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Abstract

This thesis describes the fabrication and characterization of on-chip dome-shaped,

Fabry-Perot microcavities for quantum-optics applications. Arrays of cavities

were fabricated via a guided delamination buckling self-assembly process within

SiO2/Ta2O5 multilayers. This process results in highly symmetric cavities, which

exhibit minimal geometrical defects and a morphology that is well-described by

elastic buckling theory. Optical measurements revealed reflection-limited finesse of

∼ 3500, suggesting these cavities have few defects and exhibit low surface roughness.

Furthermore, these cavities preferentially supported Laguerre-Gaussian modes as a

result of the high degree of cylindrical symmetry.

The viability of utilizing such cavities for cavity quantum electrodynamics ap-

plications was theoretically examined using the extracted parameters. As a result

of the small mode volume, these cavities were predicted to exhibit an exceptionally

high atom-cavity coupling rate, g ≈ 2π × 1.1 GHz. However, the strong-coupling

parameter g/κ ∼ 0.2 placed the as-fabricated cavities in the weakly coupled regime

of cavity quantum electrodynamics. On the other hand, a single-atom cooperativity

of ∼ 30 was estimated, suggesting such cavities may be utilized to implement highly-

efficient single-photon sources. Furthermore, the low mode-volume and potential for

open-access suggests that these cavities have potential for diverse applications such

as lab-on-chip sensing and implementation of dye-based lasers.
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Chapter 1

Introduction

This thesis focuses on the development of an on-chip platform designed for quantum

optics applications, but which might also have applications in diverse fields such as

lab-on-a-chip sensing [1], dye-based lasers [2], and optofluidic systems [3]. The mo-

tivation for this work stems from a growing interest in utilizing the strangeness of

quantum mechanics for practical applications, such as quantum computers and quan-

tum communication networks. This chapter describes this motivation and explores

recent advancements in quantum information sciences, focusing primarily on the field

of cavity quantum electrodynamics.

1.1 Quantum Information Science

In the past decade, quantum science and technology has been a subject of great

interest to the academic community, since it promises to revolutionize human under-

standing of the physical world [4, 5, 6, 7, 8]. Particular excitement has been directed

towards the field of quantum information, which encompasses the fields of quantum

computing and quantum communication.

Quantum computing indeed has the potential to cause a paradigm shift in our un-

derstanding of the natural world. This is due to the potential for the implementation
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of quantum algorithms allowing previously unsolvable (in polynomial time) problems

to be solved within realistic time scales. To date, D-Wave has successfully produced

a quantum computer functioning via the process of quantum annealing [9, 10]. How-

ever, this computation scheme is limited in the scope of problems it is capable of

solving, and has yet to show a significant speed advantage over classical algorithms

[11]. The goal of many research groups is the development of a gate-based quantum

computer with the capability of implementing any arbitrary quantum algorithm [4].

On an optimized quantum computer, well-known algorithms such as Shor’s integer

factorization algorithm [12, 13] or Grover’s database search algorithm [14] could pro-

vide a significant increase in computing speed and power compared to their classical

counterparts. Furthermore, being an inherently quantum system, a quantum com-

puter has the potential to simulate complex many-body quantum systems; this could

prove invaluable for biological and quantum chemistry research [15].

Quantum communication is the other well-known subsection of quantum infor-

mation, focusing on the distribution of quantum information over large distances.

The idea of a “quantum internet” [16] of distributed nodes connected via channels

capable of sharing quantum information over large distances is a highly sought goal.

Such a network would be vastly different than any classical network, exhibiting truly

quantum properties such as entanglement between distant nodes. Furthermore, as

the information is largely shared between nodes, the available state-space increases

exponentially with the number of nodes, as opposed to linearly as in classical networks

[17]. Individual small quantum networks could be connected, forming a single large

computational unit. Such quantum connectivity also provides means to overcome

scaling issues and error-correction problems that would limit the size of individual

machines for quantum information processing [18]. An individual user could submit

a private computation request to the large quantum network and utilize large remote

quantum computers. Furthermore, the distribution of entanglement between distant

2



nodes would provide an unbreakable form of encryption for information sharing via

quantum teleportation [19, 20] or quantum key distribution [21].

Unfortunately, the development of large scale quantum systems has been chal-

lenging. The main difficulty has been that individual quantum bits (qubits) must be

largely decoupled from their environment to avoid decoherence. At the same time, de-

terministic, coherent, long-range interactions between qubits is required to efficiently

scale to larger quantum systems. This trade-off has proven to be challenging, as

these requirements are in a sense competing against each other. Despite these diffi-

culties, quantum functionality has already been demonstrated in numerous systems

[22, 23, 24, 25].

1.2 Current Quantum Systems

Diverse physical systems have been used to implement quantum information systems.

Early demonstrations were performed using nuclear magnetic resonance systems [22],

and trapped ion and neutral atoms in free space [23, 26]. More recently, there has

been a large focus on superconducting circuits, such as the quantum annealing devices

developed by D-Wave, or the numerous gate-based superconducting quantum systems

[24, 27, 28]. Following this solid-state model, chip-based quantum systems utilizing

spin states in quantum dots have also been studied [29]. Dopants such as phosphorous

in silicon have demonstrated coherence times on the order of hours as a result of the

weak interaction strength to their environment [25, 30]. See Figure 1.1 for some

examples of these various systems.

While most of these applications have been focused on the development of a

local single-chip quantum computer, the development of a distributed quantum net-

work requires a system which satisfies the following criteria. First, the distribution of

quantum information over long distances requires optical photons (preferably infrared

3



Figure 1.1: (a) Calcium ion trap utilized for the generation of entangled states, from
[31]. (b) D-Wave’s superconducting quantum computer, from [32], (c) Phospho-
rous qubit embedded within a silicon substrate, an early exploration of silicon based
quantum computing technology, from [33]. (d) Quantum error correction circuit for
superconducting gate based quantum computing, from [34].

photons) to allow distribution via existing telecommunication networks. Second, the

individual quantum nodes must exhibit long-lived quantum states to avoid decoher-

ence during the transit of photons between distant nodes. Third, the system needs

to be robust to the loss of photons, since even the most efficient system will unfortu-

nately suffer from some amount of photon loss. Finally, the interaction between the

photon and the stationary node must be highly efficient to allow the deterministic

transfer of quantum information between nodes in the system [17]. These require-

ments have motivated the use of single atoms trapped within high-finesse optical

cavities as a hybrid quantum light-matter interface providing the nodes for a large

distributed quantum network.

1.3 Quantum Electrodynamics in a Cavity

The canonical cavity quantum electrodynamics system consists of a single two-level

atomic emitter trapped within a high-finesse Fabry-Perot cavity, as shown in Fig-

ure 1.2. As a result of the multiple passes that a photon within the cavity makes

past the trapped atom, the interaction probability is greatly increased. Energy is

transferred between the atom and the cavity at a rate 2g, known as the vacuum Rabi
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frequency. This system has several advantages over many other quantum interfaces

for the development of a distributed quantum network. For example, single atoms

may be well isolated from the environment and exhibit long-lived, well-defined quan-

tum ground states [35]. Quantum information may be coherently transferred from

the atom to a single photon, capable of being transported via optical fiber over great

distances [36]. Furthermore, recent schemes have described a method in which in-

frared photons may be produced, allowing efficient transport down pre-existing fiber

optic lines [37].

Figure 1.2: Canonical cavity quantum electrodynamics system, depicting the three
governing field rates of the system. These include g (the atom-cavity coupling rate),
κ (the cavity decay rate), and γ (the polarization decay rate of the atom), from [16].

Early demonstrations of cavity quantum electrodynamics involved cesium atoms

falling through a macroscopic Fabry-Perot cavity [38, 39], and similar cavities are still

used in many laboratories. Recent publications have developed fiber-based Fabry-

Perot cavities [40], and microtoroid and bottle resonators have been utilized for cou-

pling atoms to the evanescent field [41, 42]. Chip-based devices, including photonic

crystals [43] and waveguides [44], allow the production of multiple devices on a single

solid-state system. Examples of these different devices are shown in Figure 1.3.
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Figure 1.3: (a) Schematic of a waveguide cavity quantum electrodynamic systems;
atoms (green spheres) are trapped within an optical dipole trap (orange cylinder),
atoms are coupled to the fundamental TE waveguide mode, from [44]. (b) Schematic
of a toroidal microresonators coupled to a single cesium atom, from [45]. (c) Schematic
of a single rubidium atom trapped within a standing wave trap above a photonic
crystal. Inset shows the standing wave dipole trap, from [43].

Since the observation of photon antibunching from the emission of sodium atoms

[46] (arguably the earliest experimental observation of truly quantum behavior of

light), many advances have been made in the field of cavity quantum electrodynamics.

Some of the most notable include; the deterministic generation of single photons

[47, 48], utilization of a single rubidum atom as a quantum memory [49], the coherent

state transfer between an atom and a photon [36], the production of atom-photon

and atom-atom entangled states [50], the demonstration of an elementary quantum

network [51], and the implementation of a single photon quantum gate [52].

These early successes have motivated new research, with the eventual goal of a

large scale distributed quantum network. Work demonstrating successful quantum

teleportation over a municipal fiber line demonstrated difficulties that fluctuations in

ambient conditions cause [53]. As a result of changing temperature and local fiber

stress, the polarization slowly shifted throughout the day, such that constant feed-

back was required to correct this drift. Furthermore, current cavity setups are bulky

and at most support a few cavities per optical setup. A true world-wide quantum

network would require scaling to hundreds or thousands of devices per optical setup.
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Work involving chip-based systems including waveguide quantum electrodynamics,

has started to pursue this ambitions goal [54]. To that end, this thesis focuses on an-

other potentially scalable solution, by utilizing a self-assembly procedure to produce

many Fabry-Perot cavities on a single chip.

1.4 Current Fabry-Perot Cavities

As described above, Fabry-Perot cavities are the prototypical structure for cavity

quantum electrodynamics. Thus, a focus in recent years has been on the development

of new Fabry-Perot cavities suitable for this application [40, 55, 56]. These cavities

should fulfill several key requirements. To facilitate the coupling of atomic species,

open-access to the cavity mode is necessary. Furthermore, this open-access should

allow the introduction of trapping fields such that atoms could be held stationary

within the cavity mode. Moreover, the irreversible loss of photons must also be

limited. Thus, cavities should exhibit high finesse, reducing the cavity decay rate

κ. The mode-volume should be small in order to maximize the atom-cavity coupling

rate g. These two rates should be comparable at minimum, and strong-coupling (i.e.

g > κ) is highly sought. Finally, the cavity must be tunable to ensure the cavity may

be brought into resonance with an atomic emitter. To fulfill all these requirements

several approaches have been described in the literature.

The most commonly used Fabry-Perot cavities for cavity quantum electrodynam-

ics are macroscopic cavities like the ones described in Ref. [57], shown in Figure 1.4a.

These cavities have been shown to exhibit exceptionally high finesse (∼ 500 000) and

are easily tunable using piezo stages. Unfortunately, these cavities are relatively large,

limiting the scalability to the large arrays of cavities needed for a global quantum-

network [16]. Recently, fiber based cavities utilizing two mirrored fibers [40, 58, 60],

or a single fiber and a planar mirror [61] have been demonstrated, as shown in Fig-
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Figure 1.4: (a) Macroscopic Fabry-Perot cavity mounted within a stick slip piezo stage
for fine adjustment of cavity length, mirrors are shown illuminated in red, similar
to the cavity used in [57, 48]. (b) Fiber-based Fabry-Perot cavity, with additional
alignment apparatus, from [58]. (c) Array of on-chip FIB-milled cavities, forming the
bottom mirror of the Fabry-Perot cavities, from [59].

ure 1.4b. Similar to the macroscopic cavities, these have exhibited high finesse (∼
33 000 [58]) and open-access for trapping lasers and atomic delivery. Moreover, these

cavities have estimated mode-volumes on the order of ∼ 10λ3 at a wavelength λ = 780

nm [40], among the smallest for Fabry-Perot cavities in the literature. However, in

order to produce the concave end facets, CO2 laser ablation is used in a device-

by-device fashion. Following this, a pair of fibers must be carefully aligned, again

in a device-by-device fashion. Despite being more compact than their macroscopic

counterparts, this device-by-device alignment could prohibit scaling to more than a

few cavities in a single chamber. A more scalable approach involves the use of FIB

milling or CO2 laser ablation of substrate material to produce arrays of on-chip cavi-

ties [59, 62]. Such designs have demonstrated cavity finesse on the order of ∼ 25 000,

and provide open-access to the environment. Furthermore, as shown in Figure 1.4c,

many cavities can be produced on a single chip. Unfortunately, as a result of the full

wafer nature of these devices, individual tuning of cavities could prove to be difficult;

a truly scalable design would require many devices on a single chip to be brought into

resonance simultaneously.
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This thesis describes a fully on-chip Fabry-Perot cavity fabricated using a novel

guided delamination buckling procedure [63]. Devices were fabricated in a monolithic

nature on a single substrate, removing the requirement of wafer-bonding or post-

fabrication alignment. Furthermore, these Fabry-Perot cavities exhibit a high degree

of cylindrical symmetry and low surface roughness, producing reflection limited finesse

of ∼ 3500 [64].

1.5 Summary of Thesis

This thesis describes work on guided delamination buckling of hollow-core Fabry-

Perot microcavities, with operation wavelengths in the near-infrared regime. An

experimental and theoretical exploration of these cavities was conducted, to assess

their viability for applications in quantum information science, particularly cavity

quantum electrodynamics. The chapter summaries are as follows:

Chapter 2 summarizes some of the theoretical background information related to

this work, including Fabry-Perot cavities, and cavity quantum electrodynamics.

Chapter 3 describes the self-assembly fabrication technique, including the sput-

tering procedure. The morphology of the fabricated cavities is also explored. The

second half of this chapter describes the optical results obtained for the fabricated

microcavities.

Chapter 4 provides a theoretical exploration of the viability of utilizing such cav-

ities for cavity quantum electrodynamics. Several simulations are presented to assess

the expected behavior of atoms embedded in such devices. Furthermore, a discussion

of potential means for introducing atoms into the cavity mode is provided.

Chapter 5 summarizes the work performed and provides some insight on possible

future work.
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Chapter 2

Theoretical Background

This chapter will provide the required theoretical background for the remaining chap-

ters of this thesis. I will begin by describing buckled dome microcavities and the

relevant theory of Fabry-Perot resonators. Next, a brief description of the theory of

cavity quantum electrodynamics (CQED) will introduce the key concepts required

for Chapter 4.

2.1 Fabry-Perot Microcavity

The work presented in this thesis focuses primarily on the fabrication and charac-

terization of on-chip Fabry-Perot microcavities. These microcavities consist of two

highly reflective mirrors (one planar, one curved) separated by an air gap, forming a

half-symmetric optical resonator. Electromagnetic radiation which satisfies the res-

onance condition (the accumulation of a 2πn phase shift upon a round trip of the

cavity, where n is a positive integer) is effectively stored within the cavity due to the

repeated reflections off the mirrors. The ability to store electromagnetic radiation

makes Fabry-Perot resonators a crucial optical element for many applications. As

this storage effectively increases the interaction length, it allows the typically low in-

teraction probabilities of freely propagating photons to be increased with every round

10



trip. The most notable application of this phenomena is the laser, where a single pho-

ton may excite the emission of many photons as it repeatedly traverses the optical

cavity.

2.1.1 Distributed Bragg Reflectors

Mirrors are one of the most common of optical devices, used to change the propa-

gation direction of light. Many mirrors are simply polished metallic surfaces such as

aluminium or gold. Mirrors that utilize metallic surfaces exhibit high reflectance over

a broad wavelength range and at nearly all incident angles. However, even a per-

fectly polished metal surface, (for example gold) can only provide a peak reflectance

of ∼ 97% over the wavelength range of 700 − 2000 nm [65]. Despite this limited

reflectance, gold-coated copper mirrors are often utilized with high-power CO2 lasers,

since substantial amounts of heat can be tolerated due to the high thermal conduc-

tivity of the metallic layers. Unfortunately, many applications require mirrors with

higher reflectance and, crucially for cavity quantum electrodynamics, lower optical

loss. In these situations, mirrors comprised of thin stacks of dielectric material are

utilized. Such mirrors have demonstrated peak reflectance > 99.999% [66] and, due

to their dielectric nature, exhibit much lower photon loss than their metallic counter-

parts.

