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Abstract—In home-based rehabilitation, one possible approach
is haptic teleoperation in which a hospital-based therapist is
haptically linked and tele-presented to a home-based patient
to effectively simulate traditional in-hospital therapies over a
distance. In this context, this paper proposes a learn-and-replay
(LAR) paradigm that consists of two phases: A therapist-in-
loop (interactive) phase where the therapist interacts through
the haptic teleoperation loop with the patient to perform one
or more repetitions of the cooperative therapy task, and a
therapist-out-of-loop (standalone) phase where the therapist’s
cooperative role of the task is played by the patient-side robot
in future repetitions. During the interactive phase, the therapist
demonstrates impedance during cooperating with the patient in
performing the task. During the standalone phase, the patient-
side robot is automatically controlled to mimic the therapist’s
demonstrated impedance which is learned in the interactive
phase. The Direct Force Reflection (DFR) architecture is utilized
as the control method for the bilateral telerehabilitation system.
Case studies involving one degree-of-freedom and two-degree-
of-freedom cooperative manipulation tasks are tested for proof
of concept. In the experiment, the therapists and patients were
simulated by using healthy participants (the authors of the paper)
and were located in the same room to show a proof-of-concept
idea of the work. The results show that the impedance of the
therapist’s arm can be replicated by the patient-side robot for
both tasks and proposed LAR telerehabilitation paradigm assists
the therapist in the rehabilitation procedure to takecare of other
tasks or attend to other patients.

List of Acronyms — LTI: Linear time-invariant, CNS: Central
nervous system, DFR: Direct force reflection, DOF: Degree of
freedom, LfD: Learning from demonstration, LAR: Learn and
replay.

I. INTRODUCTION

Due to the greater incidence of stroke on the ageing popula-
tion, the demand for rehabilitation therapy for post-stroke pa-
tients has been increasing. Each patient requires many lengthy
hands-on therapy sessions with rehabilitation therapists, which
are labour-intensive activities and place a significant burden
on the healthcare system. This demand has motivated the
incorporation of robotic systems into rehabilitation programs
as robots can perform controlled and reproducible motions and
are not subject to fatigue. The use of robots helps to relieve
the therapists from repetitive hands-on therapy exercises.

Earlier works in the field of rehabilitation robotics set
a precedent for providing therapeutic interaction through
impedance-based robotic interaction, where impedance is the
dynamic relationship between a movement perturbation and
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the force generated in response to that movement perturbation
[1]. Research on human physical interaction has provided
evidence that humans execute manipulation tasks and interact
with the outside environment by treating the interaction as
an impedance-based system. Humans display task-dependent
closed-loop dynamics via the incorporation of inverse dy-
namic models and impedance control while interacting with
the environment [2, 3]. The central nervous system (CNS)
learns the optimal impedance for a specific interaction and
while the interaction can be intrinsically unstable, stability
is achieved via regulating the mechanical impedance in the
human arm [4]. The above two studies, therefore, show the
relevance of implementing impedance control in robotics to
provide human-like interaction, as a therapist would during
conventional hand-over-hand therapy.

However, early methods of providing impedance-based
interactions such as in [1] are rudimentary in that the
impedances are set arbitrarily by the robot programmers. More
recent approaches revolve around teaching robots biomimetic
impedance interaction, such as the method based on adaptive
controllers [5]. Probabilistic approaches such as learning from
demonstration (LfD) have been extensively used to learn
impedance-based interactions, such as through characterizing
the demonstration variance [6]. LfD using gaussian mixture
models has also been employed, for example, to capture
the impedance pattern of two humans in haptic interaction
during a hardware assembly task [7]. The impedance pattern
was then reproduced by a robot for autonomous robot-human
collaboration. Inspired by these approaches, our presented
work will involve the learning and transfer of human arm
impedance to a robotic system via teleoperation.

Bilateral teleoperation has been proposed in the past as a
method by which a therapist can retain hands-on involvement
in robotic rehabilitation [8, 9]. Recent efforts, provide interac-
tion between a therapist and patient through impedance sur-
faces [10]. In this paper, the explored idea is to instead make
the patient-side rehabilitation robot (slave robot) learn the
endpoint impedance displayed by the therapist using therapist-
side robot (master robot) and then emulate the therapist’s
behaviour for the task.

In this paper, we propose a novel paradigm called learn
and replay (LAR) to realize direct bilateral telerehabilitation
that encompasses two distinct phases to achieve the time-
sharing of a therapist. During the first phase, the therapist
interacts directly with a patient through bilateral teleoperation
(Fig. 1(a)) to complete a cooperative task. This phase is
called the therapist-in-loop (interactive) phase. Throughout the
interaction, the therapist’s task-specific impedance is measured
through the therapist-side robot. During the next stage, the
therapist is no longer in the rehabilitation loop, thus giving rise
to the therapist-out-of-loop (standalone) phase (Fig. 1(b)). In
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the standalone phase, the therapist’s measured arm impedance
is displayed to the patient by the patient-side robot via an
impedance control loop so that the cooperative rehabilitation
task can be carried out in the absence of the therapist.

The mechanical impedance of the human arm (which we
aim to teach to our robotic system) is often measured via
system identification methods. Either position or force pertur-
bations are applied by a robot to the hand, and the resulting
force and motion responses are analyzed to fit typically to a
second-order impedance model. For example, a planar robot
can be used to impose step position disturbances to the human
hand, enabling the calculation of the endpoint stiffness of the
arm in the Cartesian plane [11]. Later, dynamic components,
i.e. damping and inertia can be added to the impedance model
[12, 13, 14]. In rehabilitation, the mechanical arm impedance
can potentially serve as a quantifiable index to measure
patient recovery. Both position and force perturbations can
be applied to the arm to identify a second-order impedance
model [15]. When force perturbations are applied, the subject
is required to maintain a certain posture. While this approach
maximizes the model precision and consistency, it is geared
toward assessing patient recovery and not therapists. It will
be impractical for the interactive phase of our proposed LAR
telerehabilitation paradigm, as to restrain the therapist to a
certain posture during the entire session of therapy does not
facilitate therapy. The endpoint impedance of the human arm
can be measured in a real-world task by applying short,
impulsive force perturbations to the arm during the execution
of the task [16, 17, 18]. Force perturbations with 3N amplitude
and 100 ms duration can be exerted on the hand holding the
weld gun [18]. Segments of data immediately following the
onset of perturbations with 200 ms of duration were used to
identify a second-order impedance model. A modified version
of this approach is implemented in this paper.

We believe that the proposed paradigm is worth researching
because of the following three reasons: 1) It provides the
rehabilitation robot with a desired therapy-oriented behaviors
by demonstrating the task rather than explicitly programming
it through machine commands. This feature is useful in clinical
settings where the therapist normally doesn’t have the knowl-
edge to reprogram/reconfigure the robot. 2) It also facilitates
time-sharing the same therapist across multiple home-based
patients engaged in task-oriented therapy. The therapist can
engage the next patient in the interactive phase while the
previous patient starts standalone phase exercises. The dif-
ferent therapist arm impedances related to different patients
and different therapy tasks will be identified and emulated
by different patient-side robots. 3) Finally, the LAR paradigm
is also particularly useful for sophisticated impedance-based
rehabilitation tasks that are highly relevant to activities of
daily living (ADL); this paradigm can also accomplish simpler
trajectory-following tasks.

