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Abstract

In wireless networks, opportunistic scheduling has been extensively studied for its

ability to improve spectrum utilization efficiency by exploiting time-varying nature

of the radio environment. Most of existing works focus on opportunistic schedul-

ing in centralized networks, in which a central scheduler collects the instantaneous

channel state information (CSI) for all links and scheduling is based on global infor-

mation. For distributed networks, no such central scheduler exits. The scheduling

decision is made by each individual user. However, each user only has its own CSI

without knowing the CSI of other users. The unique characteristic of distributed

networks makes the scheduling in distributed networks more challenging.

The main goal of this thesis is to develop an opportunistic scheduling strategy

in distributed networks with decode-and-forward (DF) relays without direct link.

Two cases are considered: 1) the winner source has full CSI (CSI of source-relay

link and relay-destination link), 2) the winner source has partial CSI (CSI of source-

relay link only). For the first case, a pure threshold scheduling strategy is proposed.

Specifically, when the minimum of the detected signal-to-noise ratio (SNR) of the

source-relay link and relay-destination link exceeds a certain threshold, it is optimal

for the winner source to transmit data at the highest achievable rate; otherwise, the
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winner source should give up the transmission opportunity and let all sources re-

contend the channel. For the second case, the scheduling strategy is also threshold-

based. In specific, when the detected SNR of the source-relay link exceeds a certain

threshold, it is optimal for the winner source to transmit data at a rate determined by

the detected first hop SNR and the expectation of second hop channel conditions.

After the relay receives the data, the optimal strategy is probing the second hop until

the second-hop channel condition is good enough to be able to forward the received

data to the destination. The threshold is calculated by the statistics of the channel

using the optimal stopping rule.

Extensive simulation demonstrates the efficiency of the proposed strategies in

this thesis.
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Chapter 1

Introduction

Wireless communications are one of the most rapid development sciences which

have great impact on the human life and social progress in the past decades. Com-

pared with wired communications, wireless communications use the electromag-

netic signals that can propagate in free space to exchange information without the

need of arrangement of wire. However, with the popularity of smart phones and

tablet computers, great expansion of mobile Internet applications drives increasing

demands for higher data transmission rate and better data transmission quality.

To meet the increasing demands, one possible solution is to explore new spec-

trum with large bandwidth. However, only limited frequency bands are suitable for

wireless communications, from few hundred megahertz to several gigahertz. Un-

der current spectrum regulatory framework, almost all available spectrum has been

licensed to various wireless applications already. Therefore, to achieve higher data

transmission rate and guarantee the service quality, the only way is to improve spec-

trum utilization efficiency. There are three main problems that affect the spectrum

utilization efficiency.

In the first place, large portion of the licensed spectrum is underutilized. Under

the current spectrum regulatory framework, the spectrum is regulated by govern-

ment agencies such as Federal Communications Commission (FCC). According to

FCC’s Spectrum Policy Task Force [1], large portion of the licensed spectrum is not

utilized efficiently.
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Secondly, channel fluctuation reduces the utilization efficiency greatly. Chan-

nel fluctuation includes path loss, shadowing and multi-path fading. Path loss is

caused by dissipation of the power. Shadowing is caused by large obstacles such

as buildings between the source and destination. Multi-path fading is caused by the

different travel paths of the signal from the transmitter to the receiver.

Thirdly, wireless channels may be utilized by users with bad channel condi-

tions. Different users experience different channel conditions at the same time. If

a channel is assigned to a user with bad channel condition, the spectrum utilization

efficiency is poor, since the user can achieve only a very small transmission rate.

For the first problem, the most promising solution is cognitive radio [2]–[9].

According to [5], “Cognitive Radio” is an intelligent radio. Based on interaction

with the environment, it can change transmitter parameters. It enables unlicensed

users (secondary users) to utilize the portion of the spectrum that is currently un-

derutilized by the licensed users (primary users) in an opportunistic way.

For the second problem, the common solution is Multiple-Input Multiple-Output

(MIMO) technology [10]–[13]. MIMO is a technology that employs multiple trans-

mit antennas and multiple receive antennas to transmit signal in order to improve

the quality of communication. It fully utilizes the space diversity to suppress chan-

nel fading effects and enhance the spectrum utilization efficiency. As an alternative

solution, cooperative communications can also achieve high spectrum utilization

efficiency since the destination can receive signal from the source as well as relays.

For the third problem, it is already well investigated in cellular networks. In

cellular networks, a central controller such as the base station collects the channel

state information (CSI) of all users and chooses the users with favorable channel

conditions. However, in distributed networks, the central controller does not exist,

and the users need to make the scheduling decision in a distributed way. Each

user only has its own CSI without CSI of other users, and thus, it is challenging to

make the scheduling decision with such limited information to optimize the system

performance. Recently, a few works have developed threshold-based scheduling

strategies using the tool of optimal stopping rule [14]–[20].
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1.1 Thesis Motivations and Contributions

In distributed networks such as ad-hoc networks, all sources gain the transmission

opportunity by channel contention. Usually, sources that have data to transmit send

request-to-send (RTS). If multiple sources send RTS at the same time, they collide

with each other. When only one source transmits RTS, its destination can receive

the RTS successfully and sends back clear-to-send (CTS). Then the source begins

to transmit data to its destination no matter the channel condition is good or not.

When the channel condition is bad, only small transmission rate can be achieved

and the channel is not fully utilized. One solution is letting the source give up the

transmission opportunity when the channel condition is bad, and letting all other

sources re-contend the channel so that sources with good channel conditions have

higher chance to transmit. However, each user in a distributed network only has the

CSI of its own channel. Then a problem arises: how to distinguish the good and

bad channel conditions only based on a user’s own CSI?

A recent work [14] uses the optimal stopping theory to solve the problem and

a pure threshold strategy is proposed. When a destination receives a RTS from its

source, the destination estimates the signal-to-noise ratio (SNR) of the channel from

its source to itself. Then the destination sends back to the source a CTS, in which

the SNR information is included. If the SNR is greater than a threshold, then the

source transmits data to destination; otherwise, the source gives up the transmission

opportunity and letting all sources begin a new round of channel contention. In the

long term, all sources will benefit from the strategy since only users with good

channel conditions transmit, and thus, the wireless channel is utilized efficiently.

The threshold is the critical point that the net reward of transmission equals the net

reward of giving up the transmission opportunity, and it can be calculated based on

the statistics of the channels.

In a similar way, work [19] proposes a threshold-based strategy for the decode-

and-forward (DF) relay networks. Each source has a destination and a relay. When

a source has data to transmit, it sends RTS to its relay and destination. After getting
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the CTS feedbacks from the relay and destination, the source knows the CSI for its

links to the relay and to the destination. Then the source has a first decision with

three choices:

• give up transmission opportunity

• transmit with direct link (the link between the source and the destination)

• continue to probe the channel between the relay and destination

If the last option is chosen, after probing the second hop (relay-destination link),

the source has a second decision with two choices: to give up transmission oppor-

tunity, or transmit (by direct link or relay link, whichever has higher achievable

transmission rate). The probing overhead to get CSI for making the first decision

of the source is: one RTS transmission duration (broadcast from source to relay

and destination), and two CTS transmission durations (from relay to source, from

destination to source).

The channel probing can be done in a different way. First, the source broadcasts

a RTS. By RTS reception, the relay and the destination can estimate the source-

relay link SNR and source-destination link SNR, respectively. Then the relay sends

a CTS to the source, and the information of the source-relay link SNR is also in-

cluded in the CTS. The CTS is overheard by the destination, and the destination can

estimate the relay-destination link SNR by CTS reception. After that, the destina-

tion sends to the source a CTS, which includes information of the source-destination

link SNR and relay-destination link SNR. When the source gets the CTS from the

destination, it has SNR information for the source-destination link, the source-relay

link, and relay-destination link. The total probing time is still one RTS transmission

duration and two CTS transmission durations. Thus, it takes the same time as the

first decision of [19] to probe the channel, but gets the CSI of the source-destination

link, the source-relay link, and the relay-destination link (for the work in [19], to

make the first decision, the source does not have the CSI of relay-destination link).

With more information than the work in [19], the source can calculate the end-to-

end achievable rate, and the two-hop network can be viewed as a virtual single-hop
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network with the end-to-end achievable rate treated as the peer-to-peer achievable

rate. Thus, the source can decide whether to transmit or to give up the transmission

opportunity, by following the same way as in a single-hop ad-hoc network in [14].

Now we examine the work of [19] without direct link. After a relay receives a

RTS from its source, it estimates the SNR of the source-relay link. Then it either

sends a CTS to the source to notify the source of giving up the transmission op-

portunity or decides to further probe the second hop. If the relay decides to further

probe the second hop, it sends a RTS to the destination. By reception of the RTS,

the destination estimates the SNR of the relay-destination link, and sends back to

the relay a CTS that contains the relay-destination link SNR information. Then the

relay decides whether to skip the transmission opportunity or to take the transmis-

sion opportunity, and notifies the source of the decision by a CTS feedback. If the

decision is to take the transmission opportunity, then the source transfers data to

the relay and subsequently the relay re-transmit data to the destination, and in both

process, the transmission rate is the minimum of the achievable rates of the two

hops. If the decision is to skip the transmission opportunity, then all sources begin

a new round of channel contention.

The above strategy have two disadvantages. 1) When the first hop’s channel

condition is good but the second hop’s channel condition is bad, it wastes time

probing the second hop. 2) When the channel conditions of both hops are good,

the maximum total data transmission time in the two hops is channel coherence

time (the maximum duration within which the detected CSI is valid). So the data

transmission time in each hop is only half of the channel coherence time.

To address the above two disadvantages, we propose a new strategy. After a

relay receives the RTS from its source, based on the estimation of the first-hop

SNR, the relay sends back a CTS to inform the source of a transmission rate or

notify the source of giving up the transmission opportunity. If it is decided that the

source should transmit, after the relay receives the data from the source, it begins

to probe the second hop, and based on the detected CSI of the second hop, it either

transmits the data or waits for a channel coherence time and probes again until the
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second-hop channel condition is good enough to forward the data.

