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Abstract

In the field of sleep research, the quantitative analysis of electroencephalography

(EEG) data acquired during sleep offers invaluable insights. However, the presence of

artifacts in such data can severely distort analytical outcomes. Therefore, this study

aims to develop an innovative artifact detection and rejection tool to enhance the

analysis of sleep EEG data from overnight polysomnography (PSG) in patients with

sleep disorders.

While recent advancements have seen the trend of artifact removal using a hybrid

method, these techniques typically require pre-labeled data for training machine learn-

ing models, introducing a dependency on prior knowledge. Addressing this limitation,

our research introduces a novel unsupervised learning approach, utilizing hierarchical

clustering to identify artifactual components within wavelet-enhanced independent

component analysis (ICA)-separated data. We present a unique set of features for

clustering, including kurtosis, zero-crossing count, skewness, Hjorth parameters, and

Rényi entropy, tailored to discern artifacts in EEG recordings.

Our methodology affords the flexibility of fully automated artifact removal or

semi-automated processes involving visual inspection of hierarchical dendrograms.

Comparative analyses demonstrate that this new method not only refines EEG signal

quality but also surpasses traditional manual cleaning techniques in performance.

The findings underscore the potential of hierarchical clustering in the unsupervised

learning landscape for artifact detection, heralding a significant step forward in the

preprocessing of EEG data for sleep studies.
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Chapter 1

Introduction

1.1 Background Overview

Sleep is a fundamental biological process that is essential for all living organisms,

constituting approximately one-third of human life. Inadequate or poor-quality sleep

has been linked to dysfunction in numerous bodily systems [1]. As the importance

of understanding sleep patterns has grown in recent decades, it is recommended to

employ reliable subjective and objective measures for evaluation. Laboratory-based

polysomnography (PSG) is considered the benchmark for objectively measuring sleep

[2].

1.2 Polysomnography and Electroencephalography

Polysomnography (PSG) is a comprehensive procedure used to systematically collect

physiological data during sleep. It involves the simultaneous monitoring of various

parameters to assess and diagnose underlying causes of sleep disturbances. A typ-

ical polysomnogram includes the recording of electrocardiography (ECG) for moni-

toring heart activity, electromyography (EMG) for studying muscular contractions,

electroencephalography (EEG) for observing brain activity, and electro-optigraphy

(EOG) for assessing eye dipole fields. Additionally, pulse oximetry, airflow and res-

piratory effort are monitored to evaluate sleep-related breathing disorders, such as

obstructive sleep apnea (OSA), central sleep apnea, and sleep-related hypoventila-
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tion/hypoxia. PSG serves as the gold standard for diagnosing these conditions. Fur-

thermore, it can be employed to assess other sleep disorders, including nocturnal

seizures, narcolepsy, periodic limb movement disorder, and rapid eye movement sleep

behavior disorder [3].

EEG is widely regarded as one of the most powerful techniques for studying the

electrophysiological dynamics of the brain in a noninvasive manner [4]. It refers to

the electrical activity of a fluctuating nature that is detected from the surface of the

scalp through the use of metal electrodes and conductive substances. EEG primarily

detects the electrical currents generated by the activation of brain cells, known as

neurons. These currents arise during the synaptic excitations occurring in the den-

drites of numerous pyramidal neurons located in the cerebral cortex. The differences

in electrical potentials observed in EEG recordings are a result of the combined post-

synaptic graded potentials originating from pyramidal cells. This creates electrical

dipoles between the soma and the apical dendrites.

The electrical currents within the brain predominantly consist of ions such as Na+,

K+, Ca++, and Cl-, which are transported across the neuronal membranes through

specific channels. The movement of these ions is governed by the membrane potential,

dictating the direction of ion flow [5].

EEG is recorded by placing metal electrodes on the scalp with a 10-20 electrode

placement system, seen in Figure 1.1. This system establishes a standardized method

for physically positioning and designating electrodes on the scalp. The head is di-

vided into proportional distances from prominent landmarks on the skull, such as

the nasion, preauricular points, and inion, in order to ensure comprehensive coverage

of all brain regions. The 10-20 system utilizes proportional distances, expressed as

percentages, between the ears and nose to determine the electrode placement points.

Each electrode placement is labeled based on its adjacent brain area: F (frontal), C

(central), T (temporal), P (posterior), and O (occipital). These labels are accompa-

nied by odd numbers on the left side of the head and even numbers on the right side.
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Figure 1.1: Labels for 10-20 electrode placement systems [5]
.

The determination of left and right sides follows the convention from the subject’s

perspective.

EEG captures a wide range of frequency components, but for clinical and physi-

ological purposes, the focus lies between 0.3 and 30 Hz. This range can be roughly

classified into various frequency bands, as outlined by Kellaway [6]:

Delta (<4 Hz): Delta rhythms primarily occur during deep sleep stages in healthy

adults. If present outside of sleep, they may indicate pathological conditions.

Theta (4–8 Hz): Theta frequencies are observed in normal infants, children, and

during drowsiness and sleep in adults. In awake adults, only a small amount of theta

rhythms are typically present. High theta activity in awake adults suggests abnormal
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and pathological conditions.

Alpha (8–14 Hz): Alpha rhythms are prominent in relaxed and mentally inactive

states of wakefulness in healthy adults. They are most noticeable in the occipital area

and typically have an amplitude of less than 50 V. Alpha rhythms are suppressed when

the eyes are open (visual attention) or during mental exertion such as thinking.

Beta (14–30 Hz): Beta activity is predominantly observed in the frontocentral

region and has lower amplitude compared to alpha rhythms. It is enhanced during

states of anticipation and tension.

Gamma (>30 Hz): Gamma rhythms have a high frequency band and are usually

not of clinical or physiological interest. Therefore, they are often filtered out in EEG

recordings.

EEG provides valuable insights into the functional state of the brain and the mental

condition of an individual. By analyzing the EEG, we can extract vital information

that helps monitor a patient’s health, diagnose various brain conditions, and identify

abnormalities in brain activity. The EEG serves as a powerful tool in understanding

brain function, allowing healthcare professionals to assess cognitive processes, detect

seizures, evaluate sleep patterns, and investigate various neurological disorders. Its

non-invasive nature and ability to capture real-time brain activity make EEG a valu-

able tool in both clinical and research settings for understanding and monitoring brain

health [7] [8].

