
“Oh, Westley, I didn’t mean any of it! Not one single syllabub.”

Westley knew that she meant syllable, since syllabub was a dessert, but he also 

knew an apology when he heard it, so he said,

“I know you didn’t mean it. Not a single syllabub.”

—William Goldman, The Princess Bride
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Abstract

Syllabification is the process of dividing a word into its constituent syllables. Syl­

labification holds considerable theoretical interest and has a number of practical 

applications. In addition to providing an in-depth survey of existing syllabifica­

tion systems, this thesis uses discriminative models to automatically syllabify both 

letters and phonemes. Syllabification is formulated as a labelling task so that a clas­

sifier can learn mappings from characters to labels. The final system is a language- 

independent implementation for both letters and phonemes that betters current state- 

of-the-art systems in several languages. When the resulting syllabification models 

are incorporated into a letter-to-phoneme system, accuracy improves on that task. 

Several rule-based techniques for syllabification of phonemes are also presented.
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Chapter 1

Introduction

1.1 Problem Description

Although a syllable can consist of just a single phoneme, and many words are 

monosyllabic, a syllable is generally defined as a linguistic unit that is larger than a 

phoneme and smaller than a whole word [Crystal, 2003], Syllabification is the pro­

cess of dividing a word into its constituent syllables; it is a long-standing topic of 

debate in the field of linguistics. More recently, syllabification has become preva­

lent in natural language processing. Because syllables are an important determiner 

of pronunciation, we are interested in computational approaches to syllabification 

both for their theoretical implication and their practical applications.

One such possible application is text-to-speech (TTS) systems. While actual im­

plementations vary, TTS systems must have, at minimum, three components [Damper, 

2001], Syllabification can play a role in all three modules:

1. A letter-to-phoneme (L2P) module converts orthographic forms (typically 

ASCII input) into an abstract phonetic representation.

2. A prosody module determines the variations in pitch, loudness, tempo, and 

rhythm that should be applied to the phonemes within a word.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. A synthesis module produces the actual sounds, either generating them di­

rectly from the system’s internal representation, or by concatenating together 

sounds from a database.

Most commonly, prosody units include syllabification modules in some way. 

A number of TTS systems have incorporated syllabification, including the Bell 

Labs multilingual TTS system [Sproat, 1998] and the Panasonic Speech Technol­

ogy Lab’s implementation [Pearson et al., 2000], Stress patterns are typically as­

signed at the syllable level (e.g. [Demberg, 2006]). The pronunciation of a given 

phoneme also tends to vary slightly depending on its location within a syllable. For 

instance, the two [b] sounds in the word [b o b ] are subtly different because one 

appears syllable-initially and the other syllable-finally [Kahn, 1976].

More recently, researchers have explored incorporating syllabification into L2P 

modules. Muller [2001b] uses syllabification as part of a German letter-to-phoneme 

system. Marchand and Damper [2005] find that using syllabified orthographic 

forms as input to an L2P system improves L2P performance, compared to a baseline 

without syllable break information. Intuitively, this finding makes sense. If we want 

to convert the word shorthand to its representative phonemes, knowing that there 

is a syllable break between the t and the h should prevent us from predicting that 

the two letters combine to form the single phoneme [T ] . Moreover, the position 

of vowels within a syllable often affects the exact phoneme given letters produce. 

For example, the verb presents has a long e sound, and is usually syllabified as 

pre—sents, while the noun presents has a short e sound and is usually syllabified as 

pres—ents.

Finally, there is some scope for incorporating syllables into synthesis modules. 

To date, most TTS systems have concatenated together diphones — the units of 

sound that stretches from the middle of one phone to the middle of the next phone. 

However, concatenating together longer units typically improves the quality of syn­

thesized speech [Deligne et a l,  2001], Currently, it is considered too costly to store 

long sequences of phones for concatenation, as the quality improvement does not 

justify the extra memory requirements. However, in theory, concatenative speech 

synthesis could be done at the level of the syllable.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



On the whole, syllables and syllabification are an important part of text-to- 

speech systems. Unfortunately, due to the productive nature of language, a dic­

tionary look-up process for syllabification is inadequate. No dictionary can ever 

contain all possible words in a language. For this reason, we must to turn to systems 

that can automatically syllabify out-of-dictionary words. Automatic syllabification 

will be the focus of this thesis.

1.2 Approach to the Problem

Historically, data-driven approaches to TTS ands its components have been rare. 

However, Damper [2001] argues that this is largely derived from a Chomskian 

world view that sees innate rules as a prerequisite for language learning; in practice 

there is much to be gained from employing data-driven approaches. An array of 

recent research has applied various data-driven techniques to automatic syllabifica­

tion. The two most common approaches are lazy learning methods, which syllabify 

new words by finding similar examples in a syllabification dictionary, and hidden 

Markov models, which predict the most probable syllabification pattern based on 

observed characters.

In this thesis, I pursue a different strategy, taking a discriminative approach to 

automatic syllabification. Discriminative techniques learn a mapping from explana­

tory variables, or features, to desired output labels. To use such a framework for my 

problem, I formulate syllabification as a tagging problem. When viewed as a tag­

ging problem, every letter or phoneme in an input word must be assigned a tag that 

indicates whether or not the character is at a syllable boundary. I consider a number 

of different tagging schemes. Some are positional — the tags indicate nothing more 

than the characters’ position in the syllable. Others are linguistically informed, so 

that the tag says something about the role the character is playing in the syllable. I 

use SVM-HMM, a type of structured support vector machine (SVM), to learn the 

correspondences between characters and tags. My system is language-independent; 

I use it to syllabify words in English, German, and Dutch.

3
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In addition to using discriminative training to syllabify letters and phonemes, I 

also apply several rule-based approaches to the phoneme domain. I present an im­

plementation of Kahn’s [1976] legality principle, and a version of Selkirk’s [1984] 

Sonority Sequencing Generalization. Rule-based methods are advantageous be­

cause they require no training data, and can build on well-studied linguistic the­

ories. However, they are language-dependent and cannot easily be applied to the 

letter domain.

1.3 Contributions of this Research

This thesis makes a number of contributions. First and foremost, I present an auto­

matic syllabification system that beats state-of-the-art performance on both letters 

and phonemes. In a direct comparison on English letters, my syllabification sys­

tem reduces the error rate from the previous state-of-the-art by one-third. Although 

head-to-head comparisons are lacking, my system also achieves world-best word 

accuracy on English phonemes. In German and Dutch, word accuracy exceeds 99 

percent for both letters and phonemes.

To produce these results, I use a discriminative approach that requires both a 

tagging scheme and feature set suitable for the task. The tag sets and feature sets I 

develop for syllabification are the second contribution of this thesis.

Third, my syllabification system, when combined with an existing state-of- 

the-art letter-to-phoneme system, increases L2P accuracy in English, Dutch, and 

German. Previous systems have improved English L2P accuracy by adding gold- 

standard dictionary syllabifications, and improved German L2P accuracy by adding 

learned syllabifications. However, to my knowledge, this is the first example of an 

automatic orthographic syllabification system producing improvements in English 

L2P accuracy.

This thesis also presents several rule-based techniques for syllabification of 

phonemes. In particular, the rule system based on the legality principle achieves 

very good word accuracy, without benefit of labelled training data.

4
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Additionally, I proffer evidence that the NETtalk dataset, heretofore in common 

usage for English syllabification, is unsuitable for the task. In the letter domain, 

NETtalk contains a substantial proportion of completely non-sensical ‘gold stan­

dard’ syllabifications that are likely to confound syllabification systems and any 

L2P system that depend on them.

Finally, I contribute a thorough survey of previous work on automatic syllabifi­

cation.

1.4 Outline

The remainder of this thesis is structured as follows. In Chapter 2 I present the 

linguistic background of syllables and syllabification. In Chapter 3 I explain the 

theory underpinning SVM-HMM, the discriminative method I use in my system. I 

discuss previous work on the topic in Chapter 4. Chapter 5 explains how I develop 

tag and feature sets to apply SVM-HMM to syllabification of letters, and presents 

experimental results in that domain. Chapter 6 shows the application of my dis­

criminative technique to phonemes and introduces several rule-based systems for 

phones. Conclusions and final thoughts are presented in Chapter 7.

5
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Chapter 2

Linguistic Background

Syllabification is the process of dividing a word into its constituent syllables. Presently, 

I define the syllable and outline several principles that can be used to perform syl­

labification. First, however, I must clarify a common source of confusion in this 

area. From a linguistic perspective, a syllable only exists in the phonological do­

main. We can divide strings of phonemes into syllables; we cannot so divide strings 

of letters.

In opposition to this, most non-linguists find it perfectly reasonable to syllabify 

the orthographic representation of a word. Some of this confusion perhaps arises 

from dictionary headwords. Most North American dictionaries will divide the let­

ters of a word up into segments that look, to the non-linguist, like syllables. The 

primary purpose of these ‘divisions in entry words’ is to indicate to typesetters the 

points where a word may be broken at the end of a line [Gove, 1993], Typically, 

word breaks are indicated by a hyphen, so this process is often called hyphenation.

The process of deriving divisions in entry words is complex —  Webster’s Dic­

tionary lists 26 rules for dividing entry words [Gove, 1993]. All are very detailed 

and most give rise to a number of exceptions. In broad strokes, Webster’s tends to 

create a segment by attaching a consonant to the following vowel; consonants are 

attached to the preceding vowel only when that vowel is short and stressed. How­

ever, these guidelines are frequently overridden by considerations of morphology.

6
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Generally, common inflectional affixes (e.g. -tion, -ing, non-) form an indivisible 

segment; for less common affixes, this does not hold as consistently. Similarly, di­

visions of compound words usually occur between the two constituent words (e.g. 

nose—bleed).

There is definitely a relationship between orthographic divisions and pronunci­

ation [Guenter, 29 November 2006]. Indeed, the main function of the divisions in 

words is to ensure hyphenation is consistent with pronunciation. Similarly, there 

is also a relationship, however ill-defined, between syllabification of phonemes and 

divisions in entry words. In a number of cases the divisions of a word’s ortho­

graphic and phonetic forms are identical (e.g. rapt—ly, [ r { p t  I I I ] 1). However, 

the two processes are distinct.

Dividing letters into segments is mostly an engineering problem: the fact that 

we can use it to produce performance improvements on a task like converting letters 

into phonemes is both necessary and sufficient to justify the endeavour. Conversely, 

syllabification of phonemes is of significant theoretical interest for its own sake, in 

addition to the role it plays in text-to-speech systems.

In this thesis, I treat syllabification of phonemes and division of letters as two 

separate but related problems. In this chapter, whenever I mention syllables or 

syllabification, I am exclusively referring to the phonological entity. Throughout 

the rest of this thesis, I refer to ‘syllabification’ of orthographic forms, using it as 

shorthand for ‘reproducing the dictionary’s end-of-line divisions.’

2.1 The Syllable

By most accounts, a syllable is composed of two constituents: a rhyme (or rime) 

and an (optional) onset [Spencer, 1996; Kessler and Treiman, 1997], The rhyme 

can be further subdivided into a nucleus (typically a vowel), and an optional coda. 

This internal structure is not universally accepted, however. A structure composed 

of a body and a coda (where the body further subdivides into nucleus and onset) has

’The DISC encoding for phonemes is used throughout this thesis.

7
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also been postulated [Kessler and Treiman, 1997]. Conversely, Blevins [1995] ar­

gues that a syllable is constructed of a single constituent: an indivisible rhyme. On 

this interpretation, the onset and coda are not constituents in their own right, but are 

just whatever is left once we remove the nucleus. Still other theories deny the rhyme 

as a meaningful construction, arguing that it is synonymous with the nucleus, and 

therefore a useless addition [Spencer, 1996]. Proponents of this perspective advo­

cate a completely flat syllable structure, consisting of only a nucleus, and optional 

onsets and codas. Debates in the linguistic community notwithstanding, I take a 

syllable to be a nucleus and its surrounding consonants, and refer to the consonants 

before and after the nucleus as the onset and coda, respectively.

Not all languages allow the same flexibility as to syllable types —  onsets and 

codas are not always optional. A language’s possible syllables are often typified ac­

cording to whether the onset is obligatory (or not) and whether a coda is permissible 

(or not). Examples of languages categorized by this typology appear in Table 2.1. 

Note that there are no languages in which the onset is prohibited and/or the coda is 

required.

Onset Required Onset Optional
Coda Prohibited Arabela0 , Hua6 Fijian, Hawaiian
Coda Permitted German, Totonacc English, Italian

“an endangered language spoken in Peru and Ecuador 
bspoken in Botswana 
cspoken in Eastern Mexico

Table 2.1: Examples of syllable types across languages (adapted from [Spencer, 
1996; Blevins, 1995]).

More elaborate typologies further consider whether syllables can have complex 

nuclei, codas, or onsets. Complex constituents are composed of more than one 

phoneme, as in the onset of [ s t r { p ]  (strap).

Most phonologists argue that the syllable is a valuable “prosodic constituent” 

(e.g.[Blevins, 1995; Spencer, 1996]). Blevins [1995] lists four reasons for the im­

portance of the syllable:

• many phonological rules and constraints apply within the context of a sylla­

ble,

8
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• other phonological rules apply at syllable boundaries,

•  many language games and play languages (e.g. Ubbi Dubbi) imply the use of 

syllables,

•  native speakers have strong intuitions about the existence of syllables, and 

in some languages speakers also have a strong sense about where syllable 

breaks occur.

Historically, there has been some disagreement as to the syllable’s usefulness. Kohler 

[1966], for example, argues that syllables are actually “harmful” because they some­

times prevent us from appreciating a word’s underlying phonological structure. 

However, views like Kohler’s are now distinctly in the minority, and on the whole, 

the idea of a syllable is no longer a particularly controversial one.

2.2 Linguistic Theories of Syllabification

In spite of the broad linguistic consensus on the existence of syllables, syllabifica­

tion remains somewhat contentious. Indeed, one of Kohler’s arguments against the 

syllable as an entity is the ambiguity inherent in syllabification. Of course, for lan­

guages like Hawaiian and Hua, where codas are prohibited, syllabification is trivial. 

Every syllable has a single vowel, and any consonants must be onsets. However, for 

the vast majority of languages, codas are permissible, so the process is not so clear. 

Given a consonant, how do we determine whether it should attach to the previous 

nucleus as a coda, or to the following nucleus as an onset? What should be done 

with the [g ] in [Eg5]  (ego)l Should we syllabify it as [E ] g 5 ] or [Eg ] 5 ] ? 

This is the crux of the syllabification task. Several theories attempt to model this 

decision; I present a number of the most prominent. The following is by no means 

an exhaustive list.

9
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Maximal Onset Principle

The most basic theory is the maximal onset principle (MOP) [Blevins, 1995]. It 

states that given a sequence . . .  VCV . . . ,  we always syllabify it V—CV, expanding 

the onset at the expense of the previous syllable’s coda. This principle holds very 

strongly, particularly for English: it is used by Merriam-Webster when syllabify­

ing the phonetic representations of dictionary words [Guenter, 29 November 2006], 

However, there is considerable evidence that this principle is not universal. By way 

of counter example, in the Australian Aboriginal language Kunjen, all syllables 

begin with vowels, thus violating MOP. More saliently, the principle is frequently 

violated, even for languages where MOP generally holds. A letter sequence like 

[ * k f @ s ] , for example, is clearly not plausible as an English word, because it 

would be unpronounceable. Thus, given a word like [ b r E k f  @st]  (breakfast), we, 

would not want to maximize the onset of the second syllable (i.e. [ *b rE  | k f  @s t  ], 

preferring instead to syllabify the word as [ b r E k  | f @s t ]  and produce two pro­

nounceable syllables.

In other words, MOP often holds, but it is also frequently violated due to other 

constraints. The obvious question then becomes, how do we know when to ignore 

MOP?

Sonority Sequencing Generalization

Two different theories provide an answer to this question. One theory is based on 

the idea of sonority. A sound’s sonority is its inherent loudness, holding other fac­

tors equal [Crystal, 2003], In a sonority scale, phonemes are ranked from least 

sonorant to most sonorant, as in Figure 2.1. Selkirk [1984] introduces the sonority 

sequencing generalization (SSG), which states “In any syllable, there is a segment 

constituting a sonority peak that is preceded and/or followed by a sequence of seg­

ments with progressively decreasing values.” The generalization tends to rule out 

many impossible syllables. For instance, a hypothetical syllable like [ * J k a v ]  

would violate SSG because the [ J ]  is more sonorant than [ k ] . However, SSG 

does not rule out the equally implausible syllable [ * bma v] , because [m] is more

10
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sonorant than [ b ] .

Selkirk argues that sequences like [bm] can be eliminated by requiring a min­

imum sonority difference between adjacent consonants in a syllable. In practice, 

this margin would vary by language. Indeed, Selkirk never claims to be presenting 

a complete sonority scale with invariant sonority values. Rather, she couches her 

scale as provisional, where the relative positions of the sounds are more important 

than their absolute values. The position of certain sounds within the scale, and the 

exact values that should be on the scale remains somewhat of an open problem.

