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Abstract 

This work stands as an example of “synthetic methodology” in psychological research. 

Synthetic methodology involves building a model, seeing what it can and cannot do when placed 

in interesting environments, comparing this behaviour to real-world subjects for parallels and 

discrepancies, and then examining the model for insight and theoretical advancement. This 

methodology is employed here in the context of a common spatial-learning “reorientation task”.  

Motivated by the discovery of critical flaws in a popular model for this reorientation task, we 

develop a synthetic neural network model as an alternative, and explore its behaviour in novel 

tasks, as well as the mathematical consequences of adopting such a formalism. These behaviours 

lead us to question assumptions underlying normal reorientation research. We devise a new 

method of collecting human data in spatial tasks, and use this method to compare the neural 

network to human subjects, in the style of comparative cognition.  
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Introduction 

 This thesis is representative of the collection of work I have accomplished in two years 

while training as an apprentice cognitive scientist. Each of its chapters is a version of a full 

academic paper at various stages of the publication process; while each stands on its own, taken as 

a whole, the chapters reveal a broader pattern. Together they reflect an approach for conducting 

cognitive science that can be very productive and informative, but is not, I feel, common practice 

among the research community at large. 

 This specific approach has four of components, each relying on a different, but related, 

set of skills. The first component is formal, where a new model is created based on a mathematical 

understanding of existing theory. The second involves a firm understanding of what each new 

formalism means, theoretically – that is, a design decision made during formalization will be 

founded on several tacit assumptions, of which its author should not be unaware. In addition to the 

typical understanding of current theory used to guide the formation of new models, this second 

component emphasizes the implicit theory that emerges from the model itself. The third 

component is the ability to let go of cherished designs, and to improvise new ones out of what is at 

hand – a sort of methodological bricolage, if you will. Finally, the fourth component is to 

recognize that the models one makes are, themselves, some of the richest sources of inspiration 

one can have for developing and refining both novel theoretical claims, but also for designing and 

testing new experiments. Rather than only analyzing experimental results to develop ideas, one 

can instead synthesize a new, plausible model first, and use its behaviour to inform future research. 

If one is open to recognizing when models make surprising predictions, and design new 

experimental methods if none currently exist to test these claims, one may find unexpectedly 

fruitful research, even from a null result.  

 The purpose of this thesis is to illustrate this approach to conducting cognitive science in 

the context of a particular research domain, the study of navigation and reorientation – the process 

by which an agent finds its way after becoming lost. The thesis uses this as a framework to 

provide examples of each of the methodological components in action, as well as how these 
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components can be cooperatively synthesized to provide insights into this research domain. It will 

progress as follows: 

 The first chapter, The Miller-Shettleworth Model’s Empirical Difficulties, begins by 

identifying a serious mathematical shortcoming in an influential model of associative learning, 

developed in the context of reorientation. We trace the source of this flaw within two different 

experimental paradigms, and eventually identify that the problem lies in the form of the model 

itself – it cannot be saved in its current form. We then propose an alternative model – a revised 

artificial neural network model with a novel, psychologically-plausible learning algorithm, dubbed 

an operant perceptron – expressly to avoid these formal shortcomings with the Miller-

Shettleworth model. This work provides a solid example of the formal component of practical 

cognitive science – and also shows that when this component is not given appropriate attention, 

the result is a fundamentally flawed model. 

 With an alternative to the Miller-Shettleworth model in hand, we must now explore the 

consequences of adopting this new model’s formalism, in accordance with the theoretical 

component. This begins by going beyond model evaluation as typically practiced in experimental 

psychology, and instead looks to link the model to well-established mathematics. This is the point 

of Chapter 2, The Equilibria of Perceptrons for Simple Contingency Problems. A critical property 

of the operant perceptron model is that, in essence, it learns to estimate reinforcement 

contingencies. Due to the operant perceptron’s non-zero response probabilities to non-reinforced 

locations, the perceptron convergence theorem applies, just as it does to the standard perceptron: 

both models will, over time, achieve identical equilibria on any problem they can solve. How do 

these equilibria compare to the established mathematics of this field, found in contingency theory? 

This chapter elaborates on this formal link and proves the connection.  

 Chapter 3, fAARS-Lite: An Open Platform For Investigating Spatial Tasks In Humans 

reflects another consequence of the model’s formalism. As we thought about the consequences of 

the model, we also thought about how to test its novel claims in live agents – and found that 

existing tools to do so often had barriers to entry, which made investigating non-standard tasks 

difficult. Rather than adjust to the needs of existing tools, we developed our own – fAARS-Lite - 
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designed to accommodate a wide range of geometry-learning tasks with relatively little computer 

expertise required. In addition to being simple to employ, the fAARS-Lite platform was designed 

to be as generalizable as possible – with logic similar to a Turing machine, assembled out of very 

basic elements in a graphical environment. This ease and generalization should allow others to 

take the platform and improvise novel environments of their own. Rather than develop the perfect 

tool for one job, we created an environment inspired by the improvisational component – and as 

the chapter discusses, this environment has already proven useful in fields unrelated to its original 

inception (computer science and comparative cognition).  

 Chapter 4, Get Out Of The Corner: The Effect Of Location Type And Number On 

Perceptron And Human Reorientation is, in many ways, the unison of the earlier methodological 

components, and a microcosm of the method as a whole, in the context of a standard 

psychological experiment. In this chapter, we relay the results of our explorations with the operant 

perceptron model. These simulations force us to question a few tacit assumptions underlying many 

reorientation experiments, and the results are surprising. We then employed fAARS-Lite to create 

an analogous task for human subjects, and conducted an experiment to see if the perceptron’s 

predictions were confirmed or rejected. This not only provides a direct example of the “model-

informing-experiment” nature of the synthetic component from above, but also produces results of 

its own. These particular results, we feel, will be of interest to the reorientation research 

community as a whole. However, we also believe that the results of Chapter 4 – combined with 

the case studies provided by Chapters 1, 2 and 3 – illustrate the advantages of this multi-

component methodology for conducting cognitive science.  
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The Reorientation Task 

The ability to navigate around in the world is fundamental to nearly every mobile 

creature. One aspect of navigation that has been studied extensively is reorientation, defined here 

as an agent’s ability to locate a previously learned position when disoriented. At its simplest, 

reorientation requires an agent to navigate to a previously-learned location based upon available 

environmental cues, such as information about the shape of the environment (“geometric” cues) 

and about landmarks present in the environment (“feature” cues). Such behaviour is typically 

studied experimentally with what has become known as the “reorientation task” (Cheng, 1986), 

which is described in more detail below. Such experiments have shown that agents, even those 

from dramatically different species that range from ants to humans, exhibit certain empirical 

regularities (reviewed in Cheng & Newcombe, 2005). 

In a typical reorientation task (Cheng, 1986), an agent freely explores a rectangular arena, 

with each corner distinguished from the others through some combination of geometric and 

featural cues. If the agent approaches the corner the experimenter has deemed “correct” - for 

instance, the corner containing a unique feature like a colored panel, with a long wall on its left - 

then the agent is reinforced, otherwise no reward is offered. After repeated trials to learn that this 

location is correct, the agent is disoriented and placed in a new arena in which the feature cues are 

placed in conflict with the geometric cues - in the above example, the panel is now in a corner 

with a long wall on its right. It might be plausibly predicted that, in this new arena, agents will 

move towards the feature, which was the only unique predictor of reward during training. 

Curiously, while agents will approach the corner with the unique local feature, agents will also 

frequently choose locations matching the original geometry - the original corner and its geometric 

equivalent - even though this geometry was not always reinforced during training, and neither 

corner currently possesses the reinforced local feature. The agent only occasionally follows the 

feature instead of the geometry, despite the feature uniquely identifying the correct corner every 

time during training. The exact proportion of responses that follow the feature as opposed to the 

geometry varies somewhat depending on the size of the arena and the agent in question (for 
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example, see Cheng & Newcombe, 2005; Chiandetti & Vallortigara, 2008), but the general pattern 

remains consistent. 

Recent attempts to provide a theoretical explanation for reorientation task regularities 

have taken the forms of associative models of an agent’s choice behaviour, such as artificial neural 

networks (Dawson, Kelly, Spetch, & Dupuis, 2010), or as mathematical models in the tradition of 

Rescorla and Wagner (1972). Such models attempt to explain reorientation by modelling each 

possible location as a collection of geometric and feature cues that compete for associative 

strength, with the model’s response to a location’s particular pattern of cues reflecting its choice 

behaviour. For example, in the Dawson et al. (2010) network model, the response generated by the 

network to a particular corner (i.e. to a particular set of cues) was the network’s prediction of the 

probability of being rewarded if that corner was visited. In such a model, geometric cues affect 

reorientation behaviour because geometric cues and feature cues are learned independently, and 

geometric cues alone have sufficiently high associative strength to dictate a response, even though 

these cues are reinforced only for some locations. 

The Miller-Shettleworth Model 

One associative model of reorientation (Miller & Shettleworth, 2007, 2008) that is of 

particular interest is an extension of the classic Rescorla-Wagner model of associative learning 

(Rescorla & Wagner, 1972): 

               (1-1) 

In the Rescorla-Wagner model, the change in associative strength ΔV between conditioned 

stimulus (CS) and unconditioned stimulus (US) is defined by the difference between the 

magnitude of the US, represented by λ, and magnitude of the current associative strength, 

represented by V. This difference is scaled by the CS’ inherent salience α and by the learning rate 

related to the US, β. This model is inherently one of classical conditioning. At every iteration, the 

equation updates associative strengths for all presented cues simultaneously; the agent’s choice to 

respond (or not) is not part of this formulation of learning (Dawson, 2008). 
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Miller and Shettleworth (2007) convincingly argue that because the agent only chooses 

one location at a time, and only receives reinforcement or feedback at a chosen location, 

reorientation is more properly considered an operant task, with reinforcement contingencies based 

upon the agent’s particular pattern of choices. Thus, they modify Equation 1-1 to include a 

measure of the agent’s probability of choosing a given location: 

                      (1-2) 

Here, the change in associative strength of each cue (or “element”, E) is updated using the sum of 

the associative strengths of all cues at a given location (that is, VL=(ΣVE)L), and scaled by a term 

representing the probability of choosing that location. In its original version (Miller & 

Shettleworth, 2007), this model defined the probability of choosing a given location PL as the 

relative associative strength of the location in question compared to the total associative strength at 

every possible location: 

 
   

  

   
 

(1-3) 

However, Dawson, Kelly, Spetch, and Dupuis (2008) identified a serious problem when 

probability is defined using Equation 1-3. They demonstrated that, using an example reorientation 

problem taken from Miller and Shettleworth (2007), a model that used Equations 1-2 and 1-3 can 

produce values of PL that fall outside the range of 0 to 1, and thus cannot be considered 

“probabilities”. In response to the flaw identified by Dawson et al. (2008), Miller and Shettleworth 

(2008) revised their model of reorientation. Miller and Shettleworth replaced Equation 1-3 with a 

new term for the relative net attractiveness of a location. In the modified model, Miller and 

Shettleworth defined “net attractiveness of a location” rL as the sum of the associative strengths of 

the cues at that location if that sum is positive, or as 0 if that sum is not positive (that is, 

rL=VL*H0(VL), where H0 is the Heaviside step function with threshold 0). PL became the relative net 

attractiveness of each location compared to the total relative net attractiveness at every location: 

    
  

   
 

(1-4) 
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They reasoned that by replacing Equation 1-3 with Equation 1-4, PL will always fall within the 

acceptable range for probability, and they presumed that the theoretical issues with their model 

had been resolved. 

Below, we show that even after this modification, the model still has several underlying 

problems that render it inadequate for modelling learning in the reorientation task or related 

associative tasks. The purpose of the current paper is to demonstrate these problems empirically, 

and explain their source in the model’s equations. This analysis of their revised model will also 

reveal why the errant behaviour identified by Dawson, Kelly, Spetch and Dupuis (2008) emerged 

in the original version of Miller and Shettleworth’s model. Finally, we propose an alternative 

model to rectify the situation. 

By convention, we will refer to models with the form of Equation 1-2 as the “M-S 

model” regardless of the equation used to compute PL. The model’s original presentation (Miller 

& Shettleworth, 2007), consisting of Equations 1-2 and 1-3, is referred to as “M-S 2007,” while 

the revised form (Miller & Shettleworth, 2008) using Equations 1-2 and 1-4 is denoted as “M-S 

2008”. The correction employed by replacing Equation1-3 with Equation 1-4 is referred to as the 

“positiveness correction”, because unlike VL, rL is defined in such a way that it is always positive 

and never negative (as negative sums are artificially set to 0). Finally, the parent model, Rescorla 

and Wagner’s (1972) Equation 1-1, is the “R-W model”. 

Demonstration of Problems 

 Miller and Shettleworth (Miller & Shettleworth, 2008) revised their original 

model to address the fact that it could generate impossible probabilities (Dawson et al., 2008). In 

this section, we note how the behaviour of the revised model still exhibits important difficulties. 

We consider two such examples, the first involving a superconditioning paradigm, and the second 

involving a standard reorientation task. The purpose of the current section is to describe empirical 

problems with the Miller and Shettleworth model. A later section will provide a detailed 

discussion of why these difficulties arise. 
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Superconditioning 

A prediction of the R-W model is that “superconditioning” can occur. Superconditioning 

exists when excitatory cues produce stronger responses after discrimination training if they are 

paired with an inhibitory cue, compared to a control condition in which the excitatory cues are 

paired with a neutral cue during training. The presence of an inhibitory cue during discrimination 

training increases the difference between λ and ΣV, allowing for a greater change in associative 

strength. 

Horne and Pearce (2010, experiment 2) investigated if one could observe 

superconditioning in the context of geometric and feature cues in a paradigm that can be viewed as 

an extension of the reorientation task. In this experiment (summarized in Figure 1-1), rats were 

trained to associate a particular set of geometric cues with reinforcement, but only when a 

particular feature was absent. That is, in Stage 2 of Figure 1-1, rats are reinforced when a 

particular set of cues are present at a location (A+), but are not reinforced when those cues are 

accompanied by an additional cue (AX-). Following this training, the experimental group of rats 

received reinforcement in the same location with both sets of cues present (AX+), while a control 

group received reinforcement in that location when the original cues are paired with a novel, 

neutral cue set (AY+). 

Because of their attempt to model animal data using the M-S 2008 model, Horne and 

Pearce defined the task as consisting of a “correct geometry” cue G, an “incorrect (wrong) 

geometry” cue W, a context cue common to every location B, and two feature cues (one inhibitory 

feature present during discrimination training and with the experimental group, F, and one neutral 

feature only present for the control group, N)1. A summary of these cues as presented in Horne and 

Pearce’s experiment is found in Figure 1-1. 

 
1Horne and Pearce employ a different notation, instead using GC and Gi to refer to correct and incorrect geometric cues, 

and F to refer to any feature cue (despite two being used in the experiment). For consistent terminology across the two 

experiments, and to avoid confusion about whether a feature cue had prior associative strength (as it would have, during 

superconditioning) or if it is a novel, neutral cue (as it would be, during controls), we adopt the G, W, F and N notation 

described here. 
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Figure 1-1. A schematic overview of the Horne and Pearce (2010) superconditioning task, adapted 

from that paper, with stages and cue types labelled. B=”base”, G=”correct geometry”, W=”incorrect 

geometry”, F=”feature cue”, N=”neutral feature cue”. A + indicates the location is reinforced, a - 

indicates no reinforcement. 

 

Horne and Pearce’s (2010) results show that the experimental group chose the “correct” 

corner with greater frequency than did the control group - that is, the rats showed evidence of 

superconditioning. However, when simulating the same experiment with the M-S 2008 model, 

Horne and Pearce obtained the opposite result: the probability of choosing the correct corner in the 

experimental group was 0.92, and the probability of choosing the correct corner in the control 

group was 0.95. They attributed this failure to display superconditioning to an artificial inflation in 

the value of the B cue, and attempted to solve the problem by manipulating the salience of this 

cue, but “in all of the simulations that [they] conducted, however, this manipulation does not 

permit superconditioning to be predicted” (p. 393). 

Reorientation 

The M-S 2007 model was originally demonstrated using a standard reorientation task 

(Wall, Botly, Black, & Shettleworth, 2004, Experiment 3, see Figure 1-2 below). Within this task, 

rats are required to locate food in one corner of a geometric arena - here, the Correct corner, with a 

particular set of geometric properties G and a unique feature F (along with a general context cue 

which Miller and Shettleworth labeled B, representing the bowls at each location that the rats 

searched for food). During this phase of exploration and learning, the rats are also exposed to a 
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different set of geometric properties learned to be wrong, W, which never contain reinforcement. 

In later phases of this experiment, the configuration of cues changes and the rats’ behaviour is 

monitored, but for the purposes of the current paper, we concentrate on this training phase. 

 

Figure 1-2: Schematic overview of the Wall et al.(2004) reorientation task training phase 

traditionally used in discussions of the M-S model, with locations and cue types labelled. B=”Bowl”, 

G=”correct Geometry”, F=”Feature”, W=”Wrong geometry.” A + indicates the location is 

reinforced, while a - indicates no reinforcement. 

 

The M-S 2008 model was created to solve problems that emerged when the M-S 2007 

model simulated the training phase of this paradigm (Dawson et al., 2008). In particular, the 

positiveness correction in M-S 2008 was intended to prevent the impossible probabilities 

generated by M-S 2007. Miller and Shettleworth (2008) found that when their revised model was 

used for the Wall et al. (2004) paradigm, it behaved correctly, even when high values (0.65) for αβ 

were used. However, we show below that when some of the parameters of the revised model are 

slightly changed, errors are still produced. In short, the positiveness correction has not created a 

proper mathematical model of reorientation. 

For example, when used to model the Wall et al. (2004) reorientation task at slightly 

higher learning-rate values than αβ=0.65, the M-S 2008 model predicts dramatic fluctuations in 

associative strength and choice probabilities when both should instead plateau, suggesting a lack 

of robustness in the underlying mathematics. (An analysis of the mathematical properties and 
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problems of the M-S model is provided in a later appendix.) The fluctuations in associative 

strength escalate until they eventually culminate in a global divide-by-zero error. This is 

repeatable and can be predicted reliably; for instance, for αβ=0.7, the fluctuations begin between 

iterations 10 and 20 (depending on the cue or location) and the collapse occurs at iteration 183 

(see Figure 1-3). Similar fluctuations (in addition to the singularities reported by Dawson et al. 

(2008) can be demonstrated in the M-S 2007 formulation as well, suggesting the fluctuation is not 

due to the M-S 2008 model’s positiveness correction. 

 

 

Figure 1-3. The two Miller-Shettleworth models (2007, 2008) simulating the Wall et al. (2004) 

reorientation task at a high αβ. Note the fluctuation in both models. For the M-S 2008 model (left), 

the 0s in the lower panel are actual 0 values, while the upper panel uses 0 as a replacement for 

divide-by-zero, occurring after the crash at iteration 183. The singularities present in the M-S 2007 

model (right) were reported by Dawson et al. (2008), while the fluctuations are novel. 
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Why Does It Fail? 

 

Dawson et al. (2008) identified a problem in the behaviour of M-S 2007, but did not 

explain the occurrence of this problem mathematically. Similarly, Horne and Pearce (2010) 

identified an empirical issue with M-S 2008, but did not attempt to explain this problem by 

examining the mathematics of the model. In this section, we describe how the mathematics of the 

model leads to a fundamental problem with how the model handles inhibition. It is this 

mathematical problem with handling inhibition that is the root cause of the empirical problems 

identified above. To begin, let us first consider the superconditioning paradigm that was illustrated 

in Figure 1-1. 

Superconditioning 

 The failure to capture Horne and Pearce’s (2010) superconditioning results stems from 

the structure of the M-S 2008 probability equation, which includes the ‘positiveness correction’. 

This term is employed to prevent the probability of choosing a location PL from falling below zero 

even when that location’s net associative strength is below zero (Dawson et al., 2008). Horne and 

Pearce (2010) encounter such a location during stage 2 (discrimination) of their simulation: the 

magnitude of the negative associative strength of the consistently-inhibitory feature cue F far 

exceeds the magnitude of the positive associative strength of the other cues presented alongside it 

(B and G.). 