1.3 Artifacts

EEG, with its high temporal resolution, allows for detailed analysis of brain activity

over time. However, this advantage also brings the challenge of susceptibility to

unwanted noise and the presence of artifacts in the EEG signals. These artifacts can

significantly impact the quality and reliability of the recorded data [9]. Consequently,

they have the potential to introduce substantial errors in measurement and diagnosis,

diminishing the clinical usefulness of EEG signals.
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Figure 1.2: Signal of recorded EEG, pure EEG and three types of artifact, EOG,
ECG and EMG [11].

Artifacts can be categorized into two main types: physiological artifacts and non-

physiological artifacts. Physiological artifacts originate from the patient’s own phys-

iological processes, while non-physiological artifacts arise from the patient’s external

environment such as faulty electrodes, line noise, and high electrode impedance [10].

These artifacts can be mitigated through the use of more precise recording systems

and strict recording procedures. By employing advanced equipment and following

rigorous protocols during data acquisition, the occurrence of these artifacts can be

minimized. On the other hand, removing physiological artifacts from EEG signals is

a more complex task. These artifacts originate from the patient’s own physiological

processes and necessitate specialized techniques and algorithms for accurate removal.

There are three major physiological artifacts that have effects on EEG data.

1.3.1 Ocular Artifacts

Ocular artifacts pose a significant challenge in EEG recordings as they can introduce

notable disturbances. These artifacts are particularly prominent during specific sleep

stages, such as awakeness and rapid eye movement (REM) sleep. Awakeness is char-
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acterized by increased eye movements, including voluntary and reflexive eye blinks,

which can propagate across the scalp and manifest as EEG activity. Similarly, during

REM sleep, which is associated with vivid dreaming and rapid eye movements, EOG

artifacts can be particularly prominent in the EEG signals. These stages of sleep

pose additional challenges for accurate interpretation and analysis of EEG data, as

the presence of EOG artifacts can interfere with the underlying brain activity [12].

Ocular artifacts in EEG recordings result from changes in the orientation of the

retina and cornea dipole during eye movements, while blink artifacts arise from vari-

ations in ocular conductance caused by the contact between the cornea and eyelid.

Moreover, due to the volume conduction effect, both ocular artifacts and EEG activ-

ity propagate to the surface of the head and are recorded by the electrodes. EOG

recordings can capture these ocular signals, which typically exhibit amplitudes several

times greater than EEG signals and share similar frequency characteristics [13][14].

It is important to recognize that the contamination between EEG and EOG is

bidirectional [11]. This means that not only can EEG data be contaminated by

EOG artifacts, but EOG signals themselves can also be affected by EEG activity.

As a result, when attempting to remove EOG artifacts from the EEG recordings,

bidirectional interference can occur, leading to potential errors in the artifact removal

process.

1.3.2 Muscle Artifacts

Contamination of EEG data by muscle activity poses a significant challenge due

to the involvement of various muscle groups [15]. These artifacts can arise from

muscle contractions and stretches occurring in close proximity to the signal recording

sites. Common activities such as talking, sniffing, swallowing, and other facial or

body movements can contribute to muscle-related artifacts in EEG recordings. The

amplitude and waveform of these artifacts are influenced by the degree of muscle

contraction and stretch [16].
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Compared to artifacts from eye movements, obtaining meaningful activity solely

from a single-channel measurement in EMG artifacts is extremely difficult [17]. The

complex nature of muscle activity makes it particularly challenging to effectively

eliminate these artifacts from the EEG signals. The presence of EMG artifacts can

obscure the underlying neural activity and introduce significant distortions, hindering

accurate interpretation and analysis of the EEG data.

1.3.3 Cardiac Artifacts

Cardiac artifacts present a challenge in EEG recordings when the electrodes are placed

in close proximity to a blood vessel, leading to artifacts caused by the movement of

expansion and contraction associated with the heartbeat. These artifacts, known as

pulse artifacts, can manifest in the EEG signals with a waveform similar to that of the

cardiac activity. Due to the similarity in waveform, it becomes difficult to effectively

remove these artifacts from the EEG recordings [15].

On the other hand, electrocardiogram (ECG) represents a distinct cardiac activity.

Unlike pulse artifacts, ECG signals exhibit a characteristic regular pattern, separate

from cerebral activity. This characteristic pattern makes it relatively easier to identify

and remove ECG artifacts by utilizing a reference waveform [11].

1.4 Overview

Addressing noise and artifacts in EEG signals is a critical aspect of utilizing this

technique in medical applications [18]. By employing appropriate artifact removal

techniques, researchers and clinicians can enhance the reliability and clinical utility

of EEG data, enabling more accurate analysis and interpretation of brain activity.

Researchers have been investigating EEG artifact removal methods for nearly 50

years, yet to this day, a consensus has not been reached regarding the optimal al-

gorithm for specific applications. Consequently, researchers must conduct compre-

hensive studies to examine the advantages and disadvantages of each algorithm from
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various perspectives. Factors such as automatic versus manual methods, online ver-

sus offline methods, and suitability for specific applications need to be thoroughly

evaluated in order to determine the most suitable choice [19].

While the majority of proposed methodologies have proven effective in detecting

and removing artifacts from short-term EEG data obtained from healthy individuals

in an awake state, applying these methods to full-night EEG presents challenges.

The presence of artifacts, stemming from various common sources such as repetitive

respiratory events disrupting sleep and gross body movements, makes it difficult. Such

artifacts in the EEG signal often necessitate manual over-read for identification and

exclusion of contaminated data. This task is not only prohibitively time-consuming

and laborious but also challenging to perform consistently [20].

Only a limited number of algorithms have been proposed specifically targeting

the removal of various artifacts from full overnight multichannel sleep EEG data.

Notably, D’Rozario et al. in 2015 [20] introduced and validated a method tailored for

patients with sleep disorders. Their approach involved experienced sleep technologists

manually reviewing and identifying EEG artifacts, which served as training data for

the algorithm.

In contrast, our study takes a different approach by utilizing full overnight multi-

channel sleep EEG data from a sleep disorder patient without prior artifact labeling.

The objective of this thesis is to introduce a method capable of automatically and

semi-automatically detecting and removing artifacts from such data. This method

leverages a combination of Independent Component Analysis (ICA) and Discrete

Wavelet Transform (DWT) technologies, augmented by hierarchical clustering. The

innovation lies in providing users with the flexibility to choose between automatic

and semi-automatic modes for artifact detection, thereby enhancing versatility in

EEG data analysis.

