
“Oh, Westley, I didn’t mean any of it! Not one single syllabub.”

Westley knew that she meant syllable, since syllabub was a dessert, but he also

knew an apology when he heard it, so he said,

“I know you didn’t mean it. Not a single syllabub.”

—William Goldman, The Princess Bride

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

A DISCRIMINATIVE APPROACH TO AUTOMATIC SYLLABIFICATION

by

Susan Elizabeth Bartlett

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful

fillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta

Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-33197-2
Our file Notre reference
ISBN: 978-0-494-33197-2

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Syllabification is the process of dividing a word into its constituent syllables. Syl

labification holds considerable theoretical interest and has a number of practical

applications. In addition to providing an in-depth survey of existing syllabifica

tion systems, this thesis uses discriminative models to automatically syllabify both

letters and phonemes. Syllabification is formulated as a labelling task so that a clas

sifier can learn mappings from characters to labels. The final system is a language-

independent implementation for both letters and phonemes that betters current state-

of-the-art systems in several languages. When the resulting syllabification models

are incorporated into a letter-to-phoneme system, accuracy improves on that task.

Several rule-based techniques for syllabification of phonemes are also presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

It has been a pleasure to work with the entire NLP research group over the past two

years. Especial thanks to Tee Jiampojamam for all his help on letter-to-phoneme

experiments, and to Colin Cherry for his seemingly-endless enthusiasm and help

fulness. And, of course, many thanks to Dr. Greg Kondrak for supervising this

work and guiding me through my master’s degree.

Thanks to my parents for twenty-six years (and counting) of love and support.

Thanks to Sam for, among other things, keeping me well-fed. And thanks to The

Bridge Club, because you guys are the best.

I am very grateful for the financial support provided by the Natural Sciences

and Engineering Research Council of Canada, the Informatics Circle of Research

Excellence, and the University of Alberta.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 Problem D e sc r ip tio n ... 1
1.2 Approach to the P ro b le m ... 3
1.3 Contributions of this R e s e a rc h 4
1.4 Outline .. 5

2 Linguistic Background 6
2.1 The Syllab le .. 7
2.2 Linguistic Theories of Syllabification . .. 9
2.3 S u m m a ry ... 13

3 SVM-HMM: A Primer 15
3.1 Hidden Markov M odels 15
3.2 Support Vector M ach in es ... 17
3.3 Structured S V M s .. 22
3.4 Roads Not T a k e n 25
3.5 S u m m a ry 26

4 Previous Work 27
4.1 Syllabification by A n a lo g y ..28
4.2 Related W o r k .. 32
4.3 Other Previous Work on Syllabification ... 36
4.4 S u m m a ry 40

5 Syllabification of Letters 41
5.1 D a ta se ts .. 42
5.2 Choosing a Tag Schem e... 45

5.2.1 Tag Set Com parisons............................. 48
5.3 Feature Engineering... 52
5.4 Experiments and R e s u l t s ... 57

5.4.1 Comparison with S b A ... 57
5.4.2 Learning C u rv e .. 58
5.4.3 Other L an g u ag es ...59
5.4.4 Letter-to-Phoneme P r o b le m ... 61

5.5 C onclusions..63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Syllabification of Phonemes 65
6.1 Rule-based syllabification.. 66
6.2 Adapting SVM-HMM to the Phoneme D o m a in68
6.3 Experiments and R e s u l t s .. 71

6.3.1 English CELEX D a ta .. 71
6.3.2 N E T talkD ata ... 73
6.3.3 Other L an g u ag es...75

6.4 C onclusions... 77

7 Conclusions 78
7.1 S u m m a ry .. 78
7.2 Limitations and Future W o rk .. 80

Bibliography 81

A DISC Phoneme Encodings 85

B Implementation Details 88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Examples of syllable types across languages (adapted from [Spencer,
1996; Blevins, 1995]).. 8

4.1 A comparison of word accuracy scores for several existing English
methods, adapted from [Marchand et al., to appear].................................31

5.1 Development set results for positional tag sets...49
5.2 Development set results for ONC-based tag sets. ONCE versions

of Numbered and Reverse ONC tags were also tested, but did not
measurably change the results....................... 51

5.3 Symmetric vs. Asymmetric Windows ..53
5.4 Performance of SVM-HMM and SbA on common training and test

sets drawn from CELEX.. . 57
5.5 Performance of SVM-HMM and SbA on common training and test

sets drawn from NETtalk......................... 58
5.6 Performance on a dataset drawn from lemmas is a more realistic

approximation to how a syllabification system will fare on unseen
words. . .. 58

5.7 Performance of SVM-HMM on the German and Dutch portions of
CELEX.. 60

5.8 Performance on CELEX lemmas is somewhat lo w e r61
5.9 Adding gold standard syllabification information improves the per

formance of a state-of-the-art L2P system; using syllabification de
rived from a learned model captures some of that potential gain. . . 62

6.1 Development set results for the phoneme domain......................................71
6.2 Syllabification performance in terms of word and syllable accuracy

percentage. .. 72
6.3 Results on the NETtalk dataset... 74
6.4 Results for German... 75
6.5 Results for Dutch.. 76

A .l English Vowels and Diphthongs .. 86
A.2 English C onsonants.. 87

B. 1 Results on the held-out letters development set, using numbered NB
tags and a reduced feature set...89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 A sonority scale, adapted from Spencer [Spencer, 1996].....................

3.1 An illustration of the HMM set-up for the weather example................
3.2 An example of a maximum margin separating positive and negative

examples..
3.3 An example of data that is not linearly separable...................................

4.1 An example of a lattice SbA might use to syllabify the input word
lev—i—tate................................ ..

5.1 Weights learned by SVM-HMM using NB tags....................................
5.2 Weights learned by SVM-HMM using Numbered NB tags.................
5.3 Word accuracy as a function of the window size around the focus

c h a ra c te r ..
5.4 Word accuracy as a function of N-grams incorporated into the fea

ture set.. ...
5.5 Word accuracy as a function of N-grams incorporated into the fea

ture set.. ..

6.1 The Sonority Scale employed by Base S o n o r ity
6.2 A window size of 9 is optimal for the phoneme domain......................
6.3 Fivegrams cause overfitting in the phoneme domain. Note that the

y-axis has been truncated to improve readability...................................
6.4 SVM-HMM requires relatively little data to achieve near-perfect

word accuracy.................................. ..

B .l Sample feature set inpu t...

11

16

18
20

29

50
51

54

56

59

67
69

70

73

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Problem Description

Although a syllable can consist of just a single phoneme, and many words are

monosyllabic, a syllable is generally defined as a linguistic unit that is larger than a

phoneme and smaller than a whole word [Crystal, 2003], Syllabification is the pro

cess of dividing a word into its constituent syllables; it is a long-standing topic of

debate in the field of linguistics. More recently, syllabification has become preva

lent in natural language processing. Because syllables are an important determiner

of pronunciation, we are interested in computational approaches to syllabification

both for their theoretical implication and their practical applications.

One such possible application is text-to-speech (TTS) systems. While actual im

plementations vary, TTS systems must have, at minimum, three components [Damper,

2001], Syllabification can play a role in all three modules:

1. A letter-to-phoneme (L2P) module converts orthographic forms (typically

ASCII input) into an abstract phonetic representation.

2. A prosody module determines the variations in pitch, loudness, tempo, and

rhythm that should be applied to the phonemes within a word.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. A synthesis module produces the actual sounds, either generating them di

rectly from the system’s internal representation, or by concatenating together

sounds from a database.

Most commonly, prosody units include syllabification modules in some way.

A number of TTS systems have incorporated syllabification, including the Bell

Labs multilingual TTS system [Sproat, 1998] and the Panasonic Speech Technol

ogy Lab’s implementation [Pearson et al., 2000], Stress patterns are typically as

signed at the syllable level (e.g. [Demberg, 2006]). The pronunciation of a given

phoneme also tends to vary slightly depending on its location within a syllable. For

instance, the two [b] sounds in the word [b o b] are subtly different because one

appears syllable-initially and the other syllable-finally [Kahn, 1976].

More recently, researchers have explored incorporating syllabification into L2P

modules. Muller [2001b] uses syllabification as part of a German letter-to-phoneme

system. Marchand and Damper [2005] find that using syllabified orthographic

forms as input to an L2P system improves L2P performance, compared to a baseline

without syllable break information. Intuitively, this finding makes sense. If we want

to convert the word shorthand to its representative phonemes, knowing that there

is a syllable break between the t and the h should prevent us from predicting that

the two letters combine to form the single phoneme [T] . Moreover, the position

of vowels within a syllable often affects the exact phoneme given letters produce.

For example, the verb presents has a long e sound, and is usually syllabified as

pre—sents, while the noun presents has a short e sound and is usually syllabified as

pres—ents.

Finally, there is some scope for incorporating syllables into synthesis modules.

To date, most TTS systems have concatenated together diphones — the units of

sound that stretches from the middle of one phone to the middle of the next phone.

However, concatenating together longer units typically improves the quality of syn

thesized speech [Deligne et a l, 2001], Currently, it is considered too costly to store

long sequences of phones for concatenation, as the quality improvement does not

justify the extra memory requirements. However, in theory, concatenative speech

synthesis could be done at the level of the syllable.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

On the whole, syllables and syllabification are an important part of text-to-

speech systems. Unfortunately, due to the productive nature of language, a dic

tionary look-up process for syllabification is inadequate. No dictionary can ever

contain all possible words in a language. For this reason, we must to turn to systems

that can automatically syllabify out-of-dictionary words. Automatic syllabification

will be the focus of this thesis.

1.2 Approach to the Problem

Historically, data-driven approaches to TTS ands its components have been rare.

However, Damper [2001] argues that this is largely derived from a Chomskian

world view that sees innate rules as a prerequisite for language learning; in practice

there is much to be gained from employing data-driven approaches. An array of

recent research has applied various data-driven techniques to automatic syllabifica

tion. The two most common approaches are lazy learning methods, which syllabify

new words by finding similar examples in a syllabification dictionary, and hidden

Markov models, which predict the most probable syllabification pattern based on

observed characters.

In this thesis, I pursue a different strategy, taking a discriminative approach to

automatic syllabification. Discriminative techniques learn a mapping from explana

tory variables, or features, to desired output labels. To use such a framework for my

problem, I formulate syllabification as a tagging problem. When viewed as a tag

ging problem, every letter or phoneme in an input word must be assigned a tag that

indicates whether or not the character is at a syllable boundary. I consider a number

of different tagging schemes. Some are positional — the tags indicate nothing more

than the characters’ position in the syllable. Others are linguistically informed, so

that the tag says something about the role the character is playing in the syllable. I

use SVM-HMM, a type of structured support vector machine (SVM), to learn the

correspondences between characters and tags. My system is language-independent;

I use it to syllabify words in English, German, and Dutch.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In addition to using discriminative training to syllabify letters and phonemes, I

also apply several rule-based approaches to the phoneme domain. I present an im

plementation of Kahn’s [1976] legality principle, and a version of Selkirk’s [1984]

Sonority Sequencing Generalization. Rule-based methods are advantageous be

cause they require no training data, and can build on well-studied linguistic the

ories. However, they are language-dependent and cannot easily be applied to the

letter domain.

1.3 Contributions of this Research

This thesis makes a number of contributions. First and foremost, I present an auto

matic syllabification system that beats state-of-the-art performance on both letters

and phonemes. In a direct comparison on English letters, my syllabification sys

tem reduces the error rate from the previous state-of-the-art by one-third. Although

head-to-head comparisons are lacking, my system also achieves world-best word

accuracy on English phonemes. In German and Dutch, word accuracy exceeds 99

percent for both letters and phonemes.

To produce these results, I use a discriminative approach that requires both a

tagging scheme and feature set suitable for the task. The tag sets and feature sets I

develop for syllabification are the second contribution of this thesis.

Third, my syllabification system, when combined with an existing state-of-

the-art letter-to-phoneme system, increases L2P accuracy in English, Dutch, and

German. Previous systems have improved English L2P accuracy by adding gold-

standard dictionary syllabifications, and improved German L2P accuracy by adding

learned syllabifications. However, to my knowledge, this is the first example of an

automatic orthographic syllabification system producing improvements in English

L2P accuracy.

This thesis also presents several rule-based techniques for syllabification of

phonemes. In particular, the rule system based on the legality principle achieves

very good word accuracy, without benefit of labelled training data.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Additionally, I proffer evidence that the NETtalk dataset, heretofore in common

usage for English syllabification, is unsuitable for the task. In the letter domain,

NETtalk contains a substantial proportion of completely non-sensical ‘gold stan

dard’ syllabifications that are likely to confound syllabification systems and any

L2P system that depend on them.

Finally, I contribute a thorough survey of previous work on automatic syllabifi

cation.

1.4 Outline

The remainder of this thesis is structured as follows. In Chapter 2 I present the

linguistic background of syllables and syllabification. In Chapter 3 I explain the

theory underpinning SVM-HMM, the discriminative method I use in my system. I

discuss previous work on the topic in Chapter 4. Chapter 5 explains how I develop

tag and feature sets to apply SVM-HMM to syllabification of letters, and presents

experimental results in that domain. Chapter 6 shows the application of my dis

criminative technique to phonemes and introduces several rule-based systems for

phones. Conclusions and final thoughts are presented in Chapter 7.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Linguistic Background

Syllabification is the process of dividing a word into its constituent syllables. Presently,

I define the syllable and outline several principles that can be used to perform syl

labification. First, however, I must clarify a common source of confusion in this

area. From a linguistic perspective, a syllable only exists in the phonological do

main. We can divide strings of phonemes into syllables; we cannot so divide strings

of letters.

In opposition to this, most non-linguists find it perfectly reasonable to syllabify

the orthographic representation of a word. Some of this confusion perhaps arises

from dictionary headwords. Most North American dictionaries will divide the let

ters of a word up into segments that look, to the non-linguist, like syllables. The

primary purpose of these ‘divisions in entry words’ is to indicate to typesetters the

points where a word may be broken at the end of a line [Gove, 1993], Typically,

word breaks are indicated by a hyphen, so this process is often called hyphenation.

The process of deriving divisions in entry words is complex — Webster’s Dic

tionary lists 26 rules for dividing entry words [Gove, 1993]. All are very detailed

and most give rise to a number of exceptions. In broad strokes, Webster’s tends to

create a segment by attaching a consonant to the following vowel; consonants are

attached to the preceding vowel only when that vowel is short and stressed. How

ever, these guidelines are frequently overridden by considerations of morphology.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generally, common inflectional affixes (e.g. -tion, -ing, non-) form an indivisible

segment; for less common affixes, this does not hold as consistently. Similarly, di

visions of compound words usually occur between the two constituent words (e.g.

nose—bleed).

There is definitely a relationship between orthographic divisions and pronunci

ation [Guenter, 29 November 2006]. Indeed, the main function of the divisions in

words is to ensure hyphenation is consistent with pronunciation. Similarly, there

is also a relationship, however ill-defined, between syllabification of phonemes and

divisions in entry words. In a number of cases the divisions of a word’s ortho

graphic and phonetic forms are identical (e.g. rapt—ly, [r { p t I I I] 1). However,

the two processes are distinct.

Dividing letters into segments is mostly an engineering problem: the fact that

we can use it to produce performance improvements on a task like converting letters

into phonemes is both necessary and sufficient to justify the endeavour. Conversely,

syllabification of phonemes is of significant theoretical interest for its own sake, in

addition to the role it plays in text-to-speech systems.

In this thesis, I treat syllabification of phonemes and division of letters as two

separate but related problems. In this chapter, whenever I mention syllables or

syllabification, I am exclusively referring to the phonological entity. Throughout

the rest of this thesis, I refer to ‘syllabification’ of orthographic forms, using it as

shorthand for ‘reproducing the dictionary’s end-of-line divisions.’

2.1 The Syllable

By most accounts, a syllable is composed of two constituents: a rhyme (or rime)

and an (optional) onset [Spencer, 1996; Kessler and Treiman, 1997], The rhyme

can be further subdivided into a nucleus (typically a vowel), and an optional coda.

This internal structure is not universally accepted, however. A structure composed

of a body and a coda (where the body further subdivides into nucleus and onset) has

’The DISC encoding for phonemes is used throughout this thesis.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also been postulated [Kessler and Treiman, 1997]. Conversely, Blevins [1995] ar

gues that a syllable is constructed of a single constituent: an indivisible rhyme. On

this interpretation, the onset and coda are not constituents in their own right, but are

just whatever is left once we remove the nucleus. Still other theories deny the rhyme

as a meaningful construction, arguing that it is synonymous with the nucleus, and

therefore a useless addition [Spencer, 1996]. Proponents of this perspective advo

cate a completely flat syllable structure, consisting of only a nucleus, and optional

onsets and codas. Debates in the linguistic community notwithstanding, I take a

syllable to be a nucleus and its surrounding consonants, and refer to the consonants

before and after the nucleus as the onset and coda, respectively.

Not all languages allow the same flexibility as to syllable types — onsets and

codas are not always optional. A language’s possible syllables are often typified ac

cording to whether the onset is obligatory (or not) and whether a coda is permissible

(or not). Examples of languages categorized by this typology appear in Table 2.1.

Note that there are no languages in which the onset is prohibited and/or the coda is

required.

Onset Required Onset Optional
Coda Prohibited Arabela0 , Hua6 Fijian, Hawaiian
Coda Permitted German, Totonacc English, Italian

“an endangered language spoken in Peru and Ecuador
bspoken in Botswana
cspoken in Eastern Mexico

Table 2.1: Examples of syllable types across languages (adapted from [Spencer,
1996; Blevins, 1995]).

More elaborate typologies further consider whether syllables can have complex

nuclei, codas, or onsets. Complex constituents are composed of more than one

phoneme, as in the onset of [s t r { p] (strap).

Most phonologists argue that the syllable is a valuable “prosodic constituent”

(e.g.[Blevins, 1995; Spencer, 1996]). Blevins [1995] lists four reasons for the im

portance of the syllable:

• many phonological rules and constraints apply within the context of a sylla

ble,

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• other phonological rules apply at syllable boundaries,

• many language games and play languages (e.g. Ubbi Dubbi) imply the use of

syllables,

• native speakers have strong intuitions about the existence of syllables, and

in some languages speakers also have a strong sense about where syllable

breaks occur.