In our strategy, if the first-hop channel condition is good and second-hop chan-

nel condition is bad, the relay may wait channel coherence time and probe again

rather than giving up the transmission opportunity. By this way, the good channel

condition in the first hop is utilized. And the data transmission time in each hop is

channel coherence time.

1.2 Thesis Outline

The thesis is organized as follows. In Chapter 2, channel access methods are intro-

duced and related works on opportunistic scheduling are surveyed. The case when

a winner source (i.e., a source that wins the channel contention) has full CSI (i.e.,

first-hop and second-hop CSI ) is studied in Chapter 3. The case when the winner

source has partial CSI (i.e., first-hop CSI) is explored in Chapter 4 and Chapter 5.

Chapter 6 concludes the thesis and discusses the future work that can be done based

on the work in this thesis.
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Chapter 2

Background and Literature Review

2.1 Wireless Channel Access Schemes

Multiple access refers to the situation where multiple users expect to communicate

simultaneously using the same medium. There are two broad categories of multi-

ple access techniques: conflict-free multiple access and non-conflict-free multiple

access. The main idea in conflict-free multiple access is partitioning of the medium

into separate orthogonal channels that are dedicated to particular users. The com-

monly used conflict-free multiple access methods are frequency division multiple

access (FDMA), time division multiple access (TDMA), and code division multiple

access (CDMA). In non-conflict-free multiple access, users that expect to transfer

data are either uncoordinated or only partially coordinated. The completely unco-

ordinated strategy is called random access. Common random access protocols are

Aloha, carrier sense multiple access (CSMA), and variants of CSMA.

2.1.1 Aloha

Aloha was first developed by a research group from University of Hawaii in the late

1960s and early 1970s for satellite communications [21]–[23]. Aloha is a packet-

switching system. A slot is the time duration for transmitting one packet. Vulnera-

ble period is the maximum interval over which two packets can overlap and destroy
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each other. In the system of pure Aloha, a user can transmit data whenever it wants.

If, within the time-out period, the user receives an acknowledgment from the des-

tination, then the user knows that no conflict occurs; otherwise the user assumes

a collision occurs and waits for a random delay time to transmit again. The vul-

nerable period of pure Aloha is two slot durations. In slotted Aloha system, time

is slotted into segments whose duration is the transmission time of a single packet

(we assume constant-length packets). Users can transmit only at the beginning of

a slot. Since two frames can either completely overlap or do not overlap at all, the

vulnerable period of slotted Aloha is only one slot time.

2.1.2 CSMA

In CSMA, a user senses the channel before data transmission. If the channel is idle,

the user begins to transmit its data; otherwise, several actions can be taken based on

the corresponding protocols [24]. For non-persistent CSMA, if a user senses a busy

channel, the user waits a random time, and senses the channel again, and repeats

above procedure. In p-persistent CSMA case, if a user senses a busy channel, the

user waits until the channel goes idle, and then transmits with a probability p in

each subsequent minislot.

2.1.3 CSMA-CA

In carrier sensing multiple access with collision avoidance (CSMA-CA), a station

senses the channel before transmission. If the channel is busy, the station picks up

a random back-off time to schedule a reattempt [25]. After a channel busy period,

a station that has scheduled a reattempt monitors the medium and decrements its

back-off timer by one when the channel has been idle for one minislot. The back-

off timer is suspended if the channel becomes busy (which means other stations

are transmitting), and the back-off timer is resumed when the channel becomes

idle again. The station is allowed to transmit when its back-off timer expires (i.e.,

reaches zero). When a station has successfully completed a frame transmission
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and has another frame to transmit, the station must execute the back-off procedure

again.

2.2 Opportunistic Scheduling

Opportunistic scheduling takes advantage of variations of channel conditions of

different users. It gives some priority to users with good channel conditions to

improve the overall system throughput. It is easy to be implemented in centralized

networks where a central controller collects CSI of all users. However, only limited

progress is made in distributed networks.

2.2.1 Opportunistic Scheduling in Centralized Networks

In centralized networks, a central scheduler collects the CSI for all links and schedul-

ing is made based on the global information. The major idea is to schedule users

with good channel conditions to transmit over the wireless channels.

A scheduling algorithm which takes advantage of channel fluctuations by giv-

ing some form of priority to users with better channels is proposed in [26], which

takes into considerations the data rate and packet delay for each user. A Modified

Largest Weighted Delay First (M-LWDF) scheduling strategy is formulated and

both the rate requirement and the delay requirement can be satisfied by adjusting

some parameter.

Since the diversity gains increase with the range of channel fluctuations, work

[27] proposes to use multiple transmit antennas to increase channel fluctuations

in order to fully exploit the multiuser diversity gain in wireless communications

networks. The transmit power and phase of different antennas are randomized. By

assigning the common resource to user with good channel conditions, the overall

system throughput can be improved a lot.

In [28], the opportunistic transmission scheduling scheme takes consideration of

fairness requirement. The scheduling scheme is developed under a certain resource

allocation constraint for a time-slotted system, where a number between 0 and 1
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is assigned to each user representing the long-term fraction of time allocated to

the user. In this scheduling scheme, each user is guaranteed a certain portion of

resource and the performance improves 20% - 150% compared with a scheduling

scheme that does not take advantage of the channel fluctuation.

2.2.2 Opportunistic Scheduling in Distributed Networks

In distributed networks, such as ad-hoc networks, no central controller exists to

collect the CSI of all users. So the distributed users need to make the scheduling

decision. However, each user only has its own CSI without CSI of other users, thus

it is challenging to make the scheduling decision with such limited information.

A distributed opportunistic scheduling scheme for a single-hop ad hoc network

is developed in [14]. All sources use random access to contend the channel. Sources

with data to transmit send RTS. If the destination receives the RTS successfully, it

estimates the SNR of the link and sends back a CTS with the SNR information

embedded in. If the detected SNR is below some threshold, then the source would

skip the transmission opportunity and all sources begin a new round of channel con-

tention; otherwise, the source transmits with the highest achievable rate. By giving

up the transmission opportunity when the channel conditions are poor, sources with

good channel conditions might get the transmission opportunity. Each source ben-

efits from this strategy in the long run by getting more chances to transmit when its

channel conditions are good. In [14], the optimal stopping theory is introduced to

get the optimal threshold. It is promising that the threshold can be calculated only

based on the statistics of the channel conditions which make the scheduling strategy

easy to implement.

One issue with the distributed opportunistic scheduling is that the system may

waste a long time probing the channel when the channel conditions are bad. This

may seriously affect the delay requirement of real time communications with strin-

gent delay requirement. A scheduling scheme that maximizes the throughput under

delay constraint is developed in [17]. Under network wide average delay constraint,

the optimal scheduling problem can be converted a constrained optimal stopping
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problem. A threshold-based strategy is developed , i.e. only when the achievable

rate is above a threshold, the user can transmit.

Cooperative communication [29]–[36] has emerged as a promising technique

for enhancing communication efficiency. There are two popular relaying strategies:

decode-and-forward (DF) relaying and amplify-and-forward (AF) relaying. In DF

relaying, the relay decodes the received data and then forwards the re-encoded sig-

nal to the destination, while in AF relaying, the relay scales up or down the received

signal before forwarding. Several works focus on distributed opportunistic schedul-

ing in wireless relay networks (see e.g. [19] [20]). In wireless relay networks, the

scheduling problem boils down to tradeoff between throughput gains from cooper-

ative networking and time cost caused by probing to establish cooperative relaying.

An optimal scheduling strategy in DF relay network is developed in [19]. In

the system model, data transmission can be achieved by direct link (from source to

destination) or relay link (from source to relay and from relay to destination). To

achieve higher data transmission rate, after the source gets the SNR of the source-

destination link and source-relay link, it needs to decide whether to use the relay

link or not (i.e., to probe the relay-destination link or not). It is proved that in the

case with dedicated relays the optimal strategy is a pure threshold structure (i.e. it

is optimal to probe the relay-destination link when the SNR of the source-relay link

is greater than some threshold). Based on the statistical information, the thresh-

olds can be calculated, which makes the scheduling scheme easy to implement in a

distributed manner.

The optimal stopping strategy for wireless networks with AF relay is investi-

gated in [20], where the scheduling rule for the source and the relay are studied

together. Two cases are considered: 1) when the winner source has CSI of source-

relay link and relay-destination link, the optimal stopping strategy has a pure-

threshold structure; 2) when the source does not have the CSI of relay-destination

link, the stopping rule for the source is threshold-based. For the relay, the threshold

is based on the first-hop transmission rate.
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2.2.3 Optimal Stopping Theory

The theory of optimal stopping [37] deals with problems of choosing the best time

to stop in order to maximize the reward. A player observes a sequence of random

variables (usually the distribution of the random variable is known). After each

observation the player needs to make a decision: 1) go on observation; or 2) stop

observation and get a reward based on the observed random variable. Usually there

is a cost associated with each observation. The goal is to maximize the long-term

reward.

One common example is house selling problem. A seller has a house to sell,

and each day he can get an offer (the observed random variable). Assume the seller

knows the distribution of the offers. After getting an offer the seller either rejects the

offer and waits for new ones later; or stops waiting and accepts the offer. If he/she

chooses to stop, the reward is the money he/she gets and the cost can be considered

as daily advertisement fee. The goal is to maximize the amount of money the seller

gets.

In mathematical way, let X1,X2...denote a sequence of offers whose joint dis-

tribution is known, c denote daily advertisement fee and {y1(X1), y2(X1, X2), ...,

y∞(X1, X2, ...)} the money the seller can get. Here the seller is not allowed to recall

the past offers, so yn(X1, ..., Xn) = Xn − nc is the money the seller gets if he/she

chooses to stop at the nth day. The goal is to choose the optimal stopping time N in

order to maximize the expected return E[YN ] (YN is the reward by stopping at the

N th day), with E[·] representing mathematical expectation.