As Selkirk conceived of it, the SSG should be used in conjunction with a se­

ries of templates that describe the kinds of onsets and codas a syllable can have. 

Together, the SSG and the templates represent a complete theory of syllabification. 

However, SSG may also be combined with MOP, as Goslin and Frauenfelder [2001] 

have done.

class example sonority value
vowels [ a ] ,  [V] 6
glides [w] , [y] 5
liquids [ r ] ,  [1] 4
nasals [m] , [n] 3
fricatives/affricates [ z ] ,  [ J ] 2
plosives [ k ] ,  [b] 1

Figure 2.1: A sonority scale, adapted from Spencer [Spencer, 1996]. 

Legality Theory

A second theory that can tell us when to override MOP is the legality principle. As 

introduced by Kahn [1976], the legality principle states that all possible syllable on­

sets appear as word-initial consonant clusters, and all possible syllable codas appear 

as word-final consonant clusters. The notion of legality by itself is insufficient to 

syllabify many words. For example, in a word like [m#st@R] {master), the clus­

ter [ s t ]  is found repeatedly both at the beginning and end of words. Therefore, 

Kahn proposes to combine his legality principle with MOP. Furthermore, Kahn 

argues that any sequence that cannot be syllabified by the legality principle {e.g.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[ a k p s a ]  — all of [ k p s ] ,  [ k p ] , an d  [ ps ]  are illegal as both onsets and codas) 

must be rejected as a valid word in English.

Kahn also allows for ambisyllabicity of consonants. Ambisyllabicity permits 

some consonants to simultaneously contribute to the coda of one syllable and the 

onset of the next. Thus, in the word [m#st@R] , we have two syllables: [m#s] 

and [ s  t@R], with the [ s  ] belonging to both syllables. Ambisyllabicity is a fairly 

controversial idea. An opposing theory is that of resyllabification. On this theory, 

syllabification is a two-stage process: we first syllabify a word with the consonant 

attaching to the onset of the second syllable, in keeping with the Maximal Onset 

Principle (i.e. [m# | st@R]). Subsequently, the word is resyllabified so the conso­

nant attaches unambiguously to the coda of the first syllable to fit better with the 

word’s stress patterns (i.e. m#s | t@R). At no point does a sound belong to two 

syllables simultaneously. In my work I do not pursue the ideas of ambisyllabicity 

or resyllabification. Largely, this avenue is precluded by a lack of data. I must rely 

on dictionaries for a gold standard, and dictionaries provide a single, unambiguous 

syllabification.

Optimality Theory

SSG, MOP, and the Legality Principle are not necessarily mutually exclusive. Ham­

mond [1997a] makes an attempt to combine several of these theories as a test bed 

for optimality theory (OT). Optimality theory stands in opposition to rule-based ap­

proaches, which require all constraints to be satisfied. In OT, constraints are ranked 

in order of importance, and lower-ranked constraints can be happily violated in or­

der to satisfy higher-ranked constraints. In Hammond’s theory, the constraints are:

1. PEAK: syllables have one vowel.

2. LICENSING: all words must be composed of syllables.

3. SONORITY: onsets must increase and codas must decrease in sonority.

4. FAITHFULNESS: the output of the syllabification should be the same as the 

input.

12
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5. ONSET: syllables begin with a consonant.

6. NOCODA: syllables end with a vowel.

7. COMPLEX: syllables have at most one consonant at an edge.

The NOCODA and ONSET constraints together specify something akin to the 

maximal onset principle. However, SONORITY is the higher-ranked constraint, so 

NOCODA can be violated in order to maintain SONORITY.

Empirical Studies

Treiman and Zukowski [1990] conduct an empirical study to determine how well 

actual human syllabification practice accords with phonological theory. Their find­

ings are twofold. First, people strongly obey the legality principle —  when asked to 

syllabify [EdmVntVn] (Edmonton), subjects will never produce [E |dmVn|tVn]  

or [Edm| Vn | tVn] because [dm] is not valid as either a word-initial or a word- 

final cluster. Second, people seem to have greater deference to SSG than to MOP. 

A cluster like [ s  t  ] , with a small sonority gap, is more likely to be divided than a 

cluster like [ d r ] , where the sonority gap is larger. That is, [ I s  | t i t ]  (estate) is 

preferred to [ 11 s t l t  ] , but [mV | dr Id]  (.Madrid) is preferred to [mVd | r i d ] . 

If MOP were more important, we would expect people to prefer both [mV | dr  Id]  

and [ I  j s t l t ] .

Goslin and Frauenfelder [2001] compare several syllabification algorithms (in 

French) and report how often the different approaches agree. Two of the algorithms 

they compare are based on SSG, two are rule-based algorithms based on the legality 

principle, and the fifth approach is MOP. The details of the algorithms are largely 

specific to the French language. In a comparison of all the intervocalic consonant 

clusters in the French corpus BDLex, Goslin and Frauenfelder find that agreement 

between algorithms is high when there are only two consonants in the cluster, but 

drops off sharply as the number of consonants increases. For example, in the case 

of the two legality-driven, rule-based algorithms, agreement drops from 99 per­

cent with two-consonant clusters, to only 9 percent for clusters containing more
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than three consonants. Such high levels of disagreement, even between theoreti­

cally very similar approaches, indicates that subtle variations in models can have 

substantial effects.

2.3 Summary

In this chapter, I defined a syllable as a phonological construct consisting of a 

vowel-based nucleus, optionally preceded by consonant(s) forming the onset and 

optionally followed by consonant(s) forming the coda. I have introduced three the­

ories of syllabification: the maximal onset principle, the legality principle, and the 

sonority sequencing generalization. However, no theory or combination of theories 

can correctly syllabify all words, and small discrepancies between implementations 

can have large effects on output. Consequently, any rule-based approach to syllabi­

fication will leave some scope for improvement.

This chapter also draws a distinction between syllabification of a word’s pho­

netic form, and reproducing the dictionary end-of-line divisions in the orthographic 

form. Because the latter is not a well-defined linguistic problem, rule-based ap­

proaches are unlikely to succeed. Notwithstanding the differences between the two 

tasks, I refer to syllabification of both phonemes and letters for the balance of this 

thesis.

14
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Chapter 3

SVM-HMM: A Primer

The primary contribution of this thesis is applying a discriminative technique to 

the problem of syllabification. This chapter introduces the specific discriminative 

technique that my system employs: SVM-HMM. SVM-HMM is a type of struc­

tured support vector machine (SVM) that combines attributes of a hidden Markov 

model (HMM) and a single-instance SVM. In this chapter, I first outline HMMs 

and single-instance SVMs. Subsequently, I explain structured SVMs in general, 

and SVM-HMM in particular.

3.1 Hidden Markov Models

Hidden Markov Models (HMMs) are generative models of the joint probability of 

an observation and its (hidden) label. Based on the known probabilities for obser­

vations and labels, we can predict which label accompanies a given observation. In 

the canonical example, we find ourselves locked in a windowless basement. We 

want to know if the weather is rainy, sunny, or cloudy, but all we can observe is 

whether the guard carries an umbrella. We know that the guard tends to carry an 

umbrella when it rains. We also know the probability that a rainy day follows a 

non-rainy day.
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Figure 3.1 shows a very simple HMM for this situation. We know there is a 60 

percent chance that it will rain today if it rained yesterday. More formally, this is 

the transition probability that the current hidden state Rt will follow the previous 

hidden state Rt- \ .  We know that there is an 80 percent chance it will rain today if 

our guard has an umbrella. This is the emission probability of the current hidden 

state Rt given the current observation Ut. We further know that it was sunny on the 

day we were locked in the basement (R0. If the guard does not carry an umbrella 

on the first day, we can calculate the probability of rain on day one as:

P r i R , )  =  P r i R M  ■ P r i R . l U , )

—  0.4 • 0.2

-  0 .08 .

TRANSITION R aining
R aining 0.6
Not R aining 0 .4

EMISSION Umbrella
R aining 0 .8
Hot Raining 0.2

Figure 3.1: An illustration of the HMM set-up for the weather example.

In the general case, with j  possible hidden states, we can determine the prob­

ability that the ith hidden state, St, is equal to x, given the ith observation, Ot by 

calculating:

Pr(Si =  x) =  J ~2[Pr(Si-i =  j ) ■ Pr(Si  =  x|Si_i =  j)} ■ Pr(Si  =  x |0*).

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This is a first-order HMM, where state transitions only depend on one previous 

state; higher-order HMMs are also common. We can determine the optimal se­

quence of states for a whole sequence of observations using the Viterbi algorithm.

HMMs can be used to predict syllable boundaries (Chapter 4 presents some pre­

vious work in that vein). In such a case, the letters or phonemes of the word are 

the observations, while the labels that indicate syllable boundaries are the hidden 

states. However, there are a number of reasons why HMMs are suboptimal for the 

task. The primary objection is that syllabification is not usually done in the equiva­

lent of a locked, windowless basement. We know all the letters in the word, and it 

makes sense to look at more than one of them in determining the best ‘state’ to se­

lect. However, any features used to represent the observations of an HMM must be 

conditionally independent, which precludes the inclusion of some very useful fea­

tures. Another problem is that the arrows in Figure 3.1 point the ‘wrong’ direction. 

In the rain example, the hidden state (the weather) was influencing whether or not 

the guard had an umbrella. In syllabification, the fact that there is a syllable bound­

ary after the ith letter does not affect what that letter is. The letters (observations) 

determine the syllable boundaries (hidden states), not the other way around.

3.2 Support Vector Machines

In contrast to HMMs, a Support Vector Machine (SVM) is a discriminative super­

vised learning technique that allows for a rich feature representation of the input 

space. We learn from training examples, and then generalize what we have learned 

to new, unseen cases. In its simplest guise, an SVM is a tool for performing binary 

classification of objects, based on features of those objects.

Before considering the general case and the mathematics that underpin it, I will 

sketch a simple high-level example of the intuition behind SVMs. There are thirty 

teams in the National Hockey League (NHL), and each year 16 of them qualify for 

the playoffs. Suppose that, in January, we want to predict which teams will make 

the playoffs at the end of the season. Based on our knowledge of the NHL, we
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might guess that two factors are good predictors of whether or not a team will be 

in the postseason: the number of wins the team has, and the team’s goal differential 

(goals scored less goals allowed).

IS ■

10 4b

p  ©

m a r g i n
-20

Figure 3.2: An example of a maximum margin separating positive and negative 
examples.

Further suppose we have access to last year’s statistics. We know which teams 

made the playoffs (our positive examples) and which teams did not (our negative 

examples). We also know the win totals and goal differentials each team had last 

January. We will use these two features to describe our input examples. In an ideal 

world, we can plot our negative and positive examples as in Figure 3.2, and draw 

a straight line dividing up the space between playoff teams (plus signs) and non­

playoff teams (circles). This line serves as our classifier: teams whose features put 

them above the line will be in the playoffs, while teams that fall below the line will 

get early tee times. We do not draw our classifier line arbitrarily; rather, we choose 

the line that will maximize the margin between positive and negative examples. 

Once we have our line, we can plot next year’s teams on the same axes, and predict 

which teams will make the playoffs.

Mathematically, we formalize this as the search for a weight vector w and offset 

b that maximizes the margin between positive and negative examples1. Each of 

the N  training instances is associated with features, x,, e  and a desired output,

'all equations in this section are adapted from [Hastie et al., 2001]
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Vi £ { — 1,1}. The width of the margin is defined by 2 • so we can maximize the 

margin by solving the following argmin:

argminw ()i | |u ' | |2 s.t. yt{w ■ — b) >  1, * =  1 , . . . ,  N. (3.1)

Finding this argmin is a convex optimization problem; we use a quadratic program 

to determine the solution.

Once we have found w  and b, we can use them to classify new examples using 

the classification rule:

y =  signfiu • x +  b]. (3.2)

Extending the Basic SVM Framework

Practically speaking, there are a number of conflating factors that make SVMs more 

difficult to employ for real-world prediction problems.

First, real-world classification is almost never so easy. If we could perfectly 

predict the playoff teams from the wins and goal differentials in January, there 

would be no need to play the rest of the games. In reality, some teams with a 

lot of wins and a good goal differential at the halfway mark will not make the 

playoffs, while other teams with few wins and poor goal differentials will start to 

play better and get in to the postseason. Figure 3.3 plots the actual wins and goal 

differentials of NHL teams in January of 2007, with teams that actually made the 

playoffs represented by plus signs. For this diagram, there is no straight line that 

can cleanly divide the playoff teams from the non-playoff teams. In other words, 

the data is not linearly separable. To overcome this problem, SVMs employ slack 

variables. Conceptually, a slack variable allows us to treat one or more examples as 

outliers, and ignore them when drawing the line.

Mathematically, the addition of slack variables, sif means we have to reformu­

late equation 3.1 as:
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-40

Figure 3.3: An example of data that is not linearly separable.

a rg m in ^ s -IH +  c S.t.
Di(w ■ Xi — b) >  1 — Si, i =  1 , . . . ,  N  

Si >  0, i =  1 , . . . ,  N.

(3.3)

Equation 3.2 remains unchanged.

The Si values in Equation 3.3 represent how much the associated xt values are 

misclassified by under the current w. Therefore, the ]T\ term represents the total 

amount of error across all examples. The amount of error we are willing to accept 

on the training data is determined by the c term, which is a tunable parameter. In 

practice, the value of c often makes a significant difference in the accuracy on our 

test examples.

A second complicating factor is the number of features. In a typical classifi­

cation task, there will be more than two factors that are important in making our 

prediction. (In the NHL example, we might consider things like player injuries, for 

instance.) In some domains we might use thousands, or even millions. Thus, we are 

typically not drawing a line to divide two-dimensional space, but rather construct­

ing a hyperplane to divide n-dimensional space. Finding this hyperplane is more
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time-consuming than drawing a line, although it does not change the underlying 

mathematics.

It is also non-trivial to determine which features we should use to represent our 

problem. In practice, it usually will not hurt to include extra features (the SVM will 

learn to ignore features that do not help classification). However, missing a feature 

that is crucial to the task can greatly impede performance.

Another thing that makes SVMs more complicated is that many classification 

problems are not binary. Suppose we want to classify the NHL teams as

(1) non-playoff teams,

(2) teams that get eliminated in the first round of the post-season, and

(3) teams that advance to the second round or later.

To perform multi-class classification, we need to alter equation 3.3. The first 

thing we need to do is modify our notation somewhat. Because we have more than 

two classes, we can no longer rely on the sign of w-x to perform our classification — 

the desired output must be represented explicitly. We use the n o t a t i o n yt) to 

represent the relationship between the features of an instance x% and its desired class 

label yi. Given a set of possible class labels, I, we want to maximize the difference 

between the desired label, y% and all competing, incorrect labels, for each training 

instance:

argminW;6iSJ ||w ||2 +  c - ^ S i  s.t. s{ >  l{k ±  y i ) - w ( ^ ( x i ,y i) - ^ { x i , l i)) , \ / i , l i .

(3.4)

The 1 (k 7  ̂yi) term is an indicator function, which will be equal to zero when lt =  

yi. Thus, we still have the s; >  0 constraint in the multi-class case. However, we are 

adding an extra constraint for every other possible class. This greatly increases the 

number of constraints that must be enforced when solving the quadratic program. 

Multi-class problems also change the classification rule slightly:

y =  argmax/.w(\k(xi, k)). (3.5)
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We can simply try all possible labels until we find the one that maximizes the prod­

uct o f w-  V.

Whether an SVM is doing binary or multi-class prediction, it has a significant 

drawback compared to an HMM: the SVM can only make single predictions in 

isolation. This is problematic for many problems, including the NHL example. Ex­

actly 16 teams make the playoffs, with a certain number coming from each confer­

ence and division. However, the single instance SVM might predict that 18 teams 

will make the playoffs, or that all the playoff teams are in the same conference. 

Whether a given NHL team makes the playoffs is somewhat dependent on what 

other teams do. This sort of problem is very much an obstacle if we want to use 

SVMs to perform automatic syllabification. Whether a given letter is at a syllable 

boundary is dependent on where the other syllable boundaries are. We are not per­

forming a series of individual classification problems; we want to make predictions 

about a number if interrelated entities. There is a structure to the problem we are 

trying to solve, but the SVM does not allow us to take advantage of it.

3.3 Structured SVMs

The structured support vector machine was designed to deal with this exact short­

coming of single-instance SVMs. In many ways, structured SVMs are a fairly 

straightforward extension of the multi-class case [Tsochantaridis et al., 2004]. In­

deed, the structured SVM derives its weight vector by solving a generalization of 

Equation 3.4:

argminw ^ ^ | |w |l2+c~y^ Sj s.t. s* >  LOSS { y , y i) - w ( ^ { x i ,y i) - ^ { x i,y ) ) , \ / i , y  ^ Y .