 During Horne and Pearce’s (2010) stage 2 (discrimination), the feature cue F is 

consistently inhibited, causing its associative strength to fall. Additionally, whenever F is 

inhibited, the other cues presented with it - the context cue B and the correct geometry cue G - are 

also inhibited, gaining a more negative associative strength. When the total associative strength of 

these locations - VL, or the sum of the associative strengths of F, B, and G - falls below zero, the 

Miller-Shettleworth probability equation (Equation 1-4) applies the positiveness correction to set 

the corresponding PL to zero, and the model should subsequently predict no further changes in 

associative strength in response to this location. A similar story can be told for the incorrect 
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geometry cue W, which is never reinforced; once the sum of associative strengths at these 

locations (B+W) falls below zero, the positiveness correction prevents these cues from gaining 

further inhibitory strength. 

However, the B and G cues are still present and reinforced at other locations on the 

acquisition trials during this stage, allowing those cues to continue to gain associative strength at a 

slow rate. These cues continue to gain positive associative strength from their reinforced 

presentations while the Miller-Shettleworth equation artificially prevents the cues from gaining 

negative associative strength during their inhibited presentations as soon as the net associative 

strength falls below zero. Concurrently, the associative strength of these cues (B and G) grows 

higher than it should. Similarly, during the acquisition trials, the B and G cues continue to gain 

positive associative strength from presentations at the reinforced locations, while the B, W and G 

cues are all prevented from gaining adequate negative associative strength from non-reinforced 

locations due to the positiveness correction artificially setting such updates to 0. 

During the stage 3 (experimental or control group), this effect is inflated in the 

experimental group relative to the control group, as the experimental group pairs the already-

inflated B and G cues with a now-consistently-reinforced F cue (leading to higher effective PL, and 

therefore a higher change in associative strength, on the correct locations), while the control group 

pairs these cues with a never-reinforced novel N cue (with 0 initial associative strength, this does 

not inflate the change on the correct locations relative to the incorrect ones). Accordingly, the 

magnitude of the changes in associative strength will be greater for experimental groups than for 

control groups, even on locations that are identical between the two conditions. In effect, when F 

causes B+G to become inflated during superconditioning (relative to no real change with N, B, and 

G in the corresponding control corner), the model can acquire more inhibition from a non-

reinforced corner during superconditioning than it could from the same non-reinforced corner 

during control, despite both being identical cue-wise (B+W), due to Equation 1-2 being scaled by 

PL. 

This weakness in handling inhibition, combined with the overall scaling of all changes in 

associative strength, results in the model generating incorrect predictions as described by Horne 
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and Pearce. For instance, the probability of the model selecting a correct corner during a test trial 

(without any feature cues) is given by the ratio between the net associative strength at that corner 

and the total net associative strength, or (B+G)/((B+G)+(B+W)). All of these cues are artificially 

(and identically) inflated for both groups due to the errors during the second stage 

(discrimination), but during the third stage (experimental or control groups), the W cue has 

associative strength of -0.35 in the experimental group, a 65% increase relative to -0.21 in the 

control group. Accordingly, the probability of choosing a correct corner is higher in the control 

group (0.94) than the experimental group (0.91). 

It is perhaps unsurprising that the source of these errors is not obvious at first glance. At a 

fundamental level, they emerge because the model represents locations as collections of cues, 

where some of those cues are present at locations that are reinforced differently. This shared-cue 

perspective is not taken during Horne and Pearce’s discussion on superconditioning. Instead, they 

employ the common “A+ / AX-” notation to discuss superconditioning - but in a cue competition 

perspective, “A” might represent some collection of cues that are not reinforced with equal 

likelihood. Indeed, here, “A” refers to B+G, which are present and reinforced in different 

proportions; similarly, the W cue (a vital part of the behaviour described above) is simply not 

included in “A+ / AX-” notation. As a consequence, Horne and Pearce focus on the feature cue F 

becoming a conditioned inhibitor dependent upon the context cue B becoming a conditioned 

excitor, but do not discuss that B is, in truth, both reinforced and not reinforced depending on the 

collection of cues present at a location. 

 

Reorientation 

When modelling the Wall et al. (2004) reorientation task, the Miller and Shettleworth 

(2008) model produces two distinct errors, both illustrated in Figure 3. The first is a series of 

fluctuations of both associative strengths and choice probabilities at high learning rate αβ; similar 

behaviour is observed in the Miller and Shettleworth (2007) model as well, suggesting that this 

problem’s root cause is shared by both models. The second problem, where the equations 

consistently produce a divide-by-zero error after several fluctuations, is unique to the M-S 2008 
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model, suggesting it is a consequence of the positiveness correction. We describe the source of 

these problems using terminology consistent with Miller and Shettleworth’s (2007) discussion of 

reorientation, where the task consists of four locations (Correct, Rotational, Near, and Far) that are 

defined in the model as combinations of four cues (Bowl (B), Feature (F), correct Geometry (G), 

and Wrong geometry (W)). G is present at the Correct and Rotational locations, while the Near and 

Far locations have the W cue. The B cue is present at all four locations, and the F cue is present 

only at the Correct location. All cues are initialized to 0 associative strength, except for B, which is 

initialized to 0.1 (to reflect prior experience with bowls containing reinforcement). 

The fluctuations emerge from the structure of Equation 1-2, where the change in 

associative strength for a cue is scaled by a function of associative strength (Equation 1-3 or 

Equation 1-4). Both of these scaling functions can approach zero when considering locations with 

strong inhibitory cues, causing the model to reduce the effective change in associative strength due 

to lack of reinforcement relative to the effective change in associative strength due to 

reinforcement. That is to say, the more inhibitory a location’s cues become, the less learning takes 

place at that location relative to others. Since these locations contain cues which are at least 

partially reinforced on other locations (the B and G cues in this example), these cues acquire a 

greater positive change in associative weight from reinforced locations and a lesser negative 

change in associative weight from non-reinforced locations. At low learning rates αβ, this artificial 

inflation is small relative to the net weight, and easily handled by the error-correcting Equation 1-

2. However, at sufficiently2 high αβ, the artificial inflation is large enough to lead to an 

“overcorrection” - the magnitude of the change in weights being larger than it should be. 

For example, consider the G cue - which is initialized at 0, is presented at two locations, 

and is only reinforced at one. Therefore, as reported in Miller and Shettleworth, we expect its 

associative strength to climb (as it is reinforced), peak (since this reinforcement is not universal), 

and stabilize at some small positive value. With αβ=0.7, the peak occurs after the third iteration at 

VG=0.22; the corresponding ΔVG= -0.01 is negative, consistent with predictions - and this is 

 
2What qualifies as “sufficient” varies dramatically with the structure of the problem - cue distributions, number of 

locations, and initial associative strengths. For the Wall et al (2004) task as described here, “sufficient” is near αβ=0.68. 
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expected to slowly decrease in magnitude with subsequent iterations. However, the subsequent 

iteration is not a decrease - rather, it increases, with ΔVG=+0.003. When evaluating the change in 

strength for the G cue, the scaling nature of Equations 1-3 and 1-4 result in a lower PL for the non-

reinforced Rotational corner than for the reinforced Correct corner - and as a result, the model 

assigns insufficient inhibitory strength to the G cue. Following this slight positive increase, the 

model “overcorrects” with a strong negative ΔVG to reflect the Rotational corner -but because that 

corner contains the B cue as well as the G cue, the negative overcorrection applies to B as well. On 

subsequent sweeps, these interlinked overcorrections produce the distinctive fluctuating behaviour 

seen in Figure 1-3. 

This fluctuation emerges from the structure of Equation 1-2, but the eventual “crash” 

seen in Figure 3 results from a divide-by-zero error in Equation 1-4. This occurs because Equation 

1-4 still computes the “effective” VL for every location in the model, and then multiplies that VL by 

the Heaviside step function of VL with threshold 0. This results in VL if VL>0, and 0 otherwise - as 

locations’ net associative strengths fall below zero, they are “dropped out” of the denominator of 

Equation 1-4. However, due to the fluctuations seen above, which grow in magnitude over time, a 

time will come where the magnitude of the negative associative strength of B and G together 

exceeds the magnitude of F, the only uniquely positive cue in the system. At this point, all four 

locations have negative net associative strength, and thus Equation 1-4 attempts to divide by zero. 

If Equation 1-4 is replaced with Equation 1-3 (resulting in the M-S 2007 model), a 

“crash” does not occur. Instead, the model produces singularities (identified by Dawson et al., 

2008, illustrated in Figure 3). Without the positiveness correction, any location’s net associative 

strength VL is allowed to fall below zero - or, as noted above, for all locations’ net associative 

strengths to fall below zero. At this point, the denominator in Equation 1-3 flips sign from positive 

to negative and a singularity appears in the corresponding associative strengths and choice 

probabilities. As Equation 1-3 does not include an artificial substitution of 0, the divide-by-zero 

outcome does not happen, and if the model is allowed to continue to run, eventually the 

denominator of Equation 1-3 will become positive again, resulting in the next singularity in Figure 

1-3, and so on. 
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Because these fluctuations and (in the M-S 2008 model) crashes arise after a different 

number of iterations depending on the chosen learning rate parameters αβ, and do not seem to 

appear during any reasonable span of time within specific ranges for αβ, it would appear that a 

necessary step in applying the Miller-Shettleworth (2007, 2008) model is missing. Specifically, 

one must carry out a search of parameter space to find the boundaries at which the model will fail; 

such a search would need to be carried out for each permutation and combination of cues and 

locations present within the task. However, it is informative that points of failure exist at all: such 

failures suggest an underlying problem with the mathematics of the model. At the end of this 

paper we provide a technical appendix that reveals exactly what this underlying problem is. 

A Solution to the Problems 

Miller and Shettleworth (2007) make an important observation concerning the application 

of associative models to geometry learning tasks: the agent’s pattern of behaviour alters each cue’s 

apparent reinforcement contingencies on any given trial. In short, Miller and Shettleworth note 

that such learning is intrinsically operant. Miller and Shettleworth endeavored to model this by 

using the PL equation to scale the Rescorla-Wagner model as formalized in Equation 1-2. 

However, this scaling results in the improper handling of net negative associative weights, 

producing the problems that have been described above. Importantly, the choice of PL equation - 

Equation 1-3 or Equation 1-4 - merely alters the form these issues take: it is within the structure of 

Equation 1-2 that the true problem lies. In this section, we describe an alternative model that 

solves these problems, but which is still both associative and operant in nature. 

To begin, let us consider Miller and Shettleworth’s (2007) view of operant learning as 

follows: at some moment in time, an agent perceives a set of cues VL related to a particular 

location L. The agent uses these cues to make a judgment about how attractive this location is. For 

instance, the agent might use these cues to predict the probability PL of being reinforced if that 

location is actually visited. Indeed, we could also say that PL is the likelihood that the agent will 

actually visit location L. If the location is visited, then the agent will be reinforced (or not), and 

can modify the associative strengths of the available cues accordingly. Such learning is operant, 

because associative strengths will only be modified if the agent explores the location. 
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We saw earlier that one source of the problems with the M-S models is that either 

equation used to model PL (i.e. either Equation 1-3 or Equation 1-4) has problems when faced with 

inhibition. Clearly, we need to select a different equation for PL, one that is more robust to the 

negative associative strengths of inhibitory cues. A natural choice for this equation is the logistic 

function (given in Equation 1-5), which produces a response between 0 and 1 for all possible input 

values and monotonically increases as input increases. 

   
 

         
 

(1-5) 

It is impossible for the logistic function to produce a value outside of the range between 0 and 1 

(solving a problem that occurs with Equation 1-3), or to result in a divide-by-zero error (solving a 

problem that occurs with Equation 1-4). The logistic function is an ideal choice for computing 

probability like PL (Dawson & Dupuis, 2012), and has a long history of being used to model 

phenomena in a wide variety of disciplines (Cramer, 2003). 

We also noted earlier that another source of the problems with the M-S models arose 

when their equations PL were placed in the context of the remainder of Equation 1-23. Importantly, 

the logistic equation permits us to take advantage of a different formalism that eliminates this 

difficulty. Equation 1-5 - which converts weighted cues into a probability - defines a modern 

version of a very simple artificial neural network, called a perceptron (Rosenblatt, 1958, 1962). 

The simplest version of a modern perceptron (Dawson, 2004, 2008) consists of a set of input units, 

each of which can be used to represent whether a particular cue is present or absent. Each of these 

input units can send a signal to a single output unit through a weighted connection; the weight of 

the connection represents the associative strength of a particular cue. The output unit works by 

summing the weighted signals from the input units to produce a single number, called net input, 

which is identical to (ΣVE)L. The output unit then produces a response - its activation - by 

computing the logistic function of its net input exactly as defined by Equation 1-5. 

 
3For a more formal discussion of these problems and their consequences, we refer the interested reader to the technical 

appendix. 
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While Equation 1-5 defines the activation of this perceptron, it does not define the 

learning rule with which the connection weights are adjusted. Such a rule can be found in 

(Dawson, 2008), expressed here with the language of Miller and Shettleworth: 

                  (1-6) 

Here, η is a constant of proportionality equal to αβλ, “USL” reflects presence (1) or absence (0) of 

reinforcement (the unconditioned stimulus) at a location, aE reflects the value of the input unit 

corresponding to element E, and PL reflects the perceptron’s logistic response to a given pattern of 

cues, given by Equation 1-5. 

In employing Equations 1-5 and 1-6, we are in essence proposing that the perceptron can 

provide a central component of an associationist model of spatial learning. There are several 

reasons that this proposal is attractive. First, the mathematics of this type of model are well-

established - there is a long history of mathematical results concerning perceptron learning, 

beginning with the work of Rosenblatt (1958, 1962). Second, the associative models of Miller and 

Shettleworth (2007, 2008) are extensions of the well-established Rescorla-Wagner model of 

associative learning (Rescorla & Wagner, 1972). Importantly, the kind of learning that is carried 

out by a perceptron can be formally translated into Rescorla-Wagner learning (Dawson, 2008; 

Gluck & Bower, 1988; Sutton & Barto, 1981). Third, the motivation behind Equation 1-5 was to 

generate a value that could be interpreted as a probability. It has been shown empirically that 

perceptron responses can be interpreted as probabilities, because these networks can learn to 

generate responses that match the probabilities of events occurring in the world (Dawson, Dupuis, 

Spetch, & Kelly, 2009). Furthermore, formal analyses of perceptrons prove that the activity of an 

output unit can literally be called a conditional probability (e.g. Dawson & Dupuis, 2012). Fourth, 

one of the reasons that the M-S models are of interest is because they have been argued to be able 

to model reorientation task regularities. Crucially, perceptrons have also been shown to be capable 

of modeling a variety of reorientation task phenomena (Dawson et al., 2010). 

While the perceptron has been successfully used to model the reorientation task (Dawson 

et al., 2010), this was done using standard learning rules (Dawson, 2004, 2008; Rosenblatt, 1962), 

which are not operant in nature. We now describe an algorithm which trains a perceptron in an 
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operant fashion, transporting Miller and Shettleworth’s (2007) core idea about reorientation into 

the domain of artificial neural networks. 

 The typical, and non-operant, manner for training a perceptron (Dawson, 2004, 2008) 

proceeds as follows: First, a pattern (i.e. a set of cues, such as those corresponding to one 

“location”) is presented to the perceptron’s input units. Second, the perceptron converts input unit 

signals into an output response (i.e. Equation 1-5). Third, the perceptron receives feedback about 

its response (e.g. it receives reinforcement, or not). Fourth, a learning rule (Equation 1-6) is used 

to modify connection weights in accordance with the feedback. 

A simple change to the above learning algorithm makes it truly operant (Dawson et al., 

2009). The second step in the above procedure is to compute PL using Equation 1-5. Once this is 

computed, we can add a new step where PL is used to make a choice - in essence, a choice about 

whether or not to visit location L - where the likelihood of visiting the location is PL. If the choice 

is made to visit the location, then learning proceeds according to the third and fourth steps in the 

above algorithm. However, if the choice is made to not visit the location, then no learning occurs - 

connection weights are not updated, and the algorithm returns to the first step when presented with 

another pattern. This perceptron is operant because it only learns when it chooses to act; if it does 

not choose to act on a given trial, its connection weights are not updated. Furthermore, it is 

operant in the way that Miller and Shettleworth (2007) desire, because as the associative strength 

of the cues at a location increase, PL (a function of those associative strengths) increases, and so 

does the likelihood that location L will be visited. Conversely, as PL decreases, so does the 

likelihood of visiting location L. As it learns about its environment, the operant perceptron will be 

more likely to choose locations (i.e. cue configurations) that lead to reinforcement, and will be less 

likely to choose locations that do not lead to reinforcement. As was noted earlier, and detailed in 

the technical appendix, the root mathematical cause of the problems with the M-S model is the 

fact that it scales changes in associative weights by PL. The procedure for training an operant 

perceptron solves this problem by separating operant choice from weight modification. That is, 

Equation 1-5 is used to make a decision about whether to learn or not, and then standard learning 

(Equation 1-6) is conducted accordingly. Importantly, at no point in Equation 1-6 are changes in 
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association multiplied by Equation 1-5, preventing the mathematical difficulties described in the 

appendix. 

Previous research has shown that the operant perceptron can learn to perform a 

probability matching task (Dawson et al., 2009). Furthermore, this previous research has shown 

that the behaviour of the operant perceptron at equilibrium is similar to that of a traditional 

perceptron trained on the same probability matching task. This indicates that the operant training 

procedure does not violate the mathematical regularities associated with perceptron learning. 

Traditional perceptrons have been shown to be promising models of reorientation. In the next 

section, we demonstrate that this is also true of the operant perceptron, by showing that it 

generates appropriate results for both of the case studies introduced earlier in this paper.   

Evaluating the Operant Perceptron 

To see if the operant perceptron is capable of succeeding where the M-S model had 

difficulty, we simulated both the superconditioning and reorientation tasks, as described below. 

Superconditioning 

Method  

Horne and Pearce’s (2010) superconditioning experiment was presented to the operant 

perceptron using five inputs, corresponding to the five cues (B, G, W, F, and N) from Figure 1-1 

above. Any cue could be presented to the perceptron by activating its input unit with a value of 1; 

if a cue was absent, then the activity of its input unit was 0. These cues were grouped by location 

and stage as described in Figure 1-1, with each training pattern (i.e. each set of available cues) 

representing a corner present at a given stage. The network used a single output unit with a logistic 

activation function with bias held constant at 0. The network’s learning rate was set to 0.05, and 

all of its weights initialized to 0. Patterns were presented in a random order to the network 

The perceptron’s learning algorithm was made operant as described above. After each 

pattern (i.e. collection of cues at a location) was presented to the network, the perceptron 

computed PL using Equation 1-5, producing a number between 0 and 1. Then, a random number 

between 0 and 1 was generated. If the network’s activity exceeded that random number, the 
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network was said to have “chosen” to visit the location on this trial, and its connection weights 

were updated. If the network’s activity did not exceed this number, the network was said to have 

not chosen to visit the location on this trial, and no weights were updated. This process repeats for 

every pattern (location) present in the scenario. 

Each stage received 5000 sweeps of this training before a final, geometry-only probe trial 

(consisting just of the B+G cues) was carried out. Due to the stochastic nature of the operant 

perceptron’s training procedure (which allows identical networks to make different patterns of 

choices), this simulation was repeated five times for each experimental condition and the 

aggregate responses were averaged. 

Results 

After training, the experimental network had average connection weights (associative 

strengths) of B=1.3 and G=4.91, while the control network had connection weights of B=0.29, 

G=3.20. The networks’ responses to these cues - the logistic function of B+G - are 0.998 for the 

experimental network and 0.970 for the control network. 