To solve this problem, the first thing is to check whether the optimal stopping

rule exists. Two inequalities must be satisfied to guarantee the existence of the

optimal stopping rule.

E[sup
n
Yn] <∞

lim sup
n→∞

Yn ≤ Y∞ a.s.

where Y∞ is the reward if the player never stops, and “a.s.” is the short form for
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"almost surely". The first inequality means that even if the player is able to know

everything in the future, he/she can only get a finite return.

However, in some cases, people are more interested in maximizing the average

return per unit of time if the optimal stopping problem is repeated in time. A differ-

ent perspective on house selling problem can be used to illustrate this point. If the

seller has many houses to sell, it might be more attractive for him to sell a house

per month with an average earning of $1,000 per sale than to sell only one house

in a year with a earning $10,000. More typical application is in wireless commu-

nication system. Consider a system with many users sharing the wireless channel

and contending for the channel access if they have data to transmit. After the suc-

cessful contention of a user, let us call it a winner source. The winner source can

estimate the CSI and the achievable transmission rate. The winner source either

transmits with the achievable rate and gets the throughput as reward, or gives up

the transmission opportunity so that other sources with better channel conditions

get the transmission opportunity. The scheduling scheme is about to make the right

decision for each winner source in order to maximize the system throughput.

Put in mathematical way, let Tn denote the total time spent to reach stage n,

Yn denote the throughput realized by stopping (stop probing and begin to transmit)

at stage n. The stopping rule N is responsible for making the decision whether to

stop or not. The goal is to find the optimal stopping rule N∗ in order to maximize

E[YN ]/E[TN ] (rather than to maximize E[YN ]). To avoid triviality, we assume that

0 < T1 ≤ T2 ≤ T3 · · · a.s. and E[TN ] < ∞. This problem is hard to solve. So

typically it is transformed into an ordinary stopping rule problem. Let λ denote the

“cost” per unit of time, and U∗(λ) = sup
N(λ)≥0

E[YN(λ)−λTN(λ)] (N(λ) is the stopping

rule when the cost per unit of time is λ). If we find a λ∗ such that U∗(λ∗) = 0, then

an optimal stopping rule that maximizes E[YN − λTN ] is also an optimal stopping

rule that maximizes E[YN ]/E[TN ] (proof can be found in [37]).

13



Chapter 3

Distributed Opportunistic

Scheduling in Wireless Relay

Networks with Full CSI

In this chapter, we investigate the opportunistic scheduling in distributed wireless

networks with DF relay, where the winner source (the source that wins the channel

contention) has full CSI, specifically, the winner source has the CSI of source-relay

link (first hop) and relay-destination link (second hop). A pure threshold-structure

optimal stopping rule is developed, to be specific, when the minimum of the de-

tected SNRs of the first hop and second hop exceeds a certain threshold, it is op-

timal for the winner source to transmit data at the highest achievable transmission

rate (i.e., the minimum of the achievable transmission rates of the two hops); other-

wise, the winner source should give up the transmission opportunity.

3.1 System Model

Consider multiple source-destination pairs, each with a dedicated DF relay. There

are no direct links between sources and destinations. Assume the source-relay links

and relay-destination links follow independent and identically distributed Rayleigh

fading with the average SNR being ρf and ρg, respectively. Additionally, we assume

14



that channel coherence time is same for the first hop and second hop, denoted as τd.

The channel contention process is as follows. At a minislot (with duration δ),

each source sends a RTS to its relay with a probability p. For each minislot, there

are three possible outcomes:

• No RTS is transmitted. This minislot is an idle minislot.

• Only one source transmits a RTS. So the source wins transmission opportu-

nity and we call it a winner source.

• More than one source transmit multiple RTSs. So the RTSs collide with each

other. No RTS is transmitted successfully, and no source wins transmission

opportunity.

We assume that there are M source-destination pairs. Let τRTS and τCTS de-

note the RTS duration and CTS duration, respectively. Define an observation as

as the interval from the starting point of the channel contention until a winner

source appears (i.e., its RTS is successfully received by its relay). Then the du-

ration of an observation is given by τ1 = Aδ + τRTS + BτRTS , where A is the

number of minislots that no source transmits RTS, E[A] = (1−p)M
Mp(1−p)M−1 (E[·] means

expectation), and B is the number of collisions during an observation, E[B] =

1−(1−p)M−Mp(1−p)M−1

Mp(1−p)M−1 . So the average duration of an observation can be expressed

as E[τ1] = (1−p)M
Mp(1−p)M−1 · δ + τRTS +

1−(1−p)M−Mp(1−p)M−1

Mp(1−p)M−1 τRTS .

After the relay of the winner source receives the RTS successfully and gets the

first hop CSI, the relay transmits a RTS to the destination (the RTS also notifies

other source not to transmit). After the destination receives the RTS, it estimates

the CSI of the second hop and sends this information within a CTS back to the

relay. After the relay receives the CTS from the destination, it has full CSI of the

two hops and has two choices:

• if the channel conditions of both hops are good, the relay sends back a CTS

to notify the winner source of the transmission decision and the transmission

rate which is the minimum of the achievable rates of the two hops;

15



• if the channel condition of either hop is bad, the relay sends back a CTS to

the winner source to notify the decision. This CTS also notifies all sources to

start a new channel contention.

The threshold to distinguish good and bad channel conditions will be discussed

later.

If the first choice is selected, after the winner source receives the CTS from the

relay, it begins to transmit data to the relay. After the relay gets the data, it decodes

the data, re-encodes it, and forwards to the destination. Here data is transmitted at

the same rate for both hops, which is the minimum of the achievable rates of the

two hops.

3.2 Optimal Stopping Strategy

We call the winner source of the nth observation as the nth winner source. For

the nth winner source, denote the detected SNR of the source-relay link and relay-

destination link as rfn and rgn , respectively. If the nth winner source stops (i.e.,

it is decided that the nth winner should utilize the transmission opportunity, and

thus, the nth winner first transmits with rate Rn = log2(1 + min{rfn , rgn}) with

duration τd/2, and subsequently its relay transmits with rateRn with duration τd/2),

let Tn denote the time duration from observation 1 until observation n plus the

time used for transmissions in the two hops after observation n, and let Yn denote

the total amount of traffic that is sent by the winner source and received by its

destination. Let N denote the stopping time, i.e., the winner sources of the first

N − 1 observations skip the transmission opportunity and the winner source in the

N th observation stops and begins to transmit data.

Define

C , {N : N ≥ 1,E[TN ] <∞}. (3.1)

The average rate of return is given by E[YN ]/E[TN ]. The optimal stopping time
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N∗ is defined as the one that can maximize the average rate of return

N∗ , arg max
N∈C

E[YN ]
E[TN ]

. (3.2)

The optimal rate of return λ∗ is

λ∗ , sup
N∈C

E[YN ]
E[TN ]

. (3.3)

As we mentioned in Chapter 2, the problem of maximizing average rate of return

per unit of time can be converted to an ordinary optimal stopping problem that

maximizes the net reward U(λ) = YN − λTN , where λ denotes the “cost” per unit

of time. The optimal net return is defined as

U∗(λ) = sup
N(λ)∈C

E[YN(λ) − λTN(λ)]. (3.4)

Theorem 3.1. There exists an optimal rule for Problem (3.4).

Proof. It follows from [37] that optimal N(λ) exists for Problem (3.4) if the fol-

lowing two conditions are satisfied:

E[sup
n
Rnτd/2− λTn] <∞ (3.5)

lim sup
n→∞

Rnτd/2− λTn = −∞. (3.6)

Denote Ai and Bi as the number of idle minislots and the number of collisions
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duration observation i. For the first condition, we have

E[sup
n
Rnτd/2− λTn]

=E[sup
n
Rnτd/2− λ(

n∑
i=1

Aiδ +
n∑
i=1

BiτRTS)]

− λ(nτRTS + 2nτCTS + τd)

=E[sup
n
Rnτd/2− λnE[Ai]δ − λnE[Bi]τRTS]

− E[sup
n
λ

n∑
i=1

(Ai − E[Ai])δ + λ

n∑
i=1

(Bi − E[Bi])τRTS]

− λ(nτRTS + 2nτCTS + τd).

(3.7)

It is reasonable to assume that the second moment of Rn exists. It then follows

from the maximal inequalities in [37] that the first term of the right-hand side of

(3.7) is less than ∞. The second term of the right-hand side of (3.7) equals zero

according to law of large numbers and the last term is also finite. Thus the first

condition is satisfied.

For the second condition: it is clear that lim sup
n→∞

Rnτd/2 − λTn = −∞ since

n→∞⇒ Tn →∞ and Rnτd is finite. Thus the second condition is satisfied. So,

both (3.5) and (3.6) are satisfied and the existence of the optimal stopping rule is

proven.

For Problem (3.4), the net reward for the first choice (i.e., stop and transmit)

is U(λ) = Rnτd/2 − λτCTS − λτd. λτCTS is the time cost for the relay sending

back a CTS to the winner source and λτd is the time cost for data transmission

(both first hop and second hop data transmission time are equal to τd/2, so the total

transmission time is τd).

The net return of the second choice (i.g., give up) is U(λ) = −λτCTS + U∗(λ),

i.e., after paying the cost λτCTS to send back a CTS to the winner source, all the

sources will begin a new contention and can get the optimal net return U∗(λ) if all

the sources follow the optimal stopping rule.
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The optimal rule is to select the choice that has higher net reward, so only when

the net reward of transmission is greater than or equal to the net reward of giving

up the transmission opportunity, the relay will choose to stop:

N∗(λ) =min{n ≥ 1 : Rnτd/2− λτd ≥ U∗(λ)}. (3.8)

U∗(λ) satisfies the following optimality equation (from [37]):

E[max {Rnτd/2− λτCTS − λτd , U∗(λ)− λτCTS}]− λτ1 = U∗(λ) (3.9)

where λτ1 is the sink cost, i.e. the cost that has already occurred for whichever

choice that is made.

