ternary CAMs require more transistors for every trit stored, significantly higher

than the number o f transistors needed in DRAM , and possibly even SRAM [18]. A lso, due to how

the hardware operates, the power requirements o f a ternary CAM are significantly higher than those

o f more conventional storage. In addition, as noted in [26], Ternary CAMs may not currently be

produced with line widths well suited to storing the rules to be matched.

Should Ternary CAM technology reach the point where it is feasible for large classification

schemes, such technology may make other attempts to speed up packet classification obsolete. It is

impossible to improve upon storing every rule once (linear storage space), and matching a packet in

constant time.

M ain M em ory Caching

Other work has been performed in the area o f caching mostly in standard memory, and not in spe

cialized hardware such as TCAMs. Tuple space search, proposed by Suri et al in [23], decomposes

the rules in a classifier’s ruleset into several d-tuples (with d being the number o f dimensions being

classified over). Each o f the d entries in the tuple contains the length o f the prefix being used for

classification. Since these entries have a fixed length (they are fields from strictly-defined packet

headers) they can easily be stored in a hash table. Unfortunately, as with TCAM caching, while

schemes like this provide very quick lookup o f rules corresponding to any given packet header, the

number o f tuples which can be created is very large, and grows exponentially with the number o f

dimensions being classified. As well, the classifier is only able to classify based upon prefixes and

not on patterns in general.

Despite the memory requirements o f the Tuple space search method, which make it rather use-

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

less for large rulesets over many dimensions, improvements to it have been suggested. One o f the

most interesting, put forward by Wang et al [27], alters the Tuple space search method to perform

lookahead caching. This method attempts to remove useless information from the hash table in or

der to speed up classification time and memory use. Memory use can be reduced in this case by

choosing a ‘default’ action and removing all tuples from the hash table which resolve to that action.

If no rule can be found for a header, then the default action is taken. This cannot completely control

memory use, however, and still has the general deficiency o f only being able to classify based upon

prefixes. In addition, such a scheme would not work in cases where rules overlap, as removing a

default rule from the hash table might allow packets to incorrectly match a rule with another action

which had lower priority in the original ruleset. In order to combat this deficiency, rules would

have to be split into numerous non-overlapping smaller rules in order to ensure that the removal of

some rules does not affect the correctness o f the classifier’s work. This counter-acts the benefits in

reduction o f memory seen by removing all rules associated with one action.

In general, main memory caching techniques attempt to store all the rules in a ruleset into a

hash table or other form of cache. Just like with TCAM caching, this is useless for large rulesets

covering many dimensions. As a result, it should be considered whether caching alone is an appro

priate response to the problem o f packet classification, or whether it should be combined with other

techniques.

2.2 HI Cuts in Detail

Hierarchical Intelligent Cuttings (HICuts), proposed by Gupta and McKeown in [17] and described

in [18], is a form o f heuristic-based packet classifier. Like any heuristic-based classifier, HICuts uses

a set o f heuristics to guide its construction o f a search structure which can, hopefully, be searched

quickly in order to classify packets at the fastest rate possible. In the case o f HICuts, the search

structure produced is a search tree. This search tree is described in greater detail below. HICuts’

main goal is to produce a search tree which is well-balanced and minimizes the amount o f memory

used. That HICuts can create such a search tree is confirmed empirically in [17]. Some insight into

how HICuts’ structure can be proved to do what it claims is given in Chapter 3.

Since rules may overlap in the classifier, there must be some way o f determining the precedence

o f rules in the case where a packet may match more than one rule in the ruleset. HICuts deals with

this problem in a straightforward manner. Rather than being an actual set, the ruleset is considered to

be an ordered list. The precedence o f a rule is determined by its position in the ruleset. Rules which

are found closer to the head o f the list are considered to have a higher priority than those which come

later. As the rulesets may be changed based upon the node in the search tree, it is possible that, at

some point, some rules in a ruleset may be identical to each other, or a higher priority rule may

completely cover a lower priority rule. In this case, rules with a lower precedence are eliminated

completely from the ruleset. This ensures that the termination condition for building the search tree

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is guaranteed to occur at some point. During the construction o f the tree, the region o f the search

space represented by a node may become so smail that rules must be completely covered by rules

with higher priority. If these rules are not eliminated, it might be that a node would never have fewer

than the maximum number o f nodes allowed in a leaf node.

Every node o f the HICuts search tree contains a certain ruleset. In the case o f the root o f the

tree, this is the entire ruleset. In nodes further down in the search tree, this ruleset contains fewer

rules. Rules are pared out by HICuts at every node when the children o f that node are constructed.

Every node considers its ruleset based upon four heuristics (described in detail below). Using these

heuristics, the node determines two things: the dimension which should be cut by the node and the

number o f cuts that the node should make. Every node in a HICuts tree divides its ruleset among

its children based upon cutting the ruleset on exactly one dimension. This dimension has a certain

range (which may be smaller than its original range due to cuts higher in the tree) which is divided

equally among the children o f the node. The provision for equality ensures that the proper child

node to search can be found through mathematics. A number o f child nodes equal to the number

of cuts made plus one are created. The ruleset is then divided up among these children based upon

their new ranges (all being subranges o f the range o f the cut dimension). It is possible that some

rules will be inserted into multiple children, as the range o f the rule on the dimension being cut may

fall into two or more o f the ranges given to the new children. This is perfectly acceptable. At this

point, the rulesets o f the children are inspected to see if there are any rules which are completely

covered by a higher-priority rule. If this is the case, then those rules are eliminated from the child’s

ruleset. The node-splitting work is then performed, recursively, on each o f the node’s children as

long as they do not qualify to be leaves.

Leaves in the search tree are defined as those nodes which have fewer than a pre-set number o f

rules in them. Any node which has more than this number must be further cut until this condition is

satisfied. It is easy to see where this may lead to problems, given that HICuts divides the range it is

cut on among its children evenly. If all the rules remaining in the node are clustered in one region

o f the search space, it might take several cuts, and several levels in the search tree to finally pare the

ruleset in each node down to below the number o f rules permitted in a leaf. The rules stored in a

leaf many have any action associated with them. As a result, when a search reaches a leaf, it must

search the rules provided in order to find the rule which matches the packet header, and discover

the action associated with that rule. HICuts, in order to allow for rule precedence, searches the rule

list sequentially, from the first rule to the last. The action associated with the first matching rale is

returned as the action for this packet. If no rule in the leaf matches, there is no matching rale in the

entire ruleset.

Searches through the non-leaf parts o f the tree are straightforward. All searches start at the root.

In every node visited, the dimension cut is determined, and the value o f the packet header on that

dimension is retrieved. At that point, the child node whose range contains that value is selected from

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the node’s list o f children. The search continues into that node. If the new node is a leaf, the rules

are searched. If the new node is not a leaf, then the process is repeated recursively.

As mentioned above, four heuristics are used to guide HICuts in making the proper selection at

each level to produce a balanced search tree which uses as little memory as possible. The first two

heuristics work in conjunction with one another. The first attempts to determine the number of cuts

which should be made at a node. More cuts might result in a shorter search tree, decreasing search

depth. However, more children might also result in the search tree using more memory - especially

if there are a number of rules in the ruleset which would make it into multiple children upon being

cut. This heuristic tries to find a good number o f cuts which will produce several children while

dividing the ruleset up evenly and cleanly among them.

The second heuristic determines which dimension should be cut. Here, a good choice is a dimen

sion on which the rules are quite evenly distributed. Since HICuts divides the dimension into equal

pieces for the children o f a node, a uniform distribution o f rules would produce several children

with rulesets o f roughly the same size. A dimension on which the rules are currently clumped into

certain regions o f the search space is usually a poor choice for being cut, unless such a cut satisfies

the requirements o f the other heuristics guiding the construction o f the search tree.

The third heuristic considers the possibility o f creating child nodes which are common to multi

ple regions o f the search tree. It is possible that cuts in different areas o f the search tree may produce

children which are identical in terms o f the rules which they contain. If this is so, then only one child

need be created, and every node which considers that node to be its child can point to that one node,

rather than creating a large number o f identical nodes. This heuristic looks at the current node and

tries to determine if a certain cut could produce a child identical to another child in the tree. If so,

that cut should be considered with more weight than it otherwise might be given. Making such a cut

would help reduce the amount o f memory used by the search structure and improve the usefulness

of memory caches. As a result o f applying this heuristic, a structure similar to a Directed Acyclic

Graph (DAG) may be produced.

The fourth heuristic, like the third, tries to reduce the amount o f memory used by the search

structure. This heuristic tries to find cuts which would allow rules to be removed from rulesets.

Since any rule completely covered by a rule with higher priority will be removed from a ruleset,

this heuristic tries to find cuts on dimensions which will allow the maximum number o f low-priority

rules to be covered and rendered removable. The more rules are removed at each level, the more

likely we are to reach a leaf node earlier on. Further, there is less information stored at each level o f

the search tree, as the rulesets stored at each level will be smaller.

The above four heuristics are expensive to compute, and take a significant amount o f time for

a large ruleset. However, HICuts only builds the search structure once, as a preprocessing step, so

the amount o f time needed to build the structure has no bearing on the search time o f the algorithm

itself. It should be noted, though, that insertions and deletions from the HICuts ruleset might require

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

running the entire algorithm again in order to keep the rules balanced. If this is not done, then a

large number o f rules inserted in a small region might cause a subtree to grow much larger than it

should. This would unbalance the entire tree, and increase the worst-case classification time.

2.2.1 HyperCuts

Singh et al [21] proposed an improvement to HICuts shortly after HICuts itself was first proposed.

Their algorithm, named HyperCuts, creates the same overall decision tree structure as HICuts. How

ever, this structure allows more freedom in the choice o f dimension to be cut at every stage o f search.

In particular, it allows for the possibility o f multiple dimensions to be cut in every node. This is done

through the use o f hypercubes created and stored in each node which allow the children o f the node

to be quickly found, even over multiple ranges. New heuristics ensure that the storage costs o f these

nodes is kept as small as possible while providing for efficient search times and low update costs. In

the case where each node is limited to a one-dimensional hypercube, HyperCuts behaves identically

to HICuts. When the hypercube is allowed to span multiple dimensions, however, HyperCuts can

perform significantly better than HICuts, while using a lower amount o f memory.

It is interesting to note that the authors designed HyperCuts to eliminate the cost o f using CAMs

in routers. As HICuts and other techniques still tend to use a lot o f memory, for many routers CAMs

are used to store the entire ruleset and algorithmic approaches are shunned. It is interesting that the

authors o f HyperCuts consider completely removing the CAM as one o f their goals. As discussed

above, having a CAM store some rules to save both time and space for searching would seem an

obvious solution to many problems. However, while admirably attempting to reduce the time and

space needs o f classifiers, the authors miss a valuable opportunity when they assume that the goal

of such work should be the removal o f CAMs from routers. CAMs still work faster than algorithmic

techniques, and should not be cast aside so readily.

HyperCuts could be seen as a better choice for the basis o f this thesis than HICuts. However,

HICuts was chosen mainly because o f its relative simplicity. The purpose o f this work was to

prove that using information learned during classification to improve the search structures used by

classifiers could lead to an overall improvement in the speed o f classification, and to demonstrate

that more than the worst case should be considered when evaluating the performance o f classifiers.

HICuts is complicated enough to allow many improvements based on learning, while simple enough

to implement in a short period o f time. Using HyperCuts instead o f HICuts would simply have

increased the complexity o f the original algorithm, while not affording any benefit in helping show

the gains that can be made when classifiers can learn from the traffic they see.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Notation and Metrics

3.1 IDD Notation

A HICuts tree is a form o f Interval Decision Diagram (IDD) [25]. W hile searching a node in the tree,

one o f its children is chosen based upon intervals along a certain dimension. IDD trees can be created

for multiple dimensions, but, like in HICuts, the children o f each node must be differentiated only

by ranges in a single dimension. Whichever interval matches the value being searched for dictates

the child node on which the search continues.

An IDD tree continues to split its nodes into children until a node contains only one associated

action. This cannot be done in HICuts due to memory constraints. Several actions might be asso

ciated with a leaf in a HICuts tree, and the classifier must search the rules contained in that leaf to

figure out which action to take. This is a minor concern, however. The terminating condition on the

HICuts tree could be changed to ensure that there is only one action per leaf, at the expense o f using

up significantly more memory.

Christiansen and Fleury [7] give a notation to describe how a packet might be filtered by a

firewall which is based upon an Interval Decision Diagram. This notation w ill be modified slightly

here to allows the description o f the path a packet will take through a HICuts search tree to find a

matching rule. The use o f the notation here is slightly different from that in [7], as there may be

multiple paths to the same rule in a HICuts tree. This is not possible in the original IDD notation

described in [7], This new notation gives a very easy way to describe the changes made to a HICuts

search tree by the dynamic classifier described in Chapter 4. It also gives a formal way to calculate

the amount o f work performed by the classifier both for each separate packet classified, and for the

classification o f every packet seen thus far by the classifier. This is described in Section 3.2.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 5 6 x 2 5 6
4 Cuts on X

64 x 256
4 Cuts on Y

L eaf

Figure 3.1: A sample path through a small HICuts tree.

Given H , a set o f possible headers, and II, a set o f all possible actions the classifier can return,

the path p that a single packet w ill take through the HICuts tree can be defined as:

p = (r7, 7r), with 7] a CNF over ranges in H and tt £ II

Ranges in H refers to a range given over a particular field in the packet header. Such a range acts

as a literal in the CNF formula, and will be o f the form lower bound < dimension < upper bound.

Ranges are never combined within clauses, even i f contiguous.

In particular, 77 is a conjunction o f several tests over fields in the IP header. Since this notation

describes the path o f a search through a rooted tree, the operator A is constrained to being left

associative, rather than allowing it to be fully associative as it generally is in logic.

Unfortunately, this basic notation still does not quite suffice to fully describe the classifier’s

search. In particular, because work may be done at a given node to determine which child node to

search in, there must be some notation for describing this work. To achieve this, 77 is altered to be

a formula in conjunctive normal form. Each clause is indicative o f the considerations made internal

to a node, and the overall conjunction charts the course of the search from node to node.

It is important to recognize that this notation puts some semantic strain on the ‘or’ relation. In

particular, ‘or’ implies that the first boolean tests failed while the last one given in the expression

succeeded. While this is not how an ‘or’ would be used in pure logic, it does match the standard

practice o f short-circuiting logical expressions or lazy evaluation used in most languages. As an

example o f the use o f this notation, consider the path given as a bold line in Figure 3.1. As this is

a standard HICuts tree, the cuts are o f equal size, so ranges are not given in the figure. In this case

77 = (((X < 64)) A ((y < 64) V (64 < Y < 128))). 7T will take the value o f the action associated

with the properrule in the leaf node. If, in this case, ■Kisaccept, the path p = ((((X < 64))A ((y <

64) V (64 < y < 128))), accept).

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Mathematical Notation

Given the description o f the HICuts algorithm provided in Section 2.2, along with the IDD notation

described in 3.1 it is now possible to present a number o f mathematical functions and operators

which will allow description of the amount o f work that is needed to classify a single packet. It is

also now possible to introduce functions to aid in computing the net change in the amount o f work

to classify any packet after the HICuts tree has been modified by the techniques outlined in Chapter

4.

The length o f a path p = (77, tt), L[p) is the total size o f all the clauses in p. It is the count

o f the number o f literals (counting duplicates, if any) in the conjunctive normal form equation 77.

L(p) gives a rough estimate o f how much work the classifier has to perform in order to classify any

packet with takes the path p. Counting the size o f each o f the clauses gives us the number of range

checks which had to be performed at any level o f the search tree. The search depth, represented

in the IDD notation as the number o f clauses in the conjunctive normal form formula, need not be

considered when calculating the work performed by the classifier as range checks comprise all the

work performed in a node while searching.

However, the depth o f the search is an important consideration for matters o f time and, especially,

memory efficiency. Thus, it is important to have a notation for the depth o f search. D (p) gives one

less than the number o f clauses in the 77 associated with p. This gives an exact count o f the depth of

search for any given packet being classified. D {p) is one less than the number o f clauses as, when

calculating depth in a search tree, the root node is given a depth o f 0 .