Historically, there has been some disagreement as to the syllable’s usefulness. Kohler

[1966], for example, argues that syllables are actually “harmful” because they some

times prevent us from appreciating a word’s underlying phonological structure.

However, views like Kohler’s are now distinctly in the minority, and on the whole,

the idea of a syllable is no longer a particularly controversial one.

2.2 Linguistic Theories of Syllabification

In spite of the broad linguistic consensus on the existence of syllables, syllabifica

tion remains somewhat contentious. Indeed, one of Kohler’s arguments against the

syllable as an entity is the ambiguity inherent in syllabification. Of course, for lan

guages like Hawaiian and Hua, where codas are prohibited, syllabification is trivial.

Every syllable has a single vowel, and any consonants must be onsets. However, for

the vast majority of languages, codas are permissible, so the process is not so clear.

Given a consonant, how do we determine whether it should attach to the previous

nucleus as a coda, or to the following nucleus as an onset? What should be done

with the [g] in [Eg5] (ego)l Should we syllabify it as [E] g 5] or [Eg] 5] ?

This is the crux of the syllabification task. Several theories attempt to model this

decision; I present a number of the most prominent. The following is by no means

an exhaustive list.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Maximal Onset Principle

The most basic theory is the maximal onset principle (MOP) [Blevins, 1995]. It

states that given a sequence . . . VCV . . . , we always syllabify it V—CV, expanding

the onset at the expense of the previous syllable’s coda. This principle holds very

strongly, particularly for English: it is used by Merriam-Webster when syllabify

ing the phonetic representations of dictionary words [Guenter, 29 November 2006],

However, there is considerable evidence that this principle is not universal. By way

of counter example, in the Australian Aboriginal language Kunjen, all syllables

begin with vowels, thus violating MOP. More saliently, the principle is frequently

violated, even for languages where MOP generally holds. A letter sequence like

[* k f @ s] , for example, is clearly not plausible as an English word, because it

would be unpronounceable. Thus, given a word like [b r E k f @st] (breakfast), we,

would not want to maximize the onset of the second syllable (i.e. [*b rE | k f @s t],

preferring instead to syllabify the word as [b r E k | f @s t] and produce two pro

nounceable syllables.

In other words, MOP often holds, but it is also frequently violated due to other

constraints. The obvious question then becomes, how do we know when to ignore

MOP?

Sonority Sequencing Generalization

Two different theories provide an answer to this question. One theory is based on

the idea of sonority. A sound’s sonority is its inherent loudness, holding other fac

tors equal [Crystal, 2003], In a sonority scale, phonemes are ranked from least

sonorant to most sonorant, as in Figure 2.1. Selkirk [1984] introduces the sonority

sequencing generalization (SSG), which states “In any syllable, there is a segment

constituting a sonority peak that is preceded and/or followed by a sequence of seg

ments with progressively decreasing values.” The generalization tends to rule out

many impossible syllables. For instance, a hypothetical syllable like [* J k a v]

would violate SSG because the [J] is more sonorant than [k] . However, SSG

does not rule out the equally implausible syllable [* bma v] , because [m] is more

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sonorant than [b] .

Selkirk argues that sequences like [bm] can be eliminated by requiring a min

imum sonority difference between adjacent consonants in a syllable. In practice,

this margin would vary by language. Indeed, Selkirk never claims to be presenting

a complete sonority scale with invariant sonority values. Rather, she couches her

scale as provisional, where the relative positions of the sounds are more important

than their absolute values. The position of certain sounds within the scale, and the

exact values that should be on the scale remains somewhat of an open problem.

As Selkirk conceived of it, the SSG should be used in conjunction with a se

ries of templates that describe the kinds of onsets and codas a syllable can have.

Together, the SSG and the templates represent a complete theory of syllabification.

However, SSG may also be combined with MOP, as Goslin and Frauenfelder [2001]

have done.

class example sonority value
vowels [a] , [V] 6
glides [w] , [y] 5
liquids [r] , [1] 4
nasals [m] , [n] 3
fricatives/affricates [z] , [J] 2
plosives [k] , [b] 1

Figure 2.1: A sonority scale, adapted from Spencer [Spencer, 1996].

Legality Theory

A second theory that can tell us when to override MOP is the legality principle. As

introduced by Kahn [1976], the legality principle states that all possible syllable on

sets appear as word-initial consonant clusters, and all possible syllable codas appear

as word-final consonant clusters. The notion of legality by itself is insufficient to

syllabify many words. For example, in a word like [m#st@R] {master), the clus

ter [s t] is found repeatedly both at the beginning and end of words. Therefore,

Kahn proposes to combine his legality principle with MOP. Furthermore, Kahn

argues that any sequence that cannot be syllabified by the legality principle {e.g.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[a k p s a] — all of [k p s] , [k p] , an d [ps] are illegal as both onsets and codas)

must be rejected as a valid word in English.

Kahn also allows for ambisyllabicity of consonants. Ambisyllabicity permits

some consonants to simultaneously contribute to the coda of one syllable and the

onset of the next. Thus, in the word [m#st@R] , we have two syllables: [m#s]

and [s t@R], with the [s] belonging to both syllables. Ambisyllabicity is a fairly

controversial idea. An opposing theory is that of resyllabification. On this theory,

syllabification is a two-stage process: we first syllabify a word with the consonant

attaching to the onset of the second syllable, in keeping with the Maximal Onset

Principle (i.e. [m# | st@R]). Subsequently, the word is resyllabified so the conso

nant attaches unambiguously to the coda of the first syllable to fit better with the

word’s stress patterns (i.e. m#s | t@R). At no point does a sound belong to two

syllables simultaneously. In my work I do not pursue the ideas of ambisyllabicity

or resyllabification. Largely, this avenue is precluded by a lack of data. I must rely

on dictionaries for a gold standard, and dictionaries provide a single, unambiguous

syllabification.

Optimality Theory

SSG, MOP, and the Legality Principle are not necessarily mutually exclusive. Ham

mond [1997a] makes an attempt to combine several of these theories as a test bed

for optimality theory (OT). Optimality theory stands in opposition to rule-based ap

proaches, which require all constraints to be satisfied. In OT, constraints are ranked

in order of importance, and lower-ranked constraints can be happily violated in or

der to satisfy higher-ranked constraints. In Hammond’s theory, the constraints are:

1. PEAK: syllables have one vowel.

2. LICENSING: all words must be composed of syllables.

3. SONORITY: onsets must increase and codas must decrease in sonority.

4. FAITHFULNESS: the output of the syllabification should be the same as the

input.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. ONSET: syllables begin with a consonant.

6. NOCODA: syllables end with a vowel.

7. COMPLEX: syllables have at most one consonant at an edge.

The NOCODA and ONSET constraints together specify something akin to the

maximal onset principle. However, SONORITY is the higher-ranked constraint, so

NOCODA can be violated in order to maintain SONORITY.

Empirical Studies

Treiman and Zukowski [1990] conduct an empirical study to determine how well

actual human syllabification practice accords with phonological theory. Their find

ings are twofold. First, people strongly obey the legality principle — when asked to

syllabify [EdmVntVn] (Edmonton), subjects will never produce [E |dmVn|tVn]

or [Edm| Vn | tVn] because [dm] is not valid as either a word-initial or a word-

final cluster. Second, people seem to have greater deference to SSG than to MOP.

A cluster like [s t] , with a small sonority gap, is more likely to be divided than a

cluster like [d r] , where the sonority gap is larger. That is, [I s | t i t] (estate) is

preferred to [11 s t l t] , but [mV | dr Id] (.Madrid) is preferred to [mVd | r i d] .

If MOP were more important, we would expect people to prefer both [mV | dr Id]

and [I j s t l t] .

Goslin and Frauenfelder [2001] compare several syllabification algorithms (in

French) and report how often the different approaches agree. Two of the algorithms

they compare are based on SSG, two are rule-based algorithms based on the legality

principle, and the fifth approach is MOP. The details of the algorithms are largely

specific to the French language. In a comparison of all the intervocalic consonant

clusters in the French corpus BDLex, Goslin and Frauenfelder find that agreement

between algorithms is high when there are only two consonants in the cluster, but

drops off sharply as the number of consonants increases. For example, in the case

of the two legality-driven, rule-based algorithms, agreement drops from 99 per

cent with two-consonant clusters, to only 9 percent for clusters containing more

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

than three consonants. Such high levels of disagreement, even between theoreti

cally very similar approaches, indicates that subtle variations in models can have

substantial effects.

2.3 Summary

In this chapter, I defined a syllable as a phonological construct consisting of a

vowel-based nucleus, optionally preceded by consonant(s) forming the onset and

optionally followed by consonant(s) forming the coda. I have introduced three the

ories of syllabification: the maximal onset principle, the legality principle, and the

sonority sequencing generalization. However, no theory or combination of theories

can correctly syllabify all words, and small discrepancies between implementations

can have large effects on output. Consequently, any rule-based approach to syllabi

fication will leave some scope for improvement.

This chapter also draws a distinction between syllabification of a word’s pho

netic form, and reproducing the dictionary end-of-line divisions in the orthographic

form. Because the latter is not a well-defined linguistic problem, rule-based ap

proaches are unlikely to succeed. Notwithstanding the differences between the two

tasks, I refer to syllabification of both phonemes and letters for the balance of this

thesis.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

SVM-HMM: A Primer

The primary contribution of this thesis is applying a discriminative technique to

the problem of syllabification. This chapter introduces the specific discriminative

technique that my system employs: SVM-HMM. SVM-HMM is a type of struc

tured support vector machine (SVM) that combines attributes of a hidden Markov

model (HMM) and a single-instance SVM. In this chapter, I first outline HMMs

and single-instance SVMs. Subsequently, I explain structured SVMs in general,

and SVM-HMM in particular.

3.1 Hidden Markov Models

Hidden Markov Models (HMMs) are generative models of the joint probability of

an observation and its (hidden) label. Based on the known probabilities for obser

vations and labels, we can predict which label accompanies a given observation. In

the canonical example, we find ourselves locked in a windowless basement. We

want to know if the weather is rainy, sunny, or cloudy, but all we can observe is

whether the guard carries an umbrella. We know that the guard tends to carry an

umbrella when it rains. We also know the probability that a rainy day follows a

non-rainy day.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.1 shows a very simple HMM for this situation. We know there is a 60

percent chance that it will rain today if it rained yesterday. More formally, this is

the transition probability that the current hidden state Rt will follow the previous

hidden state Rt- \ . We know that there is an 80 percent chance it will rain today if

our guard has an umbrella. This is the emission probability of the current hidden

state Rt given the current observation Ut. We further know that it was sunny on the

day we were locked in the basement (R0. If the guard does not carry an umbrella

on the first day, we can calculate the probability of rain on day one as:

P r i R ,) = P r i R M ■ P r i R . l U ,)

— 0.4 • 0.2

- 0 .08 .

TRANSITION R aining
R aining 0.6
Not R aining 0 .4

EMISSION Umbrella
R aining 0 .8
Hot Raining 0.2

Figure 3.1: An illustration of the HMM set-up for the weather example.

In the general case, with j possible hidden states, we can determine the prob

ability that the ith hidden state, St, is equal to x, given the ith observation, Ot by

calculating:

Pr(Si = x) = J ~2[Pr(Si-i = j) ■ Pr(Si = x|Si_i = j)} ■ Pr(Si = x |0*).

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This is a first-order HMM, where state transitions only depend on one previous

state; higher-order HMMs are also common. We can determine the optimal se

quence of states for a whole sequence of observations using the Viterbi algorithm.

HMMs can be used to predict syllable boundaries (Chapter 4 presents some pre

vious work in that vein). In such a case, the letters or phonemes of the word are

the observations, while the labels that indicate syllable boundaries are the hidden

states. However, there are a number of reasons why HMMs are suboptimal for the

task. The primary objection is that syllabification is not usually done in the equiva

lent of a locked, windowless basement. We know all the letters in the word, and it

makes sense to look at more than one of them in determining the best ‘state’ to se

lect. However, any features used to represent the observations of an HMM must be

conditionally independent, which precludes the inclusion of some very useful fea

tures. Another problem is that the arrows in Figure 3.1 point the ‘wrong’ direction.

In the rain example, the hidden state (the weather) was influencing whether or not

the guard had an umbrella. In syllabification, the fact that there is a syllable bound

ary after the ith letter does not affect what that letter is. The letters (observations)

determine the syllable boundaries (hidden states), not the other way around.

3.2 Support Vector Machines

In contrast to HMMs, a Support Vector Machine (SVM) is a discriminative super

vised learning technique that allows for a rich feature representation of the input

space. We learn from training examples, and then generalize what we have learned

to new, unseen cases. In its simplest guise, an SVM is a tool for performing binary

classification of objects, based on features of those objects.

Before considering the general case and the mathematics that underpin it, I will

sketch a simple high-level example of the intuition behind SVMs. There are thirty

teams in the National Hockey League (NHL), and each year 16 of them qualify for

the playoffs. Suppose that, in January, we want to predict which teams will make

the playoffs at the end of the season. Based on our knowledge of the NHL, we

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

might guess that two factors are good predictors of whether or not a team will be

in the postseason: the number of wins the team has, and the team’s goal differential

(goals scored less goals allowed).

IS ■

10 4b

p ©

m a r g i n
-20

Figure 3.2: An example of a maximum margin separating positive and negative
examples.

Further suppose we have access to last year’s statistics. We know which teams

made the playoffs (our positive examples) and which teams did not (our negative

examples). We also know the win totals and goal differentials each team had last

January. We will use these two features to describe our input examples. In an ideal

world, we can plot our negative and positive examples as in Figure 3.2, and draw

a straight line dividing up the space between playoff teams (plus signs) and non

playoff teams (circles). This line serves as our classifier: teams whose features put

them above the line will be in the playoffs, while teams that fall below the line will

get early tee times. We do not draw our classifier line arbitrarily; rather, we choose

the line that will maximize the margin between positive and negative examples.

Once we have our line, we can plot next year’s teams on the same axes, and predict

which teams will make the playoffs.

Mathematically, we formalize this as the search for a weight vector w and offset

b that maximizes the margin between positive and negative examples1. Each of

the N training instances is associated with features, x,, e and a desired output,

'all equations in this section are adapted from [Hastie et al., 2001]

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vi £ { — 1,1}. The width of the margin is defined by 2 • so we can maximize the

margin by solving the following argmin:

argminw ()i | |u ' | |2 s.t. yt{w ■ — b) > 1, * = 1 , . . . , N. (3.1)

Finding this argmin is a convex optimization problem; we use a quadratic program

to determine the solution.

Once we have found w and b, we can use them to classify new examples using

the classification rule:

y = signfiu • x + b]. (3.2)

Extending the Basic SVM Framework

Practically speaking, there are a number of conflating factors that make SVMs more

difficult to employ for real-world prediction problems.

First, real-world classification is almost never so easy. If we could perfectly

predict the playoff teams from the wins and goal differentials in January, there

would be no need to play the rest of the games. In reality, some teams with a

lot of wins and a good goal differential at the halfway mark will not make the

playoffs, while other teams with few wins and poor goal differentials will start to

play better and get in to the postseason. Figure 3.3 plots the actual wins and goal

differentials of NHL teams in January of 2007, with teams that actually made the

playoffs represented by plus signs. For this diagram, there is no straight line that

can cleanly divide the playoff teams from the non-playoff teams. In other words,

the data is not linearly separable. To overcome this problem, SVMs employ slack

variables. Conceptually, a slack variable allows us to treat one or more examples as

outliers, and ignore them when drawing the line.

Mathematically, the addition of slack variables, sif means we have to reformu

late equation 3.1 as:

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40 -

20
O Q

30
a -20 -

-40

Figure 3.3: An example of data that is not linearly separable.

a rg m in ^ s -IH + c S.t.
Di(w ■ Xi — b) > 1 — Si, i = 1 , . . . , N

Si > 0, i = 1 , . . . , N.

(3.3)

Equation 3.2 remains unchanged.

The Si values in Equation 3.3 represent how much the associated xt values are

misclassified by under the current w. Therefore, the]T\ term represents the total

amount of error across all examples. The amount of error we are willing to accept

on the training data is determined by the c term, which is a tunable parameter. In

practice, the value of c often makes a significant difference in the accuracy on our

test examples.

A second complicating factor is the number of features. In a typical classifi

cation task, there will be more than two factors that are important in making our

prediction. (In the NHL example, we might consider things like player injuries, for

instance.) In some domains we might use thousands, or even millions. Thus, we are

typically not drawing a line to divide two-dimensional space, but rather construct

ing a hyperplane to divide n-dimensional space. Finding this hyperplane is more

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time-consuming than drawing a line, although it does not change the underlying

mathematics.

It is also non-trivial to determine which features we should use to represent our

problem. In practice, it usually will not hurt to include extra features (the SVM will

learn to ignore features that do not help classification). However, missing a feature

that is crucial to the task can greatly impede performance.

Another thing that makes SVMs more complicated is that many classification

problems are not binary. Suppose we want to classify the NHL teams as

(1) non-playoff teams,

(2) teams that get eliminated in the first round of the post-season, and

(3) teams that advance to the second round or later.

To perform multi-class classification, we need to alter equation 3.3. The first

thing we need to do is modify our notation somewhat. Because we have more than

two classes, we can no longer rely on the sign of w-x to perform our classification —

the desired output must be represented explicitly. We use the n o t a t i o n yt) to

represent the relationship between the features of an instance x% and its desired class

label yi. Given a set of possible class labels, I, we want to maximize the difference

between the desired label, y% and all competing, incorrect labels, for each training

instance:

argminW;6iSJ ||w ||2 + c - ^ S i s.t. s{ > l{k ± y i) - w (^ (x i ,y i) - ^ { x i , l i)) , \ / i , l i .

(3.4)

The 1 (k 7 ̂yi) term is an indicator function, which will be equal to zero when lt =

yi. Thus, we still have the s; > 0 constraint in the multi-class case. However, we are

adding an extra constraint for every other possible class. This greatly increases the

number of constraints that must be enforced when solving the quadratic program.

Multi-class problems also change the classification rule slightly:

y = argmax/.w(\k(xi, k)). (3.5)

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We can simply try all possible labels until we find the one that maximizes the prod

uct o f w- V.