Based on [37], optimal solution of the Problem (3.4) with λ = λ∗ satisfying

U∗(λ∗) = 0 is an optimal solution of Problem (3.2). The optimal “cost” per unit

of time λ∗ is also the optimal rate of return of Problem (3.2). So next we focus on

λ = λ∗.

Letting λ = λ∗ and combining with U∗(λ∗) = 0, Eq. (3.9) can be simplified as:

E[Rnτd/2− λ∗τd]+ = λ∗τ1 + λ∗τCTS (3.10)

in which we denote [x]+ = max{x, 0}.

Based on (3.10), we can find out value of λ∗ numerically. Then from (3.8) and

the facts U∗(λ∗) = 0 andRn = log2(1+min{rfn , rgn}), the optimal rule for Problem

(3.2) is given as

N∗(λ∗) = min{n ≥ 1 : min{rfn, rgn} ≥ 4λ
∗ − 1}. (3.11)

In other words, if the minimum of the detected SNRs of the two hops is less than

4λ
∗−1, then the source should give up the transmission opportunity; otherwise, the

source should transmit with rate Rn.
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3.3 Iterative Algorithm for Calculating λ∗

It is not easy to get a closed-form solution of (3.10). So the solution (i.e., value of

λ∗) should be found by numerical methods. Reference [37] provides us an iterative

algorithm that gives a good approximation of the optimal rate of return λ∗.

First we need to take an initial guess of λ, then by the following formula (3.12)

we can get a good approximation of λ∗.

λn+1 =
E[YN(λn)]

E[TN(λn)]
. (3.12)

Now we explain how to develop the iterative algorithm using (3.12). Suppose

we already know λn, then the optimal stopping rule (3.8) becomes

N(λn) = min{n ≥ 1 : min{rfn, rgn} ≥ 4λn − 1}. (3.13)

This means when min{rfn, rgn} ≥ 4λn−1, the winner source would stop to transmit.

The expectation of total time until transmission using the stopping rule (3.13) is

E[T(n)] =
τ1 + τRTS + 2τCTS
1− Frmin(4λn − 1)

+ τd (3.14)

where rmin = min{rfn, rgn}, Frmin(r) = Pr(min{rfn, rgn} < r) = 1 − e
−r

ρf+ρg

ρf ·ρg is

the CDF of rmin (Pr(·) means probability of an event), 1
1−Frmin (4λn−1)

is the average

number of observations until stopping (i.e., when rmin ≥ 4λn−1), τ1+τRTS+2τCTS

is the time for channel contention, the RTS transmission from relay to destination,

CTS transmission from destination to relay, and CTS transmission from relay to

winner source (the RTS transmission time from winner source to the relay is in-

cluded in τ1).

The expectation of data throughput per transmission using the stopping rule
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(3.13) is

E[Y(n)] =
τd
2

∫ ∞
4λn−1

log2(1 + rmin)frmin(rmin)drmin (3.15)

where frmin(r) =
ρf+ρg
ρf ·ρg

e
−r

ρf+ρg

ρf ·ρg is the PDF of rmin and can be obtained as the

derivative of Frmin(r).

Thus, the iterative algorithm calculating λ∗ is as follows

• step 1: Take an initial guess λ0

• step 2: Calculate the threshold through (3.13)

• step 3: Calculate E[Y(n)] and E[T(n)] through (3.15) and (3.14)

• step 4: Calculate λ(n+1) =
E[Y(n)]
E[T(n)]

and go back to step 2, until the difference

between the λ calculated this time and that in the last time is less than a

certain small number.

3.4 Numerical Results

Consider 18 source-destination pairs. Other parameters are [38] : the probability

that a source sends a RTS in a minislot p = 0.1, channel coherence time τd =

8ms, RTS transmission duration τRTS = 103µs, CTS transmission duration τCTS =

106µs, minislot duration δ = 20µs, first-hop average SNR ρf = 1 .

Fig. 3.1 is the performance of the iterative algorithm when the second-hop av-

erage SNR ρg = 2. The iterative algorithm converges quickly under different initial

values.

Fig. 3.2 is the optimal threshold under different second-hop average SNR. When

the minimum of the first hop and second-hop SNR exceeds the threshold, it is opti-

mal for a winner source to transmit data; otherwise, the winner source should give

up the transmission opportunity and let all sources re-contend the channel.
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Fig. 3.1. Convergence performance of the iterative algorithm.

Fig. 3.3 shows the simulation results of average throughput with the proposed

strategy, theoretical results (i.e., values of λ∗) of average throughput with the pro-

posed strategy, and simulation results of average throughput without any strategy

(i.e., a winner source never gives up) under different second-hop average SNR. It

can be seen from Fig. 3.3 that our theoretical results agree with the simulation re-

sults very well. The average throughput with the proposed strategy is about 70%

more than that without any strategy.
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Chapter 4

Distributed Opportunistic

Scheduling in Wireless Relay

Networks with Partial CSI

In this chapter, we investigate the opportunistic channel access in distributed wire-

less networks with DF relay, where the winner source has partial CSI, specifically,

the winner source only has the CSI of source-relay link. The optimal stopping rule

for the first hop is threshold-based. For the second hop, provided that the relay has

already received the data from the winner source, it is proven that the only best

choice for the relay is to keep probing the second hop until the second hop achiev-

able transmission rate is higher than the first hop transmission rate. That is to say,

the relay needs to wait until the second hop channel condition is good enough to

be able to transmit the received data to the destination. Thus, if the first hop trans-

mission rate is high and a huge amount of data is transmitted to the relay, it might

take the relay a long time to probe the second hop to get a good second hop channel

condition to transmit the data to the destination. To solve this problem, we derive

a higher threshold for the first-hop transmission rate, i.e., if the first hop achievable

rate is above the threshold, then the source only transmits at the threshold rate.

25



4.1 System Model

Consider a distributed DF relay network that includes a number, M , of source-

destination pairs. Each source-destination pair has a relay assigned. There do not

exist direct links between each source-destination pair. Assume channels in the first

hop (i.e., from sources to their relays) follow independent and identically distributed

(i.i.d.) Rayleigh fading with average received SNR being ρf , while the channels in

the second hop (i.e., from relays to destinations) follow i.i.d. Rayleigh fading with

average received SNR being ρg.

The M sources use a channel contention procedure as follows. At a minislot

(the duration of which is denoted as δ), each source sends a RTS with probability

p to its relay. So at each minislot, if no source transmits, i.e., the minislot is idle

(the probability is (1−p)M ), then all sources start a new channel contention in next

minislot; if more than one source send RTS (the probability is 1 − (1 − p)M −

Mp(1− p)M−1), it means that transmissions of the sources collide with each other,

and thus, all the sources start a new channel contention following the collision;

if only one source sends RTS (with probability Mp(1 − p)M−1), then we call the

source a winner source. Define an observation as the interval from the starting point

of the channel contention until a winner source appears (i.e., its RTS is successfully

received by its relay). The average duration of an observation can be calculated as

τ1 = (1−p)M
Mp(1−p)M−1 · δ + 1−(1−p)M−Mp(1−p)M−1

Mp(1−p)M−1 τRTS + τRTS , in which τRTS is RTS

duration.

At the end of an observation (say, observation n), the winner source’s relay can

estimate the channel SNR from the winner source to itself by the RTS reception,

and it decides from two options: 1) option give-up: to give up the transmission

opportunity, and notify the source of the decision by sending back a CTS. This

CTS is also received by other sources. Thus, subsequently all sources can start a

new contention. 2) option stop: to stop the process and utilize the transmission

opportunity, and send back a CTS to notify the decision. In the CTS, a transmission

rate denoted Rn is also indicated for transmission from the winner source to the
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relay. Then the winner source transmits for duration of a channel coherence time

denoted as τd by using transmission rate Rn. The optimal value of Rn is derived in

Section 4.3.

For observation n, if the winner source stops, denote reward Yn as the total

amount of traffic that is sent by the winner source and received by its destination,

and denote Tn as the time duration from observation 1 until observation n plus the

time used for transmissions in the two hops. DenoteN as the stopping time, i.e., the

winner sources in the first N − 1 observations do not stop, and the winner source

in the N th observation stops. We target at an optimal stopping time denoted as N∗,

which makes the system achieve the maximal system throughput, i.e.,

N∗ = arg sup
N≥0

E[YN ]
E[TN ]

(4.1)

where E[·] means expectation. N∗ is also referred to as optimal stopping strat-

egy. Based on [37, Chapter 6], we can transform problem (4.1) into a problem that

maximizes net reward YN−λTN with λ > 0. In specific, for λ > 0, an optimal

strategy denoted N∗(λ) should be found, which maximizes expected reward of the

transformed problem:

U∗(λ) = sup
N(λ)≥0

{E[YN(λ)]− λE[TN(λ)]}. (4.2)

Then if we find a λ∗ such that U∗(λ∗) = 0, then an optimal strategy of problem

(4.1) is in the form of N∗(λ) with λ = λ∗ [37].

Next we find optimal strategy for problem (4.2), which includes two parts: the

optimal second-hop strategy and optimal first-hop strategy, discussed in the subse-

quent two sections.

4.2 Strategy for the Second Hop

Consider observation n. Here we first try to find the optimal strategy for the sec-

ond hop, i.e., we assume the winner source stops and transmits to its relay with
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rate Rn. For the second hop, the relay should find out its best strategy. The relay

first sends a RTS to the destination, and the destination estimates the second-hop

channel SNR denoted rg and feedbacks a CTS that includes the channel SNR infor-

mation, referred to as a channel probing. If the achievable second-hop transmission

rate, given as log2(1 + rg), is not less than Rn, then the relay transmits to the des-

tination by using transmission rate Rn with duration τd; otherwise, the relay may

decide to give up or to continue channel probing. If the relay decides to give up,

all sources start a new channel contention. If the relay decides to continue channel

probing, then the relay waits for channel coherence time τd and has a new RTS-

CTS exchange with the destination (a new channel probing), and transmits if the

achievable second-hop transmission rate is not less than Rn, or decides to give up

or to continue channel probing otherwise. This procedure is repeated until the relay

either transmits or gives up. It can be seen that there are a sequence of decisions

in the second hop, which makes the optimal second-hop strategy challenging. To

address the challenge, we review second-hop strategies from a new perspective, as

follows.

