
One-Class Support Vector Machine Generative Adversarial Network

by

Siting Wang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Statistical Machine Learning

Department of Mathematics and Statistics
University of Alberta

© Siting Wang, 2022

Abstract

Generative Adversarial Networks (GAN) is a field of popular generating models, and

there are many variants these years. Lim and Ye 2017 proposed the Geometric GAN

to connect the network with the geometric interpretation. They update the discrim-

inator based on the algorithm of Support Vector Machines (SVM),

Inspired from their work, we proposed a new algorithm using the robust One

Class Support Vector Machines. We also proposed that the discriminator should

separate the dataset into three groups: the correctly classified real data, the correctly

classified generated data, and the incorrectly classified data. By eliminating the space

of incorrectly classified data, we can have our discriminator capture more patterns.

We tested our model and the Geometric GAN on the MNIST dataset, and our model

has better performance on the same setting.

ii

Preface

This thesis is an original work by Siting Wang. No part of this thesis has been

previously published.

iii

Table of Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Objectives . 3

1.3 Thesis Outline . 3

2 Background 4

2.1 Generative Adversarial Network . 4

2.1.1 Adversarial Nets . 4

2.1.2 Mean Feature GAN . 6

2.1.3 Geometric GAN . 8

2.2 One Class Support Vector Machine 11

2.2.1 Support Vector Machine . 11

2.2.2 One-Class SVM . 14

2.3 Gap in Research . 16

2.4 Conclusions . 16

3 Methods and Procedure 18

3.1 One-Class SVM Hyperplane . 18

3.1.1 Updating the Unsupervised Network 20

3.2 Experiment & Tuning . 21

3.2.1 Network . 24

3.3 Results and Discussion . 24

iv

3.4 Conclusions . 26

4 Conclusions, Recommendations, & Future Work 28

4.1 Conclusions . 28

4.2 Future Work . 28

Bibliography 30

Appendix A: Related Networks 32

A.1 DC-GAN . 32

Appendix B: Experiment Codes 34

B.1 OCSVM GAN . 34

Appendix C: Simulation Comparison 53

v

List of Tables

3.1 The Labels from Different Class of Data to Different Classifier 19

vi

List of Figures

2.1 Structure of GAN . 5

2.2 From both plots, we can see that both methods creates a linear classifier

to discriminate the dataset. (Lim and Ye 2017) 9

3.1 The implication of our discriminator. We have red and blue separating

lines. The red and blue area are the area of inliers for each classifier.

Then the red and blue dots are correctly classified by both classifiers,

while the purple and black dots are the inliers for both separators and

outliers for both separators respectively. 19

3.2 Discriminator of OCSVM-GAN. 20

3.3 The Indication Plot of OCSVM: The red straight line is the separating

hyperplane, and the red area is the area of inliers. All the round points

are the inliers in our sample data. The green dashed line is the soft

margin with respect to the the given margin distance. All the blue

points will not affect the final result of the classification while all the

green points are the support vectors. 22

3.4 The example images from MNIST Dataset 23

3.5 The Architecture of Network in Our Experiments 25

3.6 As shown in the plots, out model converges faster than the Geometric

GAN. 26

3.7 In this plot, we can see that the Geometric does not any useful infor-

mation. While our model has generated digits. 26

vii

A.1 The Generator Architecture of DCGAN (Radford et al. 2015) 33

C.1 The Distribution of Simulation Training Data 54

C.2 The Distribution Generated Data from original GAN 54

C.3 The Distribution of Generated Data from W-GAN 55

C.4 The Distribution of Generated Data from Geometric GAN 55

C.5 The Distribution of Generated Data from OCSVMGAN 56

viii

Chapter 1

Introduction

Generative models are the only models that can provide new data instead of the

density functions only (Goodfellow 2016). It is also an area with potential of applica-

tion. In practice, using generative models can effectively solve the problem of lacking

samples. It can also help to create a safe virtual experiment environment. Using the

Generative model can also help to avoid confidentiality dilemma. Besides that, the

generative models can create many attractive applications.The most famous example

is the Deepfake with praise and blames. In 2014, Goodfellow et al. 2014 invented

the Generative Adversarial Net (GAN). It is a different model from the previous

generative models.

Most of the generative models fall into the category of Maximum Likelihood or

can be viewed as a Maximum Likelihood Problem (Goodfellow 2016). Generative

Adversarial Network is a minimax problem, while we can also view it as a max-

imum likelihood problem. In Maximum Likelihood related generative models, we

have the explicit density and implicit density models. The popular generative models

Variational Autoencoder (VAE) is the explicit density model, and the Generative Ad-

versarial Net is the implicit density model. Both VAEs and GANs are models difficult

to optimize. The GANs are asymptotically consistent (Goodfellow 2016). Then is

is more consistent. It also generate good quality results. However, GANs needs to

reach the Nash equilibrium due to the property of minimax problem. We might take

1

more time and effort on training the GANs even on a successful algorithm involving

adversarial algorithms.

1.1 Motivation

Lim and Ye 2017 proposed the network called Geometric GAN. The network illus-

trated the discriminator of GAN with respect to Geometry. They proposed to use

the Support Vector Machine (SVM) as the discriminator. By applying the Hinge

Loss connected with the SVM, they created a more robust result in this optimization

problem. Lim and Ye also tested on the simulation data. The Geometric GAN out-

performed the other GAN variants, e.g. W-GAN (Arjovsky et al. 2017). Especially,

the SVM network helps to eliminate the effect of the outliers, including the outliers

from real dataset and generated dataset. Since we generally deal with high dimen-

sional data in Generating model, we will see the generating network converges to a

subspace that does not capture all the necessary features of real dataset, e.g mode

collaspes. This affects both the discriminator and the generator from updating.

Inspired from the geometric interpretation of Geometric GAN , we realize that

most of the discriminator from GANs only tries to enlarge the distance between

the cluster of Real data with Generated data. The generators are responsible to

‘cheat’ the discriminator. While we notice that with high dimensional data, the

discriminator cannot catch all the necessary patterns from the real data, and we can

have the generated data not close to the real data in some dimensions. We can see

the simulation evidence from the Chapter C.

We can solve this problem with deeper network, but with more complex data, we

need deeper network to improve the results, and that makes the learning process more

difficult.

2

1.2 Thesis Objectives

In this thesis, we use the One-Class Support Vector Machine (OCSVM) to be the

classifier instead of the traditional Binary Support Vector Machine, and determine

how to implant this unsupervised method into a labelled classification properly.

We also combined two OCSVM classifiers into one discriminator model, to generate

a more robust model with the shallower network.

1.3 Thesis Outline

The thesis contains two main parts. Chapter 2 will introduce several kinds of Gener-

ative Adversarial Network in details. This is followed by a review of Support Vector

Machines and One-Class Support Vector Machines. Chapter 3 will mainly discuss

about the model we proposed. We will first introduce the algorithm. Then we have

briefly discussed about the experiment result and the comparison with the Geometric

GAN (Lim and Ye 2017). By the end we will discuss about the possible future works.

3

Chapter 2

Background

2.1 Generative Adversarial Network

Goodfellow et al. 2014 proposes a different framework for generative models. This

network combines a discriminative model D to maximize the difference between the

source data and generated data. GANs (Generative Adversarial Network) have a

generative model G and a descriminative model D. To optimize the network, we

apply a minimax operation to the loss function. It will update model G and D

simultaneously. In general, the Generative model G learns the pattern of training

dataset and generate the sample datasets with those patterns. The Discriminative

modelD classifies real data from the generated data. Two networks will compete with

each other until the model converges and the generated data achieves our requirement.

2.1.1 Adversarial Nets

To begin with the adversarial networks, we first define inputs and their distributions.

Definition 1 To avoid confusion, let’s define source input data as I

• X : (x1, · · · , xn) ∼ Pr: the input data that we want to generate follows a distri-

bution pr, r here indicates the real data.

• Z : (z1, · · · , zm) ∼ Pz : the random noise with sample number m.

4

Definition 2 We define two mapping models G and D. Both models are differen-

tiable deep networks.

• G(z; θg) is the model of generator distribution Pg with parameters θg. While Pg

is the predicted distribution of Pr.

• D(x; θd) is a classification model to classify the input x from distribution X or

G(z). We optimize D(x; θd) to maximize the probability of correct classification.

In practice, we consider m = n in the following Theorem and definitions.

In original GAN (Goodfellow et al. 2014), the optimal discriminator D is

D∗
G(x) =

pdata(x)

pdata(x) + pg(x)
(2.1)

While x could be real input data X or generated data G(Z).