Whether an SVM is doing binary or multi-class prediction, it has a significant

drawback compared to an HMM: the SVM can only make single predictions in

isolation. This is problematic for many problems, including the NHL example. Ex

actly 16 teams make the playoffs, with a certain number coming from each confer

ence and division. However, the single instance SVM might predict that 18 teams

will make the playoffs, or that all the playoff teams are in the same conference.

Whether a given NHL team makes the playoffs is somewhat dependent on what

other teams do. This sort of problem is very much an obstacle if we want to use

SVMs to perform automatic syllabification. Whether a given letter is at a syllable

boundary is dependent on where the other syllable boundaries are. We are not per

forming a series of individual classification problems; we want to make predictions

about a number if interrelated entities. There is a structure to the problem we are

trying to solve, but the SVM does not allow us to take advantage of it.

3.3 Structured SVMs

The structured support vector machine was designed to deal with this exact short

coming of single-instance SVMs. In many ways, structured SVMs are a fairly

straightforward extension of the multi-class case [Tsochantaridis et al., 2004]. In

deed, the structured SVM derives its weight vector by solving a generalization of

Equation 3.4:

argminw ^ ^ | |w |l2+c~y^ Sj s.t. s* > LOSS { y , y i) - w (^ { x i ,y i) - ^ { x i,y)) , \ / i , y ^ Y .

(3.6)

Classification is done using the following:

y = &rgmaxyeYw('S>(xi,y)). (3.7)

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are two differences between the multi-class and structured cases. First,

we substitute the indicator function with a general-purpose loss function that varies

depending on the structure being predicted. Second, we no longer have a nice dis

crete list of possible competing wrong class labels, Z*. Instead, we are trying to

maximize the the difference between the correct structure, and all other possi

ble (but incorrect) structures, y <G Y. This is where the difficulty arises. In the

multi-class case, even if we have 10,000 possible class labels, there are only 9,999

incorrect answers. By contrast, if we are attempting to predict a complex structure,

the number of potential answers is exponential, or even infinite. This explodes the

number of constraints the quadratic programmer must satisfy, and the number of

possible answers the argmax must search over. Consequently, finding a solution

becomes prohibitively expensive, if not impossible.

To overcome this obstacle, Tsochantaridis et al. [2004] propose to solve the

optimization in an online fashion, adding constraints on an as-needed basis. The

general approach is as follows:

1. Using Equation 3.7, find the (incorrect) output structure y that is imposing

the largest error cost, according to the current weight vector.

2. Add constraints associated with y to the optimization problem as set out in

Equation 3.6.

3. Derive a new weight vector, using the new set of constraints.

4. Move to the next training example and return to step 1.

This process continues to iterate until no new constraints are added to the opti

mization problem. In practice, in order for new constraints to be added, the error

imposed by the structure y must exceed the slack value by more than some small

constant e.

Structured SVMs have been shown to find a solution that is within e of being

optimal. Moreover, as long as Equation 3.7 can be solved in polynomial time, the

optimization itself is polynomial.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SVM-HMM

To apply the formalism to automatic syllabification, I use a specific instance of

structured SVMs, called SVM-HMM. Introduced by Altun, Tsochantaridis, and

Hofmann, SVM-HMM predicts a sequence of labels for a sequence of observa

tions [Altun et al., 2003]. To do this, it learns a classifier using Equation 3.6. The

loss function is Hamming distance; on this metric, the more labels a candidate se

quence y has in common with the correct sequence y,t, the lower its loss will be.

The output space Y is infinite, consisting of all possible sequences that can be con

structed from the label set E. However, for any given training sequence Xi, the

number of possible label sequences is fixed, because there must be exactly one la

bel for each observation in the input sequence. To classify sequences, a Viterbi

decoder is used to solve the argmax in Equation 3.7.

The name SVM-HMM derives from the two types of features that are incor

porated in T. First, there are features that capture the relationship between the

observations and labels, as in a typical, non-structured SVM. These ‘emission’ fea

tures require no conditional independence assumptions, as would be required in an

HMM framework. Second, there are features representing the transition probabili

ties between labels in an output sequence, as in an HMM.

Applying SVM-HMM to automatic syllabification allows me to have the ben

efit of discriminative training and an expressive feature set, while predicting all of

a word’s syllable boundaries at once. Moreover, SVM-HMM is a freely available

software package2. The software package requires users to define their own emis

sion features; transition features are supplied by the package, using a first-order

Markov assumption. I discuss the emission features for the syllabification task in

Chapter 5.

2http://svmlight.joachims.org/svm_s truct.html

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://svmlight.joachims.org/svm_s

3.4 Roads Not Taken

SVM-HMM is by no means the only way to combine an arbitrary feature set with

HMM-style transition probabilities. McCallum, Freitag, and Pereira introduce Max

imum Entropy Markov Models (MEMMs), in which a single probability function

is used to estimate the probability of a state, given the observation and the pre

vious state [McCallum et a l , 2000]. Maximum Entropy Markov Models allow

non-independent features, and maximize conditional probability (rather than joint)

to model the situation, which is more in line with the problems we typically use

HMMs to solve. A drawback of MEMMs is that they model the transition proba

bilities separately for every state. This creates a bias in favour of states with only

one outgoing transition, which will necessarily capture more probability mass. Laf-

ferty, McCallum, and Pereira address this problem with Conditional Random Fields

(CRFs) [Lafferty et al. , 2001]. CRFs are essentially a modification of MEMMs that

model the probability of the entire sequence of labels given the a full sequence of

observations.

Another possible approach is Collins’s [2002] averaged perceptron, which also

takes advantage of complex, interrelated features. Rather than estimating the maxi

mum likelihood weights for each weight, the Collins method uses a perceptron up

date rule: at each iteration, every training example is assigned the highest scoring

label sequence under the current weights. If that sequence is incorrect, the weights

are updated. After all iterations are completed, each parameter is assigned to be the

average of the values it took on during the training process.

There are also several other variations on the SVM-HMM theme. Taskar, Guestrin,

and Roller present Max-Margin Markov (M 3) Networks [Taskar et al., 2003]. M 3

Networks still predict a full sequence of labels, but they maximize the margin for

each label in the sequence, rather than the sequence as a whole. This makes the

number of constraints polynomial in the length of the sequence. Consequently, M 3

Networks can specify all constraints from the outset, and do not need to iteratively

solve quadratic programs. Conversely, McDonald, Crammer, and Pereira use struc

tured multilabel classification, or MIRA, which trains online like SVM-HMM [Mc-

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Donald et a l , 2005]. However, MIRA only maximizes the margin over the k best

incorrect sequences. This exponentially reduces the number of constraints, but at

the cost of increasing the complexity of inference — the top k sequences must be

found, rather than only one.

CRFs, averaged perceptron, M 3 networks, MIRA, and SVM-HMM have all

been shown to achieve good performance on NLP tasks like part-of-speech tag

ging, text classification, and/or text segmentation. Syllabification is a small enough

problem that any of the above methods would be tractable. However, only CRFs,

M 3 networks, and SVM-HMM solve a well-defined objective, making those tech

niques preferable to the averaged perceptron and MIRA. CRFs are less desirable

because they are computationally expensive, and do not allow a loss function. M 3

networks and SVM-HMM are nearly identical in their objectives and expressive

ness; the availability of a free toolkit for SVM-HMM makes it the obvious choice.

3.5 Summary

In this chapter I presented SVM-HMM, a type of structured support vector ma

chine. SVM-HMM is an excellent formalism for the syllabification task because it

is a discriminative method that allows for a complex feature representation. When

syllabification is formulated as a tagging task, SVM-HMM can make a unified pre

diction of all the syllable breaks in a word. SVM-HMM is preferable to techniques

like averaged perception and MIRA because it maximizes a well-defined objective;

it is more desirable than CRFs because it is less expensive and allows the use of

Hamming distance as a loss function.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Previous Work

Although there is a fair amount of previous work on the topic of syllabification, the

literature is not particularly unified. Comparison with previous results is relatively

rare, as syllabification is more often used as a test bed for a new technique, or a

means to some text-to-speech ends, rather than a task in its own right. It is also very

difficult to compare accuracy scores achieved on different data sets as syllabifica

tion tends to vary somewhat across dictionaries. Systems have also been created

for several different languages (English, Dutch, and German most prominently),

which further confounds comparative analysis. Moreover, it is sometimes unclear

whether a particular approach has been applied to strings of letters or strings of

phonemes. While the same techniques will often work in both domains, the ac

curacy level achieved varies substantially. Syllabification of phonemes is also a

well-known linguistic/phonological process, where syllabification of letters has no

such theoretical underpinnings. This allows syllabification of phonemes to explore

rule-based or parsing techniques that are not viable in the letter domain.

The upshot is that there is no obvious progression through the literature. I ded

icate Section 4.1 to a detailed examination of Marchand and Damper’s [2005] Syl

labification by Analogy (SbA), which represents the current state-of-the-art for En

glish syllabification. Like my approach, it is a data-driven technique that can be

applied to both letters and phonemes. In practice, SbA is language-independent,

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

although I know of no results applying the system to either German or Dutch. Fur

thermore, unlike other techniques, I can make direct comparisons between SbA

and my method. Both SVM-HMM and SbA have been trained and tested using the

same data for English letters, which allows me to make direct comparisons between

them. Additionally, uniquely in the literature, Marchand and Damper have already

directly compared SbA with existing English syllabification techniques. Finally,

Marchand and Damper were the first to establish that syllabification has the poten

tial to improve English letter-to-phoneme (L2P) performance. In many ways, their

work is the impetus for my research.

In Section 4 .2 ,1 discuss other previous work that is closely related to my own,

either in the approaches undertaken or the datasets used for testing. Systems in

this section are broadly comparable to my discriminative implementation. In Sec

tion 4 .3 ,1 sketch some other previous work on syllabification that is more tangential

to the work of this thesis. Although this chapter combines work on both letters and

phonemes of several different languages, I clearly state both the domain and lan

guage of application for each technique.

4.1 Syllabification by Analogy

Syllabification by Analogy (SbA) is a modification of the Pronunciation by Analogy

algorithm for the syllabification task [Marchand and Damper, 2005]. In a nutshell,

SbA finds analogies between an unsyllabified query word and syllabified words ap

pearing in the system’s lexicon. Substrings of the query word are compared against

all dictionary entries, and the most analogous substrings are concatenated together

to form a syllabification of the whole query word. The definition of the ‘most

analogous’ substrings is somewhat intricate; in practice, a directed graph (called a

syllabification lattice) is constructed to determine which substrings in the dictionary

should be used to syllabify the query word.

Figure 4.1 illustrates a simplified example of SbA’s execution. The juncture

between every letter is viewed as a potential syllable boundary. Boundaries are

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

indicated by | ; non-boundaries are indicated by *. For ease of exposition, I use only

a small dictionary, and show only a portion of the syllabification lattice. In reality,

the graph would contain a node for every letter and junction in the query word.

POSSIBILITIES

Figure 4.1: An example of a lattice SbA might use to syllabify the input word
lev—i—tate.

To construct the lattice, SbA compares every letter and junction of the query

word with every letter in the dictionary. Any time there is a match between a dic

tionary substring and a query substring, that substring is added to the lattice. The ?

symbols in the query word can match either the | or * markers. Hence, the query

l ? e ? v ? i ? t ? a ? t ? e matches the dictionary entry l * e * v | i | t * y up until the

letter y. This pattern match is captured in the lattice by the nodes labelled 1 and

*, connected by the arc labelled * e * v | i 1 1 :1. The notation : 1 is a frequency

count, indicating we have seen the pattern once. Substrings can match anywhere in

the word. Thus, the count for the substring l * e * v | is two, because we see it both

in lev—i—ty and dev—er.

Once the syllabification lattice has been constructed, every path through the

graph represents a plausible syllabification. Many of these paths will produce the

same syllabification, as in the example. In cases where there are multiple syllab

ifications within the lattice, SbA selects the shortest path through the lattice as its

best syllabification. Thus, in Figure 4.1, only paths of length two will be consid

ered, eliminating lev—it—ate as a possible syllabification. When choosing between

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

shortest path syllabifications, SbA uses the product of the frequencies indicated on

the arcs and selects the path with the highest value. In the example, lev—i—tate, the

correct syllabification, has a frequency product of 2, and so beats out le—vi—tate,

which only has a frequency product of 1. If there are several syllabifications with the

shortest path length and identical frequency products, SbA chooses the whole-word

syllabification that appears most frequently. Thus, if the example dictionary con

tained the word le—vi—a—than, making the frequency product on the le—vi—tate

path also equal to two, SbA would still choose lev—i—tate because there are two

paths of length two that produce that syllabification.

Marchand and Damper first introduced SbA in the context of their Pronunciation

by Analogy (PbA) implementation. Using the NETtalk dataset as their gold stan

dard, they found that applying dictionary syllabification as a pre-processing step in

PbA improved L2P performance from 65.35 percent word accuracy to 71.74 percent

word accuracy [Marchand and Damper, 2005]. This is an 18 percent relative reduc

tion in the error rate, and highly statistically significant. Given these results, the

challenge is to replicate the improvement using an automatic syllabification tech

nique. SbA achieves reasonably good word accuracy on the syllabification task.

Experimenting on the NETtalk dataset and using leave-one-out testing, SbA cor

rectly syllabifies 78.1 percent of words. Unfortunately, this level of accuracy is not

sufficient to improve accuracy in Marchand and Damper’s L2P application. In fact,

adding SbA-generated syllabification as pre-processing reduces L2P word accuracy

from 65.4 percent to 64.3 percent.

Subsequent to their initial work on the topic, Marchand, Damper, and Ad-

sett perform a detailed comparison of existing syllabification techniques for En

glish [Marchand et al., to appear]. In this comparison they look at syllabification of

both letter and phoneme strings. They use NETtalk as one of their gold standards,

and also use 18K words taken from the Wordsmyth English Dictionary-Thesaurus.

All Wordsmyth words also appear in the NETtalk dictionary, although not necessar

ily with the same syllabification. They construct a third dataset, Overlap, consisting

of the words appearing in both NETtalk and Wordsmyth, with the same syllabifica

tions in each.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Method Letters Phonemes
Optimality Theory 36.88 —
Legality Principle — 74.42
Simple EBG 73.53 83.66
Learned EBG 74.36 83.12
SbA 85.43 91.08

Table 4.1: A comparison of word accuracy scores for several existing English meth
ods, adapted from [Marchand et al., to appear].

For each of the three datasets, Marchand et al. compare their SbA implemen

tation with existing methods for English. The two other data-driven approaches

compared are variations of exemplar-based generalization (EBG), sometimes called

instance-based learning, or IB1-IG [Daelemans and van den Bosch, 1992; Daele-

mans et al., 1997; van den Bosch, 1997], EBG generally performs a simple database

look-up to syllabify a test pattern, choosing the most common syllabification. In

cases where the test pattern is not found in the database, the most similar pattern

is used to syllabify the test pattern. Similarity is determined by comparing a focus

letter and its surrounding context, where each context letter is weighted according

to its importance. Simple EBG systematically applies 15 different sets of integer

weights to determine which one produces the best performance. Learned EBG uses

information entropy (log probabilities) to determine the weights for a given con

text letter at a given position. In the letter domain, Marchand et al. also compare

against an implementation of optimality theory [Hammond, 1997b]; in the phoneme

domain, they compare against an implementation of the legality principle [Fisher,

1996], It is unclear why they do not attempt to apply Hammond’s optimality theory

in the phoneme domain, where it would be more suited.

Across the board, performance is best on the Overlap dataset. Regardless of

dataset, SbA has the highest accuracy scores by a very wide margin. A summary of

the best results for each method on the Overlap set is reproduced in Table 4.1.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Related Work

Daelemans and van den Bosch’s Data-Driven Methods

One of the earliest works on automatic syllabification is Daelemans and van den

Bosch’s [1992] neural network-based implementation for Dutch letters. Neural

networks are the precursors of SVMs, and the two technologies share a number

of similarities. Daelemans and van den Bosch train two backpropagation networks

that accept an input letter and its surrounding context and output whether that letter

is at a syllable boundary or not. They design one of the networks to be aggressive,

postulating lots of syllable boundaries; the other is designed to be conservative.

The output of these two networks is then fed into a third network which trades off

the responses of the conservative and aggressive networks. Daelemans and van den

Bosch compare this connectionist approach to Learned EBG (described above). Re

sults are reported in terms of letters correctly classified (either at a syllable bound

ary or not). They find that EBG out-performs the neural network, achieving 96.6

percent letter accuracy against only 94.2 percent for the back-propagation network.

Daelemans, van den Bosch, and Weijters also explore using IGTrees for En

glish syllabification [Daelemans et al., 1997], IGTrees effectively store the same

information as Learned EBG, but compress it into a tree form. On a set of 20K

CELEX English orthographic forms, IGTree scores 94.53 percent, slightly lower

than Learned EBG on the same data set (95.21%). In subsequent work, the same

authors incorporate a Learned EBG module for syllabification of English phonemes

into a larger IGTree L2P system [van den Bosch et al., 1998; van den Bosch, 1997].

Their syllabification system achieves 97.78 percent word accuracy on CELEX En

glish phonemes, but they find that the system performs better without the syllabifi

cation module.

HMM-based Methods

Krenn [1997] introduces the idea of treating syllabification as a tagging task. Work

ing from a list of syllabified German phoneme strings, she automatically generates

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tags for each phone. A second-order Hidden Markov Model is then used to predict

sequences of tags; syllable boundaries can be trivially recovered from the tags. The

HMM is intended to be incorporated as module in a larger TTS system.

Krenn experiments with two different tag schemes. Her Onset-Nucleus-Coda

model assigns all vowels and diphthongs to be nuclei. All consonants preceding

the nucleus in the syllable are onsets; all consonants following the nucleus are co

das. Krenn’s Positional Model assigns the first phoneme in every syllable to be a B

(beginning), the last phoneme to be an E (end), and all intervening phonemes to be

Ms (middle). In Chapters 5 and 6 ,1 use Krenn’s BME tag scheme for my discrim

inative approach. Krenn’s results are a reference point for assessing my system’s

performance.

