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Introduction

Transposable elements (TEs) make up a significant pro-
portion of many eukaryotic genomes, totaling almost 45% for
human [1], and 50% to 80% for rice, maize, and wheat [2–4].
They play important evolutionary roles [5,6], and can be
essential tools for genome analyses [7]. RepeatMasker (A. Smit
and P. Green, unpublished data) is one of the most commonly
used algorithms for detecting TEs. It relies on a comparison
to known TEs from libraries like Repbase [8], which
represents many years of manual labor. Computational tools
like REPuter [9], RECON [10], and RepeatGluer [11] automate
this process. However, almost all of the genomes sequenced
today employ a whole genome shotgun (WGS) method that is
incapable of assembling the most recent TEs, and any efforts
to force such an assembly together generally increase the
probability of assembly errors. For example, in the mouse [12]
and rice [13,14] genomes, 15% and 14% of the reads were left
out of the assemblies, respectively. Some of the unassembled
reads are due to centromeres or telomeres, but we know in
rice that many are recent TEs. Unassembled reads are the
most informative reads for TE recovery as they are the least
diverged from their ancestral sequences. Despite this fact, all
of the above tools were only tested on assembled genomes
and it is not clear how effectively or efficiently they might
incorporate the information in the unassembled reads.
Hence, we developed a new algorithm, ReAS (from ‘‘recovery
of ancestral sequences’’), to produce the requisite TE library
using only the unassembled reads of a WGS.

Ancestral sequence refers to the sequence of a TE when it
was first inserted in the genome, and present-day sequence
refers to the sequence of a TE as it exists today. With the
passage of time, all TE sequences degenerate, and after a
hundred million years or so, they become unrecognizable. It
is the present-day sequence that cannot be assembled by a
WGS (or by ReAS), but it is the ancestral sequence that is

preferred by RepeatMasker, as divergence between an
ancestral sequence and a present-day copy is half of that
between two present-day copies. ReAS works on TEs that
satisfy two assumptions. First, these TEs must exist at high
copy numbers across the genome. Second, they must not be
so old that they are no longer recognizable in comparison to
their ancestral sequences. For such TEs, pieces of the
ancestral sequence may still exist at high copy numbers,
scattered across the genome, even if nowhere in the genome
is there an intact version. Reconstruction of such ancestral
sequences ought to be possible, as follows.
TEs are under no selective constraints once they insert into

a genome. The process by which they subsequently decay is
complex [15,16]. It includes mutational, insertional, and
deletional events, plus transposition, amplification, and TE-
mediated rearrangements. To the extent that this process is
random, a consensus of present-day sequences should be a
reasonable approximation of the ancestral sequence. Of
course, for molecular evolution studies, a simple majority
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consensus is not good enough, and more detailed knowledge
of the underlying biology for each TE is required to construct
the correct ancestral sequence. The consensus is a good
starting point, and for use as a RepeatMasker library in
genome annotations, it suffices. Figure 1 depicts the ReAS
process. We select a high-depth K-mer and retrieve all of the
reads that contain this K-mer. Then we assemble these reads
into an initial consensus sequence (ICS). Next, we look for
new K-mers at the ends of the consensus and iteratively
extend it until no further extensions are possible. Because
most WGS projects generate reads from both ends of the
clone inserts, we also take advantage of this linking
information to resolve ambiguities and break misassemblies,
but not to join fragmented assemblies. The end result is a
ReAS TE.

We will demonstrate how ReAS operates on japonica rice, as
most of the rice TEs in Repbase are from that subspecies, and
unassembled WGS reads [17] are available from the GenBank
trace archives. Many of the software components for ReAS
were developed for RePS, the WGS assembler first used in the
indica rice genome [18,19]. Following the nomenclature in
those papers, we define the depth of a K-mer as the number
of times that it appears in the unassembled data. Copy
number is how often it appears in the assembled genome.
Shotgun coverage is the ratio of depth to copy number, which
for japonica is 63. The essential difference between RePS and
ReAS is that the former avoids high-depth K-mers, and the
latter seeks them out. These contrasting objectives are
fundamentally at odds with each other. RePS must choose
between leaving behind a lot of unassembled reads, versus
having larger contigs with potentially more assembly errors.
ReAS focuses on TE recovery alone, and is therefore more
likely to get the right answer, in contrast to the other
reconstruction algorithms like REPuter, RECON, or Re-
peatGluer, which must operate on a genome that is already
misassembled by algorithms like RePS. All C subroutines and
Perl scripts for ReAS are freely available from ReAS@
genomics.org.cn.