(3.6)

Classification is done using the following:

y =  &rgmaxyeYw('S>(xi,y)).  (3.7)
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There are two differences between the multi-class and structured cases. First, 

we substitute the indicator function with a general-purpose loss function that varies 

depending on the structure being predicted. Second, we no longer have a nice dis­

crete list of possible competing wrong class labels, Z*. Instead, we are trying to 

maximize the the difference between the correct structure, and all other possi­

ble (but incorrect) structures, y  <G Y.  This is where the difficulty arises. In the 

multi-class case, even if we have 10,000 possible class labels, there are only 9,999 

incorrect answers. By contrast, if we are attempting to predict a complex structure, 

the number of potential answers is exponential, or even infinite. This explodes the 

number of constraints the quadratic programmer must satisfy, and the number of 

possible answers the argmax must search over. Consequently, finding a solution 

becomes prohibitively expensive, if not impossible.

To overcome this obstacle, Tsochantaridis et al. [2004] propose to solve the 

optimization in an online fashion, adding constraints on an as-needed basis. The 

general approach is as follows:

1. Using Equation 3.7, find the (incorrect) output structure y that is imposing 

the largest error cost, according to the current weight vector.

2. Add constraints associated with y to the optimization problem as set out in 

Equation 3.6.

3. Derive a new weight vector, using the new set of constraints.

4. Move to the next training example and return to step 1.

This process continues to iterate until no new constraints are added to the opti­

mization problem. In practice, in order for new constraints to be added, the error 

imposed by the structure y must exceed the slack value by more than some small 

constant e.

Structured SVMs have been shown to find a solution that is within e of being 

optimal. Moreover, as long as Equation 3.7 can be solved in polynomial time, the 

optimization itself is polynomial.
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SVM-HMM

To apply the formalism to automatic syllabification, I use a specific instance of 

structured SVMs, called SVM-HMM. Introduced by Altun, Tsochantaridis, and 

Hofmann, SVM-HMM predicts a sequence of labels for a sequence of observa­

tions [Altun et al., 2003]. To do this, it learns a classifier using Equation 3.6. The 

loss function is Hamming distance; on this metric, the more labels a candidate se­

quence y has in common with the correct sequence y,t, the lower its loss will be. 

The output space Y  is infinite, consisting of all possible sequences that can be con­

structed from the label set E. However, for any given training sequence Xi, the 

number of possible label sequences is fixed, because there must be exactly one la­

bel for each observation in the input sequence. To classify sequences, a Viterbi 

decoder is used to solve the argmax in Equation 3.7.

The name SVM-HMM derives from the two types of features that are incor­

porated in T. First, there are features that capture the relationship between the 

observations and labels, as in a typical, non-structured SVM. These ‘emission’ fea­

tures require no conditional independence assumptions, as would be required in an 

HMM framework. Second, there are features representing the transition probabili­

ties between labels in an output sequence, as in an HMM.

Applying SVM-HMM to automatic syllabification allows me to have the ben­

efit of discriminative training and an expressive feature set, while predicting all of 

a word’s syllable boundaries at once. Moreover, SVM-HMM is a freely available 

software package2. The software package requires users to define their own emis­

sion features; transition features are supplied by the package, using a first-order 

Markov assumption. I discuss the emission features for the syllabification task in 

Chapter 5.

2http://svmlight.joachims.org/svm_s truct.html
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3.4 Roads Not Taken

SVM-HMM is by no means the only way to combine an arbitrary feature set with 

HMM-style transition probabilities. McCallum, Freitag, and Pereira introduce Max­

imum Entropy Markov Models (MEMMs), in which a single probability function 

is used to estimate the probability of a state, given the observation and the pre­

vious state [McCallum et a l ,  2000]. Maximum Entropy Markov Models allow 

non-independent features, and maximize conditional probability (rather than joint) 

to model the situation, which is more in line with the problems we typically use 

HMMs to solve. A drawback of MEMMs is that they model the transition proba­

bilities separately for every state. This creates a bias in favour of states with only 

one outgoing transition, which will necessarily capture more probability mass. Laf- 

ferty, McCallum, and Pereira address this problem with Conditional Random Fields 

(CRFs) [Lafferty et al. , 2001]. CRFs are essentially a modification of MEMMs that 

model the probability of the entire sequence of labels given the a full sequence of 

observations.

Another possible approach is Collins’s [2002] averaged perceptron, which also 

takes advantage of complex, interrelated features. Rather than estimating the maxi­

mum likelihood weights for each weight, the Collins method uses a perceptron up­

date rule: at each iteration, every training example is assigned the highest scoring 

label sequence under the current weights. If that sequence is incorrect, the weights 

are updated. After all iterations are completed, each parameter is assigned to be the 

average of the values it took on during the training process.

There are also several other variations on the SVM-HMM theme. Taskar, Guestrin, 

and Roller present Max-Margin Markov (M 3) Networks [Taskar et al., 2003]. M 3 

Networks still predict a full sequence of labels, but they maximize the margin for 

each label in the sequence, rather than the sequence as a whole. This makes the 

number of constraints polynomial in the length of the sequence. Consequently, M 3 

Networks can specify all constraints from the outset, and do not need to iteratively 

solve quadratic programs. Conversely, McDonald, Crammer, and Pereira use struc­

tured multilabel classification, or MIRA, which trains online like SVM-HMM [Mc-
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Donald et a l ,  2005]. However, MIRA only maximizes the margin over the k best 

incorrect sequences. This exponentially reduces the number of constraints, but at 

the cost of increasing the complexity of inference — the top k sequences must be 

found, rather than only one.

CRFs, averaged perceptron, M 3 networks, MIRA, and SVM-HMM have all 

been shown to achieve good performance on NLP tasks like part-of-speech tag­

ging, text classification, and/or text segmentation. Syllabification is a small enough 

problem that any of the above methods would be tractable. However, only CRFs, 

M 3 networks, and SVM-HMM solve a well-defined objective, making those tech­

niques preferable to the averaged perceptron and MIRA. CRFs are less desirable 

because they are computationally expensive, and do not allow a loss function. M 3 

networks and SVM-HMM are nearly identical in their objectives and expressive­

ness; the availability of a free toolkit for SVM-HMM makes it the obvious choice.

3.5 Summary

In this chapter I presented SVM-HMM, a type of structured support vector ma­

chine. SVM-HMM is an excellent formalism for the syllabification task because it 

is a discriminative method that allows for a complex feature representation. When 

syllabification is formulated as a tagging task, SVM-HMM can make a unified pre­

diction of all the syllable breaks in a word. SVM-HMM is preferable to techniques 

like averaged perception and MIRA because it maximizes a well-defined objective; 

it is more desirable than CRFs because it is less expensive and allows the use of 

Hamming distance as a loss function.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Previous Work

Although there is a fair amount of previous work on the topic of syllabification, the 

literature is not particularly unified. Comparison with previous results is relatively 

rare, as syllabification is more often used as a test bed for a new technique, or a 

means to some text-to-speech ends, rather than a task in its own right. It is also very 

difficult to compare accuracy scores achieved on different data sets as syllabifica­

tion tends to vary somewhat across dictionaries. Systems have also been created 

for several different languages (English, Dutch, and German most prominently), 

which further confounds comparative analysis. Moreover, it is sometimes unclear 

whether a particular approach has been applied to strings of letters or strings of 

phonemes. While the same techniques will often work in both domains, the ac­

curacy level achieved varies substantially. Syllabification of phonemes is also a 

well-known linguistic/phonological process, where syllabification of letters has no 

such theoretical underpinnings. This allows syllabification of phonemes to explore 

rule-based or parsing techniques that are not viable in the letter domain.

The upshot is that there is no obvious progression through the literature. I ded­

icate Section 4.1 to a detailed examination of Marchand and Damper’s [2005] Syl­

labification by Analogy (SbA), which represents the current state-of-the-art for En­

glish syllabification. Like my approach, it is a data-driven technique that can be 

applied to both letters and phonemes. In practice, SbA is language-independent,
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although I know of no results applying the system to either German or Dutch. Fur­

thermore, unlike other techniques, I can make direct comparisons between SbA 

and my method. Both SVM-HMM and SbA have been trained and tested using the 

same data for English letters, which allows me to make direct comparisons between 

them. Additionally, uniquely in the literature, Marchand and Damper have already 

directly compared SbA with existing English syllabification techniques. Finally, 

Marchand and Damper were the first to establish that syllabification has the poten­

tial to improve English letter-to-phoneme (L2P) performance. In many ways, their 

work is the impetus for my research.

In Section 4 .2 ,1 discuss other previous work that is closely related to my own, 

either in the approaches undertaken or the datasets used for testing. Systems in 

this section are broadly comparable to my discriminative implementation. In Sec­

tion 4 .3 ,1 sketch some other previous work on syllabification that is more tangential 

to the work of this thesis. Although this chapter combines work on both letters and 

phonemes of several different languages, I clearly state both the domain and lan­

guage of application for each technique.

4.1 Syllabification by Analogy

Syllabification by Analogy (SbA) is a modification of the Pronunciation by Analogy 

algorithm for the syllabification task [Marchand and Damper, 2005]. In a nutshell, 

SbA finds analogies between an unsyllabified query word and syllabified words ap­

pearing in the system’s lexicon. Substrings of the query word are compared against 

all dictionary entries, and the most analogous substrings are concatenated together 

to form a syllabification of the whole query word. The definition of the ‘most 

analogous’ substrings is somewhat intricate; in practice, a directed graph (called a 

syllabification lattice) is constructed to determine which substrings in the dictionary 

should be used to syllabify the query word.

Figure 4.1 illustrates a simplified example of SbA’s execution. The juncture 

between every letter is viewed as a potential syllable boundary. Boundaries are
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indicated by | ; non-boundaries are indicated by *. For ease of exposition, I use only 

a small dictionary, and show only a portion of the syllabification lattice. In reality, 

the graph would contain a node for every letter and junction in the query word.

POSSIBILITIES

Figure 4.1: An example of a lattice SbA might use to syllabify the input word 
lev—i—tate.

To construct the lattice, SbA compares every letter and junction of the query 

word with every letter in the dictionary. Any time there is a match between a dic­

tionary substring and a query substring, that substring is added to the lattice. The ? 

symbols in the query word can match either the | or * markers. Hence, the query 

l ? e ? v ? i ? t ? a ? t ? e  matches the dictionary entry l * e * v |  i  | t * y  up until the 

letter y. This pattern match is captured in the lattice by the nodes labelled 1 and 

*, connected by the arc labelled * e * v  | i  1 1 :1. The notation : 1 is a frequency 

count, indicating we have seen the pattern once. Substrings can match anywhere in 

the word. Thus, the count for the substring l * e * v  | is two, because we see it both 

in lev—i—ty and dev—er.

Once the syllabification lattice has been constructed, every path through the 

graph represents a plausible syllabification. Many of these paths will produce the 

same syllabification, as in the example. In cases where there are multiple syllab­

ifications within the lattice, SbA selects the shortest path through the lattice as its 

best syllabification. Thus, in Figure 4.1, only paths of length two will be consid­

ered, eliminating lev—it—ate as a possible syllabification. When choosing between
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shortest path syllabifications, SbA uses the product of the frequencies indicated on 

the arcs and selects the path with the highest value. In the example, lev—i—tate, the 

correct syllabification, has a frequency product of 2, and so beats out le—vi—tate, 

which only has a frequency product of 1. If there are several syllabifications with the 

shortest path length and identical frequency products, SbA chooses the whole-word 

syllabification that appears most frequently. Thus, if the example dictionary con­

tained the word le—vi—a—than, making the frequency product on the le—vi—tate 

path also equal to two, SbA would still choose lev—i—tate because there are two 

paths of length two that produce that syllabification.

Marchand and Damper first introduced SbA in the context of their Pronunciation 

by Analogy (PbA) implementation. Using the NETtalk dataset as their gold stan­

dard, they found that applying dictionary syllabification as a pre-processing step in 

PbA improved L2P performance from 65.35 percent word accuracy to 71.74 percent 

word accuracy [Marchand and Damper, 2005]. This is an 18 percent relative reduc­

tion in the error rate, and highly statistically significant. Given these results, the 

challenge is to replicate the improvement using an automatic syllabification tech­

nique. SbA achieves reasonably good word accuracy on the syllabification task. 

Experimenting on the NETtalk dataset and using leave-one-out testing, SbA cor­

rectly syllabifies 78.1 percent of words. Unfortunately, this level of accuracy is not 

sufficient to improve accuracy in Marchand and Damper’s L2P application. In fact, 

adding SbA-generated syllabification as pre-processing reduces L2P word accuracy 

from 65.4 percent to 64.3 percent.

Subsequent to their initial work on the topic, Marchand, Damper, and Ad- 

sett perform a detailed comparison of existing syllabification techniques for En­

glish [Marchand et al., to appear]. In this comparison they look at syllabification of 

both letter and phoneme strings. They use NETtalk as one of their gold standards, 

and also use 18K words taken from the Wordsmyth English Dictionary-Thesaurus. 

All Wordsmyth words also appear in the NETtalk dictionary, although not necessar­

ily with the same syllabification. They construct a third dataset, Overlap, consisting 

of the words appearing in both NETtalk and Wordsmyth, with the same syllabifica­

tions in each.
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Method Letters Phonemes
Optimality Theory 36.88 —
Legality Principle — 74.42
Simple EBG 73.53 83.66
Learned EBG 74.36 83.12
SbA 85.43 91.08

Table 4.1: A comparison of word accuracy scores for several existing English meth­
ods, adapted from [Marchand et al., to appear].

For each of the three datasets, Marchand et al. compare their SbA implemen­

tation with existing methods for English. The two other data-driven approaches 

compared are variations of exemplar-based generalization (EBG), sometimes called 

instance-based learning, or IB1-IG [Daelemans and van den Bosch, 1992; Daele- 

mans et al., 1997; van den Bosch, 1997], EBG generally performs a simple database 

look-up to syllabify a test pattern, choosing the most common syllabification. In 

cases where the test pattern is not found in the database, the most similar pattern 

is used to syllabify the test pattern. Similarity is determined by comparing a focus 

letter and its surrounding context, where each context letter is weighted according 

to its importance. Simple EBG systematically applies 15 different sets of integer 

weights to determine which one produces the best performance. Learned EBG uses 

information entropy (log probabilities) to determine the weights for a given con­

text letter at a given position. In the letter domain, Marchand et al. also compare 

against an implementation of optimality theory [Hammond, 1997b]; in the phoneme 

domain, they compare against an implementation of the legality principle [Fisher, 

1996], It is unclear why they do not attempt to apply Hammond’s optimality theory 

in the phoneme domain, where it would be more suited.

Across the board, performance is best on the Overlap dataset. Regardless of 

dataset, SbA has the highest accuracy scores by a very wide margin. A summary of 

the best results for each method on the Overlap set is reproduced in Table 4.1.
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4.2 Related Work

Daelemans and van den Bosch’s Data-Driven Methods

One of the earliest works on automatic syllabification is Daelemans and van den 

Bosch’s [1992] neural network-based implementation for Dutch letters. Neural 

networks are the precursors of SVMs, and the two technologies share a number 

of similarities. Daelemans and van den Bosch train two backpropagation networks 

that accept an input letter and its surrounding context and output whether that letter 

is at a syllable boundary or not. They design one of the networks to be aggressive, 

postulating lots of syllable boundaries; the other is designed to be conservative. 

The output of these two networks is then fed into a third network which trades off 

the responses of the conservative and aggressive networks. Daelemans and van den 

Bosch compare this connectionist approach to Learned EBG (described above). Re­

sults are reported in terms of letters correctly classified (either at a syllable bound­

ary or not). They find that EBG out-performs the neural network, achieving 96.6 

percent letter accuracy against only 94.2 percent for the back-propagation network.

Daelemans, van den Bosch, and Weijters also explore using IGTrees for En­

glish syllabification [Daelemans et al., 1997], IGTrees effectively store the same 

information as Learned EBG, but compress it into a tree form. On a set of 20K 

CELEX English orthographic forms, IGTree scores 94.53 percent, slightly lower 

than Learned EBG on the same data set (95.21%). In subsequent work, the same 

authors incorporate a Learned EBG module for syllabification of English phonemes 

into a larger IGTree L2P system [van den Bosch et al., 1998; van den Bosch, 1997]. 

Their syllabification system achieves 97.78 percent word accuracy on CELEX En­

glish phonemes, but they find that the system performs better without the syllabifi­

cation module.

HMM-based Methods

Krenn [1997] introduces the idea of treating syllabification as a tagging task. Work­

ing from a list of syllabified German phoneme strings, she automatically generates
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tags for each phone. A second-order Hidden Markov Model is then used to predict 

sequences of tags; syllable boundaries can be trivially recovered from the tags. The 

HMM is intended to be incorporated as module in a larger TTS system.