The rest of the thesis is organized as follows. Chapter 2 offers a comprehensive

review of prior research on artifact removal methods employing ICA, wavelet trans-
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form (WT), or hybrid approaches of these two techniques. And it reviews the artifact

removal methods specifically designed for sleep EEG data. Chapter 3 presents the

background information and preprocessing steps applied to the data utilized in this

study. Chapter 4 outlines the artifact detection and removal process of the proposed

method, beginning with an overview of the techniques discussed in Chapter 2. Ad-

ditionally, it covers the extraction of features for clustering purposes. Chapter 5

presents the results and analysis of the performance evaluation conducted. Chapter

6 serves as the concluding chapter, providing a summary and comparison of the pro-

posed methods against manual cleaning. Furthermore, it delves into potential areas

for improvement and future research directions.
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Chapter 2

Previous Works

2.1 Single Artifact Removal Techniques

The intricate nature of EEG artifacts overlaps with important signals across spec-

tral, temporal, and sometimes spatial domains. This complexity challenges simple

preprocessing techniques. Basic filtering or amplitude thresholding often leads to in-

sufficient artifact removal and signal distortion. Consequently, numerous advanced

methods and algorithms have been developed to more effectively detect and remove

these artifacts from EEG signals [21]. Independent component analysis (ICA) and

wavelet transform (WT) are considered as ones of most used single artifacts removal

approaches [11][22].

2.1.1 Independent component analysis

ICA is primarily used to separate underlying sources in biomedical signal measure-

ments. Vigaro et al. [23] demonstrated its effectiveness in separating linear mixtures

and extracting ocular information from EOG signals. Jung et al. [24] effectively used

extended ICA for removing eye activity artifacts from EEG, showing results compa-

rable to regression algorithms. However these studies involved manual process which

is one major limitation of ICA-based artifact detection and removal methods. They

require manual intervention, as it is not inherently automatic. Typically, indepen-

dent components (ICs) with visually detected artifacts need manual rejection after
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decomposition. However, automation is achievable by labeling ICs through features

that quantify the likelihood of being artifactual. This can be achieved by integrating

ICA with complementary methods such as WT [21].

ICA is effective in reducing high-level additive noise and eliminating common com-

ponent noises. Many methods involving ICA to detect and remove ocular artifacts

have been explored in studies by Joyce et al. [25], Flexer et al. [26], Li et al. [27],

Romero et al. [28], and Zhou and Gotman [29]. However, it falls short in effectively

removing certain high-frequency noisy components when used in isolation [30].

2.1.2 Wavelet transform

Wavelet Transform (WT) is favored for processing non-stationary biomedical signals,

including single-channel EEG, due to its time and frequency domain localization.

WT has the capability to automatically remove artifacts by applying thresholding to

its output. Studies by Zikov et al. [31], Ramanan et al. [32], Kumar et al. [33],

and Khatun et al. [34] have shown the effectiveness of Stationary Wavelet Trans-

form (SWT) with thresholding in automatic EOG artifact removal. Asaduzzaman et

al. [35] also utilized Discrete Wavelet Transform (DWT) and thresholding for auto-

mated EOG and EMG artifact removal. Despite WT’s effectiveness, its limitation in

identifying overlapping artifacts has led to combined approaches with ICA [11].

2.2 Hybrid Method

Single-stage artifact removal methods often have limitations in effectively removing all

types of artifacts from EEG data. These limitations can include incomplete artifact

removal, requirement of reference channels, or the inability to handle certain types

of artifacts effectively. As a result, researchers have proposed hybrid methods which

combine two or more techniques or algorithms to overcome these limitations and

enhance artifact removal performance. The ICA and WT hybrid method is regarded

as the most popular hybrid method [22].
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2.2.1 Wavelet enhanced Independent component analysis

Castellanos and Makarov [36] innovated in EEG artifact suppression with wavelet en-

hanced ICA (wICA), combining ICA and wavelet thresholding. Unlike traditional de-

noising, this method uniquely applies thresholding as a step towards refining demixed

independent components. It has been proven effective on both actual and semi-

simulated EEG data. Ghandeharion and Erfanian [37] developed a WT-based method

to automatically detect and remove EOG artifacts in EEG data. This method assesses

ICs by measuring correlation, kurtosis, and projection strength, and it stands out for

its high accuracy, sensitivity, and specificity in ocular artifact detection. Notably,

this approach uniquely automates the identification of artifacts without needing pre-

calibration or predefined thresholds. Vázquez et al. [38] developed a method where

they extracted various characteristics from wavelet coefficients on ICs, including sta-

tistical, frequency, spatial, and template correlation traits. This approach was used to

train a supervised classification model, enabling automatic identification and removal

of ocular, high-frequency muscle, and ECG artifacts from EEG data. Al-Qazzaz et al.

[39] introduced a novel four-stage approach for EEG signal enhancement, particularly

in post-stroke dementia studies. This method combines automatic independent com-

ponent analysis (AICA) with WT. It starts by estimating independent components,

then identifies artifacts using metrics like skewness, kurtosis, and sample entropy.

Following this, it denoises artifacts using Discrete Wavelet Transform (DWT) and

reconstructs clean EEG signals. In 2022, Maddirala and Veluvolu [40] introduced

a comprehensive framework for eye blink artifact removal in EEG data, integrat-

ing ICA with continuous wavelet transform (CWT), k-means clustering, and singular

spectrum analysis (SSA). This framework uses CWT and k-means to pinpoint the eye-

blink artifact region, followed by an SVM-based classifier that automatically identifies

the artifact-containing ICs. Wavelet-enhanced ICA has demonstrated effectiveness in

detecting and removing various types of artifacts. Simultaneously, WT enables the
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complete recovery of neural components from EEG channels corrupted by artifacts

outside of the contaminated frequency range. Therefore, the enhancement provided

by wavelet-enhanced ICA contributes to preserving cerebral activity.

2.3 Artifact Removal for Sleep EEG Data

The methods discussed above primarily utilize EEG data obtained from healthy adults

in awake states. However, there are specific approaches that have been proposed for

the analysis of sleep EEG data. These methods are specifically tailored to handle the

unique characteristics and challenges associated with sleep recordings. By considering

the specific dynamics and patterns present during sleep, these techniques aim to

enhance the accuracy and reliability of EEG analysis in the context of sleep studies.

Schetinin and Schult [41] introduced a novel method that combines a polynomial

neural network and decision tree for detecting artifacts in sleep EEG recordings of

newborns. Betta et al. [42] and Dursun et al. [43] proposed techniques specifically

designed for ocular artifact detection and removal in automated sleep analysis. Betta

et al. [42] utilized WT and adaptive filtering, while Dursun et al. [43] employed

correlation and wavelet-based rules to separate EOG artifacts. In 2022, Ranjan et

al. [44] developed a method for automatic detection and removal of cardiac artifacts

from single-channel EEG data. This method incorporated empirical wavelet trans-

forms (EWTs), adaptive threshold-based nonlinear Teager-Kaiser energy operator

(TEO), customized morphological filters, and modified ensemble average subtraction

(MEAS).