Figure 2.1: Structure of GAN

The minimax process with the value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.2)

In deep network, it is not feasible to find the global optimization. Gradient Descent

is a population method to find a local optimization.

5

Algorithm 1 SGD (Stochastic Gradient Descent) of Generative Adversarial Nets.
We have sample m for both training data and generated data. We choose a least
expensive choices to update the Discriminator. Here η is the learning rate for updating
the parameters. Any gradient-based learning rules works for this algorithm.

for Numbers of iterations do
Sample {z1, z2, · · · , zm} from noise prior pg(z).
Sample m examples {x1, · · · , xm} from generating distribution set pdata(x).
Update the Discriminator

θd ← θd + η∇θd

1

m

m∑︂
i=1

[logD(xi) + log(1−D(G(zi)))]

Sample m noise samples {z1, · · · , zm}from noise prior pg(z)
Update the Generator

θg ← θg + η∇θg

1

m

m∑︂
i=1

log(1−D(G(zi)))

end for

2.1.2 Mean Feature GAN

Mroueh et al. 2017 introduced the Integral Probability Metrics to maximize the dis-

criminates between the distributions of real data and generated data.

Definition 3 (Integral Probability Metric) Given (Rd,X) be a compact measur-

able space. F be a set where ∀f ∈ F , f is a bounded measurable functions on X . P

is a set of probability measure on X . For two probability distributions P,Q ∈P(X).

We define integral probability metric (IPM) to be:

dF (P,Q) = sup
f∈F
|Ex∼Pf(x)− Ex∼Qf(x)|

For IPM we define above, dF (P,P) = 0, but for any two distribution P,Q, dF (P,Q) =

0 does not implie P = Q , and dF is nonnegative. Therefore, dF is a pseudo metric.

Also in our definition, both P and Q are probability measure, we have dF (P,Q)

symmetric. In a generative model, we define Pr ∈P(X) , and Pθ is the distribution

of gθ(z), z ∼ pz We then solve the minimax problem:

min
gθ

dF (Pr,Pθ)

6

We use IPM to define Mean Feature Matching GAN. Define F :=< ω,Φζ(x) >,

where ω ∈ RM and Φζ : X → RM a non-linear feature map. Here M is unrelated

with the sample number m.

Then we define the function space:

Fω,ζ,p = {f(x) =< ω,Φζ(x) > |ω ∈ RM , ∥ω∥p ≤ 1,Φζ(x) : X → RM , ζ ∈ Ξ}

Combine the function space with the IPM, we get:

dFω,ζ,p
(P,Q) = max

ζ∈Ξ,ω∈RM ,∥ω∥p≤1
⟨ω,Ex∼PΦζ(x)− Ex∼QΦζ(x)⟩

= max
ζ∈Ξ

[︃
max

ω∈RM ,∥ω∥p≤1
⟨ω,Ex∼PΦζ(x)− Ex∼QΦζ(x)⟩

]︃
= max

ζ∈Ξ
∥µζ(P)− µζ(Q)∥q (Dual)

(2.3)

The Dual equation in 2.3 requires Hölder’s inequality. For ∥ω∥p ≤ 1, we have ∥ · ∥p

to be the ℓp norm. Let p, q ∈ [1,∞], such that 1
p
+ 1

q
= 1. Then,

|⟨x, y⟩| ≤ ∥x∥p∥y∥q (2.4)

We get the loss function from metric:

Lµ(ω, ζ, θ) = ⟨ω,Ex∼PrΦζ(x)− Ez∼pzΦζ(gθ(z))⟩

For optimizing the model, we solve the mini-max problem:

min
gθ

max
ζ∈Ξ

max
ω,∥ω∥p≤1

Lµ(ω, ζ, θ)

In practice, we have the non-parametric data sample set instead of the parametric

data distribution. Therefore, we use the sample mean instead of the theoretical mean.

L̂ (ω, ζ) =

⟨︄
ω,

1

m

m∑︂
i=1

Φζ(xi)−
1

m

m∑︂
i=1

Φζ(gθ(zi))

⟩︄
(2.5)

Then we apply the Stochastic Gradient Descent (SGD):

(ω, ζ)← (ω, ζ) + η(∇ωL̂ (ω, ζ),∇ζL̂ (ω, ζ))

where η is the learning rate. We will briefly talk about the choice of learning rate

later in training part.

7

2.1.3 Geometric GAN

For the efficiency of training process, we usually separate the training dataset into

several mini-batches in practice. The minibatch size n is much smaller than the data

dimension d. This is called as high-dimensional low-sample size (HDLSS) problem.

The mean difference (MD) classifier is a popular method to improve the performance

of discriminator (Lim and Ye 2017). The Mean Difference method is using the normal

vector ω to be the the hyperplane.

Instead of fitting the Statistical Distribution of data, Lim and Ye 2017 works on

apply Support Vector Machine to the optimization problem. We will discuss about

the Support Vector Machine in its own section. Here we mainly discuss about the

application of Support Vector Machine on GAN.

Geometric Interpretation of Mean Feature Matching GAN

To get a geometric meaningful ω, we apply the a property of Cauchy-Schwarz in-

equality:

Theorem 4 (Cauchy-Schwarz (Steele 2004)) |⟨u, v⟩| ≤ ∥u∥∥v∥

Corollary 5 If |⟨u, v⟩| = ∥u∥∥v∥, then u =
⟨u, v⟩
∥v∥2

v

In our case, let ω to be u, and 1
m

∑︁m
i=1Φζ(xi)− 1

m

∑︁m
i=1Φζ(gθ(zi)) to be v. We have

∥ω∥ ≤ 1. Then 2.5 has maximization to be when ∥ω∥ = 1. Therefore, max ∥ ⟨u, v⟩ ∥ =

∥v∥ Then we apply the corollary to get

u =
∥v∥
∥v∥2

v =
v

∥v∥1/2
(2.6)

Take the value of u and v, we get

ω∗ = c
m∑︂
i=1

(Φζ(xi)− Φζ(gθ(zi)))/m

8

where c = ∥
∑︁m

i=1(Φζ(xi)− Φζ(gθ(zi)))/m∥−1/2 (Lim and Ye 2017). From the ω∗, we

can get the new formula of updating parameters:

ζ ← ζ + η
m∑︂
i=1

⟨ω∗,∇ζΦζ(xi)−∇ζΦζ(g(zi))⟩ /m

θ ← θ + η

m∑︂
i=1

⟨ω∗,∇θΦζ(g(zi))⟩ /m
(2.7)

The derivation by Lim and Ye 2017 is different from the original McGAN (Mroueh

et al. 2017).

(a) The Geometric Interpretation of Mc-
GAN

(b) The Geometric Interpretation of Ge-
ometric GAN

Figure 2.2: From both plots, we can see that both methods creates a linear classifier
to discriminate the dataset. (Lim and Ye 2017)

From the vector ω∗ and the image 2.2a, we can see that McGAN creates a hy-

perplane to separate the real data between generated data. When we compare the

geometric interpretation between mean difference and SVM, the SVM creates a more

robust hyperplane as a linear classifier. From the SVM classifier we have:

ωSVM =
m∑︂
i=1

αiϕζ(xi)−
m∑︂
i=1

riϕζ(gθ(zi)) (2.8)

9

Here αi, and ri follows the definition in subsection SVM to be the Lagrangian multi-

pliers. There also exists a regionM between the margin boundaries to be

M = {ϕ ∈ RM |
⃓⃓
(ωSVM · ϕ) + b

⃓⃓
≤ 1}. (2.9)

The points inside the regionM are the Support Vectors. According to Lim and Ye

2017, the with ωSVM and b, Lagrangian multiplier 2.20 can be:

Lθ(ω, b, ζ) =
1

m

∑︂
i∈IS

(ωSVM · ϕζ(gθ(zi)))−
1

m

∑︂
i∈IT

(ωSVM · ϕζ(xi)) + C (2.10)

=
1

m

m∑︂
i=1

(ωSVM · (siϕζ(gθ(zi))− tiϕζ(xi))) + C (2.11)

(2.12)

Here (ti, si) are geometric scaling factors defined by

ti =

{︄
1, ϕζ(xi) ∈M
0, otherwise

, si =

{︄
1, ϕζ(gθ(zi)) ∈M
0 otherwise

(2.13)

Since loss function of SVM only related with Support Vectors. From the new loss

function, we will have different Gradient Descent function to update the parameters:

ζ ← ζ + η
m∑︂
i=1

(ωSVM · (ti∇ζϕζ(xi))− si∇ζϕζ(gθ(zi))))/m (2.14)

θ ← θ + η
m∑︂
i=1

(ωSVM · ∇θϕη(gθ(zi)))/m (2.15)

The gradient Descents of updating the Geometric GAN are similar with the ones for

Mean Matching GAN. The main difference would be the existence of support vectors.