Results

One of the luxuries of doing this analysis on japonica is the
fact that we have data from Syngenta [17], which uses a WGS
method, and from the International Rice Genome Sequenc-
ing Project (IRGSP) [20–22], which uses a mapped-clone
method. ReAS was run on the unassembled WGS reads from
Syngenta, but when an assembled genome sequence was
needed, we used the IRGSP results. The recovery process was
seeded with K-mers of length K¼17, and a depth threshold of
D ¼ 14 was used. Mitochondria and chloroplast sequences
were removed before analyzing the resultant ReAS TEs. The
‘‘gold standard’’ against which we benchmarked the recov-
ered TEs was Repbase version 8.4.

Repbase Comparison
Figure 2 is an example of a perfectly recovered TE that

exists in fragmented form in Repbase. This gypsy-like element
is 10,841 bp. The region from 1 to 10,387 bp matches Repbase
RIRE2_I (Internal) at 96% nucleotide identity, and the
region from 10,401 to 10,841 bp matches Repbase RIR-
E2_LTR (long terminal repeat [LTR]) at 93% nucleotide

Figure 1. The ReAS Algorithm

We start by computing K-mer depth, which is the number of times that a
K-mer appears in the shotgun data. Copy number refers to how often a
K-mer appears in the assembled genome. Depth divided by copy
number is the coverage. We seed the process using a randomly chosen
high-depth K-mer. All shotgun reads containing this K-mer are retrieved
and trimmed into 100-bp segments centered at that K-mer. When the
sequence identity between them exceeds a preset threshold, they are
assembled into an ICS using ClustalW. We perform an iterative extension
by selecting high-depth K-mers at both ends of the ICS and repeating
the above procedure. After all such extensions are done, clone-end
pairing information is used to resolve ambiguous joins and to break
misassemblies, but not to join fragmented assemblies. The final
consensus is our ReAS TE.
DOI: 10.1371/journal.pcbi.0010043.g001
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Synopsis

Transposable elements (TEs) are a major component of the
genomes of multicellular organisms. They are parasitic creatures
that invade the genome, insert multiple copies of themselves, and
then die. All we see now are the decayed remnants of their ancestral
sequences. Reconstruction of these ancestral sequences can bring
dead TEs back to life. Algorithms for detecting TEs compare present-
day sequences to a library of ancestral sequences. Unknown to
many, pervasive use of whole genome shotgun (WGS) methods in
large-scale sequencing have made TE reconstructions increasingly
problematic. To minimize assembly errors, WGS methods must
reject the highly repetitive sequences that characterize most TEs,
especially the most recent TEs, which are the least diverged from
their ancestral sequences (and most informative for reconstruction).
This is acceptable to many, because the most important parts of the
genes are not repetitive, but for the TE aficionados, it is a problem.
ReAS is a novel algorithm that does TE reconstruction using only the
unassembled reads of a WGS. Tested against the WGS for japonica
rice, it is shown to produce a library that is superior to the manually
curated Repbase database of known ancestral TEs.

ReAS: Recovery of Ancestral Sequences



identity. Notice that ReAS only recovered the LTR at one end
of this TE, even though the correct ancestral sequence should
have an LTR at both ends. This is a consequence of our
restriction that reads already in a consensus be excluded from
the next extension. Figure 3 depicts a recovered TE that had
no counterpart within Repbase. We believe it is a valid TE
because it has a BlastX alignment at 98% identity over 869
amino acids to a TE-related protein in GenBank
(gij34896386jrefjNP_909537.1j Putative mutator like trans-
posase).

More than 95% of the 17-mers in the recovered ReAS TEs
had depths over 14, as we show in Figure S1. This is of course
by design. In contrast, for the Repbase TEs, only half of the 17-
mers had depths over 14. This is relevant for the comparisons,
because not every one of these low-depth Repbase TEs is
correct. It is clear, however, that ReAS cannot recover them,
so for the comparisons, we considered only high-depth TEs in
Repbase. WGS reads were aligned to Repbase TEs using
BlastN. Good alignments were those of size greater than 100
bp and nucleotide identity of better than 85%. High-depth
TEs were covered over 80% of their length with at least 14
aligned reads. A total of 54 Repbase TEs qualified, and these
are described in Table S1. As we show in Table 1, 95.8% of 54
high-depth Repbase TEs were recovered, although sometimes
in fragmentary form. If fragmentary recovery is not accept-
able, and we credited only the best-matched ReAS TEs, 88.1%
were recovered. The reduction in the recovery rate is mostly
attributable to copia elements, which tend to have lower 17-
mer depths and more divergent sequences.

Table S2 compares each of these Repbase TEs to its best-
matched ReAS TE. Over aligned regions, sequence identities
averaged 96.8%. Where they failed to align, we computed
error rates. False negative (FN) is the fraction of the Repbase
TE that remains unaligned. It averages 11.9% in our dataset.