Additionally, machine learning algorithms have been utilized for artifact detection.

Saifutdinova et al. [45] employed a random forest classifier on features extracted

from multi-channel sleep EEG data to detect various types of artifacts. In 2019, they

proposed an unsupervised method based on Riemannian Geometry, which exhibited

superior performance on multi-channel EEG data compared to other online automatic

EEG artifact removal tools [45].
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Chapter 3

Data

3.1 The Dataset

In the context of a comprehensive dataset encompassing 75 pediatric patients, in-

cluding 58 males and 17 females, all-night sleep polysomnography (PSG) recordings

were conducted. Patient ages ranged from 2-18 years with a mean of 8.81 years and

standard deviation of 4.52 years. Each recording was accompanied by a clinician

event file, providing detailed annotations for apnea-hypopnea, arousals, and sleep

state labels for every epoch. The PSG recordings were integral to a clinical study

(Pro00057638) approved by the University of Alberta, focusing on potential obstruc-

tive sleep apnea in pediatric patients. Exclusively EEG channels were employed for

PSG recordings in this thesis. The reference electrodes, identified in the Table 3.1,

are denoted interchangeably as M1 and M2, given their placement on the mastoid.

PSG channels are designated by the combination of the recording site and reference

electrodes. For instance, F4M1 represents the PSG channel capturing the electrical

potential difference between electrodes F4 and M1.

The specific patient dataset utilized in this work pertains to one patient, labeled as

CF050. This patient was selected from the larger cohort of 74 pediatric patients. The

EEG signals were recorded at a sampling rate of 512 samples per second. These signals

were segmented into a sequence of epochs, each lasting 30 seconds. CF050 contains

948 epochs, 15,360 observation records in each epoch. The 30-second segmentation
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Channel Name Placement

F4/F3 Right/Left Frontal

C4/C3 Right/Left Central

T6/T5 Right/Left Temporal

O2/O1 Right/Left Occipital

Table 3.1: EEG electrodes names and replacement.

aligned with the binary classification of sleep and awake states, simplifying the cat-

egorization into two distinct states. Sleep stages were labeled by a sleep technician,

designating each epoch as either part of the sleep state or indicative of wakefulness.

The proportion of sleep states in the CF050 dataset is shown in Table 3.2.

States Asleep Awake

# Epochs 695 253

% Epochs 73.312 26.688

Table 3.2: Proportion of sleep states of CF050 patient.

3.2 Data Pre-processing

In the CF050 EEG dataset, PSG recording captured the entire session from the initial

calibration of the equipment to its deactivation at night’s end, covering a duration

of 7.9 hours. This period included instances of muscle movement during sleep. To

enhance signal quality and minimize interference, a 4th order Butterworth band-pass

filter by eegfilter function in eegkit library in R was employed for eight EEG channels

[46][47]. The filter, with a cutoff frequency range of 0.3 to 80 Hz, was chosen for

its ability to isolate relevant brainwave frequencies and eliminate artifacts, including

equipment noise and muscle movement, while ensuring minimal signal distortion.

Then the pre-filtered EEG data was segmented into 30 second epochs for further

analysis.
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Chapter 4

Methodology

Figure 4.1 presents a block diagram outlining the process of artifact removal from

EEG data using a wavelet enhanced ICA approach, starting with a Butterworth

band-pass filtered EEG divided into 30-second epochs [47]. Each epoch of EEG data

is first separated into eight independent components (ICs) via fastICA function in

fastICA library in R [48]. Subsequently, each IC is further decosmposed using DWT

to the fourth level with ’db4’ as the mother wavelet by dwt function in waveslim

library in R [49].

Wavelet coefficients (WCs) across all ICs and epochs that have the same frequency

band are compiled together. Features such as kurtosis, zero-crossing count, skewness,

activity, mobility, complexity and Renyi’s entropy are extracted from each indepen-

dent wavelet coefficients. Euclidean distance of features between epochs are calculated

for hierarchical clustering with average-linkage using hclust function in R [50].

The method offers flexibility in artifact detection, enabling both automatic and

semi-automatic identification. In automatic mode, the method designates the smaller

cluster in the initial division as an artifact. For semi-automatic detection, the user

can determine which cluster to label as an artifact by interpreting the dendrogram’s

output. TheWCs marked as artifact are removed in each ICs and each epoch. Cleaned

eight channels EEG data are reconstructed by reversing DWT and ICA processes.
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Figure 4.1: Block diagram of the proposed method of wavelet enhanced ICA technique
for artifact removal from EEG data.

4.1 Independent Component Analysis

Since EEG measures the electrical activity generated by the brain through electrodes

placed on the scalp, it often contains a mixture of signals originating from various

sources within the brain. Independent Component Analysis (ICA) is a statistical

signal processing technique that is commonly used to decompose the observed EEG

signals into a set of statistically independent components, which correspond to differ-

ent underlying brain processes or sources. This separation is achieved by assuming

that the observed EEG signals are linear combinations of these independent sources.

ICA could be applied to successfully separate and analyze the underlying sources

in the observed data based on several assumptions. It assumes that the observed EEG

signals are a linear mixture of independent components and the mixing process is spa-

tially stable, meaning that the mixing coefficients relating the sources to the recorded

EEG signals remain constant over time. It also assumes that the independent com-

ponents are statistically independent and the independent sources have non-Gaussian

probability distributions, so that it allows ICA to exploit the non-Gaussianity of the
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sources to separate them. In addition, ICA assumes that the number of independent

sources contributing to the observed EEG signals is no greater than the number of

recorded electrodes [36].

The observed signals are represented by the random vector X = (x1, ...,xm)
T

while the source components by the random vector S = (s1, ..., sm)
T . xn and sn are

expressed as

xn = [xn(1) xn(2) ... xn(i)]
T , for n = 1, 2, . . . , m

sn = [sn(1) sn(2) ... sn(i)]
T , for n = 1, 2, . . . , m

where xn(i), sn(i) denote an observed signal and source component at a discrete time

i, correspondingly. The relationship between the observed signal and the source

component has the following expression:

X = AS

where A is the unknown mixing coefficients matrix which is to be estimated by ICA

algorithms. The source components S could be revealed with the un-mixing matrix

W = A−1 by the equation:

S = XW

ICA relies on the assumption that the independent components have a non-Gaussian

distribution, allowing for their statistical independence to be exploited. Several al-

gorithms, such as Infomax, FastICA and JointICA, have been developed to estimate

the mixing matrix A and the independent components S based on this assumption.