Because these responses reflect the probability of investigating these correct-geometry-

only locations, it can be concluded that both groups of networks were capable of learning the 

geometry of the task (they have a high probability of visiting a corner with only the correct 

geometry present). Additionally, the experimental group’s probability of investigating a 

geometrically-correct corner is higher than that of the control group: the experimental group 

displays evidence of superconditioning. This is in agreement with Horne and Pearce’s (2010) 

animal data, and distinct from their attempt to model the same task with the M-S 2008 model, 

which produced the opposite result (a response of 0.92 in the experimental condition, and a 

response of 0.95 in the control condition). 

Reorientation 

Our second simulation involved training the operant perceptron on the Wall et al.(2004) 

reorientation task. First, we modeled this task using Miller and Shettleworth’s (2007, 2008) 
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parameters, and then we tested for robustness by exploring the operant perceptron’s behaviour 

when different parameters were used. 

Method 

The Wall et al. task is defined as described in Figure 1-2. The training set consists of four 

input units, used to represent the presence or absence of the B, F, G, and W cues. B was initialized 

to have a 0.1 initial weight, while the other three cues had 0 initial weight. The network’s learning 

rate was set to 0.15, exactly as in Miller and Shettleworth (2007). The training procedure was 

altered into an operant procedure exactly as was described for the superconditioning experiment. 

Five such networks ran until convergence (after approximately 8500 sweeps), and their responses 

were averaged. 

Results 

The results of this simulation are displayed in Figure 1-4. These results are virtually 

indistinguishable from the M-S 2008 model, if that model was supplied with well-behaved 

parameters. It would seem that the operant perceptron model is capable of learning the 

reorientation task as defined by Wall et al. (2004). 
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Figure 1-4: The operant perceptron’s performance on the Wall et al (2004) reorientation task. 

 

In order to test for robustness, the operant perceptron model was run again with extreme 

learning rates under the same initial conditions. Setting the learning rate to 0.7 did not lead to 

fluctuations nor to any “crash” - rather, the perceptron converges normally after approximately 

1700 sweeps. Even a learning rate of 1.00 - which causes the M-S 2008 model to collapse after 

just 12 iterations - results in the perceptron converging in ~1300 sweeps. 

 In conclusion, we find that this operant perceptron model is capable of empirically 

handling results that the Miller and Shettleworth (2007, 2008) models are not, and that the operant 

perceptron’s behaviour is robust to the extreme choices in learning rate that caused trouble for the 

M-S model. 
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General Discussion 

Miller and Shettleworth’s (2007, 2008) associative model of reorientation is rooted in the 

observation that reorientation is fundamentally a problem of operant learning. Therefore, they 

endeavored to formalize this by creating an operant version of the established Rescorla-Wagner 

(1972) theory of associative learning. However, their attempt to extend the Rescorla-Wagner 

model in this fashion has resulted in problems. 

Some of these problems have already been documented in the literature. Dawson et al. 

(2008) discovered that the original M-S model (2007) will produce impossible probabilities under 

a variety of circumstances. This led Miller and Shettleworth to modify their original model (Miller 

& Shettleworth, 2008). However, Horne and Pearce (2010) found that this revised model did not 

correctly model animal data collected for tasks to which the model should apply, such as 

geometric superconditioning. 

Other problems with the M-S model have been reported for the first time in the current 

paper. As shown above, when model parameters are manipulated, the behaviour of the M-S model 

is unstable, producing dramatic fluctuations. Indeed, for the M-S 2008 model, these fluctuations 

lead to an eventual “crash” that is caused when the model is required to divide a value by zero. 

While previous studies (Dawson et al., 2008; Horne & Pearce, 2010) have documented 

some problems with the M-S models, they did not attempt to explain these difficulties. In addition 

to discussing some new problems, we have also shown that all of these problems emerge from the 

structure of Equation 1-2. In effect, the equation cannot properly handle situations with uniquely 

inhibitory cues when those cues are paired with other, excitatory cues. These situations lead to 

inappropriate scaling of changes in associative strength when Equation 1-2 is employed, and this 

ultimately gives rise to all of the problems described above. 

However, in the current paper we have done more than demonstrate problems and trace 

their mathematical root. We have also provided a different model that can overcome these 

problems. Our alternative formalism preserves Miller and Shettleworth’s (2007) operant-learning 

goal, but is anchored on the solid foundations of artificial neural network mathematics (e.g. 

Rosenblatt, 1958, 1962). We have presented simulations that show this new ‘operant perceptron’ 
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model corrects these problems, and is capable of learning both reorientation and 

superconditioning. We believe this operant perceptron to be a plausible architecture for modeling 

reorientation task learning, which was the primary intent of the M-S model (Miller, 2009; Miller 

& Shettleworth, 2007, 2008). We have already shown that the operant perceptron can easily model 

other domains; for instance it can learn to match reinforcement probabilities (Dawson et al., 2009). 

The extent to which the operant perceptron can match the ability of the traditional perceptron to 

model the further intricacies of reorientation (Dawson et al., 2010) or to model a variety of 

classical conditioning paradigms (Dawson, 2008) is clearly a matter for future research. 
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Introduction 

A fundamental characteristic of an adaptive agent is the ability to detect causal relations 

(Cheng & Holyoak, 1995). However, the real world poses constant challenges to this ability, 

because cues do not signal outcomes with complete certainty (Dewey, 1929). It has been argued 

that adaptive systems deal with worldly uncertainty by becoming “intuitive statisticians”, whether 

these systems are humans (Peterson & Beach, 1967) or animals (Gallistel, 1990; Shanks, 1995). 

The notion of “intuitive statistician” has been rigorously developed in a series of important papers 

to mean sensitivity to contingency, where contingency is defined in a normative model as a 

contrast between conditional probabilities (Allan, 1980; Cheng, 1997; Cheng & Holyoak, 1995; 

Cheng & Novick, 1990, 1992; Robert A. Rescorla, 1967, 1968). For instance, consider the simple 

situation that is detailed in the contingency table provided in Table 2-1. The contingency between 

the cue and the outcome is formally defined as the difference in conditional probabilities ΔP, 

where ΔP = P(O|C) – P(O|~C)(Allan, 1980). More sophisticated models, such as the probabilistic 

contrast model (Cheng & Novick, 1990) or the power PC theory (Cheng, 1997) define more 

complex probabilistic contrasts that are possible when multiple cues occur, and when what they 

signal depends upon the context in which they are considered. 

 O ~O 

C a b 

~C c d 

 

Table 2-1: A simple contingency situation in which a cue can occur (C) or not (~C), and an 

outcome can occur (O) or not (~O) as well. The four letters in the table represent the frequency 

of co-occurrence of the two types of events. Using this table, ΔP = P(O|C) – P(O|~C) = A/(A + 

B) – C/(C + D). 

 

Because many associative learning paradigms can be interpreted as teaching 

contingencies to humans or animals, another issue that has arisen in the literature is the 

relationship between formal contingency theories and formal theories of associative learning 

(Shanks, 2007). In particular, researchers have compared the predictions of the Rescorla-Wagner 
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model of learning (R.A. Rescorla & Wagner, 1972) to formal theories of contingency (Chapman 

& Robbins, 1990; Cheng, 1997; Cheng & Holyoak, 1995). This is typically accomplished by 

determining equilibria for the Rescorla-Wagner model, and then comparing associative strengths 

of the Rescorla-Wagner model at equilibrium to probabilistic contrasts defined by contingency 

theory. An equilibrium of the Rescorla-Wagner model is the set of associative strengths defined by 

the model at the point where changes in error defined by Rescorla-Wagner learning asymptote to 

zero (Danks, 2003). While in some instances the Rescorla-Wagner model predicts the conditional 

contrasts defined by a formal contingency theory like the power PC model, in other situations it 

fails to generate these predictions (Cheng & Novick, 1992). 

The formal results relating contingency theory to the Rescorla-Wagner model have been 

assumed to also apply to connectionist models of associative learning (Cheng & Holyoak, 1995; 

Shanks, 1995). Researchers have claimed that there is a formal equivalence (Gluck & Bower, 

1988; Gluck & Myers, 2001; Sutton & Barto, 1981) between learning as defined by the Rescorla-

Wagner model and learning as defined by the so-called delta rule, which is an error-correcting 

method that is used to train simple artificial neural networks (Dawson, 2004; Stone, 1986). Such 

claims are used to support the informal conclusion that any results pertaining to the relationship 

between the Rescorla-Wagner model and contingency theory also apply to artificial neural 

networks trained with the delta rule. That is, if for at least some cases x the Rescorla-Wagner 

model and contingency theory are equivalent, and if the Rescorla-Wagner model is equivalent to 

delta rule learning, then it seems safe to conclude that for these same cases x networks trained with 

the delta rule should be equivalent to contingency theory. 

One example of this indirect argument is provided by Cheng (1992), who performs a 

detailed computational analysis of the relationship between the Rescorla-Wagner model and 

contingency theory. She emphasizes the Rescorla-Wagner model because “the learning rule it 

incorporates is a version of the ‘delta rule’ commonly used in connectionist models. My analysis 

of this model should therefore be relevant to connectionist models using this rule, whatever the 

content domain of the model” (Cheng & Novick, 1992, p. 371). However, Cheng neglects to 

conduct a computational analysis that directly relates contingency theory to artificial neural 
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networks. Cheng and Holyoak (1995) provide a second example of the indirect argument when 

they use the assumed equivalence between the delta rule and the Rescorla-Wagner model to define 

asymptotic associative weights for the latter. A third example of this indirect argument is provided 

by Shanks’ (1995) interpretation of the computation work of Chapman and Robbins (1990). In an 

appendix to their article, Chapman and Robbins prove that in a particular situation “the Rescorla-

Wagner model reduces to the ΔP rule” (p. 545). However, Shanks (1995, p. 112) uses the indirect 

argument to interpret the proof in a connectionist light, claiming that “Chapman and Robbins have 

established the very important fact that the delta rule, at asymptote, yields weights that are 

identical to ΔP.” 

However, there are important reasons to be wary of using the assumed relationship 

between the Rescorla-Wagner model and simple artificial neural networks to infer relationships 

between networks and contingency theory. First, previous proofs of the formal equivalence 

between the Rescorla-Wagner model and the delta rule (Gluck & Bower, 1988; Gluck & Myers, 

2001; Sutton & Barto, 1981) neglect to include a critical component of artificial neural networks 

trained by the delta rule – the nonlinear activation function that converts an output unit’s net input 

into activation. Dawson (2008) has shown that these proofs assume a linear relationship between 

net input and activity, and therefore do not apply to simple neural networks such as the traditional 

perceptron (Rosenblatt, 1958, 1962) that uses a step function to compute output unit activity, or a 

modern variation of the perceptron (Dawson, 2004, 2008) that uses a logistic activation function.  

When the nonlinear activation function is taken into account, a formal relationship between the 

Rescorla-Wagner model and complete (i.e. nonlinear) networks can still be established (Dawson, 

2008). However, the inclusion of the activation function imposes a crucial algorithmic difference 

between network learning and the Rescorla-Wagner model: the activation function serves as a 

theory of how internal associations are converted into network behaviour, while a theory of 

behaviour is not part of the Rescorla-Wagner (Miller, 2006; R.A. Rescorla & Wagner, 1972). As a 

result, a perceptron that uses the logistic activation can generate different behaviours than can a 

model trained using the Rescorla-Wagner model, and in many cases can overcome some 

limitations faced by the Rescorla-Wagner model (Dawson, 2008).  
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In short, the relationship between Rescorla-Wagner learning and artificial neural network 

learning is more complicated than one might expect from older comparisons (Gluck & Bower, 

1988; Sutton & Barto, 1981). As a result, it is unwise to use these older analyses as the basis for an 

indirect link between networks and contingency theory. Instead, computational analyses that 

directly explore the relationships between connectionist networks and contingency theory are 

required. The purpose of this paper is to provide one such analysis. It is proven below that when a 

simple artificial neural network reaches equilibrium for a basic contingency theory problem; this 

equilibrium appears to be quite different from the equilibrium of the Rescorla-Wagner model for 

the same contingency problem. That is, in contrast to Shanks’ (1995) connectionist interpretation 

of Chapman and Robbins’ (1990) proof, the connection weights of the network are not identical to 

ΔP. However, ΔP can be recovered by comparing the behaviour of the network in different cue 

situations. 

Deriving the Equilibrium 

Derivation 

To begin, consider the simple contingency problem that was presented earlier in Table 2-

1.  Chapman and Robbins (1990) proved that when Rescorla-Wagner learning reaches equilibrium 

for this problem the associative strength between the cue and the outcome was exactly equal to 

ΔP.  Their proof required the assumption that there were two cues involved, the one of interest (C) 

that was present on some trials and absent on others (as in Table 2-1), and a second (X) that 

represented cues from an experimental context that were present on every trial.  Rescorla-Wagner 

learning would alter the strengths of two associations, the one between C and the outcome (VC) 

and the one between X and the outcome (VX).  For the situation defined in Table 2-1, Chapman and 

Robbins found that at equilibrium VC = a/(a + b) – c/(c + d).  Let us now proceed to derive the 

equilibrium for a perceptron faced with the same contingencies. 

One can train a simple perceptron on the Table 2-1 contingency problem.  The perceptron 

would have a single input unit that would be turned on with a value of 1 when C is present, and 

turned off with a value of 0 when C is absent.  This signal would be sent through a single 

connection, with connection weight wc, to a single output unit.  The desired response of this output 
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unit would be 1 in trials in which the outcome O occurred, and would be 0 in trials in which O did 

not occur.  On any given trial, the net input net (i.e. the total signal) to the output unit is equal to 

wc times the activation value of the input unit.  A nonlinear transformation of the net input 

produces the output unit’s response for the trial.  Let us define this nonlinear transformation as the 

logistic equation, which is an activation function that is commonly employed in artificial neural 

networks (Bechtel & Abrahamsen, 2002; Dawson, 2004; Rummelhart, Hinton, & Williams, 1986): 

 
       

 

            
 

(2-1) 

The logistic equation is often described as a “squashing” function, because it is a 

sigmoid-shaped function that squashes values of net input, which can range from negative to 

positive infinity, into the range from 0 to 1.  In Equation 2-1, net is the net input from the 

perceptron’s input unit, and θ is a constant that is called the bias of the logistic equation.  When 

net input equals θ, the logistic equation returns a value of 0.5.  θ can be described as the value of 

a weight between an “extra” input unit and the output unit, where this “extra” input unit has an 

activation value of 1 for every pattern that the perceptron is presented.  In other words, the use of 

θ in the logistic equation is equivalent to Chapman and Robbins’ (1990) use of an extra cue to 

represent the constant presence of experimental context (Dawson, 2008). 

Assume that when the cue is present, the logistic activation function computes an 

activation value that we will designate as oc, and that when the cue is absent it returns the 

activation value designated as o~c.  We can now define the total error of responding for the 

perceptron (i.e. its total error for the (a + b + c + d) number of patterns that represent a single 

“sweep” in which each instance of the contingency problem given in Table 2-1 is presented once).  

For instance, on a trial in which C and O both occur (i.e. both C and O equal 1) the perceptron’s 

error for that trial is the squared difference between O and oc. As there are a of these trials, the total 

contribution of this type of trial to overall error is a(1 - oc)2.  Applying this logic to the other three 

cells of Table 2-1 overall error E can be defined as follows: 
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(2-2) 

For a perceptron to be at equilibrium, it must have reached a state in which the error term 

defined in Equation 2-2 has been optimized, so that error can no longer be decreased by using the 

learning rule to alter the perceptron’s weight.  To determine the equilibrium of the perceptron for 

the Table 2-1 problem, we begin by taking the derivative of Equation 2-2 with respect to the 

activity of the perceptron when the cue is present (oc ).  This derivative is presented as Equation 2-

3.  We also need to determine the derivative of Equation 2-2 with respect to the activity of the 

perceptron when the cue is not present (o~c).  This derivative is presented as Equation 2-4. 

   

   
                 

(2-3) 

   

    
                  

(2-4) 

One condition of the perceptron at equilibrium is that oc is a value that causes the 

derivative in Equation 2-3 to be equal to 0.  In Equation 2-5 this derivative is set to 0 and the 

equation is solved to determine the value of oc.  The reader will note that this value is equal to a/(a 

+ b), which is equal to the conditional probability P(O|C). 

                  

             

             

           

 

   
     

   |      

(2-5) 

A second condition of the perceptron at equilibrium is that o~c is a value that causes the 

derivative in Equation 2-4to be equal to 0.  In Equation 2-6 this derivative is set to 0 and the 

equation is solved to determine the value of o~c.  The reader will note that this value is equal to 

c/(c + d), which is equal to the conditional probability P(O|~C). 
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(2-6) 

To provide a concrete example of the implications of these equations, let us consider the 

result of training a perceptron on a ‘toy problem’ consistent with Table 2-1. Imagine a training set 

consisting of 20 patterns, each involving a single cue represented by the activation of a perceptron 

that has only one input unit.  The cue is present in exactly half of these patterns, and is reinforced 

(i.e. the perceptron is trained to output a value of 1.0) for 8 of these training patterns, and is not 

reinforced (i.e. the perceptron is trained to output a value of 0.0) for the remaining 2 patterns.  The 

cue is absent in the remaining 10 patterns, 2 of which are reinforced, while the remaining 8 are not 

reinforced.  This statement of the problem permits the four entries of Table 2-1 to be filled out as 

follows: a = 8, b = 2, c = 2, and d = 8.  For these table values, ΔP = (a/(a + b)) – (c/(c + d)) = 

(8/(8+2)) –(2/(2 + 8)) = 0.6. Using software developed in our lab (Dawson, 2005), a gradient 

descent rule was used to train a perceptron on this problem using a learning rate of 0.1, with the 

bias of the output unit and the connection weight randomly initiated in the range [-0.1, 0.1]. 400 

training epochs, in which each of the 20 patterns is presented once in random order, were 

conducted; after 400 epochs the network had stabilized.  At the end of this training, the weight of 

the connection between the input unit and the output unit was 2.76, and the bias of the output unit 

was -1.38.  When the cue was presented by turning the input unit on, an output value of 0.8 was 

generated, which is P(O|C). When the cue was not presented by turning the input unit off, an 

output value of 0.2 was presented, which is P(O|~C). 

Implications 

One implication of the proof developed above is that for the type of contingency problem 
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described in Table 2-1, at equilibrium the output of a perceptron trained on this problem can 

literally be described as a conditional probability.  When the cue is present, perceptron output can 

be literally interpreted as the likelihood of the outcome given the cue.  Similarly, when the cue is 

absent, perceptron output can be literally interpreted as the likelihood of the outcome in the 

absence of the cue. This was shown in the toy example provided above, where the perceptron 

activity was equal to the appropriate conditional probability depending upon the presence or 

absence of the cue. 

This result makes contact with the extensive empirical literature on probability matching.  

Probability matching occurs when the probability with which an agent makes a choice among 

alternatives mirrors the probability associated with the outcome or reward of that choice (Vulkan, 

2000). Studies involving a variety of subjects, including insects, fish, turtles, pigeons, and humans 

have not only shown the existence of probability matching, but have also shown that probability 

matching is adaptive: when the probability of reinforcement associated with a cue changes, the 

choice probabilities exhibited by the agent are quickly adjusted (Behrend & Bitterman, 1961; 

Estes & Straughan, 1954; Fischer, Couvillon, & Bitterman, 1993; Graf, Bullock, & Bitterman, 

1964; Keasar, Rashkovich, Cohen, & Shmida, 2002; Kirk & Bitterman, 1965; Longo, 1964; Niv, 

Joel, Meilijson, & Ruppin, 2002).  It was recently shown that perceptrons that use the logistic 

activation function match probabilities, and also quickly adapt these probabilities when 

reinforcement contingencies are altered (Dawson, Dupuis, Spetch, & Kelly, 2009).  The proof 

above grounds this empirical finding in mathematics by demonstrating that perceptron outputs are 

identical to conditional probabilities. 

A second implication of the proof developed above is that an equilibrium for a perceptron 

faced with the Table 2-1 contingency problem is not, as expected by Shanks (1995), identical to 

the equilibrium for the Rescorla-Wagner model.  At equilibrium, the associative strength for the 

cue C that is determined by Rescorla-Wagner training is literally ΔP.  This is not the case for the 

perceptron.  This was shown, for instance, in the example given above; in the network that was 

trained neither the connection weight nor the bias was equal to ΔP. 