Dielectric mirrors, also known as distributed Bragg reflectors, are constructed

using alternating layers of high and low index materials. High reflectivity is achieved

by designing the layer thicknesses such that all partially reflected rays constructively

interfere at the mirror surface. Reflection at an interface between two media of index

n1 and n2 is governed by the Fresnel equations. Assuming normal incidence and

following the convention prescribed by Kasap [67], the field reflection and transmission

coefficients may be expressed as:
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r =
n1 − n2

n1 + n2

, (2.1)

t =
2n1

n1 + n2

. (2.2)

Notice, upon reflection the phase shift depends on the relative difference between

the index of the two media. A lower index incident medium (i.e. n1 < n2) implies

a π phase shift, while a higher index incident medium implies no phase shift upon

reflection. Phase shift upon transmission is always zero regardless of the relative

index difference. Furthermore, the intensity reflectance is given by R = |r|2, and the

intensity transmittance by T = |t|2.
To begin the derivation for the reflectivity of a stack of dielectric films, consider

first a single layer of index n submerged in a background of index n′ with n > n′.

The incident ray is partially reflected off the top surface and acquires a π phase

shift. The partially transmitted component travels a distance d (the thickness of the

film), is again partially reflected acquiring zero phase shift followed by propagating

the distance d, for a total propagation distance of 2d. For the second ray to be in

phase with the initially reflected ray it must accumulate a phase shift of π during its

transit through the film. In other words, kz = 4ndπ/λ0 = π is needed, where k is the

wavenumber, z is the total propagation distance, and λ0 is the free space wavelength

of the electromagnetic field. Therefore, the minimum film thickness that satisfies this

criterion is given by:

λ0 = 4nd. (2.3)

This procedure may be extended by layering materials of alternating high and low

index of refraction, fulfilling the constraint defined by Eqn 2.3. The partially reflected

ray produced at each dielectric interface will be in phase at the mirror surface and
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constructively interfere, producing a highly reflective multilayer. This forms the basic

structure of the distributed Bragg reflector, often referred to as a quarter-wave-stack

and shown in Figure 2.1. Finally, a quarter-wave-stack may be designed for a target

wavelength λBragg using Eqn 2.4:

λBragg = 4n1d1 = 4n2d2, (2.4)

where n1 and n2 are the index of refraction d1 and d2 are the layer thicknesses of the

alternating layers 1 and 2, respectively.

Figure 2.1: Schematic representation of a Bragg reflector comprised of a quarter-wave
stack of alternating high and low index medium. Adaped from [65].

Furthermore, just as the Fresnel equations define the reflectance from a single

dielectric interface, it can be shown that the peak reflectance of a Bragg reflector is

given by [68]:

RBragg =

[
n0(n2)

2N − ns(n1)
2N

n0(n2)2N + ns(n1)2N

]
, (2.5)

where, n0 is the index of the incident media (typically air), ns is the index of the

substrate, n1 and n2 are the indices of the multilayer materials, and N is the number
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of periods in the Bragg reflector. As the number of periods increases, and with

appropriately large index contrast, RBragg rapidly approaches unity. Experimentally,

Bragg reflectors with peak reflectance over 99.999% have been reported [66].

Finally, at normal incidence the Bragg reflectors exhibit high reflectance for a

narrow wavelength range near λBragg; the width of this high reflection region may be

expressed as [69]:

ΔλBragg = λBragg
4

π
arcsin

[
|n2 − n1|
n2 + n1

]
. (2.6)

Thus, as seen from Eqn 2.6, the width of the highly reflective region is strictly depen-

dent on the index contrast between the two materials utilised to fabricate the mirror.

In order to achieve the required ΔλBragg for a given application, an appropriately

large index contrast must be used.

2.1.2 Planar Fabry-Perot Resonator

The canonical Fabry-Perot resonator takes the form of two perfectly parallel mirrors,

separated by an optical medium of index n. This geometry is known as a Fabry-

Perot etalon or interferometer, and is illustrated in Figure 2.2. Two adjacent rays

exiting the resonator will experience an optical path difference resulting in the two

rays having a difference in phase which may be expressed as:

δ = 2kzd =
4nπd cos θ

λ
=

4nπνd cos θ

c
. (2.7)

Here, kz = 2πn cos θ
λ

is the component of the wavevector within the etalon normal

to the interface, d is the thickness of the etalon, ν is the frequency of the incident

wave, c is the speed of light, and θ is the propagation angle within the medium. As

illustrated in Figure 2.2, upon every round trip a portion of the field is transmitted
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Figure 2.2: Schematic of a Fabry-Perot etalon, multiple reflections are depicted within
the cavity as a result of an incident wave at angle θi. Ai, An and Bn define the
amplitude coefficients of the incident, transmitted and reflected fields, respectively.
Adapted from [70].

through the etalon. By summing these partial transmitted electric field components,

an expression for the net transmitted field may be derived [71]:

Et = A1 + A2 + ....

= E0t
2eiωt + E0t

2r2ei(ωt−δ) + E0t
2r4ei(ωt−2δ) + ...

= E0e
iωt

[
t2

1−r2e−iδ

]
.

(2.8)

Here, r and t are the field reflection and transmission coefficients of the mirrors,

respectively, and assuming the mirrors are lossless it can be shown that t2 = 1− r2.

It is often more instructive to recast these equation in terms of intensity, defining

I0 = |E0|2/2, It = |Et|2/2, and Ir = |Er|2/2 and multiplying Eqn 2.8 by its complex

conjugate, then Eqn 2.8 can be expressed as:
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It
I0

=
(1−R)2

(1−R)2 + 4R sin2(δ/2)
. (2.9)

Similarly, for the reflected components:

Ir
I0

=
4R sin2(δ/2)

(1−R)2 + 4R sin2(δ/2)
. (2.10)

Examining Eqn 2.9, it is apparent that transmission is maximized for values of δ =

2qπ, where q is a positive integer. Utilizing this fact with Eqn 2.7, the resonant

frequencies are given by:

νq =
qc

2nd cos θ
, (2.11)

where νq is the optical frequency for a given mode with integer value q. Furthermore,

the spacing between two consecutive modes (νq+1−νq) is called the free spectral range

of the etalon:

Δν =
c

2nd cos θ
. (2.12)

Characterization of Fabry-Perot resonators typically can be done using two figures

of merit. First, finesse (F) is a measure of the resolving power of a Fabry-Perot

interferometer. Secondly, the quality factor (Q) defines the ability of the cavity to

store optical energy. The finesse of a Fabry-Perot resonator may be determined from

the full-width at half-max (FWHM) of the transmission peaks defined by Eqn 2.9,

specified by the point where It/I0 = 0.5:

sin2(δ1/2/2) =
(1−R)2

4R
. (2.13)
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For a cavity with highly reflective mirrors (i.e. R ∼ 1) the small angle approximation

may be utilized along with Eqn 2.7, and the FWHM in terms of frequency (Δν1/2)

can be approximated as:

Δν1/2 =
c(1−R)

2πnd
√
R

=
c

2d

1

FR
, (2.14)

where FR ≡ π
√
R/(1−R) is the reflection finesse. If no other loss mechanisms exist

within the system beyond the loss due to partially reflective mirrors, FR is equal to

the effective finesse of the resonator Feff . The effective finesse can be determined

experimentally from the transmission spectrum using the free spectral range and the

FWHM of the transmission peak:

Feff =
Δν

Δν1/2
. (2.15)

However, as a result of experimental limitations, the measured finesse is often lower

than the reflection finesse. Key limiting factors include spherical defects characterized

by a finesse factor Fds, surface irregularities characterized by a finesse factor Fdg,

and parallelism defects characterized by a finesse factor Fdp (See Figure 2.3). The

combination of these define the total defect finesse Fd:

1

F2
d

=
1

F2
ds

+
1

F2
dg

+
1

F2
dp

. (2.16)

The overall effective finesse may then be expressed in the form:

Feff =
[
F−2

R + F−2
d

]−1/2

. (2.17)

Finally, the quality factor (Q) is defined by the energy stored in the cavity:

Q = ω
(Field energy stored in resonator)

(Power dissipated by resonator)
, (2.18)
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Figure 2.3: Several examples of defects that affect the finesse of a Fabry-Perot res-
onator.

where ω = 2πνq is the resonant angular frequency of the mode in question. Further-

more, the quality factor may also be defined in terms of the FWHM of the transmission

peak and its frequency:

Q =
νq

Δν1/2
=

qΔν

Δν1/2
= qFeff. (2.19)

Eqn 2.19 predicts that the quality factor increases linearly with the longitudinal mode

number, q, and is directly proportional to the effective finesse of the resonator.

2.1.3 Half-Symmetric Fabry-Perot Cavity

The description above was restricted to Fabry-Perot resonators comprised of two in-

finite parallel mirrors, illuminated by a uniform plane wave. However, experimental

limitations makes producing such conditions virtually impossible. Therefore, typi-

cally one or both of the mirrors are curved to provide horizontal confinement of the

electromagnetic field (see Figure 2.4). The modes supported within such a cavity are

given by the solutions to the paraxial wave equation:
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Figure 2.4: Half-symmetric Fabry-Perot resonator, one spherical mirror with radius
of curvature R2, and one planar mirror where R1 is considered infinite.

∇2ψ − 2ik
∂ψ

∂z
= 0. (2.20)

Here, ψ defines the shape of the phase fronts of the optical mode, such that:

E = E0ψe
−ikz. (2.21)

Solving Eqn 2.21 in Cartesian coordinates gives rise to a complete set of orthogonal

modes known as Hermite-Gaussian modes (see Figure 2.5). The field distribution of

these modes for a given transverse mode (l,m), where l and m are the x and y mode

order, respectively, is given by [73]:

El,m = E0
w

w(z)
Hl

(
√
2 x
w(z)

)
Hm

(
√
2 y
w(z)

)

× exp

[
− x2+y2

w2(z)
− ik x2+y2

2R(z)
− ikz + i(l +m+ 1)η

]
,

(2.22)

where Hl and Hm are Hermite polynomials of order l and m, respectively, and w(z)

is the spot size given by:
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Figure 2.5: Examples of Hermite-Gaussian modes [72].

w(z) = w0

[
1 +

(
z

z0

)2]1/2

. (2.23)

Here, w0 is the minimum spot size determined by the cavity geometry given by [40]:

w0 =

√
λ

π

(
d

R1R2

R1 +R2

)1/4

, (2.24)

where d is the length of the cavity, and R1 and R2 are the mirrors radii of curvature.

In the case of a half-symmetric cavity such that R1 ⇒ ∞, Eqn 2.24 simplifies to:

w0 ≈
√

λ

π
(dR1)

1/4. (2.25)

Furthermore, z0 is the Rayleigh range, also known as the confocal beam parameter,

(defining the position at which the beam spot increases to a size of
√
2w0) and is

given by:
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z0 =
πw2

0n

λ
. (2.26)

The radius of curvature of the phase fronts R(z) is given by:

R(z) = z

[
1 +

(
πw2

0n

λz

)2]
. (2.27)

Finally, η is the Gouy phase shift. This phase shift is a result of the transverse spa-

tial confinement of the focused beam introducing a spread in the transverse momenta.

The effective axial wavenumber may be written as k̄z = k2
z/k = k− k2

x/k− k2
y/k, and

is associated with the overall propagation phase φ(z) through k̄z = ∂φ(z)/∂z. The

first term is phase accumulated by an infinite plane wave (kz ), while the second and

third terms give rise to the Gouy phase, as given by Eqn 2.28 [74]:

φG = −1

k

∫ z

[k2
x + k2

y]dz. (2.28)

This additional phase results in the frequency difference between the transverse optical

modes present in the Hermite-Gaussian modes. As described by Eqn 2.22, these

additional modes depend on the sum of l+m. The Gouy phase for Hermite-Gaussian

is explicitly given by:

η = tan−1

(
z

z0

)
= tan−1

(
λz

πw2
0n

)
. (2.29)

For a given transverse electromagnetic mode (TEMlm with indices (l,m)) to be

resonant, it must undergo a 2π phase shift upon a round trip within the cavity.

Equivalently, for a cavity of length d, a π phase shift must occur on a single pass.

This condition may be expressed in the form:

θl,m(z2)− θl,m(z1) = qπ, (2.30)
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where q is the integer value for the given longitudinal mode. θl,m(z) is the phase

change of the wave in the direction of propagation, given by:

θl,m(z) = kz − (l +m+ 1) tan−1

(
z

z0

)
, (2.31)

where k is the wavenumber. Neglecting the phase shift upon reflection, since it would

cancel out, the resonant condition becomes:

kqd− (l +m+ 1)

[
tan−1

(
z2
z0

)
− tan−1

(
z1
z0

)]
= qπ. (2.32)

The difference between two adjacent longitudinal modes defines the free spectral range

for the TEM00 mode:

kq+1 − kq =
π

d
. (2.33)

Substituting k = 2πνn
c

into Eqn 2.33 gives the free spectral range in terms of frequency:

Δν =
c

2nd
. (2.34)

This is the same result obtained for the planar Fabry-Perot resonator at normal

incidence. However, as a result of the additional Gouy phase shift the resonant

frequency of transverse Hermite-Gaussian modes also depends on the sum of l +

m. Therefore, in a cylindrically symmetric cavity, modes of constant l + m will

be degenerate in frequency; this degeneracy will be broken by any asymmetry of the

cavity mirror. From Eqn 2.32 for two adjacent values of l+m the frequency separation

of two transverse modes ΔνHG is given by:

(kq1 − kq2)d = [(l +m+ 1)1 − (l +m+ 1)2]

[
tan−1

(
z2
z0

)
− tan−1

(
z1
z0

)]
. (2.35)
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In terms of frequency this becomes:

ΔνHG =
c

2πnd
Δ(l +m)

[
tan−1

(
z2
z0

)
− tan−1

(
z1
z0

)]
, (2.36)

where Δ(l + m) is the difference in the sum of two transverse modes. In the case

where the cavity is nearly planar (i.e. d � R1, R2) (such as the cavities studied in

chapters 3 and 4), Eqn 2.35 simplifies to:

ΔνHG ≈ c

2πnz0
Δ(l +m). (2.37)

The resonant frequency for a given Hermite-Gaussian mode (νq,l,m) may be deter-

mined by simplifying Eqn 2.32:

νq,l,m =
c

2nd

{
q +

(l +m+ 1)

π
cos−1

[
±

√
1− d

R2

√
1− d

R1

]}
. (2.38)

Furthermore, for a half-symmetric cavity when R1 ⇒ ∞ this may be simplified to:

νq,l,m =
c

2nd

{
q +

(l +m+ 1)

π
cos−1

[
±

√
1− d

R2

]}
. (2.39)

Finally, the set of Hermite-Gaussian modes defined by Eqn 2.22 are part of a

complete set of orthogonal solutions to the paraxial wave equation. However, this

is only one of several valid sets of solutions; another commonly used set of solutions

obtained in terms of cylindrical coordinates (r, θ, φ) are the Laguerre-Gaussian modes,

in the form:
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Figure 2.6: Examples of Laguerre-Gaussian modes [75].

Ep,l = E0

√
2r

w(z)
Lp,l

(
2r2

w2(z)

)

× exp

[
− r2

w2(z)
± ilφ− ik r2

2R(z)
− ikz + i(2l + p+ 1)η

]
,

(2.40)

where Lp,l is the associated Laguerre polynomial of order (l, p) where p and l are

the mode orders for the radial and azimuthal coordinates, respectively. Due to the

cylindrical nature of these modes, they tend to be favored in structures with high

degrees of cylindrical symmetry such as the cavities studied in Chapters 3 and 4.

However, any slight defect in the shape will allow the existence of Hermite-Gaussian

modes and often favor them. For example, laser cavities typically favor Hermite-

Gaussian modes as a result of slight defects or misalignment. Laguerre-Gaussian

modes can be seen in Figure 2.6.
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Figure 2.7: Examples of Ince-Gaussian modes [76].

A third and final set of solutions to the paraxial wave equation exist; they are a

hybrid between the Hermite-Gaussian and Laguerre-Gaussian modes. Known as Ince-

Gaussian modes, they arise in cases of elliptical symmetry and when the cylindrical

or rectangular symmetry is slightly broken. There exist two sets of solutions in terms

of odd and even Ince polynomials given by:

Eodd = Sodd
w0

w(z)
Sm
p (iξ, ε)Sm

p (φ, ε)

× exp

[
− r2

w2(z)
+ ik r2

2R(z)
+ ikz − i(p+ l)η

]
,

(2.41)

Eeven = Ceven
w0

w(z)
Cm

p (iξ, ε)Cm
p (φ, ε)

× exp

[
− r2

w2(z)
+ ik r2

2R(z)
+ ikz − i(p+ l)η

]
,

(2.42)
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where Sm
p and Cm

p are the odd and even Ince polynomials of order p and degree

m, respectively. Sodd and Ceven are normalization constants, (ξ, φ) are transverse

coordinates, and ε is an ellipticity parameter. In the limiting cases where ε = 0 or

ε = ∞, the Ince-Gaussian modes simplify down to Laguerre or Hermite-Gaussian

modes, respectively. Some examples of Ince-Gaussian modes are shown in Figure 2.7,

and in a few cases were also experimentally observed (see Chapter 3).