Denote Sl as the second-hop strategy that the relay can have up to l channel

probings of its channel to the destination. So if the relay cannot find a second-hop

channel realization with achievable rate not less than Rn within l channel probings,

the relay is forced to give up. Denote V l(λ) (which is a function of λ) as the net

reward of strategy Sl. Therefore, the optimal second-hop strategy should achieve

net reward max{E[V 1(λ)],E[V 2(λ)], ...,E[V ∞(λ)]}.

The net reward expectation of strategy S1 is

E[V 1(λ)] = Pr[r1g ≥ rn](Rnτd − λτ2)

+ Pr[r1g < rn](−λ(τRTS + τCTS))

= (1− Fg(rn))(Rnτd − λτ2)+

Fg(rn)(−λ(τRTS + τCTS))

(4.3)

where Pr[·] means probability of an event, τCTS is CTS transmission duration, τ2 =
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τRTS + τCTS + τd is the time cost for probing and transmission in the second hop,

Fg(·) is the cumulative distribution function (CDF) of the second-hop channel SNR

(the subscript g stands for the second hop), r1g is the second-hop channel SNR in

the first channel probing, rn , 2Rn−1 is the minimum required SNR of the second

hop for achievable transmission rate Rn.

The net reward expectation of strategy S∞ is

E[V ∞(λ)]

=Pr[r1g ≥ rn](Rnτd − λτ2) + Pr[r1g < rn](E[V ∞(λ)]− λτ2)

=(1− Fg(rn))(Rnτd − λτ2) + Fg(rn)(E[V ∞(λ)]− λτ2).

(4.4)

From (4.3) and (4.4), we have

E[V ∞(λ)]− E[V 1(λ)] = Fg(rn)(E[V ∞(λ)]− λτd). (4.5)

4.2.1 Case with E[V ∞(λ)] ≥ λτd

If E[V ∞(λ)] ≥ λτd , then from (4.5) we have E[V ∞(λ)] ≥ E[V 1(λ)]. Now we

compare E[V ∞(λ)] with E[V l(λ)], l ≥ 1.

We have

E[V l(λ)] = Pr[r1g ≥ rn](Rnτd − λτ2) + Pr[r1g < rn, r
2
g ≥ rn](Rnτd − 2λτ2) + ...

+ Pr[r1g < rn, ..., r
l−1
g < rn, r

l
g ≥ rn](Rnτd − lλτ2)

+ Pr[r1g < rn, ..., r
l−1
g < rn, r

l
g < rn](−(l − 1)λτ2 − λ(τRTS + τCTS))

(4.6)

in which r1g , r
2
g , ..., r

l
g are channel SNRs of 1st, 2nd, ..., lth channel probing of the

29



relay. E[V ∞(λ)] can be expressed as

E[V ∞(λ)] = Pr[r1g ≥ rn](Rnτd − λτ2)

+Pr[r1g < rn, r
2
g ≥ rn](Rnτd − 2λτ2) + ...

+Pr[r1g < rn, ..., r
l−1
g < rn, r

l
g ≥ rn](Rnτd − lλτ2)

+Pr[r1g < rn, ..., r
l−1
g < rn, r

l
g < rn](E[V ∞(λ)]− lλτ2).

So

E[V ∞(λ)]− E[V l(λ)] = Pr[r1g < rn, ..., r
l−1
g < rn, r

l
g < rn](E[V ∞(λ)]− λτd)

= (Fg(rn))
l(E[V ∞(λ)]− λτd) ≥ 0

(4.7)

which means the optimal second-hop strategy should be: the relay keeps probing

the second-hop channel until the achievable rate is not less than Rn.

4.2.2 Case with E[V ∞(λ)] < λτd

If E[V ∞(λ)] < λτd, from (4.5) we have E[V ∞(λ)] < E[V 1(λ)]. Now we compare

E[V 1(λ)] with E[V l(λ)], l > 1.

E[V 1(λ)]−E[V l(λ)] = −(E[V ∞(λ)]− E[V 1(λ)]) + (E[V ∞(λ)]− E[V l(λ)])
(a)
=−Fg(rn)(E[V ∞(λ)]−λτd)+(Fg(rn))

l(E[V ∞(λ)]−λτd)

= Fg(rn)
(
− 1 + (Fg(rn))

l−1)(E[V ∞(λ)]− λτd) (b)
> 0

in which (a) comes from (4.5) and (4.7), and (b) comes from Fg(rn) < 1 and

E[V ∞(λ)] < λτd. Thus, the optimal second-hop strategy should be: the relay

probes the second-hop channel only once, and transmits if the achievable transmis-

sion rate is not less than Rn, or gives up otherwise.

Overall, for the second hop, depending on comparison of E[V ∞(λ)] with λτd,

the relay should either probe the second-hop channel once, or keep probing the

second-hop channel until the achievable second-hop rate is not less than Rn.
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4.3 Strategy for the First Hop

Based on optimal strategy in the second hop, now we derive optimal strategy for

the first hop. In the first hop, at observation n, once the RTS of the winner source

(i.e., the source that wins channel contention) is received by its relay, and the first-

hop channel SNR denoted rfn is estimated, then the decision is either give-up or

stop (i.e., to transmit), whichever has higher reward. If the decision for the first

hop is give-up, then the net reward is −λτCTS (since a CTS is needed to notify the

decision); if the decision for the first hop is to transmit with rate Rn, the net reward

is max {E[V 1(λ)],E[V 2(λ)], . . . ,E[V ∞(λ)]} − λ(τCTS + τd), in which τCTS + τd

is time cost in the first hop: the relay uses a CTS to notify the source of the decision

and the source transmits with τd duration (noting that the time cost in the subsequent

second hop is included in max {E[V 1(λ)],E[V 2(λ)], . . . ,E[V ∞(λ)]}).

First consider E[V ∞(λ)] < λτd for the second hop. Then based on discussion

in Section 4.2.2, max {E[V 1(λ)],E[V 2(λ)], . . . ,E[V ∞(λ)]} = E[V 1(λ)], so the net

reward of transmission in first hop is E[V 1(λ)]− λ(τCTS + τd). Since E[V ∞(λ)] <

λτd, from (4.5) we have

E[V 1(λ)] = (1− Fg(rn))E[V ∞(λ)] + Fg(rn)λτd

< (1− Fg(rn))λτd + Fg(rn)λτd = λτd
(4.8)

which leads to E[V 1(λ)]−λ(τCTS+ τd) < −λτCTS . In other words, the net reward

of transmission in the first hop is less than the net reward of give-up in the first

hop, and thus, the winner source will always give up in the first hop. Therefore,

when we calculate the net reward of transmission in the first hop, we can ignore

“E[V ∞(λ)] < λτd”. Thus, we focus on E[V ∞(λ)] ≥ λτd, and based on discussion

in Section 4.2.1, we have max {E[V 1(λ)],E[V 2(λ)], . . . ,E[V ∞(λ)]} = E[V ∞(λ)].
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So the net reward of transmission (stopping) in the first hop is

E[V ∞(λ)]− λ(τCTS + τd)

(c)
=Rnτd −

1

1− Fg(rn)
λτ2 − λ(τCTS + τd)

(d)
= log2(1 + rn)τd − λτCTS − λτd − λe

rn
ρg τ2

(4.9)

in which (c) comes from E[V ∞(λ)] = Rnτd − 1
1−Fg(rn)λτ2 which is from (4.4),

and (d) is from Fg(rn) = 1 − e−
rn
ρg (Rayleigh fading) and rn , 2Rn − 1. The net

reward (4.9) is not a monotonically increasing function of rn. So we need to set up

an optimal rn that makes the net reward maximal.

Define function φ(x) = log2(1 + x)τd − λτCTS − λτd − λe
x
ρg τ2, which is a

concave function. To find the optimal x, denoted x∗, that maximizes φ(x), we can

solve dφ(x)
dx

= 0, which leads to

τd
(1 + x∗) ln 2

=
λ

ρg
e
x∗
ρg τ2. (4.10)

x∗ can be calculated from (4.10) numerically. So rn should be set to x∗ if feasible.

However, it may not be feasible to set rn to be x∗ since rn should be no more than

the first-hop channel SNR rfn. Thus, overall we should set rn = min{rfn, x∗} and

Rn = log2(1 + min{rfn, x∗}).

Recall that an optimal stopping strategy of problem (4.2) with λ∗ satisfying

U(λ∗) = 0 is an optimal stopping strategy of problem (4.1). So next we focus

on optimal stopping strategy of problem (4.2) with λ∗. Maximal expected reward

U(λ∗) of problem (4.2) should satisfy an optimality equation [37]:

E
[
max

{
log2(1 + min{rfn, x∗})τd −λ∗(τCTS + τd

+ e
min{rfn,x

∗}
ρg τ2), U(λ

∗)− λ∗τCTS
}]
− λτ1 = U(λ∗).

Since U(λ∗) = 0, the optimal equation is rewritten as
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E
[
max

{
log2(1 + min{rfn, x∗})τd − λ∗(τCTS + τd

+ e
min{rfn,x

∗}
ρg τ2), − λ∗τCTS

}]
= λ∗τ1 (4.11)

from which λ∗ can be calculated numerically.

Accordingly, the optimal stopping strategy in the first hop is given as

N∗(λ∗) = min
{
n ≥ 1 : log2(1 + min{rfn, x∗})τd

− λ∗(τCTS + τd + e
min{rfn,x

∗}
ρg τ2) ≥ −λ∗τCTS

}
(4.12)

in which x∗ can be calculated from (4.10) with λ = λ∗.

The left handside of the inequality in (4.12) is a non-decreasing function of rfn.