This paper is organized as follows: In Section II, we present
a general control architecture involving up to 6 degrees-of-
freedom (DOF) for LAR therapy. In Section III, we introduce
the method used for human arm impedance measurement in
the interactive phase without interrupting the normal flow of
the therapy task. In Section IV, we present the impedance
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Figure 1: Illustration of the proposed LAR paradigm with (a) in-
teractive phase, where the hospital-based therapist interacts with the
home-based patient via a teleoperation system, and (b) standalone
phase where the therapist’s behaviour is emulated by the patient-side
robot

control implementation for the patient-side robot during the
standalone phase. In Section V, we present two case studies
involving a 1-DOF task and a 2-DOF task. Finally, Section VI
presents the concluding remarks.

II. TELEREHABILITATION SYSTEM

A. therapist-side and patient-side Robot Kinematics

Consider a bilateral teleoperation system operating in n
DOF (n up to 6), comprising of a therapist-side robot (placed
on the therapist side), a patient-side robot (placed on the pa-
tient side), a communication system and a control architecture.
We can denote the joint angles of the therapist-side robot with
θm = [θ1m θ2m ... θnm]

T and the joint angles of the patient-
side robot with θs = [θ1s θ2s ... θns]

T . The position of the
end-effector of the therapist-side and patient-side robots in
Cartesian space can be denoted by pm and ps respectively,
each being a n-by-1 vector. The velocity in joint space and
Cartesian space are linked by the n-by-n Jacobian matrices
Jm and Js for the therapist-side and patient-side robots:

ṗm = Jmθ̇m (1)

ṗs = Jsθ̇s (2)

Joint torques applied by the motors are denoted by τm =
[τ1m τ2m ... τnm]

T for the therapist-side robot and τs =
[τ1s τ2s ... τns]

T for the patient-side robot. We can therefore
relate static joint torques to the end-effector Cartesian forces,
fm for the therapist-side robot and fs for the patient-side
robot, by

τm = JT
mfm (3)

τs = JT
s fs (4)

Similarly, Cartesian forces applied by human operators onto
the robots, fth for the forces applied to the therapist-side
robot by the therapist and fp for the forces applied to the
patient-side robot by the patient, can be mapped to their



corresponding joint torques τth = [τth1 τth2 ... τthn]
T and

τp = [τp1 τp2 ... τpn]
T by

τth = JT
mfth (5)

τp = JT
s fp (6)

B. therapist-side and patient-side Robot Dynamics

Both the therapist-side and the patient-side robots can be
modeled with the following motion equations. The therapist-
side robot dynamics can be modeled by

Mm(θm)θ̈m+Nm(θm, θ̇m)+frm(θm, θ̇m)−τth = τm (7)

where

Nm(θm, θ̇m) = Cm(θm, θ̇m)θ̇m +Gm(θm) (8)

andMm denotes the inertia matrix for the therapist-side robot,
Cm denotes the Coriolis and centrifugal matrix, Gm denotes
the therapist-side robot’s gravity vector and frm denotes the
joint friction torque vector. τth is preceded by a negative sign
because in this paper, we decide to consider forces/torques
applied by the robot to be positive, and that the forces/torques
applied by the environment to the robot to be negative. This
choice is arbitrary.

The patient-side robot dynamics can be modeled by

Ms(θs)θ̈s +Ns(θs, θ̇s) + frs(θs, θ̇s)− τp = τs (9)

where

Ns(θs, θ̇s) = Cs(θs, θ̇s)θ̇s +Gs(θs) (10)

and Ms denotes the inertia matrix for the patient-side robot,
Cs denotes the patient-side robot’s Coriolis and centrifugal
matrix, Gs denotes the patient-side robot’s gravity vector and
frs denotes the joint friction torque vector.

C. Telerehabilitation System Controller

A direct force reflection (DFR) architecture will be used
for control of the bilateral telerehabilitation system. In the
DFR architecture, the patient-side robot follows the position of
the therapist-side robot while the therapist-side robot displays
to the human operator the interaction forces measured by
a force sensor at the patient-side robot’s end-effector. This
architecture achieves perfect force tracking and assumes that
the environment is modeled by a linear spring. For further
details of this teleoperation control method, readers can refer
to [19]. A detailed schematic of the bilateral teleoperation
system is presented in Fig. 2. Note that uppercase letters are
used to denote the Laplace transforms of the corresponding
time-domain position, velocity, force and torque variables.

The matrix Q is introduced to transform the therapist-
side robot joint angles into reference joint angles for the
corresponding patient-side joints. Ks refers to the PD position

Figure 2: Schematic of the teleoperation control architecture

controller for the patient-side robot:

Ks =



Kv1 +
Kp1

s
0 · · · 0

0 Kv2 +
Kp2

s
· · · 0

...
...

. . .
...

0 0 · · · Kvn +
Kpn

s


(11)

Note that the inputs to the controller matrix Ks are velocities,
not positions, as shown later in (18).
Kf refers to the force feedback gain matrix for the

therapist-side robot:

Kf =


Kf1 0 · · · 0

0 Kf2 · · · 0
...

...
. . .

...
0 0 · · · Kfn

 (12)

Zm and Zs denote the linear impedance matrices in the
joint domain of the therapist-side and patient-side robot that
we approximate from the nonlinear robot dynamics. Zth and
Zp refer to the impedance matrices in the Cartesian domain
of the therapist’s arm and the patient’s arm respectively. As
can be seen in Fig. 2, the teleoperation system is divided
into five subsystems: therapist, therapist-side robot, control
& communication, patient-side robot and patient. For the
therapist and patient, we have

Fth = F ∗
th −ZthṖm (13)

Fp = F ∗
p −ZpṖp (14)

where F ∗
th and F ∗

p denote the therapist’s and patient’s input
forces (generated by the muscles with command sent from the
central nervous system). For the therapist-side robot and the
patient-side robot we have

Tth + Tm = ZmΘ̇m (15)

Tp + Ts = Zsθ̇s (16)

As the therapist and patient work in Cartesian space but the



robots work in joint spaces, Jacobian matrices are needed
as interfaces between the therapist and therapist-side robot,
as well as between the patient and the patient-side robot, to
convert Cartesian forces to joint domain torques (based on (5)
and (6)) and to convert joint velocities to Cartesian velocities
(based on (1) and (2)). As for the controller, we have

Tm = JT
mKfFp (17)

for the force feedback control on the therapist-side robot, and

Ts = Ks(QΘ̇m − θ̇s) (18)

for the patient-side robot’s position control.
By combining (15), (16), (17) and (18), the overall system

dynamics in the frequency domain can be derived:

JmZ
−1
m JT

m(Fth +KfFp) = Ṗm (19)

JsZ
−1
s (JT

s Fp +Ks(QJ
−1
m Ṗm − J−1

s Ṗs)) = Ṗs (20)

Equations (19) and (20) can be manipulated into the fol-
lowing 2-port network hybrid matrix form[

Fth

−Ṗs

]
=

[
H11 H12

H21 H22

] [
Ṗm

Fp

]
(21)

where

H11 = J−T
m ZmJ

−1
m (22)

H12 = −Kf (23)

H21 = −(JsZ
−1
s KsJ

−1
s + In×n)−1JsZ

−1
s KsQJ

−1
m (24)

H22 = −(JsZ
−1
s KsJ

−1
s + In×n)−1JsZ

−1
s JT

s (25)

and In×n is the n-by-n identity matrix. The 2-port network
hybrid matrix will be used later in Section IV to help derive
the desired impedance matrices for the impedance controller.