Importantly, the fact that the associative strengths at equilibrium for the Rescorla-Wagner 
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model differ from those at equilibrium for the perceptron does not indicate qualitative differences 

between the two in the context of the contingency problem being solved.  That is, the two systems 

achieve equilibria that appear to be different because the two systems use associative strengths in 

different ways to produce behaviour (i.e. to generate judgments of contingency).  For the 

Rescorla-Wagner model, the general assumption is that associative strengths are converted into 

responses by a linear transformation (Dawson, 2008).  Thus, if the behaviour of such a model is to 

reflect ΔP, then ΔP must be directly represented in associative strengths, as proved by Chapman 

and Robbins (1990).  In contrast, the perceptron uses a nonlinear transformation when it converts 

associative strengths into responses.  Therefore ΔP cannot be directly encoded as a connection 

weight.  Instead, ΔP must be computed after a response is generated -- by taking the difference 

between a perceptron’s output when the cue is present and its output when the cue is absent.  For 

instance, in the example provided earlier, if after training one takes the difference between 

perceptron activity when the cue is present (0.8) and perceptron activity when the cue is absent 

(0.2), the result is 0.6, which is the value of ΔP given the representation of that problem in Table 

2-1 format. 

It might be argued that a proper difference between the two equilibria has not been 

established because one is framed in terms of associative strength, while the other is framed in 

terms of perceptron output.  However, the value of θ and the value of the connection weight wc 

can easily be computed given the results in Equations 2-5 and 2-6.  First, if one sets the value of 

the logistic function in Equation 2-1 to c/(c + d), assumes net = 0, and solves for θ, then it is 

found that θ equals ln(d/c). Second, if one sets the value Equation 2-1 to a/(a + b), assumes θ = 

ln(d/c), and solves for wc, then it is found that wc equals ln(d/c) - ln(b/a) -- which is not equal to 

ΔP.   (One can solve for wc in this case because in this simple network, when C = 1, net = wc.) 

A third implication of the proof developed above is that one cannot naively assume that 

the formal equivalence of Rescorla-Wagner learning and delta rule learning (Gluck & Bower, 

1988; Gluck & Myers, 2001; Sutton & Barto, 1981) also establishes that the Rescorla-Wagner 

model is identical to a connectionist network like the perceptron.  The analysis of the perceptron’s 

equilibrium reveals a final state that is structurally quite different from that predicted from Shanks’ 
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(1995) interpretation of the Chapman and Robbins (1990) proof.  That is, for the perceptron, ΔP is 

not directly represented as a connection weight. 

This simply suggests that further formal research is required to directly establish the 

relationship between contingency theory and artificial neural networks. Modern contingency 

theory is concerned with contrasts between probabilities in situations involving multiple cues, and 

Danks (2003) has demonstrated how equilibria for Rescorla-Wagner models can be computed in 

multiple-cue situations.  Future formal research is required to determine equilibria for artificial 

neural networks in multiple-cue situations in order to investigate the degree of agreement or 

disagreement between networks and contingency theory. Beginning such work with the study of 

simple perceptrons is likely to bear fruit, because these simple networks are still the source of 

surprising and interesting results (Fernandez-Delgado, Ribeiro, Cernadas, & Ameneiro, 2011; 

Raudys, Kybartas, & Zavadskas, 2010), and because the behaviour of perceptrons in multiple cue 

situations suggests that this simple kind of network can mimic core empirical regularities.  For 

instance, one key aspect of adaptive animal behaviour is using multiple cues to maximize survival, 

and to use changes in the information provided by multiple cues to modify behaviour accordingly 

(Gallistel, 1990).  Perceptrons have been shown to demonstrate such abilities, for instance by 

reacting to new combinations of multiple cues to modify response probabilities in a navigation 

task (Dawson, Kelly, Spetch, & Dupuis, 2010). It would be expected that formal analyses of the 

equilibria of such networks would shed a great deal of insight about their relation to more 

sophisticated versions of contingency theory. 

A fourth implication of our results follows from the third: if naïve assumptions about the 

equivalence between the Rescorla-Wagner and neural networks are incorrect (as we have 

demonstrated), then a more rigorous account of the relationship is likely to shed new insights into 

the relationships between Rescorla-Wagner learning, neural network models, and contingency 

theory.  In particular, mathematical knowledge concerning neural networks may provide new 

approaches to understanding learning about contingency. 

For example, the proof developed above was based on a quadratic definition of network 

error, because this formulation of error has been central to studying the relation between Rescorla-



40 

 

Wagner and neural network learning (Dawson, 2008; Gluck & Bower, 1988; Sutton & Barto, 

1981). However, other definitions of error are possible (Raudys et al., 2010).  For instance, some 

researchers have suggested that network error for noisy or stochastic environments might be better 

characterized in terms of measures of entropy (Baum & Wilczek, 1988; Hopfield, 1987; Solla, 

Levin, & Fleisher, 1988; Wittner & Denker, 1988), or equivalently using error metrics that 

maximize information (Plumbley, 1996, 1997, 1999).  Future research that explores the 

relationships between contingency theory, animal learning, and neural networks using the 

mathematics of information theory is likely to produce interesting and important results. 
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Introduction 

Empirical regularities in behaviour across species can aid in developing animal models of 

human cognition. In particular, comparative spatial cognition – the study of how human and non-

human animals orient and find their way in their environments – has a long history of benefiting 

from comparative methods. For example, Tolman’s (1948) classic maze experiments with rats 

included a mental map model of human spatial navigation, and directly led to O’Keefe and 

Nadel’s (1978) influential cognitive mapping theory. The diverse array of species used to model 

spatial cognition (e.g., domestic chicks, pigeons, rats) has given rise to an impressive array of 

paradigms to employ with human subjects. (For a more complete overview of comparative 

experimental spatial paradigms, see Shettleworth, 2010). 

In order to evaluate the relevance of experimental data collected from nonhuman species, 

scientists perform analogous experiments using human subjects. However, there are different 

logistical and ethical constraints on carrying out animal experiments with human subjects, the 

most dramatic of which is representing the precise environments used in animal experiments in a 

form conductive to human research. Numerous methods exist for bridging this difference. 

Collecting data on human performance in spatial awareness and navigation tasks typically 

involves an artificial, tightly-controlled environment. In one extreme, these environments may be 

immersive, including exact physical rooms (e.g. Newcombe, Ratliff, Shallcross, & Twyman, 

2010), virtual reality technology (e.g. Zhao, Zhou, Mou, Hayward, & Owen, 2007), or even 

“augmented reality” systems merging the real and virtual worlds (e.g. Mou, Biocca, Owen, Tang, 

& Lim, 2004). However, the use of immersive environments often requires substantial space, 

expensive equipment, or both. As these constraints further limit the number of simultaneous 

participants, these methods also require extended data collection periods. 

As an alternative, some research paradigms are implemented in a non-immersive manner, 

typically on readily-available desktop computers. These can range from static images (Kelly & 

Bischof, 2005) to customized commercial first-person video games (Sturz & Bodily, 2010; Talbot, 

Legge, Bulitko, & Spetch, 2009). Non-immersive methods are simpler and less expensive to 

deploy than virtual reality equipment, and can run multiple subjects simultaneously with ease, 
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allowing for faster data collection. Furthermore, visual spatial learning experiments performed in 

appropriate non-immersive virtual environments appear to produce results indistinguishable from 

those performed in real-world versions of the same task (Kelly & Gibson, 2007; Sturz, Bodily, 

Katz, & Kelly, 2009), suggesting that non-immersion is not a drawback for these purposes. 

 However, these non-immersive methods often create their own barriers to research: 

restrictive software licenses and unique internal programming languages may present obstacles to 

researchers (especially those without extensive programming expertise), and as a result involve 

significant effort spent on merely implementing new experiments instead of actually running 

them. For instance, designing new environments in the popular Half-Life 2 game platform (Valve 

Software, Bellevue, WA) requires sophisticated knowledge of C++ in order to script basic events, 

and the terms of its academic license prevent sharing of specific methods between institutions. To 

summarize, while non-immersive three-dimensional platforms may provide similar results to their 

immersive counterparts in spatial tasks, even setting up these programs can be time consuming 

and expensive, often requiring advanced programming knowledge. What is needed is a user-

friendly platform which does not require advanced programming skills and is easy to set up and 

deploy. 

This paper presents an alternative to traditional game platforms: a non-immersive virtual 

world and experimental engine constructed using entirely open source tools available under free 

software licenses4, designed to be extended to a wide array of spatial navigation or orientation 

experiments, and deployable with a minimum level of technical complexity. Users with no prior 

programming knowledge are able to set up and run classic spatial experiments with relative ease, 

and more experienced technicians can extend the logic to handle non-standard tasks far beyond 

those presented here. This virtual world is a simplified deployment of the fAARS system (for 

Augmented Alternate Reality Services, Gutiérrez, 2012), and as such is referred to as “fAARS-

Lite” here. Here, we describe the structure of this system and provide examples of its use with 

basic spatial navigation paradigms.  

 
4
For more information on free software licenses, including details on those used here, visit the Free Software Foundation at 

http://www.gnu.org/licenses/license-list.html. 

http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html
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Generally speaking, with no modification, fAARS-Lite is capable of modeling any 

experiment in which subjects move freely through a specified environment, reach a particular 

location, (optionally) receive feedback, and then are made to repeat the process, whether in the 

same environment, an altered environment, or a novel environment. No special interaction with 

the world beyond movement is needed from subjects by default (i.e. subjects need only move to a 

location, as opposed to clicking on virtual objects).  Several classic spatial navigation paradigms 

fit this template, including the radial arm maze (Olton & Samuelson, 1976), the Morris water 

maze (Morris, 1984), and the geometric arena (Cheng, 1986). Details on implementing these 

paradigms using fAARS-Lite are included below. 

Apparatus Structure 

fAARS-Lite consists of three broad systems: an open-source client-server virtual world 

package, a collection of trigger scripts placed within this world, and an external control engine that 

coordinates the experiment based on the simulation’s current state and user-specified rules. As a 

system, it can be considered an event-driven machine, existing in a specific combination of states 

(locations, rules, conditions, and so on) until particular events (subject actions) occur to change the 

system. A schematic representation of these systems and the relationships between them is given 

in Figure 3-1. 
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Figure 3-1: The fAARS-Lite system schematic. Not pictured: Signal objects, which would appear or 

disappear over each client’s interface in response to Target activity.  

Virtual World 

The virtual world has been implemented in the client/server architecture style, allowing 

for multiple subjects to participate in experiments simultaneously. The communication between 

the server and the client is done asynchronously through HTTP using a set of RESTful APIs. 

The virtual world client is constructed using the OpenSimulator (“OpenSim”) program 

(http://www.opensimulator.org), an open-source alternative to the commercial Second Life 

platform (Linden Labs, San Francisco, CA.). A copy of the virtual world is installed and run 

locally on each client computer, along with a viewer program to display the environment in a form 

recognizable to the subject. We used the Hippo Viewer (MJM Labs, http://mjm-labs.com/viewer/) 

for this task, as it is also freely available under an open license. OpenSim and Hippo Viewer 

communicate through HTTP using the XML-RPC method. Together, they allow the researcher to 

construct a three-dimensional virtual world, known as a region, using the mouse and a graphical 
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interface. By default, these clients include a visible third-person avatar; in our distribution, we 

render the avatar invisible, which produces the subjective effect of first-person movement. 

The virtual world server consists of a common database running on a MySQL server 

(MySQL AB, http://www.mysql.com). This database serves two purposes: maintaining a log of all 

observations sent to the server from the client, and containing the current state of every active 

experiment. These states consist of valid sets of stimuli (e.g., a training set and a testing set) and a 

list of rules for moving between these states, both specified by the researcher. These states and 

rules are provided to the server in the form of a CSV file generated in any spreadsheet package 

(such as Microsoft Excel or OpenOffice). 

Trigger Scripts 

fAARS-Lite contains five basic classes of control objects used to direct the flow of each 

experiment in response to the subject’s behaviour. These objects contain prepared scripts written 

in OpenSim’s internal LLScript language. Although they can be extended, they are capable of 

replicating many classes of spatial task without further modification: 

1. Targets, typically attached to a goal region or action trigger, are locations of interest 

for a subject, e.g., corners or specific locations in arenas that the subjects can select. 

2. Destinations, used to mark different start locations or experimental conditions. 

3. Signals, which temporarily override the subject’s vision, and allow messages or 

selection feedback to be sent while hiding certain effects from view. 

4. The Scheduler serves as a controller and communicator, linking all the components of 

the client’s virtual world with information supplied by the server. 

5. The Broadcaster broadcasts specific parameters throughout the virtual world, 

allowing a researcher to quickly configure the system for a new participant or 

experiment from within the virtual world itself. 

A typical virtual world contains one scheduler, one broadcaster, and any number of 

signals, destinations, or targets as appropriate. Other objects besides these are also possible but 

need not contain any additional scripts; for example, inert walls may be created within Hippo 

Viewer to restrict a subject’s movement or vision, or distinctive landmarks added to provide 



49 

 

feature stimuli. These objects are placed in the region graphically, within Hippo Viewer, using the 

mouse to drag-and-drop them from a menu. Beyond filling in a unique ID name for each object, 

further alteration of the trigger scripts is not required. 

Unless modified, each Target will wait until the subject approaches it, at which point it 

will activate a Signal and send data to the control engine. The Scheduler will receive new 

instructions from the engine based on this data, and will move the subject to the next Destination, 

facing a random direction. The Broadcaster is used during setup, providing global variables such 

as a unique subject ID and the address of the server to the other objects. 

Control Engine 

fAARS-Lite uses the same engine as the full fAARS package (Gutiérrez, 2012). This 

engine is in charge of processing each client’s (i.e., participant’s) rules and states according to the 

logic of the experiments stored in a database. It has been implemented as an event-driven service-

oriented architecture using PHP, managed using the open-source program PHPMyAdmin 

(http://www.phpmyadmin.net). It runs on the Apache Web Server (http://www.apache.org), which 

allows us to expose the engine’s functions to the clients as a set of RESTful APIs. 

The machine consumes events that happen in the client side - events such as a subject 

moving onto a Target. In response to this event, the engine reads and applies the appropriate rule 

from the server’s database, and changes the subject’s current state accordingly (e.g., providing the 

participant with feedback when it makes a choice). Once the rules have been applied, and the state 

of the subject is updated and saved in the server’s database, the engine sends a signal to the 

corresponding client, allowing the client to re-locate the subject in the virtual world according to 

their state during the experiment. All of these procedures are hidden from the subject through 

behind-the-scenes operations and use of virtual world elements (i.e. Signal objects). 

Examples of Implementation 

Within this general structure, experimenters can easily implement classic animal spatial 

paradigms with human participants using fAARS-Lite. Here, we consider three common spatial 

experiments: the radial arm maze (Olton & Samuelson, 1976), the Morris water maze (Morris, 

1984), and the geometric arena (Cheng, 1986) and discuss their general implementation using 
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fAARS-Lite. A basic outline for building each required virtual environment (placing inert objects 

and trigger scripts within Hippo Viewer using the mouse) and defining the experimental protocol 

(the CSV spreadsheet containing the set of states and rules uploaded to the server) is provided for 

each experimental paradigm. 

Radial arm maze 

In the simplest form of this paradigm (Olton & Samuelson, 1976), subjects are introduced 

into a hub surrounded by a number of arm-like hallways which are, in principle, indistinguishable 

from each other from the perspective of the subject apart from specific cues supplied by the 

experimenter. In the original study, these cues involved “extramaze” information, such as the 

furniture surrounding the maze, but in practice these can vary. In the basic (free-choice) condition, 

the subject is allowed to freely wander through the halls until it finds reinforcement in the form of 

food at the end of one of these arms. On subsequent trials, these arms may be rotated or shuffled 

(e.g., changing the relative position of the halls to stable cues, to each other, or to both) to test 

which cues the subject used in isolating the reinforced arms from the non-reinforced arms. The 

radial arm maze was originally conducted with rats (Cole & Chappell-Stephenson, 2003; Olton & 

Samuelson, 1976), but has since been modified and conducted with pigeons (DiGian & Zentall, 

2007; Spetch & Edwards, 1986), bees (Brown & Demas, 1994), gerbils (Wilkie & Slobin, 1983), 

and gorillas (MacDonald, 1994). Analogues of Olton and Samuelson’s radial arm maze have been 

carried out with human participants, with varying results. However, practical limitations (e.g., 

size) of replicating a similar real-world task with humans have restricted these experiments to 

extremely small-scale tasks where participants are required to open the lids on containers which 

are arranged in a circular pattern on a table (Abrahams, Pickering, Polkey, & Morris, 1997; 

Rahman, Abrahams, & Jussab, 2005) or work with a drawn-on-paper version of the task 

(O’Connor & Glassman, 1993). While these analogues may be similar in design, both the scale of 

the experimental set-up and the lack of human immersion (i.e., first-person view from within the 

radial arm maze) present potential limitations. 

Implementing the classical radial arm maze (Olton & Samuelson, 1976) in fAARS-Lite 

and allowing research with human participants in a virtual-world setting would be straightforward. 
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The region consists of walls defining eight assorted hallways; these walls do not extend above the 

subject’s field of view, allowing for a fixed set of extramaze information (additional graphical 

elements) to be included in the region. A Destination object is placed in the center of the hub, and 

a uniquely-named Target is placed at each end. This enclosure, along with all extramaze 

information, is copied for each of the different rotations or shufflings planned for the experiment; 

these separate shufflings can be masked from the subject through large dividing walls placed 

beyond the extramaze cues. The Scheduler and Broadcaster are placed outside the main 

enclosures, out of view and accessible only by the experimenter. 

On the server, we upload a CSV representing the basic protocol. That CSV might broadly 

define two “phases” - free-choice, and test. Free-choice would define some number of the Targets 

as reinforced (all other Targets are non-reinforced), and would require the subject to make a 

certain number of choices, receiving feedback from a Signal each time, before advancing to 

testing. The test phase takes place in a separate copy of the arena, with the arms shuffled and 

reinforcement conditions changed. 

A participant would experience this study as if he were moving through a radial arm 

maze. When the participant reaches the end of a hallway, he/she is informed whether the choice 

was correct or incorrect via a splash screen (a Signal object which appears in response to a subject 

touching a Target). This would remain visible for a few seconds, completely obscuring the 

participant’s view of the maze. By the time this screen disappears, the participant finds him/herself 

back in the center of the arena, facing a random direction, and the experiment continues. During 

the shift from “free-choice” to “testing”, nothing subjective would change: the feedback Signal 

splash screen fades and the participant finds himself in essentially the same arena, except now the 

hallways that corresponded to earlier reinforcement may be in different directions. During this 

time, the server automatically logs every Target the participant walks into in the order they are 

chosen. This allows the researcher to check for any systematic search patterns predicted by the 

specific cues present in this task. 
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The Morris water maze 

 In this classic paradigm (Morris, 1984), subjects (typically rats) are placed in a geometric 

aquarium filled with an opaque water mixture. During training, they are led to a submerged 

platform by way of a visible beacon; presumably they also acquire information about the location 

of the platform from the shape of the arena during this time. During testing, the beacon is 

removed, and the subject’s search pattern is recorded. Although designed for rats, human versions 

of the Morris water maze task have been performed, employing direct physical analogues 

(Newman & Kaszniak, 2010), customized software (Hamilton, Driscoll, & Sutherland, 2002), and 

commercial software specially adapted to the task (Skelton, Ross, Nerad, & Livingstone, 2006). 

The fAARS-Lite interpretation of the Morris water maze is straightforward, even though 

the subjects are not “swimming”. The region consists of a large geometric arena with a Destination 

placed in the center, with a single invisible Target placed at some location to represent the 

submerged platform. Two copies of the arena exist - a training arena with an extra visible beacon 

(e.g. a pillar) over the Target, and a testing arena where this beacon is absent. 