2.2 Cavity Quantum Electrodynamics

The prototypical cavity quantum electrodynamics (CQED) system is comprised of

two elements: a single two-level atomic emitter trapped within a high finesse optical

cavity. Such a system may be utilized to implement the light-matter interactions

required to construct a distributed quantum network [16]. This section will explore

the theory behind such a system, to elucidate the investigation performed in Chapter

4 regarding the effectiveness of buckled dome microcavities as a quantum light-matter

interface.

2.2.1 Quantum Electrodynamics in a Cavity

To motivate the importance of both elements for CQED, first consider a two-level

atom resonantly interacting with a faint (single photon) pulse of light that has been

focused to a waist w0. A deterministic atom-photon interaction requires the absorp-

tion cross section of the atom to be much larger than the beam spot size, i.e. σabs � A.

Here, A = (π
4
)w2

0 is the area of the beam, and σabs = 3λ2

2π
where λ is the resonant

optical wavelength of the atom [77, 78]. At optical wavelengths, even with diffraction

limited Gaussian input beams, it follows that this condition is not achievable in free

space.
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Figure 2.8: The prototypical CQED system. (a) A single three-level atom within an
optical cavity, the atom and cavity exchange energy at a rate 2g. The electric field
decays from the cavity at a rate κ = κloss + κout. The atomic polarization decay
rate is γ. (b) Atomic energy structure of the atom. The resonance frequency of the
cavity is ωc, the atomic transition frequency between states |c〉 and |e〉 is ωa, and
the atom-cavity detuning is Δac. Finally, there exists a decoupled atomic state |u〉.
Adapted from [17].

This situation may be augmented by placing the atom within a Fabry-Perot res-

onator consisting of mirrors with reflectivity R, such that a photon can bounce back

and forth many times, (see Figure 2.8). The multiple passes through the cavity re-

sults in an effective increase in the absorption cross-section by the numbers of bounces,

given by F/π, where F is the finesse of the cavity defined in Eqn 2.15. Therefore, in

order to have a deterministic atom-photon interaction the following condition must

be fulfilled:

3λ2

2π
× F

π
� π

4
w2

0. (2.43)

This inequality may be recast using the rates governing the system; the cavity

decay rate, κ, the polarization decay rate of the atom, γ, and the atom-cavity coupling

rate, g. First, note that the single-photon, atom-cavity coupling rate, g, is determined
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by the electric dipole matrix element, μce, from the ground state |c〉 to the excited

state |e〉 [17]:

g =
μceE

�
=

√
μ2
ceω

2ε0�V
=

√
3λ2cγ

4πV
, (2.44)

where � is the reduced Planck’s constant, V is the optical mode volume in the cavity,

ε0 is the permittivity of free space, and it has been assumed that the atom is located

at a maxima of the field. Furthermore, the cavity decay rate κ and polarization decay

rate γ are defined as followed:

κ =
πc

2dF , (2.45)

γ =
μ2
ceω

3

6πε0�c3
, (2.46)

where c is the speed of light, ω = 2πν is the angular frequency of the transition, and

d is the length of the cavity. Thus, Eqn 2.43 may be rewritten in terms of these rates

as follows:

C =
g2

2κγ
� 1. (2.47)

The parameter C is known as the cooperativity, and C−1 is often called the critical

atom number, as it represents the number of atoms within the cavity required to

significantly modify the transmission properties [79]. From this rather simplistic

derivation, one can see that C should be independent of cavity length, since κ ∝ 1/d,

and g ∝ 1/
√
d. This somewhat simplistic derivation gives insight into the fundamental

parameters of importance for CQED; a more detailed description of the dynamics will

be presented next.
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2.2.2 Jaynes-Cummings Model

Again consider a single two-level atom within a high finesse optical cavity. The

atom has a resonance frequency ωa, the cavity has a resonance frequency ωc, and

the frequency difference is defined as Δac = ωa − ωc. The atom-cavity coupling is

described by the dipole approximation and the Hamiltonian may be written as:

HInt = −d̄ · Ē ⇒ dE(σ̂†
ce + σ̂ce)(â

† + â)

= �g(σ̂†
ceâ

† + σ̂†
ceâ+ σ̂ceâ

† + σ̂ceâ),
(2.48)

where d̄ is the atomic dipole moment, Ē is the electric field of a photon within the

cavity, σ̂ce = |c〉〈e| and σ̂†
ce = |e〉〈c| are the atomic lowering and raising operators,

respectively, and â† and â are the photon creation and annihilation operators, respec-

tively.

In the interaction picture (or Dirac picture) the terms σ̂†
ceâ

† and σ̂ceâ experience

fast dynamics, such that if g � ωa, ωc these terms may be neglected. Neglecting

these terms is known as the rotating wave approximation (or secular approximation).

Making this approximation the Hamiltonian for the system may be written as:

HJC = �ωaâ
†â︸ ︷︷ ︸

Empty Cavity

+ �ωcσ̂
†
ceσ̂ce︸ ︷︷ ︸

Bare Atom

+ �g(σ̂†
ceâ+ σ̂ceâ

†)︸ ︷︷ ︸
Dipole Coupling

. (2.49)

This Hamiltonian can be diagonalized revealing the following energy eigenstates [80]:

E0 = 0, (2.50)

EN,± = N�ωc +
�Δac

2
± �

2

√
Ω2

N +Δ2
ac. (2.51)

Here, N is a positive integer representing the total number of excitation quanta in

the system, ΩN = 2g
√
N is the N -quanta Rabi oscillation frequency. This energy
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spectrum is plotted in Figure 2.9 as a function of atomic detuning, Δac = ωa − ωc,

and is known as the Jaynes-Cummings ladder [81].

Figure 2.9: The Jaynes-Cummings ladder of coupled eigenstates (black) and uncou-
pled eigenstates (grey), where the cavity frequency ωc is kept constant, and the atomic
frequency ωa is scanned over the resonance. At zero detuning the levels are separated
by 2g

√
N . Adapted from [17].

Furthermore, the eigenstates of the coupled system |N,±〉 are a superposition of the

states |e,N − 1〉 and |c,N〉. On resonance Δac = 0:

|N,±〉 = 1√
2
(|e,N − 1〉 ± |c,N〉), (2.52)

This superposition of states results in key dynamics of the system. Consider the

case with an atom prepared in its excited state |e〉 inside a cavity with N−1 photons.

This state may be written as |e,N−1〉 = |N,+〉+ |N,−〉. Calculating the probability

of the atom being in its excited state |e〉 reveals P|e〉(t) = cos2(ΩN t/2), meaning the

system undergoes Rabi oscillations at the frequency ΩN = 2g
√
N . In the limit where
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N−1 = 0, (i.e. initially there are no photons inside the cavity), the oscillations occur

at Ω1 = 2g, which is known as the vacuum-Rabi frequency.

2.2.3 Implementations of CQED

Any experimentally realized implementation of an atom-cavity system is an open

system with two main loss mechanisms. Photons may be lost at a rate κ = κloss+κout,

where κloss is due to photons being scattered or absorbed by the mirrors, and κout is

due to photons passing through the partially reflecting mirrors and exiting the cavity

along the output mode of the resonator. The second decay channel is through the

atomic polarization decay of the atom at a rate γ, which may be through the decay

into an auxiliary state |u〉, or by spontaneous emission into free-space.

The dynamics of such an open atom-cavity system may be simulated using the

Lindblad form of the quantum master equation [82]:

ρ̇ =
1

i�
[HInt, ρ] +

∑
i

[
LiρL

†
i −

1

2
(L†

iLiρ+ ρL†
iLi)

]
, (2.53)

where ρ = |ψ〉〈ψ| is the density matrix operator of the system. In the case of the atom-

cavity system L1 =
√
2γσ̂ce and L2 =

√
2κâ, representing the atomic and photonic

loss, respectively.

Investigating the dynamics of the system using Eqn 2.53, three separate regime

emerge. First, for C � 1 the dynamics of the system are nearly identical to that of

the free-space case and are therefore largely uninteresting. In the case where C � 1,

two distinct regimes exist: the “Purcell” or fast cavity regime for which κ > g and

any photon emission is an irreversible process, and the “strong-coupled” regime where

g > κ and energy may be reversibly exchanged between the cavity and the atom.

The strong-coupled regime is the most highly sought regime, as the reversible

transfer of energy between the atom and cavity allows the engineering of many atom-
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photon interactions. In this regime the atom-cavity coupling is the fastest rate in the

system:

g > κ > γ, (2.54)

and therefore this is the only regime for which it is possible to observe the vacuum

Rabi oscillations.

Finally, the Purcell regime is characterized by κ > g > γ and C � 1, such that

the Rabi oscillations cannot be observed because the photon will leak from the cavity

before being reabsorbed by the atom. Nevertheless, the dynamics of this regime are

still strongly modified from that of the free-space system. Most notably the atomic

decay rate into the cavity is strongly enhanced and may be determined by solving

Eqn 2.53:

γc =
g2κ

κ2 +Δ2
ac

. (2.55)

Remarkably, on resonance (Δac = 0), the cavity enhanced decay rate γc = 2Cγ may

be much larger than the free-space decay rate γ, leading to the notion of the “one-

dimensional” atom [47, 83]. This increased decay rate, most notably, may be utilized

to implement highly efficient single photon sources. It can be shown that the fraction

of photons emitted into the cavity mode is given by:

κout

κ

γc
γ + γc

=
κout

κ

2C

1 + 2C
. (2.56)

Therefore, for C � 1 the extraction efficiency of single photons approaches unity.
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Chapter 3

Visible-Band Microcavities

Fabricated via Buckling

Self-Assembly of SiO2/Ta2O5

Multilayers

In 1899 Alfred Perot and Charles Fabry described a method for distinguishing small

differences in wavelength utilizing two silver mirrors separated by an air-gap [84]. This

device is known as a Fabry-Perot interferometer, and is used for filtering and storing

electromagnetic radiation. However, cavities fabricated from two planar mirrors,

such as described in their initial work, suffer from several drawbacks that result in

limitations to the finesse and quality factor attainable. Defects such as non-parallelism

and undesirable mirror curvature cause the radiation to leak from the cavity [85].

However, it has been demonstrated that by intentionally introducing curvature to

one or both mirrors, electromagnetic radiation may be better confined within the

cavity [86].
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Advances in fabrication techniques have allowed the recent development of many

diverse high finesse optical cavities. Cavities utilizing macroscopic mirrors have re-

cently been demonstrated to have a finesse of ∼480 000 [66, 57], and, moreover,

recently reported cavities fabricated using optical fibers have reported a peak finesse

of 21 000 [40]. Chip-based cavity designs fabricated utilizing CO2-laser ablation of

glass substrates [62, 87] and FIB milling [59, 88] have exhibited finesse of 25 000 and

33 000, respectively. However, these serial fabrication techniques produce devices one

at a time and often require lengthy processing time to fabricate multiple devices.

Many applications, including lab-on-a-chip and chip-based sensors, benefit from the

parallel fabrication of multiple devices.

This chapter discusses the migration of a buckling self-assembly fabrication tech-

nique, previously utilized to produce optical cavities in the 1550 nm range, to the

near-visible portion of the infrared spectrum. This technique allows the parallel fab-

rication of tens of devices per square centimeter, and potentially enables connectivity

between cavities via hollow channels. These channels provide open-access to the

hollow cavities, which is crucial for applications such as lab-on-a-chip diagnostics,

chip-based dye lasers, and CQED.

3.1 Fabrication

Over the past several years, the primary focus of the DeCorby group has been on

the fabrication of hollow-core microcavities and waveguides utilizing a guided delam-

ination buckling procedure. In that time, chalcogenide waveguides [89], silicon based

waveguides and cavities [63, 90], and recently waveguides for visible wavelength oper-

ation have been investigated [91]. The main goal of the present work was to further

refine this procedure and to produce microcavities with resonance frequencies in the

∼ 780 nm range relevant to CQED [64]. Such cavities may allow the future explo-
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ration of cavity quantum electrodynamics, lab-on-chip based sensing, and on-chip dye

based lasers.

The basic fabrication process may be described as follows. First, a Bragg reflector

is deposited onto a cleaned fused-silica wafer. A low-adhesion fluorocarbon layer is

patterned using a standard lithographic lift-off procedure. A second Bragg reflector

matching the initial mirror is deposited, with deposition parameters chosen such that

the resulting mirror is under biaxial compressive stress. The final step is heating the

sample to induce the release of the top mirror, allowing the compressive stress to

drive the formation of hollow structures (see Figure 3.1).

Figure 3.1: Process used for the fabrication by guided delamination buckling. A low-
adhesion fluorocarbon layer is sandwiched between two identical Bragg reflectors.
The top reflector exhibits high compressive stress, and is released though a heating
process. The compressive stress of the top reflector drives the formation of hollow
structures.
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3.1.1 Thin Film Deposition

Thin film deposition methods have been extensively studied over the past several

decades, providing many alternatives for the layering of optical materials [92, 93, 94].

These methods include chemical vapor deposition (CVD) [95], thermal and electron

beam evaporation techniques [96], sputtering [97, 98], and many others; all have

specific benefits and drawbacks. However, since both optical properties and thin-film

stress were crucial for this work, sputtering was the natural choice. It allows control

of both these properties through the tuning of the deposition parameters.

Figure 3.2: Schematic of a typical reactive sputtering system. (from [99])

A typical sputtering system is comprised of two electrodes, the target material

as the cathode and the substrate as the anode, housed within a vacuum chamber

(see Figure 3.2). The chamber is evacuated to remove water vapor as well as any

chemically reactive gases, oxygen and nitrogen being the most notable examples. A

heavy, chemically inert gas is introduced into the chamber; argon is often used as it

does not chemically interact with the target or substrate material. A potential differ-

ence, typically several hundreds of volts, is applied between the cathode and anode,

causing the release of electrons that are accelerated by the large electric field. These
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accelerated electrons collide with the argon atoms within the chamber producing a

plasma of argon ions, known as a glow discharge. The positively charged argon ions

are then accelerated towards the target, colliding as well as causing the ejection of

target material, and of additional secondary electrons. This process cascades, until a

steady state plasma of electrons and ionized argon is produced. The liberated target

atoms that had been ejected in this process condense on the substrate, forming the

desired film.

This process results in the successful deposition of the desired film, however it

has several limiting qualities [98]. First, this process must operate at relatively high

pressures (∼ 10− 100 mTorr), because the electrons travel in a direct path between

the cathode and anode and thus have a low probability of colliding with argon atoms

and ionizing them. Furthermore, any target atoms ejected from the target must

travel through the relatively dense atmosphere inside the chamber. At the required

operation pressure, the mean free path for a particle is on the order of one millimeter,

and thus any target atoms will scatter many times on transit to the substrate. This

scattering has a two-fold effect: first, many target atoms will scatter and not reach

the substrate, reducing the deposition rate, and second (and more important), the

target atoms that do reach the substrate will have lost much of their initial kinetic

energy due to the multiple scattering events. Films produced from these low energy

atoms exhibit relatively low density, resulting in low mechanical strength and poor

optical properties.

These shortcomings have been overcome by the advent of magnetron sputtering,

in which a strong magnetic field traps secondary electrons near the surface of the

target [100, 101]. A ring magnet produces a magnetic field perpendicular to the

electric field just above the target surface. These perpendicular fields produce an

Ē × B̄ drift that is experienced by the electrons, trapping them in a ring just above

the target. This results in a higher concentration of electrons and therefore a higher
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concentration of ionized argon atoms near the target surface. This highly dense ring

of plasma produces a large flux of ions, forming a distinctive ring wear pattern known

as a racetrack. Furthermore, since there is a much larger concentration of trapped

secondary electrons, the density of argon may be reduced to maintain a stable plasma.

Pressures as low as ∼ 1 mTorr may be utilized in some situations. The ability to

reduce the pressure and concentrate the plasma near the target surface produces a

mean free path for target atoms that is much longer, thus more energetic particles

are able to reach the substrate. This energetic particles result in a more dense film,

and such films have been shown to have improved optical and mechanical properties

[102].

The process described up to this point is the standard method for depositing many

metallic materials. However, it is also possible to deposit several dielectric materials

such as SiO2, Ta2O5, TiO2, AlO2, and many others, through a process called reac-

tive sputtering. Following the basic principles above, target material is sputtered.

However, an additional reactive gas (typically oxygen or nitrogen) is introduced into

the sputtering chamber. As the ejected atoms condense onto the substrate, they

chemically interact with the additional gas, forming the desired dielectric compound.