Krenn experiments with two different tag schemes. Her Onset-Nucleus-Coda 

model assigns all vowels and diphthongs to be nuclei. All consonants preceding 

the nucleus in the syllable are onsets; all consonants following the nucleus are co­

das. Krenn’s Positional Model assigns the first phoneme in every syllable to be a B 

(beginning), the last phoneme to be an E  (end), and all intervening phonemes to be 

Ms (middle). In Chapters 5 and 6 ,1 use Krenn’s BME tag scheme for my discrim­

inative approach. Krenn’s results are a reference point for assessing my system’s 

performance.

Krenn uses the CELEX dataset for her experiments, evaluating using 50-fold 

cross-validation. She reports results at the phoneme level: how many individual 

phones received the correct tag. Krenn’s ONC model outperforms her positional 

model, scoring 98.34 percent phoneme accuracy, against only 93.56 percent. Krenn 

argues that the onset-nucleus-coda model beats out her positional model because 

it has less inherent ambiguity. With the BME tags, almost every phone can be 

assigned all three tags; with ONC tags, a large number of phonemes can assume 

only one possible tag.

Demberg [2006] also applies HMMs to the syllabification task, as a component 

of a larger German text-to-speech system. Although her TTS system only uses 

syllabification of letters, Demberg presents experiments on both German letters and 

phonemes. Demberg uses simple binary tags, requiring every letter to be labelled 

either N (Not at a syllable boundary) or B (Boundary). She applies a fourth-order 

HMM to the problem and additionally enforces the constraint that every syllable 

must contain a nucleus. To smooth the counts obtained from her training data, she 

applies Modified Kneser-Ney smoothing.

Demberg’s results are very good; using 10-fold cross-validation on German 

CELEX she achieves 97.87 percent word accuracy on the letter domain. In the 

phoneme domain, she achieves 98.47 percent word accuracy1. Additionally, Dem-

1 Schmid, Mobius, and Weidenkaff [to appear 20071 improve on Demberg’s phoneme results by
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berg is able to improve L2P performance in German from 73.4 percent to 74.4 

percent word accuracy, a statistically significant improvement. More importantly, 

syllabification allows her to automatically generate stress patterns (syllable position 

is an important predictor of German word stress). This further increases her L2P 

word accuracy to 78.85 percent. I use Demberg’s results as a point of comparison 

in my experiments.

Muller’s PCFG-based Approaches

Muller [2001a] applies probabilistic context free grammars (PCFGs) to the syllabi­

fication of German phonemes. She first manually constructs a context-free grammar 

(CFG) of possible syllables. Then, she uses counts from a labelled training set to 

assign probabilities to the rules in the CFG. Armed with this probabilistic context- 

free grammar, Muller can then find all possible syllable parse trees for an input 

word. These parse trees entail the syllable boundaries for the word. The most likely 

parse tree, according to the grammar, is selected as the correct syllabification of 

the word. Muller also experiments with a number of linguistic annotations for her 

CFG rules in an attempt to improve accuracy. She tries using extra productions that 

capture whether a phone is a vowel or a consonant, or whether it is part of an onset, 

a nucleus, or coda. Her best-performing grammar contains productions for the syl­

lable’s rhyme (e.g. Syl —> Onset Rhyme; Rhyme —> Nucleus Coda), and captures 

the syllable’s position within the word (e.g. Word —»• Syl.ini Syl; Syl —> Syl.fin).

To evaluate her approach, Muller uses a large newswire corpus of 3 million 

words, looking up their pronunciations in CELEX. Ninety percent of the corpus 

is used as training data, while 10 percent is used for testing. The two sets are 

not disjoint: more than 90 percent of the words from the test set also appear in 

the training data. Under this set-up, her system’s scores word accuracy of 96.49 

percent.

Subsequently, Muller [2002] further augments her grammar by adding produc-

applying a fifth-order HMM and tuning their smoothing algorithm specifically for syllabification 
of German phonemes. Word accuracy increases to 99.85 percent with the higher-order Markov 
assumption.
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tions for onsets and codas of different lengths. This produces an incremental im­

provement, scoring 96.88 percent word accuracy using the same experimental set­

up. Muller [2006] reprises the earlier work with a few variations. Rather than hand- 

constructing the CFGs, she exhaustively generates all possible syllables by system­

atically concatenating together all phonemes that occur in the language. This allows 

the technique to be easily applied to other languages. Many of the syllables in these 

generated grammars will never occur because they violate phonotactic constraints. 

Muller enforces the constraints by introducing grammars with more complex pro­

ductions. For example, in her best-performing grammar, different production rules 

are applied to the onset and coda depending on the actual phoneme in the nucleus. 

That is, different rules will be used to build the tree for the word string than will be 

used to build the tree for the word strong.

There is not much to choose between the various instantiations of Muller’s 

PCFGs. However, the 2006 work is most relevant to this thesis because of the evalu­

ation methodology. She applies the method to both German and English phonemes, 

uses CELEX, rather than newswire corpora for her tests, and evaluates using 10- 

fold cross validation. Thus, her test words do not appear in the training data. Her 

best word accuracy score in English is 92.64 percent; in German it is 90.45 percent.

I will use these results as a point of reference in my later work.

Bouma’s WFST-based approach

Bouma [2002] uses finite state transducers (FSTs) to implement a hyphenation sys­

tem for Dutch. He begins with a deterministic FST implementing a straightforward 

regular expression that essentially imposes maximal onset as its only guiding prin­

ciple. On the Dutch orthography portion of the CELEX dataset, Bouma achieves

86.1 percent word accuracy with his deterministic implementation. In error analy­

sis, he finds that most errors occur where morphology overrides maximal onset.

To overcome these morphologically-induced mistakes, Bouma uses transformation- 

based learning (TBL) to learn rules for correcting these mistakes without introduc­

ing new errors. These new rules are then composed into FSTs. By using 90 percent
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of the CELEX orthography word list (~ 261,000 training points), Bouma is able 

to extract 1,409 rules and improve his word accuracy to 98.17 percent. Even with 

only 10 percent of the CELEX dataset (deriving 264 rules), Bouma sees a very 

substantial increase in word accuracy — 95.34 percent.

Bouma’s excellent results can be achieved very efficiently using transducers. 

Better still, TBL produces actual rules from which we can glean linguistic meaning. 

For example, a rule re-writing all instances of i—st as is—t will remove nearly ten 

percent of the errors in Bouma’s test set. Meaningful rules are not available from 

my system, due to the large number of features I employ. However, it is not clear 

whether this FST-based approach would fare as well on English, a much less regular 

language than Dutch. English has so many exceptions that TBL may effectively 

devolve into creating a rule for almost every word in the language. Nonetheless, I 

will use Bouma’s results as a benchmark for my Dutch results.

4.3 Other Previous Work on Syllabification

Zhang and Hamilton [1997] explore syllabification of English letters as a compo­

nent of their L2P system. Their system, LE-SR, learns syllabification rules based 

on pattern matching. Rules are ranked based on the frequency they apply. Their fi­

nal system comprises 1089 rules, although using just 22 of the most common rules 

produces better than 90 percent accuracy. The vast majority of their rules (77%) 

deal specifically with single-case exceptions. Overall, their performance is good, 

achieving 95.42 percent word accuracy in ten-fold cross-validation experiments on 

a NETtalk-derived dataset.

These results must be interpreted with caution. Although Zhang and Hamilton 

couch their technique as syllabification of letters, and although they incorporate 

LE-SR as a pre-processing step in L2P conversion, their techniques does not actu­

ally work on letters. The input to their system has already been ‘chunked’. That is, 

letters that combine to make a single sound have already been merged, and silent 

letters have been removed. Moreover, letters have already been categorized as syl-
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labic (vowels and syllabic consonants) or non-syllabic (other consonants). Thus, 

rather than syllabify the string ro—guish, LE-SR syllabifies the string C S C S C, 

where S represents syllabic entities and C represents non-syllabic entities. The let­

ters sh and ui have been combined into single chunks. This is clearly an easier task 

than syllabifying raw letters, and is more comparable to syllabifying phonemes.

Kiraz and Mobius [1998] implement a weighted finite-state transducer (WFST) 

solution to the syllabification problem for phonemes in both English and German. 

The FST they describe is a component in Bell Labs’ TTS system. The weights for 

the German WFST are learned from the German portion of CELEX; the weights 

for the English WFST are learned from English CELEX and Bell Labs’ in-house 

pronunciation dictionary. A separate WFST is built for each of onsets, nuclei, and 

codas. These three transducers are then composed together into a deterministic 

transducer accepting syllables according to a regular expression that defines legal 

syllables in a given language. A word is then syllabified by a transducer that accepts 

one or more syllables, separated by syllable-boundary markers. Unfortunately, Ki­

raz and Mobius only perform a qualitative analysis of their system, rather than 

providing a quantitative measure of their performance.

Pearson, Kuhn, Fincke, and Kibre explore syllabification (and stress assign­

ment) of English phoneme strings [Pearson et al., 2000]. They compare two rule- 

based systems: the syllable module from the MITtalk TTS system, and Panasonic’s 

in-house syllabification rule set. The actual rules applied in these two methods are 

not described. Pearson et al. compare these rule-based methods with a CART de­

cision tree and Panasonic’s in-house ‘global statistics’ algorithm. In the phoneme 

domain, the challenge is to determine where a consonant cluster should be divided 

into separate syllables. The Panasonic method categorizes every consonant cluster 

by its context: the cluster will be preceded and followed by some combination of a 

short vowel, long vowel, beginning of word, and end of word. Consonant clusters 

in test words are syllabified based on the most probable boundary location found in 

training data. The four methods are assessed using the 19K Cybertalk dictionary; 

half the words are used for training and the other half for testing. The MIT-talk rule 

system scored 61.6 percent word accuracy, while the Panasonic rules achieved 83.2
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percent. Both data-driven methods scored better, with the decision tree syllabifying

92.2 percent of words correctly and the global statistics method getting 96.2 percent 

of words right. Pearson et al. also find that they can improve their syllabification 

results by a small amount using phoneme strings with stress patterns as input. Their 

results are, unfortunately, not comparable with mine, because they are based on a 

proprietary gold standard.

MacKinney-Romero and Goddard [2006] apply decision trees to Spanish let­

ters. Spanish is a very transparent language. The pronunciation of the orthographic 

form of a Spanish word is deterministic, which means syllabification of Spanish 

letters and phonemes should be of a similar level of difficulty. MacKinney-Romero 

and Goddard extract words from literary and newswire corpora and manually as­

sign letters to be either onsets, nuclei, or codas. Using a window of three letters 

around a focus character as input, they automatically construct decision trees from 

the training data. These resulting trees are not very complex —  binary trees with a 

maximum depth of 4 —  but they perform very well in Spanish. On 1,000 randomly 

selected words not appearing the training corpus, the trees score 96.8 percent word 

accuracy. They further attempt to apply their method to English and Italian. How­

ever, their gold standard syllabifications are the output from Hammond’s OT-based 

parser, which was less than 40 percent accurate in Marchand and Damper’s experi­

ments [Marchand et a l ,  to appear]. With such a flawed gold standard, the reported 

English letter accuracy score of 97.3 percent is meaningless. The Italian gold stan­

dard is also derived from an existing automatic technique, which makes the makes 

the letter-accuracy score for the Italian tests (99.3%) similarly difficult to interpret.

Unsupervised Techniques

Muller, Mobius, and Prescher explore the use of Expectation-Maximization (EM) 

as the basis for a clustering algorithm [Muller et al., 2000]. They experiment with 

both a three-dimensional and five-dimensional clustering model, applying it to both 

English and German phonemes. The three-dimensional model uses syllable onset, 

nucleus, and coda to determine the cluster, while the five-dimensional model adds
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syllable emphasis and the syllable’s position in the word. They experiment over 

a range of clusters, from one single class for all syllables, up to 200 classes of 

syllables. The German models are further incorporated into a letter-to-phoneme 

system. After all possible phone sequences are generated from letters and parsed 

by a context-free-grammar, the highest-probability sequence of syllables is selected 

as the L2P output. Compared to a baseline of probabilities counted directly from 

the training data, the learned EM clusters improve L2P accuracy. However, these 

improvements are in the context of rather low initial accuracy —  their best reported 

L2P accuracy is 75 percent.

This EM-based method is problematic as a syllabification technique. Generally 

speaking, EM and clustering are used for unsupervised approaches without training 

data. However, Muller et al.'s technique relies on being able to extract syllables 

from words, and therefore requires labelled training data (they use CELEX to look 

up words appearing in newswire text). If we have access to labelled training data, it 

is better to use some sort of supervised approach. Thus, this work is better viewed 

as a test-bed for multivariate EM clustering rather than syllabification qua syllabi­

fication.

In subsequent work, Muller [2001b] does explore a true unsupervised approach 

to syllabifying German phonemes. She uses the same PCFG-based approach de­

scribed in Section 4.2, but instead of using counts derived from labelled training 

data, she estimates the probabilities for her grammar using EM. Muller’s best gram­

mar achieves syllable accuracy of around 90 percent on pronunciations extracted 

from newswire text. This is far behind the supervised approach, which scored bet­

ter than 96 percent word accuracy, a far more difficult metric. Muller then attempts 

to use only the syllable grammar to perform the L2P task. To do this, she expands 

her PCFG to include productions that map phonemes to letters. The results are not 

impressive: her best model achieves only 42.5 percent word accuracy.

Goldwater and Johnson [2005] also explore using EM to learn the structure 

of English and German phonemes in an unsupervised setting, following Muller in 

modelling syllable structure with PCFGs. They use two different models: the po­

sitional model from Muller’s work, and a new bigram model. The bigram model’s
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productions make every syllable expansion depend on the previous syllable.

Goldwater and Johnson attempt to estimate the parameters for their maximum 

likelihood approach using EM. They initialize their parameters using a determinis­

tic parser implementing sonority and maximum likelihood. On its own, this cate­

gorical parser performs fairly well: 92.7 percent of German phone strings and 94.9 

percent of English phone strings are correctly syllabified. However, these results 

are somewhat inflated because a large proportion of the test set is monosyllabic and 

the training and test sets are not disjoint. Running EM to convergence on the bi­

gram model, after initializing the parameters based on the output of the categorical 

parser, produces an increase of several percentage points, to 95.9 percent in German 

and 97.1 percent in English. The same procedure on the positional model actually 

decreased the word accuracy. Goldwater and Johnson speculate that this is because 

the positional model does not allow EM to generalize onsets and codas found word- 

initially and word-finally to consonant clusters found word-medially. In effect, the 

positional model precludes EM from learning the legality principle. They conclude 

that models that produce improvement in a supervised setting are not necessarily 

optimal in an unsupervised one.

4.4 Summary

Many different authors have tackled automatic syllabification, using a variety of 

different techniques. Nonetheless, the problem remains unsolved. Particularly in 

English, where syllabification patterns are less regular than in German or Dutch, 

there is considerable scope for improving performance. Discriminative approaches 

are notably underrepresented in previous work. The most successful approaches 

use some version of lazy learning (as in SbA or EBG), or HMMs. By contrast, 

my system uses supervised discriminative training to achieve state-of-the-art per­

formance.
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Chapter 5

Syllabification of Letters

This chapter shows how discriminative training can be applied to automatic syllab­

ification of letters. In particular, I formulate syllabification as a tagging problem 

and apply the SVM-HMM learner to the task. Given the SVM-HMM formalism, 

the crux of the task is creating a tagging scheme that produces good results, and de­

riving a set of features that capture the relationship between input words and their 

desired labellings. This chapter describes that process, and presents experimental 

results on the final system.

Section 5.2 outlines a number of different tag sets, and selects two tag sets for 

further experimentation. Section 5.3 describes my system’s emission features and 

how they are chosen. There is necessarily some overlap here: we cannot train an 

SVM without selecting both features and a tag set. Furthermore, the performance 

of the tag sets depends on the features selected, and vice versa. In practice, I tested 

all combinations of feature sets and tag schemes before settling on the configuration 

used to obtain the results presented in Section 5.4.

However, both tag sets and features selected (and indeed, the use of SVM-HMM 

itself) depend on the data available. Hence, I will first turn my attention to the 

datasets used for training and testing.
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5.1 Datasets

Datasets are especially important in syllabification tasks. Dictionaries sometimes 

disagree on the syllabification of certain words, which makes a gold standard dif­

ficult to obtain. Thus, any reported accuracy is only with respect to a given set of 

data.

At the outset of this research, I primarily used the NETtalk dataset for devel­

opment. The NETtalk corpus is so-called because it was developed by Sejnowski 

and Rosenberg [1988] for their NETtalk text-to-speech system. The corpus is a 

list of 20,008 English words and their phonetic transcriptions, as found in Web­

ster’s Pocket Dictionary. In addition to the letters and their associated phones, 

NETtalk also lists stress and syllable structure for every word. The dictionary 

maintains a one-to-one alignment between letters and their phonemes, which al­

lows this syllable and stress information to be applied to both the orthographic 

and phonemic representation of a word. My early work on this subject used this 

dataset largely because it was the one used by Marchand and Damper for their work 

on syllabification and letter-to-phoneme systems ([Marchand and Damper, 2005; 

Marchand et al., to appear]). However, it soon became apparent that there are sig­

nificant problems with NETtalk as a dataset for syllabification.