False positive (FP) is the fraction of the ReAS TE that remains
unaligned, but we must make some exceptions because there
are many plausible explanations for these unaligned regions.
We know that Repbase can be incomplete. ReAS TEs were
larger than Repbase TEs in 42 of 54 cases. In seven instances,
ReAS TEs were 2–18 times larger than Repbase TEs. This was
due either to incomplete Repbase TEs, in the manner of
Figure 2, and/or to concatemers of the form j- LTR -j j-
Internal -j j- LTR -j j- Internal -j, which tend to occur when
the LTRs are extremely diverged. Ignoring these seven
instances, the average ratio of ReAS TE to Repbase TE size
was actually 1.01. For our definition of FP, therefore, we
ignored any unaligned regions at the ends and counted only
unaligned regions in the middle, as these are the problems
that are most likely to mislead a user. The average FP over the
dataset was 1.6%.

Utility as TE Library
ReAS recovered 8,411 high-depth ancestral sequences with

mean length of 640 bp and mean depth of 152, as we indicate
in Table 2. Of these, 1,275 matched to known TEs in Repbase
and 707 matched to TE-related proteins (keywords include
retrotransposon, transposase, reverse transcriptase, gypsy, and
copia); the remaining 6,429 were less easily classified. This last
category is primarily composed of small low-depth repeats.
Indeed, they drag down the overall mean length and depth. If
we included only those repeats that matched to Repbase, the
mean length was 1,634 bp and the mean depth was 464. Based
on the arguments that we discuss below, we further
subdivided this last category into 1,792 potentially interesting
repeats (of length over 500 bp and depth over 35) and 4,637
probable artifacts.
Many of the ReAS TEs could be clustered together, on the

criterion that a repeat was collapsed into a cluster when 80%

Figure 2. Complete Recovery of Known TE

RIRE2 is a gypsy-like TE that is found in two pieces in Repbase, as RIRE2_I
(Internal) and RIRE2_LTR (LTR).
These have 96% and 93% nucleotide identity to our ReAS TE,
respectively.
DOI: 10.1371/journal.pcbi.0010043.g002

Figure 3. Recovery of Unknown TE

Although not found in Repbase, we believe that this ReAS TE is a valid
reconstruction, because it has a BlastX match with identity 98% over 869
amino acids to a TE-related protein (gij34896386jrefjNP_909537.1j
Putative mutator like transposase) that is annotated in a GenBank clone.
DOI: 10.1371/journal.pcbi.0010043.g003
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of its length aligned with another member of that cluster at
BlastN E-values of 10�5. This reduced the dataset to 7,015
clusters. The collapse was most pronounced among repeats
with a match to Repbase, where 1,275 ReAS TEs were
collapsed into 242 clusters. To explore the extent to which
highly divergent TEs are assembled into different ReAS TEs,
we performed a simulation. We started with an ancestral
sequence of 500 bp, 2 kb, and 10 kb. From this, we simulated
100 present-day copies of the TE, with a range of divergences
from the ancestral sequence. We simulated a 63 WGS and
applied ReAS to that. Results were averaged over ten such
simulations, as shown in Table S3. Some fragmentation was
observed in the more divergent TEs, especially at larger sizes.
However, even in the worst case of 0% to 40% divergence at
10 kb size, a single best-matched ReAS TE covered 86% of the
ancestral TE. All of the other pieces were smaller than 500 bp
in size and less than 35 in depth. Some collapsed into the
best-matched ReAS TE. Almost all aligned to the ancestral
TE, of which we invariably recovered more than 95%.

Table 3 classifies the 1,275 known TEs in the same manner
as our previous indica genome analyses [13,14]. We recovered
691 (in 113 clusters) Class I TEs. There were 51 (in 25 clusters)
copia and 381 (in 41 clusters) gypsy LTR retrotransposons,
relatively few LINEs (long interspersed nuclear elements) and
SINEs (short interspersed nuclear elements), plus 239 (in 39
clusters) unknown retrotransposons. This outcome is con-

sistent with the finding that LTR retrotransposons are the
single largest component of most plant genomes [23]. The
ratio for copia to gypsy elements was 51/381 (or 25/41 by
clusters). This is consistent with the finding that copia is less
abundant than gypsy [24]. We recovered 217 (in 48 clusters)
Class III TEs. These were typically quite small, with a mean
size of 396 bp, and found in noncoding regions adjacent to
genes [25].
We subdivided the unclassified repeats by comparing their

characteristics with those of our 1,275 known TEs. If we set a
threshold at depth 35, then 9.3% of known TEs fell below this
threshold, as opposed to 4,637 (84.7%) of 5,475 unclassified
repeats of length under 500 bp. Conversely, we created
chromosome-sized random sequences of length 10 Mb,
simulated a 63 WGS on these, and ran ReAS. From ten such
chromosomes, 3,419 ReAS TEs were recovered. These were
obviously artifacts, which was easy to see because only 31
(0.9%) had length over 500 bp, while 38 (1.1%) had depth
over 35. As a result, we used these cutoff thresholds to clean
up our 6,429 unclassified repeats. Of the remaining 1,792
repeats, 89 (in 29 clusters) were of length over 1,000 bp and
depth over 100, as shown in Tables S4–S9. One cluster of 45
repeats was centromeric in origin. Two clusters were
attributable to ribosomal RNA and a seed prolamine gene.
To check for pseudogenes, we searched for similarity to a
nonredundant set of 19,079 full-length cDNAs [26] that are