However, this reaction does not only occur on the substrate, but also on all surfaces

within the chamber, including the walls, shutter, and the target itself. As this ma-

terial that forms is a dielectric, several issues arise that limit the effectiveness of the

sputtering process. First and most notable is “poisoning” of the target, which is char-

acterized by the buildup of dielectric material on the target surface. This dielectric

layer results in a reduced sputtering rate, and also may affect the quality of the film

produced [93]. During the sputtering procedure, ion bombardment will continually

clear the dielectric buildup from the racetrack region; however, a dielectric film will

continue to build up on the periphery of the target. Low energy argon ions that

find their way to this film will begin to charge the top surface, essentially producing
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a capacitor between the conductive target material below, and the charged plasma

above. As normal operation continues, this charge will continually build up until it

exceeds the breakdown voltage of the dielectric, resulting in a discharge or arc. Such

arcing events often lead to large pieces of target material being ejected and damaging

the substrate, or may even damage fragile targets (such as pure silicon targets [103]).

Early solutions to the issue of target poisoning included radio-frequency sputtering

[104], but due to several limitations such as a low sputtering rate and scalability, the

deposition of dielectrics is dominated by pulsed DC magnetron sputtering [105, 106].

A schematic of a typical target bias for a pulsed DC system is shown in Figure 3.3. The

target bias is switched between normal operation (negative voltage, approximately

−400 V, for time τon) and reverse bias (positive voltage, approximately 100 V, for

time τoff) at a frequency in the kHz range. During the normal operation “τon”, a

dielectric film will build up on the target and begin to charge as argon ions land on

the dielectric. If the target was left in this state, charge would continue to build until

an arc occurs. Prior to an arc occurring, the voltage is switched to reverse bias “τoff”;

during this time electrons are pulled onto the dielectric film, canceling the charge

produced by the argon ions. Moreover, the dielectric film will begin to exhibit a net

negative charge as more electrons build up on the surface. Upon reverting to normal

operation the dielectric film has a net negative charge, whereas the racetrack region

will be neutral. Therefore, argon ions will preferably sputter the dielectric film as it

will have a larger bias voltage [103]. This ensures the removal of the dielectric layer

and thus will ensure the target does not become poisoned. Since the electrons have a

much larger mobility than the argon ions, the off time is typically much shorter than

the on time. A reasonable duty cycle τon/(τon+τoff) may be as high as ninety percent;

as a result, deposition rates are often comparable to that of standard DC sputtering.

A second issue resulting from reactive sputtering is the continual buildup of dielec-

tric on the chamber surface. As the anode of most sputtering systems consists of the
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Figure 3.3: Schematic of the typical operation of a pulsed DC magnetron sputtering
system (adapted from [107]). During normal operation argon ions bombard the sur-
face of the target and sputtering occurs. During reverse bias electrons are pulled onto
the surface to neutralize the charge that has built up.

internal surfaces of the system, which are held at ground relative to the target. This

buildup of dielectric begins to electrically shield the anode from the target, resulting

in an effect known as the disappearing anode. If dielectric films become too thick,

this may result in the extinguishing of the plasma and the ending of any deposition

[108]. This effect is mediated by ensuring all surfaces are cleared of the dielectric film

prior to every deposition.

Depositions for this work were performed in the sputtering system shown in Fig-

ure 3.4. This system is housed in the Nanofab facility at the University of Alberta.

It is a three-gun Kurt J Lesker magnetron sputtering system, capable of pulsed DC

operations using an AE Pinnacle Plus power supply. Substrates were loaded on a

heating chuck capable of a maximum substrate temperature of 150◦C. This system

used three inch targets, installed into water-cooled copper guns, which are approx-

imately twenty centimeters from the substrate holder. Typical operation allowed a

one hour pump down of the chamber to a base pressure ∼ 10−6 Torr. The chamber

was subsequently back-filled with argon to a pressure of 10 mTorr.
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Figure 3.4: (a) The sputtering system used for all depositions in this work. (b) A
loaded target within the sputtering system, the movable shutter is open to show the
target. (c,d) Typical glow discharge during a deposition, the distinct ring glow seen
clearly in (d) is a result of the magnetic confinement.

3.1.2 Distributed Bragg Reflector

The deposition of the Bragg reflectors required the intimate knowledge of the mono-

layer properties of the two materials utilized. Previous work [91] had demonstrated

that SiO2/Ta2O5 Bragg reflectors provided a good combination of optical and me-

chanical properties and were therefore an obvious choice for this work. Single films

were deposited and both optical and mechanical properties of these films were exam-

ined. Optical properties were obtained using ellipsometry (J.A Woollam VASE) and

mechanical data was obtained using a Flexus stress measurement system.

Silicon dioxide (SiO2) was utilized as the low index material in this work, and

in fact is one of only a few low-index materials produced via sputtering [104]. The
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optimization of the deposition parameters was largely performed previously [109]; the

largest difficulty had been target arcing and the eventual damage of the pure silicon

target.

The test depositions were performed onto piranha cleaned n-type silicon sub-

strates, purchased from the Nanofab. The substrates were heated to 150◦C during

the deposition, as this has been shown to improve the stoichiometry of silicon dioxide

films [110]. Furthermore, following loading of the target and substrate, the chamber

was evacuated to a base pressure of ∼ 10−6, and was back filled with argon to a pres-

sure of 10 mTorr. Previous work [109] had observed a trade-off between mechanical

stress and optical loss, and a recipe was developed with an optimal balance of these

two properties. The deposition parameters are listed in Table 3.1. A relatively high

target power of 200 W was used to ensure that ejected target ions had high kinetic

energy, and a low oxygen flow rate of 3.2 sccm was used, compared to 4.0 sccm for

the recipe optimized strictly for low loss. Finally a deposition pressure of 4.0 mTorr

was used to allow the target atoms to retain as much kinetic energy as possible, while

safely maintaining the plasma. The resultant optical properties, determined from the

ellipsometry measurements, are plotted in Figure 3.5. At a wavelength of 780 nm,

the index of refraction was found to be n = 1.49, with an extinction coefficient of

k = 5.98× 10−5.

Table 3.1: Silicon Dioxide sputtering parameters.

Film Power
(W)

Freq.
(kHz)

Off-
time
(μs)

Ar
flow
(sccm)

O2

flow
(sccm)

Pressure
(mTorr)

Dep.
rate
(nm/s)

n780 k780 Stress
(MPa)

SiO2 200 150 0.8 50 3.2 4.0 0.28 1.49 6×10−5 -280

The issues of target arcing and fracture were largely solved previously, due in part

to several key modifications to the sputtering process. While loading the target into

the system, an additional aluminium spacer ring was placed to provide structural sup-

port to the edge of the target, where fracturing typically occurred. The top clamping

42



Figure 3.5: (a) Index of refraction and (b) extinction coefficient of sputtered SiO2.
Optical constants were obtained from ellipsometry via Cauchy fits.

ring was ensured to be tightened uniformly and lightly snug; over-tightening or non-

uniform pressure lea to fractures preferentially occurring at the clamping points. The

targets were also ramped from 0 W to the operation power of 200 W over a period

of ten minutes, to reduce the thermal shock imparted on the target (a 10 minute

ramp was also utilized while powering down the target). Furthermore, the ramp was

performed in a purely argon environment at a high pressure of 10 mTorr, again to

reduce any additional stress to the target. Finally, it was found that silicon targets

that had been elastomer-bonded to a copper backing target (Kurt J Lesker) were able

to better withstand repeated use. This is likely due to improved thermal contact via

the metallic layer, but also partially attributable to the additional structural support

from the bonding material.

Tantalum pentoxide (Ta2O5) was used as the high-index material for this work.

It is a commonly used high-index material [101, 111] and has been previously utilized

with silicon dioxide to produce high finesse cavities [40, 57]. Other materials such

as titanium oxide were also examined [112, 113]; however, it was determined that

tantalum pentoxide had superior optical as well as mechanical properties. Monolayers

were deposited using a 99.95% pure tantalum target onto cleaned silicon wafers, just

as in the case of silicon dioxide. For these depositions, the substrate was also heated
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Figure 3.6: (a) Index of refraction and (b) extinction coefficient of sputtered Ta2O5.
Optical constants were obtained from ellipsometry via Cauchy fits.

to 150◦C, in spite of the fact that the increased temperature has been shown to have

detrimental effects on the stoichiometry of tantalum pentoxide [114]. However, for

thin layers (< 1 μm) such as those used in this work, these effects were found to be

negligible. Depositions were performed with a target power of 200 W, in an oxygen-

rich environment (20 sccm of oxygen and 40 sccm of argon). The full operation

parameters are listed in Table 3.2, and the extracted optical parameters are shown

in Figure 3.6. At a wavelength of 780 nm, the index of refraction was found to be

n = 2.12 with an extinction coefficient k ≤ 1× 10−5.

Table 3.2: Tantalum pentoxide sputtering parameters.

Film Power
(W)

Freq.
(kHz)

Off-
time
(μs)

Ar
flow
(sccm)

O2

flow
(sccm)

Pressure
(mTorr)

Dep.
rate
(nm/s)

n780 k780 Stress
(MPa)

Ta2O5 200 20 5.0 40 20 4.0 0.23 2.12 < 10−5 -230

Utilizing the results from the monolayer depositions and Eqn 2.4, Bragg reflectors

were designed to operate at a free-space wavelength λ0 = 780 nm, corresponding to

the D2 line of 87Rb. The targeted film thicknesses (from Eqn 2.4) were 130 nm for

silicon dioxide and 90 nm for tantalum pentoxide. Prior to the deposition of the final

mirrors, two-period test mirrors were deposited to ensure the produced mirror had the

desired characteristics. This two-period mirror was deposited on a silicon wafer, and
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Figure 3.7: Experimentally measured mirror reflectance of a two-period SiO2/Ta2O5.
Simulation results assumed film thicknesses of 130 nm for SiO2 and 90 nm for Ta2O5.
Utilizing the measured total film thickness, it was determined the deposition rate of
Ta2O5 was reduced compared to the bulk rate.

the reflectance is plotted in Figure 3.7, along with fits obtained from transfer-matrix

simulations.

The fits revealed a decrease in the deposition rate of tantalum pentoxide compared

to the rate determined from the monolayers. This may be a result of a surface interac-

tion with the silicon dioxide interface, reducing the formation of the initial tantalum

pentoxide film. However, a new deposition rate was extracted using the optical fits as

well as thickness measurements obtained with a surface contact profilometer. Finally,

ten and a half period (starting and ending with tantalum pentoxide) Bragg reflec-

tors were deposited onto a cleaned fused silica wafer. The reflectance measurements

and the transfer matrix fit are shown in Figure 3.8, demonstrating good agreement

between the experimental measurement and the theoretical prediction. The peak

reflectance of this mirror was estimated to be R = 0.9991, corresponding to a re-

flectance limited finesse F ≈ 3500 (see Section. 2.1.2). A second, nominally identical
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Figure 3.8: Experimentally measured reflectance of a ten-period SiO2/Ta2O5 mirror.
Simulation results assumed film thicknesses of 130 nm for SiO2 and 90 nm for Ta2O5.

mirror was deposited following the deposition of a low adhesion layer, as described in

the following section.

3.1.3 Guided Delamination Buckling Self-Assembly

In order to produce deterministic structures, the buckling of the top Bragg reflector

is guided through the use of a low adhesion layer patterned onto the bottom Bragg

reflector [115]. The shape of these low adhesion regions defines the type of buck-

led features produced, ranging from long strip waveguides, to circular dome cavities.

Low adhesion between two layers has historically been produced in two ways: sur-

face treatments [116], or thin layers such as diamond-like carbon [117] or metallic

layers [118]. For the present work, a fluorocarbon based polymer was used due to

its favorable properties. Namely, patterning was relatively straightforward utilizing a

lithographic lift-off procedure, the fluorocarbon was found to be optically transparent
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in the wavelength region of interest, and it was able to survive the pump down and

substrate heating within the sputtering chamber.

Polytetrafluorethylene (PTFE) is also known by its commercial name Teflon R©,

and consists of long carbon chains with CF2 groups. It is well known that this ma-

terial has a low coefficient of friction, and exhibits low surface energy, making it a

natural choice for the low adhesion layer in this work [119, 120]. Moreover, the de-

position of thin fluorocarbon films has been well documented in literature as it forms

the passivation layer of the Bosch process [121, 122]. Furthermore, the fluorocarbon

films deposited using this procedure exhibit low pin-hole density, low surface energy,

and are capable of surviving high vacuum environments. Experimental optimization

using a commercial plasma reactive ion etch system (ICP-RIE Alcatel AMS110) was

conducted, and it was found that a ten second deposition with a 600 W coil power

produced suitable films. Features are pattered using a lithographically defined mask

of HPR 504 (a standard optical photo-resist), which was removed, following the de-

position of the fluorocarbon layer, via an acetone sonication lift-off procedure. This

was followed by an hour-long anneal on a hotplate at 100◦C to smooth the top surface

of the fluorocarbon layer. The features were optically examined under a microscope

to ensure uniformity and smooth features, qualities that have proven to be critical

for successful buckling [90] (see Figure 3.9).

A second Bragg reflector, nominally identical to the first, was deposited on top

of the fluorocarbon layer. The biaxial compressive stress was determined using the

Flexus stress measurements system; the top Bragg reflector was determined to have

a stress of ∼ 230 MPa. The wafer was diced into ∼ 3 cm2 pieces prior to buckling to

allow multiple tests of buckling on pieces without dome cavities. It was determined

that a slow temperature ramp ∼ 50 ◦C/min, starting at room temperature up to

a final temperature of 400 ◦C, was optimal to sufficiently induce buckling without
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Figure 3.9: Patterned fluorocarbon low-adhesion layer. (a) Dome microcavity with
intersecting waveguides and (b) straight edge waveguides.

resulting in full detachment of features. The pieces were then examined under an

optical microscope to ensure complete and uniform buckling had occurred.

3.1.4 Morphology

The morphology of thin film buckles may be described using elastic buckling theory

[123]. Ignoring plastic deformation of the top reflector, the critical buckling stress

(σc), and the height of buckles may be predicted. For a circular delamination buckle,

the critical buckling stress is given by σc = 1.2235[E/(1 − ν2](h/a)2, where E is the

effective Young’s modulus, ν is the Poisson’s ratio, and h and a are the thickness and

radius of the circular plate, respectively. For a given Bragg reflector, the effective

Young’s modulus, Poisson ratio, and thickness are all fixed, thus there is a minimum

diameter Dmin for which buckling may occur. Furthermore for D > Dmin the peak

height of the circular buckle may be approximated as [123]:

δ = h

[
1.9

(
σ

σc

− 1

)]1/2

≈
[
1.9σ(1− ν2)

1.2235E

]1/2
D

2
, (3.1)

where σ is the biaxial compressive stress of the top Bragg reflector. For D � Dmin

the peak height increases approximately linearly with dome diameter, as predicted
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by Eqn 3.1. However, it should be noted that this equation is only exact for σ ≈ σc

and will overestimate the height for σ/σc � 1. Also, for D � Dmin, buckles tend

to exhibit asymmetric shapes [123]. In this work, it was observed that for diameters

greater than 400 μm, domes suffered from asymmetry. Domes of several diameters

are shown in Figure 3.10; white light interference rings reveal the high degree of

cylindrical symmetry for the smaller domes.

Figure 3.10: (a) Microscope image of a 100-μm base diameter dome cavity. White
light interference fringes are clearly visible. (b) Microscope image of an array of dome
cavities of various diameters (100, 150, and 200 μm).

The profile of the dome microcavities was measured using a non-contact optical

profilometer (Zygo). A non-contact profilometer was preferred over a contact pro-

filometer because the pressure from a scanning needle may deform the shape of the

cavity. Effective film parameters for the top Bragg reflector were estimated using

an effective medium approach. Young’s modulus values of 40 GPa and 80 GPa, and

Poisson ratio values of 0.17 and 0.20, were reported for SiO2 and Ta2O5, respectively

[124, 125, 126]. Effective medium parameters were approximated using an estimated

composition of ∼ 60% SiO2 and ∼ 40% Ta2O5, yielding parameters E ∼ 65 GPa,

ν ∼ 0.2, and h ∼ 2.3 μm. From a Flexus measurement, the biaxial compressive stress

of the top reflector was determined to be σ ∼ 230 MPa. However, the stress at the

moment of buckling was likely slightly less, as it has been shown previously that the

stress tends to reduce during heating [90]. The height predictions from Eqn 3.1 were
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plotted versus the experimentally measured height (averaged over ∼ 10 cavities) and

show a good agreement, with slight deviation for large dome diameters as expected

(see Figure 3.11).

Figure 3.11: (a) Grey dotted line shows the dome height as a function of dome
diameter as predicted by Eqn 3.1, using the film parameters described in the main
text. The orange circles show experimentally determined heights, averaged over ∼10
cavities. (b) Experimentally measured (using a non-contact profilometer) profiles for
100, 150 and 200 μm base diameter cavities. The radius of curvature was determined
through fitting a circular segment near the peak of the measured profiles, as described
in the text.