NETtalk is riddled with some truly bizarre syllabifications, such as be—aver, 

dis—hcloth, and som—ething. These ‘gold standard’ syllabifications are obviously 

problematic, hcl is an invalid onset in English because it is unpronounceable. The 

syllables aver and ething each have two vowels separated by consonants, and look 

as though they should be subdivided into two syllables {i.e. a—ver and e—thing). 

Indeed, the word aver appears in the NETtalk dataset, syllabified as a—ver. I con­

sulted five other dictionaries1, and all five list bea—ver, dish—cloth, and some—thing 

as correct.

The examples I have listed are not spurious, or attributable to human error in 

compiling the dataset. Rather, they are indicative of a systematic approach to syl­

labification in NETtalk. Because orthographic syllabifications are mapped directly

^erriam-Wester Online, Dictionary.com, Encarta Dictionary, CELEX, OS X Dictionary.
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from the phonetic domain, whenever a letter is silent (like the e in something), or 

two letters combine to create single phoneme (like the sh in dishcloth, NETtalk 

inserts a null symbol in the phoneme string. The phonemic gold standard syllab­

ification almost always places the syllable boundary before the null. For strings 

of phonemes, this is not a problem; the null has no sound by definition, so it can 

equally go on either side of the boundary. However, when those same syllabifica­

tions are mapped directly to the letter domain, we get counter-intuitive syllabifica­

tions like the ones listed above.

Obviously, these bizarre syllable breaks make it difficult for a data-driven method 

to be successful. Seeing both a—ver and be—aver in the training data sends the 

SVM in conflicting directions. Scores will also be artificially lowered if a syllabifi­

cation like some—thing is scored as incorrect. Most worryingly, the NETtalk gold 

standard syllabification is likely to introduce new errors into a letter-to-phoneme 

system. An L2P system is likely to correctly predict that the letters sh in dishcloth 

map to a single phoneme because it is a common occurrence and the alternatives are 

unpronounceable. However, if that same L2P system is told that there is a syllable 

break between the s and h, correct prediction is less likely: a single phoneme cannot 

have a syllable break in the middle of it.

Notwithstanding these shortcomings, I still perform some experiments on the 

NETtalk database, largely because Marchand, Damper, and Adsett use it for their 

comparative work in English [Marchand et al., to appear]. However, I also argue 

that NETtalk is entirely unsuitable for the syllabification task. Results on other 

datasets are a much better measure of the efficacy of a syllabification task, and a 

better indicator of whether syllabification can improve letter-to-phoneme systems.

Because of NETtalk’s deficiencies, the main dataset for this work is the CELEX 

dictionary [Baayen et al., 1995], CELEX is a product of the Max Planck Institute 

for Psycholinguistics in the Netherlands. The dictionary consists of three languages 

(English, Dutch, and German), and specifies both orthographic and phonetic forms 

for words. The English section of CELEX is compiled from the Oxford Advanced 

Learner’s Dictionary (1974) and the Longman Dictionary of Contemporary English 

(1978). It contains 160,595 English words of British English. The German portion
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of CELEX is based on the Bonnlex and Molex computer dictionaries, as well as a 

German spelling lexicon. It contains 365,530 words. The Dutch CELEX is derived 

from Van Dale’s Comprehensive Dictionary of Contemporary Dutch (1984) and the 

Groene Boekje Word List of the Dutch Language (1954), and most of the dictio­

nary entries from the Institute for Dutch Lexicology’s 42.4 million-token corpus. It 

contains 381,292 entries.

I perform some pre-processing of the CELEX dataset for my work here. Only 

words containing at least two letters are retained. All homographs are removed. 

There are 23K homographs in English CELEX. Most of the time, the syllabifica­

tion is the same for all instances of the homograph, such as the seven different 

CELEX entries for the orthographic form cross. However, in a small minority of 

cases (about 0.3 percent of homographs, or 0.1 percent of the final word list), ho­

mographs have different syllabifications, such as learned, the past-participle, and 

learn—ed, the adjective. In these cases, one of the possible syllabifications is se­

lected at random as the gold standard; only that syllabification is considered correct 

during experiments.

I also remove all multiple-word and hyphenated entries, as they are superfluous. 

Given that we have an entry for zebra and another for crossing, it is unnecessary to 

keep zebra-crossing as well. On the other hand, the compound word crosswalk is re­

tained. I also remove words containing apostrophes (the vast majority of which are 

possessives), and any diacritics are converted into single-character codes to facili­

tate processing. Finally, in English I remove any unpronounceable abbreviations, 

like Ibw or bbc. The final English dataset contains 66K words. 52K of the removed 

words are homographs; an additional 41K are multi-word or hyphenated entries. 

Thus, almost 99 percent of the removed words are duplicates of some form. When 

similar pre-processing is performed for Dutch and German, the datasets have 298K 

and 31 IK words, respectively.

I develop my approach using a small subset of English CELEX. In both Sec­

tions 5.2 and 5.3, I report results on a randomly selected development set of 5K 

words. During development, SVM-HMM is trained using another 10K randomly 

selected words not appearing in the 5K set.
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5.2 Choosing a Tag Scheme

The most obvious tagging scheme for automatic syllabification is a binary assign­

ment: a letter is either before a syllable boundary, or it is not. I call this tagging 

scheme NB Tags because every letter is either at a syllable boundary ((B)), or not 

((N)). Using NB Tags, the gold standard labelling for the word syl—lab—i—fy  is 

( N N B N N B B N N ) ,  indicating that a syllable boundary should be inserted af­

ter the third, sixth, and seventh letters. During development I also experimented 

with labelling all word-final letters with (B). The legality principle tells us that 

all possible syllable-final clusters are also found word-finally. The hope was that 

explicitly marking boundaries at the end of words would help the SVM general­

ize word-medial boundaries. However, experiments on the development set found 

that not explicitly indicating word-final boundaries produced better performance. 

Binary tagging schemes for automatic syllabification are not new. Marchand and 

Damper employ the same basic idiom for Syllabification by Analogy. The tag­

ging scheme is implicit in a number of previous implementations ([Daelemans and 

van den Bosch, 1992], [Bouma, 2002]), and has been done explicitly in both the 

orthographic [Demberg, 2006] and phonetic [van den Bosch et al., 1998] domains.

I also experiment with a very similar tag scheme, IMF Tags. Introduced by 

Krenn as BME tags, IMF tags differentiate between the first letter after a boundary, 

and the second and subsequent letters, by explicitly marking the initial ((I)) and 

final ((F)) letters in the syllable. All intervening tags are marked as being in the 

middle ((M)) of the syllable. Under this tag scheme, syl—lab—i—fy  is tagged as (I 

M F I M F F I M ) .

A clear shortcoming of NB and IMF tags is that they encode no knowledge 

about the length of a syllable. Intuitively, this seems like important information. 

Syllables tend to be short — most English syllables contain four or fewer let­

ters. Because the SVM-HMM encodes a first-order Markov assumption, NB and 

IMF Tags do not even allow the classifier to realize that it is predicting something 

unusual. Thus, when using NB tags, we get output like *heroines (instead of 

her—o—ines) and *wellsprings (well—springs). The problem is less pronounced
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for IMF tags, but we still see *makeshift (for make—shift) and *achieved (for 

a—chieved).

To combat errors like these, I introduce Numbered NB Tags2, which simply 

numbers the (N) tags. Thus, the gold standard labelling for syl—lab—i—fy  be­

comes (N1 N2 B N1 N2 B B N1 N2). Because higher-numbered (N) tags will 

be comparatively much rarer than (N l) or (N2), we have effectively introduced a 

bias in favour of shorter syllables. Tags like (N5) and (N6) will be postulated only 

when the evidence is particularly compelling. When using Numbered NB tags, we 

get make—shift and a—chieved; well—springs and *her—oines. The last example 

is still incorrect, but is at least linguistically plausible.

Numbered NB Tags capture a key feature of a syllable: its length. However, 

like IMF and NB tags, it is a purely positional scheme. The tags say nothing about 

the function a given letter is performing within a syllable. To whit, these positional 

tags cannot identify which letter(s) in a syllable are acting as a nucleus. The impli­

cation of this shortcoming is that Numbered NB tags, NB tags, and IMF tags do not 

force syllables to contain a plausible nucleus. Using positional tag sets, the SVM- 

HMM will see no contradiction in predicting a syllable that contains only a single 

consonant. Consequently, we see output like *lim—b—er (instead of lim—her) and 

*par—t—ner—ships (part—ner—ships). .

To prevent errors of this nature, I implement ONC tags. ONC tags label every 

letter of a word as being part of either an onset, nucleus, or coda. Under this tagging 

scheme, the gold standard of syl—lab—i—fy  is (O N C O N C N O N). Given 

this sequence of tags, a regular expression can insert the syllable boundaries in 

the correct locations3. Such a tagging scheme has previously been attempted in 

the phoneme domain [Krenn, 1997], but to my knowledge has not been previously 

attempted in the letter domain. This is perhaps not without reason. Training data 

labelled with these tags is not available, and generating the tags deterministically

2Numbering NB tags is exactly equivalent to numbering IMF tags, so there is no need to explore 
both options.

3I abstract. In practice, we must always number the nuclei tags; otherwise, we will be unable to 
determine whether tag sequences like (O N N C) represent a single syllable with two vowels (as in 
reap), or two syllables (as in re—up).
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from syllabified word lists is non-trivial.

Consider the word syl—la—ble, for which we generate ONC tags (O N C O 

N O O N ) .  An obvious difficulty for English is the letter y, which sometimes acts 

as vowel and sometimes as a consonant. In actual practice, this is an easy issue 

to solve. All ys that are both preceded and followed by a consonant (as in the first 

syllable of the example) must be vowels by default. Otherwise, the letter y  is treated 

as a consonant.

A more difficult problem can be found in the last syllable of the example. Our 

script for generating ONC tags chooses the labels (O O N), effectively setting this to 

be the gold standard. However, these labels are not, strictly speaking, correct. The 

letter e is actually silent here, and the I is acting as a syllabic consonant; that is, the I 

represents the nucleus of the syllable. The letters /, m, n, and r can all act as syllabic 

consonants in English. To deal with this, these four letters are allowed to be labelled 

as nuclei if there are no vowels in the syllable. The vagaries of English spelling 

mean that syllabic consonants are often accompanied by silent letters. Thus, there is 

a certain degree of noise in the gold standard labelling. I should stress that this noise 

does not affect the accuracy of the syllabifications derived from the labellings; the 

tags are generated specifically to be consistent with the syllable breaks as provided 

in the dictionary.

These problems with ONC tags are a drawback of the tag set. Across languages, 

different letters can act as vowels; without knowing which letters can act as vow­

els in a particular language, ONC tags cannot be generated. Accordingly, I do not 

experiment with ONC tags for Dutch or German. Nonetheless, I pursue the tag 

scheme for English because it does capture the internal structure of the syllable, 

which is a positive attribute. Using ONC tags, SVM-HMM no longer produces 

syllables consisting of a single consonant. Moreover, I believe ONC tags can eas­

ily be adapted for other languages by anyone with enough familiarity with those 

languages to know their idiosyncrasies.

There is also considerable scope for variation within ONC tags. I explore num­

bering the (O) and (C) tags: Numbered ONC Tags will label the word strengths 

as (01 0 2  03  N1 C l C2 C3 C4 C5). Reverse ONC Tags also number the tags,
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but the coda tags are numbered from right-to-left instead of left-to-right. Hence, 

strengths is labelled (Ol 0 2  03  N1 C5 C4 C3 C2 C l). Since syllable codas can 

vary in length, Reverse Numbered ONC Tags ensure that the same tag always ap­

pears as the last label in the coda. Another option is to provide a special label for 

silent letters. Thus, in a word like blade, where the final e is silent, the gold stan­

dard labelling is (O O N C E ). These ONCE Tags can, of course, be numbered or 

reverse-numbered.

With all of these ONC tags, a syllable break is not represented by a single tag. 

It takes a combination of two tags (e.g. adjacent C and O tags) to denote a syllable 

boundary. I also explore an ONC tag set that models syllable breaks explicitly using 

a single tag. Under the labelling scheme Break ONC Tags, the word lev—i—ty is 

tagged as (O N CB NB O N). The tag (NB) indicates a letter is both part of the 

nucleus and before a syllable break, while the the tag (N) represents a letter that is 

part of the nucleus, but in the middle of a syllable.

5.2.1 Tag Set Comparisons

To determine the best tag set, I ran a series of experiments on the development set 

using my best feature set (see Section 5.3.)

Primarily, I measure my performance using word accuracy, which reports how 

many words are given the same syllabification as the gold standard. Note that this 

is not the same as words where all the letters are assigned the correct tag, as the 

syllable boundaries may be correct even if the tags are not.

I also present a metric I call syllable break accuracy. Syllable break accuracy 

measures the proportion of tags that produce a correct syllable boundary decision. 

It is related to simple tag accuracy, but allows for better comparison across tag sets. 

Consider the word side—show, with the gold standard Reverse ONC tagging (Ol 

N1 C2 C l 01  0 2  N1 C l). If it has been mislabelled (01 N1 C3 C2 C l 01 N1 

C l) (*sides—how), the tag accuracy will be 4/8 = 50 percent. If the same mistake 

is made using the ONC tag scheme, where the gold standard is (O N C C O O N 

C), the incorrect tag sequence (O N C C C O N C) gives a tag accuracy of 7/8 =
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87.5 percent. By contrast, syllable break accuracy only penalizes incorrect tags that 

cause an error in the syllabification, so it remains constant across tag sets. Under 

both Reverse ONC and ONC Tags, syllable break accuracy is 87.5 percent.

Positional Tags

Table 5.1 presents the results for all non-ONC tagsets. We see that NB tags lag con­

siderably behind IMF and Numbered NB tags in terms of word accuracy. The poor 

performance of NB tags is most likely due to the weakness of the signal coming 

from the emission features. In English, a syllable break can be drawn after almost 

every letter, depending on the context. Hence, every letter can take on either tag 

with almost equal probability. This is not the case with either IMF or Numbered 

NB tags. Vowels often appear in the middle of a syllable, and consequently are 

much more likely to have N2 or N3 tags, or M tags. Consonants take on (N l) or (I) 

labels with greater probability.

Tag Set Word Accuracy Syllable Break Accuracy
NB Tags 82.56 96.58
IMF Tags 85.55 96.70
Numbered NB Tags 86.61 96.87

Table 5.1: Development set results for positional tag sets.

To illustrate this phenomenon, I have graphed the weights derived from train­

ing SVM-HMM with a very restricted feature set: only the central focus character. 

Figure 5.1 plots the absolute weight value vector learned for a representative sam­

pling of letters under NB Tags. We see that for NB tags, the weight vector assigns 

almost equal weight for all letters, indicating that there is nothing to differentiate 

the letters. Meanwhile, the (N) and (B) tags have the same magnitude of weight, 

but different signs. Because the learner cannot distinguish between the features (in 

this case a single letter), it will simply postulate the more frequent (N) tags. This is 

exactly what we do not want to see in a machine learning problem: the signal is the 

same for all cases, so it is difficult (if not impossible) to learn anything. Indeed, the 

word accuracy for NB tags with this restricted feature set is only 12 percent —  not
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coincidentally, the same as the proportion of monosyllabic words in the test set.

□ N 
■  B

Figure 5.1: Weights learned by SVM-HMM using NB tags.

Compare this to the equivalent graphs for Numbered NB tags, shown in Fig­

ure 5.2. Here, we get a much better story. There is significant variation across 

letters, and the magnitude of the weight varies widely across potential tags. Vowels 

tend to have a strong, positive signal for (N2) and (N3) tags, indicating that these 

letters are most often found in the middle of a syllable. Meanwhile, consonants 

have strong, positive weights for (N l) tags. Word accuracy increases accordingly: 

using the same feature set with the numbered NB tags increases word accuracy to

40.5 percent.

ONC Tags

Table 5.2 presents the results for the various versions of ONC tags. On the whole, 

there is not much to choose between any of the variations, although Break ONC tags 

are more than half a percentage point better than the others. More surprisingly, ONC 

tags fail to out-perform the best positional tags. At 86.61 percent word accuracy, 

Numbered NB tags are slightly ahead of all of the ONC tags except Break ONC —
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Figure 5.2: Weights learned by SVM-HMM using Numbered NB tags.

and Break ONC tags are a hybrid of ONC tags and NB tags.

