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Abstract

QoS multicast routing plays a critical role in supporting multicast applications
with QoS requirements. In this thesis, we present an active QoS multicast
routing protocol using distributed agents(AQMR). AQMR introduces several
new ideas for QoS multicast routing, which gives it the features of QoS aware-
ness. scalability, responsiveness and efficiency. Agents store QoS information
of the mmlticast tree in a scalable and flexible manner to facilitate member
Joins. AQMR emplovs an admission control scheme that enables it to better
meet QoS requirements. It achieves low join overhead and low join latency. In
addition. AQMR constructs a resource-efficient multicast tree. A performance

study shows that AQMR can provide better QoS for receivers than QoSMIC.
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Chapter 1

Introduction

Multicast is an efficient way to distribute data packets among group members.
Instead of sending separate copies of a data packet to each of several recipients
as a unicast protocol like TCP(the Internet Transmission Control Protocol)
would do. a source in a multicast group sends out only one copy with the group
address as the destination address. A multicast routing algorithm determines
a multicast tree that connects the sources and receivers in a group according to
a certain optimization goal. A multicast router decides where to forward the
packet using the multicast routing table. replicating the packet only if neces-
sary. As a consequence. a multicast transmission consumes network resources

more efficiently than multiple TCP connections.

1.1 Motivation

Emerging multicast applications. such as teleconference and video distribu-
tion, have various requirements of quality of service(QoS) in terms of band-
width, end-to-end delay, loss rate and so on[QUIS|. Existing multicast routing
protocols, such as CBT(Core Based Tree)[BA97] and PIM-SM(Protocol Inde-
pendent Multicast-Sparse Mode)[EF98] may not provide the required QoS for
a joining member. A recent studv on MBone[ALOO] indicates that “Poor
Session Quality™ is one of the problems that need to be tackled so that mul-
ticast can be widely deployed. A QoS multicast routing protocol is essential

in supporting QoS requirements of applications. We need some mechanism



to examine a member’s join request before making an acceptance decision for
the request. so that the multicast group can provide the QoS that the new
member requires. The eligibility test requires certain QoS information of the
multicast tree. which calls for a scalable and efficient approach to obtain the

QoS information.

1.2 Design Objectives and Contribution

We design a QoS-aware multicast routing protocol in the context of Active
Networks[CA99].  Active Networks can provide more flexibility to applica-
tions, by allowing programs to be executed by routers in the middle of the
network. Furthermore. active routers enable quick deplovment of routing pro-
tocols [MLO1]. Our protocol can also be implemented in the current Internet.
with limited support from routers.

We present our multicast routing protocol. Active QoS Multicast Routing
Protocol(AQMR). in this thesis. In AQMR. agents are active nodes, which are
strategically located in the multicast tree. An agent serves an area of the tree
to gather QoS information from sources in its area. to exchange QoS infor-
mation with other agents and to facilitate receivers’ joins. After exchanging
information with each other, the agents have a view of the entire multicast
tree. A new router contacts the agent associated with it to join the tree. The
QoS information from a receiver to an agent is also collected when the re-
ceiver requests to join the tree. AQMR is designed to achieve the following

objectives.

® QoS awareness. By storing QoS information in agents, AQMR can con-
duct eligibility tests when a join request arrives. The architecture of
AQMR can support various QoS metrics. including end-to-end delay,
loss rate., and bandwidth. We are concerned about the QoS that re-
ceivers experience after being approved to join the multicast tree. We
believe that how well a QoS routing scheme can support the required

service is more important than how many receivers can be accepted to



Join the tree.

o Scalability. An agent represents an arca of a multicast group. It gathers
QoS information from sources in its area. and exchanges the information
with other agents. A receiver sends the join request to its agent. which
makes the join decision for the receiver. Agents. but not all the on-tree
routers as in some previous work. need to store QoS information and to
test the eligibility of join requests. We can choose agents according to
the nature of the multicast group. so that we can make AQMR scalable
for various groups in terms of QoS information gathering and storage

and join decision making.

e lesponsiveness. A receiver can expect a join ACK(or NACK) from the
agent within a short period of time. since the receiver contacts the agent
associated with it to join the multicast tree. and the agent makes the

decision immediately.

e Efficiency. With agents as special points in constructing the tree, AQMR
builds multicast trees with low cost. in terms of average delay and average

hop number of the tree.

A performance study(Chapter 1) shows that AQMR can provide a better
service than QoSMIC, a representative multicast routing protocol that was
designed to support QoS requirements. AQMR can construct resource-efficient
trees. It has low join overhead and low join latency. The performance study

will confirm that we can achieve the design objectives.

1.3 Thesis Organization

The thesis is organized as follows. Previous work and background information
are presented in the next chapter. Detailed discussions of the proposed QoS-
aware multicast routing protocol AQMR come in Chapter 3. After that. a
performance study is presented in Chapter 4. In Chapter 3, the conclusions

and future work are discussed.



Chapter 2

Previous Work and Background

AQMR is a QoS-aware multicast routing protocol designed in the context of
Active Networks. In the following, we classifv the multicast routing schemes,
and give a brief description of the representative related protocols. After that,
we will introduce the platform of Active Networks. their characteristics and

applications. and also Active Services.

2.1 Multicast Routing

Multicasting is the distribution of packets from a node to many recipients
simultancously. A multicast routing protocol builds a multicast tree that con-
nects the sender(s) and the receiver(s). A multicast sender does not need to
know where the receivers are. It uses the group address as the destination
address. and the multicast-capable routers can forward the packets appropri-
ately(possibly replicating them onto more than one outgoing links), so that
the packets can finally reach the receivers. In this thesis we assume that a
router is multicast-capable.

In this section, we will first discuss a multicast tree in terms of its structure,
shared-tree or source-tree. Then we present schemes for a routing protocol to
find on-tree routers. After that, we discuss protocols with respect to whether
they support QoS or not. and introduce several protocols. For a comprehensive

review on multicast routing protocols, refer to [WHO00]. [RA00]. and [AL00-2].



2.1.1 Shared-tree versus Source-tree

Two tvpes of multicast trees may be constructed. shared-tree and source-
tree. \ shared multicast tree is rooted at a center point. termed as the
core in CBT(Core Based Tree)[BA9T] or the RP(rendezvous point) in PIN-
SM(Protocol [ndependent Multicast Sparse Mode). We call the center point
as core here. In a shared-tree, all the sources use the core to transmit data
packets to the group. A new member contacts the core to join the tree. In a
sonrce tree. the source is the root of the multicast tree for the source. That
is. there will be a tree for each source in the group. In a shared-tree. a router
needs only one entry for cach group. However. the shared-tree may not be as
efficient as a source tree since packets will be forwarded to the core. There
may be traffic concentration problems at the core[RA00]. A source-tree may
be more efficient than a share-tree. However, there is a routing entry for cach
source in a router, which may cause a scalability problem when the number
of sources is large. In the following, we discuss two representative protocols.
CBT and PIM-SM.

[n CBT[BA9T]. the core is the center of the multicast group. When a new
member wants to join the group, it sends a join request to the core following
the reverse shortest path. Intermediate routers process the join request and
set up transient routing state. When an on-tree router or the core receives
the request. an acknowledgment message is sent back to the receiver on the
reverse path the request followed. At each router, the incoming and outgoing
interfaces of the join request packet are added to the routing table entry for this
multicast group address. CBT builds a bi-directional tree, whose routing entry
does not differentiate interfaces as incoming or outgoing, rather a data packet
is forwarded to tree interfaces other than the incoming one. Consequently
sometimes a data packet does not need to reach the core first before being
forwarded to receivers.

PIM-SM[EF98] uses the center point called the rendezvous point(RP) to

build a shared-tree by default. A new receiver contacts the RP of the group to

ot
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Figure 2.1: Uni-directional Tree vs. Bi-directional Tree

join the tree. The join request is forwarded to the RP using the reverse shortest
path. Routers on the way update their routing tables. PINM-SM constructs a
uni-directional tree routed at the RP. A source sends data packets to the RP
first. The RP then forwards the packets to all the receivers. A router can
switch from a shared-tree to a source-tree if it finds the transmission on the
shared-tree is not satisfactory.

Figure 2.1 basically illustrates the difference between a uni-directional tree
and a bi-directional tree. In the uni-directional tree. the route for a data
packet from Source to Recel is Source - R1 — Core - Rl — Recel. In

contrast. the route in a bi-directional tree is Source = Rl — Recel.

2.1.2 Finding On-tree Router(s)

In a multicast routing scheme. the router directly adjacent to the new member
needs to search for a path for the member to join the group. The searching
schemes could be classified into three categories: distributed. centralized, and
hybrid. In a distributed approach. routers make decisions based on local infor-
mation. In a centralized approach. a special router(or routers) knows global
tree information so that it can choose or help choose a path(or paths) to the
new member. The new member’s router sends the request to this special
router. The hybrid approach is a combination of a distributed and a central-

ized methods.



YAM(Yet Another Multicast Routing Protocol)[CC98]. QMRP(A QoS-
aware Multicast Routing Protocol)[CN0O1] and QoSCBT(QoS Extension to
CBT)[HT99] fall into the distributed category. Some schemes such as PIM-
SM and CBT use reverse shortest path to connect to an on-tree router. Thev
can be regarded as distributed approaches. DV MRP(Distance Vector Multi-
cast Routing Protocol)[WPS8] and PIN-DM(Protocol Independent Multicast
Dense Mode)[DE99] use a “flood and prune” approach. where data packets
will be periodically forwarded across the entire network. and a leaf router will
prune the branch to the source if there is no member attached to it. DVMRP
and PIM-D)M can be regarded as distributed approaches. MOSPF (Multicast
extension to OSPF)[MO94] uses Dijkstra’s shortest path algorithm as the rout-
ing algorithm. which may be regarded as a centralized approach, although the
information is gathered in a distributed wayv. Those algorithms that need
global topology information such as the proposed protocols in [PZ98](BSMA)
and in [KP93](KPP) are centralized approaches. In protocols like BSMA or
KPP, they assume the algorithm knows the property of the graph that repre-
sents the topology. That is. they know information of each link in the topology.
QoSMIC(Quality of Service sensitive Multicast Internet protoCol)[FB9g] fol-
lows a hybrid approach. Our protocol. AQMR, can also be classified as a
hybrid approach. which deploys distributed agents to store centralized multi-
cast tree information to facilitate new members’ joins. In AQMR, an agent has
a complete view of the multicast tree. However, it knows only the cumulative
metric(s) to sources and other agents. Table 2.2 shows the classification of

multicast routing schemes according to how they find on-tree routers.

[ Distributed ] Centralized l Hybrid J
QMRP. QoSCBT. YAM. CBT. | BSMA, KPP, | QoSMIC, AQMR
PIM-SM, PIM-DM. DVMRP.ete. | MOSPF. etc. etc.

Table 2.1: Routing Scheme Classification(I)
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Expanding Ring Search

Without global topology knowledge. some schemes such as YAM and QoS-
MIC deploy the approach of Expanding Ring Search(ERS) to locate on-tree
router(s) to attempt to find a feasible path with good QoS. As shown in Fig-
ure 2.2, the new router sends out search packets via reverse path broadcast
[CCI7][DCI0], with the TTL(Time To Live) increasing by 1 hop each time.
until an on-tree router is found. That is. initially it will send out a search
packet with TTL = 1. After the timer associated with the searching proce-
dure expires, it will send out a scarch packet with TTL = 2, etc. An off-tree
router will forward the search packet if the packet comes via the shortest path
from itself to the new router that initiates the searching procednre, and if the
TTL of the search packet is greater than 0. An on-tree router that receives
the search message will notifv the new router of its being on the tree. and stop
forwarding the search packet. There may be more than one on-tree routers
found. In the figure, routers R1 and R2 are found by the new router when
TTL = 2. After locating on-tree routers, a routing scheme can choose one of

the found on-tree routers to connect the new member to the multicast tree.



2.1.3 QoS Support

Multicast routing schemes can also he categorized as QoS-aware and QoS-
oblivious. A QoS-aware scheme searches for a path that can meet the QoS
requirement. or the path that is the best among the found paths with respect
to the QoS requirement. A QoS-oblivious scheme does not take the QoS
requirement into consideration. Most standardized or standard-track schemes
are QoS-oblivious. such as MOSPF. DVMRP. PIM. CBT. ete. YAM. QoSMIC.
QMRP. AQMR. and so on can be categorized as QoS-aware schemes. Table 2.2
shows the classification of multicast routing schemes according to whether they

support QoS.

| QoS-oblivious [ QoS-aware ]
MOSPF, DVMRP, PINM-DM | QMRP. QoSCBT. YAM,
PIM-SM, CBT. etc. QoSMIC. AQMR. etc.

Table 2.2: Routing scheme classification(II)

In the following, we give brief descriptions of some representative QoS-

aware protocols including YAM. QOSMIC. QoSCBT. QMRP. etc.