For mode confinement, a key geometrical parameter is the radius of curvature of

the top reflector. As shown in Chapter 2, the radius of curvature determines the

spacing between transverse Hermite-Gaussian and Laguerre-Gaussian modes, and

also the optical mode volume. A closed-form solution for the radius of curvature of

buckled circular plates exists [127]. However, the experimental buckling of thin films

typically involves plastic deformation at the clamped boundaries, further complicating

the problem. Thus, to determine the radius of curvature, fits were performed to the

data gathered from the optical profilometer. The fits were performed for a distance

of ±10 μm from the peak, in order to sample the portion of the mirror probed by

the cavity mode. For 100, 150, and 200 μm domes, the radius of curvature was

determined to be 210.0, 320.5, and 505.5 μm, respectively, and a full set of data is

listed in Table 3.3.
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Table 3.3: Predicted and measured optical and geometrical properties of dome mi-
crocavities of various base diameters. Note only a single 250 μm dome had optical
resonances, and this specific cavity looked somewhat deformed likely resulting in its
poor optical properties. Coupling Efficiency is described in Section 3.2.1.
Diameter
(μm)

Average
Dome
Height
(μm)

Measured
Radius
of Cur-
vature
(μm)

Predicted
Mode
Waist
(μm)

Predicted
ΔλT
(nm)

Measured
ΔλT
(nm)

Estimated
Coupling
Effi-
ciency

Average
Cavity
Decay
(GHz)

Average
Finesse

Average
Mode
Volume
(λ = 780nm)

100 2.67 210 2.55 3.70 3.42 0.99 2π × 6.7 3560 35λ3

150 4.68 320 3.19 2.36 2.19 0.94 2π × 4.2 3374 89λ3

200 6.93 505 3.91 1.57 1.46 0.82 2π × 3.3 3027 191λ3

250 8.81 770 4.41 1.24 N/A 0.74 2π × 3.5 2670 255λ3

300 10.2 1040 4.97 0.97 0.94 0.64 2π × 2.7 2925 390λ3

3.2 Optical Properties

Chapter 2 introduced cavity quantum electrodynamics and explored the experimental

requirements for the deterministic interaction between a single photon and a single

atom within an optical cavity. First, the cavity must have a slow cavity decay rate

(small κ), such that photons remain within the cavity for an extended period of time.

Second, the cavity must have a small mode volume such that the atom-cavity coupling

rate g is maximized. This section will explore and estimate these key parameters for

the cavities described above.

3.2.1 Experimental Setup

Optical measurements were performed using the experimental setup shown in Fig-

ure 3.12. The chip was placed upon a copper heat sink, which was connected to a

PID-controlled heater to enable temperature tuning. Liquid nitrogen could also be

introduced in order to cool the heat sink down to cryogenic temperatures. Further-

more, the chamber could be sealed and evacuated such that measurements could be

performed in vacuum. Finally, there are two glass ports that provide optical access to

a device within the chamber. Optical resonances were examined by performing trans-

mission spectroscopy using a fiber-coupled tunable diode laser (New Focus Velocity

TLB6712). The laser was focused onto the microcavity using an objective lens (50×
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Mitutoyo Plan APO) to a minimum spot size ωl ≈ 2.5 μm. Transmitted light was

captured using a second objective lens (100× Mitutoyo Plan APO SL) and directed

towards a removable mirror. With the mirror in the path, the light is focused onto a

ThorLabs CMOS camera and, with the mirror removed, the light is focused onto a

photodiode (ThorLabs DET36A).

Figure 3.12: Experimental setup utilized for this work, as described in the main text.

To utilize these dome microcavities as quantum light matter interfaces requires

the efficient coupling of photons into the cavity mode. The coupling efficiency may

be approximated as follows [40]:

CE =

(
2ωlω0

ω2
l + ω2

0

)2

. (3.2)

This approximation assumes that the mode waist of the focusing optics and the cavity

mode are aligned. Experimentally, coupling is maximized by slowly adjusting the top

objective lens vertically until the transmitted signal is maximized, corresponding

to maximal coupling. The coupling efficiency estimated by Eqn 3.2, and using the

theoretically predicted mode waist for a 100 μm dome, is CE ≈ 0.99. However,
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experimental imperfections likely reduce this significantly. The estimated coupling

efficiencies for the remaining dome diameters are listed in Table 3.3.

Finally, optical measurements were made with the chamber evacuated to a base

pressure of < 1 Torr. The cavities were able to survive the pump down, and during the

pump down a slow drift of the resonance frequency was observed. As the environment

within the chamber was removed the cavities experienced a red-shift in the optical

resonance. This is possibly attributed to the cavity length increasing as a result of

the reduction in atmospheric pressure on the top of the cavities. For example, the

optical resonance of a particular 100 μm dome was found to shift from λ0 = 768.6

nm to λ0 = 776.0 nm as a result of the evacuation of the chamber. Upon returning

the chamber to atmospheric conditions, the cavity resonances were observed to shift

back to their original wavelength.

3.2.2 Optical Results

Buckled dome microcavities ranging in diameter from 100-300 μm were examined

and optical properties were extracted. Chapter 2 explored the resonance condi-

tion and the types of modes that are supported within half-symmetric Fabry-Perot

cavities. Two orthogonal sets of modes were described: Hermite-Gaussian modes

HGl,m(x, y, z), where l and m are the integer mode orders, and Laguerre-Gaussian

modes LGp,l(x, y, z), where p and l are the radial and azimuthal mode orders, respec-

tively. Both Hermite-Gaussian and Laguerre-Gaussian modes were observed within

these cavities, but the Laguerre-Gaussian modes were preferentially excited, suggest-

ing a high degree of cylindrical symmetry. Nevertheless, by slightly misaligning the

input laser, it was also typically possible to excite Hermite-Gaussian modes.

Using the setup shown in Figure 3.12, transmission spectra for several domes

were measured. Results for a 150 μm and a 100 μm dome are shown in Figure 3.13.

For both domes, the largest peak (at longer wavelength) is the fundamental optical
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mode; the secondary peaks correspond to the higher-order transverse optical modes

as determined by images captured by the CMOS camera. Higher-order modes with

constant mode order sums:

Figure 3.13: (a) Transmission spectra for a 150-μm diameter cavity, with a peak
height of ∼ 4.7μm. Mode images (captured using a CMOS camera) corresponding
to each transmission peak are shown in the inset, (b) Transmission spectra for a
150-μm diameter cavity, with a peak height of ∼ 2.8μm. The inset plot shows the
fundamental resonance in greater detail.

g = l +m = 2p+ l, (3.3)

(i.e. constant g) are degenerate in frequency. The spacing between adjacent transverse

modes, in the nearly planar limit (Rc � δ) is given by [73]:

ΔλT =
λ2

2πz0
Δg, (3.4)

where z0 is the Rayleigh range given by Eqn 2.26. The mode spacings predicted

by Eqn 3.4, and the experimentally observed mode spacing are given in Table. 3.3,

revealing good agreement. However, any slight asymmetry of the cavity will break

this degeneracy between modes of constant g [88]. As an example, Figure 3.14 shows

this degeneracy being split for a mode with g = 4, within a 150 μm cavity.
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Figure 3.14: Transmission spectra for the fourth order transverse mode of a 150-μm
diameter cavity. Mode splitting is clearly visible between two nominally degenerate
modes.

Using the transmission spectra, it was possible to extract the line-width of the

fundamental TEM00 optical mode for several dome diameters. The line-width is most

often expressed as the half-width at half-max (HWHM) in terms of angular frequency

κ = πν1/2, which is known as the cavity decay rate. From the measurements described

above, the cavity decay rate was determined to be κ ≈ 2π × 6.7 GHz for the 100 μm

diameter domes and decreased to κ ≈ 2π × 2.7 GHz for 300 μm diameter cavities.

Cavity decay rate and finesse are related by κ = cπ/2dF [40], which may be derived

from Eqn 2.14 and Eqn 2.15. Here d is the effective cavity length d = δ + 2dp,

the geometrical length of the cavity is δ, and the penetration depth into the Bragg

reflector is dp ≈ (λ0/2)(nh − nl)
−1 [57]. The cavity finesse was observed to have a

dependence on the dome diameter, possibly due to an increase in scattering losses in

the larger cavities. Using the expression above, an effective cavity finesse of F ≈ 3500

was estimated for the 100 μm domes, and F ≈ 2900 was estimated for the 300 μm

domes; these values were averaged over 5 − 10 cavities per diameter. Note, only a

single 250 μm cavity supported optical modes in the wavelength range of the laser.
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These values are in good agreement with the predictions from the reflectivity of the

mirrors FR = 3500, suggesting there exists little additional loss from surface defects

within the cavities.

Finally, the optical mode volume was determined in two separate ways. Assum-

ing a half-symmetric optical cavity, the mode volume of the TEM00 mode may be

approximated as [40]:

Vm =

√
π

4
ω2
0d, (3.5)

where ω0 is the mode waist calculated using Eqn 2.25. The mode waist was estimated

using the effective cavity length and the radius of curvature of the top mirror, and

the values predicted were in good agreement with the experimentally observed waist

size. For the smallest domes (100 μm base diameter) the optical mode volume was

estimated to be ∼ 35λ3 for a wavelength of 780 nm. These results were compared

with finite element COMSOL simulation of the optical mode; an example result for

a 100 μm dome is shown in Figure 3.15.

The mode volume was extracted from the COMSOL simulations by performing

the following integral over the electric field distribution [128]:

Vm =

∫
V

ε(r̄)|Ē(r̄)|2
ε(r̄0)|Ē(r̄0)|2dr̄, (3.6)

where ε(r̄) is the dielectric constant distribution, Ē(r̄) is the electric field distribution,

and r̄0 is the location of the electric field maximum (i.e. an antinode of the cavity

field). The resulting mode volume from this simulation was Vm = 35.7λ3, which is in

good agreement with the prediction from Eqn 3.5.

In summary, the various optical and geometrical properties estimated for various

dome diameters are listed in Table. 3.3.
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Figure 3.15: Cross-section of a finite element model of a 100 μm diameter microcavity
(horizontal and vertical axes different scales) showing alternating SiO2 (grey) and
Ta2O5 (white) layers of the Bragg reflectors and a simulated optical mode.

3.3 Tuning

The buckling self-assembly process used to fabricate the optical cavities in this work

is an inherently stochastic process. Variation in the local stress of the top reflector

results in cavities that vary somewhat in height, even for the same base diameter. As

a result, the resonant frequency is not predetermined by the base diameter, and the

resonance frequencies have been observed to vary as a result of changes in the ambient

temperature and pressure. Thus, in order to couple to the static transition frequency

of atomic emitters, a method to tune and stabilize the resonance is required. For

example, 87Rb is a commonly used atomic emitter in cavity quantum electrodynamics

experiments, and has an important transition at λ = 780.24 nm [35]. Therefore, a

cavity must be tuned and locked onto this resonant wavelength on demand, and

preferably on a device-by-device fashion [86].
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3.3.1 Thermal Tuning

Previous work observed a drift in the resonance frequency as a result of heating caused

by optical absorption [129]. This shift was a result of thermal expansion leading to an

increase in cavity length, and thus a red-shift of the optical resonance. This thermal

expansion was utilized as a means to tune the optical resonance through controlled

heating [64]. The chips were placed upon a copper heat sink, and the chamber

was evacuated to avoid thermalization by convection. A resistive heater within the

copper block, controlled by a PID temperature controller, was used to increase the

temperature in one degree Kelvin increments. The devices were given ten minutes to

thermalize, since glass is a relatively poor conductor of heat. The resultant resonance

peaks, and observed frequency shifts, are shown in Figure 3.16.

Figure 3.16: Fits of the experimental resonance peaks for the fundamental mode of
a 100 μm diameter dome, at temperatures from 292 K (blue, 776.4 nm) to 310 K
(red, 780.6 nm) in 1 K increments. (b) The variation of the fundamental resonance
wavelength with temperature. Orange circles are experimental data points, and the
grey line is a linear fit yielding a thermal tunability of Δλ/ΔT = 0.2346 ± 0.0007
nm/K. From [64].

A linear fit to the peak transmission wavelength reveals a temperature dependence

of Δλ/ΔT = 0.2346±0.0007 nm/K. However, the relatively slow dynamics of thermal

expansion and contraction made it difficult to lock the cavity resonance to a single
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wavelength for extended periods of time. Over the course of an hour the resonance

wavelength varied by approximately ±50 pm about the set point.

3.3.2 Electrical Tuning

In an attempt to address the issues regarding the stable locking to a desired resonant

wavelength, a second tuning approach was explored. Following a similar approach as

Gierl et al. [130], electrodes were deposited below and above the dielectric stack and

a bias voltage was applied to shorten the cavity via electrostatic forces. This work

was performed with cavities with resonance frequencies in the infrared, however it

should be straightforward to migrate this process to visible-range cavities if required.

As a simplifying assumption, the complex geometry of the dome microcavity was

approximated as a parallel-plate capacitor separated by the average distance of the

two electrodes. Based on this, is possible to estimate the voltage required to tune

the cavity by a single free spectral range. The force on a plate of a parallel plate

capacitor is given by [131]:

F =
ε0εrAV

2

2d2
= kx, (3.7)

where εr is the effective dielectric constant between the plates, ε0 is the permittivity

of free space, V is the bias applied between the electrodes, A and d are the area and

spacing between the electrodes, respectively, k is the spring constant of the dome

microcavtiy (determined elsewhere [129]), and x is the desired distance the cavity is

to be tuned. This equation may be rearranged to determine the voltage:

V =

√
2d2kx

ε0εrA
. (3.8)

For example, in order to tune the cavity by 500 nm, a voltage of approximately 165V

would be required.
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Figure 3.17: (a) Copper lead connected to bottom electrode using conductive epoxy.
(b) Bare contacts, bottom contact in bottom right, and the top contact patterned
on the remainder of the chip. (c) Dielectric breakdown as a result of exceeding the
breakdown voltage of the Bragg reflector layers.

The fabrication of these cavities was nearly identical to the process described

above. However, an additional 30 nm layer of titanium was deposited below the

bottom Bragg reflector and on the top of the capping Bragg reflector. Also lower

reflectance mirrors were utilized, producing broader resonance passbands. The bot-

tom electrode was exposed using a lift-off procedure to remove a portion of the Bragg

reflectors and access the bottom titanium layer, as shown in Figure 3.17b. Copper

contacts were attached using conductive epoxy, providing good electrical contact to

each electrode. The resistance between the top and bottom electrode was 1000-10000

Ω suggesting some leakage current was passing through the mirror layers. The bias

was slowly increased from zero to one hundred volts. Note that a blue shift would

be the expected result if the capacitor successfully pulled the plates closer; however,

a red-shift was observed, suggesting Joule heating was dominating over the electro-

static force. A second attempt to rapidly apply the bias to see an electrostatic shift

prior to the heating effects resulted in damage to the chip, as the high voltage caused

electrical discharge though the dielectric layers (see Figure 3.17c).

60



The observed thermal tuning via Joule heating was explored further; two leads

were attached to the top electrode of a second chip to allow a current to directly

heat the top mirror rather than the entire chip. The resonance frequency was mea-

sured as a function of the applied voltage between the contacts and is plotted in

Figure 3.18. As expected from Joule heating, the observed resonance frequency shift

Δλ was approximately proportional to the voltage squared, and thus the input power

(see Figure 3.18b).

Figure 3.18: (a) Resonant wavelength of a 200-μm cavity as a function of applied
voltage. The substrate of these devices was fused silica thus the additional substrate
mode was suppressed compared to Figure B.1. (b) Resonant wavelength as a function
of total power deposited onto the chip; power was calculated using P = V 2/R.

The ability to tune the optical resonance is crucial for cavity quantum electrody-

namics. Furthermore, tuning individual cavities could have applications for tunable

arrays of dye based lasers. Patterning electrodes that encircle individual domes could

allow the on-demand tuning of multiple cavities in parallel.
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Chapter 4

Cavity Quantum Electrodynamics

with Dome Microcavities

The optical and geometrical properties of dome microcavities were examined in Chap-

ter 3, and several key parameters such as the cavity decay rate κ and the optical mode

volume Vm were extracted. As discussed in Chapter 2, these parameters are of par-

ticular interest for applications in cavity quantum electrodynamics. This chapter will

use these extracted parameters to theoretically examine the viability of such cavities

for future quantum applications.

It should be noted that the analysis in this chapter assumes a single atomic emit-

ter, perfectly trapped at an anti-node of the cavity field. Several possible trapping

methods are discussed, paving the way for future work aimed at the trapping of an

atomic emitter within the optical cavity.