Occam’s razor tends to favour Numbered NB tags. There is a fair amount of 

overhead required to generate ONC tags in the letter domain, and they cannot be 

directly applied to new languages without modification. Numbered NB tags achieve 

comparable results, and they are much simpler to generate and work with.

Tag Set Word Accuracy Syllable Break Accuracy
ONC tags 86.21 96.65
ONCE tags 86.21 96.63
Numbered ONC tags 86.27 96.67
Reverse ONC tags 86.09 96.61
Break ONC tags 86.94 96.89

Table 5.2: Development set results for ONC-based tag sets. ONCE versions of 
Numbered and Reverse ONC tags were also tested, but did not measurably change 
the results.

However, an examination of the errors made by both tag sets reveals that Num­

bered NB tags tend to produce more damaging errors than Break ONC tags. For 

example, syllabifications like *an—k—let and *am—ps are clearly incorrect be­

cause they contain syllables with no vowels. Break ONC tags produce 5 such errors
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in the development set. Conversely, Numbered NB tags produce 32 of these errors 

— more than six times as many. ONC tags are more resistant to this type of error 

because they implicitly require every syllable to contain a nucleus. Given that Break 

ONC tags also achieve slightly higher accuracy than Numbered NB tags, there is a 

case to be made for preferring Break ONC tags in spite of their greater complexity.

Moreover, it turns out that the various tag sets achieve similar word accuracy 

scores by correctly syllabifying different subsets of the test set. I do not want to 

overstate the differences — the various tag sets produce the same syllabifications 

in about 90 percent of cases. Nonetheless, I consider the variation in the tag sets to 

be worth exploring. For instance, if we consider the output from ONC tags, Break 

ONC tags, and Numbered NB tags, we find that at least one of those tag sets is 

correct 91 percent of the time. Thus, given an oracle to tell us which output to 

choose, we could decrease the error rate by a third. I have no oracle, and simple 

solutions like a majority vote are ineffective: when two tag sets agree, they are 

about as likely to agree on the wrong answer as the right one, leaving accuracy 

unaffected. However, combining multiple tag sets is a potential avenue for further 

improvements.

It is difficult to choose between Numbered NB and Break ONC tags on their 

merits. In addition, it might be advantageous to combine the two tag sets in some 

fashion. Accordingly, I will report results for both Numbered NB and Break ONC 

tags in experiments on English CELEX. For other languages, (and for NETtalk 

data, whose bizarre syllable breaks make ONC tags difficult to apply), I will only 

apply Numbered NB tags to the problem.

5.3 Feature Engineering

In the SVM-HMM framework, emission features are generated on individual letters 

within words. I use aspects of the input to help predict the correct tag for a given 

letter. These emission features are distinct from transition features, which capture 

the probability of one tag following another. Transition probabilities are calculated
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from counts of tag pairs in the training data; they are automatically generated by 

the SVM-HMM package’s infrastructure.

Using a traditional HMM, our features are limited. Given a the letter a in a word 

like syllable, we generally consider only that it is an a being emitted, and assess 

potential tags based on that single letter. The SVM framework is less restrictive: 

we can include a as an emission feature, but we can also include features indicating 

that the previous letter is an I and the following letter is a b. In fact, there is no 

reason to confine the feature set to one character on either side of the focus letter.

The window size is the number of letters on either side of the focus character 

that are included in the feature representation. To determine the optimal window 

size, I experiment with increasingly larger window sizes on the development set, 

using only unigram features. Special beginning- and end-of-word characters are 

appended to words to ensure that every letter has sufficient characters before and 

after. I find that word accuracy is best using a window size of 11: five characters 

before and after the focus character. Expanding the window size beyond that causes 

overfitting. Figure 5.3 shows how the window size affects word accuracy. For 

clarity, only the Break ONC tags are plotted; the results for other variants of ONC 

tags follow a similar learning curve.

Window Size Context Word Accuracy
3 h—ihh+i 58.95
4 h—ihh+ih+2 61.56
4 h—2h—ilih+i 60.42
5 li—2̂ i—l î î+lh+2 63.08

Table 5.3: Symmetric vs. Asymmetric Windows

In the final tested system, I use a symmetric window, with five characters on ei­

ther side of the focus character. However, during development I also experimented 

with asymmetric windows, including more characters after the focus character than 

before, or vice versa. Empirically, the letters after the focus character seem to be 

more important for prediction accuracy. In Table 5.3, I present the word accu­

racy values for the Numbered ONC tags for single-letter features at small window 

sizes. Compared to a baseline of a symmetric window of size three, adding a sec-
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Figure 5.3: Word accuracy as a function of the window size around the focus char­
acter.

ond character after the focus letter (line 2) creates a fairly substantial performance 

boost, increasing by two and a half percentage points. Conversely, adding a second 

character before the focus letter (line 3) improves performance by only 1.5 points. 

However, adding a character both before and after the focus letter is by far the best, 

showing an increase of over four percentage points above the three-character win­

dow. This general pattern is typical of all tag sets and window sizes, although the 

differences are less pronounced as the learning curve starts to level off.

SVM-HMM uses a linear kernel, and so is effectively a linear classifier. Con­

sequently, any important conjunctions of features must be represented explicitly. 

Inherently, language is non-uniform and letters generally appear in predictable pat­

terns across words. For instance, the bigram bl frequently occurs within a single 

English syllable (e.g. blow, bliss, blah, etc.). Conversely, the bigram lb generally 

straddles two syllables (e.g. al—bum, sail—boat, el—bow, etc.). Similarly, a four- 

gram like tion or ates often forms a syllable in and of itself. Hence, in addition to 

the single-letter features outlined above, I also include higher order N-grams in the 

feature representation.
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Using the development set, I tested feature representations that include all the 

bigrams, trigrams, fourgrams, and fivegrams within the 11-character window. Fig­

ure 5.4 shows that word accuracy improves by more than 20 percentage points with 

the addition of N-grams. These are features that would be unavailable using the 

simple HMM framework, because they are not conditionally independent. Note 

that when using only unigram features, ONC tags are clearly better than Numbered 

NB tags, which are in turn better than IMF tags. As we add higher-order features, 

the differences between the tag sets begin to disappear.

The optimal feature configuration is not the same for all tag sets — for instance, 

Reverse ONC tags start to overfit if the feature set is extended beyond fourgrams. 

However, for both Numbered NB tags and Break ONC tags, the best feature set 

includes all unigrams, bigrams, trigrams, fourgrams, and fivegrams. It is also not 

obvious that the optimal window size I determined for unigrams will hold for the 

fivegram case. However, experiments on the development set confirm that including 

all N-grams that occur in an eleven-character window produces better accuracy than 

other window sizes. Thus, all N-grams up to five occurring in an eleven-character 

window make up the optimal feature set, both for the experiments in the following 

section, and the development set experiments presented in Section 5.2.

Over the course of this work, I tried two different ways of representing N-gram 

features. Initially, the feature space included an exhaustive list of all possible N- 

grams. This makes for an extremely large feature space, as there are 531,441 pos­

sible four-grams, and eight four-grams within the set window size. This makes 

for 4.2 million features for fourgrams alone. This is clearly inefficient, as most of 

the 531,441 possible fourgrams will never appear in English (qxzp, for example). 

Moreover, it precludes experimenting with fivegrams for technical reasons — ~72 

million features is computationally intractable. Consequently, in the final tested 

system, I gather all the N-grams actually appearing in the training data, and gen­

erate a feature for each seen N-gram. During testing, all N-grams that were not 

seen during testing map to a single ‘unseen N-gram’ feature. The drawback of this 

approach is that models learned on different training data are not interchangeable, 

as they will have different feature representations. However, the reduction in the
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Figure 5.4: Word accuracy as a function of N-grams incorporated into the feature 
set.

feature space is dramatic, as the number of seen 4-grams in the whole of English 

CELEX is only 32,835. Adopting this representation keeps the number of features 

under 900K.

In addition to N-gram features, I also experiment with linguistically-derived fea­

tures. Intuitively, we expect features like whether a letter is a consonant or a vowel 

to be important. However, experiments on the development set showed that perfor­

mance was essentially unaffected by these features. Even more sophisticated fea­

tures, such as probabilistic representations of the manner of articulation of a letter, 

produced only incremental gains (a few hundredths of a point). These linguistically 

derived features are so unhelpful because the SVM can learn generalizations from 

the N-gram features alone. Moreover, these linguistic features make my approach 

more complex and detract from its language-independence. Consequently, I do not 

explore this avenue any further.

Recall from Section 3.2 that the cost parameter (or c value) of the structured 

SVM allows for a trade-off between the accuracy on the training set and the com­

plexity of the weight vector. This parameter needs to be tuned for optimal perfor-
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mance. I tested c values of 0.001, 0.01, 0.1, 1, and 10 on the development set, and 

found 0.1 to be optimal for most configurations (although some of the unigram fea­

ture sets did better with a different c parameter). I do not tune the e parameter for 

the syllabification task, because values of e lower than 0.5 have been found to not 

improve prediction accuracy [Herbst and Joachims, 2006]. All results reported in 

this chapter are based on a c parameter of 0.1 and an e of 0.5.

5.4 Experiments and Results

All results in this section are from models trained on the optimal feature set of 

fivegrams across an 11-character window.

5.4.1 Comparison with SbA

My first experiment provides a direct comparison between my system and Syllab­

ification by Analogy (SbA), the existing state-of-the-art for English orthographic 

syllabification [Marchand et al., to appear]. After personal communication with 

Marchand, I trained and tested my system using the same training and test sets that 

he used for his results.

System Word Accuracy Syllable Break Accuracy
SVM-HMM -  Break ONC 89.99 97.58
SVM-HMM -  Numbered NB 89.45 97.49
Syllabification by Analogy 84.97 96.04

Table 5.4: Performance of SVM-HMM and SbA on common training and test sets 
drawn from CELEX.

Table 5.4 reports the results of this comparison on the CELEX dataset. For these 

experiments, both Marchand and I use a 14K training set and a 25K test set. The 

14K training set was selected to be approximately the same size as the training data 

used for NETtalk. Our NETtalk experiments use a 13K training set and a 7K test 

set. Table 5.5 presents the NETtalk results.
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System Word Accuracy Syllable Break Accuracy
SVM-HMM -  Numbered NB 81.74 94.99
Syllabification by Analogy 75.56 92.27

Table 5.5: Performance of SVM-HMM and SbA on common training and test sets 
drawn from NETtalk.

SVM-HMM fares very well in this direct comparison. Relative to SbA, SVM- 

HMM reduces the error rate by 33.3 percent on CELEX, and by 25.8 percent on 

NETtalk. Moreover, SVM-HMM is more efficient, making it much more attractive 

for inclusion in an actual L2P system. Once a model is learned, my system can 

syllabify 25K words in about a minute, while SbA requires several hours. SVM- 

HMM training times vary depending on the tag set and dataset used. Training the 

Numbered NB tag set on 14K training examples takes approximately two hours on 

a single-processor P4 3.4 GHz processor. ONC tag sets train in about half that time. 

In either case, of course, training time is a one-off cost.

5.4.2 Learning Curve

My second experiment tracks SVM-HMM’s learning curve as I increase the amount 

of training data available to it. Using a very small held-out test set of 5,000 ran­

domly selected words, I gradually increase the training set from IK to 60K. Fig­

ure 5.5 shows how performance increases.

As is evident, larger amounts of training data greatly improve performance. 

However, this curve must be interpreted with caution. Language is very productive, 

and many words will re-appear in a number of different forms. Thus, a more re­

alistic representation of how Structured SVM will fare on truly unseen words like 

proper nouns must ensure that none of the test words appear in the training set in 

another form.

Fortunately, in addition to its word lists, CELEX includes lists of lemmas. Lem­

mas are like headwords in a dictionary, using one instance to represent the related 

forms of a various word [Crystal, 2003]. Thus, the CELEX lemma list will contain 

educate, but not educates or educating. However, it will still contain other parts
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Figure 5.5: Word accuracy as a function of N-grams incorporated into the feature 
set.

System Training Data Word Accuracy Syllable Break Accuracy
Break ONC 30K words 92.74 98.27
Numbered NB 30K words 92.30 98.22
Break ONC ~30K  lemmas 91.35 97.91
Numbered NB ~30K  lemmas 91.21 97.93

Table 5.6: Performance on a dataset drawn from lemmas is a more realistic approx­
imation to how a syllabification system will fare on unseen words.

of speech derived from the same root, such as educator and educational. Nonethe­

less, duplication across the training and test sets will be greatly reduced. I there­

fore report Structured SVMs performance trained and tested on the CELEX lemma 

list. This dataset contains 35K words. I hold-out 10 percent words for testing, and 

train using the remaining words. Once again, duplicates, multiple-word entries, and 

words containing apostrophes are removed. Table 5.6 shows results on the lemma 

set and contrasts it with results taken from CELEX word lists. Performance falls 

off by about a percentage point, but word accuracy rates remain high.
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5.4.3 Other Languages

Next, I apply my system to the other languages available in CELEX, Dutch and 

German. I apply the same feature set and the Numbered NB tag set to these new 

languages. For each language, I report results on a held-out 25K test set. I use both 

a small (50K) and large (250K) training set to learn the models. Table 5.7 shows 

the results of each.

System Training Data Word Accuracy Syllable Break Accuracy
German 50K words 98.81 99.81
German 250K words 99.78 99.97
Dutch 50K words 98.20 99.71
Dutch 250K words 99.45 99.92

Table 5.7: Performance of SVM-HMM on the German and Dutch portions of 
CELEX.

Performance on German and Dutch is clearly better than performance on En­

glish. This is because syllabification is a more regular process for German and 

Dutch.

I performed no direct comparisons on German and Dutch, but there is some 

previous work that uses the same data set. Bouma’s [2002] finite state approach 

achieved 96.49 percent word accuracy when trained on 50K examples taken from 

Dutch CELEX. My system achieves 98.20 percent word accuracy. With a larger 

model, trained on about 250K training examples, Bouma achieves 98.17 percent 

word accuracy, as compared to 99.45 percent for SVM-HMM. My system produces 

better performance, but Bouma’s system has the advantage of producing concrete 

linguistic rules.

In German, Demberg’s [2006] HMM-based approach scores 97.87 percent word 

accuracy, using about 250K CELEX training points. My word accuracy on that 

amount of training data is 99.78 percent.

It is difficult to draw definitive conclusions from these numbers, because the 

different systems do not use the exact same training and test data. However, my 

discriminative models out-perform the competitors on similar datasets, even though 

I do not tune my system to apply them to the new languages.
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System Training Data Word Accuracy Syllable Break Accuracy
German 45K lemmas 98.21 99.70
Dutch 107K lemmas 97.53 99.62

Table 5.8: Performance on CELEX lemmas is somewhat lower.

As with English, very large training sets create problems with overlap. I apply 

SVM-HMM to the lemma datasets for German and Dutch. There is quite a disparity 

in the size of these sets: the Dutch lemma set is 120K, while the German lemmas 

set is only 50K. In both cases, I randomly select 10 percent as a held-out test set, 

using the remaining lemmas for training. Results from these models are listed in 

Table 5.8. We can see that, for Dutch in particular, the overlap between training and 

test sets is inflating the word accuracy scores somewhat. However, on the whole, 

accuracy in these languages is still extremely high.

5.4.4 Letter-to-Phoneme Problem

One of the motivations for this work is to improve performance on the Letter-to- 

Phoneme (L2P) problem. Incorporating my syllabification models into an existing 

state-of-the-art L2P system [Jiampojamam et al., 2007] produces a noticeable im­

provement in L2P accuracy.

The L2P system in question explores using many-to-many letter-to-phone align­

ments as part of a prediction system in place of the traditional, strict one-to-one 

alignments. The L2P system first ‘chunks’ an input letter stream, predicting whether 

a letter generates a phoneme by itself, or whether it combines with an adjacent let­

ter to produce a single sound. Given these chunks, a local classifier predicts the 

most likely phones for each chunk. A Markov model is then used to select the most 

likely sequence of phonemes, based on the candidate phones proposed by the local 

classifier.

To incorporate my syllabification models into this L2P system, the initial chunk­

ing and final Markov phases proceed as usual. However, the context window used 

by the local classifier is expanded to include syllable boundary information for the 

letters preceding and following the focus chunk. Recall from Chapter 2 that in
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gold standard syllabifications, short, stressed vowels tend to be followed by a coda 

rather than a syllable boundary. Because of this fact, phone prediction accuracy (es­

pecially for vowels) is likely to improve with the presence of syllable information.

To test the improvement syllabification can generate, the L2P system was run in 

three different ways:

(1) in its normal operation, with no syllabification model,

(2) using the gold standard syllabification found in CELEX, and

(3) using the SVM-HMM learned model to syllabify the words.

The gold standard L2P results can be viewed as an upper bound on the contribu­

tions of my syllabification models. All L2P results are reported in terms of word 

accuracy.