The server-side control CSV for this basic task is essentially identical to that of the radial 

arm task described above - subjects are allowed to roam freely until they find the Target, 

whereupon they are reinforced and returned to the training environment’s Destination, facing a 

random direction. After completing a specified number of training trials, the server deposits them 

in the testing arena, and subjects must find the Target without relying on the visible beacon. 

The basic form of data from a water maze task involves viewing a recording of the 

animal and scoring its time spent searching for the platform in particular regions. This can be 

accomplished directly within fAARS-Lite through a screen-capture program such as Fraps 

(http://www.fraps.com), but it also serves as an example of how a technician can modify the 

fAARS-Lite logic for specific tasks. By default, the Target script records the subject’s choice, 

displays a feedback Signal screen, and teleports the subject to the next Destination the server 

provides. It is trivial to remove these last two functions, creating a “Dummy Target” object, which 

can readily be placed throughout the arena at strategic points. Whenever the subject touches a 
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Dummy Target, the time and location of the touch is recorded, allowing a complete reconstruction 

of their search path and timing from the data automatically collected by fAARS-Lite. 

The Geometric Arena 

 Inspired by Cheng (1986), the basic geometric arena paradigm pairs specific feature cues 

(colored wall panels) with enclosed arenas of specific shapes. Subjects are required to find hidden 

reinforcers, typically in the corners of these environments, by learning which combination of 

geometric and feature cues correspond to reinforcement. The experimental manipulation changes 

the relative configuration of these cues, allowing experimenters to place the cue types in conflict 

or remove one type of cue altogether. Unlike the previous two tasks, these studies frequently 

involve multiple arenas being tested simultaneously (for instance, subjects trained in a rectangle 

with a feature in location X might be simultaneously tested in a rectangle with a feature in location 

Y, a rectangle without features, or a square arena with a feature in location X). Studies of this sort 

have been carried out with rats, chicks, pigeons, fish, and both human and non-human primates 

(reviewed in Cheng, 2008 and Cheng & Newcombe, 2005).  

Bringing this task to life in fAARS-Lite is very much like combining the previous two 

tasks. Within the client’s virtual world, each training condition consists of its own enclosed arenas, 

composed of four walls in a particular configuration and a unique Destination in the center. A 

unique Target is placed in each corner, along with any visible feature cues appropriate to the 

experiment. As in the experiments above, the testing condition consists of a copy of the training 

environments with the appropriate cues moved or removed. 

The server-side implementation is identical to the radial arm maze with one exception: 

During the testing phase, multiple arenas are specified as valid. The fAARS-Lite engine 

automatically generates a randomized presentation schedule for these arenas, such that each arena 

is presented a specified number of times but randomly interspersed with visits to other, 

simultaneous arenas (in order to prevent order effects). As in the above examples, “resetting” - 

travel between a chosen Target and the next Destination - is masked from the subject’s view via 

the Signal’s feedback screen. 
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fAARS-Lite has been used successfully in the literature to model geometric arena tasks. 

Lubyk, Dupuis, Gutiérrez and Spetch (2012) used fAARS-Lite to implement a human analogue of 

a geometric arena task originally designed for chicks (Tommasi & Polli, 2004) and pigeons 

(Lubyk & Spetch, 2012). In this paradigm, subjects were trained to locate specific corners in 

parallelogram-shaped arenas. These corners are identified through unique wall-length 

configurations (i.e. long left wall, short right wall) as well as their angular amplitude (i.e. acute or 

obtuse). Subjects were then tested in rectangular arenas (in which all four corners are the same 

angle), rhomboid arenas (in which the wall lengths are all identical), and mirror-image 

parallelogram arenas (in which the angle and wall-length cues from training are in conflict).  

fAARS-Lite was configured as described above, with Targets in each arena corner, Destinations 

set in each arena center, and Signals configured to provide “correct/incorrect” feedback messages 

during training, and “no feedback” messages during testing. Up to six subjects were tested 

simultaneously, with 99 human subjects in all. Lubyk et al. (2012) found that subjects had 

encoded both wall-length and angular information, and that the latter was weighted more heavily 

in conflict tests. These results with humans are comparable to existing animal data with both 

species of bird discussed above. A direct comparison between all three species is straightforward, 

as these experiments are direct analogues of each other, and because non-immersive virtual 

methods produce results comparable to immersive methods (Kelly & Gibson, 2007; Sturz et al., 

2009). 

Conclusion 

The fAARS-Lite platform provides an effective tool for comparative cognition 

researchers interested in human performance on spatial tasks.  Constructed completely from free 

and well-documented open-source software, and organized through a graphical user interface 

(instead of being programmed using text-based commands), it is easy to set up and deploy without 

significant investment in funding, time, or expertise. The platform’s logic is very basic, and can be 

used without modification to recreate any task that involves sequential visitation. This article 

provided example arrangements for three classic spatial paradigms – the radial arm maze (Olton & 
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Samuelson, 1976), the Morris water maze (Morris, 1984), and the geometric arena (Cheng, 1986) 

– but a potentially limitless variety of tasks can be described using the same logic.  

An even wider range of tasks can be modeled with slight modification of some of the 

component systems. For example, Target objects currently activate if a participant moves into 

contact with them, representing movement into a particular region of space. While this is sufficient 

for many tasks, others require more interaction with the environment. This could be modeled in 

fAARS-Lite by adjusting individual Target scripts to activate in response to a different action, 

such as a mouse click.  
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Introduction 

Any mobile agent, capable of navigating through its world, must be able to find its 

bearing and orientation to do so. Researchers have developed a number of paradigms to 

investigate this ability, the foremost of which is the ‘reorientation task’ (Cheng, 1986). Within a 

reorientation task, agents are placed inside a controlled arena which contains a specific set of cues, 

and are trained to search a particular location for reinforcement. Following testing, the arena is 

reconfigured, and the changes in agent search patterns are recorded. 

A typical reorientation task uses a quadrilateral arena, with four locations of interest (one 

in each corner). While some exceptions exist (Cheng, 1986; Newcombe, Ratliff, Shallcross, & 

Twyman, 2010), the overwhelming majority of reorientation experiments conform to this structure 

(Cheng & Newcombe, 2005). The emphasis on corners has some desirable properties – for 

instance, in a rectangle, corners that are diagonally opposite are geometrically identical. Observe, 

in Figure 4-1A, Locations 1 and 3 both have identical geometry (long wall on the right, short wall 

on the left, both walls joined at a 90° angle). Because of this, if an agent was choosing a location 

on the basis of geometry alone, it would have the same likelihood of visiting Location 1 as it 

would of visiting Location 3. This led to the discovery that rats processed geometric cues even 

when they could be completely ignored (Cheng, 1986; Gallistel, 1990). In a typical study (for 

instance, Wall, Botly, Black, & Shettleworth, 2004), Location 1 of Figure 4-1A would be 

reinforced when visited, to indicate that it was the ‘correct’ location. Furthermore, a unique 

landmark – a non-geometric identifier – would be placed at that location. This landmark provides 

sufficient information for an animal to learn the ‘correct’ location; geometric information is not 

required, and is in fact less reliable, because the geometric features at Location 1 are also present 

at the non-reinforced Location 3. Nevertheless, if, after training, the rat is placed in a new arena in 

which the ‘correct’ landmark has been moved to Location 2, its behaviour will typically indicate 

that geometric cues were encoded. That is, it will have a high likelihood of visiting Location 2 in 

the new arena (indicating that non-geometric cues were learned), but will also visit Locations 1 

and 3 (indicating that geometric cues were also learned). Such results led to the development of 

the geometric module theory (Cheng, 1986; Gallistel, 1990), which is based on the assumption 
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that geometric cues are processed independently of non-geometric cues, and that the processing of 

geometric cues is mandatory. 

 

Figure 4-1: Possible configurations of targets in a rectangular arena. Many tasks concern themselves 

solely with corners (A), but similar relationships (i.e. long wall to the left of the target, short wall to 

the right of the target) can occur in other locations, such as along walls (B). Such arenas therefore 

need not be limited to four locations of interest (C). 

 

 The geometric module theory is an example of an insight into navigation provided by the 

reorientation task. This fairly straightforward task has been a fruitful source of information about 

navigation, and has been used to study a wide variety of organisms, including ants, fish, rats, 

birds, and humans (review in Cheng, 2008; Cheng & Newcombe, 2005). While this informative 

task is straightforward to describe and provides data that is easily analyzed, it is important to 

realize that it is expensive to conduct. Particularly when using animal subjects, an experiment 

requires considerable commitment of resources, because subjects must be run individually and it 

takes a fair amount of training for a subject to learn the ‘correct’ location before being placed in a 

novel arena. It would be convenient if there was a less expensive medium in which to explore the 
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reorientation task, with the aim of discovering interesting hypotheses that could then be tested 

with a traditional (and more expensive) experiment. 

 Computer simulations are one less-expensive medium that can be used to explore 

domains of interest. Lewandowsky (1993) has pointed out that computer simulations can provide 

several advantages for theory development in cognitive science. These include formalizing a 

theory in such a way that rigor is improved, and providing more precise tools for studying 

concepts of interest. Additionally, a working computer simulation can be used to reveal tacit 

assumptions hidden within a theory. Finally, a computer simulation can itself lead to serendipitous 

findings, particularly when it is presented novel situations. It would seem that if one had a 

plausible computer simulation for the reorientation task, then it could be used to explore new 

situations with ease, and could possibly generate unexpected predictions. These new simulation-

based predictions could then be tested with a traditional experiment, particularly if a researcher 

felt that the predictions were interesting enough to warrant the experiment’s expense. 

 Fortunately, a plausible computer simulation for reorientation has been proposed 

(Dawson, Kelly, Spetch, & Dupuis, 2010) in the form of a simple artificial neural network called a 

perceptron (Rosenblatt, 1962). In its standard form, a perceptron consists of a single bank of input 

units which numerically encode patterns of stimuli; these input units are linked via weighted 

connections to an output unit, which transforms this weighted net input signal into response 

behaviour. The strength of the connection weights is then updated following a specified learning 

rule, designed to minimize the difference between the output unit’s activity and the desired 

response to that particular input pattern. A perceptron trained with a standard learning algorithm 

has been shown to generate most of the interesting regularities found in reorientation task 

behaviour (Dawson, Kelly, et al., 2010). An operant perceptron model of reorientation, which uses 

a more psychologically plausible learning algorithm, has also been proposed, and has shown some 

promising results (see Chapter 1 and Dawson, Dupuis, Spetch, & Kelly, 2009). The purpose of the 

current paper is to illustrate how an operant perceptron can be used to explore reorientation by 

observing the model’s behaviour when novel reorientation paradigms are simulated. We 
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demonstrate that this kind of computer simulation can generate interesting predictions which can 

then be tested using more traditional experimental methodologies. 

 Part of the power of computer simulations is that, by revealing tacit assumptions about 

the processes responsible for phenomena of interest (Lewandowsky, 1993), they also provide the 

means to challenge, or even negate, those assumptions. In the case of reorientation, while the 

geometric module theory had a strong early impact for many years, it has recently been 

questioned, with some researchers arguing for it to be abandoned completely (Cheng, 2008; 

Twyman & Newcombe, 2010). If reorientation is accomplished without the use of a geometric 

module, then what mechanisms might instead be responsible? One alternative to the geometric 

module is an appeal to general principles of associationist learning (Miller & Shettleworth, 2007). 

According to this view, there is no geometric module, but both geometric and non-geometric 

features are treated in the same manner as being sources of information (i.e. cues). Agents use 

standard learning procedures to associate the various available cues (both geometric and non-

geometric) at a location with the likelihood of being rewarded at that location. A model employing 

this approach has been shown to be capable of simulating many reorientation task regularities 

without an appeal to the geometric module (Miller, 2009; Miller & Shettleworth, 2007, 2008). 

However, serious empirical and theoretical problems with this model have been identified (see 

Chapter 1 and Dawson, Kelly, Spetch, & Dupuis, 2008). The standard perceptron corrects these 

problems, and also models reorientation regularities (Dawson, Kelly, et al., 2010). The operant 

perceptron captures the same regularities as the standard perceptron, but does so with an even 

more realistic conception of learning in the reorientation paradigm (Chapter 1). Despite their 

mathematical differences, as reactions to geometric modularity both the purely associationist and 

perceptron models were developed in the spirit of challenging the assumptions about the processes 

underlying reorientation. 

 

Exploring Assumptions Used To Define The Reorientation Task 

Because perceptrons are plausible computer simulations for studying reorientation, they 

enable the exploration of other challenges, concerning not just assumptions about reorientation 
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processes, but also assumptions about the reorientation paradigm itself.  For example, although the 

prototypical reorientation paradigm (Cheng, 1986) employed a grid spanning the entire arena for 

measurement, it was noted earlier that a common feature of most modern reorientation 

experiments is the emphasis on corners as the only locations of interest. Might performance on the 

reorientation task be affected if agents were trained to go to locations that are not at corners? Are 

corner locations special in some way? 

 According to associationist theories of reorientation, corner locations should not be 

special. These theories, based on the work of Rescorla and Wagner (1972), posit a view of 

learning largely based on cue competition. Applied in to the reorientation task, this suggests that a 

location is merely a collection of cues that can be exploited as signals of potential reinforcement. 

From this perspective, there should be no fundamental behavioural difference between a location 

of interest at a 90° corner, and one along a 180° wall. In effect, a location under consideration 

along a single wall “divides” the wall into a left and right segment, exactly as a corner does, with 

only the angle of intersection distinguishing them. Under this associative viewpoint, it would 

appear that locations of interest need not be constrained to corners. 

 Another tacit assumption that guides experimental studies of reorientation concerns the 

number of target locations. The vast majority of reorientation studies have used quadrilateral 

arenas, typically rectangles or squares (review in Cheng, 2008; Cheng & Newcombe, 2005), and 

less commonly in kites (Dawson, Kelly, et al., 2010; Pearce, Good, Jones, & McGregor, 2004) or 

parallelograms (Lubyk & Spetch, 2012; Tommasi & Polli, 2004). In these studies, the corners of 

these arenas have been used as target locations, and therefore all of these experiments have studied 

reorientation using four different locations. Furthermore, this paradigm only makes available two 

different instances of geometric cues (long wall on the left and short wall on the right of a corner, 

short wall on the left and long wall on the right of a corner). Only a handful of studies have used 

arenas that are not quadrilateral (i.e. Newcombe et al., 2010), and have therefore made available 

more than 4 target locations (again assuming that locations of interest are always positioned at 

arena corners). To our knowledge, no experimental studies of reorientation have explicitly 

compared situations in which the number of target locations has been systematically varied. 
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  However, it is important to study the effect of varying the number of target locations, 

because some theories predict that this variable should affect learning in the reorientation task. For 

example, Miller and Shettleworth’s (2007, 2008) associative model uses a measure of the 

probability of an agent visiting a particular location in its learning equations. This measure is 

expressed as the net attractiveness of the location as a proportion of the total net attractiveness of 

every location. This proportion will obviously be affected by the number of locations that are 

summed in its denominator. All else being equal, this will predict (at least initially) one-half the 

normal rate of learning for tasks with 8 locations relative to tasks with 4 locations5.That is, the 

Miller-Shettleworth model predicts that learning the reorientation task will slow down as the 

number of possible locations of interest increases. Do other models, such as the perceptron, also 

make this prediction?  

Furthermore, as more locations are added to a standard reorientation arena (Figure 4-1C) 

a greater variety of geometric cues must be processed. For instance, there are four different 

geometric configurations that can be distinguished in Figure 4-1C, which again would be expected 

to slow reorientation learning in a theory like Miller and Shettleworth’s (2007, 2008) associative 

model. Does the number of target locations affect human learning in the reorientation paradigm, 

and does it do so in a fashion predicted by computer simulations? The current paper represents an 

attempt to begin the exploration of such questions. 

 The purpose of the current manuscript is to investigate the two main issues raised above. 

First, we attempt to evaluate the role that the nature of a location – at a corner or at a wall – has on 

reorientation behaviour. Second, we investigate the impact that changing the number of locations 

of interest has on reorientation behaviour. These distinctions are depicted in Figure 4-1. Figure 4-

1A illustrates the typical position of possible target locations in a standard reorientation task that 

uses a rectangular arena. Figure 4-1B provides an analogous arena, but one in which the locations 

of interest are not found at corners. Figure 4-1C shows how one can combine the first two arenas 

into a third that has 8 locations of interest instead of the typical 4. 

 
5 Due to other serious mathematical flaws with the Miller and Shettleworth (2007, 2008), detailed at length in Chapter 

1, we will not go into further detail with this model here. 
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This paper proceeds as follows: It begins by using an operant perceptron (see Chapter 1 

and Dawson, Dupuis, Spetch, & Kelly, 2009) to simulate the reorientation task in the various 

arenas illustrated in Figure 4-1. These simulations are used to make predictions about the effects 

of type of location and of number of locations on reorientation behaviour. The results of these 

simulations provide two key predictions: 1) corner locations are not inherently special, and 2) 

doubling the number of target locations has a negligible effect on the speed at which the model 

learns to reorient. Next, we report the results of testing these predictions using human subjects in a 

virtual world (see Chapter 3).  Finally, we explore the similarities and differences between the 

associationist model and the human data. We argue that the operant perceptron is a useful source 

of predictions that can be supported by experimental data. As a result, the operant perceptron 

appears to provide a medium in which reorientation can be plausibly explored for the purpose of 

seeking surprising and interesting results that can later become the focus of traditional 

experimentation. 

Simulation 

From the perspective of theories of reorientation that appeal to a geometric module 

(Gallistel, 1990), angle information present at a corner is typically viewed as a global, geometric 

property. However, from an associationist perspective, a “corner” could be perceived as a visually 

salient “focal point” that serves as a reference, with the angle simply being a (local) feature of that 

location. The intersection between walls provides a distinct boundary, from which the length of a 

wall can be measured. For instance, in Figure 4-1B,  Location 1 sits at the junction of a short wall 

on its left and a long wall on its right, with an intersection angle of 180°.   

With this in mind, we devised a method of representing any location along the edge of an 

arena that treats angle information as a feature. This representation permitted us to present 

locations to perceptrons, even when these locations were not at a corner in a reorientation arena. 
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The Perceptron 

Perceptron Reorientation 

 As was noted earlier, a perceptron (Rosenblatt, 1962) is a simple artificial neural network 

in which a set of input units are directly connected to an output unit via weighted connections. The 

input units represent stimuli; their activation causes signals to be sent through the weighted 

connections to produce a response in the perceptron’s output unit. Feedback can be provided to the 

network about its response so that it can modify its connection weights. This permits the 

perceptron to learn to generate a desired response to each stimulus in a set of training patterns. 

 To simulate the reorientation task, each location of interest in an arena is represented as a 

stimulus in the set of training patterns. For each of these patterns, input unit activity is used to 

represent which cues (geometric and non-geometric) are present at a particular location. If a 

location is deemed to be ‘correct’, then the perceptron is reinforced when that location’s cues are 

presented. If a location is not deemed to be ‘correct’, then the perceptron is not reinforced when 

that location’s cues are presented. In other words, the perceptron is trained to produce an activity 

of 1 to sets of cues corresponding to ‘correct’ locations, and an activity of 0 to sets of cues 

corresponding to ‘incorrect’ locations. 

 In order to train the perceptron to learn to reorient in a particular arena, one must make 

design decisions about how to represent the available cues, and about the learning rule that is used 

to modify the network’s connection weights. The details of these design decisions are provided 

below. 

Defining the task: Stimuli 

Each location identified in Figure 4-1 can be defined as a collection of properties, which 

are presented to the perceptron as a pattern of unary-coded inputs. That is, each of the perceptron’s 

input units encodes the presence or absence of a specific cue. Each of these units is turned on 

(activated with a value of 1) when the property it encodes is present, and is turned off (activated 

with a value of 0) when that property is absent. In the current simulation, each location of interest 

is defined by three types of cues: the length of the walls on either side of the location, the angle 
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between the walls where they join, and the kind of local landmark that can be present at the 

location. 17 different input units were used to represent the possible values of these cues as is 

summarized in Table 4-1. 