A value to express the total amount o f work performed by the classifier over all the classifications

it performs is also needed. This would, o f course, make use o f L(p) . The value L will be defined

as follows: given n packets as input to the classifier, where each packet i follows path pi through

the search structure, L = L{pi) . The entire focus o f this work, then, could be restated as a

minimization problem. This work is dedicated to finding a way to minimize the value o f L over a

very large number o f packets classified, while ensuring an upper bound on worst case performance

cannot be worse than some preset bound. All o f the techniques described in Chapter 4 are specifi

cally designed to produce a net reduction in the value o f L over what would be attained by a static

classifier.

In order to calculate the net change in the value o f L from any changes in the search structure,

it must be possible to describe the changes which take place internally in a node when the search

structure is altered. To do this, additional notation for finding the children o f a node, as well as for

extracting statistical information from a node, is given below.

Any node N , which is not a leaf node, must have more than one child. The number o f children

of node N is given as \N\. The children are denoted Ci, 0 < i < |2V| and numbered in the order that

they would be found in the node’s child list at the moment that the calculation is performed. Since

children may be moved around in a node’s child list, or completely removed from it, the order o f the

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

children may change over time. If the children are moved, their positions, and their corresponding

denotations Ci are changed. This means that the value i itself, in this context, can be used to give

the position o f any child in its parent’s child list.

Occasionally, notation other than i will have to be used in order to describe the location o f a

child node in its parent’s range list. It might be that i would be ambiguous in that context, or that

another notation had been chosen which might lead to some confusion when combined with the i

notation for position. In this case the function p o s(C x) would return the position o f the child C x in

the range list o f its parent. In the standard context o f nodes and children the equation pos(i) = i

holds.

As children may be moved by restructuring the search tree, it is important to be able to describe

the positions which children held previously in the node’s child list. It would be impossible to

calculate the net expected change in L for any search if values o f Ci were not known. The formula

o ld j(C i) gives the location o f the child Ci in this node’s child list exactly j restructurings ago. If

Ci did not exist in this node at that time, old j(C i) = 0. This ensures that any calculations are able

to account for the fact that this child would have added nothing to any searches as it would not have

existed in this range list at that time. It is worth noting that oldo(Ci) = C{. For most calculations,

the only interesting value is the position o f the child exactly one restructuring ago. For that reason,

the shorthand old(Ci) = o ld i (C i) w ill be used to improve the readability o f formulas using the old

function.

Finally, a way to extract the number o f times a rule or node has been seen during classification

is needed. The exact details on how these are recorded are given in Sections 4.6 and 5.2. For any

node N , or any child node Ci, the number o f hits currently recorded in the node can be retrieved

by the use o f the function h i t s (N) . The total number of hits for a node is often needed in order

to calculate the relative frequency o f hits between children. The value Nh holds this count. iV* is

formally defined as the value obtained from X)i=o_ 1 h its(C i) , where the Ci are the children o f the

node N . In the actual implementation, in order to simplify matters, each node holds its own value

of A v This means that the value need not be computed every time it is needed, though more space

is used to store this data as HICuts tends to have a branching factor higher than 2.

3.3 Metrics

There are several different measurements which must be taken to ensure that the dynamic enhance

ments are, in fact, improving the performance o f the static classifier, that they do not use an excessive

amount o f memory, and that they do not violate the classifier’s worst-case bound.

Calculations o f the performance o f the classifier can easily be made using the IDD notation given

above. The IDD notation describes the path o f a single packet through the search structure, and gives

a means for computing L, the total amount o f work required to classify any number o f packets.

This value can be used to give the total amount o f work done for classifying a certain number of

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

packets. Given the same packets in a variety o f different testing conditions, which conditions speed

up classification the most and if classification is faster using the dynamic enhancements can be

determined. In order to make the numbers more readable, the value L is usually divided by the

number o f packets classified to give the average amount o f work performed per packet.

The value L (p) is equally useful, as it tells us the total amount o f work required to classify any

single packet p. This value is important as it is the only way o f knowing whether or not the worst

case bound is being violated. As w ill be shown in Section 4.8, the value o f L [p) can be computed

for all paths in the search tree generated by the dynamic classifier. This information can be used

to insure that the changes which have been made will not make the classifier perform worse than

the worst-case bound on any search. For the purposes o f measuring worst-case performance, the

maximum value o f L(p) possible in the search tree, as well as the maximum value o f L(p) actually

searched in the tree for every trace tested are given. These may differ if some regions o f the search

space are searched never or rarely.

In order to test the memory requirements o f the classifier, counts are kept o f the size o f the search

tree, the number o f nodes it contains, and the size o f each node (in terms or children and rules). In the

case where a TCAM is used to aid in searching, the size o f the TCAM is not counted in the memory

size o f the program itself. The size o f the search structure is independent o f the size o f the TCAM

and the TCAM size is, itself, invariable. The memory size is reported in total number o f nodes in

the search tree, and the total number o f rules contained in them. As these counts may change as the

dynamic classifier is running, the average and maximum values, as well as the standard deviation

over all the values will be given for all tests performed on the dynamic classifier.

In addition to the main three metrics given above, a few other metrics are used to keep track o f

the performance o f the search tree.

First, the number o f times each possible change to the search tree is performed is recorded. This

makes it possible to see what changes are being made as the search tree is modified through use.

These measurements are not overly useful for computing the final performance o f the search tree.

However they are useful to see which improvements are most affecting the speed o f search, as well

as locate instances where improvements might be working against each other. It is possible that

some o f the improvements (most notably, node promotions and range combinations) could work on

a given iteration o f the update process to undo the work performed by the other improvement on a

previous iteration. Finding these conflicts and fixing them was a necessity in the early stages o f this

work.

In addition, whenever a TCAM is used, it is important to keep track both of the number o f times

that a match was found in the TCAM (the TCAM will always be searched, so there is no need to

count that separately) compared to both the number o f misses in the TCAM, and the total number

of searches. Because o f how the TCAM is used in this case, the total number o f searches is equal

to the number o f hits in the TCAM plus the number o f misses. A large TCAM may not make use

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o f some of its lines in all cases. It is important to know when this happens so that the proper size o f

TCAM to use for classification can be predicted.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

The Dynamic Classifier - Design

Many different techniques were used to redesign the HICuts search tree. Several o f these make long

term structural changes to the search structure itself. Range reorders (Section 4.1), node promotions

(4.2), range combinations (4.3), and enhanced cuts (4.4) were all specifically designed to make use

o f long-term traffic statistics to move frequently hit regions o f the search space closer to the root,

and further to the left in the search tree. This reduces the value o f L(rj) for packets which are found

in those regions. In addition, these same techniques move infrequently hit regions away from the

root, and further to the right in the search tree, increasing the value o f L{rj) for packets in those

regions.

Short-term changes in network traffic are dealt with via a Ternary CAM. Using this device allows

for the implementation o f a form o f cache or transposition table which stores recently matched rules

for quick lookups. There are several issues involved in storing rules in a TCAM. They are detailed

in Section 4.5. It is important to realize that rules can be quite complicated, and representing them

via ternary logic might result in a single rule taking up multiple entries in a TCAM.

Having the dynamic classifier remember and forget traffic was essential to the basic form of

learning which was used in the enhancements. Because o f the dynamic nature o f the search structure,

forgetting what has been seen before becomes very difficult to do. Section 4.6 outlines the methods

used for remembering and forgetting in the dynamic classifier. The forgetting method used, along

with the fact that major structural changes cannot continuously be made to our search structure

implies that we must have some technique for determining when the search structure should be

updated. The techniques for controlling the update frequency o f the search structure are outlined in

section 4.7.

It is important to ensure that a worst-case bound is strictly adhered to by the dynamic classifier.

The techniques which prevent the classifier from exceeding its worst-case bound are given in Section

4.8.

Throughout the rest o f the chapter, the term major restructuring is used. A major restructuring is

simply the stage at which the search tree is evaluated to see if any changes are warranted. If any are,

then these changes are performed on the tree to obtain a new tree. The rate o f occurrence o f these

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

restructurings are described in Section 4.7. All but one o f the restructuring techniques described

below take place only during major restructurings. This is due to the costs involved in determining

if changes need to be made, and in actually making changes to the search structure. It is possible that

additional modifications to the search structure could be performed quickly, independent o f major

restructurings, (just as there are many additional restructurings which could be performed during

major restructurings) however these are not considered in this document.

4.1 Range Reorders

HICuts divides the children o f a node up equally along a single dimension. The provision for

equally-sized divisions was likely to allow one to find the proper child o f a node in a reasonable

amount o f time. However, when one considers that such a technique would require calculating off

sets into ranges, it becomes obvious that using a list o f children is no more costly unless the list of

children for a particular node becomes lengthy. As a result, there is no reason to keep the children

of a node cut on ranges o f equal size. If linear search is used, there is no reason to keep the children

of a node in any particular order.

This fact can be used to help redesign the search structure used for packet classification. Given

a node N with c = |iVj children, and given that the classifier will search the list o f children for the

one which matches the current packet, it makes sense to move those children which have been seen

more frequently, and which will continue to be seen frequently, closer to the head o f the list so that

they can be matched quickly. The result of such a move would be that frequently matched regions

would have a lower value o f L{rf) than they would otherwise. An unfortunate consequence would

be that infrequently matched regions would have a higher value o f L(jj). However, as it is expected

that the rules at the head o f the list will be matched more frequently than the rules near the tail, the

overall expected value o f L would be reduced by such a move.

Range reordering is considered for most nodes every time that a major restructuring is performed

on the search structure. For every node considered for reordering, a threshold for restructuring, t , is

computed. For an explanation o f how a node might be excluded from consideration, and how t is

calculated, see Section 4.8.

A node is a candidate for range reordering if the number o f hits on the node’s most frequently

visited child is greater than t times the number o f hits on its least visited child. Range reordering

is only performed should max* ta ts (Ci) > f m ini h its (C i) , where 1 < i < |iV|. If this formula

doesn’t hold for a given node, range reordering is not performed on that node.

Range reordering itself is the simple act o f sorting the children o f a node by the value o f h its (C i) .

Those nodes which are more frequently hit are moved forwards in the list, and those which are

infrequently hit are moved back. Sorting can be done by any method, however given the small size

of the lists, methods which avoid recursive overhead are preferable.

Assuming that no other changes have been made to the search structure and that the classifier

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

256 x 256
4 Cuts on X

256 x 256
4 Cuts on X(a)

64 x 256
4 Cuts on Y

64 x 256
4 Cuts on Y

6 4 x 6 4
2 Cuts on X

64 x 64
2 Cuts on X

[L ea f Q [L eaf 2)

Figure 4.1: A HICuts tree (a) before and (b) after range reordering.

will see essentially the same patterns in traffic it has seen so far, we can calculate the expected net

change in the value o f £ (77) as Y^i=i - old(i)) for all searches through the node which has

undergone range reordering. As long as i - old(i) is negative for those values which are frequently

hit (ie. have a large h i t s (C i)), there will be a negative net change in the expected value o f £ (77).

The process o f range reordering is displayed in Figure 4.1. In this example the lower node

resulting from a cut on X has its children rearranged from its original state to push its second child

to the head o f the list. In this case the description 77 o f the path a packet would take through the

HICuts tree changes from:

77 = (((X < 64)V (64 < X < 128)) A ((y < 64)) A ((64 < X < 96) V (96 < X < 1 2 8))A .. .) .

to

7?' = (((X < 64) V (64 < X < 128)) A ((Y < 64)) A ((96 < X < 128)) A . . .) .

In the example o f Figure 4.1, L(p) - L(p') = 1. Every search which takes this path contributes

1 less to the overall sum than it would have otherwise.

4.2 Node Promotion

Range reorders dealt with one beneficial result o f storing the children o f a node in lists. However it

doesn’t touch on the fact that satisfying the requirement that all children o f a node be cut to cover an

equal portion of the dimension being cut is no longer necessary. Further improvements in the search

structure can be made by allowing certain children o f nodes to cover smaller ranges than others. The

first o f three mechanisms which allow this is node promotion.

HICuts cuts a node on a single dimension. However it often makes cuts on one particular di

mension at many levels in the search tree. Like an IDD, a HICuts tree may slice a dimension at

one level and then, further down in the tree, determine that the dimension needs to be cut again to

satisfy the terminating conditions o f the algorithm. This may lead to a situation where, deep in the

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tree, frequently matched nodes exist which could be pushed higher in the tree to reduce the amount

o f work required to search for them. Node promotion is the tool which allows the determination o f

which nodes should be moved up in a tree, to where they should be moved, and what should be done

to recreate the information which was maintained by the nodes between the node’s original position

and its new position.

As with range reorders, node promotions are only considered when the search structure under

goes a major restructuring. Any node which has not been flagged as ‘frozen’ (see 4.8), and whose

parent is cut on the same dimension as a non-parent ancestor, is a candidate for node promotion. As

with range reordering, a threshold value t is calculated for each node that the restructuring algorithm

considers for promotion.

If a node is a candidate for node promotion, its parent is checked via very similar criteria to

range reordering. Requiring the check on the parent excludes the root from promotion. If a child of

the parent node exists such that max* h i t s { C i) > t min* h i ts (C i) , with 1 < i < | AT|, then that child

will be promoted to becom e the child o f its nearest ancestor (other than its parent) cut on the same

dimensions as its parent. If multiple children satisfying this formula exist, only one is promoted

at a time. Promoting too many nodes at once could create very large child lists higher in the tree.

The larger lists that node promotion creates are reduced in size by range combinations (Section 4.3).

Range combination can only fix them at the next major restructuring. The interim period might be

quite long, resulting in poor performance for an extended period o f time, if multiple children are

promoted.

Node promotion itself is quite simple. The node in question is simply removed from its parent.

The parent itself does not have its range updated as no node matching the node’s range will ever

reach the parent. At the node designated to be the new parent, the new node is inserted. This

means splitting some range in the new parent (as one range would have to contain the range for the

promoted node). The result is two (if the promoted range falls to one side o f the split range) or three

(if the promoted range falls in the middle o f the split range) new ranges in the child list. These new

children are placed in the list where the child corresponding to the split range was situated, with

the promoted child placed ahead o f the other child (or children). HICuts is then performed on the

promoted node to ensure that it can be properly searched. HICuts may also be performed on the one

or two newly created nodes, however it is also safe to leave them pointing to the subtree to which

they used to point. This reduces the amount o f work performed during restructuring and reduces the

amount o f redundancy in the search tree.

The process o f node promotion is displayed in Figure 4.2. In this example the lower node

resulting from a cut on X in the original structure is promoted up to the upper node cut on X to

produce a new structure. The exact configuration of nodes under the new cut is dependent on the

ruleset and the parameters used by the HICuts algorithm. In this case the path a packet would take

through the HICuts tree changes from:

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7? = { { {X < 64) V (64 < X < 128)) A ((y < 64)) A ((64 < X < 80) V (80 < X < 96)) A . . .) .

rf = { { {X < 64) V (64 < X < 80) V (80 < X < 96)) A . . .) .

For all searches in the un-promoted part o f the tree, the value o f L(r]) remains the same. For all

searches in the part o f the tree where the node was promoted, the value o f L{rj) will, o f course, be

affected. For any searches outside o f the promoted node’s range L(r)) will either be the same or be

increased by 1 or 2 if the search must travel past the new ranges in the parent o f the promoted node.

For the promoted node itself, however, the value o f L(rj) w ill drop. Since a much smaller area is

now being covered, the size of the HICuts subtree is significantly less than it otherwise would be.

Empirical results (see Section 6) show that the savings here tend to be around 2 to 3 on every L(rj)

which searches into the promoted node.

If the expected net savings a for all searches through the promoted node is known, and Cp is the

promoted node, the expected net change in the value for all L(rj) which search through that node’s

parent is

. Given that i - old{i) can only be 0 or positive in this function, the value o f a must be negative

(and Cp must be relatively frequently hit in comparison to its siblings) to ensure that the overall net

change in L(rj) is negative. Range reordering w ill help ensure that only infrequently matched ranges

have old(i) > oldo(i). As well, range reordering w ill push the promoted node forward in the list,

reducing the value o f a .