Denote r̂f as the solution of rfn for log2(1 + min{rfn, x∗})τd − λ∗(τCTS + τd +

e
min{rfn,x

∗}
ρg τ2) = −λ∗τCTS . Then the optimal stopping strategy in the first hop is

rewritten as N∗(λ∗) = min
{
n ≥ 1 : rfn ≥ r̂f

}
. Thus, at observation n, if

the fist-hop channel SNR rfn is less than the threshold r̂f , the winner source gives

up; otherwise, the winner source stops, i.e., transmits with rate Rn = log2(1 +

min{rfn, x∗}), and subsequently the relay keeps probing the second-hop channel

until an achievable rate not less than Rn. The values of r̂f and x∗ can be calculated

offline, and thus, the optimal strategy is a pure-threshold strategy, with very low

computational complexity.

4.4 Iterate Algorithm for Calculating λ∗

It is hard to get an analytical closed-form solution from eq. (4.11). Similar to Chap-

ter 3, we will use an iterative algorithm [37] to get a good approximation of optimal

rate of return λ∗.
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Suppose we already know λn, then the optimal stopping rule (4.12) becomes

N(λn) = min{n ≥ 1, log2(1 + min(rfn, x
∗
(n)))τd − λne

min(r
f
n,x
∗
(n)

)

ρg τ2

≥ λnτd}
(4.13)

where x∗(n) is the threshold get from (4.10) by letting λ = λn. Suppose when

rfn = r1(n), we have log2(1 + min(rfn, x
∗
(n)))τd − λne

min(r
f
n,x
∗
(n)

)

ρg τ2 = λnτd. In other

words, r1(n) is the threshold for the first-hop SNR, i.e., when the first-hop SNR is

greater than the threshold, the winner source begins to transmit data to its relay.

The expectation of throughput per transmission using the stopping rule (4.13) is

E[Y(n)] =
Ff (x

∗
(n))− Ff (r1(n))

1− Ff (r1(n))
τd

∫ x∗
(n)

r1(n)

log2(1 + r)
ff (r)

Ff (x∗(n))− Ff (r1(n))
dr

+
1− Ff (x∗(n))
1− Ff (r1(n))

τd log2(1 + x∗(n))

= e
r1(n)
ρf τd

∫ x∗
(n)

r1(n)

log2(1 + r)
1

ρf
e
− r
ρf dr + e

r1(n)
ρf
−
x∗
(n)
ρf τd log2(1 + x∗(n))

= [
1

ρf
e
r1(n)
ρf

∫ x∗
(n)

r1(n)

ln(1 + r)e
− r
ρf dr + e

r1(n)
ρf
−
x∗
(n)
ρf ln(1 + x∗(n))]/ ln 2 ∗ τd

= [
1

ρf
e
r1(n)
ρf (−ρf )

∫ x∗
(n)

r1(n)

ln(1 + r)de
− r
ρf + e

r1(n)
ρf
−
x∗
(n)
ρf ln(1 + x∗(n))]/ ln 2 ∗ τd

= {e
r1(n)
ρf [ln(1 + r1(n))e

−
r1(n)
ρf − ln(1 + x∗(n))e

−
x∗
(n)
ρf +

∫ x∗
(n)

r1(n)

e
−
r1(n)
ρf

1

1 + r
dr]

+ e
r1(n)
ρf
−
x∗
(n)
ρf ln(1 + x∗(n))}/ ln 2 ∗ τd

= {e
r1(n)
ρf [ln(1 + r1(n))e

−
r1(n)
ρf − ln(1 + x∗(n))e

−
x∗
(n)
ρf + e · (ei(−x∗(n) − 1)

− ei(−r1(n) − 1))] + e
r1(n)
ρf
−
x∗
(n)
ρf ln(1 + x∗(n))}/ ln 2 ∗ τd

(4.14)

where Ff (·) is the CDF of the first-hop SNR rfn. Here
Ff (x

∗
(n)

)−Ff (r1(n))
1−Ff (r1(n))

is the prob-

ability that rfn satisfies r1(n) ≤ rfn ≤ x∗(n). ff (·) is the PDF of rfn, ff (r)

Ff (x
∗
(n)

)−Ff (r1(n))

is the PDF of rfn under the condition that r1(n) ≤ rfn ≤ x∗(n), so τd
∫ x∗

(n)

r1(n)
log2(1 +
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r)
ff (r)

Ff (x
∗
(n)

)−Ff (r1(n))
dr is the average throughput if rfn satisfies r1(n) ≤ rfn ≤ x∗(n).

1−Ff (x∗(n))
1−Ff (r1(n))

is the probability that rfn > x∗(n), log2(1+x
∗
(n)) is the average throughput

if rfn > x∗(n). ei(x) =
∫ x
−∞

et

t
dt.

The expectation of time cost per transmission using the stopping rule (4.13) is

E[T(n)] =
τ1 + τCTS

1− Ff (r1(n))
+ τd

+
Ff (x

∗
(n))− Ff (r1(n))

1− Ff (r1(n))
τ2

∫ x∗
(n)

r1(n)

1

1− Fg(r)
ff (r)

Ff (x∗(n))− Ff (r1(n))
dr+

1− Ff (x∗(n))
1− Ff (r1(n))

τ2
1

1− Fg(x∗(n))

= (τ1 + τCTS)e
r1(n)
ρf + τd

+ e
r1(n)
ρf τ2

∫ x∗
(n)

r1(n)

e
r
ρg

1

ρf
e
− r
ρf dr + e

−x∗
(n)

+r1(n)

ρf τ2e
x∗
(n)
ρg

= (τ1 + τCTS)e
r1(n)
ρf + τd

+ e
r1(n)
ρf τ2

1

ρf

ρf ∗ ρg
ρf − ρg

(e
ρf−ρg
ρf ∗ρg

∗x∗
(n) − e

ρf−ρg
ρf ∗ρg

∗r1(n)) + τ2e
−x∗

(n)
+r1(n)

ρf
+
x∗
(n)
ρg .

(4.15)

here 1
1−Ff (r1(n))

is the average number of observations until the first-hop SNR rfn ≥

r1(n). τ1 + τCTS is the time for channel contention and the relay sends back a CTS.

τ2
∫ x∗

(n)

r1(n)

1
1−Fg(r)

ff (r)

Ff (x
∗
(n)

)−Ff (r1(n))
dr is the time cost for waiting and data transmission

in the second hop if the first-hop SNR satisfies r1(n) ≤ rfn ≤ x∗(n). τ2
1

1−Fg(x∗(n))
is the

time cost of waiting and data transmission in the second hop if the first-hop SNR

rfn > x∗(n).

Thus, the iterative algorithm is as follows:

• step 1: Take an initial guess λ0

• step 2: Calculate x∗ and r1(n) through (4.10) and (4.13)

• step 3: Calculate E[Y(n)] and E[T(n)] through (4.14) and (4.15)

• step 4: Calculate λ(n+1) =
E[Y(n)]
E[T(n)]

and go back to step 2, until the difference

bewteen the λ calculated this time and last time is less than a certain small

number.
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4.5 Numerical Results

Consider 18 source-destination pairs. Other parameters are [38]: the probability

that a source sends a RTS in a minislot p = 0.1, channel coherence time τd =

8ms, RTS transmission duration τRTS = 103μs, CTS transmission duration τCTS =

106μs, minislot duration δ = 20μs, first-hop average SNR ρf = 1.

λ

λ
λ
λ

Fig. 4.1. Convergence performance of the iterative algorithm.

Fig. 4.1 shows the performance of the iterative algorithm when the second-hop

average SNR is ρg = 2. It can be seen that the iterative algorithm converges quickly

under different initial values.

Fig. 4.2 is the upper and lower thresholds for the first-hop SNR, calculated from

(4.10) and (4.12), respectively, under different second-hop average SNR. For exam-

ple, when the second-hop average SNR is 10, the lower threshold is 2.0327 and the

upper threshold is 7.9523, i.e., when the detected first-hop SNR is less than 2.0327,
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Fig. 4.2. Thresholds under different second-hop average SNR.

the source will give up the transmission opportunity; when the detected first-hop

SNR is between 2.0327 and 7.9523, the source will transmit its data at its full chan-

nel capacity; when the detected first-hop SNR is greater than 7.9523, the source

will transmit its data at rate log2(1 + 7.9523).

Fig. 4.3 shows the simulation results of average throughput with the proposed

strategy, theoretical results of average throughput with the proposed strategy, and

simulation results of average throughput without any strategy (i.e., after probing

the first-hop, a winner source always transits to its relay using the full first-hop

channel capacity, and then the relay keeps waiting until a good enough second-hop

channel condition is found) under different second-hop average SNR. It can be seen

from Fig. 4.3 that our theoretical results agree with the simulation results very well.

The average throughput with the proposed strategy is about 40% more than that

without any strategy when the second-hop average SNR is low; when the second-
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Fig. 4.3. Simulation and theoretical results.

hop average SNR is high, average throughput with the proposed strategy is almost

twice that without any strategy.
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Chapter 5

Distributed Opportunistic

Scheduling in Wireless Relay

Networks with Partial CSI–Further

Improvement

In Chapter 4, we assume that the data transmission time and rate are equal in both

hops, i.e., the second hop transmission rate is equal to the first hop transmission rate

even when the second hop achievable rate is higher than the first hop transmission

rate. This leads to resource waste and low channel utilization efficiency. In this

chapter, we assume that when the second hop achievable rate is higher than the first

hop transmission rate, the relay will transmit data at the second-hop achievable rate

in order to reduce transmission time and improve the channel utilization efficiency.

5.1 System Model

The system model is almost the same as that in Chapter 4. The only difference is

the choice for the relay after probing the second hop. Specifically, if the detected

second-hop SNR rg satisfies log2(1 + rg) ≥ Rn or equivalently, rg ≥ rn (Rn is the

first hop transmission rate, and Rn = log2(1 + rn)), then the relay transmits the

39



received data at rate log2(1 + rg) rather than Rn; otherwise, the relay either waits

for channel coherence time and probes again or abandons the received data.