YAM

YAM [CC97. CC98, CCI9] uses the one-to-many join approach(ERS) to search
for on-tree routers. On-tree routers reply to the new router; and during the
process, the properties of the paths such as the delay are collected. The new

router selects the best one to connect to the tree.

QoSMIC

In [FB98]. Michalis Faloutsos, Anindo Banerjea and Rajesh Pankaj proposed
QoSMIC(Quality of Service sensitive Multicast Internet protoCol). QoSMIC
deploys Local Search and Multicast Tree Search together to find multiple can-
didate paths so that the new router can select the best one to connect to the
tree. There are timers associated with Local Search and Multicast Tree Search,

which determine how long the new router would wait for feedback before de-
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ciding that the corresponding search has failed. QoSMIC terms a qualified
on-tree router as a (filll(lidiltc.

Local Search uses the approach of ERS to locate candidates. Local Search
may fail to locate an on-tree router, due to too small TTL or too short search
timer. If a member fails to find a candidate during the stage of Local Search. it
notifies the manager. a central administrative point in QoSMIC. to initiate the
process of Multicast Tree Search. During the stage of Multicast Tree Search,
candidates can be selected using Centralized Selection or Distributed Selection.
[n the former one. the manager has sufficient knowledge of the multicast group
and can choose the proper candidates directly. This may be impractical since
it needs global knowledge of the tree. In the latter case, three mechanisms
are proposed to lower the protocol overhead, Directivity, Local Minima, and
Fractional Choice. Directivity does not select distant on-tree routers. Local
Minima selects locally optimal routers as candidates, given the absence of
global knowledge. Fractional Choice chooses as candidates a representative
fraction of all on-tree routers or those that satisfy the criteria of Directivity
and Local Minima. Figure 2.3[FB98] illustrates the basic idea of Local Search
and Multicast Tree Search in QoSMIC.

QOoSMIC can collect QoS information from the found on-tree routers to
the new router, however, it does not provide an approach to obtain dvnamic

information from a source(or the core) to the new router. Both QoSMIC

10



and YAM use the best path to connect a receiver to the tree. which mav not
satisfv the QoS requirement of the request. In [YF99]. more experiments are

conducted to studv QoSMIC.

QoSCBT

In QoSCBTIHTI9] a QoS eligibility test is conducted at every ronter. If the
request survives the test. it will be forwarded to the next router towards the
core. Otherwise. the request is denied. The ratio of joining denial may be high
since there is only one path examined which is derived from the best-effort
unicast routing table. In [TH99]. Hung-Ying Tvan. Chao-Ju Hon. and Bin
Wang present a set of member join/leave and state maintenance procedures
for core-based QoS multicast routing. They deploy approaches of Local Search
unth Bidding and Sequential Random Search to locate a path to an on-tree
router. Local Search with Bidding is similar to the Local Search in QoSMIC.
with the exception that in QoSCBT. a router that receives the search message
needs to conduct an eligibility test. With Sequential Random Search. an off-
tree router that receives a rejection message attempts to find a feasible path
through another outgoing interface, rather than forwarding back the rejection
message to the requesting router. The router will send back a rejection message
once it has tried all the possible interfaces and failed to find a path. The
two approaches can eliminate the problem in [HT99] where only one path is
examined. In both studies. every router is able to conduct the eligibility test,

so all of them need to store QoS information for the multicast tree.

QMRP

Shigang Chen. Klara Nahrstedt, and Yuval Shavitt proposed QMRP(A QoS-
aware Multicast Routing Protocol) in [CNO1]. In QMRP. a joining request
follows the unicast routing path towards the core. If a router can not support
the QoS requirement that the new member desires, the router asks the previous
router to conduct maultiple path routing, in which join request messages will be

sent to interfaces other than the one defined by the unicast routing. The join
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lateney of this approach mayv be high in the case that several multiple path
routing searches have to be conducted. An example is. the join request will
be forwarded following the router sequence of Ry. R,. ... R,. These routers
could support the required QoS(thus all of them can survive the eligibility
test). however only R conunects to some feasible path according to the QoS
required. suppose this feasible path does not follow the reverse path that the
request packet will travel. A NACK of the request will finallv be sent back
to Ry after every other ronter has tried the multiple path routing. but all of
them fail. In QMRP. every router should have the ability to check whether
a request could be accepted. QMRP works for non-additive metrics such as
bandwidth and buffer space. but does not support applications that require
metrics such as end-to-end delay or loss rate.

In [CS00]. Shigang Chen et al. claim that the protocol S-QMRP supports
additive metrics such as end-to-end delay. In S-QMRP. a joining member
starts with a single path routing as in CBT to connect to the tree. The join
request packet accumulates the delay of the path it traverses. When it meets
an on-tree router. the router can check whether the request can be accepted.
using the accumulated delay and the delay information from the root to it. If
the on-tree router can not accept the request, the request will be forwarded to
the root. The root then uses Grow messages to search from multiple paths for
a feasible path to the receiver. During the Grow process, routers that forward
the Grow message can learn the delay from the root to it. S-QMRP still needs
all routers to store such information. In addition, the delay information may
not be up-to-date'. and the receiver must wait for a long time until the path

is found.

BSMA and KPP

There are also algorithms that assume some node(the source) knows global

knowledge of the network(such as the topology and QoS metrics on links) and

'AQMR has mechanisms for agents to update QoS information periodically and on a
triggered basis, so the information stored at agents is almost up-to-date.
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try to find an optimal multicast tree for the source and the receivers. We
only briefly discuss two papers of this direction. In [PZ98]. the algorithm
BSMA allows arbitrary real-valued destination delav bounds by emploving,
an iterative approach to construct the multicast tree. It can accommodate
asymmetry of links. The algorithm KPP in [KP93] deals with only constant
integer-valued destination delay bounds. and assumes the link costs and delayvs

are syvimmetric.

2.2 Active Networks

[n this section. we briefly discuss two representative Active Networks plat-
forms. ANTS[WG98] and PLAN[HK9S|. as well as a competing research direc-
tion, Active Services[AN98]. We also present some research work that applies
the concept of Active Networks to applications such as reliable multicast and
multicast congestion control.

Active Networks[C'A99] enables routers to employ new services dvnamically
at run time. so that new protocols can expect fast deplovment. It can provide
more flexibility to applications by allowing programs to be executed by routers
in the middle of the network. Active routers enable quick deployment of rout-
ing protocols [MLO1}. At the same time, it attempts to guarantee the network
security and to avoid compromising network performance such as delay. A.
Campbell et al. in [CA99] review a number of Active Networks projects accord-
ing to programmable network characteristics: networking technology, level of
programability, programmable communications abstraction and architectural
domain.

ANTS [WG98] is an Active Networks approach for dynamically building
and deploying network protocols, based on techniques of mobile code, demand
loading and caching. In the architecture of ANTS, a capsule, a replacement for
a packet. contains a program and is processed at active nodes with restricted
access to node resources. An active node supports primitives such as envi-

ronment access, capsule manipulation, control operations and node storage to
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express forwarding routines. Examples of programming with ANTS for mobile
[P and multicast are presented in [WG9S] 1o illustrate the ease of building new
protocols.

PLAN [HK98] enables programs to form packets of a programmable net-
work by replacing the currently used packet header. PLAN code can call ser-
vice routines residing at a node to implement required functionalities. PLAN-
Net [HM99] is an active network architecture implemented with PLAN.

In [AM9I8]. the Active Services framework is proposed to address the dif-
ficulties of deploviment of Active Networks technology. The Active Services
framework supports application level programability while keeping compatible
with current Internet infrastructure so that it can be deployed incrementally.

Active Networks have the potential to become the network computing
platform in the future. In [MLO1]. N. F. Maxemchuk and S. Low discuss
applications such as QoS routing, mobility, and receiver-controlled routing
as good candidates for Active Networks deplovment. Previous work such as
ARM(Active Reliable Multicast){LG98], AERM(Active Error Recovery For
Reliable Multicast)[BHO1-1] and AHCCM{ Active Hierarchical Congestion Con-
trol for Large-scale Multicast)[BH01-2] have shown that some applications. e.g.
reliable multicast and multicast congestion control. can benefit from introduc-
ing some functions within the network, based on the architecture of Active
Networks. ARM[LG98] deploys active routers to suppress duplicate NACKSs,
to perform best-effort cache of recent packets, and to deliver retransmitted
packets to receivers experiencing data loss. AERM[{BHO!-1] improves previous
active error recovery schemes(including ARM) by using soft-state storage in
active routers. In AHCCM[BHO01-2], a multicast flow can share the bandwidth
adjustably when competing with TCP flows. It can also achieve inter-receiver

fairness. scalability and responsiveness [BHO1-2].
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2.3 Summary

Multicast is an efficient way to distribute data packets among group mem-
bers. A multicast routing protocol builds the distribution multicast tree among
group members. A multicast tree can be a shared tree or a source tree. Multi-
cast ronting schemes can be classified into distributed. centralized and hybrid
schemes in terms of how to find a path for a new member to join the tree. They
can also be categorized as QoS-oblivious and QoS-aware schemes, depending
on whether they support QoS or not. There are challenges to provide QoS in
multicasting. such as how to gather QoS information to make proper decision
for join requests thus to provide a satisfactory QoS support and how to lower
the protocol overhead for joining the tree. Active Networks will potentially be
a promising computation platform that will allow flexible deployment of mul-
ticast protocols. We discussed the implementation and application of Active

Networks.
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Chapter 3

Active QoS Multicast Routing
Protocol(AQMR)

In this chapter. we describe our QoS multicast routing protocol in detail. We
give an overview of our protocol first. Then we discuss agent selection and
path searching. In the section of admission control. we describe mechanisms
for QoS information gathering and eligibility tests for join requests.  After
that. we present the group dynamics of our protocol. which includes data
packet flow. receiver join and leave, routing state maintenance. and source

join.

3.1 Protocol Overview

In this section, we give an overview of our active QoS multicast routing pro-
tocol using distributed agents(AQMR). In AQMR. a source or a receiver is
associated with an agent close to it. A source sends QoS information collec-
tion packets periodically to the agent associated with it. Agents exchange
source QoS information among themselves periodically and also on a triggered
basis to obtain a complete view of the multicast tree. After gathering QoS
information of the tree, an agent has sufficient information to make admission
decisions when new members request to join the group. A new member con-
tacts the agent associated with it to join the tree. Using distributed agents,
we aim at satisfving QoS requirements of receivers and expediting the QoS

Joining decision.  We also attempt to make QoS information gathering and
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storage efficient and scalable.

There are four types of routers in AQMR: agent. source. receiver. and
on-tree router. Agents are responsible for gathering QoS information of the
multicast tree and for making join decisions for new members. Thev also
play a critical role in path setup. Sources are the points where data packets
originate. Sources also need to periodically send QoS information collection
packets to agents. Receivers initiate join requests. and are the recipients of
data packets. On-tree routers are routers that are on the multicast tree. Thev

stimply forward data packets. These router types are summarized in Table 3.1.

l Router Tyvpe I Function ]
Agent Gathering QoS information of the multicast tree.

Conducting eligibility test to accept or reject join
requests. Being involved in path setup.

Source Originating data packets. Sending QoS informa-
tion collection packets to an agent.
Receiver Requesting to join the multicast tree. Receiving

data packets.
On-tree Router | Forwarding data packets to receivers. Thev are
part of the data distribution tree.

Table 3.1: Router Types

When a new router wants to join the multicast tree. it contacts its agent.
The agent has already gathered QoS information of the multicast tree. so that
it can conduct an eligibility test for the new request as soon as the request
arrives. [f the request is approved, the agent sends an acknowledgment message
back to the new router. At the same time, the agent may also need to set up
paths to other agents and then to sources(details of this are discussed later
in Section 3.5). After the receiver receives the acknowledgment. it joins the
tree. so that routers along the path from the receiver to its agent change their
states to forward packets to the new receiver. If this agent can not accept the
request based on the QoS information, it sends a NACK to the new router.

As shown in Figure 3.1, each agent services an area of the multicast group.
That is. a source in its area sends QoS information collection packets to it:

and the receivers in its arca contact it directly to join the multicast tree. In
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------ > InfoCollection: from source to agent
<—— InfoExchange: among agents
—— JoinRequest

—— Setup Path

Figure 3.1: Protocol Overview
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Figure 3.1. there are three agents. Agentl. Agent2 and Agent3. and three
areas associated with them. Dashed lines show the How of information collec-
tion packets. Sourcel sends information collection packets to Agentl. so that
Agent! knows QoS information to Sourcel. Similarly. Source? sends such
packets to Agent2. and Sources to Agent?. These agents exchange QoS infor-
mation with cach other. as shown in the bi-directional arrow-ed lines. so that
they can compute the QoS metries to all the sources. When the Receiver wants
to join the multicast tree. it sends a join request with its QoS requirement to
its agent. Agentl. Agentl makes the join decision based on the information it
stores locally.