The L2P system was tested using ten-fold cross-validation, training on 90 per­

cent of available data and testing on 10 percent for each fold. I used the Break ONC 

and Numbered NB English models, trained on 15K CELEX words, and the Num­

bered NB German and Dutch Models, trained on 50K words, as my syllabification 

models. I opted to use syllabification models trained on a smaller amount of data 

because both the syllabification and L2P models are trained on the same CELEX 

dataset. Using most of CELEX to train the syllabification model would be almost 

the same as using the gold standard, and not indicative of how the process would 

perform on real unseen data. The mean word accuracy over all ten folds is reported 

in Table 5.9.

Syllabification English Dutch German
None 84.67 91.56 90.18
Dictionary 86.29 93.03 90.57
Numbered NB Model 85.55 92.60 90.59
Break ONC Model 85.59 N/A N/A

Table 5.9: Adding gold standard syllabification information improves the perfor­
mance of a state-of-the-art L2P system; using syllabification derived from a learned 
model captures some of that potential gain.

In English, perfect syllabification increases L2P word accuracy 1.62 percent­

age points. My Numbered NB syllabification model increases L2P accuracy by .88 

points, while the Break ONC model increases accuracy by 0.92 percent. This repre-
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sents over half of the potential gain — a particularly notable result because, to my 

knowledge, it is the first instance of a learned orthographic syllabification model 

actually improving performance on the L2P task in English. In Dutch, the potential 

gain is 1.47 percentage points, using the gold standard. My model increases the L2P 

score by 1.04 points, capturing over 70 percent of the available increase. In German, 

perfect syllabification produces only a small gain of 0.39 percentage points. Exper­

iments show that my learned model actually produces higher word accuracy than 

the dictionary syllabification. This anomaly may be due to errors or inconsistencies 

in the dictionary syllabifications that are not replicated in the model output. My 

German results are somewhat at odds with Demberg’s [2006] L2P results, which 

generated statistically significant L2P improvements of one full percent by adding 

her syllabification models. However, Demberg’s base L2P accuracy is considerably 

lower, with word accuracy scores below 75 percent.

On the whole, I find my syllabification models never worsen L2P performance, 

and can produce noticeable improvements.

5.5 Conclusions

Most previous work on syllabification of letters has used a simple binary NB tag 

scheme, either implicitly or explicitly. In this chapter, I introduced a new tag 

scheme, Numbered NB, that produced superior results. I have also applied ONC tag 

schemes to the task; although this type of tagging is common in the phoneme do­

main, it is novel for letters. Unlike Numbered NB tags, ONC tags implicitly require 

every syllable to have a vowel. In spite of this extra constraint, the performance of 

ONC tag schemes lagged behind Numbered NB tags. However, a hybrid of NB and 

ONC tags performed very well.

This chapter has also shown the importance of complex, overlapping features. 

Expanding the context window used to predict each tag is an important component 

of good performance. However, adding N-gram features over the context window 

is at least as valuable in terms of increasing word accuracy. These features have the
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great advantage of being entirely language independent.

As components of a discriminative training method, the feature and tag sets 

introduced in this chapter produce a state-of-the-art syllabification system. In a 

direct head-to-head comparison in English, my system reduced the error rate by 

one-third, relative to the previous best system. Although direct comparisons in 

other languages were not possible, my system produced results that are competitive 

with the best published accuracies in German and Dutch. In tandem with a state- 

of-the-art L2P system, my English and Dutch syllabification models were able to 

produce notable increases in L2P accuracy.
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Chapter 6

Syllabification of Phonemes

Linguists view syllabification of phonemes as entirely divorced from “syllabifica­

tion” of letters. Nevertheless, from a computational perspective, the task is virtually 

identical: divide strings of symbols into segments based on underlying (possibly 

noisy) rules. Thus, the discriminative models outlined in Chapter 5 can be easily 

adapted to the new domain.

Indeed, a priori, I expected my system to perform rather better with phonemes. 

There is considerable ambiguity in the orthographic domain, which complicates the 

letter task. For instance, there are 22 vowel sounds in the English language, and sev­

eral different letters combine in a myriad of ways to represent these sounds. Worse, 

the same letter combinations do not consistently represent the same vowel sounds. 

Consider the words [ b r l d ]  (braid) and [ { 1 1 _I | b r l  | I k ]  (al—ge—bra—ic) — 

in the former, the letter combination ai maps to the single phoneme [ 1 ] , while in 

the latter it maps to two phonemes, [ 1 ] and [ I  ]. Conversely, each vowel sound 

is uniquely represented by a single phoneme. By definition, an English syllable 

has only a vowel sound (peak), so we can deterministically find the nucleus in the 

phoneme domain, where we cannot in the letter domain. In addition to making the 

SVM’s job easier, this greater transparency in the phoneme domain makes rule- 

based methods a viable option.

In Section 6 .1 ,1 explore several rule-based approaches to syllabification, imple-
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menting common theories of syllabification as outlined in Section 2.2. I compare 

the results of those rule-based methods with my discriminative approach in Sec­

tion 6.3. In Section 6.2, I explain how the SVM-HMM outlined in Chapter 5 is 

adapted to the phoneme domain.

6.1 Rule-based syllabification

Rule-based methods are an appealing approach to syllabification in general because 

syllabification is a regular process that linguists have attempted to formalize as 

rules. Moreover, rules are more efficient than data-driven methods, because they 

require neither training data (which can be difficult to find) nor training time. All 

the methods presented in this section apply rules to classify phonemes as being 

either onsets, nuclei, or codas.

I did not pursue rule-based methods in the orthographic case because letters 

are so ambiguous, and previous work has found that rule-based methods in English 

perform extraordinarily poorly [Marchand et al., to appear]. Furthermore, syllabi­

fication of letters is not an accepted phonological process as it is for phonemes, and 

dictionaries vary widely in how they syllabify orthographic forms. Thus, accuracy 

of orthographic syllabification is very much only with respect to the gold standard 

set out by a particular dictionary, which can be influenced by a number of different 

factors, and not necessarily any underlying linguistic principle. Of course, accuracy 

in phonemic syllabification is still relative to a given standard, but in a larger sense, 

we can view the efficacy of rule-based methods for phonemic syllabification as a 

measure of how well a dictionary ascribes to a linguistic principle of syllabification.

My baseline rule-based method is Max Onset. This approach simply maxi­

mizes the onset for every syllable, without any regard for the legality of the onsets 

involved. Only word-final consonants will be labelled as codas by Max Onset. Ob­

viously, there are a number of consonant combinations that are illegal as English 

onsets, so word accuracy performance for Max Onset ought to be rather poor. How­

ever, the method should provide a good measure of how strictly a language follows
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Vowels 9
Syllabic Consonants 9
Glides 8
[r ] 7
[1] 6

Nasals 5
[s ] 4

Voiced fricatives 3
Voiceless fricatives 2
Voiced plosives 1
Voiceless plosives 0.5

Figure 6.1: The Sonority Scale employed by Base Sonority

the maximal onset principle. Presumably, in a language like Hawaiian, where co­

das are prohibited, and any consonants are, by default, part of an onset, Max Onset 

would be sufficient to perform perfectly accurate syllabification.

The sonority sequencing generalization (SSG) is implemented as Sonority. This 

method uses an approximation of Selkirk’s [1984] original sonority scale. However, 

Selkirk’s original sonority scale is incomplete, leaving out a number of sounds alto­

gether. In Sonority, these missing sounds have been added by grouping them with 

their most closely related sounds actually appearing in the scale. Thus, [N ], not 

appearing in Selkirk’s original scale, joins [m] and [n] to form the Nasals group. 

Sonority also does not register any difference between types of vowels, assigning 

them all the same sonority value. This is a departure from Selkirk’s original hy­

pothesis. The actual sonority scale used by Sonority is presented in Figure 6.1.

Recall that SSG alone is not sufficient to syllabify a word: a combination like 

[ r p l  ] (two liquids separated by a plosive) can be divided as [ r  | p i  ] or [ r p  11 ] 

and still follow the generalization. The Base Sonority implementation chooses the 

largest onset such that each phone in the onset has a sonority value higher than 

the preceding phone. Accordingly, given a word like [p 3 r  | p lE k s ]  (perplex), 

the program will output p3r—plEks, maximizing the onset of the second syllable, 

rather than the coda of the first.

Note that Sonority can be viewed as an instantiation of Hammond’s optimality
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theory. Sonority is a higher ranking constraint than maximal onset, so maximal 

onset can be violated in order to satisfy SSG. However, whenever possible, both 

implementations will produce valid sonority sequences and maximal onsets.

The Legality approach implements the legality principle. Legality can be con­

sidered a data-driven method of sorts: given a list of words, we designate all word- 

initial consonant clusters to be valid onsets, and all word-final consonant clusters 

to be valid codas. However, Legality does not require a separate labelled training 

set, so it is more akin to other rule-based methods. As with the sonority approach, 

I combine the legality principle with maximal onset, so the largest legal onset is 

always preferred to alternatives. As presented in Section 2.2, the legality principle 

considers both legal onsets and legal codas. However, the notion of a ‘legal’ coda is 

decidedly more ephemeral than that of a legal onset — coda rules are often broken. 

And, there may be cases where a three-phone consonant cluster cannot be divided 

into a valid two-phone coda or two-phone onset, based on the words seen. Con­

sequently, my Legality implementation does not take into account legal codas, and 

seeks only to maximize the legal onset, relegating all remaining consonants to the 

preceding coda, without regard for their legality.

6.2 Adapting SVM-HMM to the Phoneme Domain

There are very few modifications required to apply SVM-HMM to syllabification 

of phonemes.

As with letters, the primary data set is CELEX. CELEX, unlike some other 

dictionaries, does not use the same syllabifications in the phoneme domain as the 

the letter domain. For example, CELEX syllabifies the word [@ b ls lz ]  (abases) 

as a—has—es in the letter domain, and [@ | b l  | s l z ]  in the phoneme domain. 

Note in particular how the syllabification of phonemes follows the maximal onset 

principle rule more strictly in the final syllable. By contrast, if the end of line break 

for abases were to come before the s, that might imply a different kind of a sound, 

so the onset is not maximized.
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I also report results on the NETtalk data set. Most of NETtalk’s truly bizarre 

orthographic syllabifications are an artifact of mapping phonemic syllabifications 

into the letter domain. Consequently, NETtalk is not nearly as problematic for 

syllabification of phonemes.

I experiment with most of the same tagging schemes for both phonemes and 

letters. It is not necessary to explore ONCE tags in the pronunciation domain, be­

cause there are no silent phonemes. For the letter case, generating ONC tags is not 

straightforward. Some knowledge of the language is required to deal with things 

like syllabic consonants and silent letters. By contrast, with phonemes, generating 

ONC tags from syllabified data is deterministic. All vowels are labelled as nuclei; 

all consonants preceding the nucleus of a syllable are tagged as onsets and all con­

sonants following the nucleus have coda tags. Consequently, ONC tags are a much 

more natural choice for syllabification of phonemes, and can be applied much more 

easily across languages.
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■ MB
■ 2MF
■Numbered NB
■ Numbered ONC

Figure 6.2: A window size of 9 is optimal for the phoneme domain.

I replicate the development set experiments from Chapter 5 to determine the 

optimal tag set and feature set. I use the phonetic equivalents of the 5K training set 

and 10K development set I employed in the letter domain.
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Figure 6.2 shows how window size affects word accuracy on several tag sets. 

Unlike the letter domain, word accuracy really stops improving once the window 

size extends beyond nine characters. Hence, for the phoneme system, I will use a 

symmetric window of only four characters on either side of the focus letter.

300

98

94

92

jU| 88
Numbered ONC

84

82

trlgram fourgram flvegram
N-gram s

Figure 6.3: Fivegrams cause overfitting in the phoneme domain. Note that the y- 
axis has been truncated to improve readability.

Figure 6.3 demonstrates how higher order N-gram features affect the results. 

Here again, we see a deviation from the letter results: fivegrams cause word accu­

racy to decline, due to overfitting. Therefore, the feature set for the pronunciation 

domain will be limited to all the unigrams, bigrams, trigrams, and fourgrams within 

a nine-character window.

Selecting the best tag set is also more straightforward when working with phonemes. 

In the first place, Numbered NB tags are not any simpler than ONC tags in the new 

domain. We can deterministically generate ONC tags and easily apply them to other 

languages. Numbered NB tags still have the weakness of not requiring a nucleus in 

every syllable. In the development set output from Numbered NB tags, there are 18 

words that contain impossible syllables consisting of only a consonant. With Num­

bered ONC tags, there is only one. And, there is negligible scope for improvement
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Tag Set Word Accuracy Syllable Break Accuracy
NB Tags 97.16 99.32
IMF Tags 97.70 99.38
Numbered NB Tags 97.49 99.36
ONC Tags 97.86 99.35
Numbered ONC Tags 98.15 99.44
Reverse ONC Tags 98.03 99.40
Break ONC Tags 98.01 99.45

Table 6.1: Development set results for the phoneme domain.

by combining tag sets. Generally, if using a particular tag set produces the correct 

syllabification, all of the tag sets will be correct. Even with an oracle to tell us which 

tag set to choose, we would only be able to improve word accuracy from 98.15 to 

98.40. Given all these factors, I report the results for only the highest-scoring tag 

set, Numbered ONC, throughout the rest of this chapter.

6.3 Experiments and Results

For the most part, in this section I will duplicate all the experiments reported in 

Section 5.4. Unfortunately, I do not have access to SbA results on identical data, so 

direct comparisons are unavailable.

6.3.1 English CELEX Data

My first set of experiments compares the performance of the three rule-based ap­

proaches and SVM-HMM against the CELEX gold standard. SVM-HMM is trained 

using 30K randomly selected words not appearing in the test set. This same training 

set is used to define the legal onsets for the Legality script. The test set is made up 

of 5K words not appearing in the training set. The training and test sets contain 

the same words as the datasets used for the learning curve comparison experiments 

in Section 5.4.2. As before, I report performance in terms of word accuracy and 

syllable break accuracy. Table 6.2 presents the results of each method.

As expected, Max Onset does not perform especially well. However, it still
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Method Word Accuracy Syllable Break Accuracy
Max Onset 61.38 87.40
Legality 93.16 98.04
Sonority 77.72 93.15
SVM-HMM 98.86 99.69

Table 6.2: Syllabification performance in terms of word and syllable accuracy per­
centage.

syllabifies over 60 percent of words correctly, and achieves reasonably high tag 

accuracy. Thus, it appears that CELEX is fairly consistent with the maximal onset 

principle. Sonority is also not a very strong performer, although this too in not 

unexpected. Selkirk [1984] never claimed that the values in her sonority scale were 

definitive — only that the general ordering of sounds was correct. More tuning of 

the values in the sonority scale may well improve the performance of a sonority- 

based method; this is an avenue for future research.

The word accuracy score for Legality is about five percentage points lower than 

the discriminative method. However, Legality runs more quickly, and does not 

require labelled training data. Although out-performed by more sophisticated sys­

tems, the rule-based method is a viable alternative for languages with a paucity of 

labelled training data.

Notwithstanding the success of Legality, SVM-HMM is still far and away the 

best performer. In fact, the discriminative model’s word accuracy exceeds the best 

rule-based approach when it is trained using only 5000 data points, as is evident in 

Figure 6.4. What is more, SVM-HMM does increasingly better as the amount of 

training data grows; the rule-based methods are unaffected by the amount of data 

available.

Of course, as with letters, there is considerable duplication within the CELEX 

dataset, as various forms of a word will appear multiple times. However, I find 

that the results on words are very much in line with comparable scores trained and 

tested on on English lemmas. Using a 90/10 train/test split, SVM-HMM scores 

98.36 percent word accuracy on the lemma list, a decrease of only half a percentage 

point compared to a model trained on a comparable number of words.

I cannot make any direct comparisons between my work and previous work in
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Figure 6.4: SVM-HMM requires relatively little data to achieve near-perfect word 
accuracy.

the phoneme domain. However, Muller’s [2006] PCFG method achieved only 92.64 

percent word accuracy on the CELEX dataset, which lags not only SVM-HMM, 

but the Legality method as well. Van den Bosch’s [1997] Learned EBG approach 

is much closer in performance to my discriminative method, scoring 97.78 percent 

word accuracy on CELEX phonemes. However, van den Bosch uses almost twice 

as much data to train his system, and SVM-HMM still has an error rate that is 

nearly 50 percent lower. This is strong circumstantial evidence that SVM-HMM is 

the superior system.

6.3.2 NETtalk Data

My second set of experiments repeats the previous tests on the NETtalk dataset. The 

rule-based scripts developed on the CELEX set were applied directly to NETtalk 

without any tuning. The results reported here are on a 7K held-out test set. Both 

Structured SVM and Max Legality used a 13K training set, comprised of words not 

appearing in the test data. Unfortunately, even for phonemes, NETtalk has many
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errors. For instance, [ *D 8r | @ | b6  11 ] (thereabout) is listed as the NETtalk gold 

standard syllabification. This is clearly incorrect, as the plosive consonant [ t  ] can 

never form a syllable by itself. These errors are problematic for my discriminative 

method because SVM-HMM will leam that syllables without nuclei are acceptable. 