Table 1. Nearly Complete Recovery of All 54 High-Depth TEs in Repbase

Class Type Number of TEs Total (bp) Mean (bp) Combined ReAS Best Single ReAS

Length (bp) Percent of TEs Length (bp) Percent of TEs

Class I copia 5 15,926 3,185 14,032 88.1% 10,014 62.9%

gypsy 7 31,286 4,469 30,172 96.4% 29,584 94.6%

SINE 2 465 233 443 95.3% 443 95.3%

Unknown retros 9 20,607 2,290 20,447 99.2% 18,889 91.7%

Class II hAT-like 3 5,277 1,759 5,202 98.6% 5,132 97.3%

mutator-like 1 427 427 427 100.0% 425 99.5%

Class III kiddo 3 828 276 721 87.1% 721 87.1%

stowaway-like 9 2,226 247 2,220 99.7% 2,217 99.6%

tourist-like 13 3,868 298 3,792 98.0% 3,792 98.0%

Unknown MITE 2 504 252 504 100.0% 504 100.0%

All 54 81,414 1,508 77,960 95.8% 71,721 88.1%

In the first case, we allow the Repbase TE to be recovered in multiple ReAS TEs by combining all BlastN alignments that exceed 100 bp and 85% nucleotide identity. In the second case, we use only the best-matched ReAS TE. Most of the losses

are due to copia TEs, which contain lower 17-mer depths and more divergent sequences.

DOI: 10.1371/journal.pcbi.0010043.t001

Table 2. Ranking of All 8,411 ReAS TEs Based on Their Likelihood of Being TEs

Rank Type Clusters ReAS TEs Total (bp) Mean (bp) Average Depth

1 Repbase TEs 242 1,275 2,083,850 1,634 464

2 TE-related proteins 636 707 1,034,925 1,464 52

3 Other repeats 1,512 1,792 1,285,521 717 296

4 Probable artifacts 4,625 4,637 981,092 212 26

All 7,015 8,411 5,385,388 640 152

Matches to Repbase are based on BlastN alignments for E-values of 10�10 that cover at least 80% of either sequence, ReAS or Repbase. TE-related proteins are the GenBank entries with descriptor keywords like transposase, reverse

transcriptase, retrovirus, retrotransposon, polyprotein, copia, gypsy, etc. The matches are based on BlastX alignments for E-values of 10�5 that cover at least 50% of the protein at 25% amino acid identity. All remaining entries are separated by

size and 17-mer depth, at cutoff thresholds of 500 bp and depth 35. Those lying above both thresholds are called ‘‘other repeats,’’ while the rest are called ‘‘probable artifacts.’’ Finally, we collapse a ReAS TE into a cluster when 80% of its

length is aligned to another member of the growing cluster for BlastN E-values of 10�5.

DOI: 10.1371/journal.pcbi.0010043.t002
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called nr-KOME. Seven clusters matched at BlastX E-values of
10�5, but five of these seven matched to cDNAs that show
similarity to recently discovered TE-related proteins. If we
eliminate these, we are left with 23 repeats (in 19 clusters) of
mean length 1,795 bp and mean depth 739. This is
comparable to known TEs. All but two of these clusters are
80% intact in the Syngenta or IRGSP assemblies, indicating
they are not ReAS artifacts.

The ultimate test of utility is to use these ReAS TEs as a
library for RepeatMasker and see how well that masks the rice
genome. We did this analysis on the IRGSP genome, because
this sequence was taken by a mapped-clone method, and is
more representative of the true repeat content. Figure 4 and
Table 4 show the comparison to and improvement over
Repbase. Only 30.8% of the genome was masked using
Repbase as the library, whereas 36.3% was masked when we
used the ReAS TEs in the known and TE-related categories.

This increased to 41.0% if we added the third category of
‘‘other repeats.’’ To consider whether gene duplications were
a confounding factor, we ran RepeatMasker on the 19,079
gene regions defined by nr-KOME cDNAs. Only 1.7% of the
nucleotides for the coding exons were masked, but 9.3% were
masked if introns were included. In fact, even those few
percent that were masked are not likely due to gene
duplications, as there are TEs in cDNAs. Of the 246 genes
where more than half of the coding exons were masked, four
were ribosomal RNAs and the rest were BlastP homologous to
TE-related proteins at E-values of 10�5.