Table 4-1 

Encoding of a location’s properties and the agent’s response using an operant perceptron. 

Unit Codes For Encoding Example Values Example Encoding 

Inputs 1-2 Angle at target Unary coding, 2 units 90°  

180°  

1 0 

0 1 

Inputs 3-11 Color of target Unary coding, 9 units Red 

Green 

Yellow 

Blue 

Orange 

Black 

Brown 

Purple 

White 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 

Inputs 12-17 Configuration of wall 

lengths at target 

Unary coding, 6 units Left 3, Right 6 

Left 6, Right 3 

Left 2, Right 1 

Left 2, Right 4 

Left 4, Right 2 

Left 1, Right 2 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

 

 The angle units (1-2) identify the angle of intersection at the location. These units have 

one value for locations at corners (90° angle), and another value for locations along walls (180° 

angle). The feature units (3-11) represent the collection of non-geometric properties present at a 

given location. For parsimony with the experiments described later in the manuscript, these units 

are named after colors; as such, these units can be thought of as representing the color of an object 

at the location.  

The length configuration units (12-17) represent the specific set of wall-length properties 

present at a location. For example, one unit is turned on for a location at the intersection of a wall 
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of length 3 with a wall of length 6, while another might be turned on if the location lies between 

walls of length 2 and 1. This is an extension of Miller and Shettleworth’s (2007, 2008) 

representation for specific geometries that allows for a number of possible configurations – up to 

six in the current simulation. This is required when more than 4 locations of interest are used 

(Figure 4-1C). 

 This particular set of design decisions defines this encoding as a purely local code – that 

is, each pattern contains only information present at the location it represents, and no information 

from any other location. Similarly, this encoding contains no global representation of the arena, 

either explicitly (i.e. a principal axis, Cheng & Gallistel, 2005) or implicitly (as in Miller and 

Shettleworth’s (2007, 2008) model summing across all locations), save for the number of patterns 

presented. 

Defining the task: Response 

This simulation includes a single output unit that uses the logistic activation function 

(Dawson, 2008) to convert the total weighted signal coming from the input units into a response 

that can range between 0 and 1. For locations that are reinforced, the perceptron is trained to turn 

on (output activity = 1); for locations that are not reinforced, the perceptron is trained to turn off 

(output activity = 0). Because, during learning, perceptron activity falls in the continuous range 

between 0 and 1, at any moment in time, the perceptron’s output can be interpreted as its 

estimation of the likelihood of receiving reinforcement at the current location (see Chapter 1, also 

Dawson, Dupuis, Spetch, & Kelly, 2009).  

Training Method 

A perceptron’s response to particular patterns of stimuli is not perfect; each generated 

response differs from a desired response by some error amount. This error is then used by a 

learning rule to adjust the perceptron’s connection weights such that subsequent presentations of 

that pattern of stimuli produce a smaller error. Here, we employ the gradient-descent learning rule 

(Dawson, 2004, 2008), which has desirable properties when working a logistic perceptron 

response. 
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This output response provides a critical distinction between neural network models and 

traditional associative models in the style of Rescorla and Wagner (1972). The perceptron’s output 

activity allows it to convert associative strength of assorted cues into a model of behaviour. This 

stage is absent from traditional associative models. Not only does this difference allow 

perceptrons to produce different predictions from formally-equivalent associative models 

(Dawson, 2008), it also allows us to adjust the model’s learning to reflect different patterns of 

behaviour. 

In the current model, this measure of behaviour is used to adjust the perceptron’s learning 

from classical conditioning to operant conditioning, where it is allowed to ‘choose’ whether or not 

to investigate a particular location, and this investigation (rather than rote presentation) governs its 

learning.  Instead of updating connection weights after every pattern of cues is presented, the 

perceptron’s output response to that pattern is used as the probability of updating weights on this 

presentation. At each presentation, a random number between 0 and 1 is generated and compared 

to the output response; if the random number exceeds the output response, the connection weights 

are not updated, and the next pattern is presented. This algorithm is detailed at length in Chapter 1.  

 Simulation Specification 

Training 

The current simulation includes two experimental conditions: one with four locations of 

interest, and one with eight locations of interest. Each location is present at either a wall or a 

corner, and contains a unique feature cue (i.e. a colored object). Within each condition, networks 

are trained to investigate just one location; this location is reinforced, while all others are not 

reinforced. The reinforced location could be present at a wall or a corner, producing a 2 (four-vs.-

eight) x 2 (corner-vs.-wall) design. 

All networks were initialized with all biases and connection weights equal to zero, and 

were trained with a learning rate of 0.1. Five networks in each condition were trained to 

convergence. For counterbalancing, two possible reinforcement locations were used in each 

simulation; for example, in the four-location, corner-goal task (Figure 4-1A), one group of 

networks is reinforced at Location 1, while another is reinforced at Location 2. No appreciable 
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difference was found between these groups, so their results are reported together here. (That is, 

each value is averaged from ten networks.) 

Testing 

Testing the perceptron involves presenting patterns of cues corresponding to transformed 

arenas, and measuring the perceptron’s output response to these novel patterns. Due to the operant 

nature of its training algorithm, the perceptron’s output response is both its estimation of reward 

likelihood at the location given the cues presented, and its likelihood of visiting that location. 

There are two types of transformed arenas common to reorientation studies: affine 

transformations and ‘featureless’ transformations. Affine transformations place feature cues and 

geometry cues in conflict with each other:  a chosen location could be consistent with the 

geometry present during training, or the features present during training. For instance, in Figure 4-

1A, a subject might find reinforcement at Location 1, along with a unique feature. When placed in 

an arena with an affine transformation, that unique feature might now be present at Location 2. 

Location 2 is consistent with training in terms of features, while Locations 1 and 3 are consistent 

with training in terms of geometry. Meanwhile, a featureless transformation replaces all unique 

feature cues with indistinguishable ones, forcing the model to base its decisions solely on encoded 

geometry. In the current simulation, we simply turn off all feature units which were present during 

training, and activate a novel “white” feature unit in their place.  

 With 4 locations, we can also test for generalization across angle cues by observing a 

corner-trained network’s response to a wall-locations-only arena (that is, a network trained in 

Figure 4-1A but tested in Figure 1B), and vice versa. In this scenario, each location now appears 

with novel angle and length configuration cues, as opposed to an affine transformation which has 

novel length configurations but consistent angles. As these two conditions do not share exact wall 

lengths, no choice can be consistent with wall length geometry from training. 

 With 8 locations, one can also do a “partial” transformation. While affine-transformed 

arenas have consistent angle information (targets that were present at corners are present at corners 

during testing), a partial transform places them in conflict. Both transformations have novel wall 

length geometries compared to the training condition. 
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Following training, each network was presented with probe trials in three transformed 

arenas: for 4 locations, these were affine, generalized, and featureless arenas.  For 8 locations, 

these were affine, partial, and featureless arenas. Each network’s output responses were recorded 

for each of these locations; these responses were averaged across the five networks present at each 

condition. 

In reorientation task literature, it is common to report responses in terms of the frequency 

with which each location is chosen. However, the perceptron responds to each location 

individually, producing the probability of choosing to act at that specific location; these 

probabilities need not sum to 1 across all locations within an arena. In order to convert the former 

into the latter, we divided the response to a specific location by the sum of responses to all 

locations within a given arena; this method has previously been used to successfully predict 

several key reorientation behaviour regularities (Dawson, Kelly, et al., 2010). 

Results 

Across all conditions, networks converged after an average of 4810 presentations of the 

training set (a single presentation of each pattern in the training set in a random order is called a 

‘sweep’), with the fastest training occurring after 4614 sweeps of training and the slowest training 

requiring 4973 sweeps.  

Network Responses 

The network model’s responses to each location in each transformed arena, expressed 

both as response activity and as choice frequencies, are reported in Tables 4-2 and 4-3. The tables 

include a summary of human responses in similar conditions in experiments that were inspired by 

the simulation results. The human responses in the table are covered in more detail when the 

human experiments are discussed, below. 

Table 4-2 

Average responses of operant perceptrons and human subjects to the 4-location simulation. 

      

Wall 

configuration Network 

 

Human 
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Task Type Transform Loc Color Angle Left Right   Activity Frequency  Frequency 

Four Corner Affine 1 Blue 90* 6* 3* 

 

0.36 0.24  0.06 

   

2 Green* 90* 3 6 

 

0.75 0.50  0.89 

   

3 Red 90* 6* 3* 

 

0.36 0.24  0.03 

   

4 Yellow 90* 3 6 

 

0.01 0.01  0.02 

  

Generalized 1 Blue 180 2 4   0.26 0.17  0.04 

   

2 Green* 180 2 1 

 

0.94 0.62  0.87 

   

3 Red 180 2 4 

 

0.26 0.17  0.04 

   

4 Yellow 180 2 1 

 

0.06 0.04  0.04 

  

Featureless 1 White 90* 6* 3*   0.52 0.42  0.26 

   

2 White 90* 3 6 

 

0.11 0.08  0.19 

   

3 White 90* 6* 3* 

 

0.52 0.42  0.30 

   

4 White 90* 3 6 

 

0.11 0.08  0.25 

 

Wall Affine 1 Yellow 180* 2* 4*   0.37 0.25  0.16 

   

2 Blue* 180* 2 1 

 

0.75 0.50  0.68 

   

3 Green 180* 2* 4* 

 

0.36 0.24  0.11 

   

4 Red 180* 2 1 

 

0.01 0.01  0.05 

  

Generalized 1 Green 90 6 3   0.26 0.22  0.02 

   

2 Red 90 3 6 

 

0.06 0.05  0.05 

   

3 Yellow 90 6 3 

 

0.26 0.22  0.03 

   

4 Blue* 90 3 6 

 

0.60 0.51  0.49 

  

Featureless 1 White 180* 2* 4*   0.53 0.42  0.26 

   

2 White 180* 2 1 

 

0.11 0.08  0.22 

   

3 White 180* 2* 4* 

 

0.53 0.42  0.35 

      4 White 180* 2 1   0.11 0.08  0.29 

* Cue type reinforced during training 

 

Table 4-3 

Average responses of operant perceptrons and human subjects to the 8-location simulation. 

      

Wall 

configuration Network 

 

Human 

Task Type Transform Loc. Color Angle Left Right   Activity Frequency  Frequency 

Eight Corner Affine 1 Black 180 2 4 

 

0.04 0.03  0.01 

   

2 Blue 90* 4* 2* 

 

0.36 0.22  0.16 
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3 Purple 180 2 1 

 

0.04 0.03  0.02 

   

4 Green* 90* 1 2 

 

0.74 0.45  0.58 

   

5 Orange 180 2 4 

 

0.04 0.03  0.00 

   

6 Red 90* 4* 2* 

 

0.36 0.22  0.18 

   

7 Brown 180 2 1 

 

0.04 0.03  0.04 

   

8 Yellow 90* 1 2 

 

0.01 0.01  0.01 

  

Partial 1 Blue 180 2 4   0.03 0.02  0.01 

   

2 Purple 90* 4* 2* 

 

0.42 0.25  0.19 

   

3 Green* 180 2 1 

 

0.61 0.36  0.65 

   

4 Orange 90* 1 2 

 

0.07 0.04  0.00 

   

5 Red 180 2 4 

 

0.03 0.02  0.00 

   

6 Brown 90* 4* 2* 

 

0.42 0.25  0.11 

   

7 Yellow 180 2 1 

 

0.01 0.00  0.03 

   

8 Black 90* 1 2 

 

0.07 0.04  0.01 

  

Featureless 1 White 180 2 4   0.05 0.04  0.00 

   

2 White 90* 4* 2* 

 

0.49 0.35  0.26 

   

3 White 180 2 1 

 

0.05 0.04  0.06 

   

4 White 90* 1 2 

 

0.09 0.07  0.15 

   

5 White 180 2 4 

 

0.05 0.04  0.01 

   

6 White 90* 4* 2* 

 

0.49 0.35  0.26 

   

7 White 180 2 1 

 

0.05 0.04  0.09 

   

8 White 90* 1 2 

 

0.09 0.07  0.17 

 

Wall Affine 1 Black 180* 2* 4*   0.36 0.22  0.11 

   

2 Blue 90 4 2 

 

0.04 0.03  0.00 

   

3 Purple* 180* 2 1 

 

0.74 0.45  0.76 

   

4 Green 90 1 2 

 

0.04 0.03  0.00 

   

5 Orange 180* 2* 4* 

 

0.36 0.22  0.13 

   

6 Red 90 4 2 

 

0.04 0.03  0.00 

   

7 Brown 180* 2 1 

 

0.01 0.01  0.00 

   

8 Yellow 90 1 2 

 

0.04 0.03  0.00 

  

Partial 1 Blue 180* 2* 4*   0.42 0.25  0.18 

   

2 Purple* 90 4 2 

 

0.61 0.36  0.71 

   

3 Green 180* 2 1 

 

0.07 0.04  0.00 

   

4 Orange 90 1 2 

 

0.03 0.02  0.00 

   

5 Red 180* 2* 4* 

 

0.43 0.25  0.11 
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6 Brown 90 4 2 

 

0.01 0.00  0.00 

   

7 Yellow 180* 2 1 

 

0.07 0.04  0.00 

   

8 Black 90 1 2 

 

0.03 0.02  0.00 

  

Featureless 1 White 180* 2* 4*   0.50 0.35  0.29 

   

2 White 90 4 2 

 

0.05 0.04  0.15 

   

3 White 180* 2 1 

 

0.09 0.07  0.13 

   

4 White 90 1 2 

 

0.05 0.04  0.00 

   

5 White 180* 2* 4* 

 

0.50 0.35  0.18 

   

6 White 90 4 2 

 

0.05 0.04  0.14 

   

7 White 180* 2 1 

 

0.09 0.07  0.07 

   

8 White 90 1 2 

 

0.05 0.04  0.03 

* Cue type reinforced during training 

 The first major prediction generated by the model is that there does not appear to be a 

significant difference in reorientation behaviour between subjects trained with locations in corners 

and subjects trained with locations along walls. In conditions with 4 locations of interest, and 8 

locations of interest, the perceptron converged after a similar number of sweeps of training. 

Furthermore, in all cases, the same broad pattern of behaviour holds: the perceptron responds most 

strongly to locations containing the (unique) feature cue present during training, but that cue did 

not block the encoding of either geometric cue. That is, even within the Featureless arena, the 

perceptron still estimates that locations with the same wall length configuration and/or angle 

amplitude as the training location have a greater likelihood of reward than locations missing those 

cues.  

 Additionally, the perceptron produces characteristic “rotational error” behaviour common 

to reorientation tasks (Cheng, 1986) – that is, where features and geometry conflict in the same 

arena, the perceptron responds to the feature more frequently than to any other single location, but 

taken as a whole, locations with correct geometry are chosen with higher frequency.  This pattern 

appears in both the 4-location and 8-location tasks. Furthermore, it occurs even if the angle 

information changes between conditions – for instance, the Generalized arenas in the 4-location 

task still produce this pattern, even though the exact configuration of geometries present in this 

condition are novel. 
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Connection Weights 

 To understand why these networks behave in this manner, we turn next to their 

connection weights. As ten networks completed each training condition, their connection weights 

were averaged to produce a summary of how a typical network solved that particular problem. 

This summary is presented in Table 4-4. 

Table 4-4 

Operant perceptron connection weights for each cue type 

  

Problem and type  

  

Four Eight 

Unit Type   Corner Wall Corner Wall 

  Bias -0.41 -0.40 -1.14 -1.14 

Angle 90 -0.41* 0.00 0.00* -1.14 

  180 0.00 -0.40* -1.14 0.00* 

Color Red -0.66 -2.30 -0.57 -0.28 

 

Green 3.19* -0.67 3.30* -0.29 

 

Yellow -2.29 -0.65 -2.18 -0.28 

 

Blue -0.66 3.21* -0.55 -0.29 

 

Orange 0.00 0.00 -0.29 -0.56 

 

Black 0.00 0.00 -0.28 -0.56 

 

Brown 0.00 0.00 -0.29 -2.18 

 

Purple 0.00 0.00 -0.28 3.30* 

  White 0.00 0.00 0.00 0.00 

Configuration 3 / 6 -1.31 0.00 0.00 0.00 

 

6 / 3 0.91* 0.00 0.00 0.00 

 

2 / 1 0.00 -1.32 -0.57 -1.12 

 

2 / 4 0.00 0.91* -0.57 1.12* 

 

4 / 2 0.00 0.00 1.12* -0.57 

  1 / 2 0.00 0.00 -1.12 -0.57 

*Corresponds to reinforced location 

 

 An examination of this table reveals that, within the 4-location task, the bias and 

reinforced angle units assume negative values, while non-reinforced angle units assume a value of 
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0. This informs us that, before considering wall-length configuration or feature information, the 

network initially tends to turn off (output activity, and thus probability of investigating a location, 

approaching 0) at any given location. In the 8-location task, however, this is slightly different: 

while the bias remains negative, the reinforced angle assumes a 0 weight, while the non-reinforced 

angles assume a strong negative weight. Despite this difference, this pattern of weights, in absence 

of other cues, produces identical behaviour to the 4-location network. 

 It is only after the network considers other cues that it begins to overcome this negative 

association and develops a moderate probability of investigating a given location. Within the 4-

location task, the wall-length configuration corresponding to the reinforced location assumes a 

positive value with magnitude slightly larger than the magnitude of the bias and the angle at that 

location. A similar result occurs in the 8-location task, where the correct wall-length configuration 

and the bias effectively cancel out and the correct angle has a weight of 0. In both of these cases, 

the net input is close to 0; the output unit’s logistic function translates this into a 0.5 probability of 

acting, given those cues. In other words, for both the 4-location and 8-location task, if the 

networks encounter a location with the correct geometry but lacking any feature, they are as likely 

as not to choose to investigate that location. The overall choice frequency behaviour this produces 

will vary depending on the number of locations (see Tables 4-2 and 4-3), however, the underlying 

mechanism is identical. It is interesting to note that, ignoring features, the ‘correct’ wall-length 

configuration is reinforced on 50% of its presentations (the reinforced location and its rotational 

equivalent), while the ‘incorrect’ configurations present in any condition are reinforced 0% of the 

time, and the perceptrons’ responses converge to match these probabilities. The operant perceptron 

has already been established to match probabilities in classical choice-behaviour tasks (Dawson et 

al., 2009); for it to exhibit this behaviour in a reorientation context reinforces Miller and 

Shettleworth’s (2007) conceptualization of reorientation as an operant task. 

 The feature cue connection weights tell an unsurprising story in both the 4-location and 

8-location task. The feature that was reinforced during training assumes a very strong positive 

weight, while the feature rotationally-opposite the reinforced location (i.e. the other location with 

identical geometric cues) assumes an equally-strong negative weight. The positive magnitude of 
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the weight given to the correct feature far exceeds the negative value of the bias plus any incorrect 

cue – that is, the network has a high probability of acting when presented with the correct cue, 

even if both angle and wall-length configuration cues are incorrect.. Meanwhile, all other features 

assume a moderate negative weight. In the context of the geometric cues discussed above, this 

informs us that the network is inherently hesitant of investigating any location, but that the 

presence of a correct feature is sufficient to overcome this hesitancy. 

Discussion 

 The operant perceptron’s behaviour on these simulations allows us to generate novel 

empirical predictions. To begin, the network uses the same encoding for all conditions (4 locations 

or 8 locations, and wall reinforcement or corner reinforcement), and was able to converge in all of 

these conditions without difficulty with the same amount of training.  Therefore, the operant 

perceptron predicts that similar mechanisms are at work regardless of the global shape of the 

arena, and that changing the number of locations of interest will have a negligible effect on the 

difficulty of the task. These predictions are broadly compatible with previous empirical work on 

multiple-location reorientation (Newcombe et al., 2010) but are incompatible with theories that 

include an implicit representation of the global environment (Miller & Shettleworth, 2007, 2008). 