III. IDENTIFICATION OF HUMAN ARM IMPEDANCE

In this section, we first have an overview of the human arm
impedance identification techniques employed in the literature.
Then, based on the nature of the therapy tasks and the require-
ment to not disrupt the normal flow of teleoperation during
the interactive phase, we present the human arm impedance
strategy that this work utilizes.

A. The Proposed Human Arm Impedance Strategy

The approach seen in [18] used very brief force pertur-
bations to minimize the impact on task execution. Such a
scheme will be inconvenient if used in our interactive phase
as the motions introduced on the therapist’s arm following
such disturbances may confuse the patient on the other side of
the teleoperation and hamper the execution of the cooperative
task. The strategy used in this paper is similar to this approach
with the difference that no extra force perturbations are added.
Essentially, the very input forces imported by the patient that
occur naturally during the telerehabilitation task are regarded
as force disturbances, and a relatively short duration of data is

used to identify a second-order passive impedance model for
the human arm.

A challenge we face is that, unlike [18], we do not have
an a priori force perturbation sequence and therefore deter-
mining the onset of force perturbations is a challenge. As a
workaround, let us first analyze the energy

Eabsorbed =

∫ T

0

−Fth(t)ṗm(t) dt (26)

absorbed by the therapist’s arm during a therapy task over
timespan T in one Cartesian direction, where the scalar fth
denotes the force/torque applied by the therapist’s arm on the
therapist-side robot in the Cartesian direction under consider-
ation, and the scalar pm denotes the position of the therapist-
side robot’s end-effector position measured in that Cartesian
direction (therefore also the therapist’s arm position since the
therapist holds onto the therapist-side robot’s end-effector).
Although the therapy task may involve movements in multiple
Cartesian directions, we will consider only one direction for
the time being, and duplicate the process to all of the Cartesian
directions involved. As shown in Fig. 3(a) for a typical therapy
task in one specific Cartesian direction, each rising edge of
the absorbed energy corresponds to a task-relevant force onset
in that direction. The energy absorption provides us with a
good criterion to determine the onset of force perturbations,
as it clearly distinguishes when the arm is moving voluntarily
(during initial adjustments of the arm position, for example)
from when the arm is moving involuntarily (when the arm
is knocked away by the force perturbation). Therefore the
onset of a force perturbation in a certain Cartesian direction is
determined by the moment when Ėabsorbed (which is the time
derivative of the absorbed power, Eabsorbed in (26)) associated
with that Cartesian direction becomes positive (i.e. when
energy absorption by the arm begins). A typical perturbation
onset determination result is shown in Fig. 3(b). As can be
seen, it would be difficult to determine the perturbation from
the force signal alone as it shows no clear distinction between
voluntary movement and involuntary movement.

After the perturbation onset is determined to be at time tp
for each perturbation for one of the Cartesian DOFs involved,
we will try to determine the following impedance model for
that Cartesian DOF with respect to force and position data in
the time window [tp, tw]:

Mip̈(t) +Biṗ(t) +Kip(t) = −f(t), t ∈ [tp, tw] (27)

where p(t) = pm(t)− pm(tp), f(t) = Fth(t)− Fth(tp) and
tw is a selected time window end. The subscript i for the mass-
spring-damper model coefficients indicates that the model is
identified in the ith DOF of the Cartesian space. Note also
that we subtract the force and position/velocity/acceleration
readings at time tp in order to consider only the force and
position/velocity/acceleration changes arising from the distur-
bance. Classical linear least-squares regression will be used to
identify the 1-DOF impedance model in (27).

Determination of tw in (27) depends on the desired duration
of the data window Tw as tw = tp +Tw. In [18], Tw was cho-
sen to be 200 ms as a compromise between the need to use as
little data as possible (to accommodate the 100∼150 ms win-



dow in which the human cannot react voluntarily to the abrupt
motion and therefore the arm impedance does not change [20])
and the model identification calculation that requires sufficient
data points. In that work, 200 ms was found to provide all-
positive impedance values (corresponding to positive Mi, Bi,
Ki in (27)) for over 90% of the perturbations. The need to
identify all-positive impedance parameters for the arm in each
involved Cartesian DOF is also present in our case because we
desire to only obtain the passive impedance of the human arm,
as later during the standalone phase, implementing an active
impedance may endanger the patient’s safety. Furthermore,
due to the uncertain nature of the patient-applied (rather than
robot-generated) perturbation, we determine a time window
length while taking into consideration the goodness of model
fit that we measure using the variance accounted for (VAF)
test statistic for each perturbation from tp to tp +Tw, with Tw
incrementing from 100 ms to 1000 ms at steps of 10 ms:

V AF = 100×

1−
var

(
Fth(t)− f̂th(t)

)
var(Fth(t))

 , t ∈ [tp, tw]

(28)
Here f̂th(t) is the force applied to the therapist-side robot
by the therapist’s arm as predicted by the identified arm
impedance model for a given position trajectory. Fth(t) is
the actual force applied to the therapist-side robot by the
therapist. The upper bound for Tw search is chosen to be 1s as
a compromise between the need for a longer window length
for impedance model identification and a shorter window for
passivity concerns.

Finally, by combining the need to identify all-positive
parameters for the impedance model in (27), the need to
use data from a short period of time immediately after the
perturbation onset, as well as the need for a good model fit,
the strategy used to determine Tw associated with the arm
impedance model on each involved Cartesian DOF in our
work is formulated as follows: for one interactive session,
for each involved Cartesian DOF, find the minimum Tw ∈
[100 ms, 1000 ms] at 10 ms steps such that the number of
all positive-valued identified impedances, Nbpos is maximized
subject to the constraint that the average VAF value for the
all-positive impedance identification results should be above
95. The algorithm applied to each involved Cartesian DOF
is summarized in the flowchart in Fig. 4. The Tw that leads
to the maximum Nbpos is then retained and the impedance
model parameters identified with this Tw will be used for the
next steps.

After determining the 1-DOF model for each Cartesian
DOF involved, the complete n-DOF Cartesian arm impedance
model can be put together as:

Mp̈(t) +Bṗ(t) +Kp(t) = −f(t), t ∈ [tp, tw] (29)

where p(t) = pth(t) − pth(tp) and f(t) = Fth(t) − Fth(tp)
for the same reasons. The matrices M , B and K can be

Figure 3: The energy absorbed by the therapist’s arm in one Cartesian
direction (a) during the entire session of a typical therapy task and
(b) within one perturbation (in solid line), superimposed on the force
(in dotted line) applied on the therapist’s arm by the therapist-side
robot. The identified onset of the perturbation is indicated by a red
circle on both curves.

written as

M =


M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Mn

 (30)

B =


B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bn

 (31)

K =


K1 0 · · · 0
0 K2 · · · 0
...

...
. . .