Krenn uses the CELEX dataset for her experiments, evaluating using 50-fold

cross-validation. She reports results at the phoneme level: how many individual

phones received the correct tag. Krenn’s ONC model outperforms her positional

model, scoring 98.34 percent phoneme accuracy, against only 93.56 percent. Krenn

argues that the onset-nucleus-coda model beats out her positional model because

it has less inherent ambiguity. With the BME tags, almost every phone can be

assigned all three tags; with ONC tags, a large number of phonemes can assume

only one possible tag.

Demberg [2006] also applies HMMs to the syllabification task, as a component

of a larger German text-to-speech system. Although her TTS system only uses

syllabification of letters, Demberg presents experiments on both German letters and

phonemes. Demberg uses simple binary tags, requiring every letter to be labelled

either N (Not at a syllable boundary) or B (Boundary). She applies a fourth-order

HMM to the problem and additionally enforces the constraint that every syllable

must contain a nucleus. To smooth the counts obtained from her training data, she

applies Modified Kneser-Ney smoothing.

Demberg’s results are very good; using 10-fold cross-validation on German

CELEX she achieves 97.87 percent word accuracy on the letter domain. In the

phoneme domain, she achieves 98.47 percent word accuracy1. Additionally, Dem-

1 Schmid, Mobius, and Weidenkaff [to appear 20071 improve on Demberg’s phoneme results by

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

berg is able to improve L2P performance in German from 73.4 percent to 74.4

percent word accuracy, a statistically significant improvement. More importantly,

syllabification allows her to automatically generate stress patterns (syllable position

is an important predictor of German word stress). This further increases her L2P

word accuracy to 78.85 percent. I use Demberg’s results as a point of comparison

in my experiments.

Muller’s PCFG-based Approaches

Muller [2001a] applies probabilistic context free grammars (PCFGs) to the syllabi

fication of German phonemes. She first manually constructs a context-free grammar

(CFG) of possible syllables. Then, she uses counts from a labelled training set to

assign probabilities to the rules in the CFG. Armed with this probabilistic context-

free grammar, Muller can then find all possible syllable parse trees for an input

word. These parse trees entail the syllable boundaries for the word. The most likely

parse tree, according to the grammar, is selected as the correct syllabification of

the word. Muller also experiments with a number of linguistic annotations for her

CFG rules in an attempt to improve accuracy. She tries using extra productions that

capture whether a phone is a vowel or a consonant, or whether it is part of an onset,

a nucleus, or coda. Her best-performing grammar contains productions for the syl

lable’s rhyme (e.g. Syl —> Onset Rhyme; Rhyme —> Nucleus Coda), and captures

the syllable’s position within the word (e.g. Word —»• Syl.ini Syl; Syl —> Syl.fin).

To evaluate her approach, Muller uses a large newswire corpus of 3 million

words, looking up their pronunciations in CELEX. Ninety percent of the corpus

is used as training data, while 10 percent is used for testing. The two sets are

not disjoint: more than 90 percent of the words from the test set also appear in

the training data. Under this set-up, her system’s scores word accuracy of 96.49

percent.

Subsequently, Muller [2002] further augments her grammar by adding produc-

applying a fifth-order HMM and tuning their smoothing algorithm specifically for syllabification
of German phonemes. Word accuracy increases to 99.85 percent with the higher-order Markov
assumption.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tions for onsets and codas of different lengths. This produces an incremental im

provement, scoring 96.88 percent word accuracy using the same experimental set

up. Muller [2006] reprises the earlier work with a few variations. Rather than hand-

constructing the CFGs, she exhaustively generates all possible syllables by system

atically concatenating together all phonemes that occur in the language. This allows

the technique to be easily applied to other languages. Many of the syllables in these

generated grammars will never occur because they violate phonotactic constraints.

Muller enforces the constraints by introducing grammars with more complex pro

ductions. For example, in her best-performing grammar, different production rules

are applied to the onset and coda depending on the actual phoneme in the nucleus.

That is, different rules will be used to build the tree for the word string than will be

used to build the tree for the word strong.

There is not much to choose between the various instantiations of Muller’s

PCFGs. However, the 2006 work is most relevant to this thesis because of the evalu

ation methodology. She applies the method to both German and English phonemes,

uses CELEX, rather than newswire corpora for her tests, and evaluates using 10-

fold cross validation. Thus, her test words do not appear in the training data. Her

best word accuracy score in English is 92.64 percent; in German it is 90.45 percent.

I will use these results as a point of reference in my later work.

Bouma’s WFST-based approach

Bouma [2002] uses finite state transducers (FSTs) to implement a hyphenation sys

tem for Dutch. He begins with a deterministic FST implementing a straightforward

regular expression that essentially imposes maximal onset as its only guiding prin

ciple. On the Dutch orthography portion of the CELEX dataset, Bouma achieves

86.1 percent word accuracy with his deterministic implementation. In error analy

sis, he finds that most errors occur where morphology overrides maximal onset.

To overcome these morphologically-induced mistakes, Bouma uses transformation-

based learning (TBL) to learn rules for correcting these mistakes without introduc

ing new errors. These new rules are then composed into FSTs. By using 90 percent

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the CELEX orthography word list (~ 261,000 training points), Bouma is able

to extract 1,409 rules and improve his word accuracy to 98.17 percent. Even with

only 10 percent of the CELEX dataset (deriving 264 rules), Bouma sees a very

substantial increase in word accuracy — 95.34 percent.

Bouma’s excellent results can be achieved very efficiently using transducers.

Better still, TBL produces actual rules from which we can glean linguistic meaning.

For example, a rule re-writing all instances of i—st as is—t will remove nearly ten

percent of the errors in Bouma’s test set. Meaningful rules are not available from

my system, due to the large number of features I employ. However, it is not clear

whether this FST-based approach would fare as well on English, a much less regular

language than Dutch. English has so many exceptions that TBL may effectively

devolve into creating a rule for almost every word in the language. Nonetheless, I

will use Bouma’s results as a benchmark for my Dutch results.

4.3 Other Previous Work on Syllabification

Zhang and Hamilton [1997] explore syllabification of English letters as a compo

nent of their L2P system. Their system, LE-SR, learns syllabification rules based

on pattern matching. Rules are ranked based on the frequency they apply. Their fi

nal system comprises 1089 rules, although using just 22 of the most common rules

produces better than 90 percent accuracy. The vast majority of their rules (77%)

deal specifically with single-case exceptions. Overall, their performance is good,

achieving 95.42 percent word accuracy in ten-fold cross-validation experiments on

a NETtalk-derived dataset.

These results must be interpreted with caution. Although Zhang and Hamilton

couch their technique as syllabification of letters, and although they incorporate

LE-SR as a pre-processing step in L2P conversion, their techniques does not actu

ally work on letters. The input to their system has already been ‘chunked’. That is,

letters that combine to make a single sound have already been merged, and silent

letters have been removed. Moreover, letters have already been categorized as syl-

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

labic (vowels and syllabic consonants) or non-syllabic (other consonants). Thus,

rather than syllabify the string ro—guish, LE-SR syllabifies the string C S C S C,

where S represents syllabic entities and C represents non-syllabic entities. The let

ters sh and ui have been combined into single chunks. This is clearly an easier task

than syllabifying raw letters, and is more comparable to syllabifying phonemes.

Kiraz and Mobius [1998] implement a weighted finite-state transducer (WFST)

solution to the syllabification problem for phonemes in both English and German.

The FST they describe is a component in Bell Labs’ TTS system. The weights for

the German WFST are learned from the German portion of CELEX; the weights

for the English WFST are learned from English CELEX and Bell Labs’ in-house

pronunciation dictionary. A separate WFST is built for each of onsets, nuclei, and

codas. These three transducers are then composed together into a deterministic

transducer accepting syllables according to a regular expression that defines legal

syllables in a given language. A word is then syllabified by a transducer that accepts

one or more syllables, separated by syllable-boundary markers. Unfortunately, Ki

raz and Mobius only perform a qualitative analysis of their system, rather than

providing a quantitative measure of their performance.

Pearson, Kuhn, Fincke, and Kibre explore syllabification (and stress assign

ment) of English phoneme strings [Pearson et al., 2000]. They compare two rule-

based systems: the syllable module from the MITtalk TTS system, and Panasonic’s

in-house syllabification rule set. The actual rules applied in these two methods are

not described. Pearson et al. compare these rule-based methods with a CART de

cision tree and Panasonic’s in-house ‘global statistics’ algorithm. In the phoneme

domain, the challenge is to determine where a consonant cluster should be divided

into separate syllables. The Panasonic method categorizes every consonant cluster

by its context: the cluster will be preceded and followed by some combination of a

short vowel, long vowel, beginning of word, and end of word. Consonant clusters

in test words are syllabified based on the most probable boundary location found in

training data. The four methods are assessed using the 19K Cybertalk dictionary;

half the words are used for training and the other half for testing. The MIT-talk rule

system scored 61.6 percent word accuracy, while the Panasonic rules achieved 83.2

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

percent. Both data-driven methods scored better, with the decision tree syllabifying

92.2 percent of words correctly and the global statistics method getting 96.2 percent

of words right. Pearson et al. also find that they can improve their syllabification

results by a small amount using phoneme strings with stress patterns as input. Their

results are, unfortunately, not comparable with mine, because they are based on a

proprietary gold standard.

MacKinney-Romero and Goddard [2006] apply decision trees to Spanish let

ters. Spanish is a very transparent language. The pronunciation of the orthographic

form of a Spanish word is deterministic, which means syllabification of Spanish

letters and phonemes should be of a similar level of difficulty. MacKinney-Romero

and Goddard extract words from literary and newswire corpora and manually as

sign letters to be either onsets, nuclei, or codas. Using a window of three letters

around a focus character as input, they automatically construct decision trees from

the training data. These resulting trees are not very complex — binary trees with a

maximum depth of 4 — but they perform very well in Spanish. On 1,000 randomly

selected words not appearing the training corpus, the trees score 96.8 percent word

accuracy. They further attempt to apply their method to English and Italian. How

ever, their gold standard syllabifications are the output from Hammond’s OT-based

parser, which was less than 40 percent accurate in Marchand and Damper’s experi

ments [Marchand et a l , to appear]. With such a flawed gold standard, the reported

English letter accuracy score of 97.3 percent is meaningless. The Italian gold stan

dard is also derived from an existing automatic technique, which makes the makes

the letter-accuracy score for the Italian tests (99.3%) similarly difficult to interpret.

Unsupervised Techniques

Muller, Mobius, and Prescher explore the use of Expectation-Maximization (EM)

as the basis for a clustering algorithm [Muller et al., 2000]. They experiment with

both a three-dimensional and five-dimensional clustering model, applying it to both

English and German phonemes. The three-dimensional model uses syllable onset,

nucleus, and coda to determine the cluster, while the five-dimensional model adds

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

syllable emphasis and the syllable’s position in the word. They experiment over

a range of clusters, from one single class for all syllables, up to 200 classes of

syllables. The German models are further incorporated into a letter-to-phoneme

system. After all possible phone sequences are generated from letters and parsed

by a context-free-grammar, the highest-probability sequence of syllables is selected

as the L2P output. Compared to a baseline of probabilities counted directly from

the training data, the learned EM clusters improve L2P accuracy. However, these

improvements are in the context of rather low initial accuracy — their best reported

L2P accuracy is 75 percent.

This EM-based method is problematic as a syllabification technique. Generally

speaking, EM and clustering are used for unsupervised approaches without training

data. However, Muller et al.'s technique relies on being able to extract syllables

from words, and therefore requires labelled training data (they use CELEX to look

up words appearing in newswire text). If we have access to labelled training data, it

is better to use some sort of supervised approach. Thus, this work is better viewed

as a test-bed for multivariate EM clustering rather than syllabification qua syllabi

fication.

In subsequent work, Muller [2001b] does explore a true unsupervised approach

to syllabifying German phonemes. She uses the same PCFG-based approach de

scribed in Section 4.2, but instead of using counts derived from labelled training

data, she estimates the probabilities for her grammar using EM. Muller’s best gram

mar achieves syllable accuracy of around 90 percent on pronunciations extracted

from newswire text. This is far behind the supervised approach, which scored bet

ter than 96 percent word accuracy, a far more difficult metric. Muller then attempts

to use only the syllable grammar to perform the L2P task. To do this, she expands

her PCFG to include productions that map phonemes to letters. The results are not

impressive: her best model achieves only 42.5 percent word accuracy.

Goldwater and Johnson [2005] also explore using EM to learn the structure

of English and German phonemes in an unsupervised setting, following Muller in

modelling syllable structure with PCFGs. They use two different models: the po

sitional model from Muller’s work, and a new bigram model. The bigram model’s

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

productions make every syllable expansion depend on the previous syllable.

Goldwater and Johnson attempt to estimate the parameters for their maximum

likelihood approach using EM. They initialize their parameters using a determinis

tic parser implementing sonority and maximum likelihood. On its own, this cate

gorical parser performs fairly well: 92.7 percent of German phone strings and 94.9

percent of English phone strings are correctly syllabified. However, these results

are somewhat inflated because a large proportion of the test set is monosyllabic and

the training and test sets are not disjoint. Running EM to convergence on the bi

gram model, after initializing the parameters based on the output of the categorical

parser, produces an increase of several percentage points, to 95.9 percent in German

and 97.1 percent in English. The same procedure on the positional model actually

decreased the word accuracy. Goldwater and Johnson speculate that this is because

the positional model does not allow EM to generalize onsets and codas found word-

initially and word-finally to consonant clusters found word-medially. In effect, the

positional model precludes EM from learning the legality principle. They conclude

that models that produce improvement in a supervised setting are not necessarily

optimal in an unsupervised one.

4.4 Summary

Many different authors have tackled automatic syllabification, using a variety of

different techniques. Nonetheless, the problem remains unsolved. Particularly in

English, where syllabification patterns are less regular than in German or Dutch,

there is considerable scope for improving performance. Discriminative approaches

are notably underrepresented in previous work. The most successful approaches

use some version of lazy learning (as in SbA or EBG), or HMMs. By contrast,

my system uses supervised discriminative training to achieve state-of-the-art per

formance.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Syllabification of Letters

This chapter shows how discriminative training can be applied to automatic syllab

ification of letters. In particular, I formulate syllabification as a tagging problem

and apply the SVM-HMM learner to the task. Given the SVM-HMM formalism,

the crux of the task is creating a tagging scheme that produces good results, and de

riving a set of features that capture the relationship between input words and their

desired labellings. This chapter describes that process, and presents experimental

results on the final system.

Section 5.2 outlines a number of different tag sets, and selects two tag sets for

further experimentation. Section 5.3 describes my system’s emission features and

how they are chosen. There is necessarily some overlap here: we cannot train an

SVM without selecting both features and a tag set. Furthermore, the performance

of the tag sets depends on the features selected, and vice versa. In practice, I tested

all combinations of feature sets and tag schemes before settling on the configuration

used to obtain the results presented in Section 5.4.

However, both tag sets and features selected (and indeed, the use of SVM-HMM

itself) depend on the data available. Hence, I will first turn my attention to the

datasets used for training and testing.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Datasets

Datasets are especially important in syllabification tasks. Dictionaries sometimes

disagree on the syllabification of certain words, which makes a gold standard dif

ficult to obtain. Thus, any reported accuracy is only with respect to a given set of

data.

At the outset of this research, I primarily used the NETtalk dataset for devel

opment. The NETtalk corpus is so-called because it was developed by Sejnowski

and Rosenberg [1988] for their NETtalk text-to-speech system. The corpus is a

list of 20,008 English words and their phonetic transcriptions, as found in Web

ster’s Pocket Dictionary. In addition to the letters and their associated phones,

NETtalk also lists stress and syllable structure for every word. The dictionary

maintains a one-to-one alignment between letters and their phonemes, which al

lows this syllable and stress information to be applied to both the orthographic

and phonemic representation of a word. My early work on this subject used this

dataset largely because it was the one used by Marchand and Damper for their work

on syllabification and letter-to-phoneme systems ([Marchand and Damper, 2005;

Marchand et al., to appear]). However, it soon became apparent that there are sig

nificant problems with NETtalk as a dataset for syllabification.

NETtalk is riddled with some truly bizarre syllabifications, such as be—aver,

dis—hcloth, and som—ething. These ‘gold standard’ syllabifications are obviously

problematic, hcl is an invalid onset in English because it is unpronounceable. The

syllables aver and ething each have two vowels separated by consonants, and look

as though they should be subdivided into two syllables {i.e. a—ver and e—thing).

Indeed, the word aver appears in the NETtalk dataset, syllabified as a—ver. I con

sulted five other dictionaries1, and all five list bea—ver, dish—cloth, and some—thing

as correct.

The examples I have listed are not spurious, or attributable to human error in

compiling the dataset. Rather, they are indicative of a systematic approach to syl

labification in NETtalk. Because orthographic syllabifications are mapped directly

^erriam-Wester Online, Dictionary.com, Encarta Dictionary, CELEX, OS X Dictionary.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from the phonetic domain, whenever a letter is silent (like the e in something), or

two letters combine to create single phoneme (like the sh in dishcloth, NETtalk

inserts a null symbol in the phoneme string. The phonemic gold standard syllab

ification almost always places the syllable boundary before the null. For strings

of phonemes, this is not a problem; the null has no sound by definition, so it can

equally go on either side of the boundary. However, when those same syllabifica

tions are mapped directly to the letter domain, we get counter-intuitive syllabifica

tions like the ones listed above.

Obviously, these bizarre syllable breaks make it difficult for a data-driven method

to be successful. Seeing both a—ver and be—aver in the training data sends the

SVM in conflicting directions. Scores will also be artificially lowered if a syllabifi

cation like some—thing is scored as incorrect. Most worryingly, the NETtalk gold

standard syllabification is likely to introduce new errors into a letter-to-phoneme

system. An L2P system is likely to correctly predict that the letters sh in dishcloth

map to a single phoneme because it is a common occurrence and the alternatives are

unpronounceable. However, if that same L2P system is told that there is a syllable

break between the s and h, correct prediction is less likely: a single phoneme cannot

have a syllable break in the middle of it.

Notwithstanding these shortcomings, I still perform some experiments on the

NETtalk database, largely because Marchand, Damper, and Adsett use it for their

comparative work in English [Marchand et al., to appear]. However, I also argue

that NETtalk is entirely unsuitable for the syllabification task. Results on other

datasets are a much better measure of the efficacy of a syllabification task, and a

better indicator of whether syllabification can improve letter-to-phoneme systems.