Furthermore, the operant perceptron does not predict any real difference between tasks where 

the locations of interest fall within corners, and tasks where such locations do not fall on corners. 

In both cases, networks were able to learn the task, encoding sufficient geometric cues to reorient 

and producing comparable behaviour when presented with transformed arenas. This behaviour 

persisted even if the cue types were completely novel, suggesting some degree of generalization – 

although the network predicts that the mechanism behind this generalization is inhibitory. 

 We can elaborate on this inhibitory mechanism by examining the connection weights in 

Table 4-4. Specifically, the networks learned that particular wall-length configurations signaled 

that a location was not reinforced, and learned that a particular color’s rotational opposite was a 

reliable indicator of no reinforcement. When the networks were presented with the transformed 

arenas, they did not respond to the novel geometry at all – they had not learned that such 

configurations signaled no reinforcement. Instead, the network responds at chance values to each 
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location, except for the two locations containing the ‘correct’ feature and its rotational opposite. 

Rather than developing an explanation of what the agent may be searching for in these cases, a 

study of connection weights informs us that we should instead be focusing on what the agent is 

avoiding. This tendency to emphasize excitation at the expense of inhibition when explaining 

learning is a tacit assumption present in many different theories of learning (Rescorla, 1967); the 

operant perceptron model reinforces this point, and reminds us of the need to check such 

assumptions. 

Experiments 

 The operant perceptron has generated some interesting predictions on novel permutations 

of the reorientation task. Specifically, the operant perceptron makes two broad claims: first, that 

there is no appreciable difference in reorientation behaviour among groups trained with locations 

in corners or along walls, and second, that there is no appreciable change in difficulty when the 

number of salient locations changes. Do these predictions hold under laboratory conditions with 

live agents? To test these predictions, we conducted a series of basic reorientation experiments 

using human subjects. 

 Our experiments are organized into three studies. Study 1 involves two groups of subjects 

trained on a 4-location reorientation task; one group is trained on corner locations, and another 

trained on wall locations. The locations in these tasks correspond to Figures 4-1A and 4-1B. 

Study 2 is analogous to Study 1, except that the training arenas have 8 locations of interest, as in 

Figure 4-1A. 

Immediately after completing Study 1 or Study 2, each participant also completed the 

task described in the other study – Study 1 participants completed the 4-location task and then 

immediately progressed through the 8-location task exactly as described in Study 2, and vice 

versa. This allows a direct comparison of the difficulty of reorientation in arenas with 4 locations 

and 8 locations. Furthermore, this manipulation can test for order effects: did subjects learn either 

task faster, and did the first task facilitate learning the second? These comparisons are the focus of 

Study 3. 
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Study 1: Four Locations 

Subjects 

Participants were 36 University of Alberta undergraduates (30 female), who received 

course credit for participation. Recruitment criteria required participants to have normal color 

vision. 

Apparatus 

 The environment was constructed using the fAARS-Lite platform (see Chapter 3 and 

Gutiérrez, 2012), which simulates first-person 3-D movement in a virtual world. This virtual 

world contained a number of rectangular arenas (17.2m by 8.6m), consisting of matte grey walls 

and floors with black, visually-obvious edges. The walls were high enough to extend beyond the 

subject’s field of vision.  

Subjects would arrive in an arena in its center, facing a random direction. Subjects could move 

their perspective through these arenas with the arrow keys. 

Stimuli 

 Attention was called to locations of interest through brightly-colored cylinders (1.5m 

radius, same height as surrounding walls) placed against the walls of the arena.  These locations 

were placed in two possible configurations, with the locations of interest being set at corners or 

along walls. These configurations correspond to Figure 4-1A and Figure 4-1B. During training, 

these cylinders had one of four colored textures placed over a white background: Green 

checkerboard, red diagonal stripes (upper-left to lower-right), yellow diamonds, or blue horizontal 

bars, listed in the order they appeared looking clockwise from the center. Figure 4-2 presents 

examples of these stimuli. 

 During testing, the positioning of these locations shifted into one of three possible 

configurations: Affine, Generalizing, or Featureless. In the Affine condition, each location had 

been shifted one “slot” clockwise: in Figure 4-1A, the green location had been present at Location 

1 during training, and would be at Location 2 in an affine-transformed arena. In the Generalizing 

condition, the targets were shifted to a novel geometry – that of the other group’s training 
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condition. That is, a subject trained in Figure 4-1A would experience Figure 4-1B as its 

Generalizing condition. Finally, the Featureless transform removes all distinguishing information 

from the cylinders: in place of their brightly-colored patterns, subjects simply saw blank, white 

pillars. 

 

 

Figure 4-2: Example stimuli from the perspective of a subject in Study 1 (A), standing in the center 

of a rectangular arena with visually-salient locations of interest placed in the corners. These 

locations could have many possible color values (B), although some colors only appear in Study 2. 

General Procedures 

 Participants were pseudo-randomly divided into four groups based on two possible 

categories (counterbalancing for gender). One of these divisions was based on target location: half 

the subjects would be trained with locations along walls, and half the subjects would be trained 

with locations at corners. Similarly, subjects were split into two reinforcement groups before the 

experiment began: those who would receive reinforcement at a location with a long wall on its left 

(group A) and those who would receive reinforcement at a location with a long wall on its right 

(group B).  

Upon arrival, participants were instructed on how to move around in the virtual world, and were 

given time in a “welcome” room (A curved hallway with arrows pointing to a door at its end) to 

practice movement before the experiment began. Instructions were given to find a ‘correct 
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location’ inside each new room they saw; these instructions deliberately avoided the words 

“corner” and “wall”. Participants were told that they made a choice by walking into a location, at 

which time they would see a display informing them whether their choice was correct or incorrect. 

Occasionally, they were told, the display would say “no feedback” regardless of the accuracy of 

their choice. To encourage a consistent strategy over time, subjects were told that they would be 

awarded points for correct choices (even if the display said “no feedback”), and that they should 

maximize their score. 

Training 

 Training consisted of blocks of 10 presentations of the training arena. Each presentation 

allowed the subject any amount of time to move freely about the enclosure, but ended when they 

moved into one of the target locations, receiving feedback as described above before appearing in 

the center of the training enclosure again. Training continued until the participant made 8 

“correct” choices in a single block, at which point they progressed into a non-reinforced training 

phase. During this phase, subjects had a 50% chance of seeing a “no feedback” message after 

making a choice. After making 8 correct choices during this phase, testing began. 

Testing 

 Participants received five test trials in each of the three transformation conditions (Affine, 

Generalized, and Featureless). The test trials were presented in random order. Choices always 

received a “no feedback” response during this phase. 

 Following testing, subjects completed a post-testing retention test – 10 no-feedback trials 

in their original training enclosure. Subjects must have made 7 correct choices during this test to 

be included in analysis. Following this test, subjects were not immediately debriefed; instead, they 

proceeded to Study 3. 

Results and Discussion 

 Five subjects failed the post-testing retention test, resulting in 31 subjects (26 

female) included in analysis. Early analysis indicated that the data do not conform to normal 
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distributions. Therefore, subjects’ choice data were analyzed using randomization tests, employing 

bootstrapping methods to obtain confidence intervals on Cohen’s d’ measure of effect size 

(Edgington, 1995; Efron & Tibshirani, 1994). These methods are employed throughout the 

remainder of the discussion.  

This analysis showed no difference in number of training blocks between the genders 

(males, M=2.0, SD=0.71; females, M=1.88, SD=1.34; d'=0.1,  95% CI [-0.56,1.32], p=0.86), nor 

between different reinforcement groups (group A, M=1.6, SD=0.63; group B, M=2.2, SD=1.6; d'=-

0.48,  95% CI [-1.03,0.24], p=0.19). Similarly, subjects did not exhibit any significant differences 

in the amount of blocks required to learn the task if they were reinforced at walls or at corners 

(walls, M=2.25, SD=1.61; corners, M=1.53, SD=0.52; d'=0.60, 95% CI [0.02, 1.11], p=0.08). 

Within the Affine test arena, there were no significant difference between groups in terms 

of the amount of choices made that were geometrically consistent (wall, M=0.22, SD=0.29; corner, 

M=0.09, SD=0.14; d'=0.58, 95% CI [-0.09,1.15], p=0.11) or featurally consistent (wall, M=0.74, 

SD=0.33; corner, M=0.89, SD=0.18; d'=-0.58, 95% CI [-1.18,0.03], p=0.11) with training. There 

were also no significant differences between groups in terms of featurally-consistent choices 

within the Generalized arena (wall, M=0.91, SD=0.16; corner, M=0.87, SD=0.25; d'=0.17, 95% CI 

[-0.53, 0.76], p=0.63). Finally, when subjects were tested in Featureless arenas, both groups made 

similar amounts of geometrically-consistent choices (wall, M=0.58, SD=0.35; corner, M=0.57, 

SD=0.34; d'=0.03, 95% CI [-0.59, 0.77], -p=0.96). 

Since neither corner-reinforced nor wall-reinforced subjects showed any differences in 

choice behaviour, they were pooled together to test if their geometric or feature choices were 

significantly different from chance. Within the Affine arena, subjects’ choices followed the feature 

at a rate significantly higher than chance (95% CI [0.73, 0.90], p<0.05), and made choices 

consistent with training geometry significantly less often than chance (95% CI [0.08,0.24], 

p<0.05). Feature-consistent choices were made in the Generalized arenas more often than chance 

(95% CI [0.82,0.95], p<0.05). Within the Featureless arena, however, subjects’ choices did not 

significantly differ from chance (95% CI [0.46, 0.68], p>0.05).  
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Taken as a whole, these results lead us to two conclusions. First, ‘corner’ locations do not 

appear to be special in a reorientation context: subjects trained to visit wall locations produced 

behaviour statistically indistinguishable from the more classic corner-visiting group. Second, that 

behaviour suggests that subjects rely on features far more than geometry in this particular 

reorientation paradigm, to the point where they almost fail to encode geometry altogether. This 

result is consistent with other reorientation research which has shown that, in some conditions, 

feature cues can overshadow geometric cues (Bodily, Eastman, & Sturz, 2011; i.e. Horne & 

Pearce, 2009; Pearce et al., 2004), but such results are not at all universal. 

Study 2: Eight Locations 

Subjects 

Participants were 35 University of Alberta undergraduates (22 female), who received 

course credit for participation.  As in Study 1, participants were required to have normal color 

vision.  

Apparatus 

The apparatus was identical to that employed in Study 1, except in regards to stimuli. 

Stimuli 

The stimuli had the same general nature as in Study 1; only the possible color patterns 

were different. Four of the patterns were the same stimuli present in Study 1. The remaining four 

were brown vertical stripes, purple spots, black diagonal stripes (upper-right to lower-left) and 

orange hexagons. These stimuli were placed in the configuration depicted in Figure 4-1C. 

As in Study 1, there were three transformed arenas as well. Transformation consisted of 

shuffling which color was present at a particular “slot”. An Affine transformation was created by 

shifting the colors two “slots” clockwise relative to training, which placed targets at novel wall 

configurations, but with the same angle (90° or 180°) relative to training. A separate, “Partial” 

transformation was created by shifting the colors one “slot” clockwise; in this condition, both the 

wall configuration and angle were different compared to training. Also as in Study 1, a featureless 
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condition was included where all locations had identical pure-white colors in place of their 

original patterns. 

General Procedures 

The procedures followed were identical in all ways to Study 1, including the post-testing 

retention test and progression to Study 3 upon completion.  

Results and Discussion 

Five subjects failed the post-testing retention test, resulting in 30 subjects (19 female) 

included in analysis. No evidence of a gender effect (males, M=2.0, SD=0.45; females, M=1.95, 

SD=0.78; d'=0.08, 95% CI [-0.59, 0.94], p=0.85) nor an effect of reinforcement grouping (group 

A, M=2.1, SD=0.83; group B, M=1.8, SD=0.42; d'=0.51, 95% CI [-0.27, 1.21], p=0.28) was found 

among the number of blocks these subjects required to complete training. Similarly, no significant 

difference was found in the number of blocks needed for subjects to learn their reinforcement was 

at a corner or a wall (walls, M=2.06, SD=0.44; corners, M=1.85, SD=0.86; d'=0.30, 95% CI [-

0.33,1.28], p=0.45). 

In terms of choice consistency with particular cues, subjects exhibited a similar pattern to 

those in Study 1 in the Affine and Featureless conditions. Within the Affine arena, subjects in both 

the wall-target and corner-target conditions made similar proportions of choices consistent with 

geometry (wall, M=0.26, SD=0.43; corner, M=0.33, SD=0.41; d'=-0.17, 95% CI [-0.89,0.45], 

p=0.60) and consistent with features (wall, M=0.74, SD=0.43; corner, M=0.61, SD=0.45; d'=0.31, 

95% CI [-0.36,1.19], p=0.376). Similarly, the Featureless arena saw subjects produce similar 

proportions of choices consistent with training geometry (wall, M=0.49, SD=0.38; corner, M=0.54, 

SD=0.45; d'=-0.12, 95% CI [-0.88, 0.55], p=0.71). The Partial condition, where both wall 

configuration and angle cues varied from training, also produced similar proportions of choices 

consistent with training geometry (wall, M=0.30, SD=0.42; corner, M=0.31, SD=0.40; d'=-0.03, 

95% CI [-0.68,0.67], p=0.90) or with features (wall, M=0.7, SD=0.42; corner, M=0.65, SD=0.42; 

d'=0.12, 95% CI [-0.56,0.87], p=0.725). 
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 In every case, subjects from both groups produced indistinguishable results, and were 

therefore pooled to test if their choices varied from chance. Within the Affine arena, subjects made 

choices consistent with the feature significantly more often than chance (95% CI [0.54,0.81], 

p<0.05), but did not make choices consistent with the original wall-length configurations more 

often than chance (95% CI [0.16,0.43], p>0.05). Within the Partial arena, subjects also followed 

the original wall-length configuration at chance rates (95% CI [0.17,0.45], p>0.05), and followed 

feature cues significantly more often than chance (95% CI [0.54,0.80], p<0.05). Finally, unlike in 

Study 1, subjects responded to the original wall-length configurations in the Featureless arenas 

significantly more often than chance (95% CI [0.39, 0.65], p<0.05). 

In general, Study 2 supports Study 1’s findings that walls are not significantly different 

from corners in terms of reorientation, even when the number of locations is increased. Features 

remain the best predictor of subject behaviour, and clearly dominate such behaviour when they are 

presented in conflict with geometry, regardless of whether that geometry is completely 

inconsistent with training (the Affine condition) or partially inconsistent with training (the Partial 

condition). However, unlike Study 1, subjects’ behaviour in the Featureless arena clearly indicates 

that geometry was encoded during training. This is consistent with other literature which finds that 

humans are capable of completing reorientation tasks with more than four locations of interest 

(Newcombe et al., 2010). 

This geometric overshadowing is the only noteworthy difference between Study 1’s 4-

location task and Study 2’s 8-location task. While this type of overshadowing has been observed 

during reorientation, in some circumstances (Bodily et al., 2011; Pearce et al., 2004), this is 

usually not the case (i.e. Wall et al., 2004). It is quite possible that another version of the 4-

location reorientation task in which overshadowing does not occur may find no difference between 

4-location and 8-location reorientation, should it be repurposed for the latter. Testing this claim 

would require another experiment, beyond the scope of the current manuscript. 
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Study 3: Direct Comparison 

Subjects 

 Subjects were participants from both Study 1 and Study 2, as described above. This 

included subjects who failed their original study’s post-testing retention test. 

General Procedures  

After completing the post-testing retention test for their original study, subjects found 

themselves placed back in the “welcome” chamber, and were instructed that this marked the 

halfway point of the experiment. The protocol followed from here is identical to that described in 

Study 1, except with the stimuli set from whichever study the subject did not already see. 

Following completion of this second experiment, subjects were debriefed.  

Results and Discussion 

For discussions of the ‘first task’, subjects who passed their post-testing retention tests as 

described in Study 1 and Study 2 were included in analysis. For the ‘second task’, a separate post-

testing retention test was performed (independent of the subject’s test result in their original 

study), and subjects who performed poorer than 70% on this trial were excluded from analysis. Of 

the Study 1 participants, two failed this test, leaving 34 (28 female), while three of the Study 2 

participants failed, leaving 34 (20 female) for analysis.  

A large, and significant, order effect was discovered (initial study, M=1.94, SD=0.98; 

second study, M=1.36, SD=0.60; d'=0.7, 95% CI [0.41, 1.05], p=0.001), regardless of which task 

was completed first. For the first task, there was no significant difference in training blocks 

between the 4-location task and the 8-location task (4-location, M=1.90, SD=1.25; 8-location, 

M=1.97, SD=0.67; d'=-0.06, 95% CI [-0.77, 0.37], p=0.80). There was also no evidence of any 

significant differences in time taken to learn the second task (4-location, M=1.28, SD=0.46; 8-

location, M=1.44, SD=0.70; d'=-0.27, 95% CI [-0.68, 0.18], p=0.27). 

Two general conclusions can be drawn from these results. First, we do not find any 

evidence that increasing the number of locations makes a task harder to learn, both for naïve 

subjects and for subjects who have been trained in a different task. This conclusion is consistent 
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with the operant perceptron’s predictions, but inconsistent with models that adjust for the total 

number of locations of interest (such as Miller & Shettleworth, 2007, 2008). Second, this result 

combined with the order effect allows us to conclude that subjects learned the second task faster 

than the first task, regardless of the number of locations present in either task. This suggests that 

something facilitated the second task. Since this is a difference in the mean number of training 

blocks, as opposed to a difference in actual time taken to complete those training blocks, it cannot 

be an increase in familiarity with the virtual world.  

One possibility is that, like the perceptron model discussed earlier, human subjects may 

be using a similar system to learn both tasks – a system in which the total number of locations is 

irrelevant. The perceptron accomplishes this by using an encoding that relies purely on local cues, 

where each location is considered independently of other locations during training. Alternative 

models based on matching current visual stimuli to previously-learned visual stimuli (i.e. Cheung, 

Stürzl, Zeil, & Cheng, 2008) have a similar property. 

Model Evaluation 

With both simulation results and experimental evidence in analogous tasks at hand, we 

return now to the operant perceptron, and evaluate where the patterns of behaviour agree and 

where they disagree. The operant perceptron made two broad classes of prediction, both of which 

withstood experimental scrutiny. That is, within both networks and humans, subjects learned 4-

location reorientation and 8-location reorientation with equivalent amounts of training (Study 3), 

and within each task, no appreciable difference was found between wall locations and corner 

locations in terms of reorientation behaviour. In short, some interesting and possibly 

counterintuitive predictions that arose from the computer simulation were supported by the 

experimental studies that used human subjects. 

Importantly, the computer simulations can also be used to derive additional predictions 

that can be compared to human performance. One example prediction is the pattern of response 

frequencies reported in Tables 4-2 and 4-3. These tables also report the response frequencies for 

human subjects from Study 1 and Study 2. Are the network’s response frequencies appreciably 

different from the humans’, or are they a plausible model?  
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To evaluate this, for each experimental condition, a 95% confidence interval was 

bootstrapped onto the mean of the human subjects’ responses to each type of cue (Efron & 

Tibshirani, 1994). These confidence intervals were used above to compare the response rates to 

chance; here, they are used to compare the response rate to the mean network response frequency 

to the same cue type. As no difference was found in human subjects between wall groups and 

corner groups, the networks’ corresponding locations response frequencies were averaged as well. 

These confidence intervals and their comparisons are given in Table 4-5.  

Table 4-5 

Comparing human and network response frequencies to specific cue types 

  

Response Rates 

  

Geometric Feature 

Task Transform 

Human 

(95% CI) Network 

Human 

(95% CI) Network 

Four Affine [0.08,0.24] 0.49 [0.73, 0.90] 0.50 

 

Generalized N/A N/A [0.82,0.95] 0.57 

 

Featureless [0.46, 0.68] 0.83 N/A N/A 

Eight Affine [0.16, 0.43] 0.44 [0.54, 0.81] 0.45 

 

Partial [0.17, 0.45] 0.51 [0.54, 0.80] 0.36 

 

Featureless [0.39, 0.65] 0.71 N/A N/A 

 

In all cases with 4 locations, the network model consistently predicted too many choices 

consistent with wall-length geometry, and too few choices consistent with features. This is not 

surprising, as humans consistently chose geometric-consistent locations in this task at a rate 

indistinguishable from chance, indicating that they did not encode geometric cues, while a review 

of the connection weights in Table 4-4 indicates that the networks did encode such cues.  