4.1.1 FastICA

The rows of un-mixing matrix W is denoted by wT
i , i = 1, ..., n. The FastICA

algorithm is to maximize the non-Gaussianity of the estimated components to achieve
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separation. Non-Gaussianity is quantified with the approximation of negentropy JG

with expression:

JG =
n∑︂

i=1

E[G(wT
i Z)]

Where G is a non-quadratic function with assumptions of even and symmetric and

log cosh is used as the non-quadratic function in this thesis. The symbol E represents

the mean value over the whitened matrix Z. FastICA follows several steps to find the

local maxima of the cost function:

1. Preprocessing:

(a) Centering: Center the observed signal X by subtracting the mean so that

X could be assumed to have the zero mean. The centering is expressed as:

xn = xn − E[xn], for n = 1, 2, . . . , m

where E is the mean value.

(b) Whitening: Linear transform the centered observed signal into uncorre-

lated variables with unit variances. Whitening helps to simplify the es-

timation process. The observed signal X is transformed linearly and the

whitened matrix Z is obtained, which

E[ZZT ] = I

Eigenvalue decomposition of a matrix is used to decompose the matrix

X, E[XXT ] = EDET , where E is the eigenvector matrix and D denotes

the diagonal matrix of eigenvalues. The observed signal matrix can be

whitened by

X = D−1/2ETX

2. Initialization: Initialize a random vector wi as the initial estimate of the mixing

matrix.
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3. Iterative Update:

(a)

w∗
i = E[Zg(wT

i Z)
T ]− E[g′(wT

i Z)]wi

where g is the derivative of the nonlinear function G, Z denotes the whitened

observed signal.

(b)

wi = wi −
i−1∑︂
j=1

(wT
i wj)wj

(c)

w =
w∗

i

∥w∗
i ∥

(d) Repeat step a to c if not converged, otherwise back to step 2 with i = i+1

until all independent components are extracted.

4.2 Wavelet Transform

Wavelet transform is a mathematical technique used for analyzing signals. It de-

composes a given signal into a set of wavelets, which are small wave-like functions.

Unlike other transforms such as the Fourier transform, which uses sinusoidal basis

functions, wavelet transform uses wavelets that are typically localized in both time

and frequency [51].

The wavelet transform allows you to examine different frequency components of

a signal at different resolutions. It provides a time-frequency representation of the

signal, capturing both time and frequency information simultaneously. This makes

it particularly useful for analyzing signals with non-stationary characteristics, where

the properties change over time and the EEG signal is considered non-stationary [52].

Wavelet transform is usually applied in two ways, continuous wavelet transform

(CWT) and discrete wavelet transform (DWT).
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4.2.1 Continuous Wavelet Transform

The process of wavelet transform involves convolving the signal with a set of wavelet

functions, known as the mother wavelet, at different scales and positions. The re-

sulting coefficients represent the strength of the correlation between the wavelet and

the signal at different time points and scales. By analyzing these coefficients, the

presence of specific frequencies in the signal and their temporal localization could be

identified [53]. The continuous wavelet transform can be defined by

CWT{x(t); a, b}= 1√︁
|a|

∫︂ ∞

−∞
f(t)ψ(

t− b

a
)dt

Where f is the signal, ψ is known as the basic wavelet, a is the scaling parameter

and b is position parameter. Time t and the parameters a, b ∈ R are real continuous

variables. |a|−1/2 is used to normalize the energy.

The CWT offers high resolution in time for high-frequency components and high

resolution in frequency for low-frequency components. However, it requires continuous

sampling of the signal, making it computationally intensive for large datasets.

4.2.2 Discrete Wavelet Transform

The discrete wavelet transform is a variation of the wavelet transform that operates

on discrete-time signals. It decomposes a signal into a series of discrete wavelets

at different scales. The DWT provides a discrete-time representation of a signal’s

frequency content and is particularly suited for digital signal processing applications.

The DWT uses a set of discrete wavelet functions, called the wavelet basis or filter

banks. These wavelets are scaled and translated to analyze the signal at different

scales and positions. In this scenario, the parameters a and b are frequently derived

from powers of two, known as dyadic scales and translations.

a = 2j, b = k2j

j is for level, k is for location j, k ∈ Z
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Figure 4.2: Third level wavelet decomposition of an EEG signal [55].

Mallet [54] developed a series of low-pass (LP) and high-pass (HP) filters ap-

plied to the signal, separating it into approximation coefficients which represents the

low-frequency components and detail coefficients which represents the high-frequency

components at each level of decomposition.

According to Figure 4.2, in the initial step of the DWT, the signal undergoes

simultaneous filtering using a LP and HP filter, and the signals are down-sampled

with the factor of 2. The resulting outputs from the LP and HP filters are referred to

as the approximation (A1) and detail (D1) coefficients of the first level, respectively.

These output signals have half the frequency bandwidth of the original signal and can

be downsampled by a factor of two, following the Nyquist rule. The same process is

repeated for the first level approximation and detail coefficients, generating the second

level coefficients. This decomposition procedure doubles the frequency resolution

through filtering and halves the time resolution through downsampling at each step.

By recursively applying the DWT on the approximation coefficients, the signal can

be decomposed into multiple levels or scales. This multilevel decomposition allows

for a hierarchical representation of the signal’s frequency content. The DWT also

offers efficient implementation and is well-suited for analyzing discrete-time signals,

such as digital audio or image data.
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Daubechies wavelets

The Daubechies’ family of wavelets [56] is widely recognized as one of the most fre-

quently employed sets of orthogonal wavelets that satisfy the necessary admissibility

conditions. This property enables the reconstruction of the original signal from its

wavelet coefficients. Figure 4.3 provides illustrations of wavelet and scaling functions

for the Daubechies’ family of orthogonal wavelets. The research on bio-signal classi-

fication using wavelet techniques has predominantly focused on the utilization of the

Daubechies family of wavelets, specifically of order 2 or 4 [57].

4.3 Feature Extraction

4.3.1 Kurtosis

Kurtosis is a commonly used measure for quantifying the non-Gaussianity of a dis-

tribution. It serves as a classical method to assess the departure from Gaussianity.

When data is preprocessed to have a unit variance, the kurtosis corresponds to the

fourth moment of the data.