We can also view Geometric GAN to be a special Mean Matching GAN where only

the support vectors to be the elements considered in.

Loss Functions

In Lim and Ye 2017’s work, they included and compared different loss functions from

different kinds of Generative Adversial Nets. Here we mainly look into the algorithm

of Hinge Loss. Hinge Loss is the loss function for Support Vector Machine

10

Algorithm 2 Hinge Loss. Input: ϕ(xi) or ϕ(g(zi)). We will call them as ϕi in the
algorithm.

Require: margin≥ 0
for i = 1, · · · ,m do

pre-lossi = margin− yi · ϕi

lossi = 1pre-lossi≥0 × pre-lossi
end for
Loss =

∑︁m
i=1 lossi/m

2.2 One Class Support Vector Machine

2.2.1 Support Vector Machine

The support Vector Method is a function estimating method with labelled data pro-

posed by Scholkopf (1999). In the setting of SVM, we have

(x1, y1), · · · (xm, ym).

yi is the label (or measurement) of the vector xi, and y = f(x) holds. It is generally

applied in pattern recognition and linear operations problems. The function f(·) may

not be a linear function. To find out the relationship between x and y, we need to

map the vector x from a n-dimensional space X into a unknown high dimensional

(could be infinite) space Z, y = β · z, where β is the linear parameter for the function

above.

We start from x and y has linear relationship. With the training dataset, we have

(x1, y1), · · · , (xm, ym), x ∈ X ⊂ Rn, y ∈ {1,−1}

Assume the data is separable by the hyperplane

(w · x) + b = 0

where there exists a vector w and constant b fulfills

(w · xi) + b > 1, if yi = 1

(w · xj) + b < −1, if yj = −1

11

Vectors xi such that fulfills yi(w · xi + b) = 1 are Support Vectors. Then we combine

two inequalities and their conditions, we can get the constraints

yi(w · xi + b) ≥ 1 (2.16)

The optimal hyperplane minimizes Φ = w ·w Cortes and Vapnik 1995. From this, we

can construct a Lagrangian

L(w, b, A) =
1

2
w · w −

m∑︂
i=1

αi[yi(w · xi + b)− 1] (2.17)

where AT = (α1, · · · , αm) is the non-negative Lagrange multiplier corresponding to

the constraint (2.4). From gradients, we have

∂L

∂w
|w=w0 = (w0 −

m∑︂
i=1

αiyixi) = 0

∂L

∂b
|b=b0 =

∑︂
αi

yiαi = 0

(2.18)

Therefore, we have

w0 =
m∑︂
i=1

αiyixi

for the convex optimization.

Soft Margin

The hypothesis of data is separable by a hyperplane cannot be fulfilled for all dataset.

Therefore, Cortes and Vapnik 1995 developed Soft margin hyperplane to allow a small

number of error. We introduce the error to be ξi ≥ 0, i = 1, · · ·m We want to

minimize the functional

Φ(ξ) =
m∑︂
i=1

ξσ (2.19)

and the constraints becomes

yi(w · xi + b) ≥ 1− ξi i = 1, · · · ,m

ξi ≥ 0 i = 1, · · · ,m

12

Then the Lagrange function becomes

L(w, ξ, b, A,R) =
1

2
w · w + C(

m∑︂
i=1

ξi)
k −

m∑︂
i=1

αi[yi(w ·i +b)− 1 + ξi]−
m∑︂
i=1

riξi (2.20)

Here RT = (r1, · · · , rm) is also the non-negative Lagrange multiplier for the con-

straints. To update the parameter w and b, we have:

∂L

∂w
|w=w0 = (w0 −

m∑︂
i=1

αiyixi) = 0

∂L

∂b
|b=b0 =

∑︂
αi

yiαi = 0

∂L

∂ξi
|ξi=ξ0i

= kC(
m∑︂
i=1

ξ0i)
k−1 − αi − ri

(2.21)

After derive the equation, we have

w0 =
m∑︂
i=1

αiyixi

Kernel Trick

In the paragraphs above, we mainly discussed about the linear separation. When the

dataset is not linear separable, we need to transform our dataset into a new vector

(Cortes and Vapnik 1995). Define the transformation function ϕ:

ϕ : Rn → RN , x ↦→ ϕ(x)

where

ϕ(xi) = (ϕ1(xi), ϕ2(xi), · · · , ϕN(xi)), i = 1, · · ·m

Then the decision function is:

f(x) = sgn(w · ϕ(x) + b) (2.22)

This makes the vector w to be

w =
m∑︂
i=1

yiαiϕ(xi) (2.23)

13

Combine the decision function with the vector w from the Lagrange, we get:

f(x) = sgn(ϕ(x) · w + b) =
m∑︂
i=1

yiαiϕ(x)ϕ(xi) + b

By constructing a dot-product in Hilbert space (Anderson and Bahadur 1962), we

have:

ϕ(u) · ϕ(v) ≡ K(u, v).

For any symmetric K(u, v) ∈ L2, we can expend it into infinite summation according

to Coutant and Hilbert 1953:

K(u, v) =
∞∑︂
i=1

λiϕi(u) · ϕi(v)

That makes the decision function to be

f(x) = sgn(
m∑︂
i=1

yiαiK(x, xi)) (2.24)

where αi ≥ 0 and α > 0 only for support vectors.

2.2.2 One-Class SVM

The algorithm of One Class SVM is simliar with the classic two class SVM. Instead

of labelled data, we have unlabeled training data (Schölkopf et al. 2001)

x1, · · · , xm ∈ X ⊂ Rn

The algorithm of One-Class SVM is capturing the data points from one class inliers

in small region and the outliers in the other area. It follows a optimization problem:

min
w∈Ω,Ξ∈Rm,b∈R

1

2
w · w +

1

νm

m∑︂
i=1

ξi + b

subject to (w · Φ(xi)) + b ≥ −ξi, ξi ≥ 0

(2.25)

The OCSVM does not contain the information about the labels. Therefore, the

subjective function does not provide us a symmetric inequality like the original SVM.

14

yi(w · Φ(xi)) + b ≥ −ξi subjective function of original GAN

yi(w · Φ(xi)) ≤ ξi + b (2.26)

|w · Φ(xi)| ≤ ξi + b yi is either 1 or − 1 (2.27)

The subjective function of original SVM is symmetric, while for the OCSVM, we

do not have such property. Therefore, the final soft boundary of OCSVM is not sym-

metric.

From the optimization problem, we have the decision function to be:

f(x) = sgn(w · ϕ(x) + b)

The Lagrangian to be:

L(w, b, ξ, A,R) =
1

2
w · w +

1

νl

m∑︂
i=1

ξi + b−
m∑︂
i=1

αi(w · ϕ(xi) + b+ ξ)−
m∑︂
i=1

riξi (2.28)

where A,R are the multipliers similar to the classic SVM.

The derivatives are also similar with the two-classes SVM:

w =
m∑︂
i=1

αiϕ(xi)

αi =
1

νl
− ri

(2.29)

The decision function can also be:

f(x) = sgn(
m∑︂
i=1

αiK(xi, x) + b)

Convex Optimization and Gradient Descent

In classic Support Vector Machine algorithm, we use convex optimization to find the

closed-form solution. This includes applying the Karush–Kuhn–Tucker condition. In

this situation, we have restricted selections about the kernels. While in deep neural

15

network, we generally lose the convexity of functions. In this situation, we cannot use

the Duality and functions from Schölkopf et al. 2001. Instead, we use the gradient

descent to find a local optimal. Therefore, in this section, we did not discuss about

the dual problem and the choices of the kernel K(·, ·).

2.3 Gap in Research

For all the loss functions we mentioned above, we only classify samples belong to ei-

ther Real or Generated Distribution. In classification problems, our data is collected

from limited subspaces. Therefore, all the samples belongs to one of those classes.

However, in generative model, we are generating data from the whole space. The

samples might belong to neither class. We need to take a linear separation after the

space transformation. It is possible that the data is well separated but the generation

is not well defined. Therefore, there are more than two classes (Real v.s. Gener-

ated) of data. We conclude it as Correctly Classified Real Data, Correctly Classified

Generated Data, and Incorrectly Classified Data. If our discriminator is too powerful

and override the generator, we will have the generator not updating. Compared with

labelled classification, the unsupervised learning One Class SVM restricts a small

area that contains most data. If we apply unsupervised discriminator, we may have a

more robust model compared with the supervised discriminator. However, we cannot

update unsupervised discriminator with the labels we have. In this case, we need to

adjust the algorithm to update the networks while keep the property of unsupervised

learning.