Because a node promotion can pull a child out o f a node completely, while range reorders only

manipulate the children o f a node, node promotions should always be performed before range re

orders. A node which has experienced the promotion o f a child may no longer need to be reordered

as the child which exceeded the threshold has now been removed. In addition, often after perform

ing a node promotion the ranges in the node’s new parent may need reordering to accommodate the

fact that the promoted node is probably more likely to be visited than many o f its siblings. As node

promotions consider only hits and not location in the list, there would be no benefit to performing

range reorders before node promotions and nothing is lost by choosing to perform node promotions

first.

In the example given in Figure 4 .2, one more range check must be performed before the path to

follow from the root is found so L(p) = L{p'). This may seem to be no improvement. However,

since this node is frequently matched, it will either move ahead in the list o f ranges during range

reorders, or will see some o f its siblings eliminated by range combination. After range reordering or

range combination, the benefits o f node promotions can be seen.

to

h i t s (C i)

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

256 x 256
6 Cuts on X(b)

16 x 256
4 Cuts on Y

(L ea f 2)

256 x 256
4 Cuts on X(a)

64 x 256
4 Cuts on Y

6 4 x 6 4
4 Cuts on X

(L ea f l) (L eaf 2)

Figure 4.2: A HICuts tree (a) before and (b) after node promotion.

4.3 Range Combination

Like node promotions, range combinations make use o f the fact that the children o f a node in a

HICuts tree do not have to all cover an equal range in the dimension which is to be cut. However,

while node promotions move frequently hit nodes up in the search tree, range combinations move

infrequently hit nodes further down in the search tree. Node promotion tends to increase the number

of children in certain nodes, thus increasing the value o f L(rj) for every search which passes through

those nodes. Range combination works to reduce the number o f children at a node by combining

infrequently-matched nodes together into one node over a larger range.

Range combinations are only performed when the search structure undergoes a major restruc

turing. Non-frozen nodes with at least four children are candidates for range combination. We

limit range combination to large nodes as it increases the work done while searching beneath the

node. If there are not large enough savings at the level o f the node itself, range combinations are

not beneficial. A threshold value of t is calculated for every node which is considered for range

combinations.

For any node which is a candidate for range combinations, the number o f hits on every child

of that node is checked. If there exist more than two and less than \N\ — 1 children which have

fewer than m a x j(C i)/i hits, then range combination is performed. If there are more than \N\ — 2

children matching this criteria, range combination is not performed as it would be preferable for the

few frequently hit children to be promoted up in the search tree than for all the other children in

the node to be combined into one large node. To encourage this behavior, range combinations are

performed before node promotions during any major restructuring.

The process o f range combination is displayed in Figure 4.3. In this example two children o f

the root node are combined to produce a new structure. The exact configuration o f nodes created

under the newly combined range is dependent on the ruleset and the parameters used by the HICuts

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm. In this case the path a packet would take through the HICuts tree changes from:

7? = (((X < 64) V (64 < X < 128)) A ((Y < 64)) A ((64 < X < 80) V (80 < X < 96)) A . . .) .

to

7/ = (((X < 64) V (192 < X < 256) V (64 < X < 192)) A { { Y < 64)) A ((64 < X <

80) V (80 < X < 9 6)) . . .) .

due to the nodes representing the ranges (64 < X < 128) and (128 < X < 192) being combined

together in the root node.

Range combination works by taking all the children which satisfy the criteria given above and

placing them in one large child. A new node is created to cover all the ranges o f the combined nodes

(as one single range, meaning that it may also covers ranges not covered by the combined nodes)

and all the rules which make up those children are combined into one large ruleset. The HICuts

algorithm is then performed on this new node to create a valid search structure underneath it. The

new node is permanently anchored at the end o f the child list. Since this node has a range which

covers more o f the search region than its combined rules, it is imperative that it not move ahead of

any other nodes in the child list. In addition, it must be part o f any further range combinations in

that node. There cannot be two large nodes possibly covering overlapping spaces in the child list.

Range combinations can be seen as the opposite of node promotions. While node promotions

increase the number o f children o f a node while moving nodes up in the search structure, range

combinations reduce the number o f children o f a node while moving nodes down in a newly-created

search structure. Given /? as the expected change in the amount o f work needed to search the new

subtree, and c as the newly created child node, for any search which goes through the newly-merged

node, the expected change in L{rf) can be calculated as the sum o f the changes in the non-merged

nodes X)i=i i# c — old[i)) and the changes in the merged nodes (pos(c) —

old(i) /?)). P will generally be positive, and the non-merged nodes seldom experience any alter

ation in the length o f paths through themselves as they would have been placed at the front o f the

list by range reordering. As long as there are savings in searching for the merged nodes, a drop in

the value o f L(j]) can be expected.

In general, the costs o f searches through the combined node should be as much as before, or

even slightly worse. Range combinations are performed to reduce the number o f children o f nodes

in order to compensate for the additional children created by node promotion. It is expected (and

verified empirically) that the gains from reducing the search time within a particular node afforded

by range combinations outweigh the losses from having slightly more work to do while searching

the newly merged nodes.

Note that this makes the assumption that the newly combined ranges would split on the same cri

teria as the smaller range had. This is obviously not always the case in practice. This ‘improvement’

in fact increased the length o f a packet’s journey through the search structure - L{p) — L(p') = — 1.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Leaf 0 (Leaf2J [Leaf l) [Leaf 2)

Figure 4.3: A HICuts tree (a) before and (b) after range combination.

Notice, however, that, for all searches on the range (192 < X < 256), L{p) - L(p') = 2. Since we

expect these searches to be more frequent, the gain here more than makes up for the loss on searches

in the range (64 < X < 192).

4.4 Enhanced Cuts

It can be assumed that, since some areas o f the search space will be hit more frequently than others,

and since the HICuts tree cuts the search space into contiguous regions, there might be one particular

subtree in the entire HICuts search structure which is consistently hit more frequently than the rest

o f the structure (excluding the nodes and ranges on the path from the root to that subtree). Enhanced

cuts recognize that this might happen in a HICuts tree, and work to reduce the work entailed for

searches which travel to that region o f the search space.

All nodes which are at least at level 3 o f the search structure are candidates for being the root

o f an enhanced cut. Enhanced cuts are not considered until several iterations of major restructuring

are performed. This allows the search structure time to move infrequently hit regions away from

frequently hit regions. As described below, this is a requirement for an enhanced cut to be performed.

Starting from the root o f the search tree, a depth first search is performed to find any node which

has more than t times the hits o f any o f its siblings. The t is the same as the ones calculated for

any o f the three restructuring techniques described above. If this node matches that criteria, and

all its descendants do not match this criteria - in other words, its descendants are all approximately

equally likely to be hit in any search which travels through this node - then this node is a candidate

for enhanced cuts. If only one candidate can be found, then an enhanced cut is performed. If more

than one candidate is found, then either no cuts are performed, or the one which is more frequently

hit is chosen.

An enhanced cut creates a new root for the search structure. This root has two children. The

first is the root o f the subtree selected by the enhanced cuts algorithm. The second is the root o f the

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

original HICuts tree. Any search now first is checked to see if it falls in the region defined by the

promoted subtree. This involves checking multiple dimensions. The result o f this is a decrease in

the search time equal to the original level o f the subtree minus 2 for any searches which pass through

the newly promoted node, and an increase o f one in search time for all other searches. As only one

range check is now performed at the root, and the subtrees themselves are not changed, the change in

levels exactly corresponds to the change in work performed. Since the promoted node must be more

frequently matched than its siblings, we expect the overall performance o f the classifier to increase.

It should be noted that enhanced cuts can be seen as a slightly more restrictive form o f TCAM

caching (described immediately below in Section 4.5). In cases where a TCAM is used in conjunc

tion with enhanced cuts, it is required that the subtree contain more rules than can be held in the

TCAM. If this is not the case, it can be assumed that most o f the rules in the subtree are already in

the TCAM, and that enhanced cuts will simply increase the search time o f the rest o f the tree, with

no benefits for the promoted node. The tradeoffs o f performing enhanced cuts versus using a TCAM

cache in a classifier are described in detail in Chapter 6 on performance. A s the TCAM contents

change as the dynamic classifier runs, the contents o f the TCAM cannot be assumed at any point,

and cannot be removed from the tree, or ignored upon building the tree. This means that enhanced

cuts cannot assume that the subtree is considering for promotion had no rules overlapping those in

the TCAM.

4.5 TCAM Caching

Since Ternary CAMs can find matches against rules in a very short amount o f time, such a solution,

which runs in constant time regardless o f the size o f the rule set, is the best which can be hoped for

in packet classification. Unfortunately, TCAMs are expensive, both in terms o f original cost and in

terms o f power consumption, and thus cannot be used for large rulesets.

However, TCAMs can still play a role in packet classification over very large rulesets. Rather

than storing all the rules in the TCAM, certain rules, either decided a priori or based upon some

learning criteria can be stored in the TCAM. The TCAM can be checked first, much like a cache in

hardware or a transposition table in software. If a matching rule is found, it is retrieved from the

TCAM. Otherwise the search continues in the normal classification algorithm. Since a TCAM is

separate hardware from the processor and memory, these two tasks can be carried out in parallel,

and nothing is lost i f the rule cannot be found in the TCAM.

Such a cache can be used with any packet classifier, not just with a dynamic one as outlined

in this chapter. However, the design given below was specifically developed to work well with the

dynamic HICuts algorithm.

A TCAM works best to respond to small changes in the locality o f traffic. These changes would

affect nodes far from the root o f the tree in the search structure but would most likely not affect the

nodes close to the root. It is known that Internet traffic shows patterns o f both spatial and temporal

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

locality [9], and the TCAM helps the classifier exploit this. There are three main criteria to consider

when using a TCAM as a cache.

First is the replacement strategy for the TCAM. The strategy used for this work was Least Re

cently Used. Since the controls for the TCAM are implemented in software as part o f the algorithm,

it is not difficult to keep track o f the order o f use o f the entries in the TCAM.

The second consideration is the insertion threshold for adding new entries to the TCAM. Every

rule keeps track o f how many times it has been matched (subject to the rules for forgetting outlined

in Section 4.6). When a rule is matched, its hit count is checked. If this count exceeds a preset

threshold, then the rule is inserted. The TCAM itself holds pointers to rules, so matches in the

TCAM allow rules to increase their hits. If this was not done, rules stored in the TCAM would not

maintain proper hit counts and may, if removed from the TCAM, take longer to be reinserted than

they should. Determining the proper threshold for insertion is difficult and is discussed in Chapter

6 .

Finally, it is important to consider whether to store packet headers or full rules in the TCAM.

Storing headers would allow us to use a CAM, which is significantly cheaper and less power con

suming than a TCAM. However storing rules allows for the greater likelihood o f matching. The

full rule, regardless o f size, is stored in the TCAM upon exceeding the insertion threshold. Af

ter that each TCAM entry for that rule in the TCAM is considered separate for terms o f the LRU

replacement strategy.

For any rule which can be matched in the TCAM, the value o f L(rj) is 1. Since it is impossible

to find a rule in the HICuts tree in that time, and since TCAM caching does not affect the search

structure in any way, this always results in a net benefit in terms o f search cost. Since we terminate

the search in the HICuts tree upon a match in the TCAM, it is important to realize that hit counts on

any searches which match rules in the TCAM are not maintained. This is desired. If a rule doesn’t

spend much time in the TCAM, the effects on the hit counts will be hardly noticeable. Should the

rule remain in the TCAM almost permanently, then the lack o f hits in the search structure will allow

other nodes and rules to move closer to the root at that rule’s expense. This further improves the

average search time o f the classifier.

There is no need to keep an empty TCAM at the beginning o f running the classifier. Before

accepting traffic, the TCAM should be populated with some rules. As it cannot be known before

hand which rules will frequently be matched, either a set which is believed to be more likely to be

matched can be selected, or the TCAM can be filled randomly from the ruleset. All the tests outlined

below pre-filled the TCAM randomly, with the order o f insertion used to rank the entries for LRU

replacement.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 Remembering and Forgetting

A major component o f any learning system is a means by which to remember information. There are

two main pieces o f information which must be remembered in order to make use o f the restructuring

techniques detailed above.

First, the number o f times a range in a node has been matched must be recorded. This in

volves keeping a counter for every range, which is updated each time that that range is successfully

matched. These data are important for all four of the restructuring techniques given in Sections 4.1

through 4.4. Second, the classifier must keep track o f the number o f times a rule has been matched.

This must include both hits in the search structure itself, and hits in the TCAM. This counter is im

portant for determining when a rule should be inserted into the TCAM. As noted above, LRU is used

to determine which entries in a TCAM should be sacrificed when needed. As a result, the counts

stored in the rule itself are not used for that purpose. Only one count is kept for every rule, regardless

o f how many leaves contain it in the HICuts tree. This count is only used to determine whether to

add the rule to the TCAM, so any hit on this rule, regardless o f its location, is incremented in one

spot.

In addition, for statistical reasons, other data must be remembered. The number o f times a node

has been checked, along with the number o f times every range has been checked and the number

o f times every rule has been checked, must be recorded in order to get an accurate measure of

the amount o f work performed by the dynamic classifier. The sum o f these values gives a good

approximation o f L for the classifier. The sum shows how deeply the classifier searched, how many

ranges it checked, and, when the proper leaf node was found, how many rules had to be searched

through to find the one which matched the header in question. To this sum the number o f searches

in the TCAM is added. This number is always identical to the number o f packets classified.

Remembering information, however, is only half the battle. In order to properly make use o f

traffic patterns, forgetting the traffic seen after a certain amount o f time is required. Failing to do

this will result in a classifier which might, after an extended period o f time seeing very similar traffic,

be unable to respond to changes in traffic patterns. In order to accommodate for changes in traffic

patterns, the classifier must be able to forget what it has seen before. O f course, it should only forget

the hit statistics which affect its restructurings, not the statistics which are used solely for measuring

the efficiency of the classifier.

A near-perfect solution would be to keep a window o f recent searches in memory. When a new

search is performed, the rule that matches is added to the front o f the window. The rule furthest to

the back of the window falls out and the changes made to the counters in the tree when classifying

that rule must be forgotten. Unfortunately, this is not particularly feasible. Since the tree can be

updated in the time between when a rule is added to the window, and the time the rule falls out o f

it, the classifier cannot simply find the rule in the tree and reduce counters in a reverse path towards

the root.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A possible solution would be to store every range and rule affected by every search, however for

any large window or large search structure, that would utilise far too much memory to be practical.

Instead periodic forgetting is performed.

At preset intervals every hit counter in the search tree is decremented by one (no counter can ever

have a value below 0 at any point). Any range or rule which is infrequently hit will keep a counter

close to zero, and those ranges which are frequently hit will build up large counters. This technique

has the disadvantage that it is slower to react than the window approach. Forgetting cannot be done

at every cycle. However, if the classifier forgets more slowly than it learns, it still runs the risk o f not

being able to adapt to changes in traffic as quickly as with the window approach. However, as this

is the only practicable method o f forgetting, its drawbacks are tolerated in exchange for the benefit

of being able to forget the data obtained.

Other techniques for forgetting, such as multiplying by a value between 0 and 1 to reduce the

number o f hits stored for each rule and node may be used as well.

4.7 Update Frequency

Two features o f the dynamic classifier are dependent on the rate at which they are performed. All

major restructuring is done at a specified rate, as is all forgetting. These two rates are independent

of each other and are measured in terms o f the number o f packets classified between the times at

which they are performed. The considerations as to how quickly updates should be performed are

based mainly on empirical results which are detailed in Chapter 6. This section outlines the tradeoffs

which occur due to changing the update frequencies used by the classifier.

4.7.1 Update Frequency - Forgetting

The rate at which the traffic seen is forgotten affects the speed at which the classifier can respond

to changes in the traffic being classified. A very fast rate o f forgetting would make it extremely

difficult to ever leam anything about the traffic seen. If forgetting occurs at a rate o f 1, then no

learning occurs, as the contributions to the classifier’s knowledge made by a single packet would be

immediately wiped out when the classifier forgets what it has learned.