In the following. we present AQMR in detail. First we discuss how to
choose agents. We then present a method to find paths between two nodes that
can approximately achieve the optimization goal. After that, we discuss the
mechanisms in AQMR to conduct admission control, which include approaches
for gathering QoS information for a multicast tree, description of parameters
of intervals and triggers. and the mechanism of the eligibility test. Group
dynamics are illuminated next. We explain how to set up paths after a receiver
is acknowledged. how to leave a group for a receiver. how to maintain the router

state, and how to join a group for a source.

3.2 Agent Selection

Strategically placed agents can make QoS information gathering efficient. ac-
celerate join request response. lower tree cost and lower protocol overhead.
The Internet[TA96] can be viewed as a collection of subnetworks that are con-
nected together. A subnetwork is an Autonomous System(AS), which includes
a backbone, and several areas that are attached to the backbone. A backbone
and an attached area can also be called a transit-AS(transit-domain) and a
stub-AS(stub-domain) respectively[JJ00][CD97]. In [JJO0], Sugih Jamin et al.
present heuristics for Internet instrument placement to collect distance infor-

mation without having global topology knowledge. We could use a mechanism
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Figure 3.2: An example of Agent Selection

similar to Transit-AS[J.J00] to place agents on transit-ASes. That is, agents
are on ISP(Internet Service Provider) backbones. We may also choose agents
in a stub AS, if the stub AS is a big one. or auv transit AS is too far away. To
choose agents on both transit and stub ASes is a combination of the approaches
of Transit-AS and Stub-AS in [JJ00]. An example of choosing agents is shown
in Figure 3.2, in which A1, A2, A3 are selected as agents in three transit-ASes.
In Section 4.5.2, we study the effect of the number of agents manually chosen
from a given topology on the protocol performance. Automatic agent selection
is left as future work.

For the special case of a small group. we may only require one agent. In
this case, AQMR works similarly to the PIM-S)\ shared-tree. The difference
is that in AQMR an agent knows the condition of the multicast tree, so that

it can make more appropriate admission decisions for join requests.
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Figure 3.3: Path Searching

3.3 Path Searching

[n QoS routing, the path derived using the unicast routing protocol may not
be the satisfactory one in terms of the QoS required. In AQMR. it is desirable
to find paths between a source and an agent, between a receiver and an agent,
and between two agents that have the best QoS among all the feasible paths
between the two entities respectively. It may be costly to find the optimal
path between two nodes, therefore we consider a heuristic approach to try to
find a good path with relatively low overhead.

We assume a node S wants to find a path to node D. Node S sends search
packets to all its neighbors, A, 4,, ... 4,. After these neighbors of S get the
search packets, they send the packets to node D using the underlying unicast
routing protocol. During the transmission of the searching packets, the QoS
metrics of interest on the traversed paths are measured. so that the node D can

choose the best one among all these paths. This is a one-hop ERS(Expanding
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Ring Search. see Section 2.1.3). We call this scheme 1~ FE RS search. Figure
3.3 illustrates the scheme of 1 — ERS search. We can use a 2 — ERS search
to get a better path. in which a search packet have the TTL field of 2. A node
forwards the search packet to node D using the unicast ronting protocol if and
onlv if the search packet arrives via the shortest path from the node to the
node S.and the TTL is 0. When the packet comes from the reverse path to
node S, and its TTL > 1. the node forwards the packet on. Otherwise. the
packet will be simply discarded. Similarly there could be a 3 — ERS search.
ete. Clearly 2— or 3 — ERS search may find better paths. but it increases the
overhead of searching for a path between two nodes. compared to | — ERS.
To reduce the overhead. we may ask the router to record whether there has
been a search packet traversing it. and. if so. simply discard those searching

packets that come later.

3.4 Admission Control

In this section. we discuss the problem of deciding whether to accept or reject
a Join request. that is, admission control. We illustrate how to gather QoS
information of the multicast tree such as path delay and how to conduct an

eligibility test when an agent receives a join request.

3.4.1 QoS Information

We discuss how to gather QoS information with respect to: QoS information
collection and exchange, QoS information acquisition. and the completeness
of QoS information. In Table 3.2, we present the message tvpes that are used
in QuS information gathering, InfoCollection and InfoExchange. The rest of
message tvpes in Table 3.2 will be used in Section 3.5 that discusses the group

dyvnamics.
QoS Information Collection and Exchange

QoS information is important since routing decisions are based on it. One

way to gather QoS information is to design specific control messages. We
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————

| Message T.\T;«'T Function |
[ S—

" InfoCollection | A source sends InfoCollection packets to its agent
for it to collect QoS information from the source.
[nfolxchange | Agents exchange QoS information. meanwhile.
QoS information between two agents is also col-

lected.

JoinRequest | A receiver requests to join the tree. QoS infor-
mation between a receiver and its agent is also
collected.

Join ACK An agent informs the receiver that its join request
has been approved.

JoinNACK | A request is rejected.

PathSetUp | To set up tree paths.

KeepAlive To refresh soft-state routing table.
Prune For pruning unnecessary links on the tree.

Table 3.2: Protocol Message

can obtain QoS information from periodic information gathering messages. A
triggered approach can be used to capture significant changes in the tree. such
as available network resource changes due to background traffic changes. We
keep track of only significant changes to reduce the overhead of the protocol.
We can also derive QoS information from data packets.

In AQMR. we design a periodic mechanism combined with a trigger-based
approach for QoS information gathering, which can update QoS information
in a timely manner and catch significant changes. In this way. we can set the
periodic intervals used in AQMR relatively large, and, with the help of triggers.
obtain accurate QoS information and keep the overhead low. Specifically, in
AQMR. a source periodically sends InfoCollection packets to its agent. The
agent updates its source information after receiving the I'nfoCollection packets.
If the agent detects a significant change of QoS information, it re-calculates
the path. and informs other agents of the updated information. An agent also
periodically computes paths and exchanges information with other agents. An
agent can aggregate information from all the sources that send information
to it. and send only one copy of the aggregate information to other agents

to lower the protocol overhead. After exchanging QoS information with the
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other agents. and computing paths. each agent will have a complete view of
the multicast tree. That is. each agent has the knowledge of the QoS of paths

to all the sources. and the agents the sources are associated with respectively.

QoS Information Acquisition

QoS metries mayv be obtained by accessing the information stored at routers.
or by a measurement approach. This is metric-dependent. For example. the
delay of a path may be measured using two time-stamps at the sender of the
measurement message and at the recipient. In this case. only the sender and
the recipient are involved in the delay measurement. The minimal available
bandwidth of a path may be obtained by computing the minimal one of all the
links on the path. providing bandwidth information is available at routers. In
this case. the routers in between need to provide the bandwidth information.
The packet loss rate of a path can be measured by dealing with the sequence
number and acknowledgment number of TCP packets as proposed in [SA99], or
by using the end-to-end multicast traffic as measurement probes as presented

in [CD99).
QoS Information Completeness

We make the QoS information complete(e.g., for end-to-end delay, we have the
delays from sources to a receiver) by using the following procedures. The QoS
information between a source and its agent is collected when the source sends
the InfoCollection packet to the agent. Information between agents is collected
when the two agents exchange information with InfoEzchange packets. The
QoS information between an agent and a receiver is collected when a new

receiver requests to join the multicast tree.

3.4.2 Path Computation

There is some work discussing how to compute paths. [GO97] discusses issues
such as when(on-demand or pre-computation) and how to compute paths. An

on-demand approach can generate more accurate results but it is computation-
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ally expensive: while a pre-computation approach is cost effective but needs
triggering mechanisms to know when to compute paths. and each computation
is costly[GO9IT]. [AGIS] suggests a technique that combines pre-computation
and triggering policies with large timers to produce an efficient and cost effec-
tive solution. Apostolopoulos et al. in [AG98] also discussed update policies
to catch significant changes.

In AQMR. path computation is conducted periodically. and is also trig-
gered by significant changes. An agent can compute paths to sources. once
QoS information between sources and agents and between each pair of agents
is available. For each source. the agent calculates the cumulative QoS met-
ric from the source to itself. then it stores the path. the QoS metric and the
source’s corresponding agent. With such multicast tree QoS information. an

agent can make admission decisions for join requests.

3.4.3 Intervals and Triggers

In this section. we discuss parameters of intervals and triggers for both QoS

information gathering and path computation.

QoS Information Gathering

We design a periodic mechanism combined with a trigger-based approach for
QoS information gathering as described in the above section. We need the fol-
lowing parameters, Srelnterval, Exchangelnterval, and Agent Trigger Threshold.
as shown in Table 3.3. The intervals are used to decide the timer interval be-
tween two information gathering packets. Srclnterval decides how often a
source sends an InfoCollection packet to its neighboring agent. Ezchangeln-
terval tells each agent when to send InfoErchange packets to other agents.
The trigger threshold is used to catch significant changes in QoS information
and to lower protocol overhead. After an InfoCollection packet from a source
arrives at an agent. the agent determines whether to trigger an InfoErchange
message to other agents using the AgentTriggerthreshold.

If we denote the change of the QoS metric as M pange. the original value



tion__ |

L Parameter [ Description

Srelnterval Determining how often a source sends an Info-
Collection packet to its agent.

Exchangelnterval Deciding how often each agent sends InfoEr-
g') S &

change packets to other agents.
AgentTrigger Threshold | Determining whether an agent triggers an [In-
foErchange message to send to other agents.

Table 3.3: Parameters for Information Gathering

as Morginar. the agent will send out InfoErchange packets to other agents to

inform them of the current network condition. if

Mehange 2 AgentTriggerthreshold Moriginat-

When an InfoErchange packet is triggered. the corresponding timer will
be rescheduled to avoid unnecessary periodic information gathering packets.
In this way, we can guarantee that there will alwayvs be a packet sent within

the corresponding time period and keep the QoS information up-to-date.

Path Computation

As discussed in Section 3.4.1, paths between an agent and the sources are
computed periodically as well as triggered by significant changes in QoS in-
formation. For path computation. we have two parameters, Computelnterval
and ComputeTrigger Threshold, as shown in Table 3.4. That is, the multicast
tree paths are computed periodically using the Computelnterval to decide the
intervals. However. path computation can also be triggered when an agent

detects a significant change in QoS information.

| Parameter | Description J
Computelnterval Determining how often an agent computes the
paths.
ComputeTriggerThreshold | Deciding whether an agent triggers path compu-
tation.

Table 3.4: Parameters for Path Computation

If we denote the change of the QoS metric to a source as Mepange. the
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original value as M, mar- the agent will compute paths to sonrces if

‘\[('Imn.g/r Z C'()Ill[)llt('Tl'i.!]_lj( rlhreshold « [nrlyuml‘

3.4.4 Eligibility Test

An agent makes join request decisions based on the current QoS information
and a protocol parameter. Admission Fuctor. denoted as o, to make the pro-
tocol flexible for different types of applications. and to reduce the impact of
information inaccuracy.

We discuss three types of QoS metrics. namely. additive, multiplicative. and
concave metrics [HT99]. For the following discussion. a path between u and v
is denoted as P, , = tot;...t,, where t, € V(the set of routers), ty = u.t, = v.
and 7 € {0.1....n}. We denote the link metric on link ab as m,,. and the
cumulative metric on path P, , as M, .

We say the cumulative path metric M, , is additive if

n-1

AM,, = E My g, -

1=0

We say the cumulative path metric M, . is multiplicative if

n-1

My =[] (me00).

t=0

We say the cumulative path metric 1/, , is concave if

My o =min{my ...y, _ 0.}

The end-to-end delay of a path is an additive metric, which is the sum of
the delays a packet experiences on all the links in the path. Loss rate of a
path can be dealt with as a multiplicative metric. with additional handling as
shown later. The available bandwidth on a path is a concave metric, which
measures the minimum available bandwidth of all the links in the path. In
the following subsections discussing QoS metrics, we first describe information

gathering and computation at agent ay. Then we present the eligibility test

(V]
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for a join request at ay. For QoS information acquisition of a link or a path.
see Section 3.1,

We denote the set of sources as S. the set of agents as A, and the routers
as V. Foreach s € S. there is an agent a € A that is associated with 5. The
path between s and « is P, ,. The path between a and ay € A is Ly, In the
case s s associated with agent ag. a = ag. we get P, ,,. which is actually a
point. We set the cumulative metric on path P, 4. My, 0o = 0. if the metric
is delayv or loss rate: M, ., = mac. if the metric is bandwidth. where mar is
a maximum value. The requesting receiver is denoted as r. and the path from

the agent ag to ris P, ,.

Additive Metrics

Delay is used as a representative of additive metrics. \We denote the delay on

link ab as d,,. and the cumulative metric on P, , as D, .. We have.

n—1

Duv" = E :dtntm—l'
1=0

Thus the QoS information for source s stored at agent ay is.