Similar to Chapter 4, for observation n, if the winner source stops, denote re-

ward Yn as the total amount of traffic that is sent by the winner source and received

by its destination, and denote Tn as the time duration from observation 1 until ob-

servation n plus the time used for transmissions in the two hops. Denote N as

the stopping time. Our goal is still to find the optimal stopping time N∗ that can

maximize the average rate of return

N∗ , arg max
N∈C

E[YN ]
E[TN ]

. (5.1)

This problem can be converted to an ordinary optimal stopping problem that max-

imizes the net reward U(λ) = YN − λTN , where λ denotes the “cost” per unit of

time. The optimal net return is defined as

U∗(λ) = sup
N(λ)∈C

E[YN(λ) − λTN(λ)]. (5.2)

5.2 Optimal Strategy

As defined in Chapter 4, Sl is the second hop strategy that the relay can have up to

l chances of channel probings and V l(λ) is the net reward of strategy Sl. Since the

transmission time for the second hop is a random variable and is determined by the

first hop transmission rate and the detected SNR of the second hop, the expectation

of net reward of strategy S1 is:
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E[V 1(λ)]

=Pr[r1g ≥ rn](Rnτd − λτRTS − λτCTS − λ
∫ ∞
rn

log2(1 + rn)τd
log2(1 + r)

fg1(r)dr)

+ Pr[r1g < rn](−λ(τRTS + τCTS))

=(1− Fg(rn))(Rnτd − λτRTS − λτCTS − λ
∫ ∞
rn

log2(1 + rn)τd
log2(1 + r)

fg1(r)dr)

+ Fg(rn)(−λ(τRTS + τCTS))

(5.3)

where rng (n = 1, 2, 3...) is the second-hop SNR of the nth probing, fg1(r) =

fg(r)

1−Fg(rn) = 1
ρg
e
− r−rn

ρg is the PDF of the second hop detected SNR rng under the

condition that rng ≥ rn, and fg(r) is the PDF of rng .
∫∞
rn

log2(1+rn)τd
log2(1+r)

fg1(r)dr is the

average time for data transmission in the second hop.

The expectation of net reward of strategy S∞ is given by

E[V ∞(λ)]

=Pr[r1g ≥ rn](Rnτd − λτRTS − λτCTS − λ
∫ ∞
rn

log2(1 + rn)τd
log2(1 + r)

fg1(r)dr)

+ Pr[r1g < rn](E[V ∞(λ)]− λτ2)

=(1− Fg(rn))(Rnτd − λτRTS − λτCTS − λ
∫ ∞
rn

log2(1 + rn)τd
log2(1 + r)

fg1(r)dr)

+ Fg(rn)(E[V ∞(λ)]− λτ2).

(5.4)

From (5.3) and (5.4) we have

E[V ∞(λ)]− E[V 1(λ)] = Fg(rn)(E[V ∞(λ)]− λτd) (5.5)

which is same as (4.5).
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The expectation of net reward of strategy Sl is given by

E[V l(λ)]

=Pr[r1g ≥ rn](Rnτd − λτRTS − λτCTS − λ
∫ ∞
rn

log2(1 + rn)τd
log2(1 + r)

fg1(r)dr)

+ Pr[r1g < rn, r
2
g ≥ rn](Rnτd − λτ2 − λτRTS − λτCTS−

λ

∫ ∞
rn

log2(1 + rn)τd
log2(1 + r)

fg1(r)dr) + . . .

+ Pr[r1g < rn, . . . , r
l−1
g < rn, r

l
g ≥ rn](Rnτd − (l − 1)λτ2

− λτRTS − λτCTS − λ
∫ ∞
rn

log2(1 + rn)τd
log2(1 + r)

fg1(r)dr)

+ Pr[r1g < rn, . . . , r
l−1
g < rn, r

l
g < rn](−(l − 1)λτ2 − λ(τRTS + τCTS)).

(5.6)

E[V ∞(λ)] can be expressed as

E[V ∞(λ)]

=Pr[r1g ≥ rn](Rnτd − λτRTS − λτCTS − λ
∫ ∞
rn

log2(1 + rn)τd
log2(1 + r)

fg1(r)dr)

+ Pr[r1g < rn, r
2
g ≥ rn](Rnτd − λτ2 − λτRTS − λτCTS−

λ

∫ ∞
rn

log2(1 + rn)τd
log2(1 + r)

fg1(r)dr) + ...

+ Pr[r1g < rn, . . . , r
l−1
g < rn, r

l
g ≥ rn](Rnτd − (l − 1)λτ2

− λτRTS − λτCTS − λ
∫ ∞
rn

log2(1 + rn)τd
log2(1 + r)

fg1(r)dr)

+ Pr[r1g < rn, . . . , r
l−1
g < rn, r

l
g < rn](E[V ∞(λ)]− lλτ2).

(5.7)

From (5.6) and (5.7) we have

E[V ∞(λ)]− E[V l(λ)]

=Pr[r1g < rn, . . . , r
l−1
g < rn, r

l
g < rn](E[V ∞(λ)]− λτd)

=(Fg(rn))
l(E[V ∞(λ)]− λτd)

(5.8)

which is the same as (4.7).
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Therefore, similar to Chapter 4, we can prove that S∞ is the best strategy for

the relay if the expectation of net reward of S∞ is not less than λτd; otherwise S1 is

the best strategy.

For the first hop, using the same method in Chapter 4, it can be proven that when

E[V ∞(λ)]−λτd < 0, the net reward of transmission in the first hop must be less than

the net reward of give-up in the first hop, and thus, the winner source will always

give up the transmission opportunity in the first hop. Therefore, when we calculate

the net reward of transmission in the first hop, we can ignore “E[V ∞(λ)] < λτd”.

Thus, we focus on E[V ∞(λ)] ≥ λτd. Then, the net reward for data transmission in

the first hop is:

U(λ) =E[V ∞(λ)]− λ(τCTS + τd)

=Rnτd − (
1

1− Fg(rn)
− 1)λτ2 − λτRTS − λτCTS

− λ
∫ ∞
rn

log2(1 + rn)τd
log2(1 + r)

fg1(r)dr − λ(τCTS + τd)

= log2(1 + rn)τd − λτCTS − λe
rn
ρg τ2

− λ
∫ ∞
rn

log2(1 + rn)τd
log2(1 + r)

1

ρg
e
− r−rn

ρg dr

(5.9)

The net reward for transmission is not a monotonically increasing function of

rn. So we should choose an optimal rn from the available range (0, rf (n)] that

maximizes the net reward.

Define function

ϕ(x) = log2(1 + x)τd − λτCTS − λe
x
ρg τ2

− λ
∫ ∞
x

log2(1 + x)τd
log2(1 + r)

1

ρg
e
− r−x

ρg dr.
(5.10)

Assume x∗ maximizes ϕ(x). In order to maximize the net reward, when rfn < x∗,

we have rn = rfn; when rfn ≥ x∗, we have rn = x∗. In short, rn = min(rfn, x
∗) and

it follows that Rn = log2(1 + min(rfn, x
∗))
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Now, the optimal stopping rule is

N(λ∗) =min{n ≥ 1, log2(1 + rn)τd − λτCTS − λe
rn
ρg τ2

− λ
∫ ∞
rn

log2(1 + rn)τd
log2(1 + r)

1

ρg
e
− r−rn

ρg dr ≥ U∗(λ∗)− λ∗τCTS}
(5.11)

i.e., the optimal stopping time is the first time that the net reward of transmission is

not less than the net reward of give-up.

Note that U∗(λ∗) = 0 from [37] and rn = min(rfn, x
∗) so the optimal stopping

rule (5.11) can be simplified as

N(λ∗) =min{n ≥ 1, log2(1 + min(rfn, x
∗))τd − λe

min(r
f
n,x
∗)

ρg τ2

− λ
∫ ∞
min(rfn,x∗)

log2(1 + min(rfn, x
∗))τd

log2(1 + r)

1

ρg
e
− r−min(r

f
n,x
∗)

ρg dr ≥ 0}.
(5.12)

The optimal rate of return λ∗ can be found by solving the optimality equation

E[max{log2(1 + rn)τd − λτCTS − λe
rn
ρg τ2

− λ
∫ ∞
rn

log2(1 + rn)τd
log2(1 + r)

1

ρg
e
− r−rn

ρg dr, U∗(λ∗)− λ∗τCTS}]− λ∗τ1 = U∗(λ∗).

(5.13)

Note that U∗(λ∗) = 0, and rn = min(rfn, x
∗) so the optimality equation (5.13)

can be simplified as

E[log2(1 + min(rfn, x
∗))τd − λe

min(r
f
n,x
∗)

ρg τ2

− λ
∫ ∞
min(rfn,x∗)

log2(1 + min(rfn, x
∗))τd

log2(1 + r)

1

ρg
e
− r−min(r

f
n,x
∗)

ρg dr]+ = λ∗(τ1 + τCTS).

(5.14)

5.3 Iterative Algorithm for Calculating λ∗

The iterative algorithm to calculate λ∗ is similar to that in Chapter 4. First we

need to take an initial guess of λ. Suppose we already know λn. Then the optimal

44



stopping rule (5.12) becomes

N(λn) = min{n ≥ 1, log2(1 + min(rfn, x
∗
(n)))τd − λe

min(r
f
n,x
∗
(n)

)

ρg τ2

− λn
∫ ∞
min(rfn,x

∗
(n)

)

log2(1 + min(rfn, x
∗
(n)))τd

log2(1 + r)

1

ρg
e
−
r−min(r

f
n,x
∗
(n)

)

ρg dr ≥ 0}
(5.15)

where x∗(n) is the one that can maximize ϕ(x) when λ = λn.

The expectation of throughput per transmission using the stopping rule (5.15) is

E[Y(n)] =
Ff (x

∗
(n))− Ff (r1(n))

1− Ff (r1(n))
τd

∫ x∗
(n)

r1(n)

log2(1 + r)ff1(r)dr

+
1− Ff (x∗(n))
1− Ff (r1(n))

τd log2(1 + x∗(n))

(5.16)

where r1(n) is the threshold get from (5.15) which is the minimum required SNR

that the reward of transmission is not less than the reward of give-up.