Because of NETtalk’s deficiencies, the main dataset for this work is the CELEX

dictionary [Baayen et al., 1995], CELEX is a product of the Max Planck Institute

for Psycholinguistics in the Netherlands. The dictionary consists of three languages

(English, Dutch, and German), and specifies both orthographic and phonetic forms

for words. The English section of CELEX is compiled from the Oxford Advanced

Learner’s Dictionary (1974) and the Longman Dictionary of Contemporary English

(1978). It contains 160,595 English words of British English. The German portion

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of CELEX is based on the Bonnlex and Molex computer dictionaries, as well as a

German spelling lexicon. It contains 365,530 words. The Dutch CELEX is derived

from Van Dale’s Comprehensive Dictionary of Contemporary Dutch (1984) and the

Groene Boekje Word List of the Dutch Language (1954), and most of the dictio

nary entries from the Institute for Dutch Lexicology’s 42.4 million-token corpus. It

contains 381,292 entries.

I perform some pre-processing of the CELEX dataset for my work here. Only

words containing at least two letters are retained. All homographs are removed.

There are 23K homographs in English CELEX. Most of the time, the syllabifica

tion is the same for all instances of the homograph, such as the seven different

CELEX entries for the orthographic form cross. However, in a small minority of

cases (about 0.3 percent of homographs, or 0.1 percent of the final word list), ho

mographs have different syllabifications, such as learned, the past-participle, and

learn—ed, the adjective. In these cases, one of the possible syllabifications is se

lected at random as the gold standard; only that syllabification is considered correct

during experiments.

I also remove all multiple-word and hyphenated entries, as they are superfluous.

Given that we have an entry for zebra and another for crossing, it is unnecessary to

keep zebra-crossing as well. On the other hand, the compound word crosswalk is re

tained. I also remove words containing apostrophes (the vast majority of which are

possessives), and any diacritics are converted into single-character codes to facili

tate processing. Finally, in English I remove any unpronounceable abbreviations,

like Ibw or bbc. The final English dataset contains 66K words. 52K of the removed

words are homographs; an additional 41K are multi-word or hyphenated entries.

Thus, almost 99 percent of the removed words are duplicates of some form. When

similar pre-processing is performed for Dutch and German, the datasets have 298K

and 31 IK words, respectively.

I develop my approach using a small subset of English CELEX. In both Sec

tions 5.2 and 5.3, I report results on a randomly selected development set of 5K

words. During development, SVM-HMM is trained using another 10K randomly

selected words not appearing in the 5K set.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Choosing a Tag Scheme

The most obvious tagging scheme for automatic syllabification is a binary assign

ment: a letter is either before a syllable boundary, or it is not. I call this tagging

scheme NB Tags because every letter is either at a syllable boundary ((B)), or not

((N)). Using NB Tags, the gold standard labelling for the word syl—lab—i—fy is

(N N B N N B B N N) , indicating that a syllable boundary should be inserted af

ter the third, sixth, and seventh letters. During development I also experimented

with labelling all word-final letters with (B). The legality principle tells us that

all possible syllable-final clusters are also found word-finally. The hope was that

explicitly marking boundaries at the end of words would help the SVM general

ize word-medial boundaries. However, experiments on the development set found

that not explicitly indicating word-final boundaries produced better performance.

Binary tagging schemes for automatic syllabification are not new. Marchand and

Damper employ the same basic idiom for Syllabification by Analogy. The tag

ging scheme is implicit in a number of previous implementations ([Daelemans and

van den Bosch, 1992], [Bouma, 2002]), and has been done explicitly in both the

orthographic [Demberg, 2006] and phonetic [van den Bosch et al., 1998] domains.

I also experiment with a very similar tag scheme, IMF Tags. Introduced by

Krenn as BME tags, IMF tags differentiate between the first letter after a boundary,

and the second and subsequent letters, by explicitly marking the initial ((I)) and

final ((F)) letters in the syllable. All intervening tags are marked as being in the

middle ((M)) of the syllable. Under this tag scheme, syl—lab—i—fy is tagged as (I

M F I M F F I M) .

A clear shortcoming of NB and IMF tags is that they encode no knowledge

about the length of a syllable. Intuitively, this seems like important information.

Syllables tend to be short — most English syllables contain four or fewer let

ters. Because the SVM-HMM encodes a first-order Markov assumption, NB and

IMF Tags do not even allow the classifier to realize that it is predicting something

unusual. Thus, when using NB tags, we get output like *heroines (instead of

her—o—ines) and *wellsprings (well—springs). The problem is less pronounced

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for IMF tags, but we still see *makeshift (for make—shift) and *achieved (for

a—chieved).

To combat errors like these, I introduce Numbered NB Tags2, which simply

numbers the (N) tags. Thus, the gold standard labelling for syl—lab—i—fy be

comes (N1 N2 B N1 N2 B B N1 N2). Because higher-numbered (N) tags will

be comparatively much rarer than (N l) or (N2), we have effectively introduced a

bias in favour of shorter syllables. Tags like (N5) and (N6) will be postulated only

when the evidence is particularly compelling. When using Numbered NB tags, we

get make—shift and a—chieved; well—springs and *her—oines. The last example

is still incorrect, but is at least linguistically plausible.

Numbered NB Tags capture a key feature of a syllable: its length. However,

like IMF and NB tags, it is a purely positional scheme. The tags say nothing about

the function a given letter is performing within a syllable. To whit, these positional

tags cannot identify which letter(s) in a syllable are acting as a nucleus. The impli

cation of this shortcoming is that Numbered NB tags, NB tags, and IMF tags do not

force syllables to contain a plausible nucleus. Using positional tag sets, the SVM-

HMM will see no contradiction in predicting a syllable that contains only a single

consonant. Consequently, we see output like *lim—b—er (instead of lim—her) and

*par—t—ner—ships (part—ner—ships). .

To prevent errors of this nature, I implement ONC tags. ONC tags label every

letter of a word as being part of either an onset, nucleus, or coda. Under this tagging

scheme, the gold standard of syl—lab—i—fy is (O N C O N C N O N). Given

this sequence of tags, a regular expression can insert the syllable boundaries in

the correct locations3. Such a tagging scheme has previously been attempted in

the phoneme domain [Krenn, 1997], but to my knowledge has not been previously

attempted in the letter domain. This is perhaps not without reason. Training data

labelled with these tags is not available, and generating the tags deterministically

2Numbering NB tags is exactly equivalent to numbering IMF tags, so there is no need to explore
both options.

3I abstract. In practice, we must always number the nuclei tags; otherwise, we will be unable to
determine whether tag sequences like (O N N C) represent a single syllable with two vowels (as in
reap), or two syllables (as in re—up).

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from syllabified word lists is non-trivial.

Consider the word syl—la—ble, for which we generate ONC tags (O N C O

N O O N) . An obvious difficulty for English is the letter y, which sometimes acts

as vowel and sometimes as a consonant. In actual practice, this is an easy issue

to solve. All ys that are both preceded and followed by a consonant (as in the first

syllable of the example) must be vowels by default. Otherwise, the letter y is treated

as a consonant.

A more difficult problem can be found in the last syllable of the example. Our

script for generating ONC tags chooses the labels (O O N), effectively setting this to

be the gold standard. However, these labels are not, strictly speaking, correct. The

letter e is actually silent here, and the I is acting as a syllabic consonant; that is, the I

represents the nucleus of the syllable. The letters /, m, n, and r can all act as syllabic

consonants in English. To deal with this, these four letters are allowed to be labelled

as nuclei if there are no vowels in the syllable. The vagaries of English spelling

mean that syllabic consonants are often accompanied by silent letters. Thus, there is

a certain degree of noise in the gold standard labelling. I should stress that this noise

does not affect the accuracy of the syllabifications derived from the labellings; the

tags are generated specifically to be consistent with the syllable breaks as provided

in the dictionary.

These problems with ONC tags are a drawback of the tag set. Across languages,

different letters can act as vowels; without knowing which letters can act as vow

els in a particular language, ONC tags cannot be generated. Accordingly, I do not

experiment with ONC tags for Dutch or German. Nonetheless, I pursue the tag

scheme for English because it does capture the internal structure of the syllable,

which is a positive attribute. Using ONC tags, SVM-HMM no longer produces

syllables consisting of a single consonant. Moreover, I believe ONC tags can eas

ily be adapted for other languages by anyone with enough familiarity with those

languages to know their idiosyncrasies.

There is also considerable scope for variation within ONC tags. I explore num

bering the (O) and (C) tags: Numbered ONC Tags will label the word strengths

as (01 0 2 03 N1 C l C2 C3 C4 C5). Reverse ONC Tags also number the tags,

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

but the coda tags are numbered from right-to-left instead of left-to-right. Hence,

strengths is labelled (Ol 0 2 03 N1 C5 C4 C3 C2 C l). Since syllable codas can

vary in length, Reverse Numbered ONC Tags ensure that the same tag always ap

pears as the last label in the coda. Another option is to provide a special label for

silent letters. Thus, in a word like blade, where the final e is silent, the gold stan

dard labelling is (O O N C E). These ONCE Tags can, of course, be numbered or

reverse-numbered.

With all of these ONC tags, a syllable break is not represented by a single tag.

It takes a combination of two tags (e.g. adjacent C and O tags) to denote a syllable

boundary. I also explore an ONC tag set that models syllable breaks explicitly using

a single tag. Under the labelling scheme Break ONC Tags, the word lev—i—ty is

tagged as (O N CB NB O N). The tag (NB) indicates a letter is both part of the

nucleus and before a syllable break, while the the tag (N) represents a letter that is

part of the nucleus, but in the middle of a syllable.

5.2.1 Tag Set Comparisons

To determine the best tag set, I ran a series of experiments on the development set

using my best feature set (see Section 5.3.)

Primarily, I measure my performance using word accuracy, which reports how

many words are given the same syllabification as the gold standard. Note that this

is not the same as words where all the letters are assigned the correct tag, as the

syllable boundaries may be correct even if the tags are not.

I also present a metric I call syllable break accuracy. Syllable break accuracy

measures the proportion of tags that produce a correct syllable boundary decision.

It is related to simple tag accuracy, but allows for better comparison across tag sets.

Consider the word side—show, with the gold standard Reverse ONC tagging (Ol

N1 C2 C l 01 0 2 N1 C l). If it has been mislabelled (01 N1 C3 C2 C l 01 N1

C l) (*sides—how), the tag accuracy will be 4/8 = 50 percent. If the same mistake

is made using the ONC tag scheme, where the gold standard is (O N C C O O N

C), the incorrect tag sequence (O N C C C O N C) gives a tag accuracy of 7/8 =

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87.5 percent. By contrast, syllable break accuracy only penalizes incorrect tags that

cause an error in the syllabification, so it remains constant across tag sets. Under

both Reverse ONC and ONC Tags, syllable break accuracy is 87.5 percent.

Positional Tags

Table 5.1 presents the results for all non-ONC tagsets. We see that NB tags lag con

siderably behind IMF and Numbered NB tags in terms of word accuracy. The poor

performance of NB tags is most likely due to the weakness of the signal coming

from the emission features. In English, a syllable break can be drawn after almost

every letter, depending on the context. Hence, every letter can take on either tag

with almost equal probability. This is not the case with either IMF or Numbered

NB tags. Vowels often appear in the middle of a syllable, and consequently are

much more likely to have N2 or N3 tags, or M tags. Consonants take on (N l) or (I)

labels with greater probability.

Tag Set Word Accuracy Syllable Break Accuracy
NB Tags 82.56 96.58
IMF Tags 85.55 96.70
Numbered NB Tags 86.61 96.87

Table 5.1: Development set results for positional tag sets.

To illustrate this phenomenon, I have graphed the weights derived from train

ing SVM-HMM with a very restricted feature set: only the central focus character.

Figure 5.1 plots the absolute weight value vector learned for a representative sam

pling of letters under NB Tags. We see that for NB tags, the weight vector assigns

almost equal weight for all letters, indicating that there is nothing to differentiate

the letters. Meanwhile, the (N) and (B) tags have the same magnitude of weight,

but different signs. Because the learner cannot distinguish between the features (in

this case a single letter), it will simply postulate the more frequent (N) tags. This is

exactly what we do not want to see in a machine learning problem: the signal is the

same for all cases, so it is difficult (if not impossible) to learn anything. Indeed, the

word accuracy for NB tags with this restricted feature set is only 12 percent — not

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coincidentally, the same as the proportion of monosyllabic words in the test set.

□ N
■ B

Figure 5.1: Weights learned by SVM-HMM using NB tags.

Compare this to the equivalent graphs for Numbered NB tags, shown in Fig

ure 5.2. Here, we get a much better story. There is significant variation across

letters, and the magnitude of the weight varies widely across potential tags. Vowels

tend to have a strong, positive signal for (N2) and (N3) tags, indicating that these

letters are most often found in the middle of a syllable. Meanwhile, consonants

have strong, positive weights for (N l) tags. Word accuracy increases accordingly:

using the same feature set with the numbered NB tags increases word accuracy to

40.5 percent.

ONC Tags

Table 5.2 presents the results for the various versions of ONC tags. On the whole,

there is not much to choose between any of the variations, although Break ONC tags

are more than half a percentage point better than the others. More surprisingly, ONC

tags fail to out-perform the best positional tags. At 86.61 percent word accuracy,

Numbered NB tags are slightly ahead of all of the ONC tags except Break ONC —

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

3

-3 J :-------------------- ------- --
a e o y b m t

Letters

Figure 5.2: Weights learned by SVM-HMM using Numbered NB tags.

and Break ONC tags are a hybrid of ONC tags and NB tags.

Occam’s razor tends to favour Numbered NB tags. There is a fair amount of

overhead required to generate ONC tags in the letter domain, and they cannot be

directly applied to new languages without modification. Numbered NB tags achieve

comparable results, and they are much simpler to generate and work with.

Tag Set Word Accuracy Syllable Break Accuracy
ONC tags 86.21 96.65
ONCE tags 86.21 96.63
Numbered ONC tags 86.27 96.67
Reverse ONC tags 86.09 96.61
Break ONC tags 86.94 96.89

Table 5.2: Development set results for ONC-based tag sets. ONCE versions of
Numbered and Reverse ONC tags were also tested, but did not measurably change
the results.

However, an examination of the errors made by both tag sets reveals that Num

bered NB tags tend to produce more damaging errors than Break ONC tags. For

example, syllabifications like *an—k—let and *am—ps are clearly incorrect be

cause they contain syllables with no vowels. Break ONC tags produce 5 such errors

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the development set. Conversely, Numbered NB tags produce 32 of these errors

— more than six times as many. ONC tags are more resistant to this type of error

because they implicitly require every syllable to contain a nucleus. Given that Break

ONC tags also achieve slightly higher accuracy than Numbered NB tags, there is a

case to be made for preferring Break ONC tags in spite of their greater complexity.

Moreover, it turns out that the various tag sets achieve similar word accuracy

scores by correctly syllabifying different subsets of the test set. I do not want to

overstate the differences — the various tag sets produce the same syllabifications

in about 90 percent of cases. Nonetheless, I consider the variation in the tag sets to

be worth exploring. For instance, if we consider the output from ONC tags, Break

ONC tags, and Numbered NB tags, we find that at least one of those tag sets is

correct 91 percent of the time. Thus, given an oracle to tell us which output to

choose, we could decrease the error rate by a third. I have no oracle, and simple

solutions like a majority vote are ineffective: when two tag sets agree, they are

about as likely to agree on the wrong answer as the right one, leaving accuracy

unaffected. However, combining multiple tag sets is a potential avenue for further

improvements.

It is difficult to choose between Numbered NB and Break ONC tags on their

merits. In addition, it might be advantageous to combine the two tag sets in some

fashion. Accordingly, I will report results for both Numbered NB and Break ONC

tags in experiments on English CELEX. For other languages, (and for NETtalk

data, whose bizarre syllable breaks make ONC tags difficult to apply), I will only

apply Numbered NB tags to the problem.

5.3 Feature Engineering

In the SVM-HMM framework, emission features are generated on individual letters

within words. I use aspects of the input to help predict the correct tag for a given

letter. These emission features are distinct from transition features, which capture

the probability of one tag following another. Transition probabilities are calculated

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from counts of tag pairs in the training data; they are automatically generated by

the SVM-HMM package’s infrastructure.

Using a traditional HMM, our features are limited. Given a the letter a in a word

like syllable, we generally consider only that it is an a being emitted, and assess

potential tags based on that single letter. The SVM framework is less restrictive:

we can include a as an emission feature, but we can also include features indicating

that the previous letter is an I and the following letter is a b. In fact, there is no

reason to confine the feature set to one character on either side of the focus letter.

The window size is the number of letters on either side of the focus character

that are included in the feature representation. To determine the optimal window

size, I experiment with increasingly larger window sizes on the development set,

using only unigram features. Special beginning- and end-of-word characters are

appended to words to ensure that every letter has sufficient characters before and

after. I find that word accuracy is best using a window size of 11: five characters

before and after the focus character. Expanding the window size beyond that causes

overfitting. Figure 5.3 shows how the window size affects word accuracy. For

clarity, only the Break ONC tags are plotted; the results for other variants of ONC

tags follow a similar learning curve.

Window Size Context Word Accuracy
3 h—ihh+i 58.95
4 h—ihh+ih+2 61.56
4 h—2h—ilih+i 60.42
5 li—2̂ i—l î î+lh+2 63.08

Table 5.3: Symmetric vs. Asymmetric Windows

In the final tested system, I use a symmetric window, with five characters on ei

ther side of the focus character. However, during development I also experimented

with asymmetric windows, including more characters after the focus character than

before, or vice versa. Empirically, the letters after the focus character seem to be

more important for prediction accuracy. In Table 5.3, I present the word accu

racy values for the Numbered ONC tags for single-letter features at small window

sizes. Compared to a baseline of a symmetric window of size three, adding a sec-

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Numbered NB
Break ONC

Figure 5.3: Word accuracy as a function of the window size around the focus char
acter.

ond character after the focus letter (line 2) creates a fairly substantial performance

boost, increasing by two and a half percentage points. Conversely, adding a second

character before the focus letter (line 3) improves performance by only 1.5 points.