...
0 0 · · · Kn

 (32)

A decoupled n-DOF impedance model with 3 × n pa-
rameters is used here because otherwise there would have
been 3 × n2 parameters to be identified for a complete n-
DOF impedance model given less than 1s of data (1000 data
points since for our system, the control and data recording
operate at 1kHz) via linear least-squares regression, which
is very difficult. Therefore, we have decided to simplify the
problem by adopting the approach used in [18] in which
decoupled models are used. It is important to note that this
simplification means the learned impedance is fixed along
only the coordinate axes of the reference frame and more
complex demonstrations of impedance (where the off-diagonal
terms would be non-zero) will not be learned. Additionally, the
impedance parameters are treated as time-invariant, although
for more complicated upper-limb interactions this may not be
the case. In light of these caveats, the proposed approach is
appropriate for learning simpler interactions, such as those to
be discussed in Section V.

IV. IMPEDANCE CONTROL WITH DISTURBANCE
OBSERVER

In this section, we first discuss the impedance controller
implemented on the patient-side robot during the standalone
phase, once we have the desired impedance parameterMd,Bd

and Kd. Then we discuss the derivation of the desired
impedance to be implemented in the standalone phase.



Figure 4: Flowchart showing the algorithm for choosing Tw on the
ith Cartesian DOF for an n-DOF (i ≤ n) task

A. Impedance Controller Design

Impedance control of a robot can be achieved with model-
based approaches or model-free approaches. Model-based ap-
proaches such as the one introduced in [21] require the exact
knowledge of robot dynamics including joint friction. In our
application with an industrial robot in the case studies (a
7-DOF SIA5F robot from Yaskawa Motoman, Miamisburg,
Ohio, USA, as shown in Fig. 5(b) as the patient-side robot
and a 2-DOF planar rehabilitation robot from Quanser, Inc.,
Markham, Ontario, Canada, as shown in Fig. 5(c) as the
therapist-side user interface), while most dynamic terms can
be calculated or estimated, the joint friction is hard to obtain.
Unlike the therapist-side haptic device which is designed to
have low friction, there is considerable friction in the patient-
side robot joint that concerns us. The simple yet widely used
coulomb + viscous friction model performed poorly because
first, the linear model cannot capture the highly nonlinear
friction in reality [22]. The model’s dependency on velocity
also makes static friction compensation ineffective, and in
our system, the stiction is very large (in the order of 9 Nm
in the joint space). Elaborate nonlinear models such as the
ones mentioned in [23] or [24] can capture various non-
linear phenomena such as the Stribeck curve, stiction and
pre-sliding displacement, but it is difficult to identify or tune
their parameters due to the complexity. In [25] a simpler
approach is presented to determine a LuGre model, which is
a “dynamic model of friction that describes the behavior of
elastic bristles as a function of relative velocity between two
surfaces”. However, the approach remains largely empirical
and requires very refined encoder resolution (especially for
measuring the pre-sliding state). Also, the dynamic nature of
the LuGre model makes it a potential source of numerical
instability in real-time friction compensation implementations.

Given the considerable difficulties associated with deter-
mining the robot joint friction precisely, as well as the un-
certainties in estimating robot link inertias, we decided to
implement an online version of the impedance control based
on a nonlinear disturbance observer, which has been used to
estimate and compensate for the joint frictions and payload of
a robotic device in a trajectory following task [26]. For more
details of the nonlinear disturbance observer, readers can refer
to [26]. The design of the nonlinear disturbance observer-based
impedance control is discussed in the following paragraphs.

Consider the general robot dynamics model for the patient-
side robot shown in (9). By assuming that M̂s(θs) and
N̂s(θs, θ̇s) are the estimates of the actual Ms(θs) and
Ns(θs, θ̇s), and that ∆Ms and ∆Ns are the associated
uncertainties:

Ms(θs) = M̂s(θs) + ∆M (33)

Ns(θs, θ̇s) = N̂s(θs, θ̇s) + ∆N (34)

we can define the lumped disturbance vector τd as

τd = −∆Msθ̈s −∆Ns − frs(θs, θ̇s) (35)

in which dynamic uncertainties and joint frictions are lumped
into one single disturbance vector. From (9), the patient-side
robot dynamics can be re-written into

M̂s(θs)θ̈s + N̂s(θs, θ̇s) = τs + τp + τd (36)

For the sake of brevity, the equations describing the non-
linear disturbance observer can be found in the appendix.
After getting an estimation of the τd term in (36) with the
disturbance observer, we can implement a classic impedance
control approach in [21] to achieve the following desired
dynamics on the patient-side robot:

Md(p̈s − p̈sd) +Bd(ṗs − ṗsd) +Kd(ps − psd) = Fp (37)

where Md, Bd, Kd are the desired impedance matrices and
p̈sd, ṗsd, psd denote the desired robot acceleration, velocity
and position vectors.

Consider the control law

τs = M̂saq + N̂s − JT
s Fp (38)

where aq is the reference joint acceleration. By combining
(6), (36) and (38) we have θ̈s = aq . Let ap be the reference
acceleration in Cartesian space, and let

ap = Jsaq + J̇sθ̇s (39)

or equivalently

aq = J−1
s (ap − J̇sθ̇s) (40)

Together with the kinematic relationship linking joint space
acceleration with Cartesian space acceleration:

p̈s = Jsθ̈s + J̇sθ̇s (41)

we have from (37) and (39) that

p̈s = ap = p̈sd −M−1
d [Bd(ṗs − ṗsd) +

Kd(ps − psd)− Fp] (42)

Further, take (42) into (40), and then combining with (38)
and the disturbance observer (A.1) we have

τs = M̂sJ
−1
s {p̈sd −M−1

d [Bd(ṗs − ṗsd)+

Kd(ps − psd)− fp]− J̇sθ̇s}+ N̂ − τ̂d (43)

Next, we discuss how the desired impedance is found.



B. Derivation of Desired Impedance

The desired impedance matrices Md, Bd and Kd come
from the identified therapist arm impedance Zth as distorted
by the teleoperation system dynamics. This is because during
the interactive phase, it is the therapist arm impedance after
the distortion introduced by the teleoperation system that
completes cooperative tasks with the patient. From (21) we
can derive that the impedance Zd displayed to the patient via
the patient-side robot during the interactive phase defined by

Fp = −ZdṖs (44)

is
Zd =

[
H21(Zth −H11)−1H12 +H22

]−1
(45)

whereZth is expressed using the identifiedM ,B,K matrices
identified in Section III as

Zth = Ms+B +
K

s
(46)

and the Hij are defined from (22) to (25). With respect to Fig.
2, this equates to removing the control and communications
channel block and all of the therapist and therapist-side robot
components, and replacing them with (43) with inputs from
the observer estimate τ̂d and the robot joint velocity data θ̇s.

V. CASE STUDIES

In this section, the proposed LAR telerehabilitation
paradigm is applied to two tasks: a 1-DOF task involving a
cooperative screwdriver task and a 2-DOF task involving a
collaborative peg-in-the-hole task. The 2-DOF task is further
supported by including a simulated patient in the trials. We
select the screw-driving task since it represents an ADL
with synergistic movements similar to opening a doorknob,
another common ADL. Peg-in-the-hole tasks have seen use in
rehabilitation assessment regimes, such as the Nine-Hole Peg
Test [27, 28].