2.4 Conclusions

In this Chapter, we briefly reviewed the classic and other popular algorithms of Gen-

erative Adversial Nets. Most of them based on the probability properties. While the

Geometric-GAN by Lim and Ye 2017 discovered a method with the geometric inter-

16

pretation. From the geometric methods, we can then apply more different classifiers

including the Support Vector Machine.

The second half of the paper, we went through the classic Support Vector Machine

and the One-Class Support Vector Machine. Both methods belonged to the convex

optimization. The classic Support Vector Machine is a supervised method to classify

labelled data. The One-Class SVM is an unsupervised method generally for outlier

detection and novelty detection. The algorithm of both methods are similar and

both including kernel methods to apply to complicated dataset. While in our case,

we use Gradient Descent to solve the SVM problems. Then we no longer need the

restrictions from the Convex Optimizations. Our kernels can be flexible as the deep

networks could achieve. However, the Gradient Descents does not guarantee the

global minimum/ maximum as convex optimization. That brings more difficulty in

tuning the model.

17

Chapter 3

Methods and Procedure

In this paper, we propose a discriminator using the One-Class Support Vector Ma-

chine. We will discuss the methods and algorithm in this chapter.

3.1 One-Class SVM Hyperplane

From the background information above, we have briefly understood the algorithm

of One-Class SVM (OCSVM) and its usage. For each OCSVM classifier, we have the

output to be inliers and outliers. If we interpret into numbers, that would be +1

(inliers) and −1 (outliers). When we have a OCSVM classifier for GAN, naturally we

want to see the real data to be classified as inliers (+1) while the generated data to

be outliers (−1). We also notice that the OCSVM is an unsupervised learning model.

That implies that we cannot update this model with the labels we have. Therefore,

we need to adjust the loss functions from the OCSVM and allow us to penalize the

data not be in the classified as the same class they should be.

As we discussed from 2.4, there exists the three different classes in the Dataset in

practice, and we want to separate all these classes simultaneously. Since we do not

have the labels of these Classes, we simply point out which elements of the dataset

fulfill our requirements. To achieve this, we place two OCSVM hyperplanes in the

discriminator: one with the real data to be the inlier, another one with the generated

data to be the inliers. Those data are classified to be the inliers only for the OCSVM

18

if their class is correctly classified. The others are the ‘Incorrectly’ Classified data.

Table 3.1: The Labels from Different Class of Data to Different Classifier

Classes of Data

Real Data Generated Data

Classifier
Real Classifier +1 -1

Generated Classifier -1 +1

Figure 3.1: The implication of our discriminator. We have red and blue separating
lines. The red and blue area are the area of inliers for each classifier. Then the red
and blue dots are correctly classified by both classifiers, while the purple and black
dots are the inliers for both separators and outliers for both separators respectively.

3.1 is a simulation about how the real and generated data can be divided by two

linear classifiers. The plot did not show the optimized result, while there are still

misclassified data points. From the plot 3.1 and table 3.1, we can see that we can

divide the data into four groups. We penalize on the data misclassified on one or

both classifiers. Generally we use the convolutional network to project the images to

a higher dimensional space ϕ(·). Project all the data to the same space ϕ(·) to avoid

overfitting problem.

From 3.2, we show that the Discriminator is same for both OCSVM classifiers.

19

Figure 3.2: Discriminator of OCSVM-GAN.

After the automatic kernel trick, we apply the data into both classifiers and get two

loss values.

3.1.1 Updating the Unsupervised Network

There are two parts in our SVM function. One is the loss value, the distance between

the target label and the trained label. Another one is the weight. That indicates the

support vectors. In each OCSVM function, we apply a linear function to downsize

the data to a real value.

We need to notice that for OCSVM, the optimization problem 2.25 subject to

ω · ϕ(x) ≥ ρ− ξi, ξ ≥ 0. (3.1)

Combine this with the decision function

f(x) = sgn(ω · ϕ(x)− ρ)

we can get that all the inliers and ‘not-too-off’ outliers are support vectors as shown

in 3.3.

Before we define the loss function of the total loss, we need define the loss func-

tion for thereal classifier and the generated classifier separately. Similar with the

Geometric GAN, we first define the region between the margin boundariesM:

Mreal = {ϕζ ∈ RM |wreal · ϕζ + breal ≤ 1} (3.2)

Mgen = {ϕζ ∈ RM |wgen · ϕζ + bgen ≤ 1} the parameters are different (3.3)

20

For eachMtype, we have two indicator functions

ttypei =

{︄
1, ϕζ(xi) ∈M
0, otherwise

, stypei =

{︄
1, ϕζ(gθ(zi)) ∈M
0 otherwise

(3.4)

Then the Lagrangian multiplier for real classifier would be

L real
θ (ωreal, b, ζ) =

1

m

∑︂
i∈IS

(ωreal · ϕζ(gθ(zi)))−
1

m

∑︂
i∈IT

(ωreal · ϕζ(xi)) + C (3.5)

=
1

m

m∑︂
i=1

(ωreal ·
(︁
sreali ϕζ(gθ(zi))− ttypei ϕζ(xi)

)︁
) + C (3.6)

Similarly, the Lagrangian multiplier for generated classifier would be

L gen
θ (ωgen, bgen, ζ) =

1

m

∑︂
i∈IT

(ωgen · ϕζ(xi))−
1

m

∑︂
i∈IS

(ωgen · ϕζ(gθ(zi))) + C (3.7)

=
1

m

m∑︂
i=1

(ωgen · (tgeni ϕζ(xi))− sgeni ϕζ(gθ(zi))) + C (3.8)

Combine both Lagrangian multiplier together, we get

Lθ(wreal, wgen, ζ) = L real
θ (ωreal, breal, ζ) + L gen

θ (ωgen, bgen, ζ) (3.9)

=
1

m

m∑︂
i=1

(ωreal ·
(︁
sreali ϕζ(gθ(zi))− ttypei ϕζ(xi)

)︁
(3.10)

+ ωgen · (tgeni ϕζ(xi))− sgeni ϕζ(gθ(zi))) + C (3.11)

Since we have the labels for each data point in our case, we can update out network

through the Gradient Descents optimization while penalize on part of the outliers.

We split the loss functions into two parts: the loss value l, and the weight w. Here we

use score function to differ from the Loss function above. It is still the non-negative

number; not the negative number from the classic definition of Score function.

3.2 Experiment & Tuning

We test the performance of our algorithm on the famous MNIST dataset. We compare

the result from Geometric GAN (Lim and Ye 2017). We use the same generator and

21

Figure 3.3: The Indication Plot of OCSVM: The red straight line is the separating
hyperplane, and the red area is the area of inliers. All the round points are the inliers
in our sample data. The green dashed line is the soft margin with respect to the
the given margin distance. All the blue points will not affect the final result of the
classification while all the green points are the support vectors.

discriminator network for both methods. In general, we have a better result than

result from Geometric GAN (Lim and Ye 2017).

’Training on Real Testing on Synthetic’ (TRTS), ’Training on Synthetic, Testing

on Real’ (TSTR) are popular methods to evaluate the GAN models. While in our

cases, we do not have the labelling process and the labelled classification cannot

22

Algorithm 3 The Loss Function of OCSVM

Target : label of the Class of OCSVM
Class : the input class
margin: the soft margin for OCSVM, defined by the user
input: x n-dimensional data
ŷ ← βx ▷ linear regression Rn → R
if margin− ŷ × Target ≥ 0 then

LOSS VALUE← |ŷ × Class− Target|
end if
return LOSS VALUE

Figure 3.4: The example images from MNIST Dataset

23

present the quality of the images. It is useful in more complex contexts. We also

considered about the Inception Score Barratt and Sharma 2018, while the empirical

calculating of Inception Score falls into the distribution of our model. Therefore, we

will compare the images directly to show the quality of generated images and evaluate

the performance.

3.2.1 Network

We did not use a deep network for training due to the computation reason. Figure3.5

presents our model network. For both generator and discriminator, there are five

parametric layers. They are symmetric to each other. The fully connected layer

is the linear regression operation. It is mainly working on the SVM and OCSVM

classification as we discussed above.

3.3 Results and Discussion

Tuning Generative Adversarial Network is more complicated than the classification-

only networks. The engineering part involves many potential risks and situations.

The most typical one is the mode collapsing.

If we train the model with large number of epochs, we may see the mode collapse.