However, adding a character both before and after the focus letter is by far the best,

showing an increase of over four percentage points above the three-character win

dow. This general pattern is typical of all tag sets and window sizes, although the

differences are less pronounced as the learning curve starts to level off.

SVM-HMM uses a linear kernel, and so is effectively a linear classifier. Con

sequently, any important conjunctions of features must be represented explicitly.

Inherently, language is non-uniform and letters generally appear in predictable pat

terns across words. For instance, the bigram bl frequently occurs within a single

English syllable (e.g. blow, bliss, blah, etc.). Conversely, the bigram lb generally

straddles two syllables (e.g. al—bum, sail—boat, el—bow, etc.). Similarly, a four-

gram like tion or ates often forms a syllable in and of itself. Hence, in addition to

the single-letter features outlined above, I also include higher order N-grams in the

feature representation.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using the development set, I tested feature representations that include all the

bigrams, trigrams, fourgrams, and fivegrams within the 11-character window. Fig

ure 5.4 shows that word accuracy improves by more than 20 percentage points with

the addition of N-grams. These are features that would be unavailable using the

simple HMM framework, because they are not conditionally independent. Note

that when using only unigram features, ONC tags are clearly better than Numbered

NB tags, which are in turn better than IMF tags. As we add higher-order features,

the differences between the tag sets begin to disappear.

The optimal feature configuration is not the same for all tag sets — for instance,

Reverse ONC tags start to overfit if the feature set is extended beyond fourgrams.

However, for both Numbered NB tags and Break ONC tags, the best feature set

includes all unigrams, bigrams, trigrams, fourgrams, and fivegrams. It is also not

obvious that the optimal window size I determined for unigrams will hold for the

fivegram case. However, experiments on the development set confirm that including

all N-grams that occur in an eleven-character window produces better accuracy than

other window sizes. Thus, all N-grams up to five occurring in an eleven-character

window make up the optimal feature set, both for the experiments in the following

section, and the development set experiments presented in Section 5.2.

Over the course of this work, I tried two different ways of representing N-gram

features. Initially, the feature space included an exhaustive list of all possible N-

grams. This makes for an extremely large feature space, as there are 531,441 pos

sible four-grams, and eight four-grams within the set window size. This makes

for 4.2 million features for fourgrams alone. This is clearly inefficient, as most of

the 531,441 possible fourgrams will never appear in English (qxzp, for example).

Moreover, it precludes experimenting with fivegrams for technical reasons — ~72

million features is computationally intractable. Consequently, in the final tested

system, I gather all the N-grams actually appearing in the training data, and gen

erate a feature for each seen N-gram. During testing, all N-grams that were not

seen during testing map to a single ‘unseen N-gram’ feature. The drawback of this

approach is that models learned on different training data are not interchangeable,

as they will have different feature representations. However, the reduction in the

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Numbered N3
Break ONC

unlgram Mgram trig ram fourgram flvegram

Figure 5.4: Word accuracy as a function of N-grams incorporated into the feature
set.

feature space is dramatic, as the number of seen 4-grams in the whole of English

CELEX is only 32,835. Adopting this representation keeps the number of features

under 900K.

In addition to N-gram features, I also experiment with linguistically-derived fea

tures. Intuitively, we expect features like whether a letter is a consonant or a vowel

to be important. However, experiments on the development set showed that perfor

mance was essentially unaffected by these features. Even more sophisticated fea

tures, such as probabilistic representations of the manner of articulation of a letter,

produced only incremental gains (a few hundredths of a point). These linguistically

derived features are so unhelpful because the SVM can learn generalizations from

the N-gram features alone. Moreover, these linguistic features make my approach

more complex and detract from its language-independence. Consequently, I do not

explore this avenue any further.

Recall from Section 3.2 that the cost parameter (or c value) of the structured

SVM allows for a trade-off between the accuracy on the training set and the com

plexity of the weight vector. This parameter needs to be tuned for optimal perfor-

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mance. I tested c values of 0.001, 0.01, 0.1, 1, and 10 on the development set, and

found 0.1 to be optimal for most configurations (although some of the unigram fea

ture sets did better with a different c parameter). I do not tune the e parameter for

the syllabification task, because values of e lower than 0.5 have been found to not

improve prediction accuracy [Herbst and Joachims, 2006]. All results reported in

this chapter are based on a c parameter of 0.1 and an e of 0.5.

5.4 Experiments and Results

All results in this section are from models trained on the optimal feature set of

fivegrams across an 11-character window.

5.4.1 Comparison with SbA

My first experiment provides a direct comparison between my system and Syllab

ification by Analogy (SbA), the existing state-of-the-art for English orthographic

syllabification [Marchand et al., to appear]. After personal communication with

Marchand, I trained and tested my system using the same training and test sets that

he used for his results.

System Word Accuracy Syllable Break Accuracy
SVM-HMM - Break ONC 89.99 97.58
SVM-HMM - Numbered NB 89.45 97.49
Syllabification by Analogy 84.97 96.04

Table 5.4: Performance of SVM-HMM and SbA on common training and test sets
drawn from CELEX.

Table 5.4 reports the results of this comparison on the CELEX dataset. For these

experiments, both Marchand and I use a 14K training set and a 25K test set. The

14K training set was selected to be approximately the same size as the training data

used for NETtalk. Our NETtalk experiments use a 13K training set and a 7K test

set. Table 5.5 presents the NETtalk results.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System Word Accuracy Syllable Break Accuracy
SVM-HMM - Numbered NB 81.74 94.99
Syllabification by Analogy 75.56 92.27

Table 5.5: Performance of SVM-HMM and SbA on common training and test sets
drawn from NETtalk.

SVM-HMM fares very well in this direct comparison. Relative to SbA, SVM-

HMM reduces the error rate by 33.3 percent on CELEX, and by 25.8 percent on

NETtalk. Moreover, SVM-HMM is more efficient, making it much more attractive

for inclusion in an actual L2P system. Once a model is learned, my system can

syllabify 25K words in about a minute, while SbA requires several hours. SVM-

HMM training times vary depending on the tag set and dataset used. Training the

Numbered NB tag set on 14K training examples takes approximately two hours on

a single-processor P4 3.4 GHz processor. ONC tag sets train in about half that time.

In either case, of course, training time is a one-off cost.

5.4.2 Learning Curve

My second experiment tracks SVM-HMM’s learning curve as I increase the amount

of training data available to it. Using a very small held-out test set of 5,000 ran

domly selected words, I gradually increase the training set from IK to 60K. Fig

ure 5.5 shows how performance increases.

As is evident, larger amounts of training data greatly improve performance.

However, this curve must be interpreted with caution. Language is very productive,

and many words will re-appear in a number of different forms. Thus, a more re

alistic representation of how Structured SVM will fare on truly unseen words like

proper nouns must ensure that none of the test words appear in the training set in

another form.

Fortunately, in addition to its word lists, CELEX includes lists of lemmas. Lem

mas are like headwords in a dictionary, using one instance to represent the related

forms of a various word [Crystal, 2003]. Thus, the CELEX lemma list will contain

educate, but not educates or educating. However, it will still contain other parts

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

80

SO

40

30

20

10

lk 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k

Figure 5.5: Word accuracy as a function of N-grams incorporated into the feature
set.

System Training Data Word Accuracy Syllable Break Accuracy
Break ONC 30K words 92.74 98.27
Numbered NB 30K words 92.30 98.22
Break ONC ~30K lemmas 91.35 97.91
Numbered NB ~30K lemmas 91.21 97.93

Table 5.6: Performance on a dataset drawn from lemmas is a more realistic approx
imation to how a syllabification system will fare on unseen words.

of speech derived from the same root, such as educator and educational. Nonethe

less, duplication across the training and test sets will be greatly reduced. I there

fore report Structured SVMs performance trained and tested on the CELEX lemma

list. This dataset contains 35K words. I hold-out 10 percent words for testing, and

train using the remaining words. Once again, duplicates, multiple-word entries, and

words containing apostrophes are removed. Table 5.6 shows results on the lemma

set and contrasts it with results taken from CELEX word lists. Performance falls

off by about a percentage point, but word accuracy rates remain high.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.3 Other Languages

Next, I apply my system to the other languages available in CELEX, Dutch and

German. I apply the same feature set and the Numbered NB tag set to these new

languages. For each language, I report results on a held-out 25K test set. I use both

a small (50K) and large (250K) training set to learn the models. Table 5.7 shows

the results of each.

System Training Data Word Accuracy Syllable Break Accuracy
German 50K words 98.81 99.81
German 250K words 99.78 99.97
Dutch 50K words 98.20 99.71
Dutch 250K words 99.45 99.92

Table 5.7: Performance of SVM-HMM on the German and Dutch portions of
CELEX.

Performance on German and Dutch is clearly better than performance on En

glish. This is because syllabification is a more regular process for German and

Dutch.

I performed no direct comparisons on German and Dutch, but there is some

previous work that uses the same data set. Bouma’s [2002] finite state approach

achieved 96.49 percent word accuracy when trained on 50K examples taken from

Dutch CELEX. My system achieves 98.20 percent word accuracy. With a larger

model, trained on about 250K training examples, Bouma achieves 98.17 percent

word accuracy, as compared to 99.45 percent for SVM-HMM. My system produces

better performance, but Bouma’s system has the advantage of producing concrete

linguistic rules.

In German, Demberg’s [2006] HMM-based approach scores 97.87 percent word

accuracy, using about 250K CELEX training points. My word accuracy on that

amount of training data is 99.78 percent.

It is difficult to draw definitive conclusions from these numbers, because the

different systems do not use the exact same training and test data. However, my

discriminative models out-perform the competitors on similar datasets, even though

I do not tune my system to apply them to the new languages.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System Training Data Word Accuracy Syllable Break Accuracy
German 45K lemmas 98.21 99.70
Dutch 107K lemmas 97.53 99.62

Table 5.8: Performance on CELEX lemmas is somewhat lower.

As with English, very large training sets create problems with overlap. I apply

SVM-HMM to the lemma datasets for German and Dutch. There is quite a disparity

in the size of these sets: the Dutch lemma set is 120K, while the German lemmas

set is only 50K. In both cases, I randomly select 10 percent as a held-out test set,

using the remaining lemmas for training. Results from these models are listed in

Table 5.8. We can see that, for Dutch in particular, the overlap between training and

test sets is inflating the word accuracy scores somewhat. However, on the whole,

accuracy in these languages is still extremely high.

5.4.4 Letter-to-Phoneme Problem

One of the motivations for this work is to improve performance on the Letter-to-

Phoneme (L2P) problem. Incorporating my syllabification models into an existing

state-of-the-art L2P system [Jiampojamam et al., 2007] produces a noticeable im

provement in L2P accuracy.

The L2P system in question explores using many-to-many letter-to-phone align

ments as part of a prediction system in place of the traditional, strict one-to-one

alignments. The L2P system first ‘chunks’ an input letter stream, predicting whether

a letter generates a phoneme by itself, or whether it combines with an adjacent let

ter to produce a single sound. Given these chunks, a local classifier predicts the

most likely phones for each chunk. A Markov model is then used to select the most

likely sequence of phonemes, based on the candidate phones proposed by the local

classifier.

To incorporate my syllabification models into this L2P system, the initial chunk

ing and final Markov phases proceed as usual. However, the context window used

by the local classifier is expanded to include syllable boundary information for the

letters preceding and following the focus chunk. Recall from Chapter 2 that in

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gold standard syllabifications, short, stressed vowels tend to be followed by a coda

rather than a syllable boundary. Because of this fact, phone prediction accuracy (es

pecially for vowels) is likely to improve with the presence of syllable information.

To test the improvement syllabification can generate, the L2P system was run in

three different ways:

(1) in its normal operation, with no syllabification model,

(2) using the gold standard syllabification found in CELEX, and

(3) using the SVM-HMM learned model to syllabify the words.

The gold standard L2P results can be viewed as an upper bound on the contribu

tions of my syllabification models. All L2P results are reported in terms of word

accuracy.

The L2P system was tested using ten-fold cross-validation, training on 90 per

cent of available data and testing on 10 percent for each fold. I used the Break ONC

and Numbered NB English models, trained on 15K CELEX words, and the Num

bered NB German and Dutch Models, trained on 50K words, as my syllabification

models. I opted to use syllabification models trained on a smaller amount of data

because both the syllabification and L2P models are trained on the same CELEX

dataset. Using most of CELEX to train the syllabification model would be almost

the same as using the gold standard, and not indicative of how the process would

perform on real unseen data. The mean word accuracy over all ten folds is reported

in Table 5.9.

Syllabification English Dutch German
None 84.67 91.56 90.18
Dictionary 86.29 93.03 90.57
Numbered NB Model 85.55 92.60 90.59
Break ONC Model 85.59 N/A N/A

Table 5.9: Adding gold standard syllabification information improves the perfor
mance of a state-of-the-art L2P system; using syllabification derived from a learned
model captures some of that potential gain.

In English, perfect syllabification increases L2P word accuracy 1.62 percent

age points. My Numbered NB syllabification model increases L2P accuracy by .88

points, while the Break ONC model increases accuracy by 0.92 percent. This repre-

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sents over half of the potential gain — a particularly notable result because, to my

knowledge, it is the first instance of a learned orthographic syllabification model

actually improving performance on the L2P task in English. In Dutch, the potential

gain is 1.47 percentage points, using the gold standard. My model increases the L2P

score by 1.04 points, capturing over 70 percent of the available increase. In German,

perfect syllabification produces only a small gain of 0.39 percentage points. Exper

iments show that my learned model actually produces higher word accuracy than

the dictionary syllabification. This anomaly may be due to errors or inconsistencies

in the dictionary syllabifications that are not replicated in the model output. My

German results are somewhat at odds with Demberg’s [2006] L2P results, which

generated statistically significant L2P improvements of one full percent by adding

her syllabification models. However, Demberg’s base L2P accuracy is considerably

lower, with word accuracy scores below 75 percent.

On the whole, I find my syllabification models never worsen L2P performance,

and can produce noticeable improvements.

5.5 Conclusions

Most previous work on syllabification of letters has used a simple binary NB tag

scheme, either implicitly or explicitly. In this chapter, I introduced a new tag

scheme, Numbered NB, that produced superior results. I have also applied ONC tag

schemes to the task; although this type of tagging is common in the phoneme do

main, it is novel for letters. Unlike Numbered NB tags, ONC tags implicitly require

every syllable to have a vowel. In spite of this extra constraint, the performance of

ONC tag schemes lagged behind Numbered NB tags. However, a hybrid of NB and

ONC tags performed very well.

This chapter has also shown the importance of complex, overlapping features.

Expanding the context window used to predict each tag is an important component

of good performance. However, adding N-gram features over the context window

is at least as valuable in terms of increasing word accuracy. These features have the

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

great advantage of being entirely language independent.

As components of a discriminative training method, the feature and tag sets

introduced in this chapter produce a state-of-the-art syllabification system. In a

direct head-to-head comparison in English, my system reduced the error rate by

one-third, relative to the previous best system. Although direct comparisons in

other languages were not possible, my system produced results that are competitive

with the best published accuracies in German and Dutch. In tandem with a state-

of-the-art L2P system, my English and Dutch syllabification models were able to

produce notable increases in L2P accuracy.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Syllabification of Phonemes

Linguists view syllabification of phonemes as entirely divorced from “syllabifica

tion” of letters. Nevertheless, from a computational perspective, the task is virtually

identical: divide strings of symbols into segments based on underlying (possibly

noisy) rules. Thus, the discriminative models outlined in Chapter 5 can be easily

adapted to the new domain.

Indeed, a priori, I expected my system to perform rather better with phonemes.

There is considerable ambiguity in the orthographic domain, which complicates the

letter task. For instance, there are 22 vowel sounds in the English language, and sev

eral different letters combine in a myriad of ways to represent these sounds. Worse,

the same letter combinations do not consistently represent the same vowel sounds.

Consider the words [b r l d] (braid) and [{ 1 1 _I | b r l | I k] (al—ge—bra—ic) —

in the former, the letter combination ai maps to the single phoneme [1] , while in

the latter it maps to two phonemes, [1] and [I]. Conversely, each vowel sound

is uniquely represented by a single phoneme. By definition, an English syllable

has only a vowel sound (peak), so we can deterministically find the nucleus in the

phoneme domain, where we cannot in the letter domain. In addition to making the

SVM’s job easier, this greater transparency in the phoneme domain makes rule-

based methods a viable option.

In Section 6 .1 ,1 explore several rule-based approaches to syllabification, imple-

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

menting common theories of syllabification as outlined in Section 2.2. I compare

the results of those rule-based methods with my discriminative approach in Sec

tion 6.3. In Section 6.2, I explain how the SVM-HMM outlined in Chapter 5 is

adapted to the phoneme domain.

6.1 Rule-based syllabification

Rule-based methods are an appealing approach to syllabification in general because

syllabification is a regular process that linguists have attempted to formalize as

rules. Moreover, rules are more efficient than data-driven methods, because they

require neither training data (which can be difficult to find) nor training time. All

the methods presented in this section apply rules to classify phonemes as being

either onsets, nuclei, or codas.

I did not pursue rule-based methods in the orthographic case because letters

are so ambiguous, and previous work has found that rule-based methods in English

perform extraordinarily poorly [Marchand et al., to appear]. Furthermore, syllabi

fication of letters is not an accepted phonological process as it is for phonemes, and

dictionaries vary widely in how they syllabify orthographic forms. Thus, accuracy

of orthographic syllabification is very much only with respect to the gold standard

set out by a particular dictionary, which can be influenced by a number of different

factors, and not necessarily any underlying linguistic principle. Of course, accuracy

in phonemic syllabification is still relative to a given standard, but in a larger sense,

we can view the efficacy of rule-based methods for phonemic syllabification as a

measure of how well a dictionary ascribes to a linguistic principle of syllabification.

My baseline rule-based method is Max Onset. This approach simply maxi

mizes the onset for every syllable, without any regard for the legality of the onsets

involved. Only word-final consonants will be labelled as codas by Max Onset. Ob

viously, there are a number of consonant combinations that are illegal as English

onsets, so word accuracy performance for Max Onset ought to be rather poor. How

ever, the method should provide a good measure of how strictly a language follows

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vowels 9
Syllabic Consonants 9
Glides 8
[r] 7
[1] 6

Nasals 5
[s] 4

Voiced fricatives 3
Voiceless fricatives 2
Voiced plosives 1
Voiceless plosives 0.5

Figure 6.1: The Sonority Scale employed by Base Sonority

the maximal onset principle. Presumably, in a language like Hawaiian, where co

das are prohibited, and any consonants are, by default, part of an onset, Max Onset

would be sufficient to perform perfectly accurate syllabification.