Ds,ao = DS,(X + Da,uos

where source s is associated with agent a.

The agent a, calculates the delay information of the tree. Dye, q,. that is,

from all the sources to it, as

Dtree,ao = "ull'{Ds"aO}.S € S.

We can also calculate the QoS metric between ag and the receiver r. D, .
when the receiver requests to join the group. A request will be accepted if its
delay requirement is larger than the product of the Admission Factor. o, and

the current delay the tree can support. That is. if

Dtree,ao + Dao,r S Q * DRL’(]?
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where Dy, is the delay requirement of a receiver. the request will be ap-

proved.

Multiplicative Metrics

Loss rate is used as a representative of multiplicative metries.  We denote
the loss rate on link ab as 1,5, and the cumulative metric on P, . as L, ,.
Consequently the probability that there is no loss on link ab is 1 —{,,. And

the probability that there is no loss on the path P, is I — L, .. We have.
n-1

Lu.l' = l - H(l - l'lvtﬁ-l)?

=0

Thus the QoS info for source s stored at agent ay is.

Ls.un =1- (1 - Ls,a) * (1 - La.ao)s

where source s is associated with agent a.

The agent oy calculates the loss rate information of the tree. Liee., as.

Lireewy = max{L; },s €.

3 ,a0

We can also calculate the loss rate between g and r. L, ,. If the following

formula holds.

1 - (1 - Llree,no) * (1 - Lao.r) S Q * LReq-.
where Lg,, is the loss rate requirement of a receiver. the agent ay accepts
the request of the receiver r.
Concave Metrics

Available Bandwidth is a representative of concave metrics. We denote the
available bandwidth on link ab as b, ,, and the minimal available bandwidth

of all links on P, , as B,,,.

Bu.u = ’nin{blo.ll yeeey bln—lv‘u }
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Thus the QoS info for source s stored at agent ayg is.

B.ay = min{B,,. Bau,}
where source s is associated with agent a.
The agent «a, calenlates the available bandwidth information of the tree.
B!rw’.un as

Bivwy = min{B,

. ‘“0}.5" € S.

The minimal available bandwidth between ay and r. B,, r can be obtained

too. If

Min{Biree.ay Bagr} 2 0 % Beq,

where Byp,, is the bandwidth requirement of a receiver. the agent agy accepts
the request of the receiver r.

We can see that for metrics such as delay and loss rate, the larger the o is.
the more aggressive the protocol behaves, since the protocol with a larger o
will accept more join requests. For metrics such as available bandwidth. the

larger the «v is. the less aggressive the protocol behaves.

3.5 Group Dynamics

In this section. we discuss the group dynamics of AQMR. We describe how data
packets flow in AQMR. After that, we present a simple join scheme. Then we
present an improved scheme called Agent-based Multicast SubGroups. After
that we discuss receiver leave, routing state maintenance, source join. and
possible extensions. Relevant protocol message types and their functions are

presented in Table 3.2.

3.5.1 Data Packet Flow

The multicast tree needs to distribute data packets from a source to all the

receivers currently on the tree. In AQMR, basically a data packet is delivered
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Figure 3.4: Packet Transmission

to the agent associated with the source first. The agent forwards the packet
to other agents that are on the tree. Then those agents transmit the packet
to the receivers in their arcas respectively. To shorten transmission latency. a
mechanism similar to the bi-directional tree in CBT[BA97] is deploved in the
arca in which the source resides. so that a packet will follow a short-cut route
to receivers in the same area the source resides in, rather than necessarily
following the route through the agent first. Figure 3.4 illustrates the idea. A
packet is generated by Source2. Routerl forwards the packet to Receiverl.
Router! also duplicates the packet and forwards it to Agent2. When Agent?
receives the packet, it makes three copies of the packet. One copy is sent to
Receiver2; one copy to Agent! and the third copy to Agent3. Finally Agent!
forwards the packet to Recetver3. and Agent3 to Receivery.

An agent needs to know where to forward data packets from different
sources. which packets are from sources in its area and which are not. For
example. in Figure 3.4. when Agent? receives a data packet from Source?. it

needs to forward the packet to Receiver?, Agent!, and Agent3. However, when
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Agent? veceives data packets from sources not in its area. e.g. Sourcel. it
should forward the data packet to Recercer! and Receiver?. but not to Agentl
and Agent2. Such capability of agents can be achieved when the routing pro-
tocol sets up the tree. That is. when the protocol updates the routing table

entries.

3.5.2 Receiver Join

A simple join mechanism can be done as follows. An improved scheme will be
presented in the next section.

When a join request arrives at an agent. the agent conducts the eligibility
test. The agent sends a JoinACK message to the receiver if the join request is
approved. Otherwise the agent replies to the receiver with a JoinNACK. The
paths between a receiver and an agent. between a source and an agent and
between two agents are obtained using the 1 — ERS search(see Section 3.3).

The agent will set up paths at the same time it approves a join request if
the agent is not on the tree to some source. This could happen if the agent is
serving the first join request. or it has torn down branches to other agents(see
Section 3.5.4). The agent checks the path information for setting up paths to
sources. For each source, it sends the setup packet towards the agent(denoted
as a ) which is in charge of the source in question, if @ is a different agent.
The setup packet stops proceeding further when it meets an on-tree router, or
it will reach a’ finally. @’ sets up the path to the source if necessary. If a' is
the agent itself, it sets up the path to the source directly if needed. An agent
does not need to set up paths to sources if the paths have already been set up.

When the receiver receives the JoinA CK from the agent, it will set up the
part of the path from the agent to itself. The routers on the way to the agent
update their status to forward data packets. The setup process may terminate
when an on-tree router is met. Otherwise the agent will receive the setup
packet and terminate the setup process. In Figure 3.5. dash-dotted lines show
the path setup routes for general cases. The Receiver sets up the path from

itself to Agentl. Agentl sets up the path to Sourcel. It also sets up paths to
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Figure 3.5: Path Setup

Agent2 and Agent3. Agent2 and Agenty set up paths to Source? and Sources
respectively.

From the above setup procedure, we can see that, for each source, the
protocol constructs a uni-directional tree rooted at the source. That is, there
are no loops in the tree for a certain source. In the case of multiple sources.
there is also no loop, since their trees do not interfere with each other.

Currently, the QoS information from an agent to a joining receiver is col-
lected when the request packet travels to the agent. The agent makes its de-
ciston assuming the QoS information of both directions is approximately the
same. To make it more accurate. the agent may instead send back an ACK
with QoS information, and temporarily set up the path for the new receiver.
When the ACK reaches the receiver. it knows exactly whether its requirement
is satistied or not and stays in the group or tears down the temporary path
accordingly. Furtherinore, the agent can send ACK packets using multiple

paths so that the receiver can choose the best one to join the group.
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3.5.3 Agent-based Multicast SubGroups

To construet a multicast distribution tree. a straight forward approach is like
that deseribed in the above section. The routing protocol builds a multicast
tree similar to a sonrce-based tree for cach source, with agents as special points
in the tree. However, this may incur a scalability problem when the number
of sources increases. since ecach router on the multicast tree needs to record
routing information for all the sources in order to forward their replicated data
packets. One of the objectives of core-based tree solutions is to tackle such
scalability problems. That is, in a core-based multicast tree. each group needs
only one multicast address. so that a router on the tree has only one routing
entry for a multicast group. On the other hand. the core-based tree solution
may construct trees with low efficiency. since traffic follows a route to the core
first. then to the receivers. which may not be a route of good guality from a
sonrce to a receiver. Bi-directional tree approaches do not entirely solve this
problem. although with a bi-directional approach, some receivers do not need a
path that passes the core to receive data packets. In the following we describe
a routing scheme that can achieve both efficient paths and low routing state
storage.

[n this routing scheme. we take advantage of the capability of the agents.
[n AQMR. data packets from a source reach the agent in its arca before being
forwarded to agents in other areas. For an agent(a,), and the receivers in its
arca. data packets from a source(its agent is a,) in another area are relaved by
its corresponding agent(a,) to the agent(a,), then forwarded to the receivers
by the agent(a;). The example in Section 3.5.1 illustrates the scheme. We
construct multiple multicast subgroups, rather than only one multicast group
to achieve efficient resource consumption. In this scheme, ecach agent is a
central point in its area. so that a multicast subgroup is built using the agent
as the core. A bi-directional tree is built so that a packet does not need to
reach the agent first before it is sent to a receiver in the same area. if there is

a short-cut between the source and the receiver. In Figure 3.4, Source2 can
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send the data packets to Receqeer? through the dashed line. In addition. each
agent needs to record ontgoing interfaces to other agents.

When a source generates a data packet. it assigns the destination address
as the subgroup address. Addr, (different subgroups of different agents have
different subgroup addresses). The packet is forwarded by the ronters until
it reaches the agent. The agent forwards the packet to branches other than
the one from which it comes using the same destination address. Addr,. to
forward the packet to receivers in the same arca. The agent also forwards
the data packet to branches leading to other agents. At this time. it assigns
the destination address using a specific address reserved for this multicast
group(note:  not subgroup). Addrg. Routers between a pair of agents can
recognize Addry. since that is the multicast group address. Thus the packet
can be sent to other agents. When an agent receives a packet with destination
Addry. it knows it is from sources in other areas, therefore it forwards the
packet according to the routing entry for Addry. Generally it forwards the
packets(from sources in other areas) only to branches leading to receivers in
its areas. but not to those of other agents. However, if the agent is on the way
between two agents. it can still forward the packets to the interfaces according
to the routing table.

In Figure 3.6. we illustrate how the scheme of Agent-based Multicast Sub-
Groups deals with packet forwarding. Agent2 and Agent? need to pass Agentl!
to reach each other. The routing table for address Addr, is bi-directional; while
the routing table for address Addry is uni-directional. In addition. an agent
needs to record the interfaces that lead to the local area. and those that lead to
other agents. so that it can make the appropriate handling of the destination
addresses.  For instance. Agentl knows that interfaces R, and R. are local.
such that when a packet comes from Ry, it can forward the packet to R; and
R, after changing the destination address to Addr,.

With strategically located agents, efficient consumption of network re-
sources is achievable. The scheme can be regarded as a distributed multiple

core approach. It can construct trees similar to source-tree solutions in terms
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Figure 3.6: A Routing Table(Scheme of Agent-based Multicast SubGroups)

of hop count of multicast tree paths. Meanwhile, it does not need to maintain
per-source routing state. A router needs to maintain a routing table for the
agent-based subgroup the router resides in, or a per-group routing table for
the specific subgroup address Addry. The scheme may be criticized for using
too many addresses for the multicast group(the number of agents plus one spe-
cific address). However, as proposed in Simple Multicast[PL99], a multicast
address like (C. M), the combination of a node address(C) and an original
multicast address(M ). can eliminate such problems. In addition. this scheme
may be helpful to source joins, since with the specific subgroup address Addry.
receivers in areas other than the one a source resides in need not be aware of
the source’s subgroup address.

The scheme of Agent-based multicast subgroups also constructs loop free
trees. In each area centered with an agent, the subgroup with address Addr,
is a bi-directional tree. All the agents form another subgroup with address
Addry. In this subgroup. each agent has uni-directional branches leading to

other agents. The agents relay packets from sources not in its arca from

36



subgroup Addry to snbgronp Addr(which is the subgroup centered with the
agent). An agent isolates and coordinates the multicast subgroup in its area

with the subgroup addressed Addry and subgroups in other areas.

3.5.4 Receiver Leave

When a receiver wants to leave the group. it sends a Prune packet to upstream
routers. A router on the way to the agent will forward the leave request if it
has become a leaf node. The agent mav choose to tear down the tree branches
to other agents when it receives the leave request. after checking out that no
receiver is currently in the area. It may do nothing after receiving a leave
request. In the latter case. the agent keeps paths to sources in other areas. so

that it does not need to set up the paths when a new receiver comes.

3.5.5 Routing State Maintenance

AQMR uses a soft-state approach to maintain routing state at routers. A
receiver needs to send KeepAlive packets periodically to keep the routing state
alive in the routers between its agent and itself. An agent intercepts KeepAlive
packets it receives. It sends KeepAlive packets periodically on branches leading
to other agents. if there are receivers in its area. It may choose not to send
KeepAlive packets when there is 1o receiver in its area. In this case, when a
new receiver is accepted. the agent needs to set up paths to other agents and
finally sources in other areas in order to receive data packets from the sources
in other areas. Alternatively it may send KeepAlive packets to keep the paths
for later joining receivers. even if there are no receivers in its area currently.
However, there should be an additional mechanism to tear down the routing

table entries when the whole group ends communication.

3.5.6 Source Join

The current design assumes all sources are on the tree in the beginning so
that there is no source joining during the communication. We present a brief

discussion about issues concerning the source join and a possible solution.
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When a new source wants to join the multicast group. we assume it can
locate an agent to associate with it. It needs to pass a certain eligibility
test to guarantee that other multicast members™ QoS requirements will not be
violated. Additionally. it may be necessary that receivers be informed of the
coming of a new source.