In the 8-location task, the networks performed much closer to human behaviour in 

general, although again the networks tend to respond more frequently to geometry and less 

frequently to features than do humans.  These discrepancies in response frequencies suggest a 

need for exploring alternative design decisions in the perceptron. In particular, one open question 

concerns how changing the encoding of cue patterns might affect perceptron responses, as well as 
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relationships between the networks and the humans that are based upon response frequency 

measures.  

General Discussion 

The current manuscript explored reorientation in novel variations on the standard 

reorientation task, informed by a simple artificial neural network. Network simulations and 

experimental data allowed us to examine how behavior changes – or rather, does not change – 

when the locations of interest are placed at locations other than the corners of a quadrilateral 

arena. Furthermore, we examined this in the context of changing the number of salient targets 

from 4 to 8, and found that the difficulty in learning the task does not actually increase, and 

furthermore that skills learned in one task generalize to the other in both directions. These results 

were consistent within both simulation and experiment, and suggest that the behaviour governing 

reorientation involves processing the cues available at locations taken in isolation, regardless of 

the global structure of the environment. In other words, learning reorientation does not require 

comparing the current location to any other possible location, as is the case in Miller and 

Shettleworth’s (2007, 2008) model. 

These results – both simulated and experimental – suggest an interesting refinement to 

the hypothesis that angles are processed in a manner similar to features (Sturz, Forloines, & 

Bodily, 2012). Under this refinement, the location of interest serves as a visually-salient “focal 

point” – a reference from which wall-length and angle cues are determined. In a typical 

reorientation task, the corners of an arena create that focal point, but our results suggest that other 

visually-salient goals (here, pillars, but also possibly bowls of food, boxes with toys, and so forth) 

can create the same effect, even if they are not placed at corners. The angle the walls form at the 

location of interest therefore becomes a feature of that location, in much the same manner as 

traditional feature cues, such as color. Additionally, theories of viewpoint-matching (Cheung et 

al., 2008) propose that reorientation is largely a matter of learning broad visual stimuli when 

reinforced, then seeking to minimize the difference between one’s current visual input and this 

learned image. This theory could also be capable of reorienting in arenas without corner-based 

locations. Interestingly, both this theory and the operant perceptron model learning as error-
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correcting based on a pattern of subject behavior, although they encode the available stimuli in 

dramatically different manners. It would be interesting to see how their predictions on choice 

frequencies differ, if at all.  

The choice to use configuration unit encoding (i.e. a different unit turns on for each 

possible wall-length configuration) choice was made for consistency with existing literature 

(Horne & Pearce, 2010; Miller & Shettleworth, 2007, 2008) and earlier chapters (Chapter 1). If the 

simulation diverges from live-agent data, then this theoretical choice may not be appropriate. 

Indeed, a divergence appear in two aspects: the simulation encoded geometry in the 4-location 

task while human subjects did not, and the networks produced slightly different choice frequencies 

(Table 4-5). However, in spite of this, the model still correctly predicted several interesting results, 

such as the lack of a difference between corner-trained and wall-trained subjects and the similar 

difficulty of the 4-location and 8-location task. This suggests that the model needs adjustment, but 

that adjustment need not be extreme. This adjustment could take the form of parametric 

adjustment (Miller, 2009) or a change to how arena walls are encoded (i.e. thermometer coding, 

Dawson, Kelly, et al., 2010); these changes have important theoretical implications, if any prove 

more fruitful than raw wall-length configuration.  

 These developments provide examples of experimental results informing future 

modeling decisions, which is common practice in cognitive science. However, the current chapter, 

in contrast, demonstrated that modeling can quite easily inform experiment as well. A new 

experimental result or theoretical construct can revise an existing model, which in turn can be used 

to generate empirical claims in novel environments quickly and cheaply. If any of those 

predictions are of interest, future experimentation can be used to test these new hypotheses. 

This methodological style - creating simple and plausible models which behave, and then 

generating hypotheses and experiments based on this behaviour – is an example of the synthetic 

approach to cognitive science (Dawson, 2004; Dawson, Dupuis, & Wilson, 2010). The synthetic 

approach can prove fruitful in breaking future deadlock or opening up novel research paradigms. 

For example, to the best of our knowledge, the current manuscript details the first attempt at 
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systematically varying on the nature and number of locations during reorientation. The decision to 

investigate this comparison was motivated entirely by the structure of the neural network model. 

This neural network model is a ripe avenue for future research. The operant perceptron 

successfully handled reorientation with assorted numbers of target locations, positioned at 

arbitrary points along the edge of an arena, using the encoding described above. This encoding can 

easily be extended, including extra input units to represent angles other than 90° or 180°, or to 

represent other sets of wall-length configurations than those used here. Putting these properties 

together allows this architecture to handle any polygonal arena with edge-defined locations of 

interest, including kites (Dawson, Kelly, et al., 2010; Pearce et al., 2004) and octagons 

(Newcombe et al., 2010). While we could extend the operant perceptron to see if it fits the data 

from some of the novel tasks (i.e. regular ocagons, Newcombe et al., 2010) in a manner similar to 

a more standard perceptron (Dawson, Kelly, et al., 2010), the synthetic approach would be to 

generate totally new predictions inspired by our findings. In this case, we might try non-uniform 

octagons (an arena type not yet investigated), or we might note other successes of the operant 

perceptron altogether, such as superconditioning (Chapter 1) or probability matching (Dawson et 

al., 2009), and branch out beyond reorientation into completely new paradigms. 

Lewandowsky (1993) observed that computer modeling had its benefits, if done with 

care. The current manuscript illustrates all of these core ideas. A desire to increase mathematical 

rigor in the Miller and Shettleworth (2007, 2008) model led to the development of new tools – 

both the operant perceptron (Chapter 1) used in simulation and the fAARS-Lite platform (Chapter 

3) used in data collection. These tools facilitated finding, and testing, the tacit assumption in 

reorientation literature that corners have some inherently special property. Finally, the simulation 

results indicating that there should be no difference in effort needed to learn reorientation in arenas 

with more locations fit the description for serendipitous findings in novel environments, a point 

emphasized by the same result appearing among human subjects. It would appear that, even after 

twenty years, Lewandowsky’s observations and advice for cognitive modellers still remains 

effective. 
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Final Chapter 

The goals of this thesis were to illustrate the various methodological components of 

interesting research style within cognitive science. These components were, in brief, formal, 

theoretical, improvisational, and synthetic. Each chapter had elements of these components, 

emphasizing them to a greater or lesser degree, in an endeavor to illustrate that, as a whole, 

productive research can follow. 

Chapter 1 was motived initially by identifying a formal weakness in an influential model 

of associative learning. We investigated the theoretical consequences of this weakness, and found 

the model to be fatally flawed. This chapter also introduced the operant perceptron, a neural 

network model grounded in strong, well-established mathematical formalisms.  Constructing this 

model also brought several tacit assumptions in reorientation to light – and questioning these 

assumptions became the motivation behind the rest of the thesis (Chapter 4 in particular). 

Chapter 2 illustrated the theoretical consequences of adopting this new formalism, 

strengthening the link between perceptron models and established contingency theory. This stage 

is essential when adapting the perceptron to operant tasks, as operant learning amounts to 

estimating reinforcement contingencies. Such a stage is necessary: it is not sufficient to simply 

claim that because the perceptron proceeds according to the behaviour of an operant creature, the 

network is learning to accomplish operant tasks. The theoretical component here reinforces the 

need for rigor when developing new models – equations that don’t reflect reality don’t provide a 

true model.  

Chapter 3 was a brief diversion discussing models, focusing instead on the development 

and deployment of a new virtual environment, fAARS-Lite. This platform was designed to 

simulate a wide array of classic spatial learning tasks, without requiring a great deal of computer 

expertise to employ. While this has natural applications in comparative cognition, in the context of 

this thesis, it served a secondary purpose: fAARS-Lite is an environment highly conductive to 

improvisation. Rather than design a specific tool for the simulations at hand, we developed a set of 

extremely basic elements which can be chained together to replicate an array of interesting tasks, 
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many of which are discussed in the chapter. This platform is also freely available6, in an effort to 

encourage others – particularly in comparative cognition – to attempt to adopt this research 

method. With a tool like fAARS-Lite at hand, such researchers may be inspired to create new 

paradigms within the virtual world, and then bring them to life with their animal subjects – a 

reversal of the usual order of comparative cognition experiments. 

This reversal, where one allows model building to inform experimental design, is the 

final, synthetic component of the research method in practice. This is exemplified in Chapter 4, in 

which the operant perceptron’s formalism led to questioning the assumptions underpinning 

modern reorientation research. The model generated several interesting predictions, as well as 

suggested mechanisms behind these effects. fAARS-Lite was used to empirically verify these 

findings, and in many cases, they withstood experimental scrutiny.  

The thesis project as a whole also suggests several possible avenues for future research, 

in light of the four methodological elements. Formally, we could expand upon Chapter 2, 

exploring the formal links between the associative learning of the operant perceptron and other 

bodies of knowledge, such as information theory and Bayesian learning. Theoretically, we can 

explore alternate input encodings for the operant perceptron; each new encoding brings new 

assumptions and claims about the world which may or may not produce interesting results 

themselves. Alternatively, we could follow our experimental results from Chapter 4, particularly 

exploring how these results link in with the different perspectives currently under debate in 

reorientation literature. Perhaps we can improvise a new hypothesis out of which components 

sustain further scrutiny, and incorporate this into our model, which can then be used to synthesize 

a new theory to guide future research. 

 

  

 
6 fAARS-Lite is currently being prepared for release as open-source software; if you are interested, contact me for a 

trial. 
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Appendix 1: Technical Appendix to Chapter 1 

In Chapter 1, we described a number of problems in the Miller-Shettleworth (2007, 2008) 

associative models. We described these problems purely in terms of the behaviour of the models. 

However, the source for this erroneous behaviour is ultimately mathematical, and emerges 

primarily from Miller and Shettleworth’s choice to scale the Rescorla-Wagner (1972) equation by 

Equation 1-3 or Equation 1-4. This appendix will elaborate upon this, demonstrating why such 

scaling is incorrect from the perspective of calculus, and why such scaling produces incorrect 

results. 

The main characteristic of the Miller and Shettleworth (2007, 2008) model is that it 

multiplies the Rescorla-Wagner (1972) equation by a probability term. The intention of this 

multiplication is to make the Rescorla-Wagner model operant in nature. However, it is this 

multiplication that causes the problems that were identified earlier in this paper. This 

multiplication also causes the model to make unexpected (and, we believe, unintentional) claims 

about time. 

In Rescorla and Wagner (1972), the parameter β is explicitly defined as a learning rate 

parameter - a rate reflecting how much learning takes place within a given amount of time. β is 

held constant when the model is employed, because to do otherwise would “beg justification” (p. 

82). A consequence of holding learning rate constant at each iteration of the model is that the 

model implies a constant amount of time passes during each sweep. However, because the 

learning rate β is held constant, this “time step” is usually suppressed when writing the equations. 

We now express the Rescorla-Wagner equation in terms consistent with Miller and 

Shettleworth’s (2007) approach, making time explicit: 

                     (a1-1) 

Here, the subscript i refers to iteration: the change in weights from the current iteration to the next 

depends on the sum of the weights at the current time. In this equation, the learning rate parameter 

β is proportional to the amount of time that passes per iteration, (Δt)/(Δi). If the equation is 

consistently applied to every cue at every iteration, then Δi=1, and thus β is proportional to Δt. 

Since Miller and Shettleworth always apply their equation at every iteration, this assumption 
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holds. Therefore, by subsuming the constant of proportionality into α and setting β=Δt, we can 

substitute into Equation a1 and rearrange to form a ratio, as follows: 

        (         )   
      

  
               

(a1-2) 

By the definition of a limit, as the time step Δt approaches zero, this ratio will approach the 

instantaneous time derivative of associative strength, and thus: 

   
    

      

  
 

      

  
 

(a1-3) 

Because this equivalence holds, the model’s associative strength will change at the same rate on 

each iteration (Equation a1-2) as it does at each unit of time (Equation a1-3). 

In defining their models, Miller and Shettleworth (2007, 2008) multiply the entire 

Rescorla-Wagner equation by some probability term PL. Both the 2007 (Equation 1-3) and 2008 

(Equation 1-4) PL terms are functions of associative strength at a particular iteration Vi, which is 

itself a function of time, and therefore Equation 1-3 and 1-4 are both also functions of time. Both 

PL equations can be expressed more generally as, 

  (     )            (a1-4) 

Simply multiplying this term into the Rescorla-Wagner equation, as Miller and Shettleworth 

(2007, 2008) have done in Equation 1-2, introduces a second time dependency to the system: 

                      
      

  
           

(a1-5) 

If β=1 (and, as a consequence, Δt=1), this equation reduces to the right side of Equation 

1-2, which Miller and Shettleworth label “ΔV”. However, this is not the equivalent of ΔV if Δt=1, 

rendering Equation a1-3 invalid: 

   
    

 
      

  
            

      

  
 

(a1-6) 

Rather, the proper time derivative would handle this second time dependency through applying the 

chain rule to Equation 1-a4 and accounting for the resulting ΔV/Δt term (the exact form of which 

would depend on whether Equation 1-3 or Equation 1-4 was used for PL). Miller and Shettleworth 

(2007, 2008) did not do this, but continued to treat the composite Equation 1-2 as if it were 
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supplying a proper change over time. Instead, the additional uncontrolled time dependency causes 

time in the simulation to flow at different rates for each location, depending on the current 

associative strength of that location. 

 This gives rise to the scaling problems discussed above: the scaling introduced 

by different PL values is effectively changing the learning rate at each location on a given iteration, 

which results in different amounts of time passing between iterations at each location (including 

exactly zero time between iterations for net-negative locations in the M-S 2008 model, as PL=0 in 

those cases). However, the model determines this scale by referencing weights at a given iteration, 

instead of after a given amount of time has passed - and due to the effective learning-rate scaling 

introduced by PL, these are no longer equivalent considerations (Equation a1-6). In effect, this 

scaling gives rise to a situation where the change in weight at one iteration may alter the next 

moment for one cue, but some moment in the past for a different cue, allowing the future to 

influence the past. This is, of course, impossible. 

For illustration, we return to the Wall et al. (2004) reorientation task described earlier, 

using Miller and Shettleworth’s (2007, 2008) original parameters. Figure a1-1 directly compares 

both the M-S 2008 and M-S 2007 models’ behaviour reported in terms of iteration with their 

behaviour reported in terms of time. Normally for Rescorla-Wagner models, the amount of time 

that passes at each iteration is defined by β, and scaled by the dimensionless salience term α; time 

passing per iteration is therefore proportional to αβ (a constant). With Miller and Shettleworth’s 

Equation 1-2, these are further scaled by the dimensionless PL term, which varies over time. 

Therefore, in Figure a1-1, the “time” axis reflects the cumulative value of αβPL at each iteration.  
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Figure a1-1. The Wall et al (2004) task, as interpreted by both the M-S 2008 (left) and M-S 2007 

(right) models. The lower panels rescale the horizontal axis by αβPL, becoming proportional to time 

that has passed for each cue; the 60th iterations (considered to be simultaneous by the model) are 

highlighted. 

  

Observe that that both models consider “simultaneous events” (such as the highlighted 60th 

iteration) which actually reflect different points in time. The nature of this asynchrony depends on 

the choice of equation for PL.  If Equation 1-3 is used, PL is allowed to go negative for locations 

with sufficiently inhibitory net associative strength (Dawson, Kelly, Spetch, & Dupuis, 2008), 
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therefore time begins to flow backwards. The singularities in the M-S 2007 model form 

immediately following when t<0 for the Wrong cue. (This corresponds to the exact point where 

ΣVL changes signs in Equation 1-3.) The positiveness correction employed by the M-S 2008 model 

prevents time from flowing backwards, but does not prevent a given iteration from reflecting 

different points in time. In fact, when Equation 1-4 sets PL to 0, Δt is also set to 0 for the 

corresponding cue (Wrong), such that every subsequent iteration reflects the same point in time. 

In contrast, the operant perceptron model presented above does not suffer from this 

problem, as the underlying mathematics for updating its connection weights are formally 

equivalent to the Rescorla-Wagner equation (Dawson, 2008), and no scaling is applied. While the 

exact sequence of locations visited by the network may vary the amount of time the network 

spends at each location, this is functionally equivalent to adjusting the number of times each 

location is presented to the network - a course of action that does not introduce any uncontrolled 

time dependencies into the calculations for ΔV. 
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Appendix 2: Operant and Standard Perceptron Equilibria 

 Chapter 2 discussed the established “standard” perceptron with logistic activation 

function (Dawson, 2004). Chapter 1 discussed a modified version of this perceptron, which 

employs an operant learning procedure. The purpose of this appendix is to demonstrate that these 

two perceptrons, as far as their equilibria (and thus their link to contingency theory) are concerned, 

are identical. This brief argument has three points: an existence proof, a behavioural justification, 

and an empirical demonstration. 

 First, observe that the operant perceptron’s probability of acting in response to a 

particular pattern of stimuli is given by the logistic function of that pattern’s net input. The logistic 

function (Equation 1-5) asymptotes at 0 or 1 for extremely positive or negative inputs – by 

definition, it is always nonzero and positive. Because of this, the perceptron will, over time, 

always have some chance of responding, even to consistently non-reinforced stimuli. Therefore, 

the perceptron convergence theorem (Rosenblatt, 1962) applies: for any problem that is linearly 

separable (see Dawson, 2008), the operant perceptron is guaranteed to find a solution in a finite 

number of sweeps. This is the same theorem that guarantees the convergence of the standard 

perceptron. The exact number of sweeps may vary between these models, but if a solution exists 

that one model can find, then the other will also find it. 

 Second, when one considers what the operant perceptron’s choice behaviour entails, the 

fact that the two types of perceptron will find a solution to a linearly-separable problem is not 

surprising. The operant perceptron has some probability of randomly deciding to not investigate a 

particular pattern of cues: on these iterations, the model simply does not update the weights. This 

is akin to simply “skipping” a pattern during training. Perceptron training typically involves a 

random order of presentation for each pattern; if the frequency with which these patterns is 

allowed to vary, then we convert the perceptron into the operant perceptron. Critically, the 

mathematics behind the learning rules remains identical otherwise – the change between the two is 

analogous to a change in training set. We therefore expect an operant and a standard perceptron, 

trained on the same linearly-separable problem, to eventually reach the same equilibrium (but not 

necessarily in the same amount of time). 
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 This claim has received experimental support. The operant perceptron was initially 

explored in the context of probability matching (Dawson, Dupuis, Spetch, & Kelly, 2009). In this 

study, the authors performed a direct comparison between the operant and the standard 

perceptrons over time, including their responses when reinforcement contingencies were changed 

mid-training. Figure a2-1 clearly shows that the two models followed slightly different paths, but 

nonetheless converged to the same equilibria. 

 

Figure a2-1: The equilibria for both the standard (top) and operant (bottom) perceptrons, allowed to 

train to convergence in a simple probability-matching task. Each stimulus is reinforced at a 

particular rate, and the perceptrons’ equilibria matched that corresponding rate both before and after 

these rates were changed at epoch 300. The final equilibria were identical across both models.  

(Adapted from Dawson, Dupuis, Spetch, & Kelly, 2009; used with permission.) 
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 In conclusion, Chapter 2’s proofs of equivalence between some measures in contingency 

theory and the activity of a standard perceptron at equilibrium also apply to the operant 

perceptron. The exact path to equilibrium may vary, which has theoretical implications for certain 

psychological tasks, but here, only the equilibria themselves matter, and those do not vary.  
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