The generated images will be the identical images. Since we want to generate a variety

of images, it is not desired situation. In GAN network, we generally use ADAM

Optimizer to solve the problem (Goodfellow 2016). The two hyper-parameters can

adjust the decay rate of the learning rate. In our model, the results seems collapsed

(the non-stable part from the loss plot 3.6b before it getting better result.

Combine these images and plots, we can see that both models converges. Since the

Geometric GAN does not create an effective image, we can say that our model has

better performance in the same network architecture.

We need to notice that from when comparing different GAN models, the objective

functions are different. In Geometric GAN and OCSVMGAN, we have different

24

Figure 3.5: The Architecture of Network in Our Experiments

25

objective functions if we have different margins. Therefore, the loss value cannot be

qualitative measure of performance of GAN. The loss value plot is a effective method

to observe the convergence of the networks.

(a) The loss Value of Geometric GAN (b) The loss value of Our Model

Figure 3.6: As shown in the plots, out model converges faster than the Geometric
GAN.

(a) The The Generated images of Geo-
metric GAN

(b) The generated images of
Our Model

Figure 3.7: In this plot, we can see that the Geometric does not any useful information.
While our model has generated digits.

3.4 Conclusions

We use OCSVM to take the advantage of its soft-margin and support vectors from

the classic SVM. The OCSVM is used to be an unsupervised method, but we can still

apply the labels to update the model efficiently.

26

We also applied two separators in discriminators. In the traditional Generative

models, we only classes the images to be real/generated classes. The generator can

create images have close patterns to the real data but nothing close to the real images.

We defined three classes for the whole dataset. The new one is the ‘Incorrectly

Classified Data’, with respect to two ‘Correctly Classified Data’ (Real and Generated).

In this way we have the similar idea of separating multiple classes Vapnik 1991.

However, we do not use three separating parameters since the exact location for

‘Wrong Data’ is not our main attention. Our method can eliminate the underfitting

problem in traditional generative models.

In the experiment part, we can see that our model has outperformed than the

Geometric GAN in the setting with same networks. From what result we have, I

believe with further fine tuning, we can see better and clear images from our model.

The MNIST dataset is popular in Computer Vision and GAN, while there are many

datasets that require deeper network and longer training time. We believe our model

can provide a better solution in those fields.

27

Chapter 4

Conclusions, Recommendations, &
Future Work

4.1 Conclusions

To conclude, we proposed a new method of Generative Adversarial Network. In

this network we followed the geometric definition from Lim and Ye 2017. While in

our algorithm, we separate the whole dataset into three parts instead of two part

in other algorithms. These three parts are: the correctly classified real data, the

correctly classified generated data, and the incorrectly classified data. We want to

find the space of the correctly classified data respectively. In the same time, we try to

eliminate the space of the incorrectly data. Our network uses the One Class Support

Vector Machine, and it is an un/semi-supervised method. We can still assign the

labels to the classifiers and operate classification. We compared our classifier with

Lim and Ye 2017’s classifier in the same network, and our network performs better

than theirs. It shows that our model works in the same setting.

4.2 Future Work

For the model, we can operate more precise tuning method to see whether we can

have a better output. Then we can experiment on more complex datasets. Two

SVMs increase the number of hyperparameters we can tune. Now we are using the

same margin for both Support Vector Machine, while we can discuss about the effect

28

of different margins.

For the algorithm, our model uses two OCSVMs to be the classifiers for the real

and generated data . We can also try to discriminate the real and generated data

by using two classic SVM. In this way, we will have different margins and support

vectors.

29

Bibliography

[1] J. H. Lim and J. C. Ye, “Geometric gan,” arXiv preprint arXiv:1705.02894,
2017.

[2] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,” arXiv
preprint arXiv:1701.00160, 2016.

[3] I. Goodfellow et al., “Generative adversarial nets,” Advances in neural infor-
mation processing systems, vol. 27, 2014.

[4] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversar-
ial networks,” in International conference on machine learning, PMLR, 2017,
pp. 214–223.

[5] Y. Mroueh, T. Sercu, and V. Goel, “Mcgan: Mean and covariance feature
matching gan,” in International conference on machine learning, PMLR, 2017,
pp. 2527–2535.

[6] J. M. Steele, The Cauchy-Schwarz master class: an introduction to the art of
mathematical inequalities. Cambridge University Press, 2004.

[7] B. Scholkopf, C. J. C. Burges, and A. J. Smola, Advances in Kernel Methods
: Support Vector Learning. MIT Press, 1999, isbn: 9780262194167. [Online].
Available: https://login.ezproxy.library.ualberta.ca/login?url=https://search.
ebscohost.com/login.aspx?direct=true&db=e000xna&AN=421&site=ehost-
live&scope=site.

[8] C. Cortes and V. Vapnik, “Support-vector networks,”Machine learning, vol. 20,
no. 3, pp. 273–297, 1995.

[9] T. W. Anderson and R. R. Bahadur, “Classification into two multivariate nor-
mal distributions with different covariance matrices,” The annals of mathemat-
ical statistics, pp. 420–431, 1962.

[10] R Coutant and D. Hilbert, Methods of mathematical physics, 1953.

[11] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson,
“Estimating the support of a high-dimensional distribution,” Neural computa-
tion, vol. 13, no. 7, pp. 1443–1471, 2001.

[12] S. Barratt and R. Sharma, “A note on the inception score,” arXiv preprint
arXiv:1801.01973, 2018.

[13] V. Vapnik, “Principles of risk minimization for learning theory,” Advances in
neural information processing systems, vol. 4, 1991.

30

https://login.ezproxy.library.ualberta.ca/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=e000xna&AN=421&site=ehost-live&scope=site
https://login.ezproxy.library.ualberta.ca/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=e000xna&AN=421&site=ehost-live&scope=site
https://login.ezproxy.library.ualberta.ca/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=e000xna&AN=421&site=ehost-live&scope=site

[14] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[15] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” in International conference on machine
learning, PMLR, 2015, pp. 448–456.

[16] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Icml, 2010.

31

Appendix A: Related Networks

A.1 DC-GAN

Radford et al. 2015 proposed a new algorithm of GAN using Convolutional Neural

Network (CNN). They named network as Deep Convolutional GAN (DCGAN). Before

that, the attempts of GAN using CNN were not successful. In this paper, Radford

et al. adopted some changes to CNN architectures to achieve a satisfying result. The

first change is that they no longer apply spatial pooling functions. Instead, they

applied the strided convolutions for down/upsampling. The second is to eliminate

the fully connected layers, especially for the middle layers. The fully connected layers

will decrease the convergence speed, but it can also increase the model stability.

They also identified that application of the batchnorm (Ioffe and Szegedy 2015)

directly would cause sample oscillation and model instability. Thus, they use ReLU

activation (Nair and Hinton 2010) instead.

By combining all these changes, Radford et al. proposed the new structure using

CNN to generate the images as show in image A.1. Lim and Ye 2017 also applied the

architecture of DCGAN. We tested our algorithm utilizing OCSVM in both DCGAN

and the architecture we adjusted from DCGAN.

Lim and Ye claimed that they tested their algorithm within the network of DC-

GAN. We also applied the network of DC-GAN to both our model and Geometric

GAN. Since the MNIST dataset is 28 × 28, we upscaled the dataset into 96 × 96.

Then we apply the Sigmoid before we calculated the loss value. However, we did not

get good results from either network. This might because the tuning parameters do

32

not match the network or the dataset. It requires future works to see the results.

Figure A.1: The Generator Architecture of DCGAN (Radford et al. 2015)

33

Appendix B: Experiment Codes

B.1 OCSVM GAN

1 # -*- coding: utf -8 -*-

2 """ OCSVMGAN MNIST (One NetD).ipynb

3

4 Automatically generated by Colaboratory.

5

6 Original file is located at

7 https :// colab.research.google.com/drive/1

fX7kw0LZv3qduq2N4JFxJfddh1bhdWyP

8 """

9

10 # -*- coding: utf -8 -*-

11 """

12 DCGAN Tutorial

13 ==============

14

15 ** Author **: `Nathan Inkawhich <https :// github.com/

inkawhich >`__
16

17 """

18

19 from __future__ import print_function

20 #% matplotlib inline

21 import argparse

22 import os

23 import random

24 import torch

25 import torch.nn as nn

26 import torch.nn.parallel

27 import torch.backends.cudnn as cudnn

28 import torch.optim as optim

29 import torch.utils.data

30 import torchvision.datasets as dset

34

31 import torchvision.transforms as transforms

32 import torchvision.utils as vutils

33 import numpy as np

34 import matplotlib.pyplot as plt

35 import matplotlib.animation as animation

36 from IPython.display import HTML

37

38 # Set random seed for reproducibility

39 #manualSeed = 999

40 manualSeed = random.randint(1, 10000) # use if you want

new results

41 print(" Random Seed: ", manualSeed)

42 random.seed(manualSeed)

43 torch.manual_seed(manualSeed)

44

45

46 ################

47 # Inputs

48 # ------

49 #

50 # L e t s define some inputs for the run:

51 #

52 # - ** dataroot ** - the path to the root of the dataset

folder. We will

53 # talk more about the dataset in the next section

54 # - ** workers ** - the number of worker threads for

loading the data with

55 # the DataLoader

56 # - ** batch_size ** - the batch size used in training. The

DCGAN paper

57 # uses a batch size of 128

58 # - ** image_size ** - the spatial size of the images used

for training.