The sonority sequencing generalization (SSG) is implemented as Sonority. This

method uses an approximation of Selkirk’s [1984] original sonority scale. However,

Selkirk’s original sonority scale is incomplete, leaving out a number of sounds alto

gether. In Sonority, these missing sounds have been added by grouping them with

their most closely related sounds actually appearing in the scale. Thus, [N], not

appearing in Selkirk’s original scale, joins [m] and [n] to form the Nasals group.

Sonority also does not register any difference between types of vowels, assigning

them all the same sonority value. This is a departure from Selkirk’s original hy

pothesis. The actual sonority scale used by Sonority is presented in Figure 6.1.

Recall that SSG alone is not sufficient to syllabify a word: a combination like

[r p l] (two liquids separated by a plosive) can be divided as [r | p i] or [r p 11]

and still follow the generalization. The Base Sonority implementation chooses the

largest onset such that each phone in the onset has a sonority value higher than

the preceding phone. Accordingly, given a word like [p 3 r | p lE k s] (perplex),

the program will output p3r—plEks, maximizing the onset of the second syllable,

rather than the coda of the first.

Note that Sonority can be viewed as an instantiation of Hammond’s optimality

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

theory. Sonority is a higher ranking constraint than maximal onset, so maximal

onset can be violated in order to satisfy SSG. However, whenever possible, both

implementations will produce valid sonority sequences and maximal onsets.

The Legality approach implements the legality principle. Legality can be con

sidered a data-driven method of sorts: given a list of words, we designate all word-

initial consonant clusters to be valid onsets, and all word-final consonant clusters

to be valid codas. However, Legality does not require a separate labelled training

set, so it is more akin to other rule-based methods. As with the sonority approach,

I combine the legality principle with maximal onset, so the largest legal onset is

always preferred to alternatives. As presented in Section 2.2, the legality principle

considers both legal onsets and legal codas. However, the notion of a ‘legal’ coda is

decidedly more ephemeral than that of a legal onset — coda rules are often broken.

And, there may be cases where a three-phone consonant cluster cannot be divided

into a valid two-phone coda or two-phone onset, based on the words seen. Con

sequently, my Legality implementation does not take into account legal codas, and

seeks only to maximize the legal onset, relegating all remaining consonants to the

preceding coda, without regard for their legality.

6.2 Adapting SVM-HMM to the Phoneme Domain

There are very few modifications required to apply SVM-HMM to syllabification

of phonemes.

As with letters, the primary data set is CELEX. CELEX, unlike some other

dictionaries, does not use the same syllabifications in the phoneme domain as the

the letter domain. For example, CELEX syllabifies the word [@ b ls lz] (abases)

as a—has—es in the letter domain, and [@ | b l | s l z] in the phoneme domain.

Note in particular how the syllabification of phonemes follows the maximal onset

principle rule more strictly in the final syllable. By contrast, if the end of line break

for abases were to come before the s, that might imply a different kind of a sound,

so the onset is not maximized.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I also report results on the NETtalk data set. Most of NETtalk’s truly bizarre

orthographic syllabifications are an artifact of mapping phonemic syllabifications

into the letter domain. Consequently, NETtalk is not nearly as problematic for

syllabification of phonemes.

I experiment with most of the same tagging schemes for both phonemes and

letters. It is not necessary to explore ONCE tags in the pronunciation domain, be

cause there are no silent phonemes. For the letter case, generating ONC tags is not

straightforward. Some knowledge of the language is required to deal with things

like syllabic consonants and silent letters. By contrast, with phonemes, generating

ONC tags from syllabified data is deterministic. All vowels are labelled as nuclei;

all consonants preceding the nucleus of a syllable are tagged as onsets and all con

sonants following the nucleus have coda tags. Consequently, ONC tags are a much

more natural choice for syllabification of phonemes, and can be applied much more

easily across languages.

100

80

60

I SO

I 40
30

1 3 S 7 1.311

■ MB
■ 2MF
■Numbered NB
■ Numbered ONC

Figure 6.2: A window size of 9 is optimal for the phoneme domain.

I replicate the development set experiments from Chapter 5 to determine the

optimal tag set and feature set. I use the phonetic equivalents of the 5K training set

and 10K development set I employed in the letter domain.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.2 shows how window size affects word accuracy on several tag sets.

Unlike the letter domain, word accuracy really stops improving once the window

size extends beyond nine characters. Hence, for the phoneme system, I will use a

symmetric window of only four characters on either side of the focus letter.

300

98

94

92

jU| 88
Numbered ONC

84

82

trlgram fourgram flvegram
N-gram s

Figure 6.3: Fivegrams cause overfitting in the phoneme domain. Note that the y-
axis has been truncated to improve readability.

Figure 6.3 demonstrates how higher order N-gram features affect the results.

Here again, we see a deviation from the letter results: fivegrams cause word accu

racy to decline, due to overfitting. Therefore, the feature set for the pronunciation

domain will be limited to all the unigrams, bigrams, trigrams, and fourgrams within

a nine-character window.

Selecting the best tag set is also more straightforward when working with phonemes.

In the first place, Numbered NB tags are not any simpler than ONC tags in the new

domain. We can deterministically generate ONC tags and easily apply them to other

languages. Numbered NB tags still have the weakness of not requiring a nucleus in

every syllable. In the development set output from Numbered NB tags, there are 18

words that contain impossible syllables consisting of only a consonant. With Num

bered ONC tags, there is only one. And, there is negligible scope for improvement

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tag Set Word Accuracy Syllable Break Accuracy
NB Tags 97.16 99.32
IMF Tags 97.70 99.38
Numbered NB Tags 97.49 99.36
ONC Tags 97.86 99.35
Numbered ONC Tags 98.15 99.44
Reverse ONC Tags 98.03 99.40
Break ONC Tags 98.01 99.45

Table 6.1: Development set results for the phoneme domain.

by combining tag sets. Generally, if using a particular tag set produces the correct

syllabification, all of the tag sets will be correct. Even with an oracle to tell us which

tag set to choose, we would only be able to improve word accuracy from 98.15 to

98.40. Given all these factors, I report the results for only the highest-scoring tag

set, Numbered ONC, throughout the rest of this chapter.

6.3 Experiments and Results

For the most part, in this section I will duplicate all the experiments reported in

Section 5.4. Unfortunately, I do not have access to SbA results on identical data, so

direct comparisons are unavailable.

6.3.1 English CELEX Data

My first set of experiments compares the performance of the three rule-based ap

proaches and SVM-HMM against the CELEX gold standard. SVM-HMM is trained

using 30K randomly selected words not appearing in the test set. This same training

set is used to define the legal onsets for the Legality script. The test set is made up

of 5K words not appearing in the training set. The training and test sets contain

the same words as the datasets used for the learning curve comparison experiments

in Section 5.4.2. As before, I report performance in terms of word accuracy and

syllable break accuracy. Table 6.2 presents the results of each method.

As expected, Max Onset does not perform especially well. However, it still

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Method Word Accuracy Syllable Break Accuracy
Max Onset 61.38 87.40
Legality 93.16 98.04
Sonority 77.72 93.15
SVM-HMM 98.86 99.69

Table 6.2: Syllabification performance in terms of word and syllable accuracy per
centage.

syllabifies over 60 percent of words correctly, and achieves reasonably high tag

accuracy. Thus, it appears that CELEX is fairly consistent with the maximal onset

principle. Sonority is also not a very strong performer, although this too in not

unexpected. Selkirk [1984] never claimed that the values in her sonority scale were

definitive — only that the general ordering of sounds was correct. More tuning of

the values in the sonority scale may well improve the performance of a sonority-

based method; this is an avenue for future research.

The word accuracy score for Legality is about five percentage points lower than

the discriminative method. However, Legality runs more quickly, and does not

require labelled training data. Although out-performed by more sophisticated sys

tems, the rule-based method is a viable alternative for languages with a paucity of

labelled training data.

Notwithstanding the success of Legality, SVM-HMM is still far and away the

best performer. In fact, the discriminative model’s word accuracy exceeds the best

rule-based approach when it is trained using only 5000 data points, as is evident in

Figure 6.4. What is more, SVM-HMM does increasingly better as the amount of

training data grows; the rule-based methods are unaffected by the amount of data

available.

Of course, as with letters, there is considerable duplication within the CELEX

dataset, as various forms of a word will appear multiple times. However, I find

that the results on words are very much in line with comparable scores trained and

tested on on English lemmas. Using a 90/10 train/test split, SVM-HMM scores

98.36 percent word accuracy on the lemma list, a decrease of only half a percentage

point compared to a model trained on a comparable number of words.

I cannot make any direct comparisons between my work and previous work in

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10D

90

80

70

60

— Humt s e wa ONC

40

30

20

Ik 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k

Figure 6.4: SVM-HMM requires relatively little data to achieve near-perfect word
accuracy.

the phoneme domain. However, Muller’s [2006] PCFG method achieved only 92.64

percent word accuracy on the CELEX dataset, which lags not only SVM-HMM,

but the Legality method as well. Van den Bosch’s [1997] Learned EBG approach

is much closer in performance to my discriminative method, scoring 97.78 percent

word accuracy on CELEX phonemes. However, van den Bosch uses almost twice

as much data to train his system, and SVM-HMM still has an error rate that is

nearly 50 percent lower. This is strong circumstantial evidence that SVM-HMM is

the superior system.

6.3.2 NETtalk Data

My second set of experiments repeats the previous tests on the NETtalk dataset. The

rule-based scripts developed on the CELEX set were applied directly to NETtalk

without any tuning. The results reported here are on a 7K held-out test set. Both

Structured SVM and Max Legality used a 13K training set, comprised of words not

appearing in the test data. Unfortunately, even for phonemes, NETtalk has many

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

errors. For instance, [*D 8r | @ | b6 11] (thereabout) is listed as the NETtalk gold

standard syllabification. This is clearly incorrect, as the plosive consonant [t] can

never form a syllable by itself. These errors are problematic for my discriminative

method because SVM-HMM will leam that syllables without nuclei are acceptable.

The existence of these errors further underscores my belief that the NETtalk dataset

is unsuitable for the syllabification task.

Method Word Accuracy Syllable Break Accuracy
Max Onset 33.64 72.44
Max Legality 53.08 81.96
Sonority 48.00 79.48
SVM-HMM 92.99 97.79

Table 6.3: Results on the NETtalk dataset.

Table 6.3 presents my results on NETtalk. The main thing that stands out is

the very low scores for the rule-based methods. Word accuracies have fallen off

by more than forty percent. In particular, the score for Max Onset indicates that

NETtalk follows the maximal onset principle only sporadically. For instance, the

gold standard for [f 5 11 5] (photo) does not have a maximal onset in the second

syllable, but the gold standard for [f5—tQn] (photon) does. Such irregularities

imply that even a NETtalk-specific rule-based system, designed specifically to cap

ture NETtalk’s peculiar syllabifications, would not fare very well. Certainly, such a

system would require far more hand-tuning than is desirable.

SVM-HMM, as a data-driven approach, is better equipped to deal with some

what inconsistent syllabification. However, the erratic syllabifications still cause

problems, as the word accuracy scores are well below what SVM-HMM can score

on the CELEX dataset — on a comparable number of training points, CELEX word

accuracy is still around 98 percent. Nonetheless, SVM-HMM does outperform

SbA. Marchand, Damper, and Adsett find that SbA scores only 88.53 percent word

accuracy on NETtalk phonemes [Marchand et al., to appear]. My discriminative

approach clearly outperforms their best score.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.3 Other Languages

Next, I apply Structured SVM to other languages. To serve as a baseline, I also

apply Max Onset and Legality to other languages, as there is no technical reason

preventing it. However, the rule-based scripts are not expected to perform very

well, as the maximal onset principle holds much more strongly for English than

most other languages. A linguist familiar with any of these languages would likely

be able to develop rule-based methods that far surpass any of my English-centric

attempts.

For both German and Dutch, I use CELEX data, selecting a 25K test set, and

two different training sets, one 50K and the other 250K. Particularly with the 250K

training set, there is still the issue of duplication between the training and test sets,

so I also perform experiments on the phonetic lemma lists, using a 90/10 training

test split. For the most part, training and test sets contain the same words as the

equivalent experiments presented in Chapter 51.

Method Training Data Word Accuracy Syllable Break Accuracy
Max Onset N/A 19.51 74.58
Max Legality N/A 79.55 95.38
SVM-HMM 50K words 99.26 99.85
SVM-HMM 250K words 99.87 99.97
SVM-HMM 45K lemmas 98.98 99.76

Table 6.4: Results for German.

Results for German are listed in Table 6.4. The results of the rule-based scripts

demonstrate that the Maximal Onset Principle is quite weak in German. SVM-

HMM performs extraordinarily well on German, reflecting the highly regular syl

lable structure of that language. This is underscored but the word accuracy on the

lemma data, which is still near 99 percent, even without benefit of overlap between

training and test sets.

Although developed on English, my system is competitive with recent imple

mentations for German phonemes. As with English, direct comparisons are dif-

Tn CELEX’s Dutch phoneme list, several thousand proper nouns of foreign extraction, like
Liverpool and Venezuela, have no syllabification information. These words are simply omitted.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ficult. However, in general, the previous systems use far more training data and

achieve much lower accuracy. The most word accuracy scores for the most recent

work in German are very similar to my own. Schmid, Mobius, and Weidenkaff’s

fifth-order HMM achieves 99.85 percent word accuracy using about 278K train

ing points [Schmid et al., to appear 2007], but they hand-tuned their smoothing

algorithm to syllabification of German phonemes. Using a standard smoothing

algorithm and fourth-order HMM, Demberg scores 98.47 percent word accuracy.

Earlier results on German phonemes include Muller’s work with PCFGs [Muller,

2001a; Muller, 2006], and Krenn’s HMM-based implementation. Muller’s earlier

work requires a hand-crafted grammar; to evaluate her method, she uses a training

corpus of two million tokens, more than 90 percent of her test data appears in the

training corpus, and her data covers only a small fraction of the words appearing in

CELEX. Even so, her best word accuracy is only 96.88 percent on CELEX-derived

syllabifications [Muller, 2002], Muller’s 2006 work is evaluated using 10-fold

cross-validation on the full CELEX dictionary. This later work does not require a

hand-crafted grammar, but only scores 90.45 percent word accuracy [Muller, 2006].

Krenn [1997] holds out approximately 20,000 words for testing, using the rest of

CELEX for training purposes. Krenn does not evaluate at the word level, but her tag

accuracy is only 98.34 percent. When trained on 250K words, my system achieves

tag accuracy of 99.98 percent.

Results for Dutch are listed in Table 6.5. Performance in Dutch is rather weaker

than in either German or English. This is noteworthy because SVM-HMM’s or

thographic syllabification is much better for Dutch than for English. Indeed, the

structured SYM actually performs slightly better on Dutch letters than on the equiv

alent Dutch phonemes. Unfortunately, I know of no previous quantitative results for

Dutch, so not even indirect comparisons with previous work are possible.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Method Training Data Word Accuracy Syllable Break Accuracy
Max Onset N/A 23.44 74.58
Max Legality N/A 64.31 95.38
SVM-HMM 50K words 97.79 99.53
SVM-HMM 250K words 99.16 99.82
SVM-HMM 105K lemmas 98.14 99.59

Table 6.5: Results for Dutch.

6.4 Conclusions

In this chapter, I applied three different rule systems to syllabification of phonemes.

Simply implementing maximal onset is insufficient, and the untuned sonority method

presented here produces only mediocre results. However, combining maximal onset

with the legality principle allows for word accuracy scores that are only five percent

age points lower than my discriminative method. This is much higher than Marc

hand, Damper, and Adsett’s previously-reported results for rule-based phoneme im

plementations on the NETtalk dataset. I would argue, therefore, that performance

of rule-based scripts is as much a function of the dataset used as the gold standard

as of the rules themselves.

Notwithstanding the success of the Legality method, the main contribution of

this chapter is my discriminative approach. I applied SVM-HMM to syllabifica

tion of phonemes, with great success. The process was very similar to that for

letters, except that the optimal feature set and tag set changed in the new domain.

In English, my system outperforms earlier implementations by Muller and van den

Bosch (on CELEX), and Marchand, Damper, and Adsett (on NETtalk). Unlike the

rule-based approaches, my discriminative approach is not language-specific. Exper

iments show the performance of SVM-HMM is competitive with the best systems

designed for German phonemes. Overall, my SVM-based system is a language in

dependent implementation that produces state-of-the-art results in both English and

German.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions

7.1 Summary

This thesis presents an efficient, machine-leaming-based method for automatic syl

labification. Taking a discriminative approach to the problem, my system outper

forms all existing systems on both English letters and phonemes. Experiments in

this thesis also show that my system can achieve word accuracies in excess of 99

percent for German and Dutch phonemes and letters. Treating syllabification as a

tagging task, my system labels each character in a word so that the sequence of la

bels implies the word’s syllable breaks. When the problem is so formulated, a struc

tured support vector machine turns out to be an excellent formalism for predicting

syllable boundaries. It allows for an extensive feature set, and can be applied to any

language for which there is available training data, in either the letter or phoneme

domain.

On the whole, I am convinced that automatic syllabification is best approached

using discriminative training techniques. Experiments show that SVM-HMM per

forms better on the syllabification task than predecessors like HMMs. It is more

language- and domain-independent than PCFG-based approaches, and produces

higher performance. SVM-HMM also out-performs data-driven techniques like

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Syllabification by Analogy and Exemplar-Based Generalization, two lazy learning

approaches that maintain a list of all available training data. This finding demon

strates that abstraction of training data does not invariantly degrade performance

on the syllabification task, contrary to the hypothesis put forward by Marchand and

Damper [Marchand and Damper, 2005; Marchand et al., to appear].

In applying structured SVMs to automatic syllabification, I found that the la

belling scheme used to indicate syllable boundaries crucially affects performance.