A. 1-DOF Task

1) Therapy Task Description and Robot Configuration:
Consider a task in which a screw is driven by the patient
into a surface held in position by the therapist as shown in
Fig. 5(a). For this screwdriver task to be done in the proposed
telerehabilitation context, the patient will be tasked to drive the
woodscrew into the wooden plate attached to the end-effector
of a patient-side robot (7-DOF SIA5F robot from Yaskawa
Motoman, Miamisburg, Ohio, USA, as shown in Fig. 5(b))
that is teleoperated by the therapist from a therapist-side user
interface (2-DOF planar rehabilitation robot from Quanser,
Inc., Markham, Ontario, Canada, as shown in Fig. 5(c)). Thus,
in the interactive phase, while the patient uses a screwdriver
to drive the screw into the wooden plate fixed to the patient-
side robot, the therapist firmly holds the therapist-side haptic
device in position.

Although both the therapist-side and patient-side are multi-
DOF robots, they have been configured to accommodate
the aforementioned task, which naturally involves only a 1-
DOF motion in the Cartesian space. Consider motor 0 of

the therapist-side robot and the sixth joint of the patient-
side robot corresponding to the joint angles θm and θs in
Fig. 5, respectively. The patient-side position θs is made to
follow the therapist-side position θm while interaction forces
at the patient-side side are reflected to the therapist-side side.
Because of this 1 to 1 correspondence, Q in Fig.2 becomes
Q = 1. The second joint of the therapist-side robot is
passively (physically) clamped in its home position with the
corresponding motor (Motor 1) turned off, while the other 6
joints of the patient-side robot are actively held in position
via high-gain PID position control. In Fig. 5, both robots
are at their home positions (θm = θs = 0). Cartesian frames
are attached to the end-effectors of the therapist-side and the
patient-side as shown in Fig. 5. Note that for small θm and
θs, the motions of the two robots can be approximated to be
along a Cartesian axis. The task is therefore in the Y direction.
Through teleoperation, the therapist tries to resist the pushing
forces of the patient applied in the Y direction by displaying
a stiff impedance to the therapist-side robot in that direction,
so that the patient can complete the screwdriver task. The link
lengths for the therapist-side and patient-side robot are lm and
ls respectively, measuring from the rotating axes to the centre
of the handle for the therapist-side robot (Fig. 5(c)) and to the
screw location on the wooden plate for the patient-side robot
(Fig. 5(b)). As a result, the Jacobian matrices in (1) and (2)
have become scalars and are

Jm = lm cos(θm) (47)
Js = ls cos(θs) (48)

respectively. pm and ps are therefore measured in the Y direc-
tion. 1-DOF interaction forces applied onto the robots by the
therapist or the patient: fth and fp in (5) and (6) are directly
measured with two ATI Gamma NET force/torque transducers
(Apex, NC, USA) attached to the end-effectors of the two
robots at 1 kHz sampling rate. The communication channel
is implemented using the Winsock application programming
interface over the Ethernet using the UDP protocol at 1 kHz
sampling rate – the same rate as the one used in the robot con-
trol loops (for reading encoders and issuing torque commands)
of both robots. Further, teleoperation system parameters Zm in
(19) can be modeled as an inertia, Zm = Mms, as we choose
to ignore the friction associated with the actuated link of this
haptic device. The patient-side robot is modeled as an inertia
and a damper because it has significant damping and friction
needing to be modeled, leading to Zs = Mss+Bs in (20).

2) Experimental Results: During the interactive phase, we
use a feedback gain of Kf = 0.5 for DFR teleoperation
because of the following two reasons: 1) it provides the
therapist with a good perception of the perturbations from
the patient side; 2) the force feedback is not too strong for
the therapist to handle with ease. Numerical values for other
teleoperation system parameters are either measured or chosen
as shown in Table I. Note that the values for Mm, Ms and
Bs are obtained using system identification method similar to
what was done in [15]. lm and ls are obtained by directly
measuring the concerned robot links. Kf , Kv and Ks are
directly specified in the controller software.



Figure 5: (a) Direction manipulation: the screwdriving task without
using any robots. (b) Configuration of the patient-side (patient-side)
Yaskawa Motoman SIA5F robot. (c) Configuration of the therapist-
side (therapist side-side) rehabilitation robot.

A total of three interactive sessions were carried out, each
lasting around 60 s containing 20 to 26 perturbations. The
experimental trials were carried out during the same day with
one healthy person (the first author of the paper) acting as the
therapist and another healthy person (the second author of the
paper) acting as the patient. The arm impedance identification
results are presented in Table II, including M , B, K, the
percentage of all-positive identification results Nbpos over the
total number of considered perturbations in each session, and
the chosen data window length Tw for model identification.

As can be seen from Table II, with our impedance model
identification algorithm shown in Fig. 4, 90% of the pertur-
bations yield all-positive identification results with an average
data window length of about 600 ms. We use the averaged
impedance parameters: M = 1.92 kg, B = 55.54 Ns/m and
K = 1454.52 N/m to to make up the Zth term defined in

Table I: Teleoperation control and analysis parameters

Variable Name Numerical Value
Mm (kg.m2) 0.052
Ms (kg.m2) 0.086
Bs (Nm.s/rad) 7.92
lm (m) 0.267
ls (m) 0.267
Kf 0.50
Kv (Nm/rad ) 1285.03
Ks (Nm/(rad/s)) 36.72

Table II: Therapist arm impedance identification results

Session M
(kg)

B
(Ns/m)

K
(N/m)

Nbpos
Nbtot

Tw (ms)

1 1.48 60.87 1085.80 75% 420
2 1.70 52.48 1733.83 100% 530
3 2.61 53.23 1543.95 96% 860

Average 1.92 55.54 1454.52 90% 603
SD 0.60 4.64 333.14 13% 229

(46). Combining with the definition in (45), the displayed
impedance during interactive phase Zd can be numerically
approximated into the following form for impedance control
implementation

Zd ≈Mds+Bd +
Kd

s
(49)

with Md = 3.89 kg, Bd = 160.14 Ns/m and Kd =
3467.36 N/m following an optimization operation.

In the standalone phase, the patient-side robot is pro-
grammed under the impedance control law specified in (43)
with the parameters of Md, Bd and Kd found in interactive
phase discussed in the previous subsection. For this 1-DOF
screwdriving task under consideration, p̈sd, ṗsd and psd in
(43) are all 0. For the disturbance observer, we need to first
find Y using (A.8) from the parameters ζ, β and σ2. Since the
dynamics are in 1-DOF, Ms does not vary over time. Therefore
ζ, representing an upper bound of ˙̂

Ms, is zero. σ2, being an
upper bound of M̂s, can be taken as the same value of M̂s.
While the value of Ms, or the theoretical value of the patient-
side robot inertia provides a good candidate for M̂s (therefore
σ2, in practice it is tuned together with β for best observer
convergence while being able to reject noise and instability).
Through experiments, we take M̂s = σ2 = 0.15 and β = 1050
for the disturbance observer.