4.1 Cavity Quantum Electrodynamics Parameters

There exists two regimes of interest for cavity quantum electrodynamics: the strong-

coupled regime characterized by g > κ > γ, and C � 1, and the Purcell regime

characterized by κ > g > γ, and C � 1. The strong-coupled regime is perhaps the
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most highly sought regime as it allows the reversible transfer of energy between the

trapped atom and the cavity field [36]. Reversible energy transfers allows determinis-

tic atom-photon interactions capable of coherent mapping of the polarization quantum

state of a photon to the spin-state of an atom, and vice versa [49]. These coherent

atom-photon interactions have made possible the development of basic quantum net-

works [51], the distribution of quantum entanglement between distant nodes [132],

and the development of single photon quantum gates [52], all crucial elements for the

future implementation of a large scale quantum network [16]. Strong-coupling has

been demonstrated in several systems including single neutral atoms in high-finesse

optical cavities [66], semiconductor quantum dots in a semiconductor microcavity

[133], and superconducting circuits [134].

Nevertheless, systems within the Purcell regime are also of great interest for study,

since they provide several important characteristics. For example, they enable an

enhanced photon emission rate (of a trapped atomic emitter) into the cavity mode

[83]. This enhanced emission has given rise to the notion of a one-dimensional atom,

as described by Law et al. [47], since the photon emission is predominately into the

cavity mode, which typically only covers a very small percentage of the solid angular

space. Therefore, such devices show promise as highly efficient, on-demand single

photon sources, required for the implementation of a large-scale quantum network.

Thus, initial investigations of dome microcavities should look into the two per-

tinent parameters; the strong-coupling parameter g/κ and the cooperativity C. As

described in Chapter 2, the atom-cavity coupling rate g, and cooperativity C, can be

defined as follows:

g =

√
3λ2cγ

4πVm

, (4.1)
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C =
g2

2κγ
. (4.2)

See Chapter 2 for a more in-depth introduction to these parameters. As shown by

Eqn 4.1, the atom-cavity coupling rate depends only on atomic parameters and the

mode volume of the optical cavity. Therefore, for a given atom (e.g. 87Rb) the

coupling rate is strictly dependent on the optical mode volume of the cavity, since

the polarization decay rate is constant, γ = 2π × 3.03 MHz. From the values in

Table 3.3, it is possible to estimate the maximum value expected for the atom-cavity

coupling rate g. From this table, an average 100 μm dome is estimated to have

an atom-cavity coupling rate g ≈ 2π × 1.12 GHz. This value is greater than the

most optimistic predictions for macroscopic Fabry-Perot cavities [57], and among the

highest predicted in the literature [40]. Table 4.1 presents the values for domes of

varying base diameters, as determined from the values in Table 3.3.

Table 4.1: Atom-Cavity parameters extracted from the data within Table 3.3

Diameter
(μm)

Atom-Cavity
Coupling
(GHz)

Cooperativity Strong-
Coupling
Parameter

Extraction
Efficiency

100 2π × 1.12 32.3 0.17 0.98
150 2π × 0.70 19.5 0.17 0.97
200 2π × 0.48 11.6 0.15 0.96
250 2π × 0.41 8.1 0.12 0.94
300 2π × 0.33 7.0 0.12 0.93

Despite exhibiting high atom-cavity coupling, a more relevant parameter is the

strong-coupling parameter g/κ. This effectively compares the rate at which photons

irreversibly leak from the cavity (κ), with the rate of reversible transfer of energy

quanta between the atom and the cavity (g). For the cavities explored in Chapter 3,

a strong-coupling parameter g/κ � 0.2 was determined, placing such devices within

the weakly coupled regime of cavity quantum electrodynamics. Furthermore, as seen

in Figure 4.1, the strong-coupling parameter is nearly independent of the dome diam-

64



Figure 4.1: (a) Strong coupling parameter, g/κ, as a function of dome diameter. Fit
(grey dashed line) derived using cavity finesse and optical profilometry measurements
of dome height and radius of curvature. Deviations from the predicted zero-slope
behavior are a result of the divergence from the elastic buckling model, producing a
non-linear dependence between the radius of curvature and the dome diameter [129].
(b) Experimental cooperativity as a function of dome diameter. Fit as described in
(a). Error bars, from the statistical uncertainty in κ and measurement uncertainty in
Rc, are smaller than the symbol size. From [64].

eter, and therefore of the cavity length. The slight decrease with increasing diameter

can be attributed to the reduced finesse observed in larger cavities. This is in con-

trast with the typical behavior observed in macroscopic cavities, where an increasing

strong-coupling parameter with increasing cavity length has been reported [40]. It is

interesting to consider the dependence of the strong-coupling parameter as a function

of dome diameter. It can be shown that [64]:

g

κ
∝ d√

Vm

, (4.3)

where Vm ∝ R
1/2
c d3/2, Rc is the radius of curvature of the cavity, and d is the cavity

length. Furthermore, it has been shown previously based on elastic buckling theory

(see Eqn 3.1) that the cavity length d is proportional to the base diameter D of
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the dome cavity. Moreover, assuming that the buckled cavities are simply circular

segments with peak height δ and base diameter D, to first order it may be shown that

Rc ∝ D [63]. Given these approximations, Eqn 4.3 predicts that the strong-coupling

parameter (to first order) is independent of the base diameter of the cavity. As shown

in Figure 4.1, this is approximately true, with only a slight decrease for the largest

cavities.

The second key parameter is the atom-cavity cooperativity C, as defined in

Eqn. 4.2. Note that, in this expression, γ and κ are the half-width of the respec-

tive decay rates. The form presented by Law et al. [47] (C = g2/κγ), produces

identical results, as in that case the atomic polarization decay rate γ is defined as

the full-width value. These slightly different definitions are not always clearly dis-

tinguished in the literature. For consistency with most recent publications, the form

used by Reiserer et al. [17] was adopted here, which defines γ as the half-width at

half-max, γ = 2π × 3.03 MHz. From Table 4.1, the average cooperativity for the

100μm cavities was determined to be C = 32.3. Thus, these cavities fall well inside

the Purcell regime, shown in Figure 4.1. For comparison cooperativities of C = 25

and C = 145 have been reported for macroscopic [135] and fiber-based cavities [136],

respectively. Furthermore, extending the analysis in reference [47], Cui et al. [137]

were able to show that in the strong-coupled regime (they also extended their findings

to the Purcell regime), the single photon extraction efficiency (or quantum efficiency)

may be defined as:

ηq =
g2

g2 + κγ

κ

κ+ γ
=

2C

2C + 1

κ

κ+ γ
. (4.4)

From Eqn 4.4, the estimated extraction efficiency for the 100 μm cavities is found to

be 0.98; the estimated extraction efficiencies for the other dome diameters are also

listed in Table 4.1.
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Notably, these results were obtained utilizing cavities fabricated with ten-period

Bragg reflectors and exhibiting a modest reflection-limited finesse of 3500. In order to

achieve strong coupling, and assuming the morphology of future cavities is similar to

the current cavities, a minimum finesse of 21 000 would be required. This estimation

was determined using the model employed for fitting the data in Figure 4.1. However,

due to experimental uncertainties in the atom-cavity coupling rate, this should be

considered as an absolute minimum requirement. This model also predicts a peak

cooperativity C = 210 for a cavity finesse of 21 000, which would be among the

highest reported to date [136]. Improved finesse may be achieved by utilizing a

fifteen to eighteen period Bragg reflector in order to increase the mirror reflectance.

Recent work on fiber-based cavities have reported an experimental finesse of 33 000

[58], and macroscopic cavities have reported finesse as high as 480 000 [57]. Note that

both systems utilized SiO2/Ta2O5 Bragg reflectors, as in the present work. However,

the sputtering system used in this work tends to produce sub-optimal films after

approximately eight periods, likely due to dielectric buildup within the chamber.

Thus, it would be difficult to deposit films with the precision required to produce

high quality, many-period Bragg reflectors with the equipment used to date. Future

work might benefit from externally purchased depositions.

4.1.1 Atom-Cavity Simulations

The present work was focused mainly on the fabrication and characterization of Fabry-

Perot cavities; coupling to an atomic species is left for future work. Nevertheless,

simulations may provide insight to guide future experimental endeavors and provide

context to the results described above. Below, an investigation using input-output

theory [82, 138] was conducted to examine the transmission and reflection properties

of the atom-cavity system. Second, single photon emission was examined using the

quantum master equation [139].

67



Figure 4.2: Cavity annihilation operators describing input-output theory, from [17].

The cavity decay rate κ is typically seen as an irreversible loss. However, exper-

imental investigations of atom-cavity systems utilize this decay as a means to probe

the system. An example is found in the framework of input-output theory which

can be used to examine the response of the system to a weak coherent external drive

[140, 141, 142]. For the cavities studied in this work, the cavity decay rate through

the left and right mirror may be written as κl and κr, respectively, where we assume

κl = κr = κ/2, since the two mirrors are nominally identical. The field operators

for the incident electromagnetic field are given by ain,l (ain,r), and for the outgoing

field by aout,l (aout,r), for the left (right) mirror, as shown in Figure 4.2. Here, a is

the photon annihilation operator. In the Heisenberg picture of quantum mechanics

(time-dependent operators) the relationship between the input and output modes is

given by [143]:

aout,r(t) + ain,r(t) =
√
2κra(t), (4.5)

aout,l(t) + ain,l(t) =
√
2κla(t), (4.6)

where a(t) is the intracavity field operator. Experimentally, the cavity will be driven

from a single side (for example the left) and, in order to not saturate the atomic
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emitter, the drive is assumed to be sufficiently weak such that (on average) less than

one photon is within the cavity at all times. The dynamics of the atom-cavity system

may be derived from the quantum master equation (Eqn 2.53), and the relationship

d/dt〈Â〉 = Tr(Âρ̇), and are as follows:

〈ȧ〉 = − i

�
〈[a,HJC ]〉 − κ〈a〉+√

2κl〈ain,l〉(t), (4.7)

〈σ̇ce〉 = − i

�
〈[σce,HJC ]〉 − γ〈σce〉 (4.8)

Here, 〈A〉 is the expectation value of an arbitrary operator A, HJC is the Jaynes-

Cummings Hamiltonian given in Eqn. 2.48, γ is the atomic polarization decay rate,

and σce is the atomic lowering operator. These equations may be integrated numeri-

cally to solve for the dynamics of the system. However, for the special case of weak

driving with a short pulse, an exact solution has been determined [144]. This solution

provides an expression for the transmission and reflection coefficients as a function of

the cavity (atomic) detuning, Δc(a) = ω−ωc(a). Here, ω is the driving frequency, and

ωc(a) is the resonant frequency of the cavity (atom). The reflection and transmission

coefficients may be written as follows:

r(ω) = 1− 2κl(iΔa + γ)

(iΔc + κ)(iΔa + γ) + g2
, (4.9)

t(ω) =
2
√
κlκr(iΔa + γ)

(iΔc + κ)(iΔa + γ) + g2
, (4.10)

where g is the atom-cavity coupling rate, and the intensity reflectance and transmit-

tance is given by R(ω) = |r(ω)|2 and T (ω) = |t(ω)|2, respectively.
For the 100 μm diameter cavities discussed in Section 3.2.2 the predicted trans-

mission and reflection is shown in Figure 4.3, demonstrating the difference between
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Figure 4.3: (a) Transmission spectra for an empty cavity with κ = 2π × 6.7 GHz
(blue), and for the same cavity coupled to a single atomic emitter with an atom-
cavity coupling rate g = 2π × 1.12 GHz (red). (b) Reflection spectra from the same
cavity.

an empty cavity and the atom-cavity system. Figure 4.3 shows that even in the Pur-

cell regime, a single atom strongly modifies the optical properties of a cavity. Future

investigations of these cavities should look for this dip in transmission around zero

detuning; the width of the transmission dip is dependent on the atom-cavity coupling

rate. However, it should be noted that the splitting also depends on the number of

atoms within the mode; thus, the atom-cavity coupling rate cannot simply be ex-

tracted from this plot without knowledge of the average number of atoms trapped

within the cavity [66].

Finally, Reiserer and Rempe [17] suggested that the best-suited application for

a cavity within the Purcell regime would be an on-demand single-photon source,

due to the enhanced atomic decay rate into the cavity. To date, most single-photon

sources rely on spontaneous emission events [145], or parametric down conversion

[146]. Unfortunately, these processes are inherently random and thus are unable to

produce photons “on-demand” as required for many quantum-network schemes [140].

A more advanced approach proposed by Law et al. [47] and further studied by Kuhn

et al. [48, 147] uses a single atom coupled to an optical cavity to generate on-demand

single photons. Furthermore, the cavity provides a preferential optical mode for
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photon emission, such that the emitted photons will be automatically coupled into a

well-defined direction.

This protocol utilizes a Λ-type three-level atom exhibiting two long-lived ground

states, |u〉 and |g〉; the energy level diagram is shown in Figure 4.4. Typically these

are hyperfine levels of the atomic ground state, and the third state is an electroni-

cally excited state |e〉. The photonic mode is described by the Fock state formalism

with eigenstates |0〉 and |1〉, representing zero and one photon within the cavity, re-

spectively. The cavity is tuned in resonance with the atomic transition frequency

between the states |e〉 and |g〉, but must be far off-resonance with the transition |e〉
to |u〉. If 87Rb is utilized, the hyperfine spacing between the ground states is 6.8

GHz, and therefore the cavity decay rate κ must be much less than this splitting.

Unfortunately, even for the highest quality factor cavities studied here, the line-width

is comparable to this splitting. Therefore, the development of higher finesse cavities

will be paramount for future experimentation. Regardless, ignoring the inevitable

additional coupling, the efficiency of single photon emission can be examined using

the master equation approach [147].

To initialize the single photon generation scheme, the atom is prepared into the

state |u, 0〉. The emission of the photon is induced using a classical trigger pulse,

which has a free-space Rabi frequency, ΩT , and is tuned to the transition frequency

between |u, 0〉 and |e, 0〉. So long as this pulse rises sufficiently slowly, adiabatic

passage of the atom from the state |u, 0〉 to |g, 1〉 will occur. The photon generated in

this process will be emitted from the cavity through the partially reflecting mirrors.

To ensure the photon emission from a pre-determined mirror, asymmetric cavities

are typically utilized (with one mirror having higher reflectance), to promote leakage

through the less reflective mirror.

A full description of this photon generation scheme is given in [147]; a brief de-

scription will be provided here. Assuming both the cavity and the trigger pulse
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Figure 4.4: Atomic energy levels of a Λ-type atomic emitter. States |e, 0〉 and |g, 1〉
couple via an optical cavity, states |e, 0〉 and |u, 0〉 are coupled via a classical trigger
pulse (From [147]).

are resonant with the desired transition, the interaction Hamiltonian in the basis of

uncoupled states {|u, 0〉, |e, 0〉, |g, 1〉} is given by:

H = −�

2

⎛
⎜⎜⎜⎜⎝

0 ΩT 0

Ω∗
T 0 2g

0 2g∗ 0

⎞
⎟⎟⎟⎟⎠ . (4.11)

This Hamiltonian may be diagonalized into a new set of eigenstates (or dressed states)

of the system as follows:

|a0〉 = cosΘ|u, 0〉 − sinΘ|g, 1〉, (4.12)

|a+〉 = cosΦ sinΘ|u, 0〉 − sinΦ|e, 0〉+ cosΦ cosΘ|g, 1〉, (4.13)

|a−〉 = sinΦ sinΘ|u, 0〉+ cosΦ|e, 0〉+ sinΦ cosΘ|g, 1〉. (4.14)
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The mixing angles are defined as:

tanΘ =
ΩT

2g
, (4.15)

tanΦ =

√
4g2 + Ω2

T√
4g2 + Ω2

T +Δ2 −Δ
, (4.16)

where Δ is the common detuning of the cavity and the trigger pulse, which is assumed

to be zero for these simulations. When the trigger pulse is applied, the Hamiltonian

and therefore the dressed states {|ao〉, |a+〉, |a−〉} evolve as a function of time. Given

this evolution is sufficiently slow, the system will remain within its instantaneous

eigenstate as prescribed by the adiabatic theorem [148].

Figure 4.5: Numerical simulation of single-photon emission from a microcavity. (a)
Time evolution of the trigger pulse ΩT (t) utilized in the simulation. (b) Time evolu-
tion of the photon emission rate out of the cavity. The time integral of the emission
rate reveals an emission probability of 97%.

The initial state of the system (prior to the trigger pulse) is characterized by a

non-zero g and ΩT = 0, thus the mixing angle is tanΘ = 0. Therefore, an atom

prepared in the state |u, 0〉 is equivalently in the dressed state |a0〉. As the trigger

pulse is applied, such that ΩT � 2g, the mixing angle evolves to tanΘ � 1, and thus

the atom is transferred to the state |g, 1〉. In other words, the atom is adiabatically

transferred between the two ground states without populating the excited state. The
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photon that is generated in this process will then leak from the cavity and the system

ends in the uncoupled state |g, 0〉. This process has improved efficiency over the case

in which the atom is simply excited to the state |e, 0〉, since an atom in this state will

spontaneously decay into one of the two ground states. If it happens to decay into

the state |u, 0〉, the emitted photon will be lost, since this transition is not coupled

to the cavity mode, thereby reducing the efficiency of the single-photon source.