The expectation of time cost per transmission using the stopping rule (5.15) is

E[T(n)] =
τ1 + τCTS

1− Ff (r1(n))
+ τd

+
Ff (x

∗
(n))− Ff (r1(n))

1− Ff (r1(n))
τ2

∫ x∗
(n)

r1(n)

1

1− Fg(r)
ff1(r)dr

+
1− Ff (x∗(n))
1− Ff (r1(n))

τ2
1

1− Fg(x∗(n))
− τd

+
Ff (x

∗
(n))− Ff (r1(n))

1− Ff (r1(n))

∫ x∗
(n)

r1(n)

∫ ∞
r1

log2(1 + r1)τd
log2(1 + r2)

fg1(r)dr2ff1(r)dr1

+
1− Ff (x∗(n))
1− Ff (r1(n))

∫ ∞
x∗
(n)

log2(x
∗
(n) + 1)τd)

log2(1 + r2)
fg2(r)dr2.

(5.17)

Here τ1+τCTS
1−Ff (r1(n))

+ τd is the time cost in channel contention, re-contention and data

transmission in the first hop. ff1(r) =
ff (r)

Ff (x
∗
(n)

)−Ff (r1(n))
is the PDF of first-hop SNR

under the condition that r1(n) ≤ rfn ≤ x∗(n).
Ff (x

∗
(n)

)−Ff (r1(n))
1−Ff (r1(n))

τ2
∫ x∗

(n)

r1(n)

1
1−Fg(r)ff1(r)dr+

1−Ff (x∗(n))
1−Ff (r1(n))

τ2
1

1−Fg(x∗(n))
− τd is the time cost for the second hop channel probing and
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waiting until the achievable transmission rate is not less than Rn. fg1(·) and fg2(·)

are the PDF of the second hop detected SNR under the condition that rg(n) ≥ r1

and rg(n) ≥ x∗(n), respectively. The last two parts are the average data transmission

time when r1(n) ≤ rfn ≤ x∗(n) and when rfn ≥ x∗(n), respectively.

Thus, the algorithm is as follows

• step 1: Take an initial guess λ0

• step 2: Calculate x∗ and r1(n)

• step 3: Calculate E[Y(n)] and E[T(n)] through (5.16) and (5.17)

• step 4: Calculate a new λ =
E[Y(n)]
E[T(n)]

and go back to step 2, until the difference

between the λ calculated this time and the last time is less than a certain small

number.

5.4 Numerical Results

Consider 18 source-destination pairs. Other parameters are [38]: the probability

that a source sends a RTS in a minislot p = 0.1, channel coherence time τd =

8ms, RTS transmission duration τRTS = 103µs, CTS transmission duration τCTS =

106µs, minislot duration δ = 20µs, and first-hop average SNR ρf = 1.

Fig. 5.1 is the performance of the iterative algorithm when the second-hop av-

erage SNR ρg = 2. The iterative algorithm converges quickly under different initial

values.

Fig. 5.2 shows the upper and lower threshold under different second-hop aver-

age SNR. For example, when the second-hop average SNR is 10, the lower thresh-

old is 1.6741 and the upper threshold is 6.6610. So when the detected first-hop SNR

is less than 1.6741, the source will give up the transmission opportunity; when the

detected first-hop SNR is between 1.6741 and 6.6610, the source will transmit data

at its full channel capacity; when the detected first-hop SNR is greater than 6.6610,

the source will transmit data at rate log2(1 + 6.6610).
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Fig. 5.1. Convergence performance of the iterative algorithm.

Fig. 5.3 shows the simulation results of average throughput with the proposed

strategy, theoretical results of average throughput with the proposed strategy, and

simulation results of average throughput without any strategy (the same as the case

without any strategy in numerical results of Chapter 4) under different second-hop

average SNR. It can be seen from Fig. 5.3 that our theoretical results agree with the

simulation results very well. The average throughput with the proposed strategy is

about 60% more than that without any strategy when the second-hop average SNR

is low; when the second-hop average SNR is high, average throughput with the

proposed strategy is more than twice that without any strategy.

Fig. 5.4 shows the simulation result of different scheduling strategies. Sim 1 is

for the case without any strategy, and Sim 2 refers to the simulation results with

strategy proposed in [19]. Sim 3, Sim 4, and Sim 5 refer to the simulation results

for our strategies in Chapter 3, Chapter 4, and Chapter 5, respectively.
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Fig. 5.2. Thresholds under different second-hop average SNR.

Not surprisingly, the average throughput without any strategy performs the worst

among all the strategies.

The strategy in [19] is always better than our strategy in Chapter 3 because

in the strategy of [19], after probing the first hop, if the channel condition is bad,

the winner source will give up the transmission opportunity; but in our strategy in

Chapter 3, the decision is made after finishing probing the two hops.

Our Strategy in Chapter 5 always performs better than our strategy in Chapter

4. This is because high transmission rate in the second hop can be achieved in our

strategy in Chapter 5.

Our strategy in Chapter 5 performs worse than the strategy in [19] when the

second-hop average SNR is low, and performs better when the second-hop average

SNR is high. There are two main differences between these two strategies:

• In our strategy in Chapter 5, data transmission in the first hop is separate
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Fig. 5.3. Simulation and theoretical results.

from the transmission in the second hop, and thus, the transmission time in

each hop is up to the channel coherence time. In the strategy of [19], data

transmission is successive in the two hops and must be finished in channel

coherence time. In this way, our strategy has more transmission time per

transmission in each hop.

• The strategy of [19] probes the second hop before data transmission. In our

strategy, the first hop transmission is based on the expectation of the second

hop, and the relay begins to probe the second hop after it has received the

data from the source.

When the second-hop average SNR is low, it is relatively hard for the second hop to

get an achievable rate greater than that in the first hop, and we can say the second

hop is unstable compared with the first hop. The strategy of [19] has the advan-

tage by probing before transmission and can fully utilize the second hop, while our

strategy may suffers from more waiting time in the second hop. However, when
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Fig. 5.4. Simulation result comparison.

the second-hop average SNR is high, it is relatively easy for the second hop to get

an achievable rate higher than that in the first hop. For our strategy, the effect of

possible more waiting time in the second hop is negligible, and the benefit of more

transmission time in each hop dominates. Thus, our strategy can achieve higher

system throughput.
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Chapter 6

Conclusion and Future Work

This chapter summarizes the contributions of the thesis. The future work that can

be done based on the thesis is also discussed.

6.1 Conclusion

In this thesis, we have proposed a distributed opportunistic scheduling scheme for

ad-hoc networks with dedicated DF relays without direct links (source-destination

links). Two cases are considered: 1) the winner source has full CSI (CSI of source-

relay link and relay-destination link), 2) the winner source has partial CSI (CSI of

source-relay link). All sources use random access to contend the channel, and the

source that wins the transmission opportunity is called winner source.

For the first case, the winner source probes the source-relay link and relay-

destination link successively and decides to transmit or give up the transmission

opportunity after getting the full CSI. A pure threshold-structure optimal stopping

rule is developed for this case, to be specific, when the minimum of the detected

SNRs of the source-relay link and relay-destination link exceeds a certain thresh-

old, it is optimal for the winner source to transmit data; otherwise, the winner source

should give up the transmission opportunity and let all sources re-contend the chan-

nel.

For the second case, the winner source only probes the source-relay link and
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then decides to transmit or give up the transmission opportunity. If the first one

(i.e., to transmit) is chosen, after the relay receives the data, it begins to probe the

second hop and has three choices: 1) to transmit; 2) to wait for channel coherence

time and probe again and repeat the procedure; 3) to abandon the data.

First we consider a simple situation: the second hop transmission rate equals

the first hop transmission rate when the second hop channel is good enough. In this

situation, under the condition that the relay has received the data from the source,

it is proven that the best decision for the relay is either 1) probing just once or 2)

keeping probing until the channel condition is good. However, it is proven that

the net reward of transmission in the first hop is always less than the net reward of

giving up transmission opportunity in the first hop when the decision 1) is better

than decision 2). In other words, when the net reward of transmission in the first

hop is greater than the net reward of giving up transmission opportunity in the first

hop, the source chooses to transmit, and the only best choice for the relay is keeping

probing the second hop until the channel condition is good; when the net reward of

transmission in the first hop is less than the net reward of giving up transmission

opportunity in the first hop, the source gives up the transmission opportunity (the

decision for relay is not needed).

A pure threshold structure stopping rule is developed for this situation. The

rule contains two thresholds, a low threshold and an upper threshold. When the

first hop detected SNR is smaller than the lower threshold, the source will give up

the transmission opportunity; when the SNR is between the lower threshold and

the upper threshold, the source transmits at full channel capacity; when the SNR is

higher than the upper threshold, the source transmits at a rate based on the upper

threshold.

Then a complicated situation is considered: the second hop can transmit at its

full channel capacity when its achievable transmission rate is not less than the first

hop transmission rate. In this situation the second hop transmission time is a random

variable determined by the first hop transmission rate and the second hop detected

SNR. We prove that the decision rule has the same structure as that of the simple sit-
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uation but the average throughput is higher especially when the second-hop average

SNR is high.

Through simulation, we can see that the average throughput of the three pro-

posed strategies in this thesis are at least 40% more than that without scheduling

strategy. Compared with the strategy in [19], the last two proposed strategies per-

form better when the second-hop average SNR is high.

6.2 Future Work

In this paper, we assume that the first hop transmission time equals channel coher-

ence time when the source has partial CSI. Thus when the channel condition of the

first hop is very good, a winner source would not transmit at its full channel capac-

ity because if so, the large volume of data transmitted in the first hop would lead to

a longer waiting time for the relay to get a good enough second-hop channel condi-

tion to forward the data to the destination. If the winner source could transmit using

the full first-hop channel capacity but with less transmission time, we expect that the

performance could be improved. However, the derivation of the optimal stopping

rule would be much more complicated, which deserves further investigation.
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