Conversely, forgetting cannot proceed at too slow a pace. Forgetting is required to ensure that

the classifier can adapt to traffic as quickly as possible. Consider that, for 5000000 headers, one

particular rule has been matched 50% of the time, and that information is forgotten every 5000

packets. This means that for any node on the path to that rule, the number o f hits must be at least

2499000. Forgetting has been performed at least 1000 times during this period o f time, which

explains what the number is not 2500000. The number o f hits might be higher depending on what

other searches take this path, and at what points forgetting occurs. Now, if the classifier no longer

sees any packets taking this path, it should realize that the traffic has changed and that this path

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

should possibly be considered for restructuring in order to lower the value o f L (p) for other paths

under consideration.

However, these nodes have at least 2499000 hits. Forgetting once for every 5000 packets means

that it will take approximately 12.5 billion packets classified, given the assumption that no other

packets during that time are classified on this path, to forget the those initial 2500000 packets. This

is obviously unacceptable. It is unrealistic to expect the classifier to take that much time to forget

traffic it has seen. The result o f these two facts, that forgetting cannot take place too quickly or

too slowly, means that the classifier must be careful in determining how quickly it forgets what it is

seeing.

4.7.2 Update Frequency - Major Restructurings

Major restructurings, as described in the first four sections o f this chapter, can be costly to perform. It

is important to balance the time spent performing these restructurings with the time spent classifying

packets. Further, restructurings cannot be performed faster than they can be completed. In practice,

restructuring would be done in a separate thread (possibly on a separate processor) and, once the

search structure had been restructured, classifications would be moved to the newly-altered search

structure. In the meantime, the old search structure is used. Performing restructurings at a fast rate

allows the classifier to react to changes in traffic quickly, and reduce the value o f L.

As an example, consider that the classifier is performing major restructurings at a rate o f one per

every 500000 packets classified. If the time required for a restructuring is 50000 packets, then the

rate o f restructuring could be increased by up to a factor o f 10. In practice, the rate should not be

increased by quite that amount, since the time taken for each restructuring and the speed at which

packets are classified are variable. Increasing the rate at which restructuring occurs by a factor equal

to half the factor between the time required to restructure and the time which currently passes be

tween restructurings is acceptable. By doing this, it is possible to increase the speed o f classification

while ensuring that the classifier never spends more time restructuring the search structure than is

allowed by the rate o f restructuring.

If, at any point, the time needed to perform restructurings begins to exceed 75% o f the time

between iterations o f restructuring, then the rate at which restructurings are performed can be slowed

slightly. This reduction should be by less than 33% to ensure that we do not immediately halve the

time on the next iteration. Since the time needed to alter the search structure should be relatively

constant, it can be expected that, given a high enough initial value for the time to perform updates,

the update time will be halved repeatedly until a point is reached where updates take one-half to

three-quarters o f the allotted time. At this point the frequency will likely never be altered again.

Finding the update frequency for reorders by this method allows the classifier to learn how

quickly it should reorder itself and guarantees that it will be able to reorder the search structure in a

reasonable amount o f time and still be able to finish within the time given. However, it is not clear

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exactly what rate the classifier should start with. Empirical results given in Chapter 6 will detail

exactly what happens to the performance o f the classifier depending on the initial value given for the

update frequency.

4.8 Worst-Case Bound

Given the methods for restructuring the search tree outlined above, an obvious question arises as to

the worst-case performance o f the new dynamic classifier. Restructuring the HICuts tree could result

in extremely poor worst case performance if the worst case is not bound during the restructuring

process. Should a single rule never be matched during the period encompassing a large number o f

iterations o f the restructuring algorithm, it is conceivable that it would be pushed further and further

away from the root o f the search tree. If a sudden burst o f packets arrive which match that rule, the

classifier might not be able to match them in time, resulting in dropped packets and reduced network

performance. Three features o f the dynamic tree described in this thesis prevent this from happening

during restructuring.

First, all restructuring is performed using the HICuts algorithm. Should a node be promoted,

both it, and its newly created sibling(s), w ill immediately have the HICuts algorithm performed

upon them to ensure that they still meet the requirements o f a HICuts tree. As each node in a HICuts

tree is only allowed to cut on one dimension, a promoted node might lose several levels o f cuts which

helped define it. These cuts are remade using HICuts. This guarantees that the new subtrees created

remain as balanced as possible and prevents newly created subtrees from dangerously unbalancing

the tree. Similarly, range combinations, when performed, use HICuts to partition the ruleset in the

newly-created node. As a result, these new nodes, while containing more rules than any o f the

separate nodes used to create them, w ill remain reasonably balanced.

This alone is not enough. It is conceivable that a long string o f alterations to the search structure

could be performed along a particular path in the search tree. If each change was to slightly increase

the amount o f work the classifier is to perform when searching along that path, the cumulative effect

could result in worst case performance degrading to unacceptable levels.

To prevent this, restructuring which exceeds a criteria for maximum work to search to any node

from the root o f the search tree will not be performed. As this cannot be known a priori, once a

restructuring has been performed, the tree is quickly tested to see the maximum amount o f work

done. The maximum depth can be returned by the HICuts algorithm (as it must have reached that

depth when restructuring), as can the maximum width o f the nodes in the newly-created subtree.

These two measures can be used to quickly compute an upper bound on the maximum work used to

search the new subtree. The amount o f work needed to get to the subtree can be accurately obtained

simply by computing the length o f the path from the root o f the search tree to the root o f the new

subtree. Since HICuts attempts to make as balanced a search tree as possible, this upper bound is

quite tight.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Should the maximum work for the newly created subtree exceed the maximum worst case work

allowed, the changes to the search structure are not saved. In this case, the search structure reverts

to its original form. A flag is maintained to indicate that restructuring was attempted at this node

and failed to satisfy the worst-case bound. This flag is only removed when nodes higher up in the

tree are restructured. Until it is removed, restructuring this node is prohibited to avoid wasting time

creating a search structure that will have to immediately be thrown away. As any and all violations

of the worst case bound are immediately detected and dealt with, the is an absolute guarantee that

the classifier will never violate the worst-case bound.

Finally, further down in the tree the degree o f difference required to prompt a restructuring of

the search tree increases. At the root node, this difference must be a preset factor t. This factor

increases deeper in the tree, guided by a monotonically increasing function o f depth in the search

tree and t . Any function which matches this criteria can be used. This serves the dual purpose of

reducing that chances that the search structure w ill exceed the worst case bound (as it will be far

less likely that changes will be made near the worst case bound) and o f ensuring that, since locality

of traffic becomes more relevant in smaller search areas, changes are not made too often in lower

levels of the search structure due to short-lived changes in the locality o f traffic.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

The Dynamic Classifier -
Implementation

Given the design for the dynamic classifier given in Chapter 4, an actual dynamic classifier needed to

be created for experimentation. The dynamic classifier was written in the C programming language

and was implemented in two stages. The first stage involved the re-creation o f the static HICuts

algorithm as described by Gupta and MacKeown in [17]. The details o f the implementation are

given in Section 5.1. This classifier then had to be modified to take advantage o f the dynamic

improvements. How this was done is detailed in Section 5.2.

5.1 Implementation of Static HICuts

Figure 5.1 gives the internal details o f the node structure used. Pointers were maintained to the

list o f children, rather than static arrays, as the number o f children o f a HICuts node can not be

known in advance, and might change when the dynamic improvements to HICuts are implemented.

It was advantageous to use pointers and dynamically allocatable memory in the design o f the nodes

themselves. A node also contained a list o f ranges (named cuts), which corresponded to the ranges

of the node’s children on the dimension on which the node was cut. This dimension was stored in

the variable dimension. The ruleset associated with the node was stored in the node, as well as the

ranges which this node covered on every dimension. Additionally, statistical information, such as

the number o f total hits, and the current hit count for the node (which most likely would not equal

the total hits due to forgetting) were stored in the node.

Ranges for the HICuts search tree were trivially encoded as a small structure containing both

an upper value for the range and a lower value for the range. The ranges were considered to be

inclusive. A value equal to either the upper or lower value for the range would be considered to be

within that range.

Rules were implemented as structures as well. The members o f this structure are given as Figure

5.2. The primary component o f a rule was the list o f ranges associated with that rule, one for each

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

range.t **
range_t **
node_t **

ranges
cuts
children
rulesetstruct node.t: ruleset.t *

unsigned long long int hit-total
unsigned long long int hit_count
int dimension

Figure 5.1: The structure o f a node.

range_t ** ranges
unsigned long long int hit-total

struct rule.t: unsigned long long int hit-count

ranges

int
rule_t **

action
covers

Figure 5.2: The structure o f a rule.

dimension o f the packet header being matched, as well as the value containing the action associated

with the rule. This action was simply an integer value in this implementation, as it was not o f much

importance to the experiments. In addition to this, two integer counters for statistical purposes were

maintained. Finally, an optional list o f rules named covers was provided; the purpose o f this list is

explained in the discussion o f the TCAM in Section 5.2.

Rulesets were created as dynamically-sized arrays o f pointers to rules. Each node had its own

ruleset, however there was only one copy o f every rule. These rules were created with the ruleset for

the root node. After that, for every other node, a ruleset was created and the pointers in that ruleset

always contained the addresses o f the original rales stored in the root. This was the easiest way to

ensure that hit counts for rales stayed accurate, and reflected all the traffic that the classifier was

seeing.

Searching a HICuts tree is quite simple. Starting at the root of the tree, the dimension that that

node was cut on is extracted from the structure. The corresponding field in the packet header is

extracted and compared against each o f the ranges in the cuts list. This is a linear search, starting

with the head o f the list, and proceeding to the final element of the list i f needed. The HICuts

algorithm guarantees that one o f the children o f the node w ill match the packet header, so there is

no real need to perform bounds checking. When the entry in the list which matched the field o f the

packet under consideration is found, its index (as the list is embedded in an dynamic array) is used

as the index into the list o f children o f the node. The search then continues into that child.

A node which has no cuts and no children is considered a leaf node. These can be determined

by checking to see if the child list has been created, or if it has the value NULL. When the search

hits a leaf node, rather than checking for children, the rale list is checked. For each rale, every range

is checked. If a rale matches a packet on every range it contains, then the action associated with the

rule is returned. If not, then the next rale is checked. There is no guarantee that there w ill be a rale

to match the packet in question, so the classifier has to ensure that it stops checking rales when there

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are no more to check. A dummy rule was inserted at the end o f the rule lists in every leaf, so that the

search would know when it has exhausted all the rules in a leaf. If no matching rule is found, there

must be no matching rule in the original ruleset, and the classifier returns the action which had been

defined for this case.

The heuristics which guided the creation o f the tree were based on those provided by Gupta and

MacKeown in [17]. The first two heuristics (which determine the dimension to cut, and the number

of cuts to make) follow the mathematics set out in [17] exactly. The third and fourth heuristics (which

attempt to eliminate identical children and to remove useless rules from nodes) were implemented

by having the classifier test the results o f the first two heuristics to see which, if any, matched the

provisions o f the latter two tests. These tests were performed as each node was being created, and

the nodes themselves were created in a depth-first manner. No extensive details were given in [17]

as to Gupta and MacKeown’s implementation of the third and fourth heuristics, and, as a result, a

classifier which implements these two heuristics differently might see slightly different performance.

5.2 Implementation of the Dynamic Improvements

For the implementation o f the dynamic improvements to the HICuts algorithm, the work performed

by the classifier was split into two distinct parts running as separate threads. In the implementa

tion used for the experiments detailed in Chapter 6, a threading API based on the POSIX threads

(pthreads) standard [6] was used. The first thread handled all searching performed by the classi

fier, as well as all immediate changes to the search tree (namely, all changes involved with learning

and forgetting), and all changes involving the TCAM. The second thread handled all the aspects o f

restructuring the search structure itself. The threads shared very little information, outside o f the

search structure itself, and two condition variables used by the threads to communicate.

The first thread implemented the HICuts search algorithm described in Section 5.1 in order to

classify packets. Remembering and forgetting were implemented using a single counter in every

node and every rule in the search structure. This counter had a minimum value o f 0 and a maximum

value o f 264 — 1. Any attempt to reduce the counter below zero, or increase it above the maximum

was ignored. As a packet was being classified, every node that it visited and every rule that it

searched had its counter incremented. The rate o f forgetting r / was supplied as a parameter to the

classifier when it was started. Every time r j packets had been classified, a quick depth-first search

of the search structure was performed. This would guarantee that every node was visited, and all

would have their hit counts reduced by one. The rules stored in the ruleset o f the root node were all

decremented by one as well.

The TCAM was implemented in software, using an array o f unsigned 64-bit integers. This

limited the size o f entries in the TCAM to 64 bits. All experiments were conducted over rulesets o f

at most two dimensions as a result. Each entry in the TCAM used two o f these integers, one to store

a pattern, the other to store the mask for that pattern. The classifier compared the bitwise ANDs o f

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the stored pattern and the proper field o f the packet header with the mask. If they were equal, they

were said to have matched, otherwise, they were said not to have matched. Stored with the pattern

and mask was a pointer to the rule’s entry in the ruleset in the root node o f the search tree, so that

the action associated with the rule could be determined when the rule was matched.

In addition to the TCAM itself, a list o f the TCAM entries was maintained in regular memory.

This allowed the classifier to keep a list of the least frequently matched entries, in order to decide

which rule to sacrifice upon the decision to enter another rule into the TCAM. Every time a rule was

matched in the TCAM (or was the highest priority of more than one matched rule), it was removed

from its place in the LRU list, and placed at the bottom. Rules at the top o f the list were the first

candidates for sacrificing.

It was possible that two or more rules stored in the TCAM could match a packet. If this was the

case, the memory addresses o f the pointers retrieved were compared. Since the ruleset was stored

in order o f priority, those rules which had higher priority would be located further up in the ruleset.

Thus, the lowest memory address returned by the TCAM would be taken as the highest-priority rule

for the packet matched. Every rule in the root ruleset maintained pointers to other rules, which had

higher priority and covered parts o f its region. If the rule returned by the TCAM might possibly be

covered by higher rules, these needed to be checked. This seldom had to be performed in practice,

however, as the rules stored in the TCAM seemed, from empirical results, to cover regions o f the

search space quite thoroughly, and most rules in a certain region were already in the TCAM and

were compared there.

Any time that a rule was matched by the classifier, it was considered for insertion into the TCAM.

Every rule had a flag that indicated whether or not it was in the TCAM already. I f that flag was not

set, and the number o f hits on that rule exceed the TCAM threshold given when the classifier was

started, then the rule was inserted into the TCAM. This meant that one or more entries were removed

from the TCAM to make room. The rule was then encoded into sets o f patterns and masks. Several

entries might need to be created in the TCAM, as a single ternary logic entry might not suffice to

cover the rule completely.

In the case o f the experiments detailed in Chapter 6, ranges were used for all rule definitions.

When TCAM entries needed to be made from rules, the dimensions were separated, and each was

made into the minimum number o f ternary expressions needed to represent this range. Then the

Cartesian product o f these two sets was used to find all the entries needed. Since the two ranges

were independent, there was no way to make the number o f entries in the TCAM any less than this.

The second thread handled all the matters pertaining to restructuring the search tree itself. The

thread waited on a condition variable by default, only being activated when the first thread allowed

it. The decision as to when the second thread should be activated was based upon the number

of packets that had been classified since the last time the thread was activated, controlled by the

parameters described in Section 4.7. The second thread was permitted to ignore activation by the

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

first thread if it had not yet finished restructuring the search tree from the prior activation. When the

restructuring had finished, the second thread altered a condition variable for the first thread. This

allowed the first thread to estimate how much time (in packets classified) was needed to restructure

the search tree, and determine the time which would be alloted to the second thread for another

iteration o f restructuring.

Reconstructing the search space was done as described in Chapter 4. First, nodes were con

sidered for enhanced cuts. After that, range combinations were performed, then node promotions.