To facilitate this. each agent should store the tightest QoS requirement of
receivers in a multicast group. For example. for end-to-end delay. it records
the lowest delay requirement. [t needs to compare the requirements of both
receivers in its area and also in other areas. Therefore. a mechanism needs
to be designed to exchange such information among agents. Since receivers
may come and go. agents need to keep track of such changes. It mayv have
to record each receiver’s requirement to make an accurate calculation. With
the tightest information. and the QoS information from the new source to its
agent collected with the join request packet. the agent associated with the
source can make decisions whether to accept the new source.

The issue of source join needs more investigation. We leave it as future

research work.

3.6 Summary

In AQMR, the QoS information is complete and almost up-to-date. It ad-
dresses the issue of “partial path information” in QoSMIC and YAM. Each
agent stores path information to sources so that a member can join the group
after passing the eligibility test at the agent and expects satisfactory QoS
support. The architecture of AQMR allows it to work well with QoS metrics
including non-additive ones such as end-to-end delay and loss rate, which is
not supported by QMRP.

The design of AQMR aims at the following objectives.

e QoS awareness. A source sends InfoCollection packets to the agent asso-
ciated with it so that the agent can gather QoS information from sources

to it. Agents exchange QoS information with other agents, during which
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the QoS information on the path between two agents is also collected.
By storing QoS information. agents can conduct eligibility tests to accept
or reject join requests. AQMR car support not only non-additive QoS
metrics such as bandwidth. but also additive and multiplicative metrics

such as end-to-end delay and loss rate.

e Scalability. In a multicast group. we can choose several agents to collect
QoS information and to store the information in a scalable manner to
facilitate receiver joins. It is more scalable than the approach in which

every router needs to store QoS information.

o Nesponsiveness. A receiver can receive a JoinACK (or JoinNACK) from
the agent shortly after submitting the join request. since the agent is close
to the receiver, and the agent makes the decision immediately based on

the multicast tree information it stores.

e Efficiency. With agents as special points in constructing the tree. AQMR
attempts to build resource-efficient multicast trees. in terms of the aver-
age delay and average hop number of the tree. The multicast tree AQMR
builds is expected to be better than a shared tree and to be similar to
a source-based tree in terms of the average path delay and average path
length of the tree paths. However, the routers need to record at most
two entries, rather than per-source entries for a multicast group. Data

packets need to go through fixed agent points on the tree.

In the next chapter, we will present the performance study of AQMR. and

show that the design objectives are achieved.
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Chapter 4

Performance Evaluation

We evaluate the performance of AQMR by simulation. We implement AQMR
in Network Simulator 2(NS2)[NS], using the PANANA package[PA] to simu-
late an Active Networks platform. First. we study the characteristics of AQMR
to determine protocol parameters. Then we compare AQMR with QoSMIC in
several aspects. including the ratio of delaved packets. the ratio of join requests
being approved. tree cost, join latency, and join overhead. We concentrate on

the QoS metric of end-to-end delay in the following performance study.

4.1 Evaluation Methodology

To conduct a performance evaluation study, we can use the techniques of ana-
Ivtical modeling, simulation or measurement [JA91]. To evaluate performance
of a routing protocol. measurement is possible only if routers have implemented
the protocol. In addition. the routers should be distributed over a large area,
rather than in a lab. or even on a campus. Analvtical modeling needs to sim-
plify the scenarios, and to make many assumptions such that it can not always
guarantee the accuracy of the results.

We will nse simulation to evaluate the performance of our routing protocol.
Simulation is suitable for studying a system that is not available. During
the design phase of a routing protocol. we can use simulation to predict its
performance. and to compare several alternatives of the protocol and with

other previously proposed protocols in a variety of scenarios.
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[n the following. we tirst briefly introduce NS2 and the PANAMN\ package.
Then we discuss the techniques to verify and validate the simulation module
we designed. [n our experiments. the performance results are obtained when
the svstem is running at steady state. Furthermore. we rmn each simulation
8 times with different seeds and average the results. 95% confidence intervals

are calculated.

4.1.1 Simulation Platform

NS2[NS] is a discrete event-driven simulator. It implements link-laver tech-
nologies. unicast and multicast routing algorithms, transport protocols. reser-
vation and integrated services. application-level protocols as well as scheduling
and quene management algorithms. The multi-protocol nature of NS2 makes
it easy for researchers to concentrate on implementing the new protocol on
top of an existing infrastructure and to compare performance results across
research work. NS2 also provides topology generators and traffic generators.

PANAMA stands for Protocols for Active Networking with Adaptive Mul-
ticast. a cooperative research and development effort between TASC and the
University of Massachusetts. The PANAMA package simulates the Active
Networks technology in NS2. It is an extension to NS2. The package im-
plements basic active functionality of active agents! such as initialization and
disabling of an active agent. After an agent is initialized, it can intercept an
active packet passing the node it resides in, do the Active Networks functions
as defined, and forward the packet on to the next node.

We use the technique in the PANAMA package to add the functionalities
of Active Networks to NS2. We adds modules in NS2 to implement the entities

in AQMR including agent. router, source, and receiver.

'In NS2. an agent constructs and consumes network-layer packets. Also it can be protocol
entities at various layers.
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4.1.2 Simulation Model Verification and Validation

We nse the following, techniques[JA9L] to verifv and validate the simulation

modules that we added to NS2.

o Top-Down Modular Design. Modularity and top-down techniques were
used to develop. debug and maintain the simulator program. We use
the object oriented programming language(C+4) to design classes for
implementation of agent. router. source. and receiver. TCL is used to
script a network topology and scenarios to evaluate the performance of

AQMR.

o Antibugging. We check the total number of packets at sources and at the
receivers to check whether there is something wrong in between. Dropped

packets were considered when computing the number of packets.

o Sumplificd Cases Test. Simplified cases were tested. such as if bandwidth
is sufficient for all the sources and background traffic, then there should

be no or very few packets lost if the simulator works well.

o Continuity Test. With slight change of parameters, the simulation results
should change only slightlv. To test the continuity of the simulator.
several simulations were conducted with various but slightly different
source rates or background CBR rates. The performance metrics(see

Section 4.2) such as the Delay Ratio changed only slightly.

o Intermediate Result Display. Some intermediate results were displayved
during the execution of the simulator in the debugging stage. In this
way. we tracked the ongoing status of the simulation. However. this is
limited since the simulation is long and too many printed values become

confusing.

o Seed Independence. We use independent seeds for the random number
generator. Simulations with the same parameters but independent seeds

have similar outcomes.



4.2 Performance Metrics

We will study AQMR and compare it with QoSMIC in terms of the following

performance metrics.

o Delayed Ratio. Delaved ratio measures the ratio of data packets that
reach receivers bevond their delay requirements. It measures the QoS
perceived by receivers. We denote the number of delayed packets of
all the receivers as Delayed#. the number of lost packets of all the
receivers as Lost#(loss is very small in this experiment), and the number
of packets received by all the receivers as Receiwed#. The Delayved Ratio

is calculated as.

Delayed#
Lost# + Recetved#

Delayed Ratio =

o Success Ratio. Success Ratio measures the ratio of join requests being
approved. In our protocol. a receiver will be accepted or rejected for all
sources by its agent. which makes admission decisions for its receivers.
In QoSMIC, in the case of the source-tree request, a receiver initiates one
request for cach source. thus it may be accepted by some sources. but
be rejected by other sources. We divide the number of requests being
approved by the total number of requests as Success Ratio in both pro-
tocols. Such measurement favors QoSMIC, since in QoSMIC, a receiver
can join part of all the sources. whereas in AQMR, a receiver needs to
join all the sources. or to join none of the sources. We may study the
issue of “partial join™ in the future. It should be noted that a high Suc-
cess Ratio may not be good in a QoS routing scheme. The Success Ratio

is calculated as.

Number of Requests Approved

Success Ratio = -
Total Number of Requests

o Path Length and Path Delay. Path Length and Path Delay are respec-

tively the average path hop number and the average path delay of all the
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data packets received by all the recetvers. These two metrics measure

multicast tree cost.

Y Hops of Each Data Packet
Number of Received Packets

Path Length =

Y Delay of Each Data Packet

Path Delay =
“ Number of Received Packets

e Join Latency. Join Latency measures the time interval between the time
a receiver initiates a join request and the time it receives a JoinACK or

a JoinNACK from the agent.

o Join Overhead. Join Overhead refers to the hop count for messages in-
volved in processing a join request. In AQMR. overhead messages include
those for join requests and for join ACKs and NACKs. In QoSMIC. mes-

sage tyvpes of BID_REQ, BID, M_JOIN. BID_JOIN[FB9S] fall into this

category.

o Info Overhead. Info Overhead is the protocol overhead for gathering
QoS information among sources and agents. It counts the total hops

traversed by the messages of InfoCollection and InfoEzchange.

4.3 Experiment Setup

The topology used in the study is generated by GT-ITM[CD97] using the
Transit-Stub model. It is composed of transit and stub domains that are
connected together to resemble the structure of the Internet. There are 176
nodes. We set all link bandwidth to 1.544\Mb. We choose 4, 9 or 11 agents
manually using a combination of the Stub-AS and the Transit-AS scheme
discussed in Section 3.2. Six sources and 76 receivers are chosen from the nodes
in stub domains. A source or a receiver is associated with an agent manually, if
the agent is in the same stub domain, or the agent is on the transit domain and

is close to the stub domain in which the source or the receiver resides. Sources
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gencrate CBR O multicast traffic throughont the simulations. We randomize
the receivers” joining time from the start time of a simulation to 9/10 of the
sitnnlation end time. and the durations of receiver’s staving in the group are
randomly chosen from 300 to 1000 seconds. To make our implementation
simple. we find paths between a source and an agent. between a receiver and
an agent. and between two agents beforchand using the scheme of | = ERS
search(refer to Section 3.3). Paths do not change during simulations.

Five bi-directional background traffic lows are placed between 5 pairs of
sonrces and their agents. Each background How alternates between busy and
idle. of which the duration times are calculated using two parameters. cbr_busy
and cbr_dle respectively. During the busy stage. cach background traffic low
is a CBR flow. We set cbr_busy to 29.0 scconds and ¢br_idle to 7.0 seconds.
Using such an on-off traffic model. we expect to obtain a certain level of
background traffic with some fluctuation.

We use two parameters. Infolnterval and Trigger Threshold for the inter-
vals and triggers in the simulations. We set the protocol parameters related to
these two respectively as shown in Table 4.1. We set Srclnterval equal to 1/3
of Infolnterval, and Erchangelnterval and Computelnterval equal to Infolnt-
erval. AgentTriggerThreshold and Compute Trigger Threshold are set equal to
Trigger Threshold. In Section 4.5.1, we study the effect of Infolnterval and
Trigger Threshold on the protocol performance when the relevant parameters
are set in the above way. The effect of setting these parameters in other ways

is left as future work.

L Parameter Parameter Setting ]
Srcinterval SrcInterval = Infolnterval /3
Exchangelnterval Exchangelnterval = Infolnterval
AgentTriggerThreshold AgentTriggerThreshold = TriggerThreshold
Computelnterval Computelnterval = Infolnterval
ComputeTriggerThreshold | ComputeTrigger Threshold = TriggerThreshold

Table 4.1: Experiment Parameters for Intervals and Triggers

Table 1.2 displays the parameter setting that applies to all the experiments.
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( Parameter I Value

Bandwidth LMD
Simulation Run Time 9000 seconds
Receiver Join Time Chosen in (0. 8100] seconds
Receiver Stay Duration | Chosen in [500. 1000] seconds |
chr_busy 29.0 seconds
chr_idle 7.0 seconds

Table 4.2: Experiment Parameters(General)
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Figure 4.1: Average Delay versus Time(Transient State Removal)

4.4 Transient State Removal

We study the performance of the protocol only after the simulator has entered
the steady state. We measure the data packet delays at the agents. and average
the results from the beginning. We plot the result for a source(Node 132) and
an agents(Node 33) in Figure 4.1. In our experiments. we start collecting
experiment data after the time of 1500 second. and run the simulations for

9000 seconds.
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4.5 Characteristics Study on AQMR

In this section. we study the characteristics of our protocol AQMR. We first
study how intervals and triggers for QoS information gathering affect the pro-
tocol performance. Then we study the effect of the number of agents on the
performance of AQMR. After that. we study changes of performance cansed
by varving the Admission Factor(a). These experiments give us feedback in

how to set some of the parameters in the AQMR protocol.

4.5.1 Characteristics Study on Intervals and Triggers

In this section. we study how the protocol performance is affected by the two
parameters. Infolnterval and Trigger Threshold. We run 8 simulations for each
of the following combinations of Infolnterval and Trigger Threshold, and plot
the figures of the averaged results. 9 agents are chosen for this study.