The patient (imitated by a healthy person) is then able
to complete the screwdriver task with the patient-side robot
alone in this phase. The impedance control implementation is
validated by comparing the actual patient-side robot position
against the simulated patient-side robot position based on the
desired impedance and the measured interaction forces. Based
on the therapists arm impedance that was retrieved during the
interactive phase, patient-side robot positions upon perturba-
tion are simulated. This simulation is the ideal movement,
based on the therapists arm impedance, that we hope the
patient-side robot will do in response to measured interaction
forces. However, factors such as the patient-side robots inertia



Figure 6: Comparison between simulated position based on force
measurement and the actual position during standalone phase
(ErrorRMS = 0.6550 mm).

and joint friction may impact the actual performance of the
robot in replicating these movements. The graph shows the
comparison between the simulated (ideal) movement of the
patient-side robot vs its actual movement.

The comparison result is plotted in Fig. 6 where a good
match is shown. Note that the effect of the strong stiction
inherent in our industrial manipulator arm is still visible but
it is mitigated (position error no more than 1 mm during the
task) thanks to the disturbance observer approach. We can
also see from Fig. 6 that the maximum displacement in the Y
direction of the patient-side arm is around 12 mm, which is
also the case in the interactive phase, showing that the desired
behaviour has been successfully mapped from the therapist to
the patient-side robot during the standalone phase.

B. 2-DOF Task

1) Therapy Task Description and Robot Configuration: The
2-DOF task consists of the patient trying to put an aluminum
mechanical part representing a 1-dimensional “hole” onto a
peg held by the therapist as shown in Fig. 7(a). In the proposed
LAR paradigm, the patient will insert the hole onto the peg
attached to the end-effector of the patient-side robot shown
in Fig. 7(b), which is teleoperated by the therapist from the
therapist-side interface shown in Fig. 7(c). While “hole-onto-
the-peg” insertion seems to be a more appropriate term to
name the considered task, since the peg and the hole play
interchangeable roles, we still name the task “peg-in-the-hole”
insertion. The peg-in-the-hole insertion task is a challenging
manipulation task, involving both position and force control.
In our case, the task requires the patient to first align the
hole with the peg by wiggling it primarily in the Y direction,
illustrated in Fig. 8(a). This procedure is made possible by
the curved opening of the hole as well as the curvature of the
peg tip. This step is also shown in Fig. 7(a) in the direction
manipulation case, where no robots are involved. Once the
hole and the peg are lined up (illustrated in Fig. 8(b)), the
patient pushes the hole onto the peg by exerting a force in
the X direction (illustrated in Fig. 8). The X and Y Cartesian
directions are defined for the patient-side robot in Fig. 7(b).
Note that the X-Y frame origin is placed at the centre of the
peg tool when the patient-side robot is at home position, and
it does not move with the peg tool. We name this frame the
patient-side base frame. For the therapist-side robot, X and Y

Cartesian directions are the same as the patient-side robot and
the frame origin is attached to the handle when the therapist-
side robot is at its home position. Although the therapist-side
frame origin is also defined using the end-effector, it doesn’t
move with the handle either once it is defined. We name this
X-Y frame related to the therapist-side robot, the therapist-
side base frame. Note that the therapist-side robot is not at its
home position in Fig. 7(c). The therapist-side robot is at its
home position when θ1m and θ2m shown in Fig. 7(c) are both
zero. Axes parallel to the X and Y-axis of the therapist-side
robot but attached to the robot centre axis shown as X0 and
Y0 in Fig. 7(c), which will be used later for details on the joint
angle definition for the therapist-side robot.

Similar to the 1-DOF task screwdriver task, the therapist
holds firmly the therapist-side haptic device in both X and
Y directions while the patient tries to complete the task
during the interactive phase. We make this choice because
it is desirable for the patient to learn to behave compliantly.
For the peg-in-the-hole task to be able to be completed, both
operators cannot be both compliant or both rigid at the same
time (or else the hole risks not being able to be lined up with
and inserted into the peg).

In this task, we face the difficulty of teleoperating two robots
with different kinematics, workspaces and DOFs, because of
our choice of the therapist-side and patient-side robots. We
solve this problem by making the robot with more DOFs and
a larger workspace have a similar effective geometry as the
robot with fewer DOFs and a smaller workspace. To do so,
we make the 7-DOF patient-side robot take on an effective 2-
DOF geometry. The 1st, 4th and 6th joints of the patient-side
robot are arranged according to inverse kinematics such that
the distance between the 1st joint axis and the 6th joint axis,
which is l1s in Fig. 7(b), takes on a desired value and becomes
the length of the 1st “effective link” of the patient-side robot.

During teleoperation, high gain PID control is applied
to joints 2 to 5 of the patient-side robot to maintain this
geometry. The 2nd “effective link” of the patient-side robot
is the same as the actuated link presented in the 1-DOF case
study (comprising the last link of the patient-side robot, the
force sensor and peg tool) with link length l2s as shown in
Fig. 7(b). For the therapist-side robot, both robot joints are
actuated and the link lengths are l1m and l2m respectively, as
shown in Fig. 7(c). Note that l2m is the same as lm for the
1-DOF screwdriver task. We define that at home position, the
1st effective link and the 2nd effective link of the patient-side
robot are perpendicular to each other (shown in Fig. 7(b)),
while the 2nd effective link points to the positive X direction.
The same can be said about the therapist-side robot: at home
position, the 1st link and the 2nd link are perpendicular to one
another, while the 2nd link points to the positive X direction.

In terms of joint angles, we use the 1st and 6th joint angle
of the patient-side robot minus their values when the patient-
side robot is at its home position as the new joint angles: θ1s
and θ2s. Therefore, at the home position shown in Fig. 7(b),
θ1s = θ2s = 0. For the therapist-side robot, we define the
1st joint angle to be the angle formed by rotating the Y0 axis
counterclockwise around the robot centre joint to be parallel to
the 1st robot link (l1m), and the 2nd joint angle to be the angle



Figure 7: (a) Direct manipulation: The peg-in-the-hole task without
using any robots. (b) Configuration of the patient-side (patient-side)
Yaskawa Motoman SIA5F robot as the patient-side. (c) Configura-
tion of the therapist-side (therapist-side) rehabilitation robot as the
therapist-side.

Figure 8: Illustration of the peg-in-the-hole task. (a) Wiggling of the
hole in the Y direction. (b) Alignment of the peg and the hole. (c)
The hole pushed onto the peg.

Figure 9: Illustration of (a) the therapist-side robot and (b) the patient-
side robot joint angle configurations.

formed by rotating the X0 axis counterclockwise to be parallel
to the 2nd robot link (l2m). Note that in the configuration
presented in Fig. 7(c), θ1m has a negative value while θ2m
has a positive value. The joint angle configurations for the
therapist-side and the patient-side are illustrated in Fig. 9.