Finally, range reordering was performed. These techniques were implemented as described in Chap

ter 4. Details o f the restructuring are given below.

Range reorders were the simplest o f the four major techniques to implement. For every node

which was being considered for range reordering, a linear scan o f the children o f the node was

performed to determine the most hit, and least hit node. If the difference between these two nodes

was greater than the calculated threshold for changing that node, then the children were sorted in

descending order based upon number o f hits. Both the list o f children and the list o f cuts were

modified simultaneously, to ensure that the ranges stored in the cut list still matched up properly

with the children themselves. Since there were seldom more than five or six children o f a node in

HICuts, insertion sort was used instead o f a recursive sorting technique.

Node promotions were slightly more difficult to implement, as the number o f hits which should

be stored for each newly created node needed to be calculated. If a node N was to be promoted into

an ancestor A, the following steps were performed. First the node was removed from the child list

o f its parent. This involved shifting every element o f the list which was to the right o f N , once to

the left. Then, in A the child which contained the range which included the range N covered on

the dimension A was cut on was found. This child was removed from A in the same way N was

removed from its parent. One new node was then created and was given the same range as N on

the dimension A was cut on, and the same ranges as A on all other dimensions. The proper ruleset

(one which matched the ranges) was inserted into this node, and HICuts was performed on it to get

the rest o f the search tree. One or two other ranges were created to hold the remnants o f the range

removed from .4. Both o f these were then set to point to the original child o f A. The hit count for

the original node N was used as the hit count for the newly promoted node. It was safe to allow

the nodes in the subtree rooted at the new node to have values o f 0 as this would not affect the

restructuring o f the new subtree.

A linear scan of the children of a node N was done to determine if it was a candidate for range

combination. If a node had been determined to be a candidate for range combination, the nodes

which were to be combined were removed from the child list o f N . A new node was created, with a

range stretching from the smallest lower value o f all the removed nodes to the highest upper value

for the dimension on which N was cut. The new node had ranges identical to TV’s ranges on all

other dimensions. The rules contained in the nodes to be combined were all added to the ruleset

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

struct ec_node.t:

range_t **
range.t **
node-t *
ruleset.t *

ranges
cuts
children[2]
ruleset

unsigned long long int hit-total
unsigned long long int hit-count

Figure 5.3: The structure o f an enhanced cuts node.

for the new node. In order to preserve rule priority, the ruleset in the root o f the tree was consulted,

and rules were added to the new ruleset when seen in a linear scan o f the root ruleset. Since the

highest priority rules were always at the top o f their rulesets, this was a trivial task. HICuts was then

performed on this new node to create a new subtree. The sum o f the hits on all the nodes added to

the new node was given as the hit count for the new node. Nodes in the new subtree were all given

hit counts o f 0. A number was maintained in N to keep track o f the number o f non-merged children.

When sorting was performed for range reorders, this number was used to ensure that the combined

node was always at the end o f the list o f children. If a node created by range combination was later

split by a node promotion, the newly promoted node and the other nodes created remained anchored

at the end o f the list.

Enhanced cuts were performed as described in Section 4.4, and there is little to detail here in

terms o f implementation. Searching an enhanced cut node was slightly different than searching a

regular node as the classifier must consider the ranges o f the first child o f the new node on every

dimension. As a result, an enhanced cut node had a different structure than a regular node. The

structure o f an enhanced cut node is given in Figure 5.3. The list cuts contained the ranges o f the

first child on every dimension being classified. If a packet matched every one o f these ranges, then

the search entered the first child. Otherwise it continued on in the second child. When an enhanced

cut node was created, it was given the same hit count as the root node itself. A ll nodes on the path

from the root to the promoted node had their hit counts reduced by the hit count o f the promoted

node. This ensured that the search tree could quickly accommodate the removal o f a subtree.

In order to ensure that the classifier would not violate worst-case bounds, as w ell as to ensure that

significant alterations to the search structure did not interfere with packet classification, all the above

changes were not made to the search structure itself. A list o f all potential changes was maintained

in memory. When the restructuring was finished, and it was confirmed that the new structure did not

violate any worst-case bound, then the changes were committed. The primary thread was halted (via

a condition variable) at the beginning o f a search and the changes were applied. Since there were

rarely many changes to make, and since old nodes were replaced with new ones, this process took

very little time. At this point, the primary thread was restarted, and would begin its next search using

the new search tree. All changes were committed at once to ensure that classification was stopped

as few times as possible.

The classifier must, as noted in Section 4.8, ensure that it did not exceed a given worst case

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bound when making changes to the search structure. The maximum work that would be performed

in a search o f a newly created subtree can be returned by HICuts. For range combinations and node

promotions, it was easy to guarantee that a worst case bound had not been violated. The value

returned by HICuts could be added to the length o f the path from the altered node to the root to give

the amount o f work for such a search. For range reorders, things were slightly more complicated,

as the total work along some paths might be altered by too much. If a certain path was one less

than the worst-case bound, and the classifier moved that path two to the right in a node, the worst

case bound would be violated. After a range reorder, a depth-first search o f all the subtrees under

the node was performed, and the longest path encountered returned. The resulting values, combined

with the length o f the paths from the root o f each subtree to the root o f the tree, gave the values for

the maximum possible search length for every subtree. As long as all were less than the worst-case

bound, the range reorder could proceed. Enhanced cuts also had to probe the search space to ensure

that the addition o f one node and one range check to the search path did not cause any path in the

search tree to exceed the worst case bound. If any change violated the worst case bound, it was

eliminated from the list o f changes to implement.

Finally, the change threshold at every node in the tree must be known. While the formulas which

compute this threshold can be arbitrarily complex, for the purposes o f this implementation, a very

simple threshold was used. The threshold for any node in the tree was simply 10 + 2d, where d is

the depth o f the node in the search tree (with the root having a depth o f 0).

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Performance

In order to gauge the performance o f the altered HICuts classifier, many tests were run using both the

static and dynamic classifiers with several packet traces and two distinct rulesets for classification.

For the dynamic classifier the improvements outlined in Chapter 4 were turned on and off. In

addition modifications were made in the size o f TCAM used, the threshold for a rule’s entry into the

TCAM, and the rate o f forgetting. This was done in order to check how each improvement affected

the performance o f the classifier, and to determine which improvements contributed the most to the

classifier’s speedup.

The results o f all these tests were then compared to illustrate how the classifier improved the

speed o f classifying packets while maintaining a worst-case bound and ensuring that memory use

did not get out o f hand. The structure o f the packet traces, rulesets and overall experimental design

are given in Section 6.1. Results and commentary on the classifier’s performance are then given in

Section 6.2.

6.1 Experiment Design

All experiments were conducted by running the HICuts algorithm on a variety o f synthetic and real

Internet traffic traces. For every trace a large number o f runs o f the HICuts algorithm were made.

The first four enhancements described in Chapter 4 varied between on and off. The TCAM was set

to four distinct sizes (0, 10, 50 or 100 entries), set to either store rules or packets, and set to one

o f five insertion thresholds (0, 10, 100, 1000 or 10000 hits before insertion). Five different rates

for forgetting were tested (forgetting after every 100, 200, 300, 400 or 500 packets classified). If

the TCAM size was zero, then the other two TCAM parameters were not changed as, without a

TCAM, the TCAM parameters are useless. In addition, five different initial rates o f restructuring

were tested, with restructuring initially occurring once every 100000, 200000,300000,400000, or

500000 packets classified. This means that for every packet trace and ruleset combination there

were: 3 * 25 * 53 = 12000 tests with the TCAM, and 24 * o2 = 400 tests without, for a total o f

12400 tests.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From these runs, the average depth o f search, along with the number o f nodes checked, the

number o f ranges checked, the number o f rules searched in leaf nodes, the number o f hits in the

TCAM, and the number o f reorders, promotions and recombinations were all recorded. O f these

values, the most important for gauging performance were the number of node hits, the number of

range checks and the number o f rules searched. These three numbers, added together, gave the final

value o f L = £2"=1 L('pi) for that test. In addition, the amount o f memory used was calculated. The

maximum value o f L(p) for any search was returned, as was the maximum possible L(p) , which

was used to confirm that the worst-case bound on search time was not violated. Several additional

statistics were generated and returned, however, they did little to describe the overall performance of

the classifier, and were used for bug-fixing and confirmation o f the classifier’s activities. As a result,

they will not be discussed further in this thesis.

6.1.1 Rulesets

For the purposes o f the initial experiments, a ruleset which was composed o f two dimensions o f size

216, split into equal sized squares was used. Each o f these squares corresponded to a single rule in

the overall ruleset, did not overlap any other rule in the ruleset, and had sides o f length 212. This

ruleset was named the ‘checkerboard’ ruleset and was used, despite its artificial nature, so that the

packet headers used for some o f the tests could be created easily to test the effects o f locality on

packet headers. Given this ruleset, it was easy to derive synthetic packet traces which could test a

large variety o f patterns in the frequency at which certain rules were hit in comparison to other rules.

This allowed for the testing o f boundary cases, as well as for the testing of other interesting cases to

see the effects o f the dynamic classifier under very tightly controlled situations.

In addition to this artificial checkerboard ruleset, a ruleset for testing was derived from the ruleset

for the intrusion detection program Snort [22]. Snort has a large number o f rules, which allows for

the testing o f large rulesets, and also the fine-tuned testing o f smaller, hand-chosen rulesets. In

addition, since the Snort rules are defined to aid in intrusion detection, they can be tested with any

Internet trace. Using firewalls or routers as the basis for a real-world ruleset instead o f Snort would

require traces specific for the device they were taken from for testing. Using rulesets from a publicly

available source like Snort should also aid others who wish to duplicate this or similar work. Finally,

with a large ruleset which needs to be searched quickly, Snort is a program which could benefit

from any improvements which could be made to packet classification. Since Snort is an intrusion

detection system, classifying over source and destination addresses seemed quite useless. Instead,

a medium-sized subset (300 rules) o f the Snort ruleset was used, and classification was performed

using both the source and destination port in each header. This meant that classification was over

two dimensions, each o f size 216. This corresponds nicely with the dimensions o f the checkerboard

ruleset. In fact, the checkerboard ruleset was reduced in dimension (though not in number o f rules)

to match the Snort ruleset.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1.2 Packet Traces

Several real-life traces used by the Communications Networks group at the University o f Alberta

were used as data for the tests. For reasons related to the method by which CNS names its traces,

these are referred to as ‘Telus’ traces in the results given below. This naming is not meant to signify

any participation by TELUS Communications Inc. in this research.

In addition, several synthetic traces were used. The synthetic traces were produced in four

different ways. The first, uniform, produced packet headers with each field chosen uniformly (and

independently) from the range o f the dimensions in the classifier (in this case [0 ,216 — 1]). This trace

therefore had no patterns which the dynamic classifier could exploit. The second method, single,

simply produced the same packer header the desired number o f times. As contrasted to the uniform

trace, the single trace should be easily exploited by the dynamic classifier. Neither o f these first two

methods produced traces a packet classifier would see in real life. However, these two cases allowed

the evaluation o f the performance o f the classifier in extreme situations. In particular, the single and

uniform traces give indications o f what to expect when the first few iterations o f restructuring were

all that was needed to perfect the'dynamic classifier, and when there was little to no structure in the

packet headers which can be exploited.

A third method generated between 10 and 20 random headers. Then, with a preset probability

(either 10% or 1%) it chose to create a completely random packet header (as in the uniform technique

above). Otherwise it produced a packet header which was very similar (within a range o f 64 for either

dimension) to one o f the pre-calculated headers. This was called the ‘clumped’ method. Clumped

traces are referred to as ‘clum pedl’ for the 1% random case, and ‘clumpedlO’ for the 10% random

case in the results given in Section 6.2.

Finally a last method, setsource, generated a single random packet header. Then, with proba

bilities as for the clumped method, it either generated a random packet, or a packet very similar

(within a range o f 64) to the single pre-generated packet on one o f its two dimensions, and uni

formly distributed on the other. This was an attempt to match the actions o f a classifier in front o f

a small subnet. M ost packets w ill have that subnet’s prefix as either source or destination, but there

will be some random traffic, and the classifier cannot control the source o f packets coming in, or

the destination o f packets going out. In Section 6.2, these traces are referred to as ‘setsource 1’ and

‘setsourcelO’.

6.2 Results and Commentary

6.2.1 Overall Improvements in Classification

Table 6.1 gives the best path length for all combinations o f ruleset and packet trace. For each o f these

tests, all improvements were used, the TCAM had 100 entries and an insertion threshold o f 10000.

The results clearly show the benefits o f using dynamic classification over static classification. It is

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ruleset Trace Static Best Dynamic
Checkerboard Clumped 1 14.216 1.036
Checkerboard ClumpedlO 14.795 1.629
Checkerboard SetSource 1 15.102 1.044
Checkerboard SetSourcelO 12.861 1.862
Checkerboard Single 10 1.000
Checkerboard Telus 9.894 1.003
Checkerboard Uniform 15.201 9.655
Snort Clumped 1 12.362 7.270
Snort ClumpedlO 11.637 8.259
Snort SetSource 1 13.255 4.592
Snort SetSourcelO 11.505 3.834
Snort Single 16 8.160
Snort Telus 16.067 3.878
Snort Uniform 12.112 6.617

Table 6.1: Best path length results in terms o f L.

Ruleset Trace Static Average 2 times Std.Dev.
Checkerboard Clumped 1 14.216 9.049 13.606
Checkerboard ClumpedlO 14.795 9.883 12.981
Checkerboard SetSource 1 15.102 10.038 12.468
Checkerboard SetSourcelO 12.861 9.504 10.223
Checkerboard Single 10 1.282 3.248
Checkerboard Telus 9.894 4.911 5.294
Checkerboard Uniform 15.201 14.817 4.604
Snort Clumpedl 12.362 11.353 2.209
Snort ClumpedlO 11.637 10.877 2.139
Snort SetSourcel 13.255 9.429 8.046
Snort SetSourcelO 11.505 8.286 6.862
Snort Single 16 10.811 4.696
Snort Telus 16.067 8.021 4.628
Snort Uniform 12.112 10.496 3.581

Table 6.2: The average value o f L, and 2 times the standard deviation for all tests.

interesting to note that the Snort ruleset did not see the same improvement that the checkerboard

ruleset saw. This is because the Snort ruleset has overlapping rules which make performing some

o f the improvements more difficult. Also, the Snort ruleset does not cover the entire search space,

which means that packets which fall into the regions not covered by rules do not contribute as much

information to the classifier as those which match rules in the ruleset.

Table 6.2 gives the average value o f L (p) and 2 times the standard deviation for all 12400 tests

for every combination o f ruleset and packet trace. A lso given is the average value o f L(p) for that

combination o f packet trace and ruleset run on a static HICuts classifier. The numbers include those

tests in which very few o f the enhancements are turned on, as well as those in which all o f the

enhancements are in use. They also include those tests in which only one of the pair o f mutually

beneficial enhancements (node promotions and range combinations) is in use. As discussed above,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in such situations, it is expected that the dynamic classifier might perform worse than the static

classifier, as range reorders and node promotions compensate for each other’s actions.

As shown in Table 6.2, the dynamic classifier performed better on average than the static clas

sifier in every combination o f ruleset and packet trace. For the purposes o f discussing these results,

attention will be paid primarily to the Telus trace, as well as the two extreme traces, Single and

Uniform.

The Telus trace, on both the checkerboard and the Snort ruleset, showed the full benefits o f the

dynamic classifier. This trace had locality o f traffic which was exploited, and the dynamic classifier

performed quite well as compared to the static classifier. In fact, the classifier performed better

on the Telus trace than on the single trace with the Snort ruleset. Since the Snort ruleset was not

complete, the TCAM was not used in those tests involving the single trace. It was used with the

Telus trace, however, and this allowed the classifier to perform better on this trace than the single

trace on this ruleset. As with the single trace, a few instances o f tests using the Telus trace performed

worse with the dynamic classifier than with the static classifier. These instances were the result o f

inopportune mixing o f enhancements in the dynamic classifier. This would not be seen in real-life,

as such combinations o f parameters would never be used.