59 # This implementation defaults to 64x64. If another

size is desired ,

60 # the structures of D and G must be changed. See

61 # `here <https :// github.com/pytorch/examples/issues

/70>`__ for more

62 # details

63 # - **nc** - number of color channels in the input images

. For color

64 # images this is 3

65 # - **nz** - length of latent vector

66 # - **ngf** - relates to the depth of feature maps

carried through the

35

67 # generator

68 # - **ndf** - sets the depth of feature maps propagated

through the

69 # discriminator

70 # - ** num_epochs ** - number of training epochs to run.

Training for

71 # longer will probably lead to better results but will

also take much

72 # longer

73 # - **lr** - learning rate for training. As described in

the DCGAN paper ,

74 # this number should be 0.0002

75 # - **beta1 ** - beta1 hyperparameter for Adam optimizers.

As described in

76 # paper , this number should be 0.5

77 # - **ngpu** - number of GPUs available. If this is 0,

code will run in

78 # CPU mode. If this number is greater than 0 it will

run on that number

79 # of GPUs

80 #

81

82

83 # Number of workers for dataloader

84 workers = 2

85

86 # Batch size during training

87 batch_size = 128

88

89 # Spatial size of training images. All images will be

resized to this

90 # size using a transformer.

91 image_size = 28

92

93 # Number of channels in the training images. For color

images this is 3

94 nc = 1

95

96 # Size of z latent vector (i.e. size of generator input)

97 nz = 100

98

99 # Size of feature maps in generator

100 ngf = 8

101

102 # Size of feature maps in discriminator

36

103 ndf = 8

104

105 # Number of training epochs

106 num_epochs = 50

107

108 # Learning rate for optimizers

109 lr = 0.00001

110

111 # Beta1 hyperparam for Adam optimizers

112 beta1 = 0.9

113

114 # Number of GPUs available. Use 0 for CPU mode.

115 ngpu = 1

116

117

118 ############

119 # Data

120 # ----

121

122 import pandas as pd

123

124 MNIST = pd.read_csv('/content/sample_data/
mnist_train_small.csv ', header=None)

125 images = MNIST.iloc[0:, 1:]

126 images = np.asarray(images)

127 images = images.astype('float ').reshape (-1,1,28,28)
128 images_tensor = torch.from_numpy(images)

129 images=images_tensor.float()

130

131

132

133 dataloader = torch.utils.data.DataLoader(images ,

batch_size=batch_size ,

134 shuffle=True ,

num_workers=

workers)

135

136 # Decide which device we want to run on

137 device = torch.device ("cuda :0" if (torch.cuda.is_available

() and ngpu > 0) else "cpu")

138

139 # Plot some training images

140 real_batch = next(iter(dataloader))

141 plt.figure(figsize =(8,8))

142 plt.axis("off")

37

143 plt.title (" Training Images ")

144 plt.imshow(np.transpose(vutils.make_grid(real_batch.to(

device)[:64], padding=2, normalize=True).cpu() ,(1,2,0))

)

145

146 print(real_batch.shape)

147

148

149

150 ##############

151 # Implementation

152 # --------------

153 #

154 # With our input parameters set and the dataset prepared ,

we can now get

155 # into the implementation. We will start with the weight

initialization

156 # strategy , then talk about the generator , discriminator ,

loss functions ,

157 # and training loop in detail.

158 #

159 # Weight Initialization

160 # ~~~~~~~~~~~~~~~~~~~~~

161 #

162 # From the DCGAN paper , the authors specify that all model

weights shall

163 # be randomly initialized from a Normal distribution with

mean=0,

164 # stdev =0.02. The ``weights_init `` function takes an

initialized model as

165 # input and reinitializes all convolutional , convolutional

-transpose , and

166 # batch normalization layers to meet this criteria. This

function is

167 # applied to the models immediately after initialization.

168 #

169

170 # custom weights initialization called on netG and netD

171 def weights_init(m):

172 classname = m.__class__.__name__

173 if classname.find('Conv ') != -1:

174 nn.init.normal_(m.weight.data , 0.0, 0.02)

175 elif classname.find('BatchNorm ') != -1:

176 nn.init.normal_(m.weight.data , 1.0, 0.02)

177 nn.init.constant_(m.bias.data , 0)

38

178

179

180 ##

181 # Generator

182 # ~~~~~~~~~

183 #

184 # The generator , :math:`G`, is designed to map the latent

space vector

185 # (:math:`z`) to data -space. Since our data are images ,

converting

186 # :math:`z` to data -space means ultimately creating a RGB

image with the

187 # same size as the training images (i.e. 3x64x64). In

practice , this is

188 # accomplished through a series of strided two dimensional

convolutional

189 # transpose layers , each paired with a 2d batch norm layer

and a relu

190 # activation. The output of the generator is fed through a

tanh function

191 # to return it to the input data range of :math:`[-1,1]`.
It is worth

192 # noting the existence of the batch norm functions after

the

193 # conv -transpose layers , as this is a critical

contribution of the DCGAN

194 # paper. These layers help with the flow of gradients

during training. An

195 # image of the generator from the DCGAN paper is shown

below.

196 #

197 # .. figure :: /_static/img/dcgan_generator.png

198 # :alt: dcgan_generator

199 #

200 # Notice , the how the inputs we set in the input section

(*nz*, *ngf*, and

201 # *nc*) influence the generator architecture in code. *nz*

is the length

202 # of the z input vector , *ngf* relates to the size of the

feature maps

203 # that are propagated through the generator , and *nc* is

the number of

204 # channels in the output image (set to 3 for RGB images).

Below is the

39

205 # code for the generator.

206 #

207

208 # Generator Code

209

210 class Generator(nn.Module):

211 def __init__(self , ngpu):

212 super(Generator , self).__init__ ()

213 self.ngpu = ngpu

214 self.main = nn.Sequential(

215 # input is Z, going into a convolution

216 nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias

=False),

217 nn.BatchNorm2d(ngf * 8),

218 nn.ReLU(True),

219 # state size. (ngf *8) x 4 x 4

220 nn.ConvTranspose2d(ngf * 8, ngf * 4, 3, 1, 1,

bias=False),

221 nn.BatchNorm2d(ngf * 4),

222 nn.ReLU(True),

223 # state size. (ngf *4) x 8 x 8

224 nn.ConvTranspose2d(ngf * 4, ngf * 2, 3, 2, 1,

bias=False),

225 nn.BatchNorm2d(ngf * 2),

226 nn.ReLU(True),

227 # state size. (ngf *2) x 16 x 16

228 nn.ConvTranspose2d(ngf * 2, ngf , 4, 2, 1,

bias=False),

229 nn.BatchNorm2d(ngf),

230 nn.ReLU(True),

231 # state size. (ngf) x 32 x 32

232 nn.ConvTranspose2d(ngf , nc, 4, 2, 1, bias=

False),

233 nn.ReLU(True)

234 # state size. (nc) x 28 x 28

235)

236

237 def forward(self , input):

238 return self.main(input)

239

240

241 ##

242 # Now , we can instantiate the generator and apply the ``
weights_init ``

40

243 # function. Check out the printed model to see how the

generator object is

244 # structured.

245 #

246

247 # Create the generator

248 netG = Generator(ngpu).to(device)

249

250 # Handle multi -gpu if desired

251 if (device.type == 'cuda ') and (ngpu > 1):

252 netG = nn.DataParallel(netG , list(range(ngpu)))

253

254 # Apply the weights_init function to randomly initialize

all weights

255 # to mean=0, stdev =0.02.