The kurtosis of an independent wavelet coefficient x with the assumption of zero

mean is denoted by kurt(x) with the expression:

kurt(x) = E[x4]− 3(E[x2])2

4.3.2 Zero-Crossing Count

Zero-Crossing Count is a time domain feature that quantifies how frequently the

independent wavelet coefficient crosses the zero axis [58]. The expression of zero

crossing count is as below

ZC(i) =
N−1∑︂
n=0

|sign[xi(n)]− sign[xi(n− 1)]|

where sign[xi(n)] is defined as sign[xi(n)] =

{︄
1, if xi(n) > 0

−1, if xi(n) < 0
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Figure 4.3: Daubechies wavelet and scaling functions of different orders [51].
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4.3.3 Skewness

Skewness measures the asymmetry in the distribution of the independent wavelet

coefficient amplitudes.

Skewness =
1

N

N∑︂
i=1

(︃
xi − µ

σ

)︃3

where N is the number of data points in each epoch, xi are the individual data points,

µ and σ are the mean and standard deviation of each epoch of each channel.

4.3.4 Hjorth Features

Hjorth parameters are statistical descriptors in the time domain used to character-

ize the independent wavelet coefficient, encompassing three distinct types: Activity,

which measures signal variance; Mobility, indicative of the signal’s mean frequency;

and Complexity, reflecting the signal’s frequency variation [59].

Activity

Activity indicates the variance of the EEG data which is a statistical measure used

to quantify the amount of variation or dispersion. It is defined as the average of the

squared deviations of each data point from the corresponding mean of the channel

[60].

The Activity of EEG data could be expressed as

σ =
1

N

N∑︂
i=1

(xi − µ)2

where N is the number of data points in each epoch, xi are the individual data points,

µ is the mean of each epoch of each channel.

Mobility

Mobility represents the mean frequency of the EEG data. It is calculated based on

the variance and the variance of the first derivative of the data. It is calculated with
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expression

Mobility(t) =

⌜⃓⃓⎷var
(︂

dx(t)
dt

)︂
var(x(t))

where var(x(t)) is the variance of the EEG data, var
(︂

dx(t)
dt

)︂
is the variance of the first

derivative of the data.

Complexity

Complexity is a measure that compares the signal’s similarity to a pure sine wave.

A signal with complexity closer to 1 is more sinusoidal [60]. It is expressed based on

the mobility of the EEG data and the first derivative of the data with expression

Complexity(t) =
Mobility

(︂
dx(t)
dt

)︂
Mobility(x(t))

4.3.5 Renyi’s Entropy

Entropy, in the context of EEG signals, serves as a statistical descriptor quantifying

the unpredictability or variability within the signal. It assesses the randomness inher-

ent in the EEG data, reflecting the degree of disorder and the distribution of different

frequency components in the signal’s time series. It is defined mathematically as

Entropy = −
n∑︂

i=1

p(xi) log p(xi)

where p(xi) is the probability of the i-th outcome of the random variable, n is the

total number of possible events.

Renyi’s entropy is a generalization of the entropy and it represents a whole family

of entropy measures. It is calculated as

Renyi’s Entropy =
1

1− α
log

(︄
n∑︂

i=1

p(xi)
α

)︄

where p(xi) and n have the same meanings as entropy and α is the order of Renyi’s

entropy. In this study, α was set as 2 and the histogram with n=500 possible events

was used to estimate the probability density of the wavelet coefficients.
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4.4 Hierarchical Clustering

In EEG artifact detection, an unsupervised learning approach like hierarchical clus-

tering is valuable due to the lack of labeled data indicating whether an epoch is an

artifact. However, the other unsupervised learning algorithms such as K-means and

fuzzy C-means require the number of clusters as a priori. Hierarchical clustering is

chosen for its ability to reveal the overall structure and relationships among clusters.

It generates a hierarchical tree, providing a nested set of partitions visualized through

a dendrogram. This dendrogram illustrates the strength of inter-electrode similari-

ties, offering insights into the EEG data structure without predefined labels, making

it an effective tool for identifying artifacts in EEG signals.

Hierarchical clustering in this study adopts an agglomerative approach, which

groups smaller clusters into larger ones, as opposed to the divisive method that splits

larger clusters into smaller ones. The work follows the methodology used by Mert

and Akan [61] and Mammone [62]. Among the various hierarchical methods, single-

linkage, complete-linkage, average-linkage, and Ward’s method, average-linkage was

chosen after testing for its superior results in this context. This method effectively

splits clusters with artifact and without in EEG data by progressively merging clusters

based on average distances.

Average linkage is the method where the distance between two clusters is defined

as the average distance between all pairs of objects, where one member of the pair is

from each cluster. It is represented by

D(A,B) =
1

|A| × |B|
∑︂

a∈A,b∈B

d(a, b)

where D(A,B) is the distance between two clusters A and B, |A| and |B| are the

number of elements in clusters A and B respectively. d(a, b) is the distance between

elements a and b. In this work, Euclidean distance was used and calculated among

elements
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d(P,Q) =

⌜⃓⃓⎷ n∑︂
i=1

(qi − pi)2

where d(P,Q) represents the Euclidean distance between P andQ, P = (p1, p2, . . . , p7),

Q = (q1, q2, . . . , q7) are features extracted from independent component wavelet coef-

ficients of each epoch EEG data.

4.5 Inverse DWT

Inverse Discrete Wavelet Transform (IDWT) reconstructs the ICs from WCs. After

a signal is decomposed using DWT into components at different scales or resolutions,

IDWT combines these components back into the artifactual components removed ICs.

The process involves summing up the wavelet series, typically represented by:

s(t) =
∑︂
j

∑︂
k

cj,kψj,k(t)

where s(t) represents the reconstructed IC, cj,k are the wavelet coefficients, ψj,k(t) are

the wavelet basis functions at scale j and position k.

4.6 Inverse ICA

Inverse ICA refers to the process of reconstructing the multi-channel EEG signal

from the ICs that were separated by ICA. After artifact components are detected and

removed, the remaining components are recombined using inverse ICA to reconstruct

the artifact-free EEG data by applying the mixing matrix A, the inverse matrix of

unmixing matrix W, to ICs.

X′ = AS′

where X′ is the reconstructed artifact free multi-channel EEG data, and S′ is the ICs

with artifactual components removed.
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Chapter 5

Outputs and Results

5.1 Outputs

We evaluated our proposed method using raw, full-night sleep EEG data and con-

ducted a comparative analysis with EEG signals that were either only preprocessed or

manually cleaned. The proposed system demonstrated effective removal of artifactual

components while preserving the cerebral activities of interest.