Discussion

Given the inherent complexity of the ReAS algorithm, it is
astonishing how well it does work, especially when bench-
marked against the years of skilled labor that went into the
production of Repbase. We would caution that our parame-
ters were specifically tuned for rice, and they will likely need to
be changed for non-grass genomes, to adjust for how TE
history is different in other species. Even in rice, our current
parameters worked much better for gypsy than for copia TEs.
ReAS works best for high-copy TEs that have not had too
much time to diverge from their ancestral sequences. The
same constraints apply even in a manual reconstruction
procedure, and a lot of hard work will be required to do much
better than ReAS. Although it is true that Repbase has many
low-depth TEs that are not in ReAS, there is often no evidence
that these Repbase entries represent the correct ancestral
sequence of any particular TE. Indeed, by using ReAS as the
library in RepeatMasker, we can detect many more TEs than
Repbase while missing little of what is in Repbase. Some
manual curation is required for the post-analysis of recovered
TEs. For example, j- LTR -j j- Internal -j j- LTR -j j- Internal -j
concatemers must be resolved manually. ReAS removes a lot
of the drudgery, but it is not the final answer. What it does is
provide a starting point for expert annotation of the complete
TE contents of a sequenced genome.

Table 3. Classification of Recovered Sequences into Known TE Families

Class Type Clusters ReAS TEs Total (bp) Mean (bp) Average Depth

Class I copia 25 51 94,241 1,848 240

gypsy 41 381 1,000,468 2,626 604

LINE 4 6 6,244 1,041 40

SINE 4 14 3,960 283 215

Unknown retros 39 239 516,404 2,161 339

Class II CACTA 7 28 6,686 239 113

En/Spm 1 25 21,149 846 437

hAT-like 18 34 21,595 635 131

helitron 4 5 1,885 377 24

mutator-like 11 18 8,789 488 194

unknown DNA 40 257 316,511 1,232 296

Class III kiddo 2 2 469 235 141

stowaway-like 12 125 58,810 470 800

tourist-like 33 87 25,350 291 747

Unknown MITE 1 3 1,289 430 407

All 242 1,275 2,083,850 1,634 464

This table shows only the 1,275 ReAS TEs with a match to Repbase.

DOI: 10.1371/journal.pcbi.0010043.t003

Figure 4. Masking of Entire Rice Genome by RepeatMasker

We use different TE libraries and indicate the overlaps between these
different results in a Venn diagram. ReAS (1to2) refers to the first two
categories of Table 2 (Repbase and TE-related). ReAS (1to3) includes the
third category (other repeats). Numbers are percentage of genome.
DOI: 10.1371/journal.pcbi.0010043.g004
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Materials and Methods

The ReAS algorithm. We explain our choice of parameter settings
in a later section. Here, we wish to discuss the principles behind the
ReAS algorithm. In this paper, K¼ 17. Selection of the initial K-mer
seed must satisfy three conditions. First, to avoid spurious matches, it
cannot be a simple repeat like a poly-A tail. Second, the K-mer depth
must exceed a predetermined threshold D. In this paper, D¼ 14. At a
coverage of 63, this corresponds to a copy number of 2.3. Finally, it
should not be in a previously recovered ReAS TE.

Using the selected K-mer as a bait, we retrieve all sequence reads
that contain this K-mer, and trim the reads down to 100-bp fragments
centered at that K-mer. We align the fragments with each other and
look for groups of D or more fragments with what we call 95%
‘‘mutual identity.’’ That is, we add fragments successively, and at each
step, ask that the new fragments be 95% identical to at least 2/3 of the
pre-existing fragments in that group. To avoid the combinatorial
explosion, we employ a greedy algorithm. For the initial seeding, we
consider only the biggest resultant group. For the extensions, we must
consider all the resultant groups. This will create ambiguity problems.
How these are resolved is discussed in a later section. Two commonly
used alignment tools were tested: ClustalW [27] and Phrap (P. Green,
unpublished data). ClustalW excelled at assembling a large number of
fragments of somewhat differing sequence content, while Phrap
excelled at assembling a small number of fragments of nearly
identical sequence content. ClustalW tolerated the inevitable
discrepancies, while Phrap often failed to assemble fragment groups
as a result of these discrepancies. We therefore chose ClustalW.

To extend the consensus, we select high-depth K-mers from both
ends of the ICS, and use these as secondary seeds to retrieve additional
reads. Also, to reduce the chances that something might be missed,
because of mutations or rearrangements, we consider all qualified K-
mers (i.e., those satisfying the above seed conditions) within 50 bp of
the ends. We require that the newly retrieved reads agree with the
previous ICS in this 50-bp region, to within 95% identity. A constraint
is imposed on the number of shared reads b. Suppose there are aþ b
reads in the previous ICS, and bþ c reads in the new consensus. We ask
that b/(aþ b) . 20% or b/(bþ c) . 20% or b . 200. Assuming that these
conditions are satisfied, we extend the ICS by100 bp, starting from the
end of the previous ICS. Since most reads are 500 bp long, no read is
allowed to participate in more than five extensions. This process is

repeated until no further extensions are possible, after which, a
finishing step is used to get the last few bases. We walk out one base at a
time, and stop whenever we see a 20-bp region where fewer than 60%
of the reads agree to 95% mutual identity.