256 netG.apply(weights_init)

257

258 # Print the model

259 print(netG)

260

261

262 class Discriminator(nn.Module):

263 def __init__(self , ngpu):

264 super(Discriminator , self).__init__ ()

265 self.ngpu = ngpu

266 self.main = nn.Sequential(

267 # input is (nc) x 28 x 28

268 nn.Conv2d(nc , ndf , 4, 2, 1, bias=False),

269 nn.LeakyReLU (0.2, inplace=True),

270 # state size. (ndf) x 32 x 32

271 nn.Conv2d(ndf , ndf * 2, 4, 2, 1, bias=False),

272 nn.BatchNorm2d(ndf * 2),

273 nn.LeakyReLU (0.2, inplace=True),

274 # state size. (ndf *2) x 16 x 16

275 nn.Conv2d(ndf * 2, ndf * 4, 3, 2, 1, bias=

False),

276 nn.BatchNorm2d(ndf * 4),

277 nn.LeakyReLU (0.2, inplace=True),

278 ############## Adding ectra layers between

these two

279 nn.Conv2d(ndf * 4, ndf * 4, 3, 1, 1, bias=

False),

280 nn.BatchNorm2d(ndf * 4),

281 nn.LeakyReLU (0.2, inplace=True),

282 #nn.Dropout (0.2) ,

41

283 ##

284 # state size. (ndf *4) x 8 x 8

285 nn.Conv2d(ndf * 4, ndf * 8, 3, 1, 1, bias=

False),

286 nn.BatchNorm2d(ndf * 8),

287 nn.LeakyReLU (0.2, inplace=True),

288 # state size. (ndf *8) x 4 x 4

289 nn.Conv2d(ndf * 8, ndf * 16 , 4 , 1, 0, bias=

False),

290 #nn.Sigmoid ()

291)

292

293 def forward(self , input):

294 return self.main(input)

295

296 def weights_init(m):

297 classname = m.__class__.__name__

298 if classname.find('Conv ') != -1:

299 nn.init.normal_(m.weight.data , 0.0, 0.02)

300 elif classname.find('BatchNorm ') != -1:

301 nn.init.normal_(m.weight.data , 1.0, 0.02)

302 nn.init.constant_(m.bias.data , 0)

303

304 # Create the Discriminator

305 netD = Discriminator(ngpu).to(device)

306

307 # Handle multi -gpu if desired

308 if (device.type == 'cuda ') and (ngpu > 1):

309 netD = nn.DataParallel(netD , list(range(ngpu)))

310

311 # Apply the weights_init function to randomly initialize

all weights

312 # to mean=0, stdev =0.2.

313 netD.apply(weights_init)

314

315 # Print the model

316

317 from torch.autograd import Variable

318 class OCSVM_R(nn.Module):

319

320 def __init__(self , margin =3.5, size_average=True , sign

=1.0):

321 super(OCSVM_R , self).__init__ ()

322 self.ngpu = ngpu

42

323 self.sign = sign

324 self.margin = margin

325 self.size_average = size_average

326

327

328 self.main = nn.Linear(ndf * 16, 1)

329

330 def forward(self , input , target):

331 input = input.view((b_size , -1))

332

333 #

334 #input = self.main(input)

335

336 #input = torch.sigmoid(self.main(input))

337 input = self.main(input)

338 #print(input.shape)

339 input = input.view(-1)

340 #print(input.shape)

341

342

343 assert input.dim() == target.dim()

344

345 for i in range(input.dim()):

346

347 assert input.size(i) == target.size(i)

348 #output now is the loss function (giving out weight of

decision function)

349 #First OCSVM sign 1

350 #

351 #output = torch.mul(target , input)

352

353 #\phi(x_i)+\xi >= 0

354 output = self.margin - torch.mul(input , 1 *target)

#(There is no longer direction)

355 #output = self.margin - input #output is the

loss for OCSVM

356 y = input

357

358 #pull the weight of too fitted inliners into 1

359 y_loss = torch.mul (y, 1) -target * 1

360 #y_loss[torch.gt(y_loss , 1)] = 1

361 y_loss = torch.abs(y_loss)

362

363 #

364

43

365

366 #

367 if 'cuda ' in input.data.type():

368 mask = torch.cuda.FloatTensor(input.size()).zero_

()

369 else:

370 mask = torch.FloatTensor(input.size()).zero_()

371 mask = Variable(mask)

372 mask[torch.gt(output , 0.0)] = 1.0

373 #mask[torch.lt(output , -1.0)] = -1.0

374 #output[torch.gt(output , 1.0)] = 1.0

375

376 #output = (output > mask).float () - torch.sigmoid(

output - mask).detach () + torch.sigmoid(output -

mask)

377

378

379 #

380 output = torch.mul(output , mask)

381 #output = mask

382

383 # apply sign

384 #print (" output", output)

385 #print ("y", y)

386 output = torch.mul(output , y_loss)

387

388

389 # size average

390 if self.size_average:

391 output = torch.mul(output , 1.0 / input.nelement ())

392

393 # sum

394 output = output.sum()

395 #print(output)

396 # apply sign

397 #output = torch.mul(output , self.sign)

398 #output = torch.mul (output , 1) #sign for real OCSVM

399

400 #output = output - self.sign * (1)

401 return output

402 #we use each single output to be weight y. Then we

create a weighted classification distance

403

404 from torch.autograd import Variable

405 class OCSVM_G(nn.Module):

44

406

407 def __init__(self , margin =3.5, size_average=True , sign

=1.0):

408 super(OCSVM_G , self).__init__ ()

409 self.sign = sign

410 self.ngpu = ngpu

411 self.margin = margin

412 self.size_average = size_average

413

414 self.main = nn.Linear(ndf * 16, 1)

415

416

417

418 def forward(self , input , target):

419

420 input = input.view((b_size , -1))

421

422 #input = self.main(input)

423

424 input = self.main(input)############## should I

change sigmoid into something else now it's (0,1)

#(-infty , infty)

425

426

427 #

428 input = input.view(-1)

429

430 #

431 #assert input.dim() == target.dim()

432 #for i in range(input.dim()):

433 #assert input.size(i) == target.size(i)

434

435 #Second OCSVM sign -1

436 #

437 #output = torch.mul(target , input)

438 output = self.margin - torch.mul(input , -1* target)

#(There is no longer direction) (CANNOT see

the direction)

439 #output = self.margin - input

440 y = input

441

442 y_loss = torch.mul (y, -1) - target * -1

443 #y_loss[torch.gt(y_loss , 1)] = 1

444 y_loss = torch.abs(y_loss)

445 #y_loss = torch.abs(torch.mul (y, -1) - target * -1)

45

446

447

448 #

449 if 'cuda ' in input.data.type():

450 mask = torch.cuda.FloatTensor(input.size()).

zero_()

451 else:

452 mask = torch.FloatTensor(input.size()).zero_()

453 mask = Variable(mask)

454 mask[torch.gt(output , 0.0)] = 1.0

455 #mask[torch.lt(output , -1.0)] = -1.0

456

457 #output = (output > mask).float () - torch.sigmoid(

output - mask).detach () + torch.sigmoid(output -

mask)

458

459 #

460 output = torch.mul(output , mask)

461 #output = mask

462

463 # apply sign

464 output = torch.mul(output , y_loss)

465

466

467 # size average

468 if self.size_average:

469 output = torch.mul(output , 1.0 / input.nelement ())

470

471 # sum

472 output = output.sum()

473 #print(output)

474

475 # apply sign

476 #output = torch.mul(output , self.sign)

477 #output = torch.mul (output , -1) #sign for real

OCSVM

478

479 #output = output - self.sign * (-1)

480 return output

481

482 # Initialize BCELoss function

483 criterion_R = OCSVM_R(size_average = True)

484 criterion_G = OCSVM_G(size_average = True)

485

486

46

487

488 fixed_noise = torch.randn(64, nz, 1, 1, device=device)

489

490

491

492 # Establish convention for real and fake labels during

training

493 real_label = 1.

494 fake_label = -1.

495

496 # Setup Adam optimizers for ONLY D

497 optimizerD = optim.Adam(netD.parameters (), lr=lr, betas=(

beta1 , 0.9))

498

499 # Setup Adam optimizer for G

500 optimizerG = optim.Adam(netG.parameters (), lr=lr, betas=(

beta1 , 0.9))

501

502 # Commented out IPython magic to ensure Python

compatibility.

503 from locale import strcoll

504 # Training Loop

505

506 # Lists to keep track of progress

507 img_list = []

508 G_losses = []

509 D_losses = []

510 iters = 0

511

512 print(" Starting Training Loop ...")