In the letter domain, the usual approach has been to assign a binary label to each

letter, indicating whether the letter is at a syllable boundary or not. Experiments in

Chapter 5 show that this approach is decidedly weaker than alternatives. I consid

ered several alternative tagging schemes, including a positional model that numbers

each letter within a syllable, and an onset-nucleus-coda model that attempts to map

each letter to its function within the syllable. Surprisingly, experiments indicated

that the positional tag scheme performs better than the onset-nucleus-coda option.

Several factors likely influence this finding. First, the positional model represents

the syllable boundary with a single tag, rather than relying on the combination

of two tags. This allows the structured SVM to explicitly minimize the error on

syllable breaks, which is the desired metric. Second, the unpredictable relation

ship between English orthography and sounds introduces some noise in the onset-

nucleus-coda gold standard, which probably affects performance somewhat. This is

all the more likely because in the less-noisy phoneme domain, onset-nucleus-coda

tags outperform the positional tags.

Incorporating my orthographic syllabification models into a state-of-the-art letter-

to-phoneme conversion system increased L2P accuracy for both English and Dutch.

To my knowledge, this is the first time a learned model has been successfully em

ployed to improve L2P performance in these languages. As such, this represents an

important contribution of this work.

In the phoneme domain, I presented several rule-based techniques. My im

plementation of the legality principle achieved word accuracies above 90 percent.

This makes the Legality method an important alternative for syllabifying strings of

phonemes, especially when labelled training data is unavailable.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 Limitations and Future Work

One of the primary limitations of this work is the lack of direct comparisons. Apart

from Syllabification by Analogy on English letters, I was unable to measure my

system against existing systems operating on the same training and test data, be

cause the training/test splits were unavailable. Nonetheless, the results in this thesis

show that my system is certainly competitive with previous results reported in the

literature. Arguably, the experiments show that my discriminative approach is supe

rior. However, a systematic comparison of systems trained and tested on the same

data is required before SVM-HMM can be definitively declared the best approach.

There are several possible avenues for future work. In the phoneme domain,

tuning of the sonority scale used in the my sonority implementation may produce

higher word accuracies. Some scope for improvement in the letter domain might be

found by combining several tag sets in some sort of ensemble method. It would also

be interesting to apply SVM-HMM to other languages, as appropriate data becomes

available.

Most future work on letters likely lies in incorporating syllabification models

into aspects of text-to-speech synthesis. In this thesis, automatic syllabification has

been incorporated in to an L2P system as a pre-processing step. However, it might

be fruitful to combine syllabification and letter-to-phoneme conversion, rather than

treating them as serial processes. It would also be interesting to incorporate SVM-

HMM syllabification into a prosody module of a TTS system, and compare the

realism of the resulting speech.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[Altun et al., 2003] Yasemin Altun, Ioannis Tsochantaridis, and Thomas Hofmann.
Hidden Markov support vector machines. Proceedings of the 20th International
Conference on Machine Learning (ICML), pages 3-10, 2003.

[Baayen etal., 1995] R. Baayen, R. Piepenbrock, and L. Gulikers. The CELEX
lexical database (CD-ROM), 1995.

[Blevins, 1995] Juliette Blevins. The syllable in phonological theory. In John Gold
smith, editor, The handbook of phonological theory, pages 206-244. Blackwell,
1995.

[Bouma, 2002] Gosse Bouma. Finite state methods for hyphenation. Natural Lan
guage Engineering, 1:1-16, 2002.

[Collins, 2002] Michael Collins. Discriminative training methods for hidden
Markov models: Theory and experiments with perceptron algorithms. Proceed
ings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1-8, 2002.

[Crystal, 2003] David Crystal. A dictionary o f linguistics and phonetics. Black-
well, 2003.

[Daelemans and van den Bosch, 1992] Walter Daelemans and Antal van den
Bosch. Generalization performance of backpropagation learning on a syllabifi
cation task. Proceedings of the 3rd Twente Workshop on Language Technology,
pages 27-38,1992.

[Daelemans et al., 1997] Walter Daelemans, Antal van den Bosch, and Ton Wei-
jters. IGTree: Using trees for compression and classification in lazy learning
algorithms. Artificial Intelligence Review, pages 407-423,1997.

[Damper, 2001] Robert Damper. Learning about speech from data: Beyond
NETtalk. In Data-Driven Techniques in Speech Synthesis, pages 1-25. Kluwer
Academic Publishers, 2001.

[Deligne et al., 2001] Sabine Deligne, Francois Yvon, and Frederic Bimbot. Se
lection of multiphone synthesis units and grapheme-to-phoneme transcription
using variable-length modeling of strings. In Data-Driven Techniques in Speech
Synthesis, pages 125-146. Kluwer Academic Publishers, 2001.

[Demberg, 2006] Vera Demberg. Letter-to-phoneme conversion for a German text-
to-speech system. Master’s thesis, University of Stuttgart, 2006.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Fisher, 1996] William Fisher. Tsylb syllabification package.
ftp://jaguar.ncsl.nist.g0v/pub/tsylb2-l.l.tar.Z, 1996. last accessed 25 April
2007.

[Goldwater and Johnson, 2005] Sharon Goldwater and Mark Johnson. Represen
tational bias in unsupervised learning of syllable structure. Proceedings o f the
9th Conference on Computational Natural Language Learning (CoNLL), pages
112-119, 2005.

[Goslin and Frauenfelder, 2001] Jeremy Goslin and Ulrich Frauenfelder. A com
parison of theoretical and human syllabification. Language and Speech, 44:409-
436,2001.

[Gove, 1993] Philip Babcock Gove, editor. Webster’s Third New International Dic
tionary of the English Language, Unabridged. Merriam-Webster Inc., 1993.

[Guenter, 29 November 2006] Joshua Guenter. Editor of pronunciation, Merriam-
Webster Inc. Personal correspondence, 29 November 2006.

[Hammond, 1997a] Michael Hammond. Optimality theory and prosody. In Opti
mality Theory: An Overview, pages 33-58. Blackwell, 1997.

[Hammond, 1997b] Michael Hammond. Parsing in OT. Rutgers Optimality
Archive, http://roa.rutgers.edu/index.php3,1997. last accessed 25 April 2007.

[Hastie et al., 2001] Trevor Hastie, Rober Tibshirani, and Jerome Friedman. The
Elements of Statistical Learning. Springer, 2001.

[Herbst and Joachims, 2006] Evan Herbst and Thorsten Joachims. SVM-HMM:
Sequence tagging with support vector machines and its application to part-of-
speech tagging, http://svmlight.joachims.org/svm_struct.html, 2006. last ac
cessed 07 May 2007.

[Jiampojamam et al., 2007] Sittichai Jiampojamam, Grzegorz Kondrak, and Tarek
Sherif. Applying many-to-many alignments and hidden Markov models to letter-
to-phoneme conversion. Proceedings of the Human Language Technology Con
ference of the North American Chapter o f the Association o f Computational Lin
guistics HLT-NAACL, pages 372-379,2007.

[Kahn, 1976] Daniel Kahn. Syllable-based generalizations in English Phonology.
PhD thesis, Indiana University, 1976.

[Kessler and Treiman, 1997] Brett Kessler and Rebecca Treiman. Syllable struc
ture and the distribution of phonemes in English syllables. Journal of Memory
and Language, 37:295-311,1997.

[Kiraz and Mobius, 1998] George Kiraz and Bemd Mobius. Multilingual syllabifi
cation using weighted finite-state transducers. Proceedings o f the 3rd Workshop
on Speech Synthesis, pages 71-76,1998.

[Kohler, 1966] K. Kohler. Is the syllable a phonological universal? Journal of
Linguistics, 2:207-208, 1966.

[Krenn, 1997] Brigitte Krenn. Tagging syllables. Proceedings o f Eurospeech,
pages 991-994,1997.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://jaguar.ncsl.nist.g0v/pub/tsylb2-l.l.tar.Z
http://roa.rutgers.edu/index.php3,1997
http://svmlight.joachims.org/svm_struct.html

[Lafferty et a l, 2001] John Lafferty, Andrew McCallum, and Fernando Pereira.
Conditional random fields: Probabilistic models for segmenting and labeling
sequence data. Proceedings of the 18th International Conference on Machine
Learning ICML, pages 282-289, 2001.

[MacKinney-Romero and Goddard, 2006] Rene MacKinney-Romero and John
Goddard. Syllabification using decision trees, early results on three languages.
3er Taller de Tecnologias del Languaje Humano, pages 282-287, 2006.

[Marchand and Damper, 2005] Yannick Marchand and Robert Damper. Can syl
labification improve pronunciation by analogy of English? Natural Language
Engineering, 1:1-25, 2005.

[Marchand et al., to appear] Yannick Marchand, Connie Adsett, and Robert
Damper. Automatic syllabification in English: A comparison of different al
gorithms. Language and Speech, to appear.

[McCallum et al., 2000] Andrew McCallum, Dayne Freitag, and Fernando Pereira.
Maximum entropy Markov models for information extraction and segmentation.
Proceedings of the 17th International Conference on Machine Learning (ICML),
pages 591-598, 2000.

[McDonald et al., 2005] Ryan McDonald, Koby Crammer, and Fernando Pereira.
Flexible text segmentation with stmctured multilabel classification. Proceedings
of the conference on Human Language Technology (HLT) and Empirical Meth
ods in Natural Language Processing (EMNLP), pages 987-994, 2005.

[Muller et al., 2000] Karin Muller, Bemd Mobius, and Detlef Prescher. Inducing
probabilistic syllable classes using multivariate clustering. In Proceedings of
the 38th Meeting of the Association for Computational Linguistics (ACL), pages
225-232, 2000.

[Muller, 2001a] Karin Muller. Automatic detection of syllable boundaries combin
ing the advantages of treebank and bracketed corpora training. Proceedings on
the 39th Meeting of the Association for Computational Linguistics (ACL), pages
410-417,2001.

[Muller, 2001b] Karin Muller. Probabilistic context-free grammars for syllabifica
tion and grapheme-to-phoneme conversion. Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 143-150,
2001 .

[Muller, 2002] Karin Muller. Probabilistic context-free grammars for phonology.
Proceedings of the 6th Workshop of the ACL Special Interest Group in Compu
tational Phonology (SIGPHON), pages 80-90, 2002.

[Muller, 2006] Karin Muller. Improving syllabification models with phonotactic
knowledge. Proceedings of the 8th Meeting of the ACL Special Interest Group
on Computational Phonology (SIGPHON), pages 11-20, 2006.

[Pearson et al., 2000] Steve Pearson, Roland Kuhn, Steven Fincke, and Nick Ki-
bre. Automatic methods for lexical stress assignment and syllabification. In
Proceedings of the 6th International Conference on Spoken Language Process
ing (ICSLP), pages 423-426, 2000.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Schmid e t a l , to appear 2007] Helmut Schmid, Bemd Mobius, and Julia Wei-
denkaff. Tagging syllable boundaries with joint N-gram models. Proceedings of
Interspeech, to appear 2007.

[Sejnowski and Rosenberg, 1988] Terrence Sejnowski and Charles Rosenberg.
NETtalk: a parallel network that learns to read aloud. In Neurocomputing: Foun
dations of Research, pages 661-672. MIT Press, 1988.

[Selkirk, 1984] Elisabeth Selkirk. On the major class features and syllable theory.
In Language Sound Structure, pages 107-136. MIT Press, 1984.

[Spencer, 1996] Andrew Spencer. Phonology: theory and description. Blackwell,
1996.

[Sproat, 1998] Richard Sproat. Multilingual Text-to-Speech Synthesis: The Bell
Labs Approach. Kluwer Academic Publishers, 1998.

[Taskar et al., 2003] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin
markov networks. Proceedings o f the Neural Information Processing Systems
Conference NIPS, 2003.

[Treiman and Zukowski, 1990] Rebecca Treiman and Andrea Zukowski. Toward
an understanding of English syllabification. Journal of Memory and Language,
29:66-85,1990.

[Tsochantaridis et al., 2004] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. Support vector machine learning for interdepen
dent and structured output spaces. Proceedings of the 21st International Confer
ence on Machine Learning (ICML), pages 823-830, 2004.

[van den Bosch et al., 1998] Antal van den Bosch, Ton Weijters, and Walter Daele
mans. Modularity in inductively-learned word pronunciation systems. Proceed
ings of New Methods in Language Processing and Computational Natural Lan
guage Learning (NeMLaP/CoNLL), pages 185-194, 1998.

[van den Bosch, 1997] Antal van den Bosch. Learning to pronounce written
words: a study in inductive language learning. PhD thesis, Universiteit Maas
tricht, 1997.

[Zhang and Hamilton, 1997] Jian Zhang and Howard Hamilton. Learning English
syllabification for words. Proceedings of the 10th International Symposium on
Foundations of Intelligent Systems, pages 177-186, 1997.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

DISC Phoneme Encodings

Throughout this thesis, I use the DISC encoding to represent phonemes. The DISC

encoding is convenient for computer applications because each phoneme is repre

sented by a single ASCII character. The following tables map common DISC en

codings for English phonemes to equivalent International Phonetic Alphabet (IPA)

symbols. The provided orthographic examples assume received pronunciation, as

is standard in the CELEX dataset.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DISC Encoding IPA Symbol Examples
Id achieve, pavement

h \l market, dance
u /u:/ luminous, goose
i li:/ week, meal
$ h i fort, audio
3 IrJ verse, work
I hi fill, every
E J d ahead, less
{ Ixl man. gas
Q h i soft, wash
V h i rough, summer
u I d brook, full
1 /ei/ clay, bake
2 hi! guy, icon
4 h i/ toys, foil
5 hu l bowl, so
6 laul crown, out
7 l id deer, clear
8 l t d rare, fair
9 lu d boor, manure

Table A .l: English Vowels and Diphthongs

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DISC Encoding IPA Symbol Example

P Ipl pot
b /b/ bake
t /t/ tag
d /d/ dim
J /tf/ china
- !&J juice
k Ikl kin
g V get
f Ifl fire
V Ivl violin
T /0/ thank
D /a / there
s /s/ see
z /z/ zip
S /J/ show
Z I7J genre
h /h/ hope
m Iml mint
n Ini nap
N W ring
r M road
w Iwl wax
j 1)1 yellow

Table A.2: English Consonants

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Implementation Details

For most of the experiments reported in this thesis, I used the Linux binary distri

bution of SVM-HMM available from http://svmlight.joachims.org.

To train an SVM-HMM for the automatic syllabification task, I use the follow

ing command line:

./svm_hmm_learn_hideo -e 0.5 -c 0.1 train.data model.dat

The - e option defines epsilon in equation 3.6.

The - c option defines the amount of acceptable error on the training data. This

is a tunable parameter that can crucially affect performance. As an illustration,

consider the data in Table B .l. These results are attained by training a letters model

with a reduced feature set that includes only unigram features falling with a 5-letter

window size. The Numbered NB tag set is used for output tags. There are two

main things to notice. First, the word accuracy score can improve by nearly twenty

percentage points simply by using the correct c-value. Second, the best c-value

does not remain constant as the feature set changes. With a full complement of

five-grams across an 11-character window, the optimal c-value is 0.1; with only

uni grams within a three-character window, 10 is the best. During development, I

systematically varied the c-value for each new feature set.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://svmlight.joachims.org

C Value Word Accuracy
0.001 40.80
0.01 47.84
0.1 55.13
1 58.21
10 59.06

Table B .l: Results on the held-out letters development set, using numbered NB tags
and a reduced feature set.

The t r a i n . d a t a argument is the input training file. In Figure B .l, I present

the input file for the features associated with the word pro—ton. For simplicity, I

show only unigram features within a three-character window; Numbered NB tags

are again used as the output tagging scheme.

Nl qid:3.1 17 :1 28 :1 73:1 82:1 124:l#p - proton
N2 qid:3.2 19:1 44:1 70:1 82:1 129:l#r - proton
B qid:3.3 16:1 46:1 75 :1 98:1 124:l#o - proton
Nl qid:3.4 21:1 43 :1 70:1 100:1 123:l#t - proton
N2 qid:3.5 16:1 48:1 69:1 97:1 109:l#o - proton
N3 qid:3.6 15:1 43:1 55 :1 102:1 109:l#n - proton

Figure B .l: Sample feature set input

The first item in each line is the correct output tag. The string q i d : 3 . i indi

cates the ith letter in the third training word. Everything following the # character

is a comment. All the intervening numbers represent features.

The best way to represent letters (or phonemes) as features is to use a string

of binary bits to represent each character. Thus, in Figure B .l, the notation 1 7 :1

indicates that the 17th bit is turned on, in this case representing p, the 16th letter in

the alphabet (the first bit in the string is reserved for representing the special end-of-

word character). A unigram feature is therefore represented by a string of 27 binary

bits, while a bigram feature is represented by a string of 272 = 729 bits, and so on

for higher-order N-grams. This is the limit case; as discussed in Chapter 5, we can

greatly reduce the number of features by discarding bits for N-grams not actually

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

observed in the training data. SVM-HMM assigns a value of zero to any feature not

explicitly listed in the input file.

Obviously, this is not the most compact representation, but empirically it is the

most effective. Possible alternatives, such as using ASCII codes to represent each

letter, are less sucessful. This is because there is no meaningful linguistic sense in

which the letter b is closer to the letter a than, say, the letter p. Indeed, in terms

of the phonemes they produce, b and p are very similar; however, their associated

ASCII codes imply that they are much further apart than a and b. Using a sequence

of binary bits captures the qualitative difference between letters.

The m o d e l . d a t argument is the output file where the learned model will be

written. An associated file called m o d e l_ sv m M o d el. d a t will also be generated.

To classify new test examples, use the following command line:

. /s v rn J im rrL c la s s ify t e s t , d a t a m o d e l .d a t c l a s s i f y . t a g s

The t e s t . d a t a argument is a feature file describing the test words, using the

same format as Figure B .l. When using a held-out test set (i.e. when the true tags

are available), SVM-HMM will report the accuracy on the test set. If the correct

tags are not available, a dummy tag must be substituted.

The m o d e l . d a t argument is the model file trained for the given feature set.

The c l a s s i f y , t a g s argument is the file where the output tags will be writ

ten. To convert these tags into syllable boundaries, I concatenate input words and

output tag sequences and then apply regular expressions.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