Given that the dataset encompasses a full night’s sleep EEG signal, consisting of

948 epochs, we specifically illustrate the proposed method by examining a random

epoch among 948 epochs, epoch number 700, as a representative example.

The preprocessing and methodology for recording EEG signals is outlined in Chap-

ter 3 and Chapter 4. Initially, the captured signal undergoes processing through a

4th order Butterworth band-pass filter, which isolates the desired frequency bands.

Illustrations of the raw eight-channel EEG signal, alongside the filtered signal, are

presented in Figure 5.1. It is observed that artifacts not within the target frequency

bands are removed by this filtering process, preserving the integrity of both the time

and frequency resolution of the EEG signal.

Nevertheless, artifacts that overlap with the EEG signal’s frequency resolution

were largely not eliminated. To address this, ICA was applied to the eight-channel

signal depicted in Figure 5.1b, aiming to break down the signal into its statistically

independent and non-Gaussian components. The decomposition process yielded eight
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independent components (ICs) as demonstrated in Figure 5.2. The decomposition of

each IC into wavelet coefficients (WCs) was further carried out using the fourth level

DWT. Figure 5.3 illustrates the wavelet coefficients from the first IC of epoch 700.

Values of kurtosis, zero-crossing count, skewness, Hjorth parameters and Rényi

entropy are extracted from each WC and each epoch are shown by boxplots in Figure

5.4.

For each set of WCs, dendrograms were generated. Figure 5.5 shows the den-

drograms based on the Euclidean distance of features between epochs with average-

linkage.

In the automatic cleaning method, dendrograms are automatically segmented into

two clusters, with the smaller cluster identified as artifacts and the larger as sig-

nals. Conversely, the semi-automatic cleaning method necessitates visual inspection

to determine which clusters are artifactual components. Upon inspection, D1 is cat-

egorized into two clusters, while D2, D3, and A4 are each divided into four clusters,

and D4 into five clusters. Clusters containing the majority of data points are classified

as signal, with the remaining designated as artifacts and subsequently removed. Af-

ter excising artifactual components and reconstructing the EEG signal using inverse

DWT and inverse ICA, Figure 5.6 showcases the cleaned EEG data achieved through

both automatic and semi-automatic methods.

5.2 Performance Evaluation

5.2.1 Accuracy

Accuracy is a measure used to evaluate the performance of a classification model. It

represents the ratio of correctly predicted instances to the total instances in a dataset.

In the context of binary classification, accuracy is calculated as:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
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5.2.2 Results

Due to the absence of labeled artifactual components in the raw dataset, assess-

ing the accuracy for the proposed method is challenging. To evaluate performance,

we employed a sleep stage classification algorithm for two sleep stage classification,

specifically the Hidden Markov Model (HMM) proposed by Kashlak [63]. Using both

manually cleaned EEG data and EEG data cleaned by our proposed method, we

applied the same sleep stage classification algorithm. Comparison of the outcomes

enables an assessment of whether the proposed method enhances or achieves compa-

rable results in sleep stage classification compared to manually cleaned EEG data.

Only channel C4M1 underwent manual cleaning, and its performance is contrasted

with all eight channels cleaned by our proposed method to identify potential improve-

ments. To assess potential improvements over the raw EEG dataset, we applied the

sleep stage classification model solely to pre-processed EEG data as a control group.

To facilitate the application of the HMM algorithm, EEG data underwent transfor-

mation into Power Spectral Density (PSD) using Welch’s method. Given the random-

ness start in the HMM model, we executed the model for each channel of each method

50 times to evaluate performance and stability. Accuracy metrics were computed from

individual confusion matrices, with mean and standard deviation calculated from the

accuracy obtained over the 50 model runs.

According to Table 5.1, the Semi-automatic method consistently outperforms the

other two in terms of mean accuracy, with its superiority most evident in channel

C4M1. And the Pre-processed method obtains a lower mean accuracy compared with

the Automatic and Semi-automatic method. However, the Semi-automatic method

does not maintain this lead in channel F3M2, where it falls behind the Pre-Processed

method, and the Automatic method also sees its lowest mean accuracy in this same

channel. Exceptional performance is observed from all methods in channels C3M2,

O2M1, and O1M2, with the Semi-automatic method demonstrating perfect consis-
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Method/Channel
Pre-Processed Automatic Semi-automatic

Mean Std
Dev

Mean Std
Dev

Mean Std
Dev

F4M1 0.7484 0.1393 0.8080 0.1583 0.8062 0.1590

F3M2 0.5667 0.0907 0.5408 0.0670 0.5636 0.0973

C4M1 0.7432 0.1275 0.8630 0.1474 0.9391 0.0698

C3M2 0.9473 0.0000 0.9387 0.0422 0.9473 0.0000

T6M1 0.6939 0.0609 0.7389 0.0402 0.7565 0.0289

T5M2 0.5761 0.0701 0.5865 0.0785 0.5777 0.0769

O2M1 0.9092 0.0988 0.9641 0.0000 0.9641 0.0000

O1M2 0.8676 0.1146 0.9641 0.0000 0.9641 0.0000

Table 5.1: Mean and standard deviation of accuracy for pre-processed only, automatic
and semi-automatic clean methods across eight EEG channels over 50 model runs.
Numbers in bold are the highest mean accuracy for each channel.

tency, as evidenced by a standard deviation of zero in these channels. Moreover, it

shows enhanced stability compared to the Automatic method, particularly in channel

C4M1 where it boasts a reduced standard deviation.

Additionally, we conducted two paired t-tests to assess differences between the

Pre-processed method and both the Automatic and Semi-automatic methods, focus-

ing specifically on the C4M1 channel. Our hypothesis is that both the Automatic

and Semi-automatic methods would yield the same accuracies as the Pre-processed

method for C4M1 channel. The paired t-test comparing the Pre-processed only

method with the automatic method resulted in a p-value of less than 0.001, with

a t-statistic of -8.0933. Similarly, the paired t-test comparing the Pre-processed only

method with the Semi-automatic method yielded a p-value of less than 0.001, with

a t-statistic of -12.4886. As both p-values are less than 0.001, null hypothesis is

rejected.