The time evolution of this system may be modeled using the quantum master

equation given in Eqn. 2.53; for the system shown in Figure 4.5 it takes the form:

d

dt
ρ = − i

�
[H, ρ]− 1

2
(γi + γj)ρij + δij

∑
k

ρkkAki, (4.17)

where δij is the Kronecker delta function, ρ = |ψ〉〈ψ| is the density matrix, |ψ〉 =

(|U〉, |E〉, |G〉) is the state-vector of the bare atomic states, γE = γ, γG = 2κ, γU = 0,

and Aik are the Einstein coefficients. It is assumed that AEU = 1/2γ and that all

others are equal to zero. The terms ρij represents loss and damping of the system,

whereas ρkk takes into account spontaneous emission. The photon emission rate is

given by 2κρGG, since once the system is in the state |g, 1〉 the photon will leak from

the cavity at a rate 2κ.

Consider the parameters determined in Section 4.1 for an average 100 μm cavity;

g = 2π×1.12 GHz, κ = 2π×6.7 GHz, and γ = 2π×3.0 MHz. The Rabi frequency and

shape of the trigger pulse is shown in Figure 4.5a, and the emission rate resulting from

the application of said trigger is shown in Figure 4.5b. The probability of emitting

a photon is given by the time-integral Pemiss =
∫
2κρGGdt. Emission probability as

a function of cavity line-width is plotted in Figure 4.6, and it can be seen that for

κ ≈ 2g the emission probability is maximized, however for κ > 2g the extraction

efficiency is approximately constant. Furthermore, for the specific devices studied in

this work, the emission probability is predicted to be Pemiss ≈ 0.97, which is in good

agreement with the estimation from Eqn 4.4 (see p.66). Furthermore, in regards
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Figure 4.6: Emission probability determined using the quantum master equation
simulation as a function of cavity decay rate κ. Atom-Cavity coupling rate was
assumed to be g = 2π × 1.1 GHz for these simulations. Emission probability sharply
falls off for small cavity decay rate, as additional loss mechanisms start to dominate.
For κ > g/2 extraction efficiency is approximately constant. Optimal operation
regime would be κ ≈ g, as extraction efficiency is maximized, while strong-coupling
would also be achieved.

to the previously mentioned unwanted coupling to both hyperfine ground states,

experimental uncertainly in the location of the trapped atom will likely result in a

reduced atom-cavity coupling rate, likely to several hundreds of megahertz. Therefore,

in order to maximize extraction efficiency, a cavity line-width on the order of 100 MHz

should be a major goal for future work, in which case this unwanted coupling will

become less of an issue. Moreover, as mentioned previously, in order to utilize these

devices as single photon sources, atoms need to be injected and trapped within the

cavity. Motivated by this several potential methods to provide open-access to the

hollow cavities are discussed in the following section.
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4.2 Open-Access

The experimental observations and applications described above can only be explored

once an atomic species is introduced and preferably trapped within the cavity mode.

The fabrication procedure described in Chapter 2 produces inherently closed cavities.

However, the process may be augmented to provide open-access to the hollow cavity.

Two approaches were investigated: first, FIB-milling was used to remove small por-

tions of the top reflector, and second, fluorocarbon strips that intersected the cavities

were deposited, allowing the simultaneous fabrication of hollow channels intersecting

the hollow cavities.

4.2.1 FIB Milling

Focused ion beam (FIB) milling is a technique commonly used within the semicon-

ductor industry for high precision material removal [149]. A FIB setup is similar to a

scanning electron microscope. However, instead of accelerating electrons, a FIB uses

a high energy stream of ions, typically gallium. The milling process results from the

sputtering of the substrate by the flux of high-energy ions. This stream of ions may

be guided with nanometer precision, accurately removing the desired areas on the

substrate.

The FIB used in this work is housed at the National Institute for Nanotechnology

(NINT) at the University of Alberta, and milling was performed with the assistance

of Dr. Douglas Vick. The chip was initially investigated using a built-in scanning

electron microscope to locate the desired devices, and in order to align the FIB. How-

ever, it was observed that a charge was building up on the dielectric chip, making it

difficult to focus and resulting in a drift of the ion beam due to electrostatic repulsion.

To avoid this issue, the chip was coated in ∼ 10 nm of carbon and attached to the

chuck using conductive tape. This coating was thin enough to not be detrimental
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to the optical resonances of the dome microcavities. Several cavities were optically

tested and then selected to be milled. This provided a baseline optical measurement

to compare following FIB processing. Open-access was provided by milling through

the top mirror; several different hole shapes were milled as shown in Figure 4.7.

Figure 4.7: SEM images of several cavities provided with open-access via FIB-milling.
In each case, the cavity is outlined to improve visibility.

Following the milling procedure, the cavities were again tested optically, to assess

the effect of milling on the optical resonances. Several of the cavities had completely

lost their optical resonances following the milling, likely due to the proximity of milling

to the optical mode region, or due to build up of gallium on the reflectors. The cavity

shown in Figure 4.7c retained optical resonances; however, the fundamental optical

resonance was highly non-linear, even for low input power (< 1 μW), as shown in

Figure 4.8a. This non-linearity is possibly attributable to optical absorption arising

from gallium buildup on the Bragg reflectors. Interestingly, the optical resonance for

the cavity in Figure 4.7a was largely unaffected, as shown in Figure 4.8b. However,

its resonance wavelength was red-shifted by ∼ 10 nm following the FIB milling. The

optical resonance of this particular cavity was likely unaffected because the milling

was relatively far from the location of the optical mode.

Despite the moderate success of the FIB milling process, it has several drawbacks.

Open-access was provided to the cavities, and in some cases the optical properties

were minimally affected. However, this procedure requires device-by-device fabri-

cation, and one of the key motivations for the buckling approach is to avoid such
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Figure 4.8: (a) Transmission spectra for the cavity shown in Figure. 4.7c. The non-
linearity is possibly due to heating caused by optical absorption by implanted gal-
lium. (b) Transmission spectra for the cavity shown in Figure. 4.7a, showing slightly
non-linear behavior. However, the line-width was nearly identical to the pre-FIB
measurement.

serial fabrication processing and instead utilize parallel fabrication of many devices

simultaneously. Furthermore, in order to use these cavities as quantum interfaces;

single atoms need to be trapped within the region of the optical mode. In early

demonstrations [38], atoms were pre-cooled using a magneto-optical trap and allowed

to fall through an optical cavity. Unfortunately, this transit only allows for inter-

action times on the order of 10 μs, barely long enough to examine the dynamics.

Furthermore, the random nature of the atomic paths and arrival times makes this

process non-deterministic. Additionally, as the atoms pass through the cavity, they

still have relatively high kinetic energy and are subject to motion-induced dephas-

ing and a time-dependent atom-cavity coupling rate g(t). These issues have been

resolved using additional trapping lasers in the form of standing wave dipole traps

[150]. However, due to the geometry, it would be difficult to introduce trapping fields

perpendicular to the cavity mode through the holes provided via FIB milling. Thus,

preliminary investigation of a secondary potential method for trapping was made,

involving on-chip hollow-core waveguides.
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4.2.2 On-Chip Hollow Waveguides

As described above, an effective quantum light-matter interface should be capable

of trapping an atomic species within the cavity mode region for a sufficiently long

time. The first state-insensitive, neutral atom trap utilized within a cavity was a

far-off resonance dipole trap (FORT) implemented via a standing wave along the

cavity axis [151]. However, this approach was shown to be extremely susceptible to

fluctuations of the optical intensity, causing heating and eventual loss of the trapped

atomic species [152]. The intensity fluctuations were shown to be partly a result

of acoustic vibrations of the cavity mirrors. Dome microcavities would be especially

susceptible to such instability as the top reflector has been shown to support relatively

high quality factor mechanical modes [129].

Figure 4.9: Single atom trapping using cavity-independent standing-wave dipole
traps. (1) Single atom. (2) Far-detuned standing-wave dipole trap. (3) Classical
trigger pulse. Inset, a fluorescence image of a trapped atom. Modified from [49].

This problem was circumvented recently by utilizing cavity-independent FORT;

in this case, standing-wave traps were implemented perpendicular to the cavity mode,

as shown in Figure 4.9. This method has demonstrated the trapping of neutral atoms

for as long as one minute, likely limited only by collisions with room-temperature

gas molecules [49, 150]. Furthermore, this method allows changing the position of

the atom along the trap axis with sub-micron accuracy by shifting the standing wave

[153]. As discussed above, the geometrical confinement would make such trapping
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difficult for a cavities opened using FIB-milling. However, it may be possible to

utilize on-chip waveguides to support such standing wave dipole traps.

Figure 4.10: Transmission spectra for 200 μm cavities. (a) Cavity with no intersect-
ing waveguides; measured quality factor of ∼55 000. (b) Cavity with intersecting
waveguides; measured quality factor of ∼45 000.

Previous work has demonstrated low-loss hollow-core waveguides fabricated using

an identical guided delamination procedure [91]. Intersecting such waveguides with

dome microcavities might provide a means to produce a standing wave that crosses

perpendicular to the cavity mode. Devices were fabricated with intersecting waveg-

uides, as shown in Figure. 4.11. Unfortunately, the waveguides were not tall enough

to support even the fundamental optical mode and thus could not be tested. To

further investigate the optical properties of waveguides intersecting cavities, a new

photo-lithography mask would need to be produced with 60−80 μm wide waveguides

[91]. In any case, the fabricated cavities were examined and were found to support

optical modes with properties nearly identical to cavities without waveguides (see

Figure 4.10). Since the optical mode lives at the center of the cavity, modifications

of the dome periphery has minimal impact on the central part of the dome where the

fundamental mode resides. Loading and examining atomic species is left for future

work, but a hypothetical experimental setup may look as follows. A magneto-optical

trap may be used to pre-cool a cloud of rubidium atoms, and a small number of atoms
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may be dropped near the input facet of one of the waveguides. The atoms could be

caught using a standing-wave dipole trap, and transported via the waveguide using an

optical conveyor belt setup, as described in [154]. The atoms could then be examined

while held within the optical cavity mode. This experimental setup will require many

experimental advancements in both fabrication and design and implementation of the

optics.

Figure 4.11: (a) Optical profilometer reconstruction of a 50μm cavity intersected by
a pair of perpendicular 30 μm wide waveguides. (b) Microscope image of a 200 μm
cavity intersected by a single 60 μm wide waveguide.
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Chapter 5

Conclusions and Future Work

5.1 Summary

The primary focus of this thesis was to adapt the hollow microcavity buckling tech-

nique described in Ref. [63], for operation in the ∼ 780 nm wavelength range. This

range may allow coupling to important transitions of alkali metal atoms such as ru-

bidium, and has the added benefit of being compatible with many laser dyes [2] and

fluorescent biological molecules [155], providing much scope for future work.

Chapter 3 outlined the fabrication technique utilized to construct the hollow cav-

ities. A brief introduction to the sputter deposition procedure was provided, and

the optical and mechanical properties of the thin film silicon dioxide and tantalum

pentoxide films were described. The morphology of the dome microcavities of various

diameters (ranging from 100 to 300 μm) was compared with predictions from elastic

buckling theory, and good agreement was found. Optical transmission spectroscopy

was performed to determine the optical quality factor and finesse. The measured

finesse of the dome cavities was as high as 3560, which is in good agreement with the

prediction of 3500 based on the estimated mirror reflectance. Furthermore, as a result

of the high-degree of cylindrical symmetry, Laguerre-Gaussian modes were preferen-

82



tially excited even for high longitudinal mode orders. Hermite-Gaussian modes could

also be observed by shifting the laser focus slightly. Finally, several tuning methods

were explored to allow the wavelength to be shifted and locked to a desired wavelength

on demand.

Chapter 4 utilized the optical characteristics determined in Chapter 3 to examine

the viability of dome microcavities for cavity quantum electrodynamics. The atom-

cavity coupling rate g was estimated using the optical mode volume. For the 100 μm

diameter cavities, g = 2π × 1.12 GHz was estimated, among the highest predicted to

date in the literature. Discussions with Dr. Rempe from the Max Planck Institute

for quantum optics [156] suggested operation in this regime could explore dynamics

never before seen in an atom-cavity system, especially if the system is moved towards

the ultra-strong coupled regime g/κ � 1. However, the specific cavities fabricated

in this work exhibited a strong-coupling parameter g/κ � 0.2, and a cooperativity of

≈ 32, placing these devices in the Purcell regime of cavity quantum electrodynamics.

These estimations were used to simulate the spectral properties of an atom-cavity

system, as well as the single-photon generation probability. Finally, potential atomic

delivery mechanisms were explored, by considering means to provide open access to

the hollow cavity core. Two methods were attempted; first, FIB milling was used

to remove portions of the top mirror showed has some success; however, a more

promising direction might be the integration of hollow-core waveguides that intersect

the hollow cavity.

Guided delamination buckling provides a novel fabrication technique for low mode

volume, on-chip optical cavities. This monolithic process allows the production of tens

of devices per square centimeter in parallel. Furthermore, the process was able to pro-

duce high quality factor cavities operating near the visible spectrum and exhibiting

smooth reproducible features defined via standard lithographic and deposition tech-

niques.
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5.2 Future Work

The integration of hollow-core waveguides with the dome cavities might provide a

direct means to introduce a liquid or gaseous analyte into the hollow cavity core.

Previous attempts at microfluidic integration had limited success [157], however this

was possibly due to the thin fluorocarbon layer coating the inner surfaces of the hollow

structures. The hydrophobic nature of this fluorocarbon layer resists the introduction

of water into the waveguides. If a method can be developed to remove this fluoro-

carbon layer following the delamination process, it may be easier to introduce fluids

into these hollow structures. Unfortunately, teflon is non-reactive to most etchants,

and harsh chemicals would likely damage the waveguide structures. However, it has

been shown that the fluorocarbon used in this work begins to rapidly deteriorate

when exposed to elevated temperatures, at a rate of ∼ 1 nm/min at a temperature of

200◦C. By cleaving a sample such that an open facet exists, annealing at an elevated

temperature for an extended period of time should remove the fluorocarbon layer,

leaving the bare tantalum pentoxide surfaces. The removal of the thin teflon coating

should make microfluidics experiments somewhat easier to conduct.

Further exploration of cavity quantum electrodynamics has been discussed

through-out the entirety of the thesis, but a brief summary will be given here.

First, since strong-coupling is a highly sought goal, decreasing the line width of

future cavities should be a primary goal. Linewidths on the order of 100 MHz are

needed; thus, mirror reflectance must be greatly increased. In principle, this could

be accomplished by increasing the number of periods in the Bragg reflectors. Work

by Hood et al. [57] used cavities with eighteen and a half period mirrors, and

achieved a cavity finesse of 480 000. Surprisingly, this value was greater than the

predicted value determined from their transfer matrix simulations. Unfortunately,

attempts to deposit mirrors with more than ten periods using the sputtering system

in the NanoFab were unsuccessful, due to stability issues arising from a dielectric
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film build-up within the chamber. Preliminary work suggested it may be possible to

deposit a ten period mirror, and then have the chamber cleaned or deposit a thick

layer of titanium followed by the deposition of the remaining eight periods. However,

it would be preferable to deposit the entire mirror without having to break vacuum

on the chamber, in order to avoid contamination on the substrate. Improvements to

the finesse of future cavities may allow the investigation of a strong-coupled atom

cavity system, opening many interesting research opportunities.

Finally, the introduction of atomic species should be another primary focus, to

allow the production of a quantum light-matter interface. The most promising method

for on-chip atom trapping involves the use of hollow-core waveguides. New cavities

with intersecting waveguides would need to be produced, with taller waveguides to

allow the investigation of the optical properties of waveguides intersecting a hollow

cavity. Furthermore, it may be instructive to explore the use of standing waves

within a straight waveguide in an attempt to control the location of an atom within

the hollow-waveguide. Moreover, it may even be possible to use a single red-detuned

trapping laser guided by the waveguide in concert with gravity, in order to catch a

pre-cooled atom and guide them down a waveguide to the location of the cavity mode.

The ultimate goal should be the repeatable and reliable loading of single atoms into

the cavity, allowing a further exploration of cavity quantum electrodynamics.
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Appendix A

Silicon Nitride Membrane Devices

A secondary project was the development of a new type of Fabry-Perot cavity con-

sisting of a Bragg reflector and a thin two dimensional photonic crystal mirror. This

cavity has two potential advantages over the dome cavities presented in the main

body of this thesis. First, high stress silicon nitride membranes have been shown

previously to exhibit high quality factor mechanical modes crucial for optomechan-

ics [158, 159]. Secondly, the periodic array of holes in the photonic crystal mirror

will provide open access for the delivery of atomic species. However, challenges with

atomic trapping, described in Chapter 4, would still exist and need to be solved.