The single trace showed, as expected, the full benefits o f the dynamic classifier, especially on the

checkerboard ruleset. The dynamic classifier performed nearly an order o f magnitude better than the

static classifier on average. This was, o f course, due to the construction o f the single trace. As only

one rule was matched during the entire run o f any test using the Single trace, the dynamic classifier

continued to make changes to the search structure which were beneficial to searching for that one

node. Nothing which the dynamic classifier did to other regions of the search space had any effect

whatsoever on the overall performance o f the classifier. In other words, practically every change

made to the classifier was beneficial. The only possible way that classification could be made worse

was when node promotions were performed without the aid o f range reorders or range combinations

to clean up the node into which a promotion was made. The end result o f such a promotion might

be a slight increase in the average value o f L(jp).

The Uniform trace showed that, even when there was nothing to be learned from the traffic that

the classifier was seeing, the dynamic classifier could still perform better than the static classifier.

Generally, the performance o f the classifier was improved in this situation because o f the TCAM.

Occasionally rules were inserted into the TCAM which were matched before they were removed

from it. In the case where there were thresholds for entry into the TCAM, it was less likely for a

rule to be inserted, but when a rule was, it was also very unlikely that the rule would be removed

from the TCAM. In such cases, any packet which matched that rule would be matched in L(p) = 1

step, improving the overall performance o f the classifier. A s it turned out, the vast majority o f tests

on the Uniform trace performed equally well on the dynamic classifier as on the static classifier. As

the dynamic classifier could not learn from the traffic it was seeing, this was the performance that

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I*
I

1#

Figure 6.1: Average values o f L for Single

|

JW«o,l AwnpL

Figure 6.2: Average values o f L for Telus

was expected. It is very encouraging to see that the dynamic classifier did not perform worse than

the static classifier, even in cases where there was nothing which could be learned from the traffic

the classifier was seeing.

The graphs given as Figures 6.1 through 6.3 show the cumulative number o f runs of the clas

sifier which provided an average value o f L(p) equal to or lower than any given value o f L[p).

Additional graphs for other traces can be found in the appendix as Figures A .l through A.4. The

two vertical lines on the graph show the average overall performance o f the dynamic classifier and

the average value o f L(p) seen in the static classifier for each combination o f ruleset and packet

trace. These graphs are provided to show the distribution o f the results which lead to the numbers

|

2*

Figure 6.3: Average values o f L for Uniform

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ruleset Trace Static Average 2 times Std.Dev.
Checkerboard Clumped 1 21 29.052 18.609
Checkerboard ClumpedlO 21 29.078 18.754
Checkerboard SetSourcel 21 22.267 7.137
Checkerboard SetSourcelO 21 28.212 17.789
Checkerboard Single 21 22.753 7.375
Checkerboard Telus 21 30.598 21.295
Checkerboard Uniform 21 22.765 10.622
Snort Clumpedl 35 32.076 6.563
Snort ClumpedlO 35 35.014 2.604
Snort SetSourcel 35 34.916 1.659
Snort SetSourcelO 35 33.777 4.659
Snort Single 35 36.175 2.355
Snort Telus 35 33.125 7.214
Snort Uniform 35 33.839 4.744

Table 6.3: Actual worst case results for all tests.

given in Table 6.2. More importantly, however, they show that, given the proper combination of

the improvements in the dynamic classifier, and the proper tuning o f the parameters used to control

those enhancements, the dynamic classifier can significantly outperform the static classifier.

In every combination o f ruleset and packet trace, those test runs which had all, or almost all, o f

the dynamic enhancements in use performed significantly better than the other tests shown in the

graph. Those tests which occurred near the average value for the tests, as well as near the value

generated by the static classifier, were generally those tests which had most o f the enhancements

turned off, but did have the enhancements which complement each other (range combinations and

node promotions) either both turned on, or both turned off. Those tests which did perform as badly

as or worse than the dynamic classifier were those in which one o f node promotions or range com

binations, but not both, was turned on. In these cases, the negative impact o f these improvements

could be compensated for, and the overall performance o f the dynamic classifier suffered as a result.

From these results, we conclude that any combination o f enhancements might not positively

affect the performance o f the classifier. Fortunately, as the results for these tests showed, simply

turning on all the enhancements was enough to ensure that the dynamic classifier outperformed the

static classifier. There is no need for any convoluted or complicated method o f figuring out which

enhancements need be turned on, and which need be turned off to deal with certain types o f traffic.

In real cases, as well as in the extreme synthetic cases, using all the enhancements lead to the best

performance in the dynamic classifier.

6.2.2 Worst-Case Performance

For the purposes o f the experiments performed, the maximum worst case bound was set at L(p) =

50. This number was chosen as it was slightly more than twice the worst case seen in the checker

board ruleset. With the worst-case size set to this value, the dynamic classifier could not make every

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ruleset Trace Static Average 2 times Std.Dev.
Checkerboard Clumped 1 21 31.407 23.318
Checkerboard ClumpedlO 21 32.026 25.189
Checkerboard SetSourcel 21 23.245 11.532
Checkerboard SetSourcelO 21 30.437 23.135
Checkerboard Single 21 22.917 7.978
Checkerboard Telus 21 32.686 25.732
Checkerboard Uniform 21 23.215 13.312
Snort Clumped 1 35 35.75 0.866
Snort ClumpedlO 35 35.943 2.620
Snort SetSourcel 35 35.379 1.274
Snort SetSourcelO 35 35.566 1.471
Snort Single 35 36.513 2.842
Snort Telus 35 36.027 6.368
Snort Uniform 35 35.399 1.268

Table 6.4: Maximum worst case results for all tests.

change it would have liked to make to the search structure. At the same time, such a bound al

lowed some changes to be made to the structure. If the worst-case bound had been set at exactly the

static HICuts level, then many useful enhancements would have been ignored simply because they

increased the worst-case by a small amount.

It should be noted that the numbers for the worst-case given here differ from the numbers given

in [2]. This occurred for three reasons. First, the value o f L calculated here included the time needed

to find the rale in the ruleset o f a leaf node. Second, the HICuts algorithm itself was modified slightly

between the tests used for [2] and the tests used for this thesis. Finally, since the packet traces are not

fixed but are generated due to certain criteria, the traces used for these experiments, while having the

same overall properties o f the traces used in [2], did not contain exactly the same packets, altering

the actual worst-case performance slightly.

Table 6.3 gives the average actual worst-case (the worst-case actually seen during the test, rather

than the worst possible case for the test) for each o f the seven packet traces and both o f the rule

sets. In addition, a value equal to 2 times the standard deviation is given. From these results we

conclude that the improvements do not greatly affect the worst-case performance o f the classifier.

On average the dynamic classifier had only a slightly worse actual worst case than the static clas

sifier. This shows that the benefits provided by the dynamic classifier did not com e at the expense

of significantly worsening the worst-case performance o f the classifier. It is interesting to note that

that standard deviation for the checkerboard ruleset is generally larger than that for the Snort ruleset.

This is due to the fact that there are many more ‘useless’ rules in the checkerboard ruleset than in

the Snort ruleset. In any test which hit only a certain few checkerboard rales, many more Snort rules

were hit. This made it possible, given the right combination o f enhancements, for more dramatic

changes to be made to the search structure derived from the checkerboard ruleset and resulted in a

much greater variation in the results for the actual worst-case.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

M

Figure 6.4: (a) Actual and (b) maximum worst-case results for Single on Checkerboard

Table 6.4 gives the average worst possible value o f the worst case for each o f the seven packet

traces and both o f the rulesets. Here, even the worst possible cases in the dynamic classifier were, in

general, not much worse than the worst cases in the static classifier. In fact, for the Snort ruleset, the

difference was negligible. Again, this shows that the dynamic classifier was capable o f improving

the overall speed o f classification while keeping its worst case bounded. In fact, in most cases, it

improved the speed of classification while keeping its worst case very close to the static classifier’s

worst case.

The Snort ruleset has a much smaller standard deviation than the checkerboard ruleset mainly

because fewer improvements were performed on it than on the Checkerboard ruleset. Since the

Snort rules overlapped, and did not cover the entire search region, fewer changes could be made in

many cases. As a result, it was difficult for the search tree based on the Snort ruleset to vary as far

from the static worst case as for the Checkerboard ruleset.

The worst possible case only rarely approached the value o f 50 set for the program. There are

two reasons for this. First, many enhancements changed the value o f m ax (L (p)) by more than 1. If

these enhancements were attempted when the value o f m ax (L (p)) was already getting close to the

bound, they would be rejected. This kept the maximum worst-case path in the tests shorter than the

bound that had been set. Second, since the enhancements were set to counter-act each other’s effects

on the worst case (i.e. range combinations will help clean up the increases in L{p) caused by node

promotions), it was to be expected that the worst possible case in the dynamic classifier would not

stray too far from the worst case in the static classifier. In fact, those few cases where the worst case

in the dynamic classifier ended up much larger than the worst case in the static classifier were those

in which only one of node promotions or range combinations was turned on.

Figures 6.4 though 6.6 show the cumulative worst case values for all the tests on the checker

board ruleset, as do Figures A.5 through A.8. The two vertical lines show the worst-case perfor

mance o f the static classifier and the average value for the worst-case in question (actual or maxi

mum) for the packet trace in question. The monotonically increasing line gives the number o f tests,

for every measured worst-case value o f L, which had that worst-case value, or had a lower worst-

case value. The majority o f tests show that the dynamic classifier had better worst-cases, or similar

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12000

1COOO

I BOOO

| „

4000

2000

0
20 2» 30 3ft 40 4ft ftO 20 24 30 34 40 44 SO

laburnum AUM0 Wont CftMint M4WTMnPoft*®l»WgniC4«*inl.

Figure 6.5: (a) Actual and (b) maximum worst-case results for Telus on Checkerboard

12000

WOO

aooo

4000

4000

2000

Figure 6.6: (a) Actual and (b) maximum worst-case results for Uniform on Checkerboard

worst-cases, to the static classifier. The cases which had an extremely high worst-case tended to be

few in number compared to those below or near the static classifier’s worst-case.

Figures A.9 though A. 15 show the same data, however, the Snort ruleset was used for the exper

iments, rather than the checkerboard ruleset. These graphs show essentially the same information as

the graphs for the checkerboard ruleset, and w ill not be discussed further.

6.2.3 Effects of the Individual Improvements

To explore the effects o f each individual improvement on overall classification, only the results

using the checkerboard ruleset are discussed below. The results for the Snort ruleset are essentially

the same. For each trace and for each improvement, four numbers are given. The first two represent

the average performance when that improvement was being used. The second two numbers are for

when that improvement is turned off.

The overall purpose o f this section is not to claim that one improvement allows for greater

enhancement in performance than the others, but rather to demonstrate that all the enhancements

work together in order to provide the performance boost seen in Section 6.2.1.

As Table 6.5 shows, node promotion had a tendency to increase the average value o f L over

those tests when it was turned off. The only case where this did not happen was with the clumped 10

trace. Once the standard deviation is considered, though, it can easily be seen that the classifier per

formed essentially the same with or without node promotion. This may seem a strange result. Node

60

!

30
U u m n M m d Wont Cam i* I

34 40 4024 4ft

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Trace On Average 2 times S.D. Off Average 2 times S.D.
Clumpedl
ClumpedlO
SetSourcel
SetSourcelO
Single
Telus
Uniform

9.847
8.992

10.126
10.275

1.348
4.980

15.259

14.659
13.411
12.668
11.170
3.917
5.401
5.452

8.291
9.105
9.952
8.952
1.216
4.855

14.377

12.334
13.796
12.266
9.333
2.393
5.204
3.342

Table 6.5: Effects o f Node Promotion on classification

Trace On Average 2 times S.D. O ff Average 2 times S.D.
Clumpedl
ClumpedlO
SetSourcel
SetSourcelO
Single
Telus
Uniform

8.992
9.875
9.988
9.246
1.255
5.064

14.814

13.411
13.117
12.306
9.622
2.918
5.419
4.591

9.105
9.891

10.089
9.765
1.308
4.764

14.820

13.796
12.856
12.628
10.772
3.547
5.154
4.618

Table 6.6: Effects o f Range Reorders on classification

promotions were supposed to improve the performance of the classifier, not hinder it. However, it

is important to remember that node promotion was designed to work in tandem with other improve

ments. In many o f the cases where node promotion was enabled, range combinations and range

reorders were not. In these cases, node promotion would make changes to the search tree which

introduced deficiencies which could not later be fixed up. In the cases where node promotion was

turned off, it could not negatively affect the performance of the search. O f course, in these cases, the

effects o f other improvements could not be altered and fixed through the process o f node promotion.

As with node promotions, there was little difference to be seen between those runs which used

range reorders and those runs which did not (as shown in Table 6.6). Once the standard deviation is

considered, the results were essentially statistically identical. Again, this shows that range reorders

on their own did not greatly affect the performance o f the classifier. Whether range reorders were

turned on or off, little change in the overall performance o f the classifier could be seen. In this

case, this could be expected as range reorders compensate for themselves. They can be expected to

provide a slight benefit as they adapt the search structure to the traffic being seen and then adapt it

further if the traffic the classifier was seeing changed. The effect o f range reorders themselves on the

classifier was slight, however, as range reorders were local to nodes, and did not create wide-ranging

changes to the search structure.

Range combinations showed, as demonstrated in Table 6.7, the same behavior as node promo

tions and range reorders. The difference in the effects o f this improvement being turned off versus

it being turned on were negligible. As with node promotions, this was due to the fact that range

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Trace On Average 2 times S.D. Off Average 2 times S.D.
Clumpedl
ClumpedlO
SetSourcel
SetSourcelO
Single
Telus
Uniform

9.070
9.877

10.042
9.507
1.282
4.849

14.817

13.595
12.900
12.467
10.215
3.248
5.254
4.604

9.028
9.889

10.034
9.500
1.282
4.972

14.816

13.617
13.065
12.471
10.232
3.248
5.332
4.604

Table 6.7: Effects o f Range Combinations on classification

Trace On Average 2 times S.D. Off Average 2 times S.D.
Clumpedl 8.833 13.623 15.353 2.644
ClumpedlO 9.681 12.987 16.023 2.861
SetSourcel 9.864 12.523 15.247 1.594
SetSourcelO 9.364 10.267 13.635 2.727
Single 1.004 0.014 9.607 6.376
Telus 4.725 4.979 10.254 1.763
Uniform 14.789 4.640 15.650 2.916

Table 6.8: Effects o f the TCAM on classification

combinations worked in tandem with other improvements to provide the benefits that could been

seen in the dynamic classifier. As a result, when range combinations were disabled, the classifier

performed worse when node promotions were enabled. And when range combinations were on, the

classifier performed worse when node promotions were off. In both cases, there existed situations

where the classifier performed more poorly than it otherwise should have, and little difference could

be seen in the classifier’s performance when only the state o f range combinations was considered.

Typically, one enhancement does not contribute significantly to the performance o f the classifier

on its own. However, this is not the case for the TCAM, as shown in Table 6.8. The TCAM

contributed significantly to the performance o f the classifier in every case in which there was some

pattern to the traffic in question which could be exploited. Whether that pattern was due to the rules

used to generate a synthetic trace, or the locality o f traffic in a real Internet trace was unimportant.

While the other improvements used in isolation made only minor changes to the value of L(jp), the

TCAM reduced that value to 1, regardless o f how much work might be required to search for the

rule in the HICuts tree. It is also important to note that the average performance o f those tests which

did not employ the TCAM was still significantly better than the performance o f the static classifier.

In other words, while the TCAM certainly aided the performance o f the classifier by a large margin,

it was also certainly not the only improvement which allowed the dynamic classifier to outperform

the static one. As the TCAM did affect the performance o f the classifier to such a large extent, it

will be discussed in more detail in Section 6.2.5.