General difficulties. The idealized algorithm described above is of
course a simplification. In practice, there are three problems:
ambiguity/misassembly, fragmentation, and segmental duplication.
To resolve ambiguities and break misassemblies, we consider the
long-range information that is available to us. The reads themselves
at typical lengths of 500 bp are one source of such information. Use
of read overlap data is implicitly incorporated, because we ask that
the parent ICS and its extension share some portion of their reads.
Another source of such information arises when reads are sampled
from both ends of the clone inserts, which are typically 3 kb apart.
Consider the following example.

Figure 5 shows a situation where two distinct TEs, a-e-c and b-e-d,
share a similar fragment, e. Four reconstructions are possible: a-e-c,
a-e-d, b-e-c, and b-e-d. If the shared region is not too long, for
example, less than300 bp, the correct path may be identified by read
overlaps. If not, the correct path may still be identified by clone-end
pairing data. A few possibilities are listed here: (1) if a-e-c and b-e-d
are supported, and nothing else, the other two paths can safely be
eliminated; (2) if a-e-c is the only supported path, it is a less certain
situation, but since the other path is most likely to be b-e-d, these are
the paths we keep; (3) if a-e-c and a-e-d are both supported, it is
difficult to know which path is correct, and so we keep all four; (4) if
none of the four paths are supported, we keep them all. The
operating philosophy is that we try to resolve all the ambiguities as
safely as possible, but if it cannot be done, we keep all possible paths
for future consideration.

Some TEs will not be recovered as a single consensus if, at some
point along their length, the depth falls below D. The example in
Figure 6 is for a gypsy-like TE called SZ-43LTR. Of the two recovered
consensus fragments, one covers positions 1 to 927 bp and, compared
to the Repbase TE, shows 98% nucleotide identity. The other covers
positions 1,568 to 4,039 bp and shows 97% nucleotide identity. As
expected, the break is in a region of low depth. Although in principle
one can use clone-end pairing data to join fragmented assemblies, in
practice we discovered that this procedure is too error-prone. For
example, two distinct TEs may be adjacent to each other on the
genome, and therefore they will be linked by a clone-end pair. Hence,
we decided not to use the clone-end pairing data in this context. The
information lost turns out to be minimal.

Segmental duplication of large regions of a genome [28] causes
another problem, because when the duplication is of sufficiently high
copy number, it will be assembled as a ‘‘ReAS TE.’’ To the extent that
there are TEs inside this duplication, we must determine their
boundaries. We use an idea from RECON [10], taking advantage of
the fact that TEs tend to occur at much higher copy numbers than
duplications. Figure 7 explains the basic concept. TE boundaries are
identified by sudden changes in depth, accompanied by many
partially aligned reads. For any particular read, we define the
endpoint as the boundary of its alignment with the ReAS TE. We
search for any regions with a significant aggregation of endpoints and
a significant depth discrepancy. On the low side, the depth is required
to be less than 300. We ask that the ratio of high to low depth be
greater than three. On the high side, we also require that there are
endpoints for at least 50% of reads within 20 bp of the putative
boundary. TEs so defined are then excised for further analysis.

Figure 5. Fork Problem during Consensus Extension

Suppose we have two TEs, each in three segments, a-e-c and b-e-d,
where segment e is identically shared between the two TEs. Four results
are possible (a-e-c, a-e-d, b-e-c, and b-e-d), and ReAS will compute all
four paths. It then uses the overlapping reads or clone-end pairs for
bridging information, and where possible, eliminates any incorrect paths.
DOI: 10.1371/journal.pcbi.0010043.g005

Table 4. Application of RepeatMasker to the Entire Rice Genome, Using Different Versions of the Repeat Library

Version Total Genomic Sequence within Copy Number (CN) Range nr-KOME-Defined Gene Regions

Any CN CN . 2 CN . 5 CN . 10 Coding Exons Exons and Introns

Repbase 30.8% 70.2% 72.4% 74.6% 1.0% 7.0%

ReAS (1to2) 36.3% 88.3% 91.4% 94.1% 1.3% 7.8%

Overlap 27.5% 68.2% 70.8% 73.3% 0.5% 5.8%

ReAS (1to3) 41.0% 94.9% 97.3% 98.2% 1.7% 9.3%

Overlap 28.4% 69.3% 71.8% 74.1% 0.6% 6.1%

ReAS (1to2) refers to the first two categories of Table 2 (Repbase and TE-related). ReAS (1to3) includes the third category (other repeats). The numbers indicate the percent of the genome that is masked. Overlap refers to the amount masked

by both ReAS and Repbase. The genome is split into regions of different copy number (CN). We also consider the gene regions defined by 19,079 nr-KOME cDNAs, looking either at the coding exons alone, or the complete gene region with

introns included.