This appendix describes the development process of the planar photonic crystal mir-

ror and Fabry-Perot cavity, mainly focused on the simulations but also describing

initial fabrication attempts.

A.1 Two-Dimensional Photonic Crystal Mirror

The primary motivation for this work was the development of a Fabry-Perot cavity

with a mechanically compliant top mirror. Bragg reflectors like the ones utilized in

the main body of this thesis are relatively thick, ∼ 2.5 μm for a ten-period mirror.

As a result, dome microcavities were found to have poor mechanical resonances,
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exhibiting mechanical quality factors of ∼ 100 [129]. Also due to the large mass of

the mechanical element, the zero point motion is small: an undesirable property for

optomechanics [160]. However, the low optical mode volume of the dome microcavities

resulted in a high optomechanical coupling rate g0 ≈ 2π × 30 kHz (Unfortunately,

the nomenclature is identical to that of cavity quantum electrodynamics). Thus

augmenting the design to include a lighter, more mechanically compliant top mirror

could produce an excellent optomechanical sensing device.

Figure A.1: (a) Simulated reflectance of a 150 nm thick triangular two-dimensional
photonic crystal mirror under plane-wave monochromatic 780 nm illumination. The
unspecified region in the bottom-right of this plot represents parameters for which the
hole diameter is greater than the lattice periodicity, and thus could not be fabricated.
(b) Contours of constant phase upon reflection are shown; these contours tends to
follow lines of constant reflectance. To develop a focusing mirror the phase upon
reflection must be varied as a function of position, while maintaining high reflectance,
as described in [161].

The mirror design was originally based on the high contrast grating design de-

scribed in Ref. [162, 163] for infrared on-chip mirrors. These mirrors operate on the

principle of Fano-resonances characterized by the interaction of a continuum state

interacting with a discrete set of states. The impinging radiation field sets up a

standing wave mode within the planar periodic structure. Fine tuning the mirror

parameters allows the standing wave to destructively interfere with the transmitted

field, resulting in high reflectivity for normally incident light. As silicon is highly
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lossy in the visible, silicon nitride was used as the high index media, and the grating

design was replaced with a periodic array of holes as described in Ref. [164].

A triangular lattice of periodic holes was determined to provide the optimal mirror

properties, such as high-broadband reflectivity, and features sizes that are straight-

forward to fabricate. Simulations were performed using rigorous coupled-wave anal-

ysis (RCWA), using an open-source language: S4 [165]. Plane-wave monochromatic

illumination was assumed, impinging on an infinite periodic array at normal incidence

for all simulations performed. Figure A.1a shows the reflectivity of a 150 nm thick

silicon nitride photonic crystal mirror as a function of hole radius and periodicity for

780 nm illumination. The regions of high reflection follow smooth curves providing

several choices of parameters that would produce a highly reflective membrane. Uti-

lizing this fact, it has been shown that by spatially varying the phase upon reflection,

the reflected field may be focused to a point, mimicking a curved surface [161]. The

phase upon reflection was again determined using RCWA; lines of constant phase are

shown in Figure A.1b. Unfortunately the lines of constant phase follow the lines of

constant reflectivity, rendering focusing difficult while maintaining high reflectivity.

Figure A.2: Simulated reflectance as a function of wavelength for a 150nm thick
photonic crystal mirror. The mirror in this simulation was designed with a hole
radius of 256 nm and a hole periodicity of 742 nm.
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Finally, the previous simulations were performed using a fixed hole pattern. Re-

flection as a function of wavelength was investigated for a hole radius of 256nm and

a hole periodicity of 742 nm, shown in Figure A.2.

A.2 Photonic Crystal Fabry-Perot Cavity

The ultimate goal was to develop an on-chip Fabry-Perot cavity using the two di-

mensional photonic crystal mirror as the top reflector. Thus the entire structure was

simulated to examine the transmission properties as a function of wavelength. The

cavity was constructed from a Bragg reflector (similar to those used in the main por-

tion of the thesis), followed by an air gap, and capped off by the photonic crystal

mirror. Simulated transmission spectra for several structures with differing numbers

of Bragg layers is shown in Figure. A.3. Moreover, it appears as if the quality fac-

tor is limited by the reflectivity of the bottom Bragg reflector; however, fabrication

error will certainly also play a part, as the top photonic crystal will not be perfectly

periodic as it is in these simulations.

Figure A.3: (a) Simulated transmission spectrum for a Fabry-Perot cavity with an
air gap of 1.08 μm and a three-period Bragg reflector. (b) Transmission spectrum for
a Fabry-Perot cavity with an air gap of 1.472 μm and a ten period Bragg reflector.
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Furthermore, the electric field was simulated, showing a high field intensity located

within the photonic crystal mirror, and a standing wave within the Fabry-Perot cavity,

as shown in Figure A.4.

Figure A.4: (a) Dielectric constant distribution of the photonic crystal Fabry-Perot
cavity simulation. The photonic crystal mirror is located at z = 0 μm, followed by an
air gap, the Bragg reflector starts at z = 1.5 μm. The non-uniformity in the silicon
nitride mirror is a result of the inverse Fourier transform used in the output of the
dielectric constant. (b) On resonance electric field (arbitrary units) distribution for
the cavity in Figure A.3.

A.3 Fabrication

The fabrication started with the deposition of a Bragg reflector onto a fused silica

wafer, identical to the bottom mirror described in Chapter 3. Following this a ∼ 4 μm

sacrificial silicon layer was deposited, with thickness determined via the simulations

described above. Silicon nitride was then deposited using the Trion PECVD located

within the Nanofab facility, with a targeted thickness of 150 nm. Unfortunately the

silicon nitride layer was not uniform, likely due to charging effects caused by the fused

silica substrate, since the test layers deposited on pure silicon substrates exhibited

excellent uniformity. As a result, it was difficult to ensure the device layer thickness

was correct. The silicon nitride layers deposited in the current PEVCD system exhibit

high compressive stress. In order to achieve tensile stress, the wafer was annealed at
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500◦C for thirty minutes resulting in a tensile stress of ∼ 1 GPa. During the annealing

process, the Bragg reflector fractured, causing cracking throughout the device layers,

likely a result of differential thermal expansion between the thin film layers the silica

substrate. A second sample was prepared using a three period Bragg reflector, which

was able to survive the annealing process. In future attempts this issue may be

avoided by utilizing the new PECVD chamber that is being installed, at the nanofab

and which has the capability of modifying the film stress during the deposition.

Figure A.5: (a,b) Microscope images of photonic crystal cavities. The photonic crystal
in (b) broke and a portion fell resulting in white-light interference between the top
mirror and the bottom Bragg reflector. (c,d) SEM micrographs of the photonic crystal
cavities, it was determined the hole diameters were larger than designed as a result
of the reactive ion etch utilized.

The wafer was diced into 1.0 × 0.5 mm pieces, the photonic crystal was defined

using electron beam lithography, and a 130 second reactive ion etch was used to etch

the periodic array of holes into the silicon nitride. The silicon sacrificial layer was

removed using five, sixty second gaseous xenon difluoride etch steps, which eliminated
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the need for critical point drying, and also has improved selectivity to silicon over the

more standard potassium hydroxide wet etch. Several of the cavities are shown in

Figure A.5; several of the mirrors cracked, however the ones that did survive appeared

red under white light illumination, which is promising as they were designed to be

reflective in the red portion of the spectrum.

Finally, transmission scans were performed using the setup described in Chapter

3. A baseline scan was taken on a part of the chip that was not etched in any way,

shown in Figure A.6a. A scan through a cavity is shown in Figure A.6b. Note for

this scan the focus and laser power were not modified compared with the baseline

scan. Also, polarization had little effect on the transmission through the cavity. It

can be seen that the net transmission through the cavity is reduced relative to the

background scan, this may be a result of the mirror reflectance, however it may also

simply be an increase in scattering. It may be instructive to measure the cavities

using a broadband white light source to determine the spectrum over a wavelength

range greater than that of the tunable laser, however due to time constraints this was

left for future work.

Figure A.6: (a) Background transmission through a portion of the chip not etched. (b)
Transmission though one of the photonic crystal cavities, the net power transmitted
is decreased compared with the background transmission. This may be a result of
increased reflection from the mirror surface, or simply a result of increased scattering.
Unfortunately, no resonance behavior was observed.
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Appendix B

Substrate Fabry-Perot Resonance

Figure B.1: (a) Transmission spectra for a 200-μm cavity on the chip shown in Fig-
ure. 3.16a; a periodic modulation of the cavity transmission is seen along with the
Lorentzian resonance. (b) Transfer matrix simulation of this resonance showing a
similar behavior of periodic modulation along with the cavity Lorentzian.

The initial cavities produced for the electrical tuning experiments discussed in Sec-

tion 3.3.1 were fabricated on a doubly polished silicon wafer. As discussed in the main

text, these cavities were purposely made with lower reflectance mirrors to produce a

broad passband. Initial transmission spectra revealed a secondary modulation in the

transmission superimposed on the Lorentzian peak, as shown in Figure B.1a. Previ-

ous experiments using higher quality factor cavities observed a periodic flashing while

imaging transmission with a camera; however, the transmission spectra obtained did
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not produce this secondary modulation [63]. The modulation was determined to be a

result of a secondary Fabry-Perot mode within the silicon substrate. Transfer matrix

simulations were used to reproduce the experimental results, shown in Figure B.1b.

The behavior was not observed in previous cavities, likely since the line-width was

much narrower than the free spectral range of the secondary mode.
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Appendix C

Source Code

Master Equation simulation used in Section 4.1.1 using the parameters for a 100 μm
cavity.

%pylab inline
import subprocess
import prettyplotlib as ppl

#Initialize the time step dt.
dt = 1e-13
tau = arange(0,80e-9,dt)
#Generate the Gaussian trigger pulse.
Omega = 2*pi*1.12e9 * exp(-(tau-40e-9)**2/(2*(8e-9)**2))

#Atomic Polarization Decay Rate
gamma = 2*pi*3e6
#Atom-Cavity Coupling Rate
g = 2*pi*1.12e9
#Cavity Decay Rate
kappa = 2*pi*6.7e9
#Initializing the Lindblad operator matrix
Gam =matrix([[0,gamma/2,kappa],[gamma/2,gamma/2,gamma/2 + kappa],[kappa,gamma/2
+ kappa, 2*kappa]])

#Setting the initial condition of the system to be in the ground state —u,0¿
rholast = rho0
rhotot = zeros(((len(tau),3,3)), dtype=complex)
P0 = zeros(len(tau))
P1 = zeros(len(tau))
P2 = zeros(len(tau))
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#Loop that runs the time-evolution of the density matrix operator
for ii,jj in enumerate(tau):

Hi = -0.5*matrix([[0,Omega[ii],0],[Omega[ii],0,2*g],[0,2*g,0]])
H = Hi
Gammarho = multiply(Gam,rholast)
rhonew = rholast + (-1j*(H*rholast-rholast*H) - Gammarho)*dt
rhotot[ii][:][:] = rholast
rhocheck = rholast
P0[ii] = real(trace(rho0*rholast*rho0))
P1[ii] = real(trace(rho1*rholast*rho1))
P2[ii] = real(trace(rho2*rholast*rho2))
rholast = rhonew

#Calculating the emission rate, assuming 2% scattering loss
Emiss = 1.95*kappa*P2/(1e6)
Emissa = 1.95*kappa*P2

#Calculating the emission probability
Prob = trapz(Emissa,tau)

S4 Simulations used in Appendix A, for cavity transmission.

S = S4.NewSimulation()
S:SetLattice(0.742,0, 0.371,0.642591)
S:SetNumG(100)
S:AddMaterial(”SiN”, 4.0,0) – real and imag parts of dielectric constant
S:AddMaterial(”SiO2”, 2.207,0) – real and imag parts of dielectric constant
S:AddMaterial(”Ta2O5”, 4.5689,0) – real and imag parts of dielectric constant

S:AddMaterial(”Vacuum”, 1,0)
S:AddLayer(’AirAbove’, 0 , ’Vacuum’)
S:AddLayer(’Slab’, 0.150 , ’SiN’)
S:SetLayerPatternCircle(’Slab’, ’Vacuum’, 0.5565,0.3212954, 0.256)
S:AddLayer(’AirGap’, 1.4724, ’Vacuum’)
S:AddLayer(’OneHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’OneLow’, 0.128 , ’SiO2’)
S:AddLayer(’TwoHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’TwoLow’, 0.128 , ’SiO2’)
S:AddLayer(’ThreeHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’ThreeLow’, 0.128 , ’SiO2’)
S:AddLayer(’FourHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’FourLow’, 0.128 , ’SiO2’)
S:AddLayer(’FiveHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’FiveLow’, 0.128 , ’SiO2’)
S:AddLayer(’SixHigh’, 0.089 , ’Ta2O5’)
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S:AddLayer(’SixLow’, 0.128 , ’SiO2’)
S:AddLayer(’SevenHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’SevenLow’, 0.128 , ’SiO2’)
S:AddLayer(’EightHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’EightLow’, 0.128 , ’SiO2’)
S:AddLayer(’NineHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’NineLow’, 0.128 , ’SiO2’)
S:AddLayer(’TenHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’TenLow’, 0.128 , ’SiO2’)
S:AddLayer(’ElevenHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’Substrate’, 0 , ’SiO2’)
–S:AddLayerCopy(’AirBelow’, 0, ’AirAbove’)

S:SetExcitationPlanewave(
0,0, – incidence angles
1,0, – s-polarization amplitude and phase (in degrees)
0,0) – p-polarization amplitude and phase

–S:UsePolarizationDecomposition()

for lam=0.7795,0.7805,0.000005 do
freq = 1/lam
S:SetFrequency(freq)
forward,backward = S:GetPoyntingFlux(’AirAbove’, 0)
forward = S:GetPoyntingFlux(’Substrate’, 0)
print (lam .. ’�’ .. forward .. ’�’ .. backward)
io.stdout:flush()

end

S4 Simulations used in Appendix A, for cavity electric field distribution.

S = S4.NewSimulation()
S:SetLattice(0.742,0, 0.371,0.642591)
S:SetNumG(100)
S:AddMaterial(”SiN”, 4.0,0) – real and imag parts of dielectric constant
S:AddMaterial(”SiO2”, 2.207,0) – real and imag parts of dielectric constant
S:AddMaterial(”Ta2O5”, 4.5689,0) – real and imag parts of dielectric constant

S:AddMaterial(”Vacuum”, 1,0)
S:AddLayer(’AirAbove’, 0 , ’Vacuum’)
S:AddLayer(’Slab’, 0.150 , ’SiN’)
S:SetLayerPatternCircle(’Slab’, ’Vacuum’, 0.5565,0.3212954, 0.256)
S:AddLayer(’AirGap’, 1.4724, ’Vacuum’)
S:AddLayer(’OneHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’OneLow’, 0.128 , ’SiO2’)
S:AddLayer(’TwoHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’TwoLow’, 0.128 , ’SiO2’)
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S:AddLayer(’ThreeHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’ThreeLow’, 0.128 , ’SiO2’)
S:AddLayer(’FourHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’FourLow’, 0.128 , ’SiO2’)
S:AddLayer(’FiveHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’FiveLow’, 0.128 , ’SiO2’)
S:AddLayer(’SixHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’SixLow’, 0.128 , ’SiO2’)
S:AddLayer(’SevenHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’SevenLow’, 0.128 , ’SiO2’)
S:AddLayer(’EightHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’EightLow’, 0.128 , ’SiO2’)
S:AddLayer(’NineHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’NineLow’, 0.128 , ’SiO2’)
S:AddLayer(’TenHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’TenLow’, 0.128 , ’SiO2’)
S:AddLayer(’ElevenHigh’, 0.089 , ’Ta2O5’)
S:AddLayer(’Substrate’, 0 , ’SiO2’)
–S:AddLayerCopy(’AirBelow’, 0, ’AirAbove’)

S:SetExcitationPlanewave( 0,0, – incidence angles 1,0, – s-polarization amplitude and
phase (in degrees) 0,0) – p-polarization amplitude and phase
–S:UsePolarizationDecomposition()

lam = 0.780039
freq = 1/lam
S:SetFrequency(freq)

for x=-1.0,1.0,0.02 do
for y=-1.0,1.0,0.02 do
for z = 0.0,2.0,0.02 do
Exr, Eyr, Ezr, Exi, Eyi, Ezi = S:GetEField(x, y, z)
er,ei = S:GetEpsilon(x,y,z)
print (x .. ’\t’ .. y .. ’\t’ .. z .. ’\t’ .. Exr .. ’\t’ .. Exi .. ’\t’ .. Eyr .. ’\t’ .. Eyi
.. ’\t’ .. Ezr .. ’\t’ .. Ezi .. ’\t’ .. er .. ’\t’ .. ei)
io.stdout:flush()
end
end

end
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