Table 6.9 shows the effect o f enhanced cuts on the performance o f the classifier. Again, there was

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Trace On Average 2 times S.D. Off Average 2 times S.D.
Clumpedl
ClumpedlO
SetSourcel
SetSourcelO
Single
Telus
Uniform

9.077
9.871

10.054
9.512
1.212
4.936

14.832

13.583
12.962
12.467
10.245
2.346
5.321
4.683

9.021
9.896

10.023
9.496
1.351
4.886

14.801

13.629
13.002
12.471
10.202
3.945
5.267
4.524

Table 6.9: Effects o f Enhanced Cuts on classification

Trace NP & RC Average 2 times S.D. Neither Average 2 times S.D.
Clumpedl 7.270 12.345 9.791 14.292
ClumpedlO 7.127 11.726 9.796 12.101
SetSourcel 7.938 12.279 10.024 12.355
SetSourcelO 6.952 9.335 9.667 9.912
Single 1.238 2.637 1.316 3.536
Telus 3.057 5.092 5.455 4.702
Uniform 12.377 3.343 15.254 5.432

Table 6.10: Effects o f Node Promotion and Range Combination on classification

little difference between the performance o f the classifier with and without enhanced cuts, showing

that this improvement, by itself, did not improve the performance o f the classifier. Rather, it must

be used in conjuction with the other enhancements. It is important to note, however, that, while

enhanced cuts worked vaguely like a TCAM, the benefits the TCAM afforded were not seen with

enhanced cuts. This was simply due to the fact that enhanced cuts could not reduce the search time

for any packet down to 1 as a TCAM could, and that enhanced cuts increased by 1 the value o f L(jp)

for all searches not in the enhanced cut. The TCAM did not do this. In fact, the placement o f rules in

the TCAM allowed the classifier to further reduce the value o f L (p) in the HICuts tree. In any case

where a TCAM can not be used, enhanced cuts can not be counted on to provide the same benefit to

the classifier.

It has repeatedly been mentioned that node promotions and range combinations must work to

gether in order to see the benefits o f both. Table 6.10 shows the effect o f the node promotion and

range combination together versus those cases where only one or the other is in use. In combination

with Tables 6.5 and 6.7, this table shows just how beneficial the combination o f node promotions

and range reorders is.

6.2.4 Memory Use

While memory use was not the main concern o f this research it should still be explored. Classifica

tion has, like many other endeavors in computing science, a pronounced tradeoff between memory

use and time performance [14]. Increased use o f memory, and use o f better-performing memory,

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ruleset Trace Static Average 2 times Std.Dev.
Checkerboard Clumpedl 1676 4141.213 6255.209
Checkerboard ClumpedlO 1676 3605.685 5428.760
Checkerboard SetSourcel 1676 2036.950 2667.689
Checkerboard SetSourcelO 1676 4012.184 6323.594
Checkerboard Single 1676 2037.623 1756.081
Checkerboard Telus 1676 3675.103 6329.198
Checkerboard Uniform 1676 2255.930 3665.282
Snort Clumpedl 8043 7052.779 4975.884
Snort ClumpedlO 8043 7016.354 2841.146
Snort SetSourcel 8043 7281.260 2758.892
Snort SetSourcelO 8043 6720.710 3146.998
Snort Single 8043 6842.176 3346.934
Snort Telus 8043 7327.067 8208.435
Snort Uniform 8043 11846.013 19133.795

Table 6.11: Average memory use results for all tests.

such as storing the entire ruleset in a TCAM, leads to much shorter classification times. As a speed

up in classification times with the dynamic approach can be seen, it can be assumed that the classifier

may be using more memory to store the search structure. As classifiers must work within the limits

o f the memory they are given, it is important to keep track o f the use o f memory in the dynamic

classifier to make sure that the improvements in classification time are not com ing at the expense of

too much additional memory use.

For the purposes o f this research, memory use was calculated by summing the number o f nodes

in the search tree with the size o f the ruleset contained in each node. While this didn’t provide an

exact measure o f the size o f the search structure, it was enough for keeping track o f how memory

use changed during the run-time o f the dynamic classifier.

Table 6.11 gives the average memory use of the classifier over all tests. For every test run,

the amount o f memory the classifier was using was calculated immediately after every iteration

o f restructuring. The average value over all these iterations was then calculated. All the average

values for every run were grouped by the ruleset and packet trace used, and another average was

calculated. The results in the table show that, on average, the average amount o f memory being used

by the dynamic classifier after any given iteration was not that much different than the amount of

memory used by the static classifier. In fact, in many o f the tests involving the Snort ruleset, the

average size o f the search structure was less than that o f the static classifier. As with the worst-case

results, the vast majority o f tests which resulted in significantly higher memory use were those in

which only one o f node promotions and range combinations was used. In these cases, the additional

nodes created by one improvement during one restructuring could not be later reclaimed by the

corresponding improvement during another restructuring. This resulted in far more memory being

used than would otherwise be necessary.

For every test run for this thesis, the absolute worst-case use o f memory was also obtained.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ruleset Trace Static Average 2 times Std.Dev.
Checkerboard Clumpedl 1676 5495.639 8946.593
Checkerboard ClumpedlO 1676 4884/979 8252.481
Checkerboard SetSourcel 1676 2466.022 4669.655
Checkerboard SetSourcelO 1676 5393.535 9217.998
Checkerboard Single 1676 2116.152 1999.778
Checkerboard Telus 1676 5543.764 9588.154
Checkerboard Uniform 1676 2547.881 5211.307
Snort Clumpedl 8043 20909 25733.038
Snort ClumpedlO 8043 8374.377 2103.018
Snort SetSourcel 8043 8047.500 63.003
Snort SetSourcelO 8043 8500.783 2487.931
Snort Single 8043 8057.077 51.595
Snort Telus 8043 14393.382 19280.177
Snort Uniform 8043 16331.508 28423.322

Table 6.12: Worst case memory use results for all tests.

14000

12000

<0000

I «000

eooo

4000

2000

0
0 1000 2000 9000 4000 SOU 0000 7000 WOO WOO 10000 0 2000 4000 6000 1000 10000 12000

Monoy Um UiurunUwuylM

Figure 6.7: (a) Average and (b) maximum memory use results for Single on Checkerboard

Since memory use can only change after a restructuring, this involved keeping track o f the largest

value encountered while maintaining the data to calculate the average size o f the search structure.

Table 6.12 gives the average worst-case memory size for every combination o f ruleset and packet

trace tested. Here it is clear that, while the average case memory use o f the classifier was often

slightly more or slightly less than the memory use o f the static classifier, the maximum use of

memory could be significantly greater than the memory use o f static HICuts. This was especially

true in the case of the Snort ruleset. Since the Snort ruleset contains many rules which overlap each

other, changes to the search structure could easily create very large subtrees with a large number of

partially overlapping rules in them. These newly created subtrees would be reduced in size on later

iterations of the restructuring algorithm. However, the fact that the search tree could occasionally

grow to several times larger than its average size might be of some concern in practice. However,

it would not be difficult to extend the technique which prevented the worst-case bound from being

violated to also ensure a space bound was obeyed.

Figures 6.7 though 6.9 (as well as Figures A. 16 through A. 19) show the cumulative memory use

values for all the tests on the checkerboard ruleset. The two vertical lines show the memory use o f

65

12000

10000

•000

•000

4000

2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

J

Aww*e» Memory U»«

Figure 6.8: (a) Average and (b) maximum memory use results for Telus on Checkerboard

!
V
I

12000 14000

Figure 6.9: (a) Average and (b) maximum memory use results for Uniform on Checkerboard

the static classifier and the average value o f memory use for the packet trace and metric (average

memory use or worst-case memory use) in question. The monotonically increasing line gives the

number o f tests, for every measured value o f memory use, which used at most that much memory.

The vast majority o f tests o f the dynamic classifier used an amount o f memory close to the average

and close to the memory use o f the static classifier. There were som e outliers, but they were few in

number, and all involved those cases in which the ability of the search structure to fix the changes

it had made had been compromised through the disabling of some o f the enhancements used by the

dynamic classifier.

Figures A.23 though A.22 show the same information as the graphs mentioned above. In this

case, however, the Snort ruleset was used for the experiments, rather than the checkerboard rule-

set. The data here are not different enough from that o f the checkerboard tests to warrant further

comment.

6.2.5 TCAM Hits - Locality of Traffic

It was to be expected that the TCAM would prove to be useful in situations where there is locality

o f traffic. The results described in Section 6.2.3 confirmed this. In other words, the classifier should

have been able to make good use of the TCAM in the real-world trace, as well as most o f the

synthetic traces. The uniform trace should have made much less use o f the TCAM as it was not

constructed with locality in mind. However, there were cases where the TCAM was useful even

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ruleset Trace Average 2 times Std.Dev.
Checkerboard Clumpedl 43.9% 93.7%
Checkerboard ClumpedlO 40.9% 85.3%
Checkerboard SetSourcel 36.5% 87.1%
Checkerboard SetSourcelO 33.7% 80.7%
Checkerboard Single 96.7% 35.3%
Checkerboard Telus 97.2% 93.5%
Checkerboard Uniform 5.78% 23.5%
Snort Clumpedl 0.0596% 0.197%
Snort ClumpedlO 0.00536% 0.0328%
Snort SetSourcel 0.0459% 0.197%
Snort SetSourcelO 0.0533% 0.219%
Snort Single 0.000% 0.000%
Snort Telus 50.389% 50.887%
Snort Uniform 0.146% 0.458%

Table 6.13: The average number o f hits in the TCAM, as a percentage o f packets classified.

when there was no explicitly constructed structure to exploit. These were fortunate occurrences

because they allowed the classifier to make quick matches in the TCAM.

Table 6.13 shows the average number o f hits in the TCAM for every packet trace on each o f

the two rulesets. These results show the great benefit that the TCAM afforded the classifier when

it saw a single repeated packet header. In particular, the tests performed on the Telus trace clearly

show the benefits o f using a TCAM. Since there is locality in Internet traffic, the TCAM was able

to exploit that locality and store rules which matched the patterns in the traffic, giving the classifier

the ability to short-cut every search which fell in the same area o f the search space. On average,

the Telus trace performed as well as the single trace on the checkerboard ruleset, albeit with a much

greater standard deviation. The Telus trace also performed significantly better than all other traces

on the Snort ruleset. On both the checkerboard ruleset and the Snort ruleset the locality o f Internet

traffic in the Telus trace allowed the TCAM to perform exactly as was expected. Rules which could

be expected to be matched again in a short period o f time were stored and were matched quickly in

the TCAM, rather than in the much slower tree structure created by HICuts.

The single trace was 5000000 headers in length, but there were not always 4999999 hits in the

TCAM simply because many o f the tests involved thresholds on the entry o f the rule into the TCAM.

This also explains the high standard deviation. Some o f the tests which used a high threshold on the

entry o f a rule into the TCAM affected the performance o f the TCAM enough that the deviation in

the results grew to reflect this.

The number o f TCAM hits for the Snort ruleset were not nearly as high as those for the checker

board ruleset mainly because there were regions in the Snort search space with no assigned rules.

When these regions were ‘matched’, there was no rule to be promoted into the TCAM to aid in later

searches. This is most explicitly shown by the single trace on the Snort ruleset. Here, because the

packets generated always managed to miss all o f the rules in the Snort ruleset, there were absolutely

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rate Mean 2 times Std.Dev. Rate Mean 2 times Std.Dev.
100 1.281 3.243 100 10.811 4.697
200 1.282 3.250 200 10.811 4.697
300 1.282 3.250 300 10.811 4.697
400 1.282 3.250 400 10.811 4.697
500 1.282 3.250 500 10.811 4.697

Table 6.14: The effects o f the rate o f forgetting on the value o f L for the Single trace on the (a)
Checkerboard and (b) Snort ruleset.

Rate Mean 2 times Std.Dev. Rate Mean 2 times Std.Dev.
100 5.243 4.994 100 7.499 4.881
200 4.966 5.311 200 8.160 4.468
300 4.858 5.301 300 8.203 4.546
400 4.681 5.390 400 8.182 4.556
500 4.797 5.408 500 8.102 4.496

Table 6.15: The effects o f the rate o f forgetting on the value o f L for the Telus trace on the (a)
Checkerboard and (b) Snort ruleset.

no hits in the TCAM. This suggests that the use o f a TCAM for packet classification should be done

with rulesets which cover the entire search space. Since rules in rulesets can be prioritized, a rule

to cover the entire search space and with the lowest priority can be created. If such a rule had been

created for the Snort ruleset then the Single trace would have experienced identical performance

with the Snort ruleset as it did when tested with the checkerboard ruleset. It is important to note,

however, that creating such an all-encompassing rule could result in a larger search tree. Such a

rule would exist in every node o f the HICuts tree and could detrimentally affect HICuts’ terminating

condition.

In the case o f the uniform trace on the checkerboard ruleset, there are only a very few hits in the

TCAM. Those that w e see are artifacts o f the random method used to generate the trace. Every now

and then packet headers will be produced in the same region o f the ruleset within the time interval

needed to register a hit in the TCAM, or to push the rale’s hits high enough to get it over the insertion

threshold. Should the second case occur, it is almost guaranteed that the inserted rale would never

leave the TCAM, and would match every additional packet in that rale’s region. To have rales hit

often enough to be inserted in the TCAM in spite o f forgetting was quite rare with the uniform trace,

but it did happen and this had a very positive effect on the overall performance o f the classifier.

The other traces w ill not be explicitly discussed, but are included in Table 6.13 for completeness.

6.2.6 Effects of the Rate of Forgetting on Learning

As mentioned in Section 4.6, it is possible that the rate at which the classifier forgets the data it sees

can affect the performance o f the classifier in real-world use. In order to explore this possibility, the

classifier tests were all ran using five different rates o f forgetting. The classifier could forget once

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rate Mean 2 times Std.Dev. Rate Mean 2 times Std.Dev.
100 17.106 5.606 100 10.436 3.923
200 14.667 2.754 200 10.431 3.433
300 14.153 3.562 300 10.117 3.976
400 14.098 3.709 400 10.406 3.718
500 14.089 3.737 500 11.103 2.244

Table 6.16: The effects o f the rate o f forgetting on the value o f L for the Uniform trace on the (a)
Checkerboard and (b) Snort ruleset.

every 100 packets classified, or forget every 2 00 ,30 0 ,4 0 0 or 500 packets classified. While this may

seem a rather course granularity between rates of forgetting, it was quickly discovered that, for the

most part, the rate o f forgetting had little to no impact on the performance o f the classifier. This is

a very encouraging result, as it means that forgetting can be tuned in order to maximize processor

time used for classification rather than in order to prevent undesirable effects in the classifier due to

it improperly forgetting the traffic it has seen.

The test results detailed in Tables 6.14 through 6.16 (as well as in Tables A .l through A.4) all

show essentially the same thing. Namely, that the rate at which the classifier forgot the traffic it

had seen had very little effect on its overall performance. While there were slight differences in

the overall average performance o f the classifier under different rates o f forgetting, they were too

small to be o f consequence, especially when the standard deviation was considered. The optimal

value for forgetting cannot be determined from these graphs, and, judging from them, is likely

dependent on both ruleset and traffic. The effects o f the rate o f forgetting on the performance o f the

dynamic classifier cannot be ignored completely. Two reasons why this rate must still be considered,

including one which leads directly from test results, are presented below.