DOI: 10.1371/journal.pcbi.0010043.t004
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Parameter settings. In principle, ReAS is applicable to any genome
(not just rice), with the appropriate changes in parameter settings.
Table 5 lists the settings used for the Syngenta japonica 63 WGS,
and explains how they might be adjusted for other genomes. For the
specialists, we discuss the technical issues here. Consider the choice of
K. It must be large enough for 4K to exceed the genome size. K � 15
suffices for rice. Our algorithm needs a byte of memory for every
possible K-mer, so there is a limit to how large K can be. Sixteen
gigabytes are used at K¼ 17. Notice also that larger Ks might make it
more difficult to recover the older TEs, where only the smallest
fragments are still recognizable.

The threshold depth D is selected based on coverage and error rate
considerations. If we assume that, in the unique portions of the
genome, the read depths follow a Poisson distribution, then for a
nominal coverage of 63 and a threshold depth of D¼ 14, one would
expect a 0.1% probability for a unique sequence to be mistakenly
called repetitive. This is of course only an approximate guideline, as
the read depths do not really follow a Poisson distribution. As we
show in Figure S2, 32.4% of the K-mers have a depth of one, because
of sequencing errors. The number is large because a single error in
one base pair will ruin every K-mer that overlaps with it. The data
were filtered for base pairs of error probability worse than 10�2, but it
is possible that our error probability is too optimistic, since we did

not control the experimental conditions, and calibration was
difficult.

We decided on the 95% mutual identity rule after a process of trial
and error. For more divergent TEs in smaller genomes, a less
stringent rule may be used. We would not recommend that it be less
than 90%, because of the increased likelihood of misassemblies and
the increased strain on computational resources. The 2/3 grouping
factor is not a sensitive parameter. We simulated 1,000 present-day
sequences by mutating an ancestral sequence to give divergences of
0% to 10%. The greedy algorithm treats each sequence as a node.
Arcs are placed between every pair of nodes that pass the mutual
identity threshold. We select the node with the most arcs, and
consider all the other nodes in succession. The rule is that, when the
number of arcs to the cluster exceeds the grouping factor, that node
is added to the cluster. The number of nodes per cluster does vary
with mutual identity, but at a 95% setting, it varies only 11% for
grouping factors of 1/2 to 4/5.

For the extension process, we require that the number of shared
reads exceed 20% or 200 reads. In theory, if all of the TE copies are
full length, 80% of the reads should be shared because most reads are
500 bp and the ICS grows by 100 bp at a time. In practice, the 20%
rule is easily satisfied by over 99% of valid (i.e., based on comparison
to known TEs) reconstructions. However, without some sort of shared

Figure 7. TEs within Segmental Duplications

If the duplication is of sufficiently high copy number, it will be assembled
as a ‘‘ReAS TE,’’ and what we need to do afterwards is find the
boundaries of the TEs within this assembled duplication. On the
assumption that TEs have much higher copy numbers, TE boundaries
can be identified by sudden changes in depth, accompanied by many
partially aligned reads.
DOI: 10.1371/journal.pcbi.0010043.g007

Table 5. Default Parameter Settings for Rice WGS

Parameter Default Setting Comment

K-mer size 17 4K must exceed genome size; larger K will tax memory

capacity and reduce sensitivity

Depth threshold 14 For 0.1% error at 23, 43, 63, 83, and 103 coverage,

D should be 7, 11, 14, 18, and 21, respectively

Mutual identity 95% May be reduced to 90% to recover more divergent TEs,

but only in the smaller genomes

Grouping factor 2/3 Not a very sensitive parameter

Segmental duplication Low depth , 300;

high/low depth . 3;

endpoints 50%

Different in every genome because of duplication history;

human curation recommended

DOI: 10.1371/journal.pcbi.0010043.t005

Figure 6. Fragmentation due to Low K-mer Depth

SZ-43LTR is the LTR region from a TE that is found as one piece in
Repbase, but is recovered by ReAS as two nonoverlapping pieces, with
98% and 97% nucleotide identity to the Repbase entry.
DOI: 10.1371/journal.pcbi.0010043.g006
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reads criterion, we would get too many misassemblies. The 200-reads
threshold is not a sensitive parameter. Both parameters are robust,
and we would not change either of them regardless of the genome.

We benchmarked parameters for the RECON-inspired splitting
against segmental duplications from the assembled rice genome. We
used known TEs to determine the read depth and breakpoint
distributions. Reads that belong to the duplication are fully aligned,
but those that belong to a TE from somewhere else are only partially
aligned and break at the TE boundary. One such example is shown in
Figure S3. In practice, we would expect the situation to be different
in every genome, reflecting differences in duplication history, and
these parameters must be adjusted accordingly.