We investigate the effect of triggers on the performance. We choose a small
trigger threshold(0.001) and a very large one(100.0, with which AQMR does
not actually trigger messages). We set the Infolnterval to 250. 500. 1000,

1500. 2000 or 3000 seconds. The parameter settings are shown in Table 4.3.

L Parameter ] Value |

Source Rate(CBR) 200Kb/s

Background CBR rate 400 seconds
Number of agents 9

Admission Factor(a) 1.1

Infolnterval 250, 500, 1000, 1500, 2000 or 3000 seconds

TriggerThreshold 0.001, or 100.00(equivalent to no trigger)
Delay Requirement 0.45 seconds

Table 4.3: Experiment Parameters(Study on Infolnterval& Trigger Threshold)

[n this set of experiments, we look at the effect of having a trigger mech-
anism with Admaission Factor. « = 1.1. Figure 4.2 shows the Success Ratio
versus Infolnterval. Figure 4.3 shows the ratio of delaved data packet versus
Infolnterval. Figure 4.2 and Figure 4.3 indicate respectively that with a trigger

mechanism ( Trigger Threshold = 0.001), the protocol has a lower Success Ratio
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and a lower Delayed Ratro than without a trigger mechanism( Trigger Threshold
= 100.0). The two figures confirm that the trigger mechanism helps AQMR
achieve more acenrate QoS information. so that there are less data packets
delayed. The quite flat curves indicate the Infolnterval does not have much
effect on the results.

Next we consider the case where a = 1.0. Figure 1.4 shows the Suceess
Ratio versus Infolnterval. Figure L5 shows the ratio of delayved data packet
versus Infolnterval. Figure L4 and Figure 4.5 further confirm the earlier re-
sult, with the difference rhat the two curves in each figure diverge from each
other much more. after the point of I'n folnterval = 1000 second. That is. if
no trigger mechanism is nsed. a larger Infolnterval will create more delaved
packets: however. with the trigger mechanism to control the performance. the
Infolnterval is not so reactive. Figure 4.6 shows protocol overhead for QoS
information gathering versus I'nfolnterval. It indicates that AQMR has higher
protocol overhead for QoS information gathering with a trigger mechanism
than that of without. which means that our information gathering scheme
is responding to the changes in network traffic, and triggering InfoFEzchange
messages to update QoS information stored at agents. It also shows that as
the Infolnterval decreases. the information overhead decreases dramatically at
first, and then becomes much flatter. We can say that with the trigger mecha-
nism, AQMR can set Infolnterval relative large to achieve good performance.

The above results show that AQMR works well at Infolnterval = 1500
seconds. and Trigger Threshold = 0.001. We choose this setting of parameters

in later experiments.

4.5.2 Characteristics Study on Number of Agents

We also investigate how many agents(on a given topology) can provide good
performance. The parameter setting for the experiment is shown in Table 4.4.

Table 4.5 shows the performance metrics of AQMR with 4. 9, and 11
agents. with the 95% confidence intervals in parentheses. It shows that AQMR

with 9 agents has the lowest Delayed Ratio. The Success Ratio in the case
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Figure 1.2: Join Request Success Ratio vs. Infolnterval(Parameter Study)
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of 9 agents is statistically the same as that of the case of 4 agents. which
is greater than that of the case of 11 agents. AQMR has very similar or
overlapped performance of PathDelay for placing different numbers of agents.
when considering the confidence intervals. For the other metrics. Join Latency,
Join Overhead and InfoOverhead. AQMR with 9 agents performs well between
AQMR with { and 11 agents.

[n AQMR. a packet is sent to a receiver via a bi-directional tree rooted at

the agent. if the source and the receiver are in the same area: otherwise, the

[ Parameter | Value ]
Source Rate(CBR) 200Kb/s
Background CBR rate | 00 seconds

Number of agents 1.9.0r 11
Admission Factor(«) 1.1
Infolnterval 1500 seconds
TriggerThreshold 0.001

Delay Requiirement (.45 seconds
) |

Table 4.4: Experiment Parameters(Study on Number of Agents)



t Performance Metrie

|

Result with Contidence Interval

4 agents

9 agents |

11 agents

Delaved Ratio

0.1706(0.0037)

L
0.1-141(0.0027)

0.1522(0.0033)

Success Ratio

0.946(0.0051)

0.946(0.0051)

0.856(0.0132)

[nfo Overhead

T62.5(L.1)

2280.4(1.7)

3400.8(1.7)

Path Length

8.2938(0.016)

8.1090(0.031)

7.8800(0.020)

Path Delay

0.3684(0.0018)

0.3626(0.0018)

0.3616(0.0018)

Join Latency

0.2211(0.0033)

0.1850(0.00:32)

0. 1561 (0.0010)

Join Gyerhead

7.00(0.0000)

5.690(0.0000)

5.000(0.0000)

Table 1.5: Protocol Performance With Different Number of Agents

packet will be relayed by two agents(those associated with the source and the
receiver) before arriving at the receiver. When there are more agents on the
topology. on average they are closer to receivers in their areas. In addition.
more agents may also make a source and a receiver in different areas closer.
This can account for the reduced Delayed Ratio and Path Delay. The result
of Info OQuerhead indicates that the messages for exchanging QoS information
among agents constitute the major part of the Info Querhead, so that when
the number of agents increases, the Info Overhead increases a lot. The reason
for the results of Join Latency and Join Overhead is that the more agents
there are on the topology, the closer the agents are to the receivers in their

areas on average.

4.5.3 Characteristics Study on Admzission Factor

In this section, we study how the Admission Factor affects the protocol per-

formance. Table 4.6 shows the parameter setting for this study.

[ Parameter [ Value |
Source Rate(CBR) 200Kb/s
Number of agents 9
Admission Factor(a) 09,10,1.1,0r 1.2
[nfolnterval 1500 seconds

0.001
250, 300, 325, 350, 400 Kb/s
0.45 seconds

TriggerThreshold
Background CBR rate
Delay Requirement

Table 1.6: Experiment Parameters(Study on Admission Factor)
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Data Packet Delayed Ratio vs. Background CBR Rate
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Figure 4.7: Percentage of delayed packets vs. Background CBR Rate(o study)

Figure 1.7 shows the Delayed Ratio of AQMR with Admission Factor o =
0.9.1.0. 1.1 and 1.2 versus background CBR rate. For the same CBR rate. the
greater «v is. the more packets are delayed. The greater « is. the more join
requests are approved(refer to Section 3.4.4 on the Eligibility Test). so that
there are more chances that join requests with tight requirements are approved.
which results in more packets arriving as delayed packets. For the same a.
the Delay Ratio keeps relatively constant first(CBR:250 to CBR:300), then it
increases(CBR:300 to CBR:330) significantly, but after some point(CBR:350).
it increases only slightly. The reason can be scen in Figure 4.10, where the
Path Delay keeps relatively constant first, then it increases significantly. but
after some point. it increases only slightly. The changes of Path Delay affect
the changes of Delayed Ratio.

Figure 4.8 shows the trend of Success Ratio with the changes of a versus
background CBR rate. For the same CBR rate, the Success Ratio increases
as o increases, since the acceptance criteria becomes less stringent. It changes

only very slightly as background CBR rate increases, for a = 0.9,1.0 or 1.1.
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Figure 4.8: Join Success Ratio vs. Background CBR Rate(a study)

and all requests are approved for o = 1.2. This means that the background
CBR does not change QoS information enough to affect the eligibility tests.
especially for the case of @ = 1.2. Figure 4.10 shows that the path delay is
much less than 0.40 seconds. which is less than the join requirements (0.45
seconds). This may account for the flat curve of the Success Ratio versus
background CBR rate with the same a. We conducted experiments with very
high background CBR rate. The results are shown in Figure 4.9. It indicates
that the Success Ratio could be very low when the background CBR rate is
very high? .

Figure 1.10 shows the trend of Path Delay with the changes of a versus
background CBR rate. The Path Delay has a similar trend as Delayed Ratio.
with small changes. For a certain background CBR rate, the Path Deluy
Increases as « increases. since with a greater a, there are more requests being

approved. which results in more traffic on some paths.

*When the background CBR rate is very high, both AQMR and QoSMIC have very high
Delayed Ratio, which means that both protocols do not perform normally. Thercfore we
will not conduct further experiments in such scenarios.
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Experiment results show that. as the background CBR rate increases. the
Path Length keeps almost constant(around 8 hops). For a certain background
CBR rate, the Path Length increases slightly as « increases, since with a greater
. join requests from farther receivers have more chances of being approved.
Experiment results also show that the Join Latency is approximately 0.18
seconds with different Admission Factors and different background CBR rates.
The Join Overhead keeps constant(5.690 seconds). The reason is that we use
onc network topology, the same set of agents. receivers and sources for the
simulations.

When choosing «. we can mainly consider the tradeofis between Delayed
Ratio and Success Ratio. The other metrics such as Join Latency may also
be taken into consideration depending on the requirements of the application.
For a = 1.2, we can achieve 100% Success Ratio; however, it has high Delayed
Ratio. For a = 0.9 or o = 1.0, the Delayed Ratio is low even in the worst
cases; however, the Suceess Ratio is low. We may choose a = 1.1 or o = 1.0.

depending on which performance metrics we favor.

(1}
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Path Delay vs Background CBR Rate
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Figure 4.10: Average Path Delay vs. Background CBR Rate(a study)

The experiment results also indicate that it may be useful to choose
according to the background CBR rate. In our studied case, we can choose
«a = l.1. or even a = 1.2 when background CBR rate is less than or equal
to 300Kb/s in order to obtain high Success Ratio. When CBR rate is greater
than 300Kb/s. we can choose & = 1.0. In this wav. we can achieve good

performance with respect to both Delayed Ratio and Success Ratio.

Summary

Parameter settings affect the protocol performance. Generally speaking, we
choose parameters to strike a balance among several metrics to achieve our
favored performance. When choosing the intervals and thresholds for informa-
tion gathering, we attempt to choose the setting that provides AQMR with
low Delayed Ratio and low Info Overhead. We choose the number of agents
and the Admission Factor(a) according to the goal of lowering Delayed Ratio.
tree cost, Join Latency and Join Overhead, and/or the goal of lowering the

protocol overhead for information gathering. We also attempt to approve a
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high ratio of join requests.

In the following comparison study with QoSMIC. we set the following pa-
rameters based on the characteristics study in the previous sections. We set
Infolnterval = 1500 seconds. Trigger Threshold = 0.001: o = 1.1(which gives
the protocol less than 153% delaved packets and more than 94% success ratio).

and choose 9 agents(which gives the protocol good overall performance).

4.6 Implementation of QoSMIC

QoSMIC [FBI8| uses Local Search and Multicast Tree Search to locate mul-
tiple on-tree routers. QoSMIC terms a chosen on-tree ronter as a candidate.
The new router selects the best paths from the candidates to connect to the
tree. The Multicast Tree Search can use a certain combination of techniques
including Directivity. Local Minima. and Fractional Choice to lower the pro-
tocol cverhead. In the following, we first discuss the switch-over problem in
QoSMIC and then provide our approach to implement QoSMIC to make the
performance comparison. We also discuss how to set the parameters of search-

ing timers in QoSMIC.

4.6.1 Switch-over Problem in QoSMIC

QoSMIC[FB98] mentions a mechanism for switching from a shared tree to
a source tree. which is similar to that in PIM-SM. However, due to its join
mechanism. Local Search and Multicast Tree Search. to find the best path to
connect to the tree, it may be problematic to implement such a switch-over

mechanisi for QoSMIC.

PIM-SM

PIM-SM uses the shortest path from the new member to the RP(Rendezvous
Point. or core) to connect the new member to the tree. When a router has
joined some source. say S, and has received packets from S. it will S-prune the

shared tree towards the RP of the group. That is. this router, and possibly

ot
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somie routers on the way to the RP. will not receive S-packets from the shared-
tree. Such an S-prune is required since the shared-tree serves not only for
packets from S When a new receiver wants to join the shared-tree. it may
need toinitiate the router state update procedure. so that it can receive data
from S again. Therefore a control packet needs to be sent towards the RP.

In PIM-SNL such a switch-over and router state update are feasible. since
all such control packets are forwarded along the reverse shortest path(from
the unicast ronting table) to the RP. For a detailed description. please refer

to P[.\[—S.\I[I'ZF?)SI. Section 2.4.
QoSMIC

A new member in QoSMIC uses the best path it finds rather than the reverse
shortest path to the core to connect to the shared tree. The shared-tree is
a bi-directional tree. whose routing entry does not differentiate interfaces as
incoming or outgoing. so that a router can not tell which interface leads to
the core. In QuSMIC. after a router receives an S-prune packet. it will not
forward shared-tree packets from S to affected interfaces. This S-prune packet
will be forwarded somewhere upstream if necessary. When a new receiver
comes. this router may need to update the router state of itself and possibly
some upstream routers. so that it can receive packets from all the sources.
similar to that in PIM-SM. A router can not always make proper necessary
router state updates towards the core, since QoSMIC does not use the reverse
shortest path to construct the tree as PIN-SM does. An example is provided
below to illustrate the possible problem in updating router state in QoSMIC.