Despite the general performance o f the classifier remaining almost constant regardless o f the

rate o f forgetting, the overall possible effects o f the rate o f forgetting on the dynamic classifier’s

performance cannot be ignored. In particular, Table 6.16a shows that, in some cases, the rate o f

forgetting had a dramatic effect on the overall performance o f the classifier. With a high rate of

forgetting, in this case forgetting once every 100 packets classified, there was a sharp drop in the

overall performance o f the dynamic classifier. In this case, the classifier was losing information too

quickly. As a result, it did not retain enough information to be able to ascertain that the traffic it was

seeing was uniform. Rather, it believed that there were patterns in the traffic. The classifier attempted

to perform ‘optimizations’ which were not, in fact, optimizations. The optimizations improved the

classifier’s performance on those packets which it believed were being seen more frequently than

others. This degraded the classifier’s performance on all other packets. But, since the packets were

uniformly distributed, this led to an overall performance degradation.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Summary of Results

The results detailed in this chapter show that it is possible to design and implement a dynamic

classifier which learns from the traffic it sees and can adapt its search structure to make it better suited

to the traffic that it sees. While it certainly is true that some specific cases made the performance of

the classifier slighdy worse than that o f the static classifier, these are all cases in which only some

of the improvements were in use, and the classifier could not deal with changes in traffic, nor with

the undesirable effects o f some of the improvements. When all enhancements are used, the dynamic

classifier performs significantly better than the static classifier, while obeying a bound on its worst

case classification time and not using much more memory than the static classifier.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions

7.1 Conclusions

Conventional wisdom in packet classification states (most works cite [20] as the source o f this claim)

that, when considering the time performance o f a classifier, only the worst case performance should

be considered. In addition, many in the field have suggested that learning from traffic cannot benefit

classification in the least or, even worse, that learning would be detrimental to classification. How

ever, there is no recorded proof o f such a statement anywhere in the literature. The general argument

against learning from traffic seems to stem from the belief that the worst-case performance o f struc

tures designed by learning algorithms cannot be controlled. The primary intent o f this thesis was

to demonstrate that packet classification can, in fact, be improved by learning from traffic, and that

learning does not necessarily imply that worst-case bounds will be violated by any such algorithm.

This thesis presented a dynamic form o f the HICuts algorithm which, using information gath

ered from the traffic that it is seeing, is able to periodically update itself in an attempt to better match

its search structure to the traffic due to both short-term locality ([10], [19]) and long-term trends in

traffic. This dynamic version o f the HICuts algorithm incorporates several restructuring techniques:

node promotion, range reorders and range combinations, and extended cuts. These techniques cap

italize on discrepancies in the number o f hits certain regions o f the search space receive, and, as

such, take into consideration long-term trends in traffic. In addition, a TCAM was used as a form

o f transposition table (a concept described for chess-playing software in [15]) to better exploit the

locality o f traffic. Since locality is generally short lived, the periodic restructuring performed by the

first four techniques cannot make use o f it. The TCAM compensates for this deficiency.

The new classifier was then put through a barrage o f tests, using both synthetic and real-life

packet traces and rulesets. The results from the real-world traces are very encouraging. On average,

over all the tests, the dynamic classifier required significantly less computation to classify the same

number of packets as the static classifier. Despite the fact that the dynamic rearrangements might be

expected to make the wrong choices from time to time, as it occasionally did with the uniform packet

trace, in general, this does not occur. Or, at the very least, the poor restructuring choices that the

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

classifier made weren’t enough to cause it to perform worse than the original static classifier would

have. These results are extremely encouraging, and give strong incentive to go ahead with several

other optimizations and general improvements to make the dynamic classifier even more responsive

to the traffic it is seeing.

The synthetic traces were used to cover special cases which would never be seen in real life,

but which allow for the evaluation o f the performance o f the classifier in extreme cases. The results

from the synthetic traces show that the new dynamic classifier can significantly outperform the

static classifier when there is structure in the traffic it sees. The dynamic classifier never performs

worse than the static classifier by more than a slight degree. This performance degradation happens

when the dynamic classifier makes an ‘improvement’ which in fact does not improve the overall

performance o f the classifier. In these cases, the dynamic classifier is able to correct its mistake at

the next iteration, so only a slight performance degradation over the static classifier is seen. However,

this degradation is so slight, and its cause is so easily corrected that, in the long run, the dynamic

classifier performs at least as well, and in the vast majority o f cases, much better than a static

classifier. Many o f the poorly-performing tests also had no way o f fixing the mistakes introduced

by the classifier, especially those in which only one o f node promotions and range reorders was

performed.

In addition, the worst-case performance, both the absolute possible worst-case possible in the

new search structure, and the actual worst-case path followed by the classifier during the tests, was

recorded for each test. The results show that it is possible to bound the worst-case performance o f

the dynamic classifier. In other words, the classifier’s average-case performance can be improved

while the worst-case is held to some pre-set limit to ensure that all packets can be classified in a

reasonable amount o f time.

7.2 Future Work

There is still much to be done in the way o f improving packet classification in order to better utilize

information which can be obtained through the analysis o f Internet traffic.

First, any IDD based classification system, such as HICuts, could benefit from the IDD mini

mization techniques outlined in [7] and [8]. HICuts does not always find the minimum possible path

(and, as a result, neither do the improvements outlined herein). Using techniques to shrink IDDs

down to more manageable sizes, one could start with a smaller initial search tree, reduce the size o f

the altered search trees during actual classification, and compensate for the negative effects o f some

o f the update techniques.

In addition, there are still several parameters which can guide the restructuring of the classifier

which have yet to be manipulated. The choice o f formula used when determining when to perform

node promotions, range reorders and range combinations was, to a degree, arbitrary. It may be that

different formulas here may, in fact, improve performance and that there may be a way to determine

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the optimal value for this threshold from the traffic the classifier is seeing.

There are several other packet classification algorithms (many are outlined in [18]) which may

also benefit from the techniques described in this paper. In particular, several o f the Trie techniques

([18], [24]) and other heuristic-based classifiers (such as Recursive Flow Classification [16]) might

benefit from learning. Since other heuristic classifiers use search structures which are very different

from HICuts, it is possible that the techniques here cannot be used directly. This leads to two fairly

distinct areas o f future research.

First, and the more ambitious o f the two, is the question as to whether or not general learning

techniques can be created which could be applied to virtually any type o f packet classifier, regard

less of the search structure and search technique which it used. Certainly, having a set o f general

techniques is far more useful than having to create unique learning techniques for every possible

classifier. Second is the question o f whether techniques be developed for other classification algo

rithms so that they, too, can learn from traffic in order to improve their search behavior. It seems

highly unlikely that only HICuts would benefit from learning from traffic, however, the results in

this thesis do not preclude, at the moment, that from being a possibility. Recent work in the literature

([4]) shows that som e learning techniques can be used to improve other forms o f packet classifica

tion and lends credence to the idea that learning is not applicable only for a few types o f classifier,

but for all classifiers in general.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis o f Computer
Algorithms. Addison-Wesley, 1974.

[2] K. Andrusky and M. H. MacGregor. Improving packet classification: Learning from traffic. In
Internet Technologies and Applications, September 2005.

[3] Florin Baboecsu and George Varghese. Scalable packet classification. In Proceedings o f ACM
Sigcomm , pages 199-201, August 2001.

[4] A. Bergamini and L. Kencl. Network o f shortcuts: An adaptive data structure for tree-based
search methods. In Networking, pages 523-535, May 2005.

[5] M. M. Buddhikot, S. Suri, and M. Waldvogel. Space decomposition techniques for fast layer-
four switching. In Conference on Protocols f o r High Speed. Networks, pages 25-41 , August
1999.

[6] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1st edition, 1997.

[7] M. Christansen and E. Fleury. An interval decision diagram based firewall. In 3rd International
Conference on Networking, February 2004.

[8] M. Christiansen and E. Fleury. An MTIDD based firewall using decision diagrams for packet
filtering. Telecommunication Systems, 27(2-4):297-319, October 2004. Kluwer Academic
Publishers.

[9] I. Chvets and M.H. MacGregor. Multi-zone caches for accelerating IP routing table lookups.
In High Performance Switching and Routing (HPSR), pages 121-126 ,2002 .

[10] K. Claffy, G. C. Polyzos, and H. W. Braun. Traffic charateristics o f the T1 NSFNET backbone.
In IEEE INFOCOM 93, volume 3, pages 885-892 ,1993 .

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. McGraw Hill, second edition, 2001.

[12] M. de Berg, M. van Krevald, and M. Overmans. Computational Geometry: Algorithms and
Applications. Springer-Verlag, second revised edition, 2000.

[13] Antoine de Saint-Exupery. Richard Howard, Trans. The Little Prince. Harcourt, 1943.

[14] Anja Feldmann and S. Muthukrishnan. Tradeoffs for packet classification. IEEE Infocomm,
pages 1193-1202,2000.

[15] R. D. Greenblatt, D. E. Eastlake, and S.D. Crocker. The greenblatt chess program. In Fall
Joint Computer Conference, volume 31, pages 801-810 ,1967.

[16] Pankaj Gupta and Nick McKeown. Packet classification on multiple fields. In Proc. Sigcomm,
Computer Communication Review, volume 29, pages 147-160, September 1999.

[17] Pankaj Gupta and Nick McKeown. Packet classification using hierarchical intelligent cuttings.
IEEE Micro, 20(3):34-41, January/February 2000.

[18] Pankaj Gupta and Nick McKeown. Algorithms for packet classification. IEEE Network Special
Issue, 15(2):24-32, March/April 2001.

[19] R. Jain. Characteristics o f destination addreses locality in computer networks: a comparison
of caching schemes. Computer Networks and ISDN systems, 18:243-54, May 1990.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[20] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet forwarding using efficient
multi-dimensional range matching. ACM Computer Communication Review, 28(4):203-214,
September 1998.

[21] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet classification using multidimensional
cutting. Technical Report CS2003-0736, UCSD, 2003.

[22] Snort: The open source network intrusion detection system. URL: http://www.snort.org/.

[23] V. Srinivasan, S. Suri, and G. Varghese. Packet classification using tuple space search. In ACM
Sigcomm, pages 135-146, September 1999.

[24] V. Srinivasan, S. Suri, G. Varghese, and M. Waldvogel. Fast and scalable layer four switching.
In Proceedings o f ACM Sigcomm, pages 203-214, September 1998.

[25] K. Strehl and L. Thiele. Symbolic model checking using interval decision diagrams. Technical
Report 40, Computer Engineering and Networks Lab, Swiss Federal Institute of Technology,
1998.

[26] Masanori Uga, Masaaki Omotani, and Kohei Shiomoto. A high-speed packet classification
using TCAM. IEICE Trans. Communication, E85-B(9):1766-1773, September 2002.

[27] P. Wang, C. Chan, S. Hu, and C. Lee. Performance improvement o f packet classification
by using lookahead caching. IEICE Transactions on Communications, E87-B(2):377-379,
February 2004.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.snort.org/

Appendix A

Additional Results

The following pages contain all the data collected for results not explicitly mentioned in Chapter 6.

Chapter 6 only contains graphs for the single, Telus and uniform traces, and only for the checker

board ruleset. The graphs and charts given here show the details o f the data collected for the other

traces, which are often mentioned in passing in the charts in Chapter 6. This data is not necessary

for description o f the results o f this work, but is included here for completeness.

J

30

Figure A.1: Average values o f L for Clumpedl

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14000

12000

10000

I #000
I

| 6000

4000

2000

0 o 2 4 B • 10 12 14 It II 20 22 • • 8 9 9 3 >0 10.3 11 113 12 12.3 13
Avwegvl AvwBQal.

Figure A.2: Average values o f L for ClumpedlO

z

>2000

M '
lOOOO

P -
60C0 1 •

\
•OCO 1

J
4000

I*
2000

0

T*

/
J>t

Figure A.3: Average values o f L for SetSourcel

!5

*wmg»u Amgil

Figure A.4: Average values o f L for SetSourcelO

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I J

MMinum AKamad Wom Cu» ki Uaunuffl PoMtt* WorM Cm* n k

Figure A.5: (a) Actual and (b) maximum worst-case results for Clumpedl on Checkerboard

12000

10000

•000

4000

3000

0, so30 as as 40 4ft

I

UaBKwn PouOM Wom Cam <n L

Figure A.6: (a) Actual and (b) maximum worst-case results for ClumpedlO on Checkerboard

2

MAwnum AMMd Wem Cm* w k UamtwrPomM Worn Cam ink

Figure A.7: (a) Actual and (b) maximum worst-case results for SetSourcel on Checkerboard

2
Z

UAHflwn maim Worn Cam n k uakimr poaaam Worn Cam * k

Figure A.8: (a) Actual and (b) maximum worst-case results for SetSourcelO on Checkerboard

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14000

12000

10000

0000

3X0

0 3627 n 34 36

12000

10000

6000

6000

4000

2000

0
36

Figure A.9: (a) Actual and (b) maximum worst-case results for Clumpedl on Snort

|

MunwnAiuinaO worn Ca4> o il MuffMnPoMtta Wont Caw nL

Figure A. 10: (a) Actual and (b) maximum worst-case results for ClumpedlO on Snort

|B

14000

6000

■coo

4000

2000

0
33 34 3631 32 36 37

Figure A. 11: (a) Actual and (b) maximum worst-case results for SetSourcel on Snort

12000

10000

6000

4000

2000

0 20 30 32 3024 20 36
Maonwn Ammo Wont Cat* • I

|

Figure A. 12: (a) Actual and (b) maximum worst-case results for SetSourcelO on Snort

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I
*

Figure A. 13: (a) Actual and (b) maximum worst-case results for Single on Snort

|

90
MaMnumAOmdWomCaMinL UMmwm *«•*«• Worn Cm* mb

Figure A. 14: (a) Actual and (b) maximum worst-case results for Telus on Snort

!|

Mmmu* Mtmad Wont Cm* m b lUMtmtw Pontt* Wow Cm* mI

Figure A. 15: (a) Actual and (b) maximum worst-case results for Uniform on Snort

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

II %

20000

Figure A.16: (a) Average and (b) maximum memory use results for Clumpedl on Checkerboard

Ii Z
I

Figure A.17: (a) Average and (b) maximum memory use results for ClumpedlO on Checkerboard

| |*

14000 10000

Figure A. 18: (a) Average and (b) maximum memory use results for SetSourcel on Checkerboard

|
z
]

Figure A.19: (a) Average and (b) maximum memory use results for SetSourcelO on Checkerboard

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I I

•0 0

Figure A.20: (a) Average and (b) maximum memory use results for Single on Snort

||
*

soooo

Figure A .21: (a) Average and (b) maximum memory use results for Telus on Snort

j |

Figure A.22: (a) Average and (b) maximum memory use results for Uniform on Snort

J|

1)000

Figure A.23: (a) Average and (b) maximum memory use results for Clumpedl on Snort

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

?J

•000 U00

Figure A.24: (a) Average and (b) maximum memory use results for ClumpedlO on Snort

i

Figure A.25: (a) Average and (b) maximum memory use results for SetSourcel on Snort

S !
■B

•000

Figure A.26: (a) Average and (b) maximum memory use results for SetSourcelO on Snort

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rate Mean 2 times Std.Dev. Rate Mean 2 times Std.Dev.
100 8.975 13.581 100 11.260 2.428
200 9.178 13.778 200 11.376 2.150
300 9.052 13.340 300 11.375 2.162
400 9.058 13.667 400 11.373 2.158
500 8.985 13.658 500 11.379 2.126

Table A .l: The effects o f the rate o f forgetting on the value o f L for the Clumpedl trace on the (a)
Checkerboard and (b) Snort ruleset.

Rate Mean 2 times Std.Dev. Rate Mean 2 times Std.Dev.
100 9.805 12.890 100 10.587 2.311
200 9.645 12.869 200 10.602 2.189
300 10.515 12.841 300 11.194 2.116
400 9.475 12.9871 400 11.071 1.824
500 10.375 13.238 500 10.975 1.911

Table A.2: The effects o f the rate o f forgetting on the value o f L for the ClumpedlO trace on the (a)
Checkerboard and (b) Snort ruleset.

Rate Mean 2 times Std.Dev. Rate Mean 2 times Std.Dev.
100 9.959 12.233 100 9.447 8.108
200 9.950 12.269 200 9.333 7.849
300 10.389 13.251 300 9.457 8.096
400 9.957 12.2738 400 9.455 8.093
500 9.944 12.285 500 9.455 8.084

Table A.3: The effects o f the rate o f forgetting on the value o f L for the SetSourcel trace on the (a)
Checkerboard and (b) Snort ruleset.

Rate Mean 2 times Std.Dev. Rate Mean 2 times StdJDev.
100 9.432 10.466 100 8.114 7.278
200 9.638 10.442 200 7.995 7.024
300 10.049 9.947 300 8.533 6.502
400 9.647 10.001 400 8.298 6.904
500 8.522 9.926 500 8.492 6.510

Table A.4: The effects o f the rate o f forgetting on the value o f L for the SetSourcelO trace on the (a)
Checkerboard and (b) Snort ruleset.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