Supporting Information

Figure S1. Comparison of Repbase and ReAS Showing Amount of
Dataset at the Stated 17-mer Depth

Amount of data is defined by the total length of the TEs, not the
number of TEs, so longer TEs contribute more to the ordinate. The
vertical line marks our D¼ 14 threshold.

Found at DOI: 10.1371/journal.pcbi.0010043.sg001 (593 KB TIF).

Figure S2. Observed Distribution of 17-mer Depths for Syngenta
WGS versus Expected Poisson Distribution at Shotgun Coverage of
63

Observed values are indicated by a solid line; expected values are
indicated by a dashed line.

Found at DOI: 10.1371/journal.pcbi.0010043.sg002 (560 KB TIF).

Figure S3. Example of a TE in a Segmental Duplication

This duplication has five copies in the entire genome, but living
inside it is a TE with hundreds of copies. Reads are aligned in BlastN.
Hits must exceed 100 bp and 85% nucleotide identity. Endpoints are
declared when a read has over 50 unaligned bases at the end.

Found at DOI: 10.1371/journal.pcbi.0010043.sg003 (578 KB TIF).

Table S1. Description of All 54 High-Depth TEs in Repbase

We compared shotgun reads to Repbase TEs. BlastN alignments that
exceed 100 bp and 85% nucleotide identity are mapped back to the
Repbase TEs. High-depth TEs are those that are over 80% covered by
high-depth alignments (HD blocks) of depth over 14.

Found at DOI: 10.1371/journal.pcbi.0010043.st001 (20 KB XLS).

Table S2. Best-Matched ReAS TE for All 54 High-Depth TEs in
Repbase

Asterisks have been appended to the names of those seven outliers
that are clearly due to incomplete Repbase TEs and/or LTR
concatemers. We define FN as the fraction of a Repbase TE that
remains unaligned. Conversely, FP is the fraction of a ReAS TE that
remains unaligned, where we ignore unaligned regions at the ends
and count only those in the middle. Total and average are given in the
final row. For the size ratio, we exclude the seven outliers. For FP and
FN, we compute length-weighted averages.

Found at DOI: 10.1371/journal.pcbi.0010043.st002 (29 KB XLS).

Table S3. Effects of TE Sequence Divergence

We started with an ancestral sequence of 500 bp, 2 kb, and10 kb.
From this, we simulated 100 TE copies with the stated range of
divergences from the ancestral TE. We simulated a 63 WGS and ran
ReAS. Results are averaged over ten such simulations. This table
indicates the number of recovered ReAS TEs, the number of clusters
they collapse into, the number of likely artifacts of size less than 500

bp and 17-mer depth less than 35, the percentage of ancestral TE
covered by all ReAS TEs, the percentage covered by only the best-
matched ReAS TE, and the number of recovered pieces that cannot
be aligned to the ancestral sequence.

Found at DOI: 10.1371/journal.pcbi.0010043.st003 (18 KB XLS).

Table S4. Description of Known ReAS TEs

We show length, mean 17-mer depth, cluster number, and classi-
fication information.

Found at DOI: 10.1371/journal.pcbi.0010043.st004 (228 KB XLS).

Table S5. Description of TE-Related ReAS TEs

We show length, mean 17-mer depth, cluster number, and classi-
fication information.

Found at DOI: 10.1371/journal.pcbi.0010043.st005 (134 KB XLS).

Table S6. Description of Other ReAS TEs

We show length, mean 17-mer depth, cluster number, and classifica-
tion information. Here, we also consider non-TE interpretations by
indicating (under ‘‘class’’) if the entity is a simple or low-complexity
repeat, and (under ‘‘notes’’) if it is a ribosomal RNA or centromeric
repeat. To check for likely pseudogenes, we searched for similarity to
the nr-KOME cDNAs using BlastX at an E-values of 10�5. To verify that
what we recovered is not an artifact of the ReAS process, we indicate
the number of intact copies found in the Syngenta (WGS) and IRGSP
(clone-by-clone) assemblies, where by ‘‘intact’’ we mean 80% of the
ReAS TE is aligned at 85% nucleotide identity.

Found at DOI: 10.1371/journal.pcbi.0010043.st006 (238 KB XLS).

Table S7. FASTA-Formatted Sequence for Known ReAS TEs

Found at DOI: 10.1371/journal.pcbi.0010043.st007 (2.1 MB TXT).

Table S8. FASTA-Formatted Sequence for TE-Related ReAS TEs

Found at DOI: 10.1371/journal.pcbi.0010043.st008 (1.0 MB TXT).

Table S9. FASTA-Formatted Sequence for Other ReAS TEs

Found at DOI: 10.1371/journal.pcbi.0010043.st009 (1.3 MB TXT).
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