In Figure 4.11. Receiver! joins the shared-tree first, so Router! is on the
shared-tree. When Receiver2 wants to join. it gets the best path of Router! —
Router? — Router? — Router4 so that it joins the shared-tree via Routerl.
Thus Router2, Router? and Routerj are on the shared-tree. Now. Receiver?
switches from shared-tree to source-tree for Sourcel. After the source-tree for
Sourcel works, Recetver? sends S-prune packets for Sourcel! to the core. Now

it knows the upstream router(s) since there are still Sourcel packets coming
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Figure 4.11: An Example of Switch-over Problem in QoSMIC

from the shared-tree. As a result, Router, Router3 and Router? will not
torward packets from Sourcel to Receiver?. Note. Receiver? can not prune
the shared-tree since it needs the shared-tree to forward packets from Source2.
Finally. Receiver3 wants to join the shared-tree. The best path happens to be
Router3(only a node) for it to join. Router3 knows it does not forward packets
from Sourcel. so it needs to initiate the router state upstate procedure. Given
the shortest path is the dotted line between itself and the core. Router? can
not figure out that the adjacent upstream router for the shared-tree is Router?.
unless it records such path information, or it relies on the data flow on the
shared-tree to learn this. Otherwise, every on-tree router may need to record
the adjacent upstream router for the shared tree. Or a router relies on the data
flow on the shared-tree. which could not guarantee the timeliness of updating
the routing state. QoSMIC does not provide a mechanism for a router in the

shared-tree to learn its adjacent upstream router.

4.6.2 QoSMIC _Source and QoSMIC _Shared

To circumvent the switch-over problem, we implement two versions of QoS-

MIC. pure source-tree QoSMIC (QoSMIC _Source) and pure shared-tree QoS-
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MIC (QoSMIC Shared). In the pure source-tree version. all receivers join the
source trees: while in the pure shared-tree version. all receivers join the shared
tree. That is. there is no switch-over from a shared-tree to a source-tree. \We
can envision that QouSMIC Source can provide better QoS to receivers than
QoSMIC Shared. and also better than a hybrid version in which a receiver can
be on both shared-tree and source-trees. Therefore. we can say AQMR out-
performs QOSMIC if AQMR performs better or as well as QoSMIC Source.
QoSMIC Source needs more routing entries than QoSMIC Shared. however.
it does not affect the performance results. We implement Directivity and Lo-
cal Minima for Distributed Selection in the stage of Multicast Tree Search in

QoSMIC [FB9S).

4.6.3 Timers for Searching On-tree Routers

In QoSMIC, there are two timers associated with candidate searching, the one
for Local Search and the one for Multicast Tree Search. Those two timers can
affect the result of searching for candidates. We set the Local Search timer to
either the average delay or the maximum delay of all the links in the topology.
and the Multicast Tree Search timer to 20 times the Local Search timer for
this study. Average delay in this case is 2 * (the transmission delay on one
link + the average propagation delay). Note that we assume link bandwidth
is the same for all the links. Maximum delay is 2 * (the transmission delay on
one link + the maximum propagation delay). For simplicity, we call the two
cases the maximum case and the average case. In the following comparisons.

timers are set using the maximum delay, if not explicitly stated.

4.7 Comparison with QoSMIC

In this section, we present two sets of experiment results. In Set I, we vary
the background CBR rate(from 250, 300, 325. 350, to 400 Kb/s) while keeping
the source rate constant(200 Kb/s). In Set I, conversely, we vary source rates

while keeping background CBR rate constant. In both of these two sets of
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experiments. we set receiver delay requirernents to L5 seconds.

From Section 4.7.1 to Section 1.7.5. we show the experiment results of Set .
Results of Set IT experiments will be shown in Section L.7.6. We show only the
maximum case for QoSMIC if the average case is very similar to the maximumn
case.

Table 4.7 shows the parameter settings for the Set [ comparison study

with QoSMIC.

[ Parameter 71 Value ]

Number of Agents 9
Admission Factor 1.1

[nfolnterval 1500 seconds
TriggerThreshold 0.001
Source Rate(CBR) 200Kb/s

Background CBR rate | 250. 300. 325. 350. 400 Kb/s

Delay Requirement 0.45 seconds

Table 4.7: Experiment Parameters(Comparison with QoSMIC: Set )

4.7.1 Delayed Ratio

In Figure 4.12. we plot the ratio of delayed packets for QoSMIC_Shared. QoS-
MIC Source, and AQMR with Admission Factor of 1.1 versus background
CBR rate. As the background CBR rate increases, the three curves have sim-
ilar trends, keeping constant first. then increasing slightly. This indicates that
increasing background CBR rate can increase the ratio of delayed packet in
QoSMIC and AQMR. The graph shows that AQMR has fewer delayed data
packets than QoSMIC Shared. and QoSMIC Source, which provides the best
QoS for the scheme of QoSMIC. In AQMR. an agent conducts the eligibility
test based on the multicast tree information, so that it knows if the delay
requirement will be satisfied or not with a certain level of confidence. QoS-
MIC chooses the best on-tree router for a receiver to join the multicast tree.
The dynamic information is collected from an on-tree router, but not from
the core(or sources) to the receiver. Therefore. it can not guarantee that the

best path can provide satisfactory QoS to the receiver with such partial path
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Data Packet Delayed Ratio vs Background CBR Rate
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Figure 4.12: Delayed Packets Ratio vs. Background CBR Rate

information. AQMR provides better service to receivers than QoSMIC, since
it has the mechanism of admission control of join requests, while QoSMIC does
not have an equivalent mechanism.

Note that the Delayed Ratio depends on the delay requirements of receivers.
When receivers have requirements of very low end-to-end delays, QoSMIC will
perform even worse; while AQMR will deny many of the requests since the net-
work could not accommodate them. When receivers have loose requirements
of delay. both QoSMIC and AQMR will behave well in terms of Delayed Ratio,

since most of the packets will arrive in time.

4.7.2 Success Ratio

In Figure 4.13, we plot the Success Ratio for QoSMIC_Shared, QoSMIC _Source.

and AQMR with Admission Factor of 1.1 versus background CBR rate.
Figure 4.13 shows that in QoSMIC_Shared. all join requests are approved.

In QoSMIC Source, a small number of requests are rejected when the back-

ground CBR is bevond some value(350Kb/s). AQMR has more than 94%
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Figure 4.13: Join Success Ratio vs. Background CBR Rate

of requests being approved. Figure 4.12 and Figure 4.13 show that AQMR
outperforms QoSMIC with respect to Delayed Ratio, at the cost of less than
6% Success Ratio. In AQMR, agents conduct eligibility tests for join requests.
Those that fail to pass the test will be denied. QoSMIC chooses the best
candidate for a receiver to connect to the tree, which may not satisfy the re-
quirement of a receiver. The denial of join request in QoSMIC occurs when
reccivers fail to locate on-tree routers if timers are not long enough. In ad-
dition. the “partial join” in QoSMIC as discussed in Section 1.2 does have
impact on this comparison, such that AQMR may have a lower Success Ra-
tio. since an agent accepts or rejects a receiver’s request for all the sources.
AQMR can provide satisfactory service in terms of both Delayed Ratio and
Success Ratio. We believe that how well a QoS routing scheme can support
the required service is more important than the percentage of receivers it can

accept to join the tree.
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4.7.3 Join Latency

In Figure L1 we plot the Join Lateney for QoSNMIC Shared. QQoSNIC Source.
and AQMR with Admussion Factor of 1.1 versus backgronnd CBR rate. us-
ing both maximum and average delay for timer settings in QoSMIC. Fig-
ure 4.1 1 shows that Join Latency does not change much for AQMR and QoS-
MIC Shared. as the background CBR rate increases.  For QoSMIC Source.
Jow Latency inereases as the backgronnd CBR rate increases. after some
point (325Kh/s).

The figure shows that AQMR has a lower Join Latency than QoSMIC. In
AQMR. a receiver can expect that it can receive a reply from its agent shortly
after requesting to join the tree. since the agent is close to it. and the agent
makes the decision as soon as it receives the join request. In QoSMIC. lucky
receivers can get the reply quickly if it has routers not far away(two hops away
as suggested by QoSMIC) on the tree. Otherwise. it needs to wait for the
candidate(s) being selected by the Multicast Tree Search. which may take a
long time. With a shorter timer, QoSMIC can either locate an on-tree router
in less time using Local Search. or it can finish the phase of Local Search and
resort to Multicast Tree Search more quickly. This accounts for the average

case outperforming the maximum case as shown in the figure.

4.7.4 Protocol Overhead

To reduce the Join Querhead of QoSMIC, we introduce a new version of QoS-
MIC called QoSMIC Manager. In QoSMIC_ Manager, the manager assumes it-
self to be a candidate and notifies the receiver directly in the shared-tree. rather
than initiating a Multicast Tree Search. We expect that in QoSMIC Manager,
the Join Overhead may be lower than that in QoSMIC_Shared, since the man-
ager does not attempt to find other on-tree routers. which mayv cause many
message hops.

In Figure 4.15. we plot the Join Overhead for QoSMIC _Shared. QoS-
MIC Source. QoSMIC_Manager, and AQMR with Admission Factor of 1.1
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Figure -1.14: Join Latency vs. Background CBR Rate

versus background CBR rate. using the maximum delay setting in the QoS-
MIC protocol. In Figure 4.16, we plot the same experiment results. using
average delay for the timer setting in QoSMIC.

Figure 4.15 and Figure 4.16 show that AQMR outperforms QoSMIC. Fig-
ure 4.15 shows that in AQMR. the Join Overhead is nearly constant(around
6 hops) on average. This is expected since the receivers contact the agents
to join the tree. With strategically located agents, it needs only a few hops
before a receiver knows the join decision from the agent associated with it.
QoSMIC needs more hops for a receiver to locate an on-tree router and re-
ceive feedback. for both QuSMIC _Source and QoSMIC_Shared. In QoSMIC.
every time a receiver wants to join the tree, it neeas to conduct a Local Search
first. If this fails, it has to rely on the Multicast Tree Search. which may incur
many hops before a candidate has been selected. The process of Multicast
Tree Search may not terminate even after a good candidate appears due to its
distributed nature. Even in the case of QoSMIC _Manager, the Join Overhead

is more than 11 hops. The reason is that on average the manager in QoSMIC
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Figure 4.15: Join Overhead vs. Background CBR Rate

is located farther away from receivers than the agents are in AQMR. The two
figures also show that QoSMIC works better in the maximum case than in the
average case. since the longer timer gives it more chances to locate candidates
in the phase of Local Search, thus less chances to initiate the Multicast Tree
Search.

On the other hand, AQMR has the protocol overhead for QoS information
gathering. Table 4.8 shows the extra overhead(message hops) that AQMR has
for all information gathering in each simulation run, and their corresponding
resource consumption. In each run. we have more than 5,000,000 data packets
and each packet has an average of around 8 hops from a source to a receiver(see
Section 4.7.5). Roughly. the information overhead costs, e.g. for the case of
background CBR rate is 250Kb/s. 2151.4/5, 000. 000 = 0.043% of the network
resources, which is insignificant. Moreover. if we mainly use data packets for
QoS gathering. with the assistance of some control packets, we can achieve

much lower overhead.
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Figure 4.16: Join Overhead vs. Background CBR Rate(Average Case)

| Background CBR Rate(KB/s) [ 250.0 | 300.0 | 3250.0 | 350.0 | 400.0 |
Information Overhead 21514 | 21383 | 2225.0 | 2226.5 | 2280.4
Resource Consumption 0.043% | 0.043% | 0.045% | 0.045% | 0.046%

Table 4.8: Information Gathering Overhead(Varving CBR Rate)

4.7.5 Tree Cost

We investigate the tree cost by two metrics. Path Length and Path Delay. In
Figure 4.17, we plot the Path Length for QoSMIC Shared, QoSMIC Source.
and AQMR with Admission Factor of 1.1 versus background CBR rate. In
Figure 4.18. we plot the Path Delay for QoSMIC Shared, QoSMIC Source.
and AQMR with Admission Factor of 1.1 versus background CBR rate.
Figure 4.17 shows that the Path Length keeps constant when the back-
ground traffic increases, which is expected. since the routes remain the same.
Figure 4.18 shows that the Path Delay keeps constant for a while, then in-
creases slightly. as the background CBR traffic increases. The reason is that
as the background CBR rate increases. there is more traffic on some links.

such that some packets take a longer time to reach receivers. As shown in
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Figure 1.17: Average Path Length vs. Background CBR Rate

Figure 4£.17. AQMR requires about 8 hops on average for a data packet to
reach receivers, which is similar to QoSMIC Source. QoSMIC_Shared needs
around 9 hops. AQMR and QoSMIC _Source need about .34 seconds for a
data packet to travel over the multicast tree from a source to a receiver, which
is lower than what QoSMIC _Shared needs. more than 0.4 seconds, as shown in

Figure 4.18. Therefore, AQMR constructs more efficient trees than QoSMIC.