We made l1s = l1m = 0.254 m. As we saw in the 1-DOF
task, l2s = l2m = 0.2667 m (listed in Table I). Therefore,
we have made the therapist-side and patient-side robots have
similar effective geometries. During teleoperation, we simply
make the patient-side robot follow the therapist-side robot
by using the current values of θ1m and θ2m − θ1m as the
reference positions for θ1s and θ2s. This feature can be seen
from from Fig. 9, by defining the angles between the X-axis
and the second link of both robots (l2m and l2s) as qm and qs
respectively. Since qm and qs should be equal to each other,
we have

qm = θ2m = qs = θ1s + θ2s (50)

Therefore,

θ2m = θ1s + θ2s (51)
θ2s = θ2m − θ1s (52)

Since θ1s takes θ1m as its reference, we can replace θ1s in
(52) by θ1m and obtain

θ2s = θ2m − θ1m (53)

as the reference angle position for θ2s. This feature makes Q
in Fig. I take the following form:

Q =

[
1 0
−1 1

]
(54)

To recapitulate mathematically the above description of the
robot geometries, if we express Cartesian positions pm and ps
as [xm ym]T and [xs ys] respectively, where x and y represent
the Cartesian coordinate on the X and Y axis, then pm and



ps can be expressed as

pm =

[
xm
ym

]
=

[
−l1m sin(θ1m) + l2m cos(θ2m)− l2m
l1m cos(θ1m) + l2m sin(θ2m)− l1m

]
(55)

ps =

[
xs
ys

]
=

[
−l1s sin(θ1s) + l2s cos(θ1s + θ2s)− l2s
l1s cos(θ1s) + l2s sin(θ1s + θ2s)− l1s

]
(56)

Accordingly, Jacobian matrices Jm and Js in (1) and (2)
become

Jm =

[
−l1m cos(θ1m) −l2m sin(θ2m)
−l1m sin(θ1m) l2m cos(θ2m)

]
(57)

Js =

[
−l1s cos(θ1s)− l2s sin(θ1s + θ2s) −l2s sin(θ1s + θ2s)
−l1s sin(θ1s) + l2s cos(θ1s + θ2s) l2s cos(θ1s + θ2s)

]
(58)

2) Experimental Results: During the interactive phase, a
series of 11 peg-in-the-hole insertion tasks was completed
via teleoperation. The experimental trials were carried out
during the same day with one healthy person (first author of
the paper) acting as the therapist and another healthy person
(second author of the paper) acting as the patient. The force
feedback gains for the therapist-side robot in (12) and the
position control gains for the patient-side robot in (11) were
chosen to be

• Kf1 = 0.3, Kf2 = 0.3
• Kp1 = 4629.50 Nm/rad, Kv1 = 57.87 Nm/(rad/s),
Kp2 = 1468.61 Nm/rad, Kv2 = 18.36 Nm/(rad.s)

While the tasks were being completed, the position and force
data on the therapist’s side were recorded. The Tw search
algorithm presented in Fig. 4 yields 960 ms for the X direction
and 170 ms for the Y direction. By using the technique
described in Section III, we obtain the following identification
results for the therapist’s arm impedance in (30):

• M1 = 3.379 kg, B1 = 25.15 Ns/m, K1 = 980.552 N/m
• M2 = 0.518 kg, B2 = 12.96 Ns/m, K2 = 112.617 N/m

where the subscripts 1 and 2 represent the X and Y directions
respectively

We can see that the arm demonstrates a stiffer impedance
along the X direction, which agrees with the findings of [15].
We can write Zth as

Zth =

3.379s+ 25.15 +
980.552

s
0

0 0.518s+ 12.96 +
112.617

s


(59)

Now we need to find the the impedance displayed to the
patient during the interactive phase Zd in (45). By applying
a persistent perturbation to the therapist-side robot, we can
identify the following linearized form of (19)

Zm ≈
[
0.0556 0.0077
0.0077 0.0687

]
s+

[
0.0942 0

0 0.0731

]
(60)

by taking into account the fact that the therapist-side robot’s
end-effector moves around its zero position. Similarly we can

Figure 10: Comparison between simulated positions based on force
measurement (dashed red lines) and the actual positions (solid blue
lines) during standalone phase. (a) X direction (ErrorRMS = 1.1946
mm), (b) Y direction (ErrorRMS = 3.2927 mm).

obtain the linearized form of (20):

Zs ≈
[

1.35 0.086
0.086 0.086

]
s+

[
15.3 0

0 9.5

]
(61)

By taking the numerical values of Jm, Js,Kf ,Ks, Zm and
Zs into (22)-(25) and (45), we can get the following parame-
ters ready for impedance control implementation following an
optimization approach:

Md =

[
9.77 0

0 1.23

]
Kg (62)

Bd =

[
180.56 0

0 60.82

]
Ns/m (63)

Kd =

[
2316.20 0

0 360.233

]
N/m (64)

In the standalone phase, the patient-side robot is pro-
grammed to demonstrate the desired impedance (37) via
the controller (43). With trial-and-error, the best disturbance
observer was obtained with the following parameters for (A.8):

ζ = 10 Nm.s/rad
β = 50 Nm.s/rad
σ2 = 10

The patient (imitated by a healthy person) is then able to
complete the peg-in-the-hole task with the patient-side robot
alone in this phase. We repeated the peg-in-the-hole insertion
task in the absence of the therapist for several of times. The
task was completed successfully with the patient-side robot
alone. If the robot impedance was not controlled properly,
the robot could yield to pressure from the patient and the
task would fail. The impedance control implementation is
validated by comparing the actual robot position in both X and
Y directions with what the target impedance model predicts
based on the measured forces. A good match in both directions
is shown in Fig. 10. The desired behaviour has therefore been
successfully mapped from the therapist to the patient-side
robot during the standalone phase for the 2-DOF peg-in-the-
hole insertion task.



C. 2-DOF Task with Simulated Patient

Following the same procedure as the previous peg-in-the-
hole trial and using the same gains, two healthy persons
(different people compared from the previous trial) took the
role of the therapist and the patient. However, this time we
simulated a patient with arm tremors using a Transcutaneous
Electrical Nerve Stimulation (TENS) device. Two electrodes
were attached to the acting patient’s forearm and were set
to provide stimulation at roughly 3 Hz. The stimulation of
the upper arm and wrist at low frequency induces a behavior
similar to post-stroke patients [29].

The Tw search algorithm yields 170 ms for the X direction
and 240 ms for the Y direction. The therapist’s arm impedance
is:

• M1 = 1.883 kg, B1 = 22.235 Ns/m, K1 = 294.599 N/m
• M2 = 0.182 kg, B2 = 5.847 Ns/m, K2 = 194.156 N/m
It can be seen that the arm is stiffer in the X direction but

is less stiff when compared to the therapist impedance from
the previous trial. This feature can be attributed to a different
person acting as the therapist.