513 # For each epoch

514 for epoch in range(num_epochs):

515 # For each batch in the dataloader

516 for i, data in enumerate(dataloader , 0):

517 #print(real.shape)

518 ############################

519 # (1) Update D network: maximize log(D(x)) + log(1

- D(G(z)))

520 ###########################

521 ## Train with all -real batch

522 #label = label.data.resize_(batch_size).fill_(

real_label)

523 for p in netD.parameters (): # reset requires_grad

524 p.requires_grad = True # they are set to False

below in netG update

47

525 for p in netG.parameters ():

526 p.requires_grad = False # to avoid computation

527

528 netD.zero_grad ()

529 # Format batch

530 real_cpu = data.to(device)

531 #print(data.shape)

532 b_size = real_cpu.size (0)

533 #print(real_cpu.size (0))

534 label = torch.full((b_size ,), real_label , dtype=

torch.float , device=device)

535 # Forward pass real batch through D

536 output = netD(real_cpu)

537 #print(label.shape)

538 # Calculate loss on all -real batch

539 errD_rr = criterion_R(output , label)

540 errD_rg = criterion_G(output , label)

541 # Calculate gradients for D in backward pass

542 errD_rr.backward(retain_graph =True)

543 errD_rg.backward(retain_graph =True)

544 D_x = output.mean().item()

545

546 ## Train with all -fake batch

547 noise = torch.randn(b_size , nz , 1, 1, device=

device)

548 fake = netG(noise)

549 label.fill_(fake_label)

550 #print(real.shape)

551 # Classify all fake batch with D

552 output = netD(fake.detach ()).view(-1)

553 # Calculate D's loss on the all -fake batch

554 errD_gr = criterion_R(output , label)

555 errD_gg = criterion_G(output , label)

556 # Calculate the gradients for this batch ,

accumulated (summed) with previous gradients

557 errD_gr.backward(retain_graph=True)

558 errD_gg.backward(retain_graph=True)

559 D_G_z1 = output.mean().item()

560 # Compute error of D as sum over the fake and the

real batches

561 errD = errD_rr + errD_rg + errD_gr + errD_gg

562 errD.backward ()

563 # Update D

564 optimizerD.step()

565

48

566

567 ############################

568 # (2) Update G network: maximize log(D(G(z)))

569 ###########################

570 for p in netD.parameters ():

571 p.requires_grad = False # to avoid computation

572 for p in netG.parameters ():

573 p.requires_grad = True # reset requires_grad

574

575 netG.zero_grad ()

576 label.fill_(real_label) # fake labels are real

for generator cost #########################

577 # Since we just updated D, perform another forward

pass of all -fake batch through D

578 fake = netG(noise)

579 output = netD(fake).view(-1)

580 # Calculate G's loss based on this output

581 errGR = criterion_R(output , label)

582 errGG = criterion_G(output , label)

583 errGR.backward(retain_graph=True)

584 errGG.backward(retain_graph=True)

585 errG =errGR+errGG

586 # Calculate gradients for G

587 errG.backward ()

588 D_G_z2 = output.mean().item()

589 # Update G

590 optimizerG.step()

591

592 # Output training stats

593 if i % 50 == 0:

594 print('[%d/%d][%d/%d]\ tLoss_D: %.4f\tLoss_G:

%.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
595 # % (epoch , num_epochs , i, len(

dataloader),

596 errD.item(), errG.item(), D_x , D_G_z1

, D_G_z2))

597

598 # Save Losses for plotting later

599 G_losses.append(errG.item())

600 D_losses.append(errD.item())

601

602 # Check how the generator is doing by saving G's
output on fixed_noise

603 if (iters % 100 == 0) or ((epoch == num_epochs -1)

and (i == len(dataloader) -1)):

49

604 with torch.no_grad ():

605 fake = netG(fixed_noise).detach ().cpu()

606 img_list.append(vutils.make_grid(fake , padding

=2, normalize=True))

607 # Plot the fake images from the last epoch

608 plt.subplot (1,2,2)

609 plt.axis("off")

610 #plt.title("Fake Images ")

611 plt.imshow(np.transpose(img_list [-1],(1,2,0)))

612 plt.savefig ("/ content/drive/MyDrive/THESIS/

TRAIN /"+ str(iters*epoch) + ".png")

613 plt.show()

614

615 iters += 1

616

617

618

619

620

621

622

623

624

625 ##################

626 # Results

627 # -------

628 #

629 # Finally , lets check out how we did. Here , we will look

at three

630 # different results. First , we will see how D and G s

losses changed

631 # during training. Second , we will visualize G s output

on the fixed_noise

632 # batch for every epoch. And third , we will look at a

batch of real data

633 # next to a batch of fake data from G.

634 #

635 # **Loss versus training iteration **

636 #

637 # Below is a plot of D & G s losses versus training

iterations.

638 #

639

640 plt.figure(figsize =(10 ,5))

50

641 plt.title (" Generator and Discriminator Loss During

Training ")

642 plt.plot(G_losses ,label="G")

643 plt.plot(D_losses ,label="D")

644 plt.xlabel (" iterations ")

645 plt.ylabel ("Loss")

646 plt.legend ()

647 plt.savefig (" OCSMLOSS.png")

648 plt.show()

649

650

651

652 #############

653 # ** Visualization of G s progression **

654 #

655 # Remember how we saved the g e n e r a t o r s output on the

fixed_noise batch

656 # after every epoch of training. Now , we can visualize the

training

657 # progression of G with an animation. Press the play

button to start the

658 # animation.

659 #

660

661 #%% capture

662 fig = plt.figure(figsize =(8 ,8))

663 plt.axis("off")

664 ims = [[plt.imshow(np.transpose(i,(1,2,0)), animated=True)

] for i in img_list]

665 ani = animation.ArtistAnimation(fig , ims , interval =1000 ,

repeat_delay =1000, blit=True)

666

667 HTML(ani.to_jshtml ())

668

669

670 ###################

671 # **Real Images vs. Fake Images **

672 #

673 # Finally , lets take a look at some real images and fake

images side by

674 # side.

675 #

676

677 # Grab a batch of real images from the dataloader

678 real_batch = next(iter(dataloader))

51

679

680 # Plot the real images

681 plt.figure(figsize =(15 ,15))

682 plt.subplot (1,2,1)

683 plt.axis("off")

684 plt.title ("Real Images ")

685 plt.imshow(np.transpose(vutils.make_grid(real_batch [0].to(

device)[:64], padding=5, normalize=True).cpu() ,(1,2,0))

)

686

687 # Plot the fake images from the last epoch

688 plt.subplot (1,2,2)

689 plt.axis("off")

690 plt.title ("Fake Images ")

691 plt.imshow(np.transpose(img_list [-1],(1,2,0)))

692 plt.show()

693 plt.savefig (" OCSVMGEN.png")

52

Appendix C: Simulation
Comparison

We tried to replicate the simulation experiment from Geometric GAN (Lim and Ye

2017). We created 25 Gaussian mixture model, and applied the same network as their

experiment design. Both Generator and Discriminator are fully connected.

• Discriminator: FC(2, 128)-ReLU-FC(128, 128)-ReLU-FC(128, 128)-ReLU-

FC(128,1)

• Generator: FC(4, 128)-BN-ReLU-FC(128, 128)-BN-ReLU-FC(128, 128)-BN-

ReLU-FC(128, 2) (Lim and Ye 2017)

From the simulation result, we can see that the W-GAN significantly does not cover

the whole area. The rest three have much better performance than the performance

of W-GAN. When we look into the GAN, Geometric GAN, and OCSVMGAN, we

find out that they are all trying to cover the most area of the real distribution. While

the distribution of GAN and Geometric GAN look similar, the OCSVMGAN has

least impact on the original point (the lightest blue point). Therefore, we have some

evidence to say that the OCSVM GAN is better than the other networks in reducing

mode collaspes.

53

Figure C.1: The Distribution of Simulation Training Data

Figure C.2: The Distribution Generated Data from original GAN

54

Figure C.3: The Distribution of Generated Data from W-GAN

Figure C.4: The Distribution of Generated Data from Geometric GAN

55

Figure C.5: The Distribution of Generated Data from OCSVMGAN

56

	Introduction
	Motivation
	Thesis Objectives
	Thesis Outline

	Background
	Generative Adversarial Network
	Adversarial Nets
	Mean Feature GAN
	Geometric GAN

	One Class Support Vector Machine
	Support Vector Machine
	One-Class SVM

	Gap in Research
	Conclusions

	Methods and Procedure
	One-Class SVM Hyperplane
	Updating the Unsupervised Network

	Experiment & Tuning
	Network

	Results and Discussion
	Conclusions

	Conclusions, Recommendations, & Future Work
	Conclusions
	Future Work

	Bibliography
	Appendix A: Related Networks
	DC-GAN

	Appendix B: Experiment Codes
	OCSVM GAN

	Appendix C: Simulation Comparison