4.7.6 Experiment Results: Set II

[n this set of experiments, we vary the data rates of sources, from 50, 100, 150
to 200 Kb/s. while keeping the background CBR rate constant(325 Kb/s).
Parameter settings are shown in Table 4.9. We set the largest data rate to 200
Kb/s. which can make the link bandwidth consumption almost to its capacity.
There may be 6 data flows and 1 background flow on a link, which consume
6*200Kb/s + 325Kb/s = 1.525Mb/s: while the link bandwidth is 1.544\Mb/s.

In Figure 4.19, we plot the ratio of delayed packets for QoSMIC_Shared.

QoSMIC Source, and AQMR with Admission Factor of 1.1 versus source data
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Figure 4.18: Average Path Delay vs. Background CBR Rate

[ Parameter ] Value ]

Number of Agents 9

Admission Factor 1.1
Infolnterval 1500 seconds

TriggerThreshold 0.001

Source Rate(CBR) 50. 100, 150, 200 Kb/s

Background CBR rate 325 Kb/s
Delay Requirement 0.45 seconds

Table 4.9: Experiment Parameters(Comparison with QoSMIC: Set II)

rate. Figure 4.19 shows that with the increase of source data rate. the ra-
tio of delaved packets tends to increase slightly for QoSMIC _Shared. QoS-
MIC Source. and AQMR. AQMR performs better than QoSMIC _Source(at
data rate of 200Kb/s. they are very close), and much better than QoSMIC _Shared.
In Figure 4.20. we plot the Success Ratio for QoSMIC _Shared. QoSMIC _Source.
and AQMR with Admission Factor of 1.1 versus source data rate. Figure 4.20
shows that QoSMIC _Shared and QoSMIC_Source accept all requests. AQMR
approves almost all requests(98.3%) at the data rates of 50.0. 100.0 and 150.0

Kb/s. At the data rates of 200 Kb/s, it rejects 3.4% join requests. AQMR

69



Data Packet Delayed Ratio vs Data Rate

ve T T T - r . .
QoSMIC Source -—+—-
QOSMIC Shared -
_____ - AQMR .
05 F = e JUUUPIDSSRRRRI L
2
% 04} |
[id
Al
3}
>
=
1]
Q 03}
T
x
2
el
a
g
Toi 02t )
- —
o1t e :
4] i 1 1 1 N L ,
30 60 80 100 120 140 160 180 200

Data Rate(Kb/s)

Figure 4.19: Delayed Packets Ratio vs. Source Data Rate

constructs a more efficient tree than QoSMIC(as shown in Figure 1.22). Fur-
thermore. the admission control mechanism allows AQMR to experience fewer
delayed packets and therefore meet QoS objectives better than QoSMIC.

In Table 4.10. we show the result of the Join Latency for QoSMIC _Shared,
QoSMIC Source. and AQMR with Admission Factor of 1.1 versus source data
rate. using both maximum and average delay for the timer setting in QoSMIC.
Table 4.10 indicates that in AQMR, receivers can get the join decision faster
than in QuSMIC. The table also shows that QoSMIC works better in the

average case than in the maximum case.

| Data Rate(KB/s) T 50.0 ] 100.0 [ 150.0 | 200.0 |
AQMR 0.1865 | 0.1870 | 0.1881 | 0.1865
QoSMIC _Source(Max) | 1.0247 | 1.0284 | 1.0331 | 1.0370
QoSMIC_Source(Avg) | 0.7473 | 0.7512 | 0.7558 | 0.7600
(
(

QoSMIC Shared(Max) | 0.7040 | 0.7057 | 0.7104 | 0.7087
QoSMIC Shared(Avg) | 0.4807 | 0.4827 | 0.4870 | 0.4857

Table 4.10: Comparison: Join Latency

In Table 4.11. we show the result of the Join Overhead for QoSMIC _Shared.
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Figure 4.20: Join Success Ratio vs. Source Data Rate

QoSMIC Source. QoSMIC NManager, and AQMR with Adrmission Factor of 1.1
at scurce data rate of 200Kb/s, for both the maximum and average cases for
QoSMIC. The protocol overhead changes slightly for different data rates for
cach of the algorithms in the table. Table 4.11 indicates that AQMR out-
performs QoSMIC. It also shows that QoSMIC works better in the maximum
case than in the average case for QoSMIC_Source, QoSMIC Shared and QoS-
MIC Manager. Table 4.12 shows the protocol overhead for QoS information
gathering packets over the entire simulation and their corresponding network
resource consumption(see Section 4.7.4).

In Figure 4.21, we plot the Path Length for QoSMIC Shared, QoSMIC _Source.
and AQMR with Admission Factor of 1.1 versus source data rate. In Fig-
ure 4.22, we plot the Path Delay for QoSMIC _Shared, QoSMIC Source, and
AQMR with Admission Factor of 1.1 versus source data rate. The two fig-
ures show that AQMR performs similarly as QoSMIC Source, but better than
QoSMIC Shared. Therefore AQMR outperforms QoSMIC in terms of the tree

cost.
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L Aleorithm I Join Overhead l

AQMR 5.690
QoSMIC Source( Max) 18.5690
QoSMIC Source{Avg) 220517
QoSMIC _Shared(Max) 45.8793
QoSMIC Shared(Avg) 64.2241

QoSMIC Manager(Max) 11.5517
QoSMIC NManager(\vg) 13.9655

Table 4.11: Comparison: Join Overhead

| Data Rate(KB/s) [ 50.0 [ 100.0 ] 150.0 | 200.0 |
Information Overhead | 25400 | 25440 | 25440 | 2225.0
Resource Consumption | 0.051% | 0.051% | 0.051% | 0.045%

Table 4.12: Information Gathering Overhead(Varyving Data Rate)

4.8 Summary

[n this chapter. we conduct performance study of the characteristics of AQMR
and the comparison with QoSMIC.

The characteristics study of AQMR shows that parameter settings affect
the protocol performance. AQMR can provide satisfactory QoS to applica-
tions. by tuning the admission control(the Eligibility Test and the Admission
Factor. a) according to the application requirement and the background traf-
fic.

We also compare AQMR with QoSMIC(QoSMIC _Source and QoSMIC_Shared).
As the background CBR rate increases, the Delayed Ratio and Path Delay keep
constant first, then increase slightly: the other performance metrics keep con-
stant or change slightly. By varving the source data rate. we can obtain similar
results. We summarize the comparison results in Table 4.13.

The above comparison shows that AQMR works well in the studied cases.
AQMR can accept more than 94% of the join requests. At the same time.
there are less than 15% delayed packets, which is better than QoSMIC _Source.
and much lower than QoSMIC_Shared(more than 50%). The mechanismn of
admission control in AQMR accounts for AQMR outperforming QoSMIC in

terms of Delayed Ratio. AQMR can construct multicast trees as efficiently as
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o . Comparison with A\QMR
Performance Metric QoSMIC Source | QoSMIC Shared
Delaved Ratio higher E minch higher

Success Ratio about 5% more | about 5% more

Path Length stmilar i higher
Path Delay similar ' higher
Join Latency imuch higher higher

JoinOverhead higher ,much higher

Table 4.13: Summary of Comparison Results

QoSMIC Source. and much better than QoSMIC Shared. with respect to Path
Delay and Path Length. Moreover. the Joi Latancy and Join Overhead are
low. due to the introduction of agents. Similar results are also obtained by
setting receiver requirements randomly between L0 seconds and 5.0 seconds.
Therefore. the experiment results show that AQMR outperforms QoSMIC.
On the other hand. AQMR has the extra overhead for QoS information
gathering. It does not consume much network resources as caleulated. Fur-
thermore. it can be reduced dramatically if nsing data packets to carry QoS
information. In addition, AQMR has more configuration work than QoSMIC.
[n AQMR. sources and receivers need to know who are their agents, and an
agent needs to know where the other agents are to exchange information and
to set up paths. In QoSMIC, receivers need to know only the location of the

manager.



Chapter 5

Conclusions and Future Work

9.1 Conclusion

In this thesis. we design the Active QoS Multicast Routing Protocol(AQMR)
using distributed agents. With strategically located agents. AQMR can gather
QoS information and make join decisions in a scalable manner. [t supports
varions QoS metrics, including end-to-end delay. loss rate. and bandwidth.
AQMR conducts eligibility tests responsively for join requests based on the
QoS information stored at agents locally. It constructs resource-efficient mul-
ticast trees. with low join overhead and low join latency.

We discuss the implementation and applications of Active Networks. which
will potentially be a promising computation platform. A multicast tree can be
a shared-tree and/or a source-tree. Multicast routing schemes can be classified
into distributed, centralized and hybrid schemes. Thev can also be categorized
as QoS-unaware and QoS-aware schemes. There are challenges to provide QoS
in multicast. such as how to meet QoS requirements of receivers. how to gather
QoS information for a protocol to make proper decisions for join requests and
how to lower the protocol overhead for joining a multicast tree.

In AQMR. agents are strategically placed active nodes in the multicast tree.
[t deploys periodical mechanisms combined with trigger-based approaches for
QoS information gathering, and for path computation. A source sends QoS in-
formation collection packets periodically to its agent. Agents exchange source

QoS information among themselves to obtain a complete view of the multicast

-]
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tree so that they can compute paths to all the sources. A new member contacts
the agent associated with it to join the tree. The agent determines whether
to accept the request or not. AQMR is designed to be QoS-aware. scalable.
efficient and responsive. To be QoS-aware. it has mechanisms to gather QoS
information and to make join decisions. Its architecture supports additive.
multiplicative and concave QoS metrics. The scalability. responsiveness and
efficiency are provided by strategically selected agents.

After deseribing the performance methodology and itplementation issues.
we study the characteristics of AQMR in terms of intervals and triggers. num-
ber of agents. and Admission Factor. We then compare AQMR with QoS-
MIC with respeet to the performance metrics of Delayed Ratio. Suceess Ratio.
Path Length. Path Delay, Join Latency, Join Overhead and Info Overhead.
The performance study shows that AQMR can provide better QoS than QoS-
MIC and can construct resource-efficient trees. with low join overhead and
low join latency. The performance study confirms that the design objectives
are achieved. Although AQMR has the extra overhead for QoS information
gathering. it does not consume much network resources. and can be reduced

dramatically by using data packets to carry QoS information.

5.2 Future Work

The current version of AQMR can be refined and extended in the following

directions.

e The parameters of AQMR need further investigation. The protocol pa-
rameters for intervals and triggers are set in a way that they are depen-
dent. We will study the effect of setting these parameters to different.

independent values on the performance of the protocol.

e We use a single topology generated by GT-ITM to conduct the perfor-
mance study. It would be more convincing to evaluate the performance

of a protocol on various topologies. We may choose topologics from big
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ISPs or Mbone, We may also use the power-law[FF99] to create topolo-

gies resembling the Internet.

We have made suggestions to choose agents in a multicast group. How-
ever. we need to come up with approaches that select strategicallv located
agents awtomatically. and compare their effects on the protocol perfor-
mance. We will artempt to design heuristic schemes to choose agents.
since generally we lack global topology information. Also of interest js

to change the nmmber of agents based on the change in membership.

In the current version of AQMR, only agents store multicast tree QoS
information. therefore only agents can make join request decisions. We
can choose some routers hetween an agent and leaf nodes of the tree to
store QoS information. so that they can help agents make join request
decisions. That is. such routers can intercept join requests addressed to
agents. The join latency can be shortened. However we need to study

the tradeoff since there will be more routers storing QoS information.

If a join request fails to pass the eligibility test, AQMR rejects the re-
quest. There may be a chance for the receiver to join the tree through
other agents, since it is hard to place agents on optimal points of the
multicast tree. Such “cooperative join” may be beneficial since it may
increase the successful ratio of join requests, however, it also increases
protocol complexity and protocol overhead. The tradeoff needs further

investigation.

Measuring QoS metrics causes protocol overhead. Currently we use ex-
plicit control messages to gather QoS information. We can study the
approach that mainly uses data packets to carry such information. At
the same time, assistance from control messages is also needed since some
sources may send data at low rates. which may make the QoS informa-
tion stored at agents out-of-date. By using data packets and control

messages together for QoS information, we can achieve lower protocol

=~
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overhead and up-to-date information.

e Active Networks technologies cause processing overhead. which has not
been studied in this thesis. We may extend our work to an Active Net-
works platform such as PLAN to evaluate the processing cost and the

tradeoff with protocol gains.
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