Since the Zm and Zs parameters come from robot identifica-
tion, they remain unchanged. After the optimization approach,
the following desired impedance parameters are determined:

Md =

[
4.941 0

0 1.871

]
Kg (65)

Bd =

[
80.524 0

0 82.760

]
Ns/m (66)

Kd =

[
911.294 0

0 591.73

]
N/m (67)

In the standalone phase, the disturbance observer parameters
are found using trial-and-error:

ζ = 3 Nm.s/rad (68)
β = 50 Nm.s/rad (69)
σ2 = 0.5 (70)

As seen in Fig. 11, the Motoman Robot, put under
impedance control, can match the movement of a simulated
patient with tremors in the standalone phase. The TENS
device produced wrist flexion and extension, resulting in more
movement in the Y direction.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we proposed and demonstrated a novel telere-
habilitation approach: The learn-and-replay (LAR) over two
collaborative tasks: a screwdriver task and a peg-in-the-hole
insertion task. During the interactive phase, the therapist sup-
ported the patient in completing the task and simultaneously
the impedance of his arm was measured by the therapist-side
haptic device. It is worth noting that the interactive phase
should last long enough in time to allow a sufficient number
of task repetitions to take place for impedance model identifi-
cation. In the case studies of this paper, we found that a few
minutes’ of interaction provided enough data for impedance
identification. The measured impedance was then processed
taking into account the teleoperation system dynamics to

Figure 11: Simulated Patient Trial. Comparison between simulated
positions based on force measurement (dashed red line) and the actual
positions (solid blue line) during standalone phase. (a) X direction
(ErrorRMS = 1.7196 mm), (b) Y direction (ErrorRMS = 4.9557
mm). The tremors due to the TENS device are more prominent in
the Y direction.

obtain the desired impedance parameters used for impedance
control implementation during the standalone phase. In the
standalone phase, the impedance control was successfully
implemented on the patient-side robot and the therapist’s role
in completing the tasks was successfully replicated by the
patient-side robot. We showed the feasibility of the proposed
LAR telerehabilitation paradigm and its potential in time-
sharing a therapist and thus partly automating the rehabilitation
therapy.

One important caveat regarding the formulation of the
learned impedance behavior used in this work is that the
impedance is regarded as time-invariant and fixed along the co-
ordinate axes. We acknowledge this as a potential limitation to
our approach, given the knowledge that therapeutic assistance
is often provided in a time-varying and direction-dependent
manner with respect to the task. Another consideration is to
explore different methods of selecting the desired impedance
matrices, instead of only considering the mean of the fitted
values which is prone to outliers. This could include taking the
median of the values, or fitting the parameters in a coordinate
space that better encompasses the behavior of the responses
such as the natural frequency of the impedance.

In the future, new multi-DOF tasks that are closely related
to current rehabilitation practices for upper-limb rehabilitation
can be designed. The tasks need to be closely related to
activities of daily living (ADL) and therapist evaluation of
the paradigm will be focused on. Doing so will likely require
reformulating the method of learning impedance to con-
sider tasks as dynamic and trajectory-based. Clinical patient-
oriented studies will be carried out to study the usefulness of
the proposed paradigm in real clinical settings.

APPENDIX

NONLINEAR DISTURBANCE OBSERVER

The following is the nonlinear disturbance observer used to
estimate τd. Similar to [26], the nonlinear disturbance observer



can be written as:

ż = −L(θs, θ̇s)z +L(θs, θ̇s){N̂s − τs − τp − p(θs, θ̇s)}
τ̂d = z + p(θs, θ̇s)

d

dt
p(θs, θ̇s) = L(θs, θ̇s)M̂s(θs)θ̈s (A.1)

where τ̂d denotes the estimated disturbance vector, and the
vectors p(θs, θ̇s) and z are introduced as auxiliary variables to
construct the observer, and L(θs, θ̇s) is the observer gain ma-
trix. Note that although unlike [26] where patient (patient-side)
robot interactions τs would be grouped into the disturbance
term τd because we measure it directly with a force sensor,
the observer design method derived in [26] is still valid and
we still have the same disturbance estimation error dynamics:

∆τ̇d = τ̇d −L(θs, θ̇s)∆τd (A.2)

where ∆τd = τd − τ̂d.
To complete the nonlinear observer design, we can use the

following two steps [26] to determine L(θs, θ̇s) and p(θs, θ̇s):

1) Find invertible matrix Y , solution to the following linear
matrix inequality (LMI):[

Y + Y T − ζI Y T

Y Γ−1

]
≥ 0 (A.3)

where I is the identity matrix of the corresponding order,
Γ is a positive definite and symmetric matrix and ζ is an
upper bound of ‖ ˙̂M s(θs)‖1

2) Define the disturbance observer gain matrix as

L(θs) = Y M̂−1
s (θs) (A.4)

and as a result of (A.1) and (A.4) we have

p(θs) = Y θ̇s (A.5)

The above process guarantees that in the presence of fast-
varying disturbances, which is our case because of friction,
the disturbance tracking error ∆τd is globally uniformly
ultimately bounded [26], and that the tracking error converges
with an exponential rate of (1 − α)λmin(Γ)/2σ2‖Y −1‖2 to
a ball with radius 2κσ2‖Y −1‖2/αλmin(Γ). α is a scalar sat-
isfying 0 < α < 1, λmin(.) denotes the minimum eigenvalue
of a square matrix, scalar κ defines the bound for the rate of
change of the lumped disturbance:

‖τ̇d(t)‖ ≤ κ,∀t > 0 (A.6)

and the scalar σ2 is defined with the following inequality for
all θs in the work space:

σ1I ≤ M̂(θs) ≤ σ2I (A.7)

Further, If we choose Y to be of the form yI and assume
that Γ takes the form Γ = γI with y and γ being scalars, an

1In this paper, the vector norm (vector 2-norm) and matrix norm (induced
matrix 2-norm) are defined as (unless otherwise stated): ‖x‖ =

√
xTx, ∀x ∈

Rn; ‖X‖ =
√
λmax(XTX), ∀X ∈ Rn×n where λmax(.) denotes the

maximum eigenvalue of a square matrix

optimal analytical solution exists for (A.3) [26]:

Yoptimal =
1

2
(ζ + 2βσ2)I (A.8)

where β is the minimum tracking error convergence rate to
be chosen. This solution takes into account the need to reduce
sensitivity to noise during disturbance rejection.

REFERENCES

[1] H. I. Krebs, J. J. Palazzolo, L. Dipietro, M. Ferraro,
J. Krol, K. Rannekleiv, B. T. Volpe, and N. Hogan,
“Rehabilitation robotics: Performance-based progressive
robot-assisted therapy,” Autonomous robots, vol. 15,
no. 1, pp. 7–20, 2003.

[2] D. W. Franklin, R. Osu, E. Burdet, M. Kawato, and
T. E. Milner, “Adaptation to stable and unstable dynamics
achieved by combined impedance control and inverse
dynamics model,” Journal of neurophysiology, vol. 90,
no. 5, pp. 3270–3282, 2003.

[3] R. Osu, E. Burdet, D. W. Franklin, T. E. Milner, and
M. Kawato, “Different mechanisms involved in adapta-
tion to stable and unstable dynamics,” Journal of Neuro-
physiology, vol. 90, no. 5, pp. 3255–3269, 2003.

[4] E. Burdet, R. Osu, D. W. Franklin, T. E. Milner, and
M. Kawato, “The central nervous system stabilizes un-
stable dynamics by learning optimal impedance,” Nature,
vol. 414, no. 6862, pp. 446–449, 2001.

[5] G. Ganesh, A. Albu-Schäffer, M. Haruno, M. Kawato,
and E. Burdet, “Biomimetic motor behavior for simul-
taneous adaptation of force, impedance and trajectory in
interaction tasks,” in 2010 IEEE International Confer-
ence on Robotics and Automation. IEEE, 2010, pp.
2705–2711.

[6] K. Kronander and A. Billard, “Online learning of varying
stiffness through physical human-robot interaction,” in
2012 IEEE International Conference on Robotics and
Automation. Ieee, 2012, pp. 1842–1849.

[7] L. Rozo, S. Calinon, D. Caldwell, P. Jiménez, and C. Tor-
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