The existence of these errors further underscores my belief that the NETtalk dataset 

is unsuitable for the syllabification task.

Method Word Accuracy Syllable Break Accuracy
Max Onset 33.64 72.44
Max Legality 53.08 81.96
Sonority 48.00 79.48
SVM-HMM 92.99 97.79

Table 6.3: Results on the NETtalk dataset.

Table 6.3 presents my results on NETtalk. The main thing that stands out is 

the very low scores for the rule-based methods. Word accuracies have fallen off 

by more than forty percent. In particular, the score for Max Onset indicates that 

NETtalk follows the maximal onset principle only sporadically. For instance, the 

gold standard for [ f  5 11 5 ] (photo) does not have a maximal onset in the second 

syllable, but the gold standard for [f5—tQn] (photon) does. Such irregularities 

imply that even a NETtalk-specific rule-based system, designed specifically to cap­

ture NETtalk’s peculiar syllabifications, would not fare very well. Certainly, such a 

system would require far more hand-tuning than is desirable.

SVM-HMM, as a data-driven approach, is better equipped to deal with some­

what inconsistent syllabification. However, the erratic syllabifications still cause 

problems, as the word accuracy scores are well below what SVM-HMM can score 

on the CELEX dataset — on a comparable number of training points, CELEX word 

accuracy is still around 98 percent. Nonetheless, SVM-HMM does outperform 

SbA. Marchand, Damper, and Adsett find that SbA scores only 88.53 percent word 

accuracy on NETtalk phonemes [Marchand et al., to appear]. My discriminative 

approach clearly outperforms their best score.
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6.3.3 Other Languages

Next, I apply Structured SVM to other languages. To serve as a baseline, I also 

apply Max Onset and Legality to other languages, as there is no technical reason 

preventing it. However, the rule-based scripts are not expected to perform very 

well, as the maximal onset principle holds much more strongly for English than 

most other languages. A linguist familiar with any of these languages would likely 

be able to develop rule-based methods that far surpass any of my English-centric 

attempts.

For both German and Dutch, I use CELEX data, selecting a 25K test set, and 

two different training sets, one 50K and the other 250K. Particularly with the 250K 

training set, there is still the issue of duplication between the training and test sets, 

so I also perform experiments on the phonetic lemma lists, using a 90/10 training 

test split. For the most part, training and test sets contain the same words as the 

equivalent experiments presented in Chapter 51.

Method Training Data Word Accuracy Syllable Break Accuracy
Max Onset N/A 19.51 74.58
Max Legality N/A 79.55 95.38
SVM-HMM 50K words 99.26 99.85
SVM-HMM 250K words 99.87 99.97
SVM-HMM 45K lemmas 98.98 99.76

Table 6.4: Results for German.

Results for German are listed in Table 6.4. The results of the rule-based scripts 

demonstrate that the Maximal Onset Principle is quite weak in German. SVM- 

HMM performs extraordinarily well on German, reflecting the highly regular syl­

lable structure of that language. This is underscored but the word accuracy on the 

lemma data, which is still near 99 percent, even without benefit of overlap between 

training and test sets.

Although developed on English, my system is competitive with recent imple­

mentations for German phonemes. As with English, direct comparisons are dif-

Tn CELEX’s Dutch phoneme list, several thousand proper nouns of foreign extraction, like 
Liverpool and Venezuela, have no syllabification information. These words are simply omitted.
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ficult. However, in general, the previous systems use far more training data and 

achieve much lower accuracy. The most word accuracy scores for the most recent 

work in German are very similar to my own. Schmid, Mobius, and Weidenkaff’s 

fifth-order HMM achieves 99.85 percent word accuracy using about 278K train­

ing points [Schmid et al., to appear 2007], but they hand-tuned their smoothing 

algorithm to syllabification of German phonemes. Using a standard smoothing 

algorithm and fourth-order HMM, Demberg scores 98.47 percent word accuracy. 

Earlier results on German phonemes include Muller’s work with PCFGs [Muller, 

2001a; Muller, 2006], and Krenn’s HMM-based implementation. Muller’s earlier 

work requires a hand-crafted grammar; to evaluate her method, she uses a training 

corpus of two million tokens, more than 90 percent of her test data appears in the 

training corpus, and her data covers only a small fraction of the words appearing in 

CELEX. Even so, her best word accuracy is only 96.88 percent on CELEX-derived 

syllabifications [Muller, 2002], Muller’s 2006 work is evaluated using 10-fold 

cross-validation on the full CELEX dictionary. This later work does not require a 

hand-crafted grammar, but only scores 90.45 percent word accuracy [Muller, 2006]. 

Krenn [1997] holds out approximately 20,000 words for testing, using the rest of 

CELEX for training purposes. Krenn does not evaluate at the word level, but her tag 

accuracy is only 98.34 percent. When trained on 250K words, my system achieves 

tag accuracy of 99.98 percent.

Results for Dutch are listed in Table 6.5. Performance in Dutch is rather weaker 

than in either German or English. This is noteworthy because SVM-HMM’s or­

thographic syllabification is much better for Dutch than for English. Indeed, the 

structured SYM actually performs slightly better on Dutch letters than on the equiv­

alent Dutch phonemes. Unfortunately, I know of no previous quantitative results for 

Dutch, so not even indirect comparisons with previous work are possible.
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Method Training Data Word Accuracy Syllable Break Accuracy
Max Onset N/A 23.44 74.58
Max Legality N/A 64.31 95.38
SVM-HMM 50K words 97.79 99.53
SVM-HMM 250K words 99.16 99.82
SVM-HMM 105K lemmas 98.14 99.59

Table 6.5: Results for Dutch.

6.4 Conclusions

In this chapter, I applied three different rule systems to syllabification of phonemes. 

Simply implementing maximal onset is insufficient, and the untuned sonority method 

presented here produces only mediocre results. However, combining maximal onset 

with the legality principle allows for word accuracy scores that are only five percent­

age points lower than my discriminative method. This is much higher than Marc­

hand, Damper, and Adsett’s previously-reported results for rule-based phoneme im­

plementations on the NETtalk dataset. I would argue, therefore, that performance 

of rule-based scripts is as much a function of the dataset used as the gold standard 

as of the rules themselves.

Notwithstanding the success of the Legality method, the main contribution of 

this chapter is my discriminative approach. I applied SVM-HMM to syllabifica­

tion of phonemes, with great success. The process was very similar to that for 

letters, except that the optimal feature set and tag set changed in the new domain. 

In English, my system outperforms earlier implementations by Muller and van den 

Bosch (on CELEX), and Marchand, Damper, and Adsett (on NETtalk). Unlike the 

rule-based approaches, my discriminative approach is not language-specific. Exper­

iments show the performance of SVM-HMM is competitive with the best systems 

designed for German phonemes. Overall, my SVM-based system is a language in­

dependent implementation that produces state-of-the-art results in both English and 

German.
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Chapter 7

Conclusions

7.1 Summary

This thesis presents an efficient, machine-leaming-based method for automatic syl­

labification. Taking a discriminative approach to the problem, my system outper­

forms all existing systems on both English letters and phonemes. Experiments in 

this thesis also show that my system can achieve word accuracies in excess of 99 

percent for German and Dutch phonemes and letters. Treating syllabification as a 

tagging task, my system labels each character in a word so that the sequence of la­

bels implies the word’s syllable breaks. When the problem is so formulated, a struc­

tured support vector machine turns out to be an excellent formalism for predicting 

syllable boundaries. It allows for an extensive feature set, and can be applied to any 

language for which there is available training data, in either the letter or phoneme 

domain.

On the whole, I am convinced that automatic syllabification is best approached 

using discriminative training techniques. Experiments show that SVM-HMM per­

forms better on the syllabification task than predecessors like HMMs. It is more 

language- and domain-independent than PCFG-based approaches, and produces 

higher performance. SVM-HMM also out-performs data-driven techniques like
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Syllabification by Analogy and Exemplar-Based Generalization, two lazy learning 

approaches that maintain a list of all available training data. This finding demon­

strates that abstraction of training data does not invariantly degrade performance 

on the syllabification task, contrary to the hypothesis put forward by Marchand and 

Damper [Marchand and Damper, 2005; Marchand et al., to appear].

In applying structured SVMs to automatic syllabification, I found that the la­

belling scheme used to indicate syllable boundaries crucially affects performance. 

In the letter domain, the usual approach has been to assign a binary label to each 

letter, indicating whether the letter is at a syllable boundary or not. Experiments in 

Chapter 5 show that this approach is decidedly weaker than alternatives. I consid­

ered several alternative tagging schemes, including a positional model that numbers 

each letter within a syllable, and an onset-nucleus-coda model that attempts to map 

each letter to its function within the syllable. Surprisingly, experiments indicated 

that the positional tag scheme performs better than the onset-nucleus-coda option. 

Several factors likely influence this finding. First, the positional model represents 

the syllable boundary with a single tag, rather than relying on the combination 

of two tags. This allows the structured SVM to explicitly minimize the error on 

syllable breaks, which is the desired metric. Second, the unpredictable relation­

ship between English orthography and sounds introduces some noise in the onset- 

nucleus-coda gold standard, which probably affects performance somewhat. This is 

all the more likely because in the less-noisy phoneme domain, onset-nucleus-coda 

tags outperform the positional tags.

Incorporating my orthographic syllabification models into a state-of-the-art letter- 

to-phoneme conversion system increased L2P accuracy for both English and Dutch. 

To my knowledge, this is the first time a learned model has been successfully em­

ployed to improve L2P performance in these languages. As such, this represents an 

important contribution of this work.

In the phoneme domain, I presented several rule-based techniques. My im­

plementation of the legality principle achieved word accuracies above 90 percent. 

This makes the Legality method an important alternative for syllabifying strings of 

phonemes, especially when labelled training data is unavailable.
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7.2 Limitations and Future Work

One of the primary limitations of this work is the lack of direct comparisons. Apart 

from Syllabification by Analogy on English letters, I was unable to measure my 

system against existing systems operating on the same training and test data, be­

cause the training/test splits were unavailable. Nonetheless, the results in this thesis 

show that my system is certainly competitive with previous results reported in the 

literature. Arguably, the experiments show that my discriminative approach is supe­

rior. However, a systematic comparison of systems trained and tested on the same 

data is required before SVM-HMM can be definitively declared the best approach.

There are several possible avenues for future work. In the phoneme domain, 

tuning of the sonority scale used in the my sonority implementation may produce 

higher word accuracies. Some scope for improvement in the letter domain might be 

found by combining several tag sets in some sort of ensemble method. It would also 

be interesting to apply SVM-HMM to other languages, as appropriate data becomes 

available.

Most future work on letters likely lies in incorporating syllabification models 

into aspects of text-to-speech synthesis. In this thesis, automatic syllabification has 

been incorporated in to an L2P system as a pre-processing step. However, it might 

be fruitful to combine syllabification and letter-to-phoneme conversion, rather than 

treating them as serial processes. It would also be interesting to incorporate SVM- 

HMM syllabification into a prosody module of a TTS system, and compare the 

realism of the resulting speech.
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Appendix A

DISC Phoneme Encodings

Throughout this thesis, I use the DISC encoding to represent phonemes. The DISC 

encoding is convenient for computer applications because each phoneme is repre­

sented by a single ASCII character. The following tables map common DISC en­

codings for English phonemes to equivalent International Phonetic Alphabet (IPA) 

symbols. The provided orthographic examples assume received pronunciation, as 

is standard in the CELEX dataset.
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DISC Encoding IPA Symbol Examples
Id achieve, pavement

# h \l market, dance
u /u:/ luminous, goose
i li:/ week, meal
$ h i fort, audio
3 IrJ verse, work
I hi fill, every
E J d ahead, less
{ Ixl man. gas
Q h i soft, wash
V h i rough, summer
u I d brook, full
1 /ei/ clay, bake
2 hi! guy, icon
4 h i/ toys, foil
5 hu l bowl, so
6 laul crown, out
7 l id deer, clear
8 l t d rare, fair
9 lu d boor, manure

Table A .l: English Vowels and Diphthongs
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DISC Encoding IPA Symbol Example

P Ipl pot
b /b/ bake
t /t/ tag
d /d/ dim
J /tf/ china
- !&J juice
k Ikl kin
g V get
f Ifl fire
V Ivl violin
T /0/ thank
D /a / there
s /s/ see
z /z/ zip
S /J/ show
Z I7J genre
h /h/ hope
m Iml mint
n Ini nap
N W ring
r M road
w Iwl wax
j 1)1 yellow

Table A.2: English Consonants
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Appendix B

Implementation Details

For most of the experiments reported in this thesis, I used the Linux binary distri­

bution of SVM-HMM available from http://svmlight.joachims.org.

To train an SVM-HMM for the automatic syllabification task, I use the follow­

ing command line:

./svm_hmm_learn_hideo -e 0.5 -c 0.1 train.data model.dat

The - e  option defines epsilon in equation 3.6.

The -  c option defines the amount of acceptable error on the training data. This 

is a tunable parameter that can crucially affect performance. As an illustration, 

consider the data in Table B .l. These results are attained by training a letters model 

with a reduced feature set that includes only unigram features falling with a 5-letter 

window size. The Numbered NB tag set is used for output tags. There are two 

main things to notice. First, the word accuracy score can improve by nearly twenty 

percentage points simply by using the correct c-value. Second, the best c-value 

does not remain constant as the feature set changes. With a full complement of 

five-grams across an 11-character window, the optimal c-value is 0.1; with only 

uni grams within a three-character window, 10 is the best. During development, I 

systematically varied the c-value for each new feature set.
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C Value Word Accuracy
0.001 40.80
0.01 47.84
0.1 55.13
1 58.21
10 59.06

Table B .l: Results on the held-out letters development set, using numbered NB tags 
and a reduced feature set.

The t r a i n . d a t a  argument is the input training file. In Figure B .l, I present 

the input file for the features associated with the word pro—ton. For simplicity, I 

show only unigram features within a three-character window; Numbered NB tags 

are again used as the output tagging scheme.

Nl qid:3.1 17 :1 28 :1 73:1 82:1 124:l#p - proton
N2 qid:3.2 19:1 44:1 70:1 82:1 129:l#r - proton
B qid:3.3 16:1 46:1 75 :1 98:1 124:l#o - proton
Nl qid:3.4 21:1 43 :1 70:1 100:1 123:l#t - proton
N2 qid:3.5 16:1 48:1 69:1 97:1 109:l#o - proton
N3 qid:3.6 15:1 43:1 55 :1 102:1 109:l#n - proton

Figure B .l: Sample feature set input

The first item in each line is the correct output tag. The string q i d : 3 . i  indi­

cates the ith letter in the third training word. Everything following the # character 

is a comment. All the intervening numbers represent features.

The best way to represent letters (or phonemes) as features is to use a string 

of binary bits to represent each character. Thus, in Figure B .l, the notation 1 7 :1  

indicates that the 17th bit is turned on, in this case representing p, the 16th letter in 

the alphabet (the first bit in the string is reserved for representing the special end-of- 

word character). A unigram feature is therefore represented by a string of 27 binary 

bits, while a bigram feature is represented by a string of 272 =  729 bits, and so on 

for higher-order N-grams. This is the limit case; as discussed in Chapter 5, we can 

greatly reduce the number of features by discarding bits for N-grams not actually
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observed in the training data. SVM-HMM assigns a value of zero to any feature not 

explicitly listed in the input file.

Obviously, this is not the most compact representation, but empirically it is the 

most effective. Possible alternatives, such as using ASCII codes to represent each 

letter, are less sucessful. This is because there is no meaningful linguistic sense in 

which the letter b is closer to the letter a than, say, the letter p. Indeed, in terms 

of the phonemes they produce, b and p  are very similar; however, their associated 

ASCII codes imply that they are much further apart than a and b. Using a sequence 

of binary bits captures the qualitative difference between letters.

The m o d e l . d a t  argument is the output file where the learned model will be 

written. An associated file called m o d e l_ sv m M o d el. d a t  will also be generated.

To classify new test examples, use the following command line:

. /s v rn J im rrL c la s s ify  t e s t ,  d a t a  m o d e l .d a t  c l a s s i f y . t a g s

The t e s t . d a t a  argument is a feature file describing the test words, using the 

same format as Figure B .l. When using a held-out test set (i.e. when the true tags 

are available), SVM-HMM will report the accuracy on the test set. If the correct 

tags are not available, a dummy tag must be substituted.

The m o d e l . d a t  argument is the model file trained for the given feature set.

The c l a s s i f y ,  t a g s  argument is the file where the output tags will be writ­

ten. To convert these tags into syllable boundaries, I concatenate input words and 

output tag sequences and then apply regular expressions.
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