Furthermore, we calculated 95% confidence intervals to further assess the accuracy

of the Automatic and Semi-automatic methods for the C4M1 channel. The 95% con-

32



fidence interval for the Automatic method was (0.8221, 0.9039), indicating that the

accuracy obtained from manual cleaning the C4M1 channel (0.9146) falls outside this

interval, suggesting that the confidence interval is below the accuracy obtained from

manual cleaning. Conversely, the 95% confidence interval for the Semi-automatic

method was (0.9198, 0.9584), indicating that the accuracy obtained from manual

cleaning also falls outside this interval, but the confidence interval is above the accu-

racy obtained from manual cleaning.
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(a)

(b)

Figure 5.1: The raw eight-channel EEG signal is shown in (a) and the signal after pre-
processing step is shown in (b). This step is conducted to retain only the frequency
bands of interest (0.3 to 80 Hz).
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Figure 5.2: Decomposed eight ICs from pre-processed EEG signal using ICA.

Figure 5.3: WCs from the first IC in Figure 5.2 by DWT. The wavelet coefficients
from top to bottom are D1, D2, D3, D4 and A4 respectively.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.4: Boxplots of features extracted from each WCs. The seven features pre-
sented are (a) kurtosis, (b) zero-crossing count, (c) skewness, (d) activity, (e) mobility,
(f) complexity and (g) Renyi’s entropy.
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(a) (b)

(c) (d)

(e)

Figure 5.5: Dendrograms of each set of WCs. The x-axis represents the label of each
epoch and each independent component. The WCs are shown in (a) D1, (b) D2, (c)
D3, (d) D4 and (e) A4.
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(a)

(b)

Figure 5.6: Cleaned EEG signals across eight channels. Figure (a) displays the EEG
signal cleaned via the automatic method, and Figure (b) shows the EEG signals
cleaned using the semi-automatic method.
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Chapter 6

Discussion

6.1 Results

This study evaluates three EEG data cleaning approaches: baseline pre-processing,

which acts as the control, and two proposed methods, automatic and semi-automatic

cleaning, to determine their effectiveness in improving data quality.

The investigation reveals an increase in sleep stage classification accuracy from the

baseline pre-processing, with an accuracy rate of 75.66%, to the automatic cleaning

method, which achieves an accuracy of 80.05%. This improvement suggests that

even with the automatic method’s relatively straightforward approach of classifying

wavelet coefficients into two categories and marking a small portion of EEG data as

artifacts, it still manages to enhance data quality over just pre-processing.

In addition, the semi-automated cleaning method demonstrates better performance

compared to both the pre-processed and automatically cleaned EEG data, achieving

an average accuracy of 81.48%.

Moreover, for channels that already exhibited high performance (C3M2, O2M1

and O1M2), the semi-automated and automated cleaning methods did not negatively

impact their performance, maintaining their high accuracy levels.

There is also sufficient evidence to show that both automatically cleaned and semi-

automatically cleaned C4M1 channel have shown an improved performance compared

with pre-processed only C4M1 data with both p values less than 0.001. When these
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methods are compared against manually cleaned EEG data, which recorded an ac-

curacy of 91.46%, both the pre-processed only and automatically cleaned EEG data

demonstrate inferior performance. However, the semi-automatic cleaning method not

only outperforms these two methods but also surpasses manual cleaning with an ac-

curacy of 93.91%. This indicates that the semi-automatic approach, while leveraging

the benefits of automation, also incorporates critical elements of manual oversight,

resulting in enhanced accuracy and reliability.

Overall, the findings suggest that while automated processes offer some improve-

ment over basic pre-processing, the integration of semi-automated techniques provides

a more effective balance between automated efficiency and the nuanced accuracy of

manual intervention. This approach appears particularly beneficial in channels where

EEG data quality can be significantly improved, thus making it a promising method

for EEG data cleaning and analysis.

6.2 Future Work

Based on the insights gained from the current analysis, future work on EEG artifact

cleaning methods can be significantly enhanced by addressing certain key areas. The

present automated cleaning approach, which relies on dividing independent wavelet

coefficients into two clusters without adequately considering the size disparities be-

tween these clusters, has shown limitations. This method tends to inadequately

capture all potential artifactual components, leading to suboptimal cleaning.

To refine this approach, future efforts should involve collaboration with EEG sleep

data experts. This collaboration can provide valuable insights into the typical pro-

portion of artifact components present in raw EEG data. Armed with this knowledge,

the methodology for dividing signal and artifact clusters can be adjusted to achieve

a more effective separation. This refined division method is expected to enhance the

accuracy of artifact detection and removal.

Additionally, an interesting insight observed in the current study is that channels
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exhibiting better performance are located on the same side of the head. This ob-

servation suggests that spatial features of EEG data are influential and should be

incorporated into the clustering process. By considering these spatial characteristics,

the artifact cleaning method could become more precise and tailored to the unique

topographical patterns of EEG signals.

Furthermore, while the current method has been tested on EEG data related to

sleep disorders, its applicability could be broadened to other types of EEG data. By

extending the testing to various EEG datasets, the robustness and versatility of the

artifact cleaning method can be thoroughly evaluated. This expansion could lead to

a more universally applicable EEG cleaning approach, beneficial across different EEG

applications and conditions.
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Appendix A: Method Comparison

We have additionally transformed the outputs into an alternative format to facil-
itate comparison across various methodologies. Specifically, we arranged the raw,
preprocessed, automatically cleaned, and semi-automatically cleaned EEG signals for
eight channels of the randomly selected epoch (epoch 700), as shown in the following
figures.
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Figure A.1: Methods comparison among raw, preprocessed, automatically cleaned
and semi-automatically cleaned EEG signal of epoch 700 Channel F4M1.

Figure A.2: Methods comparison among raw, preprocessed, automatically cleaned
and semi-automatically cleaned EEG signal of epoch 700 Channel F3M2.
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Figure A.3: Methods comparison among raw, preprocessed, automatically cleaned
and semi-automatically cleaned EEG signal of epoch 700 Channel C4M1.

Figure A.4: Methods comparison among raw, preprocessed, automatically cleaned
and semi-automatically cleaned EEG signal of epoch 700 Channel C3M2.
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Figure A.5: Methods comparison among raw, preprocessed, automatically cleaned
and semi-automatically cleaned EEG signal of epoch 700 Channel T6M1.

Figure A.6: Methods comparison among raw, preprocessed, automatically cleaned
and semi-automatically cleaned EEG signal of epoch 700 Channel T5M2.
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Figure A.7: Methods comparison among raw, preprocessed, automatically cleaned
and semi-automatically cleaned EEG signal of epoch 700 Channel O2M1.

Figure A.8: Methods comparison among raw, preprocessed, automatically cleaned
and semi-automatically cleaned EEG signal of epoch 700 Channel O1M2.
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